
The effect of size and void configuration on the

stress intensity factor of regular and stochastic

porous materials

Dimitra Touliatou

Department of Mechanical and Aerospace Engineering
University of Strathclyde, Glasgow

A dissertetion submitted in partial fullfillemt of the requirements for the degree of

Doctor of Philoshopy

2019



This thesis is the result of the author’s original research. It has been

composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by University of Strathclyde

Regulation 3.50. Due acknowledgement must always be made of the use of

any material contained in, or derived from, this thesis.

i



Abstract

Both, naturally occurring and manufactured porous materials, offer unique and attrac-

tive properties. Yet, the inclusion of even a small porosity percentage in materials is

usually considered a threat to their integrity and strength. Novel manufacturing tech-

nologies, like additive manufacturing, are especially likely to introduce a low percentage

of porosity on manufactured components. Additionally, such technologies allow for the

manufacturing of smaller, more delicate geometries and mesostructures, whose fracture

behaviour deviates from the so far accepted theories.

The aim of this study is to map the relationship between the mesostructural pa-

rameters of low to medium porosity brittle materials and their fracture properties in

mode I loading. A multi-parameter investigation was conducted and specimens with

different topologies of idealised and probabilistic porosity were considered.

Results showed that the use of a single fracture parameter in porous materials is

often inadequate. More specifically, prominent size effects were observed, both nu-

merically and experimentally, thereby deviating from the scaling predictions of Linear

Elastic Fracture Mechanics under Small Scale Yielding conditions. These deviations

are attributed to the loss of K-dominance in the presence of porosity, implying the

increased significance of non-singular stresses on the local stress field. Focusing at the

scale of the heterogeneity, it was found that each specimen is actually characterised by

multiple, local stress intensities, depending on the relative location between the hetero-

geneity and the crack tip. Design of Experiments was employed to provide insight on

how a heterogeneity’s location can be designed to either amplify or diminish the stress

at the crack tip, thus producing a tailored response.

These findings can act as a theoretical framework on which guidelines for the design

of bespoke, novel materials can be drawn, so that porosity may no longer be viewed as

a defect, but as a means for damage tolerant design, leading to controlled fracture.
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CHAPTER 1

Introduction

1.1 Lightweight materials and structures

Lightweight materials are ubiquitous in nature. After years of evolution, natural struc-

tures have optimised to comprise of the minimum amount of material while maintaining

their mechanical strength and stiffness. Load-bearing structures like bones, and porous

rocks are characterised by an intricate, internal, cellular structure that allows them

to exhibit extraordinary strength while remaining light. For example, the wings of a

bird consist of a thin, dense exterior and almost hollow interior reinforced only with a

thin network of struts. It is this design of their bones, which allows them to cover a

large area, while remaining light and have an increased bending and torsional stiffness,

that makes them a remarkable example of nature’s architecture. Pith stems and bam-

boo have achieved a similar effect of high stiffness by the combination of a compliant,

binding matrix (e.g. lignin) with stiffer, load-bearing fibers (e.g. cellulose and hemi-

celluloses). Other materials have developed porous microstructures for functionality

reasons, such as fluid transport seen in teeth’s dentin or compact bone.

Yet it is only during the last decades that lightweight materials and structures have

gathered large amounts of attention both in academic and industrial circles. Especially,

with increasing environmental concerns and government regulations, research is focused

on materials that allow for more sustainable transportation in the automotive and

aerospace industry, as structures of reduced weight immediately translate to reduced

CO2 emissions.

One of the most researched ways to achieve lightweight materials is by reinforcing a

2



Chapter 1

compliant matrix with stiff particles or fibers which could either be randomly dispersed

or ordered in laminated layers. These composite materials offer a high stiffness to weight

ratio, are easily moldable, resistant to environmental degradation and can be tailored

to achieve properties like heat and electricity conductance at a small price compared to

more traditional materials. These benefits have made them highly desirable in a number

of sectors and research on their properties and optimisation is generously funded.

A different category of lightweight materials is porous and cellular materials. These

materials consist of a solid and a gaseous phase, which could either be enclosed in pock-

ets inside the material or be part of an interconnecting network. These materials can

achieve even lower densities than composite materials and provide additional benefits

like thermal and acoustic insulation, buoyancy and high energy absorption in impact.

Despite their benefits, with a smaller percentage of solid material, there is usually

a decline in these materials’ strength and stiffness, and failure becomes more likely. In

2003, during take off of the space shuttle Columbia, a large piece of foam from the

insulation of the external tank broke off, hit at a large speed and damaged the brittle

carbon, heat shielding panels on the orbiter’s left wing. The crew and ground engineers

operated under the preconception that a piece of foam couldn’t damage the shuttle

and was not a “safety of flight” issue. Numerical simulations they used to estimate the

extent of the damage, modelled ice instead of foam and gave conservative results which,

as was later proved, were not accurate. As a result, during reentry superheated gases

penetrated the orbiter’s wing, which inevitably led to its destruction and the death of

all seven crew members.

Since then, research on porous and cellular materials has intensified and their be-

haviour has become more comprehensible. Still, when referring to a heterogeneous

material’s properties, it is usually assumed that the specimen’s scale is large enough

that it can be considered a homogenised medium, characterized by unique mechan-

ical properties applicable at all size scales. Such simplifications are common as all

materials can be considered homogeneous at a proper scale. However, even steel, in

the microscopic level behaves as a heterogeneous material, governed by its grains’ size.

Similarly, in porous and cellular materials where the heterogeneities can be observed

with the naked eye, the homogenization of their properties can only be considered valid

for specimens of larger dimensions, when the dimension of its voids are much smaller

than any other macroscopic specimen dimension (Figure 1.1).

With the rise of new, precision manufacturing methods, a definitive turn towards

smaller and lighter parts and components has emerged. Additive manufacturing has

been one of the main drivers of this trend. Developments on the materials and tech-

niques used in additive manufacturing have allowed for components of intricate, biomimetic
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Figure 1.1: Heterogeneous, porous specimens can be either natural or man-made, and
may be appear in many different size scales. When the size of the heterogeneity becomes
comparable to the size of the structure, size effects may appear.

internal structures to be effectively used in high-end applications where weight saving is

essential, such as in aerospace. As the size of the manufactured component approaches

the size of the heterogeneity, it can no longer be assumed that homogenized material

properties apply. Even in the case where porosity is not designed in the material as

a means to reduce weight, unwanted porosity can be introduced due to inefficiency

of the manufacturing process. If not accounted for, this porosity can act as a stress

concentration point and may ultimately lead to the catastrophic failure of the part.

With lightweight materials becoming increasingly more prevalent in engineering,

and the shrinking size of structural components, it is imperative that the scaling laws

of porous and cellular materials are accurately mapped.

1.2 Aims and Objectives

This study aims to correlate the fracture behaviour of heterogeneous materials in the

presence of a long crack, to their mesostructural characteristics. As technologies turn

to the minute, particular interest is placed on smaller structures, where the size of the

heterogeneities is comparable to the specimen’s dimensions. The apt understanding of

this size effect and its correlation with the material’s intrinsic geometrical properties

will provide insight on ways to optimally design a material’s mesostructure in order to

achieve desired, tailored properties. Finally, this study aims to identify the underlying
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cause for the variations observed in order to obtain a more complete understanding of

this behaviour.

The following objectives were set in the path to achieve the above goals:

� Carry out a literature review of the broad field of size effects in fracture mechanics.

Within the context of this literature review, special notice should be given to

theories attempting to explain this size effect.

� Perform simulations of idealised heterogeneous specimens of different sizes to

establish the existence of a size effect (proof of concept).

� Conduct experiments in order to provide validation of numerical findings.

� Perform a designed numerical experiment to accurately map stress variations

emanating from voids in the vicinity of the crack tip.

� Extend observations to materials and structures of engineering interest.

� Suggest steps to advance findings to a higher technology readiness level (TRL)

so that they can be more readily useful to the industry.

1.3 Research output

It was important that the major findings of this study are peer reviewed throughout the

duration of this PhD, in order to ensure the validity of each step and receive constructive

feedback and suggestions from the academic community to improve this work. Hence,

the vast majority of the findings of this PhD have been submitted for publication in

peer-reviewed journals as following:

� D. Touliatou, M. A. Wheel, “K-dominance and size effect in mode I fracture of

brittle materials with low to medium porosity”, Engineering Fracture Mechanics,

2018, https://doi.org/10.1016/j.engfracmech.2018.06.041

� D. Touliatou, M. A. Wheel, “Experimental and numerical analysis of size effects

on stress intensity in anisotropic porous materials”, Engineering Failure Analysis

(in print)

� D. Touliatou, M. A. Wheel, “On the effect of voids and inclusions in the vicinity

of cracks in engineering materials” (submitted)

Part of the results of the thesis have also been demonstrated in an oral presentation

by the author of this thesis in the 8th International Conference for Engineering Failure

Analysis (ICEFA VIII) in Budapest, Hungary.

5



Chapter 1

1.4 Thesis Overview

Chapter 2 comprises a comprehensive literature review on the main concepts that will

be mentioned throughout the thesis. The gaps in the literature are clearly marked and

the contribution of this PhD in the general field of study is highlighted.

Chapter 3 describes the numerical and experimental methods used throughout the

content of this thesis. Although each subsequent chapter relies on different material

mesostructures, the thread binding them all together is outlined here.

Chapter 4 acts as an initial proof of concept of the existence of a size effect on the

fracture of porous materials. A numerical multi-parametric study of highly idealised

materials is conducted and initial suggestions on the underlying cause of the observed

size effect are conveyed. An empirical model is also first suggested in this chapter,

which will be used as a guide for the rest of the thesis.

Chapter 5 provides experimental validation of the findings of the previous chapter.

Due to several observed discrepancies in the geometry of the specimens (caused by

manufacturing uncertainties) a numerical study is also employed to investigate how

such effects could influence the material’s behaviour.

Chapter 6 focuses on materials and structures of engineering interest. Specimens of

random topology are studied and their behaviour is broken down to near-tip and bound-

ary effects. In order to better comprehend the influence of a void in the near-tip area,

a numerical designed experiment is conducted, highlighting effects of statistical signif-

icance on the material’s strength. These results are extended to materials with two

near-tip voids and their interaction is mapped by an approximated solution. Finally,

size effects in materials with inclusions and stop holes are briefly investigated, as an

extension of this study.

Chapter 7 concludes this thesis by briefly stating its findings collectively. It is ap-

preciated that this research study covers novel concepts that are still unresolved. Here

the next steps required to elevate these theoretical concepts to useful practices are also

listed.
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Fracture mechanics of brittle heterogeneous

materials

2.1 A brief historical perspective

All materials contain flaws in the form of impurities and voids.1 These flaws act as

stress concentration points, which weaken the material and can lead to its catastrophic

failure. Fracture mechanics is the engineering field that integrates mathematics and

physics in order to study the formation and propagation of these cracks in materials,

and their eventual failure. Within the scope of fracture mechanics lies the investigation

of the critical load, crack length, and environmental and loading conditions required for

a structure to fail. Deep knowledge of these parameters can allow for damage tolerant

design, which can prevent many catastrophic fracture events.

Fracture mechanics is a still developing field of science. However, proof of relevant

scientific research dates back to the Renaissance. Leonardo Da Vinci and Galileo Galilei

had conducted primitive experiments on the fracture of wires and beams, and made

initial observations correlating their strength with their geometrical dimensions.

Yet, it wasn’t until the 1920s when a theory correlating the fracture of solids with

flaw size was officially formed by A.A. Griffith, thus pioneering the field of fracture

mechanics. Griffith added on the work of Inglis, who had already formulated an ana-

lytical solution for the stress concentration around an ellipse. Inglis’s work, however,

contained a paradox: when the radius of the ellipse became zero (resembling a crack)

1The first sections of this chapter contain basic information which can be found in most textbooks
and thus references may be scarce. The main references used here were: [1–3]
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stress became infinite, which meant that any material containing a crack would fracture

even at a infinitesimal load. Griffith had the insight to additionally include the energy

of the crack surface in the analysis, in order to account for that singularity. He claimed

that, in accordance with the first law of thermodynamics, the crack would become

unstable and propagate when the strain energy released from a small advancement of

the crack exceeds the increase of the surface energy. He then validated his solution

by conducting experiments with glass tubes; though, experiments with metals were

unsuccessful.

Griffith’s solution assumed that the surface energy of the material was the threshold

energy over which the crack would advance, which is true for brittle materials. However,

metals exhibit extensive local plastic phenomena around the crack tip, dissipating the

work of fracture and increasing the energy required to advance the crack. In 1948,

G.R. Irwin noticed that discrepancy and added the term of plastic deformation on the

crack tip in Griffith’s solution. A few years later, by re-writing Griffith’s equation in a

more practical form, Irwin introduced the concept of the energy release rate (see also

Section 2.2.2). Based on this parameter, he then developed an equation to explicitly

approximate the stress at the crack tip using only a single parameter related to the

energy release rate, termed the stress intensity factor (see also Section 2.2.3). Due

to his contribution in the field, Irwin was given the unofficial title “father of fracture

mechanics”.

The main focus of research conducted during the following couple of decades was

crack tip plasticity. A number of researchers attempted to formulate universal crite-

ria describing the behaviour of non-linear fracture. The most popular ones, was the

introduction of the J-integral by Rice in the US and crack-tip opening displacement

(CTOD) by Wells in the UK. Even today both criteria are still applied throughout the

world to characterise a range of materials.

During that time, the concepts of fracture mechanics were beginning to become

established in industrial circles. In 1982, the cost of fracture in the US for 1978 was

estimated at $119 billions, which approximated almost 4% of the gross national product.

This economical pitfall pushed for more research in this domain. Meanwhile, the studies

conducted then posed serious questions on the validity of a single-parameter criterion

for fracture. With the increasing use of polymers, which are characterised by a viscous

nature, time-dependent fracture was one of the main areas of interest. At the same

time, prominent discrepancies between the behaviour of testing specimens and real

structures stimulated a number of studies on geometry dependent fracture and size

effects. This will be further addressed in Section 2.5.

More recently, the development of computers has allowed for improved models and
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many scientists have turned to the study of fracture mechanics in the context of engi-

neering applications. The study of interface and nanoscale fracture also became possible

as a result of the increased computational resources available.

2.2 Basic fracture mechanics concepts

A very short, compressed description of central concepts of fracture mechanics is pro-

vided here as background.

2.2.1 Modes of fracture

A material containing a crack can be subjected to any of the following types of loading

or combinations of them, referred to as mixed modes:

� Mode I: Opening mode. Failure results from the tensile stress, applied normal to

the crack surface (Figure 2.1, left). This is the most commonly encountered and

widely researched mode of fracture. This study will also exclusively focus on this

type of fracture.

� Mode II: Sliding mode or in-plane shear. In this case, the stress is applied parallel

to the crack surface and tends to slide one surface with respect to the other (Figure

2.1, center).

� Mode III: Tearing mode or out-of-plane shear. Both the crack surface and the

crack front are parallel to the applied stress (Figure 2.1, right).

Figure 2.1: Different modes of fracture.
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2.2.2 Energy release rate, G

Fracture occurs when the bond between two atoms breaks, resulting in a crack ad-

vancement equal to the interatomic distance (Figure2.2). The increase in the area of

the free surface is accompanied by two energetically competing processes: the first is

a linear increase in the surface energy, corresponding to the energy required to break

the atomic bonds, while the second is a quadratic decrease in energy, corresponding

to the release of strain energy. The net change of the total energy with respect to an

Figure 2.2: Top: Material representation in the atomic level. The crack is formed when
the bond between two atoms is broken. Bottom: Lennard-Jones potential as a function
of the interatomic distance. Reproduced from [1].
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infinitesimal increment of the crack length is termed the energy release rate, G.

The energy release rate was used as the first fracture criterion, stating that when the

energy release rate, G, exceeds a critical value, Gc, the crack advances spontaneously.

This criterion constitutes a global approach to fracture, since the potential energy of

the entire system is taken into account.

2.2.3 Stress intensity factor, K

An alternative, local failure criterion was introduced by Irwin in 1957. Irwin focused

on the displacements and stresses in the vicinity of the crack-tip. and noticed that they

can always be described as a function of the term (EG/π), which he termed the stress

intensity parameter. This parameter was later replaced by the stress intensity factor,

K, which for linear elastic materials is correlated with G as:

K =
√
GE′ (2.1)

, where

E′ =


E , for plane stress

E
1−v2 , for plane strain

(2.2)

In Equation 2.2, E represents the material’s Young Modulus and v is the Poisson

ratio. Note that this study investigates specimens exclusively in plane strain, for reasons

that will be clarified on section 2.2.4.

Fracture toughness is a material property which describes the ability of a material

to resist fracture. In linear elastic materials, the stress intensity factor, K, is the most

common measure of material’s toughness and represents the amplitude of the singularity

in the near-tip region.The value of the stress intensity factor for a given material is a

function of the specimen’s geometry, the applied load and mode of loading.

The mode that corresponds to the stress intensity factor is denoted by the appro-

priate subscript (e.g. KI refers to the mode I type of fracture etc.). The critical value

of the stress intensity factor, KIc for mode I, represents the stress value at the crack

tip which results in crack propagation and fracture. KIc is thus considered a unique

material property.
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2.2.4 Crack tip plasticity

Equation 2.1 correlates the stresses and displacements at the crack tip directly with the

resulting change in potential energy and implies that all of this energy focuses on the

crack tip to break the bond between the crack tip’s atoms. In real materials however,

the work produced by the force applied on the specimen may instead be dissipated in

a diffused zone ahead of the crack tip, leading to non-linear phenomena like crazing,

shearing, micro-cracks and plasticity. This zone is referred to as the Plastic Zone in

ductile materials or Fracture Process Zone (FPZ) in quasi-brittle materials.

The size of this non-linear zone is considered minimal in linear elastic, brittle ma-

terials. However, its size has been found to be correlated with the level of constraint of

the material on the crack front. For example, in plane stress (the condition in which the

only non-zero components of stress lie in a single plane [4], which is usually dominant in

thin specimens, Figure 2.3, center), the material adjacent to the sides of the specimen

can plastically deform laterally, since there is no constraint from surrounding material.

This would result in shear lips, governed by ductile fracture, which are characterised

by a varying value of stress intensity factor, dependent on non-linear phenomena. In

plane strain, on the contrary, (the condition in which the only non-zero components

of strain lie in a single plane [4], which is usually dominant in thick specimens, Figure

2.3, right), the region where the shear, plasticity governed, lips are formed only cov-

ers a small portion of the crack front due to the lack of constraint. This leads to a

predominantly brittle fracture.

Figure 2.3: Differences in plane stress (thin section) and plane strain (thick section)
due to the crack-front constraint. This alters the size of the plastic zone, giving rise to
non-linear phenomena. Reproduced from [5].
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2.3 Linear Elastic Fracture Mechanics

The present study focuses on purely brittle fracture. The conditions for brittle fracture

can be encountered not only in linear elastic materials, but also ductile materials at low

temperatures or high strain rates, or materials embrittled by fatigue. Brittle fracture

is a low energy process compared to ductile or quasi-brittle fracture, since it does not

involve non-linear energy dissipation phenomena like crazing, shearing and so forth.

Brittle fracture does not reveal any visible signs prior to propagation and once the

crack begins to grow it advances rapidly, which can lead to catastrophic consequences.

Thus, the study of brittle fracture, while considered simple, is arguably the most impor-

tant for engineering materials. The domain investigating this type of failure is Linear

Elastic Fracture Mechanics (LEFM).

2.3.1 K-dominance

Small Scale Yielding (SSY) is a central concept of LEFM. Based on the assumption

of SSY, the fracture process zone exhibited in brittle materials is very small, implying

that any non-linear phenomena are negligible [6]. In turn, it is assumed that there

exists a relatively large zone, the K-dominant zone (Figure 2.4), inside which it is

considered that the near-tip stress field can be accurately described by employing a

Figure 2.4: Illustration of K-dominant zone. The symbols r and θ refer to a polar
coordinate system, with its origin at the crack tip. The black, solid line on the graph
represents the total stress at the crack tip. The black, dashed line represents the singular
term KI/

√
2πr. Within the boundaries of the K-dominant zone (which are projected on

the graph by the red, dashed line) the total stress at the crack tip can be adequately
described solely by the singular term. Reproduced from [1]

13



Chapter 2

single parameter, the Stress Intensity Factor (SIF).

2.3.2 Stress analysis

A number of investigators have attempted to mathematically express the stress field

in the vicinity of a sharp crack, all yielding similar results [7–9]. However, this study

focuses on the work of Williams [7], whose solution remains the most widely used due to

its simplicity. Williams refrained from using complex variables and instead expressed

the stress field as an asymptotic expansion of stress functions. His solution was the

first to prove the stress singularity of 1/
√
r for generalised in plane-loading of elastic

materials (see Figure 2.4).

For mode I fracture, the generalised in-plane stress field is given in a polar coordinate

system (r, θ) as:

 σrr

σθθ

τ rθ

 =
KI√
2πr

1

4

 − cos 3θ
2 + 5 cos θ2

cos 3θ
2 + 3 cos θ2

sin θ
2 + sin 3θ

2

 + 4A0

 cos2 θ

sin2 θ

− sin θ cos θ



+
3A1/2r

1/2

4

 − cos 3θ
2 + 5 cos θ2

cos 3θ
2 + 3 cos θ2

sin θ
2 + sin 3θ

2

 +

Higher

Order

Terms

(2.3)

The first term of Equation 2.3 is singular and is described by the SIF, KI . The

second and third terms are non-singular and are termed the T-stress (where T = 4A0)

and the A1/2 -stress respectively. These terms depend on the geometry and finite

boundaries near the crack tip. Further higher order terms are not considered in this

study.

On approaching the crack tip (r=0), the first term tends to infinity while the higher

order terms remain constant or tend to zero. Thus, there exists a region in which the

fracture process is governed almost exclusively by the singular stress and is identified

as the K-dominant zone. In LEFM it is a fundamental assumption that this singularity

dominated zone is sufficiently large to imply that the SIF alone fully describes the stress

field around the crack tip.

It must be noted that even in cases where LEFM is generally assumed to apply, as

the length of the crack decreases (or, equivalently, the size of the specimen decreases)

and it becomes comparable to the size of the fracture process zone, the fracture event

may no longer be accurately described solely by the singular component of the stress.

Even though this can be more easily seen in quasi-brittle materials [10, 11], it has also
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been found, using Molecular Dynamics, for perfectly brittle materials (NaCl crystals)

in cases where the crack is reduced to only a few Å[12].

2.4 Fracture of porous and cellular materials

Porous and cellular materials are materials that consist of a solid phase which contains

a network of either isolated (closed-cell) or inter-connected (open-cell) pores. Mate-

rials that have porosities larger than 70% are usually termed as cellular materials or

foams (Figure 2.5, bottom row), while materials of lower porosity are termed as porous

materials (Figure 2.5, top row) [13].

Porous and cellular materials offer a plethora of useful attributes including unique

specific properties, low density and high thermal and acoustic insulation. These prop-

erties make them attractive to various applications within the automotive, aerospace,

aeronautical and ship building industries [13, 16], where they are mainly utilised as

cores of composite sandwich structures.

In the fields of geoscience and geoengineering, the understanding of underground

stress fields around single fractures and fracture networks in porous media are of utmost

importance for the investigation of ways to achieve more efficient geothermal energy

harvesting, water resource conservation, CO2 sequestration, and ensuring safe resource

exploitation in the oil and gas industry amongst other matters [17, 18].

Porosity, though, may also be introduced in materials due to their manufacturing

Figure 2.5: Scanning Electron Microscopy (SEM) pictures of materials with different
porosities. Top row: Low and medium porosity materials manufactured by sintering
(reproduced from [14]), bottom row: High porosity foams (reproduced from [15])
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method (Figure 2.5, top row), and thus be unwanted and unaccounted for. Voids act

as stress concentration points in a material, rendering themselves as origins for cracks.

Thus this type of porosity, especially if it is not later identified, can cause catastrophic

failures [19–22]. In recent years, a plethora of research studies focused on identifying,

quantifying and attempting to account for this porosity have emerged [23–28].

The stiffness and strength of porous and cellular materials is a proportional func-

tion of the material’s porosity [13, 29]. In fact, in the presence of a propagating crack,

the general tendency of porous materials’ behaviour can be distinguished in three cat-

egories, depending on their amount of porosity [30]. Materials with porosity less than

10% have been found to behave more like a solid material than a porous one, with only

a few isolated pores whose interaction with the crack is often negligible. Thus, the

behaviour of these materials is mainly governed by the behaviour of their solid phase.

The second category refers to materials with a porosity ranging from 10% to 70% (the

threshold above which the material is considered a foam). To the author’s knowledge,

there currently exists no comprehensive study on the fracture behaviour of such mate-

rials, possibly due to the lack of natural materials with a porosity level of that range.

However, there does exist a limited number of studies investigating the crack arresting

capabilities of medium porosity materials (for example [31–34], see also Section 2.4.1).

The final category, materials with porosities higher than 70% (foams), behave quite

differently, with the crack propagating by the failure of thin struts comprising the solid

phase. Rigid polymer foams usually fail by brittle or quasi-brittle fracture, with the

rapid propagation of a single crack, and their behaviour can be adequately described

with LEFM. On the other hand, semi-rigid and flexible polymer foams fail by tearing,

while metallic foams have been most commonly reported to fail in an elasto-plastic

manner [35].

In contrast to low and medium porosity materials, there is a much larger number of

studies on the fracture properties of foams and their sensitivity to intrinsic and external

factors. Mass density is the most cited parameter influencing the fracture toughness

of foams, with a generally monotonic increase of the latter as the former increases

too. This has been demonstrated both experimentally [36–39] and numerically [40–42].

These findings only extend the effect of porosity to materials of higher values though,

since porosity and density are directly correlated.

Though density and porosity are two important parameters, the brittle or ductile

damage and failure of struts, was numerically found to be governed by the choice of ma-

terial [40]. Even for the same material though, experiments on polymer foams showed

that higher levels of cross-linking were linked to higher fracture toughness values. It

was suggested that this may be attributed to the fact that lesser cross-linking was
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translated to smaller cell sizes which then led to lower length-to-thickness slenderness

ratios, making the material more prone to buckling [39]. However, the effect of the cell

size on the material’s toughness in a different set of experiments was inconclusive [37],

while numerical findings linked it to a change on the material’s internal length scale

[40].

In foams of ultrahigh porosity, the topology of the cellular structure can have a

tremendous impact on the material’s behaviour, deciding whether its behaviour will

be bending or stretching dominated. Such materials can be modelled with different

lattices (e.g. kagome, square, etc. (Figure 2.6)), which offer different advantages and

disadvantages, and their selection should be carefully considered. For example, while

the kagome lattice has been reported to be capable of higher fracture toughness values

[43, 44], it is also more sensitive to imperfections [45]. In fact, in a study comparing

the fracture toughness of perfect hexagonal lattice with a random Voronoi lattice, it

was found that the lack of periodicity decreased the fracture toughness up to 25%. A

few analytical models predicting the fracture toughness of ultrahigh porosity materials

have been formulated, taking into account the material’s porosity value and unit cell

dimensions [46–48]. These micromechanical models, however, only look at open-cell

foams of idealised structure and are not applicable on varying geometries. Thus, these

analytical models may provide a baseline for comparison with experimental or numerical

analyses but are not a usually seen as a standalone analytical tool. The investigation

of the properties of lattice materials is out of the scope of this thesis, however, for more

information the reader can refer to [49] and [50].

Apart from the material’s intrinsic geometrical features, the experimental loading

conditions also seem to affect the measured fracture toughness. More specifically, dif-

ferent loading configurations (three point bending versus four point bending) have been

found to produce different fracture toughness values [37], and the effect of loading rate,

while significant, produces inconclusive results on its correlation with the measured

fracture toughness [38, 39]. Finally, a prominent size effect has also been observed [38,

Figure 2.6: Different types of lattices. From left to right: kagome, triangular, square
and hexagonal. Reproduced from [43].
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39, 42] even for homothetic specimens, with smaller specimens exhibiting larger tough-

ness values than their larger counterparts (this is more extensively covered in Section

2.5).These findings point to the significance of a standardised test procedure for cellular

materials, which however, has not yet been established (see Chapter 3).

2.4.1 Interaction of crack with near-tip heterogeneities

During fracture, the behaviour of cracks is influenced by the presence of heterogeneities

in the near-tip area. Since fracture is a local phenomenon, a large number of studies

have focused on the interactions of a crack with a single near-tip void or cluster of

voids. Here, literature on the interactions between both, pores and inclusions, is briefly

cited, since they both affect the near-tip stress field by a sharp change of modulus and

continuity.

Voids and inclusions in the vicinity of a crack have been found to alter the local stress

field and change the measured stress intensity at the crack tip. Previous studies have

found that the presence of a void or an inclusion can either amplify or lower the stress at

the crack tip, depending on their relative angle [51–58]. In fact, the existence of a void

has an opposing effect to the existence of an inclusion, with the former amplifying the

stresses when the latter one is lowering them and vice versa. Nonetheless, it has become

clear that the effect of the heterogeneity on the crack-tip stress field gradually wears off

as their relative distance grows. These fluctuations of the material’s fracture toughness

have been linked in previous studies to the loss of K-dominance [59] and the increased

influence of the T-stresses [60], caused by the presence of the inhomogeneity. When

additional voids are considered around the crack tip, the stress fluctuations become

more pronounced, especially as the distance between the voids becomes smaller [53, 54,

61, 62].

One prominent study [51] derives an equation based on Eshelby’s inhomogeneity

theory [63, 64] (that states that a stressed inhomogeneity in an otherwise homogeneous

material can be considered a continuous part of the material with a transformation

strain), which is then used to predict the fracture toughness of a material with a single

void or inclusion in the vicinity of the crack tip. When compared to Finite Element

Analysis (FEA) results for the aforementioned cases, the equation seems to predict the

crack’s behaviour very well.

During crack growth, the presence of voids can change the direction of the crack,

attracting it and drawing it in [65–70]. The attraction of cracks, is widely exploited as

a inherent crack-arrest mechanism of materials. One area of application is for the self-

assembly of nanowires and nanochanels on brittle thin films through controlled crack

arrest [70, 71]. To achieve this, specifically designed void patterns of “arrestors” and

18



Chapter 2

Figure 2.7: Crack arresting geometries. (a) Demonstration of the crack tip blunting of
porous materials in contrast to solid ones. Reproduced from [34]. (b) Optimised crack
arresting geometries for materials with four-fold and six-fold symmetry. (c) FE analysis
showing the diffused stress distribution during a Mode I loading of the material with
optimal four-fold symmetry. Reproduced from [74]

.

“initiators” are used to manipulate the crack path to a desired geometry.

Another example is the use of voids to stop expanding cracks in ceramics by taking

advantage of the crack blunting effect [34]. When a crack enters a void, the periphery

of the void, which has a larger radius than the crack tip, acts as the new crack tip

(Figure 2.7(a),(c)). This increases the stress required to propagate the crack further

and makes the material less susceptible to sudden, complete failure. Sometimes, when

a crack is detected on a material, holes are drilled near the crack tip, termed as stop

holes, to stop the crack from advancing further [58, 72, 73]

In materials of infinite dimensions, with a single stop-hole it has been found that the

larger the size of the void, the higher the energy required to propagate the crack [62, 75].

However, when additional voids are present near the initial void (as would be in a porous

material), this dependency is no longer monotonic [31, 33, 62]. This is a result of two

competing effects on the stress in front of the crack tip. On the one hand, as the pore

diameter increases, the crack blunting effect becomes more efficient, strengthening the

material. On the other hand, as the ligament between the neighbouring voids becomes

smaller, the stress level becomes larger, weakening the material.

Apart from void size though, void shape can also significantly change the stress field

at the crack tip, either weakening or strengthening it. It has been shown that for a

material with fourfold symmetry (square arrangement of voids, Figure 2.7(b),left), the

optimal void shape resembles a square with rounded corners, while for a material with

six-fold symmetry (hexagonal pattern, Figure 2.7(b),right), the optimal void shape was
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circular. However, between the two, a hexagonal pattern with circular voids exhibited

somewhat higher fracture toughness [74].

2.5 Size effects in fracture mechanics

Scaling is one of the most central parts of the understanding and application of any

physical theory. The extrapolation of a material’s stiffness and strength from a small

specimen, suitable for laboratory testing, to a large, real-life structure does not always

follow a predictable path [39, 76–82].

The earliest reports of a size effect were made by Leonardo Da Vinci [83], who

noticed a size effect while testing the strength of metal wires of different lengths. Even

though he was the first to report that smaller metal wires appear tougher than larger

ones, several decades later, Galileo [84] made similar observations for bones of differently

sized animals. Almost 50 years later (1686), Mariotte [85], after conducting experiments

on various materials, claimed that different sizes of specimens of the same material will

break at the same strength, unless there is a flaw in the material. Larger specimens are

more likely to include flaws, thus they are most likely to break sooner than the smaller

specimens. This observation was the stepping stone for the statistical size effect law.

In the next centuries, size effects were considered to be dependent on the stochastic

distribution of material strength and were mainly studied by statisticians. In 1939,

Weibull published a power law with a threshold for the material’s yield strength, know

as Weibull’s distribution [87]. This distribution deviates from the LEFM scaling and

was better suited to predict the scaling of specimens with randomly distributed flaws

in them (Figure 2.8(a)).

(a) (b)

Figure 2.8: Size effect transition laws: (a) Weibull distribution and (b) Bazant’s SEL.
The scaling predicted by LEFM is depicted on both graphs to highlight the deviations
predicted by the size effect laws for smaller specimens. Reproduced from [86].
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It wasn’t until 1969 that Leicester published the first deterministic study of size

effects [88]. During his research, he had observed that a specimen’s strength is not

only dependent on this stochastic distribution of cracks and flaws, but also depends

on the heterogeneous nature of the specimens. His research showed that a detrimental

component of a specimen’s behaviour in fracture is largely affected by the local, near-tip

region.

Since approximately the 1980s, researchers studying size effects have focused their

studies on the deformation mechanisms and characteristics of this near-tip region.

Quasi-brittle materials, are characterised by a large FPZ and often exhibit size ef-

fects. A number of size effect laws and criteria have emerged that attempt to describe

how the FPZ alters the near-tip behaviour of an otherwise linear elastic material [89–

92].

Perhaps the most popular is the Size Effect Law (SEL), formulated by Bazant [10,

86, 93]. Quasi-brittle materials have a characteristic length, which is linked to their mi-

crostructural characteristics. For example, in concrete (which was the material under

study) the characteristic length is equal to the size of the aggregate, while in polymer

foams it is the size of a unit cell [94]. Bazant demonstrated that for smaller specimens,

where the size of the specimen becomes comparable to the size of this characteristic

length, the specimen transitions to plasticity. This behaviour was attributed to the

localization of strain-softening damage into bands and the subsequent stress redistri-

bution in the material. On the other hand, larger specimens are found to comply with

LEFM, thus producing a transitional area of scaling for intermediate specimen sizes

(Figure 2.8(b)).

A number of experiments have demonstrated the validity of the SEL, by comparing

the fracture toughness of homothetic specimens (Figure 2.9). Although the SEL was

Figure 2.9: Scaled, homothetic specimens of foam used to demonstrate the size effect.
Reproduced from [15].
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derived by observations in concrete, it has been applied in a plethora of other quasi-

brittle materials as well, including rocks, sea ice, ceramics [95] polymer foams [11, 39,

96, 97] and composites [98, 99].

2.5.1 Models accounting for non-singular stresses

Most criteria that attempt to explain size effects, consider that there exists a physical

parameter, inherent to the material, that is independent of the specimen’s size. For

example, in the SEL described above, it is assumed that there exists a crack band whose

width remains constant for all different specimen sizes of a specific material. However,

a prominent set of theories has emerged, which accounts for size effects in quasi-brittle

materials, like concrete and limestone, while considering the variation of FPZ with

specimen size [100]. In order to explain discrepancies emanating from differently sized

specimens, investigators are rejecting the notion of an indisputably large K-dominant

zone and are investigating two parameter models, including non-singular terms of the

Williams expansion series in addition to the SIF, to more accurately and consistently

predict the fracture toughness of different specimens [101–105].

Two-parameter models that include the second, constant, non-singular term of the

William’s equation (Equation 2.3), the T-stress, are the most widely investigated [100,

105–110]. The T-stress by definition is only observed at the crack tip in the transverse,

x-direction (parallel to the crack) and is not directly relevant to the opening stresses

of mode I (in the y-direction). Yet, a number of researchers have correlated the fluc-

tuations of the T-stress component with changes in the crack tip constraint and have

reported that non-zero values of the T-stress are accompanied by a larger plastic zone

(or FPZ) size. Models taking into account both the SIF and the T-stress have been

formulated to predict with higher accuracy the behaviour of cracks in quasi-brittle ma-

terials. Apart from size effects, the influence of T-stresses on the crack path has been

extensively investigated (for a more thorough review of investigations around T-stresses

the author recommends [111]).

Some studies on the mode I behaviour of brittle materials have alternatively in-

cluded the third term of the William’s equation, A1/2, which is also non-singular. In

contrast to the T-stress, this term exists in all directions on the crack tip and is di-

rectly additive on the opening stress, according to Equation 2.3. The benefit of this

approach is that it facilitates focus on brittle materials, by overriding the influence of

the T-stress on the FPZ size, since it is assumed that such a zone no longer exists.

Instead, these studies focused on the effect of the specimen’s geometry and boundary

conditions on the size of the K-dominant zone. They claimed that instead of a growing

plastic zone which engulfs the K-dominant zone, deviations from LEFM are attributed
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to the shrinking K-dominant zone which limits the universality of a single-parameter

criterion to accurately describe the near-tip stress field. The accuracy of their solution

was demonstrated in both, homogeneous specimens of varying geometries [103, 112]

and heterogeneous materials, and more specifically composites [113].

The importance of the higher order terms in the estimation of stresses in brittle ma-

terials can also be visually identified by observing the near-tip stress field by means of

photoelasticity (Figure 2.10) [114–118]. For homogeneous specimens, the photoelastic

fringe pattern under mode I loading follows a concentric ellipsoidal pattern, originat-

ing at the crack tip. This fringe pattern can then be numerically reconstructed and

compared with the experimentally obtained images in order to identify the number of

terms needed to accurately numerically approximate the experimental results. In all

studies, the inclusion of non-singular terms in the reconstruction of the near-tip field

increased the accuracy of the estimations, while often multiple additional terms were

needed to precisely capture the experimental results.

Figure 2.10: Photoelastic fringes observed in a homogeneous center-cracked compressed
disk. The analytical estimation of the finge pattern with a different number of higher
order terms is superposed on the pictures in red. Reproduced from [117].

2.6 Concluding remarks

This chapter briefly describes the state of the art in considering fracture of porous

materials. Literature suggests that understanding the properties of such materials is
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highly significant, especially as they find increased applications throughout the engi-

neering spectrum. This can be validated by the increasing number of publications on

that subject in the most recent years. The chapter then focuses on the investigation of

the effect of specimen size on a material’s stress intensity factor. This size effect is found

to be a detrimental factor in the behaviour and understanding of porous materials.

Following this review, the main focus of this study was turned on low to medium

porosity materials, since there is only a limited amount of studies addressing their be-

haviour. More specifically, attention focused on the size effect exhibited for homothetic

heterogeneous specimens and attempted to investigate the underlying causes of this

size effect. To this end, it was decided to work with two parameter models, taking

into account the second non-singular term of the William’s expansion, since it has been

shown to be successfully applied to brittle materials.

This work is potentially of high academic value due to its significant contribution to

the understanding of the behaviour of a currently emerging set of materials. Apart from

the creation of a large database of numerical and experimental results, this study further

attempts to investigate in detail the physical phenomena that govern the observed

behaviour. At the same time, it is believed that the findings of this study set the

groundwork for designed materials with tailored fracture properties, that could be of

great industrial potential.
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Experimental and numerical methods for the

evaluation of the stress intensity at the crack tip

This study aims to investigate the behaviour of low to medium porosity materials in the

presence of a crack and investigate the underlying cause of any observed size effects. It

is important to clarify the specifics of this work, around which decisions on the methods

to be used were made:

� Critical values are not to be studied. This study focuses on the linear

progression to fracture for a constant applied moment and investigates how the

stresses are distributed in the near-tip area for specimens of different mesostruc-

tures and sizes. Crack propagation is not reached.

� Specific values of stress intensities are not the subject of study. Our

goal is that the results are transferable to any brittle material, regardless of its

properties. All properties presented are normalised to the respective homogeneous

values, thus making the specific material properties and applied loads of lesser

importance.

To achieve the research objectives, an extensive numerical evaluation of the fracture

behaviour of brittle porous materials in mode I fracture, followed by an experimental

validation were conducted. Both of these processes present challenges for different

reasons: Numerical modelling of porous materials is quite computationally expensive,

while there is currently no standardised testing method for the Mode I fracture exper-

iments of porous specimens.
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This chapter is divided in two parts; one addressing the experimental challenges

and the approach followed, and one part for the respective numerical part.

3.1 Experimental approach

Material testing standards provide engineers with a universal way to test materials,

aiming to improve the confidence and comparability of materials’ properties. However,

due to this globalisation, testing standards sometimes fail to account for the specificities

of each study, especially when it comes to innovative concepts often pursued in research.

It is interesting to note that until today there is no specific standard for the inves-

tigation of the fracture properties of porous materials. Most studies that address this

issue are based on ASTM D5045 (“Standard Test Methods for Plane-Strain Fracture

Toughness and Strain Energy Release Rate of Plastic Materials”) [11, 15, 36, 38, 39,

103]. However, this standard refers to non-porous polymers and is only adapted by

researchers to fit their needs.

Some testing standards, that could be relevant to the fracture of porous and cellular

polymer materials have been identified and are listed below:

1. ASTM D5045: “Standard Test Method for Plane-Strain Fracture Toughness and

Strain Energy Release Rate of Plastic Materials”

2. ASTM D5528: “Standard test method for Mode I interlaminar fracture toughness

of unidirectional fibre-reinforced polymer matrix composites”

3. ASTM D3574: “Standard test methods for flexible cellular materials-slab, bonded,

and molded urethane foams”

4. ASTM D3575: “Standard test methods for flexible cellular materials made from

olefin polymers”

5. BS EN ISO 8067-89: “Flexible cellular polymeric materials - Determination of

tear strength”

The goals of the present study cannot be adequately met with any single one of

the aforementioned standards. Thus, a compilation of the ASTM D5045 and ASTM

D5528 standards has been attempted, as described in the following subsections.

3.1.1 Specimen design

Testing standard D5045 requires the use of either Compact Tension (CT) or Single-

End-Notch Bending (SENB) specimens. In this study, the linear elastic progression
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towards fracture is studied, rather than the fracture toughness value which is usually

the value of interest. Thus, precise measurements are required during the specimens’

loading. Double Cantilever Beam (DCB) specimens were preferred, since these can

achieve larger displacements at the loaded end for smaller applied loads. The material

selected was poly(methyl methacrylate) (PMMA), as it is both brittle and transparent,

allowing for the visualisation of the near-tip stress field using photoelasticity. Cast

PMMA was preferred over extruded sheets to ensure a greater degree of isotropy in the

specimens’ behaviour.

A number of previous studies have also used DCB specimens to study the fracture

behaviour of non-composite materials [94, 119–121]. Here, special notice will be given to

the studies of Kumar et al. [103] and Chao et al. [104] who, similarly to this study, used

PMMA DCB specimens to investigate size effects and the effect of non-singular stresses

in mode I fracture. However, in both cases, homogeneous materials were studied.

The specimen design and testing outlined below is mainly based on ASTM D5528

(that uses DCB specimens), while ASTM D5045 was consulted for insights on polymer

material testing specifics.

The design of the specimen is based on the following criteria:

� ASTM D5045, (7.1.1): The crack length α for CT and SENB specimen should

be selected such that 0.45 < α/W < 0.55, where W is the specimen length (see

Figure 3.1).

ASTM D5528, (8.4.1): Specimens shall be at least 125mm long [...] with

an initial delamination length of 50mm (i.e. α/W = 0.4).

Literature: Kumar et al. [103] used a value of 0.45 for DCB specimen, while

Chao et al. [104] used a range from 0.04 to 0.7.

Current study: For all cases of this study it was selected: α/W = 0.5.

� ASTM D5045, (7.1.2): The criteria require that the specimen thickness B

must be sufficient to ensure plane strain and that (W − α) be sufficient to avoid

excessive plasticity in the ligament. If (W − α) is too small and non-linearity in

loading occurs, then increasing the W/B ratio to a maximum of 4 is permitted

for SENB specimens.

ASTM D5528, (8.4.1): Specimens shall be nominally from 20 to 25 mm [...]

Note: Round-robin testing on narrow and wide specimens yielded similar results,
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indicating that the DCB specimen width is not a critical parameter.

Literature: Kumar et al. [103] used a PMMA sheet of 11.58 mm thickness,

while Chao et al. [104] used a 5.84 mm thick sheet.

Current study: A 10 mm thickness was selected for this study.

� ASTM D5528: For materials with low-flexural modulus or high interlaminar

fracture toughness, it may be necessary to increase the number of plies, that is,

increase the laminate thickness or decrease the delamination length to avoid large

deflections of the specimen arms. The specimen width h and initial delamination

length α0 shall be designed to satisfy the following criteria:

α0 6 0.042

√
(
h3E11

GIc
) (3.1)

,and

h 6 8.28
GIcα

2
0

E11

1/3

(3.2)

Current study: Although, the material is considered both thick and stiff enough

to avoid large deflections, the above criteria have been met. For the calculations,

the following material parameters were assumed:

GIc = 78.6− 620 J/m2, E11 = 1800− 3300 MPa.

� ASTM D5528: The distance from the loading block pin to the center line of the

top specimen arm shall be as small as possible to minimize errors as a result of

the applied moment arm. These effects will be reduced significantly by choosing a

distance, t (where t is the vertical distance between the midplane of the specimen’s

arm and the loading point), such that:

t 6 h/4 + 0.01

√
0.0434h3E11

GIc
+ α2 (3.3)

If this criterion cannot be met, then corrections for loading block effects should be

used to reduce the data.
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Current study:Since the loading blocks are deliberately designed into the spec-

imen and are not glued on its surfaces, this criterion has been easily met. In the

case that load blocks are used to introduce the load, ASTM D5528 advises to

not use values of α/h < 10, which could cause inaccuracies on the data reduc-

tion procedures. However, in this study, since the above criterion for t is met,

aspect ratios of α/h = 6 are used in order to save material. FEA predicts almost

identical results for the energy release rate.

Porosity was then designed in the specimens in the form of circular pores in a

rectangular array (Figure 3.1). The inter-void distances in the x and y direction are

Sizex = 3.5mm and Sizey =
√
3Sizex/2 respectively. These values were selected with the

numerical model in mind, where the void topology is that of an equilateral triangular

instead of a rectangle (this will be described in more detail in Chapter 4). The given

relationship between the two sides of each unit cell ensures that all inter-void distances

are equal for the triangular void arrangement, which translates to a quasi-isotropic

material [78]. However, for the experimental study a rectangular arrangement was

preferred instead, in order to simplify the specimens manufacturing (as the means

of manufacturing was not yet specified). This topology difference is not expected to

produce large deviations in the estimated properties under study (also see Figure 5.4).

The width of the specimen, h,and the voids’ diameter , d, are variables for this

study and will be further described in the respective chapter.

At least three specimens of each different specimen configuration were manufactured

(see Figure 5.1b), to ensure the repeatability of the results. A set of homogeneous spec-

imens was also manufactured and tested, as a reference value for the porous specimens.

Laser-cutting for used for the manufacturing of all specimens, as described in more

detail in Chapter 5.

Figure 3.1: Schematic and summary of the specimen design specifications.
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Quality assurance

Before testing, the manufactured specimens were subjected to a quality control proce-

dure to ensure their geometrical consistency.

In order to assess the fidelity of the manufactured specimens to the design spec-

ifications, each specimen’s surface was scanned and the image was then processed in

an in-house MATLAB code to extract all values relevant to the designed void pattern

(Figure 3.2). Prior to scanning the specimen’s surface, the area of the specimen to

be examined was painted black to increase the visibility of the voids. Note that the

near-tip area was not painted, in order to maintain the ability to visualise the near-

tip area by means of photoelasticty. However, it was assumed that any laser-cutting

inaccuracies per specimen would be consistent throughout the entire void pattern and

Figure 3.2: Top: MATLAB recognition of void pattern. A GB one pence coin was
used in all pictures as a reference for calibration. Bottom: Graph produced by MAT-
LAB with all inter-void distances estimated. When large deviations were shown, the
specimens were also inspected both visually and with the use of a caliper.
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thus even an examination of a small part of the specimen would reveal them. In each

scanned image, a UK one pence coin was included, whose radius was used as a ref-

erence of length to calibrate the code’s measuring capabilities. MATLAB was then

programmed to identify all circular shapes of a certain size range in the image (i.e. the

voids), estimate their void radius and inter-void distances, and evaluate the circularity

and eccentricity of each identified void.

A ruler and caliper were also used both to measure the external dimensions of the

specimens, and to validate the MATLAB results by randomly measuring a few relevant

dimensions for each set of specimens. Self-similarity between all different types of

specimens was validated by means of weighing each specimen.

3.1.2 Testing procedure

Mode I test

The tests were conducted on a constant displacement rate device, as described in both

testing standards considered here. In order to mount the specimens on the machine, a

specifically designed clevis was manufactured (Figure 3.3), based on the specifications

of ASTM D5045 (detailed drawing can be found in Appendix A). After mounting the

specimens, ASTM D5528, in paragraph 11.5, states that “the end of the specimen

opposite the grips should be supported before loading”. This was taken into account

before each test was conducted (see Figure 5.2).

(a) (b)

Figure 3.3: Designed (a) and manufactured (b) clevis. In (a) the transparency of the
bottom clevis has been adjusted to show hidden details.
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The specimens were loaded at a constant rate, as stated in both ASTM D5045

and ASTM D5528. However, the following conflicting suggestions are made in the two

testing standards:

� ASTM D5528 (11.7.1): Load the specimen at a constant crosshead rate be-

tween 1 and 5 mm/min.

� ASTM D5045 (8.3.1): Since plastics are viscoelastic materials [...] it is rec-

ommended that a crosshead rate of 10 mm/min be used.

In DCB specimens, the moment at the crack tip is much higher than in CT or SENB

specimens (as described in ASTM D5045). Thus, a crosshead rate of 10 mm/min is

considered to be inappropriate as it will very quickly increase the stress at the crack

tip and impede the capturing of the photoelastic fringe pattern by decreasing the time

available to take suitable photos (see also Section 5.1.1). Since the material remains

in the linear elastic region it is not expected that the loading rate will severely impact

the estimated stress intensity. For consistency reasons, the highest suggested level from

ASTM D5528 (i.e. 5mm/min) was selected as a compromise between the two stan-

dards, in order to avoid viscoelastic effects while maintaining a pseudo-static loading.

This study does not focus on the critical value of the fracture toughness. Instead, it

focuses on the variations of the stress intensity at the crack tip for a constant value of

the applied moment, for specimens of different sizes and porosity values. Consequently,

the specimens were not loaded until fracture. They were loaded up to a certain value,

below the critical point, and then unloaded at a constant rate. During each test, the

goal was to ensure that the specimen remain in the linear elastic region.

Photoelasticity

Part of this study is to investigate the underlying reason for the observed variations

in the values of the stress intensity at the crack tip for differently sized specimens in

brittle porous materials, and the focus was set on the increased significance of non-

singular stresses. As it was shown in Chapter 2, there exists a plethora of studies that

use photoelasticity in order to experimentally visualise the stress field at the tip of a

crack and identify the influence of the non-singular components on it [114–118].

Photoelasticity is based on the principal stresses observed in a loaded material. A

brief, intuitive description of the principal stresses is given here for reference. The stress

tensor provides detailed information on the stresses applied at a point on the material

(Figure 3.4a). The component τij is the component of the stress in the i direction, acting

on a surface perpendicular to the j direction (the tensor is symmetric so τij = τji). The

indices i and j take the values of the coordinate axes, in this case x and y. The stress
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Figure 3.4: Schematic representation of (a) a general stress tensor and (b) a stress
tensor diagonalised by its principal stresses (eigenvalues). Figures adapted from [122].

tensor is diagonalised (i.e. vanishing shear stresses) by its eigenvalues, which are called

principal stresses (σ1, σ2 for the 2D plane); diagonalising the tensor corresponds to a

rotation of the coordinate system, to a basis aligned with the eigenvectors of the stress

tensor (Figure 3.4b).

Photoelasticity can reveal two, over-lapping patterns in the specimen: isochromatics

and isoclinics. Isochromatics are the loci where the difference of the two principal

stresses (σ1−σ2) is constant. The number of these bands increases in proportion to the

external forces. Isoclinics, on the other hand, are related to the direction of the principal

stresses. These usually obscure a large part of the specimen and may be unwanted. In

order to avoid them, circular polarisers may be used. For the experimental part of this

study, during loading, the near-tip stress field was monitored with the use of a circular

polariscope in order to isolate the isochromatic patters and obtain qualitative results

on the influence of porosity on the near-tip stress field.

Any light wave has an amplitude vector that is always normal to its propagating

direction. In ordinary light, the direction of this amplitude vector, while remaining

normal to the velocity, is completely random. In photoelasticity, wave plates and

polarisers are used to manipulate the direction of the waves. Polarisers are characterised

by a polarising direction. When ordinary light goes through a polariser, it is resolved

in two components: one parallel to the polarising direction and one perpendicular

to it. The first one is allowed to go through the polariser, while the latter one is

rejected. Wave plates are similar to polarisers in that they break the incident light in
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two perpendicular components. Instead of rejecting one of the two components, the

wave plate imposes on them a relative phase difference, δphase.

In a circular polariscope (Figure 3.5) each element performs a certain function :

� Light source: In this study, both white light and green light sources were used.

While white light gives a colourful spectrum, monochromatic light can highlight

the details and facilitate the observation of the maxima and minima in the light

intensity.

� Polariser: Plane polarises the ordinary light. The polariser was rotated at

45°with respect to the loading direction.

� First quarter wave plate: In circular polarisers, wave plates are oriented at a

45°angle to the polariser. This results in two components of equal amplitude and

a phase difference of δphase = λ/4, where λ is the wavelength of the light wave.

This retardation causes the resulting vector to rotate in a circular pattern.

� Model: Some transparent, polymer materials, when stressed can act as tem-

porary wave plates, resolving the incident light in two perpendicular vibration

planes, which are always parallel to the directions of the principal stresses in the

material. The two wave components transverse the material at different veloci-

ties, which causes a relative phase difference between them. This phenomenon is

called birefringence and is the same as that observed in some crystals.

� Second quarter wave plate: Quarter wave plates are considered imperfect,

since they are usually calibrated to produce a phase change of δphase = λ/4 for

a specific wavelength. In order to correct any inaccuracies caused by the first

quarter wave plate, a second one is used, crossed to the first one (the fast and

slow planes are reversed).

� Analyser: The analyser is essentially a second polariser, that plane polarises the

incident waves coming from the second quarter wave plate. In this study, the

analyser and the polariser were crossed (had a relative angle of 90°), producing a

dark field (in which the unstressed specimen appears black).

Note that in this study, the polariser and quarter wave plate were merged in one

optical element. Two circular polarisers, including a quarter wave plate, of dimensions

50x50x0.8mm were used, which were procured from Knight Optical.
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Figure 3.5: Illustration of a circular polariscope and its elements. The brown arrows
represent the normal amplitude vector with respect to the wave propagation.Vector
diagrams have been adapted from [122].

Results post-processing

During the mode I testing of each specimen, a load-displacement graph was generated.

From the recorded data, each specimen’s linear progression to fracture was evaluated

and the effect of specimen size and porosity was observed.

The Beam Theory (BT) expression for the DCB specimens, which is also suggested

in ASTM D5528, estimates the energy release rate GI from a load-displacement graph

as:

GI =
3Fδ

2Bα
(3.4)

, where F here is the load and δ is the total opening displacement between the two

specimen arms.
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This equation is considered valid when the specimen is perfectly “built-in”, meaning

that the specimen is clamped at the delamination front and no rotation may occur

beyond it. If this is not the case, several correction methods are proposed in ASTM

D5528 to account for the effects caused by the crack front rotation (e.g. modified beam

theory (MBT), compliance calibration (CC), etc.). However, in this study, since the

specimens did not reach crack propagation, these methods are not applicable and thus,

Equation 3.4 was used to estimate the energy release rate, GI .

Since the material is assumed to remain in the linear elastic region, the stress

intensity KI was then estimated from the energy release rate GI using Equations 2.1

and 2.2, which for plane strain become:

KI =

√
GIE

1− v2
(3.5)

Note that for both, porous and homogeneous specimens, the Young’s modulus, E,

and Poisson ratio, v, of the homogeneous material were used for the estimation of KI

with Equation 3.5. This means that for the estimation of the experimental results

the specimens were considered as different configurations of the same, homogeneous

material, and the arm’s stiffness weakening from the existence of porosity was not

considered.

3.2 Numerical approach

Numerical modelling of porous materials is a computationally intensive process. Unlike

homogeneous solids, the internal structure of porous materials, if discretely modelled,

requires an increased level of detail. As a result, larger specimens, which contain an

increased number of unit cells, are not easily modelled.

Four finite element modelling strategies are usually employed to simulate porous

materials [35]:

� Homogenised specimen: The specimen is modelled as a homogeneous pseudo-

material, with “smeared” properties throughout its volume. While this technique

is computationally inexpensive, it does not account for local phenomena. Thus,

such a model would be inappropriate for the study of fracture events.

� Periodic unit cell or agglomerate: In this technique, a single unit cell, or an ag-

glomerate of unit cells is discretely modelled and periodic boundary conditions

are assumed to fill a larger space. This technique is more suitable for the rep-

resentation of infinite domains. Due to the periodic boundary conditions, these

models are characterised by more idealised geometries.
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� Discrete models: The entire specimen and its porous structure are modelled. The

results are directly comparable to experimental results. However, due to the high

complexity of the models and the increased computational cost, this technique is

only used for smaller, finite specimens.

� Embedded-cell models: This is a hybrid between the discrete and homogenised

models. This technique features an accurately modelled region around an area of

interest (usually employed to investigate cracks), surrounded by a homogenised

medium that covers the rest of the specimen’s area.

This study focuses on finite size specimens. Consequently, discrete models were

selected in order to approach the real-life behaviour of those materials as close as

possible.

3.2.1 Finite Element model

For the numerical part of the study, two-dimensional plane strain models of DCB

specimens were created using the commercial FEA software ANSYS. The models were

generated through self-developed scripts written in Ansys Parametric Design Language

(APDL).

Each model was created by repeatedly regenerating a rectangular unit cell with

a centrally located heterogeneity (Figure 3.6d) across the length and depth of the

specimen, the geometry of which can be seen in Figure 3.6a. The dimensions of the

unit cell in the x and y direction are Sizex = 3.5mm and Sizey =
√
3Sizex/2 respectively.

As in the experiments, the porosity of the specimen, P , is one of the study variables

and was controlled by changing the void diameter. Thus, the porosity was estimated as

a function of the area (which be equivalent to the volume in a 3D model) of the porous

specimen with respect to the area of a similarly sized homogeneous specimen. It must be

noted that the cell density and inter-void distances remain constant in all cases. While

a material’s porosity can also be controlled by keeping the void diameter constant and

changing the void arrangement and density, such cases have not been considered here.

Again, a homogeneous model was created for reference and validation using the same

mesh configuration and material properties as used for the porous models.

Each unit cell was paved with a structured mesh, using element Plane 183, an 8-node

two-dimensional structural element, under plane strain configuration. The boundaries

of each unit cell were meshed with equal sized elements using 14 and 16 element divisions

in the horizontal, x, and vertical, y, directions respectively (right cell of Figure 3.6d).

Near the crack tip, the horizontal boundaries of the immediately adjacent cells are

refined 4x times, giving a total of 56 and 16 elements in the horizontal and vertical
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Figure 3.6: (a) Illustration of the different specimen sizes (dashed lines) cut from an
infinite sheet of material, b) Boundary conditions and loading for a model with Ncy = 3,
c) Near-tip refined mesh for a model with Ncy = 3, d) Refined and non-refined unit
cell. The crack tip locations relative to the void sx are depicted on the image. The
crack is assumed to propagate with a direction from sx = 0 to sx = 1.

direction respectively (left cell of Figure 3.6d). Five different locations relative to the

nearest void have been considered for the crack tip position, starting at the edge of the

unit cell (sx = 0) and advancing the crack tip by one quarter of its length up to the

other end of the unit cell (sx = 1) (Figure 3.6d).

A mesh sensitivity study was conducted (Figure 3.7) to assess numerical uncertain-

ties especially in regions where singularities appear. In order to keep the aspect ratio

of the elements within acceptable limits, large changes in the refinement of the near-tip

area in the horizontal direction mandated proportional changes in the refinement of the

far-field mesh which controls the y-direction mesh distribution (see Figure 3.6d). Be-

low an element size of just above 0.05mm, the solution seems to converge with minimal
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Figure 3.7: Mesh convergence study conducted on the specimens described of Chapter 4.
At an element size just above 0.05mm two overlapping points are seen which represent
two different levels of far-field refinement. The non-refined far-field mesh with a near-
tip element size of approximately 0.05mm was selected for the simulations presented
in the following chapters.

fluctuations. At this level of refinement, two models with different far-field refinements

were run to examine the impact of the element’s aspect ratio on the FEA solution.

Both the refined and non-refined far-field mesh gave almost identical results. Thus,

the non-refined far-field mesh with 0.05mm near-tip element size, as described in the

previous paragraph, was selected for the simulations.

Geometrically similar models of different sizes were created for each case, by varying

the rows of unit cells arranged symmetrically about the crack, which are described by

the parameter Ncy (Figure 3.6a). Importantly, geometrical similarity of the specimen

was maintained by keeping the specimen aspect ratio constant to W/h = 20.8 (Figure

3.6a). In order to reduce computational expense and due to the symmetrical nature

of a Mode I test only half of the model was generated (Figure 3.6b). It should be

noted that due to the symmetric nature of the model, the porosity around the crack is

also by definition symmetric in all of the studied topologies (Figure 3.6c). The crack

length α is similarly scaled and is approximately α = 10h, where h is the total height

of the symmetric beam. This is different from the value used for the experimental case,

however it complies with the suggested value of ASTM D5528.

A transverse tensile point load is applied at the free edge of the specimen (Figure

3.6b). The load is varied so that the moment at the crack tip remains constant for all

different specimen sizes and crack lengths.
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All models are considered different structural configurations of the same, perfectly

brittle material and thus a matrix Young’s modulus of E = 3GPa and Poisson ratio

v = 0.35 is used for all models. However, as said in the introduction the specific values

used are not important, as all results will be normalised.

3.2.2 Analysis of numerical results

As seen in Section 2.3.2, the near-tip stress field of a sharp crack in a perfectly brittle

material in Mode I loading can be described with William’s asymptotic expansion. The

equation is repeated below for convenience. Considering a polar coordinate system (r, θ)

with its origin at the crack tip the stress components are given by:

 σrr

σθθ

τ rθ

 =
KI√
2πr

1

4

 − cos 3θ
2 + 5 cos θ2

cos 3θ
2 + 3 cos θ2

sin θ
2 + sin 3θ

2

 + 4A0

 cos2 θ

sin2 θ

− sin θ cos θ



+
3A1/2r

1/2

4

 − cos 3θ
2 + 5 cos θ2

cos 3θ
2 + 3 cos θ2

sin θ
2 + sin 3θ

2

 +

Higher

Order

Terms

(3.6)

In order to estimate KI from the numerical results the projection method as pre-

sented in [123] was used and is briefly described below. Considering the y-direction

normal stress distribution (σθθ) ahead of the crack tip (θ = 0) only, Equation 3.6 can

be transformed as:

σyy(x) =
KI√
2πx

+ 3A1/2

√
x =⇒ σyy(x)

√
2πx = KI + (3

√
2πA1/2)x (3.7)

where x is equivalent to r in (r, θ) when θ = 0.

In Figure 3.8(a), the stress intensity variation is plotted against the distance ahead

of the crack tip, normalized by the crack length for different crack tip positions in

specimens comprised of four rows of unit cells and a constant porosity of 44.8%. For

homogeneous materials this variation is linear with an equal gradient at all size scales.

In this study, the gradient of the variation is referred to as the normalized amplitude

of A1/2 -stresses and can be quantified as C = (3
√

2πA1/2)α. To estimate C for the

porous materials investigated, only the linear part of the variation, immediately ahead

of the crack tip, is considered. Due to numerical limitations in accurately calculating

stresses in the vicinity of the crack tip singularity, a straight line is fitted onto the

linear part of each stress variation and extrapolated back to zero radius (i.e. dotted

lines in Figure 3.8(a)). At infinitesimal distances from the crack tip, non-singular terms
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(a)

(b)

Figure 3.8: a) Projection method to estimate the magnitude of the stress intensity at
the crack tip. A inset is also shown on the figure to clearly show how KI is estimated
using the projection method. b) Linear extrapolation of the degree of K-significance
Λ to estimate the size of the K-dominant zone. The dashed line represents Λ = 95%.
The values plotted here are taken from the models described in Chapter 4.
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become negligible compared to the first term of Equation 3.7, which in turn takes the

form:

lim
x→0

√
2πxσyy(x) = KI (3.8)

Thus, the stress intensity was estimated as the value of quantity
√

2πxσyy(x) for

x/α = 0 [103, 112, 113, 123], as can been seen in the inset of Figure 3.8(a). The values

of the stress intensity estimated by this method are in good agreement with those esti-

mated from ANSYS directly using the Interaction Integral Formulation, while, for the

homogeneous case, the value estimated with the projection method has a closer corre-

lation to the analytical estimation of the apparent stress intensity for DCB specimen

(Table 3.1).

It can be seen in Figure 3.8(a) that the extrapolated stress at the crack tip used

for the calculation of the stress intensity depends on the slope of each curve, and is

therefore indirectly affected by the near-tip stress distribution. While the A1/2 -stresses

are negligible right at the crack tip, they may nonetheless be significant in the near-tip

region, thereby indirectly affecting the value of the apparent stress intensity. In order

to normalise the results, the KI estimated by extrapolation for the porous materials

was normalized with respect to the KI of the homogenous case, which is a constant

value KI
H(MPa

√
mm). From the definition of Equation 3.8 on x approaching zero,

this normalising is equivalent to the ratio of the opening stress at the crack tip in the

porous material to the opening stress at the crack tip in the homogeneous material,

henceforth referred to here as the normalised stress intensity SIN , where:

SIN =
KI

P

KI
H

=
σyy

P

σyyH
(3.9)

It is important to remember that the values of stress intensity and opening stress

refer to models with loading scaled in such a way that they remain constant for all

specimen sizes with zero porosity. Thus, it merely reflects the magnitude of the open-

Table 3.1: Comparison of KI values of the homogeneous case estimated analytically,
using the interaction integral formulation in ANSYS and using the projection method
described in [123].

Analytical Interaction Integral Projection method

Apparent stress intensity
KI(MPa

√
mm) 31.84 32.86 31.81

Discrepancy from
analytical - 3.15% 0.09%
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ing stress at the crack tip for a given load and not the critical value of stress that

the material could actually withstand before initiating the crack (KIc), which is not

considered in this study. The K-dominant region was considered as the zone around

the crack tip where KI contributes to more than 95% of the opening stress at the crack

tip (see horizontal dashed line in Figure 3.8(b)). The degree of K-dominance Λ [103,

113] is therefore estimated as:

Λ =
σy

sing

σysing + |σynon-sing|
(3.10)

, where the singular (σsingy ) and non-singular (σnon−singy ) components of the stress are

estimated as:

σy
sing(x) =

KI√
2πx

and σy
non-sing(x) = σyy(x)− σysing(x) (3.11)
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Size effects in idealised brittle specimens of low

to medium porosity

This chapter studies how the existence of porosity can affect the stress field in brittle

specimens of different sizes1. The effect of the crack-pore interaction on the stress

intensity at the crack tip is observed in two levels: mesoscopically (at the level of the

unit cell) and macroscopically (considering the material as a homogenised medium).

As discussed in Chapter 2, in heterogeneous materials, local discontinuities in the

matrix material can influence the stress field in the vicinity of the heterogeneity, leading

to the appearance of local SIFs at different locations with respect to the void [58, 60,

124]. Han and Chen [60], while studying the influence of a microvoid on the SIF of a

brittle material, attributed its oscillation to the relaxation of T-stress, which occurs near

the void and results in either an amplification or a shielding effect. These studies refer

to individual pores in infinite media, which implies that the size of the heterogeneity is

insignificant compared to the total size of the specimen.

However, when the size of the heterogeneity becomes comparable to that of the

specimen, heterogeneous materials have been observed to exhibit crack tip stresses

contradicting the usual size scaling predicted by LEFM. These size effects can cause

severe discrepancies and unexpected fracture events if they are not taken into account.

For quasi-brittle heterogeneous materials such as polymer foams [11, 38, 39, 97], com-

posites [98, 99], and concrete [125–127], this behaviour is normally attributed to the

1The findings of this chapter have been published and can be found online using the fol-
lowing citation: D. Touliatou, M. A. Wheel,“K-dominance and size effect in mode I frac-
ture of brittle materials with low to medium porosity”,Engineering Fracture Mechanics, 2018,
https://doi.org/10.1016/j.engfracmech.2018.06.041
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material’s transition to plasticity in very small scales.

Here, the focus is shifted to perfectly brittle, low to medium porosity materials.

Key parameters including the exact porosity level, specimen size and crack location

with respect to the voids have been considered and their effect on the stress intensity

at the crack tip and K-dominant zone size within these materials are examined. The

full near-tip stress field is investigated and both, the singular and non-singular stresses,

for specified loads that stress the crack-tip below the critical stress intensity factor are

estimated. The adopted approach focuses on the local stress field around the crack tip,

but does not include any assumptions regarding softening, as adopted in quasi-brittle

materials.

4.1 Finite Element model

For this chapter, the case of a highly idealised material was considered, and respective

models were created by arraying a unit cell, as described in Chapter 3. Each unit cell

contained a single, circular void, whose centre was located at the centroid of the unit

cell (Figure 4.1). These voids were placed in an equilateral triangular arrangement

(given that Sizex = 3.5mm and Sizey =
√
3Sizex/2, as seen in Chapter 3), implying

approximately isotropic behaviour of the macroscopic material [78].

The design variables of this study are the specimens’ porosity (controlled by the

void’s diameter, d) and size (controlled by the rows of unit cells in the y-direction

in each specimen arm, Ncy). Geometrically similar models of six sizes were created

for each case, containing from 1 to 6 rows of unit cells in the y-direction arranged

symmetrically about the crack, Ncy, (Figure 4.1). Note that, since only half the model

is generated, the void formation in the first row adjacent to the crack does not follow

the triangular topology seen in the rest of the beam, but instead forms a rectangular

pattern, symmetric about the crack plane. This symmetry is exploited in the numerical

model and loading is pure mode I. The porosity of the specimen was varied from

approximately 5 - 45% by changing the void diameter as detailed in Table 4.1.

After the model was created, it was loaded with a single transverse load at its free

end, which was scaled so that in all cases the moment at the crack tip remained constant.

A symmetric boundary condition was set (see Figure 3.6b), which was modified to

Table 4.1: Specimen porosity for each given void radius.

Void radius (mm) 0.82 1.16 1.64 2 2.32 2.46

Sample porosity P (%) 4.98 9.96 19.96 29.61 39.85 44.80
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Figure 4.1: Top: Void topology on idealised specimens. Note that in this picture
Ncy = 3 and sx = 1. Bottom: Unrefined and near-tip, refined unit cells. The locations
sx were the crack tip was assumed are marked on the figure.

simulate five different crack tip locations, sx (as can be seen in Figure 4.1). The

analysis focused on the stress field in the crack-tip and the linear extension in front of

the crack-tip, in order to evaluate the existence of a size effect and estimate the size of

the K-dominant zone for each different model generated.

As a reference for the computational cost of each simulation, note that the homo-

geneous models of Ncy = 1 included 31230 elements and took approximately 5 seconds

to complete a simulation (including creating the geometry, meshing and performing

loops to estimate the stress intensity for all 5 sx values), while a homogeneous model

of Ncy = 4 included 991440 elements and run a full simulation, as described before, in

approximately 1000 seconds.
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4.2 Results and Discussion

In the results presented below, it is important to note that even though the specific

values of stresses are influenced by the applied load, the value of the degree of K-

dominance, Λ, and the size of the K-dominant zone are uniquely controlled by the

specimen’s geometry and the specifications of its internal mesostructure, independently

of the material and load. The normalized amplitude of A1/2 stresses, C, is affected by

variations in the load F in a similar manner to the local stresses. Thus, the ratio

C/KI remains unaffected by externally applied variations and only depends on the

material’s geometrical features. That makes the absolute values of the applied load

inconsequential in the interpretation of the results presented below.

Due to the scaling of the load to reflect changes in size, all different sizes are

considered non-dimensional in the sense that their absolute size is not as significant

as the configuration (i.e. number of rows) they represent. This can be validated by

the fact that for the homogeneous case, all different sizes would give identical values

of stress intensity. In other words, when shrinking the unit cell to one quarter of the

size described in the paper and creating a specimen with two numbers of rows, (whose

size in absolute values would be identical to the specimens with the original unit cell

size described in the paper with an Ncy = 1), the resulting stress intensity, both

mesoscopically and macroscopically, would be identical to that of the specimen with

Figure 4.2: FEA solutions (solid lines) vs analytically determined K-field solution based
solely on the on the influence of the SIF (dashed lines).
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the 4x larger unit cell and Ncy = 2, regardless of their difference in absolute size. Thus,

it seems that the number of voids in the near-tip area influences the stress intensity at

the crack tip and cannot be omitted by homogenisation of the materials geometry.

The significance of the non-singular stresses on the value of KI of a porous material

can be identified from the FEA results. Figure 4.2 shows the discrepancy between the

FEA solution for the stress intensity ahead of the crack tip and the analytical K-field

solution which only considers the singular stress term in estimating the stress field. In

the homogenous case, singular stresses seem to be the significant term in fracture, with

the analytically estimated stress field being almost in total agreement with the FEA

solution. However, for porous materials, considering the singular stresses alone gives

an inaccurate analytical prediction of the near-tip stress field.

In the following sections, the influence of the non-singular stresses on the results

derived will be presented at two focus levels: a) The porous structure level, referred

to here as the meso-scale, and b) The homogenized material level, referred to as the

macro-scale.

4.2.1 Mesoscale: Porous structure

Porous materials exhibit localKI values which are controlled by the material’s mesostruc-

ture directly in the vicinity of the crack tip. In this section, FEA results show that

for all specimens the normalised stress intensity SIN follows an oscillating pattern

for different crack tip locations relative to the void, which is periodically repeated for

consecutive cells (Figure 4.3a, 4.3b). This periodicity is linked to the nature of the

prescribed mesotructure, which is non-random, with voids following a regular pattern,

this being symmetric about the crack plane.

It is found that the amplitude of the oscillation of SIN , diminishes when the size

of the heterogeneity in the near tip field becomes less significant compared to the

specimen’s dimensions; at both fixed specimen size (Figure 4.3a) (also seen in [58])

and fixed void size (Figure 4.3b). Apart from the amplitude of the oscillation, the

mean value about which SIN oscillates increases with size, appearing to converge to

a plateau for large specimens. Interestingly, the regions around the void, where either

amplification or shielding is observed, appear to invert as the size of the specimen

decreases (Figure 4.3b). Specifically, for progressively smaller specimens the stress

variation inverts, reaching a maximum at the edges of the cell (i.e. sx = 0 and sx = 1)

and a minimum exactly under the void (sx = 0.5). However, as the size of the specimen

increases, the locations of the maxima and minima of the oscillation are repositioned

to locations before (sx = 0.25) and after (sx = 0.75) the void respectively.

For comparison, a full specimen model was created with a triangular but non-
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(a)

(b)

Figure 4.3: Fluctuations of SIN for different crack initiation locations relative to the
void a) Size Nc1 = 1 for porosities=5-45%, b) Sizes Ncy = 1 − 6 for 30% porosity.
Graphs for other specimen sizes and porosities can be found in Appendix B.
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Figure 4.4: Sizes Ncy = 1− 6 for 30% porosity model with triangularly arranged voids
equilaterally to the crack.

symmetric void pattern adjacent to the crack plane (see inset of Figure 4.4), consistent

with the pattern throughout each beam. The model was created with a 30% porosity

and was run for Ncy = 1 − 4. The asymmetry of the voids around the crack tip

introduces a mode II component in the near-tip stress field. However, the magnitude of

the mode II component contributes to only approximately 7.5% of the effective mixed

mode stress intensity (KI = 38.53MPa
√
mm and KII = 2.90MPa

√
mm for sx=0.75

where their percentile difference is the smallest, effective mixed mode stress intensity is

estimated as Keff =
√
K2
I +K2

II ) for the smallest specimen, where the contribution

of Mode II stresses is most apparent since the void size dimensions are significant

compared to the specimens dimensions. Thus, predominantly mode I behaviour is

assumed. The local stress intensity of these models exhibits significantly diminished

oscillation throughout the unit cell, as seen in Figure 4.4. This is attributed to the

averaging of the two almost contrasting, overlapping stress fields on either side of the

crack plane, caused by the non-symmetric equidistant voids near the crack-tip.

The oscillatory behaviour seen in Figure 4.3 is consistent with that found during pre-

vious investigations on the variance of local SIFs at various distances and angles around

a single circular void [58, 60] nearby the crack tip in infinite media. Any discrepancies

with the fluctuations found here are attributed to the existence of neighbouring voids

which further alter the stress distribution. Han et al. [60], while studying the effect

50



Chapter 4

of microvoids near a bi-material interface crack of quasi-brittle behaviour, attributed

these fluctuations to the T-effect. Even though mode I loading was studied, the non-

symmetric, bi-material interface crack studied gave rise to stress components in the

x-direction additionally to the expected stress in the y-direction. It was then suggested

that the x-direction, non-singular T-stress is relaxed inside the voids, consequently

having a direct impact on the SIF of the material, instead of indirectly affecting the

SIF by altering the size of the fracture process zone, as it is usually assumed. Thus, a

combination of the relative location of the crack tip with the T-stress sign was found

to either amplify or shield the material’s SIF.

Though, initially the variations of the mesoscopic stress field were thought to be at-

tributed to this relaxation of the T-stresses in the presence of a void [128], in retrospect

it is believed that this is not the case for the materials under focus in this thesis. In

the idealised models studied here, due to symmetric boundary conditions, pure mode

I behaviour is exhibited. Since, the stress intensity SIN is only estimated from the

y-direction stress, σyy, and the fracture process zone is considered minimal, there is no

indication as to how the T-stresses might be significant. However, it can be deduced

Figure 4.5: Variation of SIN with size of K-dominant zone. In all graphs porosity
increases from the right to the left side of the graph.
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from [60] that, since non-singular stresses can directly affect the exhibited stress at

the crack tip, the size of the K-dominant zone may be immediately influenced by the

mesostructure of the material in the near-tip field and could lead to large discrepancies

in the local stresses around the crack tip depending on the void’s relative location.

A similar conclusion can be drawn from the results of this study by plotting the

size of the K-dominant zone, normalised with the respective value of the homogenous

case for each specimen size, with the normalised stress intensity, SIN (Figure 4.5). As

the size of the K-dominant zone becomes smaller, the stress intensity variations exhibit

larger deviations from the value of the homogeneous case (SIN = 1). In fact, it is

observed that as the specimen get larger, the region of the diaspora of the points for

each specimen size becomes thinner and seemingly converges to a hyperbolic path for

specimens with Ncy = 6. This diaspora is dependent on the relative crack tip location

sx. On Figure 4.5, the different “paths” of the relationship between the normalised

size of the K-dominant zone and SIN formed by different values of sx are indicated for

the smallest specimen size.

4.2.2 Macroscale: Homogenized material

The topology-dependent stress variation can be circumvented by introducing an average

normalised stress intensity SIN per model, which results from averaging the local SIN

values derived for relative crack tip locations sx = 0 − 0.75 (sx = 1 is not considered

due to periodicity of the solution). Thus, each specimen can be considered to be a

homogenized medium of given porosity and size, without focusing on the specifics of

its mesostructure.

The estimated average values are plotted in Figure 4.6a. Previous research on the

fracture properties of porous materials has mainly focused on infinite media, assum-

ing that any specimens cut from the same brittle material, characterized by the same

porosity and microstructural features, will in fact exhibit the same fracture behaviour

[29, 62, 129]. However, this study suggests that, for constant porosity, smaller speci-

mens will appear tougher than their larger counterparts since they exhibit lower stress

intensities for the same loading. In fact, 1-row specimens have significantly different

behaviour than larger specimens, which seem to converge asymptotically to an approx-

imately constant value above four rows of unit cells. This size effect becomes more

pronounced with increasing porosity (Figure 4.6a).

Figure 4.6a also shows that stress at the crack tip is proportional to the porosity of

the specimen, with all porous materials exhibiting higher stress intensity at the crack

tip than the homogeneous case. The averaged stress intensity for the model with the

non-symmetric pattern around the crack (inset of Figure 4.4) is also depicted (dark
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(a)

(b)

Figure 4.6: Size effect in fracture of porous materials. a) Smaller specimen exhibit
lower stresses for a given load, implying an apparently tougher material. The larger
the porosity the more prominent the size effect. b) Dependence of K-dominant zone
size with specimen size.
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blue, dashed line in Figure 4.6a and 4.6b). Even though its mesoscopic behaviour is

distinctively different to its symmetric counterpart, macroscopically their behaviour is

almost identical.

LEFM predicts that when the size of the K-dominant zone is large enough to fully

engulf the fracture process zone, the value of the stress in the vicinity of the crack

tip is purely dependent on the value of the SIF and should remain constant. For

porous materials, the size of the K-dominant zone is largely affected by the existence

of discontinuities in the material. The difference between the size of the K-dominant

zone in the homogeneous case and the porous specimen is monotonically rising with

increasing sample size (Figure 4.6b). Even a porosity of 5% can shrink the size of the

K-dominance zone to almost half its original size for just 2 rows of unit cells. In that

case it is not immediately evident that the K-dominant zone is large enough to assume

that the near-tip stress field can be fully described by a single parameter, and thus, it

cannot be concluded that the A1/2 stresses can be safely neglected.

Indeed, plotting the average normalised stress intensity at the crack tip as a function

of the averaged normalized amplitude of A1/2 stresses, C̃, an almost linear relationship

as C̃ approaches zero can be seen (Figure 4.7a). With the exception of the smallest

specimen, the magnitude of the slope of this line increases with decreasing specimen

size. As C̃ reaches the value of the homogenous case, all series converge to the stress

value for this case. It is suggested that the average normalised stress intensity at the

crack tip and the normalized amplitude of the A1/2 stresses C̃ are related by:

SIN = f(C̃

√
P

Ncy
) (4.1)

where Ncy = Number of cells in y-direction (-)

P = Specimen porosity (-)

The data of Figure 4.7a have been re-plotted in Figure 4.7b taking into account

equation 4.1. It is now apparent that specimens with just one row of unit cells (blue

curve in Figure 4.7b) exhibit a behaviour inconsistent with their larger counterparts.

The averaged normalized amplitude of A1/2 stress C̃ seems to be closely related to

the geometrical features of the specimen (Figure 4.8). As porosity and specimen size

decrease, C̃ tends asymptotically to the value of the homogeneous case, which is the

dotted line in Figure 4.8, used as a reference. This indicates that for the given loads,

C̃ varies as:
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(a)

(b)

Figure 4.7: a) Average normalised stress intensity SIN variation with averaged nor-
malised amplitude of A1/2 stresses C̃, b) Inclusion of correction factor

√
P/Ncy in

graph (a)
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Figure 4.8: Dependence of normalised amplitude of A1/2 stresses C̃ with number of cells
in y-direction, Ncy, and specimen porosity, P . The horizontal dashed line represents

the value of C̃ for the homogeneous case.

C̃ = f(

√
1

NcyP
) (4.2)

Dividing the dimensional factor found in 4.2 with the one found in 4.1, the geomet-

rical dependency coefficient Dc is derived:

Dc = 1/
√

(NcyP 3) (4.3)

The average normalised stress intensity at the crack tip SIN can thus be accurately

plotted as a function of the dependency coefficient (Figure 4.9). Through parameter

fitting the following relation is estimated:
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Figure 4.9: Correlation of scaling factor with the geometrical dependency coefficient.
The fitted equations 11 is also plotted on the graph.

SIN|Ncy=i
=


0.89
Dc

√
2

+ 1 , if i = 1

0.89√
Dc

+ 1 , if i > 1

(4.4)

, where the standard error of estimate sest for specimen with 1 row of unit cells is

sest = 0.014, while for larger specimen (i > 1) sest = 0.035.

The exact value of the average stress intensity at the crack tip of the porous mate-

rial KI
P for a given load can then be estimated according to Equation 3.9 as:

KI
P =SIN|Ncy=i

∗KI
H (4.5)

It is interesting to note that even the values of the model with the triangular non-

symmetric void arrangement about the crack also comply with this formula.
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4.3 Conclusions

This chapter investigates the influence of specimen size and porosity on the stress at

the crack tip both mesoscopically (at the pore level) and macroscopically (at the ho-

mogenized material level), before the critical stress intensity value. The results indicate

that it is inadequate to refer to one unique stress intensity for porous materials, as the

inclusion of only singular stresses would suggest. The presence of the pores, as well as

the size of the specimen, have a direct impact on the size of the K-dominance zone on

each model, which is subsequently reflected on the stress intensity at the crack tip of

the materials studied. Furthermore, it is observed that when the size of the specimen is

reduced to just one row of unit cells, the fracture behaviour exhibited is not consistent

with the behaviour of larger specimen.

In summary, the following conclusions can be drawn:

� At the mesoscopic level, the existence of local stress intensities for porous mate-

rials has been confirmed in this study. Here, it is attributed to the shrinking of

the size of the K-dominant zone by the presence of voids. Specifically, it has been

found that the largest variations of the stress intensity are exhibited for the cases

with the smallest K-dominant zone sizes. The exact relationship between the size

of the K-dominant zone and the stress intensity is rather complex though, and

seems to be size-related.

� Looking at the material macroscopically a prominent size effect can be observed.

As the specimen size increases, the material may appear to become less tough,

until it converges to a specific value, assumed to be that of the infinite medium.

As expected, an apparent weakening effect is also exhibited with increasing poros-

ity. Both behaviours are closely related to the amplification of the A1/2 stresses,

which become significant when compared to singular stresses, rendering the con-

sideration of higher-order terms necessary in predicting the fracture behaviour of

heterogeneous specimens.

� An empirical relation has been derived to predict the average stress intensity at

the crack tip of porous materials with low to medium porosity. The model was

created based on FEA data obtained for DCB specimens where the porosity was

introduced in the form of circular unit cells in a periodic array.
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Experimental validation and sensitivity to

mesostructural changes

In the previous chapter, the significance of non-singular stresses on the size effect ob-

served in porous materials was investigated in idealised topologies. The results showed

that the existence of porosity can significantly reduce the size of the K-dominant zone,

causing variations in the estimated stress distribution at the crack tip for different

specimen sizes and porosity levels.

This chapter attempts to experimentally validate these findings1. During the review

of the literature (Chapter 2) the experimental observation of size effects in porous

materials was established. However, the discussed literature referred to materials of

a quasi-brittle nature and attributed the observed size effects to plastic phenomena

becoming more prevalent at small scales [11, 95, 130]. A number of studies linked

this behaviour with a reported increased significance of non-singular stresses [105–107].

In fact, the visualisation of the near-tip stress field with the use of photoelasticity in

homogeneous materials, has highlighted the need for more terms, in addition to the

singular one, in the stress expansion [114, 117].

Here, mode I experiments were performed on DCB specimens manufactured from

PMMA and perforated with arrays of holes. During loading, the specimens remained

in the linear elastic region (fracture and crack propagation was not reached), hence no

plastic effects are considered. The stress at the crack tip for a given load was estimated,

in order to confirm the existence of a size effect in brittle porous materials, while the

1The findings of this chapter have been accepted for publication and are currently in print in the
journal of Engineering Failure Analysis.

59



Chapter 5

specimens were observed by means of photoelasticity to provide proof of the influence

of the pores on the near-tip stress field. A parametric investigation was subsequently

carried out to investigate the impact of manufacturing inaccuracies in the pores’ shape

on the measured properties.

5.1 Methodology

5.1.1 Experimental setup

The specimens were manufactured by laser-cutting a 10 mm thick PMMA sheet, pro-

cured by Stockline plastics. The laser-cutting was done on the Speedy 400 machine by

Trotec, using a program job control with the following parameters: Power = 100Watts,

Speed = 0.1inch/sec, Frequency = 5000hz. The lens used was a Silicon REFLECTOR

with a 24.4mm diameter and a thickness of 6mm.

In order to address the size effect, specimens of three different sizes were examined

(Figure 5.1b), each one being four times larger than its smaller counterpart (specimens

of 1, 2 and 4 rows of voids per arm, Ncy, were manufactured). As described in Section

3.1.1, the aspect ratio of the specimens was kept constant at W/h = 12 for all sizes,

where W and h are the specimen’s length and height respectively as depicted in Figure

5.1a. Using laser-cutting, a horizontal crack was created in the mid-plane of each

specimen, with a crack length to total specimen length ratio approaching α/W = 0.5,

where α is the crack length. It was shown in the previous chapter that the local stress

intensity oscillates greatly for varying locations of the crack tip with respect to the

nearest void. In order to produce comparable results, in all cases the crack tip was

designed to be directly below the void, thus producing small variations in the value of

the α/W ratio.

Note that the crack was laser cut and was not sharpened further with the use of a

sharp razor, as described in ASTM D5045. Due to the different specimen configuration

(here, DCB is used instead of SENB or CT, which are suggested in ASTM D5045),

the insertion of a razor in the crack tip is a lot more challenging and would require a

very thin razor. However, when a razor of 100 µm was used, it was not stiff enough to

further sharpen the crack tip. Figure 5.1c shows the near-tip area of the manufactured

specimens with the laser-cut crack, magnified using an optical microscope. The crack-

tip radius was measured to be 150 µm (Figure 5.1c). Previous studies have shown that

the pre-conditioning of the crack tip can impact the measured fracture toughness [131,

132] and fracture mechanics dictates that the stress intensity would be lower for blunt

notches. However, in this study the focus is on the relative stress intensity differences

between specimens of different sizes and porosity levels. As such, all values obtained
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(a)

(b) (c)

Figure 5.1: Designed and manufactured specimens. (a) Updated schematic of Figure
3.1, showing a more complete picture of the design variables. The definition of the axes
x and y are shown on the figure, with x being in the direction of the crack propagation.
The same orientation of all pictures of the specimens is kept throughout the chapter.
(b) Manufactured specimens of all three different sizes, (c) Crack tip as seen in an
optical microscope. The crack tip radius was found to be 150 µm.

from the porous specimens will be normalised by the values of the respective homoge-

neous specimens, which are manufactured by the same way and are characterised by

the same crack tip radius. Thus, it is expected that this crack tip imprecision will be

normalised out.

Porosity in the specimens was introduced in the form of circular voids, arranged on

a rectangular array. Two different levels of porosity were examined, namely 15 and 30

%, that correspond to a void diameter of approximately 1.4 and 2 mm respectively. The

distance between consecutive voids was designed as Sizex = 3.5mm and Sizey = 3mm

in the x- and y- direction respectively (see Figure 5.1a). A series of homogeneous speci-

mens was also manufactured and tested in order to provide a baseline for normalisation.

Three specimens were tested for each configuration, leading to a total of 27 specimens

(3 specimens, 3 values of Ncy =1, 2, 4 and 3 porosities P = 0%, 15% and 30%).
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As described in Subsection 3.1.1, the manufactured specimen (Figure 5.1b) were

subjected to a quality control procedure before they were considered suitable for test-

ing. Each three specimens selected for testing were considered self-similar, and the

dimensions of the specimens’ array were adequately accurate. However, due to the

polymer stretching caused by the high temperature of the laser, the voids’ circularity

Figure 5.2: Top: Experimental setup, Bottom: Close-up of the polarising filters and
their positioning.
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and ellipticity was sometimes compromised. These will be more specifically described

during the discussion of the results. A complete table with the resulting observations

on the quality of the tested specimens can be found in Appendix C.1.

The tests were conducted on an Instron Electroplus E3000, which is an all-electric

dynamic testing machine, with a ±5 kN load cell, and a load weighing accuracy of

±0.5% of indicated load or ±0.005% of load cell capacity, whichever is greater (Figure

5.2). Note that crack propagation is not considered and each specimen testing was

stopped before fracture.

During loading, the near-tip stress field was monitored with the use of a circular

polariscope to obtain qualitative results on the influence of porosity on the near-tip

stress field. When the specimens were loaded with the maximum load, a photo was

taken to capture the fringe pattern at that stress state and compare it with that of the

numerial results. However, note that the dynamic nature of the experiment introduced

a certain level of uncertainty and the precise load at which the photos were taken might

deviate to a small extent, up to 15%, from the intended value. Yet, while such small

deviations are expected to somewhat affect the intensity of the patterns, the qualitative

patterns, which are the focus of photoelasticity in this study, should remain the same.

5.1.2 Numerical approach

In order to validate the experimental results, two-dimensional Finite Element (FE)

models of the specimens were created, using the commercial software ANSYS. The

void diameters (d = 1.4mm and 2mm), specimen sizes (Ncy = 1, 2 and 4) and aspect

ratio (AR = 12) of the specimen are designed in accordance with the manufactured

specimens. The unit cell size (Sizex = 3.5mm and Sizey =
√

3Sizex/2) and design,

meshing, boundary and loading conditions are consistent with the ones presented previ-

Figure 5.3: Finite Element (FE) model with rectangular array, reflecting the topology
of the manufactured specimens.
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Figure 5.4: Difference of normalised stress intensity between the models with the tri-
angular (idealised) and the rectangular void topology, for porosities of P = 29.61%
(d = 2mm). Note that the estimated differences may be due to the different aspect
ratios of the two studied cases.

ously in Chapters 3 and 4. However, here, the voids are instead placed in a rectangular

array, as in the manufactured specimens (Figure 5.3).

The differences between the models with the triangular and rectangular arrays are

estimated to be minimal, yet distinguishable (Figure 5.4). Note that the models with

Ncy = 1 have the same topology in both cases and are only differentiated by the speci-

mens’ aspect ratio (AR = 20.8 for the idealised case, while AR = 12 for the specimens

with a rectangular array). However, specimens of both topologies present very similar

trends, which may also be highlighted due to the difference in the specimens’ aspect

ratio and crack length. However, the existence of the size effect is obvious in both cases

and no qualitative differences are expected in the results due to their differences.

As discussed in Section 3.2.2, the stress intensity from the numerical results was

estimated using the projection method, as it directly estimates the stress intensity

by focusing on the nodal stresses ahead of the crack tip. However, due to technical

limitations, during the experimental study the BT expression (Equation 3.4) was used
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Figure 5.5: Difference between the values of normalised stress intensity as estimated
by the projection method (see Section 3.2.2) and the Beam Theory (BT) expression
(Equations 3.4 and 3.5) for homogeneous and porous specimens of Ncy = 1.

to estimate the stress intensity instead, which is a more indirect way of measurement.

In order to quantify the uncertainty caused by the difference between the methods, the

stress intensity was estimated using both methods for FE models of homogeneous and

porous specimens (Figure 5.5). A maximum discrepancy of approximately 11.5% was

observed for the homogeneous case (for models of Ncy = 1). Additionally, the stress

intensity estimated using the BT expression was found to be a lot more sensitive to the

variation of the crack length (varied by the change in sx), which can also be attributed

to the fact that in the experimental models the crack was shorter than that suggested

by the relevant testing standards. However, in the case of a porous material, the BT

is a lot less precise, failing to capture the local variations in the stress intensity caused

by the near-tip void. This will also be shown more explicitly in the results discussion.

Despite the BT expression’s inaccuracies, it is considered more appropriate to focus

on the comparison of both, experimental and numerical, results estimated with this

method, to ensure consistency.
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5.2 Experimental results

The isochromatic fringes for all cases are presented in Figure 5.6, along with the ones

predicted from FEA. As discussed in Chapter 3, the isochromatics consists of bands of

the same colour and represent the loci in the material where the differences of the two

principal stresses ((σ1−σ2)) is constant. Qualitatively, the experimental results appear

to generally agree with the numerically computed results in all different cases. This acts

as a preliminary validation of the numerical results. As described in the methodology

section of this chapter (Section 5.1.1), the load at which the experimental photos were

taken might differ up to 15% from the load at which the numerical fringe pattern was

estimated. It is emphasised here that the photoelasticity study is highly qualitative

and aims to identify disturbances within the stress field caused by the presence of voids

in the near-tip area, rather than produce quantitatively accurate conclusions.

For the homogeneous case (see Figures 5.6c 5.6d, 5.6g and 5.6h) it is shown, both

experimentally and numerically, that the isochromatics follow a smooth pattern, with

ellipsoidal hoops expanding behind the crack-tip for a certain length, as is expected for

Mode I loading [116, 118]. The photoelastic fringe for all sizes of the homogeneous case

exhibit the same trends in shape, with the zone in which these stresses appear seeming

to scale proportionally with size.

The isochromatics presented in porous materials show a quite different picture (Fig-

ures 5.6a, 5.6b, 5.6e and 5.6f). The perforations in the material seem to act as a distur-

bance in the expansion of the stress field in the near-tip area, altering the general shape

and size of the stress distribution. In fact, for specimens with just one row of unit cells

per arm (Figures 5.6a, 5.6b), the isochromatic fringe is mildly changed through the

existence of the voids, though retaining its similarities to the homogeneous case. How-

ever, in larger specimen (Figures 5.6e, 5.6f) a more chaotic pattern is exhibited, with

seemingly little correlation to the original, ellipsoidal hoops. The FE models capture

the size and general shape of these stress fields satisfactorily.

The photoelastic fringe pattern has been used in previous research to experimentally

estimate the stress intensity factor and indicate the need of the inclusion of non-singular

terms in the estimation of the stress intensity factor in homogeneous specimens of

varying sizes and configurations [114–117]. In porous materials, due to the widely

irregular nature of the fringe pattern, the coefficients of the Williams series cannot be

extracted. However, a visual inspection clearly shows that the existence of pores acts

as a disturbance in the expansion of the stress field in the near-tip area, which could

justify the need to include non-singular terms, in addition to the singular term, to

accurately reconstruct the isochromatics pattern.

66



Chapter 5

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.6: Isochromatic fringes in specimens during mode I loading. Left side: Fringe
patterns (top) and respective FEA results (bottom). Right side: Dark field isochro-
matics (top) and respective FEA results (bottom). (a) & (b): Porous specimen with
Ncy=1, (c) & (d): Homogeneous specimen with Ncy=1, (e) & (f): Porous specimen
with Ncy=4, (g) & (h): Homogeneous specimen with Ncy=4
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Quantitatively, testing revealed consistent behaviour between all specimens of dif-

ferent types, with minimal standard deviations (Figure 5.7), ensuring the repeatability

of the presented results (the force displacement graphs for all tested specimens can be

found in Appendix C.2). It is important to note that the experimental results only

refer to one location of the crack tip with respect to the void. As described in the

methodology section, the specimens were designed so that the crack tip location with

respect to the voids is located below their centre (or sx = 0.5 as seen in Figure 3.6).

However, due to manufacturing constraints, the total crack length had a variation of

0.5mm, which, given the small size of each unit cell, results in crack tip locations in

the range of approximately sx = 0.4− 0.65.

Figures 5.7a, b, c show the numerically predicted variation of the normalised stress

intensity within a unit cell estimated using both the projection method (dashed lines)

and the BT expression (solid lines), plotted along with the results of the experiments

(which were estimated as described in Subsection 3.1.2). The experimental data points

are placed in the x axis at the approximate location where the crack tip was found to

be located from the quality control procedure for each specimen size. For all different

sizes and porosities, the experimental results are found to be in good agreement with

the numerical results, especially those estimated using the BT expression in accordance

to the experimental methodology.

Still, the numerical results estimated using the BT expression, slightly overestimate

the experimental results. These deviations might be attributed to limitations during

manufacturing. During the quality control of the specimen it was found that even

though the topology of the voids was accurately manufactured, the voids’ diameters

exceeded the designed value by a factor of approximately 10% (i.e. 0.14mm) which

is attributed to laser stretching. Additionally, the circularity of the voids was found

to deviate by an averaged factor of 0.15, while the average eccentricity of the voids

was estimated to be 0.35. In the specimen with the 2mm void diameter, due to the

close tolerances, the crack was sometimes found to be located slightly off from the mid-

plane, which could give rise to mode II phenomena as well. As discussed in Section

5.1.1, the bluntness of the crack tip might also be the cause of deviations between the

experimental (where the crack tip radius is finite) and numerical results (where the

crack tip radius tends to zero), as the presence of a finite crack tip radius would more

likely reduce the stress at the crack tip.

With the exception of the specimen with Ncy = 1, the numerically predicted vari-

ation of the stress intensity estimated using the projection method around the void is

limited (Figures 5.7a, b, c). On the contrary, the numerically predicted stress inten-

sity estimated using the BT expression for each specimen size and porosity is almost
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constant for all cases studied. At the same time, the crack tip for each manufactured

specimen type might have minimal variations in its crack tip location sx, as described

previously. Therefore, in order to investigate the size effect, an averaged value of the

numerical results, estimated using both methods, for sx = 0− 0.75 (sx = 1 is excluded

due to periodicity) is used as a baseline for the experimental results. The experimental

results are compared to the averaged baselines in Figure 5.7d.

As expected, porous materials appear weaker than the homogeneous material (SIN =

1 for all sx values of the homogeneous case), with the stress intensity at the crack tip

increasing for increasing porosity. Experimental findings also show a strong size effect,

with smaller specimen exhibiting lower normalised stress concentration at the crack

tip than their larger counterparts, which are then seemingly converging to a constant

Figure 5.7: Numerical variation in SIN within unit cell with experimental data
points appended for each different size: (a) Ncy = 1, (b) Ncy = 2, (c) Ncy = 4.
(d)Experimental size effect with numerical results averaged for sx (SIN ).
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value for increasing size. This behaviour is consistent with the numerically predicted

results for both, the exact representation of the tested specimens, and the idealised

case presented in Chapter 4, where the voids were placed in a triangular array and the

specimen’s aspect ratio was large enough to assume the existence of a long crack.

In the previous chapter, this size effect was linked to the significance of the A1/2

non-singular stresses, and an empirical model including the geometrical dependency

coefficient, Dc, (where Dc = 1/
√
NcyP 3, see Equations 4.3 and 4.4) was derived to

predict the stress intensity. The experimental results again appear to be strongly

correlated with the parameter Dc (Figure 5.8). The experimental results validate the

numerically observed trend, with specimens of lower Dc values, exhibiting a sharp

increase in their stress intensity. Furthermore, specimens with Ncy = 1 exhibit lower

stress intensity values, that appear to comply with numerical results, which also predict

a distinct curve for models with just one row of unit cells per specimen arm. Hence, the

experimental results provide further evidence that the suggested geometrical coefficient

Dc is linked with the stress intensity at the crack tip of a porous material.

Figure 5.8: Comparison of experimental results with fitted model from Chapter 4.
The numerical model forSIN|Ncy=1 represents specimens with one row of per voids per
specimen arm, while the one labelled SIN|Ncy=2-6 represents larger specimens.
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5.3 Effects of manufacturing inaccuracies on the stress in-

tensity at the crack tip

The above experimental study validates the size effect and further supports the sig-

nificance of non-singular stresses in specimens with arrays of voids. However, during

manufacturing of such structures, the voids deviate from the ideally designed shape and

can have different eccentricity or circularity values. In fact, porous materials occurring

from more stochastic procedures than a pre-designed laser cutting (e.g. water blown

free rise polyurethane foams) can have highly anisotropic void shapes. The ellipsoidal

shape of the voids formed during foaming has been found to greatly influence the ma-

terial’s stiffness during various loading types like tensile [133, 134], compression [135,

136], and impact loading [137]. With respect to mode I fracture, the influence of void

anisotropy has been investigated for ductile materials [138] and cases where the crack

tip is located in the void, for infinite materials [74]. To the author’s knowledge, the

effect of the shape of a void in the near tip area on the stress intensity and the size of

the K-dominance zone in brittle, finite size specimens, has not yet been addressed.

In order to investigate the impact of the voids’ shape on the stress concentration

at the crack tip, a parametric study was conducted. Models with elliptic voids (to

account for differences in eccentricity) and square voids with rounded edges (to account

for differences in circularity) were considered (Figure 5.9). The elliptic voids have a

closer resemblance to the natural cell shape that is formed in free-rise foams as the gas

trapped in the liquid foam rises to the surface before it solidifies. The shape anisotropy

ratio, SR, of the elliptic voids is considered as the ratio of the void size in the x direction

over the void size in the y direction. For this study two different shape anisotropy ratios

were considered, one where the x-direction void size is double that of the y-direction

(SR = 2, Figure 5.9a) and one where it is half of it (SR = 0.5, Figure 5.9b). Cases more

(a) (b) (c)

Figure 5.9: Models with different void shapes investigated in parametric analysis.
(a) Voids elongated in x direction, OV, SR = 2, (b) voids elongated in y direction,
OV, SR = 0.5, (c) voids with rounded rectangle shape, SQ
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exaggerated than those that occurred from manufacturing inaccuracies were considered

to highlight the differences.

For most cases, models of three porosities were created, approximating 5, 20 and

30%. Note that for the case of the elliptic voids elongated in the y-direction (SR = 0.5),

the void diameter corresponding to 30% porosity intersected the unit cell’s horizontal

boundaries and thus was not considered. During this parametric study, the voids in all

models are distributed in an equilateral triangle topology, to approximate isotropy, as

previously described in Chapter 4.

Figure 5.10a plots the normalised stress intensity of all models against their size.

Results show that the orientation of the elliptic voids significantly changes the mate-

rial’s behaviour. More specifically, when the voids major axis is parallel to the crack,

the stress intensity at the crack tip diminishes, tending towards the behaviour of the ho-

mogeneous specimens and implying apparently tougher behaviour than their perfectly

circular equivalent. On the contrary, when the void is rotated 90° so that the major

axis of the void is perpendicular to the direction of the crack, the stress intensity at

the crack tip rapidly increases. Models with rounded rectangle voids exhibited a very

similar behaviour to the idealised case of circular voids, although for higher porosities

the stress intensity at the crack tip was slightly diminished. Despite the large differ-

ences exhibited by the stress intensity, the size of the K-dominant zone remains almost

constant for all cases (Figure 5.10b) and any variations in it are not enough to justify

the large differences in the stress intensity estimation. Thus, non-singular effects might

not be uniquely responsible for changes in the observed stress intensity at the crack tip.

Figure 5.11a plots the amplitude of the A1/2 stresses, C̃, against the geometrical

parameter 1/NcyP , which was shown in the previous chapter (Equation 4.2) to uniquely

describe the variation of A1/2 stresses with the material’s geometrical features. Indeed,

even for the case of porous materials with different void shapes, the amplitude of A1/2

stresses seems to agree with the value of the idealised case of circular voids, represented

in Figure 5.11a by the black dotted lines. Different dotted lines represent different

specimen sizes, though their exact labelling is not important in this case.

Conversely, when plotting the normalised stress intensity SIN against the geomet-

rical parameter
√
P/Ncy (Equation 4.1), multiplied by the normalised amplitude of

A1/2 stresses (Figure 5.11b), the parametric models deviate from the idealised case of

circular voids (again, the black, dotted lines on the graph), forming distinct curves for

each different void shape. Yet, the trends between these two plotted values remains

the same, even if there is not a unique correlation for all material topologies.

This deviation from the idealised case is also reflected when plotting the results as a

function of the geometrical parameter Dc (Figure 5.12). Even though the previously es-
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Figure 5.10: Influence of void shape on size effect of porous materials. Dotted lines
represent the idealised case of a perfectly circular void, as presented in the previous
chapter. (a) Normalised stress intensity at the crack tip for different void shapes, (b)
Size of K-dominance zone versus the size of the specimen. The annotated percentages
on both graphs refer to the idealised case.

timated empirical model (dotted lines) can provide an approximate, average estimation

of the expected stress intensity for all different models, it is not an accurate represen-

tation. Nevertheless, each model of a different void shape follows a similar pattern,

despite the difference in their exact values. This provides further evidence that the

geometrical dependency coefficient Dc has a strong influence on the stress intensity at

the crack tip of porous materials. The experimental results are also plotted on Figure

5.12 for comparison.
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Figure 5.11: (a) Normalised amplitude of A1/2 stresses versus the geometrical factor
1/NcyP that has been found to uniquely describe them for perfectly circular voids
(dashed line represents the homogeneous case), (b) Average normalised stress intensity
at the crack tip versus the amplitude of the A1/2 stresses, multiplied by the geometrical

factor
√
P/Ncy

The presented results show that during mode I fracture, the void shape of porous

materials significantly affects the stress at the crack-tip. While non-singular stresses,

A1/2, still appear to have a direct impact on the scaling of the normalised stress intensity

for different sizes and porosity levels, the exact relationship linking them together might

be more complicated than the one that was previously presented for the idealised case.

This means that the relationship between the stress intensity at the crack tip and
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Figure 5.12: All parametric and experimental results against the empirical model of
Equation 4.4. Although exact values may differ, the general trend can be captured by
the geometrical dependency coefficient Dc for all cases.

the material’s geometrical features may in fact be dependent on more factors than

its porosity and number of voids in the y direction. An in-depth investigation should

be performed, encompassing more parameters, in order to be able to achieve a better

understanding of porous materials’ behaviour and provide insight on how a material’s

mesostructure in the near-tip area can affect the material’s properties.

5.4 Conclusions

This chapter experimentally validates the existence of a size-effect in brittle porous

materials, which was first numerically predicted in the previous chapter. An attempt

to address the significance of the non-singular A1/2 stresses is also made. Finally, the

effect of voids’ shape on the measured properties is investigated numerically, in order to

explain deviations between the experimental and numerical results. The key findings

can be summarised as follows:

� Mode I experiments on DCB PMMA specimens were performed to validate the

existence of a size effect in porous materials. Results showed that this size effect

can indeed be experimentally observed and was found to follow the same trend
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as the one predicted numerically. Small deviations between the numerical and

experimental results can be attributed to manufacturing inaccuracies.

� Using photoelasticity, the near-tip stress field was observed during the experi-

ments. Even though the results were only assessed qualitatively, the need to

include more terms, apart from the singular one, in order to describe the stress

field around a crack in the vicinity of a void was highlighted.

� In order to address the reported manufacturing inaccuracies, a numerical para-

metric analysis was conducted, investigating the influence of variations in the

shape of the voids in the near-tip field. It was found that even though such

variations can have a great influence on the exhibited stress at the crack tip,

the amplitude of the A1/2 stresses remain almost unaffected for all different void

shapes studied.

� The geometrical dependency coefficient Dc has been found to be strongly cor-

related with the stress at the crack tip for both experimental and numerical

parametric results. However, the empirical relationship predicted in Chapter 4

does not seem to be able able to fully predict the normalised stress intensity for

all cases. More parameters governing the mesostructure need to be investigated,

which could also have a direct impact on material’s behaviour in mode I loading,

additional to the A1/2 non-singular stress variations.
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In-depth investigation of the effect of porosity

in applications of engineering interest

As it was discussed during the review of the literature (Chapter 2), there only exists a

minimal amount of studies addressing the fracture behaviour of low to medium porosity

materials. Yet, such materials are becoming increasingly common, especially with the

rise of advanced manufacturing technologies like wire and arc manufacturing [25], selec-

tive laser melting [28] and other additive manufacturing technologies [27], which tend

to create specimens with small levels of stochastically distributed, unwanted porosity.

However, instead of viewing porosity as a negative feature, understanding the exact

behaviour of a crack near a void can promote materials of new capabilities, including

crack-arrest [34, 74] and controlled fracture [70, 71].

In the previous chapters, it was shown both experimentally and numerically, that

brittle porous materials, of an ordered meso-structure can exhibit prominent size effects.

Even though these size effects have been closely correlated to the increased significance

of non-singular stresses in porous materials, there are indications that the mechanisms

behind this size effect are more complicated.

This chapter focuses on more realistic materials and structures that can have an

immediate engineering interest. Initially, porous materials of random microstructure

are investigated to verify whether the size effect is still exhibited or whether it is

concealed by their stochastic behaviour. An attempt is also made to correlate the

exhibited stress intensity to their mesostructural features.

The next section of the chapter, takes a step back and focuses on the effect of iso-

lated inhomogeneities (voids or inclusions) in the stress intensity at the crack tip in
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order to provide insight into explaining patterns observed for the random materials. In

previous research, it has been shown that even the presence of a single void or inclusion

in the vicinity of a crack can change the local stress field [54, 56, 59]. Here, an in-depth

designed numerical experiment is performed to map the relationship between the stress

intensity and the mesostructural characteristics of each specimen. As an extension of

this study, materials with stop-holes and stiff inclusions are also addressed. Finally,

the interactions between multiple voids are investigated.

6.1 Stress intensity variations for porous materials with a

random mesostructure

Porous materials, either naturally occurring or manufactured, are usually characterised

by a stochastic distribution of their mesostructural features. This stochasticity is also

reflected in their properties which, even if they exhibit a consistent average value, are

usually also characterised by a statistical variation quantified by a standard deviation

[13]. In the previous chapters, idealised porous materials were investigated in mode I

fracture and found to be characterised by prominent size effects, with smaller specimens

exhibiting apparently tougher behaviour than their larger counterparts. Nevertheless,

it is yet unclear whether similar patterns would be found numerically for perfectly

brittle but random materials, or if these are concealed by the stochasticity of their

nature.

A numerical investigation into this was performed, using two-dimensional finite

element models of DCB specimens created in ANSYS. Contrary to the previous chap-

ters, the models were not created by arraying a single, identical unit cell. However,

in order to ensure a constant and uniform cell density, the matrix material was di-

vided into rectangular representative unit cells of dimensions Sizex = 3.5mm and

Sizey =
√

3Sizex/2 ≈ 3mm in the x- and y- direction respectively, as in the previous

chapters. This ensured that the outer dimensions of all specimens throughout the thesis

have consistent macroscopic dimensions, irrespectively of their mesostructural features.

Each unit cell then contained a single circular void positioned randomly around

the cell’s centroid, based on a pre-defined level of randomness, (R). This level of

randomness was expressed both in the distribution of the void radius (Rd) as well as

the deviation of the void’s centroid from the centroid of the unit cell (Rloc) (Figure 6.1).

For example, a model with 0% distribution in its void diameter and 0% distribution

in its location would have voids of exactly the same size, each one located at the

centroid of each unit cell, converging to the idealised case studied before. Three levels
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(a) (b) (c)

Figure 6.1: Models of Ncy=4, dav = 1.64 and different levels of randomness: (a)
Small randomness, (b) Medium randomness, (c) Large randomness. The dark blue unit
cell represents the unit cell on which the crack tip was located. Five different crack
tip locations were assumed on that unit cell, from one end to the other at Sizex/4
increments. Note that voids were not allowed to intersect the bottom boundary of that
unit cell.

of randomness were used for this study (Table 6.1), namely Low (Rd = 10%, Rloc = 25

%, Figure 6.1a), Medium (Rd = 25%, Rloc = 50 %, Figure 6.1b) and High (Rd = 50%,

Rloc = 95 %, Figure 6.1c). These randomness levels are used to estimate the upper

and lower boundaries of either the location or the void diameter for each different type

of model. The exact values characterizing each unit cell of these models were then

randomly generated in ANSYS with a uniform distribution function.

Average void diameters (dav) of 0.82mm and 1.64mm were considered, correspond-

ing to average porosities of 5% and 20% respectively (Table 6.1). In order to investigate

the size effect, models of different sizes were created by increasing the number of repre-

sentative unit cells on each specimen arm in the y-direction, Ncy. This study addresses

sizes Ncy in the range of 1 to 6 .

The models were meshed using the same element as in the previous chapters (8-node

two-dimensional element ANSYS Plane 183), yet in this case the mesh was unstruc-

tured instead of mapped. The element size in the entirety of the model was 0.2mm

(approximately the same as the far-field element used in the mapped meshes of the

previous chapters), while, as before, in order to account for computational inaccura-

Table 6.1: Distribution values used for each randomness level and resulting porosities
P for each different average void diameter

Randomness level (R) Rd Rloc P, d = 0.82mm P, d = 1.64mm

Small (S) 10% 25% 5.01%± 0.045% 20.01%± 0.21%

Medium (M) 25% 50% 5.09%± 0.1% 20.42%± 0.29%

Large (L) 50% 95% 5.27%± 0.37% 20.13%± 0.76%
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cies near the crack tip singularity, the mesh was locally refined with 0.0025mm sized

elements in the near-tip area (25x smaller than the near-tip element in the mapped

meshes of the previous chapters).

As before, only half of each specimen was modelled and appropriate boundary con-

ditions were set. Although this may limit the concept of ”randomness”, since the

mesostructure of the material equilaterally of the crack is by definition perfectly sym-

metrical, it was important for the scope of this study that mode I loading conditions

are maintained. Each specimen was then loaded as described in previous chapters (for

more details see Subsection 3.2.1) and the same material parameters were applied. For

each different case (defined as a combination of a void diameter d, size Ncy, and level

of Randomness R) five specimens of differing topologies, all generated randomly, were

considered in order to ensure repeatability.

Note that even though for large levels of randomness the voids did sometimes in-

tersect the boundaries of the specimen, this was not allowed for the unit cell on which

the crack tip was located, whose lower boundary was always intact (dark blue unit

cell in Figure 6.1). Despite the fact that the void’s location is expected to vary the

estimated local stress intensity factor, as before, five measurements were assumed for

each different model, with the crack tip ranging from one end of the unit cell to the

other, at Sizex/4 increments. This was done in order to ensure that different crack

tip locations relative to the void location are considered for all models, especially the

ones with a small randomness level where the void location was always very close to

the centroid of the unit cell. The results that follow present both, the stress intensity

independently for each of the five different crack tip locations of each specimen (SIN ),

and the averaged stress intensity of all 5 different crack tip locations resulting in a

single average stress intensity for each specimen (SIN ).

Results show that the variation of the averaged stress intensity at the crack tip,SIN ,

followed the expected pattern, with specimens of higher porosity generally exhibiting

higher stress intensity at the crack tip than specimens of lower porosity (Figure 6.2a).

Due to the stochastic nature of the specimens, there were deviations from the idealised

behaviour, especially prevalent in specimens with a larger randomness level. Models

of small and medium randomness level also exhibit a size effect, consistent with the

trends of the idealised case for an averaged value throughout the unit cell, albeit a

statistical variation from the idealised value is clearly existent. However, as the level of

randomness increases, the stress intensity at the crack tip presents greater irregularities

and deviations from the median, making the size effect indiscernible.

Previous research has attributed the variations on the stress intensity of brittle

materials on the loss of K-dominance and the increased significance of non-singular
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stresses [113, 139]. This trend has also been found in the previous chapters of this

thesis. Plotting the independent stress values for each crack tip location (SIN ) for

all specimens against the respective value of the amplitude of non-singular stresses, it

seems that they are correlated with an almost monotonic pattern (Figure 6.2c). More

specifically, higher values of the non-singular component of the total stress at the crack

tip, C, generally mean higher values of the total stress at the crack tip, SIN .

Figure 6.2: Results for random models. Top row: Normalised stress intensity results,
averaged for all 5 locations in the unit cell where the crack tip was assumed, plotted
against (a) specimen size, and (b) the value Dc, related to the material’s mesostructure.
SIN |Ncy=1

refers to models with Ncy = 1 and SIN |Ncy=2−6
refers to models with Ncy =

2− 6. Bottom row: Individual values of normalised stress intensity plotted against (c)
the normalised amplitude of the A1/2 non-singular stresses, and (d) the value Q.
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In Chapter 4, an empirical formula was suggested (Equation 4.4) based on the

parameter Dc (Equation 4.3), which takes into account the porosity P of the material,

and the number of unit cells in the y-direction of each specimen arm, Ncy. Figure

6.2b plots the averaged FEA stress intensity results (again, averaged for all 5 locations

within a unit cell for each specimen) for the random specimens against these predictive

models. The empirical model provides adequate upper and lower boundaries for the

variation of SIN , however, again, for models of larger porosity and randomness level,

and smaller Dc values, there were noticeable deviations from the predicted values.

The strength of specimens of infinite dimensions reinforced with inclusions has been

previously found to be more strongly affected by the near-tip area [140, 141] (even

though the far-field heterogeneities are reported to additionally affect to some extent

the stress intensity at the crack tip by modifying the materials elastic properties [140]).

In order to evaluate whether it is in fact the near-tip area that is mainly responsible for

the variations presented in the current results, the magnitude of SIN is plotted against

the sum over all voids of the inverse distance of the center of each void from the crack

tip multiplied by its diameter (Figure 6.2d):

Q =

n∑
n=1

dn
rn

(6.1)

, where n is the total number of voids of the specimen, dn is the void diameter of

each void and rn is the distance of each void from the crack tip.

The way that Q is calculated (Equation 6.1) decreases the weight of very small

voids or voids located at large distances from the crack tip, on its estimated value.

Figure 6.2d shows a clear correlation between the estimated moment and the normalised

stress intensity at the crack tip, implying that the normalised stress intensity is mainly

influenced by the mesostructure of the near-tip area. However, again, great deviations

for specimens with larger randomness levels can be observed. These deviations may be

attributed to boundary layer effects, either on the surface of the crack, near the crack

tip, or on the upper boundary layer, compromising the specimen’s integrity.

In order to obtain a more complete picture of the influence of porosity on finite

specimens, in the following sections the behaviour of brittle porous materials is dissected

into different components, which are investigated separately.
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6.2 Influence of near-tip isolated heterogeneities in the

stress intensity ahead of a crack

In order to precisely identify how the stress intensity at the crack is influenced by

the existence of heterogeneities in the near-tip region, the simple case of a specimen

with a single void in the vicinity of the crack tip is studied. A mixed level full factorial

designed experiment (DOE) was used to identify statistically significant patterns, while

minimizing the required resources.

Models of different sizes were created, corresponding to 1, 2, 4, 6 and 50 represen-

tative unit cells in the y-direction, Ncy (as defined in the previous section and shown

here in Figure 6.3). The latter size is simulating the case of infinite materials, since for

the void dimensions selected, the size of the inhomogeneity is insignificant compared

to the total specimen dimensions. The void’s location was controlled by the angle and

the distance of the centroid of the void relative to the crack tip (Figure 6.3). The same

void diameters as in the random simulations were used to assess the effect of void size.

All factors and levels of the designed experiment are shown in Table 6.2. As in section

6.1, element Plane 183 was used to mesh the model with a near-tip size of 0.0025mm.

The specimens were then loaded as described in the previous section.

Table 6.2: Factors and levels used in DOE

Factor Name Levels

Angle θ (°) 0 45 90 135 180

Distance r (mm) 1* 1.5 2 2.5 3 3.5 4 4.5
Size Ncy 1 2 4 6 50

Void diameter d (mm) 0.82 1.64

* For a distance r = 1 and void diameter d = 1.64, the placement of the void at

angles θ = 45° and 135° was not considered because the void intersected the

surface. Instead, the results presented below for these models are estimated as

an interpolation.

Figure 6.4 plots the influence of a void in the near-tip area on the stress at the

crack tip, depending on its location for different sized models1. Note that the colours

on the contour plots represent the variations on the stress intensity when a void is

placed on the respective angle and distance from the crack tip, and do not refer to a

continuous stress field around the crack tip. For the seemingly infinite case (Figure

6.4e), the stress variation is clearly divided in two regions; voids placed in front of the

1All contour plots in this chapter refer to specimens with dav = 1.64mm. The ones for dav = 0.82mm
are not presented here since they are very similar, but they can be found in Appendix D.1
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Figure 6.3: Illustration of factors used for DOE.

crack tip (left side of plot, angles θ = 135° and 180°), which amplify the stress intensity

at the crack tip, and voids behind the crack tip (right side of plot, angles θ = 45° and

0°), whose presence shields the crack tip and lowers its stress intensity. This pattern of

stress variations is consistent with that found for a single void or compliant inclusion

in line with the path of the crack in infinite specimens [54, 56, 142, 143] (which would

be relevant to the results for angles θ = 0° and 180° as defined in the present study).

However, as the specimens become smaller this pattern of variation starts changing

form, with the zone shielding the crack tip moving to the left, right above the crack tip

for specimens with Ncy equal to 1 and 2 (Figure 6.4a and b respectively).

For all models, it can be observed that after exceeding a certain distance from the

crack tip the presence of the void is no longer significant and does not have an effect

on the stress intensity at the crack tip. This behaviour is observed even in models with

Ncy = 1 for larger distances in angles θ equal to 0° and 180°, even though they are not

plotted here (larger distances are not feasible for other angles in the smallest specimen).

However, in specimens with Ncy in the range of 1 to 6, as the void approaches the

upper boundary of the specimen, a new increase in the stress intensity at the crack tip

is observed, even though the void may well be outside the near-tip area. Figure 6.4 (f)

plots the stress intensity for all specimens, when the void is located at an angle θ = 90°

and its center is coincident with the specimen’s upper surface. This behaviour gets

less pronounced as the void’s diameter becomes negligible compared to the specimen’s

dimensions, and vanishes for the seemingly infinite case of Ncy = 50. The presence of

boundary voids has been found to change the bending stiffness of small scale specimens

in previous research [78]. A specimen’s behaviour in mode I fracture can be attributed

partly to the near-tip stress field and partly to the bending stiffness exhibited by each

specimen arm. During 3-point bending simulations of high porosity specimens, it was

found that the stress localizes in areas closest to the top and bottom surface of the

specimen, forming a ’hinge’ around which the specimen rotates [80]. Similarly, here the

existence of a discontinuity on the upper layer of the material, which carries a major
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component of the stress in bending, compromises its stiffness, leading to an apparently

more compliant material and a subsequent rise in the stress intensity at the crack tip.

In previous research, when examining a single inclusion in the path of the crack,

it was found that as the crack approached the discontinuity, the stress singularity was

Figure 6.4: Contour plots representing the influence of a void with dav = 1.64mm in
the near-tip area on the stress intensity at the crack tip for different sizes of specimens
(a)-(e). For a distance r = 1mm, angles θ = 45° and 135° are not considered. Plot (f)
shows how a void near the boundary layer (at θ = 90°) affects the stress intensity at
the crack tip.
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no longer a function of 1/r1/2, as would be the case under the assumption of a large

K-dominant zone [53, 59]. In fact, in Chapter 4 the presence of voids in the near-tip

area was found to shrink the size of the K-dominant zone, making the A1/2 non-singular

stresses significant, and thus producing such variations in the stress intensity observed

at the crack tip. Similar shielding and amplification patterns around a single void

in infinite specimens have also been linked with analytically estimated variations of

the constant non-singular term, the T-stress [60]. For the present study, the variation

patterns of the normalised size of the K-dominant zone and the normalised amplitude

of non-singular stress A1/2 (C) are shown indicatively for sizes Ncy=1, 4 and 50 in the

left and right column of Figure 6.5 respectively.

Indeed, it appears that the presence of a void in the near-tip area can significantly

shrink the size of the K-dominant zone for the majority of locations that it could

assume(Figure 6.5, left column). Interestingly, there appear to be certain locations in

the near-tip area where the presence of a void would not influence the size of the K-

dominant zone. For smaller specimen these ’neutral’ locations are located at angles 0°

and 180°, however larger specimens exhibit a different pattern. In the seemingly infinite

specimens voids on the extension of the crack tip (θ = 180°) have a strong influence on

the size of the K-dominant zone, while voids located along 45 ° no longer compromise

the K-dominance after they exceed a certain distance.

In contrast, the amplitude of non-singular stresses A1/2 (C), is not as sensitive

to the presence of voids in the near-tip area. More specifically, even though (C) is

mainly reduced for the smallest specimens, as the specimens get larger a reduction of

its magnitude only appears for a small area right above the crack tip (blue area in right

column graphs of 6.5). The value C for any location outside this small area seems to

converge to a near zero value (pink areas in right column graphs of 6.5). Note that the

value of C for the homogeneous case -which was used for the normalisation- is negative

when interpreting the results.

It is clear that all DOE factors (Table 6.2) affect the values of the estimated nor-

malised stress intensity (SIN), normalised amplitude of non-singular stress A1/2 (C)

and the normalised size of the K-dominant zone. The magnitude of influence of each

design parameter on the estimated values can be identified from a pareto chart of effects

(Figure 6.6).

The three graphs in the top row of Figure 6.6a show the effects of each design level on

the material’s fracture properties, when considering all specimens sizes. Results showed

that the effect of the specimen’s size is only averagely significant when considering the

stress intensity (Figure 6.6a, left) and has a low to minimal effect on both the normalised

amplitude of the non-singular stresses (Figure 6.6a, center) and the normalised size of
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Figure 6.5: Contour plots to show the variations of fracture parameters for different
locations of the near-tip void (here shown are the results for voids with dav = 1.64mm)
and different size specimens. Left graphs: Variations on normalised size of K-dominant
zone. Only values smaller than the homogeneous case are considered significant due to
the risk of losing K-dominance. Right graphs: Variations on the normalised amplitude
of non-singular stresses C. Please note that the value of C for the homogeneous case
is negative and thus the colourbar of the right column graphs in Figure 6.5 is reversed
so that values higher than that of the homogeneous case are depicted in red and lower
than that in blue. The values have been additionally divided by Ncy so that they can
be comparable with a common colourbar.

the K-dominant zone (Figure 6.6a, right). The increased size effect on SIN is attributed

to the influence of the boundary layer, as described earlier. Still, the angle θ of the

void’s location relative to the crack tip appears to be the most significant parameter on

influencing all of the studied fracture properties of a brittle material. These findings

explain the variations seen in Section 6.1, where a size effect was not clearly identifiable
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and large variations in the stress intensity could be found even for larger specimens, in a

seemingly random fashion, possibly attributed to the existence of voids of varying angle

near the crack tip. However, for the cases where the voids were placed in a periodic

array (Chapter 4), implying that the angle θ was consistent for different specimens,

this size effect was much more prominent.

When the size effects are removed (bottom row of graph 6.6b , where only specimens

of Ncy=50 are considered), the angle θ is still the most influential DOE factor on all

three fracture parameters of the material. Interestingly, it is found that the void’s

diameter is the least significant, far less than both indicators of the void’s location

(angle and distance from crack tip). This implies that a specimen’s stress intensity and

K-dominance can be affected by the existence of a heterogeneity in the near-tip area,

regardless of its size.

So far, this study has highlighted the ways in which each of the material’s mesostruc-

tural parameters affects its fracture properties and K-dominance. However, in the pre-

vious chapters it was reported that it is in fact the loss of K-dominance and the rising

importance of non-singular stresses that are the underlying causes of the variations in

Figure 6.6: Pareto chart of effects for all DOE factors against the studied fracture
parameters. The red dotted reference lines indicate statistical significance based on
Lenth’s pseudo standard error.
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stress intensity.

Plotting the variations between the material’s fracture properties with each other,

some interesting observations emerge. Firstly, it appears that the amplitude of the

A1/2-stress is uniquely correlated with the size of the K-dominant zone for all specimen

sizes (Figure 6.7, left column). As expected, when the size of the K-dominant zone

is small, the non-singular stresses exhibit high variations and are no longer negligible

compared to the singular term. Yet, as the size of the K-dominant zone increases and

K becomes the dominant parameter, non-singular stresses converge to the value of the

homogeneous case.

A similar pattern can be seen when plotting the size of the K-dominant zone against

the normalised stress intensity (Figure 6.7, center column). For seemingly infinite

specimens, SIN only presents large variations from the homogeneous value when the

size of the K-dominant zone is considerably small. This finding confirms the hypothesis

that in brittle materials it is the loss of K-dominance which causes variations in the

estimated stress intensity. Any small variations in the values of the stress intensity for

values of the K-dominance larger than the homogeneous case and for angles θ = 45°

and 0° could imply that there may be additional factors to be further investigated in

the case where the void is behind the crack tip (e.g. a shielding effect may be in part

attributable to energy dissipation from the void’s deformation). As the size of the

specimen gets smaller though, the variations in SIN become independent from the size

of the K-dominant zone. For the smallest specimen size the relationship between the

size of the K-dominant zone and SIN becomes even more unpredictable and does not

seem to follow a specific pattern. Again, this is attributed to bending components due

to the boundary layer, which as seen before (Figure 6.4e) is stronger for the smallest

specimens.

Similar results where presented in the case of the idealised porous materials (Chap-

ter 4), where larger specimens were characterised by an almost unique relationship be-

tween the size of the K-dominant zone and the estimated stress intensity, while smaller

specimens presented a more complicated picture. Still though, in all cases, smaller sizes

of the K-dominant zone were linked to higher variations of the stress intensity.

It is clear that both the stress intensity and the amplitude of the non-singular

stresses vary under the condition that the size of the K-dominant zone is large enough.

However, the relationship between the two is not linear (6.7, right column). Actually,

for specimens where Ncy = 50, SIN and C are correlated with each other by a different

linear expression for each angle θ of the void, giving a star-like pattern for the full range

of angles studied here. Again, as the size of the specimen gets smaller and size effects

become important this correlation becomes less prevalent. In fact, as the specimen size
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becomes smaller, the pattern exhibited approaches the monotonic pattern also observed

for random specimens, whose Ncy values ranged from 1-6 (Figure 6.2c).

Figure 6.7: Relationship between material’s fracture parameters for different specimen
sizes. Left column: C-Normalised size of K-dominance zone, central column: SIN -
Normalised size of K-dominance zone, right column: C-SIN . The black dotted lines
are located at 1, representing the value of the homogeneous case.
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6.2.1 Size effect in the design of stop-holes for finite size specimens

The limiting case for a void angle θ = 0° is the practical case of the stop-hole, where

the crack tip is located at the centre of the void (distance r = 0). It is well known

[34, 70, 74] that voids can act as crack-stoppers by capturing cracks and delaying their

propagation. When a crack tip is located inside a void, its radius becomes the crack

tip’s radius, which decreases the stress intensity compared to cases with a sharp crack

tip. This implies that as the radius of the void tends to infinity, the stress at the crack

tip tends to zero.

However, in the case of finite specimens, larger voids may result in an increase in

the stress intensity at the crack tip if the void becomes large enough to compromise

the specimen’s bending stiffness. This antagonistic effect highlights the need to find

a balance between the specimen’s and the void’s size. To investigate this, models

of Ncy = 1, 2, 4, 6 and 50 were created with stop-holes of sizes in the range of d =

0.1, 0.82, 1.64 and 2.46.

Results show that in all cases stop-holes reduce the stress at the crack tip (Figure

6.8). This is consistent with previous research and the results presented in section 6.2,

as an extension of the case where θ = 0. As expected [62], higher void diameters result

in lower stress intensities at the crack tip. Interestingly, for specimens with Ncy = 1 the

stop-holes seem to be even more effective in lowering the stress, increasing slightly for

larger specimens. This could be attributed to the ratio of the void’s radius to the total

specimen size: larger ratio would mean a greater percentage of the specimen’s actual

thickness, meaning a more effective contribution of the stop-hole. However, this effect

Figure 6.8: Effect of stop-holes of different radii on finite size specimens
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gets inverted as the void’s diameter is increased and approaches half of the specimen’s

total thickness, in which case boundary effects become distinguishable and the smallest

specimen then produce higher stress intensities than their larger counterparts.

6.2.2 Influence of stress intensity on crack by single stiff inclusion

instead of void

In the previous sections, it was argued that the existence of a void in the near-tip area

impedes the K-dominant zone and causes it to shrink in size, giving rise to variations

in the total observed stress intensity at the crack-tip. This section attempts to draw

parallels between the case of a porous material (theoretically containing inclusions of

a modulus E=0) and materials with inclusions of non-zero moduli. Specifically, the

case of stiff inclusions is assumed, with the modulus of the inclusion EI being 100

times higher than the modulus of the matrix material Em. Such models can simulate

composite materials or materials with impurities. For simplicity, the same Poisson ratio

was assumed for both materials. The DOE factors and near-tip mesh parameters are

the same as in section 6.2. However, this model covers a larger area and thus small

changes in the mesh expansion have been performed that could give small numerical

deviations.

Figure 6.9a shows the main effects plot for the stress intensity (i.e. averaged stress

intensity) for each different specimen size with the distance from the crack tip. Materials

with stiff inclusions exhibited a contrasting behaviour to that of the porous materials,

that nevertheless again converges for larger specimens. It is interesting to note that

even the boundary layer effect is reversed, with near-boundary inclusions lowering the

stress intensity at the crack tip for smaller specimens (this can be observed more clearly

for larger distances in the case of specimens with Ncy = 1 and 2, which diverge from

the otherwise converging pattern). Note that the variations in SIN are less pronounced

than those of porous materials. This is attributed to the fact that the porous material

has an “inclusion” of zero modulus that can only be contrasted with the case of a stiff

inclusion of infinite modulus. Since this is not feasible and a much smaller, finite value

was used, the estimated patterns in the models with stiff inclusions are less prominent.

This reversed pattern in the averaged values of SIN is similarly reflected for the

stress variations in the near-tip area (Figure 6.9b), which is still divided into distinct

zones, but of contrasting nature to that of the porous materials. More specifically, in

contrast to materials with voids, the existence of a stiff inclusion in front of the crack tip

(angles θ = 180° and 135°) shields it from stress, while inclusions behind the crack tip

(angles θ = 0° and 45°) amplify the stress intensity on it. This behaviour is consistent

with that found in previous research for a stiff inclusion located in line with the crack
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Figure 6.9: Results for specimens of Ncy = 50, containing a single stiff inclusion in
the near-tip area (graphs for the rest of the specimens sizes can be found in Appendix
D.2). (a) Main effects plot comparing the variations of the stress intensity with distance
for models with a single void (left side markers on legend) and stiff inclusion (right
side markers on legend) in the near tip area. (b) Contour plot of the stress intensity
variations for different locations of the inclusion (compare with 6.4e), (c) Contour
plot of the variations on the size of the K-dominant zone for different locations of the
inclusion (compare with the left graph of 6.5c), (d) Contour plot of the variations on
the non-singular stresses for different locations of the inclusion (compare with the right
graph of 6.5c)

(angles θ = 0° and 180°) [54, 56]. Similarly, the amplitude of non-singular stresses also

exhibits this inverted behaviour (Figure 6.9d), with a sharp increase on its magnitude

for voids located right above the crack tip.

Despite this contrasting nature of the observed stresses at the crack tip, the void’s

influence pattern on the normalised size of the K-dominant zone remains very similar to

that for the porous materials (FIg. 6.9c). This implies that in brittle materials, the loss

of K-dominance due to a heterogeneity is consistent, regardless of the heterogeneity’s
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Figure 6.10: Relationship of fracture parameters for models with a single stiff inclusion

modulus. In fact, plotting both, the total stress intensity at the crack tip SIN , and

its non-singular component C, as a function of the normalised size of the K-dominant

zone (Figure 6.10 left and center graph respectively, compare with Figure 6.7), it is

observed that, again, large variations in their magnitude are closely correlated with

the material’s loss of K-dominance (the case of Ncy = 50 is shown in order to avoid

interference from boundary effects). In fact, the stress’ non-singular component is

still uniquely correlated with the total stress intensity at the crack tip (right graph of

Figure 6.10), producing a star-like pattern as in Figure 6.7, although the values are

again reversed.

6.3 Influence of two neighboring near-tip isolated hetero-

geneities in the stress intensity ahead of a crack

In porous materials, depending on their cell density, multiple voids may be present in the

near-tip area. Previous studies have shown that the presence of heterogeneity clusters

in the near-tip area has a more pronounced effect on the stress intensity, compared to

a single heterogeneity, which is however subject to the location of the crack relative

to the cluster [53, 54, 144]. In fact, when two voids are in close proximity, the width

of the ligament created between them is additionally cited as an important parameter

that may affect the stress field around the voids [54, 62, 145].

In this section, this synergistic effect is further examined and its impact on the non-

singular component of the stress is also investigated. To achieve this, an additional void

(void B) was placed in the vicinity of the first void (void A) in a combination of different
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distances and angles relative to the crack tip. The following distance pairings and all

possible angle combinations (θB for void B and θA for void A) between them were

considered: a) both voids at dist = 2.5mm, b) void A at distA = 1.5mm and void

B at distB = 3.5mm, c) void A at distA = 1.5mm and void B at distB = 4.5mm.

For the above distances the voids can be placed in all possible combinations without

overlapping. Only models with 50 rows of representative unit cells were considered in

order to isolate the variations caused by void interactions from the additional noise

resulting from the influence of the boundary layer.

The top row of Figure 6.11 plots the estimated values that originate from the

mathematical addition or superposition of the variations that would be the result of each

Figure 6.11: Variations of SIN for models of different distance combinations between
neighbouring voids. Top row: SIN is estimated as the sum of the stress intensity
variations that result from each single void independently. Bottom row: FEA results
when both voids are modelled.
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of the two voids being independently present at their given location. The actual FEA

results of the behaviour for the models with the two neighboring voids are then plotted

below them (bottom row of Figure 6.11). In all different distance combinations, simply

adding the effect of the independent void values seems to approximate quite accurately

the actual material behaviour as found by the FEA. However, small synergistic effects

are observed that either enhance or attenuate the intensity of the stress at the crack

tip.

As expected, in the cases where one void is closer to the crack tip, the stress intensity

map is divided in two regions, showing an increase in SIN for angle θA larger than 90

° and a decrease for smaller values. This pattern is consistent with the behaviour of

a single void in the near-tip area, implying that the void closer to the crack tip is

dominant and becomes the main driver of the material’s behaviour. As void B gets

further away from the crack tip, this behaviour becomes even more prominent, and a

smoothing of the two areas is observed, resulting in almost two equal halfs.

Figure 6.12 plots the fracture parameters for the models with two neighbouring

voids. Again, the loss of K-dominance seems to be a detrimental factor in the variations

of the total stress intensity at the crack tip (central graph) and its singular component

(left graph), with values converging to the homogeneous case as the size of the K-

dominant zone converges to that of the homogeneous case. Note that for the models

studied in this section at least one of the voids is always located in very close proximity

to the crack-tip and hence the size of the K-dominant zone is always smaller than that

Figure 6.12: Relationship of fracture parameters for models with two neighbouring
voids. The bubbles refer only to models when one void (void A) is closer to the crack
tip and becomes the behaviour’s driver.
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of the homogeneous case.

Plotting the total stress intensity at the crack tip, SIN , against its singular com-

ponent ,C, (right graph of Figure 6.12) it can be observed that the patterns are not as

clearly monotonic as in the case of a single void. When one of the voids is closer to the

crack tip, the general tendency of the results tends to agree with that of a single void,

which in this case is the driving void (the one closer to the crack tip). However, for

each angle θA the data points are scattered around a small area, which becomes smaller

as the second void (void B) gets further away from the crack tip. This highlights the

rise of additional parameters when two voids are in close proximity that needs to be

further investigated.

6.4 Conclusions

The presented work investigates the existence of size effects in engineering materials

and traces correlations between the material’s mesostructure and their exhibited stress

intensity at the crack tip, by identifying the contribution of non-singular components on

that behaviour. This chapter provides a more in-depth investigation of the previously

reported results, while attempting to remain relevant to applications of engineering

interest. In general, the following conclusions can be made:

� Random materials of different levels of randomness and void diameters were inves-

tigated to establish whether they exhibit size effects consistent with predictions

for idealised materials. Results showed that in general, the previously reported

models provide reasonable approximations of the stress intensity in random ma-

terials. However, for large levels of randomness, large deviations were presented,

which could be attributed to voids intersecting the top surface of the specimen’s

arm, thus compromising its bending stiffness. Further analysis indicated that the

variations in the total stress intensity at the crack may partly be attributed to

variations in the non-singular component of the stress. Moreover, it was observed

that the mesostructure of the material in the near-tip area has a weighted influ-

ence on the material’s exhibited behaviour, compared to the material’s far-field

properties.

� Consequently, the influence of a single void in the near-tip area on a specimen’s

stress intensity was investigated through a designed numerical experiment. The

void’s location, and particularly it’s angle relevant to the crack tip, was found

to have a detrimental effect on the resulting stress intensity, either shielding or

amplifying it. In fact, it was revealed that it is the shrinkage of the K-dominant
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zone and the increased significance of the non-singular stress component that is

most strongly correlated with these variations in the measured stress intensity.

� As a limiting case of a near-tip void, size effects in materials with stop-holes were

also briefly investigated. Results showed that, generally, larger radii translate

to a lower stress at the crack tip, which is consistent with findings for stop-

holes in infinite materials. However, a prominent size effect was also observed,

dependent on the ratio of the void’s diameter to the specimen’s arm thickness.

More specifically, while the void remains small compared to the specimen’s size,

larger radii translate to a more efficient stress shielding. Yet, when the void’s

diameter surpasses a certain threshold (approximately 50% of the specimen’s arm

thickness), this behaviour is reversed and larger radii result in higher stresses at

the crack tip in comparison to larger specimen of the same void radius.

� The above designed experiment for a single void in the near-tip area was repeated

for the case of a single inclusion of higher modulus than the matrix. Results

showed that the presence of the heterogeneity was still causing the K-dominant

zone to shrink in the same way, regardless of the heterogeneity’s modulus. How-

ever, the non-singular component of the stresses exhibited an inverted behaviour.

Thus, the results showed consistent patterns with those of the porous materials,

however the shielding and amplification areas were inverted.

� Finally, a second void was placed in the near-tip area to investigate the inter-

actions between neighboring voids. Results showed that while some synergistic

effects may be present, the total exhibited stress intensity can be adequately ap-

proximated by a simple sum of the stress intensities of each independent void.

Consequently, when one void is located closer to the crack tip, this void is the main

driver of the specimen’s behaviour. Again, the loss of K-dominance is still found

to be significant in the variations of the total and non-singular stress intensity at

the crack tip. However, additional parameters are found to gain significance that

need to be investigated further.
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Conclusions and future work

Porous material are ubiquitous in nature, where materials are characterised by intricate

mesostructures, offering them interesting properties. An interesting example is bones,

a material that evolved to achieve, among other properties, low weight with high tor-

sional and bending stiffness. In an attempt to mimic such properties in engineering,

porous materials are becoming increasingly popular, from lightweight sandwich panels

and shock-absorbing structures in the aerospace and automotive industries to thermal

insulation layers.

In most cases, porosity is viewed as a means to reduce weight, increase the ab-

sorbed energy during impact or reduce the conducted heat or electric charge. However,

when found in otherwise non-porous materials, voids are usually seen as defects, which

compromise the strength of materials and structures. With the rise of additive manu-

facturing technologies the inclusion of even a low percentage of porosity on the newly

manufactured components, is highly likely. At the same time, such technologies allow

for the manufacturing of smaller, more delicate geometries and mesostructures, which

deviate from the so far accepted failure theories.

Yet, a review of the literature showed that there is only limited research on the

fracture properties of low to medium porosity materials, and size effects are mainly

considered for non-brittle materials. This thesis attempts to address this gap by a

campaign of both FEA simulations and experiments to investigate the relationship

between a specimen’s mesoscopic and macroscopic geometry and its resulting fracture

properties. The main conclusion of the presented work is that the use of a single

parameter, as described by LEFM, to describe the stress intensity of porous materials
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is inadequate, even in the case of low porosity, brittle materials. In fact, prominent size

effects were observed both numerically and experimentally and the effect of the presence

of voids on the near-tip stress field was validated by means of photoelasticity. The

behaviour of porous materials was then dissected into the following two components:

� The near-tip component, which was the main focus of this study:

– The existence of a heterogeneity in the vicinity of a crack can substantially

shrink the size of the K-dominant zone, thus increasing the significance of

the non-singular stress components. This is subsequently translated to a

difference in the observed stress intensity at the crack tip. In fact, when

the effect of the boundary layer is insignificant, the largest stress intensity

variations observed are related to the smallest K-dominance zones.

– The effect of a near-tip heterogeneity on all the parameters studied here (the

crack-tip stress intensity, the size of the K-dominant zone and the amplitude

of the A1/2 non-singular stresses), is predominantly affected by the relative

angle at which the heterogeneity is located. The distance between the void

and the crack tip is also, naturally, an important parameter, since as the

distance increases, the heterogeneity is removed from the near-tip area. No-

tably, the void diameter, even though it affects the intensity of the observed

patterns, is not as significant as other parameters.

– More specifically, a void located in the near-tip area, will generally increase

the average estimated stress intensity, implying an apparently weaker ma-

terial. However, if the void is placed in front of the crack tip (between the

crack tip and the loading point), it can shield the crack tip from the stress

and stiffen the material. On the contrary, a void located behind the crack

tip will amplify the stress on the crack tip. When more than one voids are

located in the near-tip area, their effect is approximately additive, at least

for the cases considered here.

– Contrarily, when a stiff inclusion is located in the near-tip region it will lower

the average stress intensity, thus implying an apparently tougher material.

Again, the relative angle between the inclusion and the crack tip is significant

and the relationship between the angle and the stress intensity is opposite

to that of the voids: crack shielding is achieved by placing a stiff inclusion

behind the crack tip, while stress amplification occurs when placing a stiff

inclusion ahead of the crack tip.

� The effect of the boundary layer/specimen size:
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– In finite size specimens the effect of the boundary layer is becoming increas-

ingly significant. The effect of this layer is thought to be attributed to the

compromise of the bending stiffness of the specimen.

– Idealised porous materials, as studied in Chapter 4, are characterised by

prominent size effects. As the distribution of the voids becomes more ran-

dom (i.e. the material becomes less idealised) this size effect is increasingly

concealed by the stochasticity of the estimated results.

This thesis has made contributions towards the better understanding of the effects

of porosity in brittle materials. The results drew tangents to potential applications of

designed material mesostructures aiming to achieve tailored behaviour in specimens of

“infinite” or “finite” size. This can be of value during the optimisation of materials, so

that porosity may no longer be viewed as a defect, but rather as a means for damage

tolerant design, offering novel materials with enhanced capabilities of controlled crack-

ing and crack-arrest. However, the findings presented here are still in their infancy. In

fact, the findings of this thesis are considered to be at a Technology Readiness Level 2-3

(the basic idea and concept have been developed and some initial experimental proof

of concept has been performed). A significant amount of both experimental and com-

putational work is still required to advance from a theoretical framework to practical

solutions. The major concrete steps required are:

� The results of this study, showed that the relative angle between the heterogeneity

and the crack tip is a deciding factor of whether the heterogeneity will amplify

or shield the crack tip. Even though substantial evidence showed that this is

linked to the increased significance of the non-singular stresses, the reason for the

varying relationship between the amplitude of the non-singular stresses and the

normalised stress intensity is not yet clear. This should be further investigated

to obtain a more complete understanding of this phenomenon, and potentially a

unique relationship between the singular and non-singular stresses.

� Even though it is clear that the boundary layers of finite size specimens can

significantly weaken a specimen when disrupted, not enough data were collected to

quantify this phenomenon. Ideally, in order to increase the accuracy of predictions

of the stress intensity in finite size, porous specimens, a constitutive model should

be created, combining the behaviour of both, the boundary layer and the near-tip

component.

� In this study, only the case of a pure mode I loading was considered. However,

in real-life porous materials, the porosity equilaterally of the crack may not be
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symmetric, which would introduce mode II components. This should be studied if

a more complete model is to be proposed. The presence of a mode II component,

while the size of the K-dominant zone is shrunk, will potentially introduce the

need to study the effect of the T-stresses as well.

� The present study focuses only on the linear accumulation of stress on a sharp

crack tip, prior to fracture and observes a prominent size effect. However, it is not

yet clear how that size effect would translate for the critical stress intensity factor

of porous materials, which is a value of high importance for practical applications.

Subsequently, after crack propagation is initiated, the behaviour of the crack front

in specimens of different sizes would be of interest for applications of controlled

fracture.

� In this study, only DCB specimens are investigated and the porosity of the ma-

terial is considered to be the only characteristic size of the study. It would be

of interest to study cases where a specimen, manufactured of a porous material,

possesses a characteristic length of its own (e.g. specimen with holes for fittings

of a diameter d1 made of a porous material with a void diameter d2 << d1), to

examine whether and how this dual level of heterogeneity would interact.

� Finally, an important next step would be to conduct case studies and initiate

a strategic experimental campaign to demonstrate the potential of tailoring a

material’s mesostructure for damage tolerant design.

To summarise, the research described in this thesis has introduced theoretical and

practical concepts that should be useful in the design and understanding of novel means

of tailored strength. Although further research and development will be necessary

before these ideas can be exploited in practical applications, the potential benefits are

believed to be significant.
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Clevis drawing
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Figure A.1: Drawing of manufactured clevis
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Supplementary material for Chapter 4
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B.1 Additional plots for the mesoscopic behaviour of ide-

alised materials

Figure B.1: Additional plots of the mesoscopic stress intensity variation of different
specimens, categorised by their value of Ncy.
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Figure B.2: Additional plots of the mesoscopic stress intensity variation of different
specimens, categorised by their value of P .
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Supplementary material for Chapter 5
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The names of the specimens in the following tables and graphs are noted as ”Speci-

men size - Void diameter - Specimen number”. More specifically, the following options

are used for each part of a specimen’s name:

� Specimen size: S (Ncy = 1), M (Ncy = 2), L (Ncy = 4)

� Void diameter: d0 (d = 0mm), d1.4 (d = 1.4mm), d2 (d = 2mm)

� Specimen number: 1,2,3...n. This value refers to the order of specimen manufac-

turing.

C.1 Quality assurance tables

In the following tables (Table C.1 and Table C.2), only the specimens that were not

rejected and were actually used for testing are described. The date of manufacturing

is also displayed on Table C.1, since the specimens were made in batches, which led to

minor differences between them.

The values of the following graphs can be compared against the ones described in

Chapters 3 and 5. The ratio h1/h2 refers to the ratio of the height of each specimen arm

to ensure that the specimen is symmetric, implying mode I behaviour. Any significant

differences between the designed and manufactured values are addressed in Chapter 5.

The differences observed in porosity from the designed value are due to the fact that

the manufactured specimens have a different design (incorporating the loading block),

which adds extra weight. The estimation of the porosity here is only indicative, to

ensure self-similarity. In some specimens the voids were not successfully cut through

the thickness of the specimen and the material could not be removed, thus adding

weight. Such defects were left in the material only in the cases where they were not

located in the near-tip area.

Finally, note that eccentricity is not the same as the shape anisotropy ratio SR

described in Chapter 5.
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C.2 Experimental force-displacement graphs

In this section, the force-displacement graphs for each specimen tested are presented,

categorised by their porosity. It can be seen in the graph that each 3 specimens of the

same size and porosity have a very similar behaviour with minimal variations. While

the homogeneous specimens have an almost constant slope for all different sizes, this is

not the case for the porous materials. This is also reflected in the results presented in

Chapter 5.

Note that the unloading of the specimens is not plotted to reduce clutter from the

graph.

Figure C.1: Force-displacement graph for manufactured homogeneous specimens with
d = 0mm
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Figure C.2: Force-displacement graph for manufactured specimens with d = 1.4mm

Figure C.3: Force-displacement graph for manufactured specimens with d = 2mm
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Supplementary material for Chapter 6
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D.1 Additional contour plots for specimens with voids

Below are some additional contour plots from the DOE of Chapter 6, which were not

included in the chapter, since they are similar to the ones presented and do not add to

the conclusions.

Figure D.1: Additional graphs for the variations of the amplitude of A1/2 stress and
the size of K-dominant zone for specimens with voids of d = 1.64mm

115



Appendix D

Figure D.2: Contour plots of stress intensity variations for specimens with voids of
d = 0.82mm
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Figure D.3: Contour plots of the amplitude of A1/2 stress variations for specimens with
voids of d = 0.82mm
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Figure D.4: Contour plots of the size of K-dominant zone for specimens with voids of
d = 0.82mm
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D.2 Additional contour plots for specimens with stiff in-

clusions

Figure D.5: Contour plots of stress intensity variations for specimens with stiff inclu-
sions of d = 0.82mm
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Figure D.6: Contour plots of the amplitude of A1/2 stress variations for specimens with
stiff inclusions of d = 0.82mm
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Figure D.7: Contour plots of the size of K-dominant zone for specimens with stiff
inclusions of d = 0.82mm
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Figure D.8: Contour plots of stress intensity variations for specimens with stiff inclu-
sions of d = 1.64mm
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Figure D.9: Contour plots of the amplitude of A1/2 stress variations for specimens with
stiff inclusions of d = 1.64mm
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Figure D.10: Contour plots of the size of K-dominant zone for specimens with stiff
inclusions of d = 1.64mm
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