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ABSTRACT 

Wire rope is a structure formed by a large number of helical wires
which combine in a complex manner to form a composite whole. The
work presented in this thesis is concerned with unravelling the
geometrical and mechanical complexities of stranded rope in a
manner which promotes understanding of the mechanical behaviour
and eventual failure of typical ropes.

The thesis presents methods and computed results which provide
detailed descriptions of single, double and triple helical shapes
of individual wires in strands and ropes. Equations governing the
possible spatial configurations of wires in multi-layered and
stranded rope are also given and the dependence of the
configuration on the number of wires per layer, wire diameter and
helix angle is highlighted.

This understanding of rope geometry is used to interpret extensive
post-test examinations of full-scale ropes which have failed
during systematic laboratory fatigue testing.

Finally, closed-form mathematical models for the study of the
mechanical behaviour of various rope and strand types are
developed and presented. In all cases, these are built on the
earlier geometric foundation described. In some cases, a
modification of Costello's and Velinsky's approach is used. In
single layer strand modelling, comparisons have been make between
the author's analytical models and the experimental results from
Martin and Packard as well as Machida and Durelli. Good agreement
is shown.
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LITERATURE REVIEW



2

1.1	 INTRODUCTION

1.1-1	 Wire Rope Application

In the early days, wire ropes were closely related with the

mining industry, bridge building and rigging of ships. Wire

rope applications nowadays are widespread and diverse. Many

applications go unnoticed, such as submarine cable for

communication, power transmission, mooring of oil production

platforms, aircraft components, suspension of bridges & cable

cars, hoisting for various industries, antenna supports or

roof suspension for large span buildings. There are also many

other commercial and domestic applications, such as shop

windows and suspension of display shelves, lift and elevator

operation in sky-scrapers, false ceilings & suspension of air

conditioning ducts and so on.

1.1-2	 The Design Potential of Wire Rope

A large variety of wire ropes are available, formed according

to different geometrical patterns. However, not more than

twenty basic configurations are commonly used. The main

reason for using wire rope as tensile member is related to

its high strength-to-weight ratio, flexibility and

comparative ease of installation in structures and machines.

Nevertheless, wire rope has disadvantages which are discussed

in Chapter Three.

Under normal applications, wire ropes are generally designed

to carry tensile load;eg as tensile members of a structure in
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which people and equipment are housed. As a result, the aim

of good wire rope practice is to establish the most

economical, efficient and reliable rope service, commensurate

with the appropriate degree of safety to both personnel and

equipment. Research, design, evaluation, production and

selection of the proper rope for a given application is

important,	 as well as efficient storage,	 installation,

inspection and maintenance practice.

1.1-3	 Development of Wire Rope Technology

Although wire rope have been used for several hundred

years
1.9
	early	 advancement	 of	 wire	 technology	 was

essentially in	 manufacturing	 techniques	 and	 material

improvements. Rope design, evaluation and selection rely

heavily on tests and experiments. Extensive tests and

experiments date back to at least one hundred and fifty years

ago. However, information on analytical aspects, such as

knowledge of the stress level that causes wire failure at

various local points, description of the mechanical response

of wires (eg in double helical wire and triple helical wire)

and understanding the influences of the mechanical

interactions between wires and strand, have not yet become

apparent in the history of wire rope research. Therefore, in

the author's opinLon, the present investigations into

theoretical aspects are still elementary. More theoretical

work is necessary to complement experimental work in the wire

rope field.
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1.1-4	 Difficulties Encountered in Rope Research

The complex geometrical patterns of wire rope construction

have limited attempts to investigate the behaviour of wire

rope through tests and experiments. Wire rope tests, on one

hand, are very costly and only gross parameters can be

obtained. Experimental results and data, on the other hand,

are difficult to interpret and to isolate from constructional

and environmental factors which may occur during tests.

1.1-5	 Reviews

The present chapter presents a brief and somewhat subjective

view of existing literature on the behaviour of wires, strand

ropes. Since a complete review of the past 50 years work

would be a difficult task to achieve, only work which is

regarded as interesting and significant in relation to the

present investigation, will be dealt with. The objectives of

this chapter are essentially to establish the scope of

various interests in wire rope, to highlight the difficulties

and to link the early major achievements in theoretical

studies of wire rope with the present investigations. The

literature review covers the following aspects.

a. Historical review of wire rope and strand technology

b. Mathematical modelling of wire rope and strand.

c. Termination of rope and end attachments.

e. Other studies on wire ropes.
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The literature on wire rope history essentially revolves

about wire rope origin and development, wire rope patents in

the early days and wire rope research. The history of the

wire rope industry in Great Britain from 1830 to 1952 was

recorded by Forseter-Walker
1.3 . The birth and evolution of

the wire rope industry in America was traced by Sayenga
1.6

 .

The historical review in the present chapter is confined to a

brief introduction only.

Literature on experiments and non-destructive tests have been

explored extensively. Only a brief review of these aspects

will be given in the present chapter.

Literature on the theory and mathematical modelling of wire

rope and strand dates back to 1948. There were three main

streams of theory which were initiated by Hruska, Machida and

Costello respectively. Detailed reviews will be introduced on

these aspects in the present chapter.



G

1.1-6	 Structure Of Chapter One

LITERATURE
REVIEW

INTRODUCTION
TO WIRE ROPE

REVIEW	 OF REVIEW	 OF REVIEW	 OF REVIEW	 OF

WIRE	 ROPE MATHEMATICAL
EXPERIMENTAL
TESTS OF WIRE

TERMINATION
OF ROPE AND

MODELLING OF ROPE BASED ON MISCELLANE-
HISTORY

WIRE	 ROPE
MATHEMATICAL
MODELLING

OUS STUDIES

BLOCK DIAGRAM 1

STRUCTURE OF CHAPTER ONE
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1.2	 HISTORICAL REVIEW

The present section is a brief review of three main aspects

of rope history. Namely,

a. Origin and development of the wire rope industry.

b. Development of wire rope and rope production machines.

c. Wire rope research.

A brief review of historical events in wire rope technology

is given in table 1.1.

1.2-1	 Origin and Development of Wire Rope Industry

1Reference 1. noted that manufacture and use of wire dated

back to 3000 B.C. It was also said that copper cable was

1.9
found in the ruins of Ninevah as early as 700 B.C.

4
Reference 

1.	 claimed that a fifteen foot sample of 1"

Lang's lay bronze rope used by Romans over 2400 years ago,

was found in Muzio Barbonic at Naples, Italy. A book about

10
Leonardo da Vinci 

1.	 shows sketches of mechanised wire

production accessories dated approximately 1500 A.D. and

manuscripts and books on the history of technology constantly

reveal reports of wire which have been in service in Roman

1.10	 1.4
times	 . Reference	 noted that the Vikings were using

crude wire rope lashings in the 8th century and the Chinese

used wire rope to construct rope-ways across rivers as long

as 1500 years ago. A book in the library at Vienna dated 1400

shows a sketch of rope-way. During the 16th and 17th
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centuries, manuscripts were frequently coded "iron rope",

4
however this does not refer to wire rope but to chains 1. .

a.	 Wire Rope Industry in Britain

References to helically wound wire rope, as known nowadays,

were first found between the years of 1832 to 1837 in the

Proceedings of the Institution of Mechanical Engineers

(Charles Shelley, London 1862, pages 170-209, plate 57).

Figures 1.1 shows the configurations of these ropes. The

French-Style Selvage suspension bridge cable, with Selvage

6
ship rigging was patented by Andrew Smith in 1835 1.and

"formed" wire rope was actually made by Smith and Binkes

during that period at Grimsby. According to record
1.6

, forty

year after G.W. Binkes established his factory in Grimsby,

there were more than thirty manufacturers producing wire rope

in Britain. In 1874 alone, 36,692 tons of wire were exported

(worth more than three-quarters of a million pounds). At that

time, the wire ropes were closely related with bridge

building, the mining industry and the shipbuilding industry.

The early nineteenth century was the most flourishing period

for the wire rope industry in Britain. There were more than

46 companies in business in 1914. However, the rope industry

declined suddenly due to takeovers and amalgamations. British

Ropes was formed during 1924 by the conglomeration of eight

wire rope manufacturing companies. This organisation has

continued to absorb small rope businesses since and has

become the sole company that still manufactures a variety of

ropes at the present time in Britain.



1835

Frei burg Suspension Bridge Cable

am."

1838
Lard Wire Rope

9

1835
Selvagee Wire Rope

1837
Formed Wire Rope

Figure 1.1
Construction Of Wire Rope By L.Gorden & R.S.Newall

From Proceeding Of The Institution Mechanical En-

gineers Charles Shelley, London. 1862 Page 170

-209. Plate 57
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1.3
Remark: Forstier-Walker 	 has detailed records on the

history of wire rope industry in Great Britain from 1830 to

1952.

b.	 Wire Rope Industry In U.S.A.

6
The development of the wire rope industry in America 1.took

place at more or less the same time as in Great Britain. The

growth of this industry was essentially encouraged by coal

(anthracite) mining and the construction of suspension

bridges. The pioneers in this field were largely influenced

by the European philosophy of wire rope and bridge building.

Many of them actually went to Germany, France and Britain to

study bridge design and the application of wire ropes in

haulage and ropeways. The main reason was simply because

there were no American colleges offering engineering degrees

at that time.

In 1839, the first American wire rope patent was obtained by

Isaac McCord. However, John Roebling was the most dominant

figure in American wire rope history. He founded a wire rope

company which bore his own name; and was a brilliant bridge

engineer who built a most spectacular bridge across the gorge

at Niagara Falls. Figure 1.2 is a schematic diagram which

illustrate the appearance of his bridge. In fact, through the

efforts of his three brilliant sons, his company was made

highly successful after his death. Other impressive

achievements through the use of wire rope were the invention

of the cable car, steam shovels, draglines and passenger
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lifts in this period. Rope industry started to decline from

the early 20th century. This was due to the enormous

quantities of wire ropes imported from abroad at very low

price which made it almost impossible for American producers

to make an adequate profit. In the early 1970's the entire

American consumption on 7-wire steel strands was 150,000 tons

per year, yet, 100,000 tons were imported annually from Japan

alone. During 1969-1979, Korean wire rope imports exceeded

45,000 tons to US and the Korean wire rope industry did not

really exist in 1969. Within the same decade, American

companies who manufactured 7-wire steel strands for use in

prestressed concrete construction, in Hampton, Houston, Los

Angeles, Muncy, Palmer, Roebling, San Francico, Trenton,

Waukegan and Wilkes-Barre were all closed.

1.2-2	 Development Of Wire rope And Rope Production Machines

Although the exact origin of helically wound wire rope is

difficult to trace, this type of configuration was first

found between the years 1832 to 1837.

a.	 Development Of Wire Ropes

In Britain, production of wire rope probably began in 1828.

Many experimental iron wire ropes were produced by Andrew

Smith and George Binks. They used conventional cordage

machinery and fine iron wires to form such stranded iron

rope. In 1839, Andrew Smith obtained his most significant

patent (No. 8009 - September 20, 1839) which covered the use
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of malleable iron or other metal wire to make ropes. Three

main types of ropes were produced by Binkes and Smith.

Namely,

i. Parallel wire selvage cables.

ii. Helically laid "formed" ropes.

iii. Flat wire rope.

During that time, attempts were made to apply selvage rope

and "formed" rope in mine hoists. But they soon found that

Selvage ropes were found to be too stiff, and the iron wires

broke up rapidly in "formed" rope due to fatigue.

Meanwhile, in 1834, a German mining official named Wilhem

August Julius Albert discovered how to lay a wire rope

together using relatively large iron wires. His first

successful hand-made ropes were 3x4 construction. Figure 1.3

is a contemporary portrait of Wilhelm Albert. Figure 1.4 (a)

is a schematic diagram of twisting wrenches for producing

strands or ropes according to Albert's construction and

Figure 1.4 (b) is a schematic representation of rope

construction in Albert's time.

In 1835, Albert published all the details of his work which

then stimulated widespread experimental studies and

production. In 1837, Albert invented Lang's lay type of rope

in Clausthal as shown in Figure 1.4 (b). The rope

construction is known as Lang's lay because John Lang was

successful in obtaining the patent in Britain forty years
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Contemporary Portrait Of Wilhelm August Julius

Albert, Born 24 January 1787 In Hanover, Died

5 July 1846 At Clausthal (Ref. 1.11)

Figure 1.3



Colter Turnkey

O 0

Mw.-:n .2. O 0

Ordinary Lay Rope
From Pompelli

15

a. Albert's Equipment For Manual Production Of Rope

Rope End
	

Distance Board

b. Wire Rope Construction In Albert's Time

Albert's Rope
	

Ordinary Lay

(Lang's Lay)
	

Rope In 1831

Figure 1.4

Albert's Equipment And Wire Rope In His Time
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later, even though this construction had been in use in

Britain more than ten years before Lang's rope was patented.

A few year later, a Scottish engineer, Lewis Gordon, visited

Albert and obtained a comprehensive understanding of the

techniques for producing these types of rope. Figure 1.1 is a

schematic representation of the types of ropes that Gordon

learnt to make from Albert. He then returned to Britain and

founded a wire rope factory with his friend R.S. Newall. In

the meantime, John Heimann also produced wire ropes similar

to the German development. But they were sued by Andrew Smith

who claimed the exclusive right to produce these types of

ropes. Figure 1.5 is the schematic representation of Andrew

Smith's rope patterns. However, Smith lost his suit later.

Thereafter, rope patterns were patented one by one, either in

Britain or elsewhere. In 1884, the lock coil ropes, as shown

in Figure 1.6 b, c, were patented by E.C. Batchelor. In 1886,

the flat rope, as shown in Figure 1.6 d, was patented by

H.R.I. Webeter. In 1888, the flattened stranded rope, as

shown in Figure 1.6 e and f, was patented by Latch and

Batchelor. In 1897, Lang's lay rope was successfully patented

by John Lang. In 1909, the non-twist rope of elliptical

strands, as shown in Figure 1.6 g and h, was patented by

Newall and Skelton, and in 1910, a rope with inter-mixed

elliptical and triangular strands, as shown in Figure 1.6 i,

was patented by E.C. Batchelor.

In America, wire rope development was stimulated by totally

different problems. In 1832, a law was passed by Congress
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b. C.

g.e.	 f.

h.

18

Variety Of Wire Ropes Which Had Been

Patented By Rope Makers	 (Ref.1.1)
	 d.

Figure 1-6
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which stated that in existing paddle-wheel river boats with

fibre cordage the tiller ropes had to be replaced by

"metallic" ropes to achieve required safety standards. This

law motivated American to the design of "metallic" cordage.

In 1839, the first American wire rope was patented by Isaac

McCord who proposed to make ropes from three small selvage

cables twisted together like cordage. Since then, Americans

developed a number of good rope types, such as the "three

side" construction (which is now called "Warrington")

patented by John Roebling in 1886, the "alternative lay"

which was patented by Ferdinand Roebling in 1875, and the

filler wire rope which was patented by Jame Stone in 1889.

These types are still being used today. In 1921 Roebling

covered a rope with metal band as shown in Figure 1.6 j.

b.	 Rope Production Machines

Wherever in Europe or in America, there were always three

main objectives to be pursued in the wire rope industry. They

were to:

i. improve the quality of wire used in rope manufacture.

ii. design better machines for production and

iii. further improve rope design.

After Albert's equipment for manual production of rope was

successfully introduced in the Harz Mountains of Bavaria, as

shown in Figure 1.4 (a). Various type of stranding machines

were designed, such as a Wooden stranding machine designed by
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Franz Wurm, as shown in Figure 1.7, a manually operated

stranding machine designed by Westmeyer, a combined stranding

and rope closing machine with rope transmission for relative

movement of bobbins was developed by Westmeyer. Figure 1.8 is

a schematic diagram of this machine which was patented by

R.S. Newall in August 1840 in Dundee. The "tubular strander"

which was designed by Andrew Smith and improved by his son in

America, was the most important machine design for rope

production. This design eventually became a universally

applied tool in rope making all over the world. Figure 1.9 is

a schematic drawing of the "tubular strander" which was

patented by Andrew Smith in 1849 and improved by his son

later.

1.2-3	 Wire Rope Research

The present section is a brief review of wire rope research

in both Germany and Britain.

a.	 Wire Rope Research in Germany

Although Albert was not the inventor of the wire rope, his

efforts in promoting the application of wire rope on an

extremely wide scale undoubtedly deserves credit. Albert

published all the details of his work in 1835. His

breakthrough in wire rope stimulated widespread experimental

studies in Europe. However, intensive wire rope research was

actually begun around 1860. This activity was initiated by

Professor Reuleaux at the Technische Hochschule in Berlin.
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Figure 1-7

Wooden Stranding Machine For Rope Manufacture

According To A Design By Wurm Of Vienna Ref.1.7

Figure 1.8

Combined Stranding & Closing Machine Ref.1.7
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These works were carried on by several professors, but most

of their research was done on small diameter rope for use in

hoist and cranes. Tests on relatively large diameter wire

rope such as those used for shaft haulage installations, were

carried out at the Westphalian Mining Union-Rope testing

Station in Bochum, founded in 1903, under the direction of

Dr. Ing. Eh. Hermann Herbst (Seilprufstelle Bochum). From

1951 onwards, rope tests were still carried on at the

Technische Hochschule of Karlsruhe. Wire rope tests are still

carried on in Germany at present. These tests are essentially

done on safety devices and driving sheaves in lift

construction. Figure 1.10 illustrates some of the rope

endurance test equipment from 1829-1927 in Germany.

b.	 Wire Rope Research In Britain

A considerable amount of experimental studies on wire ropes

were undertaken in Britain, during the First World War, but

extensive rope tests were actually started around 1920. Under

the British Wire Rope Research Commission, these tests

supervised by Scoble, were concentrated on wire ropes for use

over pulleys. Five detailed reports between 1920 to 1930 were

presented. In 1983 the Department of Energy commissioned the

National Engineering Laboratory to undertake a survey to

examine the published literature on the fatigue performance

• of large diameter wire ropes
9.14

. As a result of this survey

the Department of Energy sponsored a short test programme

which was carried out during the period 1984-85. The primary

objective was to investigate the repeatability of the

endurances of wire ropes of different diameter (40, 70 and

127 mm) but of the same general construction when subjected

to fluctuating tensile loads of constant amplitude. It was

observed during this study that the changes in rope stiffness

and elongation which took place allowed one to distinguish

between good fatigue test result from ones which failed

resulting from the influence of the termination. A secondary

objective was to evaluate available non-destructive testing

techniques for assessing the condition of large diameter wire
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a. Chain Testing Machine Designed By

Albert In 1829

b. Bending Machine By
Biggart 1890.

c. Bending Machine By
Rudeloff 1893.

e. 60 KN Alternating Bending
Machine By R. Woernle 1927

d. Testing Machine By
Isaachaen 1909

Figure 1.10

Rope Endurance Testing ( Ref. 1.11 )
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ropes. The results of this work has led to a number of

publications (Ref. 4.7 and 4.8).

NEL is now the major participant in a collaborative Joint

Industry Study which look into the fatigue behaviour of large

diameter wire rope and strand used for mooring offshore

structures. The objective and scope of the study which is

covered in the original proposal by Potts and Chaplin 7.13 ., is

to produce an experimental database on the fatigue

performance of these products and develop a method for

predicting the fatigue life of large diameter wire rope and

strand based on reference S-N curves obtained for 40 mm

diameter six strand rope.

In addition to this, NEL has actively pursued mathematical

modelling of wire rope by sponsoring research students at

Strathclyde University and allowing them to carry out their

work at NEL. The author of this thesis is being one of the

students.

This comprehensive approach to wire rope research, which has

been developed over the last four years, has resulted in NEL

being at the forefront of wire rope research.

Figure 1.11 and 1.12 illustrated the most advanced full scale

endurance testing rigs equipped with modern data acquisition

system for the large diameter wire ropes. The testing rig

illustrated in Figure 1.12 is regarded as the world largest

full scale multi-function large diameter wire rope

bending-tension testing rig at the present time.
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1.3 REVIEW OF THE MATHEMATICAL MODELLING OF STRANDS AND

ROPES

In this section, a review is made of available information on

the static response of wire strands and ropes published in

various sources journals and theses. From this survey, it was

found that theoretical works on wire rope have only emerged

strongly in the last two decades. Most of the published works

were essentially focused on the static mechanical responses

of strands and ropes. Before the 1970's, Only a scattered

number of papers were found. The prominent figure was Hruska.

The	 literature	 review
	

is	 divided	 into	 the	 following

categories.

a. Work by Hruska and his followers.

b. Work by Costello, his fellow workers and his

students.

c. Work by Machida, Huang, Knapp and miscellaneous

works.

d. Geometry of strands and ropes.

1.3-1	 Mathematical Modelling of Strand and Rope (Hruska,

F.H. And Other Investigations)

H.M.Hall and F.H.Hruska can be regarded as pioneering rope

modellers who attempted to find out the tensile stresses on a

core wire and helical wires at different layers of a strand

within a rope by using the "Strength of Material" approach.
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Most of their published works are reviewed and summarized as

follows:

In an analytical paper by Hall
2.1

, attempt has been made to

show that the tensile stress on the helical wires of

outermost layer is greater than that of the helical wires of

the inner layer within a strand subjected to tensile load.

However, this analysis was proved to be wrong by Hruska.

Having been stimulated by Hall's work, Hruska
2.2 - 2.5

carried out a series of analytical studies on the mechanical

behaviour	 of	 wires	 within	 strands	 and	 ropes.	 His

contributions included work on:

a. Tensile stress ratio between core wire and helical

wire,

b. Evaluation of radial force between wires at regions

of contact,

c. Tangential force acting on helical wire and torque

provoked at the rope termination and

d. Approximation of the cross section shape of a

helical wire on a transverse section which is made

through a strand or rope. A similar analytical

approach is also found in Costello and Phillips'

paper
2.2
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However, Hruska's work ignored friction and all helical wires

within a rope were considered as single helical wires. In his

analysis, attempt had been also made to model ropes with zero

moment (ie unwinding moment) by using moment equilibrium and

single helix geometry. This model ignores the fact that the

majority of helical wires are double helical wires and that

rope geometry will be changed as applied load changes.

Besides, only the tensile component was considered to be

acting on each of the wires.

Summary Remarks on Hruska's Stress Analysis of Wire Rope

Hruska's strength of materials approach used to study wire

ropes have been relatively simple and almost entirely

restricted to strands made up of single helical wires; since

his model considered only the tensile component acting on the

single helical wire. Furthermore, the double helix geometry,

geometry	 of	 wire	 cross-section,	 many	 other	 internal

components (such bending, twisting and shear components) have

not been adequately considered. However, his concept, idea

and approach were improved in the later studies by other

investigators who considered force and moment equilibrium,

extensional stress and strain on a core wire and single

helical wire, displacement, helix geometry and friction. All

these parameters, to some extent, have been explored by later

investigators.

Hruska's approach applied by other investigators used in
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other areas, are briefly reviewed as follows:

Contact stresses in a 6 x 7 wire rope were investigated by

Cress
2.6

. Based on Hruska's work and Hertzian contact theory

from Seeley and Smith
9.12

 '
	 three principal compressive

stresses equations taken from Ref. 9.12 were written as

functions of tensile load, single helix geometry and elastic

properties of the material. However, the complicated contact

geometry was idealised by parallel and cross cylinders with

equal diameters.

Contact stresses analysis for a 6 x 7 wire rope, published in

an article by Leissa
2.8

, was similar to the work of Cress 2.6

2.
In response to Leissa's paper 8, an analysis of the critical

stresses and mode of failure of a wire rope was made by

Starkey and Cress
2.7

. It was a minor improvement to the

earlier work of Cress and offered further analytical results

based on Hertzian contact theory. The geometry of wires at

the contact points was still idealised by the geometry of

parallel and cross cylinders. In their study, they point out

that the critical stresses occur between wires are at the

crossover points between adjacent strands.

Bert and Stein
2.9

 selected a more complex rope structure (6 x

37) for the contact force analysis. Additional improvement

was made by introducing curvature geometr y at the contact

positions which were initially idealised by parallel and
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cross cylinder as shown in Cress and Leissa's works. They

even showed that the calculated contact stress value was five

times greater than the yield stress of the wire material.

Torque characteristics (ie unwinding moment) of wire ropes

were studied by Gibson and others 
2.10. 

In their analysis,

Hruska's approach for strands and ropes was still pursued.

They pointed out that for six stranded ordinary lay rope,

Lang's lay rope and fibre core ropes, the unwinding torque

generated is linearly with respect to tensile load.

Hruska's analytical approach to the study of the mechanical

behaviour	 of	 strands	 and	 ropes	 was	 summarized	 by

Reensnyder
2.11

Brief Summary Remarks On contact Stress Analysis

Hertzian contact stresses analysis and Hruska's strength of

materials approach were applied throughout Cress, Leissa and

others analysis. Two cross and parallel straight cylinders

with equal diameter were used to simulate the contact feature

between the core wire and helical wire of the 6/1 strand and

the core strand & helical strand of the 6 x 7 wire rope.

However, this analysis did not consider the relationships

between the R/r ratio and the admissible helix angle of

helical wires within a layer of a strand (see chapter 6).

Besides, they did not consider the influence of double helix

angle and the curvature of double helical wires at the
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contact point used in the contact stress analysis of the 6 x

7 wire rope.

Overall Remarks On Hruska's Approach And

His Followers' On Wire Rope Analysis

Hruska's strength of material approach used to solve the wire

rope problem (ie straight strand) is thought to be original

and is an approximate method to evaluate forces and torque

components acting on the helical wires and helical strands.

However, this approach has a number of limitations and

ignored the following mechanical and geometrical influences

on the strand and rope under external loading:

a	 The geometrical relationships between the core and

the helical wire i.e. the spatial configuration of

strand and R/r ratio. For details, see Chapter Six

of this thesis.

b. The mechanical interactions between adjacent wires

and strands. For example, friction, wear secondary

bending and twisting.

c. The change in helical geometry resulting from the

incremental change in external applied load. For

instance, change in curvature, torsion and helix
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angle.

d. Mechanical components other than tension. For

example, shear force, bending and twisting moment

acting on the single helical wire.

e. Geometry of double helical wires in a rope.

Hruska's approach was soon applied to deal with the contact

problem in the 6/1 strand and 6 x 7 wire rope by Cress,

Leissa,	 Starkey,	 Bert and Stein in the same decade.

Nevertheless, the parallel cylinder, cross cylinder and the

improved curvature method did not consider the 3 dimensional

interaction between wires at the contact location which may

be important in the actual situation, depend upon the strand

and rope geometry. For instance, they did not consider:

a. The three dimensional slippage, friction, wear and

thermal effects.

b. The influence of galvanized coating.

c. The influence of mechanical interactions other than

radial force.

d. The geometry at the contact locations. For example,

the double helix angle and curvature.

e. The influence of lubricants.

f. The spatial relationship between the radius of core

wire, radius of helical wire, helix angle and the

number of helical wires per layer.
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Remarks:

The approaches adopted by Cress, Leissa, Strakey, Bert and

Stein to the contact problem were basically similar with the

exception that Bert and Stein considered the curvature of

wire at the contact point of wires.

The improved mathematical method of Gibson, Cress, Kaufman

and Gallant to deal with the unwinding torque of wire rope

under tension, was the minor modification of Hruska's

approach.
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1.3-2	 Mathematical and Theoretical Study of Strand and Rope

( By Costello, His Fellow Workers and His Students)

Analytical and mathematical studies on strands and ropes

(American type of wire rope, eg Seale rope) was actually

stimulated during the dramatic decline of the American wire

rope industry in the early 1970's. Detailed strand (6/1

strand without core wire) modelling work was published by S.

Machida and A.J. Durelli . Since then, a series of joint

academic papers on mathematical modelling of strands and

ropes emerged in State and were chiefly published by G.A.

Costello, his fellow workers and students
3.1 - 3.25 

at the

University of Illinois; the static and dynamic response of

6/1 strand and 6 x 19 construction of Seale rope with IWRC

were their main interests.

In their earlier analysis, a more fundamental approach was

taken to model the responses of a helical wire within a

strand, in which the individual wires of a 6/1 strand were

modelled by initially thin curved rods subject to internal

tension, bending moment, twisting moment, shear force and

radial force per unit length of the helical wire. The

nonlinear displacements and the axial strain of the helical

wire were derived from the "developed triangle" of a deformed

helix.	 The nonlinear displacement equations were then

linearized by dropping the 2nd and higher order differential

terms. Eventually, a linearized model was developed for the

evaluation of the static response of the helical wire within
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a strand. Frictional effects were not introduced until the

early 80's when Buston
3.11

 one of the Costello's PhD students

introduced frictional effects into a 6/1 strand model for the

analysis of strand mechanical responses. Buston also studied

the dynamic response of alike strand.

Later, the rod theory and single helix strand model were

applied to study the mechanical responses of Seale rope. For

instance, Velinsky
3.18 & 3.19 

selected a more complex rope

construction to study. It was a structural modelling of an

6x19 type of Seale rope either with a fibre core or with an

IWRC, by introducing an effective fibre core radius and

effective Poisson's ratio respectively. A survey of their

literature from the early 1970's to the mid 1980's has been

collected in the appendix of this thesis.

Comments on Costello and His Fellow Worker's Theory for

Modelling of Strand and Rope.

Within the last decade, a series of joint papers by Costello

and his fellow workers emerged in the United States. In their

earlier works, fundamental approach was taken in modelling

the radial force between wires in contact and the ratio of

radius of helical wire to the wire helical radius of strand

as functions of number of helical wires per layer and helix

angle. However, similar work had been published by Hruska in

"Geometrie im Drahtseil". The similarity found in their works

are as shown below:
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In Costello's paper, 1974

In Hruska's paper, 1958

There is no difference between these two equations, since a'

= 90 - a.

Kirchhoff's naturally curved rod theory was also introduced

to solve the static mechanical response of single helical

wires within strand or single helical strands within a rope.

This concept was not new since similar concept had been

proposed by Hansom
6.2

; in a PhD thesis called "The Mechanics

Of Locked Coil Ropes", published in 1949, at the University

of Birmingham. However, Hansom himself did not actually

apply	 rod theory to analyze his rope problem, whereas,

Costello and his fellow workers actually used the rod theory

to analyze the static response of strands and ropes.

In a paper called "Simplified Bending Theory For Wire Rope",

Costello and others showed that the core wire was separated

from the helical wires within a strand. This implies that the

importance of curvature effect influencing the spatial

configuration of a strand and a rope has not been

appreciated. As long as the helical wires are laid around a
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core wire, each layer of helical wires must always touching

the layer immediate beneath. Because, there is an admissible

value which prevents helical wires jamming each other in each

layer within a strand, see Chapter six.

For static strand modelling, the rod theory with the

frictionless assumption, proposed by Costello and others, is

considered as a rational approach for the analysis of the

mechanical responses of strand and helical wires subjected to

static tensile load. For a strand with fixed ends subject to

quasi-static tensile loading, the deformation of the strand

is very small. Although their model is frictionless model.

There	 are	 almost	 no	 significant	 differences	 between

full-friction and full-slip (ie frictionless) strand model

provided the helix angle of the wires is large enough (eg 80

degrees).

For ropes modelling, Costello's and others' approach use

strand approach and rope theory to analyze some global

mechanical behaviour of rope 	 (eg effective stiffness).

However, single helix strand approach can not used to analyze

stresses and strains on double helical wires since geometry

of single helix differ from that of the double helix.

Besides,	 the	 mechanical	 interactions	 which	 are	 very

significant in relation with the geometrical configuration of

rope, were not be fully appreciated in their theory.
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1.3-3	 Mathematical Modelling Of Strands And Cables By

Other Investigators

In addition to Hruska's and Costello's approach, several

other strand and cable investigators also understood the

importance of single helix geometry in governing the static

response of strands and cables under tensile and twisting

load. The following is a review of their work.

Machida and Durelli
4.1

 proposed an explicit mathematical

model to analyse the static response of a 6/1 strand.

Strength of materials approach was used and change of helix

geometry as the result of loading was considered. Component

forces and moments acting on each wire were summed up to the

direction of applied loads. Four termination conditions were

considered, namely fixed ends, free ends, twisting and

combined loads (tension and twisting). However, shear force,

mechanical	 interaction	 (include	 friction)	 and	 spatial

configuration
*
 of helical wires within a strand were ignored.

It is because they showed that the diameter of core wire

equals the diameter of helical wires in a 6/1 strand.

Note:

circumferential space of strand core occupying by the helical

wires that laid around it. This geometrical configuration is

closely related with the helix angle, number of wires per

layer, helical radius and radius of helical wire within a
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strand.

Nowak
4.2 dealt specifically with core wire strain, pressure

acting on cable core, normal and shear stress provoked in any

layer of helical wire in an electro-mechanical cable. Nowak

also showed that if a transverse section was made through a

strand, the section of a helical wire is a "kidney shaped"

section.

Knapp
and 4.5

pp specialized in the mechanical behaviour of

helically armored cable. In his earlier work, linearized and

non-linear analytical models for cable subjected to tension

were also proposed. Knapp's analytical approaches were quite

similar to those of Machida. However, improvements were made

to deal specially with the cable problems. In his latest

work
4.6

, the analytical models dealing with the bending of

cable	 over	 sheaves	 were	 proposed.	 Frictionless	 and

full-friction conditions were considered. Analytical results

were then compared with experimental results and good

agreement was claimed.

Like Costello and others, Huang
4.4

also made use of rod

theory in the analytical study of static response of a 6/1

strand. Inter-wires friction was considered in his work.

However, he did not seem to appreciate the significance of

the spatial configuration of the strand; the author does not

agree with Huang's conclusion that if the central core and
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the surrounding wires were made of the same material, the

extension of the strand always caused a separation between

core wire and helical wires.

1.3-4	 Helix Geometry and Sectional Geometry of Helical

Wires in Rounded Stranded Rope

The term 'helix geometry' describes the three dimensional

coordinates of the centroidal axis of a helical wire. The

term 'sectional geometry' describes a mathematical means to

determine the cross sectional shape of a helical wire as a

function of helix angle, number of helical wires per layer

and the ratio of helical radius to the radius of the helical

wire. Complete and comprehensive studies of these aspects are

still scarce. This section provides a review of available

literature.

Until recently mathematical models used to study wire ropes

have been relatively simple and entirely restricted to strand

made up of single helical wires. This issimply because the

influence of the rope geometrical pattern are not known and

the understanding of the geometrical properties of double

helical wire are limited. Furthermore, the geometry of wire

cross-sections and its significance has not been adequately

considered.
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A relatively small amount of work has been published on the

geometry of single and double helices in ordinary lay rope.

Despite the fact that wires in a rope may be triple helices,

- triple helix geometry has not previously been considered.

1
Stein and Bert 

5.
considered double helical wire in an

ordinary lay rope. They presented the coordinate equations

and the curvature equation for this helix. However, the

derivations given were very brief.

5.2
Karamchetty	 attempted a study on the geometry of double

helical wires. However, his equations do not agree either

with these of Stein and Bert 5.1 or these presented in

Chapter 4 of this thesis. For example, it should be possible

to obtain the equations for Lang's lay from the equations of

ordinary lay simply by reversing the direction of the wire

rotational coordinate. This is not so for equations presented

by Karamchetty.	 Indeed, Karamchetty's equations do not

distinguish between Lang's lay and ordinary lay at all.

5.3
Karamchetty	 went on further to calculate the number of

contact points in a rope by using his previous geometrical

model for double helical wire in a rope.

The papers by Wiek 5.5 dealt mainly with the calculation of

the radius of curvature of a single helical wire bent over a

sheave. His work on double helical wires is restricted to the

degenerate case of a strand bent into a circular arc.
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5.9
Lee and other	 carried out a more comprehensive study into

rope geometry. They considered,	 for example,	 radii of

curvature and torsion for the constituent wires when strand

or rope is bent around a sheave or wound around a drum.

Although work has been done on the approximation of the cross

sectional shape of helical wires by an ellipse, for example

by Costello and Huang, the influences of the spatial

configuration of strands have not been fully appreciated. The

"kidney shaped" helical wire section was first published in

5.4
Nowak 's paper

4.2
. Kunoh and Leech	 went further: They

explained that the "kidney shaped" wire section is the result

of curvature effect of a single helical wire.
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1.4	 Experimental Study Of Wire Rope And Strand

The complicated construction of wire rope and strand imposes

enormous difficulties with respect to the experimental study

of the mechanical responses, mechanical interactions, stress

and strain variations and the behaviour of wires within a

rope. As a result, most experimental studies of wire ropes

are confined to the macroscopic behaviour of strands and

ropes.	 Comprehensive	 experimental	 study of	 mechanical

responses, mechanical interactions, stresses and strains

variation on individual wires have not yet been considered

adequately. However, some available wire rope experimental

literature (quantitative or qualitative) relevant to the

present study is briefly reviewed. The work can be divided

geographically into the following categories:

a. Experimental and mathematical study of wire rope

and strand in Britain.

b. Experimental study on wire ropes and strand outside

Britain.

1.4-1	 Mathematical Modelling And Experimental Work On

Wire Ropes And Strands In Britain

In this section, the review is particularly concerned with

the literature on mathematical modelling and experimental

study of strand and rope in Britain from 1948 to 1987.
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1
Matheson 6 	 and Hansom62 were the earliest investigators in

connection with experimental and mathematical study of the

static response of locked coil rope (ie strand). They were

particularly	 interested	 in	 the	 tensile	 and	 rotation

characteristics of lock coiled strands. The strength of

material approach was employed by Matheson. However, the

locked coil strand was considered as an indeterminate

structure by Hansom. The naturally curved rod theory for the

analysis of the static response of helical wire within a

locked coil strand was first introduced by Hansom's in his

thesis. Simultaneous equations were developed to deal with

load sharing amongst wire layers in the strand. Experimental

and mathematical results were then compared and the

discrepancy was noted. He then concluded that the discrepancy

was due to the initial looseness of the strand (also defined

as constructional displacement as shown in Appendix) and the

elasticity of the core wire as a foundation.

An experimental study on the torsional properties (ie static

response on twisting) of three and seven strand rope (ie 3

helical wire strand and 6/1 strand) was carried out by

Slight
6.3

. A simple mathematical model based on the open coil

spring theory was introduced for the study of the 3 helical

wires strand and 6/1 strand. The analytical calculations were

then compared with the results obtained from the experiment.

Experimental study on the tensile stress on a core wire and
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helical wires within a 6/1 strand was conducted by Martin and

4
Packard 

6.4 
Electrical strain gauges and extensometer were

used to measure both the strains on the surface of the wires

and the overall extension of the strand. Results were then

compared with Hruska's analytical approach for strands and

agreement was claimed.

Inter-wire slippage, contact force, hysteresis and fatigue

properties of large diameter multi-layer structural strand

were examined by Hobbs and Raoof
6.6	 and	 6.7

Both

experimental and analytical methods were used in their study.

In Raoof's strand modelling, each layer of wires was

considered as a concentric orthotropic sheet. Full friction

and full	 slip assumptions were made	 in this model.

Experimental results on hysteresis, wire slippage and wire

stress were claimed to be in substantial agreement with the

model.

In the same time as Raoof, Utting and Jones
6.8 & 6.10 

also

developed their own model of the static response of a 6/1

strand. They also made use of rod theory. Friction and

flattening effects due to contact force were considered. They

developed their own testing rig to study the stresses and

load-extension characteristics of a 6/1 strand. Experimental

results were then compared with analytical calculations

obtained from their model and other modellers; includes

Machida, Velinsky and Matheson.
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In other	 areas,	 Casey
6.9

	successful	 employed acoustic

emission technique to monitor the reliability of wire rope

during the service life of the rope.

A plastic collapse model for 6/1 strand has been developed by

Jones and Christodoulides
6.5

 based on the classical upper and

lower bound theorems of plasticity. They assumed that the

core wire of the strand was inextensible and the wires of

outer layer were made of perfectly plastic material. Hill and

Siebel's yield criterion was applied throughout the analysis.

1.4-2	 Experimental Work On Strand And Ropes Outside Britain

In this section, some interesting experimental work on wire

rope	 are	 also briefly reviewed	 for	 the purpose of

completeness. They are presented in the following.

Dong and Steidel
7.2

 attempted to study the contact stresses

distribution between each layers of wires within a strand. A

photo-elastic cable model was clamped laterally. The normal

contact stress distributed between inter-wires within the

strand model were obtained by means of stress freezing

photo-elastic technique. Experimental results were then

compared with the analytical calculations obtained from the

Hertz contact stress analysis for two crossover cylinders.

Agreement was claimed.
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Vanderceldt and others
7.4

 studied the mechanical properties

of	 cables	 (ie	 strands)	 under monotonic	 tensile	 test,

properties such as equivalent elastic modulus of cable,

effective Poisson's ratio and total input energy required to

cause failure of a strand. The acoustic emission provoked

from the breakage of a wire within a strand was also studied.

Durelli and others
7.5 & 7.6 

conducted a series of tests on a

epoxy oversized strand model and steel wire strand; ie 6/1

strand construction. Strains and responses of wires in the

strand resulting from axial and torsion displacements applied

to the models were studied by means of brittle lacquer

coating, electrical resistance strain gauge and extensometer

techniques. The extension and rotation between terminations

were recorded under fixed end and free end condition. Results

were then compared with Machida's strand theory and agreement

was also claimed.

7.7,	 7.10 & 7.11
Wiek	 reported experimental studies on the

surface strain of cover wires of different ropes. Strain

gauges were mounted on the surface of the wires in both

Lang's lay and ordinary lay ropes. He pointed out that for

nominally identical wires on both ropes stresses found to be

more uneven in the case of Lang's lay. As a consequence, he

doubted that Lang's lay rope has greater endurance than

ordinary lay rope.
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Nesterov
7.1

 examined the load shared by each layer of strands

in a rope. The rope was loaded to a predetermined extension.

Both tensile load and resisting torque were recorded and

followed by cutting away the outer layer strands. The final

tensile load and resisting torque were then recorded again.

The difference between the initial and final load carried by

the rope is the load shared by the strands layer.

Hankus
7.8 - 7.10 

reported tests on 35 mining ropes or various

diameters and constructions. Various rope properties were

published, eg torque generated by the rope under tension.

Gibson and others
7.3

 made use of an electrical strain gauge

load cell to monitor tensile tests on a Lang's lay rope. The

rope was loaded to 60 % of its breakage strength. Agreement

between experiment results and analytical method (Hruska's

method) was claimed to be within 2 %.

Summary Remarks on Experimental Studies of Wire Rope

The preceding experimental studies resulted in	 some

qualitative understanding on the mechanical behaviour of wire

ropes. Conventional methods were normally used throughout

experimental tests, (for example, electrical strain gauge,

load cell methods, Photo-elastic technique and extensometry).

However, these methods have confined applications because of

the complicated structure of a rope, (et to chapter three).
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In	 order	 to	 understanding	 the	 interactive mechanical

behaviour within a rope. Future experimental studies should

aim to separate parameters from the influences of mechanical

responses and mechanical interactions within a rope. Hence,

improvement of experimental techniques are essential.

1.5	 Attachments and Termination of Wire Rope and Strand

End terminations for wire rope installations are of the

greatest importance to safety and transmission of the load to

the rope. It is commonly realised that even properly made and

well installed terminations will develop less strength than

the full strength of the rope and strand themselves. This

sub-section gives a brief review on the study of rope

terminations.

Christen and Hilgers
8.1-8.2

 described detailed procedures for

securing a rope termination to the end attachment. The former

investigator suggested that hooking over the round wires at

the rope termination will increase the effectiveness of wires

gripping in the attachments. However, the latter investigator

did not agree this; he suggested that the strength of a wire

will be reduced by 4 to 6 % if the wire is bent more than 90

degrees.

Myers
8.3

discussed a wide range of end attachments for wire
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ropes, He recommended that swaged fittings are more effective

with respect to resistance to fatigue.

Gathman
8.4

 even went further, he reported 800 laboratory

tests on resin attachments for wire ropes. He suggested that

resin-poured sockets are more durable than zinc poured

sockets on 7/8" diameter wire rope under fatigue test at

moderate loads. Besides, the penetration of resin was found

to be better than zinc.

A test programme was conducted by Matanzo and Metcalf 8.6
 In

order to determine the efficiency of rope terminations, nine

different types of wire rope terminations were tested under

static tensile condition.

Dodd
8.5

 discussed the development of work on resin socket. He

pointed out that the major restraining force on a rope

termination is the wedging action within a socket, not the

bounding force of the filling material. He then listed number

of advantages of resin over zinc in many applications.

Chaplin and Sharman
87

 discussed the gripping characteristics

of resin sockets. They argued that the gripping mechanism

depends initially on the adhesion between the surface of

wires and solidified resin.

.	 6.8 and 8.6 .Utting	 in his PhD thesis, presented the results of
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strand resin termination pull out from end attachments for

6/1 strand. He then published work on the mathematical study

of stresses in wires near termination.

Summary Remarks On The Rope Termination

Investigations on rope terminations suggested that the

gripping efficiency between rope	 termination and end

attachment depends on both the wedging action and the

adhesion between wires and the filling media (eg resin or

zinc).

1.6	 OTHER STUDY ON ROPES

There is a wide range of literature on other aspects of wire

rope studies eg fatigue performance tests, non-destructive

tests,	 inspections,	 discard	 criteria	 and	 general

applications. However, these subjects are outside the scope

of this study and will not be covered in this review.
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TABLE 1.1

SOME HISTORICAL EVENTS IN WIRE ROPE DEVELOPMENT

YEAR DESCRIPTION OF EVENTS NAMES & VENUES

700B.C.S METALLIC COPPER WIRE
DISCOVERED

RUINS OF NINEVAH

1452	 -
1519	 A.D.

WIRE ROPE WAS FIRMLY
FOUND IN THE TECHNICAL
BOOK

LEONARD DA VINCI

1500 A.D. MECHANISED WIRE PRO-
DUCTION ACCESSORIES

LEONARD DA VINCI

1816 1ST WIRE ROPE USED IN
U.S.A.	 AS EMERGENCY
FOOT BRIDGE

BUILT BY JOSIAH
WHITE

1824 LARGE SCALE TESTS ON
WIRE ROPE SUSPENSION
BRIDGE

CARRIED OUT IN
AUSTRIA

1830 1ST AMERICAN SUSPEN-
SION BRIDGE DESIGNED

BUILT BY CHARLES
ELLET

1832 1ST HELICOID WIRE ROPE
APPEARED

UNKNOWN

1834 BEGINNING OF WIRE ROPE
TESTS

BY ALBERT,W.A.T.
GERMAN REMARK: THE
FIRST ONE WHO PRO-
DUCED ROPE IN LANG
LAY (ALBERT LAY)

1835 FIRST VESSEL (MARSHALL
OF GRIMSBY) RIGGED WITH
WIRE ROPE

WOOLWICH DOCKYARD

1840 1ST WIRE ROPE MAKING
MACHINE PATENTED

BY NEWALL (ENGLISH)

1860 INTENSIVE WIRE ROPE
RESEARCHES BEGAN IN
GERMANY

BY	 PROFESSOR
REULEAUX AT	 THE
TECHNICAL SCHOOL
OF BERLIN

1864 TRANS-ATLANTIC CABLE
LAID

GREAT EASTERN

1875-
1879

WIRE ROPE WAS DEVELOPED
INTO ALTERNATIVE LAY &
LANG LAY

FERDINARD ROEBLING
AND JOHN LANG RESP.
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CONT...TABLE 1.1

1884 LOCK COIL ROPE WAS PATENTED BATCHELOR,E.C.

1886 FLAT ROPE INTRODUCED WEBSTER,H.R.I.

1888 FLATTENED ROPE WAS PATENTED LATCH	 AND
BATCHELOR

1890 IDEA IF FILLING THE INTER- STONE,J.B.
STITIAL SPACES WITH FINE
FINE WIRE WAS CONCEIVED

1909 NON-TWIST ROPE OF ELLIPT- NEWAL	 AND
ICAL STRAND WAS PATENTED SKELTON

(ENGLISH)

1910 A	 ROPE	 WITH	 INTERMIXED LESCHEN E.C.
ELLIPTICAL STRAND APPEARED BATCHELOR

1913 PATENTED	 LOCK-COIL	 ROPE UNKNOWN
SURROUNDED FLATTENED STRAND

1921 ROPE IN WHICH	 CORE	 WAS ROEBLING
ENCLOSED IN A METAL BAND

1940- MATHEMATICAL	 MODEL	 FOR HRUSKA,F.H.
1950 STRESS ANALYSIS OF WIRE (ORIGIN)	 AND

ROPE HIS FOLLOWERS

1970- MORE	 PRECISE	 MATHEMATICAL COSTALLO'S AND
1980 MODEL FOR STRESSES ANALYSIS HIS FOLLOWERS

REMARK:

A. WEBER,W.
17
 RECORDED HOW ALBERT'S ROPES WERE PROMOTED IN

MINING INDUSTRY AND TRACED THE DEVELOPMENT OF WIRE ROPE MACHINERY.

B. FORESTIER-WALKER,E.R
1.2

RECORDED THE HISTORY OF WIRE ROPE

INDUSTRY IN GREAT BRITAIN FROM 1830 TO 1952

C. SAYENGA,D
1.6

 RECORDED THE HISTORY OF WIRE ROPE INDUSTRY IN

U.S.A.
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TABLE 1.2

HRUSKA,F.H. AND HIS FOLLOWERS
MATHEMATICAL MODELLING OF WIRE ROPE

YEAR INVESTIGATOR FIELD OF STUDY ORIGIN

1951 HRUSKA,F.H. TENSILE STRESS
FOR WIRE ROPE

UNKNOWN

1952 HRUSKA,F.H. RADIAL FORCE
FOR WIRE ROPE

UNKNOWN

1953 HRUSKA,F.H. TANGENTIAL FORCE
FOR WIRE ROPE

UNKNOWN

1953 HRUSKA,F.H. CONTACT FORCE &
STRAND GEOMETRY

UNKNOWN

1954 LEISSA,A.W. STRESS ANALYSIS
FOR 6/1 STRAND
SUBJECTED PURE
TENSILE LOAD

HRUSKA,F.H.

1955 CRESS,H.A. CONTACT STRESS
FOR 6/1 STRAND

HRUSKA,F.H.
HERTZIAN CON-
TACT STRESS

1959 LEISSA,A.W. CONTACT STRESS HRUSKA,F.H.
HERTZIAN CON-
TACT STRESS

1959 STARKEY,W.L.
CRESS,H.A.

CRITICAL STRESS
ANALYSIS AND
MODE OF FAILURE

LEISSA & HER-
TZIAN CONTACT
STRESS

1966 MARTIN,B.C.
PACKARD,T.J.

STRESS IN WIRE
STRAND

VERIFY HRUSKA
'S MODEL

1970 GIBSON,P.T.
CRESS,H.A.

TORSIONAL	 PRO-
PERTIES OF WIRE
ROPE

HRUSKA

1972 REEMSNYDER,
H.S.

THE MECHANICAL
BEHAVIOR	 AND
FATIGUE RESIS-
TANCE OF STEEL
WIRE,	 STRAND
AND ROPE

HRUSKA
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TABLE 1.3

COSTELLO AND HIS FELLOWS
ON MECHANICAL RESPONSE OF WIRE ROPE

YEAR INVESTIGATOR FIELD OF STUDY ORIGIN

1973 PHILLIPS,J.W.
COSTELLO,G.A.

CONTACT STRESS
OF 6/1 CABLE

CURVED ROD
THEORY
LOVE.A.E.H.
HRUSKA,F.H.

1974 COSTELLO,G.A.
PHILLIPS,J.W.

MORE EXACT OF
CONTACT STRESS

HRUSKA,F.H.

1976 COSTELLO,G.A.
PHILLIPS,J.W.

EFFECTIVE MODULUS
OF CABLES

COSTELLO,
G.A

1977 COSTELLO,G.A.
SINHA,S.A.

TORSIONAL STIFF-
NESS OF CABLE

COSTELLO,
G.A.

1979 COSTELLO,G.A.
MILLER,R.E.

LAY EFFECT	 OF
WIRE ROPE

COSTELLO,
G.A.

1980 COSTELLO,G.A.
MILLER,R.E.

STATIC RESPONSE
OF REDUCED ROT-
ATION ROPE

COSTELLO,
G.A.

1980 COSTELLO,G.A.
PHILLIPS,W.J.
MILLER,R.E.

CONTACT STRESSES
IN STRAIGHT CROSS
LAY WIRE ROPE

COSTELLO,
G.A.

1980 VELINSKY,S
COSTELLO,G.A.

AXIAL RESPONSE OF
OVAL WIRE ROPE

COSTELLO,
G.A.

1981 BUTON,G.J.
COSTELLO,G.A.

STATIC & DYNAMIC
OF AXIALLY LOADED
WIRE ROPES

COSTELLO,
G.A.

1982 COSTELLO,G.A.
BUTSON,G.J.

SIMPLIFIED BENDING
THEORY	 FOR	 WIRE
ROPE

COSTELLO,
G.A.



58

CONTINUE	 TABLE 1.3

1983 PHILLIPS,J.W.
FOTSCH,P.D.

PRELIMINARY.
ANALYSIS OF
FILLER-WIRE
HOISTING ROPE

COSTELLO,
G.A.

1983 COSTELLO,G.A. STRESS IN MULTI
LAYERED CABLES

COSTELLO,
G.A.

1984 VELINSKY,S.A.
ANDERSON,G.L.
COSTELLO,G.A.

WIRE ROPE WITH
COMPLEX CROSS
SECTIONS

COSTELLO,
G.A.

1985 VELINSKY,S.A. ANALYSIS OF FIBRE
CORE WIRE ROPE

COSTELLO,
& HIS OWN

1985 CHIEN,C.H.
COSTELLO,G.A.

EFFECTIVE LENGTH
OF	 A	 FRACTURED
WIRE	 ROPE

COSTELLO,
& HIS OWN

1985 PHILLIPS,J.W.
COSTELLO,G.A.

ANALYSIS OF WIRE
ROPE WITH IWRC

COSTELLO,
G.A.

1985 VELINSKY,S.A. GENERAL NONLINEAR
THEORY FOR COMPL-
EX	 WIRE	 ROPE

COSTELLO,
G.A.

1988 R.A.LECLAIR &
COSTELLO,G.A.

AXIAL, BENDING &
TORSIONAL LOADING
OF A STRAND	 WITH
FRICTION

COSTELLO,
G.A.

1988 S.A.VELINSKY
J.D.SCHMIDT

A SIMPLIFIED TREA-
TISE ON THE EFFECT
OF WEAR IN CABLES

UNKNOWN
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TABLE 1.4

MATHEMATICAL MODELLING OF ROPES IN BRITAIN

YEAR INVESTIGATOR FIELD OF STUDY ORIGIN

1948 MATHESON,J.A.L. MECHANICS OF LOCKED
COIL WIRE ROPES (PHD
PROJECT) 1ST PERSON
WHO MENTIONED	 KIR-
CHHOFF'S SLENDER ROD
THEORY

HIS OWN

1949 HANSOM.O.P. MECHANICS OF LOCKED
COIL ROPE

HIS OWN

1980 JONES, N AND
CRISTODOULIDES

STATIC PLASTIC BE-
HAVIOUR OF A 6 / 1
STRAND

HIS OWN

1982 HOBBS,	 R.E. INTERWIRE SLIPPAGE
AND FATIGUE PRE-
DICTION IN STRAND
CABLES FOR TLP
TETHERS

HRUSKA,
COSTELLO

1985 KUNOH, T &
LEECH,	 C.M.

CURVATURE EFFECTS ON
CONTACT POSITION

COSTELLO
& HIS OWN

1987 UTTING,W.S,	 &
JONES,	 N

RESPONSE OF WIRE ON
6/7 STRAND	 DUE	 TO
AXIAL TENSILE LOADS

COSTELLO
& HIS OWN
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CHAPTER TWO

OBJECTIVE OF THIS PROJECT
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2.1	 INTRODUCTION

Wire ropes are often considered to be consumable items, in

contrast to more expensive capital equipment; however, the

use of wire rope in the mooring of North Sea oil exploration

platforms has gained attention in recent years. In such a

hostile environment, rope failure resulting in catastrophic

failure of a structure, may lead to loss of life and money.

Safety considerations have led to a gradual increase in the

size and quantity of ropes used in mooring. Using bigger

sizes of structural members to carry the dead load of a

structure does not necessarily ensure greater safety, and it

is important to understand how wire rope will behave at each

stage of its life so that necessary precautions can be taken.

Conventional approaches and concepts of design for tensile

members using 'safety factors' emphasis the quantity or

cross-sectional area of material used in the structure.

Ideally, the load distribution in the structure and the

associated stresses and strains along and across each member

should be analysed in order to assess the actual safety

factor against initial yield or plastic failure of a

structure. Unfortunately, this approach is often found to be

impracticable and difficult to use 9.9
 when applied directly

to wire rope design. Basically, the complicated geometrical

construction of wire rope make it difficult to obtain

reliable theory and data to describe the behaviour in

service. The research reported in this thesis arose as part
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of a department of Energy Joint Industry Studies (J.I.S)

programme to investigate the behaviour of wire rope. The main

objectives were

a. To examine the relationship between the number of

individual wire failure and fatigue endurance.

b. To investigate the scale effect and repeatability of

endurance between ropes of different diameters.

c. To provide an opportunity to evaluate the use of

non-destructive	 testing
	

devices	 applied	 to	 large

diameter wire ropes.

The programme included literature surveys,	 experimental

studies on the fatigue performance of large diameter (40, 70

and 127 mm) steel wire ropes and visits to experienced

investigators at the University of Liverpool, University of

reading and Imperial College London. A number of papers and

confidential reports have been published.

In 1984, a non-destructive testing device based on acoustic

emission principles was successfully applied by Dr. N F Casey

for monitoring wire failures in ropes during tension-tension

fatigue tests. This device is currently being used for

monitoring the number of wire failure in a large diameter

wire rope during full scale fatigue tests. Wire counts in

each failed rope were performed after tests in order to
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verify the acoustic emission results.

The rope testing work of NEL has been focused on obtaining

evidence for structural property changes cyclic loading and

using it to predict rope endurance. However, it is also

important to understand how the mechanical behaviour of

individual wires is related to the structural behaviour of

the rope; this has been the motivation for the mathematical

modelling of strand and rope behaviour in this thesis.

The main objectives of this thesis and the approach taken to

achieve these objectives are now outlined below:

2.2	 OBJECTIVE

The principal objective of the present project was originally

to provide a better understanding of the mechanical behaviour

of wires in a general type of rope subjected to axial

loadings at the terminations. However, 	 the complicated

geometrical patterns of wire, the complications in contact

conditions, the large variety of rope constructions and

insufficient previous theoretical research led to the

decision to confine studies to circular-wire, round-stranded

rope. The structure of the approach to the objective is

illustrated in Figure 2.2.1. The following headings summarize

the project:	 t()L7
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a. Post-Test Examination of Large Diameter Wire Ropes

This activity was mainly concentrated on visual examination

of wire failure and contact patches in ropes which had

experienced	 constant-amplitude,	 tension-tension	 fatigue

tests. A summary of the findings is presented in Chapter

Three. Some 40 mm diameter and 70 diameter ropes of 6x41

(IWRC) construction and 127 mm diameter of 6x49 (IWRC)

construction have been examined.

b. Mathematical Study of Helix Geometry in Strands and

Ropes

The helix geometry of circular wires in round stranded ropes

must be understood before the mechanical behaviour of wires

can be understood. The study includes methods of finding

coordinates of the wires, path lengths, and the torsion and

curvature of wires in stranded rope subject to general

engineering applications; for example, a straight rope

subject to tension, or a rope subject to bending over a

sheave or wound around a drum.

c. Sectional Geometry of Helical Wires in Round Strands

A mathematical study of the relationships between the helix

angle of wires, the number of helical wires per layer and the

admissible ratio of helical radius to wire cross-sectional

radius has been carried out. These relations determine the
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spatial configuration of circular wires laid around a core

and their geometrical relationships.

d. Structural Modelling of Single Layer Strands

Closed form mathematical models have been developed to

predict the stiffness of ropes by considering the Poisson's

effect in wires which constitute a single layer strand. This

model includes the evaluation of the mechanical response of

each wire, the stresses and strains due to the responses and

the	 structural	 properties	 such as	 the	 stiffness	 and

load-extension relationship of the strand under static

conditions within the limit of proportionality (ie the limit

of Hookes' law). The accuracy of this approach has been

4.1
compared with Machida and Durelli's model	 of 6/1 strand

and B.C. Martin and T.J. Packard's experimental studies of

6/1 strands."

e. Structural Modelling of Multilayer Strand

Closed form mathematical models have been developed, based on

the stiffness approach with Poisson's effect, 	 in two

layer-strands. The purpose was again to study the static

mechanical behaviour of these strands.

f. Structural Modelling On Round Stranded Ropes

Closed from mathematical model based on Velinsky's stiffness
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approach and the author's own approach for a simple Lang's

lay and ordinary lay rope (ie IWRC) have been developed. The

main different between Velinsky's stiffness approach and the

author's approach is that Velinsky's approach only uses

single helix geometry to approximate the double helix

geometry of the double helical wires whereas the author make

use of the double helix geometry to model the double helical

wires. This is important because more than 73 % wires in the

IWRC are in double helical form.
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2.2.1	 STRUCTURED APPROACH TO THE OBJECTIVE

MAIN

OBJECTIVE

MATHEMATICAL
MODELLING

POST TEST
EXAMINATION
OF	 LARGE
DIAMETER
WIRE ROPES

MATHEMATICAL MOD-
ELLING OF HELICAL
GEOMETRY OF WIRES
IN ROUND STRANDED
ROPE

VERIFY THE RELA-
TIONSHIP BETWEEN
R/r RATIO, NUMBER
OF HELICAL WIRES
AND THE HELIX
ANGLE OF SINGLE
HELICAL WIRE

MATHEMATICAL MOD-
OF THE MECHANICAL
RESPONSES OF STR-
ANDS AND ROPES.

WHERE:

D.HELIX = DOUBLE HELIX
MOD.	 = MODELLING
I.W.R.0 = INDEPENDENT WIRE ROPE CORE

BLOCK DIAGRAM 2.2.1

STRUCTURE OF THIS PROJECT
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2.3	 THE LAYOUT AND CONCEPT USED FOR THIS THESIS

The present research work was divided essentially into two

principal studies, one is of a observational nature and the

other theoretical. The observational studies included the

post-test examination of wire failures in large diameter wire

ropes after fatigue testing. The theoretical study included

(a) mathematical study of rope geometry (ie the helix

geometry and sectional wire geometry) in order to

interpret the significance and implications of

mechanical responses.

(b) a mathematical model for the mechanical response of a

single layer and multi-layer strand (including cross and

equal lay multi-layer strand) and

(c) a mathematical model of the mechanical response of an

IWRC (including Lang's lay and ordinary lay type of

IWRC)	 in order to understand the mechanical and

structural behaviour of rope.

The layout and basic concepts used in this thesis are

presented Chapter by Chapter as follows:

2.3.1	 Chapters One, Two and Three

Chapter one presents a brief description of the origin of

wire rope, the historical background, the rise and fall of
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the rope industry and a literature survey for the present

study. Chapter two is the present chapter. Chapter three

introduces brief descriptions of wires and round stranded

rope configuration, the micro structure of wire for rope

production,	 the	 mechanical	 responses	 and	 mechanical

properties of rope, common problems encountered in rope

applications and the preliminary practical study of wire

degradation during tensile fatigue by testing. This study is

a prerequisite for the understanding of ropes and wires

behaviour under static loading and fatigue.

2.3.2	 Chapter Four, Five and Six

It is of great interest to relate the helix geometry of the

wire to its mechanical responses in various strand and rope

configurations. Through this analysis one can gain insight

into the sharing of loads. In addition, a full understanding

of the helix geometry enables one to understand the contact

pattern along a particular wire in a strand or in a rope and

to provide important information for the analysis of

mechanical	 interactions	 in round stranded rope.	 Most

importantly an understanding of the geometry facilitates the

analysis of stresses and strains resulting from the global

displacements applied at the rope terminations.

Helix geometry descriptions also enable one to visualise the

mechanical interactions at a point and to understand the
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significance of the helix geometry in relation to these

interactions.	 Chapter	 four	 therefore,	 presents	 the

application of a vector method to analyse the helix geometry

found in the circular-wire round-stranded rope. Three

dimensional paper models have been made in order to visualise

the Cartesian coordinates of points on the centroidal axis of

the helical wire. Eventually, the Cartesian coordinates, the

helix angle, the radius of curvature, radius of torsion and

the path length of any helical wire found in a straight rope,

drum-wound rope or sheave-bent rope can be analysed. Chapter

Five presents the implications of these geometrical features

for the mechanical response of wire in ropes as applied in

general engineering. Chapter Six explains the significance of

helical parameters related to the selection of helix angle,

admissible helical radius, diameter of wires, the number of

wires per layer and the spatial configuration of strands.

2.3.3	 Chapter Seven and Eight

Chapter Seven presents a closed form method to evaluate the

mechanical response of a single layer strand. In this study,

naturally curved rod theory and Costello's approach are

modified in order to generated a stiffness matrix method to

model the mechanical responses of a single layer strand.

Chapter Eight presents a further modification of the approach

to evaluate the mechanical responses of two layer multi-layer

strand, for both cross lay and equal lay configuration.
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Computer software has been developed for each of these

models. Sample results, discussion and conclusion are also

given at the end of each chapter.

2.3.4	 Chapter Nine

This chapter presents two closed form methods to evaluate the

mechanical responses of an IWRC with Lang's and ordinary lay

construction. The first method is based on Velinsky's

approach and the second method is based on the author's

approach. The double helical wire geometry is considered in

the second method. Again, computer software has been

developed for these models. Sample results, discussion and

conclusion are also presented at the end of this chapter.

2.3.5	 Appendix And Glossary Of Terms

This final section presents summary on the previous works, a

collection of expressions and parametric equations used in

the preceding analysis together with common terms used in the

rope industry.



72

CHAPTER THREE

CONSTRUCTION OF ROUND STRANDED ROPE

AND RESULTS OF POST TEST EXAMINATION
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3	 INTRODUCTION

The National Engineering Laboratory (NEL) is currently

participating in a comprehensive collaborative research

programme to assess the behaviour of large diameter wire

ropes ( 40,	 70 and	 127 mm) and strands, especially for

offshore mooring applications. The programme at NEL includes

mathematical modelling as well as various rope testing

procedures. A thorough understanding of practical aspects of

strands and ropes is necessary to establish realistic

mathematical models.

This chapter introduces the terminology used in the rope

industry and discusses the construction of wire ropes, rope

degradation, mechanical properties of round stranded rope,

rope selection, and basic design considerations. The results

of the author's detailed examination of wire failures in

various tension-tension fatigue loaded ropes together with

some of the new findings are also presented in this chapter.
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3.1	 ORGANIZATION OF CHAPTER THREE

The organization of this chapter is illustrated in the

following block diagram

PRACTICAL STUDY
ON

WIRE	 ROPE

BLOCK DIAGRAM 3.1-1

STRUCTURE DAIGRAM OF CHAPTER THREE

3.2	 WIRE, STRAND AND ROPE CONSTRUCTIONS

Rope steel may have a tensile strength (1765.8 Wrinnn 2	 or

even more) which is more than four times greater than that of

9.1
mild steel ' . For a given size of a rope, the strength of

the wire rope is, in general, determined by the size and

grade of wire used, the number of wires in the strand, the

geometrical pattern of and the type of main core strand and
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outer layer strands. In this section the properties of wire

and	 strand	 shapes and	 the	 features of	 common rope

Constructions are discussed.

3.2.1	 Wire

Wire is the basic element employed for manufacturing strands.

The following sub-sections present essential terms.

3.2.1-1	 Wire Strength
9.5

Wires of the same shape are generally categorised into grades

in accordance with tensile strength. These vary from 160

grade	 (160 kgf)	 to 180 grade	 (180 kgf).	 The fatigue

resistance of wire up to 110 kgf/sq mm tensile strength is

proportional to breaking strength, but for higher tensile

grades, the ratio of fatigue resistance to the breaking

strength decreases with increase of breaking strength. In

other words, the higher the tensile grade of wire, the more

likely it is to subject to such fatigue problems.

3.2.1-2	 Shape Of Wires

A particular wire shape may be suitable for some applications

and rope construction geometries, but unsuitable for others.

The most common wire shapes illustrated in Figure 3.2.1-1,

are:

i.	 Round	 ie transverse section of wire is in

circular shape.
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Where:

i	 Circular Wire

ii	 Trapezoidal

iii	 Full Lock

IV	 Half Lock

V Triangular

Vi Ribbon Wire

Figure	 3-2.1-1

Wire Shape
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ii. Trapezoidal

iii. Full Lock

iv. Half-Lock

v. Triangular

vi. Ribbon Wire

ie transverse section of wire is in

trapezoidal shape.

ie Z-Shaped wire as shown in the

Figure.

ie rail-shaped wire as shown in the

Figure.

ie wire transverse section is a

triangular shape and this is usually

used	 for	 the	 core	 wires	 of

particular strand.

ie Oval-shape wire as shown in the

Figure.

3.2.1-3	 Surface Finish Of Wire

The surface texture of wires used for manufacturing wire rope

is regarded as important in determining rope endurance and

corrosion protection. Several commonly used surface finish

are available. The most common one is called "galvanised

coating". A wire can be supplied in one of the following

surface finished ready for rope manufacturing. They are:

i. Ungalvanised (or black).

ii. Galvanised, Type A (heavy coating with Zinc)

iii. Galvanised, Type Z (lighter coating with Zinc)

Wire coating has a dual purpose

i. Corrosion protection.

ii. Provides a soft bed to distribute the contact
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force.

3.2.1-4	 Wire Forms Found in a Round Stranded Rope

Circular wire in round stranded rope can be formed in the

following shapes:

i. A straight Wire	 ie King wire.

ii. A single helical wire,	 ie as core wire of single

helical strand

iii. A double helical wire, 	 ie as layered wire of

single helical strand.

3.2.1-5	 Heat Treatments and Defects in Wire 9.6

(1)	 Introduction

Wire manufacture is a complicated process. The drawn-wire

tends to become brittle after a sequence of passes through

the die. To reverse this work hardening tendency across the

section of the drawn wire and to restore the ductility and

drawability for subsequent drawing, carefully controlled heat

treatments are needed from time to time during the drawing

process. As a result, the material properties of the finished

wire will be governed by the micro-structure after these

complicated manufacturing processes. Defects, which are found

in the wire at the final stage, are normally regarded as

"intrinsic" defects.
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(2)	 Patenting

Heat treatment applied during the wire manufacturing process

is known as "PATENTING". The purpose of patenting is to

reverse the highly deformed micro-structure of drawn wire to

the original state and to restore the normal drawability of

the	 wire	 for	 subsequent	 drawing	 processes.	 The

micro-structure of steel wire after heat treatment is known

as "SORBITE". Apart from its comparatively high strength,

sorbite has excellent cold deformation capacities because of

its globular structure which can easily be deformed in all

directions. It is generally accepted that the mechanical

properties of patented steel wire for rope manufacturing

depend on the patenting conditions, such as the method of

cooling (eg type of salt or lead bath), the quenching

temperature and the speed of wire travelling through the

quenching bath. Details of the procedure of how heat

treatments are performed will not be discussed in this

thesis. However, this section focuses on faults appearing

during patenting and the type of micro-structures which will

affect the mechanical properties and the fatigue performance

of wires in a strand and rope.

NB.	 the difference between a pearlite and sorbite

structures found in heat treated steel wire relates to the

thickness of the cementite lamellae. The main characteristics

of the structure of patented wires relate to the grain size

and distance between lamellae of cementite crystals.
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(3)	 Faults of Heat Treatment on Wire

Basically, two faults, which can occur in patented steel, are

influenced by the carbon content and the furnace temperature

for heat treatment.

For steel wire with .8% carbon content which are specially

used for high strength wire ropes, the wire is heat treated

to a high temperature (about 1000 deg. C.) and then quenched

into a lead bath (about 450 to 470 deg. C). Thermal stress

will be set up in the wire and this will often show in

immediate cracking, or this may appear later during pickling.

These cracks will occur normal to wire length and will

typically occur at a hundred or more places along the wire.

In some cases, the thermal stress will release during rope

manufacturing or may not be revealed until the rope is in

use. As the result, the rope is found to have a shortened

service life. In more severe cases these cracks cause sudden

breakage of the rope.

NB.	 In high carbon steel wire, poor control of quenching

temperature will result in the formation of martensite along

the wire. This is a highly brittle constituent and is very

poor in resisting bending.

For a steel wire with low carbon content, too low a patenting

temperature will result in the separation of ferrite from

pearlite. A steel wire with such micro-structure will stand

less deformation than those wires with a sorbite structure.
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If patented wire with such a structure is drawn then this

wire will again shown brittleness, and have low bend warping

number. Rope with such micro-structure will show a relatively

short service life. Of course, the micro-structure of such

wire also shows less wear and corrosion resistance so that

the wire will be poor in fretting fatigue performance in

general.

The material properties of even heat treated steel wire are

generally	 accepted	 to	 be	 homogeneous-isotropic	 or

ortho tropic.

3.2.2	 Strand

Strand is formed by winding one or more layers of wires

helically around either a core wire or a strand core. A

strand could either remain as a strand core (employed either

as a core of a strand or as a main core of a rope) or be

further deformed helically as an outer layer helical strand

of a rope. The following sub-sections present the terminology

used in connection with strands which form part of the

elements of wire rope.

3.2.2-1	 Strand Cores

From the mechanical point of view, strand cores are mainly

used to provide a bed to support outer the layer strands, to

share loads carried by the rope, to provide flexibility and
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to give shape to the rope. The strand cores are commonly

categorised into three types namely fibre core, wire core and

built-up-core "BUC" (which is a die-formed core). Various

strand cores are shown in Figure 3.2.2-1.

Strand cores are also classified according to their shape.

The common types of strand cores are:

a. Round	 ie used for making round strand

b. Triangular ie used for making triangular strand

c. Oval	 ie used for making filled flat strand.

3.2.2-2	 Helical Strands and Their Shapes

The common types of strand shape found in wire ropes

presented in Figure 3.2.2-2, are:

a. Round	 as shown in Figure 3.2.2-2 except i, ii &

iii

b. Triangular as shown in Figure 3.2.2-2 iii

c. Oval	 as shown in Figure 3.2.2-2 ii

d. Flat	 not shown

e. Hexagonal as shown in Figure 3.2.2-2 i

3.2.2-3	 Construction Nomenclature of a Strand

Construction nomenclature normally quotes "shape" and number

of wires in each layer, starting from the outer layer. eg ,
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d e f	 Triangular

	

9	 Fibre

	

h i	 Oval

Figure 3.2.2-1

Strand Core
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Figure 3.2.2-2 V. illustrates a strand section named as

"round 9/9/1".

3.2.2-4	 Form Of Strands And Wires.

In this thesis, interest is focused on round strand with

circular wires. A round strand should always be made with a

circular core wire or a round strand core. This type of

strand should either be in straight form or deformed into

helical form along its length. For a straight strand, all the

wires are deformed permanently into single helical form

except the core wire. For a helical strand, however, all the

wires are deformed permanently into double helical form, with

exception of the core wire which is deformed into single

helical form. Details of wire forms will be discussed in

Chapter 4.
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3.2.2-5	 Strand Flexibility

For a given grade of wire irrespective of the material

stiffness of the wire, the flexibility of a strand can be

adjusted by two methods namely,

a. Wire size and.

b. Wire lay angle.

(1) Wire Size

Apart from the influence of lay angle, the smaller the wire

diameter used to construct a strand, the more flexible will

be the strand. However, when the outer layer wires of a

strand become less than 2 mm in diameter, they will be more

likely to be subject to severe wear and corrosion damage.

Therefore, in practice, no strand will be constructed with

wire diameter less than 2 mm without considering appropriate

protection against wear and corrosion.

(2) Wire Lay Angle

The flexibility of a strand can be adjusted by varying the

lay angle of wires. Reducing the lay angle produces greater

flexibility. However, this adjustment leads to complications

related to geometry, mechanical responses and interactions.

Lay angle can be varied between layers in two possible
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configurations: namely, "equal lay" and "cross lay" geometry.

a.	 Influence Of Geometrical Pattern

There is an admissible wire lay angle which can be used

for constructing strand with given number of helical

wires per layer, given size of core wire and helical

wires. This problem will be discussed in Chapter 6.

Four well known geometrical patterns applied to strands

are listed:

1. Seale Rope

For a Seale rope, the outer strand is constructed in

such a way that the number of outer layer wires equals

to the number of inner layer wires within the strand.

This construction allows strand to have the biggest

wires located at the outer-most layer. As the result,

the construction may provide greater external abrasion

resistance for the rope.

2. 6/1 Strand

For a 6/1 strand, the diameter of the core wire is

always bigger than the diameter of the helical wires

This design is normally used for construction of

multi-strand rope.
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3. Filler Wire Strand

A filler wire strand can be regarded as the equal lay

strand. The filler wires are used to prevent the outer

layer wires from falling into the valley provided by the

layer of wires immediate beneath. This construction

provides better support between adjacent layers within a

strand. Hence, greater interior abrasion and fatigue

resistance can be expected.

4. Strand Of Warrington Rope

For a Warrington rope,	 the outer strand of is

constructed in such a way that two different sizes of

wires are laid alternately at the outer-most layer of

the strand. Thus the crowns and valleys of the inner

layer wires form support points. This construction

provides good external abrasion resistance and can used

to adjust strand flexibility.

b.	 Influence of Lay Angle for High Strength Steel

Wires

The approach of using lay angle to adjust the

flexibility of a strand is limited by the fatigue

performance of high strength steel wire with brittle

properties. Wires with high strength brittle properties

are more likely to fail resulting from reversed bending

and torsion, which increase significantly as the helix
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angle of wire is decreased.

c.	 Influence of Wire Helix Angle on the Mechanical

Response of a Strand

A straight strand is formed by laying wires helically

around either the core wire or a strand core. Wires

which are laid around the core, can be wound either in

right hand or left hand direction (as in right hand or

left hand screw thread). The longitudinal length of one

complete cycle of a single helical wire at the outer

layer of a strand is defined as the lay length of the

strand. The helix angle of the wire constitutes a

significant influence on the mechanical responses of the

strand. Strands can be constructed to give rise rotation

or to minimize rotation when subjected to axial tension

at terminations.

I.	 Rotational Strand

A strand with all wires laid helically around a core

wire in the same direction is known as rotational

strand; since the strand will rotate when subjected to

axial tension at the terminations. This strand can be

constructed either in cross lay or equal lay.

2.	 Minimized Rotation Strand

A strand with wires which are laid around a core wire
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with one layer in one direction and the other layer in

opposite direction alternately, is known as minimized

rotation strand (since the rotation of the strand will

be minimized by the opposite twisting moment at each

layer). This type of strand can only be constructed in

cross lay.

d.	 Influences of Equal Lay and Cross Lay

A strand with wires which are laid helically around a

core wire each with same lay angle, is said to be equal

lay. Otherwise, is said to be cross lay.

I.	 Equal Lay

The advantage of equal lay strand is that this lay

configuration provides greater wear surface at the

expenses of rotation when the strand is subjected to

tension at its terminations.

2.	 Cross Lay

The advantage of cross lay is obviously in minimizing

unwinding rotation when the strand is subjected to

tension at its terminations. However, wires will subject

to cross cutting at the contact points between adjacent

layers.
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3.2.3	 Ropes

A stranded rope is formed (except for flat rope) by laying up

one or more layers of strands around a main core strand.

Figure 3.2.3-1 presents the common constructions of "round

stranded ropes". Ropes are normally constructed in the
9.1

following forms (see ropeman hand book	 for details of the

following ropes):

a. Round stranded rope

b. Flattened stranded rope

c. Non-rotation rope

d. Flat rope

e .	 Locked-coil rope

f.	 Round guide rope

g .	 Half-lock guide rope

3.2.3-1	 Construction Nomenclature of Wire Rope

The construction of a wire rope is conventional expressed

terms:

a. Number of strands (from outer layer to inner layer)

b. Number of wires in the strand

c. Lay up of wires in the strand

d. Type of core

e .	 Direction of rope lay
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Presented in Figure 3.2.3-1.a is a typical schematic wire

rope section which is known as 6 x 19 (9/9/1) IWRC right hand

ordinary lay Seale rope, ie 6x19 is outer layer, the rest is

IWRC.

3.2.3-2	 Composition Of Round Stranded Rope

A round stranded rope consists of a main core and one or more

layers of helical strands laid around the main core. A

typical schematic wire rope construction is presented in

Figure 3.2.3-2. A brief description of the components of a

round stranded rope is presented in the following:

(1)	 Main Core of Rope

In this thesis, the focus is on round stranded rope with a

circular core. These types of rope are essentially formed by

winding strands helically around a main core. The main core

of a stranded rope can be classified into the following

types:

a	 Fibre Main Core
	

(le fibre core and fibre-film

core)	 (FMC)

b. Wire Main Core	 (ie steel core)	 (WMC)

c. Wire Strand Core	 (ie steel core)	 (WCS)

d. Dyform Core	 (ie steel core)

e. Independfent Wire Rope Core	 (ie IWRC)
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Where:

a. Right Hand Ordinary Lay

b. Right Hand Lang's Lay

c. Left Hand Ordinary Lay

d. Left Hand Lang's Lay

e. Right Hand Alternate Lay

f. Right Hand Herringbore

Figure 3.2-3-2

Schematic Representation

Of Rope Configuration
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The fibre main core is very flexible. Ropes constructed with

fibre core are not suitable for operating in an environment

with high temperature and cannot be used where there is

severe core crushing. Ropes with a steel core, such as Wire

Main Core and Independent Wire Rope Core, are less flexible

than those with fibre main core. Those with a steel core can

withstand higher core crushing and can be used in high

temperature environment.

(2)	 Helical Strand of a Rope

Apart from the Main Core, ropes consists of one or more

layers of helical strand. The following presents terms used

for describing the helical strand of a rope

a	 Rope Lay

Helical strand can be laid in various combinations around the

main core. Each of these lay configurations are designed to

achieve	 its	 best	 mechanical	 properties	 and	 fatigue

performances by the manufacturer. Figure 3.2.3-2 presents the

most common lay configurations:

1.	 Ordinary Lay (or Regular Lay)

If the orientation of wires laid in the outer layer

strand is opposite to the orientation of that strand

laid round the main core, then rope is known as ordinary

lay rope.
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2. Lang's Lay

If the orientation of wires laid in the outer layer

strand is the same as the orientation of that strand

laid around the main core, then rope is known as Lang's

lay.

3. Alternate Lay

In this case, Lang's lay strand and ordinary lay strand

are laid alternately around the main core of a rope.

4. Herringbone or Twinned Strand rope

If two pairs of right hand Lang's lay strands and one

pair of left hand ordinary lay strands are laid

alternately around the main core, then the rope is known

as Herringbone rope.

b.	 Direction of Lay and Lay Length of Rope

Helical strand which is laid around the main core of a rope,

can be either laid in the right hand direction or in the left

hand direction. The lay directions are known as right hand

lay and left hand lay respectively. The longitudinal length

for one cycle (ie 360 degrees rotation of strand about the

rope axis) of an outer strand is known as one rope lay; lay

length of a rope. Figure 3.2.3-2 presents an illustration of

one lay length of a 6 stranded rope.
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c.	 Influence of Rope Lay

The helical structure of a rope geometry complicates

mechanical responses when this structure is subject to

tensile loading. Apart from many other responses of wire, the

unwinding moment of strands at the terminations is one of the

most obvious mechanical responses to be note. Two designs

concerned with this problem are noted:

1. Rotational Rope

Figure 3.2.3-3(h) is a schematic representation of a

rotational rope in which both wires and strands are laid

in the same direction around the wire core and main core

respectively. Ropes of such construction will subject to

rotational movement at the terminations when they are

subjecting to axial tensile load.

2. Non-Rotational Rope

Figure 3.2.3-3(a) is a schematic representation of a

reduced-rotational rope in which wires and strands laid

in the opposition direction around the strand core and

main core respectively. Ropes of such construction will

have rotational movement minimized at the terminations

when they are subjecting to axial tensile load. If ropes

are constructed with more than two layers of strands,

strands at each layer will have to be laid in opposite

directions. Thus, the tendency of one layer of strands
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a.	 b.

Where

a. Reduced Rotation Rope

b. Rotation Rope

Figure 3.2.3-3
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to rotate in one direction is counteracted by the

tendency of the other layer of strands to rotate in

opposite directions.

Care has to be taken when handling this type of rope

because any twisting movement applied to the outer layer

strand could cause the slippage of core strand (somewhat

like untightening a screw) and it will protrude from the

rope.

3.2.3-3	 Methods of Rope Manufacture

Ropes are manufactured either by preforming or postforming.

In other words, both wires and strands are set to their

permanent shape in the rope without any tendency to unlay

themselves while the rope is in the unloaded condition.

Figure 3.2.3-4 illustrates the difference between preformed

rope and postformed rope and the following present a summary

for each method is presented below.

(1) Preforming

Wires are deformed permanently into their predetermined

shaped before they are laid into the rope.

(2) Postforming

Wires are first laid into the form of a straight strand and

then the strand is bent helically around a main core.
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a.	 b

Where

a. Preformed Rope

b Non Preformed Rope

Figure 3-2-3-4
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Advantages of preforming rope:

a. Exposed ends will not be untwisted

b. Easy to handle during storing and installation

c	 Less likely to kink and free from twisting

tendencies.

3.2.3-4	 The Overall Characteristics Of Round Stranded Rope

Round stranded ropes are comparatively easy to examine

visually and generally provide a fairly wide range of

flexibility. However, they have a tendency to twist as the

load changes and are rather vulnerable to both external and

internal wear. It should be borne in mind that the rotation

movement of a non-rotating rope is only minimized at the rope

terminations. The unwinding movements still appear between

outer and inner layer strands. Figure 3.5.2-14 illustrates

the typical damage on wires between two layers of strands

resulted from unwinding movement of reduced-rotation rope.

For a rotation rope, unwinding rotations are significant. In

order to prevent this movement, some form of constraint has

to be applied to the terminations of this rope. Otherwise,

internal wear and bending of wires on the outer layer of

strand are expected to be more prominent and will eventually

shorten the rope service life.
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3.2.3-5	 Summary on the Characteristics of Lang's Lay and

Ordinary Lay

Lang's lay rope behaves as rotational rope whereas ordinary

lay rope behaves as reduced-rotational rope. Lang's lay ropes

are constructed so as to offer better external wearing

surface and therefore can be expected, in some cases, to have

a longer fatigue life than ordinary lay. Since the Lang's lay

rope is a rotational rope, it must not be allowed to used

when the termination is free to rotate. Ordinary lay ropes,

on the other hand, are thought to be easier to be handle than

Lang's lay, since they are less liable to untwisting and

kinking in general applications. (See chapter 5 for further

discussion)
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3.3	 TERMINATIONS AND CONNECTION OF ROPE

Wire	 rope	 termination	 installations	 are	 of	 enormous

importance with regard to the safety requirements. It is

generally recognised that even properly made and carefully

installed terminations will develop less strength than the

full strength of the rope. It is not only necessary to know

what type of termination is to be used and how to install it

correctly, but the safe working load is also needed. The

commonly used rope terminations are:

a. Socketing

"Socketing" is the most effective and efficient method of

terminating wire rope. Correctly installed sockets will be

more likely to allow a rope to develop its full breaking load

9.2
(see	 British	 Rope	 Blue	 Standard	 ).	 Figure	 3.3-1

illustrates two types of recommended sockets for rope

terminations.

b. Capping Material

The common types of material for securing sockets to the rope

terminations are:

1.	 White Metal

b. Zinc

c. Resin (polyester)
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Where :

a. Cone Socket

b. Swaged Socket

Figure 3.3-1

Rope Termination
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Procedures for rope capping can be found in the following

standards.

ISO/DIS 7595	 Molten Metal Socketing of Wire Rope.

ISO/TR 7596	 Socketing procedures for Wire Rope.

(Resin Socketing)

N.B.

2 i
Resin socketing 

9.	
is not recommended for use in stainless

steel ropes in a marine environment because of the potential

for crevice corrosion. However, this combination can be used

in an industrial environment.

Remarks:

Swaged socket attachment with zinc capping is commonly used

for	 more	 permanent	 types	 of	 installation	 for	 rope

terminations where the standing rope is subjected to little

or no movement. When a rope is subjected to movement and

vibrations, wires are gradually cracked and broken at the

entrance of the socket resulted from fatigue. There is no way

to prevent this type of fatigue and the majority of rope

failures occur near the entrance of socket.

3.4	 Lubrication

Lubrication serves several purposes. It provides corrosion

resistance and minimizes internal wear between wires at local

contact locations inside a rope. Good lubricants for ropes

9.2
should basically have the following characteristics. •
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a	 Corrosion resistance.

b. Water repellence.

c. High viscosity.

d. Chemically neutral.

e. Penetrating ability.

f. Adhesiveness and affinity for steel.

g. Plastic coating.

h. Temperature stability.

3.5	 ROPE DETERIORATION AND CONTACT PATCHES OCCURRENCE

Wire failures, which may be found in hundreds of places

(internally and externally) along a rope under normal

operating conditions, have long been recorded by rope workers

probably as early as the eighteenth century. However,

systematic examination of wire failures and correlation with

positions related to wire geometry features has not yet been

published. The following sub-sections present a brief summary

of common rope deterioration patterns and the results of

author's systematic post test examination on large diameter

wire	 ropes	 (ie,	 040,	 070	 and	 0127	 mm)	 failed	 by

tension-tension fatigue tests carried out in the N.E.L

current rope research programme.

Organization Of Current Section

a. Summary of common rope deteriorations 9.1

9.8
b. Author's post test examinations	 on large

diameter wire rope.
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3.5.1	 Rope Deteriorations

Ropes,	 like all other man-made tools, have their own

mechanism of deterioration, even under careful and normal

usage. Figure 3.5.1-1 presents the common deterioration

patterns found in round stranded ropes. These are on:

a	 Wire failures on outer strand.

b. IWRC failure.

c. Kinking.

d .	 High wires.

e Rope fracture due to poor socketing.

f. High strands.

g. Bird cage.

h .	 Failure of outer strands.

i. Protruding core.

j. Wire crushing.

k. Loose strands due to fatigue.

9.1
According to reference	 , the factors which influence the

deterioration of ropes can be summarized as

a. Wear (external and internal)

b. Fatigue (mechanical fatigue)

c. Corrosion (chemical attack or oxidation)

d .	 Surface embrittlement

e .	 Accidental	 damage	 and	 distortion.	 (lock

deterioration)
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Figure 3•5.1-1

Common Types Of Rope Failures.
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3.5.2	 Post Test Examination of Large Diameter Wire Rope

If ropes are used in a normal condition and controlled

environment	 (for instance,	 under fatigue tests in an

experimental environment). Rope deterioration will normally

be confined to two sources, namely, wear and fatigue. In

general, wear is relatively easily identified as compared

with fatigue, since wear appears as nicks and grooves on the

surface of wires. The author's post test examination of large

diameter wire ropes subject to tension-tension fatigue are

presented below:

Detail of Rope Constructions are Listed Below:

a. 40 mm dia 6 x 41 (IWRC) ordinary lay rope

b. 70 mm dia 6 x 41 (IWRC) ordinary lay rope

c. 127 mm dia 6 x 49 (IWRC) ordinary lay rope

3.5.2-1	 Wear

Although, rope steel has a tensile strength almost four times

greater than that of mild steel, the cross sections of wires

are much smaller than that of common structural members such

as girders. Wires on the outer layer of strands are more

vulnerable to damage. In general, wear is categorized into

"External Wear" and "Internal Wear" respectively.

(1)	 External Wear

Wires in the outer-most layer of a rope are bound to be
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subject to abrasive wear, plastic wear or a combination of

the two. Figure 3.5.2-1 (a) and (b) show two common types of

external wear, namely, abrasive wear and plastic wear

respectively. They result from different degrees of bearing

pressure on the surface of the wire as it presses against the

hard surface of the groove of a running sheave.

a. Plastic Wear

It is suggested that plastic wear is resulted from the

wire surface bearing too heavily on the hard surface of

a sheave groove.

b. Abrasive Wear

Abrasive wear, on the other hand, is resulted from the

wire surface rubbing too much against the hard surface

of a sheave groove.

Since rope steel is coated with galvanized material, in some

cases, combined wear situation occurs.

Influence of Rope Lay on External Wear

The degree of damage due to external wear can be altered by

using rope lays. Figure 3.5.2-2 (a) and (b) are schematic

diagrams representing the damage due to external wear on the

wire of Lang's lay rope and ordinary lay rope. Obviously, for

wires in the outer-most layer of a Lang's lay rope, the lay

configuration provides better and much longer worn crown than
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that of the wires in an ordinary lay rope.

*(2)	 Internal Wear

For a rope subjected to axial load, interior wires are bound

to cut into one another at their contact points resulted from

tightening the geometrical patterns. Figure 3.5.2-3 shows

typical internal wear patterns on the wire surface inside the

rope, namely, grooves and nicks. The differences between

grooves and nicks depend on whether the contacts are

continuous or of a discrete nature. The following presents

the author's post test examinations on the internal wear of

large diameter wire ropes carried out in N.E.L especially 6 x

41 (40 mm and 70 mm diameter rope) and 6 x 29 (127 mm

diameter rope) ordinary lay construction, each with a Lang's

lay 6/7 I.W.R.C. The work is based on the detailed

examination of rope specimens which were subjected to

constant amplitude tension-tension fatigue until one of the

outer strands failed. Multi-layer outer strands and the IWRC

have been considered separately. Figure 3.5.2-4 illustrates

the physical appearance of the 6 x 49 construction, 127 mm

diameter rope.

,

a.	 Multi-Layer Outer Strands

The multi-layer outer strand is a single helical strand

located at the outer layer of the rope. All the wires in this

strand are in double helical form with the exception of the

core wire which is in single helical form. For wires in the
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a. Grooving

b. Nicking

Figure 3 . 5 . 2-3 Grooving & Nicking
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Cross Section Of Six Strand Rope Of 6x49 Construction

Figure 3.5.2-4

Six Strand Rope (Sx49 Construction)
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outer-most layer of a multi-layer outer strand, both grooves

and nicks are present.

1. Grooves

Figure 3.5.2-5 shows the physical appearance of grooves

on each wire of a multi-layer outer strand. For an equal

lay multi-layer helical strand, grooves found on each of

the wires within the strand are resulted from inter-wire

contact amongst neighbouring wires in between adjacent

layers. The number of grooves present around the

circumference of a wire can be vary between four and

eight, depending upon the location of the wire within

the strand section. The grooves travel helically along

the wires making a double helical pattern on both single

and double helical wires. It is also found that the

groove is heavier in some places than others along each

of the helical wires. It is believed that the heavier

grooves result from higher radial force and mechanical

interactions of the strands. Grooves are less obvious,

if the zinc coating is completely removed from the

fatigue failure wire. The significance of the grooves

upon fatigue life is not understood at the moment.

2. Nicking

By examining the wires in the outer layer of the strand

after testing, the presence of a regular contact patches

are	 revealed.	 Figure	 3.5.2-6	 shows	 the physical
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appearance of nicks on the wires in the outer-most layer

of a multi-layer outer strands. Figure 3.5.2-7 helps to

explain the pattern. The two pairs of 'short' contact

patches result from inter-wire contact between adjacent

multi-layer strands, the central 'long ' contact patches

result from inter-wire contact with the IWRC. These

nicks can be found on each of the outer layer wires of

the multi-layer strand. It is found (by statistical

means) that, under constant amplitude tension-tension

fatigue, the vast majority of outer wire breaks occur

within this system of contact patches.

b.	 I.W.R.0

The independent wire rope core is 6/7 Lang's lay type of main

core strand which is constructed by laying six (6/1) single

helical strands (ie 36 double helical wires and 6 single

helical core wires) around a (6/1) straight strand (ie six

single helical wires and one straight king wire). By

examining the fatigue failed rope, all the physical

appearance of wear pattern can be revealed.

,
1.	 Grooves

Figures	 3.5.2-8	 and	 3.5.2-9,	 show	 the	 physical

appearance of grooves which can be found on each wire of

an I.W.R.C. The grooves result from the continuous

contact with neighbouring wires. The outer wires (le all

double helical wires) of all the strands each have three
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grooves present around their circumference, whereas the

six single helical core wires and the king wire each

have six. In contrast to the multi-layer outer strands,

the grooving appears to be more severe; however, in some

places along the double helical wires, the grooves

effectively disappear. The variation of the groove

severity appears to be result from complex mechanical

responses and interactions along the double helical

wires.

Again, grooves travelling along both double helical wire

and single helical core wire have a double helical form.

However, grooves along the straight king wire and the

single helical wire of core strand have a single helical

form.

2.	 Nickings

Figures 3.5.2-10, 3.5.2-11 and 3.5.2-12, show the four

types of nicks identified. Formation of each of these

nicks is described as follows:

i.	 Type 1 Contact Pairs

Result from contact between two double helical wires of

an ordinary lay multi-layer strand with one double

helical wires of a Lang's lay IWRC outer strand. These

correspond to the 'long' contact patches on the wires of

the multi-layer outer strands.
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Type 1.

Type 2.

Figure 3-5.2-11



126

Type 3

Type 4

Figure 3-5-2-12



127

ii. Type 2 Contact Pairs

Result from contact between adjacent double helical

wires of two neighbouring Lang's lay outer strands of

the IWRC. See Figure 3.5.2-10 and Figure 5.4-4 (2) for

cross reference.

iii. Type 3 Contact Pairs

Result from contact with a double helical wire of the

Lang's lay IWRC outer strand and two single helical

wires of the straight core strand.

iv. Type 4 Contact

Result from contact between adjacent double helical

wires of two adjacent Lang's lay outer strands of the

IWRC. See Figure 3.5.2-10 and Figure 5.4-4(2) in Chapter

5. for cross reference. The contact feature of type 4

contact is similar to type 2 contact. However, both

contact types locate at different places.

Figure 3.5.2-13 presents the nicking patterns found on the

multi-layer outer strand and on the outer strand of the IWRC.

For interest, Figure 3.5.2-14 shows the nicking patterns
,

found on the ordinary lay type of IWRC of a multi-layer

stranded rope. Although there is no quantitative evidence to

illustrate the significant influence of contact patterns in

respect of rope degradation, wear, clamping & pivoting at

various contact locations provide favourable conditions for

the fatigue crack to initiate and to grow.
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3.5.2-2	 Wire Breakage due to Fatigue

The followin g section is concerned with categorising the wire

breakages which take place under constant amplitude

tension-tension fatigue testing on large diameter wire ropes.

Effectively, six types of wire breakage have been identified

as a result of the very careful post test examinations of

fatigued rope sections. In addition, each failure type has

been related to the local loading condition present within

the rope. These local loading conditions are heavily

dependent upon the geometrical configuration of the rope

section. Breakage types are:

Type 1 and 2

These failures mostly occur along double helical wires within

the IWRC at the regions where mechanical interactions are

significant. Cracks initiate at the surface of the wire and

initially propagate transversely.

a.	 For Type 1 Failure (Figure 3.5.2-15 (1) a and Figure

3.5.2-16.a )

Localised torsional stresses alter the direction of crack

propagation to that of a combined transverse/longitudinal

crack. Failure takes place some distance away from where the

crack first initiated.
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b.	 For Type 2 Failure (Figure 3.5.2-15 (1) b and Figure

3.5.2-16 b )

Transverse crack growth is interrupted by complementary shear

stress (resulting from bending component of the double

helical wire) and crack propagation continues longitudinally.

Transverse crack growth reinitiates at some distance along

the wire finally resulting in a stepped fracture surface.

Type 3 (Figure 3.5.2-15 (1) c and Figure 3.5.2-17 a )

This failure type results from secondary 'point' bending due

to large mechanical interactions. Failure usually occurs at

the gap between any pair of type 3 contact patches.

Type 4 (Figure 3.5.2-15(1).d and Figure 3.5.2-17.b)

This is the most common type of fatigue failure and can occur

in both single or double helical wires. Transverse crack

propagation takes place and upon final failure a pronounced

shear lip is present. This type of failure takes place in

regions of low mechanical interactions; thus tensile forces

predominate.

Type 5 (Figure 3.5.2-15 (2) e and Figure 3.5.2-18 a )

Failure of this type occurs in the King wire of the IWRC, as

a result of combined tensile and torsional stresses. It can
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also be found in the helical core wires of the multi-layer

outer strands under high loads.

Type 6 (Figure 3.5.2-15 (2) f and Figure 3.5.2-18 b )

Failures of this type are a direct result of tensile overload

producing the cup and cone ductile failure appearances. This

type of failure occurs where there are many localised fatigue

failures in one or more of the multi-layer outer strands. The

remaining unbroken wires within this region can no longer

sustain the fatigue load and tensile overloading take place.

Wire failures can also result from other mechanisms, such as

from combinations of crushing and abrasion as shown in Figure

3.5.2-19.

3.5.2-3	 Broken Wire Counts

Figure 3.5.2-20, presents typical length distributions of

broken wires found in the IWRC of large diameter wire ropes.

This analysis confirmed that the vast majority of wires were

broken within the length between contact patches. This

17
finding was not indicated in reference 3. .
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3.6 MECHANICAL AND STRUCTURAL PROPERTIES OF ROUND STRANDED

ROPE

This section discusses the application of conventional

methods used to evaluate the mechanical properties of round

stranded ropes with 6- or 8-outer helical strands, having

either a fibre core or a steel core. The author includes

evidence of the structural properties of large diameter wire

ropes (040, 070 and 0127 mm) obtained by Dr. N F Casey in an

N.E.L research program on offshore mooring applications. The

physical implications of these structural properties are then

explained by the author on the basis of post test rope

examinations. Although these conclusions are based an

qualitative study, the experimental data reveal the

significance of the structural change of large diameter wire

rope undergoing tension-tension fatigue test.

The organization of this section is as follow:

Wire Rope Physical Properties

a. Mechanical properties under axial loading
9.9

 .

b. Structural properties under fatigue test
9.9

c. Physical implications of structural properties.

3.6.1	 Mechanical Properties of Rope Under Axial Loading

This sub-section deals with the mechanical properties of
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round stranded rope under axial loading within the

proportional limit. These properties are summarized as

follows:

(1)	 Extensional Properties

Round stranded ropes are generally used as tensile members

which will be stretched under loading. The stretch of a rope

aggregates three sources of axial displacements namely:

1. "Constructional" elongation

2. Elastic elongation

3. Rotational elongation

a.	 Constructional Elongation

When the rope is subject to axial tensile loading, the

helically laid wires and strands act in a constricting manner

thereby compressing the main core and bringing all the

elements of the rope into closer contact by filling up all

the possible inter-wire spacing. This property results in a

slight	 reduction	 of	 rope	 diameter	 and	 lengthening.

Constructional elongation is thought to be influenced by the

following factors.

1. Type of strand core and main core.

2. Type of outer layer helical strand
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3. Types of wire lay and types of rope lay

4. Material properties.

Rope which is constructed with wire main core, wire strand

core and independent wire rope core has less constructional

elongation than fibre core. Usually, constructional

elongation is insignificant for the early stage of fatigue

life, if the rope is constructed with steel core. However,

some fibre core ropes, if lightly loaded, may exhibit a

degree of construction elongation over the majority of their

fatigue	 lives.	 There	 are number of	 complicated and

inter-linked factors which will affect constructional

elongation. No definite equations or values are assigned to

this type of elongation at present in the rope industry.

b.	 Elastic Elongation

Elastic elongation results from the intrinsic recoverable

deformation of the material, provided that it is still within

the material elastic limit. Conventionally, elastic

elongation cannot be calculated precisely due to the

complicated geometry of the wires, the three dimensional

changes and the clamping and pivoting which occur. However, a

simplified equation in terms of a notional modulus commonly

used in the rope industry to approximate this change for some

situations. This equation is given by:
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Change in length =

. Change in Load (N)	 x	 Rope Length in mm

Cross Sectional Area x Elasticity Modulus

of a Rope (sq. mm )	 (N/sq.mm )

The cross sectional area of a rope is the sum of the

approximate metallic area of strands, and the Modulus of

Elasticity is obtained from a rope test. Both quantities are

given by the rope manufacturer.

c.	 Rotational Elongation

Rotational elongation results from unwinding movement of

helical strands if the rope terminations are not firmly

secured. Again, no definite equations or quantities are

assigned to this elongation.

(2)	 Structural Modulus Of Elasticity For Rope

Wire rope subjected to external tensile load exhibits a

degree of nonlinearity on the load-extension curve. These

nonlinear properties have long been recognised by rope
,

workers. In order to evaluate the approximate rope elongation

at any portion of the load-extension curve within the

"proportional limit" of the rope, the slope of the

load-extension curve is split into a low-load and high-load

portion at 20 percent of the load range. In other words, the
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load-extension curve is approximated by two straight lines

with different slopes. A schematic representation is given is

Figure 3.6.1 in order to illustrate this method.

In the low-load portion, the sources of displacements are the

sum of

a. Elastic elongation and

b. Constructional elongation. (the changes can be

noted)

In the high-load portion (from 20% to 65%)of the rope nominal

strength the sources of displacements are the sum of

a. Elastic elongation. (more changes as compared with

b.)

b. Constructional elongation.

The method presented above is only applicable for a new

formed rope provided that the loading is still within the

proportional limit (similar to elastic limit).

(3)	 Proportional Limit of a Rope

Proportional limit has virtually the same meaning as elastic

limit. This is a notional limit of a rope.
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3.6.1-1	 Definitions of Breaking Loads

(1) Minimum breaking force (in kN)

The tensile force applied to a rope below which the rope

shall not break when tested to destruction.

(2) Minimum breaking load. (in Tonnes)

The tensile load corresponding to the minimum breaking force.

(3) Calculated aggregate breaking load

This value is calculated from the product of the cross

sectional metallic area of a rope and the tensile grades of

the wires. The cross sectional metallic area of a rope is the

sum of the cross sectional metallic areas of all the

individual wires in a rope. In general, the metallic area of

wires is directly proportional to the square of the nominal

diameter of the rope.

3.6.2	 Structural Properties of Rope Under Cyclic Loading

(summarized from N.E.L internal report)

Rope with different geometrical pattern, different strand lay

and rope lay configuration display different structural

properties.	 However, by using the Load/Extension data

obtained during a fatigue test, various structural properties

of ropes can be measured. Figure 3.6.2 is a schematic

representation of rope properties measured from the load



Cyclic displacement

Slope=Stiffness

---4 ---

Area=1-lysteresis

I	 I
.1	 I
I	 I
L 	 I-

1-	 Rope elongation 
.--1

1	 1

1

147

Load

Crosshead displacement

Schematic Representation Of Rope Properties

Measured From Load Extension Data

Figure 3-6.2



148

extension data. They are

a. Stiffness

b. Cyclic displacement

c. Hysteresis and

d. Elongation

(1)	 Rope Stiffness

Rope stiffness is defined as the gradient of the

load-extension curve. Linear regression was used to produce a

best fitting straight line to approximate this slope. The

stiffness can be used to determine the proportional (elastic)

modulus of the rope by using:

L
Proportional modulus = E = M ---

A

where

M is the rope stiffness

L is the rope length at the date measurement point, and

A is the original metallic cross-sectional area of rope

N.B. The termination conditions (see Chapter 7) can alter the

proportional modulus of a rope.

(2)	 Cyclic Displacement

Cyclic displacement is the movement of the rope between the
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minimum and maximum cyclic load. It can be expressed as

percentage of strain by dividing the cyclic displacement by

the original length of a rope.

(3) Rope Hysteresis

This is a measure of the energy dissipated in any given

fatigue cycle, being the loss of energy of the entire rope

and test system. Energy loss includes the elastic-plastic

deformation, the frictional heat, the wire breakages and the

collection of any other small losses from the rope and from

the test system. The area within the hysteresis loop is

termed as the loss of energy due to hysteresis. The area

within the hysteresis loop is obtained by subtracting the

area under the unloading curve from the area under the

loading curve.

(4) Rope Elongation

Rope elongation is the increase in rope length which takes

place during a fatigue test. It is measured using the mean

cross-head displacement and is expressed in terms of

percentage of strain by dividing by the original rope length.

3.6.3	 Physical Implications Of Structural Change Rope

During Tension-Tension Fatigue Test
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Figures 3.6.3 (1), (2), (3) and (4) show the typical changes

in rope structural properties which take place during

tension-tension fatigue testin g of wire rope. The tests were

carried out at N.E.L on 40 mm, 70 mm and 127 mm diameter six

stranded rope, with an independent wire rope core (IWRC).

Figure 3.6.3 (5) is the change of rope stiffness against % of

rope life for the same rope construction but at 19 mm

diameter. This test was carried out at the Reading University

9.7.

Experimental results (see Figure 3.6.3) show that in the

early stage of the rope life (approximately from 0 to 20

percentage of rope life), there are rapid increases in

elongation, stiffness and temperature with a corresponding

decrease in hysteresis and cyclic displacement. At

approximately 20 to 30 percent of rope life, there is a

transition period where the rope properties remain relatively

constant. At approximately 30 percent of rope life, stiffness

starts to decrease and hysteresis, cyclic displacement and

temperature start to increase. Thereafter, the rate of change

for each property is relatively constant until the last 15%

of rope life where a significantly rapid changes take place.
,

From post-test examination of wire rope, the author has firm

evidence to suggest that the first rapid changes in rope

structural properties correspond to the significant "bedding

in" of the outer strands; small number of wire breakage can
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be found in the IWRC. At the beginning transition region, the

rope structure is brought to the tightest condition. The

number of wire breakage is increased at a constant rate

within this region. Until the last 15% of life where a problem

has developed on one of the outer strands which causes the

rapid change of structural properties. This study leads to

important understanding of the fatigue performance of this

particular type of rope based on the change of the structural

properties at each stage.

3.7	 Wire Rope Selection

The wide range of rope constructions are designed and have

been developed to serve various engineering applications in a

changing environment.

3.7-1	 Grades Of Rope

To satisfy the requirements for varying strength, toughness,

flexibility, abrasion resistance and corrosion resistance,

wire rope is manufactured in the following grades for general

crane and lifting safety operation.

,

a.	 Grade 200 (130 tonf/sq in or 2008 MN/s q m)

Used for installation where maximum rope tensile

strength is required.
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b. Grade 180 (115 tonf/sq in or 1776 MN/s q m)

Used for installation where tensile strength above grade

160 is needed and for rope needed which is to be run

over sheaves or wound around drums.

c. Grade 160 (102 tonf/sq in or 1575 MN/sq m)

Used for installations where there are special needs for

a combination of tensile strength and wearing qualities.

d. Grade 134 (92 tonf/sq in or 1420 MN/sq m)

Used for installation where lower tensile strength and

resistance to wear are needed than Grade 160.

3.7-2	 Rope Service Requirements

The six essential factors for selection of rope are

a.	 Tensile Strength Of Rope

Rope must possess sufficient strength to carry the

required maximum load plus the necessary factor of

safety. The strength of a wire rope depends on its size,

grade of wire and type of strand core and main core.

This table presents the most common safety factors:
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Purpose Safety Factor

Carry Personnel 12	 :	 1

Running Rope On Drum
Or On Sheave Of Crane

4.5-5.5 : 1

Running Rope ON Drum
Sheave For Erecting Jib

3.75	 :	 1

For Pendants Or Standing
Rope

3.5	 -	 4 : 1

For Pendants Or Standing
When Erecting Jib

3	 :	 1

For details, refer to BS. 302 for wire ropes for cranes,

BS 1757 for power-driven mobile cranes and BS. 2799 for

power-driven tower cranes.

b.	 Flexibility and Resistance to Bending Fatigue

Wires in a rope are subject to different degrees of

bending while it is running over a sheave, a drum or

simply under tensile load alone. Thus, a relative new

wire rope must have the ability to be bent over small

sheaves or to be wound around a relatively small drum

without causing substantial number of wire breakages

resulting from bending. To satisfy these requirements,

strands should contain sufficient number of small wires

and the strands should be laid with a relatively large

helix angle so that there is no loss of flexibility.
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c. Resistance to Abrasion

For wires laid at the outer-most layer of the outer

strands, they are more likely subject to wear and

abrasion while it is running over a sheave For a rope

bent over a small sheave and under high tensile load

condition, wires pressed against the sheave surface will

be subjected to high bearing pressure.

d. Resistance To Crushing

If a rope is forced to run over a narrow groove of a

sheave or on drum where too many layers of rope wound

over each other, it will be distorted or flattened

resulted from crushing of the main core. In fact, there

are other factors which will also cause crushing of the

main core, namely:

1. wires used for the main core are too small.

2. too large helix angle for the wires of the

main core.

To meet the requirements of resistance to crushing. IWRC

is normally recommended, since IWRC is constructed with

a tighter structural configuration without sacrifice of

rope flexibility.
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e. Resistance To Rotation

Wire ropes tend to rotate as tensile load is applied.

This undesirable rotation or unwinding rotation will

lead to rapid deterioration of main core due to

mechanical interactions. Thus, in some applications,

ropes are designed to counterbalance the unwinding

rotation. For instance, ropes constructed with ordinary

lay strand have greater stability than ropes constructed

with Lang's lay strand.

f. Resistance to Corrosion

Uncoated wires are more likely to be corroded,

especially, when the wire diameter smaller than 2 mm.

The most common method to against corrosion is to coat

the wire with a layer of Zinc. This type of wire is

commonly known as "Galvanized wire". Other method such

as use of stainless steel or special lubricants.

3.8	 BASIC DESIGN CONSIDERATIONS OF ROPE

The following lists five basic design considerations for

round stranded rope.

a.	 Grade and size of wire.

b.	 Number and pattern of wires configuration in the
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strand.

c. Type of strand lay and rope lay.

d. Preforming or non-preforming.

e. Type of main core and strand core.
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CHAPTER FOUR

HELIX GEOMETRY OF WIRE ROPE
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NOMENCLATURE

a
h
	Helical wire radius in mm

b
	

Binormal vector

I, 3, ft
	

Unit vector associated with global Cartesian

coordinates

k'
	

Curvature of centroidal axis of any wire in

-1
MITI

_
r	 Position vector of space curve

R
w
	Helical radius of wire in mm

R
s
	Helical radius of strand in mm

Rd
	Drum radius in mm

R
r
	Ring radius in mm

S r
	Path length of rope in mm

S	 Path length of strand in mm
S 

S
w
	Path length of wire in mm

T	 Tangent vector of any space curve

X, Y, Z	 Global (ie Cartesian) coordinates of space

curve

x, y, z	 Local coordinates system of space curve

x, Y, 2

X, Y, 2	 Derivatives of Cartesian coordinates with

X, Y, i	 respect to 0
w

--

xy	 Defined parameter

a
	

Helix angle of wire in a strand in degrees

13
	

Helix angle of strand in a rope in degrees

T
	

Helix angle of rope wound around a drum in



t

Pk

PT
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degrees

*a	 Double helix angle in degrees

e	 Angle of rotation in degrees

de
	

Differential angle of rotation in degrees

6	 Angle of rotation of helical wire in degrees
w

0	 Angle of rotation of helical strand in degrees
s

e
d 	 Angle of rotation of drum in degrees

Torsion of helical wire in mm

Radius Of curvature of the centroidal axis of

a wire

Radius of torsion of the centroidal axis of a

wire

SUBSCRIPTS 

SD	 Double helix

DS
	

Drum single helix

RS
	

Ring single helix

DD
	

Drum double helix

RD
	

Ring double helix

w	 Helical wire

S
	

Helical strand

r
	

Rope

D
	

Drum

R
	

Ring

-1
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4.1	 INTRODUCTION

A wire rope is a complex geometrical structure made up of

many individual wires. The nature of construction and

operation of wire rope means that individual wires have

helical form within the rope. Depending on the position of

the wires in this structure, and on whether the rope is

passed around a sheave or wound around a drum, the wire can

be in the form of a single, double or even triple helix.

These geometrical configurations play a significant role with

respect to flexibility, mechanical response, inter-wire

action, fatigue performance and service life.

A large variety of ropes are manufactured for various load

carrying purposes. Amongst those varieties, round stranded

ropes are the most widely used form in the majority of rope

applications. As a result, there have been many experimental

investigations dedicated to evaluating the structural

properties of round stranded rope. However, the significance

and influence of rope geometry relative to the rope

performance,	 safety and reliability during engineering

operation appears to have been largely neglected.

The aim of this chapter, therefore, is to obtain a

mathematical model which can represent any wire in a rope

subject to normal loading; eg tension, twisting and bending.

In particular, this includes development of methods to

determine curvature, torsion and path length of any wire
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within a rope. The results of this chapter are also necessary

for further analysis of mechanical behaviour on individual

helical wire (such as to determine component stresses and

strains).

4.2	 STRUCTURE OF CHAPTER FOUR

MATHEMATICAL MODELLING
OF WIRE ROPE GEOMETRY

(4.5)

ANALYSIS

VECTOR & DEVELOP
-MENT	 METHOD

WIRE HELICES
FOUND IN ROPE

MATHEMATICAL

THEORY & METHOD

(4.3)

SINGLE	 HELIX DOUBLE	 HELIX TRIPLE	 HELIX

TANGENT AND DOU PHYSICAL SHAPE
-BLE HELIX ANG- TORSION, CURV-
LE. ATURE AND PATH (4.6)

LENGTH

BLOCK DIAGRAM 4.1

STRUCTURE	 OF	 THE	 APPROACH	 TO	 THE

MATHEMATICAL MODELLING OF ROPE GEOMETRY
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4.3	 FUNDAMENTALS FOR WIRE HELIX MATHEMATICAL MODELLING

The following sub-sections are fundamental to the

mathematical model representing circular helical wires in a

round stranded rope. This section is organized under three

main headings. Namely,

a. Formation of helices in a round stranded rope.

b. Vector method of geometrical analysis.

c. Development method of analysis.

4.3.1	 Formation of Helices in a Round Stranded Rope

Details of how a rope is constructed, have been presented in

Chapter Two. For convenience, the definitions used for a

typical circular wire round stranded rope are represented in

Figure 4.3.1 (hereinafter, 'rope' refers to round stranded

rope).

Wires which are laid around a central straight wire (ie King

wire) to produce a multi-wire strand, are in single helical

form. If several strands are then laid around a central
,

straight strand (ie the main core), the central wire (or core

wire) in each of these strands also has a single helical

form. However, the remaining wires in these outer strands

each take on the form of a double helix. The rope now

described is referred to as an independent wire rope core; ie
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IWRC. A schematic view of straight helices found in an IWRC

is presented in Figure 4.3.2. If the rope is now wound around

a drum, the King wire will take a single helical form whereas

the straight single helical wire and double helical wires

will take double and triple helical forms respectively. For

clarity, these two helical forms are referred to as 'drum

single' and 'drum double' helices respectively. On the other

hand, if the rope is bent around a sheave, the King wire

forms a circular ring whereas the straight single helical

wires and double helical wires will take forms referred to as

'ring single' and 'ring double' helices respectively. In

fact, ring single and ring double helices are degenerate

cases of drum single and drum double helices where the strand

and the rope helix angle on the drum are zero.

The helix angle (or Lay angle) is defined as the angle

subtended by a helical wire or strand about the longitudinal

axis of the rope. For a single helical wire of strand this

angle is constant along its length. However, it is shown in a

later chapter that the helix angle of a double helical wire

varies along its length. This result has important

implications for calculating component stresses and strains
,

within rope subject to tensile load.

4.3.2	 VECTOR METHOD OF GEOMETRIC ANALYSIS

An outline of the mathematical basis of the vector method

used in reference (5.1-5.9) and in this thesis may be helpful

at this point. The centroidal axis of any wire in a rope is a



Double Helical Wire

NCentroidal
Axis.

-Core (Wire)

Single Helical Wire

Single Helical Strand

C.

I WRC
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King Wire

Where:

a. Right Lay F.C.

b. Left Lay Strand Core

C.	 Ordinary Lay Rope

d.	 Lang Lay Rope

Figure 4.3.2

Straight Helix Found In Rope



_
r = XI + Yj + Zk (4.3.2-2)

dS = I	 I deww (4.3.2-3)
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three dimensional space curve. It is convenient to use a

local coordinate system at each point on the centroidal axis

defined by the tangent, principal normal and binormal vectors

at that point. This is referred to as the Frenet frame at

that point, Figure 4.3.3. The position vector of a point on

the centroidal axis is given in the global Cartesian

coordinate by

r = Xi + Yj + Zii	 (4.3.2-1)

the derivative of this, with respect to the variable

parametrising the curve, is

If the curve is parametrised by the angle of rotation e
w 

the

distance dS between two nearby points on the curve is given

by

.2	 .2	 .2	 1/2dS
w = ( X + Y + Z }	 d ew (4.3.2-4)

The arc length between two points e
w 

= a and e
w 

= b, is given

by
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S	
jb 

I - 1 de
	

(4.3.2-5)
•	 a

provided that

r = r(e),	 X = x(e),	 Y = y(e),	 Z = z(ew	 w	 w	 w)

Several useful expressions which are useful in calculating

the geometrical properties of space curves are given below:

Curvature of a space curve:

r x rI	 -	 I 

K =	 (4.3.2-6)

I 13

(	 (2_25c)2	 ()2 )112

K = 	  (4.3.2-7)
.2	 .2	 .2	 3/2( X + Y + Z )

and the corresponding radius of curvature (p
k ) of which is

the reciprocal of equation 4.3.2-7.

Torsion of a space curve:

(rxr)	 r
r = 	 	 ( 4.3.2-8)

I	 - 1 2Irxr



(4.3.2-9)

k	 V	 2

ii 	2

T =
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022--i7 2) 2 + ( H-H) 2 + ()2

the corresponding radius of torsion (pt )	 of which is the
reciprocal of equation 4.3.2-9.

4.3.2-1	 Tangent and Helix Angle of Space Curve

The vector method presented in the preceding sub-section can

be extended to relate the unit tangent 'T' vector with the

angle of rotation '0' of the space curve, Figure 4.5.5. This

fundamental relationship will be applied to evaluate the

helix angle (eg, double helix angle) in the later section.

The tangent vector of a space curve is given by:

dr	 dr	 de
T=	 _	 (4.3.2-11)

dS	 de	 dS

Where dS is the infinitesimal length between two nearby

points on the space curve.

dS	 1 d ;I
	

(4.3.2-12)

de	 Idol

and

1 d id  _ 
{X•X+Y•Y+Z•Z}

1/2

1 d el
	

(4.3.2-13)



ncis* = ta -1 {	 	
.2+ Y(	 .2 ) 1/2 /X 

2
(4.3.2-15)
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As shown in Figure 4.5.5, the helix angle of the helical

curve is given by:

*
Z 

N
L* 

= atn (	 )	 (4.3.2-14)
XY

*
Where XY and Z are the horizontal component and the vertical

component of the tangent vector 'T'. By simplifying the

equation 4.3.2-14. The helix angle of any helical curve can

be given by:

4.3.3	 Development Approach to Geometric Analysis

The development technique applied to rope helical geometry is

based on the idea of projecting the centroidal axes in this

problem onto a plane, without stretching or shrinking. This

uses the fact that a cylinder is a developable surface
9.13

 .

This technique provides:

(a) A method for evaluating the path length of the

centroidal axis of a strand or of a helical wire in

a strand, and

(b) Linear relationships between the wire, strand and rope

rotational coordinates.
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The developed path of a double helical wire in an undeformed

rope is shown in Figure 4.5.4. The expression for the path

length can be obtained from the same figure by using simple

trigonometry.

r e
sw = { (	

s s 	 ) 2 + ( r e ) 2 ) 1/2 (4.3.3-1)
w w

cos p

Relationships for strands and ropes bent over sheaves or

wound around drums can be obtained similarly, and are

summarized in table 4.1.

Another application of the development technique is to relate

the different rotational coordinates in a rope, (eg o
w and e

s

in a straight rope, Figure 4.4.2 & 4.5.4 ). The rotational

coordinates of helical wires and strands for a rope wound a

drum or bent over a sheave can be obtained in terms of the

rotational coordinate of the drum or the sheave. The

equations for double and triple helices can then be written

in terms of any one of the rotational coordinates.

The linear relationship between the helical wire coordinate

e
w 
and the strand coordinate e

s in an undeformed rope is

R
e= 

R
w .tan a . cos p . e

s

	

	 w
s

(4.3.3-2)

The relationship between 0
s
 and 0w for a strand wound around

a drum is essentially the same, with T, e
d 

and R
d
 replacing

p, 0
s 

and R
s
 respectively.
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If the centroidal axis of a wire in an undeformed rope is a

double helix then, when the rope is wound around a drum, the

centroidal axis of double helical wire will become a triple

helix. The relationship between e
w and 0d 

is then

R
0W . tan a . sin p .cos 1	 e

wd - R
d	.

(4.3.3-3)

4.4.	 ASSUMPTIONS AND DEFINITIONS

The vector method and the development technique are the basic

mathematical tools for the analysis of helix geometry. To

proceed further, assumption and terminologies used in this

chapter must be defined in this section.

4.4.1	 Assumptions

Assumptions which have been made for the analysis, are given

as follows:

a. Any section normal to the centroidal axis of a wire

(ie any transverse section) is circular both before

and after being bent over a sheave or wound around

a drum.

b. The shape of the centroidal axis is regarded as the

most important geometrical characteristic of a wire

within a rope.
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c. The shape of the centroidal axis of a wire

(straight or curved wire) within a rope is a helix.

For example a straight king wire is a degenerated

helix.

d. Sheaves, drums and all wires of a rope are perfect

circular cylinder.

4.4.2	 Definition of Geometrical Parameters:

a. Wire Helical Radius (Rw)

For a helical wire wound around any strand, the wire helical

radius is defined as the perpendicular distance from the

centroidal axis of the wire to the centroidal axis of the

parent strand, Figure 4.4.1.

b. Strand Helical Radius (R
s

)

For a strand wound around any type of cylindrical core, the

strand helical radius R
s
 is defined as the perpendicular

distance from the centroidal axis of this core to the

centroidal axis of the central core wire of the helical

strand, Figure 4.4.1.

c. Rotational Coordinate of Wire ( 
w )

For two nearby points on the centroidal axis of a wire the

differential de
w of the rotational coordinate ew 

is given by

the angle between the oscullating planes at the two points.



Idealized
Strand Section

..
Idealized

Rope Section

Where:

rs = Strand Helical Radius

r = Wire Helical Radiusw

A-A = Transverse Section Of
s

179

Rope.

B-B = Transverse Section Of

Strand
Figure	 4-4-1

Helical	 Radii
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The oscullating plane at a point is defined as the plane

formed by the tangential and normal vectors at that point,

Figure 4.4.2. This is effectively a measure of the angular

position of a point on the centroidal axis of a wire within a

rope relative to an arbitrary fixed line.

d. Rotational Coordinate of Strand (0
s

)

For two nearby points on the centroidal axis of a strand

wound around any type of cylindrical core the differential

de
s
 of the rotational coordinate e

s
 is defined as the angle

between the oscullating planes at the two points, Figure

4.4.2.

e. Ring/Drum Radius (R r or Rd)

If a strand or rope is passed over a sheave then the ring

radius R
r
 is defined as the perpendicular distance from the

centre line of the sheave to the centroidal axis of the

strand or rope. Similarly, the drum radius Rd 
is defined as

the perpendicular distance from the centre line of a drum to

the centroidal axis of the strand or rope wound around the

drum, Figure 4.5.3-2 & 4.5.4-1.

f. Ring/Drum Rotation (Or & ed)

For two nearby points on the centroidal axis of a strand or

rope passed over a sheave the differential de r
 of the ring

rotation coordinate e
r
 is defined as the angle between the

oscullating planes at the two points. We can similarly define

the drum rotation coordinate e
d 

for a strand or rope wound



1B1

Transverse Section

Of Strand
/	 ewl

r'

Transverse

Section Of

Rope

Where:

Os= Rotational CoordinateOf Strand
,

gwTRotational CoordinateOf Wire-( Lang's Lay)

e = Rotational Coordinate Of Wire (Ordinary Lay)
wo

Figure 4•4.2

Rotational Coordinate
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around a drum, Figure 4.5.3-2 & 4.5.4-1.

g. Helix Angle (T) of a Rope or Strand Wound Around a Drum

If a strand is wound around a drum then the helix angle 7 is

defined as the angle of inclination of the tangent vector to

the centroidal axis of the strand to the plane normal to the

axis of the drum, Figure 4.5.4-1 The helix angle of a rope is

defined similarly.

Remark:

Any wire and strand within a rope has a helix angle; a

straight wire and strand has a helix angle of 90 degrees. A

strand and its central core wire share the same helix angle

which is constant along the centroidal axis of the strand.

However, the helix angle of a double helical wire is not

constant. It is a periodical relationship between the helix

angle and its position within a rope.

4.4.3	 Definition of Helices

a.	 Single Helix

A curve with parametric equations
,

x = a cos e

y = b sin e

z = c 19.

is a single helix whose axis is the Z axis. For a circular

helix the constants a and b are equal. The constant c

determines the pitch of the helix, Figure 4.3.4.



x-

211r
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Where:

=Angl e Of Rotation

S =Path Length

r =Helical Radius

(X =Helix Angle

Figure 4.3.4

Development Method
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b. Double Helix

A double helix is a helical curve whose axis is a single

helix: for example wire wound around a single helical strand

or a single helical strand wound around a drum.

c. Triple Helix

A triple helix is a helical curve whose axis is a double

helix: for example, a wire wound around a helical strand

which is itself wound around a drum.

Note:

Ring Single Helix And Drum Single Helix:

A ring single and a drum single can be regarded as special

case of straight double helix. If a rope is bend over a

sheave. The centroidal axis of the single helical wire in the

bent rope is defined as ring single helix. Similarly, if a

rope is wound around a drum. The centroidal axis of the

single helical wire in the bent rope is defined as drum

single helix

Ring Double Helix And Drum Double Helix:

The centroidal axis of the double helical wire in a rope

wound around a drum is also defined as drum double helix.

Besides, the centroidal axis of the double helical wire in a

rope bent over a sheave is a degenerate case of triple helix.

The curve which describes the centroidal axis is defined as

ring double helix.
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Remark:

A helix can be a single helix, double helix, triple helix or

of even higher order. An n th order helix has a helical axis

of (n-l)th order. A circle or a straight line can be

considered as a degenerate limiting case of a single helix as

the helix angle approaches 0 or 90 degrees respectively.

4.5	 ANALYSIS

The geometrical mathematical modelling presented in the

current sub-sections cover helices formed by the centroidal

axis of wires within a round stranded rope. Although wire

helices of the rope can be categorised into single, double

and triple helices, the geometrical properties can vary,

depending on the combination of lay direction of wire, strand

and rope.

The general equations used to evaluate the geometrical

properties (ie curvature, torsion and helix angle) and path

length of any helical curve have been presented in section

4.3.2 and 4.3.3 respectiely. The following describes the

derivation of Cartesian coordinates equations of rope

helices. In order to derive these coordinate equations, three

dimensional paper models have been made and some of them are

drawn in this section for the purpose of illustration.



X = r w cos ew
Y = rw sin ew
Z . r e tan a

w w

(4.5-1)

(4.5-2)

(4.5-3)
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4.5.1	 Single Helix:

The standard model representing the parametric relationships

between cylindrical coordinates and Cartesian coordinates of

the straight single helix is given in Figure 4.3.4 & 4.5.1

(a). For completeness, the coordinate equations are given as

follows:

The helix described above is referred as a right hand

circular helix. There are no differences in the geometrical

properties of right hand and left hand circular helices in

respect of their geometrical properties.

4.5.2	 Straight Double Helix:

Straight double helical wires can be found in both Lang's lay

and ordinary lay rope ( also known as regular lay rope ),

depending on whether wires of the strand are laid in the same

direction as the strand or in the opposite direction. A model

which represents the centroidal axis of the double helical

wire found in a right hand Lang's lay rope, is shown in

Figure 4.5.1 (b).

In order to illustrate how Cartesian coordinate equations of

double helix can be derived. Typical Lang's lay and ordinary
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Figure 4.5.1

Straight Helix Model



188

lay models are considered, as shown in Figure 4.5.2 and

Figure 4.5.3 respectively. The physical dimensions of wires

within a helical strand which is cut by the transverse plane

B-B, are resolved and projected onto plane A-A by means of

trigonometry. A set of coordinate equations representing the

Lang's lay and ordinary lay double helix in the Cartesian

reference frame are given below

Cartesian Coordinate Equations of Lang's Lay Double Helix:

X = (R s + Rw cos ew ) cos es + Rwsin ew sin es sin g

Y = (R s + Rw cos ew ) sin Os - Rwsin ew cos es sin p

Z = (R s tan /3) es + Rw sin ew cos g

(4.5.2-1)

Cartesian Coordinate Equations of Ordinary Lay Double Helix:

X = (R s + Rw cos ew ) cos es - Rwsin ew sin es sin p

Y = (R s + Rw cos Ow ) sin Os + Rw sin Ow cos es sin g

Z , (R s tan g ) e s - R w sin e w cos p
(4.5.2-2)

4.5.2-1	 Development Method for Double Helix:

-The main purpose of using the development method in the

analysis of double helix are of two-fold:

a. To relate the angle of rotation of the double

helical wire ew with the corresponding angle of

rotation of the single helical strand es in the

global Cartesian coordinates.
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	b.	 To evaluate the path length of the double helix

which is given in table 4.1.

Figure 4.5.4 illustrates and explains how the development

method works. The linear relationship between e
s 

and o
w 

has

been given in equation 4.3.3-3.

	

4.5.2-2	 Evaluation Of Double Helix Angle

Evaluation of the double helix angles of the double helical

wire have two purposes namely:

a. to visualize the lay configuration from the

transverse section of a rope.

b. to relate some mechanical responses along the

double helical wire subjected to tensile load.

Discussed in Chapter 9.

The following presents the procedure for evaluating the

double helix angle by vector method, see Figure 4.5.5.

	

a.	 to evaluate the tangent vector to the centroidal

axis of the double helical wire. This is given by

d;,	d..	 dO
T =	 -	 •	

w
	 (4.5.2-4)

dS
	

de
w
	dS
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where

dS	 1	 .'	 I

de	
I dew 

= 	
cl 

w I

and

(4.5.2-5)
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I dew I

de
Z	

w
* = 	  • I i I

dS
(4.5.2-8)

I d; I 	. 	 1/2
- ( 5c - 5c +i-	 i7 + 2 • Z )	 (4.55.2-6)

b.	 to resolve	 the tangent vector T into two

*
components XY and Z, as shown in Figure 4.5.5. And

the double helix angle is given by

ot* = atn (	 z
*

)	 (4.5.2-7)
XY

Where the vertical component of tangent vector is

given by

XY is the horizontal component of tangent vector.

4.5.3	 Drum Single Helix and Ring Single Helix

If a strand is laid helically around a cylinder, the single

helical wire in the strand will take a double helical form.

Similarly, if the strand is wound around a drum which is in

fact a cylinder, the single helical wire in that strand will

have exactly the same geometrical characteristic as those in

a double helical wire. In other words, the single helical
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wire laid in a strand which itself wound around a drum, will

eventually take a double helical form on that drum. On the

other hand, if a strand is wound around a drum with a very

small helix angle which is reduced to zero, the geometrical

nature of the single helical wire in that strand is defined

as ring single helix and a degenerate double helix. Figure

4.5.3-1 (a) is the schematic representation of a ring single

helical model; Figure 4.5.3-2 shows a drum single helical

model. For clarity, the following table lists the notation

used to represent the strand helix angle which is common to

double helix, ring single helix and drum single helix.

Table 4.5.3

Double Helix Drum single Ring single

Helical Radius Rs
R
d

R
s

Helix Angle g 0	 <	 /	 <	 p P = 0

4.5.3-1	 Influence of Strand Lay on Drum:

If single helical wires in a strand are laid in the same

direction as the strand wound around the drum, then the drum

single helical wire will have exactly the same geometrical

characteristics as the double helical wire in the Lang's lay

rope. Otherwise, the drum single helical wire will have the

geometrical characteristics of the double helical wire in a

ordinary lay rope. Expressions which represent the Cartesian

coordinates of ring and drum single helix are given in table

4.2.
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Figure 4 . 5-3-1 Ring Helix Model
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4.5.4	 Drum Double Helix and Ring Double Helix

If a rope is wound around a drum, all the single helical

strands in the rope will take a double helical form and all

the double helical wires in a single helical strand will take

a triple helical form (also defined as drum double helix).

However, if a rope is wound with zero helix angle, the double

helical wire on the drum will take a slightly different

geometrical shape which is defined as ring double helix. In

fact, a ring double helix can be classified mathematically as

a sub-set of a drum double helix. In other words, the

coordinate expressions derived for the drum double helix will

degenerate to ring double helix, if the rope helix angle

approaching zero. Three dimensional models for a ring and a

drum double helix found in a right hand Lang's lay rope, are

illustrated in Figure 4.5.3-1 (b) and Figure 4.5.4-1

respectively.

In order to derive the Cartesian coordinate equations of the

triple helix, three intersecting planes A-A, B-B and C-C

which cut at the transverse plane of the drum, rope and
,

strand, are considered. A typical triple helical model

representing a drum double helical wire found in a right hand

ordinary lay rope which wound around a drum in the right hand

direction,	 is shown in Figure 4.5.4-2. 	 The physical

dimensions of the drum, and the related helical strand and

wire cut by plane B-B and C-C are then resolved onto the

plane A-A by means of the preceding method. A set of general
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coordinate equations representing a triple helix in a

Cartesian reference frame is given by:

X
DD 

= X
D
 + X

sd

Y
DD 

= Y
D
 + Y

sd

Z
DD = ZD + Z sd

(14)

The coordinate equations given above are expressed in

condensed form. Expansion for each terms can be found in

Table 4.2. By setting the rope helix angle "T" zero in the

coordinate equations of triple helix, the coordinate

equations of drum double helix will be degenerated into the

coordinate equations of ring double helix.

Remark:	 All coordinate equations for rope helices are

tabulated in Table 4.2.

4.6	 GENERAL SUMMARY

The following is a brief summary of the procedure used to

evaluate the geometrical properties of helices representing

the wire in a rope.
,

4.6.1	 Geometrical Shape of Rope Helices

The geometrical shape of any helical wire found in a rope can

be readily visualised by plotting one of the Cartesian

Coordinates of the helices derived in the preceding section.
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4.6.2	 Curvature of Rope Helices

The curvature of any helix formed by the centroidal axis of a

rope can be obtained by substituting the first, second and

third derivatives of any set of coordinate equations ( as

presented in Table 4.2 ) into equation 4.3.2-6. The

corresponding radius of curvature of a helix is the

reciprocal of the curvature of that helix.

4.6.3	 Torsion of Rope Helices

Similarly, the torsion of any helix formed by the centroidal

axis of a rope can be obtained by substituting the first,

second and third derivatives of any set of coordinates

equations (also presented in Table 4.2) into equation

4.3.2-8. The corresponding radius of torsion of that helix is

the reciprocal of the torsion.

4.6.4	 Path Length of Rope Helices

All expressions derived for evaluation of the path lengths of

helices formed by the centroidal axis of helical wire within

a rope, are based on the triangular relationship established

by the "Development Technique". Note the arc lengths of the

helices may be different from path lengths of helices. One

must use equation 4.3.2-3 to evaluate the arc length of any

helix.
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In view of the complexity of the coordinate equations require

to evaluate the geometrical shape and properties of helices

representing the centroidal axes of wires in a rope, a PC

type of computer package has been developed by the author and

the results obtained from this package will be presented and

discussed in next Chapter.
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Table 4.1

EQUATIONS REPRESENTING THE PATH LENGTH OF THE CENTRE LINE OF

CONSTITUENT WIRES, STRAND OR ROPE USING THE DEVELOPMENT METHOD

PATH	 LENGTH
(CENTRE LINE)

EXPRESSION

STRAIGHT SINGLE
HELICAL	 WIRE

OR
w	 w

s w	 -
COS a

STRAIGHT DOUBLE

HELICAL	 WIRE

(ALTERNATIVELY)

h s
0S w =	 ;	 h s = R 

S	 s
SIN a COS p

R	 0	 2	 ,	 1/2,	 I	 s	 s )	 is,=	 4.	 R 2S 	 1	 (	 }

cos p	 w	 w

RING	 SINGLE

HELICAL	 WIRE
S	 =	 [ R 2 02	+ R2 e 2	 } 112
W	 w	 w	 R	 R

STRAND	 AROUND
A	 SHEAVE

S	 = RR 
e
RS

RING	 DOUBLE

HELICAL	 WIRE
S	 =	 ( R 2 e2 + R2 02 + R 2 02	 ) 1/2w	 w	 w	 R	 R	 w	 w

ROPE	 AROUND

A	 SHEAVE
SR
 = R

R eR

DRUM	 SINGLE

HELICAL	 WIRE

R2 e 2

e 2	 2	 D	 D	 1/2S
w =
	 (	 R+	 1w	 w COS 2 

7

STRAND	 AROUND

A	 DRUM

RD eDS s = COS T

DRUM	 DOUBLE

HELICAL	 WIRE

2	 2
2 e 2	 2 6 2	eD RD 1/2

1Sw =
	 { R +	 R +

w	 w	 S	 s COS 2 
7

ROPE	 AROUND

A	 DRUM

R
D eDSR = COS 7
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Table 4.2	 Cartesian Coordinate Equations Of Rope Helices

a.	 Single Helix

X = Rw
 cos e

w

Y = Rsin e
w	 w

Z = (R tan a) ew	 w

b.	 Double Helix

In Ordinary Lay Rope

X = (R
s
 + R

w
 cos e

iv
) cos e

s
+ R

w
sin e

w 
sin e

s 
sin p

Y = (R
s
 + R

w
 cos e

w
) sin e

s
- R

w
sin e

w 
cos e

s 
sin p

Z = (R
s
 tan p ) e +R sin e cos p

S w	 w

In Lang's Lay Rope

X = (R
s
 + R

w
 cos e

iv
) cos e

s
- R

w
sin e

w 
sin e

s
sin g

Y = (R
s
 + Rw

 cos e
w

) sin e
s
+ R

w
sin e

w 
cos e

s 
sin p

Z = (R
s
 tan p ) e - R sin e cos

S	 w W

c.	 Triple Helix

XDD 
= X

D
 + X

sd

YDD 
= Y

D
 + Y

sd

Z
DD 

= Z
D
 + Z

sd
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Expansion Of Terms Used In Coordinates Equation Of Triple Helix

X
D
 = (R

D tan 7) eD

Y
D
 = R

D
 cos e

D

Z
D
 = R

D sin eD

Z
sl

= R
w
 sin e

w
 cos p cos 7

Z
s2

= R
w
 sin e

w
 cos p sin 7

Rope Wound Around Drum In The Left Hand Direction:

I.	 Right Hand Lang's Lay Rope

X
s

= Y	 - zd	 s2	 s2

Ysd = X s
 cos 8

D
 + Y

sl 
sin e

D + Zsl sin eD

Zsd = xs 
sin e

D 
- Y

sl 
cos e

D 
- Z

sl 
cos eD

x
s 

= R
s
 cos e s

 + R
w
 cos e

w 
cos e

s 
- R

w 
sin ew 

sin e
s 

sin p

Ysl = Rs sin es 
sin 7 + R

w
 cos e

w 
sin e

s 
sin 7 + R

w
 sin 0w

 cos 0
s

sin p sin 7

Y
s2	 s= R s

 sin e
s 
cos 7 + R w cos e w 

sin e cos / + R w sin e w
cos e s

sin P cos 7

2.	 Right Hand Ordinary Lay rope

X
sd
=zs2 + Ys2

Ysd 
= Xs cos ep + 

Y
sl 

sin op - z
sl 

sin e
D
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Zsd = X s
 sin 0 - y	 cos e + Z	 cos e

DD	 sl	 D	 sl

X s = R s
 cos es + Rw cos ew 

cos es 
+ Rw

 sin ew sin e sin pS

Y sl = R s sin es 
sin 7 + Rw cos ew 

sin es sin 7 - Rw
 sin e

w 
cos e

s

sin p sin 7

Ys2	 w= R s sin es
 cos / + R cos e w sin e s cos 7 - R w 

sin e 
w 

cos e
s

sin g cos 7

Rope Wound Round Drum In The Right Hand Direction

1. Right Hand Lang's Lay Rope

X s = - Y	 -zd	 s2	 s2

Y d = X s cos 0 - 
y	 sin e + Z	 sin e

s D	 sl	 D	 sl	 D

Zsd = X s sin eD + Ysl cos eD - Zsl cos 
e
D

X s = R s cos 
e
s
 + R

w cos ew cos es - Rw sin ew sin es sin p

Ysl	 w= R s sin es 
sin 7 + R

w
 cos e sin e

s sin 7 + Rw
 sin e w 

cos e
S

sin p sin 7

Y
2
= R 

s 
sin e s cos 7 + R w cos e w sin e s cos 7 + R w sin e w cos es	 s

sin g cos 7

,
2. Right Hand Ordinary Lay Rope

X
sd

= -y
s2 

+ Zs2

Ysd = Xs cos eD - Ysl sin 0 - Zsl sin eDD

Z d = X s sin eD + Ysl 
cos e + z 

sl cos es D	 D
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X
s
 = R s

 cos O
s
 + R

w
 cos e

w 
cos e

s 
+ R

w
 sin e

w 
sin e

s 
sin p

Y
sl

= R
s
 sin e

s 
sin 7 + R

w
 cos e

w 
sin e

s 
sin 7 - R

w
 sin e

w 
cos e

s

sin p sin 7

Y
2
= R 

s 
sin e 

s 
cos 7 + R

w
 cos e 

w 
sin e cos T - R sin e 

w 
cos e

s s	 w	 s

sin p cos 7

d.	 Linear Relationship between Rotational Coordinates

1. Double Helix

R
we

s 
= 

R	
. tan a . cos p . e

wS

2. Triple Helix

R
we =
	

• tan a . sin P .cos 1 . 0
wd	 R

d
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CHAPTER FIVE

IMPLICATION AND SIGNIFICANCE

OF HELD( GEOMETRY
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5.1 INTRODUCTION

Tests carried out at NEL showed that the structural

properties of ropes depend significantly on the geometry of

the rope structure. The geometry of the structure also has a

profound effect on the type of wire failure and the fatigue

performance of the rope. This is because the geometry of the

rope determined the clamping and pivoting environment for

individual wires at periodic locations within a rope.

In this chapter, the author's main objective is to explain

the implications and the influence of rope geometry on the

mechanical behaviour of wires within a rope.

5.2	 LAYOUT OF CHAPTER FIVE

ANALYSIS OF
RESULTS FOR

STR.
SINGLE
HELIX

STR.
DOUBLE
HELIX

RING
SINGLE
HELIX

RING
DOUBLE
HELIX

DRUM
SINGLE
HELIX

DRUM
DOUBLE
HELIX

,

Where

STR. = Straight

IMPLICATIONS
INFLUENCES &
APPLICATIONS

BLOCK DIAGRAM 5.1
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5.3 SINGLE HELIX GEOMETRY AND ITS IMPLICATIONS

The following sub-sections are mainly concerned with the

geometrical aspects of single helices and the implication of

these to the mechanical responses.

5.3.1	 Geometrical Properties of Single Helix

The centroidal axis of a single helical wire is a circular

helix with constant pitch. For the single helix with any

helix angle between 0 and 90 degrees and any helical radius,

the projection of this curve on the ZY and ZX planes

(referred to a right hand coordinate system) can be regarded

as functions of 0w
, Figure 5.3-1. For a single helical wire,

the radius of curvature, radius of torsion and helix angle

are constant on the centroidal axis of a single helical wire,

Figure 5.3 -2. The resulting effects of varying on strains,

radius of curvature and torsion are shown in Figure 5.3-3 and

5.3-4. The effects of varying the helical radius on radius of

curvature and torsion are shown in Figure 5.3-5 to 5.3-7.

5.3.2	 Implications of Helix Geometry on Single Helical Wire

The component forces and moments on a single helical wire

within a strand are depend upon the wire geometry as shown in

many articles
3.1-3.20 . Based on the understanding of single

helix geometry, in this sub-section, a qualitative summary of

the implication of helix geometry on the static mechanical
,
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responses of single helical wire is given as follows:

a	 The helix angle, curvature and torsion are related to

the internal forces and moments by the equations of

equilibrium presented by Love
3.21

. These equations imply

that the internal forces and moments are constant on any

single helical wire within a single layer straight

strand and an equal lay multi-layer straight strand

subjected to monotonic tensile loading. Under dynamic

loading this may not be the case because of transient

effects.

b. The helix angle of a single helical wire usually between

60 to 90 degrees; within this range the radius of

curvature, and to a lesser extent the radius of torsion

(see Figure 5.3-7) of the wire changes rapidly with

helix angle, Figure 5.3-5 to 5.3-6. Thus the bending and

torsional stress components along a large diameter

single helical wire are very sensitive to small changes

in helix angle. Quantities such as the radial force,

contact force and complementary shear force which depend

upon the bending and torsion, are also sensitive to

changes in the helix angle. Bending and torsional

stresses can be reduced by the use of smaller diameter

wires; however, very small diameter wires (ie with

diameter	 less	 than	 2	 mm)	 are	 more	 liable	 to

corrosion 
.1
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c. For a straight strand subject to monotonic tensile load,

if all the helical wires are being laid 90 degrees to

the transverse plane of the strand, bending and twisting

strains (see Figure 5.3-3 and 5.3-4) will not be induced

on any helical wire. In other words, for helical wire

with very large helix angle, bending moment, twisting

moment, shearing force and radial force are reduced

significantly. Tensile force, by contrast, becomes more

dominant.

Note:

the mathematical model applied to evaluate the bending

and twisting strain will be discussed in the latter

chapters; Chapter Seven and Chapter Nine.

5.4	 DOUBLE HELIX GEOMETRY AND ITS IMPLICATION

The geometrical properties of the double helical wire

described in following sub-section are obtained from the

author's computer results.

5.4.1	 Geometrical Properties of Double Helix

,

If a main core is wound around by an outer strand which is in

form of a cylindrical helix (also defined as a single helix).

Each of the single helical wires in the same layer of the

strand will take up the same geometrical shape which have

been defined as a double helix in the preceding Chapter.
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An outer strand can either be laid in the right hand or in

the left hand direction. Likewise, a helical wire can either

be laid in the same or in the opposite direction to the

parent strand. The following table shows the four possible

lay configurations which can be found in rope.

Table 5.4.1

ROPE	 TYPE Lang's	 lay Ordinary Lay

STRAND LAY left or right left or right

For the purpose of building picture on how a double helix

will look like, the coordinates of a single helix, Lang's lay

and ordinary lay double helix as functions of 0w 
are shown in

Figure 5.4-1.	 For further illustration,	 the X and Y

coordinates of a Lang's lay double helix as functions of 0 w

are also shown in Figure 5.4-1 (a).

For comparing purpose, the geometrical configurations of a

single helix and double helices found in Lang's lay and

ordinary lay rope are shown in Figures 5.4-1, 5.4-2 and

5.4-3. (Hereinafter, double helix found in Lang's lay rope is

called "Lang's lay double helix", whereas double helix found

in ordinary lay rope is called "ordinary lay double helix".)

For a double helical wire, the geometrical model shows that

(for helix angles of wires and strands within a rope greater
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than 60 degrees):

a. The coordinates, curvature, torsion and helix angle of a

double helix can be regarded as functions of e
w 

and e
s

,

Figure 5.4-1 to 5.4-5.

b. For curvature and torsion of Lang's lay rope and

ordinary lay ro pe expressed as functions of e
w

, the

period of both functions is 360 degrees, with the two

functions being 180 degrees out of phase, Figure 5.4-4

and 5.4-5. For curvature and torsion expressed as

functions of e
s 

, the period of both functions is less

than 360 degrees. However, the out-of-phase

characteristic remains change, Figure 5.4-4 (a) and

5.4-5 (a).

C.	 Lang's lay double helix is more tortuous than ordinary

lay double helix, Figure 5.4-1.

d. For double helix angle expressed as functions of e
w

, the

function of Lang's lay double helix angle is 180 degrees

out-of-phase with the function of ordinary lay double

helix angle, Figure 5.4-2.

e. When the wire helix angle is a minimum the curvature is

a maximum and the torsion is a minimum. Similarly, when

the wire helix angle is maximum the curvature is a

minimum and the torsion is a maximum, Figure 5.4-2,
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5.4-4 and 5.4-5.

Note:

a. Points for which e
w 

is a multiple of 360 degrees are on

the worn crown of the rope.

b. Points for which (0
w 

- 180) degrees is a multiple of 360

degrees are point of contact with the strand layer

immediately beneath the current strand layers.

c. Point for which (e
w 

- 90) degrees is a multiple of 180

degrees are points of contact with neighbouring strands

in the current strand layer.

5.4.2	 Implications of Helix Geometry

Elastic rod theory shows that

Bending Moment = flexural bending stiffness x change in

curvature

Twisting Moment = flexural twisting stiffness x change in

torsion

Combining these equations with the results of the geometrical
,

model, one can see that:

a.	 Internal components of forces and moments will vary

periodically with e
w along a double helical wires,

irrespective of the frictional conditions imposed on the

wire. For instance, the variation of groove width and
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depth on the surface of double helical wire, as shown on

Figure 5.4-2 (1), is thought to be a result of variation

of radial force along each cycle length. Bending and

twisting moment also vary as the result of the wavy

geometry of the double helical wire. In addition to the

influence of the mechanical responses, mechanical

interactions would also be responsible for causing the

variation of the degree of damage (ie, width and depth

of grooves and nicks) on the surface of the double

helical wire. Groovings and nickings have been shown and

defined in chapter two.

b. The periodic variation of double helix angle along a

double helical wire implies that the pattern of contact

patches along the double helical wire will also vary

periodically with e
w

.

c. The periodic geometrical variations of a double helical

wire implies that there are periodic stresses variation

on the double helical wire. If a rope is subjected to

tension-tension fatigue tests the failure modes along

the double helical wire will also vary periodically with

0.	 ,
w

d. For a straight rope, a Lang's lay double helical wire is

wavier than a ordinary lay double helical wire, as shown

in Figure 5.4-1. This implies that the lang's lay double

helical wire will likely subject to more fatigue
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problems than ordinary lay double helix.

e.	 For a rope which is not subject to bending wire helix

angle will in practice always greater than 60 degrees.

Thus curvature will, to a good approximation, be 180

degrees out of phase with torsion. This implies that,

for a straight rope under tension, points of maximum

bending will also be points of minimum twisting, and

vice versa. Bending and twisting will be periodic in e
w

with a period of 360 degrees.

If a transverse section is made through the longitudinal axis

of a rope the variation of the helix angle of a double

helical wire is such that:

a. The wire cross-section is approximately elliptical when

the wire helix angle is a minimum and is approximately

circular when the wire helix angle is a maximum. The lay

configuration of a rope can thus be identified from its

transverse section, Figure 5.4-4 (3) and 5.4-2.

b. When the wire helix angle is a minimum the curvature is
J

a maximum and the torsion is a minimum. Similarly, when

the wire helix angle is maximum the curvature is a

minimum and the torsion is a maximum. These

characteristics allow high bending and twisting stresses

along a wire to be located.
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From (a) and (b) it can be shown that if an ordinary lay

rope, with a Lang's lay IWRC is subjected to a tensile load,

the maximum curvature and minimum torsion of a wire will

occur in the regions of contact between the outer strands and

the IWRC. The maximum torsion and minimum curvature occur at

the worn crown of the outer strands.

5.4.3	 Influences of Strand Helix Angle on Double Helix

Geometry

The helix angle of wire and strand in a rope has a strong

influence on the geometrical properties of the double helical

wire and hence on the mechanical behaviour of this wire.

Although the present analyses do not provide a picture of how

mechanical behaviour is changed by the helix angle, they

provide information on how the geometry of a double helix is

changed by the helix angle.

a. Figure 5.4-7 shows the variation of maximum radii of

curvature on the Lang's lay and ordinary lay double

helices corresponding to the change of the strand helix

angles. For strand helix angle larger than 50 degrees,

Figure 5.4-7 shows that the radius of curvature of

ordinary lay double helix increases more rapid than that

on a Lang's lay double helix.

b. Figure 5.4-8 shows the variation of maximum radii of

torsion on the Lang's lay and ordinary lay double
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helices corresponding to the change of the strand helix

angles. This diagram indicates that the maximum radius

of torsion on an ordinary lay double helix is always

larger than that of the Lang's lay double helix.

c. Figure 5.4-9 shows the variation of maximum and minimum

double helix angle in Lang's lay and ordinary lay double

helices corresponding to the change of the strand helix

angle. This diagram indicates that the difference

between maximum and minimum double he]ix angles on a

Lang's lay double helical wire is larger than that on an

ordinary lay double helical wire. In other words a

Lang's lay double helix is more tortuous than an

ordinary lay double helix.

These diagrams reveal the geometrical differences between

Lang's lay and ordinary double helices. If relationships

between helix geometry and mechanical behaviour were known,

one could immediately tell from these diagrams that which

type of lay would be better than the other.

5.4.4	 Double Helix Angle And Its Applications

The double helix angle, defined in the previous chapter, is

an important characteristic parameter for rope behaviour. The

following sub-sections will focus on the practical and

analytical aspects of this parameter, whose importance is

identified in this thesis.
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a.	 Practical Aspect

Many of the practical features of rope behaviour are related

to the sectional shape of individual wires and it is of

interest to know that for a rope with given transverse or

oblique cross-section, individual and adjacent wires appear

to have different sectional shape (circular, elliptical or

kidney etc.) Figure 5.4-2 gives a clue to this aspect. It

shows that double helix angle varies along the cyclic length

of double helical wire. Photographs which illustrate this

geometrical characteristic are now referred to.

1. Figure 5.4-4 (1) illustrates the elevation and plan view

of a double helical wire in contact with the single

helical wire in an IWRC. In the plan view, one will note

that the double helical wire (the wire is marked by a

red dash) is almost parallel to the axis of the core

strand at the point of contact. Therefore, one can

expect a circular cross section for that Lang's lay

double helical wire at the contact point. Figure 5.4-4

(2) illustrates how this Lang's lay double helical wire

(the wire is marked by two green dashes) is incorporated
,

in the strand.

2. Figure 5.4-4 (3) illustrates a transverse section of a

6x41 ordinary rope with a Lang's lay IWRC. It can note

that the Lang's lay double helical wire has a circular

sectional shape when it comes in contact with the single
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( a.)

Typtical Large Diameter Wire Rope

T r ansverse	 Section
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(LANG S LAY)

Elliptic
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(ORDINARY LAY)

Figure 5•4-4 (3)
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helical wire of the core strand. However, the double

helical wire has a elliptical sectional shape where it

contacts with the double helical wire of the outer

strand. An ordinary double helical wire, on the other

hand, has an elliptical sectional shape when it come in

contact with double helical wire of the IWRC. This wire

has a circular sectional shape when it located on the

surface of the rope. In general, understanding of the

double helix angle can be applied to distinguish between

Lang's lay strands and ordinary lay in ropes.

b.	 Analytical Aspects

Grooves found on a double helical wires are the result of

either contacting with equal lay wires or contacting with a

single helical core wire. However, nicks found on the double

helical wire are more complicated. It is because of the

periodic variation of double helix angle along the double

helical wire and the tolerance between adjacent wires at the

outer layer of the strands. Figure 5.4-4 (4) shows typicea 	 n

nicks found on the double helical wire. The wires, shown in

these photographs, have failed resulting from secondary
,

bending (top) and secondary twisting (bottom). A study of

double helix angle leads to understanding of two important

features, namely.

a.	 the location of nicks constitute clamping and

pivoting points.
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b.	 quantifying of the contact angle for contact

analysis.

Figure 5.4-4 (5) is a schematic representation of the contact

patterns between double helical wires. The following tables

(tables 5.4.2.1, 5.4.2.2 and 5.4.3) give the contact angles

obtained by applying mathematical manipulation of the double

helix angles of wires at the contact points. The subscript

notation for the double helix angles are defined as follows:

Subscript Notation:

chl	 Single helical wire contact with Lang's Lay double

helical wire within an IWRC

L	 Lang's lay double helical wire in an IWRC

I	 Single helical wire in an IWRC

cha	 Single helical wire contacting ordinary Lay double

helical wire within IWRC

A	 Ordinary lay double helical wire in an IWRC

d Contact of two double helical wires between two

neighbouring strands in the same layer (Lang's

layand ordinary lay)

wl	 Single helix angle of outer layer wire in a helical

strand

hhl	 Contact of two double helical wires between two

neighbouring strands at the adjacent layers of
lang's lay strand.

lo	 Double helical wire in an outer strand
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hhLA

Double helical wire in an inner strand

Contact of two double helical wires between two

neighbouring strands at adjacent layers of ordinary

lay strand.

Contact of two double helical wires between two

neighbouring strands which are inner layer Lang's

lay strand and outer layer ordinary lay strand.

Lang's lay wire

Ordinary lay wire

Superscript Notation

*	 Double helix angle (Lang's lay or ordinary lay)
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TABLE 5.4.2.1

WIRE CONTACT ANGLE BETWEEN CORE STRAND
AND HELICAL STRAND OF A 6 STRANDED ROPE

DIRECTION	 OF
TWO	 ADJACENT
WIRE	 AT	 THE
CONTACT POINT

CORE STRAND CONTACT WITH HELICAL

STRAND (FOR LANG'S LAY ONLY)

LAY DIR-

ECTION

—IN------
a	 =	 I a	 -*

chi	 1
a	 1
1 LEFT-LEFT 

DITTO RIGHT -
RIGHT------

-
a

chi	
=	 1	 180 - a * -

t
a
1	

I LEFT -
RIGHT

...-11011112/1— DITTO
RIGHT-
LEFT

(FOR ORDINARY LAY ONLY)
-

...14211t4______
a	 =	 I	 a

chA	
-

1
*a 
A

1
1

_
LEFT-LEFT

—____IJOIt._ DITTO RIGHT
IGHT -RIGHT

—:Al$11121L_
a

chA	 =	 1	 180 - a
*
A - a

1	
I LEFT--

RIGHT

DITTO
RIGHT-
LEFT

-----

These two tables can be applied to reveal the contact angle between

two wires of two adjacent strands at two adjacent layers.
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TABLE 5.4.2.2

DIRECTION	 OF
TWO WIRES

HELICAL STRAND + HELICAL STRAND
(WIRE OUT)	 (WIRE IN)

REMARK

-214?/:—. a	 •	 180	
WI	

- a
d	

- a
wo

-

TWO ADJA-
CENT STRD

This table applys only to two adjacent contact strand in the same

layer. It can be applied to reveal the contact angle of wires in

both Lang's and ordinary lay strands.

TABLE 5.4.3

DIRECTION	 OF
TWO	 ADJACENT
WIRE	 AT	 THE
CONTACT POINT

HEL. STRAND CONTACT HEL. STRAND
(INNER LAYER)	 (OUTER LAYER)

(THIS APPLY	 ONLY TO LANG'S LAY)

LAY DIR-

ECTION

-246111------- a	 =	 I	 a	 -*
chh	 to

*a	 I
Ii

LEFT-LEFT 

---11--
DITTO RIGHT -

RIGHT

01112/1_2 a
l	 =	 1	 180chi — a* —

l 0
a *	 I

1 i
LEFT- 
RIGHT

--11101L- DITTO RIGHT-
LEFT



240

,

(APPLY	 ONLY TO ORDINARY LAY)

ac hA r.	 I	 a
l

-	 a
*
A

1 LEFT-LEFT___________

DITTO RIGHT -
RIGHT

2q?1—
achA = 1 180

*
- a	 -

A
a

1
1

LEFT -
RIGHT

—:SIZ.---
DITTO RIGHT-

LEFT

TABLE 5.4.4

DIRECTION	 OF
TWO	 ADJACENT
WIRE	 AT	 THE
CONTACT POINT

HEL. STRAND CONTACT HEL. STRAND
(LANG'S LAY)	 (ORDINARY LAY)

(THIS APPLY	 ONLY TO LANG'S LAY)

LAY DIR-

ECTION

ahhc	 =	 I	 a
s
L

-	 a
s
A

1 LEFT-LEFT___________

__--JAIL
DITTO RIGHT -

RIGHT

--S$?/:----
a chl	 =	

1	 180 — a s
L

- a s
A

1
LEFT-
RIGHT

DITTO	 , RIGHT-
LEFT

This table can be applied to reveal the contact angle between two

contacting wires each in Lang's lay strand and ordinary lay strand

located at two adjacent layers.
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5.4.5	 Summary of Findings and Postulations

Post-test examination of wire failures and geometrical

modelling of double helical wire have enabled the author to

make some postulates about the mechanical responses of double

helical wire in a rope subjected to external tensile load.

1. Periodic variation of the radius of curvature, radius of

torsion and double helix angle on a double helical wire

implies that internal component forces and moments will

wire.

2. The out-of-phase characteristic between the radius of

curvature and radius of torsion on a double helical wire

implies that the maximum bending and minimum twisting

stresses on the double helical wire will almost locate

at the same position on the double helical wire and this

characteristic will repeat each cycle.

3. For an ordinary lay rope with a Lang's lay IWRC, the

maximum curvature and minimum torsion of a wire will

occur in the regions of contact between the outer

strands and the IWRC. the maximum torsion and minimum

curvature occur at the worn crown of the outer strands.

This characteristics is importance for design ' reduced

rotation ' ropes.
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4.	 For double helix angle expressed as functions of e
w , the

function of the double helix angle of a Lang's lay

double helical wire is 180 degrees out of phase with the

function of the double helix angle of a ordinary lay

double helical wire.

This characteristic is importance for identifying contact

patches and lay configuration of ropes.

Remark:

One important point that the author wishes to raise, is that

the out-of-phase geometric characteristic must be carefully

considered when designing 'reduced rotation' rope (eg

multi-strand rope) in which the Lang's lay type of strand and

ordinary type of strand are often laid alternately amongst

adjacent layers. Wires at the contact locations between

adjacent layers could fail much earlier as the results of

a. contact stresses

b. stresses resulting from interactions and

c. maximum stresses which occur as the result of

mechanical response due to the out-of-phase

geometrical characteristic between Lang' lay and

ordinary lay double helical wire coinciding at the

contact locations.
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5.5	 Ring and Drum Single Helix Geometry and Implications

Both ring and drum single helices are double helices. The

former is a degenerate case with zero strand helix angle; it

is because the strand is being bent over a sheave. The latter

is a double helix with very small strand helix angle; it is

because the strand is being wound around the drum. The

following sub-sections present the author's computer results

for ring/drum single helix and discuss the implications of

these helix geometry for the mechanical responses of ring and

drum single helical wire.

5.5.1	 Physical Differences Between Ring / Drum Single

Helix and Double Helix

There are some differences between a double helical wire

within a straight rope and a ring/drum single helical wire

within a bent strand.

a. Double helical wires are preformed permanently in a rope

during rope manufacturing whereas ring or drum single

helical wires within a strand are deformed, from single

,
helical wires to double helical wires, by bending a

strand over a sheave or by winding a strand around a

drum.

b.	 For helical strands laid around a main core, a rope is
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formed with small strand helical radius and very large

helix angle; for example strand helical radius = 10 mm

and strand helix angle = 78 degrees. For a strand wound

around a drum, the strand helix angle is very small and

drum helical radius is very large; for example drum

helical radius = 300 mm and strand helix angle < 10

degrees. For a strand bent over a sheave, the helix

angle even equals zero. (N.B. the strand helical radius

in a rope is equivalent to the ring or drum helical

radius applied to a strand bent around a sheave or wound

around a drum).

5.5.2	 Geometrical Properties of Ring and Drum Single Helix

If a strand is wound around a drum in the same orientation as

the helical wire laid in the strand, then the periodic

variation of geometrical properties of a ring or a drum

single helical wire should be similar to those of the double

helical wires in a Lang's lay rope. On the other hand, if a

strand is wound in the opposite orientation to the helical

wire laid in the strand, then the periodic variation of

geometrical properties of the ring and the drum single

helical wire may be different from those of the double

helical wires in an ordinary lay rope, Figure 5.4-5 and

5.5.2-2. The geometrical model shows:

a.	 For an ordinary lay rope, the torsion has a period of
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360 degrees but the period of the curvature may be less

than this.

b. The curve of the helix angle function will shift

downward as the strand helix angle reduces.

c. For a strand wound around a drum, the entire shape of

the curves of change in curvature and torsion between a

double and single helical wires remain the same as those

of curvature and torsion of the double helical wire,

with the exception that the change in curvature and

torsion shift downward toward the zero axis or below the

zero axis of the curvature and torsion graphs.

5.5.3	 Implications Of Ring/Drum Single Helical Wire

The implications of geometrical properties of a ring single

helical wire and a drum single helical wire are qualitatively

discussed in the following.

a. For a given size of strand and drum, the maximum

magnitude of curvature on the Lang's lay type of drum

single helical wire is more significant than that of the

curvature on the ordinary lay type of drum single helix,

as shown in Figure 5.5.2-1. On the other hand, the

magnitude of torsion on the ordinary lay type of drum

single helical wire is more significant than that of the
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torsion on the Lang's lay type of drum single helical

wire, Figure 5.5.2-2.

b. For a strand wound around a drum (the strand is being

wound in the same orientation to its wires), the high

bending stress appears to be at the points for which 0
w

is a multiple of 360 degrees on the double helical wire.

The reference datum for 0
w
 must be at either 0 or 180

degrees.

c. For a strand wound around a drum (the strand is being

wound in the opposite orientation to its wires), the

high bending stress appears to be at the points for

which (0 	 90) is a multiple of 180 degrees.

Note:

By varying the strand helix angle and drum helical radius,

the geometrical properties of ring and drum single will be

changed.
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5.6	 RING/DRUM DOUBLE HELIX GEOMETRY AND THEIR IMPLICATIONS

Rope is not only designed to carry tensile load, but must

also be designed withstand reversed bending as it runs over a

sheave or a drum. For a rope running over a sheave or a drum,

rope problems will silently develop and soon become apparent.

Problems such as core crushing, external and internal wear

resulting form using improper size of sheave or drum are the

consequence of high bearing pressure. However, some physical

parameters are not readily to be seen and, are hidden in the

helix geometry of wires eg the change in radius of curvature

and torsion along the triple helical wire. These parameters

are rather sensitive to the diameter of a sheave or a drum.

Examples chosen to illustrate these points are described as

follows:

5.6.1	 Geometrical Properties of Triple Helix

In addition to the geometrical influence of radii of wires,

helical radii of wires and strands. The geometrical shape of

a triple helix (included ring double helix and drum double

helix) can be varied greatly by the combinations of

orientations of wire lay, strand lay, rope lay ( see table

5.6.1 ) as well as helix angle.

For a triple helical wire, the geometrical model shows that:

a.	 the coordinates, curvature, torsion and helix angle of a
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triple helix can be regarded as functions of e and 0
w	 d'

Figure 5.6-1, 5.6-2 and 5.6-3.

Table 5.6.1.	 Lay Configurations Of Rope On Drum

TYPE OF ROPE LAY
ROPE DIRECTION ON DRUM

RIGHT HAND LEFT HAND

RIGHT HAND LANG'
S LAY

RIGHT-RIGHT
LANG'S LAY

RIGHT-LEFT
LANG'S LAY

LEFT	 HAND LANG'
S LAY

LEFT-RIGHT
LANG'S LAY

LEFT-LEFT
LANG'S LAY

RIGHT HAND ORDI-
NARY LAY

RIGHT-RIGHT
ORDINARY LAY

RIGHT-LEFT
ORDINARY LAY

LEFT	 HAND ORDI-
NARY LAY

LEFT-RIGHT
ORDINARY LAY

LEFT-LEFT
ORDINARY LAY

Possible lay configurations of rope wound around a

drum.

TYPE OF ROPE LAY
ROPE DIRECTION ON DRUM

RIGHT HAND LEFT HAND

RIGHT HAND LANG'
S LAY

RIGHT-RIGHT
LANG'S LAY

RIGHT-LEFT
LANG'S LAY

RIGHT HAND ORDI-
NARY LAY

RIGHT-RIGHT
ORDINARY LAY

RIGHT-LEFT
LANG'S LAY

(b)	 Four basic lay configurations of rope wound around a

drum.
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b. The magnitude of the curvature of a triple helical wire

in an ordinary lay rope is smaller than that of a triple

helical wire in a Lang's lay rope, Figure 5.6-2 (a) and

5.6-3 (a).

c. The variation in the torsion of triple helical wires in

a Lang's lay rope is much less than that of the triple

helical wire in an ordinary lay rope, Figure 5.6-2 (b)

and 5.6-3 (b).

d. the variation of the helix angle for a triple helical

wire in a Lang's lay rope is much greater than that for

a triple helical wire in an ordinary lay rope, Figure

5.6-2 (c) and 5.6-3 (c).

N.B.	 All dimensions are in mm and in degrees.

5.6.2	 Implication Of Ring And Drum Double Helix Geometry

For a rope wound around a drum, the geometrical model shows

that the bending in double helical wires within a Lang's lay

rope is , for all value of ew
, greater than that on double

,
helical wires within an ordinary lay rope. The torsion in a

double helical wire in a Lang's lay rope is greater than that

on a double helical wire in an ordinary lay rope for most

values of 0
w

.
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5.7	 CONCLUSION ON THE STUDY OF WIRE HELIX GEOMETRY

Rope manufacturers take full advantage of helix geometry to

lay wires into an integral structure i.e. a strand or a rope.

By carefully adjusting helical parameters within a strand or

a rope, desired properties of the strand or the rope can be

obtained. The following conclusion, based on the study of the

rope geometry, are briefly drawn:

a.	 Single Helix

For a single helical wire in a straight strand, helix angle,

curvature and torsion along the centroidal axis of a single

helical wire are constant. These geometrical properties imply

that the mechanical component forces and moments are also

constant along the length of a single helical wire. However,

as the helix angle is being changed within the practical

range (ie 60 to 85 degrees), geometrical properties of single

helix, such curvature and torsion, will significantly be

changed. Thus, helix angle is one of the important parameters

affecting the change of geometrical and mechanical properties

of a strand.

,

b.	 Double Helix

For a double helical wire within a straight rope, the

curvature, torsion and helix angle are periodic functions of

wire rotational coordinate ew
. The majority of helical wires
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in a rope are in double helical form; eg over 73% of wires

are double helical wires in an IWRC. This implies that the

macroscopic properties of a rope will significantly be

influenced by the double helical wires. In addition to this,

the periodic geometrical characteristics of double helical

imply that the variation of contact patches, internal

component forces and moments on the helical wire repeat every

helix cycle

c. Ring And Drum Single Helix

Ring and drum single helices are degenerate and almost

degenerate double helices respectively. The helix angle of a

strand laid on a sheave and drum is very small between zero

and 10 degrees. The curvature and torsion of helical wire

will significantly be influenced by the diameter of the

sheave or drum as the strand is being bent over the sheave or

the drum.

d. Ring And Drum Double Helix

Ring and drum double helices are degenerate and almost
,

degenerate triple helices respectively; a rope is being laid

with a very small helix angle on a sheave or a drum. Again,

curvature and torsion of triple helical wires will be

significantly influenced by the diameter of the sheave or the

drum. Since a rope can be either laid as a Lang's lay rope or

as an ordinary lay rope. A rope can be laid on the drum
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either in the right hand orientation or in the left hand

orientation. The orientation of rope laid on the drum will

also contribute the mechanical behaviour of the rope

depending upon the diameter of the drum and the rope lay (ie

Lang's lay or ordinary lay). The model shows that the

orientation of rope laid on the drum has more influence to

the geometrical properties of triple helical wire within the

Lang's lay rope than that of the triple helical wire within

the ordinary lay rope.
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CHAPTER SIX

SECTIONAL GEOMETRY OF HELICAL WIRE
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Nomenclature

a	 Semi-minor axis of an ellipse

A	 Defined variable

b	 Semi-major axis of an ellipse

c	 Defined variable

K	 Defined variable

m or M	 Number of helical wires per layer

Q	 Reaction force per unit length at the contact

r	 Radius of a single helical wire

R	 Helical radius of a single helical wire

X	 Radial force acting on a helical wire per unit

length

a	 Helix angle of wire

P	 Defined variable for contact angle

Qc	 Defined variable for contact angle

AO	 Defined variable

R 1 ,R 2 ,R 3	Reaction forces per unit length at the contact

(For Figure 6.4.1 only)

R.	 Helical radius at ith layer of strand1
(i = 1, 2, 3, ... etc)

Subscritpt

s	 strand
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6.1	 INTRODUCTION

For multi-layer strand design the number of helical wires

(with given size and helix angle) which can be associated with

a core wire of given size must be determined; the inverse

procedure may also be required. In practice, the size of the

helical wire is always smaller than the size of the core wire

in a single layer strand, with the exception of "Selvagee"

type of wire rope; that is all wires are parallel to each

other. This will ensure that all helical wires in the

inner-most layer will make contact with the core wire.

Likewise, the size of helical wire in any particular layer

must not be larger than the size of the inner strand immediate

beneath; In this these, this geometrical problem is termed the

"spatial	 configuration	 of	 wires	 within	 strand".	 The

geometrical theory needed to deal with this problem is termed

"sectional geometry of helical wire".

In this Chapter, the author intends to highlight the

significance of the sectional geometry of helical wire in

forming a reasonable mathematical model for single layer

.1strand. This is in contract to some of the literature,3 3,

4.1 & 4.4 where it is assumed either that the size of core

wire is equal to that of the helical wire (provided that the

helix angle of helical wire is 90 degrees) or that the core

wire is separated from the inner layer helical wire. These

assumptions ignore sectional geometry. There is, in fact, a

geometric relationship which governs the "admissible helix

angle"
s
 for a given number of wires per layer and given size
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of core wire. This Chapter therefore aims:

a. to derive a mathematical method to evaluate the

sectional shape of helical wire with a given helix

angle.

b. to verify the approximate approach proposed by other

strand modellers to handle the problem of "admissible

helix angle" for a given number of helical wires.

c. to show some applications of sectional geometry .

* Definition:

For a given size and given number of helical wires per layer,

the admissible helix angle is defined as the limiting helix

angle that allows each of the helical wires to be in contact

with their neighbouring wires without jamming or separation

between adjacent wires.
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6.2	 LAYOUT OF CHAPTER SIX

VERIFICATION OF R/r
AND ITS IMPLICATION

R/r RATIO, HELIX
ANGLE AND NO. OF
HELICAL WIRES/LAYER

AUTHOR'S
METHODS

COSTELLO &
PHILLIPS

KUNOH &
LEECH

BLOCK DIAGRAM 6.1

STRUCTURE OF THE APPROACH TO THE

SPATIAL CONFIGURATION OF STRAND

6.3	 BASIC ASSUMPTION

The main assumptions that have been made for the current

analysis are:

a. Any wire within a strand is considered to be

perfectly cylindrical.

b. The centroidal axis of any layer of wires, except

the core wire, is in the form of a right

cylindrical helix.
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a.) Helical Wire Section

.
30

Strand

Model

Helical

Wire ,

Figure 6.1

Helical Wire Section
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c.	 Any transverse section of any wire is normal to the

centroidal axis of that wire.

6.4	 ANALYSIS OF HELICAL WIRE SECTION

If a transverse section is made through a helical wire, a

circular shape can be expected. On the other hand, if a cut is

made normal to axis of the straight strand; a "kidney shape"

wire section can be expected. However, if the helix angle of

the helical wire is gradually increased from 60 degrees, the

wire section will gradually be changed from the "kidney shape"

to an "approximately elliptical shape", Figure 6.1. Similar

wire sectional shapes can also be found in Ref.5.4. The

following method may be used to construct sectional shape:

Note: "Kidney shape" and "elliptical shape" are the names to

describe the sectional shapes of a helical wire with the

change of helix angle. They do not represent the exact

mathematical meaning.

Method:

Let us consider a solid helical wire bundle which is formed by

laying an infinite number of equal lay filaments. A point "P"

is located on one of the filaments which form the surface of

the helical wire, Figure 6.2. By joining the centre "0" of the

strand with this point "P", the distance "OP" is designated by

"R ". An expression, which relates R with the helix angle,
P	 P
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helical wire radius and the helical radius of the strand, can

be derived based on the diagrams as illustrated in Figure 6.2.

The parameter R is given by:
P

R
p
 = a

h 
f ( cos e

c 
+ R

R 
) 2 + sin 2 e

c
sin

2	1/2
a j	 (6.1)

Where	 R
R
 = R / a

h

By varying R
p
 and e	 (from 0 degree to 360 degrees) the

c

sectional shape of a helical wire on the transverse plane of

the given strand can be traced out for a given wire radius and

helix angle, in equation 6.1. In order to illustrate this

geometrical relationship, a computer program has been written

and selected results are given in Figure 6.3.
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6.5	 ANALYSIS OF THE ADMISSIBLE R/r RATIO

This section presents both an approximate and an exact

mathematical approach which can be applied to determine the

R/r ratio
*
 and the contact angle

**
 in a single layer strand.

These approaches include:

a. Huang, Costello and Phillips' method

b. T.Kunoh and C.M.Leech method

c. Author's methods

Definitions:

*
The R/r ratio is defined as the ratio of helical radius to

the helical wire radius. This ratio is closely related with

the number of helical wires per layer and the "admissible

helix angle" of the helical wire in any layer.

The 
**
Contact angle e

c 
is defined as the subtended angle of

contact between helical wire in contact with the core wire and

one of its neighbouring helical wires in the same layer,

Figure 6.2

,

6.5-1	 Huang, Costello and Phillips' Approach

Huang and Costello applied similar methods to determine the

R/r ratio. Both modellers used an elliptical section, as
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illustrated in Figure 6.4, to approximate a "kidney section",

Figure 6.3. The helical surface of the wire is also

approximated by a straight line a hi as shown in Figure 6.4

(a). The elliptic expressions used to evaluate the R/r ratio,

are given by:

a = r
	

(6.2)

b = r / sin a

	

	
(6.3)

..(by Costello & phillips)

b = r (R 
2 

+ k 2
	 1/2

)	 / k (6.4)

	  (by Huang)

Where 1 / sin a = ( R 2	
2

+ k	 1/2)	 / k

k = R tan a	 (6.5)

By using Figure 6.4 and analytical geometry, it can be shown

that:

R	 1 + a
2	

n	 m tan	 ( n / 2 -	 /	 )	 1/2	 (6.6)- (	 )r 	
sinsin	 a

,
Based on the elliptic section approach, the contact angle "p"

(illustrated in Ref.3.1). can be shown to be given by:

1	 tan	 ( n/2 - n/m ) ) 1/2 -cos p _ 2	
( ( 1 +

2	

2cos	 a	 sin	 a



a.

ba hz
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Costello And
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( tan 2 ( n/2 - n/m ) ) [ 1 + 	 2	 2
tan	 a cos	 ( n/2 - n/m )

1

( sin 
2 a + tan 2 ( n/2 - nim )

4	 1/2
] + sin	 a }

(6.7)

.	 3.1
According to Costello and Phillips , the contact force Q

between neighbouring helical wires, (See Figure 6.5) is given

by:

Q = - X / 2 cos p	 (6.8)

Where	 Q = R 2 and R

X = R
1

Note:	 the notation Q and X has been used in Ref.3.1.

6.5-2	 T. Kunoh and S.M. Leech Approach

T. Kunoh and S.M. Leech used a different method to evaluate

the R/r ratio and compared their results with Costello and
,

Phillips. However, the expressions for "R/r" and for the

contact angle have not been given in their paper and no

comments can therefore be made on their approaches.

3



0.=R=R2 3

X=Ri

271

Oblique Section Of 6/1 Strand

R

Contact Forces

Between Wires

Figure 6.5



( 1 + tan2 a )1/2

( m 
2

(1 + tan2
a) }

1/2
(6.11)=R

r
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6.5-3	 Approximate Methods and an Exact Method

(of The Present Author)

Various approaches which can be applied to evaluate the R/r

ratio, are presented.

a. Approximate By Elliptic Section

The elliptic section can be approximated:

a = r

b=kr/(R 
2 
+k 

2	 1/2
)
	

(6.9)

k = R tan a	 (6.10)

In this case, the author kept "a" as a constant radius and "b"

as the dependent variable of the helix angle. Again, by using

Costello's approach, the expression for R/r ratio is given by:

N.B.	 This method is intended to show that the "kidney
,

section" of helical wire which governs the permissible helix

angle, has insignificant influence if this angle is greater

than 85 degrees. Equation 6.11 has no practical use.



sin a sin e
e
h 

= 0 + tan -1	
c 

w	 R R + cose c

Zh = R 
ew tan a - ah sin 0c cos a

}
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b.	 Projected Elliptic Method ( with exact method)

In order to evaluate R/r ratio from the "kidney shape"

section, one needs to consider the "contact helix" 
*

and the

"projection of the transverse section of the helical wire"
**

on the plane which cut the transverse section of a straight

strand, Figure 6.2.

*
1.	 Contact Helix

This is a helical contact line formed by the contact of two

neighbouring helical wires in the same layer of the strand, as

illustrated in Figure 6.2. The expressions which represent the

Cartesian coordinates of the contact helix are:

Xc = a c cos 
ew

Y c = a c sin 
ew

Z = a e tan a
c w

In cylindrical coordinates:

Rh = ah [ (cos 
e
c 

+ R
R 

) 2 + sin 2 e sin 2 a ) 1/2
c (6.15)



A R
2 

- A - sin
2 
a = 0

R
(6.18)

a
h

sin e
c 

cos a
2	 n _A = tan	 { m	 R tan a

P
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Similar equations can also be found in Kunoh's
5.4

 paper but

they were used for other purposes.

2.	 Projection Of Transverse Section Of Helical Wire**

IfIf a section is made normal to the direction of a unit tangent

vector on the centroidal axis of a helical wire, a circular

transverse section of the helical wire can be expected. If

this circular section is projected onto the plane of the

transverse section of the straight strand. The projected shape

becomes a true ellipse. By using this concept, to evaluate the

"R/r" ratio, two results can be found. They are:

i.	 Approximate Method

In this approach, the helical radius of a contact

helix and a projected ellipse are considered, see

Figure 6.2 (a). Again, by using Costello's

analytical geometry approach, the expression which

gives the R/r ratio, is given by:

Where

}	 (6.19)



275

ii. Exact Method

In this analysis, the contact helix and the

projected ellipse are considered, see Figure 6.2

(b). One can obtain the following mathematical

relationships:

e
cl 

= 2 (n/m - e
$

)	 ( 6.20)

Where

a
h

sin e
c 

cos a	
-1	

sin e
c 

sin a*0	 =	 + tan	 {	 )R
p
 tan a	 R

R
 + cos 8

c

(6.21)

In order to evaluate the admissible helix angle,

One needs to set 6 1 = 0. The corresponding R/rc

ratio can then be evaluated on this basis. (a

computer program has been produced in order to

evaluate the admissible ratio for various helix

angles).

iii The Contact Angle "P"

The contact angle as published in Costello and

Phillips paper
3.1 is similar to that considered in

this sub-section. If a helical wire is considered
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as a perfect cylinder and its centroidal axis is

considered as a right cylindrical helix. By using

the contact helix and projected elliptic section

method, one can show that this angle "a" is exactly

equal to the angle 180 - ec at the contact point.

To evaluate this angle, the expression is given by:

cos p = 1/RR 	(6.22)
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6.6	 DISCUSSION & CONCLUSION

This sub-section presents a brief discussion of the sample

results obtained from various approaches; the R/r ratio and

contact angle for the single layer strand is evaluated.

a.	 R/r Ratio

Figures 6.6 to 6.8 show the relationship between R/r ratio,

the admissible helix angle and the number of helical wires per

layer. Generally speaking, the results obtained from various

approaches are quite close to each other provided the helix

angle chosen for the helical wire is within the practical

range, i.e. 60 to 90 degrees. However, there is an exception

as shown in Figure 6.7. For a helix angle greater than 60

degrees, these graphs show that the elliptical method is also

a close approximation.

Figure 6.6 illustrates sample results (R/r ratio vs helix

angle) obtained from an approximated method of Costello and

are due to the author. The methods agree with each other when

the helix angle is greater than 40 degrees but then the

results begin to diverge when the helix angle is smaller than

40 degrees.

Figure 6.7 illustrates sample results (R/r ratio vs helix

angle) obtained from one of the elliptical approximate
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methods; for the evaluation of R/r ratio. The curve designated

with "math" (note: "math" is just a legend given to the curves

only) is definitely inappropriate. This is because when a

helix angle is gradually decreased, the wire section changes

from a "kidney shape" to "horse-shoe shape". In other words,

the R/r ratio will increase as the result of "horse-shoe"

effect, Figure 6.8 (a). However, Figure 6.7 show that the R/r

ratio gradually decreases as the helix angle decrease.

Figure 6.8 illustrates the R/r ratio vs helix angle, extracted

from Ref.5.4, Kunoh and Costello's approach. Again, both

results agree with each other within the range 40 to 90

degrees and then gradually diverge as the helix angle become

smaller than 40 degrees. For a strand with two helical wires

(ie M=2), Kunoh clearly showed the "horse-shoe" effect in the

prediction of the R/r ratio without pointing out the physical

significance, i.e. when R/r > 1. Two wires will contact with

each other at two contact points, Figure 6.8 (a).

Figure 6.9 presents the comparison of the results obtained

from various approaches. Results obtained from various source

agree reasonably within a practical range of helix angle for

,
strand design.

b.	 Contact Angle

Figure 6.10 illustrates the variation of cos g as functions of
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helix angle and number of helical wires predicted by the

projected elliptic method.

Figure 6.11 (a) & (b) compare results for the contact angle

obtained by using Costello, Kunoh and author's approaches. The

author's results agree with Costello's results provided the

helix angle is greater than 65 degrees. Kunoh's approach also

agrees with Costello's ap proach provided the helix angle is

greater than 50 degrees. However, when the helix angle

approaches zero degrees, "cos p - neither approaches zero nor

diverges to a very large quantity. This is due to the "horse

shoe n effect of helical wire with small helix angle.

Figure 6.12 illustrates the variation of contact angle p with

the corresponding R/r ratio.

CONCLUSION

Some simple but important conclusions can be drawn.

1. The ratio of helical radius to radius of helical wire must

be related to the helix angle and the number of helical

wires per layer.

2. The wire sectional shape varies from circular through

approximately elliptical, kidney shape, horse-shoe to

toroidal shape as the helix angle decreases from 90 to 0

degrees.

3. For any size of wires, helix angle and number of helical

wires per layer within a strand, there is an "admissible
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helix angle". For a given helix angle greater than the

"admissible helix angle", the helical wires will be no

longer touching their neighbouring wires in the same

layer. On the other hand, if the helix angle is smaller

than the "admissible helix angle", all the inner layer

helical wires will be separated from their core wire.

Therefore, one should not design strands with the latter

case.

4. For a strand without a core wire, by decreasing the helix

angle, a "separation" will occur when the "kidney shape"

section is transformed to a "horse-shoe" section. For

example, the strand with two helical wires, as shown in

Figure 6.8 (a).

5. For designing single and	 multi-layer	 strands,	 the

practical range of helix angle should be within 50 to 90

degrees. Costello's expression for
	

"R/r"	 ratio	 is

reasonable accurate and easy to use within this range.



= I 1 +
tan 2 ( 7n / 18 )

1/2
- (6.23)

1
R

1
r .2	 	 }

sin	 a 1

= 1 1 +
tan 2( 7n / 18 )

1/2
(6.24)}.2

sin	 a
1

2
R

2
r

2
tan	 ( TE / 3 )

sinsin	 a
1

1
R

1r - { 1 + 1/2
} (6.25)
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6.7	 APPLICATION

Figure 6.13 illustrates several simple strand constructions

and the "lay" configurations encountered in various strand

designs. Examples are given to illustrate application of

sectional geometry principles.

6.7-1	 R/r Ratio For Equal Lay Strand

a.	 R/r Ratio For 9/9/1 Strand

Figure 6.14 (a) represents the cross section of a 9/9/1

strand. By applying Costello's method for calculating the R/r

ratio, the helical radii for each layer are given by:

b.	 R/r Ratio For 12/6F + 6/1 Strand

Figure 6.14 (b) represents a cross section of a 12/6F+6/1

Strand. By applying Costello's method for calculating the R/r

ratio, the helical radii for each layer are given by:
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a. 9/9/1 Strand

Equal	 Lay

b. 12/6F4 611 Strand

Equal Lay

Where: R,Helicat Radius
i

i=1,2,3

Figure 6.14



r 2 e
l 

= sin-1
r
2
 + r

3

(6.26)

tan 2( 51 /12 )
1/2

.2
sin	 a 1

(6.27)
3

f1+
3

2tan	 ( n / 3 ) 1/2

288

2
R	 tan	 ( n / 3 )

1	 1/2
= { 1 + 	  }

	

.	 2r
1	 sin	 a 1

(6.25)

cos (	 + ( 1 +2	
R 1

1	
r
2

) cos el
r
2

c.	 R/r Ratio For Tn. 3 And Tn. 3/3

Figure 6.15 (a) represents a cross section of the core of the

triangular strand. Again, by applying Costello's method for

calculating the "R/r" ratio, the helical radii for the helical

wires are given by:

For Tn. 3

1 - { 1 +
1

.	 2
sin	 a

1

=

(6.28)
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a.	 Triangular
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r
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1

r

2
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e
l 
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r + r
1	 2

(6.29)
)

R	 = r	 ( 1 + 	  )1	 1	 .	 2
sin	 a

tan	 (n/3)
1/2
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For Tn. 3/3

(6.30)

6.7-2	 "R/r" Ratio For Cross Lay Strand

Figure 6.15 (b) represents a cross section of a cross lay

12/6/1 strand. In this case, the R/r ratios are given by:

2R	 t	 ( 2n / 3 )1	
r 0 + r 1	

an
-	 = { 1 + 

sin	

)1/2

1
r	 r

1	2 a
1

(6.31)

R

	

2	
r 0 + 2r 1

+ r
2	2

tan	 ( 2n / 3 )
-	 = { 1 + 	  }

1/2
	r 2
	 r

2

(6.32)

For interest, Table 6.1 shows the expressions which can be

used to approximate the R/r ratio for cross and equal lay

strands.

.	 2sin	 a2
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CHAPTER SEVEN

STRUCTURAL MODELLING OF

SINGLE LAYER STRAND
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NOMENCLATURE

A	 Defined parameter

Ah
	Sectional area of helical wire

a
c
	 Core wire radius

a
h
	Helical wire radius

a	 Distance from the neutral axis to a point
cy

within a section of a core wire ore wire

a
hy	

Distance from the neutral axis to a point

within a section of a helical wire cal wire

Defined parameter

B B'	 Flexual bending stiffness
S s

Defined parameter

Young modulus

Eeff	
Effective tensile stiffness

External tensile load applied to the strand

Shear modulus

G
eff	

Effective modulus of rigidity

H
1 H 2

	Defined parameters

I
h
	Second moment of area of helical wire

J
c
	Polar moment to area of core wire

J
h
	Polar moment of area of helical wire

J.	 Geometrical constants; where i = 1, 2,

3,...22

K l K2 K3 K4
	Equivalent assemble stiffness for strand

k' & 1-c 	 Initial and final curvature

External torsion applied to the strand

Number of helical wires per layer

N & N'	 Internal shear force on a helical wire
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N
h
	Defined parameter

P
L
	Lay length of strand

-R & R	 Initial and final helical radius

R'	 Defined parameter

T	 Internal tensile load on core wire
c 

T
h
	Internal tensile load on helical wire

3 & V'	 Internal bending moment on helical wire

W & W'	 Internal twisting moment on helical wire

W Internal twisting moment on core wire
C 

X, Y, Z	 Radial forces along a naturally curve rod

AO	 Rotation of the strand per lay length

Ak'	 Change in curvature

AT	 Change in torsion

Aa	 Change in lay angle

C	 Strand strain
S

E	 Helical wire strand
C

E 
w b	

Bending strain on helical wire

1w	
Shearing strain on helical wire

cr
b
	Stress due to bending moment

T	 Shear stress due to twisting moment on
h

helical wire

v	 Poisson's ratio of wire

1.)
eff	

Effect Poisson's ratio of strand

AO	 Rotation of helical wire

AS	 Incremental length of helical wire
w 

AO
*

Defined parameter
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7.1 INTRODUCTION TO STRUCTURAL MODELLING OF SINGLE LAYER

STRAND

Stranded rope can be considered as an integrated structure

which is cleverly constructed by twisting thin rods helically

to form a tensile member. This structural design takes full

advantage of the geometry of each individual element and does

not use jointing or welding. As a result, structural

flexibility is retained. The model presented in this chapter

is developed by using this concept - ie that the mechanical

responses of individual wires are orientated and summed with

respect to global coordinates where external loads are

exerted.

The approach applied here draws on several sources: the

earlier studies of fatigue failed rope, the analysis of helix

and sectional geometry, and the earlier treatments of 6/1

strand such as those given by S. Machida, Costello and

Phillips. However, the author's models have been refined and

modified. Some factors or assumptions which will affect the

theoretical analysis and the structural properties of single

layer strand are noted here;

,

a	 Type of Sockets for End Terminations

Cone sockets with white metal or epoxy are preferred for

grasping the strand terminations.
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b. Wire Material

Cold drawn rope steel is assumed to be used. Wires are

assumed to be free from residual stresses and defects

resulting from manufacturing, preforming and storing on the

bobbin.

c. Termination Conditions

The termination conditions influence the structural

properties of the strand. Four termination conditions are

considered:

1. rotation of terminations is constrained (tensile

load only).

2. terminations free to rotate (tensile load only).

3. torsional load applied to terminations.

4. combined tensile & torsional loads applied to

termination.
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7.2	 STRUCTURE OF THE APPROACH TO THE MATHEMATICAL

MODELLING OF SINGLE LAYER STRAND

INTERNAL

EQUILIBRIUM

DISPLACEMENTS
AND

COMPATIBILITY

STRUCTURAL
EQUILIBRIUM
OF STRAND

STRUCTURAL
BEHAVIOUR

BLOCK DIAGRAM 7.2-1

STRUCTURAL MODELLING OF SINGLE LAYER STRAND
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7.3	 PRINCIPLES UNDERLYING METHOD OF SOLUTION AND

ASSUMPTIONS

a.	 Principles

A strand structure is generally considered to be statically

indeterminate
4.1

, and hence the fundamental principles of

solution must be based on:

1. Equation(s) of equilibrium of forces and

moments, both internal (normally as a function

of stress) and external (applied).

2. Equation(s) describing the geometry of

deformation or compatibility of displacements

and strains.

3. Constitutive	 relationships	 between

load-deformation or stress-strain.

b.	 Assumptions

To	 apply	 the	 preceding	 statements	 logically	 and

realistically, in accordance with the nature and

characteristics of the problem (ie modelling of single layer

strand), it is necessary to make the following assumptions.

1. Any section normal to the centroidal axis of a

wire (ie any transverse section) is circular

both before and after loading.

2. The centroidal axis of any wire within a
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strand is regarded as the most important

geometrical characteristic of that wire.

3. For a single helical wire, the helix angle

should be between 50 to 90 degrees. this is

the practical range for strands design.

4. The wire diameter should not be less than 2 mm

(or	 .08	 in).	 Although	 this	 may	 be

mathematically possible, this is unrealistic

in practice due to external wear and corrosion.

5. The mechanical response of a wire should be

free from termination influences.

6. All helical wires in the same layer should

touch the core wire and each of the helical

wires may either touch neighbouring helical

wires or separate from each other.

7. The wire material is assumed to be either

orthotropic or isotropic and all wires remain

elastic before and after loading.

8	 The residual stresses set up in any wire

during manufacturing, storing and strand

production are ignored, as are frictional and

flattening effects.

9. An oblique section of any helical wire can be

approximated either by an ellipse or by a

kidney shape.
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7.4	 INTRODUCTION TO LINEARIZED MODEL FOR SINGLE LAYER

STRAND

The following sub-sections present the mathematical procedure

and principal equations leading to the modelling of single

layer strand in the monotonic, linear elastic regime. The

model features are presented as follows:

a. Any helical wire is considered as a naturally

curved rod so that naturally curved rod theory

3.21-3.22 can be applied to determine the internal

components (forces and moments) exerted on the

helical wire.

b. Costello-type equilibrium equations are applied to

relate the internal components to the external

applied loads.

c. For a strand subjected to a tensile load, the

development method is applied to relate the

displacement of a strand to that of the helical

wires.

d. For model linearization, second and higher order

derivatives of displacement equations are ignored.

e. Four termination conditions are considered in order

to obtain the stiffness matrix representing the

equilibrium of the strand structure.

f. Structural properties such as strand stiffness and

effective Poisson's ratio can be obtained from the
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stiffness approach to the solution of the problem.

g . New-formed strand, free from any plastic

deformations due to fatigue or wire failure, is

assumed.

7.4.1	 Internal and External Equilibrium

The current sections present applications of the theory to

determine:

1. Internal equilibrium along the single helical wire and

core wire.

2. External equilibrium on the strand.

7.4.1-1	 Internal Equilibrium

a.	 Internal Equilibrium of a Naturally Curved Rod

This theory was first made known as Kirchhoff's linear theory

22
of slender curved rods 

3.22• A similar theory applied to

study the kinematic equilibrium of initially curved rod were

-,also given in Love's treatise 3.21 " the mathematical theory

of elasticity". In 1949, the possibility of applying the

naturally curved rod theory to lock coil rope emerged in

4.1
Hansom's	 PhD thesis on "Mechanics of locked coil steel

wire ropes". Since the mid 70's, naturally curved rod theory
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Internal Components Exerted On

A Naturally Curved Rod Subjected

To External Loads

Figure 7-4-1
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was widely used to determine the internal component forces

and moments on a single helical wire within a 6/1 strand by a

number of strand modellers, such as Costello, Phillips and

their fellow workers; For better understanding of rod theory,

a schematic diagram which represents the orientation of

component forces and moments on the naturally curved rod, is

shown in Figure 7.4-1. A paper model which represents the

orientation of similar component forces and moments on the

helical rod, is also given in Figure 7.4-2. Principal

differential equations of the rod model are presented in the

following matrix.

Force Equilibrium:

Moment Equilibrium:

These sets of equations are derived from differential

geometry. They are also known as "Frenet-Serret Formulae".
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0T

N = o

N' X

0	 1-1'	 -k
Ti - i	 0

-h .	0	 i

(7. 4-3)

W 0

V = 0

V' 0

0 fc -k
K -i	 0
-,

-It	 0	 i

(7.4-4)
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b.	 Internal Equilibrium of a Single Helical Helical Wire

When equations 7.4-1 and 7.4-2 are being applied to a single

helical wire under static conditions, several component

forces and moments will vanish in the preceding matrices.

They are forces Y and Z per unit length and external moments

0, K' and K per unit length of the helical wire. Hence, the_

matrices representing the internal components of forces and

moments along the single helical wire are given by:

Force Equilibrium:

Moment Equilibrium:

C	 Approximate Theory for Component Moments

Equations 7.4-3 and 7.4-4 represent a set of indeterminate

equations. In order to solve them, some of the terms in the

3.21
equations have to be approximated by the expressions

given below:



T
h =
 1a

2 
EC

h	 w
(7.4-10)
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V = B
s
 ( K - k )
	

(7.4-5)

V' = B
s
' ( fc - k' )
	

(7.4-6)

W = T
s
 ( i - T. )
	

(7.4-7)

where B
s
', B

s
 and T s

 are the flexural bending stiffness and

flexural twisting stiffness respectively.

B
s
 = Bs

' = El	 (7.4-8)

B
s	

B
s

'	 due to axial symmetry of wire cross section= 

T
s
 = GJ	 (7.4-9)

For a single helical wire described by its centroidal axis,

there is one curvature; ie binormal curvature " k' ". In

other words, the normal curvature is zero. Therefore, the

normal flexual bending moment "V" on the single helical wire

vanishes.

The tensile component along the helical wire is given by
,

Having approximated these three important parameters (ie, W,

V' and Th
), one should have sufficient parameters to evaluate



2
T
c = TE a

c
 EC (7.4-13)

W
C 

= G J
c 

AO (7.4-14)
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shearing force and radial force "X" per unit length

along the single helical wire, by substitution of equations

7.4-5, 7.4-6 and 7.4-10 into equation 7.4-1. Parameters for

shearing force and radial force are then given by:

N' = W ii.' - w i	 ( 7.4-11)

X = N'i - T 1-1'	 (7.4-12)

The equations for internal force and moment equilibrium on

the helical wire under static conditions can then be solved.

d.	 Internal Equilibrium Of Core Wire

For a straight strand subjected to combined axial loads (ie

tension and twisting), internal force and moment can exist on

the core wire of the strand. They are given by:

,
7.4.1-2	 External Equilibrium of Single Layer Strand

Soon after a rational mathematical model emphasizing the

structural equilibrium of a 6/1 strand was developed by S.

Machida and J.J Durelli 4.1
, an improved approach to deal with



F
.

M

K
1	

K
2

K 3	K4
(7.4-17)
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the structural equilibrium of a 6 single helix strand was

also proposed by Costello, Phillips and fellow workers

3.1-3.20 . This logical and reasonable approach is also

applied by the present author. For a better understanding of

how to derive the structural equilibrium of a single layer

strand, a detailed schematic diagram indicating the

orientation of the internal components exerted on a helical

wire of a 6/1 strand (as an example) is presented in Figure

7.4.3. The equations which represent structural equilibrium

of a single layer strand are given by:

F = m ( T
h
 sin (T( + N' cos & ) + T

c
	(7.4-15)

M = m ( W sin a + V' cos a + T R cos a - N' ft sin & )
h

+ W
c
	(7.4-16)

The strand termination conditions, as presented in the

preceding section, have a significant influence on the

structural properties of the single layer strand. The

structural equilibrium equations have to be expressed in

terms of structural translational and rotational

displacements of the strand. They can be expressed in a

matrix form:



i
Line Of Contact
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M

F

Where

M &F = External Loads

T ,W
r.. Internal Components

V:10

Figure 7•4-3

Typtical 6/1 Strand Model



,cos 2 a 

R
(7.4-18)

2 -cos a

R
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7.4.2	 Geometry of	 Deformation	 and	 Compatibility	 of

Displacements

This section presents the approach to determine the geometry

of deformation of core and helical wire in the single layer

strand. It is organized into the following sub-sections.

a. Helix geometry required	 for	 the	 deformation

analysis.

b. Wire sectional geometry.

c. Deformation geometry of core and helical wires.

7.4.2-1	 Helix Geometry

Full details of cylindrical helix geometry have been

presented in Chapter Four and Chapter Five. This sub-section

gives important geometrical parameters which are used to

relate the curvature and torsion with the bending and

twisting moments along the helical wire. Expressions for

these two parameters are:

a.	 Initial and Final Curvature of a Single Helix

,

b.	 Initial and Final Torsion



- { 1 +
tan ( n/2 + n/m ) 1/2i (7.4-20)

R

r
. 2

sin a
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sin a cos a	 sin & cos a
t =
	

i = 	
	

(7.4-19)
R	 R

7.4.2-2	 Sectional Geometry

Full details of sectional geometry have also been presented

in Chapter Six. An admissible ratio between helical wire

radius and helical radius as functions of number of helical

wires per layer and helix angle is:

For practical purpose, the helix angle should be between 60

and 90 degrees. Equation 7.4-20 was also given in Ref. 3.1.

7.4.2-3	 Deformation Geometry Between Core and Helical Wire

The Development method can also be applied to determine the

deformation of a helical wire in relation to the global

displacement of the strand (with four strand termination

conditions). A schematic representation of the axial

deformation of strand and helical wires is shown in Figure

7.4-4. The geometrical imperfection, flattening effect, and

second and higher order deformation terms are ignored in

formulating the linearized model. Deformation equations, in

terms of strand and helical wire axial strain are expressed

as functions of changes in geometrical parameter and are

given by:



M
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Aa
E

s
 =c + 	

W tan a
(7.4-21)
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AR	 AO
c = --- + --- + ( tan a + cot a ) Aa 	 (7.4-22)s

	

R	 2n

	

AR	 Ae

+ Aa tan a(7.4-23)c
w 

=
 ---

+
 

	

R	 2n

AR	 Ae
2

E
w
 = E

s 
sin a +	 cos2 a +	 cos 2 a

R	 27

(7.4-24)

Where AR, A6 and E
s 

are global geometrical changes (in terms

of cylindrical coordinates) of the single layer strand

subjected to external axial load corresponding to the four

termination conditions.

7.4.2-4	 Deformations of Helical Wire

For a single layer strand subject to combined load, extension

and rotation can be regarded as the known magnitudes in

equations 7.2-21 and 7.4-24 whereas E
w
, AR and Aa are

considered as the major unknowns in these equations. In order

to solve equations 7.2-21 and 7.4-24, one additional known

parameter is required. For convenience, AR is chosen to be

approximated, by applying the classical approach (le

conservation of volume for incompressible material) and

flattening effects. The change in helical radius can be found



+ SR
f

(7.4-25)

315

by:

AR	 v( a E + a E
h w 

)
C s --- =

R	 R

where SR
f 

is the flattening deformation due to radial force.

It has been suggested by Utting and Jones
6.10

 that the

flattening term OR
f 

is very small and can be ignored in this

analysis. Therefore, the change in helical radius is given

by:

AR	 v( a E +a
h Ew 

)
c s — =

R	 R

(7.4-26)

By substituting equation 7.4-26 into equation 7.4-24 the

deformations of the helical wire can be written as:

(7.4-27)E
w = J 1 

E
s 

+ J
2 

tie

Act = J E + J. ee
3 s	 4

(7.4-28)

The changes in curvature and torsion are given by

AK' = J
5 

E
s 

+ J
6 

AO
	

(7.4-29)

At = j
7 

E
s 

+ J
8 

AB
	

(7.4-30)

where J
l' 

J
2' 

J3' J4' 
J5' J6' 

J
7
 and J

8
 are defined

geometrical parameters. They are shown in Appendix.
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7.4.3	 Material Constants and Stress Strain Relationship

Rope steel is cold drawn (ie normally hypereutectoid steel)

and the wire is considered to be a slender rod. In fact, the

material properties along the wire are more important than

the material properties across the transverse section in

considering the structural properties of single layer strand.

Rope steel, in this case, can be considered either as an

isotropic material or an orthotropic material. The essential

stress-strain relationships for the present model are given

by Hooke's law and this is used to relate stress and strain

along the centroidal axis of any wire resulted from tension.

The stress-strain relationship is given by:

a
E =	 (7.4-31)

E

If the wire material is assumed isotropic, the shear modulus

can be related to the Young's modulus. The shear modulus is

used to relate the twisting stress with the twisting strain

resulting from the change in torsion of the single helical

wire.

E
G = 

	

	 	 (7.4-32)
2 ( 1 + v )

For an orthotropic material, the relationship described by

equation 7.4-32 is no longer valid. Then individual material

constants (E and G) are normally determined by experiment or

recommended by wire manufacturer.



317

Remark:

In the current modelling, E and G are essentially employed to

relate the change of curvature and torsion with the bending

and twisting component of a single helical wire within a

single layer strand subjected to external axial load.

7.4.4	 Linearization

Costello and others suggested that geometrical non-linear

characteristics do not appear to have significant influence

to the linear load-extension behaviour; this mechanical

behaviour is referred to as weakly non-linear.

The main purpose of model linearization is to derive element

stiffnesses for individual wires, to allow assembly of

stiffnesses for the single layer strand and to calculate the

structural properties of a strand with respective termination

conditions.

To proceed model linearization, the second and the higher

order deformation terms, with respect to the axial

deformation of a strand, are ignored. The following gives the

linearized equations with respect to the axial deformations

of the strand.

7.4.4-1	 Linearized Internal Components

a.	 Bending Moment Acting on a Helical Wire

For a strand subjected to a tensile load, the bending moment



V' = B' ( ki- K' ) = B' AK'S	 s
(7.4-33)

V' = B' ( J
5 Es 

- j
6 

Ae )
s

(7.4-33)
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on a single helical wire can be expressed as functions of

change in curvature of the centroidal axis of the wire as:

By substituting the linearized equation 7.4-29 into equation

7.4-33 the bending moment V' can be expressed as a function

of the axial deformation of strand, as shown below:

where J
5
 and J

6
 are defined as element stiffness, given in

Appendix.

b.	 Twisting Moment Acting on a Helical Wire

For a strand subjected to an axial load, the twisting moment

on a single helical wire can be written as a function of

change in torsion on the centroidal axis of that wire:

W = T
s 

( i - t ) = T
s 

At
	

(7.4-35)

By substituting the linearized equation 7.4-30 into equation

7.4-35. The twisting moment W can be expressed as a function

of the axial deformation of strand:

W = Ts ( J
7 

Es 
- J

8
 468 )
	

(7.4-36)

where J
7
 and J

8
 are also defined as element stiffness, as

given in Appendix.
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c. Tensile Force Acting on a Helical Wire

The tensile component along the single helical wire can

reasonably be approximated by:

T h - n fa h E E
w
	 (7.4-37)

again, by substituting the linearized equation 7.4-27 into

equation 7.4-37, the tensile force equation can be written as

functions of axial deformations of a strand:

T
h 

= n a 2
h
 E ( J

l 
E
s 
+ J

2
 O)
	

(7.4-38)

where J
1
 and J

2
 are given in Appendix.

d. Shearing Force Acting on a Helical Wire

By substituting the linearized equations 7.4-34 and 7.4-35

into equation 7.4-11 the shear force along the helical wire

can also be expressed as functions of axial deformation of a

strand.

N' = J
17 

E
s 

4- J
18 

Ae
	

(7.4-39)

e. Radial Force Acting on a Helical Wire

By substituting the linearized equations 7.4-38 and 7.4-39

into equation 7.4-12, the radial force on a helical wire can

be written in term of axial deformation of strand:

X = J
19 

E 
5 
+ J	 AO

20
(7.4-40)
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h.	 Helical Wires of a Strand

1. Stress and strain along the helical wire resulting from

tension alone are given by:

E
w
 = j

1 Es 
+ j

2 
ta9
	

(7.4-45)

a = E E
	

(7.4-46)

2. Stress and strain along the helical wire resulting from

bending alone are given by:

ahy j5	 ahy j6

cwb = 	  E 
s 
+ 	  Also	 (7.4-47)

1 + K' ahy	 1 + X' ahy

0
wb 

= E E
wb
	 (7.4-48)

3. Stress and strain along helical wire resulting from

twisting alone are given by:

/
w
 = ( J

7 
E

s
 -I- j AO )	 (7.4-49)

rw = G 1w	
(7.4-50)

7.4.5	 Structural Equilibrium and Properties of Single

Layer Strand

In practice, rope users are interested finding out how a new
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rope will behave under tension with various termination

conditions. The current section considers how the structural

equilibrium and properties are related with the deformation

of the single layer strand. The section is organized as

follows:

a. Structural equilibrium of single layer strand.

b. Structural properties corresponding to termination

conditions.

7.4.5-1	 Linearized Structural Equilibrium of a Single Layer

Strand

From the preceding linearized approach, general equations

which represent the structural equilibrium of a single layer

strand subjected to axial loads with four termination

conditions can be obtained. This is done by substituting

linearized internal component equations, presented in

sub-section 7.4.4-1, into external equilibrium equations, as

presented in sub-section 7.4.1-2 (ie equations 7.4-15 and

7.4-16). The linearized structural equilibrium equations

expressed in a matrix form (ie equation 7.4-17), can also be

,
expressed as functions of structural deformations (ie E

s 
and

Ae) of single layer strand.

7.4.5-2	 Structural Response and Properties of Single Layer

Strand

One of the main purposes of the stiffness matrix approach is



(7.4-54)
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to develop a comprehensive mathematical model which can be

applied to evaluate the structural properties of a single

layer strand subjected to combined load.

a.	 Strand With Free Ends

In this case, there is no torsional load applied to the

terminations and tension is the only external load applied to

the strand terminations. Therefore

M = 0	 (7.4-51)

From equation 7.4-17, the amount of unwinding rotation per

lay length of the strand resulting from tensile load is given

by

AO = - K
3 

E
s 

/ K
4
	(7.4-52)

The effective tensile modulus of the strand is defined as

E
eff 

= F/E
s
	 (7.4-53)

and is, therefore, given by

E	 =
eff 

K
1 K4	K2 K 3

K4

b.	 Strand With Fixed Ends

In this case, the rotational displacement of terminations AO

is constrained and tension is the only axial load allowed.
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Therefore,

AO = 0	 (7.4.55)

assuming that the torque developed at the terminations is

linearly proportional to the applied tension, the torque

generated at the terminations as a result of restriction of

rotations at the termination, is given by

K
3	(7.4.56)M =	 • F

K 1

The effective tensile modulus, as defined previously, is

given by

Eeff = K 1
	(7.4.57)

C.	 Strand Subjected to Twisting Alone

In this case, torsion is the only load applied to the

terminations. Therefore,

F = 0	 (7.5-58)

The shortening effect due to twisting of the strand induces a

compressive strain to the core wire. This is given by

= - 
K
2 • AO	 (7.4-59)

K 1

The effective torsional rigidity is defined as

G
eff 

= M / AO
	

(7.4-60)



K
1 K 4

 - K
2 K 3

K 1

G
eff 

- (7.4-61)

s
Eeff 

= F / E
s

(7.4-62)
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and is, therefore, given by

d.	 Strand Subject to Combined Axial Loads

In this case, both axial tensile and twisting loads are

applied to the terminations of the strand. The equilibrium

equations which applied to approximate this situation has

been given by 7.4-17.

Again the effective tensile modulus and the effective

torsional rigidity are defined as

and

G
eff 

= m / AO
s
	(7.4-63)

where

t
E
s 

= E
s (fixed) 

+ E
s (twisting alone)

Aes = Ae
(twisting alone) + Ae(fixed)

(7.4-64)

(7.4.65)

where

Cis negative due to contraction.
s (twisting alone)

Ae	 is negative due to unwinding rotation.
(fixed)
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e.	 Effective Poisson's Ratio of Single Layer Strand

At this point, it may be useful to evaluate the ratio of the

change in strand diameter to the original diameter of the

unloaded strand. This ratio, according to the literature 3.19

defined as an effective Poisson's ratio, is given by:

R - R
v = 	 	 ( 7.4-66)
s

where

R = a
h
 + 2 a

c	(7.4-67)

(7.4.68)R = 17).11 + 2 a
c

To evaluate the effective Poisson's ratio in terms of the

strand structural displacement (ie axial displacement), the

essential parameters which are needed, are the final radii of

core wire and helical wire corresponding to the deformation

of strand subjected to axial loads. The expressions used to

determine the final radii are:

_

C = a c ( 1 - v E
s 

)
	

(7.4-69)

-
a
h
 = a

h
 ( 1 - v E

w 
)	 (7.4-70)

By substituting equations 7.4-69 and 7.4-70 into equation

7.4-66 the effective Poisson's ratio of the straight single

layer strand subjected to axial loads in terms of strand

structural deformation is given by:

R



327

I)
s 

.7. j
21 

E
s 

+3 
2 2 

AO
	

(7.4-71)

where J 21 
and J

22 
are defined geometrical parameters given in

Appendix.
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7.5	 OTHER CONSIDERATIONS

This section presents a discussion on another method for

evaluating bending and twisting stress.

a.	 Discussion on The Bending of Large Diameter Helical Wire

21
The approximate theory, as presented in Love's treatise 3.

21,

203.1 -
various references 

3.	
and equations 7.4-5 & 7.4-6 of

this chapter, are applied to evaluate approximate bending and

twisting components along a slender single helical wire. This

is considered to be a reasonably closed form method, provided

that the wire diameter is small and the helix angle is large,

so that the wire diameter is very small compared with the

radius of curvature. In fact, the stress distribution as the

1
result of bending is almost linear. Reference 4.also

suggests that the radius of curvature has to be large

compared with the wire diameter when using this approximate

method; for instance p
k

� 50 d
h
 and helix angle around 85

degrees or above. On the other hand, when the diameter of a

helical wire is of the same order of the radius of curvature,

the distribution of bending stress across the wire section is

non-linear as shown in Figure 7.5-1 a. A mathematical

treatment of the migration of the neutral axis, for large

diameter helical wires with a relatively small helix angle,

is outline below:

If the radius of the helical wire is of the same order as the

radius of curvature, the bending strain across the section of
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vR" -..-----
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z	 z

Initial Wire
	

Final Wire Section
Section	 ( Bent)

a. Stress Distribution Due To

Migration Of Neutral Axis

b. Twisting Model Of Helical Wire

Figure 7•5-1

Bending And Twisting On Helical Wire

M
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V' = j c
b ahydAh (7.5-3)

330

the large diameter wire is given by:

E
wb 

-
ahy ( 1/k' - 1/117')

(7.5-1)
1/k' (l/k . + ahy)

and the bending stress is given by

cr
b
 = E E

wb
	 (7.5-2)

For equilibrium of internal and external bending moments, the

general equation is given by

By substituting equations 7.5-1 and 7.5-2 into equation

7.5-3, the simplified bending moment is then given by

V' -
Nh Ah E ( 1/k' - 1/17C ) (7.5-4)

1/k'

R'	 1	 12	 4
Nh = --- (	 ET( ah /R . )	 + -- ( ah / R . )	 + ...)

2	 2

(7.5-5)

For a circular section,

R' = 1 / K'	 (7.5-6)



331

see Figure 7.5-1, At this stage, one can predict the stress

distribution across a section of helical wire resulting from

bending.

b.	 Twisting Moment on The Helical Wire (Alternative

Method):

From the geometrical point of view, the torsion can be

defined as

Aa)5
r = lim
	

(7.5-7)

A -9O ASw

Therefore, for a single layer strand subjected to axial load,

the change in rotation of a helical wire, is given by

A ( AO ) = ASw ( T Ew -I- AT )	 ( 7.5-8)

By using the flexural twisting theory, it can be shown that

the twisting moment on the helical wire is given by

G J
h A ( AO )

W =	 (7.5-9)

ASw

At this point, one can also predict the approximate twisting

stress across the section a helical wire resulting from

twisting moment. See Figure 7.5-1 b for cross reference

purpose.
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tc.	 Theoretical	 Analysis	 of	 Stress	 Due	 To	 Inernal

Components

Consider a helical wire subjected to internal components as

illustrated in Figure 7.5-2. The following stress components

on an element of material at the surface points A, B and C

can be derived.

at A
1	 1

2
= —a ± —	 { a	 + 4 T

2 
}
1/2

al' (Y2
2 

XA	
2	

XA	 xz

at B:

a, = -a 2 =
1	

T
XZ

at C:
1	 1

2= — a	 ± — ( a	 4- 4 r2 } 1/2al' c2 	 XC
2	

XC	 xz
2

(7.5-10)

(7.5-11)

(7.5-12)

where

4T 32	 V'
a

XA 4' (7.5-13).n

ncf TEd3

r	 .
xz

16 W / nd 3
(7.5-14)

4T 32V'
a	 . + (7.5-15)

itc? itc{3XC

The maximum shear stress is given by
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I 
1(	 y/b ) dA

A'

N'
(7.5-17)
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r
max 

= ( 0
1
 - cr

2
 ) / 2
	

(7.5-16)

d.	 Shear Stress Distribution Across The Helical Wire

Section

The presence of shear force "N'" indicates that there must be

shear stress on the transverse planes in the helical wire. It

is not possible to use the conditions of geometry of

deformation and the stress-strain relationships except in the

development of an exact solution. However, from the

assumptions about the validity of the bending stress

distribution, it is possible to estimate the transverse and

longitudinal shear stress distributions in the helical wire

by using only the condition of equilibrium. Figure 7.5-3

shows the geometry of helical wire section from which the

shear stress distribution is estimated. The general equation

is given by:

dM 1 rr y dA

A'

(7.5-17)yx
dS bI	 J

since dM/dS = N' (7.5-18)

Thus, equation

,

7.5-17 can be rewritten as
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, a2N h
- 	  ( cos 20 - 1 )

41
(7.5-18)
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when M is the bending moment exerted on the helical wire.

7.6 Introduction to Non-linearized Model of Single Layer

Strand

For a single layer strand subjected to an axial load, a

linearized model with four known termination conditions has

been developed in the preceding section. The current section

will focus on the derivation of a non-linear geometrical

model. The known structural deformations of strand which

allow one to consider the higher order derivatives found the

deformation of helical wire are bounded by the termination

conditions. They are

a. Fixed ends	 ie, Ae = o

b. Combined loads	 ie, both E
s 

and Ae are known

In order to highlight the nature of the solution, the

organization of this section is slightly different from that

of the previous section:

7.6-1	 Geometry of Deformation

a.	 Deformation of Single Helical Wire



(7.6-1)

ee
* 

= (7.6-2)

Li ( a E +a
h w

E )c s 	 *
= AR

R

AR

R
(7.6-3)

S 2 = ( 1 + E
w 

)
2

w
(7.6-4)
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To proceed to the non-linear modelling for a single layer

strand it is important to be able to relate the tensile

strain along the helical wire with the known deformation of

strand within limit of proportion. The relationships between

strand and helical wire deformations have been illustrated in

Figure 7.4-4, and the principal expressions required to solve

the extension of a helical wire in terms of tensile strain,

contractions and rotation are given by:

The radial contraction of helical radius is given by

From the triangle of the developed helix, as shown is Figure

7.4-4 one can obtain the following relationships

= P
2 ( 1 + E )

2 + ( 2 i+ tie ) 2 ( R + AR )
2

L	 s

By substituting equations 7.6-1,	 7.6-2 and 7.6-3 into

equation equation 7.6-4, a quadratic equation can be found
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and is given by:

A E
2 +BE + C = 0

	
(7.6-5)

w	 w

where A, B and C are coefficients and have been given in

Appendix.

From equation 7.6-5, one can evaluate the tensile strain on a

helical wire within a strand. It can also be shown that the

helical wire tensile strain is a quadratic function.

b.	 Deformed Helical Geometry

At this point, it is essential to evaluate the deformed

geometry of a helical wire, so that the component forces and

moments exerted along the helical wire can be related with

the deformed geometry which is described by:

sin a ( 1 + E 
s	

)

sin & =	 (7.6-6)
( 1 + E	 )

w

2n ( 1 + AO * ) FE sin a-
cos a =

P	 ( 1 + s )
2

L 

(7.6-7)

cos 2(7(

Ili= 	 	 (7.6-8)
R



-2T
h 

= ( n a
h
 E ) E

w
(7.6-12)
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sin & cos (D7
(7.6-9)

R

7.6-2	 Internal Equilibrium

The internal component of forces and moments on a wire can be

evaluated in respect to the deformed geometry of wires in the

strand. The rod theory is applied to evaluate the internal

components along the helical wire.

a.	 Tensile force and twisting moment on a core wire are

given by.

-
T
c 

= ( n a 2
c
 E ) E

s
(7.6-10)

G J
c 

At9
W	 =	 (7.6-11)

C

PL

b. Tensile force, bending moment, twisting moment, shear

force and radial force along the helical wire are given

by

V' = E i
h
 AK' (7.6-13)
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W = G J
h
 Lir	 (7.6-14)

N' = W K' - V' T	 (7.6-15)

X = N' T - T
h
 K'	 (7.6-16)

7.6-3	 External Equilibrium of Strand

At the final stage, the internal components of forces and

moments on each of the wires will be orientated and summed up

to the direction of the axial load applied to the

terminations of the strand. The equations of external

equilibrium are given by:

F = m ( T
h
 sin a + N' cos & ) + T

c
	(7.6-17)

M = m ( W sin & + V' cos & + T
h 

g. cos a - N' R sin a )

+ W
c
	(7.6-18)

7.6-4	 Other Considerations

a.	 Classical Linear Theory:

If wires are considered as being incompressible, it should be

able to express the deformed cross sectional area as

functions of initial sectional area of wire, helix angle and

material properties. The deformed cross sectional area of

wire is given by:
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A = A
o
 ( 1 - ( 1) / E ) ah }

1/2	
(7.6-19)

b. Logarithmic Strain Approach:

A Logarithmic strain approach appears to have been suggested

for one dimensional problems. It would also be interesting to

modify the tensile strain into logarithmic strain, the

equations being given by:

E' = Ln ( 1 + E
s )
	 (7.6-20)

s

E ' = Ln ( 1 + Ew 
)	 ( 7.6-21)

w

c. Full Inter-wire Grasp Condition (ie infinite friction)

For a strand subjected to axial load with infinite friction,

the tensile strain along the centroidal axis of a single

helical wire can be expressed as:

d§ - dS
E =	

w	 w
	 (7.22)

W	 dSw

where

szi
w
	 is the final arc length of the centroidal axis of a

single helical wire.

dS
w
	is the initial arc length of the centroidal axis of a

single helical wire.

However, the full inter-wire grasp condition is outside the
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'
scope of this thesis. The details of derivations will not be

discussed.

In view of the complexity of the problem, a micro-computer

software has been written for the purpose of evaluating the

results from both linear and non-linear mathematical models

for the single layer strand. Sample results are given in the

next section of this chapter.
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7.7	 DISCUSSION AND CONCLUSION

7.7-1	 Computation for Single Layer Strands

A PC type of micro-computer package has been developed by the

author for the purpose of evaluating stresses, strains,

structural properties of the single layer strand, internal

forces and moments on wires. A diagram representing the

general structure of this computer package for the single

layer strand is illustrated in block diagram 7.7-1. This

package solves the mechanical problem of single layer

strands, with or without a core wire and is valid within the

static linear elastic regime.

7.7-2	 Results and Discussion

a.	 Comparison of Results

For a strand subjected to an axial load, a number of rope

investigators have described the difficulties arise from

measuring the component strains on the surface of individual

wires by using the strain gauging method. However, for

measuring the global mechanical behaviours of a 6/1 strand,

,
the extensometer approach has a better proven reliability.

Experimental results from Martin and Packards'
64
 for steel

strand and those from Machida's
4.1

 for epoxy strand under

fixed end conditions have been compared with the present

author's model for single layer strand. Good agreement is

obtained.
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MICRO-COMPUTER PACKAGE STRUCTURE FOR SINGLE LAYER STRAND

HELP AND INPUT COMPUTATION PLOT RESULTS
INSTRUCTIONS DATA & PRINT RESULTS & SCREEN DUMP

	)
BACK TO SUB-MENU

BLOCK DIAGRAM 7.7-1

STRUCTURE DIAGRAM OF SINGLE LAYER STRAND MODELLING

The comparisons are presented in Figure 7.7.1, 7.7.2, and

7.7.4. Results obtained from the author's free end model are

also compared with those experimental results from Machida's
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for epoxy strand under same termination condition, Figure

7.7.5. In addition to these, Figure 7.7.3 illustrates the

author's own comparison between the linearized and

non-linearized models for 6/1 strand. The two results appear

to be very close to each other. This is because a very large

helix angle (ie a > 80 degrees) is chosen for the single

helical wires. The linear tensile component is more dominant

than the non-linear components contributed from the change in

helix geometry.

The author's analytical model appears to be more accurate

than Machida's model, Figure 7.7.4 and 7.7.5. This is because

Machida's model ignored the shear component exerted on six

single helical wires.

b.	 Discussion of Sample Results

Although the mathematical model and the computer package for

the single layer strand were developed for solving general

single layer strand problems, rotational rope carrying

tensile load has to be equipped with fixed terminations for

safety purpose. For this reason, sample results given in this

section focus on 6/1 strand with fixed terminations. It is

also noted that the helix angle is the dominant parameter

with respect to change of helix geometry, the change of

internal components along the single helical wire in the

single layer strand subjected to external tensile load are,

therefore, influenced by the helix angle. Figure 7.7.6

illustrates the influence of helix angle, as an example.
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Numerical analysis of a 6/1 strand with fixed ends within

linear elastic regime is presented below:

1.	 Analysis Based on Steel Strand

The material properties used in the analysis are as specified

in Martin and Parker's report
6.4 and the diameter of helical

wire is retained. The diameter of the core wire is varied by

considering the admissible "R/r" ratio to the helical wires

(for details, see Chapter Six). The helix angle is varied

from 60 degrees to 85 degrees. Results are presented in the

following figures:

Figure 7.7.7 (a) shows how the tensile load shared by the

core wire depends on the applied tensile load and helix

angle. This figure shows that the share of tensile load

carried by the core wire increases in inverse proportion to

the helix angle.

Figure 7.7.7 (b) shows the resisting torque exerted at the

terminations as functions of the tensile load and helix

angle. This figure also shows that the resisting torque is

inversely related to the helix angle chosen for the helical

wire.	
.,

Figure 7.7.7 (c), (d), (e), (f) and (g) shows the variation

of applied tensile load and helix angle with the internal

component forces and moments on the helical wire. These

figures show that all internal component forces and moments
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An Example Which Illustrates The Influence Of

Helix Angle.

Diagram a. Shows Components Exerted Along
Helical Wire
Helix Angle <90.
	

Helix Angle= 90'

a	 b

Figure 7•7-6

Parallel Wire Strand & Twisted Wire

Strand Model
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increase in inverse proportion to the helix angle, with the

exception that the tensile component (see Figure 7.7.7 (f))

on single helical wire increases in proportion. By comparing

these figures, one should note that the variation of tensile

force exerted on the helical wire, as the result of variation

of helix angle, is comparatively small compared to the

variation of other components exerted on the same helical

wire.

Figure 7.7.7 (h) shows the variation of strand strain and

tensile strain as a function of helix angle. This figure

shows the same properties as that in Figure 7.7.7 (f).

2.	 Analysis Based on Epoxy Strand

The material properties used in the following analysis are

based on those specified in Machida's paper
4.1

 . The

admissible "R/r" ratio (see chapter six) is ignored so that

the diameters of helical and core wire are kept unchanged as

the helix angle is varied. In other words, the separation the

core wire from the helical wires, as the result of reducing

the helix angle, is ignored. In practical design, one should

avoid this "separation". However, an attempt has been made to

illustrate that the change in helical parameters appears to

have non-linear characteristics with the variation of tensile

load and helix angle.

Figure 7.7.8 (a) shows the change in helix angle vs the

variation of helix angle and applied tensile load.
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Figure 7.7.8 (b) shows the change in curvature vs the

variation of helix angle and applied load to the strand.

•Figure 7.7.8 (c) shows the change in torsion of the helical

wire vs the variation of helix angle and applied load to the

strand. The change in torsion is increased with respect to

the helix angle and reaches a maximum at about 68 degrees

Figure 7.7.8 (d) shows the change in effective Poisson's

ratio of the strand vs the variation of helix angle and

applied load to the strand.

3.	 Sample Stress Components on Core and Helical Wire

Sample stress components are presented in this sub-section

for a steel strand with 80 degrees helix angle . The material

properties are the same as those specified in Martin and

Parker's report. Results are presented in the following

figures.

Figure 7.7.9 (a) shows the variation of bending and twisting

stress exerted in the binormal and tangent directions of the

helical wire vs the applied tensile load applied to the

strand. The negative bending stress in the binormal direction

indicates that the surface of the helical wire in that

direction is under compression.

Figure 7.7.9 (b) shows the variation of tensile stress on the

core and helical wire vs the tensile load applied to the
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strand. By increasing the helix angle, one should be able to

ensure that the tensile stress acting on the core wire is

close to the order of those on the helical wires. In

practice, one should design strands in which each wire

carries same order of tensile load to avoid unbalancing

tensile load carried by the core wire.

Figure 7.7.9 (c) shows the variation of tensile load carried

on the core wire, helical wire and helical wires in a 6/1

strand.

7.7-3	 Conclusions

These conclusions are based on the static analysis of a 6/1

strand subjected to axial load with four termination

conditions,as described in the preceding section.

1. A single layer strand with fixed ends is stiffer

than that with free ends. Therefore, the strand

with fixed ends gives more control in maneuvering

applications.

2. A single layer strand with large helix angle

helical wires is stiffer than that with small helix

angle.

3.	 For helix angle within the practical range (60 to
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90 degrees) if the helix angle of the helical wires

is being reduced all internal component forces and

moments on the helical wires will increase

correspondingly with the exception of the tensile

component. Hence, the mechanical behaviour and

fatigue performance of helical wire will be

affected by the helix angle of the helical wire.

4. A decrease in helix angle does not have a

significant influence on the tensile load shared by

the helical wires.

5. The bending and twisting components are sensitive

to the change in helix angle. Because of the

geometrical properties of helical wire.

6. For a 6/1 strand, the tensile load shared by the

core wire is of similar order of that carried by

the helical wire.

7. For helical wires with large helix angle ( a > 80

degrees ), most internal component forces and

moments appeared to be less significant with the

exception of the tensile component on the helical

wire.
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CHAPTER EIGHT

STRUCTURAL MODELLING OF

MULTI-LAYER STRANDS
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NOMENCLATURE

a
c
	Radius of core wire

a f
	Radius of filler wire

a.	 Radius of helical wire in ith layer, i = 2 and 3i

E Young Modulus

F	 Tensile force exerted on the multi-layer strand

F
c
	Tensile force exerted on the core wire of the

strand

G Modulus of rigidity

H .	 Defined parameters, i = 1, 2, 3, .i

I.	 Defined parameters, i =1, 2, 3, .i
*

I. Second moment of area of helical wire in jth layer
J

J
c
	Polar moment of area of core wire

J. Defined parameters, i = 1, 2, 3, .i
*

J.	 Polar moment of area of helical wire in jth layer
J

K.	 Stiffness constants for multi-layer strand, i = 1,i

2, 3 and 4

K'	 Curvature of filler wire
f

K!	 Curvature of helical wire in ith layeri

M	 Twisting moment applied to the strand terminations

M
c
	Twisting moment exerted on the core wire

m
f
	Number of filler wire

m.	 Number of helical wires in ith layer of the strandi

N:	 Shearing force on the helical wire in ith layer ofi

a multi-layer strand

P.	 Cyclic length of a helical wire in ith layer of ai
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multi-layer strand

Helical radius of filler wire

Helical radius of any helical wire in ith layer

within a multi-layer strand

Tensile force exerted on any helical wire in ith

layer

Bending moment exerted on any helical wire in ith

layer

Twisting moment exerted on any helical wire in ith

layer

Radius force exerted on any helical wire in ith

layer

Helix angle of any helical wire in ith layer

Helix angle of filler wire

Torsion of filler wire

Torsion of any helical wire in ith layer

Strand strain or tensile strain of core wire of a

multi-layer strand

Tensile strain on any helical wire in ith layer

Poisson's ratio of wire

Angle of twist of a multi-layer strand per lay

length
,

Ae.	 Angle of twist of any helical wire in ith layerI
Ai-.	 Change in helical radius of any helical wire in ith1

layer

AK:	 Change in curvature of any helical wire in ith1

layer
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At.	 Change in torsion of any helical wire in ith layer
1

Aa.	 Change in helix angle of any helical wire in ith
1

layer

_
a	 Final helix angle of any helical wire in ith layer

i

k:	 Final curvature of any helical wire in ith layer
1

r .	 Final torsion of any helical wire in ith layer
1

SUBSCRIPTS

S	 Strand

f	 Filler wire

i	 ith layer of strand

C	 Core wire
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8.1	 INTRODUCTION TO LINEARIZED THEORY OF MULTI-LAYER STRAND

Multi-layered strands are constructed either in form of

"cross lay" or in form of "equal lay". Generally speaking,

"equal lay" strands are designed to prevent cross cutting and

secondary bending of wires at the contact locations. As a

result, "equal lay" strands are expected to have longer life

than "cross lay" strands. However, "equal lay" strands are

less flexible than "cross lay" strands. In addition, equal

lay strands give rise to more rotation.

In practice, multi-layered strands are designed to carry

static and dynamic load; flexibility, fatigue performance and

other properties are considered to be secondary, depending

upon the application and service conditions. In the present

chapter, both "equal lay" and "cross lay" are considered, but

in view of the geometric complexity of strand sections, only

three typical multi-layer strands geometries studied, namely:

a. 9/9/1 equal lay strand

b. 12/6F+6/1 equal lay strand with filler wire

c. 12/6/1 cross lay strand

,

In this analysis, the deformation geometry of the single

helical wire is linearized by ignoring the second and higher

order deformation terms with respect to the structural

displacements of the strand, (in other words, the second and

higher order differential terms are ignored). Consequently,
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four termination conditions, as used in the linearized single

layer strand model, can also be used in these models.

Internal forces, moments, stresses, strains and the

structural properties of the strands are considered in these

linearized models under monotonic loading to be within the

proportional limit of the strand. The factors which will

influence the present analysis, are listed below.

a.	 Termination Conditions

The structural properties of multi-layer strands are

influenced by the termination conditionsn namely,

1. Fixed ends

2. Free ends

3. Moment alone

4. Combined loads (ie tension and twisting)

b.	 Wire Material:

The wire material which affects the constitutive

relationships in this analysis, is cold drawn rope

steel. It is assumed to be homogeneous, isotropic and

linearly elastic.
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8.2	 STRUCTURE OF THE APPROACH TO THE MATHEMATICAL

MODELLING OF MULTI-LAYER STRAND

INTERNAL

EQUILIBRIUM

DISPLACEMENTS
AND

COMPATIBILITY

STRUCTURAL
EQUILIBRIUM
OF STRAND

STRUCTURAL
BEHAVIOURS

BLOCK DIAGRAM 8.2-1

STRUCTURAL MODELLING OF MULTI-LAYER STRAND
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8.3	 BASIC ANALYSIS AND ASSUMPTIONS

a.	 Basic Analysis

In this analysis, internal components of forces and moments

on each wire are formulated based on the rod theory. Tensile

strains on a core wire and helical wires in each layer are

derived from the development of a deformed axis of a single

helical wire as shown in Chapter 7 Figure 7.4-4. After

established the equations of deformation. The linearied

change in curvature and torsion can then be calculated by

ignoring the second and the higher order derivative terms

with respect to the structural displacements of the strand.

The linearized stresses on the helical wire can be related

with the linearized strains by means of the constitutive

relationships. Finally, individual components of forces and

moments on each of the wires can be resolved to and summed to

the global direction of the strand. The principal procedures

require to generate models for the multi-layer strands, are

summarized below:

1. Establish equation(s) of internal equilibrium.

2. Relate internal and external equilibrium.

3. Establish relationship between deformation of

helical wire and structural displacements of

multi-layer strands.

4. Apply classical constitutive relationship to

relate	 load-deformation	 and	 stress-strain

along the wire.
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b.	 Assumptions

The assumptions made in this chapter are similar to those

made in Chapter Seven. Again, mechanical interactions are

ignored, and only mechanical responses of wire and structural

responses of strands are considered. The strands are

considered to be loaded monotonically within the limit of

proportionality.

8.4	 LINEARIZED MULTI-LAYER STRANDS MODEL

In this section, the modelling of multi-layer strands is

divided into three sub-sections, namely

a. External and internal equilibrium in strands

b. Deformation of single helical wires

c. Structural properties and applications

8.4-1	 External and Internal Equilibrium

a.	 External Equilibrium

By ignoring the influence of mechanical	 interactions

resulting from the small helix angle of single helical wires

in	 each	 layer,	 the	 static	 equilibrium	 (ie	 external

equilibrium) of the multi-layer strands is given by :



cos Ex. ] } + M
c1

( 8 .6)
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For 9/9/1 Multi-La yer Strands (Equal Lay)

3
F :=	 rn. (T	 sin n3. + N: cos -6.) 1 + F

c
	(8.1).

1	 1	 1	 1
i=2

3
M =	 In. [ ( W. -N:	 sin Ec. + ( V:	 + T

i r i
)

1	 1	 1	 1	 1
i=2

cos a I.	 I +
	

(8.2)

For 12/6F+6/1 Multi-Layer Strand With Filler Wires

(Equal Lay Construction)

4
F =	 In. (T. Sin	 -f N: cos (3.) I + F	 (8.3)

1	 1	 1	 1	 1	 c
i=2

4
M = E	 ( m.. [ ( W. - N:	 sin EE. + ( V:	 + T1	 1	 1	 1	 1	 1 	 T .

	)r i
i=2

cos Et. ] } + M
c1

For 12/6/1 Multi-Layer Strand (Cross Lay)

3
F = E	 {m (T

i
 sin 43 + N' cos a

i
) } + F

c
i=2

(8.4)

(8. 5)

3
".(m. [±(	 sin E.	 ( V:	 + T. i).1	 1 1	 1	 1	 1 1

i=2	 1
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K
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NB: The "±" sign in equation (8.6) relates to the direction

'of lay for the helical wire. The "+" sign corresponds to the

conventional
	

right	 hand	 lay,	 whereas,	 the
	 It	 sign

corresponds to the left hand lay.

Using the stiffness approach, external equilibrium can be

expressed through a general stiffness matrix given by

where the stiffness parameters for each of the strands are

given in the Appendix.

b.	 Internal Equilibrium

The approximate rod theory given by Love is again applied to

evaluate the internal components along the single helical

wire in each layer. Equations which represent the internal

equilibrium of single helical wire are similar to the

internal equilibrium equations for single helical wire

presented in Chapter Seven. For completeness, the internal

equilibrium equations are listed below.
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1. For Core Wire Of The Strand

F
c 

= n a 2
c 
E E

s
	 (8.8)

M
c 

= G J
c
 Ao

s
 /P

3	(8.9)

2. For Helical Wire In Each Layer Of The Strand

2
T. = n a. E E.1	 1	 1

*
V: = AK: E I.

1	 1	 1

*
W. = AT. G J.1	 1	 1

	N: = W. K:	 - V: T.1	 1	 1	 1	 1

(8.12)

(8.13)

	

X. = N: T. - T. K.	 (8.14)1	 1	 1	 1	 1

By substituting the corresponding linearized geometrical

parameters obtained from the deformation geometry of the

helix into above equations, the above internal equilibrium

equations can be expressed as functions of the structural

displacements (ie Ao
s
 and E

s
) of the strand.

,

By	 substituting	 the	 linearized	 internal	 equilibrium

equations, for each layer of the strands, into structural

e quilibrium equations 8.1, 8.2, 8.3, 8.4, 8.5 and 8.6.

stiffness matrices for each of the strands, similar to

equation 8.7, can be obtained.



tan a.
1

Aa.
E	 = E. +	

1
s	 1 (8.15)
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8.4-2	 Deformation Geometry

In this section, the "development technique" is again applied

to evaluate the deformation of helical wire in each layer.

However, the constructional and flattening displacements are

ignored. Hence, the deformations of helical wires with

respect to the structural displacements are given by.

a.	 Deformations Of Single Helical Wire In Each Layers

	Ar.	 AO.
1

E =	
i

+ ---	 + ( tan a. + cot a. ) Aa.S	 1	 1	 1
	r.	 It1

	

Ar.	 O.
1

E. =	
1

+ - + &X. tan a.1	 1	 1
	r.	 2n

1

(8.16)

(8.17)

	

Ar.	 AO
.	 i2	 1	 2 

E. = E sin a 
1
. +	 cos a. 4-	 cos a.a.

S1 	 r.	 1	 1

	

1	 2n

(8.18)

The above equations of deformation can be expressed in terms

of structural displacements of the strand. The AO. and Ar..1	 1

are the unknowns. They can be evaluated by:



a
2cos
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For Equal Lay Multi-Layer Strands

By ignoring the second and the higher order differential

terms in the expression of R/r ratio, the change of helical

radius for each layer of the helical wire is given by

	

Ar.	 t an 2 ( 1/2 - n/m . ) Aai1 
= - V E.

	

r.	 1

	

I	 tan a. (sin
2
a + tan2 (n/2-7E/m.) )
i1 	 i

(8.19)

For 12/6F+6/1 strand. theAr f
 /r

f
 of filler wire is given by

	

Ar
f 	+	

2
V ( rf - a2 )	 cos n/m 2

 cot
2 n/m

2
_ 	  

	r f 	2
	 . 2

	

a 2 	rf sin a2

(8.20)

b.	 For Cross Lay Multi-layers Strand

For cross lay construction, one can either use the

approximate equation 8.19 or use the classical strength of
,

materials method to evaluate the following equations

For first layer, Ar/r is given by

Ar
2
	- v ( a l E

s 
+a

2 
E
2 )

-
r 2	r2

(8.21)



Ao	 P.

	

A@,	 =	
s
	

1
	i	 P

S
(8.23)
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For second layer, Ar/r is given by

	

Ar
3	- 0 ( a E + 2 a 2 

E
2 
+ a

3 
E

3 )is.7.
	r

3	r 3

(8.22)

Finally, the angle of twist "AO,"
1

.th
for i layer per lay

length can be related to the angle of twist "tie"	 of thes

strand per lay length by using the similar triangle method

developed from the development of the cylindrical helix. This

is given by

At this point, one should have sufficient known parameters to

solve equations 8.15 to 8.18. Hence, the linearized

geometrical changes of the single helical wire can be

evaluated; for instance, the geometrical changes of a 9/9/1

strand are given by

1.	 For first layer

E
2 

= I
1 

E
s 
+ 1 2 ees
	 (8.24)

,

Aa2 = 1 3 s	 4E + 1 AOs	 (8.25)

AK 2' ..-: 1 5 sE + 1
6
 Ae

s
	(8.26)



Ar
2
 = I E + I

8
 Ae

7 s 	s
(8.27)
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2.	 Similarly, for second layer

E
3 
=j E +j AO	 (8.28)
is	 2	 s

Aa
3
 = J

3 
E
s 

+ J
4
 Ae

s
	(8.29)

AK' = J
5 

E
s 

+ J
6
 Ae 

s	
(8.30)

3

AT = j E + j ee	 (8.31)
3	 7s	 8	 s

ThedimensionlessgeometricalParameters"I." and "J.", in1	 1
this chapter, are derived based on three displacements

component; namely: extensional, rotational and radial

displacement. They are given in the Appendix. In Costello's

approach, only extensional and rotational displacements are

considered.

Since the procedures for evaluating the linearized

geometrical change of single helical wire for 12/6F+6/1 and

12/6/1 strands are similar to the procedure adopted for 9/9/1

strand, this work will not be duplicated in the current

sub-section. At this point, one should have sufficient

equations to evaluate the linearized internal components

along the single helical wire in each layer of the

multi-layer strand By substituting these linearized changes

of geometry into equations 8.10 to 8.14, the linearized

internal components along each of the single helical wires in

each layer can be evaluated in terms of the structural

displacements of multi-layer strand.
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8.5	 DISCUSSION AND CONCLUSION

8.5-1	 Computation For Multi-Layer Strands

In view of the complexity of the structural modelling for

multi-layers strands, a PC micro-computer package has been

developed by the author for the purpose of evaluating the

stresses, strains forces and moments on helical wires as well

as structural properties of the multi-layer strand (ie,

9/9/1, 12/6F+6/1 and 12/6/1 strands). A diagram representing

the general structure of this computer package for the

linearized multi-layer strand models is similar to that as

shown in Chapter seven, Figure 7.7-1.

8.5-2	 Results And Discussion

In this study (including construction of 9/9/1, 12/6F+6/1 and

12/6/1 multi-layer strand), material properties of steel wire

are being used throughout the computation. The admissible

"R/r" ratio for helical wires in each layer is also

considered. Methods used to evaluate the stresses and strains

on the helical wires of a multi-layer strand are similar to

those in dealing with the single layer strand. No contact

stresses, mechanical interactions and termination effects are

considered. Therefore, for a multi-layer strand constructed

with more than two layers, bigger discrepancies between the

present model and experiment would expect.

In this sample study, results for structural equilibrium vs

strand strain and the internal components exerted on the

helical wires with fixed end condition under linear elastic

regime are given. Discussion on the sample results of the
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multi-layer strand (ie, 9/9/1, 12/6F+6/1 and 12/6/1 strands)

are obtained from the author's own computer program.

The wire dimensions used for the numerical analysis of the

multi-layer strand are listed in the following tables:

TABLE 8.5-1

DIMENSION OF WIRES FOR 9/9/1 STRAND

LAYER DIAMETER OF WIRE HELIX ANGLE

CORE .424	 IN 90 DEGREES

1ST LAYER .216	 IN 80 DEGREES

2ND LAYER .424	 IN 80 DEGREES

TABLE 8.5-2

DIMENSION OF WIRES FOR 12/6F + 6/1 STRAND

LAYER DIAMETER OF WIRE HELIX ANGLE

CORE .2711437	 IN 90 DEGREES

1ST LAYER .265	 IN 80 DEGREES

FILLER .10976	 IN 80 DEGREES

2ND LAYER .265	 IN 80 DEGREES

Where :	 FILLER = Filler Wire

IN = Inch
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TABLE 8.5-3

DIMENSION OF WIRES FOR 12/6/1 STRAND

LAYER DIAMETER OF WIRE HELIX ANGLE

CORE .2711437	 IN 90 DEGREES

1ST LAYER .265	 IN 80 DEGREES

2ND LAYER .265	 IN 73.274 DEG.

a. Discussion of Sample Results on Strand

Figures 8.5-1 and 8.5-2 show the variation of applied tensile

load vs the strand strain. In this example, a 12/6F+6/1

strand appears to be stiffer than a 9/9/1 and a 12/6/1

strand. This is simply because more wires are used to

construct the 12/6F+6/1 strand.

b. Discussion of Internal Components on Helical Wire

For a 12/6/1 cross lay strand subjected to tensile load,

shear force, bending moment, twisting moment and radial force

acting on a helical wire in the outer layer appear to be

larger than those acting on the helical wire in the inner

layer. This is because the radius of curvature and torsion of

the helical wire in the outer layer are smaller than that of

the helical wire in the inner layer, Figure 8.5-3 and 8.5-7

(a), (b) and (d). However, the tensile force acting on the
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helical wires of the inner layer appears to be greater than

that acting on the helical wires of the outer layer. This is

because the helix angle of a helical wire in the inner layer

is larger than that of the helical wire in the outer layer.

For a 12/6F+6/1 equal lay strand, shear force, bending

moment, twisting moment and radial force acting on the

helical wire in the outer layer appear to be smaller than

that of the helical wire in the inner layer. This is because

the radius of curvature and torsion of the helical wire in

the outer layer are larger than that of the helical wire in

the inner layer, Figure 8.5-4 and 8.5-6 (a), (b) and (d). For

the same reason, the tensile force acting on the helical wire

in the outer layer appear to be larger than that of the

helical wire in the inner layer, Figure 8.5-6 (c).

From a practical point of view, it is useful to study the

component forces and moments acting on each layer of the

helical wire. Any significant unbalance load shared by a

layer of helical wires will weaken the fatigue performance of

that particular layer of helical wires.

8.5-3	 Conclusion

Since the construction of multi-layers strands are different,

the size of wires, number of wires per layer and the helix

angle chosen for the helical wire in each layer are

restricted by geometrical factors of helices. Two multi-layer
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strands with different constructions cannot have exactly the

same strand diameter. In this analysis, the author has

attempted to retain the same size of the helical wire by

adjusting the helix angle and the diameter of core wire.

Therefore, the conclusions are rather tentative:

1. The stiffness of the 12/6F+6/1 strand should be greater

than that of the 12/6/1 and the 9/9/1 strand.

2. The load acting on the helical wire in each layer of the

12/6/1 strand is even greater than that acting on the

helical wire in each layer of the 12/6F+6/1 strand.

3. The tensile force acting on the helical wire is less

sensitive than the other internal component forces and

moments to the change in helix angle.

Note: For helical wires with helix angle smaller than 60

degrees, the approximate admissible R/r ratio will diverge

from exact R/r ratio. The component forces and moments acting

on each layer of helical wires will increase significantly

with the exception of torsion and tension. The influence of

mechanical interaction will be more pronounced as the helix

angle is reduced to below 50 degrees. These models will

become less accurate. However, for multi-layer strands which

are designed with helix angle less than 60 degrees, are

considered as poor practice.
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CHAPTER NINE

STRUCTURAL MODELLING OF IWRC
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NOMENCLATURE

a	 Defined parameter

a c
 or a 11	 Radius of king wire

a ch 
or a

12	 Radius of helical wire in main core strand

(6/1)

a	 or a 21	 Radius of core wire in outer strand (6/1)sc

Radius of helical wire (double helix) in outerash a22 a23

strand (6/1)
a24 a25 a26

a 27

AA 1
 & AA2	Defined parameters

A s	Approximate bending stiffness of helical

strand

BB 1
 & BB 2	Defined parameters

b	 Defined parameter

CC 1
 & CC

2	Defined parameters

C	 Defined parameter

DD
1
 & DD

2	Defined parameters

d	 Defined parameter

EE 1
 & EE

2	Defined parameters

e	 Defined parameter

E	 Young modulus of wire material

FF
1
 & FF

2	Defined parameters

f	 Defined parameter

F
c	Tensile force acting on the main core strand

F
Dh	 Summation of component forces on double

helical wire to the global direction of the



J.
1

*
J.1

J	 &I
ch	 ch

J	 &I
sc	 sc

J
Dh 

& I
Dh

3E34

1WRC

F
R
	External	 tensile	 force	 applied	 to	 IWRC

terminations

F	 Summation of component forces on the core wiresc

of the outer strands

G Modulus of rigidity

*
G Ratio of cyclic length of main core strand to

the lay length of IWRC

GG
1
 & GG

2	Defined parameter

g Defined parameter

G.	 Element stiffness of helical wire in main core1

strand, i = 1, 2, 3, .

HH
1
 & HH

2	Defined parameters

h Defined parameter

II
1 & 11 2	Defined parameters

i	 Defined parameter

Element stiffness of core wire in outer

strand, i = 1, 2, 3, .

Element stiffness of helical wire in outer

strand, i = 1, 2, 3, .

Element stiffness of helical wire in outer

strand, i = 10, 11, 12 and 13

Polar moment and second moment of area of

helical wire in main core strand

Polar moment and second moment of area of core

wire in outer strand

Polar moment and second moment of area of
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helical wire in outer strand

K.	 Assemble stiffness for IWRC, i = 1, 2, 3 & 4
1

K'	 K'	 &	 Initial curvature, final curvature and change
ch	 ch

AK'	 in curvature of helical wire in main core
ch

strand

K'	 k'	 &	 Initial curvature, final curvature and change
Sc	 sc

AK'	 in curvature of core wire in outer strand
sc

K'h 
R
Dh
'	 &	 Initial curvature, final curvature and change

D 

AKDh
'	 in curvature of helical wire in outer strand

K?	 Stiffness for core strand, i = 1, 2, 3, and 4
1

K?	 Stiffness for ordinary lay outer strand, i =
1

Ks
1

e
J

1,	 2,	 3	 and	 4

Stiffness	 for Lang's	 lay outer	 strand,	 i	 =	 1,

2,	 3	 and 4

Stiffness	 for	 outer	 strand,	 j	 =	 5,	 6,	 7,

10

R
K.

1
Stiffness for	 IWRC,	 i = 1, 2, 3 and 4

LL.
1

Defined parameters,	 i = 1, 2, 3, .

A
L.

1
Defined parameters,	 i = 1 and 2

T
L.

1
Defined parameters,	 i = 1, 2, 3 and 4

*
L.

1
Defined parameters,	 i = 1, 2 and 3

+
L.

1
Defined parameters,	 i = 1 and 2

M	 Applied twisting moment to IWRC

*
M	 Defined parameter

M
c
	Twisting moment acting on the main core strand

of an IWRC

m c	Number of core wire of outer strand in an IWRC
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M
Dh	

Twisting moment acting on all the double

helical wires

m
Dh	

Number of double helical wire in an IWRC

M
k
	Twisting moment acting on the king wire

M
R
	Twisting moment acting on the /WRC

M	 Twisting moment acting on all helical core
SC

wire of outer strands in an IWRC

m	 Number of helical strand in an IWRC
S 

m22 m23 m24	
Number of double helical wire at various

locations
m25 m 26 m27

N'	 Shearing force acting on king wire
ch

N'	 Shearing force acting on core wire of outer
SC

strand

N'	 Shearing force acting on helical wire of outer
sh

strand

N'
h
	Shearing forces acting on double helical wire

D

P
ch	

Lay length of core strand

P
L
	Lay length of IWRC

r
ch	

Helical radius of helical wire in main core

strand

r s
	Helical radius of outer strand

rw
 or r	 Helical radius of double helical wire

sh ,
R
Dh	

Radial distance from centre of IWRC to the

centre of double helical wire

R. Defined constants, i = 1, 2, 3, ... 10
1

S
ch	

Path length of helical wire of core strand

S. Defined constants, i = 1, 2, 3, ..., 18
1
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S Path length of outer strandsc

S
sh	

Path length of double helical wire

Tc
	Tensile force acting on king wire

Tch	
Tensile force acting on helical wire in main

core strand

T	 Tensile force acting on core wire in outer
sc

strand

T
Dh	

Tensile force acting on double helical wire

Tk
	Tensile force acting on king wire

Ts
	Tensile force acting on helical strand

V
ch	

Bending moment acting on helical wire in main

core strand

3 Bending moment acting on core wire of outer
sc

strand

V
Dh	

Bending moment acting on double helical wire

W
c
	Twisting moment acting on king wire

Wch	
Twisting moment acting on helical wire of main

core strand

W Twisting moment acting on core wire of outerSc
strand

W
Dh	

Twisting moment acting on double helical wire

W
s
	Twisting moment acting on helical strand

Xch	 Radial force acting on helical wire of main

core strand

X	 Radial force acting on core wire of outersc

strand

XDh	 Radial force acting on double helical wire
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First derivative of the coordinate equations

of a double helix

Second derivative of the coordinate equations

of a double helix

Third derivative of the coordinate equations

of a double helix

Change in helical radius of wire due to

external loads

Ar
s
	Change in helical radius of strand due to

external loads

Ae
w
 or Ae

sh 	
Change in rotational coordinate of helical

wire

AO	 Change in rotational coordinate of outer
S

strand

AO
R
	Change in rotational displacement of IWRC per

lay length

Aa	 Change in helix angle of helical wire in main
ch

core strand

Act
Dh
	Change in double helical angle

An	 Change in defined parameter resulted from

external loads

AP	 Change in helix angle of outer strand

,
E	 Equivalent tensile strain on IWRC
R

C
h	

Tensile strain of helical wire in main core

strand

E	 Tensile strain of core wire in outer strandSc

or E
sh	

Tensile strain of double helical wireE
Dh
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a	 Helix angle of helical wire in main core
ch

strand

P or a	 Helix angle of core wire of outer strand orsc
helix angle of outer strand

a	 Helix angle (single helix angle) of helicalsh

wire of outer strand when it is in a straight

line form

a
Dh	

Double helix angle

v	 Poisson's ratio of wire material

T
ch 

i	 Initial torsion, final torsion and change inch

AT
ch	 torsion of helical wire in main core strand

T	 i	 Initial torsion, final torsion and change insc	 sc

At	 torsion of core wire in outer strandsc

iDh	 Initial torsion, final torsion and change in
TDh 

AT
Dh	 torsion of helical wire in outer strand

T	 i	 Initial torsion, final torsion and change ins	 s

AT	 torsion of helical strand of IWRCS

O Defined parameter

O
s

Defined parameter

e.	 Defined parameter, i = 1 and 21

SUBSCRIPTS:

R	 Rope

S Strand

W Wire

C	 Core

h Helical wire
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D	 Double helical wire

Ch	 Helical wire (single helix)

SC	 Core wire of outer strand (single helix)

Sh	 Helical wire of outer strand (single helix)

Dh	 Double helical wire
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9.1	 INTRODUCTION TO LINEARIZED MODELLING OF IWRC

Independent wire rope core "IWRC" basically takes the form of

6x7 Lang's lay rope which is the simplest form of wire rope.

It is constructed by laying six "6/1" strand around a "6/1"

main core strand. The IWRC itself is also used as main core

of a six stranded rope. It gives greater resistance to

crushing without significantly reducing the flexibility of

the rope. In addition to this, steel wire core provides

higher strength which is essential for ropes operating in a

high temperature environment.

Three main types of wire can be found in a straight IWRC,

namely:

a. Straight king wire; 2.1 % in an IWRC.

b. Single helical wire; 24.5% in an IWRC.

c. Double helical wire; 73.4% in an IWRC.

The IWRC is generally constructed in form of right hand

Lang's lay. However, in order to understand the mechanical

response of double helical wire, the IWRC is assumed to be

manufactured either in form of Lang's lay or in form of

ordinary lay.

Costello and Velinsky
3.18-3.20 

used the single helix approach

for modelling the structural response of the Seale rope.

However, double helical wires are considered in the present

Chapter. Factors which will influence the present analysis,

in the linear elastic regime, are listed below:
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a. Termination Conditions:

I. Tensile load with fixed terminations.

2. Combined tension and torsion applied to the

termination.

In addition to this, Velinsky's approach provides another two

more termination conditions to be considered, namely:

3. Twisting moment alone.

4. Free ends

b. Termination Attachments:

Cone with epoxy type of terminations are assumed to

be used for the rope terminations.

For model linearization, the 2nd and higher differential

terms, in equations of deformation geometry, are ignored.



STRUCTURAL
MODELLING OF

I.W.R.C.

AUTHOR'S
APPROACH

VELINSKY'S
APPROACH

THE IWRC IS RESOLVED INTO
1. CORE STRAND
* STRAIGHT KING	 WIRE
* SINGLE HELICAL WIRE
2. HELICAL STRAND
* SINGLE HEL. CORE WIRE
* DOUBLE HELICAL WIRE

THE IWRC IS RESOLVED INTO
1. CORE STRAND
* STRAIGHT KING WIRE
* SINGLE HELICAL WIRE
2. HELICAL STRAND
( MODELLED BY STRAIGHT -
STRAND), ie

* STRAIGHT CORE WIRE
* SINGLE HELICAL WIRE
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9.2	 STRUCTURE OF THE APPROACH TO THE MATHEMATICAL

MODELLING OF IWRC

INTERNAL
	

DEFORMATION
	

STRESS-STRAIN
EQUILIBRIUM
	

GEOMETRY
	

RELATIONSHIP

STRUCTURAL
EQUILIBRIUM

STRUCTURAL
BEHAVIOURS

BLOCK DIAGRAM 9.1

STRUCTURAL MODELLING OF IWRC
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9.3	 BASIS OF APPROACH AND ASSUMPTIONS

.An IWRC is considered as a statically indeterminate

structure. Each of the internal component forces and moments

acting on each of the wires will be resolved and summed in

the loading direction. The basis of the current model

approach is summarized as follows:

1. Establish equation(s) of internal equilibrium

(based on naturally curved rod theory) for

each individual wire in the IWRC.

2. Relate	 internal	 and	 external	 equilibrium

using Costello's approach.

3. Establish	 relationships	 between	 the

deformation of helical wire and structural

displacements using the development technique

and the author's method for double helix

geometry.

4. Apply classical constitutive relationship to

relate load-deformation or stress-strain along

wires in the IWRC.

The assumptions made in this Chapter are similar to the

assumptions made in Chapter 7. In addition to these, the

influence of mechanical interactions is also ignored.
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9.4	 VELINSKY'S APPROACH TO THE ANALYSIS IWRC

Velinsky 3.18 & 3.19 suggested that the internal tension and

twisting moment acting on outer strand of a Seale rope can be

considered as the external tension and twisting moment

applied to a straight strand of same size and construction.

Based on this concept, the present author will modify

Velinsky's model in order to form an analytical model to

predict the structural behaviour of an IWRC. The procedure is

presented in the following sub-sections.

9.4-1	 Organization of This Section

This section	 is generally organized into tvio main

sub-sections as shown in the block diagram below:

BLOCK DIAGRAM 9.2

VELINSKY'S APPROACH
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9.4-2	 External and Internal Equilibrium

External and internal equilibrium on an IWRC model are

considered in this sub-section. These include:

1. external equilibrium on the IWRC and

2. internal equilibrium on main core strand and outer

strand.

a.	 External Equilibrium on The IWRC

Velinsky's approach is to incorporate a outer strand (ie a

single helical strand) with a main core strand of an IWRC is

in much the same manner as a helical wire (ie a single

helical wire) is incorporated with a core wire of a straight

strand. In this approach, the total forces and moments

exerted in each individual strands are oriented and summed to

the global direction where external tensile force and

twisting moment are applied. The external and internal

equilibrium exerted on the IWRC model under combined loading

condition ( as presented in Chapter seven ) are given by

F
R
 = m

s
 (T

s 
sin p + N' cos p ) 4- F

cs
( 9 . 1 )

M
R
 = m

s
 ( ( W

s
 - N' r ) sin P + ( V' + T r ) cos p )s s	 s	 s s

+ M
c
	(9.2)

(The notation used in this Chapter is the present author's



=

E
R

AO
R

T
c

M
c

	Kc	Kc

	

1	 2

	

Kc	 Kc

	

3	 4

(9.3)
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own, where T
s
 and W

s
 are the equivalent internal tension and

twisting moment acting on a helical strand. The equivalent

internal tension T
s
 and twisting moment W

s
 are obtained by

considering the external and internal equilibrium on a

straight strand of same size and construction.)

b.	 Internal Equilibrium of Main Core and Helical Strand

I.	 Internal Equilibrium of Main Core Strand

Procedures for the evaluation of total internal equilibrium

will not be repeated as they are similar to those described

earlier and one can refer to Chapter Seven for details. The

equilibrium equations on the main core strand corresponding

to the global displacement of the IWRC are given by

whereas, the equilibrium equations corresponding to the

external applied load are given by

_
T	 m
c 

=	 sin -a{ Tch si ch + N'	
cos cos a

ch 
1 + F

chch
,	 (9.4)

_
W
c
 = m

ch 
( ( W

ch 
- N'

ch 
r 
ch 

) sin a
ch 

+ ( V'
ch 

+ T
ch 

r
ch

)

cos Et	 } + M
chch

(9.5)

2.	 Internal Equilibrium of Helical Strand

In order to evaluate the equivalent internal component forces
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and moments acting on a single helical outer strand, rod

3.21
theory from Love	 together with Velinsky's approach for

Seale rope will be applied to evaluate the equivalent

tensile, shear and radial forces as well as the twisting

moment. In addition to this, Timoshenko's theory for spring

and Costello's approach for stranded spring will also be used

to evaluate the equivalent bending moment acting on the same

outer strand. Finally, the internal equilibrium on the outer

strand can be regarded as functions of axial deformations of

the IWRC model, and a system of equilibrium equations are

given by

T
s
 = Kh E

R 
+ Kh AO

1	 2	 R

W s
 = K

h E
R 

+ Kh AO
3	 4 R

V' =A AK'
S s	 s

N'	 =W K'	 -V'	 r
S s s	 s	 s

(9.6)

(9.7)

(9.8)

(9.9)

X
s 

= N'	 r - T K	 (9.10)S s	 s s

Where the internal equilibrium force "T" and moment "WS s "

acting on the outer strand, in accordance with Velinsky's

approach, can be approximated by balancing the external and

internal equilibrium on a straight strand of same size and

construction. They are given by :
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T	 = m	 { T 
sh 

sin a 
sh 

+ N' 
sh 

cos a 
sh 

} + F
S sh	 sc

(9.11)

i.	 For Lang's Lay:

_	 -
W

s
 = m

sh 
{ ( W

sh 
- N'

sh 
r
sh 

) sin a
sh 

+ ( V'
sh 

+

+ T
sh 

i.
sh
 ) cos &

sh 
) + M	 (9.12)

sc

ii	 For Ordinary Lay:

_
W

s
 = m

h
 { -( W

sh 
- N'	 r	 ) sin -a

sh
- ( V'	 +

s sh sh	 sh

+ T
sh 

;
sh 

) cos &
sh 

} + M	 (9.13)
sc

By expressing the deformation of the centroidal axis of the

outer strand in terms of the structural displacements of the

IWRC equations 9.12 and 9.13 can be rewritten as functions of

ER and AOR . These two equations can be expressed in the form

of equations 9.6 and 9.7. Likewise, equations 9.8, 9.9 and

9.10 can also be expressed as functions of structural

displacement
s
 of	 the	 IWRC. They are given by

V'
s

= K
s
5

E
R

+ K 	 A6
6	 R

(9.14)

N'
s

= K
s
7

E
R

+K 	 AO
R8 (9.15)

X
S

= K
s
9

E
R

+ K	
As	 0

10	 R (9.16)

All expressions for geometrical and stiffness constants are

collected in the Appendix.

*
Note: Structural displacement

AO
R 

and E
R 

are defined as structural (or axial) deformation
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of an IWRC.

9.4-3	 Deformation of Single Helical Wire and Strand

Now the development technique is applied to relate the

deformations of single helical wire and single helical outer

strand as functions of the structural displacements of the

IWRC. Since IWRC will be subjected to "constructional

displacements" in the low load region (range normally from no

load to 20 % of UBL). This phenomenon is pronounced in fibre

core rope and is insignificant in single layer strand.

However, both constructional and flattening displacements are

ignored in this analysis. Finally, deformation of single

helical wire and single helical outer strand as functions of

the structural displacement of the IWRC are given below:

a.	 Single Helical Wire of Main Core Strand

By applying the "Development Technique" and taking the

total partial derivative of the single helix geometry

with respect to the structural displacements, the

linearized deformation of a single helical wire can be

expressed by the following equations:



Ar	 G E +G AO
ch	 7 R	 8	 R

(9.20)
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b.	 Outer Strand of The IWRC

The "Development Technique" can, similarly, be applied

to relate the displacement of the centroidal axis of an

outer strand as a function of the structural

displacements of the IWRC. The corresponding equations

are given by

E	 =Sc Ii1 R
4-	 122	 R

(9.21)

AP sc = 1
3

E
R

+ 1 4 AO
R

(9.22)

AK'	 =
sc

I
5 

E
R

-I-
	 1 6	AOR

(9.23)

AT
sc

= 1
7

E
R + 18 AOR

(9.24)

Velinsky
3.18

also showed that the twisting moment acting on

the outer strand could be considered as the twisting moment

acting on the straight strand of same size and construction.

Hence, the change in torsion resulted from the same amount of

the twisting moment applied to the straight strand is given
,

by

Arsh
= J 7 

E
R 

+ J
8 

AO
R
	 (9.25)

where I, J and G are parametric variables dependent on the

wire helix geometry. They are given in Appendix.
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9.4-4	 Stress-Strain Relationship

The material constant and stress-strain relationship applied

in this analysis are exactly the same as those presented in

Chapter 7.

9.4-5	 Structural Equilibrium

By incorporating the outer strands with the main core strand,

the structural equilibrium of the IWRC can then be obtained,

by substituting equations 9.3, 9.6 - 9.9 into equations 9.1

and 9.2. A stiffness matrix which represents the external

equilibrium of the IWRC, in terms of structural deformations,

is given by

K
R	 R
1	

K 2

K
R	

K
R

3	 4

ER

AO
R

=

F
R

MR (9.26)

at this stage, Velinsky's approach for solving the structural

response of the IWRC has been completed and results will be

discussed in section 9.6.
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9.5	 AUTHOR'S APPROACH TO THE ANALYSIS OF IWRC

An IWRC is constructed from 49 individual steel wires,

including one straight King wire, twelve single helical wires

and thirty six double helical wires. From the design point of

view, therefore, it is useful, to know how double helical

wires behave and how the load is shared by each type of wire.

The helix geometry of the double helical wire is periodic;

this implies that the internal components forces and moments

also vary periodically on each cyclic length of the double

helical wire. The present analysis has been stimulated by

this concept.

9.5-1	 The Organization of This Section

This section is organized into three portions as shown in the

following block diagram.

AUTHOR'S APPROACH

BLOCK DIAGRAM 9.3

AUTHOR'S APPROACH
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9.5-2	 External and Internal Equilibrium

External and internal equilibrium on the IWRC model are

considered in this section. They include

1. External equilibrium on the IWRC

2. Internal equilibrium on the main core strand.

3. Internal equilibrium on the core wire of the outer

strand.

4. Internal equilibrium on the double helical wires.

a.	 External Equilibrium on The IWRC

The structural equilibrium on the IWRC model is obtained by

orientating and summing all the component forces and moments

acting on each individual wire to the global direction of the

IWRC where the external load applied. The equilibrium

equations are given by

F
R = E F

w
 = T

c +F
	 + F

dh	
(9.27)

sc

M
R 

= E m
w 

= w
c +M	 + m

dh	
(9.28)

sc

where the subscript of the equations are given by

R Rope

w	 wires in IWRC

c	 core strand

sc core wires of single helical strand

dh double helical wires



T
K = F 10 ER

MK
 = F Ae

11	 R
(9.30)

(9.29)
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b.	 Internal Equilibrium on Core Strand

1.	 Internal tensile force and twisting moment acting on the

King wire

2.	 Internal component forces and moments acting on a

helical wire

Tch 
= G

10 
E
R 

+ G
11 

ee
R
	 (9.31)

V' ch= G 12
E 

R
+ G 

13
Ae
 R
	 (9.32)

Wch = G 14 ER + G15 AeR
	 (9.33)

X
ch 

= G
16 

E
R 

+ G
17 

ne
R
	 (9.34)

Therefore, the external and internal equilibrium on the main

core strand is given by

--T
c
 = m 

c { Tch 
sin a

ch 
+ N'

ch 
cos a

ch
} + T

K
	(9.35)

-
W
c
 = m

c { ( Wch -	 r	 siN'	 -n	 + ( V'	 +
ch ch )	 ach	 ch

-T
ch 

r
ch 

) cos a
ch 

} + M
K	(9.36)

d. Internal Equilibrium on a Core Wire Of Outer Strand

The approach which is applied to evaluate the internal

component forces and moments acting on a single helical core



T	 = 1
10 

E
R 

+ I
ll 
M
RSc

(9.37)

/7.	 ) cos p }T
sc	 sc

(9.43)
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wire within an outer strand is similar to those described in

Chapter Seven. The linearized internal component forces and

*moments equations are given below

1.	 Internal component forces and moments acting on a single

helical core wire of outer strand are given by

V'	 =
sc

1
12

E
R 

+ 1
13 

ne
R (9.38)

W	 =
Sc

1
14

E
R 

+ 1
15 

AO
R (9.40)

N'	 =
sc

1
16

E
R 

+ 1
17 

AO
R (9.41)

2.	 Total Equilibrium on a Single Helical Core Wire

F= m ( T	 sin p 4- N'	 cos p }sc	 sc	 sc	 sc (9.42)

_
M= m	 { ( W - N'	 r	 )	 sin p 4- ( v ,	 4.
sc	 sc	 sc	 sc sc	 sc

e.	 Internal Equilibrium on a Double Helical Wire

The centroidal axis of a double axis can be regarded as a

three dimension space curve. By applying the rod theory, the

general internal equilibrium equations applied to a single

helical wire can also be applied to a double helical wire.

However, the final form of the internal equilibrium equations

for the double helical wire will heavily influenced by the

geometry of the double helical wire. The general internal



,
Tdh rdh ) cos a	 )

dh (9.50)
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equilibrium equations for a double helical wire are given by:

1.	 Internal Component forces and moments acting on the

double helical wire are given by

Tdh = L 10 ER + L 11 60R
	 (9.44)

Vdh = L 12 ER + L13 MR
	 (9.45)

Wdh = L 14 ER + L15 MR (9.46)

N'dh = L 16
E
R

+ L	 60
R17 (9.47)

2.	 Total Equilibrium Of Double Helical Wires

Fdh= mdh { Tdh sin a + N' dh 
cos a }	 (9.48)

For Lang's Lay

M
dh

= m
dh

{ ( W
dh 

- N' dh rdh ) sin adh + ( V 	 +dh

Tdh r dh ) cos adh }	 (9.49)

For Ordinary Lay:

Mdh = mdh{-( Wdh - N' dh rdh ) sin adh - ( V'	 +dh

A schematic diagram illustrating the significance of various

parameters used in the above equations is shown in Figure

9.1.
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Angle Of Rotation
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dh
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ZsG

W
dh

Y.K

Center Line Of

Double Helical Wire

Figure 9.1

Line Model Representing Internal Components

Exerted On Any Point 'p' Along The Double

Helical Wire
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9.5-3	 Deformation of Helical Wires and Strand

In order to evaluate the deformation of helical wires and

strands with respect to the structural displacements of the

1WRC, both vector differential geometry and development

technique are used. Constructional and flattening

displacements are ignored.

Vector differential geometry is mainly used to evaluate the

change in curvature and torsion along centroidal axis of a

double helical wire. The development technique is used to

evaluate the translational and rotational deformation of

helical wires resulting from the application of external

loads to the termination of the IWRC.

a.	 Deformation of a Single Helical Wire within the

main Core Strand

By applying the "Development Technique", as illustrated in

Figure 9.2 (a), the linearized deformation of single helical

wire with respect to the structural displacements of the IWRC

( in terms of tensile strains ) is given by

E
R	

+=C
ch

to
ch

tan a
ch

E
R 

=
	Ar

ch
	Ae

+ __0.1 + ( tan a	 + cot a	 ) Aa
r	 ch	 ch	 ch

	

ch	 2n
(9.52)



U

410

6	 .6



Pch Ae
RAo

hc 
=
 P

L

(9.65)
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	Ar	 AO
ch	 ch

	

E 
c h 

=  
r	

+	 + Ea	 tantan a
ch

ch	 21t
(9.53)

	

Ar
ch
	 AO

.2	 2	 ch
E 
c h 

= E
R 

sin a
ch 

+	 cos ach 
+ - cos2 a

ch

	

r
ch	

211

(9.54)

Amongst these equations, the two unknowns are 
Arch/rch 

and

AG /2n. However, 
Arch/rch 

can be determined by the classicalch

linear elastic theory, and is given by

Ar
ch 

= - v ( a
c 

E
R 
+a

ch 
E
ch 

)
	

(9.55)

By applying the "development technique" to the deformed core

strand, AG	 can be obtained in terms of AG •ch	 R.

Substituting equations 9.55 and 9.56 into equation 9.54 and

9.51 respectively, the tensile strain and change in helix

angle of the single helical wire in terms of structural

displacements Ae
R 

& E
R 

of the IWRC are given by

E
ch 

= G
1 

E
R 
+G

2 
AG

R
	(9.66)

Ar
ch
 =G

3 
E
R 
+G

4 
AG

R
	(9.67)

By taking total partial derivatives of the equations of



(9.68)

(9.69)

At3

tan P
(9.70)E

R	
E

sC

21

Ar

Sc
ee

+ ep tan p
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curvature and torsion with respect to the structural

displacement of the IWRC, the change in curvature and torsion

• of a single helical wire can be expressed as linearized

equations. They are given by

AK'	 = G
5 

E
R 
+G

6 
AO
Rch

Ar
ch	= G7 

E
R 
+G AO

8 R

where the geometrical parameters G. are given in Appendix,

where i = 1, 2, 3, .

b.	 Deformation of a Core Wire Within An Outer Strand

The core wire of the outer strand is a single helical wire.

Thus, the deformation of the core wire is similar to the

deformation of any single helical wire obtained by the

"development technique". Therefore, the deformation of the

single helical core wire is given by the following

expressions

E
R =

Ar
s	

AO

+ ( tan p + cot p ) AP
27E
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	Ar 	 AO
.2s	 2

E	 sin p +	 cos p +	
R 

cos
2
 psc 

= E
R

	r 	 21
S

(9.73)

In these equations, the only unknown is Ar. /r . However, by
s S

using the classical theory of elasticity and taking the

Poisson's effect of wire material into consideration. The

expression which relates the change of the strand helical

radius is given by

Ar s 	s	 s	 s
= L 1 ER + L 2 AOR +L  Es h + L: Escr s

(9.74)

This is obtained by equation 9.74 into equations 9.70 and

9.73 respectively. The linearized equations representing the

deformation geometry of the single helical core wire are:

E	 = I 1 ER + 1 2 eeR	 (9.75)Sc
Act	 = 1 7 ER + 1 8 ABR 	 (9.76)sc

AK '	 = 1 5 ER + 1 6 eeR	 (9.77)sc

Ar	 = 1 7 ER + 1 8 esR	 (9.78)sc
,

where the geometrical parameters are given in Appendix.

c.	 Deformation of Double Helical Wire

For an IWRC subjected to axial deformation, the "Development

Technique" is again the principal technique applied to



(9.79)

+	 + ( tan ( + cot a
sh

) Aa
sh

E_
rsc	 sh	 sh2n

Ar
sh

Ae
*
s h
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evaluate the extension of the double helical wire. In

addition to this, the vector differential geometry is also

used to evaluate the double helix angle, curvature and

torsion along the deformed double helical wire.	 The

approach, which is used to evaluate the deformation of the

double helical wire, is given below:

1.	 Extension of a Double Helical Wire

The extensional deformation of a double helical wire can be

derived from its deformed centroidal axis as shown in Figure

9.2 (d). Expressions describing the extensional deformation

of the double helical wire are given by

E	 =C
sh 

+
sc

to
sh

tan a
sh

(9.80)

A *

	

Ar	 O
E	

sh	 sh

	

s h - r	
+ - 4- La tan a

shshsh	 2n
(9.81)

,
AO

*
2	 sh	 2cos a

sh
+ ---- cos a

shr
sh	 27

(9.82)

AO
*

As usual, the unknowns are Ar
sh/r sh 

and	 as found in the
sh

Ar
E	 = E	 sin

2 a
sh

+	 hs
sh	 sc

above equations. By applying the classical theory of



= L° E + L° Ae	 + L° E
r sh	 1 R	 2	 R	 3 sh

Ar sh
(9.81)

Ae s
= p Ae /r

sh	 sh sh sh
(9.82)
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elasticity the former parameter is given by:

where Lo 
is given in Appendix.(i = 1, 2, 3)

i

The latter unknownAO
*
h corresponds to the angle of twist per

s

lay length of the "straightened" outer strand of the IWRC. It

is necessary to relate the angle of twist per lay length of

the IWRC to the induced angle of twist on each individual

helical wires. By using the similar triangle developed from

the double helical wire, an expression relating the angle of

twist of the helical outer strand with the angle of twist of

the IWRC is given by

where

eR = c o 

	

	 (9.83)sh

0hrs cos /3 tan ash / r sh	 (9.84)= 

This relationship has been given in Chapter Four. By taking

the total partial derivative of eR with respect to 0 and 0sh'
and then back substituting to equation 9.82 the second

unknown in terms of the structural displacement of the IWRC

is given by :



*
AO

sh
- 

S15 ER + S15 OR +S17 Esc + S18 Esh 	 (9.85)
27
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Aa = a	 - a
dh	 dh	 dh

(9.87)

By substituting equation 9.85 back to equation 9.81, the

linearized tensile strain along the double helical wire is

given by

Ehs 
=j 1 ER +J 2 AOR 	(9.86)

where J 1 and J 2 are given in Appendix

2.	 Change of Double Helical Wire Geometry

The vector method, which is applied in this sub-section, is

to determine the change of geometry of the double helical

wire with respect to the extension of this wire.

i.	 Change in Double Helix Angle

The change in double helix angle corresponding to the change

in structural displacements of the IWRC is given by

-

where the final helix angle of the double helical wire

resulted from the structural displacements is given by

a	 =
dh

1 i + di 1-1
tan	 { 	 E ( ic + do 4. 6, I. AT ? i1/2

)

(9.88)



-
LIK'

dh
 = K' dh - K' dh (9.89)

Ar	 = i
dh 

_	 rdh	 dh (9.90)

1[( Iir2 + dirZ)-(2i4d211)]2+[(2*+d2*)-(i2+d*2)]2+
k'

dh = ((*+d*)2 + (ir+d 1.1) 2 + (i+d2)2}3/2

[(ki4d*ii)-(i+diT5)12} (9.91)

and
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ii.	 Change in Curvature and Torsion of a Double Helical

Wire

The changes in curvature and torsion of the double helical

wire are essential parameters for evaluating the flexural

bending and twisting of the wire resulting from extension.

The change in curvature of the double helix is given by

The change in torsion of the double helix is given by

where the final curvature and torsion of the double helix are

given by

i
dh 

_

(i+d*)	 (ir+diT)	 (24-d2)

(*+d*)	 (ii+dii )	 (2+d2)

(x+dx)	 ( y+d y )	 (z+dz)

[(iT 2 + dir2)-(2i4d2i;)]2+[(2*+d2*)-(5c2+d*2)]2+
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(9.92)

[ (5ci4 d 5ci;)- ( N'ai-dir)] 2

where	 •
	

first derivative of coordinates

second derivative of coordinates

third derivative of coordinates

At this point, the analysis has sufficient known parameters

to evaluate the mechanical responses of both Lang's lay and

ordinary type of IWRC. In view of the complexity, Computer

programmes have been produced for the numerical analysis of

the mechanical response of the IWRC.

iii.	 Change in Length of a Double Helical Wire

As well as the development method applied to evaluate the

change in length on the double helical wire under full

inter-wire slip condition, ie frictionless condition. The

change in axial length of the double helical wire under full

inter-wire grasp condition (ie where full inter-wire slippage

can occur between wires) can also be determined by the vector

method. The change in axial length along the double helical

wire is given by:
,

-

6S = dS
dh 

- dS
dh
	 (9.94)

Where

(9.95)
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By substituting the change in coordinates resulting from the

Poisson's effect and the change in wire rotation into

equation 9.95, the final differential length dkih can be

evaluated.
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9.6	 DISCUSSION AND CONCLUSION

Based on the author's and Velinsky's approaches, a

micro-computer package has been developed for the purpose of

evaluating the internal component forces & moments, stresses

& strains acting on the wires and the structural responses &

properties of the IWRC. A schematic diagram representing the

structure of this computer package is illustrated in block

diagram 9.6.1. This diagram is as shown below

MAIN MENU

FOR IWRC

FOR BOTH LANG'S AND

ORDINARY TYPE OF IWRC

BACK TO SUB-MENU

BLOCK DIAGRAM 9.6.1

STRUCTURE DIAGRAM OF THE APPROACH TO IWRC MODELLING
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9.6-1	 Brief Description of This Section

The sample results presented in the following sub-sections

are obtained from the author's own computer package developed

for the mathematical modelling of IWRC. The wires dimensions

used for the sample analysis are extracted from Velinsky's

thesis and are tabulated in section 9.6-2. The material

properties of wires for the IWRC are based on those

properties of steel wire. Finally, only the fixed end

termination condition is considered. Various computer results

for the IWRC are presented in section 9.6-2 and 9.6-3.

9.6-2	 Results and Discussion (Velinsky's Approach)

The following tables give the dimensions of the IWRC within

the 6x19 Seale rope (taken from Velinsky's Thesis)

Table 9.1 lists the dimensions of wires in various strands

(in straight form) used to construct the IWRC.
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TABLE 9.1

CORE STRAND (6/1)

WIRE RADIUS OF WIRE HELIX ANGLE LIMITED HELIX ANGLE

CORE 0.03155	 IN 90	 DEG. N.A.

HEL. 0.028925	 IN 73.707 DEG. 70.619 DEG.

OUTER STRAND (6/1)

CORE 0.027725	 IN 90	 DEG. N.A.

HEL. 0.025815	 IN 81.066 DEG. 72.4125	 DEG.

Table 9.2 lists the dimensions of strands used to construct

the IWRC.

TABLE 9.2

RADIUS OF STRAND HELIX ANGLE LIMITED H.A.

CORE STRD. 0.0894 IN 90 DEG N.A.

HEL.	 STRD. 0.079355 IN 70.83 DEG 67.3504 DEG

Abbreviations used in the figures of this section are given

as follows:

C.STD.H.W	 Helical wire of core strand

HEL.C.W.	 Helical core wire of outer strand

D.H. WIRE	 Double helical wire of outer strand

H.W.	 Helical Wire
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Discussion of The Results Obtained From Velinsky's Approach

Figure 9.6.1 shows the tensile strain acting on each of the

wires within the IWRC subjected to external tensile load

applied to the termination. Obviously, the king wire carries

the highest tensile load and the double helical wire carries

the smallest tensile load, as illustrated in Figure 9.6.2.

This is because double helical wire is the longest wire

whereas King wire is the shortest wire within the IWRC.

Figures 9.6.3 and 9.6.4 show the bending and twisting moment

developed on the helical wire of the core strand and the

outer strand of the IWRC. These two figures illustrate that

the effective bending and twisting moments developed on the

outer strand are higher than those developed on the single

helical wire of the core strand. The author, in this example,

intends to emphasize that there is "tertiary bending"
*
 on the

outer layer wires of the adjacent strands at the contact

location resulted from the unwinding rotation of the outer

strand.

*
Remark:

,

For a rope subject to tension or twisting moment, the

tertiary bending is regarded as one of the mechanical

interactions. When the outer layer wires of a strand are

resting in the valleys provided by outer layer wires of the
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adjacent strands, then the third type of bending moment will

develop on any outer layer wire of the strand resting in the

valley at the contact locations provided by the outer wires

of the adjacent strands resulted from the unwinding rotation

of wires and strands.

The advantage of using Velinsky's approach is that one can

evaluate the equivalent bending and twisting moment for each

of the strands under the preceding defined termination

conditions. The limitations of velinsky's approach are that

it is:

a. applied only to frictionless condition,

b. used to evaluate equivalent component forces and

moments acting on the single helical strand and

c. applied to evaluate the global mechanical behaviour

of a rope; eg notional stiffness of a rope.
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9.6-3	 Results And Discussions (Author's Approach)

Results obtained from the author's computer package developed

for the static analysis of IWRC are presented below:

Abbreviations used in the figures of this section are given

as follows:

H.W.	 Helical wire

STD & STRD	 Strand

IWRC	 Independent wire rope core

Figure 9.7.1 shows the tensile strain developed in each

helical wire against the tensile strain of the IWRC.

These results are similar to those obtained from Velinsky's

model. It is because the results obtained are also based on a

frictionless model.

Figure 9.7.2 illustrates the variation of bending and

twisting component acting on the double helical wire. The

"out-of-phase"	 characteristic between the bending and

twisting component on the double helical wire arises

basically from the "out-of-phase" characteristic between

curvature and torsion of the double helical wire (see Chapter

5).

Figure 9.7.3 illustrates the variation of the shear force and
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radial force along the double helical wire. The variation of

radial force along the double helical wire arises from the

variation of curvature, torsion and double helix angle. The

variation of depth and width of "grooves" on the surface of

the helical core wire of the outer strand reveals this

physical significance (see Chapter three).

Figures 9.7.4-7 shows bending moment, twisting moment, shear

force and radial force developed on the single helical wire

of the main core strand and the core wire of the outer

strand.

Figure 9.7.8-9 shows the variation of radius of curvature and

torsion along a undeformed and deformed double helical wire.

9.7	 CONCLUSION

a. Velinsky's approach is based on a stiffness matrix

treatment. Hence, the structural properties of the IWRC

under defined termination conditions (ie, fixed end,

free end, twisting moment and combined loads) can be

addressed. However, one can not apply this approach to
,

evaluate the component forces and moments developed

along the double helical wire and the helical core wire

of the outer strand. On the other hand, the author's

approach provides a closed form method to evaluate the

component forces and moments along the double helical
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wire and the helical core wire of the outer strand of

the IWRC. However, the author's method is limited to

fixed end and combined load conditions.

b. The internal components of forces and moments developed

on the single helical wire are constant along the length

of the helical wire if the mechanical interactions are

ignored.

c. The internal component forces and moments developed on

the double helical wire vary along the length of that

wire. This is fundamentally due to the variation of

double helix geometry.

d. The "out-of-phase" characteristic between bending moment

and twisting moment along the double helical wire

corresponds to the "out-of-phase" characteristic between

curvature and torsion of that wire.

e. The double helical wire develops the smallest tensile

strain as compared with the king wire or single helical

wires of the IWRC. This is because the double helical

wire is longer than the king wire and the single helical

wire within any longitudinal section of a rope

structure.
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9.8	 SUGGESTION ON FUTURE RESEARCH WORKS

The author hopes that the present theoretical analysis and

approach will be useful to both industry and academic world.

It is also hoped that this thesis will motivate others to

carry out further theoretical and experimental analysis of

other rope problems. There are a number of suggestions about

the theoretical analysis of wire rope worthy mentioning:

a. An analytical study of the influence of mechanical

interactions, eg secondary and tertiary bending on the

double helical wire.

b. To refine the analytical fretting and contact stresses

analysis between wires at the contact locations.

c. Mathematical modelling of the strand and rope bent over

sheave or wound around drum, eg for a large diameter

wire rope subjected to tension-tension fatigue, the rope

can be last for millions of block cycles. However, for a

rope with similar construction subjected to

bending-tension fatigue test, the rope can only last for
,

many thousand block cycles.

d. The influence of kinking of strand and rope to the

damage of wires within the region of kinked rope. For a

rope subjected to kinking, the service life of the rope
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will be significantly reduced.

e.	 Mathematical modelling of the pattern of contact patches

within any construction of round stranded ropes.

Although it is a potential that the fretting may cause

the propagation of fatigue cracks on the helical wires,

see Chapter three. The locations of the contact patches

on the helical wires and the geometrical configuration

will directly influence the fatigue performance of a

rope.

Wire ropes are complicated structures, characterized by a

great variety of geometrical patterns. However, most designs

are based on experiences and experimental grounds. Therefore,

it will be very useful if more research work can be carried

out on theoretical aspects.



A la

435



BIBLIOGRAPHY



437

REFERENCES ON WIRE ROPE HISTORY 

1. 1 	Clark,P.R. (1930)

The Development Of The Wire Rope

Inst. Petroleum Tech. Jl, Vol 16, 1930 PP464-471.

1.2	 Forestier-Walker,E.R. (1952)

A History Of The Wrie Rope Industry In Grest Britain

British Wire rope Manufacturers, 1952

1.3	 Hendrick,R.F. & Edwards, E.H. (1953)

Wire Rope Origin And Development,

Wire And Wire Products, Vol. 28, No. 8 August 1953, PP 777-

833.

1.4	 Vivian, C.H. (1961)

The Generalogy Of Wire Rope,

Compressed Air Mad,

V41, N11, Nov., 1961, PP5182-8

1.5	 Pearsall, R. (1971)

Early Days Of Wire rope,

Wire Industry, August 1971, PP 558

1.6	 Sayenga,D. (1980)

The Birth And Evolution Of The American Wire Rope Industry,

Proc. Of The First Annual Wire Rope Symposium, Denver,

Colorado



L3 8

Published By Engineering Extension service, Washington state

University, Pullman, Washington, USA, March 1980, PP275-335.

1.7	 Weber,W. (1974)

Development And Production Of Wire Rope (1)

Wire World International, Vol. 16,Nov/Dec., 1974 PP286-291

1.8	 Weber,W. (1975)

Development And Production Of Wire Rope (2)

Wire World International, vol 17, Jan/Feb., 1975, PP20-24

1.9	 Costello,G.A. (1978)

Analytical Investigation Of Wire Rope

Applied Mechanics Reviews, V1 .31, No.7, July 1978, PP897-

899

1.10	 Utting,W.S. (1984)

A Survey Of Literature On The Behaviour Of Wire Ropes,

Wire Industry, Sept, 1984, PP623-629

Bahke,E.H.E, (1985)

150 Years Of Wire Rope Research,

Wire, vol 35, Jul/Aug, 1985, PP 148-52



4 39

REFERENCES ON WIRE ROPE MODELLING (HRUSKA'S APPROACH) 

2.1	 Hall, H.M. (1951)

Stresses In Small Wire Ropes

Wire, March 1951, pp.228, & 258

2.2	 Hruska, F.H. (1951)

GEOMETRIE IM DRAHTSEIL

DRAHT 4 1953 Nr.5

2.3	 Hruska, F.H. (1951)

Calculation Of Stresses In Wire Ropes

Wire, September 1951 pp.766-801.

2.4	 Hruska, F.H. (1952)

Radial Force In Wire Ropes

Wire, May 1952 vol 27 pp. 459-463

2.5	 Hruska, F.H. (1953)

Tangential Forces In Wire Ropes

Wire Amd Wire Products, May, 1953 vol.28, pp. 455-460

2.6	 Cress,H.A. (1955) MSc Thesis

A Theoretical Investigation Of Contact Stresses In A 6 x 7 Wire

Rope The Ohio State University 1955

2.7	 Starkey, W.L. & Cress,H.A. (1959)

An Analysis Of Critical Stresses And Mode Of Failure Of A Wire

Rope. I, Of Engineering For Industry, Nov, 1959 pp.307-311



4 40

2.8	 Leissa, A.W. (1959)

Contact Stresses In Wire Ropes

Wire And Wire Products, Vol. 34 March, 1959 pp. 307-314, pp 372-

373

2.9	 Bert, C.W. And Stein, R.A. (1962)

Stress Analysis Of Wire Rope In Tension And Torsion

(Determination Of Contact Forces) Part I & II

Wire and Wire Products, May,V37, pp.621-624 and June pp. 769-

770,772 & 816

2.10	 Gibson, P.T. Cress, H.A. Kaufman, W.J. Gallant, W.E (1970)

Torsional Properties Of Wire Rope

March 1, 1970 pp.1-11

2.11	 Reemsnyder, H.S. (1972)

The Mechanical Behavior And Fatigue Resistance Of Steel Wire

Strand And Rope

Internal Report, Bethleham Steel Corporation, June 1972



4 41

REFERENCES ON MATHEMATICAL MODELLING OF WIRE ROPE 

(COSTELLO'S APPROACH)

3.1	 Phillips, S.W. And Costello, G.A. (1973)

Contact Stresses in Twisted Wire Cables

Proc. ASME JL Eng. Mech.Div. 1973 Vol.99, pp.331-341

3.2	 Costello, G.A. And Phillips, J.W. (1974)

A More Exact Theory For Twisted Cables

Proc. ASCE, J. ENG. Mech. DIV. 1974 Vol. 100 pp. 1096-9

3.3	 Costello, G.A. And Phillips, J.W. (1976)

Effective Modulus Of Twisted Wire Cables

Journal Of The Engineering Mechanics Division, February, 1976

pp. 171-181

3.4	 Costello,G.A. (1977)

Large Deflections Of Helical Spring Due To Bending

J. Applied Mechanics Trans, Proc Paper 12964, June, 1977

pp. 479-87

3.5	 Costello, G.A. And Sinha, S.K. (1977)

Static Behavior Of Wire Rope

Journal Of The Engineering Mechanics Division December, 1977

pp.1011-1023

3.6	 Costello, G.A. And Sinha S.K. (1977)

Torsional Stiffness of Twisted Wire Cables

J. Of Then Engineering Mechanics Division, Vol.103,No.EM4,

Aug, 1977 pp. 767-70



442

3.7	 Phillips, J.W. And Costello, G.A. (1979)

General Axial Response Of Stranded Wire Helical Spring

Int,J.Linear Mechanics Vo114, pp.247-257.

3.8	 Costello, G.A. And Miller, R.E. (1979)

Lay Effect Of Wire Rope

Engineering Mechanics Division Vol.105 No. EM4 August, 1979

pp. 597-607

3.9	 Costello, G.A. And Miller, R.E. (1980)

"Static Response of Reduced Rotation Rope

J, of The Engineering Mechanics Division Vol.106, No.EM4,

August 1980 pp. 623-631

3.10	 Phillips,J.W., Miller,R.E. and Costello,G.A (1980)

Contact Stresses In A Straight Coss-Lay Wire Rope

Proc. 1st ann. Wire Rope Symp, Denver, March 1980 pp. 177-199

3.11	 Butson,G.J. (1981) PhD Thesis

Static And Dynamic Analysis Axially Loaded Wire ropes

University Of Illinois At Urbana-Champaign 1981

3.12	 Velinsky,S.A. (1981) PhD Thesis

Analysis Of Wire Ropes With Complex Cross Section

University Of illinois At Urbana-Champaign 1981.

3.13	 Costello, G.A. And Butson G.J. (1982)

Simplified Bending Theory For Wire Rope

ASCE J. ENG. MECH. DIV April, 1982 Vol.108, Nem2, pp.219-227



443

3.14	 Phillips,J.W. and Fotch,P.D. (1983)

Preliminary Analysis Of Filler-Wire Hoisting Rope

Proc. 18th Midwestern Mechanics Conf., May 16-18 1983 PP397-

340.

3.15	 Costello,G.A. (1983)

Stresses In Multilayer Cables

J. Of Energy Resources Technology, Sept., 1983, Vol 105 PP337-

340.

3.16	 Velinsky,S.A., Anderson,G.L. and Costello G.A. (1984),

Wire Rope With Complex Corss Section,

J, Eng. Mech. Div. Mar,.1984, Vol.110 No.3, PP 380-91

3.17	 Chi-Hui Chien And Costello, G.A. (1985)

Effective Length Of Fractured wire in Wire Rope

ASCE, Vol. 111, No, 7, July, 1985. pp.953-961

3.18	 Velinsky, S.A. (1985)

Analysis of Fibe-Core Wire Rope

Transactions of the ASME, vol.107, Sep.,1985, pp.388-389.

3.19	 Velinsky, S.A. (1985)

General Nonlinear Theory For Complex Wire Rope,

Int, J. Mech. Sci. Vol 27, No. 7/8 PP 497-507, 1985

3.20	 Phillips, J.W. And Costello, G.A. (1985)

Analysis Of Wire Ropes With Internal Wire rope Cores

Transactions of the ASME, Vol.52, Sept,. 1985, pp. 510-516.



444

3.21	 Love,A.E.H. (1944)

A treatise On The Mathematical Theory Of Elasticity

Dover Publication Inc., 1944

3.22	 Kirchhoff,J.F. (1859)

Math (Crelle) ,BD 56, 1859

3.23	 Timoskenko,S. (1956)

Strength Of Materials Part II 3rd Ed.

D. Van Nostrand Comapny, Inc. New York Mar., 1956 PP 295-298

3.24	 LeClair R.A. & Costello G.A. (1988)

Axial Bending And Torsional Loading Of A Strand With friction

Journal Of Offshore Mechanics And Arctic Engineering Vol. 110

Feb. 1988 PP 38-42.

3.25	 Velinsky S.A. & Schmidt J.D. (1988)

A Simplified Treatise On The Effect Of Wear In Cables

Journal Of Offshore Mechanics And Arctic Engineering vol. 110

Feb. 1988 PP-32-37



445

REFERENCES ON MATHEMATICAL MODELLING OF WIRE ROPE 

(BY INDEPENDENT INVESTIGATOR)

4.1	 Machida,S and Durelli,A.J. (1973) , (Supported By Experiments)

Response OF A Strand To Axial And Torsional Displacements,

Jnl Of Mech Eng Science,Vo115,No4,1973,PP241-251.

4.2	 Nowak,G., (1974)

Computer Design Of Electronmechanical cables For Ocean

application,

Proc of 10th Annual Conference, Marine Tech Society, Washington

DC, 1974, PP293-305.

4.3	 Knapp,R.H. (1975)

Non-linear Analysis Of A Helically Armoured Cable With Non-Unform

Mechanical Properties In Tension, IEEE Paper No 75CH0,(95-1,)

OEC,Proc IEEE Conference On Engineering In the Ocean,

Environmental And Marine Tech Sec,11th Annual Meeting,San

Diego,Ca1,1975,PP155-164

4.4	 Huang,N.C. (1978)

Finite Extension Of An Elastic Strand With A Central Core,

ASME Jnl Of App. mechs, vol 45, No4, 1978, PP852-858

4.5	 Knapp,R.H. (1979)

Derivation Of A New Stiffness Matrix For Helically Armoured

Cables Considering Tension And Torsion, Intl J. For Numerical

Methods In Engineering,vol14,1979, PP515-529



446

4.6	 Knapp,R.H. (1988)

Helical Wire Stresses In Bent Cables

Journal Of Offshore Mechanics And Arctic Engineering

Feb., 1988 Vol. 110 PP 55-58.



447

REFERENCES ON ROPE GEOMETRY

5.1	 Stein,R.A. And Bert,C.W. (1962)

Radius Of Curvature Of A Double Helix

J. Of Engineering For Industry, Transactions Of The ASME

Technical Briefs, August, 1962 PP394-95

5.2	 Karamchetty,S.D.S.R. And Yuen,W.Y. (1979)

Contact Problems In Wire Ropes

J. Of Mechanical Design, Transactions Of The ASME Vo1101 Oct, 1979

PP 702-10

5.3	 Karamchetty,S.D.S.R. (1978) & (1980)

Some Geometrical Characteristics Of Wires In Wire Ropes And

Cables

Proc. of 9th SECTAM, developments In theoretical And Applied

Mechanics Vol 9, PP 519-541 May 1978 and Wire Journal 1980, V13,

N11, PP98-104

5.4	 Kunoh,T and Leech,C.M. (1985)

Curvature Effects On Contact Position Of Wire Strands

Int.J. Mech Sci, Vol 27, No. 78, PP 465-70. 1985

5.5	 Wiek,L. (1986)

Staalkables Geometrie en Levensduur Proefschrift,

Werktuigouwkundig Ingenieur Gebroen Te's Gravenhage, 7

October, 1986 Te16.00 UUR



448

5.6	 Spiegel,M.R. (1981)

Vector Analysis,

Schaum's Outline Series Asian Student Edition, May 1981, Chapter

II

5.7	 Robert,C.F. and Ziebur,A.D.

Calculus and Analytical Geometry,

2nd edition, Prentice-Hall Inc., Chapter IX

5.8	 Angus,E.T.

Advanced Calculus

University of California, Los Angeles, Ginn & Company, Chapter

XII

5.9	 Lee,W.K. Casey,N.F. and Gray,T.G.F. (1987)

Helix Geometry In Wire Rope

Wire Industry, August, 1987, PP461-468



449

REFERENCES ON EXPERIMENTAL TEST OF ROPE IN BRITAIN 

(WITH MATHEMATICAL MODEL)

6.1	 Matheson,J.A.L. (1948)

The Mechanics Of Locked Coil Ropes

Engineering,June 18 and 25, 1948, PP578-581 and 601-604

6.2	 Hansom,O.P. (1948)

Mechanics Of Locked coil Steel Wire Ropes, PhD Thesis

University Of Birmingham.

6.3	 Slight,G.C. (1949)

The Torsional Properties Of Three & Seven Strand Wire Ropes

With The View To Their Use In Multiple Strand Helical Springs,

B.Sc Thesis, Woolwich Polytechnic Mechanical Engineering

Department.

6.4	 Martin,B.C. and Packard,T.J. (1966)

Stresses IN Wire Strand, B.Sc Thesis

University Of Bristol June 1966

6.5	 JoneiN. and Christodoulides,J.C. (1980)

Static Plastic Behaviour Of A Strand

Int J Mech Sci,Vo122,1980, PP 185-195.

6.6	 Raoof,M. (1983)

Interwire Contact Forces And The Statics, Hysteretic And

Fatigue



450

Properties Of Multi-Layer Structure Strands, PhD Thesis.

Imperial College Of Science And Technology, London.

6.7	 Hobbs,R.E. and Raoof,M (1983), (With Experiments)

Interwire Slippage And Fatigue Prediction In Stranded Cables

For TLP Tethers, Behaviour Of Offshore structures,

Chryssostomiolis, C, And Connor, Hemisphere Publishing/Mcgraw

Hill, New York, 1982, vol2 PP77-99.

6.8	 Utting,W.S. (1984)

Experimental And Theoretical Studies On Stress In And

Deformation of Wire Ropes Under Axial Tensile Loads, PhD

Thesis

University Of Liverpool.

6.9	 Cascy,N.F. (1984)

The Evaluation Of Wire Ropes By Acoustic Emission And Other

Techniques, PhD Thesis

University Of Cardiff.

6.10	 W. S. Utting and N. Jones (1987)

The Response of Wire rope Strands To Axial Tensile Load

Part I and II Experimental Results And Theoretical Predictions

Int. I. Mech Sci 29, No. 9, PP 606-619 and PP 621-636, 1987



451

REFERENCES ON EXPERIMENTAL STUDY OF WIRE ROPE 

7.1	 Nesterov,P.O., Shabanov-Kushnarenko, Yu. P. and Kozyuberda,N.I.

(1961)

A New Method Of determination Of Stresses In Wire Ropes

Translated From russian, Zavodskaya Laboratoriya, Vol.27, No.2,

1961, PP 191-194

7.2	 Dong,R.G. and Steidel,R.P. (1965)

Contact Stress In Stranded Cable

Experimental Mechanics, May 1965, PP 142-147

7.3	 Gibson,P.T., Cress,H.A.,Kaufmann,W.J. and Gallant,W.E. (1969)

'Torsional Properties Of Wire Rope'

ASME Paper No. 69-DE-34, Proc. Design Eng. Div. conference,

N.York, 1969.

7.4	 Vandervelt,H.H., Laura,P.A. and Gaffney,P.G. (1969)

Mechanical Behaviour Of Stranded Wire Ropes

Dept Of Mech Engg. Themis prog. No. 893(1968-71) The Catholic Uni

Of America, Washington,D.C. 20017

7.5	 Durelli,A.J., Machida,S. and Parks,V.J. (1972)

Strains and Displacements On a Steel wire Strand, Naval Engineers

Journal,Vol.13, 1973, PP 85-93



452

7.6	 Durelli,A.J. and Machida,S (1973)

Response Of Epoxy Oversized Models Of Strands To Axial And

Torsional Loads, Experimental Mechanics, Vol.13, 1973, PP 313-321

7.7	 Wiek,L. (1975)

Measured Differences Between Steel Wire ropes In Normal Lay And

In Lang Lay, Report,Techniske Hogeschool,Delft, 1975

7.8	 Hankus,J. (1977)

The permanent and Percentage Elongation Of Winding ropes In

factory Condition',

translated From Polish, Glowny Instytut Gornictwa Katowice 1977,

Kommunikat No. 862, PP 3-14.

7.9	 Hankus,J. (1978)

Elastic Modulus Of Mine Winding Ropes In conditions Of Static

Loading',

In Polish With English Abstract, Glowny Instytut Gormictwo,

Katowice 1978, Kommunikat No.695.

7.10	 Hankus,J (1978)

Exmination OF Elastic Modulus Of Mine Winding Ropes In Conditions

Of dynamic Loading'

In Polish With English Abstract. Katowice 1978, Glowny Instytut

Gornictwa, Kom. No.700.



453

7.11	 Wiek,L. (1979)

Strain Gauge Measurements At Multi-strand Non-spinning Ropes,

Publ. No. 212, Technische Hogeschool, Delft, Transportkunde, 1979

7.12	 Wiek,L. (1981)

Stress deviations In Steel wire Ropes', Proc. OIPEEC Round Table,

Cracow, 1981.



454

REFERENCES ON ROPE TERMINATION AND ATTACHMENTS

8.1	 Hilgers,W (1973)

Wire Rope Tail Cones And Alloys

Wire, Nov/Dec 1973, PP251-263

8.2	 Christen,R (1973)

Tail cones: does doubling Back Of The Wire Increse Safety,

Wire, Vol.23, E4, 1973, PP 160-164

8.3	 Myers,W.H. (1977)

Major Part Of Lifting Devices; Wire Rope End Attachments

Wire Journal, march 1977, PP 67-71

8.4	 Gathman,D.W. (1979)

Resin Socketing For Wire Rope Attachments,

Wire Journal, Vol. 12, No. 6 1979, PP 82-85

8.5	 Dodd,J.M. (1981)

Resin As a Socketing Medium,

Wire Industry, vol. 48, No. 569, 1981, PP 343-344

8.6	 Matanzo,F.Jr. and Metcalf,J.T.Jr (1981)

Efficiency of Wire Rope terminations Used In the Mining Industry

Proc. OIPEEC Round Table, Luxemburg, 1977.

8.7	 Chaplin,C.R. and Sharman,R.C. (1983)

Mechanisms Of Load transfer In Resin Socketed Terminations



455

Int. Wire and Mach. Assoc. Conference On Offshore Applications,

Aberdeen, 1983.

8.8	 Utting,W.S. (1988)

Wire Loading Near Rope terminations

Wire Industry, March 1988, PP 251-259



456

MISCELLANEOUS REFERENCES 

9.1	 National Coal Board. (1966)

Ropeman's handbook. 2nd Edition. 1966.

9.2	 British Rope

Blue Strand Steel Rope. Publication No.1220

9.3	 American Iron And Steel Institute. (1981)

Wire Rope Users Manual, 2nd Edition, 1981 Chapter 6

9.4	 N.F. Casey (1988)

Control/Data Acquisition Systems For Monitoring Changes In Wire

Rope Properties. NEL Internal Report DE/3/88

9.5	 BS.2763 Round Steel Wire For Wire Ropes

9.6	 The Manufacture And Properties Of Steel Wire

By Prof. Dr. Ing. Anton Pomp

The Wire Industry Ltd. 1954

9.7	 Wire Rope In Offshore Application

C. Richard Chaplin And Andrew E.Potts

Dept. Of Engineering University Of Reading

Published By The Marine Technology Directorate Ltd.

London Feb., 1988 Fig. 33



457

9.8	 N.F. Casey And W.K. LEE

The Fatigue Of Large Diameter Stranded Wire Rope

International J. Of Fatigue

March 1989, PP 77-84.

9.9	 N.E.L. Internal Reports

9.10	 SERC Marine Technology Directorate

Behaviours Of Wire Ropes In Offshore Applications

Progress Report On First Phase Of Research Program, January 1984

9.11	 Mechanics Of Solids And Structures

By P.P. Benham & F.V. Warnock

Pitmans 1981, PP 98.

9.12	 Seely, F.B. And Smith

Advanced Mechanics Of Materials

9.13	 Abbott, W.,

Techanical Drawing, 4th Edition

Blackie & son Limited, 1978.



GLOSSARY



459

GLOSSARY OF WIRE ROPE TERMS 

ABRASION Frictional surface wear on the wires of a rope.

AGGREGATE AREA See AREA, METALLIC.

AGGREGATE STRENGTH The estimate of strength derived by summing the

individual breaking strengths of the elements of the strand or rope.

This estimate does not give recognition to the reduction in strength

resulting from the orientation of the wires in the rope, or other

factors that may affect efficiency.

ALBERTS LAY See LAY, TYPES.

ALTERNATE LAY See LAY, TYPES.

AREA, METALLIC Sum of the cross-sectional areas of all the wires

either in a wire rope or in a strand. Wire sectional shape is

approximated by either a circle or an ellipse.

BENDING STRESS Stress that is imposed on the wires of strand or rope

by bending.

BIRDCAGE A colloquial description of the appearance of a wire rope

forced into compression. The outer strands form a cage shape and, at

times, displace the core.
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BREAKING STRENGTH The ultimate load at which a tensile failure occurs

in the sample of wire rope being tested. The term breaking strength is

synonymous with actual strength.

Minimum Acceptance Strength is the strength which is 214% lower than

the catalogue or norminal strength (normally provided by the rope

manufacturer). This tolerance is used to offset variations that occur

during sample preparation and actual physical test of a wire rope.

Nominal Strength is the published (catalogue) strength calculated by a

standard procedure which is accepted by the wire rope industry. The

wire rope manufacturer designs wire rope to this strength, and the

user should consider this strength when making design calculations.

BRIDGE CABLE (Structural Strand or Rope) The all-metallic wire rope

or strand used as the catenary and suspenders on a suspension bridge.

BRIDGE SOCKET A strand or wire rope end termination made of forged or

cast steel that is designed with baskets - having adjustable bolts -

for securing rope ends. There are two styles: 1) the closed type has a

U-bolt with or without a bearing block in the U of the bolt, and 2)

the open type has two eye-bolts and a pin.

,

BRIGHT ROPE Wire rope fabricated from wires that are not coated.

BRONZE ROPE Wire rope fabricated from bronze wires.

CABLEWAY System for transporting single loads along a suspended track

cable.
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CLASSIFICATION	 Group,	 or family designation of wire rope

constructions with common strengths and weights.

CONSTRUCTION Geometrical design description of the wire rope. This

includes the number of STRANDS in a rope, the number of WIRES per

strand and the pattern of wire arrangement in each STRAND.

CONSTRUCTIONAL STRETCH	 The stretch that occurs when the rope is

loaded. It is due to the helically laid wires and strands generating a

constructing action that compresses the core of the rope and the core

of the strand and generally brings all of the rope into close contact.

CORE The axial member of a wire rope about which the strands are

laid.

CORROSION Chemical decomposition of the material of wires in a rope

through the action of moisture, acids, alkalines or other destructive

agents inside and outside the rope.

CORROSION-RESISTING STEEL	 Chrome-nickel steel alloys designed for

increased resistance to corrosion of wires in the wire rope.

COVER WIRES Outer layer of wires of a strand.

CROSS LAY See LAY, TYPES.

CROWD ROPE A wire rope used to drive or force a power shovel bucket

into the material that is to be handled.
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CYLINDRICAL DRUM A hoisting drum of uniform diameter. See DRUM.

DESIGN FACTOR	 In a wire rope, it is the ratio of the norminai

strength to the total working load.

DRAG1INE a) Wire rope used for pulling excavating or drag buckets,

and b) name applied to a specific type of excavator.

ELASTIC LIMIT Stress limit above which permanent deformation will

take place within a piece of material.

END ATTACHMENT	 The accessories which are attached to the end

termination of ropes or strands for transmitting loads to the rope or

strand body.

END CONDITIONS	 The mathematical term which is used to described how

the external loads applied to the rope terminations. There are four

common end conditions namely fixed ends, free ends, twisting alone and

combined loads (le, torsion and tension).

END TERMINATION The treatment at the end or ends of a length of wire

rope. Usually made by forming an eye or attaching a fitting and

designed to be the permanent _end termination on the wire rope that

connects it to the load.

FACTOR OF SAFETY In the wire rope industry, this term was originally

used to express the ratio of nominal strength to the total working

load. The term is no longer used since it implies a permanent
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existence for this ratio when, in practice, the rope strenght begins

to reduce from the moment it is put into service. See DESIGN FACTOR.

FIBRE CENTER Cord or rope of vegetable or synthetic fiber used as the

axial member of a strand (ie core of the strand).

FIBRE CORE Cord or rope of vegetable or synthetic fiber used as the

axial member of a rope (le fibre main core).

FILLER WIRE Small spacer wires within a strand which help position

and support other wires. Also the name for the type of strand pattern

utilizing filler wires.

FLAT ROPE Wire rope that is made of a series of parallel, alternating

right-lay and left-lay ropes, sewn together with relatively soft

wires.

FLEXIBLE WIRE ROPE An archaic and imprecise term to differentiate one

rope construction from another, such as, 6 x 7 (least flexible) and 6

x 19 classification (somewhat more flexible).

GALVANIZED	 (of wire) coated with Zinc for protection against

corrosion.

GALVANIZED ROPE Wire rope made up of galvanized wires.

GALVANIZED STRAND Strand made up of galvanized wires.
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GALVANIZED WIRE Zinc-coated wire which is the most commonly used

wire.

GEOMETRICAL PATTERN OF ROPE A geometrical term which is used to

describe the pattern of wires in a transverse section of rope. The

geometrical pattern of rope is governed by the helix geometry of rope

and the sectional geometry of helical wire.

GRADE Wire rope or strand classification by strength and/or type of

material, i.e., Improved Plow Steel, Type 302 Stainless, Phosphor

Bronze, etc. It does not imply a strength of the basic wire used to

meet the rope's nominal strength.

GRADES, ROPE	 Classification of wire rope by the wire's metallic

composition and the rope's nominal strength.

GRADES, STRAND	 Classification of strand by the wire's metallic

composition and the strand's nominal strength. In the order of

increasing nominal strengths, the grades are Common, Siemens Martin,

Hight-Strength and Extra-High Strength. A Utilities grade is also made

to meet apecial rrequirements and its strength is usually greater than

High Strength.

HAULAGE ROPE Wire Rope used for pulling movable devices such as cars

that roll on a track.

HELIX GEOMETRY OF ROPE The three dimension geometry of wire found in

a rounded stranded rope, such as single helix and double helix.
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HELICAL RADIUS The distance from the centre of rope or strnad to the

centre of any specific helical wire.

IMPROVED PLOW STEEL ROPE A specific grade of wire rope.

INDEPENDENT WIRE ROPE CORE (IWRC) A small flexible wire rope used as

the axial member of a larger wire rope to increase the resistance to

core crushing.

INNER WIRES All wires of a strand except the outer or cover wires.

INTERNALLY LUBRICATED Wire rope or strand having all of its wire

components coated with lubricants.

KINK A deformation of a wire rope caused by a loop of rope tightened.

It causes irreparable damage to and an indeterminate loss of strenght

in the rope.

LAY a) The manner in which the wires in a strand or the strands in a

rope are oriented, or b) the distance measured parallel to the axis of

the rope (or strand) in which a strand (or wire) makes one complete

helical convolution about the core (or centre). In this context, lay

is also referred to as LAY LENGTH or PITCH.

LAY, TYPES

1) Right Lay: The direction of strand or wire helix corresponding to

that of a right hand screw thread.
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2) Left Lay: The direction of strand or wire helix corresponding to

that of a left hand screw thread.

LAY LENGTH	 See LAY (b).

3) Cross Lay: rope or strand in which one or more operations are

performed in opposite directions. A multiple operation product is

described according to the direction of the outside layer.

4) Regular Lay (or Ordinary Lay): The type of rope in which the lay of

the wires in the strand is in the opposite direction to the lay of the

strand in the rope. The crowns of the wires appear to be parallel to

the axis of the rope (N.B. appear to be parallel but are not

necessarily so).

5) Lang's Lay: The type of rope in which the lay of the wires in the

strand is in the same direction as the lay of the strand in the rope .

The crowns of the wires appear to be at an angle to the axis of the

rope.

(6) Albert's Lay: An old and rarely used term for Lang's lay.

7) Alternate Lay: Lay of a wire rope in which the strands are laid

alternately ordinary and Lang lay.

8) Reverse Lay: Another tern for alternate lay.
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LOCKED COIL STRAND Smooth-surfaced strand usually made up of shaped,

outer wires arranged in concentric layers around a centre of round

wires.

MECHANICAL INTERACTIONS The reaction forces, moments and other

interactive effects (eg, friction and wear, secondary bending and

twisting and other bending and twisting effects at the contact point)

which are induced on the helical wires of adjacent strands at the

contact points inside the rope due to the mechanical response.

Mechanical interactions change as the geometry pattern of a rope

changes.

MECHANICAL RESPONSES The internal conponent forces, moments and

displacements which are induced along the helical wires (eg, single

helix and double helix) due to the external loads applied to the end

termination of the strand or rope.

METALLIC CORES See WIRE STRAND CORE and INDEPENDENT WIRE ROPE CORE.

NICKS The contact patches on the wire surface of the rope.

MODULUS OF ELASTICITY Mathematical quantity expressing the ratio,

whithin the elastic limit, between stress on a wire rope and the

corresponding elongation.

MOORING LINES Galvanized wire rope, usually 6 x 12, 6 x 24, or 6 x 3

x 19 spring lay, for holding ships to dock.
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NON-PREFORMED Rope or strand that is not preformed. See PREFORMED

STRANDS and PREFORMED ROPES.

NON-ROTATING WIRE ROPE Former term for 19 x 7 or 18 x 7 rope. See

ROTATION RESISTANT ROPE or NON-SPINNING ROPE.

NON-SPINNING WIRE ROPE See ROTATION RESISTANT ROPE.

PREFORMED STRANDS Strand in which the wires are permanently formed

during fabrication into the helical shape they will assume in the

undeformed strand.

PREFORMED WIRE ROPE Wire rope in which the strands are permanently

formed during fabrication into the helical shape they will assume in

the undeformed wire rope.

PROPORTIONAL LIMIT	 As used in the rope industry, this term has

virtually the same meaning as ELASTIC LIMIT. It is the (notional)

value of the load beyond which an increase in load no longer produces

a proportional increase in elongation and from which point recovery to

the rope's original length is unlikely.

REVERSE BEND Reeving a wire rope over sheaves and drums so that it

bends in opposing directions. See REEVE.

REVERSE LAY See LAY, TYPES.

RIGHT LAY See LAY, TYPES.
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ROTATION-RESISTANT ROPE A wire rope specially constructed to reduce

the tendency of the rope to rotate along its length or at the

terminations.

SAFETY FACTOR See DESIGN FACTOR.

SAFE WORKING LOAD This term is potentially misleading. and its use

should be avoided when referring to strand and rope. Essentially, it

refers to that proportion of the nominal rope strength which can be

applied either to move or sustain a load. It is misleading because it

is only valid when the rope is new and equipment is in good condition.

See RATED CAPACITY.

SEALE The name for a type of strand pattern that has two adjacent

layers laid in one operation with any number of uniform sized wires in

the outer layer, and with the same number of uniform but smaller sized

wires in the inner layer.

SECONDARY BENDING AND TWISTING The interactive effects on the helical

wires near the contact region due to the pattern of contact patches.

SECTIONAL GEOMETRY OF HELICAL WIRE The geometry of helical wire cross

section, which provides imformation about the configuration of the

wire in a rope.

SHEAVE A grooved pulley for wire rope.

SPRING LAY See LAY TYPES.
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STAINLESS STEEL ROPE Wire rope made up of corrosion resistant steel

wires.

STANDING ROPE (or GUY LINE) Strand or rope, usually galvanized, for

stabilizing or maintaining a structure in fixed position.

STRAND A aggregate of round or shaped wires helically laid about a

straight axis.

STRAND CORE See WIRE STRAND CORE.

STRETCH The elongation of a wire rope under load.

WARRINGTON The name for a type of strand pattern that is characteized

by having one of its wire layers (usually the outer) made up of an

arrangement of alternately large and small wires.

WIRE (ROUND) A single, continuous length of metal, with a circular

cross-section that is a cold-drawn form rod.

WIRE (SHAPED) A single, continuous length of metal with a non-circular

cross-section that is either a cold-drawn or a cold-rolled form rod.

WIRE ROPE A aggregate of wire strands helically laid about a straight

axis.

WIRE STRAND CORE (WSC) A wire strand used as the axial member of a

wire rope.
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BRIEF REVIEW ON HRUSKA AND OTHERS

.
Hall,H.M.

2 1(1951)

In this paper, the author attempted to prove that the tensile

stress on the helical wires of an outer layer are appreciably

higher than this on the helical wires of an inner layer

within a strand. In his analysis, a strand was considered as

a solid rod subjected to a tensile load. The tensile force

exerted on the rod was then resolved in the direction of the

helical wire. Based on this approach and his observations, he

explained that, for a strand subjected to external load, the

outer layer wires would break earlier than the inner layer

wires. This theory was proved to be wrong by Hruska.

.-.
Hruska,F.H.

2225 (1951 to 1953)

Hruska's first paper was essentially stimulated by Hall's

work on small wire rope. For a strand subjected to a tensile

load, the tensile strains of a core wire and of a helical

wire can be evaluated' from the triangular relationship

established from the derived of a single helical wire.

Expressions were then developed to determine the tensile

stress ratio between the core wire and the helical wire.

Finally, the internal tensile forces acting on each of the

individual wires are summed in the direction of the external
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load. He also suggested that ropes could carry load even when

the wires are broken at different locations. This is because

of the existence of the inter-wire friction amongst the

adjacent wires.

Hruska's second paper dealt specifically with radial forces

in strands and ropes. A theory was developed in order to

quantify these forces. He also explained that radial forces

increase inwards for each layer of rope construction. Hence,

this could produce very high contact stresses at the contact

points for the wires in the inner layer of the strand.

Hruska's third paper considered tangential forces induced on

the helical wires within a rope. For a rope subject to

tensile load, he showed that unwinding torque will develop at

the rope terminations. He then went further and explained

that the unwinding moment of a Lang's lay rope is much

greater than that of the ordinary lay rope (also called

regular lay rope). If both terminations are firmly fastened,

then the unwinding torque will be constrained.

Hruska's fourth paper dealt with sectional geometry of

helical wire and reaction forces at the contact position. He

showed that the cross sectional shape of the helical wire can

be considered as an ellipse. Similar approach was also

appeared in Costello and Phillips' paper
3.1

 .
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Cress,H.A. 26 (1955)

A mathematical investigation of contact stresses in a 6 x 7

wire rope (ie IWRC) was explored by Cress in his MSc project.

Hruska's approach and Hertzian contact stresses theory were

applied to quantify the contact stresses at the helical wires

of a 6/1 strand. The geometrical features of the helical

wires at the contact location were idealized by two parallel

cylinders and two cross cylinders with equal diameter.

8Leissa,A.W. 2.
	

(1959)

Leissa was probably stimulated by Cress's work on the contact

stresses in a 6/1 strand subjected to tensile load. He showed

that there are two types of possible contacts (contacts

within same layer and contacts between adjacent layers)

between neighbouring strands within a rope. Based on Hruska's

model and Hertzian contact theory, he then considered the

critical case of contact points between adjacent strands in

the same layer. The results showed not only the severity of

the contact stresses but also the complexity of the analysis.

Startkey,W.L. and Cress H.A.
27
 (1959)

In response to Leissa's work, Startkey and Cress offered

minor improvements to Lessa's analysis by introducing the

failure theory. A similar type of contact stress analysis for

a 6 x 7 wire rope under tensile load was also considered.
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They suggested that the cross-over point contact between

adjacent strands is more critical than the line contact

between adjacent strands.

Bert,C.W. and Stein,R.A. 29 (1962)

Bert and Stein improved the geometry of curvature at the

contact location which was initially approximated by the

geometry of two cross-over straight cylinder as shown in

Startkey and Cress's paper. However, Hruska's type of

approach applied to evaluate the contact force, the tensile

stress between a core wire and a helical wire was still being

used.

Gibson,P.T.,	 CRESS,H.A.,	 Kaufman,	 W.J.	 &	 Gallant,

W.E.
210
 (1970)

The tension-torque characteristics of round stranded ropes

were studied by Gibson and others. Hruska's approach was

applied in their study. They concluded that the torque

characteristics of round stranded ropes and fibre core ropes

which were constructed either with round strands or with
,

flattened strands, will behave linearly with respect to the

applied tensile load.

.11Reemsnyder,H.S. 2
	(1972)

A research report on the mechanical behaviour and fatigue
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resistance of steel wire, strand and rope was published by

Bethlehem steel corporation. Hruska's type of approach to the

analysis of tensile stress, tensile force, radial force and

rope unwinding torque acting on the helical wire was used. In

addition to this, the contact stress approach of Leissa and

the bearing pressure ratio of Drucker-Tachau were also used.



G' = A(k 1 - k')
1	 0

H = C(ri - ro) (1.2.2)

(1.2.1)
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BRIEF REVIEW ON COSTELLO AND OTHERS

G.A.Costello and J.W.Phillips 3.1, 3.2 & 3.3 (1973, 74 76)

Costello and Phillips took a more fundamental approach in

modelling the responses of a helical wire within a strand.

Each individual wire within a strand was treated as a thin

3.21
rod	 subjected to tension, bending, twisting, shear force

and radial force. Fundamental expressions dealing with the

evaluation of approximate helical radius, section of helical

wire, contact forces, and contact angle between two adjacent

wires, were developed. They then went further to predict the

effective modulus of a twisted wire cable. In order to use a

set
	

of	 six	 indeterminate
	

differential	 equations	 as

established in the rod theory which they applied to model the

helical wires two approximate expressions for bending and

twisting (also from rod theory) were introduced in their

analysis. These two expressions are:

,

Hence, shear force, radial forces and effective modulus for

twisted wire cables can be evaluated.

A similar study, for prediction of the radial force and wire

sectional geometry for a 6/1 strand, had also been shown

earlier by Hruska in a article called "Geometrie im

Drahteil".
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G.A.Costello
3.4

 (1977)

In this paper, the six differential equations of equilibrium

from rod theory were used for the prediction of the large

deflection of helical spring due to bending. In order to

evaluate the twisting moment, normal and binormal bending

moment acting on the spring, Costello assumed that in the

case where Poisson's ratio (ie v) equals zero, the flexural

bending stiffness equals the flexural twisting stiffness.

Then bending and twisting component can be calculated by

using the differential equations established in the rod

theory. By substituting the twisting energy, normal and

binormal bending energy, dissipated from the helical spring

due to deformation, into the strain energy equation for the

spring (see Timoshenko's 3.23 strain energy method), and by

integrating the strain energy equation, the deflection of the

spring in terms of curvature and rotation of the centroidal

axis of the spring, resulting from bending, can be

calculated.

G.A.Costello and S.K.Sinha 3.5-3.6 (1977)

Six differential equations from rod theory were further used

to analyze the static behaviour of wire rope (ie 6 x 7 rope

with fibre core) and torsional stiffness of twisted wire

cables (ie 6/1 strand). In the first paper, it was assumed

that the fibre core carried no external load. To proceed the

analysis by rod theory, each helical strand was idealised by

a helical rod. Results were presented as a normalized axial
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force as a function of axial strand strain. In the second

paper, a cable was considered to be constructed without a

core wire. The analytical procedure was similar to the first

paper. Results were presented as a normalized axial moment as

a function of rotational cable strain.

G.A.Costello and J.W.Phillips
3.7

 (1978)

Again, six differential equations from rod theory were used

to analyze the static response of a 3/1 stranded helical

spring. In this paper, Timoshenko's spring theory was used to

approximate the flexural bending stiffness of the stranded

helical spring.

G.A.Costello and R.E.Miller 3.8
 (1979)

Rod theory and approximate bending stiffness from spring

theory were used to analyse the lay effect of wire rope. In

this study, the tensile stiffness and flexural bending

stiffness of ordinary lay rope and of Lang's lay rope were

compared. Costello and Miller then concluded that, for a

Lang's lay rope subjected to tension, it has effectively no

stiffness due to unwinding moment. Therefore, Lang's lay rope

should not be allowed to be used with terminations free from

rotation. Ordinary lay rope, on the other hand, tends to

stiffen as the load is increased, and therefore can be used

with swivel termination.
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G.A.Costello and R.E.Miller
3.9

 (1980)

Equations from rod theory was still used. The static response

of 'reduced rotation' rope (ie a 1 x 19 multi-layer strand

with inner left lay wire and outer right lay wire) was

studied. The results were presented in such the way that the

initial helix angle of the outer layer wires was expressed as

a function of the initial helix angle of the inner layer

wires. Costello and Miller concluded that, for the outer

layer wires with given helix angle, there are two possible

helix angles for the inner layer wires. Then, for a cross-lay

multi-layer strand subjected to tensile load, the rotation

provoked from the inner layer wires can be counterbalanced by

that of the outer layer wires (in this study, a "strand" was

named as "rope").

J.W.Phillips, R. E. Miller and G.A.Costello 3.10 (1980)

The localized stresses resulting from contact forces at the

contact points of wires between adjacent layers of wires of a

1 x 19 multi-layer strand (cross lay) were studied. Hertzian

contact theory in conjunction with the analytical method
,

introduced by a text book "Advanced Mechanics of Materials"

by Boresi Sidebottom, were used. Results were presented in

form of "contact forces/rope force as function of helix

angle" for the inner layer wires.
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G.J.Butson
3.11

 (1981)

Mathematical models for the analysis of static and dynamic

responses of a 6/1 strand were developed in a PhD study by

Butson. In this study, 6 stranded rope was modelled by a 6/1

strand subjected to axial load and axial impulse

respectively. In the static analysis, a vector method was

used and frictional effects were taken into account. In the

dynamic analysis, a impulse was assumed to be applied to one

end of the rope and an equation of motion was formulated

based on a traditional dynamic approach.

S.A.Velinsky
3.12

 (1981)

The nonlinear geometrical equations for the analysis of

change in geometry of a single helical wire, developed by

Costello and others, were linearized by Velinsky in a PhD

study. Based on the linearized approach, he then went further

to study the static response of a 6 x 19 Seale type rope with

IWRC. A breakthrough was claimed in analyzing similar types

of static problems of the strands and wire ropes.

G.A.Costello and G.J.Butson
3.13

 (1982)

The static response of a wire rope (ie 6/1 strand, in this

paper called a "rope") subjected to external tension, torsion

and bending was studied. Timoshenko's type of bending theory

for calculating the flexual bending stiffness of a helical

spring was modified. Equations from rod theory and single
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helix geometry were presented. Costello and Butson claimed

that the approach can be extended to study ropes with more

complex sections.

J.W.Phillips and P.D.Fotch
3.14 (1983)

A simplified bending theory for a 6/1 strand, developed by

Costello and Butson, was used in this analysis. The authors

illustrated results from the bending stress analysis for a 6

x 25F IWRC rope. However, relevant equations and modified

theory were not given.

G.A.Costello 3.15
 (1983)

Static strand theory and simplified bending theory for the

analysis of static response of a single layer strand,

developed by Costello and his fellow workers, were used to

study the stress in the core wire of a three layered cable

(ie a multi-layer strand with two layer of single helical

wires and a core wire). The static responses of the strand

was derived. From this study, Costello concluded that the

highest axial tensile stress occurs on the central core wire
,

of the strand.

S.A.Velinsky, G.L.Anderson and G.A.Costello
3.16

 (1984)

The nonlinear geometrical parameters in the equations of

equilibrium for the static analysis of helical rod were

linearized. These equations, together with the analytical
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approach developed by Costello and others, were used to study

the static response of a 6 x 19 Seale rope with IWRC. In this

study, Velinsky and others concluded that:

a.	 The maximum tensile stress occurs in the King wire

provided both terminations of the rope are fixed.

b. The effective modulus of a rope decreases when

additional strands are added.

c. The theoretically determined modulus is higher than that

obtained from experiments.

d. If the stress exceeds the elastic limit of the king

wire, the king wire may become compressive when the

external load is reduced to zero.

C.H.Chien and G.A.Costel10 3.17 (1985)

A mathematical method used to predict the effective length of

a fractured wire, in a 6 x 25 ordinary lay rope with IWRC

after fatigue, was presented by Chien and Costello. Coulomb

friction and rod theory were used throughout their analysis.

From their study, they concluded that the effective length of,

the fractured wire is independent of the axial load.

S.A.Velinsky 3.18 (1985)

Rod theory and a modelling technique, for the analysis of

stranded spring developed by Costello and his fellow workers,

were used to model the mechanical response of the helical
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strand of a 6 x 19 Seale rope with fibre core. The mechanical

properties of the fibre core were assumed to be linear. In

order to evaluate the deformed strand helical radius, 'an

effective' radius of fibre core was introduced. The nonlinear

geometrical change of the helical strand was linearized as

usual. Results were illustrated on a load-extension curve.

S.A.Velinsky
3.19

 (1985)

A general nonlinear theory (ie geometrical nonlinear ) for a

6 x 19 Seale rope with IWRC was presented. The stranded

helical spring model and the straight strand model were

applied in the analysis. The model was used to predict the

static responses of the Seale rope. Results (ie the

load-extension curves) were presented in dimensionless form.

From this study, Velinsky concluded that the nonlinear theory

for the 6 x 19 Seale rope with IWRC showed no significant

advantage over the linearized theory.

J.W.Phillips and G.A.Costello 3.20 (1985)

A mathematical model for the static analysis of Seale rope,-
,

proposed by Velinsky, was generalised by Phillips and

Costello. In this paper, no mechanical interactions were

taken into consideration. They then summarized that the

"effective modulus" of wire rope predicted by the model was

slightly higher than this obtained from experiment. They

explained that the discrepancy between the model and

experiment was probably due to the model failing to take
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contact	 deformation,	 line	 loads	 and	 other	 possible

interstitial movement into consideration.

R.A.LeClair & G.A.Costello 3.24
 (1988)

As usual, six differential equations from rod theory and

expressions from helix geometry of a single helical wire,

were used to analyse the mechanical behaviour of strand

resulted from axial bending and twisting moments applied to

that strand. They claimed that this model, took friction into

consideration, could be used to predict the stresses in a

single layer strand subjected to axial, bending and torsional

loading. However, no stresses equations in related with

friction were given.

S.A.Velinsky and J.D.Schmidt 3.25 (1988)

A simplified treatise of static behaviour of worn cable (ie

6/1 strand) was presented. The wear, on the worn crown and at

the contact locations between adjacent helical wires, was

idealized by flat surfaces. By using this geometry, the

helical radius of worn wire was then predicted. Based on the

rod theory, they went on to analyze the mechanical responses

of the worn cable.



PARAMETRIC EXPRESSIONS

OF

SINGLE LAYER STRAND
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A1,1	 Geometrical Constants Of single Layer Strand:

a, ( sin2 a - v cos2 a ) + ah sin2 a
= (A1,1)

(A1,2)

(A1,3)

(A1,4)

73	 (A1,5)

(A1,6)

(A1,7)

(A1,8)

(A1,9)

(A1,10)

(A1,11)

(A1,12)

(A1,13)

a, + ah ( 1 + v cos2 a )

( a, + ah ) cos2 a
5 2 =

2i 	 { ac + a, ( 1 + v cos 2 a )

( a, + ah )	 ( 1 + v ) cos a sin a
73 =

a, + a, ( 1 + v cos2 a )

( a, + a s.., )	 sin a	 cos a
• 4 =

2 n < a, + a, ( 1 + v cos 2 a ) )

V cos2 a	 2 sin a cos a
J- 5 	 ac	 an 1	 )

R2	 R2

v cos2 a ah 32	 2 sin a cos a 54
ss =

R2

cos 2 a2	 v sin 2 a
3• 7 -	 33 ( aC 	 an J 1 	 )

2 R2

cos 2 a	 V sin 2 a
J9 -	 14+ a r-, 32

2 R2

39 = It 8,2 E

S10 = G I,

3-11	 = It a,,2E 3- 1

312 =	 8m2 E 32

313 = E I,, Js
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= E I, J.,

3 1S = G Jh 37

(A1,14)

(A1,15)

= G Jh J9 (A1,16)

J17 = G jh J7 k' - E Ih JG T (A1,17)

J,, = G Jh J. , k'	 - E I, J. T (A1,18)

j 19 =	 ( G Jr, 37 k'	 - E Ih J2 T ) T - it ah E J,	 k' (A1,19)

320 =	 ( G 31, 38 k'	 - E I h JG T ) T - It ah E 32 k' (A1,20)

- v	 ( a, + 2 ah 31	 )
(A1,21)3 21	 =

a,	 +	 2 ah

-2 v ah 32
(A1,22)322 =

a, + 2 ah

A1,2	 The Effective Stiffness Constants:

K, =mfnah2 EJ, sin cc 	 (GJh 37 k' -EIh J2 t) cos a
) + it a,2 E

(A1,21)

K2 = M { it ah2 E 32 sin a + ( G Jh 38 k' - E 1h JG T ) cos a
)

(A1,22)

K, = m ( G Jh 37 sin a + E Ih 38 cos a + it a, E 3, R cos a -

( G Jh J7 k' - E Ih J8 T ) R sin a )

(A1,23)

K, = m ( G Jr, J8 sin a + E I h 39 sin a + n a, E 32 R cos a -

( G 3, 38 k' - E I, I, T ) R sin a ) + G J,
(A1,24)



K3 IC,1 

K 1 	 K2
(A1,27)::	

F
 1 	 I	 I

I M I
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A.1.3 Global Mechanical Equilibrium Of Single Layer Strand

F = m ( T, sin a + N' cos a ) + Tc
	 (A1,25)

—	 ——	 —
M = m ( W sin a + V' cos a + T, R cos a - N' R sin a ) + Wc

(A1,26)

Alternatively

A.1.4	 Geometrical Responses Of Helical Wire

cw = 3 1 es + 32 A8 (A1,28)

Aa = 73 es + 74 AO
(A1,29)

Ak'= Js es + 75 AO
(A1,30)

AT = 77 es + 30 AO
(A1,31)

A.1.5	 Geometrical Responses Of Strand ( Strand displacements )

Final strand length - Original strand length

Cs - 

	

	  (A1,32)
Original strand length

,

Rotational displacement
A8 = 

	

	 	 (A1,33)
lay length

A.1.6 Internal Components In Wires:

Core Wire:

Tc = J. es	 (A1,34)
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Wc = J 10 AO (A1,35)

Helical Wire:

Th = 3 11	 E M	 712 AO (A1,36)

V'	 = J 13 E s	 J14 Ae (A1,37)

W	 = Jis es 4' J 16 AO (A1,38)

N'	 = J 17 es + J i e AO (A1,39)

X	 = Jls Es + J20 AO (A1,40)

A.1.7	 Strains In Helical Wire:

For helical wire

Due to tension alone

E, = J 1 Es + 72 AO

Due to bending alone

ahy Js	 eh., 'Ts

(A.1,41)

Cwta
	 	 Es + 	  AO	 (A.1,42)

1 + k'ahy	 1 + Wahy

Due to twisting alone

y, = ( J7 es + Jo AO ) a,y	 (A.1,43)

A.1.8 Defined Parameters For Nonlinear Strain Strain Modelling

P, = 2n R tan a
	

(A.1,44)

AO* = A8/2n
	

(A.1,45)

a,* = - v a, / R
	

(A.1,46)
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a,* = - v a, / R (A.1,47)

PL° = sin 2 a ( 1 + es ) 2 (A,1,48)

AO° = cos 2 a ( 1 + AO* ) 2 (A.1,49)

PLO = 1 — FLA — AO° (A.1,50)

A = 1 - ah* 2 468° (A.1,51)

B = 2 ( 1 - AO° a,* ah* es - AO° ah* ) (A.1,52)

C = PLe — 2 AO° a,* cs - AO° 8,* 2 E2 (A.1,53)



PARAMETRIC EXPRESSIONS

OF

SIX STRANDED ROPE
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A.2.1	 Stiffness Constants Of King Wire.

F 10 = n ec E

F l , = G J, / Pi_

A.2.2	 Geometrical Constant.

G* = Pch/PL

rch sin' ach - v ac COS2 aCh
G, = 	

rch + v ach cos2 act-,

rch COS2 ach
G2 = 	 .G*

2n(rch + v ach cos' ach)

G3 = (1 - G,) tan ach

G4 = - G2 tan ach

H I = v ( ac + a„ G I ) / r'cm

H2 = V ach / r2ch

Gs = H 1 cos' ach - sin' °cc, G3 / rCh

Gs = H2 COS2 ach - sin' Ci(ch G4 / rCh

G3 cos2 ac,, _If, sinz ach
G7-

rCh	 2

GA COS2 as,, H2 sin2 ac,,
Ges = 	

(A.2.1)

(A.2.2)

(A.2.3)

(A.2.4)

(A.2.5)

(A.2.6)

(A.2.7)

(A.2.8)

(A.2.9)

(A.2.10)

(A.2.11)

(A.2.12)

(A.2.12)

rch
	

2

P, = 27t rs tan 0 i Pch = 2n rch tan act-,

G,, = it a'ch E GI



A.2.3

Gll = n 82ch E G2 (A.2.15)

GI2 = E I„ G, (A.2.16)

G13 = E 'cp., Gs (A.2.17)

G14 = G Jch G7 (A.2.18)

GIG = G Jch Gs (A.2.19)

G15 = Xi Ch G14 - 'r Ch G12 (A.2.20)

GI7 = KI Ch G IS - C Ch G13 (A.2.21)

GIG = TCh G IS - KI Ch Glo (A.2.22)

G i s = Tcm G 17 - KI Ch G11 (A.2.23)

Parametric Constant For Helical Core Wire

S i = -v asc / rSh (A.2.24)

S2 = -V aSh / rSh (A.2.25)

S, = -v ( ac + 2 ach G I	 )/ rS (A.2.26)

S4 = -V ( 2 ach G 1	) (A.2.27)

Ss = -v ( 2 ash )/ rs (A.2.28)

SG = -V asc / rs (A.2.29)

S7 = -S3	 :	 Se = -S4 (A.2.30)

SG	 = Si - SG (A.2.31)

Sio = S2 - S, (A.2.32)

0*	 = cos 0 tan ash (A.2.33)

494



495

0	 = rsh 0* / rs (A.2.34)

S ll	 = rsh 0*	 S7	 /	 11-. (A.2.35)

S 12 = rSh cr Ssi / rs

cos 0 tan ash

(A.2.36)

tan (A.2.37)L A , =	 + sin 0 tan 0	 ash
cos2 ash

- cos 0 tan as,
(A.2.38)L A2 =

COS2 ash

S13 = rsh	 ( LA ,	 + 	 S	 ) / rs (A.2.39)

S14 = rsh ( LA2 + 0* S l o ) (A.2.40)

S l s = - S ll	 / 0 (A.2.41)

S I , = 1/2n - 5,2/0 (A.2.42)

S,, = - SI3 / 0 (A.2.43)

SIG = - S 14 / 0 (A.2.44)

A	 = ( 1 - cos2 ash SG - cos ash S lEI ) (A.2.45)

B	 = ( S3 COS2 ash + SIG cos ash ) (A.2.46)

C	 = ( COS2 ash S4 + cos ash S 16 )d
(A.2.47)

D	 = (sin2 ash + cos2 ash SG + cos ash SI7) (A.2.48)

1..*,	 = - v	 ( ac + 28ch G I	)	 / rs (A.2.49)

1. 4.2 	 = -v	 ( 2 ach G2 ) /r5 (A.2.50)

1, 4.3	 = - V	 ( 2 as, )	 / rs (A.2.51)



496

L*4 = - v asc / r,	 (A.2.52)

(A sin2 0 + A cos2	 L 1 + cos2 0 1,43 B)
I .

	

	 	  (A.2.53)
( A - cos2 0 L*, D - A cos2 0 1.. *4 )

(A cos2 0 L.2	 COS2 0 L*2 C + A cos2 6)
2n	 )

1 2
( A - A cos2 0 L*, D - cos2 0 1. 4.4

1 3	 =	 1 - I,	 )	 tan 0

1 4	= - 12 tan 0

LL* = L* 1 + L42 J 1 + L*, 12

LL2* = 1, 41.2 + 1.4.3 J2 	 L.4 1 2

I,	 = -(LL / * cos2 0 + 13 sin 20)/r5

I,	 = -(LL2* cos2 0 + 1 4 sin 20)/r,

I,	 = ( 13 cos 20 - LL,* sin 0 cos 0 )/r,

I,	 = ( 14 cos 20 - LL,* sin 0 cos 0 )/r,

Ilo	 = It a'sc E I I

III	 = ita2,c E 1 2

/12	 = E Isc Is

1 13	 = E Is 	 Is

114	 = G J3c 1 7

= G J,c Is

1 15	 = 1 14 K'sc - 112 Tsc

)
(A.2.54)

(A.2.55)

(A.2.56)

(A.2.57)

(A.2.58)

(A.2.59)

(A.2.60)

(A.2.61)

(A.2.62)

(A.2.63)

(A.2.64)

(A.2.65)

(A.2.66)

(A.2.67)

(A.2.68)

(A.2.69)
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I7 = / IS KI SC - 1 13 TSC
	 (A.2.70)

Ile =Lis 'Esc - Ilo '<Ise
	 (A.2.71)

Lig =117 T SC - / 11 KISC
	 (A.2.72)

A.2.4	 Parametric Constant For Double Hleical Wire:

Ls = - sin 0 tan p tan ash 	(A.2.73)

sin2 0 + I.* / cos2 0
L l * = 

	

	 	 (A.2.74)

1 - L. 4•4 cos2 p

sin2 0 + L42 COS2 0

L2* = 

	

	 	 (A.2.75)

1 - L*A. cos2 0

L*, cos2 0
L3* = 

	

	 	 (A.2.76)

1 - L*4 cos2 0

( B + D L I * )

s, =	 (A.2.77)
( A - D L3* )

( C + D L2* )
J2 = 	 	 (A.2.78)

< A - D L3* )

	

13 = ( II -• J / ) tan ash	 (A.2.79)

	

= ( 12 - 32 ) tan ash
	 (A.2.80)

A.2.5	 Parametric Constants In Velinsky's Approach To Analyze IWRC

8 1 	= - 2n ( S I / + SI3 II 4' SI4 SI )/ 02	 (A.2.81)

82 	= - 2n ( S 12 4' S I3 12 4' 514 J2 )/ 02 + 1/0 (A.2.82)

1..+ 1 	= - v ( asc I I + as,-, J I )	 (A.2.83)
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L 1- 2 = - v ( asc 12 + aSh J 2 )	 (A.2.84)

- L' 1 cos2 ash 33 sin 2a3h
3,	 = 
	

(A.2.85)
r,h	rsh

- L'2 cos2 a„ 34 sin 2a„
36	 - 	 	 (A.2.86)

r.,_,	 r sfr,

3 7	= ( 73 cos 2ash - L'1 sin ash cos ash )/rsh (A.2.87)

36	 = ( J4 cos 2ash - I.72 sin ash cos ash )/rsh (A.2.88)

J* 10 = n esc E I, (A.2.89)

J*Il = n a2sc E 12 (A.2.90)

J* 12 = G Jsc 01 (A.2.91)

J* 13 = G JSC 82 (A.2.92)

310	 = n esc E Ji (A.2.93)

.1 1 1	 = n 82sc E J2 (A.2.94)

312	 = E Ish 35 (A.2.95)

J13	 = E ISh 35 (A.2.96)

3. 1 44 	= G 7sh 37 (A.2.97)
,

Jis	 = G JSh	 • e (A.2.98)

SIG	 = 3 14 V sh - J 12 TSh (A.2.99)

J 17	 = J 16 K1 Sh - J 13 tSh (A.2.100)

3 18	 = J 16	 - J 10 K43h (A.2.101)T Sh



=A,
4

(A.2.103)•
2	 2 + v cos ash
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J 19 = 3 17 ISh - J 11 K'Sh
	 (A.2.102)

n E a4sh	 sin ash	 it E a4,o

Stiffness Constants For Core Strand:

Kci = mo ( G l o sin aCh + G,, cos ao h ) + F l o (A.2.104)

K C2 = Mc ( G l ,	 sin aoh + G17 cos act-, ) (A.2.105)

KC3 = Mc (( GI4 - GIs rch ) sin a„ +

( G12	 G10 rch ) cos aCh ) (A.2.106)

= mo	 1( G l , - G17 rot-, )	 sin ac,-,

( GI3	 G li	 roh ) cos aoh ) + Fl l (A.2.107)

Stiffness Constant For Helical Strand (Lang's Lay)

K5 , = J* 10 + msh ( j io sin ash	 J16 cos ash ) (A.2.108)

K52 = J* 11 + msh ( Jil sin ash + J17 cos ash ) (A.2.109)

K53 = J * 12 Msh (( 1 14 - J 16 rSh ) sin ash

( 712	 Jip rsh ) cos ash ) (A.2.110)

K54 = J* 13 Msh (( Ils - J 17 rsh ) sin ash +

( J13 4- JI,	 r,h ) cos a„ ) (A.2.111)

Common Stiffness Constants For Helical Strand (Both Lang and

Ordinary Lay)

K5, = A, I,

K9, = As I6
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Ks, = Ks. K'. - Ks. Ts	 (A.2.114)

Kee = K64 K'. - Ks. Ts	 (A.2.115)

Ks, = Ks, Ts - K6 1 K's	 (A.2.116)

K6 10 = Ks, K's - Ks2 Ts	 (A.2.117)

Stiffness Constant For Helical Strand (Ordinary Lay)

K°1 = J* 10 + msh ( 310 sin as, + J16 COS as, ) (A.2.112)

K°2 = J* 11 + msh( Jil sin ash + J 17 cos as, ) (A.2.113)

K°3 = 3* 12	 Msh (( J I4	 JIG rSh ) sin aSh

( J I2 	 3 10 rsm ) cos ash ) (A.24114)

K°4 -T* 13 - raGh (( J IG - 317 rsh ) sin ash

( 7 13	 J, 1 rs, ) cos ash ) (A.2.115)

Stiffness Constants For IWRC:

K R , = Kc , + m5 ( Ks , sin 0 + Ks, cos 0 )	 (A.2.116)

K R2 = Ke2	 Ms ( K62 sin 0 + Ks, cos 0 )	 (A.2.117)

K R, = IC%	 Ms (( 1(63	Ks7 rs )sin 0 +

( Kss	 rs )cos 0 )	 (A.2.118)

K R4 = KC4 Ms (( K64 K68 rs )sin 0 +

( Ks, + K62 rs )cos 0 )	 (A.2.119)

Note:	 1..1" = L*



PARAMETRIC EXPRESSIONS

OF

MULTI-LAYER STRAND



( sin2 a2 - IR ) (A.3.1.2)1 =I

1

sin 2a2
	  13 IA	 (A.3.1.8)Is =

COS2 a2

I A	 (A.3.1.10)

cos 2a2
14Is =

sin 2a2
	  Is

r2 	2r2
(A.3.1.11)
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A.3.1	 Geometrical Parameters For 9/9/1 Equal Lay Strand.

First Layer:

cos2 a2 tan2 (n/2 - nim2)
IR = 	 	 (A.3.1.1)

Sin2 a2 + tan2 (n/2 - n/m2)

1

12 =

( 1 + v cos2 a2 - I R )

( 1 + v cos2 a2 - / R )

cos2 a2
( 	 )

2E
(A.3.1.3)

Is = ( 1 - I I ) tan a2
	 (A.3.1.4)

IA = - 12 tan a2
	 (A.3.1.5)

IA = - v I l - I, Is
	 (A.3.1.6)

Is = - v 12 - IR 14
	 (A.3.1.7)

r2	 r2

sin 2a2 	cos2 a2
Is =	 	  14	 	  is	 (A.3.1.9)

r2 	r2

cos 2a2 	sin 2a2
17 = 	 Is 	

r2 	2r2

I II = It 822 E I,	 (A.3.1.12)
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(A.3.1.13)

(A.3.1.14)

(A.3.1.15)

(A.3.1.16)

(A.3.1.17)

(A.3.1.18)

(A.3.1.19)

112 = it a22 E 12

113 = E I*2 Is

1 14 = E 1 *2 Is

118 = G 7*2 17

118 = G 7*2 18

117 = 1 18 KI 2 - 1 16 12

118 = 1 16 KI 2 - 1 17 12

J =R

1

J2 =
cos2 a3

{ 	  ) (A.3.1.23)

Second Layer:

cos2 a3 tan2 (n/2 - it/m3)
(A.3.1.20)

J 1 =

Sin2 a3 + tan2 (n/2 - it/m3)

1

{ sin2 a3 - JA )	 (A.3.1.21)
( 1 + v cos2 a3 - JR )

( 1 + v cos2 a3 - JR )

73 = ( 1 - J 1 ) tan a3

•4 = - 72 tan a3

,
JA = - v J 1 - JR J3

Js = - V 72 - JR J4

sin 2a3	 cos2 a3
Js- 	 	  73 	 JA

2n

(A.3.1.24)

(A.3.1.25)

(A.3.1.26)

(A.3.1.27)

(A. 3.1.28)
r3	 r3



504

sin 2a3 	cos' a3
(A.3.1.29)Jo76 =	 74

r3	 r3

cos 2a3 	sin 2a3
(A.3.1.30)JA57 = 	 J 3

r3	 2 r,

cos 2a3 	sin 2a3
(A.3.1.31)Jo=	 54	 J,

r3	 2r3

Jo	 = it a' l 	E (A.3.1.32)

J 10 = G J*,	 /P, (A.3.1.33)

Jil	 = n 823 E J1 (A.3.1.34)

J I2 = it a23 E J, (A.3.1.35)

J,, = E I*3 Jo (A.3.1.36)

714 = E I *3 76 (A.3.1.37)

J IS = G J *3 77 (A.3.1.38)

J 16 = G 7*3 Jo (A.3.1.39)

J I7 = J IB K4 3 - J IG 13 (A.3.1.40)

J IG = J IG K4 3 - J I7 13 (A.3.1.41)

The Stiffness Constants For 9/9/1:

K 1 = m, ( I II sin a, + 1 17 cos a,) + m3 (J, 1 sin a3 + 317 cos a3)

+ Jo

(A.3.1.42)
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K2 = M2 (I° 12 sin a, + 1° 18 cos a,) + m, (J/ 2 sin a, + J19

cos a,)

(A.3.1.43)

1(3 = M2 (I I , sin a, + 1 13 cos a2 + r, I	 cos a, - r2 117 s i n 0(2)

+ m, (J,, sin a, + 713 cos a, + r, J,, cos a, - r, J 17 sin a,)

(A.3.1.44)

1(4 = m2 (I° 16 sin a2 + 16 14 cos a2 + r2 1° 12 cos a, - r2 1613

sin a2 ) + ma ( J 15 sin a, + Jig cos a3 + r, J12 cos a, - r3 J113

sin a,) + J10

(A.3.1.45)

A.3.2	 Geometrical Constant For 12/6/1 Cross Lay Strand:

For First Layer:

1 2 _

r, sin2 a, - v a l cos2 a,
(A. 3.2.1)

(A.3.2.2)

r, + v a, cos2 a,

r, cos2 a,

2 n (r, + v 82 cos2 a,)

I, = ( 1 - I /	,	 tan a, (A.3.2.4)

14 = - 1 2 tan 0(2 (A.3.2.5)

V
H4

H,

=

=

(A.3.2.6)

(A.3.2.7)

( a l	+ a, I /	)
r2,

v a, 1 2 / r22

I, = H, cos2 a2 - 2 13 sin 2a2 / (A.3.2.8)
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I, = H, cos2 a2 - 2 I L, sin 2a2 / r2	 (A.3.2.9)

1 7 = (H4 sin 2 a2 )/2 + (I, cos 2 a, )/r, 	 (A.3.2.10)

I, = (Hs sin 2 a2 )/2 + ( 14 cos 2 a2 )/r2
	 (A.3.2.11)

The expressions I,,, 1,2, 113, ... I l s used for 12/6/1 strand are
exactly the same as those used for 9/9/1 strand.

Second Layer:

r, sin2 a, - ( a, + 2 a, I, ) v cos2 a,
= 	 	 (A.3.2.12)

I-, + a, v cos2 a,

r„ cos2 a, - 4 it 82 1 412 V COS2 a3
72 = 

	

	 	 (A.3.2.13)
2 n ( r, + a, v cos2 a, )

73 = ( 1 - 3, ) tan a,	 (A.3.2.14)

34 = - 32 tan a,	 (A.3.2.15)

H I = v ( a l + 2 a, I I ) / r,	 (A.3.2.16)

H2 = 2 v a2 I 413 / r,	 (A.3.2.17)

H3 = 83 v / I-,	 (A.3.2.18)

Js = (H, + H3 71)COS2 a3 /r23 - 2 73 sin 2a3/r3	(A.3.2.8)

76 = (H2 + H3 72)COS 2 a3 1r23 - 2 74 sin 2a3/r3	(A.3.2.9)
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J7 = (H, + Ha J l ) sin 2a3/2 r', + Ja cos 2a3 /r3 	(A.3.210)

J8 = (HE + H3 J2 )sin 2a3/2 r', + J. cos 2a3 /r3 	(A.3.210)

The expressions J.,, J 121 J131 J/19 and the stiffness constant Ki,

K2 , Ka & K4 used for 12/6/1 strand are exactly the same as those used

for 9/9/1 strand.

A.3.3	 Geometrical Constant For 12/6F + 6/1 Equal Lay Filler Wire

Strand:

JA =	 V

cos' a, tan' (n/2 - n/m2)

(A.3.3.1)

(A. 3.3.2)Jo=
Sin' a, + tan' (n/2 - it/m2)

Jc = - V ( rf - a, ) /822

cos' a, tan' (n/2 - It/m,) cos' n/m,

(A.3.3.3)

(A.3.3.4)Jo -
rf sin' a2

JE = JA (A.3.3.5)

- cot a, tan' (n/2 - n/m,)
(A.3.3.6)JF	 =

Sin' a, + tan' (n/2 - It/m3)

J' a =	 Jo H, + Jo Ha (A.3.3.7)

JH =	 Jo H2 4' J0 H4 (A.3.3.8)
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For First Layer Of Helical Wire:

H, = 1 - JA cos2 a. + Je sin a	 cos a2 (A.3.3.9)

H, = (sin2 a, + J, sin a. cos a.) / H, (A.3.3.10)

H, = cos2 a. /	 ( 2 it H, ) (A.3.3.11)

H, =	 ( 1 - H,	 )	 tan a. (A.3.3.12)

H, = - H2 tan a2 (A.3.3.13)

H, =	 ( 1 - H,	 ) J IB tan a, + I, H I (A.3.3.14)

Hs	 = (J4 - Je tan a. ) H2 (A.3.3.15)

H,	 = - ( H, sin 2a2 + H, sin2 a. ) / r. (A.3.3.16)

He	 = - ( HA sin 2a2 + H7 COS2 a. ) / r. (A.3.3.17)

H9	 = (H9 cos 2a2 - Hs sin a, cos a,) / r. (A.3.3.18)

11 10 = (H4 cos 2a2 - H, sin a, cos a.) / r2 (A.3.3.19)

For Helical Filler Wire:

I, = sin2 a, + Je cos2 a,	 (A.3.3.20)

12 = { J, + 1/(2 n) ) Cos 2 a,	 (A.3.3.21)

I, = ( 1 - H, ) tan aa 	 (A.3.3.22)

14 = - 12 tan a,	 (A.3.3.23)

I, = Se	 (A.3.3.24)

I. = JI-1	 (A.3.3.25)
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1 7	= - ( 13 sin 2a3 + I. sin2 a, ) / r f (A.3.3.26)

I,	 = - ( IA sin 2a3 + 1 7 cos2 a, ) / r, (A.3.3.27)

I,	 = (I, cos 2a3 - I. sin a, cos a,) / r f (A.3.3.28)

I I° = (IA cos 2a3 - IG sin a, cos a,) / r f (A.3.3.29)

For Second Layer Of Helical Wire:

J. , = 1 - Js cos2 a, + 3F sin a, cos a, (A.3.3.30)

J i = (sin2 a, + J, sin a, cos a,) / J j (A.3.3.31)

J2 = COS2 a. /	 ( 2 it J j	 ) (A.3.3.32)

J, =	 ( 1 - J 1	 )	 tan a, (A.3.3.33)

J4 = - J2 tan a, (A.3.3.34)

J, = Jp tan a, + ( JE - Jp tan a, ) J 1 (A.3.3.35)

JG	 = (Js - Jp tan a, ) J2 (A.3.3.36)

.17	 = - ( J2 sin 2a3 + Js sin2 a, ) / r, (A.3.3.37)

J,	 = - ( SA sin 2a3 + 37 COS2 a, ) / r, (A.3.3.38)

39	 = ( T, cos 2a3 - 35 sin a, cos a,) / I-, (A.3.3.39)

J 10 = (JA cos 2«3 - JG sin a, cos a,) / r, (A.3.3.40)
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