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ABSTRACT

Wire rope is a structure formed by a large number of helical wires
which combine in a complex manner to form a composite whole. The
work presented in this thesis is concerned with unravelling the
geometrical and mechanical complexities of stranded rope in a
manner which promotes understanding of the mechanical behaviour
and eventual failure of typical ropes.

The thesis presents methods and computed results which provide
detailed descriptions of single, double and triple helical shapes
of individual wires in strands and ropes. Equations governing the
possible spatial configurations of wires 1in multi-layered and
stranded rope are also given and the dependence of the
configuration on the number of wires per layer, wire diameter and
helix angle is highlighted.

This understanding of rope geometry is used to interpret extensive
post-test examinations of full-scale ropes which have failed
during systematic laboratory fatigue testing.

Finally, closed-form mathematical models for the study of the
mechanical behaviour of various rope and strand types are
developed and presented. In all cases, these are built on the
earlier geometric foundation described. In some cases, a
modification of Costello's and Velinsky's approach is used. In
single layer strand modelling, comparisons have been make between
the author's analytical models and the experimental results from
Martin and Packard as well as Machida and Durelli. Good agreement

is shown.
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CHAPTER ONE

LITERATURE REVIEW



1.1 INTRODUCTION

1.1-1 Wire Rope Application

In the early days, wire ropes were closely related with the
mining industry, bridge building and rigging of ships. Wire
rope applications nowadays are widespread and diverse. Many
applications go unnoticed, such as submarine cable for
communication, power transmission, mooring of o0il production
prlatforms, aircraft components, suspension of bridges & cable
cars, hoisting for various industries, antenna supports or
roof suspension for large span buildings. There are also many
other commercial and domestic applications, such as shop
windows and suspension of display shelves, 1lift and elevator
operation in sky-scrapers, false ceilings & suspension of air

conditioning ducts and so on.

1.1-2 The Design Potential of Wire Rope

A large variety of wire ropes are available, formed according
to different geometrical patterns. However, not more than
twenty basic configurations are commonly used. The main
reason for using wire rope as tensile member is related to
its high strength-to-weight ratio, flexibility and
comparative ease of installation in structures and machines.
Nevertheless, wire rope has disadvantages which are discussed

in Chapter Three.

Under normal applications, wire ropes are generally designed

to carry tensile load;eg as tensile members of a structure in



which people and equipment are housed. As a result, the aim
of good wire rope ©practice is to establish the most
economical, efficient and reliable rope service, commensurate
with the appropriate degree of safety to both personnel and
equipment. Research, design, evaluation, production and
selection of the proper rope for a given application 1is
important, as well as efficient storage, installation,

inspection and maintenance practice.

1.1-3 Development of Wire Rope Technology

Although wire rope have been used for several hundred
yearsl'g, early advancement of wire technology was
essentially in manufacturing techniques and material
improvements. Rope design, evaluation and selection rely
heavily on tests and experiments. Extensive tests and
experiments date back to at least one hundred and fifty years
ago. However, information on analytical aspects, such as
knowledge of the stress level that causes wire failure at
various local points, description of the mechanical response
of wires (eg in double helical wire and triple helical wire)
and understanding the influences of the mechanical
interactions between wires and strand, have not yet become
apparent in the history of wire rope research. Therefore, in
the author's opinion, the present investigations into
theoretical aspects are still elementary. More theoretical
work is necessary to complement experimental work in the wire

rope field.



1.1-4 Difficulties Encountered in Rope Research

The complex geometrical patterns of wire rope construction
have limited attempts to investigate the behaviour of wire
rope through tests and experiments. Wire rope tests, on one
hand, are very costly and only gross parameters can be
obtained. Experimental results and data, on the other hand,
are difficult to interpret and to isolate from constructional

and environmental factors which may occur during tests.

1.1-5 Reviews

The present chapter presents a brief and somewhat subjective
view of existing literature on the behaviour of wires, strand
ropes. Since a complete review of the past 50 years work
would be a difficult task to achieve, only work which is
regarded as interesting and significant in relation to the
present investigation, will be dealt with. The objectives of
this chapter are essentially to establish the scope of
various interests in wire rope, to highlight the difficulties
and to 1link the early major achievements in theoretical
studies of wire rope with the present investigations. The

literature review covers the following aspects.

a. Historical review of wire rope and strand technology
b. Mathematical modelling of wire rope and strand.
c. Termination of rope and end attachments.

e. Other studies on wire ropes.



The 1literature on wire rope history essentially revolves
about wire rope origin and development, wire rope patents in
the early days and wire rope research. The history of the
wire rope industry in Great Britain from 1830 to 1952 was
recorded by Forseter—Walkerl's. The birth and evolution of
the wire rope industry in America was traced by Sayenga

The historical review in the present chapter is confined to a

brief introduction only.

Literature on experiments and non-destructive tests have been
explored extensively. Only a brief review of these aspects

will be given in the present chapter.

Literature on the theory and mathematical modelling of wire
rope and strand dates back to 1948. There were three main
streams of theory which were initiated by Hruska, Machida and
Costello respectively. Detailed reviews will be introduced on

these aspects in the present chapter.



1.1-6 Structure Of Chapter One
LITERATURE
REVIEW
INTRODUCTION
TO WIRE ROPE
REVIEW OF REVIEW OF REVIEW OF REVIEW OF
EXPERIMENTAL TERMINATION
WIRE ROPE MATHEMATICAL TESTS OF WIRE OF ROPE AND
MODELLING OF ROPE BASED ON MISCELLANE-
HISTORY MATHEMATICAL OUS STUDIES
WIRE ROPE MODELLING

BLOCK DIAGRAM 1

STRUCTURE OF CHAPTER ONE




1.2 HISTORICAL REVIEW

The present section is a brief review of three main aspects

of rope history. Namely,

a. Origin and development of the wire rope industry.
b. Development of wire rope and rope production machines.
c. Wire rope research.

A brief review of historical events in wire rope technology

is given in table 1.1.

1.2-1 Origin and Development of Wire Rope Industry

Reference 1l noted that menufacture and use of wire dated
back to 3000 B.C. It was also said that copper cable was
found in the ruins of Ninevah as early as 700 B.C. 1'9.
Reference 1.4 claimed that & fifteen foot sample of 1"
Lang's lay bronze rope used by Romans over 2400 years ago,
was found in Muzio Barbonic at Naples, Italy. A book about
Leonardo da Vinci 1.10 shows sketches of mechanised wire
production accessories dated approximately 1500 A.D. and
manuscripts and books on the history of technology constantly
reveal reports of wire which have been in service in Roman
times 1'10. Reference 1.4 noted that the Vikings were using
crude wire rope lashings in the 8th century and the Chinese
used wire rope to construct rope-ways across rivers as long

as 1500 years ago. A book in the library at Vienna dated 1400

shows a sketch of rope-way. During the 16th and 17th



centuries, manuscripts were frequently coded "iron rope",

however this does not refer to wire rope but to chains 1'4.

a. Wire Rope Industry in Britain

References to helically wound wire rope, as known nowadays,
were first found between the years of 1832 to 1837 in the
Proceedings of the Institution of Mechanical Engineers
(Charles Shelley, London 1862, pages 170-209, plate 57).
Figures 1.1 shows the configurations of these ropes. The
French-Style Selvage suspension bridge cable, with Selvage
ship rigging was patented by Andrew Smith in 1835 1.6 and
"formed" wire rope was actually made by Smith and Binkes
during that period at Grimsby. According to record1'6, forty
year after G.W. Binkes established his factory in Grimsby,
there were more than thirty manufacturers producing wire rope
in Britain. In 1874 alone, 36,692 tons of wire were exported
(worth more than three-quarters of a million pounds). At that
time, the wire ropes were closely related with bridge
building, the mining industry and the shipbuilding industry.
The early nineteenth century was the most flourishing period
for the wire rope industry in Britain. There were more than
46 companies in business in 1914. However, the rope industry
declined suddenly due to takeovers and amalgamations. British
Ropes was formed during 1924 by the conglomeration of eight
wire rope manufacturing companies. This organisation has
continued to absorb small rope businesses since and has
become the sole company that still manufactures a variety of

ropes at the present time in Britain.
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Remark: Forstier-Walker 1.3 has detailed records on the

history of wire rope industry in Great Britain from 1830 to

1852.
b. Wire Rope Industry In U.S.A.

The development of the wire rope industry in America 1.6 took
rlace at more or less the same time as in Great Britain. The
growth of this industry was essentially encouraged by coal
(anthracite) mining and the construction of suspension
bridges. The pioneers in this field were largely influenced
by the European philosophy of wire rope and bridge building.
Many of them actually went to Germany, France and Britain to
study bridge design and the application of wire ropes in
haulage and ropeways. The main reason was simply because
there were no American colleges offering engineering degrees

at that time.

In 1833, the first American wire rope patent was obtained by
Isaac McCord. However, John Roebling was the most dominant
figure in American wire rope history. He founded a wire rope
company which bore his own name; and was a brilliant bridge
engineer who built a most spectacular bridge across the gorge
at Niagara Falls. Figure 1.2 is a schematic diagram which
illustrate the appearance of his bridge. In fact, through the
efforts of his three brilliant sons, his company was made
highly successful after his death. Other impressive
achievements through the use of wire rope were the invention

of the cable car, steam shovels, draglines and passenger
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lifts in this period. Rope industry started to decline from
the early 20th century. This was due to the enormous
quantities of wire ropes imported from abroad at very low
price which made it almost impossible for American producers
to make an adequate profit. In the early 1970's the entire
American consumption on 7-wire steel strands was 150,000 tons
per year, yet, 100,000 tons were imported annually from Japan
alone. During 1969-1979, Korean wire rope imports exceeded
45,000 tons to US and the Korean wire rope industry did not
really exist in 1969. Within the same decade, American
companies who manufactured 7-wire steel strands for use in
prestressed concrete construction, in Hampton, Houston, Los
Angeles, Muncy, Palmer, Roebling, San Francico, Trenton,

Waukegan and Wilkes-Barre were all closed.

1.2-2 Development Of Wire rope And Rope Production Machines

Although the exact origin of helically wound wire rope 1is
difficult to trace, this type of configuration was first

found between the years 1832 to 1837.

a. Development Of Wire Ropes

In Britain, production of wire rope probably began in 1828,
Many experimental iron wire ropes were produced by Andrew
Smith and George Binks. They used conventional cordage
machinery and fine iron wires to form such stranded iron

rope. In 1839, Andrew Smith obtained his most significant

patent (No. 8009 - September 20, 1839) which covered the use



13

of malleable iron or other metal wire to make ropes. Three

main types of ropes were produced by Binkes and Smith.

Namely,
i. Parallel wire selvage cables.
ii. Helically laid "formed" ropes.

iii. Flat wire rope.

During that time, attempts were made to apply selvage robpe
and "formed" rope in mine hoists. But they soon found that
Selvage ropes were found to be too stiff, and the iron wires

broke up rapidly in “formed” rope due to fatigue.

Meanwhile, in 1834, a German mining official named Wilhem
August Julius Albert discovered how to 1lay a wire rope
together using relatively large iron wires. His first
successful hand-made ropes were 3x4 construction. Figure 1.3
is a contemporary portrait of Wilhelm Albert. Figure 1.4 (a)
is a schematic diagram of +twisting wrenches for producing
strands or ropes according to Albert's construction and
Figure 1.4 (b) 1is a schematic representation of rope

construction in Albert's time.

In 1835, Albert published all the details of his work which
then stimulated widespread experimental studies and
production. In 1837, Albert invented Lang's lay type of rope
in Clausthal as shown in Figure 1.4 (b). The rope
construction is known as Lang's lay because John Lang was

successful in obtaining the patent in Britain forty years



Contemporary Portrait Of Wilhelm August Julius

Albert, Born 24 January 1787 In Hanover, Died
5 July 1846 At Clausthal (Ref. 1.11)

Figure 1-3
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a. Albert's Equipment For Manual Production Of Rope
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b. Wire Rope Construction In Albert’'s Time

Albert’s Rope Ordinary Lay
(Lang's Lay) Rope In 1831

Ordinary Lay Rope
From Pompelli

Figure 1.4

Albert’s Equipment And Wire Ropeln His Time
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later, even though this construction had been in use in
Britain more than ten years before Lang's rope was patented.
A few year later, a Scottish engineer, Lewis Gordon, visited
Albert and obtained a comprehensive understanding of the
techniques for producing these types of rope. Figure 1.1 is a
schematic representation of the types of ropes that Gordon
learnt to make from Albert. He then returned to Britain and
founded a wire rope factory with his friend R.S. Newall. In
the meantime, John Heimann also produced wire ropes similar
to the German development. But they were sued by Andrew Smith
who claimed the exclusive right to produce these types of
ropes. Figure 1.5 is the schematic representation of Andrew

Smith's rope patterns. However, Smith lost his suit later.

Thereafter, rope patterns were patented one by one, either in
Britain or elsewhere. In 1884, the lock coil ropes, as shown
in Figure 1.6 b, c, were patented by E.C. Batchelor. In 1886,
the flat rope, as shown in Figure 1.6 d, was patented by
H.R.I. Webeter. In 1888, the flattened stranded rope, as
shown in Figure 1.6 e and f, was patented by Latch and
Batchelor. In 1897, Lang's lay rope was successfully patented
by John Lang. In 1909, the non-twist rope of elliptical
strands, as shown in Figure 1.6 g and h, was patented by
Newall and Skelton, and in 1810, a rope with inter-mixed
elliptical and triangular strands, as shown in Figure 1.6 1,

was patented by E.C. Batchelor.

In America, wire rope development was stimulated by totally

different problems. In 1832, a law was passed by Congress



Figure 1:5

Construction Of Wire Rope Patented By Andrew
Smith Mining Journal, London, Dec,7 1844 PP L22

17
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which stated that in existing paddle-wheel river boats with
fibre cordage the tiller ropes had to be replaced by
"metallic" ropes to achieve required safety standards. This
law motivated American to the design of "metallic" cordage.
In 1839, the first American wire rope was patented by Isaac
McCord who proposed to make ropes from three small selvasge
cables twisted together 1like cordage. Since then, Americans
developed a number of good rope types, such as the "three
side"” construction (which is now «called "Warrington")
patented by John Roebling in 1886, the "alternative 1lay"
which was patented by Ferdinand Roebling in 1875, and the
filler wire rope which was patented by Jame Stone in 1889.
These types are still being used today. In 18921 Roebling

covered a rope with metal band as shown in Figure 1.6 j.

b. Rope Production Machines

Wherever in Europe or in America, there were always three

main objectives to be pursued in the wire rope industry. They

were to:
i. improve the quality of wire used in rope manufacture.
ii. design better machines for production and

iii. further improve rope design.

After Albert's equipment for manual production of rope was
successfully introduced in the Harz Mountains of Bavaria, as
shown in Figure 1.4 (a). Various type of stranding machines

were designed, such as a Wooden stranding machine designed by
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Franz Wurm, as shown in Figure 1.7, a manually operated
stranding machine designed by Westmeyer, a combined stranding
and rope closing machine with rope transmission for relative
movement of bobbins was developed by Westmeyer. Figure 1.8 is
a schematic diagram of this machine which was patented by
R.S. Newall in August 1840 in Dundee. The “tubular strander"”
which was designed by Andrew Smith and improved by his son in
America, was the most important machine design for rope
production. This design eventually became a universally
applied tool in rope making all over the world. Figure 1.9 is
a schematic drawing of the "tubular strander" which was
patented by Andrew Smith in 1849 and improved by his son

later.
1.2-3 Wire Rope Research

The present section is a brief review of wire rope research

in both Germany and Britain.
a. Wire Rope Research in Germany

Although Albert was not the inventor of the wire rope, his
efforts in promoting the application of wire rope on an
extremely wide scale undoubtedly deserves credit. Albert
published all the details of his work in 1835. His
breakthrough in wire rope stimulated widéspread experimental
studies in Europe. However, intensive wire rope research was
actually begun around 1860. This activity was initiated by

Professor Reuleaux at the Technische Hochschule in Berlin.
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These works were carried on by several professors, but most
of their research was done on small diameter rope for use in
hoist and cranes. Tests on relatively large diameter wire
rope such as those used for shaft haulage installations, were
carried out at the Westphalian Mining Union-Rope testing
Station in Bochum, founded in 1903, under the direction of
Dr. Ing. Eh. Hermann Herbst (Seilprufstelle Bochum). From
1951 onwards, rope tests were still carried on at the
Technische Hochschule of Karlsruhe. Wire rope tests are still
carried on in Germany at present. These tests are essentially
done on safety devices and driving sheaves in 1ift
construction. Figure 1.10 illustrates some of the rope

endurance test equipment from 1829-1927 in Germany.
b. Wire Rope Research In Britain

A considerable amount of experimental studies on wire ropes
were undertaken in Britain, during the First World War, but
extensive rope tests were actually started around 1920. Under
the British Wire Rope Research Commission, these tests
supervised by Scoble, were concentrated on wire ropes for use
over pulleys. Five detailed reports between 1920 to 1930 were
presented. In 1983 the Department of Energy commissioned the
National Engineering Laboratory to undertake a survey to
examine the published literature on the fatigue performance
of large diameter wire ropesg'14. As a result of this survey
the Department of Energy sponsored a short test programme
which was carried out during the period 1984-85. The primary
objective was to investigate the repeatability of the
endurances of wire ropes of different diameter (40, 70 and
127 mm) but of the same general construction when subjected
to fluctuating tensile loads of constant amplitude. It was
observed during this study that the changes in rope stiffness
and elongation which took place allowed one to distinguish
between good fatigue test result from ones which failed
resulting from the influence of the termination. A secondary
objective was to evaluate available non-destructive testing

techniques for assessing the condition of large diameter wire



a. Chain Testing Machine Designed By
Albert In 1829

-
5
% N
72 \f:\ 465 X
[ T
. L [_I__] (1T ]
b. Bending Machine By c. Bending Machine By
Biggart 1890. Rudeloff 1893.
’ /\ .
i HO i
.E@ Cd
e
OrHie
e. 60 KN Alternating Bending d. Testing Machine By
Machine By R.Woernle 1927 Isaachaen 1909

Figure 1-10
Rope Endurance Testing (Ref.1.11)

24



25

ropes. - The results of +this work has led to a number of

publications (Ref. 4.7 and 4.8).

NEL is now the major participant in a collaborative Joint

Industry Study which look into the fatigue behaviour of large

diameter wire rope and strand used for mooring offshore

structures. The objective and scope of the study which

is
covered in the original proposal by Potts and Chaplin7'13. is
to produce an experimental database on the fatigue

performance of +these products and develop a method for

predicting the fatigue life of large diameter wire rope and

strand based on reference S-N curves obtained for 40 mm

diameter six strand rope.

In addition to this, NEL has actively pursued mathematical

modelling of wire rope by sponsoring research students at

Strathclyde University and allowing them to carry out their
work at NEL. The author of this thesis

students,

is being one of the

This comprehensive approach to wire rope research, which has

been developed over the last four years, has resulted in NEL

being at the forefront of wire rope research.

Figure 1.11 and 1.12 illustrated the most advanced full scale

endurance testing rigs equipped with modern data acguisition

system for the large diameter wire ropes. The testing rig

illustrated in Figure 1.12 is regarded as the world largest

full scale multi-function laree diameter wire rope

bending-tension testing rig at the present time.
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1.3 REVIEW OF THE MATHEMATICAL MODELLING OF STRANDS AND

ROPES

In this section, a review is made of available information on

the static response of wire strands and ropes published in

various sources journals and theses. From this survey, it was

found that theoretical works on wire rope have only emerged
strongly in the last two decades. Most of the published works
were essentially focused on the static mechanical responses

of strands and ropes. Before the 1970's, Only a scattered

number of papers were found. The prominent figure was Hruska.
The literature review is divided into the following

categories.

a. Work by Hruska and his followers.

b. Work by Costello, his fellow workers and his

students.

c. Work by Machida, Huang, Knapp and miscellaneous
works.
d. Geometry of strands and ropes.
1.3-1 Mathematical Modelling of Strand and Rope (Hruska,

F.H. And Other Investigations)

H.M.Hall and F.H.Hruska can be regarded as pioneering rope
modellers who attempted to find out the tensile stresses on a
core wire and helical wires at different layers of a strand

within a rope by using the "Strength of Material" approach.
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Most of their published works are reviewed and summarized as

follows:

In an analytical paper by Ha112'1, attempt has been made to

show that the tensile stress on +the helical wires of
outermost layer is greater than that of the helical wires of
the inner layer within a strand subjected to tensile 1load.

However, this analysis was proved to be wrong by Hruska.

Having been stimulated by Hall's work, Hruskaz'
carried out a series of analytical studies on the mechanical
behaviour of wires within strands and ropes. His

contributions included work on:

a. Tensile stress ratio between core wire and helical
wire,
b. Evaluation of radial force between wires at regions

of contact,

c. Tangential force acting on helical wire and torque

provoked at the rope termination and

d. Approximation of the cross section shape of a
helical wire on a transverse section which is made
through a strand or rope. A similar analytical

approach is also found in Costello and Phillips'

paper
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However, Hruska's work ignored friction and all helical wires
within a rope were considered as single helical wires. In his
analysis, attempt had been also made to model ropes with zero
moment (ie unwinding moment) by using moment equilibrium and
single helix geometry. This model ignores the fact that the
ma jority of helical wires are double helical wires and that
rope geometry will be changed as applied 1load changes.
Besides, only the tensile component was considered to be

acting on each of the wires.

Summary Remarks on Hruska's Stress Analysis of Wire Rope

Hruska's strength of materials approach used to study wire
ropes have been relatively simple and almost entirely
restricted to strands made up of single helical wires; since
his model considered only the tensile component acting on the
single helical wire. Furthermore, the double helix geometry,
geometry of wire cross—-section, many other internal
components (such bending, twisting and shear components) have
not been adequately considered. However, his concept, idea
and approach were improved in the later studies by other
investigators who considered force and moment equilibrium,
extensional stress and strain on a core wire and single
helical wire, displacement, helix geometry and friction. All
these parameters, to some extent, have been explored by later

investigators.

Hruska's approach applied by other investigators used in
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other areas, are briefly reviewed as follows:

Contact stresses in a 6 x 7 wire rope were investigated by
Cressz'e. Based on Hruska's work and Hertzian contact theory
. 9.12 . . .
from Seeley and Smith , three principal compressive
stresses equations +taken from Ref. 9.12 were written as
functions of tensile load, single helix geometry and elastic
properties of the material. However, the complicated contact

geometry was idealised by parallel and cross cylinders with

equal diameters.

Contact stresses analysis for a 6 x 7 wire rope, published in

an article by Leissa2'8. was similar to the work of Cress

In response to Leissa's paper?'8 an analysis of the critical
stresses and mode of failure of a wire rope was made by
Starkey and Cressz'7. It was a minor improvement to the
earlier work of Cress and offered further analytical results
based on Hertzian contact theory. The geometry of wires at
the contact points was still idealised by the geometry of
parallel and cross cylinders. In their study, they point out
that the critical stresses occur between wires are at the

crossover points between adjacent strands.

Bert and Steinz'g selected a more complex rope structure (6 x
37) for the contact force analysis. Additional improvement
was made by introducing curvature geometry at the contact

positions which were initially idealised by parallel and
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cross cylinder as shown 1in Cress and Leissa's works. They
even showed that the calculated contact stress value was five

times greater than the yield stress of the wire material.

Torque characteristics (ie unwinding moment) of wire ropes

2.10

were studied by Gibson and others In their analysis,

Hruska's approach for strands and ropes was still pursued.
They pointed out that for six stranded ordinary 1lay rope,
Lang's lay rope and fibre core ropes, the unwinding torque

generated is linearly with respect to tensile load.

Hruska's analytical approach to the study of the mechanical
behaviour of strands and ropes was summarized by

Reensnyderz’ll.

Brief Summary Remarks On contact Stress Analysis

Hertzian contact stresses analysis and Hruska's strength of
materials approach were applied throughout Cress, Leissa and
others analysis. Two c¢ross and parallel straight cylinders
with equal diameter were used to simulate the contact feature
between the core wire and helical wire of the 6/1 strand and
the core strand & helical strand of the 6 x 7 wire rope.
However, this analysis did not consider the relationships
between the R/r ratio and the admissible helix angle of
helical wires within a layer of a strand (see chapter 6).
Besides, they did not consider the influence of double helix

angle and the curvature of double helical wires at the
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contact point used in the contact stress analysis of the 6 x

7 wire rope.

Overall Remarks On Hruska's Approach And

His Followers' On Wire Rope Analysis

Hruska's strength of material approach used to solve the wire
rope problem (ie straight strand) is thought to be original
and is an approximate method to evaluate forces and torque
components acting on the helical wires and helical strands.
However, this approach has a number of 1limitations and
ignored the following mechanical and geometrical influences

on the strand and rope under external loading:

a. The geometrical relationships between the core and
the helical wire i.e. the spatial configuration of
strand and R/r ratio. For details, see Chapter Six

of this thesis.

b. The mechanical interactions between adjacent wires
and strands. For example, friction, wear secondary

bending and twisting.

c. The change in helical geometry resulting from the
incremental change in external applied load. For

instance, change in curvature, torsion and helix
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angle.

d. Mechanical components other than tension. For
example, shear force, bending and twisting moment

acting on the single helical wire.

e. Geometry of double helical wires in a rope.

Hruska's approach was soon applied to deal with the contact
problem in the 6/1 strand and 6 x 7 wire rope by Cress,
Leissa, Starkey, Bert and Stein in the same decade.
Nevertheless, the parallel cylinder, cross cylinder and the
improved curvature method did not consider the 3 dimensional
interaction between wires at the contact location which may
be important in the actual situation, depend upon the strand

and rope geometry. For instance, they did not consider:

a. The three dimensional slippage, friction, wear and
thermal effects.

b. The influence of galvanized coating.

c. The influence of mechanical interactions other than
radial force.

d. The geometry at the contact locations. For example,
the double helix angle and curvature.

e. The influence of lubricants.

f. The spatial relationship between the radius of core
wire, radius of helical wire, helix angle and the

number of helical wires per layer.
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Remarks:

The approaches adopted by Cress, Leissa, Strakey, Bert and
Stein to the contact problem were basically similar with the
exception that Bert and Stein considered the curvature of

wire at the contact point of wires.

The improved mathematical method of Gibson, Cress, Kaufman
and Gallant to deal with the unwinding torque of wire rope

under tension, was the minor modification of Hruska's

approach.
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1.3-2 Mathematical and Theoretical Study of Strand and Rope

( By Costello, His Fellow Workers and His Students)

Analytical and mathematical studies on strands and ropes
(American type of wire rope, eg Seale rope) was actually
stimulated during the dramatic decline of the American wire
rope industry in the early 1970's. Detailed strand (6/1
strand without core wire) modelling work was published by S.
Machida and A.J. Durelli . Since then, a series of joint
academic papers on mathematical modelling of strands and
ropes emerged in State and were chiefly published by G.A.
Costello, his fellow workers and students3'1 - 3.25 at the
University of Illinois; the static and dynamic response of

6/1 strand and 6 x 19 construction of Seale rope with IWRC

were their main interests.

In their earlier analysis, a more fundamental approach was
taken to model the responses of a helical wire within a
strand, in which the individual wires of a 6/1 strand were
modelled by initially thin curved rods subject to internal
tension, bending moment, twisting moment, shear force and
radial force per unit 1length of the helical wire. The
nonlinear displacements and the axial strain of the helical
wire were derived from the "developed triangle" of a deformed
helix. The nonlinear displacement equations were then
linearized by dropping the 2nd and higher order differential
terms. Eventually, a linearized model was developed for the

evaluation of the static response of the helical wire within
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a strand. Frictional effects were not introduced until the

early 80's when Bus‘tor13'11 one of the Costello's PhD students
introduced frictional effects into a 6/1 strand model for the
analysis of strand mechanical responses. Buston also studied

the dynamic response of alike strand.

Later, the rod theory and single helix strand model were
applied to study the mechanical responses of Seale rope. For
instance, Velinsky3’18 & 3.19 selected a more complex rope
construction to study. It was a structural modelling of an
6x19 type of Seale rope either with a fibre core or with an
IWRC, by introducing an effective fibre core radius and
effective Poisson's ratio respectively. A survey of their

literature from the early 1970's to the mid 1980's has been

collected in the appendix of this thesis.

Comments on Costello and His Fellow Worker's Theory for

Modelling of Strand and Rope.

Within the last decade, a series of Jjoint papers by Costello
and his fellow workers emerged in the United States. In their
earlier works, fundamental approach was taken in modelling
the radial force between wires in contact and the ratio of
radius of helical wire to the wire helical radius of strand
as functions of number of helical wires per layer and helix
angle. However, similar work had been published by Hruska in
"Geometrie im Drahtseil". The similarity found in their works

are as shown below:
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In Costello's paper, 1974

2
r tan- (n/2 - ®/n)
L - (14 - y1/2 (1.2.3)
R sin o'
In Hruska's paper, 1958
) 2
D cot” (180/n) 1/2
= {1 + 5 } (1.2.4)
cos x

There is no difference between these two equations, since o’

= 90 - «a,

Kirchhoff's naturally curved rod theory was also introduced
to solve the static mechanical response of single helical
wires within strand or single helical strands within a rope.
This concept was not new since similar concept had been
proposed by Hansom6'2; in a PhD thesis called "The Mechanics
Of Locked Coil Ropes'", published in 1949, at the University
of Birmingham. However, Hansom himself did not actually
apply rod theory to analyze his rope problem, whereas,
Costello and his fellow workers actually used the rod theory

to analyze the static response of strands and ropes.

In a paper called "Simplified Bending Theory For Wire Rope",
Costello and others showed that the core wire was separated
from the helical wires within a strand. This implies that the
importance of curvature effect influencing the spatial
configuration of a strand and a rope has not been

appreciated. As long as the helical wires are laid around a
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core wire, each layer of helical wires must always touching
the layer immediate beneath. Because, there is an admissible
value which prevents helical wires jamming each other in each

layer within a strand, see Chapter six.

For static strand modelling, the rod theory with the
frictionless assumption, proposed by Costello and others, is
considered as a rational approach for the analysis of the
mechanical responses of strand and helical wires subjected to
static tensile load. For a strand with fixed ends subject to
quasi-static tensile loading, the deformation of the strand
is very small. Although their model is frictionless model.
There are almost no significant differences between
full-friction and full-slip (ie frictionless) strand model
provided the helix angle of the wires is large enough (eg 80

degrees) .

For ropes modelling, Costello's and others' approach use
strand approach and rope theory to analyze some global
mechanical behaviour of rope (eg effective stiffness).
However, single helix strand approach can not used to analyze
stresses and strains on double helical wires since geometry
of single helix differ from that of the double helix.
Besides, the mechanical interactions which are very
significant in relation with the geometrical configuration of

rope, were not be fully appreciated in their theory.
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1.3-83 Mathematical Modelling Of Strands And Cables By

Other Investigators

In addition to Hruska's and Costello's approach, several
other strand and cable investigators also understood the
importance of single helix geometry in governing the static
response of strands and cables under tensile and twisting

load. The following is a review of their work.

Machida and Durelli4'1 proposed an explicit mathematical
model to analyse the =static response of a 6/1 strand.
Strength of materials approach was used and change of helix
geometry as the result of loading was considered. Component
forces and moments acting on each wire were summed up to the
direction of applied loads. Four termination conditions were
considered, namely fixed ends, free ends, twisting and
combined loads (tension and twisting). However, shear force,
mechanical interaction (include friction) and spatial
configuration* of helical wires within a strand were ignored.
It is because they showed that the diameter of core wire

equals the diameter of helical wires in a 6/1 strand.

Note:

Spatial configuration of strand* is relating to the
circumferential space of strand core occupying by the helical
wires that laid around it. This geometrical configuration is
closely related with the helix angle, number of wires per

layer, helical radius and radius of helical wire within a
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strand.

Nowak4'2 dealt specifically with core wire strain, pressure
acting on cable core, normal and shear stress provoked in any
layer of helical wire in an electro-mechanical cable. Nowak
also showed that if a transverse section was made through a
strand, the section of a helical wire is a "kidney shaped"
section.

Knapp4'3 and 4.5 specialized in the mechanical behaviour of
helically armored cable. In his earlier work, linearized and
non-linear analytical models for cable subjected to tension
were also proposed. Knapp's analytical approaches were quite
similar to those of Machida. However, improvements were made
to deal specially with the cable problems. In his 1latest
work4'6. the analytical models dealing with the bending of
cable over sheaves were proposed. Frictionless and
full-friction conditions were considered. Analytical results
were then compared with experimental results and good

agreement was claimed.

Like Costello and others, Huang4'4 also made use of rod
theory in the analytical study of static response of a 6/1
strand. Inter-wires friction was considered in his work.
However, he did not seem to appreciate the significance of
the spatial configuration of the strand; the author does not

agree with Huang's conclusion that if the central core and
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the surrounding wires were made of the same material., the
extension of the strand always caused a separation between

core wire and helical wires.

1.3-4 Helix Geometry and Sectional Geometry of Helical

Wires in Rounded Stranded Rope

The term 'helix geometry' describes the three dimensional
coordinates of the centroidal axis of a helical wire. The
term 'sectional geometry' describes a mathematical means to
determine the cross sectional shape of a helical wire as a
function of helix angle, number of helical wires per layer
and the ratio of helical radius to the radius of the helical
wire. Complete and comprehensive studies of these aspects are
still scarce. This section provides a review of available

literature.

Until recently mathematical models used to study wire ropes
have been relatively simple and entirely restricted to strand
made up of single helical wires. This is simply because the
influence of the rope geometrical pattern are not known and
the understanding of the geometrical properties of double
helical wire are limited. Furthermore, the geometry of wire

cross-sections and its significance has not been adequately

considered.
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A relatively small amount of work has been published on the
geometry of single and double helices in ordinary lay rope.
Despite the fact that wires in a rope may be triple helices,
- triple helix geometry has not previously been considered.
Stein and Bert 5.1 considered double helical wire in an
ordinary lay rope. They presented the coordinate equations
and the curvature equation for this helix. However, the
derivations given were very brief.

Karamchetty 5.2 attempted a study on the geometry of double
helical wires. However, his equations do not agree either
with these of Stein and Bert 5.1 or these presented 1in
Chapter 4 of this thesis. For example, it should be possible
to obtain the equations for Lang's lay from the equations of
ordinary lay simply by reversing the direction of the wire
rotational coordinate. This is not so for equations presented
by Karamchetty. Indeed, Karamchetty's equations do not
distinguish between Lang's lay and ordinary lay at all.
Karamchetty 5.3 went on further to calculate the number of

contact points in a rope by using his previous geometrical

model for double helical wire in a rope.

The papers by Wiek 5.5 dealt mainly with the calculation of
the radius of curvature of a single helical wire bent over a
sheave. His work on double helical wires is restricted to the

degenerate case of a strand bent into a circular arc.
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5.9 . . .
Lee and other carried out a more comprehensive study into
rope geometry. They considered, for example, radii of
curvature and torsion for the constituent wires when strand

or rope is bent around a sheave or wound around a drum.

Although work has been done on the approximation of the cross
sectional shape of helical wires by an ellipse, for example
by Costello and Huang, the influences of the spatial
configuration of strands have not been fully appreciated. The
"kidney shaped” helical wire section was first published in
, 4.2 5.4
Nowak'’'s paper . Kunoh and Leech went further: They
explained that the "kidney shaped" wire section is the result

of curvature effect of a single helical wire.
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1.4 Experimental Study Of Wire Rope And Strand

The complicated construction of wire rope and strand imposes
enormous difficulties with respect to the experimental study
of the mechanical responses, mechanical interactions, stress
and strain variations and the behaviour of wires within a
rope. As a result, most experimental studies of wire ropes
are confined to the macroscopic behaviour of strands and
ropes. Comprehensive experimental study of mechanical
responses, mechanical interactions, stresses and strains
variation on individual wires have not yet been considered
adequately. However, some available wire rope experimental
literature (quantitative or qualitative) relevant to the
present study is briefly reviewed. The work can be divided

geographically into the following categories:

a. Experimental and mathematical study of wire rope

and strand in Britain.

b. Experimental study on wire ropes and strand outside
Britain.
1.4-1 Mathematical Modelling And Experimental Work On

Wire Ropes And Strands In Britain

In this section, the review is particularly concerned with
the literature on mathematical modelling and experimental

study of strand and rope in Britain from 1948 to 1987.
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1 6.2

Matheson6' and Hansom were the earliest investigators in

connection with experimental and mathematical study of the

static response of locked coil rope (ie strand). They were
particularly interested in the tensile and rotation
characteristics of 1lock coiled strands. The strength of
material approach was employed by Matheson. However, the

locked <coil strand was considered as an indeterminate
structure by Hansom. The naturally curved rod theory for the
analysis of the static response of helical wire within a
locked coil strand was first introduced by Hansom's in his
thesis. Simultaneous equations were developed to deal with
load sharing amongst wire layers in the strand. Experimental
and mathematical results were then compared and the
discrepancy was noted. He then concluded that the discrepancy
was due to the initial looseness of the strand (also defined
as constructional displacement as shown in Appendix) and the

elasticity of the core wire as a foundation.

An experimental study on the torsional properties (ie static
response on twisting) of three and seven strand rope (ie 3
helical wire strand and 6/1 strand) was carried out by
Slights'z. A simple mathematical model based on the open coil
spring theory was introduced for the study of the 3 helical

wires strand and 6/1 strand. The analytical calculations were

then compared with the results obtained from the experiment.

Experimental study on the tensile stress on a core wire and
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helical wires within a 6/1 strand was conducted by Martin and
Packard 6'4. Electrical strain gauges and extensometer were
used to measure both the strains on the surface of the wires
and the overall extension of the strand. Results were then

compared with Hruska's analytical approach for strands and

agreement was claimed.

Inter-wire slippage, contact force, hysteresis and fatigue
properties of large diameter multi-layer structural strand
were examined by Hobbs and Raoof6'6 and 6'7. Both
experimental and analytical methods were used in their study.
In Raoof's strand modelling, each layer of wires was
considered as a concentric orthotropic sheet. Full friction
and full slip assumptions were made in this model.
Experimental results on hysteresis, wire slippage and wire
stress were claimed to be in substantial agreement with the
model .

In the same time as Raoof, Utting and Jone56'8 & 6.10 also
developed their own model of the static response of a 6/1
strand. They also made use of rod theory. Friction and
flattening effects due to contact force were considered. They
developed their own testing rig to study the stresses and
load-extension characteristics of a 6/1 strand. Experimental
results were then compared with analytical calculations

obtained from their model and other modellers; includes

Machida, Velinsky and Matheson.
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6.9
In other areas, Casey successful employed acoustic
emission technique to monitor the reliability of wire rope

during the service life of the rope.

A plastic collapse model for 6/1 strand has been developed by
Jones and Christodoulidese'5 based on the classical upper and
lower bound theorems of plasticity. They assumed that the
core wire of the strand was inextensible and the wires of
outer layer were made of perfectly plastic material. Hill and

Siebel's yield criterion was applied throughout the analysis.

1.4-2 Experimental Work On Strand And Ropes Outside Britain

In this section, some interesting experimental work on wire
rope are also briefly reviewed for the purpose of

completeness. They are presented in the following.

Dong and S‘teide17'2 attempted to study the contact stresses
distribution between each layers of wires within a strand. A
prhoto-elastic cable model was clamped laterally. The normal
contact stress distributed between inter-wires within the
strand model were obtained by means of stress freezing
photo-elastic technique. Experimental results were then
compared with the analytical calculations obtained from the
Hertz contact stress analysis for two crossover cylinders.

Agreement was claimed.
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Vanderceldt and o1:hers7'4 studied the mechanical properties
pf cables (ie strands) under monotonic tensile test,
properties such as equivalent elastic modulus of cable,
effective Poisson's ratio and total input energy required to
cause failure of a strand. The acoustic emission provoked
from the breakage of a wire within a strand was also studied.
Durelli and others7'5 & 7.6 conducted a series of tests on a
epoxy oversized strand model and steel wire strand; ie 6/1
strand construction. Strains and responses of wires in the
strand resulting from axial and torsion displacements applied
to the models were studied by means of brittle 1lacquer
coating, electrical resistance strain gauge and extensometer
techniques. The extension and rotation between terminations
were recorded under fixed end and free end condition. Results
were then compared with Machida's strand theory and agreement

was also claimed.

7.7, 7.10 & 7.11
Wiek reported experimental studies on the

surface strain of cover wires of different ropes. Strain
gauges were mounted on the surface of the wires in both
Lang's lay and ordinary lay ropes. He pointed out that for
nominally identical wires on both ropes stresses found to be
more uneven in the case of Lang's lay. As a consequence, he

doubted that Lang's lay rope has greater endurance than

ordinary lay rope.
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Nester‘ov7'1 examined the load shared by each layer of strands
in a rope. The rope was loaded to a predetermined extension.
Both tensile 1load and resisting torque were recorded and
followed by cutting away the outer layer strands. The final
tensile load and resisting torque were then recorded again.
The difference between the initial and final load carried by
the rope is the load shared by the strands layer.

Hankus7'8 - 7.10 reported tests on 35 mining ropes or various
diameters and constructions. Various rope properties were

published, eg torque generated by the rope under tension.

Gibson and others7'3 made use of an electrical strain gauge
load cell to monitor tensile tests on a Lang's lay rope. The
rope was loaded to 60 % of its breakage strength. Agreement
between experiment results and analytical method (Hruska's

method) was claimed to be within 2 %.

Summary Remarks on Experimental Studies of Wire Rope

The preceding experimental studies resulted in some
qualitative understanding on the mechanical behaviour of wire
ropes. Conventional methods were normally used throughout
experimental tests, (for example, electrical strain gauge,
load cell methods, Photo-elastic technique and extensometry).
However, these methods have confined applications because of

the complicated structure of a rope, (cf to chapter three).
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In order to understanding the interactive mechanical
behaviour within a rope. Future experimental studies should
aim to separate parameters from the influences of mechanical
responses and mechanical interactions within a rope. Hence,

improvement of experimental techniques are essential.

1.5 Attachments and Termination of Wire Rope and Strand

End terminations for wire rope installations are of the
greatest importance to safety and transmission of the load to
the rope. It is commonly realised that even properly made and
well installed terminations will develop less strength than
the full strength of the rope and strand themselves. This

sub-section gives a brief review on the study of rope

terminations.

Christen and Hilgerss'l—s'z described detailed procedures for

securing a rope termination to the end attachment. The former
investigator suggested that hooking over the round wires at
the rope termination will increase the effectiveness of wires
gripping in the attachments. However, the latter investigator
did not agree this; he suggested that the strength of a wire

will be reduced by 4 to 6 % if the wire is bent more than 90

degrees,

Myer58'3 discussed a wide range of end attachments for wire
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ropes, He recommended that swaged fittings are more effective

with respect to resistance to fatisgue.

Ga‘chmanS'4 even went further, he reported 800 1laboratory
tests on resin attachments for wire ropes. He suggested that
resin-poured sockets are more durable than zinc poured
sockets on 7/8" diameter wire rope under fatigue test at
moderate loads. Besides, the penetration of resin was found

to be better than zinc.

A test programme was conducted by Matanzo and Metcalf '6. In

order to determine the efficiency of rope terminations, nine

different types of wire rope terminations were tested under

static tensile condition.

DocldB'5 discussed the development of work on resin socket. He
pointed out that +the major restraining force on a rope
termination is the wedging action within a socket, not the
bounding force of the filling material. He then listed number

of advantages of resin over zinc in many applications.

Chaplin and Sharmane'7 discussed the gripping characteristics
of resin sockets. They argued that the gripping mechanism

depends initially on the adhesion between the surface of

wires and solidified resin.

Utting6'8 and 8.6 in his PhD thesis, presented the results of
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strand resin termination pull out from end attachments for
6/1 strand. He then published work on the mathematical study

of stresses in wires near termination.

Summary Remarks On The Rope Termination

Investigations on rope terminations suggested that the
gripping efficiency between rope termination and end
attachment depends on both the wedging action and the

adhesion between wires and the filling media (eg resin or

zinc).

1.6 OTHER STUDY ON ROPES

There is a wide range of literature on other aspects of wire
rope studies eg fatigue performance tests, non-destructive
tests, inspections, discard criteria and general
applications. However, these subjects are outside the scope

of this study and will not be covered in this review.
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SOME HISTORICAL EVENTS IN WIRE ROPE DEVELOPMENT
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YEAR

DESCRIPTION OF EVENTS

NAMES & VENUES

700B.C.S

METALLIC COPPER WIRE
DISCOVERED

RUINS OF NINEVAH

1452 -
1519 A.D.

WIRE ROPE WAS FIRMLY
FOUND IN THE TECHNICAL
BOOK

LEONARD DA VINCI

1500 A.D.

MECHANISED WIRE PRO-
DUCTION ACCESSORIES

LEONARD DA VINCI

1816

1ST WIRE ROPE USED IN
U.S.A. AS EMERGENCY
FOOT BRIDGE

BUILT BY JOSIAH
WHITE

1824

LARGE SCALE TESTS ON
WIRE ROPE SUSPENSION
BRIDGE

CARRIED OUT 1IN
AUSTRIA

1830

1ST AMERICAN SUSPEN-
SION BRIDGE DESIGNED

BUILT BY CHARLES
ELLET

1832

1ST HELICOID WIRE ROPE
APPEARED

UNKNOWN

1834

BEGINNING OF WIRE ROPE
TESTS

BY ALBERT.W.A.T.
GERMAN REMARK: THE
FIRST ONE WHO PRO-
DUCED ROPE IN LANG
LAY (ALBERT LAY)

1835

FIRST VESSEL (MARSHALL
OF GRIMSBY) RIGGED WITH
WIRE ROPE

WOOLWICH DOCKYARD

1840

1ST WIRE ROPE MAKING
MACHINE PATENTED

BY NEWALL (ENGLISH)

1860

INTENSIVE WIRE ROPE
RESEARCHES BEGAN 1IN
GERMANY

BY PROFESSOR
REULEAUX AT THE
TECHNICAL SCHOOL
OF BERLIN

1864

TRANS-ATLANTIC CABLE
LAID

GREAT EASTERN

1875~
1879

WIRE ROPE WAS DEVELOPED
INTO ALTERNATIVE LAY &
LANG LAY

FERDINARD ROEBLING
AND JOHN LANG RESP.
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1884 LOCK COIL ROPE WAS PATENTED BATCHELOR ,E.C.

1886 FLAT ROPE INTRODUCED WEBSTER,H.R.I.

1888 FLATTENED ROPE WAS PATENTED LATCH AND

BATCHELOR

1880 IDEA IF FILLING THE INTER- STONE, J.B.
STITIAL SPACES WITH FINE
FINE WIRE WAS CONCEIVED

1908 NON-TWIST ROPE OF ELLIPT- NEWAL AND
ICAL STRAND WAS PATENTED SKELTON

(ENGLISH)

1910 A ROPE WITH INTERMIXED LESCHEN E.C.
ELLIPTICAL STRAND APPEARED BATCHELOR

1913 PATENTED LOCK-COIL ROPE UNKNOWN
SURROUNDED FLATTENED STRAND

1921 ROPE IN WHICH CORE WAS ROEBLING
ENCLOSED IN A METAL BAND

1340- MATHEMATICAL MODEL FOR HRUSKA ,F.H.

13950 STRESS ANALYSIS OF WIRE (ORIGIN) AND
ROPE HIS FOLLOWERS

1970- MORE PRECISE MATHEMATICAL COSTALLO'S AND

1980 MODEL FOR STRESSES ANALYSIS HIS FOLLOWERS

REMARK:
A. WEBER.W.‘I'7 RECORDED HOW ALBERT'S ROPES WERE PROMOTED 1IN

MINING INDUSTRY AND TRACED THE DEVELOPMENT OF WIRE ROPE MACHINERY.

B. FORESTIER—WALKER,E.Ri'

INDUSTRY IN GREAT BRITAIN FROM 1830 TO 1952

C. SAYENGA.D

U.S.A.

2

6

RECORDED THE HISTORY OF WIRE ROPE

RECORDED THE HISTORY OF WIRE ROPE INDUSTRY 1IN
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HRUSKA,F.H. AND HIS FOLLOWERS

MATHEMATICAL MODELLING OF WIRE ROPE
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YEAR INVESTIGATOR FIELD OF STUDY ORIGIN
1951 HRUSKA ,F.H. TENSILE STRESS UNKNOWN
FOR WIRE ROPE
1952 HRUSKA ,F.H. RADIAL FORCE UNKNOWN
FOR WIRE ROPE
1953 HRUSKA,F.H. TANGENTIAL FORCE UNKNOWN
FOR WIRE ROPE
1953 HRUSKA,F.H. CONTACT FORCE & UNKNOWN
STRAND GEOMETRY
1954 LEISSA AW, STRESS ANALYSIS HRUSKA ,F.H.
FOR 6/1 STRAND
SUBJECTED PURE
TENSILE LOAD
1855 CRESS ,H.A. CONTACT STRESS HRUSKA ,F.H.
FOR 6/1 STRAND HERTZIAN CON-
TACT STRESS
1959 LEISSA A.W. CONTACT STRESS HRUSKA ,F.H.
HERTZIAN CON-
TACT STRESS
1959 STARKEY ,W.L. CRITICAL STRESS LEISSA & HER-
CRESS ,H.A. ANALYSIS AND TZIAN CONTACT
MODE OF FAILURE STRESS
1966 MARTIN,B.C. STRESS IN WIRE VERIFY HRUSKA
PACKARD,T.J. STRAND 'S MODEL
1970 GIBSON,P.T. TORSIONAL PRO- HRUSKA
CRESS ,H.A. PERTIES OF WIRE
ROPE
1972 REEMSNYDER, THE MECHANICAL HRUSKA
H.S. BEHAVIOR AND

FATIGUE RESIS-
TANCE OF STEEL
WIRE, STRAND
AND ROPE
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COSTELLO AND HIS FELLOWS
ON MECHANICAL RESPONSE OF WIRE ROPE
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YEAR INVESTIGATOR FIELD OF STUDY ORIGIN

1873 PHILLIPS,J.W. CONTACT STRESS CURVED ROD
COSTELLO,G.A. OF 6/1 CABLE THEORY

LOVE.A.E.H.
HRUSKA ,F.H.

1974 COSTELLO,G.A. MORE EXACT OF HRUSKA ,F.H.
PHILLIPS,J.W. CONTACT STRESS

1976 COSTELLO,G.A. EFFECTIVE MODULUS COSTELLO,
PHILLIPS,J.VW. OF CABLES G.A

1977 COSTELLO,G.A. TORSIONAL STIFF- COSTELLO,
SINHA,S.A. NESS OF CABLE G.A.

19789 COSTELLO.G.A. LAY EFFECT OF COSTELLO,
MILLER,R.E. WIRE ROPE G.A.

1380 COSTELLO,G.A. STATIC RESPONSE COSTELLO,
MILLER.R.E. OF REDUCED ROT- G.A.

ATION ROPE

1980 COSTELLO,G.A. CONTACT STRESSES COSTELLO,
PHILLIPS,W.J. IN STRAIGHT CROSS G.A.
MILLER.R.E. LAY WIRE ROPE

1980 VELINSKY,S AXTIAL RESPONSE OF COSTELLO,
COSTELLO,.G.A. OVAL WIRE ROPE G.A.

1981 BUTON,G.J. STATIC & DYNAMIC COSTELLO,
COSTELLO,G.A. OF AXIALLY LOADED G.A.

WIRE ROPES

1982 COSTELLO,G.A. SIMPLIFIED BENDING| COSTELLO,

BUTSON,G.J. THEORY FOR VWIRE G.A.

ROPE
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CONTINUE TABLE 1.3

1983 PHILLIPS,J.W. PRELIMINARY. COSTELLO,
FOTSCH,P.D. ANALYSIS OF G.A.
FILLER-WIRE
HOISTING ROPE

1983 COSTELLO,G.A. STRESS IN MULTI COSTELLO,
LAYERED CABLES G.A.

1984 VELINSKY,S.A. WIRE ROPE WITH COSTELLO,
ANDERSON,G.L. COMPLEX CROSS G.A.
COSTELLO,G.A. SECTIONS

1985 VELINSKY,S.A. ANALYSIS OF FIBRE COSTELLO,

CORE WIRE ROPE & HIS OWN

1985 CHIEN,C.H. EFFECTIVE LENGTH COSTELLO,

COSTELLO,G.A. OF A FRACTURED & HIS OWN
WIRE ROPE

1985 PHILLIPS,J.W. ANALYSIS OF WIRE COSTELLO,
COSTELLO,G.A. ROPE WITH IWRC G.A.

1385 VELINSKY,S.A. GENERAL NONLINEAR COSTELLO,

THEORY FOR COMPL- G.A.
EX WIRE ROPE

1988 R.A.LECLAIR & AXIAL, BENDING & COSTELLO,
COSTELLO,G.A. TORSIONAL LOADING G.A.
OF A STRAND WITH
FRICTION
1988 S.A.VELINSKY A SIMPLIFIED TREA-| UNKNOWN
J.D.SCHMIDT TISE ON THE EFFECT

OF WEAR IN CABLES
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TABLE 1.4

MATHEMATICAL MODELLING OF ROPES IN BRITAIN

YEAR INVESTIGATOR FIELD OF STUDY ORIGIN

1948 MATHESON,J.A.L. MECHANICS OF LOCKED HIS OWN
COIL WIRE ROPES (PHD
PROJECT) 1ST PERSON
WHO MENTIONED KIR-
CHHOFF'S SLENDER ROD

THEORY

1949 HANSOM.O.P. MECHANICS OF LOCKED HIS OWN
COIL ROPE

1980 JONES, N AND STATIC PLASTIC BE- HIS OWN

CRISTODOULIDES HAVIOUR OF A 6 / 1

STRAND

1982 HOBBS, R.E. INTERWIRE SLIPPAGE HRUSKA,
AND FATIGUE PRE- COSTELLO

DICTION IN STRAND
CABLES FOR TLP

TETHERS
1985 KUNOH, T & CURVATURE EFFECTS ON COSTELLO
LEECH, C.M. CONTACT POSITION & HIS OWN
1887 UTTING,W.S, & RESPONSE OF WIRE ON COSTELLO
JONES, N 6/7 STRAND DUE TO & HIS OWN

AXTAL TENSILE LOADS
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CHAPTER TWO

OBJECTIVE OF THIS PROJECT
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2.1 INTRODUCTION

Wire ropes are often considered to be consumable items, in
contrast to more expensive capital equipment; however, the
use of wire rope in the mooring of North Sea o0il exploration
platforms has gained attention in recent years. In such a
hostile environment, rope failure resulting in catastrophic
failure of a structure, may lead to loss of life and money.
Safety considerations have led to a gradual increase in the
size and quantity of ropes used in mooring. Using bigger
sizes of structural members to carry the dead load of a
structure does not necessarily ensure greater safety, and it
is important to understand how wire rope will behave at each

stage of its life so that necessary precautions can be taken.

Conventional approaches and concepts of design for tensile
members using 'safety factors' emphasis the quantity or
cross-sectional area of material wused 1in the structure.
Ideally, the load distribution in the structure and the
associated stresses and strains along and across each member
should be analysed in order to assess the actual safety
factor against initial yield or plastic failure of a
structure. Unfortunately, this approach is often found to be
impracticable and difficult to useg'9 when applied directly
to wire rope design. Basically, the complicated geometrical
construction of wire rope make it difficult to obtain
reliable theory and data to describe the behaviour in

service. The research reported in this thesis arose as part



62

of a department of Energy Joint Industry Studies (J.1.S)
programme to investigate the behaviour of wire rope. The main

objectives were

a. To examine the relationship between the number of

individual wire failure and fatigue endurance.

b. To investigate the scale effect and repeatability of

endurance between ropes of different diameters.

c. To provide an opportunity to evaluate the wuse of
non-destructive testing devices applied to large

diameter wire ropes.

The programme included literature surveys, experimental
studies on the fatigue performance of large diameter (40, 70
and 127 mm) steel wire ropes and visits to experienced
investigators at the University of Liverpool, University of
reading and Imperial College London. A number of papers and

confidential reports have been published.

In 1984, a non-destructive testing device based on acoustic
emission principles was successfully applied by Dr. N F Casey
for monitoring wire failures in ropes during tension-tension
fatigue tests. This device 1is currently being used for
monitoring the number of wire failure in a large diameter
wire rope during full scale fatigue tests. Wire counts 1in

each failed rope were performed after tests in order to
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verify the acoustic emission results.

.The rope testing work of NEL has been focused on obtaining
evidence for structural property changes cyclic loading and
using it to predict rope endurance. However, it 1is also
important to understand how the mechanical behaviour of
individual wires is related to the structural behaviour of
the rope; this has been the motivation for the mathematical

modelling of strand and rope behaviour in this thesis.

The main objectives of this thesis and the approach taken to

achieve these objectives are now outlined below:

2.2 OBJECTIVE

The principal objective of the present project was originally
to provide a better understanding of the mechanical behaviour
of wires 1in a general type of rope subjected to axial
loadings at the terminations. However, the complicated
geometrical patterns of wire, the complications 1in contact
conditions, the large variety of rope constructions and
insufficient previous theoretical research led to the
decision to confine studies to circular-wire, round-stranded
rope. The structure of +the approach to the objective 1is
illustrated in Figure 2.2.1. The following headings summarize

the project: (WL7
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a. Post-Test Examination of Large Diameter Wire Ropes

This activity was mainly concentrated on visual examination
of wire failure and contact patches in ropes which had
experienced constant~amplitude, tension-tension fatigue
tests. A summary of the findings 1is presented in Chapter
Three. Some 40 mm diameter and 70 diameter ropes of 6x41
(IWRC) construction and 127 mm diameter of 6x49 (IWRC)

construction have been examined.

b. Mathematical Study of Helix Geometry in Strands and

Ropes

The helix geometry of circular wires in round stranded ropes
must be understood before the mechanical behaviour of wires
can be understood. The study includes methods of finding
coordinates of the wires, path lengths, and the torsion and
curvature of wires in stranded rope subject to general
engineering applications; for example, a straight rope
subject to tension, or a rope subject to bending over a

sheave or wound around a drum.

c. Sectional Geometry of Helical Wires in Round Strands

A mathematical study of the relationships between the helix
angle of wires, the number of helical wires per layer and the
admissible ratio of helical radius to wire cross-sectional

radius has been carried out. These relations determine the
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spatial configuration of circular wires laid around a core

and their geometrical relationships.

d. Structural Modelling of Single Layer Strands

Closed form mathematical models have been developed to
predict the stiffness of ropes by considering the Poisson's
effect in wires which constitute a single layer strand. This
model includes the evaluation of the mechanical response of
each wire, the stresses and strains due to the responses and
the structural properties such as the stiffness and
load-extension relationship of the strand under static
conditions within the 1imit of proportionality (ie the limit
of Hookes' 1law). The accuracy of this approach has been
compared with Machida and Durelli's model 4.1 of 6/1 strand
and B.C. Martin and T.J. Packard's experimental studies of

6/1 strands.e'4

e. Structural Modelling of Multilayer Strand
Closed form mathematical models have been developed, based on
the stiffness approach with Poisson's effect, in two

layer-strands. The purpose was again to study the static

mechanical behaviour of these strands.

f. Structural Modelling On Round Stranded Ropes

Closed from mathematical model based on Velinsky's stiffness
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approach and the author's own approach for a simple Lang's
lay and ordinary lay rope (ie IWRC) have been developed. The
main different between Velinsky's stiffness approach and the
author's approach is that Velinsky's approach only uses
single helix geometry to approximate the double helix
geometry of the double helical wires whereas the author make
use of the double helix geometry to model the double helical
wires. This is important because more than 73 % wires in the

IWRC are in double helical form.



.1 STRUCTURED APPROACH TO THE

MAIN
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MATHEMATICAL
MODELLING
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OBJECTIVE

POST TEST
EXAMINATION
OF LARGE
DIAMETER

WIRE ROPES

MATHEMATICAL MOD-
ELLING OF HELICAL
GEOMETRY OF WIRES
IN ROUND STRANDED
ROPE

MATHEMATICAL MOD-
OF THE MECHANICAL
RESPONSES OF STR-
ANDS AND ROPES.

INTERNAL
WEAR

WIRE
FRACTURE

VERIFY THE RELA-
TIONSHIP BETWEEN
R/r RATIO, NUMBER
OF HELICAL WIRES
AND THE HELIX
ANGLE OF SINGLE
HELICAL WIRE

MATHEMATICAL MOD.
OF VARIOUS STRAN-
DS WITH CROSS AND
EQUAL LAY

MATHEMATICAL MOD-

ELLING OF I.W.R.C

WHERE:

D.HELIX
MOD.
I.W.R.C

BLOCK DIAGRAM 2.2.1

STRUCTURE OF THIS PROJECT

DOUBLE HELIX
MODELLING
INDEPENDENT WIRE ROPE CORE
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2.3 THE LAYOUT AND CONCEPT USED FOR THIS THESIS

The present research work was divided essentially into two

principal studies, one is of a observational nature and the
other theoretical. The observational studies included the

post-test examination of wire failures in large diameter wire

ropes after fatigue testing. The theoretical study included

(a) mathematical study of rope geometry (ie the helix
geometry and sectional wire geometry) in order to
interpret the significance and implications of

mechanical responses.

(b) a mathematical model for the mechanical response of a
single layer and multi-layer strand (including cross and
equal lay multi-layer strand) and

(c) a mathematical model of the mechanical response of an
IWRC (including Lang's lay and ordinary 1lay type of

IWRC) in order to understand the mechanical and

structural behaviour of rope.

The layout and basic concepts used in this thesis are

presented Chapter by Chapter as follows:

2.3.1 Chapters One, Two and Three

Chapter one presents a brief description of the origin of

wire rope, the historical background, the rise and fall of
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the rope industry and a literature survey for the present
study. Chapter two 1is the present chapter. Chapter three

introduces brief descriptions of wires and round stranded

rope configuration, the micro structure of wire for rope
production, the mechanical responses and mechanical
properties of rope, common problems encountered in rope

applications and the preliminary practical study of wire
degradation during tensile fatigue by testing. This study is
a prerequisite for the understanding of ropes and wires

behaviour under static loading and fatigue.

2.3.2 Chapter Four, Five and Six

It is of great interest to relate the helix geometry of the
wire to its mechanical responses in various strand and rope
configurations. Through this analysis one can gain 1insight
into the sharing of loads. In addition, a full understanding
of the helix geometry enables one to understand the contact
pattern along a particular wire in a strand or in a rope and
to provide important information for the analysis of
mechanical interactions in round stranded rope. Most
importantly an understanding of the geometry facilitates the
analysis of stresses and strains resulting from the global

displacements applied at the rope terminations.

Helix geometry descriptions also enable one to visualise the

mechanical interactions at a point and to understand the
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significance of the helix geometry in relation to these
interactions. Chapter four therefore, presents the
application of a vector method to analyse the helix geometry
found in the circular-wire round-stranded rope. Three
dimensional paper models have been made in order to visualise
the Cartesian coordinates of points on the centroidal axis of
the helical wire. Eventually, the Cartesian coordinates, the
helix angle, the radius of curvature, radius of torsion and
the path length of any helical wire found in a straight rope,
drum-wound rope or sheave-bent rope can be analysed. Chapter
Five presents the implications of these geometrical features
for the mechanical response of wire in ropes as applied in
general engineering. Chapter Six explains the significance of
helical parameters related to the selection of helix angle,
admissible helical radius, diameter of wires, the number of

wires per layer and the spatial configuration of strands.

2.3.3 Chapter Seven and Eight

Chapter Seven presents a closed form method to evaluate the
mechanical response of a single layer strand. In this study,
naturally curved rod theory and Costello's approach are
modified in order to generated a stiffness matrix method to
model the mechanical responses of a single 1layer strand.
Chapter Eight presents a further modification of the approach
to evaluate the mechanical responses of two layer multi-layer

strand, for both cross 1lay and equal lay configuration.
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Computer software has been developed for each of these
models. Sample results, discussion and conclusion are also

given at the end of each chapter.

2.3.4 Chapter Nine

This chapter presents two closed form methods to evaluate the
mechanical responses of an IWRC with Lang's and ordinary lay
construction. The first method 1is based on Velinsky's
approach and the second method 1is based on the author's
approach. The double helical wire geometry is considered in
the second method. Again, computer software has been
developed for these models. Sample results, discussion and

conclusion are also presented at the end of this chapter.

2.3.5 Appendix And Glossary Of Terms

This final section presents summary on the previous works, a
collection of expressions and parametric equations used in
the preceding analysis together with common terms used in the

rope industry.
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CHAPTER THREE

CONSTRUCTION OF ROUND STRANDED ROPE

AND RESULTS OF POST TEST EXAMINATION
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3 INTRODUCTION

The National Engineering Laboratory (NEL) is currently
participating in a comprehensive collaborative research
programme to assess the behaviour of large diameter wire
ropes ( 40, 70 and 127 mm) and strands, especially for
of fshore mooring applications. The programme at NEL includes
mathematical modelling as well as various rope testing
procedures. A thorough understanding of practical aspects of

strands and ropes is necessary to establish realistic

mathematical models.

This chapter introduces the terminology used in the rope
industry and discusses the construction of wire ropes, rope
degradation, mechanical properties of round stranded rope,
rope selection, and basic design considerations. The results
of the author's detailed examination of wire failures 1in
various tension-tension fatigue loaded ropes together with

some of the new findings are also presented in this chapter.



3.1 ORGANIZATION OF CHAPTER THREE

The

organization

of this

following block diagram

chapter 1is

PRACTICAL STUDY
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illustrated 1in the

ON
WIRE ROPE
CONSTRUCTION OF LUBRICATION MECHANICAL & BASIC DESIGN
WIRE, STRAND & ( 3.4 ) STRUCTURAL CONSIDERATION
ROPE PROPERTIES ( 3.8)
( 3.2 ) ( 3.6 )
TERMINATIONS DETERIORATION SELECTION OF
& CONNECTION OF WIRE ROPES WIRE ROPES
( 3.3 ) ( 3.5 ) ( 3.7 )
BLOCK DIAGRAM 3.1-1
STRUCTURE DAIGRAM OF CHAPTER THREE
3.2 WIRE, STRAND AND ROPE CONSTRUCTIONS

Rope steel may have a tensile strength (1765.8 N/Wﬂﬂz or

even more) which is more than four times greater than that of

mild steelg'1 For a given size of a rope, the strength of

the wire rope 1is, 1in general, determined by the size and

grade of wire used, the number of wires in the strand, the

geometrical pattern of and the type of main core strand and
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outer layer strands. In this section the properties of wire
and strand shapes and the features of common rope

constructions are discussed.

3.2.1 Wire

Wire is the basic element employed for manufacturing strands.
The following sub-sections present essential terms.

3.2.1-1 Wire Strengthg'5

Wires of the same shape are generally categorised into grades
in accordance with tensile strength. These vary from 160
grade (160 kgf) to 180 grade (180 kgf). The fatigue
resistance of wire up to 110 kgf/sq mm tensile strength is
proportional to breaking strength, but for higher tensile
grades, the ratio of fatigue resistance to the breaking
strength decreases with increase of breaking strength. In
other words, the higher the tensile grade of wire, the more

likely it is to subject to such fatigue problems.

3.2.1-2 Shape Of Wires

A particular wire shape may be suitable for some applications
and rope construction geometries, but unsuitable for others.

The most common wire shapes illustrated in Figure 3.2.1-1,

are.:

i. Round ie transverse section of wire is in

circular shape.
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Trapezoidal
Full Lock
Half Lock

Triangular

Ribbon wire

Figure

3-2-1-1

Wire Shape
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ii. Trapezoidal ie transverse section of wire is 1in

trapezoidal shape.

iii. Full Lock ie Z-Shaped wire as shown 1in the
Figure.

iv. Half-Lock ie rail-shaped wire as shown in the
Figure.

v, Triangular ie wire transverse section is a

triangular shape and this is usually
used for the core wires of
particular strand.

vi. Ribbon Wire ie Oval-shape wire as shown in the

Figure.

3.2.1-3 Surface Finish Of Wire

The surface texture of wires used for manufacturing wire rope
is regarded as important in determining rope endurance and
corrosion protection. Several commonly used surface finish
are available. The most common one is called '"galvanised
coating"”. A wire can be supplied in one of +the following

surface finished ready for rope manufacturing. They are:

i. Ungalvanised {(or black).
ii. Galvanised, Type A (heavy coating with Zinc)

iii. Galvanised, Type Z (lighter coating with Zinc)

Wire coating has a dual purpose
i. Corrosion protection.

ii. Provides a soft bed to distribute the contact
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force.

3.2.1-4 Wire Forms Found in a Round Stranded Rope

Circular wire in round stranded rope can be formed in the

following shapes:

i. A straight Wire ie King wire.

ii. A single helical wire, ie as core wire of single
helical strand

iii. A double helical wire, ie as layered wire of
single helical strand.

3.2.1-5 Heat Treatments and Defects in Wire 9.6

(1) Introduction

Wire manufacture is a complicated process. The drawn-wire
tends to become brittle after a sequence of passes through
the die. To reverse this work hardening tendency across the
section of the drawn wire and to restore the ductility and
drawability for subsequent drawing, carefully controlled heat
treatments are needed from time to time during the drawing
process. As a result, the material properties of the finished
wire will be governed by the micro-structure after these
complicated manufacturing processes. Defects, which are found

in the wire at the final stage, are normally regarded as

"intrinsic" defects.



79

(2) Patenting

Heat treatment applied during the wire manufacturing process
is known as "PATENTING". The purpose of patenting is to
reverse the highly deformed micro-structure of drawn wire to
the original state and to restore the normal drawability of
the wire for subsequent drawing processes., The
micro-structure of steel wire after heat treatment is known
as "SORBITE". Apart from its comparatively high strength,
sorbite has excellent cold deformation capacities because of
its globular structure which can easily be deformed in all
directions. It 1is generally accepted that the mechanical
properties of patented steel wire for rope manufacturing
depend on the patenting conditions, such as the method of
cooling (eg type of salt or 1lead bath), the quenching
temperature and the speed of wire travelling through the
quenching bath. Details of the procedure of how heat
treatments are performed will not be discussed in this
thesis. However, this section focuses on faults appearing
during patenting and the type of micro-structures which will

affect the mechanical properties and the fatigue performance

of wires in a strand and rope.

NB. the difference Dbetween a pearlite and sorbite
structures found in heat treated steel wire relates to the
thickness of the cementite lamellae. The main characteristics
of the structure of patented wires relate to the grain size

and distance between lamellae of cementite crystals.
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(3) Faults of Heat Treatment on Wire

Basically, two faults, which can occur in patented steel, are

influenced by the carbon content and the furnace temperature

for heat treatment.

For steel wire with .8% carbon content which are specially
used for high strength wire ropes, the wire is heat treated
to a high temperature (about 1000 deg. C.) and then quenched
into a lead bath (about 450 to 470 deg. C). Thermal stress
will be set up in the wire and this will often show in
immediate cracking, or this may appear later during pickling.
These cracks will occur normal to wire length and will
typically occur at a hundred or more places along the wire.
In some cases, the thermal stress will release during rope
manufacturing or may not be revealed until the rope is in
use. As the result, the rope is found to have a shortened

service life. In more severe cases these cracks cause sudden

breakage of the rope.

NB. In high carbon steel wire, poor control of quenching
temperature will result in the formation of martensite along

the wire. This is a highly brittle constituent and is very

poor in resisting bending.

For a steel wire with low carbon content, too low a patenting
temperature will result in the separation of ferrite from
pearlite. A steel wire with such micro-structure will stand

less deformation than those wires with a sorbite structure.
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If patented wire with such a structure is drawn then this
wire will again shown brittleness, and have low bend warping
.number. Rope with such micro-structure will show a relatively
short service life. Of course, the micro-structure of such
wire also shows less wear and corrosion resistance so that
the wire will be poor in fretting fatigue performance in

general.

The material properties of even heat treated steel wire are

generally accepted to be homogeneous-isotropic or

orthotropic.

3.2.2 Strand

Strand is formed by winding one or more layers of wires
helically around either a core wire or a strand core. A
strand could either remain as a strand core (employed either
as a core of a strand or as a main core of a rope) or be
further deformed helically as an outer layer helical strand
of a rope. The following sub-sections present the terminology

used in connection with strands which form part of +the

elements of wire rope.

3.2.2-1 Strand Cores

From the mechanical point of view, strand cores are mainly
used to provide a bed to support outer the layer strands, to

share loads carried by the rope, to provide flexibility and
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to give shape to the rope. The strand cores are commonly
categorised into three types namely fibre core. wire core and
built-up-core "BUC" (which is a die-formed core). Various

strand cores are shown in Figure 3.2.2-1.

Strand cores are also classified according to their shape.

The common types of strand cores are:

a. Round ie used for making round strand
b. Triangular ie used for making triangular strand
c. Oval ie used for making filled flat strand.

3.2.2-2 Helical Strands and Their Shapes

The common types of strand shape found in wire ropes

presented in Figure 3.2.2-2, are:

a. Round as shown in Figure 3.2.2-2 except i, ii &
iid
b. Triangular as shown in Figure 3.2.2-2 iii
c. Oval as shown in Figure 3.2.2-2 ii
d. Flat not shown
e. Hexagonal as shown in Figure 3.2.2-2 i
3.2.2-3 Construction Nomenclature of a Strand

Construction nomenclature normally quotes "shape'" and number

of wires in each layer, starting from the outer layer. eg,
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Figure 3.2.2-2 V. 1illustrates a strand section named as

"round 9/9/1".

3.2.2-4 Form Of Strands And Wires.

In this thesis, interest is focused on round strand with
circular wires. A round strand should always be made with a
circular core wire or a round strand core. This type of
strand should either be in straight form or deformed into
helical form along its length. For a straight strand, all the
wires are deformed permanently into single helical form
except the core wire. For a helical strand, however, all the
wires are deformed permanently into double helical form, with
exception of +the core wire which is deformed into single

helical form. Details of wire forms will be discussed 1in

Chapter 4.
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3.2.2-5 Strand Flexibility

For a given grade of wire irrespective of the material
stiffness of the wire, the flexibility of a strand can be

adjusted by two methods namely,

a. Wire size and.

b. Wire lay angle.

(1) Wire Size

Apart from the influence of lay angle, the smaller the wire
diameter used to construct a strand, the more flexible will
be the strand. However, when the outer layer wires of a
strand become less than 2 mm in diameter, they will be more
likely to be subject to severe wear and corrosion damage.
Therefore, in practice, no strand will be constructed with
wire diameter less than 2 mm without considering appropriate

protection against wear and corrosion.

(2) Wire Lay Angle

The flexibility of a strand can be adjusted by varying the
lay angle of wires. Reducing the lay angle produces greater
flexibility. However, this adjustment leads to complications
related to geometry, mechanical responses and interactions.

Lay angle can be varied between layers in two possible
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configurations: namely, "equal lay" and "cross lay" geometry.

a. Influence Of Geometrical Pattern

There is an admissible wire lay angle which can be used
for constructing strand with given number of helical
wires per layer, given size of core wire and helical

wires. This problem will be discussed in Chapter 6.

Four well known geometrical patterns applied to strands

are listed:

1. Seale Rope

For a Seale rope, the outer strand is constructed in
such a way that the number of outer layer wires equals
to the number of inner layer wires within the strand.
This construction allows strand to have the biggest
wires located at the outer-most layer. As the result,
the construction may provide greater external abrasion

resistance for the rope.

2. 6/1 Strand

For a 6/1 strand, the diameter of the core wire is
always bigger than the diameter of the helical wires.
This design is normally wused for construction of

multi~strand rope.
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3. Filler Wire Strand

A filler wire strand can be regarded as the equal lay
strand. The filler wires are used to prevent the outer
layer wires from falling into the valley provided by the
layer of wires immediate beneath. This construction
provides better support between adjacent layers within a
strand. Hence, greater interior abrasion and fatigue

resistance can be expected.

4. Strand Of Warrington Rope

For a Warrington rope, the outer strand of is
constructed in such a way that two different sizes of
wires are laid alternately at the outer-most layer of
the strand. Thus the crowns and valleys of the inner
layer wires form support points. This construction
provides good external abrasion resistance and can used

to adjust strand flexibility.

b. Influence of Lay Angle for High Strength Steel

Wires

The approach of using lay angle to adjust the
flexibility of a strand 1is limited by the fatigue
performance of high strength steel wire with brittle
properties. Wires with high strength brittle properties
are more likely to fail resulting from reversed bending

and torsion, which increase significantly as the helix
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angle of wire is decreased.

c. Influence of Wire Helix Angle on the Mechanical

Response of a Strand

A straight strand is formed by laying wires helically
around either the core wire or a strand core. Wires
which are laid around the core, can be wound either in
right hand or left hand direction (as in right hand or
left hand screw thread). The longitudinal length of one
complete cycle of a single helical wire at the outer
layer of a strand is defined as the lay length of the
strand. The helix angle of +the wire constitutes a
significant influence on the mechanical responses of the
strand. Strands can be constructed to give rise rotation
or to minimize rotation when subjected to axial tension

at terminations.

1. Rotational Strand

A strand with all wires laid helically around a core
wire in the same direction is known as rotational
strand; since the strand will rotate when subjected to
axial tension at the terminations. This strand can be

constructed either in cross lay or equal lay.

2. Minimized Rotation Strand

A strand with wires which are laid around a core wire
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with one layer in one direction and the other layer in
opposite direction alternately, is known as minimized
rotation strand (since the rotation of the strand will
be minimized by the opposite twisting moment at each
layer). This type of strand can only be constructed in

cross lay.

d. Influences of Equal Lay and Cross Lay

A strand with wires which are laid helically around a
core wire each with same lay angle, is said to be equal

lay. Otherwise, is said to be cross lay.

1. Equal Lay

The advantage of equal 1lay strand is that +this lay
configuration provides greater wear surface at the
expenses of rotation when the strand is subjected to

tension at its terminations.

2. Cross Lay

The advantage of cross lay is obviously in minimizing
unwinding rotation when the strand is subjected to
tension at its terminations. However, wires will subject
to cross cutting at the contact points between adjacent

layers.
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3.2.3 Ropes

A stranded rope is formed (except for flat rope) by laying up
one or more layers of strands around a main core strand.
Figure 3.2.3-1 presents the common constructions of "round
stranded ropes". Ropes are normally constructed in the
following forms (see ropeman hand book 9.1 for details of the

following ropes):

a. Round stranded rope
b. Flattened stranded rope
c. Non-rotation rope
d. Flat rope
e. Locked-coil rope
f. Round guide rope
g. Half-lock guide rope
3.2.3-1 Construction Nomenclature of Wire Rope

The construction of a wire rope is conventional expressed

terms:
a. Number of strands (from outer layer to inner layer)
b. Number of wires in the strand
c. Lay up of wires in the strand
d. Type of core

e. Direction of rope lay
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Presented in Figure 3.2.3-1.a is a typical schematic wire
rope section which is known as 6 x 19 (9/3/1) IWRC right hand
ordinary lay Seale rope, ie 6x19 is outer layer, the rest is

IWRC.

3.2.3-2 Composition Of Round Stranded Rope

A round stranded rope consists of a main core and one or more
layers of helical strands 1laid around the main core. A
typical schematic wire rope construction 1is presented in
Figure 3.2.3-2. A brief description of the components of a

round stranded rope is presented in the following:

(1) Main Core of Rope

In this thesis, the focus is on round stranded rope with a
circular core. These types of rope are essentially formed by
winding strands helically around a main core. The main core

of a stranded rope can be classified into the following

types:
a. Fibre Main Core (ie fibre core and fibre-film
core) (FMC)
b. Wire Main Core (ie steel core) (WMC)
c. Wire Strand Core (ie steel core) (WCS)
d. Dyform Core (ie steel core)

e. Independfent Wire Rope Core (ie IWRC)



Where:
a.

b,

Right Hand Ordinary Lay
Right Hand Langs Lay

C. Left Hand Ordinary lLay

d.

Left Hand Lang’s Lay

e. RightHand AlternateLay

f.

Right Hand Herringbore

Figure 3:2-3-2
Schematic Representation
Of Rope Configuration
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The fibre main core is very flexible. Ropes constructed with
fibre core are not suitable for operating in an environment
with high +temperature and cannot be used where there is
severe core crushing. Ropes with a steel core, such as Wire
Main Core and Independent Wire Rope Core, are less flexible
than those with fibre main core. Those with a steel core can
withstand higher core crushing and can be wused in high

temperature environment.

(2) Helical Strand of a Rope
Apart from the Main Core, ropes consists of one or more
layers of helical strand. The following presents terms used

for describing the helical strand of a rope

a Rope Lay

Helical strand can be laid in various combinations around the
main core. Each of these lay configurations are designed to
achieve its best mechanical properties and fatigue
performances by the manufacturer. Figure 3.2.3-2 presents the

most common lay configurations:

1. Ordinary Lay (or Regular Lay)

If the orientation of wires laid in the outer layer
strand is opposite to the orientation of that strand
laid round the main core, then rope is known as ordinary

lay rope.
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2. Lang's Lay

If the orientation of wires laid in the outer layer
strand is the same as the orientation of that strand
laid around the main core, then rope is known as Lang's

lay.

3. Alternate Lay
In this case, Lang's lay strand and ordinary lay strand

are laid alternately around the main core of a rope.

4. Herringbone or Twinned Strand rope

If two pairs of right hand Lang's lay strands and one
pair of left hand ordinary lay strands are laid
alternately around the main core, then the rope is known

as Herringbone rope.

b. Direction of Lay and Lay Length of Rope

Helical strand which is laid around the main core of a rope,
can be either laid in the right hand direction or in the left
hand direction. The lay directions are known as right hand
lay and left hand lay respectively. The longitudinal length
for one cycle (ie 360 degrees rotation of strand about the
rope axis) of an outer strand is known as one rope lay; lay
length of a rope. Figure 3.2.3-2 presents an illustration of

one lay length of a 6 stranded rope.
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c. Influence of Rope Lay

The helical structure of a rope geometry complicates
mechanical responses when this structure 1is subject to
tensile loading. Apart from many other responses of wire, the
unwinding moment of strands at the terminations is one of the
most obvious mechanical responses to be note. Two designs

concerned with this problem are noted:

1. Rotational Rope

Figure 3.2.3-3(b) is a schematic representation of a
rotational rope in which both wires and strands are laid
in the same direction around the wire core and main core
respectively. Ropes of such construction will subject to
rotational movement at the terminations when they are

subjecting to axial tensile load.

2. Non-Rotational Rope

Figure 3.2.3-3(a) is &a schematic representation of a
reduced-rotational rope in which wires and strands laid
in the opposition direction around the strand core and
main core respectively. Ropes of such construction will
have rotational movement minimized at the terminations
when they are subjecting to axial tensile load. If ropes
are constructed with more than two layers of strands,
strands at each layer will have to be laid in opposite

directions. Thus, the tendency of one layer of strands



Where :

a. Reduced Rotation Rope

b. Rotation Rope
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to rotate in one direction 1is counteracted by the
tendency of the other layer of strands to rotate in

opposite directions.

Care has to be taken when handling this type of rope
because any twisting movement applied to the outer layer
strand could cause the slippage of core strand (somewhat
like untightening a screw) and it will protrude from the

rope.

3.2.3-3 Methods of Rope Manufacture

Ropes are manufactured either by preforming or postforming.
In other words, both wires and strands are set to their
permanent shape in the rope without any tendency to unlay
themselves while the rope is in the unloaded condition.
Figure 3.2.3-4 illustrates the difference between preformed
rope and postformed rope and the following present a summary

for each method is presented below.

(1) Preforming
Wires are deformed permanently into their predetermined

shaped before they are laid into the rope.

(2) Postforming
Wires are first laid into the form of a straight strand and

then the strand is bent helically around a main core.
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Advantages of preforming rope:

a. Exposed ends will not be untwisted
b. Easy to handle during storing and installation
c. Less likely to kink and free from twisting

tendencies.

3.2.3-4 The Overall Characteristics Of Round Stranded Rope

Round stranded ropes are comparatively easy to examine
visually and generally provide a fairly wide range of
flexibility. However, they have a tendency to twist as the
load changes and are rather vulnerable to both external and
internal wear. It should be borne in mind that the rotation
movement of a non-rotating rope is only minimized at the rope
terminations. The unwinding movements still appear between
outer and inner layer strands. Figure 3.5.2-14 illustrates
the typical damage on wires between two layers of strands
resulted from unwinding movement of reduced-rotation rope.
For a rotation rope, unwinding rotations are significant. In
order to prevent this movement, some form of constraint has
to be applied to the terminations of this rope. Otherwise,
internal wear and bending of wires on the outer 1layer of
strand are expected to be more prominent and will eventually

shorten the rope service life.
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3.2.3-5 Summary on the Characteristics of Lang's Lay and

Ordinary Lay

Lang's lay rope behaves as rotational rope whereas ordinary
lay rope behaves as reduced-rotational rope. Lang's lay ropes
are constructed so as to offer better external wearing
surface and therefore can be expected, in some cases, to have
a longer fatigue life than ordinary lay. Since the Lang's lay
rope is a rotational rope, it must not be allowed to used
when the termination is free to rotate. Ordinary lay ropes,
on the other hand, are thought to be easier to be handle than
Lang’'s lay, since they are less liable to untwisting and
kinking in general applications. (See chapter 5 for further

discussion)
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3.3 TERMINATIONS AND CONNECTION OF ROPE

Wire rope termination installations are of enormous
importance with regard to the safety requirements. It is
generally recognised that even properly made and carefully
installed terminations will develop less strength than the
full strength of the rope. It is not only necessary to know
what type of termination is to be used and how to install it
correctly, but the safe working load is also needed. The

commonly used rope terminations are:

a. Socketing

"Socketing"” is the most effective and efficient method of
terminating wire rope. Correctly installed sockets will be
more likely to allow a rope to develop its full breaking load

9'2). Figure 3.3-1

(see British Rope Blue Standard
illustrates two types of recommended sockets for rope

terminations.

b. Capping Material

The common types of material for securing sockets to the rope

terminations are:

1. White Metal
b. Zinc

c. Resin (polyester)
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Figure 3-3-1

Rope Termination
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Procedures for rope capping can be found in the following

standards.

ISO/DIS 7595 Molten Metal Socketing of Wire Rope.
ISO/TR 7596 Socketing procedures for Wire Rope.

(Resin Socketing)

N.B.

. . 9.2 . . .
Resin socketing is not recommended for use in stainless
steel ropes in a marine environment because of the potential
for crevice corrosion. However, this combination can be used

in an industrial environment.

Remarks:

Swaged socket attachment with zinc capping is commonly used
for more permanent types of installation for rope
terminations where the standing rope is subjected to little
or no movement. When a rope is subjected to movement and
vibrations, wires are gradually cracked and broken at the
entrance of the socket resulted from fatigue. There is no way
to prevent this type of fatigue and the majority of rope

failures occur near the entrance of socket.

3.4 Lubrication

Lubrication serves several purposes. It provides corrosion
resistance and minimizes internal wear between wires at local
contact locations inside a rope. Good lubricants for ropes

should basically have the following characteristics. 9'2.
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a. Corrosion resistance.

b. Water repellence.

c. High viscosity.

d. Chemically neutral.

e. Penetrating ability.

f. Adhesiveness and affinity for steel.
g. Plastic coating.

h. Temperature stability.

3.5 ROPE DETERIORATION AND CONTACT PATCHES OCCURRENCE

Wire failures, which may be found in hundreds of places
({internally and externally) along a rope under normal
operating conditions, have long been recorded by rope workers
probably as early as the eighteenth century. However,
systematic examination of wire failures and correlation with
positions related to wire geometry features has not yet been
published. The following sub-sections present a brief summary
of common rope deterioration patterns and the results of
author's systematic post test examination on large diameter
wire ropes (ie, %40, ®70 and 9127 mm) failed by
tension-tension fatigue tests carried out in the N.E.L

current rope research programme.

Organization Of Current Section
a. Summary of common rope deteriorations

8

b. Author's post test examinations 9. on large

diameter wire rope.



3.5.1 Rope Deteriorations

Ropes, like all other man-made tools, have their own
mechanism of deterioration, even under careful and normal
usage. Figure 3.5.1-1 presents the common deterioration

patterns found in round stranded ropes. These are on:

a. Wire failures on outer strand.
b. IWRC failure.

c. Kinking.

d. High wires.

e. Rope fracture due to poor socketing.
f. High strands.

g. Bird cage.

h. Failure of outer strands.

i. Protruding core.

J. Wire crushing.

k. Loose strands due to fatigue.

According to reference 9'1, the factors which influence the

deterioration of ropes can be summarized as

a. Wear (external and internal)

b. Fatigue (mechanical fatigue)

c. Corrosion (chemical attack or oxidation)

d. Surface embrittlement

e. Accidental damage and distortion. (lock

deterioration)
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Figure 3.5:1-1

Common Types Of

Rope Failures.
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3.5.2 Post Test Examination of Large Diameter Wire Rope

If ropes are used 1n a normal condition and controlled

environment (for instance, under fatigue tests in an
experimental environment). Rope deterioration will normally
be confined to two sources, namely, wear and fatigue. In

general, wear i1is relatively easily identified as compared
with fatigue, since wear appears as nicks and grocves on the
surface of wires. The author’'s post test examination of large
diameter wire ropes subject to tension-tension fatigue are

presented below:

Detail of Rope Constructions are Listed Below:

a. 40 mm dia 6 x 41 (IWRC) ordinary lay rope
b. 70 mm dia 6 x 41 (IWRC) ordinary lay rope
c. 127 mm dia 6 x 49 (IWRC) ordinary lay rope

3.5.2-1 Wear

Although, rope steel has a tensile strength almost four times
greater than that of mild steel, the cross sections of wires
are much smaller than that of common structural members such
as girders. Wires on the outer layer of strands are more
vulnerable to damage. In general, wear 1is categorized into

"External Wear" and "Internal Wear" respectively.

(1) External Wear

Wires in the outer-most layer of a rope are bound to be
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subject to abrasive wear, plastic wear or a combination of
the two. Figure 3.5.2-1 (a) and (b) show two common types of
external wear, namely, abrasive wear and plastic wear
respectively. They result from different degrees of bearing
pressure on the surface of the wire as it presses against the

hard surface of the groove of a running sheave.

a. Plastic Wear
It is suggested that plastic wear is resulted from the
wire surface bearing too heavily on the hard surface of

a sheave groove.

b. Abrasive Wear
Abrasive wear, on the other hand, is resulted from the
wire surface rubbing too much against the hard surface

of a sheave groove.

Since rope steel is coated with galvanized material, in some

cases, combined wear situation occurs.

Influence of Rope Lay on External Wear

The degree of damage due to external wear can be altered by
using rope lays. Figure 3.5.2-2 (a) and (b) are schematic
diagrams representing the damage due to external wear on the
wire of Lang's lay rope and ordinary lay rope. Obviously, for
wires in the outer-most layer of a Lang's lay rope, the lay

configuration provides better and much longer worn crown than
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Ordinary Lay Rope

"Langs Lay Rope

Figure 3.5-2-2

External Wear Features On

Langs Lay & Ordinary Lay Rope
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that of the wires in an ordinary lay rope.

(2) Internal Wear

For a rope subjected to axial load, interior wires are bound
to cut into one another at their contact points resulted from
tightening the geometrical patterns. Figure 3.5.2-3 shows
typical internal wear patterns on the wire surface inside the
rope, namely, grooves and nicks. The differences between
grooves and nicks depend on whether the contacts are
continuous or of a discrete nature. The following presents
the author's post test examinations on the internal wear of
large diameter wire ropes carried out in N.E.L especially 6 x
41 (40 mm and 70 mm diameter rope) and 6 x 29 (127 mm
diameter rope) ordinary lay construction, each with a Lang's
lay 6/7 I.W.R.C. The work is based on the detailed
examination of rope specimens which were subjected t&
constant amplitude tension-tension fatigue until one of the
outer strands failed. Multi-layer outer strands and the IWRC
have been considered separately. Figure 3.5.2-4 illustrates

the physical appearance of the 6 x 49 construction, 127 mm

diameter rope.

a. Multi-Layer Outer Strands

The multi-layer outer strand is a single helical strand
located at the outer layer of the rope. All the wires in this

strand are in double helical form with the exception of the

core wire which is in single helical form. For wires in the
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a. Grooving

b. Nicking

Figure 3-5:2-3 Grooving & Nic king
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outer-most layer of a multi-layer outer strand, both grooves

and nicks are present.

i. Grooves

Figure 3.5.2-5 shows the physical appearance of grooves
on each wire of a multi-layer outer strand. For an equal
lay multi-layer helical strand, grooves found on each of
the wires within the strand are resulted from inter-wire
contact amongst neighbouring wires in between adjacent
layers. The number of grooves present around the
circumference of a wire can be vary between four and
eight, depending upon the location of the wire within
the strand section. The grooves travel helically along
the wires making a double helical pattern on both single
and double helical wires. It is also found that the
groove 1is heavier in some places than others along each
of the helical wires. It is believed that the heavier
grooves result from higher radial force and mechanical
interactions of the strands. Grooves are less obvious,
if +the =zinc coating 1is completely removed from the
fatigue failure wire. The significance of the grooves

upon fatigue life is not understood at the moment.

2. Nicking

By examining the wires in the outer layer of the strand

after testing, the presence of a regular contact patches

are revealed. Figure 3.5.2-6 shows the physical
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‘Short’ Nicks

Outer Wire From An Adjacent
Multi Layer Quter Strand

Outer Strand
Of The IWRC

- Multi-Layer Quter
Strand

Figure 3-5.2-6
Formation Of Short And Long Contact
Patches On The Outer Wires Of The

Multi Layer Quter Strands
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appearance of nicks on the wires in the outer-most layer
of a multi-layer outer strands. Figure 3.5.2-7 helps to
explain the pattern. The two pairs of ’'short’' contact
patches result from inter-wire contact between adjacent

1)

multi-layer strands. the central 'long contact patches
result from inter-wire contact with the IWRC. These
nicks can be found on each of the outer layer wires of
the multi-layer strand. It is found (by statistical
means) that, under constant amplitude tension-tension

fatigue, the vast majority of outer wire breaks occur

within this system of contact patches.

b. I.W.R.C

The independent wire rope core is 6/7 Lang's lay type of main
core strand which is constructed by laying six (6/1) single
helical strands (ie 36 double helical wires and 6 single
helical core wires) around a (6/1) straight strand (ie six
single helical wires and one straight king wire). By
examining the fatigue failed rope, all the physical

appearance of wear pattern can be revealed.

1. Grooves

Figures 3.5.2-8 and 3.56.2-9, show the physical
appearance of grooves which can be found on each wire of
an I.W.R.C. The grooves result from the continuous
contact with neighbouring wires. The outer wires (ie all

double helical wires) of all the strands each have three
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Figure 3-5:2-7
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grooves present around their circumference, whereas the
six single helical core wires and the king wire each
have six. In contrast to the multi-layer outer strands,
the grooving appears to be more severe; however, in some
places along the double helical wires, the grooves
effectively disappear. The variation of the groove
severity appears to be result from complex mechanical
responses and interactions along the double helical

wires.

Again, grooves travelling along both double helical wire
and single helical core wire have a double helical form.
However, grooves along the straight king wire and the
single helical wire of core strand have a single helical

form.

2. Nickings

Figures 3.5.2-10, 3.5.2-11 and 3.5.2-12, show the four
types of nicks identified. Formation of each of these

nicks is described as follows:

i. Type 1 Contact Pairs

Result from contact between two double helical wires of
an ordinary 1lay multi-layer strand with one double
helical wires of a Lang's lay IWRC outer strand. These
correspond to the 'long' contact patches on the wires of

the multi-layer outer strands.
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Type 1.

Type 2.
Figure 3-52-11
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ii. Type 2 Contact Pairs

Result from contact between adjacent double helical
wires of two neighbouring Lang's lay outer strands of

the IWRC. See Figure 3.5.2-10 and Figure 5.4-4 (2) for

cross reference.

iii. Type 3 Contact Pairs

Result from contact with a double helical wire of the
Lang's lay IWRC outer strand and two single helical

wires of the straight core strand.

iv. Type 4 Contact

Result from contact between &adjacent double helical
wires of two adjacent Lang's lay outer strands of the
IWRC. See Figure 3.5.2-10 and Figure 5.4-4(2) in Chapter
5. for cross reference. The contact feature of type 4

contact is similar to type 2 contact. However, both

contact types locate at different places.

Figure 3.5.2-13 presents the nicking patterns found on the
multi-layer outer strand and on the outer strand of the IWRC.

For interest, Figure 3.5.2-14 shows

J

found on the ordinary lay type of IWRC of a multi-layer

the nicking patterns

stranded rope. Although there is no quantitative evidence to

illustrate the significant influence of contact patterns in
respect of rope degradation, wear, clamping & pivoting at
various contact locations provide favourable conditions for

the fatigue crack to initiate and to grow.
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Inner Strand Of The
Multi Stranded Rope
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Figure 3-5.2-14

Types Of Discrete Contact Within The Inner
Strand Of The Multi Layer Stranded Rope
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3.5.2-2 Wire Breakage due to Fatigue

The following section is concerned with categorising the wire
breahkages which take place under constant amplitude
tension-tension fatigue testing on large diameter wire ropes.
Effectively, six types of wire breakage have been identified
as a result of the very careful post test examinations of
fatigued rope sections. In addition, each failure type has
been related to the local loading condition present within
the rope. These local loading conditions are heavily
dependent upon the geometrical configuration of +the rope

section. Breakage types are:

Type 1 and 2

These failures mostly occur along double helical wires within
the IWRC at the regions where mechanical interactions are
s:egnificant. Crachs initiate at ithe surface of the wire and

initially propagate transversely.

a. For Type 1 Failure (Figure 3.5.2-15 (1) a and Figure

3.5.2-16.a )

Localised torsional stresses alter the direction of crack
propagation to that of a combined transverse/longitudinal
crack. Failure takes place some distance away from where the

crack first initiated.
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Figure 3.5-2-15 (1)
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Typtical Wire Failure Found In

Tension Tension Fatigue Rope

Figure 3.5-2-15(2)
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b. For Type 2 Failure (Figure 3.5.2-15 (1) b and Figure

3.5.2-16 b )

Transverse crack growth is interrupted by complementary shear
stress (resulting from bending component of +the double
helical wire) and crack propagation continues longitudinally.
Transverse crack growth reinitiates at some distance along

the wire finally resulting in a stepped fracture surface.

Type 3 (Figure 3.5.2-15 (1) c and Figure 3.5.2-17 a )

This failure type results from secondary 'point' bending due
to large mechanical interactions. Failure usually occurs at

the gap between any pair of type 3 contact patches.

Type 4 (Figure 3.5.2-15(1).d and Figure 3.5.2-17.b)

This is the most common type of fatigue failure and can occur
in both single or double helical wires. Transverse crack
propagation takes place and upon final failure a pronounced
shear lip is present. This type of failure takes place 1in

regions of low mechanical interactions; thus tensile forces

predominate.

Type 5 (Figure 3.5.2-15 (2) e and Figure 3.5.2-18 a )

Failure of this type occurs in the King wire of the IWRC, as

a result of combined tensile and torsional stresses. It can
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Type Be

Type d.
Figure 3:5-2-17
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also be found in the helical core wires of the multi-layer

outer strands under high loads.

Type 6 (Figure 3.5.2-15 (2) f and Figure 3.5.2-18 b )

Failures of this type are a direct result of tensile overload
producing the cup and cone ductile failure &appearances. This
type of failure occurs where there are many localised fatigue
failures in one or more of the multi-layer outer strands. The
remaining unbroken wires within this region can no 1longer

sustain the fatigue load and tensile overloading take place.

Wire failures can also result from other mechanisms, such as
from combinations of crushing and abrasion as shown in Figure

3.5.2-189.

3.5.2-3 Broken Wire Counts

Figure 3.5.2-20, presents typical 1length distributions of
broken wires found in the IWRC of large diameter wire ropes.
This analysis confirmed that the vast majority of wires were
broken within the 1length between contact patches. This

finding was not indicated in reference 3'17.
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Figure 3-5-2-19

Wire Failure In Rope Due To Wear
And Crushing
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3.6 MECHANICAL AND STRUCTURAL PROPERTIES OF ROUND STRANDED

ROPE

This section discusses the application of conventional
methods used to evaluate the mechanical properties of round
stranded ropes with 6- or 8-outer helical strands, having
either a fibre core or a steel core. The author includes
evidence of the structural properties of large diameter wire
ropes (940, 970 and 9127 mm) obtained by Dr. N F Casey in an
N.E.L research program on offshore mooring applications. The
physical implications of these structural properties are then
explained by the author on the basis of post test rope
examinations. Although these conclusions are based an
qualitative study, the experimental data reveal the
significance of the structural change of large diameter wire

rope undergoing tension-tension fatigue test.

The organization of this section is as follow:

Wire Rope Physical Properties

a. Mechanical properties under axial loadingg'g.
b. Structural properties under fatigue testg'g.
c. Physical implications of structural properties.

3.6.1 Mechanical Properties of Rope Under Axial Loading

This sub-section deals with the mechanical properties of
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round stranded rope under axial loading within the

proportional limit. These properties are summarized as
follows:
(1) Extensional Properties

Round stranded ropes are generally used as tensile members
which will be stretched under loading. The stretch of a rope

aggregates three sources of axial displacements namely:

1. “"Constructional" elongation
2. Elastic elongation
3. Rotational elongation
a. Constructional Elongation
When the rope is subject to axial tensile 1loading, the

helically laid wires and strands act in a constricting manner
thereby compressing the main core and bringing all the
elements of the rope into closer contact by filling up all
the possible inter-wire spacing. This property results in a
slight reduction of rope diameter and lengthening.
Constructional elongation is thought to be influenced by the

following factors.

1. Type of strand core and main core.

2. Type of outer layer helical strand
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3. Types of wire lay and types of rope lay

4. Material properties.

Rope which is constructed with wire main core, wire strand
core and independent wire rope core has less constructional
elongation than fibre core. Usually, constructional
elongation is insignificant for the early stage of fatigue
life, if the rope is constructed with steel core. However,
some fibre core ropes, 1if 1lightly loaded, may exhibit a
degree of construction elongation over the majority of their
fatigue lives. There are number of complicated and
inter-linked factors which will affect constructional
elongation. No definite equations or values are assigned to

this type of elongation at present in the rope industry.

b. Elastic Elongation

Elastic elongation results from the 1intrinsic recoverable
deformation of the material, provided that it is still within
the material elastic limit. Conventionally, elastic
elongation cannot be calculated precisely due to the
complicated geometry of the wires, the three dimensional
changes and the clamping and pivoting which occur. However, a
simplified equation in terms of a notional modulus commonly
used in the rope industry to approximate this change for some

situations. This equation is given by:
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Change in length =

Change in Load (N) x Rope Length in mm

Cross Sectional Area x Elasticity Modulus

of a Rope (sq. mm) (N/sq. mm)

The cross sectional area of a rope is the sum of the
approximate metallic area of strands, and the Modulus of
Elasticity is obtained from a rope test. Both quantities are

given by the rope manufacturer.

c. Rotational Elongation

Rotational elongation results from unwinding movement of
helical strands if +the rope terminations are not firmly
secured. Again, no definite equations or gquantities are

assigned to this elongation.

(2) Structural Modulus Of Elasticity For Rope

Wire rope subjected to external tensile 1load exhibits a
degree of nonlinearity on the load-extension curve. These
nonlinear properties have 1long been recognised by rope
workers. In order to eva&uate the approximate rope elongation
at any portion of the load-extension curve within the
“"proportional limit" of the rope, the slope of the
load-extension curve is split into a low-load and high-load

portion at 20 percent of the load range. In other words, the
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load-extension curve 1is approximated by two straight 1lines
with different slopes. A schematic representation is given is

Figure 3.6.1 in order to illustrate this method.

In the low-load portion, the sources of displacements are the

sum of
a. Elastic elongation and
b. Constructional elongation. (the changes can be

noted)

In the high-load portion (from 20% to 65%)of the rope nominal

strength the sources of displacements are the sum of

a. Elastic elongation. (more changes as compared with
b.)
b. Constructional elongation.

The method presented above is only applicable for a new
formed rope provided that the loading is still within the

proportional limit (similar to elastic limit).

(3) Proportional Limit of a Rope

Proportional limit has virtually the same meaning as elastic

limit. This is a notional limit of a rope.



°/6o Load

G5

50

20

Extension

Typtical Load Extension

Curve For Wire Rope

Figure 3-6-1

145



146

3.6.1-1 Definitions of Breaking Loads

(1) Minimum breaking force (in kN)
The tensile force applied to a rope below which the rope

shall not break when tested to destruction.

(2) Minimum breaking load. (in Tonnes)

The tensile load corresponding to the minimum breaking force.

(3) Calculated aggregate breaking load

This value 1is calculated from the product of the cross
sectional metallic area of a rope and the tensile grades of
the wires. The cross sectional metallic area of a rope is the
sum of the cross sectional metallic areas of all the
individual wires in a rope. In general, the metallic area of
wires is directly proportional to the square of the nominal

diameter of the rope.

3.6.2 Structural Properties of Rope Under Cyclic Loading

(summarized from N.E.L internal report)

Rope with different geometrical pattern, different strand lay
and rope lay configuration display different structural
properties. However, by using the Load/Extension data
obtained during a fatigue test, various structural properties
of ropes can be measured. Figure 3.6.2 1is a schematic

representation of rope properties measured from the load
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extension data. They are

a. Stiffness

b. Cyclic displacement
c. Hysteresis and

d. Elongation

(1) Rope Stiffness

Rope stiffness is defined as the gradient of the
load-extension curve. Linear regression was used to produce a
best fitting straight line to approximate this slope. The
stiffness can be used to determine the proportional (elastic)

modulus of the rope by using:
L
Proportional modulus = E = M —
A

where

M is the rope stiffness

L is the rope length at the date measurement point, and

A is the original metallic cross-sectional area of rope

N.B. The termination conditions (see Chapter 7) can alter the

proportional modulus of a rope.
(2) Cyclic Displacement

Cyclic displacement is the movement of the rope between the
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minimum and maximum cyclic load. It can be expressed as
percentage of strain by dividing the cyclic displacement by

the original length of a rope.

(3) Rope Hysteresis

This is a measure of the energy dissipated in any given
fatigue cycle, being the loss of energy of the entire rope
and test system. Energy 1loss includes the elastic-plastic
deformation, the frictional heat, the wire breakages and the
collection of any other small losses from the rope and from
the test system. The area within the hysteresis 1loop 1is
termed as the loss of energy due to hysteresis. The area
within the hysteresis 1loop is obtained by subtracting the
area under the unloading curve from the area under the

loading curve.

(4) Rope Elongation

Rope elongation is the increase in rope length which takes
place during a fatigue test. It is measured using the mean
cross—-head displacement and is expressed in terms of

-

percentage of strain by dividing by the original rope length.

3.6.3 Physical Implications Of Structural Change Rope

During Tension-Tension Fatigue Test
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Figures 3.6.3 (1), (2), (3) and (4) show the typical changes
in rope structural properties which take ©place during
tension-tension fatigue testing of wire rope. The tests were
carried out at N.E.L on 40 mm, 70 mm and 127 mm diameter six
stranded rope, with an independent wire rope core (IWRC).
Figure 3.6.3 (5) is the change of rope stiffness against % of
rope life for the same rope construction but at 19 mm

diameter. This test was carried out at the Reading University

9.7

Experimental results (see Figure 3.6.3) show that in the

early stage of the rope life (approximately from 0 to 20

percentage of rope 1life), there are rapid increases 1in
elongation, stiffness and temperature with &a corresponding
decrease in hysteresis and cyclic displacement. At

approximately 20 to 30 percent of rope life, there is a
transition period where the rope properties remain relatively
constant. At approximately 30 percent of rope life, stiffness
starts to decrease and hysteresis, cyclic displacement and
temperature start to increase. Thereafter, the rate of change
for each property is relatively constant until the last 15%
of rope life where a significantly rapid changes take place.

From post-test examination of wire rope, the author has firm
evidence to suggest that the first rapid changes in rope
structural properties correspond to the significant "bedding

in" of the outer strands; small number of wire breakage can
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be found in the IWRC. At the beginning transition region, the
rope structure is brought to the tightest condition. The
number of wire breakage is increased at a constant rate
within this region. Until the last 15% of life where a problem
has developed on one of the outer strands which causes the
rapid change of structural properties. This study leads to
important understanding of the fatigue performance of this
particular type of rope based on the change of the structural

properties at each stage.

3.7 Wire Rope Selection

The wide range of rope constructions are designed and have
been developed to serve various engineering applications in a

changing environment.

3.7-1 Grades Of Rope

To satisfy the requirements for varying strength, toughness,
flexibility, abrasion resistance and corrosion resistance,
wire rope is manufactured in the following grades for general

crane and lifting safety operation.

v

a. Grade 200 (130 tonf/sq in or 2008 MN/sq m)

Used for installation where maximum rope tensile

strength is required.
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b. Grade 180 (115 tonf/sq in or 1776 MN/sq m)

Used for installation where tensile strength above grade
160 is needed and for rope needed which is to be run

over sheaves or wound around drums.

c. Grade 160 (102 tonf/sq in or 1575 MN/sq m)

Used for installations where there are special needs for

a combination of tensile strength and wearing qualities.

d. Grade 134 (92 tonf/sq in or 1420 MN/sq m)

Used for installation where lower tensile strength and

resistance to wear are needed than Grade 160.

3.7-2 Rope Service Requirements

The six essential factors for selection of rope are

a. Tensile Strength Of Rope

Rope must possess sufficient strength to carry the
required maximum 1load plus the necessary factor of
safety. The strength of a wire rope depends on its size,
grade of wire and type of strand core and main core.

This table presents the most common safety factors:
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Purpose Safety Factor
Carry Personnel 12 : 1
Running Rope On Drum 4.5-5.5 : 1

Or On Sheave Of Crane

Running Rope ON Drum 3.75 : 1
Sheave For Erecting Jib

For Pendants Or Standing 3.5 -4 : 1
Rope

For Pendants Or Standing 3 : 1

When Erecting Jib

For details, refer to BS. 302 for wire ropes for cranes,
BS 1757 for power-driven mobile cranes and BS. 2799 for

power-driven tower cranes.

b. Flexibility and Resistance to Bending Fatigue

Wires in & rope are subject to different degrees of
bending while it is running over a sheave, a drum or
simply under tensile load alone. Thus, a relative new
wire rope must have the ability to be bent over small
sheaves or to be wound around a relatively small drum
without causing substantial number of wire breakages
resulting from bending. To satisfy these requirements,
strands should contain sufficient number of small wires
and the strands should be laid with a relatively large

helix angle so that there is no loss of flexibility.
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c. Resistance to Abrasion

For wires laid at the outer-most layer of the outer
strands, they are more likely subject to wear and
abrasion while it is running over a sheave. For a rope
bent over a small sheave and under high tensile 1load
condition, wires pressed against the sheave surface will

be subjected to high bearing pressure.

d. Resistance To Crushing

If a rope is forced to run over a narrow groove of a
sheave or on drum where too many layers of rope wound
over each other, it will be distorted or flattened
resulted from crushing of the main core. In fact, there
are other factors which will also cause crushing of the

main core, namely:

1. wires used for the main core are too small.
2. too large helix angle for the wires of the

main core.

To meet the requirements of resistance to crushing. IWRC
is normally recommended, since IWRC is constructed with

a tighter structural configuration without sacrifice of

rope flexibility.
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e. Resistance To Rotation

Wire ropes tend to rotate as tensile load is applied.
This wundesirable rotation or unwinding rotation will
jead to rapid deterioration of main core due to
mechanical interactions. Thus, 1in some applications,
ropes are designed to counterbalance the unwinding
rotation. For instance, ropes constructed with ordinary
lay strand have greater stability than ropes constructed

with Lang's lay strand.

f. Resistance to Corrosion

Uncoated wires are more likely to be corroded,
especially, when the wire diameter smaller than 2 mm.
The most common method to against corrosion is to coat
the wire with a layer of Zinc. This type of wire 1is
commonly known as "Galvanized wire". Other method such

as use of stainless steel or special lubricants.

BASIC DESIGN CONSIDERATIONS OF ROPE

following 1lists five basic design considerations for

round stranded rope.

a. Grade and size of wire.

b. Number and pattern of wires configuration in the
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strand.
Type of strand lay and rope lay.
Preforming or non-preforming.

Type of main core and strand core.
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CHAPTER FOUR

HELIX GEOMETRY OF WIRE ROPE
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NOMENCLATURE

Helical wire radius in mm

Binormal vector

Unit vector associated with global Cartesian
coordinates

Curvature of centroidal axis of any wire in
mm_1

Position vector of space curve

Helical radius of wire in mm

Helical radius of strand in mm

Drum radius in mm

Ring radius in mm

Path length of rope in mm

Path length of strand in mm

Path length of wire in mm

Tangent vector of any space curve

Global (ie Cartesian) coordinates of space

curve

Local coordinates system of space curve

Derivatives of Cartesian coordinates with

respect to 6
w
Defined parameter
Helix angle of wire in a strand in degrees
Helix angle of strand in a rope in degrees

Helix angle of rope wound around a drum in
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degrees

u‘ Double helix angle in degrees

0 Angle of rotation in degrees

do Differential angle of rotation in degrees

ew Angle of rotation of helical wire in degrees

95 Angle of rotation of helical strand in degrees

Gd Angle of rotation of drum in degrees

T Torsion of helical wire in mm

pk Radius Of curvature of the centroidal axis of
a wire

pt Radius of torsion of the centroidal axis of a
wire

SUBSCRIPTS

SD Double helix

DS Drum single helix

RS Ring single helix

DD Drum double helix

RD Ring double helix

w Helical wire

s Helical strand

r Rope

D Drum

R Ring
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4.1 INTRODUCTION

A wire rope is a complex geometrical structure made up of
many individual wires. The nature of construction and
operation of wire rope means that individual wires have
helical form within the rope. Depending on the position of
the wires in this structure, and on whether the rope 1is
passed around a sheave or wound around a drum, the wire can
be in the form of a single, double or even triple helix.
These geometrical configurations play a significant role with
respect to flexibility, mechanical response, inter-wire

action, fatigue performance and service life.

A large variety of ropes are manufactured for various 1load
carrying purposes. Amongst those varieties, round stranded
ropes are the most widely used form in the majority of rope
applications. As a result, there have been many experimental
investigations dedicated to evaluating the structural
properties of round stranded rope. However, the significance
and influence of rope geometry relative to the rope
performance, safety and reliability during engineering
operation appears to have been largely neglected.

The aim of this chapter, therefore, is to obtain a
mathematical model which can represent any wire in a rope
subject to normal loading; eg tension, twisting and bending.
In particular, this includes development of methods to

determine curvature, torsion and path length of any wire
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within a rope. The results of this chapter are also necessary

for further analysis of mechanical behaviour on individual

helical wire (such as to determine component stresses and
strains).
4.2 STRUCTURE OF CHAPTER FOUR

MATHEMATICAL MODELLING
OF WIRE ROPE GEOMETRY

MATHEMATICAL DEFINITIONS
ANALYSIS OF TERMS &
THEORY & METHOD ASSUMPTIONS
(4.3) (4.5) (4.14)
VECTOR & DEVELOP WIRE HELICES
-MENT METHOD FOUND IN ROPE
SINGLE HELIX DOUBLE HELIX TRIPLE HELIX
TANGENT AND DOU PHYSICAL SHAPE
-BLE HELIX ANG- TORSION, CURV-
LE. ATURE AND PATH (4.6)
LENGTH

BLOCK DIAGRAM 4.1
STRUCTURE OF THE APPROACH TO THE

MATHEMATICAL MODELLING OF ROPE GEOMETRY
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4.3 FUNDAMENTALS FOR WIRE HELIX MATHEMATICAL MODELLING

The following sub-sections are fundamental to the
mathematical model representing circular helical wires in a
round stranded rope. This section is organized under three

main headings. Namely,

a. Formation of helices in a round stranded rope.
b. Vector method of geometrical analysis.
c. Development method of analysis.

4.3.1 Formation of Helices in a Round Stranded Rope

Details of how a rope is constructed, have been presented in
Chapter Two. For convenience, the definitions used for a
typical circular wire round stranded rope are represented in
Figure 4.3.1 (hereinafter, 'rope’ refers to round stranded

rope) .

Wires which are laid around a central straight wire (ie King
wire) to produce a multi-wire strand, are in single helical
form. If several strands are then 1laid around a central
straight strand (ie the m;in core), the central wire (or core
wire) in each of these strands also has a single helical
form. However, the remaining wires in these outer strands
each take on the form of a double helix. The rope now

described is referred to as an independent wire rope core; ie
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IWRC. A schematic view of straight helices found in an IWRC
is presented in Figure 4.3.2. If the rope is now wound around
a drum, the King wire will take a single helical form whereas
the straight single helical wire and double helical wires
will take double and triple helical forms respectively. For
clarity, these two helical forms are referred to as ’drum
single' and 'drum double’ helices respectively. On the other
hand, if the rope is bent around a sheave, the King wire
forms a circular ring whereas the straight single helical
wires and double helical wires will take forms referred to as
'ring single’' and 'ring double' helices respectively. In
fact, ring single and ring double helices are degenerate
cases of drum single and drum double helices where the strand

and the rope helix angle on the drum are zero.

The helix angle (or Lay angle) is defined as the angle
subtended by a helical wire or strand about the longitudinal
axis of the rope. For a single helical wire of strand this
angle is constant along its length. However, it is shown in a
later chapter that the helix angle of a double helical wire
varies along its length. This result has important
implications for calculating component stresses and strains

within rope subject to teﬁsile load.

4.3.2 VECTOR METHOD OF GEOMETRIC ANALYSIS

An outline of the mathematical basis of the vector method

used in reference (5.1-5.9) and in this thesis may be helpful

at this point. The centroidal axis of any wire in a rope is a
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three dimensional space curve. It 1s convenient to use a
local coordinate system at each point on the centroidal axis
defined by the tangent, principal normal and binormal vectors
at that point. This is referred to as the Frenet frame at
that point, Figure 4.3.3. The position vector of a point on
the centroidal axis is given 1in the global Cartesian

coordinate by

r = Xi + Yj + Zk (4.3.2-1)
the derivative of this, with respect +to +the variable
parametrising the curve, is

r = Xi + Yj + Zk (4.3.2-2)

If the curve is parametrised by the angle of rotation Gw the

distance dS between two nearby points on the curve is given

by
ds = | r | a8, (4.3.2-3)
or
ds. = { x2 + ¥2 + 22112 46 (4.3.2-4)
w w
The arc length between two points Gw = a and Gw = b, is given

by
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b .
S = J | r | a6 (4.3.2-5)

provided that

r = r(ew). X = X(Gw), Y = y(9w), Z = z(9w)

Several useful expressions which are useful in calculating

the geometrical properties of space curves are given below:

Curvature of a space curve:

K = (4.3.2-6)

( (V2-¥2)2 + (2%-2%)2 + (x¥-%1)2 1/2
K = (4.3.2-7)

(%% + ¥2 4+ 22 )%/2

and the corresponding radius of curvature (pk) of which is

the reciprocal of equation 4.3.2-7.

Torsion of a space curve:

T = : - (4.3.2-8)
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X Y Z
X Y Z
X Y Z
- (4.3.2-9)

(YZ-Y2)2 + (2%-7%)% + (X¥-%¥)2

the corresponding radius of torsion (pt) of which is the

reciprocal of equation 4.3.2-9,.

4.3.2-1 Tangent and Helix Angle of Space Curve

The vector method presented in the preceding sub-section can
be extended to relate the unit tangent 'T' vector with the
angle of rotation '6’ of the space curve, Figure 4.5.5. This
fundamental relationship will be applied to evaluate the

helix angle (eg, double helix angle) in the later section.

The tangent vector of a space curve is given by:

dr dr do

T = - . (4.3.2-11)
ds d6 ds

Where dS is the infinitesimal 1length between two nearby

points on the space curve.

l (4.3.2-12)

and

—L——JJ—- (X« X+Y-Y+2z-2 /2

d
| a 6] (4.3.2-13)
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As shown in Figure 4.5.5, the helix angle of +the helical
curve is given by:
% Z*
o = atn ( ) (4.3.2-14)
XY

—— 3
Where XY and Z are the horizontal component and the vertical

component of the tangent vector 'T'., By simplifying the

equation 4.3.2-14. The helix angle of any helical curve can

be given by:

v/
3
« = tan { — , } (4.3.2-15)
(%2 4 v2 172

4.3.3 Development Approach to Geometric Analysis

The development technique applied to rope helical geometry is
based on the idea of projecting the centroidal axes in this

problem onto a plane, without stretching or shrinking. This

uses the fact that a cylinder is a developable surface9'13.

This technique provides:

(a) A method for evaluating the path length of the

centroidal axis of a strand or of a helical wire in

a strand, and

(b) Linear relationships between the wire, strand and robpe

rotational coordinates.
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The developed path of a double helical wire in an undeformed
rope 1s shown in Figure 4.5.4. The expression for the path

length can be obtained from the same figure by using simple

trigonometry.

r €6
S = {( =SS )2, (r 68 123¥2 (4.3.3.1)
cos B v

Relationships for strands and ropes bent over sheaves or

wound around drums can be obtained similarly, and are

summarized in table 4.1.

Another application of the development technique is to relate
the different rotational coordinates in a rope, (eg ew and 98
in a straight rope, Figure 4.4.2 & 4.5.4 ). The rotational
coordinates of helical wires and strands for a rope wound a
drum or bent over a sheave can be obtained in terms of the
rotational coordinate of the drum or the sheave. The
equations for double and triple helices can then be written

in terms of any one of the rotational coordinates.

The linear relationship between the helical wire coordinate
Gw and the strand coordinate 65 in an undeformed rope is

R
< Rw .tan @ . cos B 'ew (4.3.3-2)

The relationship between 95 and Gw for a strand wound around

a drum is essentially the same, with 7%, Gd and Rd replacing

B, GS and Rs respectively.
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If the centroidal axis of a wire in an undeformed rope is a
double helix then, when the rope is wound around a drum, the
centroidal axis of double helical wire will become a triple

helix. The relationship between ew and Gd is then

R
ed = R: . tan @ . sin B .cos 7y . ew (4.3.3-3)
4.4. ASSUMPTIONS AND DEFINITIONS

The vector method and the development technique are the basic
mathematical tools for the analysis of helix geometry. To
proceed further, assumption and terminologies used in this

chapter must be defined in this section.

4.4.1 Assumptions

Assumptions which have been made for the analysis, are given

as follows:

a. Any section normal to the centroidal axis of a wire
(ie any transverse section) is circular both before

and after being bent over a sheave or wound around

a drum.

b. The shape of the centroidal axis is regarded as the
most important geometrical characteristic of a wire

within a rope.
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c. The shape of the centroidal axis of a wire
(straight or curved wire) within a rope is a helix.

For example a straight king wire is a degenerated

helix.

d. Sheaves, drums and all wires of a rope are perfect

circular cylinder.
4.4.2 Definition of Geometrical Parameters:

a. Wire Helical Radius (Rw)

For a helical wire wound around any strand, the wire helical
radius 1is defined as the perpendicular distance from the
centroidal axis of the wire to the centroidal axis of the

parent strand, Figure 4.4.1.

b. Strand Helical Radius (RS)

For a strand wound around any type of cylindrical core, the
strand helical radius RS is defined as the perpendicular
distance from the centroidal axis of this core to the
centroidal axis of the central core wire of the helical

strand, Figure 4.4.1.

c. Rotational Coordinate of Wire (ew)
For two nearby points on the centroidal axis of a wire the
differential d9w of the rotational coordinate ew is given by

the angle between the oscullating planes at the two points.
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The oscullating plane at a point 1is defined as the plane
formed by the tangential and normal vectors at that point,
Figure 4.4.2. This is effectively a measure of the angular
position of a point on the centroidal axis of a wire within a

rope relative to an arbitrary fixed line.

d. Rotational Coordinate of Strand (GS)

For two nearby points on the centroidal axis of a strand
wound around any type of cylindrical core the differential
des of the rotational coordinate GS is defined as the angle
between the oscullating planes at the two points, Figure

4.4.2.

e. Ring/Drum Radius (Rr or Rd)

If a strand or rope is passed over a sheave then the ring
radius Rr is defined as the perpendicular distance from the
centre line of the sheave to the centroidal axis of the
strand or rope. Similarly, the drum radius Rd is defined as
the perpendicular distance from the centre line of a drum to
the centroidal axis of the strand or rope wound around the

drum, Figure 4.5.3-2 & 4.5.4-1.

f. Ring/Drum Rotation (Gr & Gd)

For two nearby points on the centroidal axis of a strand or
rope passed over a sheave the differential der of the ring
rotation coordinate 9r is defined as the angle between the
oscullating planes at the two points. We can similarly define

the drum rotation coordinate ed for a strand or rope wound
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Figure 4-4.2
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around a drum, Figure 4.5.3-2 & 4.5.4-1.

g. Helix Angle (¥) of a Rope or Strand Wound Around a Drum

If a strand is wound around a drum then the helix angle ¥ is
defined as the angle of inclination of the tangent vector to
the centroidal axis of the strand to the plane normal to the
axis of the drum, Figure 4.5.4-1 The helix angle of a rope is

defined similarly.

Remark:

Any wire and strand within a rope has a helix angle; a
straight wire and strand has a helix angle of 90 degrees. A
strand and its central core wire share the same helix angle
which is constant along the centroidal axis of the strand.
However, the helix angle of a double helical wire 1is not
constant. It is a periodical relationship between the helix

angle and its position within a rope.

4.4.3 Definition of Helices

a. Single Helix

A curve with parametric equations

-

X = a cos B
vy = b sin 6
z = c 6,

is a single helix whose axis is the Z axis. For a circular
helix the constants a and b are equal. The constant c

determines the pitch of the helix, Figure 4.3.4.
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Where:

© =Angle Of Rotation
S =Path Length
r =Helical Radius

K =Helix Angle

Figure 4.3:-4

Development Method
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b. Double Helix

A double helix is a helical curve whose axis 1is a single
helix: for example wire wound around a single helical strand

or a single helical strand wound around a drum.

c. Triple Helix
A triple helix is a helical curve whose &axis is a double

helix: for example, a wire wound around a helical strand

which is itself wound around a drum.

Note:

Ring Single Helix And Drum Single Helix:

A ring single and a drum single can be regarded as special
case of straight double helix. If a rope is bend over a
sheave. The centroidal axis of the single helical wire in the
bent rope is defined as ring single helix. Similarly, if a
rope is wound around a drum. The centroidal axis of the

single helical wire in the bent rope 1is defined as drum

single helix

Ring Double Helix And Drum Double Helix:

The centroidal axis of the double helical wire in a rope
wound around a drum is also defined as drum double helix.
Besides, the centroidal axis of the double helical wire in a
rope bent over a sheave is a degenerate case of triple helix.

The curve which describes the centroidal axis is defined as

ring double helix.
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Remark:

A helix can be a single helix, double helix, triple helix or

of even higher order. An n th order helix has a helical axis

of (n-1)th order. A <circle or a straight 1line <can be

considered as a degenerate limiting case of a single helix as

the helix angle approaches 0 or 90 degrees respectively.

4.5 ANALYSIS

The geometrical mathematical modelling presented in the

current sub-sections cover helices formed by the centroidal

axis of wires within a round stranded rope. Although wire

helices of the rope can be categorised into single, double

and triple helices, the geometrical properties can vary,

depending on the combination of lay direction of wire, strand

and rope.

The general equations used to evaluate the geometrical

properties (ie curvature, torsion and helix angle) and path

length of any helical curve have been presented in section

4.3.2 and 4.3.3 respecti&ely. The following describes the

derivation of Cartesian coordinates equations of rope

helices. In order to derive these coordinate equations, three

dimensional paper models have been made and some of them are

drawn in this section for the purpose of illustration.
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4.5.1 Single Helix:

The standard model representing the parametric relationships
between cylindrical coordinates and Cartesian coordinates of
the straight single helix is given in Figure 4.3.4 & 4.5.1

{a). For completeness, the coordinate equations are given as

follows:
X = r cos 6 {(4.5-1)
w w
Y=r sin © (4.5-2)
w w
Z =r 6 tan « (4.5-3)
w W

The helix described above 1is referred as a right hand

circular helix. There are no differences in the geometrical

properties of right hand and left hand circular helices in

respect of their geometrical properties.
4.5.2 Straight Double Helix:

Straight double helical wires can be found in both Lang's lay

and ordinary lay rope ( also known as regular lay rope ),

depending on whether wires of the strand are laid in the same

v

direction as the strand or in the opposite direction. A model

which represents the centroidal axis of the double helical

wire found in a right hand Lang's lay rope, is shown in

Figure 4.5.1 (b).

In order to illustrate how Cartesian coordinate equations of

double helix can be derived. Typical Lang's lay and ordinary
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lay models are considered, as shown in Figure 4.5.2 and
Figure 4.5.3 respectively. The physical dimensions of wires
within a helical strand which is cut by the transverse plane
B-B, are resolved and projected onto plane A-A by means of
trigonometry. A set of coordinate equations representing the
Lang's lay and ordinary lay double helix in the Cartesian

reference frame are given below

Cartesian Coordinate Equations of Lang's Lay Double Helix:

X=(R + R cos 6 ) cos 8@ + R sin 6 sin 6 sin B
s w w s w w s
Y=(R + R cos @ ) sin © - R sin 6 cos 8 sin B
s w w s w w s

Z = (RS tan B) GS + Rw sin ew cos B

(4.5.2-1)

Cartesian Coordinate Equations of Ordinary Lay Double Helix:

X=(R +R cos 6 ) cos &8 - R sin 6 sin 6 sin B
s w w s w w s
Y=(R +R cos 6 ) sin 8 + R sin & cos 6 sin B
s w w s W w s

Z = (Rs tan B) 95 ~ Rw sin Gwcos B

(4.5.2-2)

4.5.2-1 Development Method for Double Helix:

The main purpose of using the development method in the

analysis of double helix are of two-fold:

a. To relate the angle of rotation of the double

helical wire Gw with the corresponding angle of
rotation of the single helical strand es in the

global Cartesian coordinates.
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b. To evaluate the path length of the double helix

which is given in table 4.1.

Figure 4.5.4 illustrates and explains how the development
method works. The linear relationship between GS and Gw has

been given in equation 4.3.3-3.

4.5.2-2 Evaluation Of Double Helix Angle

Evaluation of the double helix angles of the double helical

wire have two purposes namely:

a. to visualize the 1lay configuration from the

transverse section of a rope.

b. to relate some mechanical responses along the
double helical wire subjected to tensile load.

Discussed in Chapter 9.

The following presents the procedure for evaluating the

double helix angle by vector method, see Figure 4.5.5.

a. to evaluate the tangent vector to the centroidal

axis of the double helical wire. This is given by

T = = . (4.5.2-4)
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where
ds | dr |
= (4.5.2—5)
46 | d6 |
w w
and
| dr | A ¥4
= (X *X+Y - Y+ Z+-2) (4.55.2-6)
| d6_|
b. to resolve the tangent vector T into two

— s
components XY and Z , as shown in Figure 4.5.5. And

the double helix angle is given by

 J
Z_ ) (4.5.2-7)

XY

]
® = atn (

Where the vertical component of tangent vector is

given by
% dé p
20 = —¥—- | Z | (4.5.2-8)
ds

XY is the horizontal component of tangent vector.

4.5.3 Drum Single Helix and Ring Single Helix

If a strand is laid helically around a cylinder, the single
helical wire in the strand will take a double helical form.
Similarly, if the strand is wound around a drum which is in
fact a cylinder, the single helical wire in that strand will
have exactly the same geometrical characteristic as those in

a double helical wire. In other words, the single helical
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wire laid in a strand which itself wound around a drum, will
eventually take a double helical form on that drum. On the
other hand, if a strand is wound around a drum with a very
small helix angle which is reduced to zero, the geometrical
nature of the single helical wire in that strand is defined
as ring single helix and a degenerate double helix. Figure
4.5.3-1 (a) is the schematic representation of a ring single
helical model; Figure 4.5.3-2 shows a drum single helical
model. For clarity, the following table lists the notation
used to represent the strand helix angle which is common to

double helix, ring single helix and drum single helix.

Table 4.5.3

Double Helix Drum single Ring single
Helical Radius R R R
S d s
Helix Angle B 0 <y < B B =0

4.5.3-1 Influence of Strand Lay on Drum:

If single helical wires in a strand are laid in the same
direction as the strand wound around the drum, then the drum
single helical wire wilthave exactly the same geometrical
characteristics as the double helical wire in the Lang’'s lay
rope. Otherwise, the drum single helical wire will have the
geometrical characteristics of the double helical wire in a
ordinary lay rope. Expressions which represent the Cartesian
coordinates of ring and drum single helix are given in table

4.2,
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a. Ring Single Helix Model
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4.5.4 Drum Double Helix and Ring Double Helix

If a rope is wound around a drum, all the single helical
strands in the rope will take a double helical form and all
the double helical wires in a single helical strand will take
a triple helical form (also defined as drum double helix).
However, if a rope is wound with zero helix angle, the double
helical wire on +the drum will take a slightly different
geometrical shape which is defined as ring double helix. In
fact, a ring double helix can be classified mathematically as
a sub-set of a drum double helix. In other words, the
coordinate expressions derived for the drum double helix will
degenerate to ring double helix, if the rope helix angle
approaching zero. Three dimensional models for a ring and a
drum double helix found in a right hand Lang's lay rope, are
illustrated in Figure 4.5.3-1 (b) and Figure 4.5.4-1

respectively.

In order to derive the Cartesian coordinate equations of the
triple helix, three intersecting planes A-A, B-B and C-C
which cut at the transverse plane of the drum, rope and
strand, are considered. A +typical triple helical model
representing a drum double helical wire found in a right hand
ordinary lay rope which wound around a drum in the right hand
direction, is shown in Figure 4.5.4-2, The physical
dimensions of the drum, and the related helical strand and

wire cut by plane B-B and C-C are then resolved onto the

plane A-A by means of the preceding method. A set of general
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coordinate equations representing a triple helix in a

Cartesian reference frame is given by:

Xpp = Xp * X4
Ypp = Yp * Y4
Zpp T Zp t 244

(14)
The coordinate equations given above are expressed 1in
condensed form. Expansion for each terms can be found in
Table 4.2. By setting the rope helix angle "¥" zero in the
coordinate equations of triple helix, the coordinate
equations of drum double helix will be degenerated into the

coordinate equations of ring double helix.

Remark: All coordinate equations for rope helices are

tabulated in Table 4.2.

4.6 GENERAL SUMMARY

The following is a brief summary of the procedure used to

evaluate the geometrical properties of helices representing

the wire in a rope.

4.6.1 Geometrical Shape of Rope Helices

The geometrical shape of any helical wire found in a rope can
be readily visualised by plotting one of the Cartesian

Coordinates of the helices derived in the preceding section.
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4.6.2 Curvature of Rope Helices

The curvature of any helix formed by the centroidal axis of a
rope can be obtained by substituting the first, second and
third derivatives of any set of coordinate equations ( as
presented in Table 4.2 ) into equation 4.3.2-6. The
corresponding radius of curvature of a helix 1is the

reciprocal of the curvature of that helix.

4.6.3 Torsion of Rope Helices

Similarly, the torsion of any helix formed by the centroidal
axis of a rope can be obtained by substituting the first,
second and third derivatives of any set of coordinates
equations (also presented in Table 4.2) into equation

4.3.2-8. The corresponding radius of torsion of that helix is

the reciprocal of the torsion.

4.6.4 Path Length of Rope Helices

All expressions derived for evaluation of the path lengths of
helices formed by the centroidal axis of helical wire within
a rope, are based on the triangular relationship established
by the "Development Technique". Note the arc lengths of the
helices may be different from path lengths of helices. One

must use equation 4.3.2-3 to evaluate the arc length of any

helix.
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In view of the complexity of the coordinate equations require

to evaluate the geometrical shape and properties of helices

representing the centroidal axes of wires in a rope, a PC

type of computer package has been developed by the author and

the results obtained from this package will be presented and

discussed in next Chapter.
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MICRO-COMPUTER SOFTWARE STRUCTURE FOR HELIX GEOMETRY

MAIN MENU
SUB-MENU SUB-MENU SUB-MENU SUB-MENU
SINGLE - RING - RING - DRUM -
HELIX SINGLE - DOUBLE - DOUBLE -
HELIX HELIX HELIX
L |
SUB-MENU SUB-MENU
DOUBLE - DRUM -
HELIX SINGLE -
HELIX
BACK TO MAIN MENU
SUB-MENU
FOR
SELECT OPTIONS
HELP AND INPUT COMPUTATION PLOT RESULTS
INSTRUCTIONS DATA & PRINT RESULTS ON SCREEN OR
SCREEN DUMP

BLOCK DIAGRAM 4.2

BACK TGO SUB-MENU

STRUCTURE DIAGRAM OF THE APPROACH TO HELIX GEOMETRY MODELLING



EQUATIONS REPRESENTING THE PATH LENGTH OF THE CENTRE LINE OF

CONSTITUENT WIRES,

Table 4.1
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STRAND OR ROPE USING THE DEVELOPMENT METHOD

PATH LENGTH EXPRESSION
(CENTRE LINE)
STRAIGHT SINGLE s . v R,
HELICAL WIRE v 7 Cos @
STRAIGHT DOUBLE ) hg
Su = : hS = RS GS
HELICAL WIRE SIN « COS B
R 6 2 o o 172
(ALTERNATIVELY) s, = [ ( = _5) RO 6}
CoS B
RING SINGLE Sw - Ri 62 + R; eﬁ ]1/2
HELICAL WIRE v
STRAND  AROUND S. =R. 6
A SHEAVE S R R
RING DOUBLE s = (r% 62, R§ eﬁ . g2 92 172
HELICAL WIRE w o v v v
ROPE AROUND s, = R 6
A SHEAVE
2 .2
DRUM SINGLE ) o o Ry 6 1/2
Sw = 6w Rw 2 }
HELICAL WIRE cos® v
STRAND  AROUND s - Rp €p
A DRUM S CoS 7
2 2
DRUM DOUBLE 65 R 1/2
S = { Rg 63 + Ri Gi + D 2D }
HELICAL WIRE v cos‘ v
ROPE AROUND A %p
p = ———
A DRUM cos v
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Table 4.2 Cartesian Coordinate Equations Of Rope Helices

Single Helix

X =R cos 6
w w

<
n

R sin 6
w w

N
1]

(R tan a) 6
w w

Double Helix

In Ordinary Lay Rope

X=(R +R cos 6 ) cos 6 + R sin 6
s w w s w w
Y=(R +R cos 6 ) sin 6 - R sin 6
s w w s w w
Z = (R tan B) @ +R sin 6 cos B
s s W w

In Lang's Lay Rope

X = (R +R cos 8 ) cos 8 - R sin 6
s w w s w w
Y=(R +R cos 6 ) sin 6 + R sin 6
s w w s W w
Z = (R tan B) 6 - R sin 6 cos B
s s w w

Triple Helix

Xpp = ¥p * Xgq
Ypp = Yp + Y4
Zpp = Zp * Zgq

sin es sin B

cos 95 sin B

sin Gssin B

cos Gs sin B
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Expansion Of Terms Used In Coordinates Equation Of Triple Helix

<
11}

(RD tan ¥) 6

D D
YD = RD cos GD
ZD = RD sin 9D
ZSI= Rw sin ew cos B cos ¥
252= Rw sin Ow cos P sin ¥

Rope Wound Around Drum In The Left Hand Direction:

1. Right Hand Lang's Lay Rope
Xsd= YsZ - Zs2
st = XS cos GD + YSl sin GD + ZSl sin GD
st = XS sin 9D - YSl cos 9D - Zsl cos eD
X =R cos @ +R cos 8 cos 6 - R sin @ sin 6 sin B
s s s w w s w w s
Y .= R sin® sin 3y + R cos 8 sin 8 siny + R sin 6 cos 6
sl s s w w s w w s
sin B sin V¢
Y =R sin® cos ¥ +R cos 6 sin® cos ¥ + R sin & cos 6
s2 s s w w s w \' s
sin B cos ¥
2. Right Hand Ordinary Lay rope
Xsa™ Zs2 v Yoo
st = XS cos 9D + YSl sin GD - ZSl sin GD



sin 6 - Y cos O6_ + Zs

st - Xs D sl D 1
X =R cos @ + R cos 6 cos €
s s s w w s
Y .= R sin 6 sin ¥y + R cos 6
sl s s w w
sin B sin 7
Y .= R sin & cos ¥ + R cos 6
s2 s s \' w

sin B cos ¥
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cos GD
+ R sin 6 sin 6 sin B
w w s

sin 8 sin ¥y - R sin 6 cos 6
s w w s

cos O
s

sin 8 cos ¥y - R sin 6
s w w

Rope Wound Round Drum In The Right Hand Direction

1. Right Hand Lang's Lay Rope
Xsd: - YsZ - Zs2
st = XS cos 9D - YSl sin GD + ZSl sin GD
st = XS sin 9D + YSl cos GD - Zsl cos 9D
X =R cos 8 + R cos 8 cos & - R sin 6 sin 6 sin B
s s s w w s w w s
Y .= R sin © sin ¥y + R cos 6 sin @ siny + R sin 6 cos 6
sl s s w w s w w s
sin B sin 7Y
Y =R sin©® cos ¥ + R cos & sin 6 cos ¥y + R sin @& cos 6
s2 s s w w s w w s
sin B cos ¥
2. Right Hand Ordinary Lay kope
Xsa™ ~ Yg2 * Zgo
st = Xs cos BD - YSl sin GD - ZSl sin GD
st = XS sin GD + Ysl cos GD + ZSl cos GD



R
S

R
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cos 8 + R cos & cos 8 + R sin 6 sin 6 sin B
s w w s w w s

sin 6 siny + R cos @& sin @ siny - R sin @ cos 0
s w w s w w s

sin B sin ¥

R
s

sin 8 cos ¥ + R cos 6 sin 6 cos ¥y - R sin 6 cos 6
s w w s w w

sin B cos ¥

Linear Relationship between Rotational Coordinates

1. Double Helix
Rw
GS = 3 tan @ . cos B 'ew
s
2. Triple Helix
Rw
(] = 1
d R . tan @ ., sin B .cos 7 . ew

d
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CHAPTER FIVE

IMPLICATION AND SIGNIFICANCE

OF HELIX GEOMETRY
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5.1 INTRODUCTION

Tests carried out at NEL showed that the structural
properties of ropes depend significantly on the geometry of
the rope structure. The geometry of the structure also has a
profound effect on the type of wire failure and the fatigue
performance of the rope. This is because the geometry of the
rope determined the clamping and pivoting environment for

individual wires at periodic locations within a rope.

In this chapter, the author's main objective is to explain
the implications and the influence of rope geometry on the

mechanical behaviour of wires within a rope.

5.2 LAYOUT OF CHAPTER FIVE

ANALYSIS OF
RESULTS FOR

STR. STR. RING RING DRUM DRUM
SINGLE DOUBLE SINGLE DOUBLE SINGLE DOUBLE
HELIX HELIX HELIX HELIX HELIX HELIX
Where IMPLICATIONS
_ . INFLUENCES &
STR. = Straight APPLICATIONS

BLOCK DIAGRAM 5.1
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5.3 SINGLE HELIX GEOMETRY AND ITS IMPLICATIONS

The following sub-sections are mainly concerned with the
geometrical aspects of single helices and the implication of

these to the mechanical responses.

5.3.1 Geometrical Properties of Single Helix

The centroidal axis of a single helical wire is a circular
helix with constant pitch. For the single helix with any
helix angle between 0 and 90 degrees and any helical radius,
the projection of +this curve on the ZY and ZX planes
(referred to a right hand coordinate system) can be regarded
as functions of ew' Figure 5.3-1. For a single helical wire,
the radius of curvature, radius of torsion and helix angle
are constant on the centroidal axis of a single helical wire,
Figure 5.3 -2. The resulting effects of varying on strains,
radius of curvature and torsion are shown in Figure 5.3-3 and
5.3-4. The effects of varying the helical radius on radius of

curvature and torsion are shown in Figure 5.3-5 to 5.3-7.

5.3.2 Implications of Helix Geometry on Single Helical Wire

The component forces and moments on a single helical wire

within a strand are depend upon the wire geometry as shown in
. 3.1-3.20 . .

many articles . Based on the understanding of single

helix geometry, in this sub-section, a qualitative summary of

the implication of helix geometry on the static mechanical
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responses of single helical wire is given as follows:

a. The helix angle, curvature and torsion are related to
the internal forces and moments by the equations of
equilibrium presented by Love3'21. These equations imply
that the internal forces and moments are constant on any
single helical wire within a single layer straight
strand and an equal lay multi-layer straight strand

subjected to monotonic tensile loading. Under dynamic

loading this may not be the case because of transient

effects.

b. The helix angle of a single helical wire usually between
60 to 90 degrees; within this range the radius of
curvature, and to a lesser extent the radius of torsion
(see Figure 5.3-7) of the wire changes rapidly with
helix angle, Figure 5.3-5 to 5.3-6. Thus the bending and
torsional stress components along a large diameter
single helical wire are very sensitive to small changes
in helix angle. Quantities such as the radial force,
contact force and complementary shear force which depend
upon the bending and torsion, are also sensitive to
changes in the helix angle. Bending and +torsional
stresses can be reduced by the use of smaller diameter
wires; however, very small diameter wires (ie with

diameter less than 2 mm ) are more liable to

corrosion
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c. For a straight strand subject to monotonic tensile load,
if all the helical wires are being laid 90 degrees to
the transverse plane of the strand, bending and twisting
strains (see Figure 5.3-3 and 5.3-4) will not be induced
on any helical wire. In other words, for helical wire
with very large helix angle, bending moment, twisting
moment, shearing force and radial force are reduced
significantly. Tensile force, by contrast, becomes more

dominant.

Note:

the mathematical model applied to evaluate the bending
and twisting strain will be discussed in the 1latter

chapters; Chapter Seven and Chapter Nine.

5.4 DOUBLE HELIX GEOMETRY AND ITS IMPLICATION

The geometrical properties of the double helical wire

described in following sub-section are obtained from the

author's computer results.

5.4.1 Geometrical Properties of Double Helix

If a main core is wound around by an outer strand which is in
form of a cylindrical helix (also defined as a single helix).
Each of the single helical wires in the same layer of the
strand will take up the same geometrical shape which have

been defined as a double helix in the preceding Chapter.
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An outer strand can either be laid in the right hand or in
the left hand direction. Likewise, a helical wire can either
be laid in the same or in the opposite direction to the
parent strand. The following table shows the four possible

lay configurations which can be found in rope.

Table 5.4.1

ROPE TYPE Lang’'s 1lay Ordinary Lay

STRAND LAY left or right left or right

For the purpose of building picture on how a double helix
will look like, the coordinates of a single helix, Lang’'s lay
and ordinary lay double helix as functions of ew are shown in
Figure 5.4-1. For further illustration, the X and Y
coordinates of a Lang's lay double helix as functions of Gw

are also shown in Figure 5.4-1 (a).

For comparing purpose, the geometrical configurations of a
single helix and double helices found in Lang's lay and
ordinary lay rope are shown in Figures 5.4-1, 5.4-2 and
5.4-3. (Hereinafter, double helix found in Lang’'s lay rope is
called "Lang's lay double helix", whereas double helix found

in ordinary lay rope is called "ordinary lay double helix".)

For a double helical wire, the geometrical model shows that

(for helix angles of wires and strands within a rope greater
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than 60 degrees):

a. The coordinates, curvature, torsion and helix angle of a
double helix can be regarded as functions of Gw and 65,

Figure 5.4-1 to 5.4-5.

b. For curvature and torsion of Lang's lay rope and
ordinary lay rope expressed as functions of Gw. the
period of both functions is 360 degrees, with the two

functions being 180 degrees out of phase, Figure 5.4-4

and 5.4-5. For curvature and +torsion expressed as
functions of 95 , the period of both functions is 1less
than 360 degrees. However, the out-of-phase
characteristic remains change, Figure 5.4-4 (a) and
5.4-5 (a).

c. Lang’'s lay double helix is more tortuous than ordinary

lay double helix, Figure 5.4-1.

d. For double helix angle expressed as functions of Gw, the
function of Lang's lay double helix angle is 180 degrees

out-of-phase with the function of ordinary lay double

helix angle, Figure 5.4-2.

When the wire helix angle is a minimum the curvature is
a maximum and the torsion is a minimum. Similarly, when
the wire helix angle is maximum the curvature is a

minimum and the torsion 1is a maximum, Figure 5.4-2,
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5.4-4 and 5.4-5.

Points for which Gw is a multiple of 360 degrees are on
the worn crown of the rope.

Points for which (Gw - 180) degrees is a multiple of 360
degrees are point of contact with the strand 1layer
immediately beneath the current strand layers.

Point for which (9w - 90) degrees is a multiple of 180
degrees are points of contact with neighbouring strands

in the current strand layer.

Implications of Helix Geometry

Elastic rod theory shows that

Bending Moment = flexural bending stiffness x change in
curvature

Twisting Moment = flexural twisting stiffness x <change in
torsion

Combining these equations with the results of the geometrical

7

model, one can see that:

Internal components of forces and moments will wvary
periodically with ew along a double helical wires,
irrespective of the frictional conditions imposed on the

wire. For instance, the variation of groove width and
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depth on the surface of double helical wire, as shown on
Figure 5.4-2 (1), is thought to be a result of variation
of radial force along each cycle length. Bending and
twisting moment also vary as the result of the wavy
geometry of the double helical wire. In addition to the
influence of the mechanical responses, mechanical
interactions would also be responsible for causing the
variation of the degree of damage (ie, width and depth
of grooves and nicks) on the surface of the double
helical wire. Groovings and nickings have been shown and

defined in chapter two.

The periodic variation of double helix angle along a
double helical wire implies that the pattern of contact
patches along the double helical wire will also vary

periodically with Gw.

The periodic geometrical variations of a double helical
wire implies that there are periodic stresses variation
on the double helical wire. If a rope is subjected to
tension-tension fatigue tests the failure modes along
the double helical wire will also vary periodically with
Gw. v

For a straight rope, a Lang's lay double helical wire is
wavier than a ordinary lay double helical wire, as shown
in Figure 5.4-1. This implies that the lang's lay double

helical wire will 1likely subject to more fatigue
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problems than ordinary lay double helix.

e. For a rope which is not subject to bending wire helix
angle will in practice always greater than 60 degrees.
Thus curvature will, to a good approximation, be 180
degrees out of phase with torsion. This implies that,
for a straight rope under tension, points of maximum
bending will also be points of minimum twisting, and
vice versa. Bending and twisting will be periodic in Gw

with a period of 360 degrees.

If a transverse section is made through the longitudinal axis
of a rope the variation of the helix angle of a double

helical wire is such that:

a. The wire cross-section is approximately elliptical when
the wire helix angle is & minimum and is approximately
circular when the wire helix angle is a maximum. The lay
configuration of a rope can thus be identified from its

transverse section, Figure 5.4-4 (3) and 5.4-2.

b. When the wire helix angle is a minimum the curvature is
a maximum and the torsion is a minimum. Similarly, when
the wire helix angle 1is maximum the curvature 1is a
minimum and the torsion is a maximum. These

characteristics allow high bending and twisting stresses

along a wire to be located.
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From (a) and (b) it can be shown that if an ordinary lay
rope, with a Lang’'s lay IWRC is subjected to a tensile load,
the maximum curvature and minimum torsion of a wire will
occur in the regions of contact between the outer strands and
the IWRC. The maximum torsion and minimum curvature occur at

the worn crown of the outer strands.

5.4.83 Influences of Strand Helix Angle on Double Helix

Geometry

The helix angle of wire and strand in a rope has a strong
influence on the geometrical properties of the double helical
wire and hence on the mechanical behaviour of +this wire.
Although the present analyses do not provide a picture of how
mechanical behaviour 1is changed by the helix angle, they
provide information on how the geometry of a double helix is

changed by the helix angle.

a. Figure 5.4-7 shows the variation of maximum radii of
curvature on the Lang’'s lay and ordinary 1lay double
helices corresponding to the change of the strand helix
angles. For strand helix angle larger than 50 degrees,
Figure 5.4-7 shows that the radius of curvature of
ordinary lay double helix increases more rapid than that

on a Lang's lay double helix.

b. Figure 5.4-8 shows the variation of maximum radii of

torsion on the Lang's lay and ordinary 1lay double
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helices corresponding to the change of the strand helix
angles. This diagram indicates that the maximum radius

of torsion on an ordinary lay double helix is always

larger than that of the Lang's lay double helix.

Figure 5.4-9 shows the variation of maximum and minimum
double helix angle in Lang's lay and ordinary lay double
helices corresponding to the change of the strand helix
angle. This diagram indicates that the difference
between maximum and minimum double helix angles on a
Lang’'s lay double helical wire is larger than that on an
ordinary lay double helical wire. In other words a
Lang's 1lay double helix is more tortuous than an

ordinary lay double helix.

These diagrams reveal the geometrical differences between
Lang’'s lay and ordinary double helices. If relationships
between helix geometry and mechanical behaviour were known,
could immediately tell from these diagrams that which

one

type of lay would be better than the other.

5.4.4 Double Helix Angle And Its Applications

The double helix angle, defined in the previous chapter, is
an important characteristic parameter for rope behaviour. The
and

following sub-sections will focus on the practical

analytical aspects of this parameter, whose importance 1is

identified in this thesis.
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a. Practical Aspect

Many of the practical features of rope behaviour are related
to the sectional shape of individual wires and it is of
interest to know that for a rope with given transverse or
oblique cross-section, individual and adjacent wires appear
to have different sectional shape (circular, elliptical or
kidney etc.) Figure 5.4-2 gives a clue to this aspect. It
shows that double helix angle varies along the cyclic length
of double helical wire. Photographs which illustrate this

geometrical characteristic are now referred to.

1. Figure 5.4-4 (1) illustrates the elevation and plan view
of a double helical wire in contact with the single
helical wire in an IWRC. In the plan view, one will note
that the double helical wire (the wire is marked by a
red dash) is almost parallel to the axis of the core
strand at the point of contact. Therefore, one can
expect a circular cross section for that Lang's lay
double helical wire at the contact point. Figure 5.4-4
(2) illustrates how this Lang's lay double helical wire
(the wire is marked by two green dashes) is incorporated

v

in the strand.

2. Figure 5.4-4 (3) illustrates a transverse section of a
6x41 ordinary rope with a Lang's lay IWRC. It can note
that the Lang's lay double helical wire has a circular

sectional shape when it comes in contact with the single
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Transverse Section
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B 0

Figure 5-4-4(3)
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helical wire of the core strand. However, the double
helical wire has a elliptical sectional shape where it
contacts with the double helical wire of the outer
strand. An ordinary double helical wire, on the other
hand, has an elliptical sectional shape when it come in
contact with double helical wire of the IWRC. This wire
has a circular sectional shape when it located on the
surface of the rope. In general, understanding of the
double helix angle can be applied to distinguish between

Lang's lay strands and ordinary lay in ropes.

b. Analytical Aspects

Grooves found on a double helical wires are the result of
either contacting with equal lay wires or contacting with a
single helical core wire. However, nicks found on the double
helical wire are more complicated. It is because of the
periodic variation of double helix angle along the double
helical wire and the tolerance between adjacent wires at the
outer layer of the strands. Figure 5.4-4 [(4) shows typical
nicks found on the double helical wire. The wires, shown in
these photographs, have failed resulting from secondary
bending (top) and secondéry twisting (bottom). A study of

double helix angle leads to understanding of two important

features, namely.

a. the location of nicks constitute <clamping and

pivoting points.
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b. quantifying of +the contact angle for contact

analysis.

Figure 5.4-4 (5) is a schematic representation of the contact
patterns between double helical wires. The following tables
(tables 5.4.2.1, 5.4.2.2 and 5.4.3) give the contact angles
obtained by epplying mathematical manipulation of the double
helix angles of wires at the contact points. The subscript

notation for the double helix angles are defined as follows:

Subscript Notation:

chl Single helical wire contact with Lang’'s Lay double

helical wire within an IWRC

L Lang'’'s lay double helical wire in an IWRC
I Single helical wire in an IWRC
cha Single helical wire contacting ordinary Lay double

helical wire within IWRC
A Ordinary lay double helical wire in an IWRC
d Contact of two double helical wires between two

neighbouring strands in the same Jlayer (Lang's

layand ordinary lay)

wl Single helix angle of outer layer wire in a helical
strand
hhl Contact of two double helical wires between two

neighbouring strands At the adjacent 1layers of
lang's lay strand.

lo Double helical wire in an outer strand
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Double helical wire in an inner strand
Contact of +two double helical wires between two
neighbouring strands at adjacent layers of ordinary

lay strand.

Contact of two double helical wires between two

neighbouring strands which are inner layer Lang's
lay strand and outer layer ordinary lay strand.
Lang's lay wire

Ordinary lay wire

Superscript Notation

%

Double helix angle (Lang's lay or ordinary lay)



TABLE 5.4.2.1

WIRE CONTACT ANGLE BETWEEN CORE STRAND
AND HELICAL STRAND OF A 6 STRANDED ROPE
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DIRECTION OF CORE STRAND CONTACT WITH HELICAL | LAY DIR-
TWO ADJACENT
WIRE AT THE STRAND (FOR LANG'S LAY ONLY) ECTION
CONTACT POINT
a« = |« - ay [ LEFT-LEFT
DITTO RIGHT -
RIGHT
_ s LEFT -
\<:1;>/ %y = | 180 @ - o] RIGHT
i
RIGHT-
\<:I;7/ DITTO LEpT
i
(FOR ORDINARY LAY ONLY)
@, =l e - af| LEFT-LEFT
DITTO RIGHT -
RIGHT
_ _ _ LEFT -
\<:I;>/ @ pa = | 180 —a - o] RIGHT
i
RIGHT-
\<:I;>/ DITTO LEFT

These two tables can be applied to reveal the contact angle between

two wires of two adjacent strands at two adjacent layers.
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TABLE 5.4.2.2
DIRECTION OF HELICAL STRAND + HELICAL STRAND | REMARK
TWO. WIRES (WIRE OUT) (WIRE IN)
TWO ADJA-
\<:i;7/ Xq = 180 — @ -, CENT STRD
!

This table applys only to two adjacent contact strand in the same
layer. It can be applied to reveal the contact angle of wires in

both Lang's and ordinary lay strands.

TABLE 5.4.3

DIRECTION  OF | HEL. STRAND CONTACT HEL. STRAND | LAY DIR-
TWO ADJACENT (INNER LAYER) (OUTER LAYER)
WIRE AT THE ECTION
CONTACT POINT (THIS APPLY ONLY TO LANG'S LAY)
t 4 t 4
a o= e - a LEFT-LEFT
DITTO RIGHT -
RIGHT
) s LEFT -
\<:t;7/ oy = 1180 - -] RIGHT
]
\<:1;>/ RIGHT-
DITTO Lepm
|
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(APPLY ONLY TO ORDINARY LAY)
t
~Z§¥ LTI EC TR M LEFT-LEFT
{
DITTO RIGHT -
RIGHT
_ _ _ LEFT -
Upa = 1180 — o - e ] RIGHT
RIGHT-
DITTO LEFT
TABLE 5.4.4
DIRECTION OF | HEL. STRAND CONTACT HEL. STRAND | LAY DIR-
TWO ADJACENT (LANG'S LAY) (ORDINARY LAY)
WIRE AT THE ECTION
CONTACT POINT (THIS APPLY ONLY TO LANG'S LAY)
t 4 t
« o= le - a | LEFT-LEFT
DITTO RIGHT -
RIGHT
_ : LEFT -
o« py = | 180 - @ - o] RIGHT
. RIGHT-
\<:1;7/ DITTO LEPT
1

This table can be applied to reveal the contact angle between two
contacting wires each in Lang's lay strand and ordinary lay strand

located at two adjacent layers.
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5.4.5 Summary of Findings and Postulations

Post-test examination of wire failures and geometrical
modelling of double helical wire have enabled the author to
make some postulates about the mechanical responses of double

helical wire in a rope subjected to external tensile load.

1. Periodic variation of the radius of curvature, radius of
torsion and double helix angle on a double helical wire
implies that internal component forces and moments will
also vary periodically with Gw along double helical

wire.

2. The out-of-phase characteristic between the radius of
curvature and radius of torsion on a double helical wire
implies that the maximum bending and minimum twisting
stresses on the double helical wire will almost locate
at the same position on the double helical wire and this

characteristic will repeat each cycle.

3. For an ordinary lay rope with a Lang's lay IWRC, the
maximum curvature and minimum torsion of a wire will
occur 1in the regions of contact between the outer
strands and the IWRC. the maximum torsion and minimum

curvature occur at the worn crown of the outer strands.

Al

This characteristics is importance for design reduced

rotation ropes.
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4. For double helix angle expressed as functions of Gw, the
function of +the double helix angle of a Lang's lay
double helical wire is 180 degrees out of phase with the
function of the double helix angle of a ordinary lay

double helical wire.

This characteristic is importance for identifying contact

patches and lay configuration of ropes.

Remark:

One important point that the author wishes to raise, is that
the out-of-phase geometric characteristic must be carefully
considered when designing 'reduced rotation’ rope (eg
multi-strand rope) in which the Lang's lay type of strand and
ordinary type of strand are often laid alternately amongst
adjacent layers. Wires at the contact locations between

adjacent layers could fail much earlier as the results of

a. contact stresses
b. stresses resulting from interactions and
c. maximum stresses which occur as the result of

mechanical response due to the out-of-phase
geometrical characteristic between Lang' 1lay and
ordinary lay double helical wire coinciding at the

contact locations.
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5.5 Ring and Drum Single Helix Geometry and Implications

Both ring and drum single helices are double helices. The
former is a degenerate case with zero strand helix angle; it
is because the strand is being bent over a sheave. The latter
is a double helix with very small strand helix angle; it is
because the strand 1is being wound around the drum. The
following sub-sections present the author’'s computer results
for ring/drum single helix and discuss the implications of
these helix geometry for the mechanical responses of ring and

drum single helical wire.

5.5.1 Physical Differences Between Ring / Drum Single

Helix and Double Helix

There are some differences between a double helical wire
within a straight rope and a ring/drum single helical wire

within a bent strand.

a. Double helical wires are preformed permanently in a rope
during rope manufacturing whereas ring or drum single
helical wires within a strand are deformed, from single
helical wires to &ouble helical wires, by bending a
strand over a sheave or by winding & strand around a

drum.

b. For helical strands laid around a main core, a rope is
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formed with small strand helical radius and very large

helix angle; for example strand helical radius = 10 mm

and strand helix angle = 78 degrees. For a strand wound

around a drum, the strand helix angle is very small and

drum helical radius is very large; for example drum
helical radius = 300 mm and strand helix angle < 10
degrees. For a strand bent over a sheave, the helix
angle even equals zero. (N.B. the strand helical radius
in a rope is equivalent to the ring or drum helical

radius applied to a strand bent around a sheave or wound

around a drum).

5.5.2 Geometrical Properties of Ring and Drum Single Helix

If a strand is wound around a drum in the same orientation as
the helical wire laid in the strand, then the periodic
variation of geometrical properties of a ring or a drum
single helical wire should be similar to those of the double
helical wires in a Lang's lay rope. On the other hand, if a
strand is wound in the opposite orientation to the helical
wire laid in the strand, then the periodic wvariation of
geometrical properties of the ring and the drum single
helical wire may be different from those of the double
helical wires in an ordinary 1lay rope, Figure 5.4-5 and

5.5.2-2. The geometrical model shows:

a. For an ordinary lay rope, the torsion has a period of
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360 degrees but the period of the curvature may be less

than this.

b. The curve of +the helix angle function will shift

downward as the strand helix angle reduces.

c. For a strand wound around a drum, the entire shape of
the curves of change in curvature and torsion between a
double and single helical wires remain the same as those
of curvature and torsion of the double helical wire,
with the exception that the change 1in curvature and
torsion shift downward toward the zero axis or below the

zero axis of the curvature and torsion graphs.

5.5.3 Implications Of Ring/Drum Single Helical Wire

The implications of geometrical properties of a ring single
helical wire and a drum single helical wire are qualitatively

discussed in the following.

a. For a given size of strand and drum, the maximum
magnitude of curvature on the Lang's lay type of drum
single helical wire {s more significant than that of the
curvature on the ordinary lay type of drum single helix,
as shown in Figure 5.5.2-1. On the other hand, the
magnitude of torsion on the ordinary lay type of drum

single helical wire is more significant than that of the
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torsion on the Lang's lay type of drum single helical

wire, Figure 5.5.2-2.

b. For a strand wound around a drum (the strand is being
wound in the same orientation to its wires), the high
bending stress appears to be at the points for which Gw
is a multiple of 360 degrees on the double helical wire.

The reference datum for Bw must be at either 0 or 180

degrees.
c. For a strand wound around a drum (the strand is being
wound in the opposite orientation to its wires), the

high bending stress appears to be at the points for

which (Gw - 90) is a multiple of 180 degrees.

Note:
By varying the strand helix angle and drum helical radius,
the geometrical properties of ring and drum single will be

changed.
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5.6 RING/DRUM DOUBLE HELIX GEOMETRY AND THEIR IMPLICATIONS

Rope is not only designed to carry tensile load, but must

also be designed withstand reversed bending as it runs over a

sheave or a drum. For a rope running over a sheave or a drum,

rope problems will silently develop and soon become apparent.

Problems such as core crushing, external and internal wear

resulting form using improper size of sheave or drum are the

consequence of high bearing pressure. However, some physical

parameters are not readily to be seen and, are hidden in the

helix geometry of wires eg the change in radius of curvature

and torsion along the triple helical wire. These parameters

are rather sensitive to the diameter of a sheave or a drum.

Examples chosen to illustrate these points are described as

follows:
5.6.1 Geometrical Properties of Triple Helix

In addition to the geometrical influence of radii of wires,

helical radii of wires and strands. The geometrical shape of

a triple helix (included ring double helix and drum double
helix) can be varied greatly by the combinations of

orientations of wire lay, strand lay, rope lay ( see table

5.6.1 ) as well as helix angle.

For a triple helical wire, the geometrical model shows that:

a. the coordinates, curvature, torsion and helix angle of a
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triple helix can be regarded as functions of Gw and Gd,

Figure 5.6-1,

Table 5.6.1.

5.6-2 and 5.6-3.

Lay Configurations Of Rope On Drum

TYPE OF ROPE LAY

ROPE DIRECTION ON DRUM

RIGHT HAND LEFT HAND
RIGHT HAND LANG' RIGHT-RIGHT RIGHT-LEFT
S LAY LANG'S LAY LANG'S LAY
LEFT HAND LANG’ LEFT-RIGHT LEFT-LEFT
S LAY LANG'S LAY LANG'S LAY
RIGHT HAND ORDI- RIGHT-RIGHT RIGHT-LEFT

NARY LAY

ORDINARY LAY

ORDINARY LAY

LEFT HAND ORDI-
NARY LAY

LEFT-RIGHT
ORDINARY LAY

LEFT-LEFT
ORDINARY LAY

Possible 1lay

drum.

configurations of rope wound around a

ROPE DIRECTION ON DRUM
TYPE OF ROPE LAY
RIGHT HAND LEFT HAND
RIGHT HAND LANG’ RIGHT-RIGHT RIGHT-LEFT
S LAY LANG'S LAY LANG'S LAY
RIGHT HAND ORDI- RIGHT-RIGHT RIGHT-LEFT
NARY LAY ORDINARY LAY LANG'S LAY

Four basic lay configurations of

drum.

rope wound around a
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b. The magnitude of the curvature of a triple helical wire
in an ordinary lay rope is smaller than that of a triple
helical wire in a Lang's lay rope, Figure 5.6-2 (a) and

5.6-3 (a).

c. The variation in the torsion of triple helical wires in
a Lang's lay rope is much less than that of the triple
helical wire in an ordinary lay rope, Figure 5.6-2 (b)

and 5.6-3 (b).

d. the variation of the helix angle for a triple helical
wire in a Lang’'s lay rope is much greater than that for

a triple helical wire in an ordinary lay rope, Figure

5.6-2 (c) and 5.6-3 (c).
N.B. All dimensions are in mm and in degrees.
5.6.2 Implication Of Ring And Drum Double Helix Geometry

For a rope wound around a drum, the geometrical model shows
that the bending in double helical wires within a Leang's lay
rope is , for all value of Gw. greater than that on double
helical wires within an érdinary lay rope. The torsion in a
double helical wire in a Lang's lay rope is greater than that
on a double helical wire in an ordinary lay rope for most

values of 6 .
w
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5.7 CONCLUSION ON THE STUDY OF WIRE HELIX GEOMETRY

Rope manufacturers take full advantage of helix geometry to
lay wires into an integral structure i.e. a strand or a rope.
By carefully adjusting helical parameters within a strand or
a rope, desired properties of the strand or the rope can be
obtained. The following conclusion, based on the study of the

rope geometry, are briefly drawn:

a. Single Helix

For a single helical wire in a straight strand, helix angle,
curvature and torsion along the centroidal axis of a single
helical wire are constant. These geometrical properties imply
that the mechanical component forces and moments are also
constant along the length of a single helical wire. However,
as the helix angle is being changed within the practical
range (ie 60 to 85 degrees), geometrical properties of single
helix, such curvature and torsion, will significantly be
changed. Thus, helix angle is one of the important parameters

affecting the change of geometrical and mechanical properties

of a strand.

b. Double Helix

For a double helical wire within a straight rope, the
curvature, torsion and helix angle are periodic functions of

wire rotational coordinate Gw. The majority of helical wires
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in a rope are in double helical form; eg over 73% of wires
are double helical wires in an IWRC. This implies that the
macroscopic properties of a rope will significantly be
influenced by the double helical wires. In addition to this,
the periodic geometrical characteristics of double helical
imply that the variation of contact patches, internal
component forces and moments on the helical wire repeat every

helix cycle

c. Ring And Drum Single Helix

Ring and drum single helices are degenerate and almost
degenerate double helices respectively. The helix angle of a
strand laid on a sheave and drum is very small between zero
and 10 degrees. The curvature and torsion of helical wire
will significantly be influenced by the diameter of the
sheave or drum as the strand is being bent over the sheave or

the drum.

d. Ring And Drum Double Helix

Ring and drum double helices are degenerate and almost
degenerate triple helices ;espectively; a rope is being laid
with a very small helix angle on a sheave or a drum. Again,
curvature and torsion of triple helical wires will |Dbe
significantly influenced by the diameter of the sheave or the

drum. Since a rope can be either laid as a Lang's lay rope or

as an ordinary lay rope. A rope can be 1laid on the drum
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either in the right hand orientation or in the 1left hand
orientation. The orientation of rope laid on the drum will
also contribute the mechanical behaviour of the rope
depending upon the diameter of the drum and the rope lay (ie
Lang's lay or ordinary lay). The model shows that the
orientation of rope laid on the drum has more influence to
the geometrical properties of triple helical wire within the
Lang's lay rope than that of the triple helical wire within

the ordinary lay rope.
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CHAPTER SIX

SECTIONAL GEOMETRY OF HELICAL WIRE
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Nomenclature

Semi-minor axis of an ellipse

A Defined variable

b Semi-major axis of an ellipse

c Defined variable

K Defined variable

m or M Number of helical wires per layer

Q Reaction force per unit length at the contact

r Radius of a single helical wire

R Helical radius of a single helical wire

X Radial force acting on a helical wire per unit
length

a Helix angle of wire

B Defined variable for contact angle

Qc Defined variable for contact angle

A6 Defined variable

Rl'RZ'RS Reaction forces per unit length at the contact
(For Figure 6.4.1 only)

Ri Helical radius at ith layer of strand
(i =1, 2, 3, ... etc)

Subscritpt

s strand
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6.1 INTRODUCTION

For multi-layer strand design the number of helical wires
(with given size and helix angle) which can be associated with
a core wire of given size must be determined; the inverse
procedure may also be required. In practice, the size of the
helical wire is always smaller than the size of the core wire
in a single layer strand, with the exception of "Selvagee"
type of wire rope; that is all wires are parallel to ;ach
other. This will ensure that all helical wires 1in the
inner-most layer will make contact with the core wire.
Likewise, the size of helical wire in any particular layer
must not be larger than the size of the inner strand immediate
beneath; In this these, this geometrical problem is termed the
"spatial configuration of wires within strand”. The
geometrical theory needed to deal with this problem is termed

"sectional geometry of helical wire".

In this Chapter, the author intends to highlight the
significance of the sectional geometry of helical wire in
forming a reasonable mathematical model for single 1layer

strand. This is in contract to some of the literature,3'13'

4.1 & 4.4 where it is assumed either that the size of core
wire is equal to that of the helical wire (provided that the
helix angle of helical wire is 90 degrees) or that the core
wire is separated from the inner layer helical wire. These
assumptions ignore sectional geometry. There is, in fact, a

geometric relationship which governs the "admissible helix

] . . . .
angle" for a given number of wires per layer and given size
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of core wire. This Chapter therefore aims:

a. to derive a mathematical method to evaluate the
sectional shape of helical wire with a given helix

angle.

b. to verify the approximate approach proposed by other
strand modellers to handle the problem of "admissible

helix angle"” for a given number of helical wires.

c. to show some applications of sectional geometry

2 Definition:

For a given size and given number of helical wires per layer,
the admissible helix angle is defined as the limiting helix
angle that allows each of the helical wires to be in contact
with their neighbouring wires without jamming or separation

between adjacent wires.
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6.2 LAYOUT OF CHAPTER SIX

VERIFICATION OF R/r
AND ITS IMPLICATION

HELICAL WIRE R/r RATIO, HELIX

SECTION AND ANGLE AND NO. OF

SHAPE HELICAL WIRES/LAYER
AUTHOR’S KUNOH & AUTHOR'S COSTELLO & KUNOH &
METHOD LEECH METHODS PHILLIPS LEECH

BLOCK DIAGRAM 6.1
STRUCTURE OF THE APPROACH TO THE

SPATIAL CONFIGURATION OF STRAND

6.3 BASIC ASSUMPTION

The main assumptions that have been made for +the current

analysis are:

a. Any wire within a strand is considered to be

perfectly cylindrical.

b. The centroidal axis of any layer of wires, except
the core wire, is in the form of a right

cylindrical helix.
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b) 6/1 Sirand Section
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c. Any transverse section of any wire is normal to the

centroidal axis of that wire.

6.4 ANALYSIS OF HELICAL WIRE SECTION

If a transverse section 1is made through a helical wire, a
circular shape can be expected. On the other hand, if a cut is
made normal to axis of the straight strand:; a "kidney shape"
wire section can be expected. However, if the helix angle of
the helical wire is gradually increased from 60 degrees, the
wire section will gradually be changed from the "kidney shape"”
to an "approximately elliptical shape", Figure 6.1. Similar
wire sectional shapes can also be found in Ref.5.4. The

following method may be used to construct sectional shape:

Note: "Kidney shape" and "elliptical shape” are the names to
describe the sectional shapes of a helical wire with the
change of helix angle. They do not represent the exact

mathematical meaning.

Method:

Let us consider a solid helical wire bundle which is formed by
laying an infinite number of equal lay filaments. A point "P"
is located on one of the filaments which form the surface of
the helical wire, Figure 6.2. By joining the centre "0" of the
strand with this point "P", the distance "OP" is designated by

"Rp". An expression, which relates Rp with the helix angle,
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helical wire radius and the helical radius of the strand, can
be derived based on the diagrams as illustrated in Figure 6.2.
The parameter Rp is given by:

1/2

R = a

o h (6.1)

{ ( cos & + R )2 + sin2 6 sin2 a }
c R c

Where R, =R / a

By varying Rp and Gc (from O degree to 360 degrees) the
sectional shape of a helical wire on the transverse plane of
the given strand can be traced out for a given wire radius and
helix angle, in equation 6.1. In order to illustrate this
geometrical relationship, a computer program has been written

and selected results are given in Figure 6.3.
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6.5 ANALYSIS OF THE ADMISSIBLE R/r RATIO

This section presents both an approximate and an exact

mathematical approach which can be applied to determine the
3 s

R/r ratio and the contact angle in a single layer strand.

These approaches include:

a. Huang, Costello and Phillips' method
b. T.Kunoh and C.M.Leech method

c. Author's methods
Definitions:

3
The R/r ratio is defined as the ratio of helical radius to
the helical wire radius. This ratio is closely related with
the number of helical wires per layer and the "admissible

helix angle" of the helical wire in any layer.

L 3 3
The Contact angle 60 is defined as the subtended angle of
contact between helical wire in contact with the core wire and
one of its neighbouring helical wires in the same layer,

Figure 6.2
6.5-1 Huang, Costello and Phillips’' Approach

Huang and Costello applied similar methods to determine the

R/r ratio. Both modellers used an elliptical section, as
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illustrated in Figure 6.4, to approximate a "kidney section",
Figure 6.3. The helical surface of the wire is also
approximated by a straight 1line a,; @s shown in Figure 6.4
(a). The elliptic expressions used to evaluate the R/r ratio,

are given by:

a = r (6.2)

r / sin « (6.3)

T
"

..(by Costello & phillips)

b=r (R" +k ) / k (6.4)
................ (by Huang)

Where 1 / sin a = ( R e + k 2 ) 172 / k
k = R tan « (6.5)

By using Figure 6.4 and analytical geometry, it can be shown

that:

R ( tan 2 (n /2 -n/ m) ) 1/2 (6.6)

r . 2
sin o

-

Based on the elliptic section approach, the contact angle "B"

(illustrated in Ref.3.1). can be shown to be given by:

2
cos B = ———LE—— { (1 + —tan ( “22 - /m ) )1/2

cos a sin a
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( tan 2 (n/2 - n/m ) ) [ 1 + 5
tan o cos ( /2 - /m )

1/2

3 5 1 + sin 4 a }
( sin a + tan ( /2 - n/m )

(6.7)

According to Costello and Phillipss'% the contact force Q

between neighbouring helical wires, (See Figure 6.5) is given

by:
Q =-X/ 2 cos B (6.8)
Where Q = R2 and R3
X = R1
Note: the notation Q@ and X has been used in Ref.3.1.
6.5-2 T. Kunoh and S.M. Leech Approach

T. Kunoh and S.M. Leech used a different method to evaluate
the R/r ratio and compared their results with Costello and
Phillips. However, the expressions for "R/r" and for the

contact angle have not been given in their paper and no

comments can therefore be made on their approaches.
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6.5-3 Approximate Methods and an Exact Method

(of The Present Author)

Various approaches which can be applied to evaluate the R/r

ratio, are presented.

a. Approximate By Elliptic Section

The elliptic section can be approximated:

a = r
b=kr/ (RZ24+k2)1/02 (6.9)
k = R tan « (6.10)

In this case, the author kept "a" as a constant radius and "b"
as the dependent variable of the helix angle. Again, by using

Costello's approach, the expression for R/r ratio is given by:

R_ _ (1 + tan® o )1/2 (6.11)
r {m 2 (1 + tanza) }l/2
N.B. This method is intended to show that the "kidney

v

section” of helical wire which governs the permissible helix
angle, has insignificant influence if this angle is greater

than 85 degrees. Equation 6.11 has no practical use.
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b. Projected Elliptic Method ( with exact method)

In order to evaluate R/r ratio from +the "kidney shape"”
E
section, one needs to consider the "contact helix"” and the
s
"projection of the transverse section of the helical wire"

on the plane which cut the transverse section of a straight

strand, Figure 6.2.

1. Contact Helix'

This is a helical contact line formed by the contact of two
neighbouring helical wires in the same layer of the strand, as
illustrated in Figure 6.2. The expressions which represent the

Cartesian coordinates of the contact helix are:

X = a cos 6 (6.12)
c c w
Y = a sin 6 (6.13)
c c w
Z =a 6 tan « (6.14)
c W

In cylindrical coordinates:

R, = a, { (cos & + R )2 + sin” 6 si 2 o }1/2
-1 sin @ sin 90
6h = ew + tan { R + cos 6 } (6.16)
R c
Zh = R Bw tan « - a, sin 90 cos a (6.17)
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Similar equations can also be found in Kunoh'55'4 paper but
they were used for other purposes.

: . . . %
2. Projection Of Transverse Section Of Helical Wire.

If a section is made normal to the direction of a unit tangent
vector on the centroidal axis of a helical wire, a circular
transverse section of the helical wire can be expected. If
this circular section is projected onto the plane of the
transverse section of the straight strand. The projected shape
becomes a true ellipse. By using this concept, to evaluate the

"R/r" ratio, two results can be found. They are:

i. Approximate Method
In this approach, the helical radius of a contact
helix and a projected ellipse are considered, see
Figure 6.2 (a). Again, by wusing Costello’'s
analytical geometry approach, the expression which

gives the R/r ratio, is given by:

A R; - A - sin2 a =20 (6.18)
Where
2 - ay sin 90 cos
A = tan © (— - o } (6.19)
P
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Exact Method

In +this analysis, the contact helix and the
projected ellipse are considered, see Figure 6.2
(b). One can obtain the following mathematical

relationships:

6, =2 (n/m - 6*) (6.20)
Where
. 6 . .
6* _ a, sin 6 cos o . tan -1 { sin GC sin o ,
R tan «

R + cos 6
c

(6.21)

In order to evaluate the admissible helix angle,
One needs to set 601 = 0. The corresponding R/r
ratio can then be evaluated on this basis. (a
computer program has been produced 1in order to
evaluate the admissible ratio for various helix

angles).

The Contact Angle "B"

The contact angle as published in Costello and
Phillips papers'1 is similar to that considered in

this sub-section. If a helical wire is considered
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as a perfect cylinder and its centroidal axis 1is
considered as a right cylindrical helix. By using
the contact helix and projected elliptic section
method, one can show that this angle "B" is exactly
equal to the angle 180 - 9C at the contact point.

To evaluate this angle, the expression is given by:

cos B = l/RR (6.22)
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6.6 DISCUSSION & CONCLUSION

This sub-section presents a brief discussion of the sample
results obtained from various approaches; the R/r ratio and

contact angle for the single layer strand is evaluated.
a. R/r Ratio

Figures 6.6 to 6.8 show the relationship between R/r ratio,
the admissible helix angle and the number of helical wires per
layer. Generally speaking, the results obtained from various
approaches are quite close to each other provided the helix
angle chosen for the helical wire is within the practical
range, i.e. 60 to 90 degrees. However, there is an exception
as shown in Figure 6.7. For a helix angle greater than 60
degrees, these graphs show that the elliptical method is also

a close approximation.

Figure 6.6 illustrates sample results (R/r ratio vs helix
angle) obtained from an approximated method of Costello and
are due to the author. The methods agree with each other when
the helix angle 1is greater than 40 degrees but then the
results begin to diverge when the helix angle is smaller than

40 degrees.

Figure 6.7 illustrates sample results (R/r ratio vs helix

angle) obtained from one of the elliptical approximate
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methods; for the evaluation of R/r ratio. The curve designated
with "math” (note: "math" is just a legend given to the curves
only) is definitely inappropriate. This 1is because when a
helix angle is gradually decreased, the wire section changes
from a "kidney shape"” to "horse-shoe shape"”. In other words,
the R/r ratio will increase as the result of "horse-shoe"
effect, Figure 6.8 (a). However, Figure 6.7 show that the R/r

ratio gradually decreases as the helix angle decrease.

Figure 6.8 illustrates the R/r ratio vs helix angle, extracted
from Ref.5.4, Kunoh and Costello's approach. Again, both
results agree with each other within the range 40 to 90
degrees and then gradually diverge as the helix angle become
smaller than 40 degrees. For a strand with two helical wires
(ie M=2), Kunoh clearly showed the "horse-shoe" effect in the
prediction of the R/r ratio without pointing out the physical
significance, i.e. when R/r > 1. Two wires will contact with -

each other at two contact points, Figure 6.8 (a).

Figure 6.9 presents the comparison of the results obtained
from various approaches. Results obtained from various source
agree reasonably within a practical range of helix angle for

-

strand design.

b. Contact Angle

Figure 6.10 illustrates the variation of cos B as functions of



One Contact Separation Of
POiny Helical Wires
!A Two Contact
+
{ , Points
RIr
+— R/r =1 R R/r > 1
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Figure 6:8 (a)
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helix angle and number of helical wires predicted by the

projected elliptic method.

Figure 6.11 (a) & (b) compare results for the contact angle
obtained by using Costello, Kunoh and author's approaches. The
author's results agree with Costello’'s results provided the
helix angle is greater than 65 degrees. Kunoh's approach also
agrees with Costello's approach provided the helix angle is
greater than 50 degrees. However, when the helix angle
approaches zero degrees, "cos B" neither approaches zero nor
diverges to a véry large §uantity. This is due to the "horse

shoe"effect of helical wire with small helix angle.

Figure 6.12 illustrates the variation of contact angle B with

the corresponding R/r ratio.

CONCLUSION

Some simple but important conclusions can be drawn.

1. The ratio of helical radius to radius of helical wire must
be related to the helix angle and the number of helical

wires per layer.

2. The wire sectional shape varies from circular through
approximately elliptical, kidney shape, horse-shoe to
toroidal shape as the helix angle decreases from 90 to O

degrees.

3. For any size of wires, helix angle and number of helical

wires per layer within a strand, there is an "admissible
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helix angle"”. For a given helix angle greater than the
"admissible helix angle"”, the helical wires will be no
longer touching their neighbouring wires in the same
layer. On the other hand, if the helix angle is smaller
than the "admissible helix angle"”, all the inner layer
helical wires will be separated from their core wire.
Therefore, one should not design strands with the latter

case.

For a strand without a core wire, by decreasing the helix
angle, a "separation"” will occur when the "kidney shape"
section is transformed to a "horse-shoe" section. For
example, the strand with two helical wires, as shown in

Figure 6.8 (a).

For designing single and multi-layer strands: the
practical range of helix angle should be within 50 +to 90
degrees. Costello's expression for "R/r" ratio is

reasonable accurate and easy to use within this range.
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6.7 APPLICATION

Figure 6.13 illustrates several simple strand constructions
and the "lay" configurations encountered in various strand
designs. Examples are given to illustrate application of
sectional geometry principles.

6.7-1 R/r Ratio For Equal Lay Strand

a. R/r Ratio For 9/9/1 Strand

Figure 6.14 (a) represents the cross section of a 9/9/1

strand. By applying Costello's method for calculating the R/r
ratio, the helical radii for each layer are given by:
R tan e ( 7n / 18 )
L1 y 172
r sin2 o . (6.23)
1
R 2 tan 2 ( 7= / 18 ) 1/2
= {1+ } (6.24)
r . 2
2 sin a
1
b. R/r Ratio For 12/6F + 6/1 Strand
Figure 6.14 (b) represents a cross section of a 12/6F+6/1
Strand. By applying Costello’s method for calculating the R/r
ratio, the helical radii for each layer are given by:

2
R tan (m/ 38)
i RPN y 1/2 (6.25)
r . 2
1 sin a

1
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b. 12/6F+« 6/1 Strand Where: Ri=Helicctl Radius
Equal Lay i=1,2,3

Figure 6-14
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R tan (n/ 3)
L. {1+ y 1/2 (6.25)
r . 2
1 sin o
1
R R r
2 - rl cos (—%—) + (1 + ) cos 91
| 2 2
r
61 = s:in_1 ( —;——%—;—— ) (6.26)
2 3
R 4 tan 2 ( 5% /12 ) 1/2
= {1+ } (6.27)
r . 2
3 sin a
1
c. R/r Ratio For Tri. 3 And Tri. 3/3

Figure 6.15 (a) represents a cross section of the core of the
triangular strand. Again, by applying Costello’'s method for
calculating the "R/r"” ratio, the helical radii for the helical

wires are given by:

For Tri. 3

1 sin a (6.28)
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a. Triangular
Strand

Helical Wire Core Wire

b 12/6/1 Strand Where Ri =Helical Radius
Cross Lay i=1,2,3

Figure 6-15
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For Tri. 3/3

R R r
2 - 1 cos (—%—) + (1 + = ) cos 91
o | To 2
r
61 - sin_l ( . 1 . ) (6.29)
1 2
tan (r/3)
R = r (1 + )1/2
1 1 . 2
sin o
(6.30)
6.7-2 "R/r" Ratio For Cross Lay Strand

Figure 6.15 (b) represents a cross section of a cross lay

12/6/1 strand. In this case, the R/r ratios are given by:

2
R 1 ro + ry (1. tan ( 2 / 3 ) }1/2
rg ry sin 2 a
1

{6.31)

R r. + 2r_+ r tan 2 (2 / 3 )
__0 1 2 _ 1/2
- = = {1+ 5 }
2 o | sin a
2
(6.32)

For interest, Table 6.1 shows the expressions which can be
used to approximate the R/r ratio for cross and equal lay

strands.



STRAND R/r EXPRESSION RANGE
~ 50
R_ ., TO
r - 90
o ~ 50
R _ TAN" (II/6) ,1/2 TO
= L1+ 2 } 90
SIN® «
R _ TANZ (I1/74) ,1/2 ~ 50
- U1+ 2 } TO
% SIN® « 50
R _ TAN2([1/10) 1/2 = 50
el S 2 } TO
g% o i
2 ~ 50
§ - (1 4+ IAN ;H/s) }1/2 10
@ SIN® « 90
Ry (14 TAN? (0I/6) ,1/2
r. 2
1 SIN « ~ 50
R R r TO
2 1 n
= — cos — + (1+ — )
@ rl r2 3 r 90
cos ©

TABLE 6.1
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2
+ TAN (7ﬂ/18)}1/2

= {1
2
SIN® « ~ 50
0 TO
(14 TAN (gn/lz)}l/z 90
SIN® a
2
_ TAN®(201/3) ,1/2
= {1+ 2 } ~ 50
SIN® «
TO
2
- (1 4+ IAN (2H/12)}1/2 90
SIN™ «
2
_ TANS (0I/3) ,1/2
= {1+ > }
SIN® «
R r ~ 50
= - cos % + (1+ —l)
T2 To
TO
cos 91
_ TAN f50/12) ,1/72| 99
= {1+ 5 }
SIN® «
~ 50
_ TAN? (f/e) ,1/2
= {1+ 5 }
SIN® B TO
80

TABLE 6.1
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CHAPTER SEVEN

STRUCTURAL MODELLING OF

SINGLE LAYER STRAND
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NOMENCLATURE

A Defined parameter

Ah Sectional area of helical wire

2 Core wire radius

a, Helical wire radius

acy Distance from the neutral axis to a point
within a section of a core wire ore wire

ahy Distance from the neutral axis to a point
within a section of a helical wire cal wire

B Defined parameter

BS B; Flexual bending stiffness

C Defined parameter

E Young modulus

of £ Effective tensile stiffness

F External tensile load applied to the strand

G Shear modulus

Geff Effective modulus of rigidity

H1 H2 Defined parameters

Ih Second moment of area of helical wire

Jc Polar moment to area of core wire

Jh Polar moment of area of helical wire

Ji Geometrical constants; where i = 1, 2,
3,...22

K1 K2 K3 K4 Equivalent assemble stiffness for strand

k' & K Initial and final curvature

M External torsion applied to the strand

m Number of helical wires per layer

N & N Internal shear force on a helical wire
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Defined parameter

Lay length of strand

Initial and final helical radius

Defined parameter

Internal tensile load on core wire
Internal tensile load on helical wire
Internal bending moment on helical wire
Internal twisting moment on helical wire
Internal twisting moment on core wire
Radial forces along a naturally curve rod
Rotation of the strand per lay length
Change in curvature

Change in torsion

Change in lay angle

Strand strain

Helical wire strand

Bending strain on helical wire

Shearing strain on helical wire

Stress due to bending moment

Shear stress due to twisting moment on
helical wire

Poisson's ratio of wire

Effect Poisson's ratio of strand
Rotation of helical wire

Incremental length of helical wire

Defined parameter
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7.1 INTRODUCTION TO STRUCTURAL MODELLING OF SINGLE LAYER

STRAND

Stranded rope can be considered as an integrated structure
which is cleverly constructed by twisting thin rods helically
to form a tensile member. This structural design takes full
advantage of the geometry of each individual element and does
not use jointing or welding. As a result, structural
flexibility is retained. The model presented in this chapter
is developed by using this concept - ie that the mechanical
responses of individual wires are orientated and summed with
respect to global coordinates where external 1loads are

exerted.

The approach applied here draws on several sources: the
earlier studies of fatigue failed rope, the analysis of helix
and sectional geometry, and the earlier treatments of 6/1
strand such as those given by S. Machida, Costello and
Phillips. However, the author's models have been refined and
modified. Some factors or assumptions which will affect the
theoretical analysis and the structural properties of single
layer strand are noted here;

-

a Type of Sockets for End Terminations

Cone sockets with white metal or epoxy are preferred for

grasping the strand terminations.
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b. Wire Material

Cold drawn rope steel 1is assumed to be used. Wires are
assumed to be free from residual stresses and defects

resulting from manufacturing, preforming and storing on the

bobbin.
c. Termination Conditions
The termination conditions influence the structural

properties of the strand. Four termination conditions are

considered:

1. rotation of terminations is constrained (tensile

load only).

2. terminations free to rotate (tensile load only).
3. torsional load applied to terminations.
4. combined tensile & torsional loads applied +to

termination.
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STRUCTURE OF THE APPROACH TO THE MATHEMATICAL

MODELLING OF SINGLE LAYER STRAND

STRUCTURAL
MODELLING OF
SINGLE LAYER
STRAND

STRESS-STRAIN

RELATIONSHIP

LINEARIZED NON-LINEARIZED
MODEL MODEL
INTERNAL DISPLACEMENTS
AND
EQUILIBRIUM COMPATIBILITY
STRUCTURAL
EQUILIBRIUM

OF STRAND

STRUCTURAL
BEHAVIOUR

BLOCK DIAGRAM 7.2-1

STRUCTURAL MODELLING OF SINGLE LAYER STRAND
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PRINCIPLES UNDERLYING METHOD OF SOLUTION AND

ASSUMPTIONS

a. Principles
A strand structure is generally considered to be statically
indeterminate4'1. and hence the fundamental principles of

solution must be based on:

1. Equation(s) of equilibrium of forces and
moments, both internal (normally as a function
of stress) and external (applied).

2, Equation(s) describing the geometry of
deformation or compatibility of displacements
and strains.

3. Constitutive relationships between

load-deformation or stress-strain.

b. Assumptions
To apply the preceding statements logically and
realistically, in accordance with the nature and

characteristics of the problem (ie modelling of single layer

strand), it is necessary to make the following assumptions.

1. Any section normal to the centroidal axis of a
wire (ie any transverse section) is circular
both before and after loading.

2. The centroidal axis of any wire within a



strand 1is regarded as the most important
geometrical characteristic of that wire.

For a single helical wire, the helix angle
should be between 50 to 90 degrees. this 1is
the practical range for strands design.

The wire diameter should not be less than 2 mm
(or .08 in). Although this may be

mathematically possible, this is unrealistic

in practice due to external wear and corrosion.

The mechanical response of a wire should be
free from termination influences.

All helical wires in the same layer should
touch the core wire and each of the helical
wires may either touch neighbouring helical
wires or separate from each other.

The wire material 1is assumed to be either
orthotropic or isotropic and all wires remain
elastic before and after loading.

The residual stresses set up 1in any wire
during manufacturing, storing and strand
production are ignored, as are frictional and
flattening effects.

An oblique section of any helical wire can be
approximated either by an ellipse or by a

kidney shape.

300
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7.4 INTRODUCTION TO LINEARIZED MODEL FOR SINGLE LAYER

STRAND

The following sub-sections present the mathematical procedure
and principal equations leading to the modelling of single
layer strand in the monotonic, linear elastic regime. The

model features are presented as follows:

a. Any helical wire 1is considered as a naturally
curved rod so that naturally curved rod theory

3.21-3.22 can be applied to determine the internal
components (forces and moments) exerted on the
helical wire.

b. Costello-type equilibrium equations are applied to
relate the internal components +to the external
applied loads.

c. For a strand subjected to a tensile 1load, the
development method is applied to relate the
displacement of a strand to that of the helical
wires.

d. For model 1linearization, second and higher order
derivatives of displacement equations are ignored.

e. Four termination conditions are considered in order
to obtain the stiffness matrix representing the
equilibrium of the strand structure.

f. Structural properties such as strand stiffness and

effective Poisson's ratio can be obtained from the
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stiffness approach to the solution of the problem.

g. New-formed strand, free from any plastic
deformations due to fatigue or wire failure, is
assumed.

7.4.1 Internal and External Equilibrium

The current sections present applications of the theory to

determine:

1. Internal equilibrium along the single helical wire and

core wire.

2. External equilibrium on the strand.
7.4.1-1 Internal Equilibrium
a. Internal Equilibrium of a Naturally Curved Rod

This theory was first made known as Kirchhoff's linear theory

3.22

of slender curved rods A similar theory applied to

study the kinematic equilibrium of initially curved rod were

3.21 ., the mathematical theory

also given in Love's treatise
of elasticity"”. In 1949, the possibility of applying the
naturally curved rod theory to lock coil rope emerged 1in
Hansom's 4.1 PhD thesis on "Mechanics of locked coil steel

wire ropes". Since the mid 70's, naturally curved rod theory



Helical Space Rod

Internal Components Exerted On
A Naturally Curved Rod Subjected

To External Loads

Figure 7-4-1
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was widely used to determine the internal component forces
and moments on a single helical wire within a 6/1 strand by a
number of strand modellers, such as Costello, Phillips and
their fellow workers; For better understanding of rod theory,
a schematic diagram which represents the orientation of
component forces and moments on the naturally curved rod, is
shown in Figure 7.4-1. A paper model which represents the
orientation of similar component forces and moments on the
helical rod, is also given in Figure 7.4-2. Principal
differential equations of the rod model are presented in the

following matrix.

Force Equilibrium:

o k' -k T dT/ds Z
K -T 0 N = dN'/ds + Y (7.4-1)
-K’ 0 T N’ dN/ds X
Moment Equilibrium:
0 k' -k L dW/ds e
ko-T 0 v = dv'/ds + K’ (7.4-2)
-k’ 0 T v dv/ds K

These sets of equations are derived from differential

geometry. They are also known as "Frenet-Serret Formulae".
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b. Internal Equilibrium of a Single Helical Helical Wire

When equations 7.4-1 and 7.4-2 are being applied to a single
helical wire wunder static conditions, several component
forces and moments will vanish in the preceding matrices.
They are forces Y and Z per unit length and external moments
Q, K' and K per unit length of the helical wire. Hence, the

matrices representing the internal components of forces and

moments along the single helical wire are given by:

Force Equilibrium:

0 k' -k T 0
kK -T 0 N = 0 (7.4-3)
-k’ 0 T N
Moment Equilibrium:
0 k' -k W 0
kK -T 0 Y = (7.4-4)
-k 0 T v’
C Approximate Theory for Component Moments

Equations 7.4-3 and 7.4-4 represent a set of indeterminate
equations. In order to solve them, some of the terms in the
3.21

equations have to be approximated by the expressions

given below:
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V=B_(k-k) (7.4-5)

V' = B_" ( k' - k') (7.4-8)

W = TS (Tt -1) (7.4-7)
where BS'. Bs and Ts are the flexural bending stiffness and

flexural twisting stiffness respectively.

B =B ' = EI (7.4-8)

s s
BS = BS' due to axial symmetry of wire cross section
T = GJ (7.4-9)

s

For a single helical wire described by its centroidal axis,
there is one curvature; ie binormal curvature " k' ". In
other words, the normal curvature is zero. Therefore, the

normal flexual bending moment "V" on the single helical wire

vanishes.

The tensile component along the helical wire is given by

v

E € (7.4-10)

Having approximated these three important parameters (ie, W,

V' and Th). one should have sufficient parameters to evaluate
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shearing force "N'" and radial force "X" per unit length
along the single helical wire, by substitution of equations
7.4-5, 7.4-6 and 7.4-10 into equation 7.4-1. Parameters for

shearing force and radial force are then given by:
N' =Wk -V' T (7.4-11)
X = N'T - T k°’ (7.4-12)

The equations for internal force and moment equilibrium on

the helical wire under static conditions can then be solved.

d. Internal Equilibrium Of Core Wire
For a straight strand subjected to combined axial loads (ie
tension and twisting), internal force and moment can exist on
the core wire of the strand. They are given by:
2

T == a_ E € (7.4-13)
W =G JC AB (7.4-14)
7.4.1-2 External Equilibrium of Single Layer Strand
Soon after a rational mathematical model emphasizing the

structural equilibrium of a 6/1 strand was developed by S.

Machida and J.J Dure11i4'1. an improved approach to deal with
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the structural equilibrium of a 6 single helix strand was
also proposed by Costello, Phillips and fellow workers
3'1—3'20. This logical and reasonable approach is also
applied by the present author. For a better understanding of
how to derive the structural equilibrium of a single layer
strand, a detailed schematic diagram indicating the
orientation of the internal components exerted on a helical
wire of a 6/1 strand (as an example) is presented in Figure

7.4.3. The equations which represent structural equilibrium

of a single layer strand are given by:

F=m (T sin a + N' cos a ) + T, (7.4-15)
M=m (Wsin & + V' cos @ + TR cos @ - N' R sin « )
h
+ W (7.4-186)
c

The strand termination conditions, as presented 1in the
preceding section, have a significant influence on the
structural properties of the single layer strand. The

structural equilibrium equations have to be expressed in
terms of structural translational and rotational
displacements of the strand. They can be expressed in a

matrix form:

K K A6 M (7.4-17)
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M
| Where
M&F = Externgl Loads
T,W
F ., = Internal Components
| V.N,X

Line Of Contact

Figure 7-4-3
Typtical 6/1 Strand Model
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7.4.2 Geometry of Deformation and Compatibility of

Displacements

This section presents the approach to determine the geometry
of deformation of core and helical wire in the single layer

strand. It is organized into the following sub-sections.

a. Helix geometry required for the deformation
analysis.
b. Wire sectional geometry.

c. Deformation geometry of core and helical wires.

7.4.2-1 Helix Geometry

Full details of cylindrical helix geometry have been
presented in Chapter Four and Chapter Five. This sub-section
gives 1important geometrical parameters which are used to
relate the curvature and torsion with the bending and
twisting moments along the helical wire. Expressions for

these two parameters are:

a. Initial and Final Curvature of a Single Helix
2 -
k' = cos” a K = fos &« (7.4-18)
R R

b. Initial and Final Torsion
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sin o cos « _ sin @ cos @
T = : T = (7.4-19)
R R

7.4.2-2 Sectional Geometry

Full details of sectional geometry have also been presented
in Chapter Six. An admissible ratio between helical wire
radius and helical radius as functions of number of helical
wires per layer and helix angle is:

R tan ( ®/2 + n/m )

= {1 + }
r sin2 a

1/2

(7.4-20)

For practical purpose, the helix angle should be between 60

and 90 degrees. Equation 7.4-20 was also given in Ref. 3.1.

7.4.2-3 Deformation Geometry Between Core and Helical Wire

The Development method can also be applied to determine the
deformation of a helical wire in relation to the global
displacement of the strand (with four strand +termination
conditions). A schematic representation of the axial
deformation of strand and helical wires is shown in Figure
7.4-4. The geometrical imperfection, flattening effect, and
second and higher order deformation terms are ignored in
formulating the linearized model. Deformation equations, in
terms of strand and helical wire axial strain are expressed
as functions of changes in geometrical parameter and are

given by:
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Aa
€ = 5w + — (7.4-21)
S tan a
AR A6
€ = — + — + ( tan @ + cot « ) Ax (7.4-22)
S R 27[
AR A6
€ = — + + Ad  tan « (7.4-23)
AR A6
Ew = € sinza + cos2 a + 0052 a
S R o1
(7.4-24)

Where AR, A6 and CS are global geometrical changes (in terms
of cylindrical coordinates) of the single 1layer strand
subjected to external axial load corresponding to the four

termination conditions.

7.4.2-4 Deformations of Helical Wire

For a single layer strand subject to combined load, extension
and rotation can be regarded as the known magnitudes in
equations 7.2-21 and 7.4-24 whereas Ew' AR and Aa are
considered as the major unknowns in these equations. In order
to solve equations 7.2-21 and 7.4-24, one additional known
parameter is required. For convenience, AR is chosen to be
approximated, by applying the classical approach (ie
conservation of volume for incompressible material) and

flattening effects. The change in helical radius can be found
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by:

AR v (a € + a, E ) (7.4-25)

where 5Rf is the flattening deformation due to radial force.

It has been suggested by Utting and Jonese'lo that the

flattening term OR_, is very small and can be ignored in this

f

analysis. Therefore, the change in helical radius is given

by:

AR v (a_ € + a, € ) (7.4-26)

By substituting equation 7.4-26 into equation 7.4-24 the

deformations of the helical wire can be written as:

€ = J. € + J. A6 (7.4-27)

Ax = J_. € + J, A6 (7.4-28)

AK®' = J5 e+ J6 AB (7.4-29)
At = J7 e+ J8 A6 (7.4-30)
where Jl' 32. 33. J4, JS' JS’ 37 and J8 are defined

geometrical parameters. They are shown in Appendix.
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7.4.3 Material Constants and Stress Strain Relationship

Rope steel is cold drawn (ie normally hypereutectoid steel)
and the wire is considered to be a slender rod. In fact, the
material properties along the wire are more important than
the material properties across the transverse section in
considering the structural properties of single layer strand.
Rope steel, in this case, can be considered either as an
isotropic material or an orthotropic material. The essential
stress-strain relationships for the present model are given
by Hooke's law and this is used to relate stress and strain
along the centroidal axis of any wire resulted from tension.

The stress-strain relationship is given by:

E = (7.4-31)

If the wire material is assumed isotropic, the shear modulus
can be related to the Young's modulus. The shear modulus is
used to relate the twisting stress with the twisting strain

resulting from the change in torsion of the single helical

wire.

E
G = (7.4-32)

2 (1 +v)

For an orthotropic material, the relationship described by
equation 7.4-32 is no longer valid. Then individual material

constants (E and G) are normally determined by experiment or

recommended by wire manufacturer.
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Remark:

In the current modelling, E and G are essentially employed to
relate the change of curvature and torsion with the bending
and twisting component of a single helical wire within a

single layer strand subjected to external axial load.

7.4.4 Linearization

Costello and others suggested that geometrical non-linear
characteristics do not appear to have significant influence
to the linear load-extension behaviour; this mechanical

behaviour is referred to as weakly non-linear.

The main purpose of model linearization is to derive element
stiffnesses for individual wires, to allow assembly of
stiffnesses for the single layer strand and to calculate the

structural properties of a strand with respective termination

conditions.

To proceed model linearization, the second and the higher
order deformation terms, with respect to the axial
deformation of a strand, are ignored. The following gives the

linearized equations with respect to the axial deformations

of the strand.

7.4.4-1 Linearized Internal Components

a. Bending Moment Acting on a Helical Wire

For a strand subjected to a tensile load, the bending moment
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on a single helical wire can be expressed as functions of

change in curvature of the centroidal axis of the wire as:
V' = B. ( K' - K' ) = B LK’ (7.4-33)

By substituting the linearized equation 7.4-29 into equation
7.4-33 the bending moment V' can be expressed as a function
of the axial deformation of strand, as shown below:

V' =B' (J_ € - J,. A6 ) (7.4-33)
s s

where J5 and J6 are defined as element stiffness, given in
Appendix.
b. Twisting Moment Acting on a Helical Wire

For a strand subjected to an axial load, the twisting moment
on a single helical wire can be written as a function of

change in torsion on the centroidal axis of that wire:
W=T (T-1) = T_ At (7.4-35)

By substituting the linearized equation 7.4-30 into equation

7.4-35. The twisting moment W can be expressed as a function

of the axial deformation of strand:

W=T ( 37 e - 38 AG ) (7.4-36)

where J7 and J8 are also defined as element stiffness, as

given in Appendix.
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c. Tensile Force Acting on a Helical Wire
The tensile component along the single helical wire can

reasonably be approximated by:
T, =T a E € (7.4-37)

again, by substituting the linearized equation 7.4-27 into
equation 7.4-37, the tensile force equation can be written as
functions of axial deformations of a strand:

T, =n a2 E ( J e+ 3,80 ) (7.4-38)

where J1 and J,. are given in Appendix.

2
d. Shearing Force Acting on a Helical Wire

By substituting the linearized equations 7.4-34 and 7.4-35
into equation 7.4-11 the shear force along the helical wire

can also be expressed as functions of axial deformation of a

strand.
N' = J17 Es + J18 A6 (7.4-39)
e. Radial Force Acting oﬁ a Helical Wire

By substituting the linearized equations 7.4-38 and 7.4-39
into equation 7.4-12, the radial force on a helical wire can

be written in term of axial deformation of strand:

X =17 € + 7 AG (7.4-40)
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again the element stiffness constants J17, J18' J19‘ and J2O

are given in Appendix.

7.4.4-2 Linearized Stresses Along Core and Single Helical

Wire

The aim of the current sub-section is to relate the component
stresses on each wire with the axial deformations of a
strand. This procedure allows component stresses and strains
on each wire within a strand to be expressed as functions of

axial deformation (ie Es and A6 of the strand).

For a strand subjected to axial 1load, the stresses and

strains on each of the wires are given as follows:

a. Core Wire of a Strand
1. Strain and stress on the core wire resulting from

tension alone are given by:

€ = £ (7.4-41)
c s
0 = E ¢ (7.4-42)
c s
2. Stress and strain along core wire resulting from

twisting moment alone are given by
T = J a A8/ ] (7.4-43)
cy c

¥y =t /G (7.4-44)
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b. Helical Wires of a Strand
1. Stress and strain along the helical wire resulting from

tension alone are given by:

Ew = J1 Es + J2 AB (7.4-45)
o = E € (7.4-46)
w w
2. Stress and strain along the helical wire resulting from

bending alone are given by:

&y 5 % Y

= A© L4
Ewb es + (7.4-47)
1 + K ahy 1 + Kk ahy
owb = E Ewb (7.4-48)
3. Stress and strain along helical wire resulting from

twisting alone are given by:

yw = ( J7 e+ J8 A8 ) (7.4-49)
tw = G 7w (7.4-50)
7.445 Structural Equilibrium and Properties of Single

Layer Strand

In practice, rope users are interested finding out how a new
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rope will behave under tension with various termination
conditions. The current section considers how the structural
equilibrium and properties are related with the deformation

of the single layer strand. The section 1is organized as

follows:
a. Structural equilibrium of single layer strand.
b. Structural properties corresponding to termination
conditions.
7.4.5-1 Linearized Structural Equilibrium of a Single Layer
Strand
From the preceding linearized approach, general equations

which represent the structural equilibrium of a single layer
strand subjected to axial loads with four termination
conditions can be obtained. This 1is done by substituting
linearized internal component equations, presented in
sub-section 7.4.4-1, into external equilibrium equations, as
presented in sub-section 7.4.1-2 (ie equations 7.4-15 and
7.4-16). The 1linearized structural equilibrium equations
expressed in a matrix form (ie equation 7.4-17), can also be
expressed as functions of structural deformations (ie Es and

AB) of single layer strand.

7.4.5-2 Structural Response and Properties of Single Layer

Strand

One of the main purposes of the stiffness matrix approach is
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to develop a comprehensive mathematical model which can be
applied to evaluate the structural properties of a single

layer strand subjected to combined load.

a. Strand With Free Ends
In this case, there is no torsional 1load applied to the
terminations and tension is the only external load applied to

the strand terminations. Therefore

M =20 (7.4-51)

From equation 7.4-17, the amount of unwinding rotation per

lay length of the strand resulting from tensile load is given

by

AB (7.4-52)

[1]
|
o]
(]
~
=

The effective tensile modulus of the strand is defined as

Eeff = F/ES (7.4-53)

and is, therefore, given b&

K., K, - K, K
- 1 4 2 3
Eeff = (7.4-54)

b. Strand With Fixed Ends
In this case, the rotational displacement of terminations A8

is constrained and tension is the only axial load allowed.
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Therefore,

A8 = O (7.4.55)

assuming that the torque developed at the terminations is
linearly proportional to the applied tension, the torque
generated at the terminations as a result of restriction of

rotations at the termination, is given by

K3
M= ——.F (7.4.56)
1
The effective tensile modulus, as defined previously, 1is
given by
Eeff = K1 (7.4.57)
c. Strand Subjected to Twisting Alone
In this case, torsion is +the only 1load applied to the

terminations. Therefore,

F =0 (7.5-58)

The shortening effect due to twisting of the strand induces a

compressive strain to the core wire. This is given by

K2
€ = - —5 . AB (7.4-59)

1

The effective torsional rigidity is defined as

Geff = M / A6 (7.4-60)
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and is, therefore, given by

Kl K4 - K2 K3

Geff = " (7.4-61)
1
d. Strand Subject to Combined Axial Loads
In this case, both axial tensile and twisting 1loads are

applied to the terminations of the strand. The equilibrium
equations which applied to approximate this situation has

been given by 7.4-17.

Again the effective tensile modulus and the effective

torsional rigidity are defined as

s
Eegg = F / & (7.4-62)
and
t
Gogg = M / A6 (7.4-63)
where
el = t € (7.4-64)
s s (fixed) s (twisting alone) .
t
6 =
A Ae(twisting alone) + Ae(fixed) (7.4.65)
where

€ . . ; : . ‘
s (twisting alone) is negative due to contraction

AB (fixed) is negative due to unwinding rotation.
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e. Effective Poisson’'s Ratio of Single Layer Strand

At this point, it may be useful to evaluate the ratio of the

change in strand diameter to the original diameter of the

unloaded strand. This ratio, according to the literature 3.139
defined as an effective Poisson’'s ratio, is given by:
R - R

p = — (7.4-686)

S R
where

R = ay + 2 a_ (7.4-67)

R = ay + 2 a. (7.4.68)

To evaluate the effective Poisson's ratio in terms of the
strand structural displacement (ie axial displacement), the
essential parameters which are needed, are the final radii of
core wire and helical wire corresponding to the deformation
of strand subjected to axial loads. The expressions used to

determine the final radii are:

o
n

a (1-v ss ) (7.4-69)

o]
"

a, (1 -v € ) (7.4-70)

h
By substituting equations 7.4-69 and 7.4-70 into equation
7.4-66 the effective Poisson’'s ratio of the straight single
layer strand subjected to axial loads in terms of strand

structural deformation is given by:
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v =J e + J A6 (7.4-71)

where J21 and J o are defined geometrical parameters given in

2
Appendix.
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7.5 OTHER CONSIDERATIONS

This section presents a discussion on another method for

evaluating bending and twisting stress.

a. Discussion on The Bending of Large Diameter Helical Wire
. . . . 3.21

The approximate theory, as presented in Love's treatise .

various references 3.1 - 3.20 and equations 7.4-5 & 7.4-6 of

this chapter, are applied to evaluate appéoximate bending and
twisting components along a slender single helical wire. This
is considered to be a reasonably closed form method, provided
that the wire diameter is small and the helix angle is large,
so that the wire diameter 1is very small compared with the
radius of curvature. In fact, the stress distribution as the
result of bending 1is almost 1linear. Reference 4.1 also
suggests that the radius of curvature has to be large
compared with the wire diameter when using this approximate
method:; for instance ka 50 dh and helix angle around 85
degrees or above. On the other hand, when the diameter of a
helical wire is of the same order of the radius of curvature,
the distribution of bending stress across the wire section is
non-linear as shown 1in Figure 7.5-1 a. A mathematical
treatment of the migration of the neutral axis, for large

diameter helical wires with a relatively small helix angle,

is outline below:

If the radius of the helical wire is of the same order as the

radius of curvature, the bending strain across the section of
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Figure 7-5-1
Bending And Twisting On Helical Wire
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the large diameter wire is given by:

( 1/x' - 1/k’)

ahy

wb

1/k' (1/k’' + a, )

hy
and the bending stress is given by
g = E € (75—2)

For equilibrium of internal and external bending moments, the

general equation is given by

V' = J Ob ahydAh (7.5-3)

By substituting equations 7.5-1 and 7.5-2 1into equation

7.5-3, the simplified bending moment is then given by

N A E (1/k’ - 1/k’ )
vy =—h h - (7.5-4)
1/k’
(e /R — (a /R )
N, = — — a R’ + — a R’ +
h 0 0 h 8 h

(7.5-5)

For a circular section,

R' =1/ K (7.5-6)
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see Figure 7.5-1, At this stage, one can predict the stress

distribution across a section of helical wire resulting from

bending.

b. Twisting Moment on The Helical Wire (Alternative
Method) :

From the geometrical point of view, +the torsion can be

defined as

Ad
(7.5-7)

T = 1lim
A > 0 AS
w
Therefore, for a single layer strand subjected to axial load,

the change in rotation of a helical wire, is given by

A(A¢)=Asw(rsw+m:) (7.5-8)

By using the flexural twisting theory, it can be shown that

the twisting moment on the helical wire is given by

GJ A (4)
W = (7.5-9)

AS
w

At this point, one can also predict the approximate twisting
stress across the section a helical wire resulting from
twisting moment. See Figure 7.5-1 b for <cross reference

purpose.
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c. Theoretical Analysis of Stress Due To Internal

Components

Consider a helical wire subjected to internal components as
illustrated in Figure 7.5-2. The following stress components
on an element of material at the surface points A, B and C

can be derived.

at A
1 1
_ - - 2 2 .1/2 _
01' 02 = O,a % { Oen * 4 Tyq } (7.5-10)
2 2
at B
01 = - 02 = T, (7.5-11)
at C
1 1
_ - - 2 2 ,1/2
014 0y = Ovc { Ove *+ 4 Ty, } (7.5-12)
2 2
where
4T 32 V?
(o} = + (7.5-13)
XA nd2 nd'a
T =16 W / ndS (7.5-14)
Xz ’
4T 32 V¢
o = + (7.5-15)

XC ﬂ(f TCdB

The maximum shear stress is given by
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= - 7.5-

T oax ( oy a, ) / 2 ( 16)

d. Shear Stress Distribution Across The Helical Wire
Section

The presence of shear force "N'" indicates that there must be

shear stress on the transverse planes in the helical wire. It
is not possible to use the conditions of geometry of
deformation and the stress-strain relationships except in the
development of an exact solution. However, from the
assumptions about the +validity of the bending stress
distribution, it is possible to estimate the transverse and
longitudinal shear stress distributions in the helical wire
by using only the condition of equilibrium. Figure 7.5-3
shows the geometry of helical wire section from which the

shear stress distribution is estimated. The general equation

is given by:

dM 1 J
T = — e — v dA (7.5-17)
VX
ds b1 J ,,
since dM/dS = N° (7.5-18)

Thus, equation 7.5-17 can be rewritten as

N'
T,,6 = —— ( v/b ) dA (7.5-17)
XY I JA’ Y
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N’a2

- —b ( cos 26 - 1) (7.5-18)
41

when M is the bending moment exerted on the helical wire.

7.6 Introduction to Non-linearized Model of Single Layer

Strand

For a single layer strand subjected to an axial load, a
linearized model with four known termination conditions has
been developed in the preceding section. The current section
will focus on the derivation of a non-linear geometrical
model. The known structural deformations of strand which
allow one to consider the higher order derivatives found the
deformation of helical wire are bounded by the termination

conditions. They are

a. Fixed ends ie, AB = 0

b. Combined loads ie, both ES and AB are known

In order to highlight the nature of the solution, the

organization of this section is slightly different from that

v

of the previous section:

7.6-1 Geometry of Deformation

a. Deformation of Single Helical Wire
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To proceed to the non-linear modelling for a single layer
strand it 1is 1important to be able to relate the tensile
strain along the helical wire with the known deformation of
strand within limit of proportion. The relationships between
strand and helical wire deformations have been illustrated in
Figure 7.4-4, and the principal expressions required to solve
the extension of a helical wire in terms of tensile strain,

contractions and rotation are given by:

AP
€ = —L (7.6-1)
S 3
L
R A8
AB™ = (7.6-2)
on

The radial contraction of helical radius is given by

AR v (a € + a, £ )
—_ - - c s h w - ar* (7.6-3)
R R

From the triangle of the developed helix, as shown is Figure

7.4-4 one can obtain the following relationships

s2 = (1 +¢, )2 (7.6-4)

pf (1+ € )2 4 (2 4+ 80)% (R + AR )2

By substituting equations 7.6-1, 7.6-2 and 7.6-3 into

equation equation 7.6-4, a quadratic equation can be found
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and is given by:

A€+ Be +C=0 (7.6-5)

where A, B and C are coefficients and have been given in

Appendix.

From equation 7.6-5, one can evaluate the tensile strain on a
helical wire within a strand. It can also be shown that the

helical wire tensile strain is a quadratic function.

b. Deformed Helical Geometry

At this point, it is essential to evaluate the deformed
geometry of a helical wire, so that the component forces and
moments exerted along the helical wire can be related with

the deformed geometry which is described by:

sin a (1 + € )
S

sin a = (7.6-6)
(1 + ew )
t - .
_ 28 (1 + 486" ) R sin «
cos a = > (7.6—7)
PL (1 + £ )
_ cos 2a
K'z —m (7.6-8)
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_ sin @ cos
T = — (7.6-9)

R

7.6-2 Internal Equilibrium

The internal component of forces and moments on a wire can be
evaluated in respect to the deformed geometry of wires in the
strand. The rod theory is applied to evaluate the internal

components along the helical wire.

a. Tensile force and twisting moment on a core wire are
given by.
-2
T = ( nma“”™ E ) € (7.6-10)
c c s
G J_ 46
W = —< (7.6-11)
c
PL
b. Tensile force, bending moment, twisting moment, shear

force and radial force along the helical wire are given

by

T:(nEzE)e (7.6-12)
h h w ’

V' = E I, AK® (7.6-13)
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W =G Jh At (7.6-14)
N' = WEK' -V' T (7.6-15)
X =N'"T-T, K’ (7.6-16)

7.6-3 External Equilibrium of Strand

At the final stage, the internal components of forces and
moments on each of the wires will be orientated and summed up
to the direction of the axial load applied +to the
terminations of the strand. The equations of external

equilibrium are given by:

F =m ( Th sin @ + N’ cos a ) + Tc (7.6-17)

M=m (Wsin a + V' cos a + Th R cos @ - N' R sin a )

C

7.6-4 Other Considerations

a. Classical Linear Theory:

If wires are considered as being incompressible, it should be
able to express the deformed <cross sectional area as
functions of initial sectional area of wire, helix angle and
material properties. The deformed cross sectional area of

wire is given by:
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A=A {1-(v/E)a 11/2

} (7.6-19)

b. Logarithmic Strain Approach:

A Logarithmic strain approach appears to have been suggested
for one dimensional problems. It would also be interesting to

modify +the tensile strain into logarithmic strain, the

equations being given by:

€' = Ln (1 + € ) (7.6-20)
s s
€' = Ln (1 + € ) (7.6-21)
w w

c. Full Inter-wire Grasp Condition (ie infinite friction)

For a strand subjected to axial load with infinite friction,
the tensile strain along the centroidal axis of a single

helical wire can be expressed as:

e = w w (7.22)

dSw is the final arc length of the centroidal axis of a
single helical wire.

dSw is the initial arc length of the centroidal axis of a

single helical wire.

However, the full inter-wire grasp condition is outside the
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scope of this thesis. The details of derivations will not be

discussed.

In view of the complexity of the problem, a micro-computer
software has been written for the purpose of evaluating the
results from both linear and non-linear mathematical models
for the single layer strand. Sample results are given in the

next section of this chapter.
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7.7 DISCUSSION AND CONCLUSION

7.7-1 Computation for Single Layer Strands

A PC type of micro-computer package has been developed by the
author for the purpose of evaluating stresses, strains,
structural properties of the single layer strand, internal
forces and moments on wires. A diagram representing the
general structure of this computer package for the single
layer strand is illustrated in block diagram 7.7-1. This
package solves the mechanical problem of single layer
strands, with or without a core wire and is valid within the

static linear elastic regime.

7.7-2 Results and Discussion

a. Comparison of Results

For a strand subjected to an axial load, a number of rope
investigators have described the difficulties arise from
measuring the component strains on the surface of individual
wires by using the strain gauging method. However, for
measuring the global mechanical behaviours of a 6/1 strand,
the extensometer approacﬁ has a better proven reliability.

Experimental results from Martin and Packards'e'4 for steel

strand and those from Machida'sa'1 for epoxy strand under
fixed end conditions have been compared with the present

author’s model for single layer strand. Good agreement 1is

obtained.
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STRUCTURE FOR SINGLE LAYER STRAND

—

OTHER OTHER
OPTIONS OPTIONS
SUB-MENU FOR
SINGLE LAYER
STRAND
LINEARIZED NON-LINEARIZED
MODEL MODEL
HELP AND INPUT COMPUTATION PLOT RESULTS
INSTRUCTIONS DATA & PRINT RESULTS & SCREEN DUMP

BACK TO SUB-MENU

BLOCK-DIAGRAM 7.7-1

STRUCTURE DIAGRAM OF SINGLE LAYER STRAND MODELLING

The comparisons are presented in Figure 7.7.1, 7.7.2, and

7.7.4. Results obtained from the author’'s free end model are

also compared with those experimental results from Machida's



345

NIVH1E % SA OYO] IUSNIL

80N3 03X d

2443600 4
‘N 33T — 'dXI'HYWN ——
NIVHLE %
I 8'0 g0 ¥'0 20 0

T T T T (o)

SONIQYIH H3LIN .1X3 ;
> 40L

49l
—_ VIVO TVININIEIGXS SNILEYN " dXI BYA 19

9300W Q3ZIYINIT N

ee

N 998 * Q¥Cl 371 8N3L

ONVY1S8 | 8 8Od

VIYQ YL 3N H3dX3 EN LUYN D V

T3COAN 8337 N33M 138 NOB "VdNCO

NYH18 % 8A QYO 37 EN3L

€44 36NO 3
‘NT3IFNT— NN 337 —
NIVHLS %
L 80 8'0 0 20 0
T T g | T O
49
40t
49t
102
7300 O3ZIYYINIT-NON " NNT
T300W Q3ZIBY3NIT ™ NI
92

S0ON3 g3X J

NM 796 8 x QvO1 37ISN3L

ONVH1E 1/6 HOd
1300 03ZI8VINIT-NON ONY 03Z BY3INN
8730ON 6,337 N33M 138 NOS gvdiNOD

N YHLIS % 8A O¥O1 3TIEN3L

Ldd38ND 3
NN 337 — 'dXI'HYWN ——
NIVHLIS %
L 8'0 80 ¥'0 (4 0
T T - 0
SONIQY3H B3L3N .1X3 9
40L
49t
o B iy 402
VIVO TVANINIEIIXI SNILEYN "IXI HYN
300N Q3ZIEVINIT-NON ™ NN
92

SON3 03X!d

N> #0688 x OvO1 3TIEN3L

{ONYHLS 1/Q HOL)
YI¥Q TYININ H3dXS S.N 1HYN ONY
300N © 337 NI3ML38 NOS HvdnNOO



346

for epoxy strand under same termination condition, Figure
7.7.5. In addition to these, Figure 7.7.3 illustrates the
author's own comparison between the linearized and
non-linearized models for 6/1 strand. The two results appear
to be very close to each other. This is because a very large
helix angle (ie @ > 80 degrees) is chosen for the single
helical wires. The linear tensile component is more dominant
than the non-linear components contributed from the change in

helix geometry.

The author's analytical model appears to be more accurate
than Machida's model, Figure 7.7.4 and 7.7.5. This is because
Machida's model 1ignored the shear component exerted on six

single helical wires.

b. Discussion of Sample Results

Although the mathematical model and the computer package for
the single layer strand were developed for solving general
single layer strand problems, rotational rope carrying
tensile load has to be equipped with fixed terminations for
safety purpose. For this reason, sample results given in this
section focus on 6/1 strand with fixed terminations. It is
also noted that the helix angle is the dominant parameter
with respect to change of helix geometry, the change of
internal components along the single helical wire in the
single layer strand subjected to external tensile load are,
therefore, influenced by the helix angle. Figure 7.7.6

illustrates the influence of helix angle, as an example.
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Numerical analysis of a 6/1 strand with fixed ends within

linear elastic regime is presented below:

1. Analysis Based on Steel Strand

The material properties used in the analysis are as specified
in Martin and Parker's report6'4 and the diameter of helical
wire is retained. The diameter of the core wire is varied by
considering the admissible "R/r" ratio to the helical wires
(for details, see Chapter Six). The helix angle is varied
from 60 degrees to 85 degrees. Results are presented in the

following figures:

Figure 7.7.7 {(a) shows how the tensile load shared by the
core wire depends on the applied tensile load and helix
angle. This figure shows that the share of tensile 1load
carried by the core wire increases in inverse proportion to

the helix angle.

Figure 7.7.7 (b) shows the resisting torque exerted at the
terminations as functions of the +tensile 1load and helix
angle. This figure also shows that the resisting torque is
inversely related to the helix angle chosen for the helical

~

wire.

Figure 7.7.7 (c¢), (d), (e), (f) and (g) shows the variation
of applied tensile load and helix angle with the internal
component forces and moments on the helical wire. These

figures show that all internal component forces and moments
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increase in inverse proportion to the helix angle, with the
exception that the tensile component (see Figure 7.7.7 (f))
on single helical wire increases in proportion. By comparing
these figures, one should note that the variation of tensile
force exerted on the helical wire, as the result of variation
of helix angle, is comparatively small compared to the

variation of other components exerted on the same helical

wire.

Figure 7.7.7 (h) shows the variation of strand strain and
tensile strain as a function of helix angle. This figure

shows the same properties as that in Figure 7.7.7 (f).

2. Analysis Based on Epoxy Strand

The material properties used in the following analysis are
based on those specified in Machida's paper '. The
admissible "R/r" ratio (see chapter six) is ignored so that
the diameters of helical and core wire are kept unchanged as
the helix angle is varied. In other words, the separation the
core wire from the helical wires, as the result of reducing
the helix angle, is ignored. In practical design, one should
avoid this "separation". However, an attempt has been made to
illustrate that the change in helical parameters appears to

have non-linear characteristics with the variation of tensile

load and helix angle.

Figure 7.7.8 (a) shows the change in helix angle vs the

variation of helix angle and applied tensile load.
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Figure 7.7.8 (b) shows the change in curvature vs the

variation of helix angle and applied load to the strand.

Figure 7.7.8 (c) shows the change in torsion of the helical
wire vs the variation of helix angle and applied load to the
strand. The change in torsion is increased with respect to

the helix angle and reaches a maximum at about 68 degrees

Figure 7.7.8 (d) shows the change in effective Poisson’s

ratio of the strand vs the variation of helix angle and

applied load to the strand.

3. Sample Stress Components on Core and Helical Wire

Sample stress components are presented in this sub-section
for a steel strand with 80 degrees helix angle . The material
properties are the same as those specified in Martin and
Parker's report. Results are presented in the following

figures.

Figure 7.7.9 (a) shows the variation of bending and twisting
stress exerted in the binormal and tangent directions of the
helical wire vs the applied tensile 1load applied to the
strand. The negative bending stress in the binormal direction
indicates that the surface of the helical wire in that

direction is under compression.

Figure 7.7.9 (b) shows the variation of tensile stress on the

core and helical wire vs the tensile load applied to the
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strand. By increasing the helix angle, one should be able to
ensure that the tensile stress acting on the core wire 1is
close to the order of +those on the helical wires. In
practice, one should design strands in which each wire
carries same order of tensile load to avoid unbalancing

tensile load carried by the core wire.

Figure 7.7.9 (c) shows the variation of tensile load carried
on the core wire, helical wire and helical wires in a 6/1

strand.

7.7-3 Conclusions

These conclusions are based on the static analysis of a 6/1
strand subjected to axial load with four termination

conditions,as described in the preceding section.

1. A single layer strand with fixed ends is stiffer
than that with free ends. Therefore, the strand
with fixed ends gives more control in maneuvering

applications.
2. A single layer strand with large helix angle
helical wires is stiffer than that with small helix

angle.

3. For helix angle within the practical range (60 to
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90 degrees) if the helix angle of the helical wires
is being reduced all internal component forces and
moments on the helical wires will increase
correspondingly with the exception of the tensile
component. Hence, the mechanical behaviour and
fatigue performance of helical wire will be

affected by the helix angle of the helical wire.

A decrease in helix angle does not have a
significant influence on the tensile load shared by

the helical wires.

The bending and twisting components are sensitive
to the change 1in helix angle. Because of the

geometrical properties of helical wire.

For a 6/1 strand, the tensile load shared by the
core wire is of similar order of that carried by

the helical wire.

For helical wires with large helix angle ( a > 80
degrees ), most internal component forces and
moments appeared to be less significant with the
exception of the tensile component on the helical

wire.
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CHAPTER EIGHT

STRUCTURAL MODELLING OF

MULTI-LAYER STRANDS
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NOMENCLATURE

Radius of core wire

Radius of filler wire

Radius of helical wire in ith layer, i = 2 and 3
Young Modulus

Tensile force exerted on the multi-layer strand
Tensile force exerted on the core wire of the
strand

Modulus of rigidity

Defined parameters, i = 1, 2, 3,

Defined parameters, i =1, 2, 3,

Second moment of area of helical wire in jth layer
Polar moment of area of core wire

Defined parameters, i =1, 2, 3,

Polar moment of area of helical wire in jth layer
Stiffness constants for multi-layer strand, i = 1,
2, 3 and 4

Curvature of filler wire

Curvature of helical wire in ith layer

Twisting moment applied to the strand terminations
Twisting moment exerted on the core wire

Number of filler wire

Number of helical wires in ith layer of the strand
Shearing force on the helical wire in ith layer of
a multi-layer strand

Cyclic length of a helical wire in ith layer of a
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A6
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multi-layer strand

Helical radius of filler wire

Helical radius of any helical wire in ith layer
within a multi-layer strand

Tensile force exerted on any helical wire in ith
layer

Bending moment exerted on any helical wire in ith
layer

Twisting moment exerted on any helical wire in ith
layer

Radius force exerted on any helical wire in ith
layer

Helix angle of any helical wire in ith layer

Helix angle of filler wire

Torsion of filler wire

Torsion of any helical wire in ith layer

Strand strain or tensile strain of core wire of a
multi-layer strand

Tensile strain on any helical wire in ith layer
Poisson's ratio of wire

Angle of +twist of a multi-layer strand per lay
length

Angle of twist o} any helical wire in ith layer
Change in helical radius of any helical wire in ith
layer

Change in curvature of any helical wire in ith

layer
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Ari Change in torsion of any helical wire in ith layer

Aai Change in helix angle of any helical wire in ith
layer

&i Final helix angle of any helical wire in ith layer

Ki Final curvature of any helical wire in ith layer

%i Final torsion of any helical wire in ith layer

SUBSCRIPTS

S Strand

f Filler wire

i ith layer of strand

C Core wire
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8.1 INTRODUCTION TO LINEARIZED THEORY OF MULTI-LAYER STRAND

Multi-layered strands are constructed either in form of
"cross lay"” or in form of "equal lay". Generally speaking,
"equal lay"” strands are designed to prevent cross cutting and
secondary bending of wires at the contact locations. As a
result, "equal lay" strands are expected to have longer life
than "cross lay" strands. However, "equal lay" strands are
less flexible than "cross lay" strands. In addition, equal

lay strands give rise to more rotation.

In practice, multi-layered strands are designed to carry
static and dynamic load; flexibility, fatigue performance and
other properties are considered to be secondary, depending
upon the application and service conditions. In the present
chapter, both "equal lay" and '"cross lay" are considered, but
in view of the geometric complexity of strand sections, only

three typical multi-layer strands geometries studied, namely:

a. 9/9/1 equal lay strand
b. 12/6F+6/1 equal lay strand with filler wire
c. 12/6/1 cross lay strand

-

In this analysis, the deformation geometry of +the single
helical wire is linearized by ignoring the second and higher
order deformation terms with respect to the structural
displacements of the strand, (in other words, the second and

higher order differential terms are ignored). Consequently,
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four termination conditions, as used in the linearized single
layer strand model, can also be wused in these models.
Internal forces, moments, stresses, strains and the
structural properties of the strands are considered in these
linearized models under monotonic loading to be within the
proportional 1limit of +the strand. The factors which will

influence the present analysis, are listed below.

a. Termination Conditions
The structural properties of multi-layer strands are

influenced by the termination conditionsn namely,

1. Fixed ends

2. Free ends

3. Moment alone

4. Combined loads (ie tension and twisting)
b. Wire Material:

The wire material which affects the constitutive
relationships 1in this analysis, 1is cold drawn rope
steel. It is assumed to be homogeneous, isotropic and

linearly elastic.
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STRUCTURE OF THE APPROACH TO THE MATHEMATICAL

MODELLING OF MULTI-LAYER STRAND

MATHEMATICAL
MODELLING OF
MULTI-LAYER

STRAND
EQUAL CROSS
LAY LAY
8/9/1 12/6F+6/1 12/6/1
STRAND STRAND STRAND
INTERNAL DISPLACEMENTS STRESS-STRAIN
AND
EQUILIBRIUM COMPATIBILITY RELATIONSHIP
STRUCTURAL
EQUILIBRIUM

OF STRAND

STRUCTURAL
BEHAVIOURS

BLOCK DIAGRAM 8.2-1

STRUCTURAL MODELLING OF MULTI-LAYER STRAND
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8.3 BASIC ANALYSIS AND ASSUMPTIONS

a. Basic Analysis

In this analysis, internal components of forces and moments
on each wire are formulated based on the rod theory. Tensile
strains on a core wire and helical wires in each layer are
derived from the development of a deformed axis of a single
helical wire as shown in Chapter 7 Figure 7.4-4. After
established the equations of deformation. The 1linearied
change in curvature and torsion can then be calculated by
ignoring the second and the higher order derivative terms
with respect to the structural displacements of the strand.
The linearized stresses on the helical wire can be related
with +the linearized strains by means of the constitutive
relationships. Finally, individual components of forces and
moments on each of the wires can be resolved to and summed to
the global direction of the strand. The principal procedures
require to generate models for the multi-layer strands, are

summarized below:

1. Establish equation(s) of internal equilibrium.
2. Relate internal and external equilibrium.
3. Establish relationship between deformation of

helical wire and structural displacements of
multi-layer strands.

4. Apply classical constitutive relationship to
relate load-deformation and stress-strain

along the wire.
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b. Assumptions

The assumptions made in this chapter are similar to those
made in Chapter Seven. Again, mechanical interactions are
ignored, and only mechanical responses of wire and structural
responses of strands are <considered. The strands are
considered to be loaded monotonically within the limit of

proportionality.

8.4 LINEARIZED MULTI-LAYER STRANDS MODEL

In this section, the modelling of multi-layer strands 1is

divided into three sub-sections, namely

a. External and internal equilibrium in strands
b. Deformation of single helical wires
c. Structural properties and applications

8.4-1 External and Internal Equilibrium

a. External Equilibrium

By ignoring the influence of mechanical interactions

resulting from the small helix angle of single helical wires
in each layer, the static equilibrium (ie external

equilibrium) of the multi-layer strands is given by



For 9/9/1 Multi-Layer Strands (Equal Lay)

3
F = § { m, (Ti sin ai + Ni cos ai) } o+ FC (8.1)

3

M = § {m, [ (W, - N r) sina + (Vv + T, r,)

cos a, ]} + M (8.2)
1 C

For 12/6F+6/1 Multi-Layer Strand With Filler Wires

(Equal Lay Construction)

4
F=Y) {m, (T, sin a, + N! cos «,) } + F_  (8.3)

- i i i i i c

i=2

4 —-— — —
M = ?_2 { m, [« Wi - Ni ri) sin a, + ( Vi + Ti ri)

cos @, 1} + M (8.4)
i c

For 12/6/1 Multi-Layer Strand (Cross Lay)

3
F = Z {m, (Ti sin @, + N! cos @)} o+ F_ (8.5)
i=2
3 — — —
M = §=2 {mi [£( Wi - Ni ri) sin o + ( Vi + Ti ri)

cos @, ]} + M (8.6)
i c

367
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NB: The "*" sign in equation (8.6) relates to the direction
‘of lay for the helical wire. The "+" sign corresponds to the
conventional right hand lay, whereas, the " sign

corresponds to the left hand lay.

Using the stiffness approach, external equilibrium can be

expressed through a general stiffness matrix given by

(8.7)

where the stiffness parameters for each of the strands are

given in the Appendix.

b. Internal Equilibrium

The approximate rod theory given by Love is again applied to
evaluate the internal components along the single helical
wire in each layer. Equations which represent the internal
equilibrium of single helical wire are similar to the
internal equilibrium equations for single helical wire
presented in Chapter Seven. For completeness, the internal

equilibrium equations are listed below.
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1. For Core Wire Of The Strand
2
F =na”™ E ¢ (8.8)
c c s
Mc = G Jc AGS /P3 (8.9)
2. For Helical Wire In Each Layer Of The Strand
_ 2
T. = na, E €, (8.10)
i i i
Py
V! = AK® E 1, (8.11)
i i i
t 3
W. = At. G J. (8.12)
i i i
N! = wW, K: - V! T, (8.13)
i i i i i
X, = N . - T. K. (8.14)
i i i i i

By substituting the corresponding linearized geometrical
parameters obtained from the deformation geometry of the
helix into above equations, the above internal equilibrium
equations can be expressed as functions of the structural
displacements (ie AGS and ES) of the strand.

By substituting the linearized internal equilibrium
equations, for each layer of the strands, into structural
equilibrium equations 8.1, 8.2, 8.3, 8.4, 8.5 and 8.6,
stiffness matrices for each of the strands, similar to

equation 8.7, can be obtained.
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8.4-2 Deformation Geometry

In this section, the "development technique" is again applied
to evaluate the deformation of helical wire in each layer.
However, the constructional and flattening displacements are
ignored. Hence, the deformations of helical wires with

respect to the structural displacements are given by:

a. Deformations Of Single Helical Wire In Each Layers
Aa,
E =- €, + —1 (8.15)
s i
tan «,
i
Ar . AB,
E = L+ — 4+ ( tan @, + cot «, ) Aa, (8.16)
s i i i
r. b(4
i
Ar AG,
E. = Ly + Ax, tan a, (8.17)
i . on i i
i
Ar o AG, o
€, = € sin a, + 2 cos o, + 2 cos «,
i i r i i
1 2%
(8.18)

The above equations of deformation can be expressed in terms
of structural displacements of the strand. The Aei and Ari.

are the unknowns. They can be evaluated by:
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For Equal Lay Multi-Layer Strands
By ignoring the second and the higher order differential

terms in the expression of R/r ratio, the change of helical

radius for each layer of the helical wire is given by

Ar tan 2 ( /2 - /b, ) Aa

i tan a, {sin2mi + tan2 (ﬁ/2—n/mi) }

(8.19)

For 12/6F+6/1 strand. the Arf/rf of filler wire is given by

2 2
Ar ) v r. - a, ) \ cos n/mz cot R/m2 cos &,
r,. 2 . 2
f a2 rf sin a2
(8.20)
b. For Cross Lay Multi-layers Strand
For cross lay construction, one can either use the

approximate equation 8.19 or use the classical strength of

materials method to evaluate the following equations

For first layer, Ar/r is given by

Ar - v (a; e+, &) (8.21)

r

2
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For second layer, Ar/r is given by

Ar3 - v ( a, €_+ 2 a,€,% a4k 3)
T3 T3
(8.22)
. . o “ .th
Finally, the angle of twist Aei for i layer per lay
length can be related to the angle of twist "AGS" of the

strand per lay length by using the similar triangle method
developed from the development of the cylindrical helix. This

is given by

—s i (8.23)

At this point, one should have sufficient known parameters to
solve equations 8.15 to 8.18. Hence, the linearized
geometrical changes of +the single helical wire can be
evaluated; for instance, the geometrical changes of a 9/9/1

strand are given by

1. For first layer
£, = 11 e+ 12 AGS (8.24)
Aaz = I3 es + I4 AGS (8.25)

(8.26)

1
-
™
+
—
D>
D

AK2
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Ar2 = 17 es + 18 AGS (8.27)
2. Similarly, for second layer
= 6
£, Jl e+ J2 A < (8.28)
= 6 .
Aoz:3 I, €, +J4As (8.29)
Axs = J5 e+ J6 Aes (8.30)
A = A6
T, J7 e+ J8 < (8.31)
The dimensionless geometrical parameters "Ii" and "Ji", in
this chapter, are derived based on three displacements
component ; namely: extensional, rotational and radial

displacement. They are given in the Appendix. In Costello’'s
approach, only extensional and rotational displacements are

considered.

Since the procedures for evaluating the linearized
geometrical change of single helical wire for 12/6F+6/1 and
12/6/1 strands are similar to the procedure adopted for 9/9/1
strand, this work will not be duplicated in the current
sub-section. At this point, one should have sufficient
equations to evaluate the linearized internal components
along the single helical wire in each layer of the
multi-layer strand. By substituting these linearized changes
of geometry into equations 8.10 to 8.14, the 1linearized
internal components along each of the single helical wires in
each layer can be evaluated in terms of the structural

displacements of multi-layer strand.
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8.5 DISCUSSION AND CONCLUSION
8.5-1 Computation For Multi-Layer Strands

In view of the complexity of the structural modelling for
multi-layers strands, a PC micro-computer package has been
developed by the author for the purpose of evaluating the
stresses, strains forces and moments on helical wires as well
as structural properties of the multi-layer strand (ie,
9/9/1, 12/6F+6/1 and 12/6/1 strands). A diagram representing
the general structure of +this computer package for the
linearized multi-layer strand models is similar to that as

shown in Chapter seven, Figure 7.7-1.

8.5-2 Results And Discussion

In this study (including construction of 9/9/1, 12/6F+6/1 and
12/6/1 multi-layer strand), material properties of steel wire
are being used throughout the computation. The admissible
"R/r" ratio for helical wires in each 1layer 1is also
considered. Methods used to evaluate the stresses and strains
on the helical wires of a multi-layer strand are similar to
those in dealing with the single layer strand. No contact
stresses, mechanical interactions and termination effects are
considered. Therefore, for a multi-layer strand constructed
with more than two layers, bigger discrepancies between the

present model and experiment would expect.

In this sample study, results for structural equilibrium vs
strand strain and the internal components exerted on the
helical wires with fixed end condition under linear elastic

regime are given. Discussion on the sample results of the
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multi-layer strand (ie, 9/9/1, 12/6F+6/1 and 12/6/1 strands)

are obtained from the author's own computer program.

The wire dimensions used for the numerical analysis of the

multi-layer strand are listed in the following tables:

TABLE 8.5-1

DIMENSION OF WIRES FOR 9/9/1 STRAND

LAYER DIAMETER OF WIRE HELIX ANGLE
CORE .424 1IN 90 DEGREES
1ST LAYER| .216 IN 80 DEGREES
2ND LAYER| .424 1IN 80 DEGREES

TABLE 8.5-2

DIMENSION OF WIRES FOR 12/6F + 6/1 STRAND

LAYER DIAMETER OF WIRE HELIX ANGLE

CORE .2711437 1IN 90 DEGREES

1ST LAYER| .265 IN 80 DEGREES

FILLER .10976 IN 80 DEGREES

2ND LAYER| .265 IN 80 DEGREES
Where : FILLER = Filler Wire

IN

Inch
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TABLE 8.5-3

DIMENSION OF WIRES FOR 12/6/1 STRAND

LAYER DIAMETER OF WIRE HELIX ANGLE

CORE .2711437 1IN 90 DEGREES

1ST LAYER| .265 IN 80 DEGREES

2ND LAYER| .265 1IN 73.274 DEG.
a, Discussion of Sample Results on Strand

Figures 8.5-1 and 8.5-2 show the variation of applied tensile
load vs the strand strain. In this example, a 12/6F+6/1
strand appears to be stiffer than a 9/9/1 and a 12/6/1
strand. This is simply because more wires are used to

construct the 12/6F+6/1 strand.

b. Discussion of Internal Components on Helical Wire

For a 12/6/1 cross lay strand subjected to tensile 1load,
shear force, bending moment, twisting moment and radial force
acting on a helical wire in the outer layer appear to be
larger than those actingJon the helical wire in the inner
layer. This is because the radius of curvature and torsion of
the helical wire in the outer layer are smaller than that of
the helical wire in the inner layer, Figure 8.5-3 and 8.5-7

(a), (b) and (d). However, the tensile force acting on the
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helical wires of the inner layer appears to be greater than
that acting on the helical wires of the outer layer. This is
because the helix angle of a helical wire in the inner layer

is larger than that of the helical wire in the outer layer.

For a 12/6F+6/1 equal lay strand, shear force, bending
moment, twisting moment and radial force acting on the
helical wire in the outer layer appear to be smaller than
that of the helical wire in the inner layer. This is because
the radius of curvature and torsion of the helical wire in
the outer layer are larger than that of the helical wire in
the inner layer, Figure 8.5-4 and 8.5-6 (a), (b) and (d). For
the same reason, the tensile force acting on the helical wire
in the outer layer appear to be larger than that of the

helical wire in the inner layer, Figure 8.5-6 (c).

From a practical point of view, it is useful to study the
component forces and moments acting on each layer of +the
helical wire. Any significant unbalance load shared by a
layer of helical wires will weaken the fatigue performance of

that particular layer of helical wires.

8.5-3 Conclusion

Since the construction of multi-layers strands are different,
the size of wires, number of wires per layer and the helix
angle chosen for the helical wire in each 1layer are

restricted by geometrical factors of helices. Two multi-layer
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strands with different constructions cannot have exactly the
same strand diameter. In this analysis, the author has
attempted to retain the same size of the helical wire by
adjusting the helix angle and the diameter of core wire.

Therefore, the conclusions are rather tentative:

1. The stiffness of the 12/6F+6/1 strand should be greater

than that of the 12/6/1 and the 9/9/1 strand.

2. The load acting on the helical wire in each layer of the
12/6/1 strand is even greater than that acting on the

helical wire in each layer of the 12/6F+6/1 strand.

3. The tensile force acting on the helical wire is less
sensitive than the other internal component forces and

moments to the change in helix angle.

Note: For helical wires with helix angle smaller than 60
degrees, the approximate admissible R/r ratio will diverge
from exact R/r ratio. The component forces and moments acting
on each layer of helical wires will increase significantly
with the exception of torsion and tension. The influence of
mechanical interaction will be more pronounced as the helix
angle 1is reduced to below 50 degrees. These models will
become less accurate. However, for multi-layer strands which
are designed with helix angle less than 60 degrees, are

considered as poor practice.
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CHAPTER NINE

STRUCTURAL MODELLING OF IWRC
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NOMENCLATURE

Defined parameter

Radius of king wire

Radius of helical wire in main core strand
(6/1)

Radius of core wire in outer strand (6/1)
Radius of helical wire (double helix) in outer

strand (6/1)

Defined parameters

Approximate bending stiffness of helical
strand

Defined parameters

Defined parameter

Defined parameters

Defined parameter

Defined parameters

Defined parameter

Defined parameters

Defined parameter

Young modulus of wire material

Defined parameters

Defined parameter

Tensile force acting on the main core strand
Summation of component forces on double

helical wire to the global direction of the
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IWRC

External tensile force applied to IWRC
terminations

Summation of component forces on the core wire
of the outer strands

Modulus of rigidity

Ratio of cyclic length of main core strand to
the lay length of IWRC

Defined parameter

Defined parameter

Element stiffness of helical wire in main core
strand, i = 1, 2, 3,

Defined parameters

Defined parameter

Defined parameters

Defined parameter

Element stiffness of <core wire in outer
strand, i = 1, 2, 3,

Element stiffness of helical wire in outer
strand, i = 1, 2, 3,

Element stiffness of helical wire in outer
strand, i = 10, 11, 12 and 13

Polar moment and second moment of area of
helical wire in main core strand

Polar moment and second moment of area of core
wire in outer strand

Polar moment and second moment of area of
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helical wire in outer strand

Assemble stiffness for IWRC, i = 1, 2, 3 & 4
Initial curvature, final curvature and change
in curvature of helical wire 1in main core
strand

Initial curvature, final curvature and change
in curvature of core wire in outer strand
Initial curvature, final curvature and change
in curvature of helical wire in outer strand
Stiffness for core strand, i1 =z 1, 2, 3, and 4
Stiffness for ordinary lay outer strand, i =
1, 2, 3 and 4

Stiffness for Lang’'s lay outer strand, i = 1,

2, 3 and 4

"

o
»
)

Stiffness for outer strand, j
10

Stiffness for IWRC, i =1, 2, 3 and 4

Defined parameters, i =1, 2, 3,
Defined parameters, i = 1 and 2
Defined parameters, i =1, 2, 3 and 4
Defined parameters, i = 1, 2 and 3
Defined parameters, i = 1 and 2

Applied twisting moment to IWRC

Defined parameter

Twisting moment acting on the main core strand
of an IWRC

Number of core wire of outer strand in an IWRC
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Twisting moment acting on all the double
helical wires

Number of double helical wire in an IWRC
Twisting moment acting on the king wire
Twisting moment acting on the IWRC

Twisting moment acting on all helical core
wire of outer strands in an IWRC

Number of helical strand in an IWRC

Number of double helical wire at various
locations

Shearing force acting on king wire

Shearing force acting on core wire of outer
strand

Shearing force acting on helical wire of outer
strand

Shearing forces acting on double helical wire
Lay length of core strand

Lay length of IWRC

Helical radius of helical wire in main core
strand

Helical radius of outer strand

Helical radius of double helical wire

Radial diséance from centre of IWRC to the
centre of double helical wire

Defined constants, i = 1, 2, 3, ... 10

Path length of helical wire of core strand

Defined constants, 1 =1, 2, 3, ..., 18
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Path length of outer strand

Path length of double helical wire

Tensile force acting on king wire

Tensile force acting on helical wire in main
core strand

Tensile force acting on core wire in outer
strand

Tensile force acting on double helical wire
Tensile force acting on king wire

Tensile force acting on helical strand

Bending moment acting on helical wire in main
core strand

Bending moment acting on core wire of outer
strand

Bending moment acting on double helical wire
Twisting moment acting on king wire

Twisting moment acting on helical wire of main
core strand

Twisting moment acting on core wire of outer
strand

Twisting moment acting on double helical wire
Twisting moment acting on helical strand
Radial force acting on helical wire of main
core strand

Radial force acting on core wire of outer
strand

Radial force acting on double helical wire
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First derivative of the coordinate equations
of a double helix

Second derivative of the coordinate equations
of a double helix

Third derivative of the coordinate equations
of a double helix

Change 1in helical radius of wire due to
external loads

Change in helical radius of strand due to
external loads

Change in rotational coordinate of helical
wire

Change in rotational coordinate of outer
strand

Change in rotational displacement of IWRC per
lay length

Change in helix angle of helical wire in main
core strand

Change in double helical angle

Change 1in defined parameter resulted from
external loads

Change in helix angle of outer strand
Equivalentdtensile strain on IWRC

Tensile strain of helical wire in main core
strand

Tensile strain of core wire in outer strand

Tensile strain of double helical wire
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Helix angle of helical wire in main core
strand

Helix angle of core wire of outer strand or
helix angle of outer strand

Helix angle (single helix angle) of helical
wire of outer strand when it is in a straight
line form

Double helix angle

Poisson’'s ratio of wire material

Initial torsion, final torsion and change in
torsion of helical wire in main core strand
Initial torsion, final torsion and change in
torsion of core wire in outer strand

Initial torsion, final torsion and change in
torsion of helical wire in outer strand
Initial torsion, final torsion and change in
torsion of helical strand of IWRC

Defined parameter

Defined parameter

Defined parameter, i = 1 and 2

Rope
Strand
Wire
Core

Helical wire
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Double helical wire

Helical wire (single helizx)

Core wire of outer strand (single helix)
Helical wire of outer strand (single helix)

Double helical wire
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9.1 INTRODUCTION TO LINEARIZED MODELLING OF IWRC

Independent wire rope core "IWRC" basically takes the form of
6x7 Lang's lay rope which is the simplest form of wire rope.
It is constructed by laying six "6/1" strand around a "6/1"
main core strand. The IWRC itself is also used as main core
of a six stranded rope. It gives greater resistance +to
crushing without significantly reducing the flexibility of
the rope. In addition to this, steel wire core provides
higher strength which is essential for ropes operating in a

high temperature environment.

Three main types of wire can be found in a straight IWRC,
namely:

a. Straight king wire; 2.1 % in an IWRC.

b. Single helical wire; 24.5% in an IWRC.

c. Double helical wire; 73.4% in an IWRC.

The IWRC 1is generally constructed in form of right hand

Lang's lay. However, in order to understand the mechanical

response of double helical wire, the IWRC is assumed to be

manufactured either in form of Lang's 1lay or in form of
ordinary lay.

Costello and Velinsky3'18—3'20 used the single helix approach

for modelling the structural response of the Seale rope.

However, double helical wires are considered in the present

Chapter. Factors which will influence the present analysis,

in the linear elastic regime, are listed below:
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a. Termination Conditions:
1. Tensile load with fixed terminations.
2. Combined tension and torsion applied to the

termination.

In addition to this, Velinsky's approach provides another two

more termination conditions to be considered, namely:

3. Twisting moment alone.
4. Free ends
b. Termination Attachments:

Cone with epoxy type of terminations are assumed to

be used for the rope terminations.

For model 1linearization, the 2nd and higher differential

terms, in equations of deformation geometry, are ignored.
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.2 STRUCTURE OF THE APPROACH TO THE MATHEMATICAL

MODELLING OF IWRC

STRUCTURAL
MODELLING OF
I.w.R.C.
AUTHOR'S VELINSKY'S
APPROACH APPROACH
THE IWRC IS RESOLVED INTO THE IWRC IS RESOLVED INTO

CORE STRAND

STRAIGHT KING WIRE
SINGLE HELICAL VWIRE
HELICAL STRAND HELICAL STRAND
SINGLE HEL. CORE WIRE MODELLED BY STRAIGHT -
DOUBLE HELICAL WIRE STRAND), ie

STRAIGHT CORE WIRE
SINGLE HELICAL WIRE

CORE STRAND
STRAIGHT KING WIRE
SINGLE HELICAL WIRE

L R SRR
A~ % »

*» »

INTERNAL DEFORMATION STRESS-STRAIN
EQUILIBRIUM GEOMETRY RELATIONSHIP

STRUCTURAL
EQUILIBRIUM

STRUCTURAL
BEHAVIOURS

BLOCK DIAGRAM 9.1

STRUCTURAL MODELLING OF IWRC
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9.3 BASIS OF APPROACH AND ASSUMPTIONS

.An IWRC is considered as a statically indeterminate
structure. Each of the internal component forces and moments
acting on each of the wires will be resolved and summed in
the 1loading direction. The Dbasis of the current model

approach is summarized as follows:

1. Establish equation(s) of internal equilibrium
(based on naturally curved rod theory) for
each individual wire in the IWRC.

2. Relate internal and external equilibrium
using Costello’'s approach.

3. Establish relationships between the
deformation of helical wire and structural
displacements using the development technique
and the author's method for double helix
geometry.

4. Apply classical constitutive relationship to
relate load-deformation or stress-strain along

wires in the IWRC.

The assumptions made in this Chapter are similar to the
assumptions made in Chapter 7. In addition to these, the

influence of mechanical interactions is also ignored.
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9.4 VELINSKY'S APPROACH TO THE ANALYSIS IWRC

Velinsky3'18 & 3.19 suggested that the internal tension and
twisting moment acting on outer strand of a Seale rope can be
considered as the external +tension and twisting moment
applied to a straight strand of same size and construction.
Based on this concept, the present author will modify
Velinsky's model in order to form an analytical model +to
predict the structural behaviour of an IWRC. The procedure is

presented in the following sub-sections.

9.4-1 Organization of This Section

This section is generally arganized into {wo main

sub-sections as shown in the block diagram below:

VELINSKY'S APPROACH

ANALYSIS OF ANALYSIS OF

CORE STRAND HEL. STRAND

BLOCK DIAGRAM 9.2

VELINSKY'S APPROACH
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9.4-2 External and Internal Equilibrium

External and internal equilibrium on an IWRC model are

considered in this sub-section. These include:

1. external equilibrium on the IWRC and
2. internal equilibrium on main core strand and outer
strand.
a. External Equilibrium on The IWRC

Velinsky's approach is to incorporate a outer strand (ie a
single helical strand) with a main core strand of an IWRC is
in much the same manner as a helical wire (ie a single
helical wire) is incorporated with a core wire of a straight
strand. In this approach, the total forces and moments
exerted in each individual strands are oriented and summed to
the global direction where external tensile force and
twisting moment are applied. The external and internal
equilibrium exerted on the IWRC model under combined loading

condition ( as presented in Chapter seven ) are given by

FR = m_ (TS sin B + N g ©os B ) + FC (9.1)
MR = m_ { ( Ws - N; r_ ) sin B + ( VS + TS rs) cos B }
+ M (9.2)
c

(The notation used in this Chapter is the present author’'s
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own, where TS and WS are the equivalent internal tension and
twisting moment acting on a helical strand. The equivalent
internal tension TS and twisting moment WS are obtained by
considering the external and internal equilibrium on a

straight strand of same size and construction.)

b. Internal Equilibrium of Main Core and Helical Strand

1. Internal Equilibrium of Main Core Strand

Procedures for the evaluation of total internal equilibrium
will not be repeated as they are similar to those described
earlier and one can refer to Chapter Seven for details. The
equilibrium equations on the main core strand corresponding

to the global displacement of the IWRC are given by

KS Ko R S
c c = (9.3)
K3 K4 AGR MC
whereas, the equilibrium equations corresponding to the
external applied load are given by
TC =m_y { Tch sin «_, + N oh €95 %y } o+ FCh
7 (9.4)
wc = mch t wch - N ch Fch ) sin ach + (v ch + Tch ch
cos ach } + Mch
(9.5)
2. Internal Equilibrium of Helical Strand

In order to evaluate the equivalent internal component forces
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and moments acting on a single helical outer strand, rod
theory from Love 3.21 together with Velinsky's approach for
Seale rope will be applied to evaluate the equivalent
tensile, shear and radial forces as well as the twisting
moment. In addition to this, Timoshenko's theory for spring
and Costello’'s approach for stranded spring will also be used
to evaluate the equivalent bending moment acting on the same
outer strand. Finally, the internal equilibrium on the outer

strand can be regarded as functions of axial deformations of

the IWRC model, and a system of equilibrium equations are

given by
_ ,h h
Ts = Kl eq + K2 AeR (9.6)
_ _h h
ws = Ks ER+K4 ABR (9.7)
v’ = A AK' (9.8)
S S S
N’ =¥ K - Vv T (9.9)
S S S S S
X = N’ T - T K (9.10)
S S =4 S S

Where the internal equilibrium force ”Ts" and moment "Ws"
acting on the outer strand, in accordance with Velinsky’s
approach, can be approximated by balancing the external and
internal equilibrium on a straight strand of same size and

construction. They are given by
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Ts = Msh { Tsh sin o{sh + N sh ©°° ash b+ Fsc
(9.11)

i. For Lang's Lay:

Wy =omgy CCW = N rgy ) osima v (VI 4
+ TSh roh ) cos a_ } + Msc (9.12)

ii For Ordinary Lay:

ws = Msh t - wsh - N sh Tsh ) sin 0{sh’- ( Vsh +
+ TSh roy ) cos «* } o+ M_. (9.13)

By expressing the deformation of the centroidal axis of the
outer strand in terms of the structural displacements of the
IWRC equations 9.12 and 9.13 can be rewritten as functions of
ER and AGR. These two equations can be expressed in the form
of equations 9.6 and 9.7. Likewise, equations 9.8, 9.9 and
9.10 can also be expressed as functions of structural

)
displacement of the IWRC. They are given by

’ - S S
\Y ¢ = Ks eg ¥ K6 AGR (9.14)
, - S s
N'g = K; €g + Kg A6 (9.15)
_ S s
X g = Kg ER + Klo AGR (9.186)

All expressions for geometrical and stiffness constants are

collected in the Appendix.

Note: Structural displacement

AGR and CR are defined as structural (or axial) deformation
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of an IWRC.

9.4-3 Deformation of Single Helical Wire and Strand

Now the development technique 1is applied +to relate the
deformations of single helical wire and single helical outer
strand as functions of the structural displacements of the
IWRC. Since IWRC will be subjected to ‘"constructional
displacements” in the low load region (range normally from no
load to 20 ¥ of UBL). This phenomenon is pronounced in fibre
core rope and 1is insignificant in single layer strand.
However, both constructional and flattening displacements are
ignored 1in this analysis. Finally, deformation of single
helical wire and single helical outer strand as functions of

the structural displacement of the IWRC are given below:

a. Single Helical Wire of Main Core Strand

By applying the "Development Technique" and taking the
total partial derivative of the single helix geometry
with respect to the structural displacements, the
linearized deformation of a single helical wire can be

expressed by the following equations:

Ep = cl eg + (;2 AeR (9.17)
Aach: c;3 ER + (;4 AeR (9.18)
AK'Chz G5 eR+ GGAeR (9.19)



401

At =G E_+ G A8 (9.20)

b. Outer Strand of The IWRC

The "Development Technique" can, similarly, be applied
to relate the displacement of the centroidal axis of an
outer strand as a function of the structural
displacements of the IWRC. The corresponding equations

are given by

€. © I1 ep + I, AGR (9.21)

ABSC: 13 ep + I4 AGR (9.22)

bR = I e + I, A6, (9.23)

Ar_ = I, €p + I 86, (9.24)
Velinsky:;'18 also showed that the twisting moment acting on

the outer strand could be considered as the twisting moment
acting on the straight strand of same size and construction.
Hence, the change in torsion resulted from the same amount of
the twisting moment applied to the straight strand is given

v

by

Arshz J7 ER + J8 AGR (9.25)

where I, J and G are parametric variables dependent on the

wire helix geometry. They are given in Appendix.
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9.4-4 Stress-Strain Relationship

The material constant and stress-strain relationship applied

in this analysis are exactly the same as those presented in

Chapter 7.

9.4-5 Structural Equilibrium

By incorporating the outer strands with the main core strand,
the structural equilibrium of the IWRC can then be obtained,
by substituting equations 9.3, 9.6 - 9.9 into equations 9.1
and 9.2. A stiffness matrix which represents the external

equilibrium of the IWRC, in terms of structural deformations,

is given by

"

R R

1 2

R R

3 K4 A6 M (9.26)

at this stage, Velinsky's approach for solving the structural

response of the IWRC has been completed and results will be

discussed in section 9.6.
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9.5 AUTHOR'S APPROACH TO THE ANALYSIS OF IWRC

An IWRC 1is constructed from 49 individual steel wires,
including one straight King wire, twelve single helical wires
and thirty six double helical wires. From the design point of
view, therefore, it is useful, to know how double helical
wires behave and how the load is shared by each type of wire.
The helix geometry of the double helical wire is periodic;
this implies that the internal components forces and moments
also vary periodically on each cyclic length of the double

helical wire. The present analysis has been stimulated by

this concept.

9.5-1 The Organization of This Section

This section is organized into three portions as shown in the

following block diagram.

AUTHOR'S APPROACH

ANALYSIS OF ANALYSIS OF ANALYSIS OF
CORE STRAND CORE WIRE OF DOUBLE HEL-
OF IWRC HEL. STRAND ICAL VWIRE

BLOCK DIAGRAM 8.3

AUTHOR'S APPROACH
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.5-2 External and Internal Equilibrium

ternal and 1internal equilibrium on the IWRC model are

nsidered in this section. They include

1. External equilibrium

2. Internal equilibrium

3. Internal equilibrium
strand.

4. Internal equilibrium

External Equilibrium

e structural equilibrium on

on the IWRC
on the main core strand.

on the core wire of the outer

on the double helical wires.

on The IWRC

the IWRC model is obtained by

orientating and summing all the component forces and moments

acting on each individual wire to the global direction of the

Iw

€eq

RC where the external load applied. The equilibrium

uations are given by

5]
"
1}
-
+
|
+
5]

R Z Fw c sc dh

"
=
+
=
+
=

MR = Z Mw c sc dh

(9.27)

(9.28)

where the subscript of the equations are given by

R

w

sSC

dh

Rope
wires in IWRC

core strand

core wires of single helical strand

double helical wires
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b. Internal Equilibrium on Core Strand
1. Internal tensile force and twisting moment acting on the

King wire

TK = F10 ER (9.29)
MK = F11 AGR (9.30)
2. Internal component forces and moments acting on a

helical wire

TCh = G10 ER + G11 AGR (9.31)
Y Ch: G 128 R+ G 13A6 R (9.32)
W.on = Gy g * Gy AGR (9.33)
XCh = G16 ER + G17 AGR (9.34)

Therefore, the external and internal equilibrium on the main

core strand is given by

TC = m c{ TCh sin « . + N ch ©°S ach} + TK (9.35)
wc = e t A wch - N‘ch Teh ) sin 0‘ch + vch +
Tch rh ) cos a } o+ MK (9.36)
d. Internal Equilibrium on a Core Wire Of Outer Strand

The approach which is applied to evaluate the internal

component forces and moments acting on a single helical core
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wire within an outer strand is similar to those described in
Chapter Seven. The linearized internal component forces and

moments equations are given below

1. Internal component forces and moments acting on a single

helical core wire of outer strand are given by

cc ° Ilo €n *+ I11 AGR (9.37)
VSC = Il2 ER + I13 AGR (8.38)
e = 114 ER + 115 AGR (9.40)
NSc = I16 Ep *+ 117 AGR (9.41)
2. Total Equilibrium on a Single Helical Core Wire
Fscz msc{ TSc sin B + N cc ©OS B 1} (9.42)
M =m__ { (W_-N r ) sin B + (V' +
sc sc sc sc sc sc
TSC r_. ) cos B} (9.43)
e. Internal Equilibrium on a Double Helical Wire

The centroidal axis of a double axis can be regarded as a
three dimension space curve. By applying the rod theory, the
general internal equilibrium equations applied to a single
helical wire can also be applied to a double helical wire.
However, the final form of the internal equilibrium equations
for the double helical wire will heavily influenced by the

geometry of the double helical wire. The general internal
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equilibrium equations for a double helical wire are given by:

1. Internal Component forces and moments acting on the

double helical wire are given by

Tan = L1o g * L11 %% (9.44)
Véh = le ep + L13 AeR (9.45)
wdh = L14 ER + L15 AGR (9.46)
Ninh = Lig 5 * Ly7 8% (9.47)

2. Total Equilibrium Of Double Helical Wires
Fdhz mdh{ Tdh sin a + N‘dh cos o } (9.48)

For Lang's Lay

M W - N )sinadh+(V' +

an= Mant ( ¥gp "dh Tdh

dh
Tdh T ih ) cos adh } (9.49)
For Ordinary Lay:
Man™ g -0 Way - Ny rgp ) osinoogy ( Vin
Tdh T ih ) cos i } (9.50)

A schematic diagram illustrating the significance of various
parameters used in the above equations is shown in Figure

9.1.
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With Same,
3 dh

IWRC

Angle Of Rotation

Where M )

Center Line Of

Double Helical Wire
Figure 9.1

Line Model Representing Internal Components

Exerted On Any Point 'p’ Along The Double
Helical Wire
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9.5-8 Deformation of Helical Wires and Strand

In order to evaluate the deformation of helical wires and
strands with respect to the structural displacements of the
IWRC, both vector differential geometry and development
technique are used. Constructional and flattening

displacements are ignored.

Vector differential geometry is mainly used to evaluate the
change in curvature and torsion along centroidal axis of a
double helical wire. The development technique 1is used to
evaluate the translational and rotational deformation of
helical wires resulting from the application of external

loads to the termination of the IWRC.

a. Deformation of a Single Helical Wire within the
main Core Strand

By applying the "Development Technique", as illustrated in

Figure 9.2 (a), the linearized deformation of single helical

wire with respect to the structural displacements of the IWRC

( in terms of tensile strains ) is given by

ba h
eE. =€, + —=2 (9.51)
R ch tan «
ch
Arch Aech
e = & + —= 4+ ( tan @, + cot a . ) Adch
ch 2n

(9.52)
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Ar h AB h
Eh = c + < +A(xh tan ach (9.53)
¢ T eh 2n ¢
Ar A6
- . 2 ch 2 ch 2
Ech = ER sin dch + cos (Xch + coOSs (lch
r 2%
ch
(9.54)

Amongst these equations, the two unknowns are Arch/rch and
AB . A i i
ch/2 However, rch/rCh can be determined by the classical

linear elastic theory, and is given by

ch ech ) (8.55)
By applying the "development technique” to the deformed core
strand, Aech can be obtained in terms of AGR:

P

_ _ch A48
Aech = PI‘ R (9.65)

Substituting equations 9.55 and 9.56 into equation 9.54 and
9.51 respectively, the tensile strain and change in helix
angle of the single helical wire in terms of structural

displacements AGR & €. of the IWRC are given by

R

Ech = G1 ER + G2 AGR (9.66)

Arch = (}3 €p + G4 AGR (9.67)

By taking total partial derivatives of +the equations of
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curvature and torsion with respect to the structural
displacement of the IWRC, the change in curvature and torsion
of a single helical wire can be expressed as 1linearized

equations. They are given by

AK' = G. €, + G, A6 (9.68)

+ G, A6 (9.69)

where the geometrical parameters Gi are given 1in Appendix,

where 1 = 1, 2, 3,

b. Deformation of a Core Wire Within An Outer Strand

The core wire of the outer strand is a single helical wire.
Thus, the deformation of the core wire is similar to the
deformation of any single helical wire obtained by the
"development technique". Therefore, the deformation of +the
single helical core wire is given by the following

expressions

AB
€ = € + — (9.70)
R se tan B
Ar AB R
€n = S + + ( tan B + <cot B ) 4B
r
s 2%
(9.71)
Ar s A6 R
€e T + + AB tan B (9.72)

s 2%
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Ar A8

CcOs

sc R r on

(9.73)

In these equations, the only unknown is Ars/rs. However, by
using the classical theory of elasticity and taking the
Poisson's effect of wire material into consideration. The

expression which relates the change of the strand helical

radius is given by

S - 1% ¢ +L§A6R +L%5e . +LS5¢ (9.74)

This is obtained by equation 9.74 into equations 9.70 and
9.73 respectively. The linearized equations representing the

deformation geometry of the single helical core wire are:

esc = I1 SR + 12 AGR (9.75)
Aasc = I7 ER + I8 AGR (9.76)
AKéc = 15 Ep + 16 AGR (9.77)
Arsc = 17 €p + 18 A6 (9.78)

AN

where the geometrical parameters are given in Appendix.

c. Deformation of Double Helical Wire
For an IWRC subjected to axial deformation, the "Development

Technique" is again the principal technique applied to
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evaluate the extension of +the double helical wire. In
addition to this, the vector differential geometry is also
used to evaluate the double helix angle, curvature and
torsion along the deformed double helical wire. The
approach, which is used to evaluate the deformation of the

double helical wire, is given below:

1. Extension of a Double Helical Wire

The extensional deformation of a double helical wire can be
derived from its deformed centroidal axis as shown in Figure
9.2 (d). Expressions describing the extensional deformation

of the double helical wire are given by

Aa h
€ = € + —3=2 (9.79)
sc sh
tan «
sh
%
Ar AB
e = —=h Sh+(tan<xh+ cot @_ ) Ax_,
sc rh on s s s
(9.80)
:
Ar AG
Eh=r5h+ Sh+AC!htanoth (9.81)
s sh on s s
’ %
Ar AB
_ . 2 sh 2 sh 2
Esh = Esc sin ash+ —— cos ash+ cos ash
r 2%
sh
(9.82)

As usual, the unknowns are Ar _ /r and s6® as found in the
sh’ " sh sh

above equations. By applying the classical theory of
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elasticity the former parameter is given by:

sh _ .o o o
- = L1 Ep + L2 AGR + L3 €ch (9.81)
sh
where L? is given in Appendix.(i = 1, 2, 3)

The latter unknown AG;h corresponds to the angle of twist per
lay length of the "straightened"” outer strand of the IWRC. It
is necessary to relate the angle of twist per lay length of
the IWRC to the induced angle of twist on each individual
helical wires. By using the similar triangle developed from
the double helical wire, an expression relating the angle of
twist of the helical outer strand with the angle of twist of

the IWRC is given by

3

86 sh = PshAesh/rsh (9.82)
where

GR = Q6 <h (9.83)

Q = r_, cos B tan LI / ron (9.84)

This relationship has been given in Chapter Four. By taking
the total partial derivative of 9R with respect to Q and esh'
and then back substituting to equation 9.82 +the second

unknown in terms of the structural displacement of the IWRC

is given by
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sh _
= 815 ER + 815 AGR +S17 esc + 318 Esh (9.85)

By substituting equation 9.85 back to equation 9.81, the
linearized tensile strain along the double helical wire 1is

given by

€ = J., €. + J._ A6 (9.886)

where Jl and J2 are given in Appendix

2. Change of Double Helical Wire Geometry

The vector method, which is applied in this sub-section, is
to determine the change of geometry of the double helical

wire with respect to the extension of this wire.

i. Change in Double Helix Angle
The change in double helix angle corresponding to the change

in structural displacements of the IWRC is given by

Ay = %4n dh

R
|
R

(9.87)

where the final helix angle of the double helical wire

resulted from the structural displacements is given by

1 | Z + az |
% = ten {

_ }
[ (X + aX)2 + (Y + aY)? T/2
(9.88)
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ii. Change in Curvature and Torsion of a Double Helical

Wire

The changes in curvature and torsion of the double helical
wire are essential parameters for evaluating the flexural

bending and twisting of the wire resulting from extension.

The change in curvature of the double helix is given by

AK dh - K dh ~ K dh (9.89)

The change in torsion of the double helix is given by

Ardh = Tyn - Tin (9.90)

where the final curvature and torsion of the double helix are

given by
- ([(YZ + d¥Z)-(2V+d2¥) 12+ [ (2K+d2%) - (XZ+dXZ) 1%+
k’ = -
dh ((X+dX)2 + (V+av)2 + (2+az2)2)3/2
...... [(X¥+dX¥) - (YE+dVE)12) (5.91)
and
(X+dX) (Y+dY) (Z+dZ)
(X+dX) (Y+dY) (Z+dZ)
_ (X+dX) (Y+dY) (Z+4dz)
= .

dh ~ [(YZ + aVZ)-(2¥+d2Y) 12+ [ (2X+d2%) - (XZ+dXZ) 1%+
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(9.92)

[[(XV+dX¥V) - (YX+aY%) ]2

where . first derivative of coordinates
second derivative of coordinates

third derivative of coordinates

At this point, the analysis has sufficient known parameters
to evaluate the mechanical responses of both Lang's lay and
ordinary type of IWRC. In view of the complexity, Computer
programmes have been produced for the numerical analysis of

the mechanical response of the IWRC.

iii. Change in Length of a Double Helical Wire

As well as the development method applied to evaluate the
change in length on the double helical wire under full
inter-wire slip condition, ie frictionless condition. The
change in axial length of the double helical wire under full
inter-wire grasp condition (ie where full inter-wire slippage
can occur between wires) can also be determined by the vector
method. The change in axial length along the double helical

wire is given by:

6S = deh - deh (9.94)

Where

as.. = ( %2 + ¥2 4 72 )1/2 a6 (9.95)

dh h
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By substituting the change in coordinates resulting from the
Poisson's effect and the change in wire rotation into
equation 9.95, the final differential 1length dédh can be

evaluated.
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9.6 DISCUSSION AND CONCLUSION

Based on the author's and Velinsky's approaches, a
micro-computer package has been developed for the purpose of
evaluating the internal component forces & moments, stresses
& strains acting on the wires and the structural responses &
properties of the IWRC. A schematic diagram representing the
structure of this computer package is illustrated in block

diagram 9.6.1. This diagram is as shown below

MAIN MENU FOR BOTH LANG'S AND
FOR IWRC ORDINARY TYPE OF IWRC
AUTHOR'S VELINSKY'S
SUB-MENU
APPROACH APPROACH
HELP AND INPUT COMPUTATION &
INSTRUCTION DATA PRINT RESULTS

3
o

BACK TO SUB-MENU

BLOCK DIAGRAM S.6.1

STRUCTURE DIAGRAM OF THE APPROACH TO IWRC MODELLING
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9.6-1 Brief Description of This Section

The sample results presented in the following sub-sections
are obtained from the author's own computer package developed
for the mathematical modelling of IWRC. The wires dimensions
used for the sample analysis are extracted from Velinsky's
thesis and are tabulated in section 9.6-2. The material
properties of wires for the IWRC are based on those
properties of steel wire. Finally, only the fixed end
termination condition is considered. Various computer results

for the IWRC are presented in section 9.6-2 and 9.6-3.

9.6-2 Results and Discussion (Velinsky's Approach)

The following tables give the dimensions of the IWRC within

the 6x19 Seale rope (taken from Velinsky's Thesis)

Table 9.1 lists the dimensions of wires in various strands

(in straight form) used to construct the IWRC.
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TABLE 9.1

CORE STRAND (6/1)

WIRE RADIUS OF WIRE HELIX ANGLE LIMITED HELIX ANGLE
CORE 0.03155 1IN 90 DEG. N.A.
HEL. 0.028925 1IN 73.707 DEG. 70.619 DEG.

OUTER STRAND (6/1)

CORE 0.027725 1IN 90 DEG. N.A.

HEL. 0.025815 1IN 81.066 DEG. 72.4125 DEG.

Table 9.2 lists the dimensions of strands used to construct

the IWRC.
TABLE 9.2
RADIUS OF STRAND HELIX ANGLE LIMITED H.A.
CORE STRD. 0.0894 IN 90 DEG N.A.
HEL. STRD. 0.079355 IN 70.83 DEG 67.3504 DEG

Abbreviations used in the figures of this section are given

as follows:

C.STD.H. W Helical wire of core strand
HEL.C.VW. Helical core wire of outer strand
D.H. WIRE Double helical wire of outer strand

H.W. Helical Wire
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Discussion of The Results Obtained From Velinsky's Approach

Figure 9.6.1 shows the tensile strain acting on each of the
wires within the IWRC subjected to external tensile 1load
applied to the termination. Obviously, the king wire carries
the highest tensile load and the double helical wire carries
the smallest tensile load, as illustrated in Figure 9.6.2.
This is because double helical wire is the 1longest wire

whereas King wire is the shortest wire within the IWRC.

Figures 9.6.3 and 9.6.4 show the bending and twisting moment
developed on the helical wire of the core strand and the
outer strand of the IWRC. These two figures illustrate that
the effective bending and twisting moments developed on the
outer strand are higher than those developed on the single
helical wire of the core strand. The author, in this example,
intends to emphasize that there is "tertiary bending"‘ on the
outer layer wires of the adjacent strands at the contact
location resulted from the unwinding rotation of the outer

strand.

Remark:

For a rope subject to tension or twisting moment, the
tertiary bending 1is regarded as one of the mechanical
interactions. When the outer layer wires of a strand are

resting in the valleys provided by outer layer wires of the
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adjacent strands, then the third type of bending moment will

develop on any outer layer wire of the strand resting in the
valley at the contact locations provided by the outer wires
of the adjacent strands resulted from the unwinding rotation

of wires and strands.

The advantage of using Velinsky's approach is that one can
evaluate the equivalent bending and twisting moment for each
of the strands under the preceding defined termination

conditions. The limitations of velinsky's approach are that

it is:
a. applied only to frictionless condition,
b. used to evaluate equivalent component forces and
moments acting on the single helical strand and
c. applied to evaluate the global mechanical behaviour

of a rope; eg notional stiffness of a rope.
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9.6-3 Results And Discussions (Author's Approach)

Results obtained from the author’'s computer package developed

for the static analysis of IWRC are presented below:

Abbreviations used in the figures of this section are given

as follows:

H.W. Helical wire
STD & STRD Strand

IWRC Independent wire rope core

Figure 9.7.1 shows the tensile strain developed in each
helical wire against the +tensile strain of the IWRC.
These results are similar to those obtained from Velinsky's
model. It is because the results obtained are also based on a

frictionless model.

Figure 9.7.2 illustrates the variation of bending and
twisting component acting on the double helical wire. The
"out-of-phase"” characteristic between the bending and
twisting component on the double helical wire arises
basically from the "outiof—phase" characteristic between

curvature and torsion of the double helical wire (see Chapter

5).

Figure 9.7.83 illustrates the variation of the shear force and
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radial force along the double helical wire. The variation of
radial force along the double helical wire arises from the
variation of curvature, torsion and double helix angle. The
variation of depth and width of "grooves" on the surface of
the helical core wire of the outer strand reveals this

physical significance (see Chapter three).

Figures 9.7.4-7 shows bending moment, twisting moment, shear
force and radial force developed on the single helical wire
of the main core strand and the core wire of the outer

strand.

Figure 9.7.8-9 shows the variation of radius of curvature and

torsion along a undeformed and deformed double helical wire.

9.7 CONCLUSION

a. Velinsky's approach is based on a stiffness matrix
treatment. Hence, the structural properties of the IWRC
under defined termination conditions (ie, fixed end,
free end, twisting moment and combined loads) can be
addressed. However, one can not apply this approach to
evaluate the componént forces and moments developed
along the double helical wire and the helical core wire
of the outer strand. On the other hand, the author’s
approach provides a closed form method to evaluate the

component forces and moments along the double helical
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RADIUS OF CURVATURE
(DOUBLE HELIX IN IWRC)

RADIUS OF CURVATURE (INITIAL & FINAL)

2
1.6-“
1+
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0 L 1 1 1 1 1 1
0 60 100 160 200 260 300 360

WIRE ROTATION COORDINATE IN DEGREES

— INITIAL —+—FINAL

FIGURE 9.7.8
RADIUS OF CURVATURE ON UNDEFORMED
AND DEFORMED DOUBLE HELICAL WIRE
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RADIUS OF TORSION
(DOUBLE HELICAL WIRE OF IWRC)

INITIAL AND FINAL RADIUS OF TORSION

10

] 1 4 i

0 1 ] |
0 60 100 160 200 260 300 360
WIRE ROTATIONAL COORINDATE iN DEGREES

— INITIAL —+FINAL

FIGURE 9.7.9
RADIUS OF TORSION ON UNDEFORMED
AND DEFORMED DOUBLE HELICAL WIRE
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wire and the helical core wire of the outer strand of
the IWRC. However, the author's method is limited to

fixed end and combined load conditions.

The internal components of forces and moments developed
on the single helical wire are constant along the length
of the helical wire if the mechanical interactions are

ignored.

The internal component forces and moments developed on
the double helical wire vary along the length of that
wire. This is fundamentally due to the variation of

double helix geometry.

The "out-of-phase"” characteristic between bending moment
and twisting moment along the double helical wire
corresponds to the "out-of-phase" characteristic between

curvature and torsion of that wire.

The double helical wire develops the smallest tensile
strain as compared with the king wire or single helical
wires of the IWRC. This is because the double helical
wire is longer than the king wire and the single helical
wire within any longitudinal section of a rope

structure.
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9.8 SUGGESTION ON FUTURE RESEARCH WORKS

The author hopes that the present theoretical analysis and
approach will be useful to both industry and academic world.
It is also hoped that this thesis will motivate others to
carry out further theoretical and experimental analysis of
other rope problems. There are a number of suggestions about

the theoretical analysis of wire rope worthy mentioning:

a. An analytical study of the influence of mechanical
interactions, eg secondary and tertiary bending on the

double helical wire.

b. To refine the analytical fretting and contact stresses

analysis between wires at the contact locations.

c. Mathematical modelling of the strand and rope bent over
sheave or wound around drum, eg for a large diameter
wire rope subjected to tension-tension fatigue, the rope
can be last for millions of block cycles. However, for a
rope with similar construction subjected to
bending-tension fatigue test, the rope can only last for

-

many thousand block cycles.

d. The influence of kinking of strand and rope to the
damage of wires within the region of kinked rope. For a

rope subjected to kinking, the service life of the rope
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will be significantly reduced.

e. Mathematical modelling of the pattern of contact patches
within any construction of round stranded ropes.
Although it is a potential that the fretting may cause
the propagation of fatigue cracks on the helical wires,
see Chapter three. The locations of the contact patches
on the helical wires and the geometrical configuration

will directly influence the fatigue performance of a

rope.

Wire ropes are complicated structures, characterized by a
great variety of geometrical patterns. However, most designs
are based on experiences and experimental grounds. Therefore,

it will be very useful if more research work can be carried

out on theoretical aspects.
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GLOSSARY OF WIRE ROPE TERMS

ABRASION Frictional surface wear on the wires of a rope.

AGGREGATE AREA See AREA, METALLIC.

AGGREGATE STRENGTH The estimate of strength derived by summing the
individual breaking strengths of the elements of the strand or rope.
This estimate does not give recognition to the reduction in strength
resulting from the orientation of the wires in the rope, or other

factors that may affect efficiency.

ALBERTS LAY See LAY, TYPES.

ALTERNATE LAY See LAY, TYPES.

AREA, METALLIC Sum of the cross-sectional areas of all the wires

either in a wire rope or in a strand. Wire sectional shape is

approximated by either a circle or an ellipse.

BENDING STRESS Stress that is imposed on the wires of strand or rope

by bending.

-

BIRDCAGE A colloquial description of the appearance of a wire rope
forced into compression. The outer strands form a cage shape and, at

times, displace the core.
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BREAKING STRENGTH The ultimate load at which a tensile failure occurs
in the sample of wire rope being tested. The term breaking strength is

synonymous with actual strength.

Minimum Acceptance Strength is the strength which 1is 2%% lower than
the catalogue or norminal strength <(normally provided by the rope
manufacturer)., This tolerance is used to offset variations that occur

during sample preparation and actual physical test of a wire rope.

Nominal Strength is the published (catalogue) strength calculated by a
standard procedure which is accepted by the wire rope industry. The
wire rope manufacturer designs wire rope to this strength, and the

user should consider this strength when making design calculations.

BRIDGE CABLE <(Structural Strand or Rope) The all-metallic wire rope

or strand used as the catenary and suspenders on a suspension bridge.

BRIDGE SOCKET A strand or wire rope end termination made of forged or
cast steel that is designed with baskets - having adjustable bolts -
for securing rope ends. There are two styles: 1) the closed type has a
U-bolt with or without a bearing block in the U of the bolt, and 2)

the open type has two eye-bolts and a pin.

BRIGHT ROPE Wire rope fabricated from wires that are not coated.

BRONZE ROPE Wire rope fabricated from bronze wires.

CABLEWAY System for transporting single loads along a suspended track

cable.
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CLASSIFICATION Group, or family designation of wire rope

constructions with common strengths and weights.

CONSTRUCTION Geometrical design description of the wire rope. This
includes the number of STRANDS in a rope, the number of WIRES per

strand and the pattern of wire arrangement in each STRAND.

CONSTRUCTIONAL STRETCH The stretch that occurs when the rope is
loaded. It is due to the helically laid wires and strands generating a
constructing action that compresses the core of the rope and the core

of the strand and generally brings all of the rope into close contact.

CORE The axial member of a wire rope about which the strands are

laid.
CORROSION Chemical decomposition of the material of wires in a rope
through the action of moisture, acids, alkalines or other destructive

agents inside and outside the rope.

CORROSION-RESISTING STEEL Chrome-nickel steel alloys designed for

increased resistance to corrosion of wires in the wire rope.

COVER WIRES Outer layer of wires of a strand.

CROSS LAY See LAY, TYPES.

CROWD ROPE A wire rope used to drive or force a power shovel bucket

into the material that is to be handled.
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CYLINDRICAL DRUM A hoisting drum of uniform diameter. See DRUM.

DESIGN FACTOR In a wire rope, it 1is the ratio of the norminal

strength to the total working load.

DRAGIINE a) Wire rope used for pulling excavating or drag buckets,

and b) name applied to a specific type of excavator.

ELASTIC LIMIT Stress limit above which permanent defarmstian will

take place within a piece of material.

END ATTACHMENT The accessories which are attached to the end
termination of ropes or strands for transmitting loads to the rope or

strand body.

END CONDITIONS The mathematical term which is used to described how
the external loads applied to the rope terminations. There are four
common end conditions namely fixed ends, free ends, twisting alone and

combined loads (ie, torsion and tension).

END TERMINATION The treatment at the end or ends of a length of wire
rope. Usually made by forming an eye or attaching a fitting and

designed to be the permanent .end termination on the wire rope that

connects it to the load.

FACTOR OF SAFETY 1In the wire rope industry, this term was originally
used to express the ratio of nominal strength to the total working

load. The term is no longer used since it implies a permanent
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existence for this ratio when, in practice, the rope strenght begins

to reduce from the moment it is put into service. See DESIGN FACTOR.

FIBRE CENTER Cord or rope of vegetable or synthetic fiber used as the

axial member of a strand (ie core of the strand).

FIBRE CORE Cord or rope of vegetable or synthetic fiber used as the

axial member of a rope (ie fibre main core).

FILLER WIRE Small spacer wires within a strand which help position
and support other wires. Also the name for the type of strand pattern

utilizing filler wires,

FLAT ROPE Wire rope that is made of a series of parallel, alternating
right-lay and left-lay ropes, sewn together with relatively soft

wires.

FLEXIBLE WIRE ROPE An archaic and imprecise term to differentiate one
rope construction from another, such as, 6 x 7 (least flexible) and 6

x 19 classification (somewhat more flexible).

GALVANIZED (of wire) coated with Zinc for protection against

corrosion. .

GALVANIZED ROPE Wire rope made up of galvanized wires.

GALVANIZED STRAND Strand made up of galvanized wires.
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GALVANIZED WIRE Zinc-coated wire which i1s the most commonly used

wire.

GEOMETRICAL PATTERN OF ROPE A geometrical term which is used to
describe the pattern of wires in a transverse section of rope. The
geometrical pattern of rope is governed by the helix geometry of rope

and the sectional geometry of helical wire.

GRADE Wire rope or strand classification by strength and/or type of
material, i.e., Improved Plow Steel, Type 302 Stainless, Phosphor
Bronze, etc. It does not imply a strength of the basic wire used to

meet the rope's nominal strength.

GRADES, ROPE Classification of wire rope by the wire's metallic

composition and the rope's nominal strength.

GRADES, STRAND Classification of strand by the wire's metallic
composition and the strand's nominal strength. In the order of
increasing nominal strengths, the grades are Common, Siemens Martin,
Hight-Strength and Extra-High Strength. A Utilities grade is also made
to meet apecial rrequirements and its strength is usually greater than

High Strength.

HAULAGE ROPE Wire Rope used for pulling movable devices such as cars

that roll on a track.

HELIX GEOMETRY OF ROPE The three dimension geometry of wire found in

a rounded stranded rope, such as single helix and double helix.
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HELICAL RADIUS The distance from the centre of rope or strnad to the

centre of any specific helical wire.

IMPROVED PLOW STEEL ROPE A specific grade of wire rope.

INDEPENDENT WIRE ROPE CORE (IWRC) A small flexible wire rope used as
the axial member of a larger wire rope to increase the resistance to

core crushing.

INNER WIRES All wires of a strand except the outer or cover wires.

INTERNALLY LUBRICATED Wire rope or strand having all of its wire

components coated with lubricants.

KINK A deformation of a wire rope caused by a loop of rope tightened.

It causes irreparable damage to and an indeterminate loss of strenght

in the rope.

LAY &) The manner in which the wires in a strand or the strands in a
rope are oriented, or b) the distance measured parallel to the axis of
the rope (or strand) in which a strand (or wire) makes one complete
helical convolution about the core (or centre). In this context, lay

is also referred to as LAY LENGTH or PITCH.

LAY, TYPES
1) Right Lay: The direction of strand or wire helix corresponding to

that of a right hand screw thread.
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2) Left Lay: The direction of strand or wire helix corresponding to

that of a left hand screw thread.

LAY LENGTH See LAY (b).

3) Cross Lay: rope or strand in which one or more operations are
performed in opposite directions. A multiple operation product is

described according to the direction of the outside layer.

4) Regular Lay (or Ordinary Lay): The type of rope in which the lay of
the wires in the strand is in the opposite direction to the lay of the
strand in the rope. The crowns of the wires appear to be parallel to
the axis of the rope (N.B. appear to be parallel but are not

necessarily so).

5) Lang's Lay: The type of rope in which the lay of the wires in the

strand 1is in the same direction as the lay of the strand in the rope .

The crowns of the wires appear to be at an angle to the axis of the

rope.

(6) Albert's Lay: An old and rarely used term for Lang's lay.

7) Alternate Lay: Lay of a wire rope in which the strands are laid

alternately ordinary and Lang lay.

8) Reverse Lay: Another tern for alternate lay.
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LOCKED COIL STRAND Smooth-surfaced strand usually made up of shaped,

outer wires arranged in concentric layers around a centre of round

wires.

MECHANICAL INTERACTIONS The reaction forces, moments and other
interactive effects <(eg, friction and wear, secondary bending and
twisting and other bending and twisting effects at the contact point)
which are induced on the helical wires of adjacent strands at the
contact points inside the rope due to the mechanical response.
Mechanical interactions change as the geometry pattern of a rope

changes.

MECHANICAL RESPONSES The internal conponent forces, moments and
displacements which are induced along the helical wires (eg, single
helix and double helix) due to the external loads applied to the end

termination of the strand or rope.

METALLIC CORES See WIRE STRAND CORE and INDEPENDENT WIRE ROPE CORE.

NICKS The contact patches on the wire surface of the rope.

MODULUS OF ELASTICITY Mathematical quantity expressing the ratio,
whithin the elastic 1limit, between stress on a wire rope and the

corresponding elongation.

MOORING LINES Galvanized wire rope, usually & x 12, 6 x 24, or 6 x 3

x 19 spring lay, for holding ships to dock.



468

NON-PREFORMED Rope or strand that 1is not preformed. See PREFORMED

STRANDS and PREFORMED ROPES.

NON-ROTATING WIRE ROPE Former term for 19 x 7 or 18 x 7 rope. See

ROTATION RESISTANT ROPE or NON-SPINNING ROPE.

NON-SPINNING WIRE ROPE See ROTATION RESISTANT ROPE.

PREFORMED STRANDS Strand in which the wires are permanently formed
during fabrication into the helical shape they will assume in the

undeformed strand.

PREFORMED WIRE ROPE Wire rope in which the strands are permanently
formed during fabrication into the helical shape they will assume in

the undeformed wire rope.

PROPORTIONAL LIMIT As used in the rope industry, this term has
virtually the same meaning as ELASTIC LIMIT. It is the <(notional)
value of the load beyond which an increase in load no longer produces
a proportional increase in elongation and from which point recovery to

the rope's original length is unlikely.

REVERSE BEND Reeving a wire rope over sheaves and drums so that it

bends in opposing directions. See REEVE.

REVERSE LAY See LAY, TYPES.

RIGHT LAY See LAY, TYPES.
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ROTATION-RESISTANT ROPE A wire rope specially constructed to reduce

the tendency of the rope to rotate along 1its length or at the

terminations.

SAFETY FACTOR See DESIGN FACTOR.

SAFE WORKING LOAD This term is potentially misleading. and its use
should be avoided when referring to strand and rope. Essentially, it
refers to that proportion of the nominal rope strength which can be
applied either to move or sustain a load. It is misleading because it
is only valid when the rope is new and equipment is in good condition.

See RATED CAPACITY.

SEALE The name for a type of strand pattern that has two adjacent
layers laid in one operation with any number of uniform sized wires in

the outer layer, and with the same number of uniform but smaller sized

wires in the inner layer.

SECONDARY BENDING AND TWISTING The interactive effects on the helical

wires near the contact region due to the pattern of contact patches.
SECTIONAL GEOMETRY OF HELICAL WIRE The geometry of helical wire cross
section, which provides imformation about the configuration of the
wire in a rope.

SHEAVE A grooved pulley for wire rope.

SPRING LAY See LAY TYPES.
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STAINLESS STEEL ROPE Wire rope made up of corrosion resistant steel

wires.,

STANDING ROPE <(or GUY LINE) Strand or rope, usually galvanized, for

stabilizing or maintaining a structure in fixed position.

STRAND A aggregate of round or shaped wires helically laid about a

straight axis.

STRAND CORE See WIRE STRAND CORE.

STRETCH The elongation of a wire rope under load.

WARRINGTON The name for a type of strand pattern that is characteized
by having one of its wire layers (usually the outer) made up of an

arrangement of alternately large and small wires.

WIRE (ROUND) A single, continuous length of metal, with a circular

cross-section that is a cold-drawn form rod.

WIRE (SHAPED) A single, continuous length of metal with a non-circular

cross-section that is either a cold-drawn or a cold-rolled form rod.

WIRE ROPE A aggregate of wire strands helically laid about a straight

axis.

WIRE STRAND CORE (WSC) A wire strand used as the axial member of a

wire rope.
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BRIEF REVIEW ON HRUSKA AND OTHERS

Hall.H.M.z'1 (1951)

In this paper, the author attempted to prove that the tensile
stress on the helical wires of an outer layer are appreciably
higher than this on the helical wires of an inner layer
within a strand. In his analysis, a strand was considered as
a solid rod subjected to a tensile load. The tensile force
exerted on the rod was then resolved in the direction of the
helical wire. Based on this approach and his observations, he
explained that, for a strand subjected to external load, the
outer layer wires would break earlier than the inner layer

wires. This theory was proved to be wrong by Hruska.

Hruska,F.H.2'2'2'5 (1951 to 1953)

Hruska's first paper was essentially stimulated by Hall's
work on small wire rope. For a strand subjected to a tensile
load, the tensile strains of a core wire and of a helical
wire can be evaluated’ from the triangular relationship
established from the derived of a single helical wire.
Expressions were then developed to determine the tensile
stress ratio between the core wire and the helical wire.
Finally, the internal tensile forces acting on each of the

individual wires are summed in the direction of the external
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load. He also suggested that ropes could carry load even when
the wires are broken at different locations. This is because

of the existence of the inter-wire friction amongst the

adjacent wires.

Hruska's second paper dealt specifically with radial forces
in strands and ropes. A theory was developed in order to
quantify these forces. He also explained that radial forces
increase inwards for each layer of rope construction. Hence,
this could produce very high contact stresses at the contact

points for the wires in the inner layer of the strand.

Hruska's third paper considered tangential forces induced on
the helical wires within a rope. For a rope subject to
tensile load, he showed that unwinding torque will develop at
the rope terminations. He then went further and explained
that the unwinding moment of &a Lang's 1lay rope is much
greater than that of the ordinary 1lay rope (also called
regular lay rope). If both terminations are firmly fastened,

then the unwinding torque will be constrained.

Hruska's fourth paper dealt with sectional geometry of
helical wire and reaction forces at the contact position. He
showed that the cross sectional shape of the helical wire can

be considered as an ellipse. Similar approach was also

appeared in Costello and Phillips' paper
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2.6 (1955)

Cress,H.A.
A mathematical investigation of contact stresses in a 6 x 7
wire rope (ie IWRC) was explored by Cress in his MSc project.
Hruska's approach and Hertzian contact stresses theory were
applied to quantify the contact stresses at the helical wires
of a 6/1 strand. The geometrical features of the helical
wires at the contact location were idealized by two parallel
cylinders and two cross cylinders with equal diameter.

Leissa.A.W.z'8

(1959)

Leissa was probably stimulated by Cress’'s work on the contact
stresses in a 6/1 strand subjected to tensile load. He showed
that there are two types of possible contacts (contacts
within same layer and contacts between adjacent layers)
between neighbouring strands within a rope. Based on Hruska's
model and Hertzian contact theory, he then considered the
critical case of contact points between adjacent strands in
the same layer. The results showed not only the severity of
the contact stresses but also the complexity of the analysis.

Startkey,W.L. and Cress H.A.2'7 (1959)

In response to Leissa's work, Startkey and Cress offered
minor improvements to Lessa’'s analysis by introducing the
failure theory. A similar type of contact stress analysis for

a 6 x 7 wire rope under tensile load was also considered.
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They suggested that the cross-over point contact between
adjacent strands is more critical than +the line contact
between adjacent strands.

Bert,C.W. and Stein,R.A.z'9 (1962)

Bert and Stein improved the geometry of curvature at the
contact location which was initially approximated by the
geometry of two cross-over straight cylinder as shown 1in
Startkey and Cress’'s paper. However, Hruska's type of
approach applied to evaluate the contact force, the tensile

stress between a core wire and a helical wire was still being

used.
Gibson,P.T., CRESS,H.A. , Kaufman, w.J. & Gallant,
W.E.2'10 (1970)

The tension-torque characteristics of round stranded ropes
were studied by Gibson and others. Hruska's approach was
applied in their study. They concluded that the torque
characteristics of round stranded ropes and fibre core ropes
which were constructed either with round strands or with
flattened strands, will gghave linearly with respect to the
applied tensile load.

2.11

Reemsnyder ,H.S. (1972)

A research report on the mechanical behaviour and fatigue
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resistance of steel wire, strand and rope was published by
Bethlehem steel corporation. Hruska's type of approach to the
analysis of tensile stress, tensile force, radial force and
rope unwinding torque acting on the helical wire was used. In
addition to this, the contact stress approach of Leissa and

the bearing pressure ratio of Drucker-Tachau were also used.
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BRIEF REVIEW ON COSTELLO AND OTHERS

3.1, 3.2 & 3.3 (1973, 74 76)

G.A.Costello and J.W.Phillips
Costello and Phillips took a more fundamental approach in
modelling the responses of a helical wire within a strand.
Each individual wire within a strand was treated as a thin
rod 3.21 subjected to tension, bending, twisting, shear force
and radial force. Fundamental expressions dealing with the
evaluation of approximate helical radius, section of helical
wire, contact forces, and contact angle between two adjacent
wires, were developed. They then went further to predict the
effective modulus of a twisted wire cable. In order to use a
set of six indeterminate differential equations as
established in the rod theory which they applied to model the
helical wires two approximate expressions for bending and

twisting (also from rod theory) were introduced in their

analysis. These two expressions are:

6) (1.2.1)

c(t, - 7,) (1.2.2)

G’' = A(k1 -k

o=
"

-

Hence, shear force, radial forces and effective modulus for

twisted wire cables can be evaluated.

A similar study, for prediction of the radial force and wire
sectional geometry for a 6/1 strand, had also been shown
earlier by Hruska in a article called "Geometrie im

Drahteil".
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4 (1977)

G.A.Costello3'
In this paper, the six differential equations of equilibrium
from rod theory were used for the prediction of the large
deflection of helical spring due to bending. In order to
evaluate the twisting moment, normal and binormal bending
moment acting on the spring, Costello assumed that in the
case where Poisson’s ratio (ie V) equals zero, the flexural
bending stiffness equals the flexural twisting stiffness.
Then bending and twisting component can be calculated by
using the differential equations established in +the rod
theory. By substituting the twisting energy, normal and
binormal bending energy, dissipated from the helical spring
due to deformation, into the strain energy equation for the

3.23 strain energy method), and by

spring (see Timoshenko's
integrating the strain energy equation, the deflection of the
spring in terms of curvature and rotation of the centroidal
axis of the spring, resulting from bending, can be
calculated.

G.A.Costello and S.K.Sinha° ' °273-% (1977)

Six differential equations from rod theory were further used
to analyze the static behaviour of wire rope (ie 6 x 7 rope
with fibre core) and torsional stiffness of twisted wire
cables (ie 6/1 strand). In the first paper, it was assumed
that the fibre core carried no external load. To proceed the
analysis by rod theory, each helical strand was idealised by

a helical rod. Results were presented as a normalized axial
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force as a function of axial strand strain. In the second
praper, a cable was considered to be constructed without a
core wire. The analytical procedure was similar to the first
paper. Results were presented as a normalized axial moment as
a function of rotational cable strain.

G.A.Costello and J.W.Phillipsa'7 (1978)

Again, six differential equations from rod theory were used
to analyze the static response of a 3/1 stranded helical
spring. In this paper, Timoshenko's spring theory was used to

approximate the flexural bending stiffness of the stranded

helical spring.

G.A.Costello and R.E.Miller>'8 (1979)

Rod theory and approximate bending stiffness from spring
theory were used to analyse the lay effect of wire rope. In
this study, the tensile stiffness and flexural bending
stiffness of ordinary lay rope and of Lang's lay rope were
compared. Costello and Miller then concluded that, for a
Lang's lay rope subjected to tension, it has effectively no
stiffness due to unwinding moment. Therefore, Lang's lay rope
should not be allowed to be used with terminations free from
rotation. Ordinary lay rope, on the other hand, tends to
stiffen as the load is increased, and therefore can be used

with swivel termination.
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G.A.Costello and R.E.Millers'9 (1980)

Equations from rod theory was still used. The static response
of 'reduced rotation' rope (ie a 1 x 19 multi-layer strand
with inner 1left 1lay wire and outer right 1lay wire) was
studied. The results were presented in such the way that the
initial helix angle of the outer layer wires was expressed as
a function of the initial helix angle of the inner layer
wires. Costello and Miller concluded that, for the outer
layer wires with given helix angle, there are two possible
helix angles for the inner layer wires. Then, for a cross-lay
multi-layer strand subjected to tensile load, the rotation
provoked from the inner layer wires can be counterbalanced by
that of the outer layer wires (in this study, a “strand"” was
named as "rope").

J.W.Phillips, R. E. Miller and G.A.Coste1103'10

(1980)

The localized stresses resulting from contact forces at the
contact points of wires between adjacent layers of wires of a
1 x 19 multi-layer strand (cross lay) were studied. Hertzian
contact theory 1in conjunction with +the analytical method
introduced by a text book "Advanced Mechanics of Materials"
by Boresi Sidebottom, were used. Results were presented in

form of "contact forces/rope force as function of helix

angle” for the inner layer wires.
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G.J.Butsons'11 (1981)

Mathematical models for the analysis of static and dynamic
responses of a 6/1 strand were developed in a PhD study by
Butson. In this study, 6 stranded rope was modelled by a 6/1
strand subjected to axial load and axial impulse
respectively. In the static analysis, a vector method was
used and frictional effects were taken into account. In the
dynamic analysis, a impulse was assumed to be applied to one
end of the rope and an equation of motion was formulated
based on a traditional dynamic approach.

S.A.Velinskys'12 (1981)

The nonlinear geometrical equations for the analysis of
change 1in geometry of a single helical wire, developed by
Costello and others, were linearized by Velinsky in a PhD
study. Based on the linearized approach, he then went further
to study the static response of a 6 x 19 Seale type rope with
IWRC. A breakthrough was claimed in analyzing similar types
of static problems of the strands and wire ropes.

3.13 (1982)

G.A.Costello and G.J.Butson
The static response of a wire rope (ie 6/1 strand, in this
paper called a "rope") subjected to external tension, torsion
and bending was studied. Timoshenko's type of bending theory
for calculating the flexual bending stiffness of a helical

spring was modified. Equations from rod theory and single
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helix geometry were presented. Costello and Butson claimed
that the approach can be extended to study ropes with more
complex sections.

J.W.Phillips and P.D.Fotch° 1% (1983)

A simplified bending theory for a 6/1 strand, developed by
Costello and Butson, was used in this analysis. The authors
illustrated results from the bending stress analysis for a 6
x 25F IWRC rope. However, relevant equations and modified
theory were not given.

3.15 (1983)

G.A.Costello
Static strand theory and simplified bending theory for the
analysis of static response of a single layer strand,
developed by Costello and his fellow workers, were used to
study the stress in the core wire of a three layered cable
(ie a multi-layer strand with two layer of single helical
wires and a core wire). The static responses of the strand
was derived. From this study, Costello concluded that the
highest axial tensile stress occurs on the central core wire

-

of the strand.

S.A.Velinsky, G.L.Anderson and G.A.Costellos'16 (1984)

The nonlinear geometrical parameters in the equations of
equilibrium for the static analysis of helical rod were

linearized. These equations, together with the analytical
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approach developed by Costello and others, were used to study
the static response of a 6 x 19 Seale rope with IWRC. In this

study, Velinsky and others concluded that:

a. The maximum tensile stress occurs in the King wire
provided both terminations of the rope are fixed.

b. The effective modulus of a rope decreases when
additional strands are added.

c. The theoretically determined modulus is higher than that
obtained from experiments.

d. If the stress exceeds the elastic 1limit of the king
wire, the king wire may become compressive when the

external load is reduced to zero.

C.H.Chien and G.A.Costellos'17

(1985)

A mathematical method used to predict the effective length of
a fractured wire, in a 6 x 25 ordinary lay rope with IWRC
after fatigue, was presented by Chien and Costello. Coulomb
friction and rod theory were used throughout their analysis.
From their study, they cqpcluded that the effective length of
the fractured wire is independent of the axial load.

S.A.Velinsky° 18 (1985)

Rod theory and a modelling technique, for the analysis of
stranded spring developed by Costello and his fellow workers,

were used to model the mechanical response of the helical



48 4

strand of a 6 x 19 Seale rope with fibre core. The mechanical
properties of the fibre core were assumed to be linear. In
order to evaluate the deformed strand helical radius, ‘'an
effective' radius of fibre core was introduced. The nonlinear
geometrical change of the helical strand was linearized as
usual. Results were illustrated on a load-extension curve.

S.A.Velinsky® 12 (1985)

A general nonlinear theory (ie geometrical nonlinear ) for a
6 x 19 Seale rope with IWRC was presented. The stranded
helical spring model and the straight strand model were
applied in the analysis. The model was used to predict the
static responses of the Seale rope. Results (ie the
load-extension curves) were presented in dimensionless form.
From this study, Velinsky concluded that the nonlinear theory
for the 6 x 19 Seale rope with IWRC showed no significant
advantage over the linearized theory.

J.¥W.Phillips and G.A.Cos‘tello:;'20 (1985)

A mathematical model for the static analysis of Seale rope,°
proposed by Velinsky, was generalised by Phillips and
Costello. In this paper, no mechanical interactions were
taken into consideration. They then summarized that the
"effective modulus" of wire rope predicted by the model was

slightly higher than this obtained from experiment. They

explained that the discrepancy between the model and

experiment was probably due to the model failing to take
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contact deformation, line loads and other possible

interstitial movement into consideration.

R.A.LeClair & G.A.Costellos 24 (1988)

As usual, six differential equations from rod theory and
expressions from helix geometry of a single helical wire,
were used to analyse the mechanical behaviour of strand
resulted from axial bending and twisting moments applied to
that strand. They claimed that this model, took friction into
consideration, could be used to predict the stresses in a
single layer strand subjected to axial, bending and torsional
loading. However, no stresses equations in related with

friction were given.

S.A.Velinsky and J.D.Schmidt® 22 (1988)

A simplified treatise of static behaviour of worn cable (ie
6/1 strand) was presented. The wear, on the worn crown and at
the contact locations between adjacent helical wires, was
idealized by flat surfaces. By wusing this geometry, the
helical radius of worn wire was then predicted. Based on the
rod theory, they went on to analyze the mechanical responses

of the worn cable.
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PARAMETRIC EXPRESSIONS

OF

SINGLE LAYER STRAND
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Al,1 Geometrical Constants Of single Layer Strand:

8c ( sin® ¢ - v cos® a ) + a, sin® «a
J, = (A1, 1)
ac t a, (1 + v cos® a )

( ac + 8, ) cos® «
Jz = (Al1,2)
2n{ac+a, (1 +vecos2a) )

(ac +ta,) (1 +v) cos « sin «
Ja = (A1, 3)

a + a, (1 + v cos® a )

(a. +a,) sina cos «
Ja = (A1, &)
2n{a+ta, (1 +vcosZa)d)

v cos?® « 2 sin @ cos «
JE = —( 8c + a,, J] ) - Ja <A1,5)
R=2 R=2

v cos® a an, Jz 2 sin ax cos a J,

Je = - (Al1,6)
R2 R
cos 2 a2 v sin 2 «a
Jop s —m—mmm— Jo 4+ —m0— ————— ¢ ac + a, J, ) (A1, 7)
R 2 R=
cos 2 « v sin 2 «
Js = - J4 +t ap, Jz (AI,S)
R 2 R=
Jo = m &a,2 E (A1,9)
Jio = G J¢ (A1, 100
Jiw =n a2 EJT, (A1,11)
Jy2 =n a2 E J. (A1,12)
Jia = E I, Js (A1, 13)
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Jia = E I, Je (A1, 14)
J16 =G Jn I (A1, 15)
Jie = G I Ja (At, 16)
J125=G6GJInJ, k' —EI,Jen (A1,17)
J56 =G Jn Ja k' ~E I, Jc (A1,18)

J19=(GJhJ7k'-EIthT)T-nahEI1 k' (Al,lg)

J20 = (G J,Jg k' ~EI,Jsgt)1T—-na, EJz k' (A1,20)

-V ( ac + 2 a,-. J1 )
Tz, = (A1,21)
a. + 2 a,

-2 V 8, Jz
Jog = —m—/8m88@™ (A1,22)
ac + 2 a.

Al,2 The Effective Stiffness Constants:

Ky =m{na2?*EJT, sina+ (GJ,J> k' -EI Jz1T) cos «
} + 1 ac® E
(A1,21)
Ka=m{na*EJlosina+ (GJ,Jg k' -EI,Js T) cosa
)
(A1,22)

Ka=m{GJnJrsina+EI, Jgcosa+mna, EJ, Rcos a-
(GJIJr k' - EILJsg 1) Rsina}
(A1,23)
Ka =m{GJrJasina+EI, Jgsina+mna, EJzRcosa-

(GJnJe k' - EI,Jeg 1) Rsinal} + G Jc
(A1,24)
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A.1.3 Global Mechanical Equilibrium Of Single Layer Strand

F=m¢<(T, sin a + N' cos a ) + Te (A1,25)

M=mn ( Wsina + V' cos o + T R cos o - N' R sin a )+ We

(A1,26)
Alternatively
K1 Kz €s F
= (A1,27)
Kz Ka AB M
A.1.4 Geometrical Responses Of Helical Wire
€w = J, € + J2 A8 (A1,28)
Ax = J5 € + J4 48 (A1,29)
Ak'= Jg € + Je 4B (A1,30)
(A1,31)

At = J5 e + Ja A8

A.1.5 Geometrical Responses Of Strand ( Strand displacements )

Final strand length - Original strand length
€s = (A1,32)
Original strand length

v

Rotational displacement

A8

(A1, 33)
lay length

A.1.6 Internal Components In Wires:

Core Wire:

Te = Js €s (Al1,34)
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We = Jyo A8 (A1, 35)

Helical Wire:

T = J11 €x + Ty AB (A1,36)
V' = J,2 €c + Ty, A8 (A1,37)
W =1J,c 6c + J'S AD (A1,38)
N' = J,5 €s + T,0 A8 (A1,39)
X =1J,0 €5 + Jo2o 48 (A1, 40)

A.1.7 Strains In Helical Wire:

For helical wire

Due to tension alone

€w = J1 € + J> 46 (A 1,41

Due to bending alone

8ny Js 8y Jes
Ewp = ———— €5 + —— A8 (A.1,42)
1 + k'ahy 1 + k.ahY

Due to twisting alone

Yo = ( Ty €5 + Jo A0 ) 8.y (A.1,43)

A.1.8 Defined Parameters For Nonlinear Strain Strain Modelling

P

2n R tan « (A.1,44)

D>

@
#*
"

AB/2n (A.1,45)

a*=-va, /R (A.1,46)



ac*

Ape

Pie

_Vac/R

sin 2 a (1 + g5 )=

=cos 2 a (1 + A8* )=

1 - P2 - A8

1 - a.* 2 A8

2 (1 - AB® ac* a.* €5 — 762 g *

PLe — 2 AB2 ac* g5 — AB® ac* % g5%

(A,

(A,

(A.

(A.

(A.

(A.

(A.
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1,47)

1,48)

1,49

1,50)

1,51)

1,52)

1,53)
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PARAMETRIC EXPRESSIONS

OF

SIX STRANDED ROPE
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A.2.1 Stiffness Constants Of King Wire.
Fio = 1 a%¢c E (A.2. 1)
Fyy, =G Jc / P (A.2.2)
A. 2.2 Geometrical Constant.
G* = Pen/Po (A.2.3)
rem Sin2? acp — V 8¢ €COS> Qcph (A.2.4)
G, =

rem + V 8¢ €COS%2 acp

e €O0S% Ocp (A.2.5)

2n(ren, + vV 8¢ €COSZ ocp)

Gz = (1 - G,) tan acn, (A.2.6)
Gy = - G, tan ach (A.2.7)
H~| =v ( ac + acp G] )y / rch-». (A.2.8)
Hs, = v 8¢ / r3cn (A.2.9)
Gs = H] cos= A — sin= Ay Gg / Cen (A.2.10)
Gs = H2 cos=2 O — sin= Qch 04 / fen (A' 2.1
Gs €082 o H, sinz acn (A.2.12)
G7 = -
Fen 2
GA C052 acy-, Hz Sinz ach (Ao 2' 12)
Ga = -
Fen 2
P =2n rg tan B ; Pep = 21 ren tan ace (A2.13)

Gyo = 1t 83, E G, (A.2.14)



A.2.

3

G]l

G,z

G'IG

Gra

Gis

Gie

G‘|7

G'IB

G'IS

Parametric Constant For Helical Core Wire

S,

Sa

Sa

Ss

Se

S»

Ss

S10

Q*

n

E

E

8%cn E Gz

ICh GS

Icr—. GS

G Jen G

G Jen Geo

‘Kl

Kl

Tc

ch Gia = Ten Giz

ch Gis = Ten Gia

n Gis - K.Ch Gio

Ten Giz — K'crn Gisy

-V

-V

-V

-V

-V

-V

_Sa

Ss

Sz

co

8sc / rsn

8sn / Tsnh

(ac + 2 acr, Gy )/ re

(2 ach G,

(2 agh )/ rg

8gc / I's

Se = =S,

- Se

- S:

s B tan asp

(A.2.15)

(A.2.16)

(A.2.17)

(A.2.18)

(A.2.19)

(A.2.20)

(A.2.21)

(A.2.22)

(A.2.23)

(A.2.24)

(A.2.25)

(A.2.26)

(A.2.27)

(A.2.28)

(A.2.29)

(A.2.30)

(A.2.3D

(A.2.32)

(A.2.33)
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S1a

S'|2

Le,

Lo,

S13

514

SIE

Sie

L+,

L+,

L*;

=rgn Q* / rg

= regn 0 S, / rg

= rs’_‘ Q* Sa / rs

cos B tan oagn
= + sin B tan B tan asy
C0S2 Ogp

- cos B tan asp,

cos? agpn

=ren (L8 + Q¥ S5 ) / rs

= ren ( L&, + Q% Sy0 )

=_S11/Q

=_S13/Q

=—S~|4/Q

= (1 - cos? agp, S — c0s asn, St )

= ( S5 cos® ag, + S,g cos agp, )

( cos? asn S; + €cos asy, Sis ?

v

= (sin® agy, + c0S® Qg Se + COS Qg Syo)

=~v (ac + 28c, Gy ) 7/ rg

-V(ZSChcz)/rs

(A.2.34)

(A.2.35)

(A.2.36)

(A.2.37)

(A. 2,38

(A.2.39)

(A.2.40)

(A.2.41)

(A.2.42)

(A.2.43)

(A.2.44)

(A.2.45)

(A.2.46)

(A.2.47)

(A.2.48)

(A.2.49)

(A.2.50)

(A.2.51)
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I

Iz

Is

Is

LL,*

LL>*

Is

Ie

I;

Ie

Lo

I'I'I

Lia

Iia

I'IS

—Vasc/rs

(A.2.52)

(A sin® B + A cos® B L*, + cos®2 B L*; B)

(A.2.53)

( A

cos2 B L*, D - A cos® B L*,

)

(A cos2 B L*, + cos® B L*; C + A cos® 8)

(

2n )
(A.2,.54)

(A~ Acos® B L* D~ cos2B L*,

(1 ~1I,) tan B

- I, tan B

L*, + L*> J, + L*; I

L* + L*5 Jo + L%, I

-(LL* cos® B + I5 sin 2B)/rg

-(LLz* cos® B + I, sin 2B)/rg

( I5 cos 28 - LL,* sin B cos B )/rg

( I, cos 2B - LL.* sin B cos B )/rg

T azsc E I'|

n 82%sc E I

E Isc Is

E Isc Ie

G Jse I

G Jsc Is

I,a K'sc = 112 Tsc

)

(A.2.55)

(A.2.56)

(A.2.57)

(A.2.58)

(A.2.59)

(A.2.60)

(A.2.61)

(A.2.62)

(A.2.63)

(A.2.64)

(A.2.65)

(A.2.66)

(A.2.67)

(A.2.68)

(A.2.69)
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A.2.4

A.2.5

I, =1 K'sc = Ih1a Tsc
Ine =Ie Tsc = 1o K'sc
I,s =I,7 tsc = Iy K'sc

Parametric Constant For Double Hleical Wire:

L%, ~ sin B tan B tan asn

sinZ B + L*; cos® B

L,* =
1 - L*, cos® B
sin® B + L®*. cos® B
L* =
1 - L*, cos® B
L®*, cos2® B
Ls* =
1 - L*, cos®= B
(B + D Ly*)
J, =
CA-DLs*)
(C +DL*)
Jo =

(A-DLzy*)

Ja = ( I1 - J] ) tan AsrH

J4 = ( Iz - Iz ) ten GSh

(A.

(A.

(A.

(A.

(A.

(A,

(A.

(A,

(A.

(A,

(A.

2.70)

2.72)

2.73

2.74)

2.75)

2.76)

2.77)

2.78)

2.79

2.80
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Parametric Constants In Velinsky's Approach To Analyze IWRC

9-, -Zﬂ(s,, "'51311"'5143" Y/ Q2

0=

L-.'] _V(ascI|+as,-.J1)

(A,

(A.

2.81)

- 2“ ( S]z + S]a Iz + S]4 Jz Y/, 2 + 1/0 (At2182)

2.83)



L*=>

Js

Je

I

Je

T*10

*
‘T'Il

*
T*12

J'IO

T

J.12

Jla

Jra

JIS

J.'IS

J17

Jie

-v ( 8sc I. + asw

- L*, cos® agp, J

= sin 2oz,

sk

- L*2 cos® oz,

sk

Ja sin 2o0zp

snh

( Ja cos 2agn — L*1 sin osn €OS asn )/rsy, (A.2.87)

( T, cos 20sr, — L*=2 sin oan €COS asn )/rsr, (A.2.88)

n a%gc E I,

n 8%gc E I,

G Jsc 6,

G Jsc 62

n 8a%sec E T,

n a2gc E Ja

E Isn Js

E Isn Je

G Jsnh J»

G Jsn Je

Jia K'sh = Jiz Ton

Jis K'sh = Ja3 Tsn

Jie Tsn — Jio K'sn

sk

(A.2.84)

(A.2.85)

(A.2.86)

(A.2.89)

(A.2.90)

(A.2.91)

(A.2.92)

(A.2.93)

(A.2.94)

(A.2.95)

(A.2.96)

(A.2.97)

(A.2.98)

(A.2.99)

(A.2.100)

(A.2.10D)
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Jis = Jy7 Tarn =~ T4y K'op, (A.2.102)
n E a%g, sin ogr n E a%zc
As = Mgy, . + (A.2.103)
2 2 + VvV cos Oz 4

Stiffness Constants For Core Strand:

K¢y = mc ( Gyo sin ach + Gy €COS Qe ) + Fro (A.2.104)
K¢, = mc ¢ Gy, sin acn + Gy7 €OS acp, ) (A.2.105>
K5 =mc {( Gy4 - Gyg ey, ) sin oy +

( Gy2 + Gy e, ) €COS ey, ) (A.2.106)
K4 =me {( Gyg - Gy7 ey, ) sin ey, +

( Gyg + Gyy Iy, ) COS Qe } + Fyy (A2,107)

Stiffness Constant For Helical Strand (Lang's Lay)

KS, = J*o + man ( J o sin Qgn, + J,e €OS Oz ) (A.2.108)
KS; = J*,, + Mg, ( Ty sin agn + J,5 €OS 0gn ) (A.2,109)
KS; = J*2 + Mg, {( T4 - J1e ren, ) sin agy, +

(Ji2 + Jyo sy, ) COS Qg } (A.2.110)
K8g =J%53 + mgr, {(( Jyg - Jy> rgn ) sin agy. +

(Jya + T3y rgn ) cos ag, } (AL2.111)

Common Stiffness Constants For Helical Strand (Both Lang and

Ordinary Lay)

K®g

n

As Ig (A.2.112)

As Ie (A.2.113)



K> =K% K's - K% 12
K%s = K4 K's - KS¢ 15
K®» = K5, 15 - KS, K's
K®10 = KSs K's ~ K2 15

(A.2.114)

(A.2.115)

(A.2.116)

(A.2.117)

Stiffness Constant For Helical Strand (Ordinary Lay)

Ky =J% 0 + Mgy ( Jyo 8in agn + Ty cOS agyp, ) (AL2.112)
Koz = J*11 + Mep, ( J|1 sin AspHy + J17 COS Qgp, ) (A 2.113)
K = J*2 - mgn {(( Jy4 - J1e rsn ) sin ag, +
(J,2 +J,6 sy, ) COS g, ¥ (A2.114)
K°q =J%3 - mgn {(( T35 - J17 rsn ) sin as., +
(Jya + T,y rsp, ) CcOs agp, } (A.2.115)
Stiffness Constants For IWRC:
KR, =K%, + mg ( K%, sin B + KS, cos B ) (A.2.116)
KR = K> + mg ( K5, sin B + KSg cos B ) (A.2.117)
KR3 = Kca + % {( Ksa - KS7 rs )Sin B +
( KSg + KS; rg )cos B ) (A.2.118)
( KS, + KS; rg )cos B )} (A.2.119)

Note: LT = Le*
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PARAMETRIC EXPRESSIONS

OF

MULTI-LAYER STRAND



502

o1 Geometrical Parameters For 9/9/1 Equsal Lay Strand.

First Layer:

cos? a, tan?® (n/2 - n/my)
I = (A.3.1. D
Sin®? a, + tan® (n/2 - n/my)

1
I, = { sin? a, - Iz } (A.3.1.2)
(1 + vecos?2oa, - Ig)

1 cCoSs®? dx
I, = { ) (A.3.1.3)
(1 + vecos?a, - Ig) 2n
I, = (1-1I,) tan as (A.3.1.4)
I, = - I- tan a2 (A.3.1.5
In= - vI, -1Ig I3 (A.3.1.6)
IB = -V 12 - IR 14 (A¢3a1.7)
sin 2a- cos® ao
Igs - ——mm— I35 - ———— 1, (A.3.1.8
r= r=
sin 2a- cos® Qx
Igs - —m— I, - ——m—m 1 (A.3.1.9
= r=
cos 20 sin 2a-
I, = ——— 15 - —— 1, (A.3.1.10
45 2 s
cos 20 sin 2as
Igs — 1, - — 1 (A.3.1.1D
r. 2 ro

I]] =n 822 E I] (A.3.1.12)



Iz

113

I,a

Lie

117

I!B

n a2, E I,

E I*; Ig

E I*; Ig

G J*; I,

G J*; Ig

Lis K'2 -~ 1,6 12

L,e K'2 - I,5 12>

Second Layer:

Ir

T

J=2

Ja

Ja

Ja

Js

cos? ay tanz (n/2 - n/ma)

SinZ a5y + tanz (n/2 - n/my)

1

(1 +vecos2az-JTg)

1

{ sin® a5 - Jr }

cO0SZ ax

(1 +vecos?ag-TJTg)

(1 -7, ) tan oa

- J> tan o5

_VJj-JRJa

_VJZ—JR\T4

sin 204
_—JS_
ra s

Co0S? oo

Ja

(A.3.

(A.3.

(A. 3.

(A. 3.

(A. 3.

(A. 3.

(A.3.

(A. 3.

(A. 3.

(A. 3.

(A. 3.

(A.3.

(A.3.

(A.3.

(A. 3.

1.13)

1.14)

1.15)

1.16)

1.17)

1.18)

1.19)

1.20)

1.20

1.23)

1.24)

1.25)

1.26)

1.27)

1.28)
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Je

J7

Je

Js

Jio

J'Il

J12

JIS

J|s

e

J17

J’IB

The

K,

sin 204 cos® ag
- J4 - JB
s ra
cos 204 sin 204
——Js-—Ia
rs 2 ra
CcoSs 204 sin 2a4
Jg - —— Ja
| Y 2 s
n a2, E
G J*, /P,

n 825 E J,

G J*3 Jg

Jie K'a = J1e 12

Jie K'a = Jy7 12

Stiffness Constants For 9/9/1:

+Js

(A, 3. 1.

(A.3.1.

(A.3.1.

(A.3.1.

(A.3.1,

(A.3.1.

(A.3.1.

(A.3.1.

(A.3.1.

(A.3.1,

(A.3. 1,

(A.3.1.

(A.3.1.

(A.3.1,

29)

30)

3D

32)

33

34)

35)

36)

37)

38)

39)

40)

41)

42)
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=m (I,, sin o, + I,5, cos ax) + my (J,, sin ag + J,5 cOs az)



A‘302

K=

sin

sin

For

12

1,

I

Ha

1s
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me (I, sin ap + 12,5 cos az) + m3 J,2 sin oz + T,
cos Qg
(A.3.1.43)
m, (I,g sin az + I,5 cos o + ro I,y €cos ax - ro I;5 sin az)
My (J]s Sin Olo + I]a C0S Q5 + s Jj" cos ag = s J]y Sin as)
(A.3.1.44)

m, (I2;¢ sin a; + 12,4, cos ax + r5 12,5 Ccos az = rs I%,g
0z) + my (Jyg sin os + Jy4 €cOs ag + rg J12 €CO0S 0 - ra Jys
az) *+ Jio

(A.3.1.45)
Geometrical Constant For 12/6/1 Cross Lay Strand:
First Layer:
r» sin® a, - v a, cos® a,
= (A.3.2. 1D
r. + v a, cos® a-
rL cos® a,
= (A.3.2.2)
2n (ro + v ax cos? o)
= ( 1 - I] b tan az (A-302n4)
= -1, tan o (A.3.2.5)
v
= (a, +a81I,) (A.3.2.6)
r2,
= vaz I,/ r= (A.3.2.7)
= Hq €052 a5 - 2 I5 sin 22 7/ ra (A.3.2.8)
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I¢ =Hg cos® az - 2 I, sin 202 / ra (A.3.2.9
I, = (Ha sin 2 ax)/2 + (I5 cos 2 oz )/ro (A.3.2.10»
Is = (Hs sin 2 a2)/2 + (I, cos 2 as )/ra (A.3.2.1D)

The expressions I,,, I 2, I s, ... I, used for 12/6/1 strand are

exactly the same as those used for 9/9/1 strand.

Second Layer:

rs sin® a5 - (a, + 2 a5 I, ) v cos® aa

Jy = (A.3.2.12)
ras + 83 v cos® oy
rs €os® ag - 4 n a2 I, v cos= as
Jz2 = (A.3.2.13)
2n (ra + a3 v cos? ag )
Js = (1-7, ) tan o5 (A.3.2.14)
Ja = -1Jz tan a5 (A.3.2.15)
H] =v ( 8, + 2 8> I] ) / 's (A.3.2.16)
H = 2 v az I35/ rg (A.3.2.17)
Hy = as v/ ra (A.3.2.18)
Js = (H] + Ha J])cosz aalrza - 2 Ja Sin 2“3/r3 (Ao 3. 2, 8)
JS = (Hz + Ha Jz)cosz aalrza - 2 J4 Sin 2a3/r3 (A. 3- 20 9)



J, = (H, + Hz J,)sin 2as/2 r25 + J5 cos 203/rs
Je = (H2 + Hy J2)sin 2az/2 r2; + J4 cos 2as/rs
The expressions Ji4y, Ji12) Jia

(A.3.210)

(A.3.210)
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J:e and the stiffness constant K,,

K2, Ks & K. used for 12/6/1 strand are exactly the same as those used

for 9/9/1 strand.

A.3.3

Ia

Ja

Jo

Te

Ja

T

Geometrical Constant For 12/6F + 6/1 Equal Lay Filler Wire

Str

and:

cos?2 a, tan®? (/2 - n/mz)

Sin2 o, + tan® (n/2 - n/m)

V(rf-az)/azz

cos? oap tan? (/2 - n/ms) cos? n/m-

re sin® o

- cot asz tan® (n/2 - n/my)

Sin? ay + tan® (n/2 - n/my)

Je Hy + J5 Hs

Je Ho + Jp Ha

(A.3.3. 1

(A.3.3.2)

(A.3.3.3)

(A.3.3.4)

(A.3.3.5)

(A.3.3.6)

(A.3.3.7)

(A.3.3.8)



For First Layer Of Helical Wire:

Hy, 1 -Jq cos® a, + Jg sin a2 cos a-

H, (sin® a; + Jp sin a- cos az) / Hy

H; = cos® ax /7 ( 2 n H, D

Hz = (1 - Hy, ) tan az

Hy = - Hz tan a-

He = (1 -H, ) Js tan a> + Jo H,

He = (Ja - Js tan a; > Hz

H, = - ( Ha sin 2a; + Hg sin® az ) / ro
He = - ( Hs sin 2a, + H, cos?Z az ) / r
Hs = (Hz co0s 2xx - Hg sin o, €cOs az) / r=
Hio = (Hq cos 2a, - Hg sin a, cos az) / ra

For Helical Filler Wire:

I, = sin® a, + Jg €052 ay

I. = {J.+1/(2 m ) cos? as
I, = (1-H, ) tan ay

I, = -1, tan oy

I =Ja

Ie =714

(A.3.3.9)

(4.3.3.100

(A.3.3.11D)

(A.3.3.12)

(A.3.3.13)

(A.3.3.14)

(A.3.3.15)

(A.3.3.16)

(A.3.3.17)

(A.3.3.18

(A.3.3.19

(A.3.3.200

(A.3.3.2D)

(A.3.3.22)

(A.3.3.23)

(Aﬁ 3l 30 24)

(A.3.3.25)
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I,

Is

Iyo

For

J=z

Ja

Ja

Is

JIO

-« Ia sin 2(13 + Is sin= A5 ) / ry

- (I4 sin 205 + I, €COS=2 g ) / Iy

(I cos 205 ~ Ig sin as cos ag3) / ro

(I4 cos 2a5 - Ig sin a3 cos az) 7/ re

Second Layer Of Helical Wire:

1 - Je cos® a5 + J- sin a5 cos as

(sin= a3 + Jp sin g COS tx:.,) / JJ

cosT as / (2 mn Ty )

(1-31)tana3

- Jz tan (0 &

thana3+(Jg*thana3)J«.

(JE - JF tan Ay ) 32

~ (Ja sin 205 + Js sin2? a5 ) / ra

~ (Ja sin 205 + J> cos2 a5 ) / ra

(Jg c0s 2a5 - Jg sin a5 cos ag) / ra

(Js €08 2a5 - Je sin agz cos ag) /7 rg

(A.3.3.26)

(A.3.3.27)

(A.3.3.28)

(A.3.3.29)

(A.3.3.30)

(A.3.3.3D)

(A.3.3.32)

(A.3.3.33)

(A.3.3.34)

(A.3.3.35)

(A.3.3.36)

(A.3.3.37)

(A.3.3.38)

(A.3.3.39

(A.3.3.40)
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