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Abstract

As we all know, the time series model is one of the most important aspects of

modern econometric analysis. The autoregressive model is the theoretical basis of

time series.

The classic autoregressive model has two features that can be improved, lin-

ear, and one-dimensional. Economic theory shows that many important macroe-

conomic time series exhibit nonlinear characteristics. If this non-linear feature is

ignored, the conclusion is likely to be wrong by only using linear analysis. There-

fore, it is necessary to expand the linear model and propose nonlinear methods.

Economic theory also shows that there is a mutual influence between individuals,

and it is also necessary to consider it as a network.

In this dissertation, we consider three nonlinear autoregressive models for time

series with network structure: The Threshold Network autoregressive (TNAR)

model, the Threshold Network quantile autoregressive (TNQAR) model and the

Markov Switching Network autoregressive (MS-NAR) model.

For the TNAR model, we provide the parameter conditions for the stationary

of the time series. Under this parameter condition, the TNAR process can be

approximated by the geometrically ergodic process. Under these conditions, we

discuss the statistical inference (estimation and test) of the TNAR model and

give the asymptotic theory on the inference. The test for nonlinearity is applied.

Simulation results and modeling for Twitter data were applied to support our

methodology for TNAR models.

For the TNQAR model, we also provide the parameter conditions for the sta-

tionary of the time series. Under these parameter conditions, the TNQAR process

can be approximated by the geometric traversal process. Under these condition,

we discuss the statistical inference (estimation and test) of the TNQAR model and
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give the asymptotic theory on the inference. A normality test is applied on the

data and a Hill estimator is provided to check whether the conditional distribution

of the historical information is a thick tail or not. Simulation results and modeling

of hedge fund data were used to support our methodology for TNQAR models.

The Markovian Switching model is provided and its maximum likelihood esti-

mation method is discussed.

Finally, the techniques and the process in collecting Twitter data are presented.
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Chapter 1

Introduction

1.1 Background

Nowadays, social media produces lots of high-dimensional data with network prop-

erty. In order to fit the dynamic changes of user behaviour, the Network Vector

AutoRegressive (NAR) model [50] is proposed. Social networks are made up of

many nodes and network relationships between nodes. For example, the activity

of a group of people on Twitter can be described by using a high-dimensional time

series. Each person in this group has impact on others. With increasing social me-

dia activity, how to analyse such social network is becoming increasingly important

in data science. Unlike traditional data, network structure data is no longer in-

dependent, but contains information about the relationships between individuals.

The relationships are of great commercial value. Modelling such high-dimensional

dependent data is a challenge in the research of Big Data. My study aims to de-

velop a nonlinear time series model to describe the dynamics of large-scale social

networks. We found the nonlinear phenomenon about a social network. For ex-

ample, when the activity of a social network increases, it increases gradually and

slowly; however when the activity of the social network drops, it drops sharply

and quickly. It means the speeds of increase and decrease are different. This is

why we want to study the nonlinearity in a social network.

Our network time series problem has a close relationship with the multivariate

time series [18] [13] [5]. [32] firstly suggested to model each individual time series

separately. This method is simple in both theory and computation. However, the
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relationships across the different time series were not considered. [4] developed a

vector autoregressive (VAR) model. In this model, all the information was taken

into account, but the number of parameters that need to be estimated is very

large. Especially, when the number of parameters is greater than the number

of observations, the parameters cannot be estimated. Therefore, a lot of efforts

were then made to reduce the number of parameters. For example, [36] provided a

parameter reduction method by factor modelling. [50] considered network structure

data and developed a network autoregressive (NAR) model. The NAR model not

only considered the relationships across variables, but also reduced the parameter

dimension.

However, the NAR model is a linear model. So the existing models are not able

to describe the data with nonlinear property. As high dimensional social network

has nonlinear property, we therefore propose to extend the NAR model to a series

of nonlinear models.

1.2 Overview of the Study

This thesis studies statistical inference of several types of nonlinear high-

dimensional time series models, including threshold (TNAR) and Markov-

Switching (MSNAR), which are two common non-linear models. At the same

time, we also consider how to construct the quantile regression (TQNATR) model

to explain the phenomenon of nonlinearity when the distribution of the noise has

thick tail, that is, the assumption that the noise follows the normal distribution

fails.

In the first chapter, we review the background knowledge of nonlinear time

series. The second chapter introduces some theoretical basis of this thesis, includ-

ing expanding the generalized method of moments (GMM) method and nonlinear

test to the high dimension problems. The third chapter introduces the Threshold

Network Autoregressive (TNAR) model and discusses the properties of its geomet-

ric ergodicity in order to obtain its stationarity. The GMM is applied to obtain

parameter estimation of the model and the asymptotic property of the estimation

has also been discussed. In addition, the Lagrange Multiplier test is provided to

determine the non-linearity of the data.
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At the end of the third chapter, three simulations were conducted, where we

derived the parameter estimation for the TNAR model using GMM estimators that

we have derived. The estimation results were compared to the true parameters

and it shows that the estimations were very accurate. And a real-world example

using the data extracted from Twitter (the details of data extraction are explained

in chapter 6) is presented to support our research results.

In the fourth chapter, we developed the non-linear Quantile Threshold Network

Autoregressive (QTNAR) model. Similar to the TNAR model, we discuss the

stationary conditions of the QTNAR model, provide its estimation method and

explore its asymptotic property. In addition, the Hill Estimator is provided to

check whether the data has a thick tail. And simulation results as well as an

example of financial markets are provided to support our research results.

The fifth chapter introduces another non-linear time series model, that is, the

Markov-Switching Model and the transformation mechanism of the model is de-

cided by an unobservable state variable. Simulation results of the model by using

maximum likelihood estimation, as well as real data analysis, have been discussed.

In some real data analysis of this thesis, there is no readily available data for us

to use, so we need to extract the raw data from the network and process it to

obtain the data that we can process and analyze. The sixth chapter introduces

the process of extracting data from Twitter website using Python. Chapter 7, the

last chapter of the thesis, includes a summary of our findings and some unresolved

problems for future works in the field.



Chapter 2

Preliminaries

2.1 Definition of Markov Processes

The Markov process is a kind of stochastic process. Its original model, Markov

chain was proposed by Russian mathematician A.A. Markov in 1907. A stochastic

process is a mathematical model for a system evolving randomly in time. De-

pending on the application, time may be modelled as discrete (e.g. 0,1,2,. . .) or

continuous (e.g. the real interval [0,∞)). A stochastic process {X(t), t ≥ 0}
is called a Markov process if the following Markov property is satisfied: for any

t1 < t2 < · · · < tn < t, P{X(t) ≤ x|X(tn) = xn, · · · , X(t1) = x1} = P{X(t) ≤
x|X(tn) = xn}, which states roughly that “given the present, the future is inde-

pendent of the past”.

2.2 Definition of an aperiodic irreducible

Markov chain

First we discuss the definition of irreducibility. We need the following notion.

• For any i, j ∈ S, which S is the state space, we say that the state j is

accessible from the state i if pij > 0 for some n ≥ 0, (notation: i→ j).

The property of accessibility is

• transitive, i.e., i→ k and k → j imply that i→ j.

4
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• Moreover, in case i→ j and j → i, we say that the states i and j communi-

cate, (notation i↔ j).

The property of communicating is an equivalence relation as

• i↔ i (reflexivity),

• i↔ j if and only if j ↔ i (symmetry),

• i↔ k and k ↔ jimplies i↔ j (transitivity).

As a consequence, the state space S can be completely divided into disjoint equiv-

alence classes with respect to the equivalence relation↔. The Markov chain {Xt}
with transition matrix P = (pij) is called irreducible if the state space S consists

of only one equvalence class, i.e. i↔ j for all i, j ∈ S.

Besides irreducibility, we need the second property of the transition probabili-

ties, i.e. aperiodicity.

The period di of the state i ∈ S is given by di = gcd{n ≥ 1 : p
(n)
ii > 0 where

“gcs” denotes the greatest common divisor. We define di = ∞ if p
(n)
ii = 0 for all

n ≥ 1. A state i ∈ S is said to be aperiodic if di = 1. The Markov chain {Xt}
and its transition matrix P = (pij) are called aperiodic if all states of {Xt} are

aperiodic.

2.3 Introduction to the NAR model

Here we consider a large-scale social network (for example, Facebook or Twitter),

which has N nodes, index i from 1 to N . To describe the network structure, an

adjacency matrix A = (aij) ∈ RN×N is defined, where aij = 1 if there is a social

relationship from i to j (e.g. user i follows user j on Twitter), otherwise aij = 0.

It can be directed (i.e. A 6= A>) or undirected (i.e. A = A>). Any node is not

allowed to be self-related, so that aii = 0 (for example, any Twitter user cannot

follow himself). Let yit be a continuous response, observed from node i at time t.

(e.g. tweet length). Yt = (y1t, y2t, · · · , yNt)> is the object we want to study.

Under the network framework, yit may be affected by four different factors.

First, yit may be affected by itself, but from the previous point in time, yi(t−1).

Second, yit may be affected by its followees, that is, {j : aij = 1}. Third, yit may
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also be affected by a set of node-covariates (Zi), such as a person’s age, gender

and location. Finally, unexplained changes should be attributed to an independent

random noise. Therefore, [50] propose a network vector autoregressive (NAR)

model.

yit = β0 + Z>i γ + β1n
−1
i

N∑
j=1

aijyj(t−1) + β2yi(t−1) + εit, i = 1, · · · , N. (2.1)

The NAR model assumes that the response of each node at a given time point is a

linear combination of (a) the previous value (yi(t−1)), (b) the average value of the

connected neighbors n−1
i

∑
j aijyj(t−1) with ni =

∑
j aij, called out-degree [47], (c)

a set of node-specific covariates Zi and (d) independent noise. The corresponding

coefficients are regarded as: the momentum effect, the network effect and the nodal

effect, respectively.

The term β0 + Z>i γ constitutes the node intercept of the ith node, where β0

is the intercept and γ is the corresponding coefficient (i.e. the nodal effect) . We

write β0i = β0 + Z>i γ. εit is the error term, which follows the normal distribution

with E(εit) = 0 and var(εit) = σ2.

Compared with the usual VAR model which needs to estimate N parameters,

the total number of unknown parameters in the NAR model is fixed. Therefore,

it is easy to estimate NAR models for large social networks.

2.4 Introduction to the TAR Model

2.4.1 Autoregressive Models

Consider a simple AR(p) model for a time series yt

yt = γ0 + γ1yt−1 + γ2yt−2 + · · ·+ γpyt−p + σεt. (2.2)

where γi for i = 1, 2, · · · , p are autoregressive coefficients, assumed to be constant

over time; εt ∼ WN(0, 1) stands for white-noise error term with constant variance.

The AR model can be written in a following vector form:

yt = Xtγ + σεt (2.3)
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where Xt = (1, yt−1, yt−2, . . . , yt−p) is a row vector of variables and γ is the vector

of parameters : (γ0, γ1, γ2, . . . , γp)
>. εt ∼ WN(0, 1) stands for white-noise error

term.

2.4.2 Threshold Autoregressive (TAR) Models

The TAR model can be considered as the extension of the autoregressive model,

allowing the model parameters to be changed based on a value of the weakly

exogenous threshold variable qt−1 = q(yt−1, · · · , yt−p). q(∗) is an unknown function,

which can be defined according to some requirements. Usually yt−1 triggers the

changes.

Defined in this way, the TAR model can be expressed as follows

yt = Xtγ
(j) + σ(j)εt if rj−1 < qt−1 < rj. (2.4)

−∞ = r0 < r1 < · · · < rk = ∞ are k + 1 non-trivial thresholds that divide the

domain of qt into k different states.

2.4.3 Estimation of the TAR(1) Model

Next, the estimation of a two-regime TAR(1) model is introduced. The TAR(1)

model can be written as

yt = (γ
(1)
0 + γ

(1)
1 yt−1)I(qt−1 ≤ r) + (γ

(2)
0 + γ

(2)
1 yt−1)I(qt−1 > r) + εt (2.5)

where I(·) denotes the indicator function.

Hence, Xt = (1, yt−1) since the order of TAR model is 1. Let Xt(r) =

(Xt1(qt−1 ≤ r),Xt1(qt−1 > r)), where 1(·) = (I(·), I(·))>, so equation 2.5 can

be written as

yt = Xt(r)θ + εt (2.6)

where θ = (γ(1)>, γ(2)>)>

The least squares (LS) method is used to estimate θ because equation 2.6 is a

regression equation (although the parameters are not linear). For a given r, the

LS estimate of θ is

θ̂(r) =

(
n∑
t=1

Xt
>(r)Xt(r)

)−1( n∑
t=1

Xt(r)
>yt

)
,
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with residuals êt(r) = yt −Xt(r)θ̂(r), and residual variance

σ̂2
n(r) =

1

n

n∑
t=1

êt(r)
2.

2.4.4 Test for Threshold Autoregression

An important question is whether the TAR(1) model, i.e. equation 2.5, is statis-

tically significant for linear AR (1). The null hypothesis is: H0 : γ(1) = γ(2). We

review the test methodology proposed by [20].

If the errors are i.i.d., a standard F statistic can be used, i.e.

Fn = n

(
σ̃2
n − σ̂2

n

σ̂2
n

)
,

where

σ̃2
n =

1

n

n∑
t=1

(yt −Xtγ̃)2,

and

γ̃ =

(
n∑
t=1

Xt
>Xt

)−1( n∑
t=1

Xt
>yt

)
is the ordinary least squares (OLS) estimate of γ under the null hypothesis that

γ(1) = γ(2). Then the F statistic for the threshold autoregression can be derived

that

Fn = sup
r∈Γ

Fn(r)

where Γ = [r, r] and

Fn(r) = n

(
σ̃2
n − σ̂2

n(r)

σ̂2
n(r)

)
is the pointwise F -statistic.

2.5 Generalized Method of Moments

According to the Chapter 14 in Time Series Analysis by [18], the aim of GMM is

to minimalize the equation of

Q(β) = m(β)>W−1m(β)
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and the estimate is

β̂ = arg min(m(β)>W−1m(β)). (2.7)

The choice of the weight matrix is the core issue of the moment estimation

method. [22] proposed the best weight matrix

W = (1/T )
T∑
t=1

[m(β0)][m(β0)]>, (2.8)

if the random errors were serially uncorrelated.

If the random error is serially correlated, [33] proposed the estimate of W :

W = Γ0 +

q∑
v=1

{1− [v/(q + 1)]}(Γv + Γ>v ),

where

Γv = (1/T )
T∑

t=v+1

[m(β)][m(β)]>.

The GMM estimator is asymptotically effective in large sample and invalid in

small sample. So parameter estimation can apply GMM only in large sample.

The procedure of GMM estimation is as follows. An initial estimate β is ob-

tained by OLS. Then the estimate of β is used in 2.8 to obtain an estimate of W .

Final, apply 2.7 to obtain the estimate of GMM.

2.6 Nonlinearity Test

The basic assumption of the classical linear regression model is that the regres-

sion variables, disturbance terms, and parameters are linear. In most cases, this

assumption is difficult to find theoretical foundation. Linearity is just an approx-

imation and simplification.

If the correct regression model is a nonlinear model and replaced with a linear

model, the model setting error will be generated and the estimator will be biased

and non-uniform. One of the reasons for the autocorrelation, heteroscedasticity,

and non-normal errors is the linear setting of this nonlinear model.

Therefore, nonlinearity test should be carried out to decide whether fitting a

linear model to data is appropriate. The nonlinearity test can be carried out using

the Lagrange Multiplier (LM) test [39] or equivalent [38]’s score test. The LM
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statistic has the same asymptotic distribution as the likelihood ratio test and the

Wald test, but only the estimator of the null hypothesis is considered for the LM

test. Usually, if the null hypothesis model is linear, its estimator is relatively easy.

2.7 Threshold Effect Test

In empirical research, for a time series type of economic variable, whether to

establish a linear time series model or a nonlinear time series model need to be

judged. This problem cannot be visually identified, but it can be transformed

into a statistical hypothesis test problem. Regarding to the test of the threshold

effect, many available test methods have been developed. At present, the two most

widely used tests include [44]’s F test, which is based on the principle of arranged

autoregression and the SupWald test proposed by [20].

2.8 Quantile Regression

According to the idea of quantile regression proposed by [28], [29] further proposed

a quantile autoregressive model (QAR). In this model, the autoregressive coeffi-

cients are variable at different quantile points, which can describe the different

behavioral features of time series at different quantile points, and provide com-

plete information of the entire conditional distribution of time series. For the time

series {yt}, the p-order linear quantile autoregressive model can be expressed as:

Qyt(τ |Ft−1) = θ0(τ) + θ1(τ)yt−1 + · · ·+ θp(τ)yt−p, (2.9)

where Ft is the σ-field generated by {ys, s ≤ t} and τ ∈ (0, 1) is the

quantile. Qyt(τ |Ft−1) is the conditional quantile of yt at the τ quantile.

θ0(τ), θ1(τ), · · · , θp(τ) represents the autoregressive coefficient at the τ quantile.

Equation 2.9 can be simplified as

Qyt(τ |Ft−1) = x>t θ(τ).

where xt = (1, yt−1, · · · , yt−p)> and θ(τ) = (θ0(τ), θ1(τ), · · · , θp(τ)).
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The parameter estimates for this model can be obtained by optimizing the

equation

θ̂(τ) = arg minθ

T∑
t=1

ρτ (yt −Qyt(τ |Ft−1))

where ρτ (u) = u(τ − I(u < 0)) is the loss function in [28].



Chapter 3

Threshold Network

Autoregressive Model

3.1 Background

In the field of classical econometrics, the linear model has an important position

and is the base of other econometric models. The linear model is relatively simple

in terms of model setting, and its parameter estimation. The model prediction

methods for the linear model are also relatively mature, and the results of the lin-

ear model are also easy to explain and understand in economic theory. The linear

autoregressive model is an important time series linear model and is usually used

to describe the linear dynamic of the adjustment mechanism for the economic vari-

able. It is the base of time series analysis and is important in time series analysis.

However, economic theory also shows that many important macroeconomic time

series exhibit nonlinear characteristics. Many empirical studies also support the

conclusion that “a large number of macroeconomic sequences have the characteris-

tics of nonlinear dynamic adjustment”, such as interest rate [2], inflation rate [11],

etc. It is clearly not appropriate to still use the linear autoregressive model to

model these economic variables that exhibit nonlinear dynamic mechanisms.

In order to adapt to the rapid development of economic theory, the nonlinear

methodology has also been rapidly developed. In the development of nonlinear

time series analysis, one of the focuses is on various nonlinear parametric models.

Threshold autoregressive (TAR) built an important theory for studying the non-

12
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linear dynamic behaviour of time series. It was first proposed by [41] and discussed

in detail by [43]and [42].

TAR is an approach to model the data using a multi-regime segmented local

linear autoregressive model. According to the threshold value, the time series is

divided into multiple regimes, and establishes different linear autoregressive models

for each regime.

3.2 The Model and Its Stationarity

3.2.1 Model and Notations

Our TNAR model is based on the NAR model. The model in [50] shows as follows

yit = β0 + Z>i γ + β1n
−1
i

N∑
j=1

aijyj(t−1) + β2yi(t−1) + εit, i = 1, · · · , N. (3.1)

We considered a large-scale social network with N nodes indexed by 1 ≤ i ≤ N

and yit is the response of ith node at time point t. The response yit is a linear

combination of: (a) yi(t−1), (b) n−1
i

∑N
j=1 aijyj(t−1) with ni =

∑
j aij, (c) node-

specific covariates Zi and (d) an independent noise.

Zi = (Zi1, · · · , Zip)> is a p-dimensional node-specific random vector for each

node i and aij describes the relationship between ith node and jth node by the

following rule that aij = 1 if the ith node follows the jth node, otherwise aij = 0.

Then the adjacency matrix A can be defined by A = (aij) ∈ RN×N and Yt =

(y1t, · · · , yNt)> ∈ RN constitutes an ultra-high dimensional vector.

This is a linear model which can capture linear dynamic structure of a network.

However, empirical study on our data from Twitter showed the social networks

have nonlinear dynamic structures. To incorporate the nonlinear property, we

propose the following threshold network autoregressive (TNAR) model,

yit = β0 + Z>i γ + β1n
−1
i

N∑
j=1

aijyj(t−1) + [β
(1)
2 I{yi(t−1)≥r}

+β
(2)
2 I{yi(t−1)<r}]yi(t−1) + εit, i = 1, · · · , N, (3.2)

where I{yi(t−1)≥r} is an indicator function which takes 1 when yi(t−1) < r and 0

otherwise. For simplicity in the exposition the following sections are restricted to
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studying nonlinear processes with at most two regimes. Notes, however, that the

methodology introduced here can be easily extended to more regimes.

Define Z = (Z1, · · · , ZN)> ∈ RN×p and B0 = β01 + Zγ ∈ RN , where γ =

(γ1, γ2, · · · , γp)> is the corresponding coefficient. The above equation (3.2) can be

rewritten in vector-matrix form as follows

Yt = β01 + β1WYt−1 + β2Yt−1 + β3Jt−1Yt−1 + Zγ + εt, (3.3)

where β2 = β
(1)
2 , β3 = β

(2)
2 − β

(1)
2 ,1 = (1, 1, · · · , 1)>,W =

diag{n−1
1 , · · · , n−1

N }A, is the row-normalized adjacency matrix and

Jt−1 = diag{I{y1(t−1)<r}, I{y2(t−1)<r}, · · · , I{yN(t−1)<r}}. We have the final TNAR

model:

Yt = B0 + Gt−1Yt−1 + εt, (3.4)

where Gt−1 = β1W + β2I + β3Jt−1.

3.2.2 Strict Stationarity: Type I

In order to do statistical inference for the TNAR model, we first need to show

when the model has a unique stationary solution. According to whether N is fixed

or N →∞, we can define two different types of stationary with type I (N is fixed)

and type II (N →∞).

For Type I stationarity, the common method to show whether nonlinear time

series is stationary is to represent time series as a Markov chain and show that the

Markov chain is ergodic. We will use the following Lemma 3.2.1 that shows the

Markov chain is ergodic under this sufficient condition and Lemma 3.2.2 is also

used in the proof of Theorem 3.2.1.

Lemma 3.2.1. Assume that {Yt} is an aperiodic φ-irreducible Markov chain and

let g be a nonnegative measurable function. Then {Yt} is geometrically ergodic if

there exists a small set C and constants λ1 > 0, λ2 > 0, 0 < λ < 1 such that

(i) E{g(Yt)|Yt−1 = Y } ≤ λg(Y )− λ1, for any Y /∈ C;

(ii) E{g(Yt)|Yt−1 = Y } ≤ λ2, for any Y ∈ C

This lemma is called drift-criteria for the geometric ergodicity of a Markov

chain, which comes from [45] (see also [35]). In order to get the ergodicity of the

TNAR model, we need an assumption on error terms:
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Assumption 3.2.1. εt = (ε1t, · · · , εNt)> are independent and distributed with

positive density functions and finite fourth moments.

The following Lemma 3.2.2, which can be easily obtained by the usual method

in Markov chian theory, is also used in proof of Theorem 3.2.1.

Lemma 3.2.2. Under assumption 3.2.1,{Yt} is an aperiodic φ-irreducible Markov

chain and every bounded compact set with positive Lebesgue measure is a small set.

Hence, we are now ready to state the following theorem that the TNAR model

is ergodic and hence stationary when |β1|+ max{|β2|, |β2 + β3|} < 1.

Theorem 3.2.1. If ρ = |β1|+ max{|β2|, |β2 +β3|} < 1, then the stochastic process

{Yt} defined by model (3.3) is geometrically ergodic, and hence it has a unique

stationary distribution as

Yt =
∞∑
j=0

Πj(B0 + εt−j), (3.5)

where Πj =
∏j

i=1 Gt−i and Π0 = IN

Proof. First, we prove that Yt has the following form of solution. According to

the difinition of equation 3.4, that is, Gt−1 = β1W + β2I + β3Jt−1,

Yt = B0 + Gt−1Yt−1 + εt

= B0 + Gt−1(B0 + Gt−2Yt−2 + εt−1) + εt

= B0 + Gt−1B0 + Gt−1Gt−2Yt−2 + Gt−1εt−1 + εt

· · ·

=
∞∑
j=1

(

j∏
i=1

Gt−iB0 +

j∏
i=1

Gt−iεt−j) + B0 + εt

=
∞∑
j=0

Πj(B0 + εt−j),

where Πj = Gt−1Gt−2 · · ·Gt−j for j > 0 and Π0 = IN .

Second, we apply Lemma 3.2.1 to prove the model (3.3) is geometrically er-

godic. Define a norm by

‖X ‖2 =
N∑
i=1

x2
i for X = (x1, · · · , xN)> ∈ RN . (3.6)
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Let g(Y ) = ‖Y ‖, where Y = (y1, · · · , yN) ∈ RN . We have

E{g(Yt) | Yt−1 = Y } = E{‖B0 +GY + εt‖}

≤ E{‖B0‖+ ‖GY ‖+ ‖εt‖}

= E‖B0‖+ E‖GY ‖+ E‖εt‖

≤ E‖B0‖+ (|β1|+ max{|β2|, |β2 + β3|})‖Y ‖+ E‖εt‖

since

E‖GY ‖ = E‖ (β1W + β2I + β3Jt−1)Y ‖

≤ E‖β1WY ‖+ E‖β2IY + β3Jt−1Y ‖

≤ |β1|E‖Y ‖+ max{|β2|, |β2 + β3|}E‖Y ‖

= (|β1|+ max{|β2|, |β2 + β3|})‖Y ‖

and note that

‖WY ‖2 = (WY )T (WY )

≤ Y T (W TW )Y

≤ ρ(W TW )Y TY

which implies

‖WY ‖ ≤ ‖Y ‖.

This is because W TW is a symmetric matrix and its maximum eigenvalue

ρ(W TW ) ≤ ρ(W T )ρ(W ) ≤ ρ(W ) = 1. The spectral radius of W in Appendix A.1

are applied here. Notice we have E‖εt‖ =
√∑N

i=1E(ε2
it) =

√
Nσ2 =

√
Nσ < ∞.

Let ρ = |β1|+ max{|β2|, |β2 + β3| < 1 and take λ and M such that 0 < ρ < λ < 1

and

M >
E‖B0‖+

√
Nσ

λ− ρ
, (3.7)

where E‖B0‖ < ∞. Denote C = {Y : ‖Y ‖ ≤ M}. By Lemma 3.2.2, C is a small

set.

When ‖Y ‖ > M , that is, Y /∈ C, we have

E{g(Yt)|Yt−1 = Y } ≤ λg(Y )− λ1, (3.8)
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where λ1 = (λ− ρ)M − E‖B0‖ −
√
Nσ > 0.

For any Y ∈ C,

E{g(Yt)|Yt−1 = Y } ≤ λ2 (3.9)

where λ2 = E‖B0‖+ ρM +
√
Nσ > 0.

By Lemma 3.2.1, {Yt} is geometrically ergodic, and hence it has a unique

stationary distribution.

3.2.3 Strict Stationarity: Type II

Next we show the Type II stationarity. [50] provided a reasonable definition of

type II stationarity.

Definition 3.2.1. Let Yt ∈ RN be a N-dimensional time series with N → ∞.

Define W = {ω ∈ R∞ :
∑
|ωi| < ∞}, where ω = (ωi ∈ R1 : 1 ≤ i ≤ ∞)> ∈ R∞.

For each ω ∈ W, let wN = (ω1, · · · , ωN)> ∈ RN be the truncated N-dimensional

vector. {Yt} is then said to be strictly stationary, if it satisfies the following con-

ditions: for any ω ∈ W, (1) Y ω
t = lim

N→∞
w>NYt exists in the almost sure sense; and

(2) {Y ω
t } is strictly stationary.

We then have the following theorem for the TNAR model.

Theorem 3.2.2. Assume the same conditions as in Theorem 3.2.1 with N →∞.

Then TNAR model has a unique strictly type II stationary solution with finite first

order moment.

Proof. To prove the existence of a stationary solution, it is sufficient to show that

{Yt} is strictly stationary according to Definition 3.2.1.

Define |M |e as |M |e = (|mij|) ∈ Rn×p for any arbitrary matrix M = (mij) ∈
Rn×p. Moreover, for matrices M1 = (m

(1)
ij ) ∈ Rn×p and M2 = (m

(2)
ij ) ∈ Rn×p, define

M1 �M2 as m
(1)
ij ≤ m

(2)
ij for 1 ≤ i ≤ n and 1 ≤ j ≤ p.

Let βmax denote max(|β2|, |β2 + β3|) and define Gmax = |β1|W + βmaxI. Then

we have

|G|e � |Gmax|e (3.10)
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Now we want to prove

E|w>NYt| <∞,

which implies that lim
N→∞

w>NYt exists. We have

|w>NYt| ≤
∑
i

|ωi|
∑
i

|yit| (3.11)

and

E|B0 + εt−j|e � C1, (3.12)

where C = |β0|+ E|Z>i γ|+ E|εit| and

|Gmax|je = (|β1|W + βmaxI)j1. (3.13)

Hence, we have

E|w>NYt| = E|w>N
∞∑
j=1

(

j∏
i=1

Gt−i)(B0 + εt−j)|

by (3.11) ≤
∑
|ωi|

∞∑
j=0

E|(
j∏
i=1

Gt−i)(B0 + εt−j)|

≤
∑
|ωi|

∞∑
j=0

(

j∏
i=1

|Gt−i|)E|(B0 + εt−j)|

by (3.10 and 3.12) ≤
∑
|ωi|

∞∑
j=0

|Gmax|jeC1

by (3.13) = C
∑
|ωi|

∞∑
j=0

(|β1|+ βmax)j <∞,

which implies that lim
N→∞

w>NYt exists with probability one. Let Y ω
t = lim

N→∞
w>NYt,

and it is obvious that {Y ω
t } is strictly stationary. Hence, {Yt} is strictly stationary

according to Definition 3.2.1.

Next, we verify the uniqueness of the strictly stationary solution. Assume that

{Ỹt} is another strictly stationary solution to the TNAR model with finite first

order moment. Therefore, E|Ỹt|e � C11 for some constant C1.

Then we have

E|w>NYt −w>N Ỹt| = E

∣∣∣∣∣
∞∑
j=m

w>N(

j∏
i=1

Gt−i)(B0 + εt−j)−w>N(
m∏
i=1

Gt−i)Ỹt−m

∣∣∣∣∣
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≤
∑
i

|ωi|E

∣∣∣∣∣
∞∑
j=m

(

j∏
i=1

Gt−i)(B0 + εt−j)−
m∏
i=1

Gt−iỸt−m

∣∣∣∣∣
≤

∑
i

|ωi|

(
∞∑
j=m

|Gmax|jE|B0 + εt−j|+ |Gmax|me E|Ỹt−m|

)

≤
∑
i

|ωi|

(
C
∞∑
j=m

(|β1|+ βmax)j + C1(|β1|+ βmax)m

)

for any N and weight ωv. Consequently, by the arbitrary specification of m,

we have Yω = Ỹω
t with probability one. This completes the proof of Theorem

3.2.2.

3.3 GMM Parameter Estimation

Let β = (β0, β1, β2, β3)> ∈ R3 and θ = (θ>j ) = (β>, γ>)> ∈ Rp+4. In order to

estimate the unknown parameter θ, we rewrite the TNAR model (3.2) as

yit = β0 + Z>i γ + β1w
>
i Yt−1 + β2yi(t−1) + β3I{yi(t−1)<r}yi(t−1) + εit

= X>i(t−1)θ + εit (3.14)

where Xi(t−1) = (1, w>i Yt−1, yi(t−1), I{yi(t−1)<r}yi(t−1), Z
>
i )> ∈ Rp+4 and wi =

(aij/ni : 1 ≤ j ≤ N)> ∈ RN is the ith row vector of W . We denote Xt =

(X1t, X2t, · · · , XNt)
> = (1,WYt,Yt, JtYt,Z) ∈ RN×(p+4). Then model (3.2) can

be rewritten in vector form as Yt = X>t−1θ + εt. The parameters in the TNAR

model can be estimated by the generalized method of moments (GMM ) [22].

3.3.1 General Idea of GMM Method

GMM was originally proposed by [22]. It has become an important unified frame-

work for estimation and inference in econometrics. It is a powerful moment-based

parameter estimation method. To obtain explicit expressions of unknown param-

eters from a set of moment conditions, GMM performs parameter estimation by

minimizing the weighted distance between the overall moment and the sample mo-

ment. The key advantage of GMM is that it only needs to specify some specific

moment conditions instead of all densities. The most famous implementation of
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the GMM method is the Hansen two-step algorithm, which is an iterative regres-

sion process proposed by [22] in his original GMM paper. In this section, we will

outline the process of parameter estimation of TNAR model using GMM according

to the Chapter 14 in Time Series Analysis by [18] (p. 410-413).

Yt is a N×1 vector and θ is an unknown (p+4)×1 vector of coefficients, h(θ,Yt)

can be viewed as an (p + 4)× 1 vectored-valued function. Let θ0 denote the true

value and suppose we have E{h(θ0,Yt)} = 0. Let YT,N = (Y>T ,Y>T−1, · · · ,Y>1 )> be

a (TN × 1) vector and let the vector-valued function g(θ,YT,N) ∈ R(p+4)×1 denote

the sample average of h(θ,Yt)

g(θ,YT,N) = (1/T )
T∑
t=1

h(θ,Yt). (3.15)

GMM estimates θ̂ for real parameters θ is the minimum orthogonality condi-

tion:

Q(θ,YT,N) = g(θ,YT,N)>Wg(θ,YT,N),

where W is an weighting matrix. Here, we set W = I (Identity matrix) to assign

the same weight to all moment conditions. We can solve the GMM estimation θ

starting from the well-known least squares (LS) problem:

θ = arg min
θ

g(θ,YT,N)>g(θ,YT,N).

By setting the different moment condition h(θ), we will provide two special

cases to show how to use GMM.

3.3.2 Special Case 1: Ordinary Least Squares

The critical assumption needed to justify OLS regression is that the regression

residual εt is uncorrelated with the explanatory variables:

h(θ,Yt) = Xt−1(Yt − X>t−1θ). (3.16)

Hence, the GMM estimate of θ is the solution of the following equation:

g(θ,YN,T ) = (1/NT )
T∑
t=2

h(θ,Yt) = (1/NT )
T∑
t=2

Xt−1(Yt − X>t−1θ) = 0. (3.17)

Hence, the ordinary least squares type estimator can be obtained as

θ̂OLS =

(
T∑
t=1

Xt−1X>t−1

)−1 T∑
t=1

Xt−1Yt. (3.18)
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3.3.3 Special Case 2

Another assumption is that the regression residual εt is uncorrelated with the

previous value of Yt. Take

h(θ,Yt) = Gt−1(Yt − X>t−1θ) (3.19)

where Gt−1 = (Yt−1,Yt−2, · · · ,Yt−p−4)>. The GMM estimate of θ is the solution

of the following equation:

g(θ,YN,T ) = (1/NT )
T∑
t=1

Gt−1(Yt − X>t−1θ) = 0. (3.20)

Hence, the estimator of the second case can be obtained as

θ̂N,T =

(
T∑
t=1

Gt−1X>t−1

)−1 T∑
t=1

Gt−1Yt. (3.21)

3.4 Asymptotic Distribution of GMM Estimator

Given certain moment conditions, the corresponding estimator can be obtained.

However, how to select the best moment conditions is a problem. In our opinions,

the smaller the asymptotic variance, the better the moment condition. Therefore,

the next thing is to find the asymptotic distribution of the GMM estimator when

min{N, T} → ∞. We have the following proposition.

Proposition 3.4.1. Let g(θ;YN,T ) be differentiable in θ for all YN,T , and θ̂N,T be

the GMM estimator. Let {ŜN,T}∞T=1 be a sequence of positive definite r×r matrices

such that ŜN,T
P→ S. Suppose, further, that the following hold:

(a) θ̂N,T
P→ θ0;

(b)
√
NTg(θ0;YN,T )

d→ N(0, S);

(c) for any sequence {θ∗N,T}∞N,T=1satisfying θ∗N,T
P→ θ0

lim

{
∂g(θ;YN,T )

∂θ>

∣∣∣∣
θ=θ∗N,T

}
= lim

{
∂g(θ;YN,T )

∂θ>

∣∣∣∣
θ=θ0

}
= D>

in probability, then √
NT (θ̂N,T − θ0)

d→ N(0, V ) (3.22)

where V = {DS−1D>}−1
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Proof. Let gi(θ;YN,T ) denote the ith element of g(θ;YN,T ), so that gi : Ra → R1.

By the mean-value theorem,

gi(θ̂N,T ) = gi(θ0;YN,T ) + [di(θ
∗
i,N,T ;YN,T )]>(θ̂N,T − θ0) (3.23)

where

di(θ
∗
i,N,T ;YN,T ) =

∂gi(θ;YN,T )

∂θ>

∣∣∣∣∣
θ=θ∗i,N,T

for some θ∗i,N,T between θ0 and θ̂N,T . Define

D>N,T =


[d1(θ∗1,N,T ;YN,T )]>

[d2(θ∗1,N,T ;YN,T )]>

...

[dr(θ
∗
1,N,T ;YN,T )]>

 . (3.24)

Stacking the equations in an (r × 1) vector produces

g(θ̂N,T ;YN,T ) = g(θ0;YN,T ) +D>N,T (θ̂N,T − θ0). (3.25)

If both sides of (3.25) are multiplied by the matrix∂g(θ;YN,T )

∂θ>

∣∣∣∣∣
θ=θ̂N,T


>

× Ŝ−1
N,T , (3.26)

the result is ∂g(θ;YN,T )

∂θ>

∣∣∣∣∣
θ=θ̂N,T


>

× Ŝ−1
N,T × [g(θ̂N,T ;YN,T )]

=

∂g(θ;YN,T )

∂θ>

∣∣∣∣∣
θ=θ̂N,T


>

× Ŝ−1
N,T × [g(θ0;YN,T )]

+

∂g(θ;YN,T )

∂θ>

∣∣∣∣∣
θ=θ̂N,T


>

× Ŝ−1
N,T ×D

>
N,T (θ̂N,T − θ0). (3.27)

(14.1.22) in [18] shows the left side of (3.27) equals zero, so

θ̂N,T − θ0 = −


∂g(θ;YN,T )

∂θ>

∣∣∣∣∣
θ=θ̂N,T


>

× Ŝ−1
N,T ×D

>
N,T


−1
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×

∂g(θ;YN,T )

∂θ>

∣∣∣∣∣
θ=θ̂N,T


>

× Ŝ−1
N,T × [g(θ0;YN,T )].

Now, θ∗i,N,T in (3.23) is between θ0 and θ̂N,T , so that θ∗i,N,T
P→ θ0 for each i.

Each row of D>N,T converges in probability to the corresponding row of D>

√
NT (θ̂N,T−θ0) = −

{
DS−1D>

}−1×
{
DS−1

√
NTg(θ0;YN,T )

}
(1+op(1)) (3.28)

Define

C = −
{
DS−1D>

}−1 ×DS−1,

then (3.28) becomes

√
NT (θ̂N,T − θ0) = C

√
NTg(θ0;YN,T )(1 + op(1)). (3.29)

Since √
NTg(θ0;YN,T )

d→ N(0, S), (3.30)

therefore √
NT (θ̂N,T − θ0)

d→ N(0, V ), (3.31)

where

V = CSC> =
{
DS−1D>

}−1×DS−1×S×S−1D>{DS−1D>}−1 =
{
DS−1D>

}−1
.

(3.32)

By Proposition 3.4.1, we know that θ̂N,T is
√
NT -consistent with asymptotic

variance V . This is of great importance for performance analysis and comparison

of large sample size scenarios. Then we apply the proposition into two special

cases.

Before proving the asymptotic properties of the estimated parameters, we need

to follow the assumptions as in [50].

• Assumption 2. (Node assumption) Assume ρ < 1, where ρ is defined in

Theorem 3.2.1. Moreover, assume that the Zi’s are independent and iden-

tically distributed random vectors, with mean 0 and covariance Σz ∈ Rp×p.

In addition, its fourth-order moment is finite. εit has the same assumption

for every i and t. In addition, we need {Zi} and {εit} to be independent of

each other.
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• Assumption 3. (Network structure)

A3.1) (Connectivity) Think of W as a probability transfer matrix whose

state space is defined as all nodes in the network. We assume that this

Markov chain is irreducible and aperiodic. Also define π = (πi) ∈ RN to

be the stationary distribution of this Markov chain, which has the following

properties, a) πi ≥ 0, b)
∑

i πi = 1 and c) π = W>π. Further,
∑N

i=1 π
2
i → 0

as N →∞.

A3.2) (Sparsity) Assume |λ1(W + W>)| = O(log(N)), where λ1(·) is the

largest eigenvalue of a matrix.

• Assumption 4. (Law of Large Numbers) Denote ΣY is the co-

variance matrix of Yt. Define Q = (I − G)−1(I − G>)−1 and

G = β1W + β2I. Assume that the following limits exist: k1 =

lim
N→∞

N−1tr(ΣY ), k2 = lim
N→∞

N−1tr(WΣY ), k3 = lim
N→∞

N−1tr{(I − G)−1},
k4 = lim

N→∞
N−1tr{Q}. Here k1, k2, k3 and k4 are fixed constants. In

addition, different from the Zhu’s assumptions, the following limits are

also assumed to exist: c−β = lim
N→∞

(NT )−1
∑N

i=1

∑T
t=1 Y

−
i(t−1), Σ−2 =

lim
N→∞

(NT )−1
∑T

t=1 Jt−1Y>t−1WYt−1, Σ−3 = lim
N→∞

(NT )−1
∑T

t=1 Jt−1Y>t−1Yt−1

and Σ−4 = lim
N→∞

(NT )−1
∑T

t=1 Jt−1Y>t−1Z.

Remark 2. The above assumptions can be explained as follows:

Assumption 2 is the basic assumption of the node covariates Zi and the noise

term εit, so that the law of large numbers and the central limit theorem can be

used. In fact, Assumption 2 can be relaxed to be weak dependent as long as the

law of large numbers and the central limit theorem hold.

Assumption 3 is about the network structure. (A3.1) ensures that all nodes

can reach each other within a limited number of steps, such that the network

is irreducible. (A3.2) ensures that the network is sufficiently sparse, so that the

divergence rate of λ1 can be controlled by log(N).

Assumption 4 is used to apply the law of large numbers, from which the asymp-

totic covariance matrix is derived. Consider for example the first condition in

Assumption 4, that is k1 = lim
N→∞

N−1tr(ΣY ) = lim
N→∞

N−1
∑N

i=1 var
∗(Yit), where

var∗(·) = var(·|Z) and Z is about the nodal information. With the help of Assump-

tion 4, the following limits can be verified to exist: k5 = lim
N→∞

N−1tr(WQW>),
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k6 = lim
N→∞

N−1tr(WΣYW
>), k7 = lim

N→∞
N−1tr{WQ}, k8 = lim

N→∞
N−1tr{W (I −

G)−1}.
Now under these assumptions, we get asymptotic normality for the following

two special cases when we apply the Proposition 3.4.1.

3.4.1 Special Case 1: Ordinary Least Squares

As a result, an ordinary least squares type estimator can be obtained by Corollary

3.4.1. Before that, Lemma 3.4.1 is also needed.

Lemma 3.4.1. Assuming the stationarity condition ρ < 1, and the Assumption

2-4 hold. Set Ŝ = (NT )−1
∑T

t=1 Xt−1X>t−1, Y −i(t−1) = I{Yi(t−1)<r}Yi(t−1) and Y−t−1 =

(I{Y1(t−1)<r}Y1(t−1)), · · · , I{YN(t−1)<r}YN(t−1))
>. Then we have

Ŝ
P→ S =



1 cβ cβ c−β 0>p

Σ1 Σ2 Σ−2 k8Σzγ

Σ3 Σ−3 k3Σzγ

Σ−3 Σ−4

Σz


,

as min{N, T} → ∞. Here cβ = β0(1− β1 − β2)−1,Σ1 = c2
β + k5γ

>Σzγ + k6,Σ2 =

c2
β + k7γ

>Σzγ + k2,Σ3 = c2
β + k4γ

>Σzγ + k1 and 0p = (0, · · · , 0)> is a vector with

p dimension.

Proof. Recall that Ŝ is a symmetric matrix, so we only calculate the upper triangle

of Ŝ.

Ŝ = (NT )−1

T∑
t=1

N∑
i=1

Xt−1X>t−1

=



1 S12 S13 S14 S15

S22 S23 S24 S25

S33 S34 S35

S44 S45

S55


,

where S12 = (NT )−1
∑T

t=1

∑N
i=1w

>
i Yt−1, S13 = (NT )−1

∑T
t=1

∑N
i=1 Yi(t−1),

S14 = (NT )−1
∑T

t=1

∑N
i=1 Y

−
i(t−1), S15 = N−1

∑N
i=1 Z

>
i , S22 =
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(NT )−1
∑T

t=1

∑N
i=1(w>i Yt−1)2,

S23 = (NT )−1
∑T

t=1

∑N
i=1 w

>
i Yt−1Yi(t−1), S24 = (NT )−1

∑T
t=1

∑N
i=1 w

>
i Yt−1Y

−
i(t−1),

S25 = (NT )−1
∑T

t=1

∑N
i=1 w

>
i Yt−1Z

>
i , S33 = (NT )−1

∑T
t=1

∑N
i=1 Y

2
i(t−1),

S34 = (NT )−1
∑T

t=1

∑N
i=1 Yi(t−1)Y

−
i(t−1), S35 = (NT )−1

∑T
t=1

∑N
i=1 Yi(t−1)Z

>
i ,

S44 = (NT )−1
∑T

t=1

∑N
i=1(Y −i(t−1))

2, S45 = (NT )−1
∑T

t=1

∑N
i=1 Y

−
i(t−1)Z

>
i ,

S55 = N−1
∑N

i=1 ZiZ
>
i .

From the [50]’s work, S12
P→ cβ, S13

P→ cβ, S13
P→ 0>p , S22

P→ Σ1, S23
P→

Σ2, S25
P→ k8γ

>Σz, S33
P→ Σ3, S35

P→ k3γ
>Σz and S55

P→ Σz.

Next, we prove the convergence of the remaining five elements in Ŝ one by one.

Step 1.1 Convergence of S14. Note that

S14 = (NT )−1

T∑
t=1

N∑
i=1

Y −i(t−1)

P→ c−β .

Step 1.2 Convergence of S24. Note that

S24 = (NT )−1

T∑
t=1

N∑
i=1

w>i Yt−1Y
−
i(t−1) = (NT )−1

T∑
t=1

Jt−1Y>t−1WYt−1
P→ Σ−2 .

Step 1.3 Convergence of S34. Note that

S34 = (NT )−1

T∑
t=1

N∑
i=1

Yi(t−1)Y
−
i(t−1) = (NT )−1

T∑
t=1

N∑
i=1

Y 2
i(t−1)I{Yi(t−1)<r}

P→ Σ−3 .

Step 1.4 Convergence of S44. Note that

S44 = (NT )−1

T∑
t=1

N∑
i=1

Y −i(t−1)Y
−
i(t−1) = (NT )−1

T∑
t=1

N∑
i=1

Y 2
i(t−1)I{Yi(t−1)<r} = S34

P→ Σ−3 .

Step 1.5 Convergence of S45. Note that

S45 = (NT )−1

T∑
t=1

N∑
i=1

Y −i(t−1)Z
>
i

P→ Σ−4 .

This completes the proof.

Corollary 3.4.1. (Ordinary Least Squares) Under the assumption of Theorem

3.2.2 √
NT (θ̂OLS − θ0)

d→ N(0, S−1) (3.33)

where

S = lim
T→∞,N→∞

(NT )−1

T∑
t=1

Xt−1X>t−1. (3.34)
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Proof. First of all, the GMM estimator is a consistent estimator of θ0, which meets

the first condition of proposition 3.4.1.

Secondly, we need to prove the second condition of proposition 3.4.1

√
NTg(θ0,YN,T )

d→ N(0, S)

We know

g(θ,YN,T ) = (1/NT )
T∑
t=1

Xt−1(Yt −X>t−1θ) (3.35)

To prove the result, it suffices to show that

√
NTη>g(θ0,YN,T ) = (NT )−

1
2

T∑
t=1

η>Xt−1εt
d→ N(0, η>Sη) (3.36)

for any η, where σ2 is set to be 1 in this step for simplicity. Denote ξNt =

(NT )−
1
2η>Xt−1εt, SNt =

∑t
s=1 ξNs and FNt = σ{εis, 1 ≤ i ≤ N,−∞ < s ≤ t} so

{SNt,FNt,−∞ < t ≤ T,N ≥ 1} is a martingale array.

For any δ > 0, as N →∞,

TN∑
t=1

E{ξ2
NtI(|ξNt| > δ)|FN,t−1} ≤

TN∑
t=1

E

(
ξ4
Nt

δ2
|FN,t=1

)
(3.37)

≤ C

(NTN)2δ2

TN∑
t=1

(η>Xt−1X
>
t−1η)2 P→ 0 (3.38)

where ξ4
Nt = (NTN)−2(η>Xt−1εtε

>
t X

>
t−1η)2 and C = E(εtε

>
t εtε

>
t ) is some constant.

TN∑
t=1

E (ξ2
Nt|FN,t−1) =

1

NTN

TN∑
t=1

η>Xt−1X
>
t−1η

P→ η>Sη (3.39)

where Ŝ = 1
NT

∑T
t=1 Xt−1X

>
t−1

p→ S because of Lemma 3.4.1 . According to

the central limit theorem for martingale difference sequences, we have SNTN =
√
NTη>g(θ0,YN,T )

d→ N(0, η>Sη).

Thirdly,

∂g(θ;YN,T )

∂θ>
=

1

NT

T∑
t=1

Xt−1X
>
t−1 = Ŝ

P→ S,

which meets the third condition of proposition 3.4.1.

Hence, V = {DS−1D>}−1 = S−1. This completes the proof.
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By Corollary 3.4.1, θ̂OLS is
√
NT consistent with asymptotic variance S−1. The

asymptotic distribution for estimate can be used to construct confidence intervals.

Below we prove a lemma which shows the convergence in the above (3.34) is

true and then gives the asymptotic distribution of parameter estimates.

3.4.2 Special Case 2

In this example, we want to show how to use proposition 3.4.1 to prove the new

GMM estimator that we defined with asymptotic distribution. Due to time and

space constraints, the proof of the existence of the limits of Ŝ = 1
NT

∑T
t=1 Gt−1G>t−1

and 1
NT

∑T
t=1 Gt−1X

>
t−1. is skipped. We assume that the two limits exist.

As a result, a GMM estimator can be obtained by Corollary 3.4.2.

Corollary 3.4.2. Under assumption of Theorem 3.2.2,

√
NT (θ̂N,T − θ0)

d→ N(0, V ), (3.40)

where

V = lim
T→∞N→∞

NT

(
T∑

t=p+4+1

Gt−1X>t−1

)−1( T∑
t=p+4+1

Gt−1G>t−1

)(
T∑

t=p+4+1

Gt−1X>t−1

)−1

.

Proof. First of all, the same as OLS, the GMM estimator is a consistent estimator

of θ0, which meet the first condition of proposition 3.4.1.

Secondly, we need to prove the second condition of proposition 3.4.1

√
NTg(θ0,YN,T )

d→ N(0, S).

We know

g(θ,YN,T ) = (1/NT )
T∑
t=1

Gt−1(Yt −X>t−1θ). (3.41)

To prove the result, it suffices to show that

√
NTη>g(θ0,YN,T ) = (NT )−

1
2

T∑
t=1

η>Gt−1εt
d→ N(0, η>Sη) (3.42)

for any η.

Denote ξNt = (NT )−
1
2η>Gt−1εt, SNt =

∑t
s=1 ξNs and FNt = σ{εis, 1 ≤ i ≤

N,−∞ < s ≤ t}, so {SNt,FNt,−∞ < t ≤ T,N ≥ 1} is a martingale array.
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For any δ > 0, as N →∞,

TN∑
t=1

E{ξ2
NtI(|ξNt| > δ)|FN,t−1} ≤

TN∑
t=1

E

(
ξ4
Nt

δ2
|FN,t−1

)
(3.43)

≤ C

(NTN)2δ2

TN∑
t=1

(η>Gt−1G>t−1η)2 p→ 0 (3.44)

where ξ4
Nt = (NT )−2(η>Gt−1G>t−1η)2 and C = E(εtε

>
t εtε

>
t ) is some constant.

TN∑
t=1

E (ξ2
Nt|FN,t−1) =

1

NTN

TN∑
t=1

η>Gt−1G>t−1η
p→ η>Sη (3.45)

where Ŝ = 1
NT

∑T
t=1 Gt−1G>t−1

p→ S. According to the central limit theorem

for martingale difference sequences, we have SNTN =
√
NTη>g(θ0,YN,T )

d→
N(0, η>Sη).

Thirdly,

∂g(θ;YN,T )

∂θ>
=

1

NT

T∑
t=1

Gt−1X
>
t−1,

which meets the third condition of proposition 3.4.1 and

D> = lim
T→∞N→∞

1

NT

T∑
t=1

Gt−1X
>
t−1.

Hence,

V = {DS−1D>}−1

= lim
T→∞N→∞

NT

(
T∑
t=2

Gt−1X>t−1

)−1( T∑
t=2

Gt−1G>t−1

)(
T∑
t=2

Gt−1X>t−1

)−1

.

This completes the proof.

With Corollary 3.4.1 and Corollary 3.4.2, we will compare the performance of

the asymptotic variance of the GMM estimators with the Monte Carlo simulation

results in Section 3.6.
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3.5 Lagrange Multiplier (LM) Test

In this section, we will discuss the nonlinear test for the threshold effect. It is

important to determine whether the threshold effect is statistically significant. In

empirical studies, for a time series type economic variable, whether a linear time

series model or a non-linear time series model should be established requires the use

of standardized measurement methods. This judgment cannot be made intuitively,

but it can be transformed into a statistical hypothesis test to identify the TNAR

model. We will focus on the LM Test [6, 25] with the threshold autoregressive

model as the alternative hypothesis.

Now we develop such a test under the proposed TNAR model

Yt = B0 +GYt−1 + εt, (3.46)

where G = β1W + β2I + β3Jt−1. The matrices G and Jt−1 contain a threshold

parameter r. We assume that the threshold parameter r belongs to a known

bounded subset R̃ of R, usually a finite interval.

Given observations, Y1, · · · ,YT , consider the null hypothesis is H0 : β3 = 0,

which means that the model has one regime (linear NAR model) and the alterna-

tive one is H1 : β3 6= 0. Let θ = (β0, β1, β2, β3, γ) ∈ Rp+4. Under H0, there is no

nuisance parameter r. The conditional log likelihood is

L(θ) =
∑
t

lt =
T∑
t=1

(
−1

2
log|Σ0| −

1

2
ε>t Σ−1

0 εt

)
,

where

Σ0 =


σ2

σ2

. . .

σ2

 .

Suppose that θ̂0 is the maximum likelihood estimate of θ under the null hypothesis

H0. Then the LM test depends on the score function at θ̂0, where

LM = D(θ̂0)>I(θ̂0)−1D(θ̂0)→ χ2
k. (3.47)

Here D(θ̂0) and I(θ̂0) are the score function and Fisher information matrix, re-

spectively. k is the k equations in the null hypothesis, that is, k constraints on the

parameter θ.
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Since our model has extra parameters , [7] shows the expression (3.47) need to

be modified. D(θ) and I(θ) are written into the block vectors or the block matrices

according to the dimensions of the parameter to be estimated β3 and the extra

parameters (β0, β1, β2, γ), i.e.

D(θ) =

[
D1(θ)

D2(θ)

]
, I(θ) =

[
I11(θ) I12(θ)

I21(θ) I22(θ)

]
.

By routine operations, it is easy to obtain the scoring vector,

(∂L(θ)
∂β0

,∂L(θ)
∂β1

,∂L(θ)
∂β2

,∂L(θ)
∂β3

, ∂L(θ)
∂γ

), and the expectation of the second derivatives

with respect to β0, β1, β2, β3 and γ. The detailed calculation of this part is in

Appendix A.2.

The Lagrange-multiplier test statistic is

LM = sup
r∈R̃

D1(θ̂0)>[I11(θ̂0)− I12(θ̂0)I22(θ̂0)−1I21(θ̂0)]−1D1(θ̂0), (3.48)

where

D1(θ̂0) =
∂L(θ)

∂β3

∣∣∣∣
θ̂0

=
1

σ̂2

T∑
t=1

N∑
i=1

Y(t−1)iε̂tiI{Y(t−1)i<r},

I11(θ̂0) = E

(
−∂

2L(θ)

∂β2
3

)
θ̂0

=
1

σ̂2

T∑
t=1

N∑
i=1

Y 2
(t−1)iI{Y(t−1)i<r},

I21(θ̂0) = I12(θ̂0)> = E
(
− ∂2L(θ)
∂β3∂β0

− ∂2L(θ)
∂β3∂β1

− ∂2L(θ)
∂β3∂β2

− ∂2L(θ)
∂β3∂γ1

· · · − ∂2L(θ)
∂β3∂γp

)
θ̂0

=



1
σ̂2

∑T
t=1

∑N
i=1 Y(t−1)iI{Y(t−1)i<r}

1
σ̂2

∑T
t=1

∑N
i=1

(∑N
j=1WijY(t−1)j

)
Y(t−1)iI{Y(t−1)i<r}

1
σ̂2

∑T
t=1

∑N
i=1 Y

2
(t−1)iI{Y(t−1)i<r}

1
σ̂2

∑T
t=1

∑N
i=1 Y

2
(t−1)iI{Y(t−1)i<r}Z1i

...
1
σ̂2

∑T
t=1

∑N
i=1 Y

2
(t−1)iI{Y(t−1)i<r}Zpi


,

I22(θ̂0) = E



−∂2L(θ)

∂β2
0
− ∂2L(θ)
∂β0∂β1

− ∂2L(θ)
∂β0∂β2

− ∂2L(θ)
∂β0∂γ1

· · · − ∂2L(θ)
∂β0∂γp

− ∂2L(θ)
∂β1∂β0

−∂2L(θ)

∂β2
1
− ∂2L(θ)
∂β1∂β2

− ∂2L(θ)
∂β1∂γ1

· · · − ∂2L(θ)
∂β1∂γp

− ∂2L(θ)
∂β2∂β0

− ∂2L(θ)
∂β2∂β1

−∂2L(θ)

∂β2
2
− ∂2L(θ)
∂β2∂γ1

· · · − ∂2L(θ)
∂β2∂γp

− ∂2L(θ)
∂γ1∂β0

− ∂2L(θ)
∂γ1∂β1

− ∂2L(θ)
∂γ1∂β2

−∂2L(θ)

∂γ21
· · · − ∂2L(θ)

∂γ1∂γp
...

...
...

...
. . .

...

− ∂2L(θ)
∂γp∂β0

− ∂2L(θ)
∂γp∂β1

− ∂2L(θ)
∂γp∂β2

− ∂2L(θ)
∂γp∂γ1

· · · −∂2L(θ)
∂γ2p


θ̂0

.
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Here ε̂ti and σ̂2 are the residual and residual variance under the null hypothesis,

obtained by OLS estimate from [50]. By the first Theorem in [48], LM is asymptot-

ically distributed as χ2
k. Therefore, for a given confidence level α, it is not difficult

to determine the rejection domain of H0.

3.6 Numerical Studies

3.6.1 Simulation Models

To demonstrate the performance of the proposed methodology, we use the same

three examples as X [50]. The main difference among the three examples is

the generation mechanism of the adjacency matrix A and the selection of β =

(β0, β1, β2, β3)> ∈ R4 in (3.3). Except for this, they are similar. For each example,

the random error εit is generated from the standard normal distribution N(0, 1),

and the covariate Zi = (Zi1, Zi2, · · · , Zi5) ∈ R5 is generated by multivariate normal

distribution with mean value 0 and covariance Σz = (σj1j2), where σj1j2 = 0.5|j1−j2|.

For each example, γ is fixed at γ = (−0.5, 0.3, 0.8, 0, 0)>. To obtain Yt, starting

from any value, we generate 1000 times by (3.4) and obtain the 1000th value as our

initial value Y0 to remove the effect of the initial value. Then Yt can be generated

according to (3.4).

Example 1. (Dyad Independence Model) A Dyad Independence Model was

introduced in [24] with Dyad defined as Dij = (aij, aji) for 1 ≤ i < j ≤ N . It

is assumed that different Dijs are independent by Dyad independence. We let

P (Dij = (1, 1)) = 20N−1 to make sure the network sparsity. Moreover, we let

P (Dij = (1, 0)) = P (Dij = (0, 1)) = 0.5N−0.8. The result is that the expected

number of connected dyads is O(N0.2). Thereby, P (Dij = (0, 0)) will be 1 −
20N−1 − N−0.8 → 1 as N → ∞. For this example, we fix T=10, 30, 100 and

β = (0.3, 0.0, 0.5, 0.1)>.

Example 2. (Stochastic Block Model) Next we consider the stochastic block

model [34, 46], which is a popular network structure. According to [46], the

block network structure are randomly assigned for each node a block label

(k = 1, · · · , K), where K ∈ {5, 10, 20}. We let P (aij = 1) = 0.3N−0.3 if i and j

stay in the same block and P (aij = 1) = 0.3N−1 otherwise. This means that the

nodes are more likely to be connected in the same block than those from different
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blocks. For this example, we fix T=30 and β = (0.0, 0.1,−0.2, 0.1)>.

Example 3. (Power-Law Distribution Model) According to [3], there is a com-

mon network phenomenon that most nodes have very small links but there are a

small amount of nodes that have a large number of links. Such phenomenon can

be described by the power-law distribution. According to [9], we simulate A as

follows. First, the in-degree di =
∑

j aji are generated for each nodes according to

the discrete power-law distribution as P (di = k) = ck−α, where c is a normalizing

constant and the exponent parameter α ∈ {1.2, 2.0, 3.0}. Finally, we randomly

choose di nodes as the ith node’s followers. For this example, we fix T=30 and

β = (0.3,−0.1, 0.5, 0.1)>.

3.6.2 Performance Measurements and Simulation Results

We consider the different size (N=100, 500 or 1000) for each simulation example.

The experiment will be randomly repeated R=1000 times. Let θ̂(r) = (θ̂
(r)
j )> =

(β̂0

(r)
, β̂1

(r)
, β̂2

(r)
, β̂3

(r)
, γ̂(r)>)> be the estimator of the rth replication. We utilize

the following measures to assess these performances. For each parameter θj with

1 ≤ j ≤ p+ 4, the root mean square error (RMSE) is obtained by RMSEj =

{R−1
∑R

r=1(θ̂
(r)
j − θj)2}1/2. Then, for each parameter θj with 1 ≤ j ≤ p+ 4, the

95% confidence interval is defined by CI
(r)
j = (θ̂

(r)
j − z0.975ŜE

(r)

j , θ̂
(r)
j + z0.975ŜE

(r)

j ),

where ŜE
(r)

j is root square of the jth diagonal element of (
∑

tX>t−1Xt−1)−1σ̂2

with σ̂2 = (NT )−1
∑

i,t(yit − X>it θ̂
(r))2, and zα is the αth quantile of a stan-

dard normal distribution. The coverage probability (CP) is computed as CPj =

R−1
∑R

r=1 I(θj ∈ CI(r)
j ) where I(·) is the indicator function. Lastly, the total num-

ber of observed edges (TNOE) (i.e.,
∑

ij aij) and the network density (ND) is given

by {N(N − 1)}−1
∑

ij aij.

These detailed results are summarized in Table 3.1, Table 3.2 and Table 3.3.

For fixed T , the RMSE decreases towards 0 as N increases. For example, the

RMSE value of β3 with T = 30 drops from 2.6% to 0.8% as N increases from 100

to 1000 in Example 1. The network is sparse as N increases (ND drops from 22.7%

to 2.4% for Dyad Independence Model with N increases from 100 to 1000). The

coverage probabilities for each parameter (i.e., θj) are stable at the normal level

95%, which means the theoretical results is reasonable and the proposed estimator
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θ̂ is indeed consistent and asymptotically normal.
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3.7 A Twitter Dataset

The data are collected from Twitter(www.twitter.com) and the details of data

extraction are provided in Chapter 6. Our dataset contains weekly tweets length

for a total of N=9908 active followers of Strathclyde official Twitter account.

These Twitter users are observed for a total of T = 8 continuous weeks. The

response (yit) considered here is the number of characters contained in the post

by node i in week t. Moreover, we used the in-degrees and out-degrees as two

time-invariant nodal covariates. We provide the histogram of the in-degrees and

out-degrees in Figure 3.1. It can be seen that the distribution of in-degrees is

much more skewed than that of out-degree. Their median values are 12 and

20 respectively. The network structure A is defined to be the followee-follower

relationship. The resulting network density is around 4.0%. The histogram of

responses is plotted in Figure 3.2. The response distribution is normal with the

mean value 6.78.

The simple linear regression is conducted for each node with yit as the response

and yi(t−1) as the only covariate. As a consequence, R-squares can be computed for

each node. This leads to a total of N=9908 R-square values, whose median level

is about 7.3%. This suggests the existence of the momentum impact. Next, we

compute residuals from this model for each node. These residuals are treated as

the responses and regressed against
∑

j wijyj(t−1) (i.e., the network impact). this

leads to another N=9908 R-squares values, whose median is around 20%. This

suggests that, even after controlling the momentum impact, the network effect

exists.

We applied the LM test to our Twitter data and LM value is 3041 (p-

value<0.01). Therefore, it is significant to reject the linear assumption of these

data. It suggests that it is more appropriate to use our non-linear TNAR model to

provide the estimation results. The detailed estimation results are given in Table

3.4. The estimated network effect (0.17) suggests that the activeness of a node is

positively related to its connected neighbours. The estimated momentum effect

(0.62) confirms that a node with higher (lower) activeness level in the past is likely

to exhibit higher (lower) activeness in the future. The nodal effect indicates that

uses who have more followers and followees tend to be more active.
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Figure 3.1: The histogram of in-degrees (below) and out-degrees (upper).



Chapter 3 40

Figure 3.2: The histogram of the response.

Table 3.4: The detailed NAR analysis results for the Twitter Data Set

Regression coefficient Estimate SE(×102) p-value

β̂0 1.2442 3.78 < 0.001

β̂1 0.1715 0.65 < 0.001

β̂2 0.6247 0.30 < 0.001

β̂3 -0.2184 0.72 < 0.001

γ̂1 0.0018 0.02 < 0.001

γ̂2 0.0015 0.02 < 0.001
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3.8 Conclusion

To summarise, in the Chapter 6, we have collected data from Twitter to check

the validation of the model in [50]. We carried out LM test and rejected the

linear assumption of their model. The TNAR model is proposed to describe the

nonlinear property of high dimensional data. The strictly stationary condition of

TNAR model and the parameter estimation method by GMM have been provided.

The asymptotic properties of GMM is also investigated. The numerical studies

(simulation and real data analysis) have been carried out.
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Threshold Network Quantile

Autoregression

As we all know, the time series model is one of the most important contents in

modern econometric analysis. The autoregressive (AR) model is the theoretical

base of all time series models. The traditional model describes the process where

the conditional distribution of the explanatory variable is affected by its lagged

variable. Ordinary least squares (OLS) is an important method for estimating

model parameters. If random disturbances of the AR model follow the normal dis-

tribution, then the estimator has consistency and asymptotic efficiency. However,

in practice, the errors usually do not follow normal distributions, for example,

data with biased, peak or heavy tailed distribution, or data with significant het-

eroscedasticity, outliers, etc. In these situations, the OLS estimator has a large

deviation, and the robustness of the OLS estimator is poor. The linear quantile

regression model proposed by [28] can solve the above problem, which becomes

increasingly popular in the field of time series econometrics in recent years. [29]

further proposed a quantile autoregressive model for a conditional quantile func-

tion, which does not assume an independent and identically distributed (i.i.d)

underlying process.

42
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4.1 Introduction

For non-linear modelling, there are a few very important types of nonlinear model

such as threshold autoregressive (TAR) models, smooth transition (STAR) models,

and Markov switching models. Among them, the threshold autoregressive model

proposed by [42] has an important influence. This captures the asymmetrical

character of the time series when they are at different stages. A comprehensive

summary of TAR models in theory and the fields of econometrics and economics

can be found in [21].

However, the above research work is based on the framework of mean value,

which only describes the dynamics of the conditional mean process of the response

variable. The proposed linear quantile model by [28] can reveal the impact of

the explanatory variables on the response variables at each quantile point. [29]

developed a quantile autoregressive (QAR) model. In this model, the parameter

can be varying at different quantiles.

However, the quantile autoregressive model can only be applied in the univari-

ate case. To the authors’ knowledge, the method in the existing literature cannot

directly be applied to high dimensional data since the total number of parameters

is quite large.

In this chapter, we first propose the threshold network quantile autoregressive

(TNQAR) model.

The rest of the chapter is arranged as follows. In Section 2 we introduce the

threshold network quantile autoregressive model, where the stationary condition

are established. Details about parameter estimation method are given in Section

3, where the asymptotic properties are also given. Simulation studies and a real

data analysis are conducted in Section 4. Lastly, a brief conclusion is discussed in

Section 5.
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4.2 Threshold Network Quantile Autoregression

(TNQAR)

In this section, we first give a brief overview of network quantile regression

(NQAR). Then we propose our TNQAR model.

4.2.1 Network Quantile Autoregression

NQAR is developed by [52] under the framework of quantile regression. Let

Uit(1 ≤ i ≤ N, 1 ≤ t ≤ T ) be a sequence of iid random variables, which fol-

lows the standard uniform distribution. Assume that a q-dimensional random

nodal covariate vector Zi ∈ Rq belongs to the ith node. The network relationship

is defined by A = (aij ∈ RN×N) as the adjacency matrix, in which aij = 1 if the ith

node follows the jth node, otherwise aij = 0 and the nodes cannot be self-related

(i.e. aii = 0). The NQAR can be written as

Yit = β0(Uit) +

q∑
l=1

Zilγl(Uit) + β1(Uit)n
−1
i

N∑
j=1

aijYi(t−1) + β2(Uit)Yi(t−1) , gθ(Uit),

where the βj’s (0 ≤ j ≤ 3) and the γl’s (1 ≤ l ≤ q) are unknown coefficient

functions from [0,1] to R1 and ni =
∑

j 6=i aij is the out-degree for the ith node.

4.2.2 Model and Notations

Inspired by [52] which proposes the network quantile autoregression (NQAR)

model to describe the dynamic behaviour in a high dimensional system, we consider

a nonlinear quantile regression for analysing high dimensional data with network

structure and propose the TNQAR model as

Yit =β0(Uit) +

q∑
l=1

Zilγl(Uit) + β1(Uit)n
−1
i

N∑
j=1

aijYi(t−1) + β2(Uit)Yi(t−1)+

β3(Uit)1{Yi(t−1)>r}Yi(t−1) , gθ(Uit),

(4.1)

Assuming the right side of (4.1) is monotonically increasing in Uit, the condi-
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tional quantile function of Yit given (Zi,Yt−1) as

QYit(τ |Zi,Yt−1) =β0(τ) +

q∑
l=1

Zilγl(τ) + β1(τ)n−1
i

N∑
j=1

aijYi(t−1) + β2(τ)Yi(t−1)+

β3(τ)1{Yi(t−1)>r(τ)}Yi(t−1).

In the above equation, the quantile autoregressive coefficients are functions of τ

and vary over the quantiles.

Denote Yt = (Y1t, Y2t, · · · , YNt)> ∈ RN ,Z = (Z1, Z2, · · · , ZN)> ∈ RN×q. Let

B0t = β0(Uit) +
∑

l Zilγl(Uit, 1 ≤ i ≤ N)> ∈ RN ,Bkt = diag{βk(Uit), 1 ≤ i ≤
N} ∈ RN×N for k = 1, 2, 3. Jt−1 = diag{1{Yi(t−1)>r(Uit)}, 1 ≤ i ≤ N} ∈ RN×N .

Γ = E(B0t) = c01N ∈ RN , where c0 = b0 + cZ , b0 =
∫ 1

0
β0(u)du and cZ = E(Z1)>γ̃

with γ̃ = (
∫ 1

0
γl(u)du, 1 ≤ l ≤ q)>. Then the TNQAR model (4.1) can be re-

written in vector form as

Yt = Γ +GtYt−1 + Vt (4.2)

where Gt = B1tW + B2t + B3tJt−1 ∈ RN×N ,W = (wij) = (n−1
i aij) ∈ RN×N is the

row-normalized adjacency matrix and Vt = B0t − Γ ∈ RN .

4.2.3 Stationarity

For convenience, set bk = E{βk(Uit)} for k = 1, 2, 3, then we have the following

theorem.

Theorem 4.2.1. Assuming |b1| + max{|b2|, |b2 + b3|} < 1, the stochastic process

{Yt} is geometrically ergodic. Then there exists a unique stationary solution of

the TNQAR model (4.1) as

Yt =
∞∑
l=0

ΠlΓ +
∞∑
l=0

ΠlVt−l

where Πl =
∏l

k=1Gt−k+1 for l ≥ 1 and Π0 = IN .

Proof. First of all, by iteration, we can get the solution of the TNQAR model (4.1)

as

Yt =
L−1∑
l=0

ΠlΓ + ΠLYt−L +
L−1∑
l=0

ΠlVt−l =
∞∑
l=0

ΠlΓ +
∞∑
l=0

ΠlVt−l, (4.3)

where Πl =
∏l

k=1Gt−k+1 for l ≥ 1 and Π0 = IN .
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As in the previous chapter, we utilize the previous lemma 3.2.1 to show the

time series is stationary.

Define a norm by ‖X ‖2 =
∑N

i=1 x
2
i for X = (x1, · · · , xN)> ∈ RN and g(Y ) =

‖Y ‖.

E{g(Yt)|Yt−1 = Y } = E(‖Γ +GtY + Vt‖)

≤ E‖Γ‖+ E‖GtY ‖+ E‖Vt‖

≤ E‖Γ‖+ E‖Vt‖+ (|b1|+max{|b2|, |b2 + b3|})‖Y ‖

since

E‖GtY ‖ = E‖(B1tW + B2t + B3tJt−1)Y ‖

≤ E‖B1tWY ‖+ E‖B2tY + B3tJt−1Y ‖

≤ (|b1|+max{|b2|, |b2 + b3|})‖Y ‖

and

‖WY ‖ ≤ ρ(W>W )‖Y ‖

≤ ‖Y ‖ (since ρ(W>W ) ≤ ρ(W>)ρ(W ) = 1)

Let ρ = |b1|+max{|b2|, |b2+b3||} < 1 and take λ andM such that 0 < ρ < λ < 1

and

M >
E‖Γ‖+ E‖Vt‖

λ− ρ
.

Denote C = {Y : ‖Y ‖ ≤M} and easy to know that C is small set. When

‖Y ‖ > M (i.e. Y /∈ C), we have

E{g(Yt)|Yt−1 = Y } ≤ λg(Y )− λ1,

where λ1 = (λ− ρ)M − (E‖Γ‖+ E‖Vt‖) > 0. And when Y ∈ C,

E{g(Yt)|Yt−1 = Y } ≤ λ2,

where λ2 = ρM + E‖Γ‖ + E‖Vt‖ > 0. By lemma 3.2.1, {Yt} is geometrically

ergodic and there is a unique stationary distribution.
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4.3 Statistical Inference

4.3.1 Parameter Estimation and Asymptotic Property

In this part, we introduce an estimation method to the parameters of the TNQAR

model 4.1. The conditional quantile of yit is modeled by Qyit(τ |Zi,Yt−1) =

g(τ, r(τ)). g(·, ·) is a piecewise linear process, defined by g(τ, r(τ)) =

X>it (r(τ))θ(τ), where θ(τ) = [β0(τ), γ>(τ), β1(τ), β2(τ), β3(τ)]> ∈ Rq+4 and

Xit(r(·)) = (1, Z>i , n
−1
i

N∑
j=1

aijyj(t−1), yi(t−1),1{yi(t−1)>r(·)}yi(t−1)) ∈ Rq+4,

with 1{·} being the indicator function. Note that Vitτ = yit − g(τ, r(τ)).

For models with a known threshold parameter r0 = r0(τ) i.e. different τ ,

the corresponding threshold value is given, the classical quantile autoregression

estimation process can be applied. The estimation method is similar as the classic

network QAR [52]. Then the parameter vector θr0(τ) can be estimated by

θ̂r0(τ) = arg min
θ

N∑
i=1

T∑
t=1

ρτ{yit −Xit(r0)>θ}, (4.4)

where ρτ (u) = u{τ − 1(u < 0)} is the loss function for quantile regression in [28].

[52] demonstrates the asymptotic property of the standard linear network

quantile autoregressive estimator. [14] proved the asymptotic property of the one-

dimensional threshold quantile autoregressive estimator. In order to develop [14]

to high-dimensional situations and develop [52] to regime switching framework, we

need the following assumptions.

Assumptions:

A1: τ ∈ B ⊂ (0, 1) and B is a compact set. r(τ) lies in a compact set G ⊂ R
for every τ ∈ B and θ(τ) ∈ Θ, with Θ compact and convex;

A2: Let Fit(·|Ft) = Fit(·) denote the conditional distribution function of yit

given Ft, Fit(·) has a continuous density of fit(·) with 0 < fit(u) <∞ on U = {u :

0 < Ft(u) < 1} and fit is uniformly integrable on U .

A3: Define

Ω̂0(r, r∗) = (NT )−1
∑
it

Xit(r)X
>
it (r

∗)
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and

Ω̂1(τ, r) = (NT )−1
∑
it

fit(X
>
it θ(τ))Xit(r)X

>
it (r)

converge almost surely to Ω0(r, r∗) = E[Xit(r)X
>
it (r

∗)] and Ω1(τ, r) =

E[fit(X
>
it θ(τ))Xit(r)X

>
it (r)] respectively, for any given r(τ) ∈ G and all τ ∈ B.

Define Σθ(τ, r) = Ω−1
1 (τ, r)Ω0(r, r)Ω1(τ, r)−1. A1 imposes that r(·) lies on a com-

pact set. This assumption was used by [14]. A2 is common in the QR literature.

A3 guarantees the consistency of the variance parameter estimators Ω0(r, r) and

Ω1(τ, r) in the parameter space G ×B.

A4: For all τ ∈ B, (θ0(τ), r0(τ)) = arg min(θ,r)E[
∑

i ρτ (Vitτ )] exists and is

unique.

A4 guarantees that for each threshold value and quantile, this TNQAR problem

has a unique solution.

These assumptions A1-A4 are common in quantile regression and regime

switching literature. These assumptions are used in [14].

(C1) (Nodal Assumption) Assume that the Zi’s are independent and identically

distributed random vectors with a mean of zero and a covariance of Σz ∈ Rp×p.

In addition, its fourth-order moment is finite. The same settings are used for

Vitτ across both 1 ≤ i ≤ N and 0 ≤ t ≤ T . Also we need {Zi} and {Vitτ} are

independent of each other.

(C2) (Connectivity) Think of W as a transfer matrix of a Markov chain whose

state space is the nodes in the network. We assume that this Markov chain is

irreducible and aperiodic. In addition, we define π as the stationary distribution

of this Markov chain. And
∑N

i=1 π
2
i converges to zero as N tends to infinity.

(C3) (Sparsity) Define W ∗ = W + W> is a symmetric matrix, assuming

λ1(W ∗) = O(logN)

(C4) (Monotonicity) It is assumed that X>it θ(τ) (1 ≤ i ≤ N, 1 ≤ t ≤ T ) is a

monotone increasing function with the respect to τ ∈ (0, 1).

These assumptions follow the assumption from [50], which has a detailed de-

scription.

Therefore, lemma 4.3.1 shows that when r0 is known, the asymptotic distri-

bution of the estimator θ̂r0(τ) follows a normal distribution. This is similar to

Corollary 4.1 in [52].
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Lemma 4.3.1. Given assumptions C1-C4 and A1-A4, and for r0 known with

τ ∈ B fixed,

√
NT{θ̂r0(τ)− θr0(τ)} d→ N(0, τ(1− τ)Σθ(τ, r0)),

as min{N, T} → ∞.

Proof. The proof of this result uses standard NQAR asymptotic theory. This

proof is a simple extension of Appendix B.2 in [52] for the asymptotic normality

in Network Quantile Autoregressive models.

The next thing to discuss is when the threshold value r(τ) is unknown and needs

to be estimated. The estimator of TNQAR model and the threshold parameter

are given by

(θ̂(τ), r̂(τ)) = arg min(θ,r)

∑
it

ρτ (yit −X>it (r)θ).

The above estimator problem can be translated into a two-stages method. For

fixed τ , consider the r value of a set of grids on the real value line and for each r,

the estimator can be obtained by model 4.4, and save θ̂r(τ). Next, minimize

r̂(τ) = arg minr
∑
it

ρτ (yit −X>it (r)θ̂r(τ)).

The following lemma gives the consistency of the estimator of (θ(τ), r(τ)).

Lemma 4.3.2. Given the assumptions A1-A4 and C1-C4, fixed τ ∈ B,

(θ̂(τ), r̂(τ)) = (θ0(τ), r0(τ)) + op(1)

Proof. Define ET = (NT )−1
∑

it δxit , where δx assigns mass 1 at x and zero else-

where, such that for any class F of the measurable function f : χ→ R. This is the

same as maximizing MT (µ) = ETmµ, where mµ(xit) = −(ρτ (yit −Xit(r)
>θ(τ)) −

ρτ (yit −Xit(r0)>θ0(τ))).

We need to establish the conditions of the argmax theorem, which will give the

consistency of the estimator.

For each τ ∈ B, (θ̂(τ), r̂(τ)) minimize QT (θ, r) = ET (ρτ (yit − Xit(r)
>θ(τ)) −

ρτ (yit − Xit(r0)>θ0(τ))). Define Q(θ, r) = E(ρτ (yit − Xit(r)
>θ(τ)) − ρτ (yit −

Xit(r0)>θ0(τ))). By assuming that A2 and A4, Q(θ, r) is minimized only at

(θ0(τ), r0(τ)) for each τ ∈ B.
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We will use these notations µ = (θ, r) where θ = (α, β). Fix a compact set

K ⊂ G × Θ, FK = {mµ : µ ∈ K} is Glivenko-Cantelli, since our mµ(xit) and

mµ(x) in the literature [14] can be regarded as the same and they have the same

properties. The existency of a solution (θ̂, r̂) is also provided by [14].

Therefore, by argmax theorem from Lemma 1 in [8] , (θ̂(τ), r̂(τ))
P→

(θ0(τ), r0(τ)).

In the proof of the next theorem 4.3.1, we need to use lemma 4.3.3 that shows

θ̂r(τ) has a Bahadur representation.

Lemma 4.3.3. Suppose assumptions A1-A4 and C1-C4,

√
NT (θ̂(τ)− θ(τ)) = Ω̂−1

1 (τ, r)SNT (τ, r) + op(1),

where SNT (τ, r) = 1√
NT

∑
it{Xit(r)Ψτ (yit−F−1

it (τ))} is the score function and Ψτ (u) =

τ − I(u < 0).

Proof. Inspired by the proof of Lemma 3 in [14], define Ω̂1(τ, r) =
1
NT

∑
it fit(X

>
it (r)θ0)Xit(r)X

>
it (r) and SNT (τ, r) = 1

NT

∑
it Ψτ (yit−X>it (r)θ0)Xit(r),

where Ψτ (u) = τ − I(u < 0) is the influence function of the quantile regression

model. Due to Lemma 2 that the estimator is a consistent estimate, we define

α = (β0, γ, β1, β2, 0) and β = (β0, γ, β1, β2, β3) as subsets of θ that correspond to

the regimes {Xit(r)|yi(t−1) > r} and {Xit(r)|yi(t−1) ≤ r}, respectively, such that

θ0τ = (α>0τ , β
>
0τ )
> as true parameter vectors.

Also define the following weighted quantities,

∆̂τr =

( √
NT (α̂τr − α0τ )√
NT (β̂τr − β0τ )

)
,∆τ =

( √
NT (ατr − α0τ )√
NT (βτr − β0τ )

)
.

Let y∗it = yit −X>it (r)θ0τ and y∗itr(∆τ ) = y∗it −X>it (r)∆τ/
√
NT = yit −X>it (r)θ(τ).

Therefore, ∆̂τr = min∆τ

∑
it ρτ (y

∗
itr(∆τ )). Let

Vn(τ, r,∆τ ) =
1√
NT

∑
it

Ψτ (y
∗
itr(∆τ ))Xit(r)

=
1√
NT

∑
it

Ψτ

(
yit −X>it (r)

(
θ0τ +

∆τ√
NT

))
Xit(r),
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V̄n(τ, r,∆τ ) =
1√
NT

∑
it

E[Ψτ

(
yit −X>it (r)

(
θ0τ +

∆τ√
NT

))
Xit(r)].

Because −∆>τ Vn(τ, r, λ∆τ ) is an increasing function of λ > 1 and A3 guarantee

the consistency of Ω̂1(τ, r), Lemma 4.3.3 can be proven by applying Lemma 4.3.4

(i.e Lemma A.4 of [30]). This requires the assumptions A1-A4 and C1-C4, lemma

2 and 3 of [40] and lemma A1 and A2 of [14].

Lemma 4.3.4. Let Vn(∆) be a vector function that satisfies

i) −∆>Vn(λ∆) ≥ −∆>Vn(∆), λ ≥ 1,

ii) sup‖∆‖≤M ‖Vn(∆) + f(F−1(τ))D∆− An‖ = op(1), where ‖An‖ = op(1), 0 <

M <∞, f(F−1(τ)) > 0, and D is a positive-definite matrix. Suppose that ∆n is a

vector such that ‖Vn(∆n)‖ = op(1). Then, ‖∆n‖ = op(1) and ∆n = D−1

f(F−1(τ))
An +

op(1).

Theorem 4.3.1 shows the asymptotic distribution of θ̂r(τ) in the high-

dimensional case of the network.

Theorem 4.3.1. Given assumption A1-A4 and C1-C4,

√
NT{θ̂r(τ)− θr(τ)} d→ B(τ, r)

as min{N, T} → ∞, where B(τ, r) is a bivariate Gaussian process, with mean

zero and covariance kernel defined by K((τi, ri), (τj, rj)) = E(B(τi, ri)B(τi, rj)) =

(τi ∧ τj − τiτj)Ω1(τi, ri)
−1Ω0(ri, rj)Ω1(τi, rj)

−1 with τi, τj ∈ B and ri, rj ∈ G.

And naturally, we can obtain the following lemma.

Lemma 4.3.5. Given assumptions C1-C4 and A1-A4, for a fixed pair (τ, r) ∈
G ×B √

NT (θ̂(τ)− θ(τ))
d→ N(0, τ(1− τ)Σθ(τ, r)).

Proof. Now we prove Theorem 4.3.1 and Lemma 4.3.5.

Fixed r ∈ G for certain τ ∈ B given. By Lemma 4.3.3,

√
NT (θ̂(τ)− θ(τ)) = Ω̂−1

1 SNT (τ, r) + op(1),

where SNT (τ, r) = 1√
NT

∑
i,tXit(r)Ψτ (yit − F−1

it (τ)).



Chapter 4 52

By the law of iterated expectations E[Xit(r)Ψτ (yit − F−1
it (τ)|Ft)] = 0

According to the central limit theorem martingale difference sequences, Slut-

sky’s Theorem and C1-C4 and A1-A4,

1√
NT

Ω̂−1
1 (τ, r)

∑
it

Xit(r)Ψτ (yit − F−1
it (τ))

d→ N(0,Σ(τ, r)),

with Σ(τ, r) = τ(1−τ)Ω1(τ, r)−1Ω0(r, r)Ω1(τ, r)−1. This proves Lemma 4.3.5. Next

we can extend the results to the corresponding functional process indexed by τ

and r, where τ and r belong to B and G respectively. With Lemma A2 in [14], it is

possible that this class of function belongs to the Donsker class. Thus, this process

converges in distribution to the Skorohod space D(B,G), equips the uniform norm,

to a bivariate Gaussian process with zero mean and covariance kernel

K((τi, ri), (τj, rj)) = (τi ∧ τj − τiτj)Ω1(τi, ri)
−1Ω0(ri, rj)Ω1(τi, rj)

−1,

for every i, j = 1, · · · , n with τi, τj ∈ B and ri, rj ∈ G. Finally, we obtain

√
NT (θ̂r(τ)− θr(τ)) = Ω̂−1

1 (τ, r)SNT (τ, r) + op(1),

that converges in distribution to the bivariate Gaussian process B(τ, r) with mean

zero and covariance kernel K((τi, ri), (τj, rj)).

By fixing the values of τ and r, the asymptotic distribution of the estimator

θ̂(τ) can be immediately derived.

4.3.2 Heavy-tailed Distribution and Tail Index Estimator

Heavy tailed phenomena appear in almost all areas of life. Data in many fields such

as meteorology, hydrology, environment, telecommunications, insurance, finance,

etc. do not meet the normal distribution assumption, but have heavy tails. If

the data distribution is not normal and has the power behaviour in tails, we

cannot use OLS to obtain the correct parameter estimations. The term robustness

of estimation has been recognised as one of the main problem that we need to

overcome in statistics. In order to obtain reliable results, the quantile regression

can be used. Therefore, before making an estimate, a normality test needs to be

performed on the data set and obtain all the information of tail distribution.
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4.3.2.1 Normal Test

The Kolmogorov-Smirnov test can be used. Here we skip the introduction for the

Kolmogorov-Smirnov test.

4.3.2.2 Hill Estimator

Since the data to be studied does not follow the normal distribution, it is necessary

to know the information as much as possible about the tail of the distribution.

Therefore, the heavy tail index is an important method for us to obtain the tail

information of the distribution. The Hill estimator is used to obtain the tail index.

The process is as following [23]’s method: reorder the set Xi in such way that

Xi ≥ Xj for i < j

i.e. the set Xi is ordered decreasingly. Then [10] shows the Hill estimator γ(m)

can be obtained by

γ(m) =
1

m

m∑
i=1

log
Xi

Xm

, (4.5)

where m is the truncation number of the tail data that we choose.

The Hill estimator depends on the correct choice of m so it is important to

choose a reasonable m. The preliminary judgment in experience is to choose 2%

-10% of the order statistics. Phillips et al. [37] proposed an optimal choice of m

which gives minimum mean squared error and the formula is m = [λn2/3], where

[ ] signifies the integer part of its argument and n is the total number of data. [15]

show that the parameter λ can be estimated by the following formula:

λ̂ =

∣∣∣∣ γ̂2√
2(n/m1)(γ̂1 − γ̂2)

∣∣∣∣2/3
Here γ̂1 and γ̂2 are preliminary estimates of γ by using formula (4.5) with data

truncations, m1 = [nA] and m2 = [nB], respectively, where 0 < A < 2/3 and

2/3 < B < 1. A and B are advised to be set as 0.6 and 0.9 respectively. Applying

these into our Twitter data in Chapter 3, the Hill estimator is about 38 which

means the twitter response has a heavy tail.
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4.4 Finite Sample Simulation Analysis

4.4.1 Simulation Models

We propose a Monte Carlo experiment to analyze the finite sample properties of

the TNQAR model. We generate a set of time series through a given model and

estimate the parameters of the corresponding TNQAR model.

Consider the following model:

yit = 0.3 +
∑
i

Zilγl + 0.1n−1
i

∑
j

aijyi(t−1)

+ 0.5yi(t−1) + 0.1I{yi(t−1)>r0
}yit + uit, i = 1, · · · , N (4.6)

where uit is the quantile equation of the error term, r0 = 0 and γ =

(−0.5, 0.3, 0.8, 0, 0)>. By comparing with (4.1), we have β0(τ) = 0.3 +

F−1
u (τ), β1(τ) = 0.1, β2(τ) = 0.5, β3(τ) = 0.1. Note that we fix the dimension

of nodal covariates (i.e., Zi) to be 5.

To generate observations from the TNQAR mechanism (4.1), the following

procedures are performed. First, we generate uits (1 ≤ i ≤ N, 1 ≤ t ≤ T ) inde-

pendently from a standard normal distribution N(0, 1) and t-distribution with 5

degrees of freedom in order to discuss the influence of different type of error on

the estimation results.

Next, the nodal covariates Zi = (Zi1, · · · , Zi5)> ∈ R5 are sampled from a multi-

variate normal distribution N(0,Σz), where Σz = (δj1j2) and δj1j2 = 0.5|j1−j2|. We

set the network size to N = 100, 500, 1000 and the sample size to T = N/10 and the

number of repeated experiments to R = 1000. The estimator from the rth replica-

tion is recorded as θ̂(r)(τ) = {β̂0

(r)
(τ), β̂1

(r)
(τ), β̂2

(r)
(τ), β̂3

(r)
(τ), γ̂(r)>(τ)}. In order

to evaluate the performance of finite sample, we consider the following indicator.

The root mean square error (RMSE) of βj: RMSEj(τ) = {R−1
∑

r(β̂
(r)
j (τ) −

βj(τ))2}1/2, j = 0, 1, 2, 3. In addition, inspired by [52], the RMSE for the nodal

effect equation γ is determined by RMSEγ(τ) = {(5R)−1
∑

r ||γ̂(r)(τ)−γ(τ)||2}1/2.

We simulate a time series with a sample size of 100+T from model (4.6), Y0

obtained by (2.4) in [50]. We only save the last T values to remove the effect of

the initial value. We adopt two different kinds of adjacency matrices, see example

1, 2 in [50] and [52] for details.
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4.4.2 Simulation Results

Now we start analyzing the results of the finite sample simulation. Detailed results

are shown in 4.1. When β0, τ increase from 0.05 to 0.95, the RMSE start with

becoming smaller and then becoming larger, and reach the minimum at τ=0.5.

For example, in the case of a normal distribution with N = 100, the RMSE drops

from 2.13 to 0.59 and then rises to 2.39.

For a fixed τ , when N and T increase, the corresponding RMSE is decreased.

For example, at τ = 0.5 in Example 1 for the normal distribution, the RMSE of

β0 decreases from 0.59 to 0.14 as N changes from 100 to 1000. This shows that

the estimator will become more accurate when the sample size becomes larger. In

addition, the RMSE of the t-distribution is generally larger than the RMSE of the

normal distribution. It is worth noting that the RMSE of γ does not change much

when N becomes large, both in the normal distribution and in the t-distribution.

Theoretically β1, β2, β3, and γ do not change with τ , so β1, β2, β3, and γ in τ = 0.05

and those in other τ situation are the same, then only the case of τ = 0.05 is listed

here to represent the results of β1, β2, β3, and γ in all τ . In addition, the incentive

fee is shown to have a negative correlation with hedge fund returns at τ = 0.05

and τ = 0.25, but this phenomenon is not appear at upper tail and median.



Chapter 4 56

T
ab

le
4.

1:
S
im

u
la

ti
on

re
su

lt
s

fo
r

E
x
am

p
le

1
w

it
h

10
00

re
p
li
ca

ti
on

s

β
0

τ
=

0.
05

τ
=

0.
25

τ
=

0.
5

τ
=

0.
75

τ
=

0.
95

N
=

10
0

Z
2.

13
(8

8.
00

)
0.

96
(9

1.
30

)
0.

59
(9

3.
00

)
1.

20
(8

9.
70

)
2.

39
(8

4.
80

)

T
2.

40
(8

7.
20

)
1.

00
(9

1.
00

)
0.

57
(9

4.
50

)
1.

24
(9

1.
50

)
2.

66
(8

7.
40

)

N
=

50
0

Z
2.

22
(1

00
.0

0)
0.

90
(1

00
.0

0)
0.

20
(1

00
.0

0)
0.

99
(1

00
.0

0)
2.

30
(1

00
.0

0)

T
2.

47
(1

00
.0

0)
0.

95
(1

00
.0

0)
0.

24
(1

00
.0

0)
1.

07
(1

00
.0

0)
2.

55
(1

00
.0

0)

N
=

10
00

Z
2.

24
(1

00
.0

0)
0.

92
(1

00
.0

0)
0.

14
(1

00
.0

0)
0.

95
(1

00
.0

0)
2.

28
(1

00
.0

0)

T
2.

58
(1

00
.0

0)
0.

98
(1

00
.0

0)
0.

11
(1

00
.0

0)
1.

03
(1

00
.0

0)
2.

59
(1

00
.0

0)

τ
=

0.
05

β
1

β
2

β
3

γ

Z
N

=
10

0
0.

41
(9

5.
00

)
0.

12
(9

7.
00

)
0.

33
(9

6.
80

)
0.

45

N
=

50
0

0.
16

(1
00

.0
0)

0.
05

(1
00

.0
0)

0.
14

(1
00

.0
0)

0.
44

N
=

10
00

0.
11

(1
00

.0
0)

0.
04

(1
00

.0
0)

0.
11

(1
00

.0
0)

0.
44

T
N

=
10

0
0.

39
(9

4.
80

)
0.

12
(9

5.
70

)
0.

25
(9

6.
50

)
0.

46

N
=

50
0

0.
20

(1
00

.0
0)

0.
04

(1
00

.0
0)

0.
10

(1
00

.0
0)

0.
44

N
=

10
00

0.
09

(1
00

.0
0)

0.
03

(1
00

.0
0)

0.
08

(1
00

.0
0)

0.
44



Chapter 4 57

4.5 Empirical Application

Next, we apply our methodology to study the return rates of global hedge funds

that have the common strategy. The data set includes 915 hedge funds and the

sample interval is from January 2007 to December 2009. The number of samples

in this time series is 36. The corresponding response is the monthly rate of return.

The network density of these hedge funds is 0.11%.

Figure 4.1 shows the time series of average returns of global hedge funds. It

can be seen that hedge funds experienced a large loss from July to October in 2008

due to the global financial crisis. In order to construct the network structure, the

strategies used by hedge funds are collected. For ith and jth funds, aij = 1 if they

use the same hedging strategy, otherwise aij = 0. In addition, two variables that

do not change over time are considered. They are management fees and incentive

fees. These two variables are normalized into the [0,1] interval.

Descriptive statistics show that during the entire sample period, the mean of

the return rate is 0.49%, the skewness and kurtosis are 1.27 and 61.47, and the

p-value of Jarque-Bera normality test is less than 2.2× 10−16. It can be seen that

the monthly return rate of the hedge fund does not follow the normal distribution

and has a high kurtosis and positive skew. In addition, the Hill estimator is 3.3,

which means that the distribution of hedge fund returns is heavy-tailed. Because

it does not satisfy the error term following the normal distribution, it is one of the

reasons that we consider using the quantile regression method.

We applied the LM test in (3.48) to the hedge fund return, which showed sig-

nificant for the hedge fund return. The LM value is 16.18115, which less than 95%

quantile of the chi-square distribution with a degree of freedom of one (3.841459).

The LM test results prove that the hedge fund return is nonlinear, so it is reason-

able to use the proposed TNQAR model for modelling the hedge fund return.

We use threshold value r=0 according to the most general idea and τ =

0.05, 0.25, 0.5, 0.75 and 0.95 to fit the return of the global hedge fund, where the

estimates of these parameters are shown in the Table 4.2. It is worth noting that

the β3 (i.e. threshold effect) is significant in α=0.10 (the significant level), in the

median and lower tail case (i.e. τ = 0.5, 0.25 and 0.05), but not very significant in

the upper tail (i.e. τ = 0.75 and 0.95), which indicates that the return of global

hedge funds, in low conditional quantile level, present the threshold effect.
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Figure 4.1: Average return on global hedge funds

In addition, the management fee is significantly (<0.01) correlated at the lower

and median tail case (i.e. τ=0.05, 0.25 and 0.5), but not significant (p value 0.28

and 0.56) at the upper tail case (i.e. τ=0.75 and 0.95), and the incentive fee is

significantly (<0.01) correlated at the upper tail and not significantly at the lower

tails. This shows that the return of global hedge fund is more relevant to the

management fee in the conditional quantile level at τ=0.05, 0.25 and 0.5, and is

more closely related to the incentive fee in the conditional quantile at τ=0.75 and

0.95.
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4.6 Conclusion

In this chapter, we introduce the Threshold Network Quantile Autoregressive

(TNQAR) model. We give a sufficient condition for a geometric ergodicity. We

discussed the parameter estimation method of this model and provided the asymp-

totic properties of this model. In addition, we introduced a tail index estimator,

i.e. the Hill estimator, to obtain the tail information of a distribution. In addi-

tion, we also carry out some simulation experiments to analyze the finite sample

properties of the TNQAR model. In the empirical application, we applied our

methodology to modelling the returns of global hedge funds.
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Markov-Switching Network

Autoregression Model

5.1 Introduction

In this chapter, we are interested in the network vector Autoregression model with

random coefficients. Similar random coefficient problems are discussed in Chapter

3, where coefficients in the NAR model are affected by a threshold value. The

difference between the two models is that the coefficients, in the class of threshold

models, are affected by endogenous variables, while the coefficients, in the class of

Markov-switching models, are affected by exogenous variables. What they have in

common is that they both describe the dynamic characteristics of regime switching

and can explain sudden changes.

The Markov-Switching Network Autoregression Model (MS-NAR) belongs to

the category of the Markov-switching model. The Markov-switching model pro-

posed by [16] is a relatively popular type of nonlinear time series model in econo-

metrics. Much work has done by [16], [17], [12], [19], [18]. [27] discussed the related

literature overview of Markov-switching.

[31] applied Markov-switching to the VAR model and established the MS-

VAR model, which makes the estimated parameters in the traditional VAR model

change with the change of the regime. [49] discusses the stationarity conditions of

the MS-VAR model. However, as the dimension of the VAR model increases, the

number of parameters that need to be estimated becomes extremely large, causing

61
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the estimation method to fail.

In this chapter, we propose a new high-dimensional Markov-switching model.

In this model, the autoregressive coefficients switch between the two states. The

number of parameters do not increase as the number of dimensions increases. We

study the probability property (ergodicity and stationary) of the MS-NAR model

first, and then discuss its maximum likelihood estimation. To illustrate the nature

of our model and estimation methods, we perform a series of simulations and fit a

simple MS-NAR model into a real data set.

The rest of this chapter is organized as follows. In the second section, we

introduce our model and provide the stationary condition of MS-NAR model. The

third section introduces the estimation method of the model. The fourth section

reports on our simulation study.

5.2 Markov-Switching Network Autoregression

Model

5.2.1 Definition of the Model

We consider a first-order Network Vector autoregressive process in which the au-

toregressive parameters change with state:

yit = β0 + Z>i γ + β1n
−1
i

N∑
j=1

aijyj(t−1) + β2(st)yi(t−1) + εit, (5.1)

where

• ni =
∑

j 6=i aij is the out-degree for the ith node. [47]

• εit is the error term independent of Zis, which follows normal distribution

with E(εit) = 0 and var(εit) = σ2.

• Zi = (Zi1, · · · , Zip)> is a random vector with p-dimensional node feature.

γ = (γ1, · · · , γp)> is the corresponding coefficient of p-dimension. β0 + Z>i γ

constitutes the intercept of the ith node.
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• The regime process st taking values in {1, · · · , K} is characterized as an un-

observable, irreducible, aperiodic K-state Markov chain with st independent

of ετ for all t and τ .

• The state transition is driven by a stationary first-order K-state Markov

chain {st}, and its transition probability matrix is P = (pij)K×K , where the

probability of transitioning from state i to state j is

pij = P (st = j|st−1 = i), i, j = 1, · · · , K.

• In addition, the initial distribution of the first-order Markov chain st is

P (s0 = j) = πj, j = 1, · · · , K.

Denote π = [π1, · · · , πK ]>.

Remark 5.1. The state st is independent of the node, that is, the state of all nodes

is uniform.

We can write the model 5.1 in vector form as:

Yt = B0 + G(st)Yt−1 + ut, (5.2)

where

• Yt = (y1t, y2t, · · · , yNt)>,

• B0 = β01 + Zγ, where 1 = (1, · · · , 1)> and Z = (Z1, · · · , ZN)>,

• G(st) = β1W + β2(st)IN , where W = {n−1
i aij}N×N ,

• ut = (ε1t, · · · , εNt)> and ut satisfies

E(ut) = 0, E(utu
>
t ) = σ2IN .

5.2.2 Stationarity

Next we will show the stationarity of the MS-NAR model. Note that when N is

fixed, the model 5.2 is a special case of the MS-VAR model, so the stationarity

condition of the MS-VAR model also applies to model 5.2.
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Assumption 5.2.1. maxi=1,··· ,K{
∑K

j=1 pij(|β1|+ |β2(j)|)2} < 1

Theorem 5.2.1. Under assumption 5.2.1, model 5.2 has a stationary solution,

and the solution can be expressed as follows:

Yt =
∞∑
j=0

Πj(st)Vt−j, (5.3)

where Vt = B0 + ut and

Πj(st) =

IN if j = 0

G(st)G(st−1) · · ·G(st−j+1) if j ≥ 1
(5.4)

Regarding Theorem 5.2.1, we have the following remarks.

It can be seen that the stationarity depends on β1, β2(st) and P . It is not

necessary to satisfy the stationary condition of [50], that is |β1| + |β2| < 1, in

both states, as long as the mean magnitude of the coefficient matrix is less than

1. Even if |β1|+ |β2| > 1 in a certain state, as long as the corresponding transition

probability is small enough, the overall stationary of model 5.2 will not be affected.

Because we used the sufficient condition of the stationarity in [49], it is con-

ceivable that stationary conditions can continue to be weakened.

Proof. Set Φ =


G(1) · · · 0

...
. . .

...

0 · · · G(K)


KN×KN

, Φ̂ =


‖G(1)‖ · · · 0

...
. . .

...

0 · · · ‖G(K)‖


K×K

,

where ‖ · ‖ denotes the 1-norm of a vector (the sum of absolute values of all

elements). Notice that ‖β1W + β2(st)I‖ ≤ |β1|‖W‖+ |β2(st)| = |β1|+ |β2(st)| for

st = {1, · · · , K} since ‖W‖ and ‖I‖ are both equal to 1.

According to the sufficient condition for the stationarity ‖Φ̂2P‖ < 1 in [49],

‖Φ̂2P‖ = maxi=1,··· ,K{
∑K

j=1 pij‖β1W + β2(j)I‖2} ≤ maxi=1,··· ,K{
∑K

j=1 pij(|β1| +
|β2(j)|)2} < 1 meets the stationarity condition of {Yt}.
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5.3 Maximum Likelihood Estimation of MS-

NAR Model

For the MS-NAR model, Yt is the time series we are preparing to study. We will

refer to (5.1) as the Markov-Switching Network Vector Autoregresion (MS-NAR)

model. Next, in the estimation method, we consider the case of K = 2. The model

5.1 can be represented as a matrix form:

Yt = Xt−1θ̃(st) + ut, (5.5)

where

• Xt = (1,WYt,Yt,Z)>

• θ̃(st) = (β0, β1, β2(st), γ
>)>

Assume that f(Yt|st,Yt−1, θ) is the conditional probability density func-

tion of the random vector Yt, where Yt−1 = {Yt−1,Yt−2, · · · } and θ =

(θ̃(st)
>, p11, p22, π1, π2, σ

2)>, the parameter to be estimated. In the following, we

will abbreviate the above density function f(Yt|st,Yt−1, θ) into f(Yt|st,Yt−1).

There are currently three methods for estimating the parameters of the MS-

NAR model, namely Maximum Likelihood Estimation(MLE) in [16], EM algo-

rithm in [17], and Gibbs sampler in [1].

In general, the EM algorithm is difficult to implement when there are AR

items in the model and the Gibbs sampling algorithm requires a lot of computa-

tion. Therefore, we use the maximum likelihood (MLE) algorithm to estimate the

parameters of the model. Therefore, we first need to obtain the likelihood func-

tion. Under the above assumption of the model, the corresponding conditional

probability density function can be obtained:

f(Yt|st,Yt−1) = (2π)−N/2(Σ)−1/2exp

[
−1

2
(Yt − Xt−1θ̃(st))

>Σ−1(Yt − Xt−1θ̃(st))

]
,

(5.6)

where Σ = diag(σ2, · · · , σ2).

Since st is an unobservable random variable, we cannot use f(Yt|st,Yt−1) to

construct a likelihood function when taking maximum likelihood estimation, so we

need to get the density function f(Yt|Yt−1).
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The joint density function of {Yt, st} under the condition of the past informa-

tion set Yt−1:

f(Yt, st|Yt−1) = f(Yt|st,Yt−1)× P (st|Yt−1), (5.7)

so

f(Yt|Yt−1) =
2∑

st=1

f(Yt, st|Yt−1). (5.8)

For i= 1,2, we call P (st = i|Yt−1) the prediction probabilities of st and P (st =

i|Yt) the filtering probabilities of st, so we have the following two equations:

P (st = i|Yt−1) = p0iP (st−1 = 0|Yt−1) + p1iP (st−1 = 1|Yt−1) (5.9)

and

P (st = i|Yt) =
P (st = i|Yt−1)f(Yt|st = i,Yt−1)

f(Yt|Yt−1)
(5.10)

by the Bayes theorem.

With the initial values P (s0 = i) = πi, we can derive the following log-likelihood

function by iterating the equations (5.6)-(5.10):

LT (θ) =
T∑
t=1

ln f(Yt|Yt−1) (5.11)

which is a complex function of θ. Some numerical search algorithms can be used

to calculate this MLE θ̂T . There are many programs to calculate this MLE, such

as the GAUESS program or the R program, both of which apply the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm. We use the second program to es-

timate the parameters of the model. The filtering and prediction probabilities are

easily calculated by putting θ̂T into the above formula.

In order to calculate the smooth probability P (st = i|YT ), which is based on

all the information in the sample, we use the algorithm of [26]. Notice that

P (st = i|st+1 = j,YT ) (5.12)

= P (st = i|st+1 = j,Yt) (5.13)

=
pijP (st = j|Yt)

P (st+1 = j|Yt)
. (5.14)

For i=1,2, the smooth probability can be expressed as
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P (st = i|YT )

= P (st+1 = 0|YT )P (st = i|st+1 = 0,YT )

+P (st+1 = 1|YT )P (st = i|st+1 = 1,YT )

= P (st = i|Yt) (5.15)

×
(
pi0P (st+1 = 0|YT )

P (st+1 = 0|Yt)
+
pi1P (st+1 = 1|YT )

P (st+1 = 1|Yt)

)
In the above iteration on (5.9)-(5.15), the parameter vector θ was a fixed,

known vector. Once the iteration has been completed for t = 1, 2, · · · , T for a

given fixed θ, the value of the log likelihood implied by that value of θ is then

known from (5.11). The value of θ that maximizes the log likelihood can be found

using the numerical methods.

If the transition probabilities are restricted only by the conditions that pij ≤ 0

and (pi1 + pi2 + · · · + piN) = 1 for all i and j, then it is shown in [17] that the

maximum likelihood estimates for the transition probabilities satisfy

p̂ij =

∑T
t=2 P{st = j, st−1 = i|YT ; θ̂}∑T

t=2 P{st−1 = i|YT ; θ̂}
,

where θ̂ denotes the maximum likelihood estimates.

Remark 5.2. σ̂2 = T−1
∑T

t=1

∑N
j=1(Yt−Xt−1θ(j))

>(Yt−Xt−1θ(j))P (st = j|YT ; θ̂).

5.4 Simulation

In this section, the Monte Carlo method is used to study the finite sample prop-

erties of the MLE method for the model (5.1). We are going to consider three ex-

amples in [50]. The main difference is the generation mechanism of the adjacency

matrix. Besides, they are all similar. Data generation code and simulation code

can be learned from GitHub webpage (https://github.com/mojianxiaocai/MS-

simulation/tree/testing). The MLE is estimated by optimizing the log likelihood

function and use the ”optim” function in the R program, which applies the BFGS

algorithm.

In particular, for each example, the random error εit is generated from the stan-

dard normal distribution N(0,1). The covariate Zi = (Zi1, Zi2, Zi3, Zi4, Zi5) ∈ R5
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is generated from a multivariate normal distribution with mean zero and co-

variance σZ = (δj1,j2), which δj1,j2 = 0.5|j1−j2|. Also, for each example, the

parameters to be evaluated are set to (β0, β1, β2(1), β2(2), p11, p22, σ1, σ2)> =

(0.3, 0.2, 0.3, 0.7, 0.7, 0.4, 1, 1)> and γ is fixed to be (−0.5, 0.3, 0.8, 0, 0)>. In order

to generate Yt, the initial value Y0 is randomly generated according to Proposition

1 in [50]. When Y0 is given, Yt can be generated by model (5.1).

5.4.1 Example 1

We used the first example in [50] as our adjacency matrix - Dyad Independence

Model. Fixed sample size T=20,30,100 and network size N=100,500,1000, we use

the true parameters of the model as the initial values. The random repetition

of the experiment R=1000 times with relative convergence tolerance being 1e−4.

Table 5.2 reports the maximum likelihood estimates (MLEs) for the model 5.1

and their mean square error (MSE) (in parentheses) as well as average absolute

error (AAE) for different N and T . The estimates of the parameters and the mean

square error are averaged from the results of all replicate experiments. It can be

seen from Table 5.2 that with the same sample size N , the mean square error

(MSE) is significantly reduced as the number of samples T increases from 20 to

100. In addition, for the same sample size T , the MSE decreases as the network

size N increases from 100 to 500. Table 5.3-5.5 show the distribution of maximum

likelihood estimators for model 5.1 for different sample size T and network size N .

Figure 5.1 provides the boxplot of the AAE of MLEs for model 5.1 for different

sample sizes and network sizes. As the picture shows, AAE decreases as the sample

sizes T increases from 20 to 100 and AAE did not increase or decrease significantly

with the increase in network size. This shows that our estimation method will be

more accurate as the sample size T increases, and as the network size N increases,

it will not cause the estimation method to fail.

5.4.2 Example 2

We next consider the second example of [50], which is the stochastic block model.

In order to generate this block network structure, we follow [34] to put each node

with the block label from 1 to K, where K ∈ {5, 10, 20}. Let us set P (aij = 1) =
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0.3N−0.3 when i and j are in the same block, otherwise P (aij = 1) = 0.3N−1.

This means that nodes within the same block have a higher probability of being

connected than between blocks. We use (β0, β1, β2(1), β2(2), p11, p22, σ1, σ2, γ
>)> =

(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 2, 2, 0.5, 0.5, 0.5, 0.5, 0.5)> as our initial value. The exper-

iment was randomly repeated R = 1000 times with convergence relative tolerance

1e-4. Fixed T=30 and N = 100, 300, 500.

Table 5.6 gives the results of MLE and the mean square error (in parenthe-

ses) and the average absolute error of these estimators for different K (network

densities) and different N (network size). As can be seen from Table 5.6, if T is

fixed, AAE decreases as N increases. Therefore, when we meet a limited sample

size, the averaged performance of the estimators can be improved by increasing

network size N .

In addition, when N is fixed, there is no significant change in AAE for different

network densitiesK, indicating that the network densities has no significant impact

on the estimation results. The statement can also be verified by Figure 5.2.

Figure 5.2 shows the boxplot of AAE for Maximum likelehood estimator of

model (2.1) for different network densities and network sizes for example 2. It can

be seen from Figure 5.2 that as the network size N increases, the boxplot moves

down as a whole.

5.4.3 Example 3

In this case, we consider the third example of [50], which is the Power-Law Dis-

tribution model, detailed in [9]. In order to generate the adjacency matrix A,

first generate its in-degree di =
∑

j aji for each node according to the discrete

power-law distribution, that is, P (di = k) = ck−α. c is a normalizing constant.

We set the exponent parameter α ∈ {1.2, 2, 3}. Next, we randomly select di nodes

as the followers of the ith node. We use (β0, β1, β2(1), β2(2), p11, p22, σ1, σ2, γ
>)> =

(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 2, 2, 0.5, 0.5, 0.5, 0.5, 0.5)> as our initial value. The ran-

dom repetition of the experiment R=1000 times with relative convergence toler-

ance being 1e−4. Finally, fixed T=30 and N=100,300,500.

Table 5.7 shows the MLE with the mean square error in parentheses and AAE

of MLE for for different α (network densities) and different N (network size).

This table shows MSE of the estimators and AAE drop as network size N and α
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increase.

Figure 5.3 shows the boxplot of AAE for Maximum likelihood estimator of

model (2.1) for different network densities and network sizes for example 3. The

result is basically similar to example 2, and increasing the sample size N will

improve the performance of the MLE. The difference is that the increase in α will

also improve the performance of the MLE.

5.5 Real Data Example

In this section, we applied the MS-NAR model to illustrate our methodology for

Twitter data, which has been applied into TNAR model in Chapter 3. What

interests us is whether the activities of the users are affected by nonlinearity. In

other words, we want to know whether there is a potential two-state Markov chain

effect, in addition to the normal linear NAR model effect.

Specifically, a total of N=9908 active followers of the Strathclyde official Twit-

ter account are recorded for a continuous T=8 weeks. The network structure is

defined to be the followee-follower relationship. The resulting network density

is around 4.0%. The histogram of responses is plotted in Figure 3.1. It can be

observed that the distribution of in-degrees is much skewer than the out-degrees,

which indicates the existence of influential network users.

The response yit is defined as the log(1+x)-transformed tweets length for the ith

user at the tth week. The lag 1 term yi(t−1) is used to account for the autoregressive

effect of tit. In order to characterize the user bahaviors, two covariates Zit are taken

into account. They are the out-degrees and in-degrees. If the out-degree is high,

it means that the user is very concerned about others. If the in-degree is high, the

user is enthusiastic to follow others. The user features can also be characterized

by other labels, such as the gender or age.

Table 5.1 shows the detailed estimation results of MS-NAR model defined by

5.5. The initial values of the parameters in the Twitter data set are the parameters

estimated by the TNAR model. The β̂2(2) is around -0.22, which means there

exists a nonlinear effect. The two states are diametrically opposed. There is a

positive momentum effect for user behaviors in state 1 , while the momentum

effect is negative in state 2. For the nodal covariates, it can be observed that the
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Figure 5.1: Boxplot of AAE for Maximum likelihood estimator of model 5.1 for

different sample sizes and network sizes.
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Figure 5.2: Boxplot of AAE for Maximum likelihood estimator of model 5.1 for

different network densities and network sizes.
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Figure 5.3: Boxplot of AAE for Maximum likelihood estimator of model 5.1 for

different network densities and network sizes.
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in-degree and out-degree are both positively related to the user’s activeness level.

In addition, the transition probabilities appear to be different for two states.

The process tends to stay longer in state 2 than in state 1. The expected duration

in state 1 is 1
1−p11 = 1.98 while in the other one is 1

1−p22 = 7.35.

Table 5.1: The estimated parameters for the Twitter Data Set

Regression coefficient Estimate

β̂0 3.66

β̂1 9.22× 10−2

β̂2(1) 9.81× 10−2

β̂2(2) −0.22

γ̂1 1.16× 10−3

γ̂2 1.76× 10−3

p̂11 0.496

p̂22 0.864

5.6 Conclusion

This chapter considers a new type of nonlinear network autoregression model. The

NAR model is extended to another nonlinear form, that is, Markov switching form.

This is a natural generalization of a traditional NAR model [50].

The stationary conditions of the MS-NAR model is provided and the maximum

likelihood estimation is also investigated. Many simulations were carried out to

estimate the model parameters with different sample sizes and different initial

values. An application of the MS-NAR model to Twitter data is presented.
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Table 5.3: Distribution of the maximum likelihood estimates of model 5.1 for

different N and T . Results are based on 1000 simulations
Network Size Parameter value mean Lower 25% Median 75% Upper

T = 20;N = 100

β0 0.3 0.308 0.221 0.273 0.306 0.345 0.402

β1 0.2 0.194 0.107 0.159 0.194 0.230 0.279

β2(1) 0.3 0.296 0.259 0.286 0.297 0.308 0.329

β2(2) 0.7 0.696 0.653 0.680 0.696 0.712 0.739

p11 0.7 0.674 0.403 0.590 0.702 0.789 0.876

p22 0.4 0.419 0.188 0.306 0.404 0.544 0.702

δ1 1 0.998 0.965 0.985 0.998 1.010 1.034

δ2 1 0.996 0.951 0.979 0.996 1.012 1.042

γ1 -0.5 -0.503 -0.555 -0.524 -0.505 -0.481 -0.445

γ2 0.3 0.305 0.241 0.281 0.305 0.333 0.362

γ3 0.8 0.802 0.739 0.776 0.799 0.830 0.874

γ4 0 -0.001 -0.052 -0.021 0.001 0.020 0.051

γ5 0 0.000 -0.042 -0.021 0.001 0.021 0.043

T = 20;N = 300

β0 0.3 0.303 0.273 0.291 0.303 0.313 0.335

β1 0.2 0.197 0.150 0.180 0.198 0.214 0.240

β2(1) 0.3 0.299 0.281 0.290 0.298 0.308 0.318

β2(2) 0.7 0.699 0.677 0.691 0.696 0.707 0.723

p11 0.7 0.666 0.403 0.567 0.688 0.785 0.870

p22 0.4 0.405 0.158 0.314 0.380 0.476 0.680

δ1 1 0.997 0.973 0.988 0.997 1.007 1.018

δ2 1 1.003 0.974 0.991 1.003 1.016 1.003

γ1 -0.5 -0.498 -0.527 -0.506 -0.499 -0.487 -0.468

γ2 0.3 0.299 0.272 0.289 0.300 0.311 0.323

γ3 0.8 0.801 0.765 0.787 0.799 0.814 0.839

γ4 0 0.000 -0.030 -0.014 0.000 0.013 0.030

γ5 0 -0.003 -0.026 -0.013 -0.002 0.006 0.019

T = 20;N = 500

β0 0.3 0.304 0.267 0.292 0.304 0.321 0.337

β1 0.2 0.198 0.155 0.186 0.199 0.214 0.230

β2(1) 0.3 0.298 0.279 0.291 0.299 0.305 0.315

β2(2) 0.7 0.698 0.676 0.690 0.700 0.705 0.721

p11 0.7 0.661 0.350 0.600 0.685 0.782 0.876

p22 0.4 0.411 0.188 0.311 0.407 0.537 0.659

δ1 1 0.998 0.980 0.994 0.997 1.004 1.011

δ2 1 0.999 0.979 0.991 0.998 1.008 1.023

γ1 -0.5 -0.502 -0.523 -0.513 -0.503 -0.493 -0.475

γ2 0.3 0.301 0.276 0.294 0.300 0.312 0.323

γ3 0.8 0.801 0.771 0.787 0.804 0.814 0.931

γ4 0 0.002 -0.019 -0.006 0.001 0.009 0.021

γ5 0 -0.001 -0.017 -0.008 0.000 0.006 0.015
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Table 5.4: Distribution of the maximum likelihood estimates of model 5.1 for

different N and T . Results are based on 1000 simulations
Network Size Parameter value mean Lower 25% Median 75% Upper

T = 50;N = 100

β0 0.3 0.304 0.240 0.280 0.302 0.327 0.366

β1 0.2 0.197 0.136 0.175 0.197 0.219 0.258

β2(1) 0.3 0.299 0.274 0.290 0.299 0.308 0.323

β2(2) 0.7 0.698 0.668 0.687 0.699 0.709 0.725

p11 0.7 0.687 0.522 0.631 0.695 0.751 0.830

p22 0.4 0.394 0.163 0.302 0.391 0.489 0.627

δ1 1 0.998 0.975 0.989 0.998 1.006 1.002

δ2 1 0.998 0.965 0.985 0.999 1.011 1.032

γ1 -0.5 -0.501 -0.542 -0.515 -0.501 -0.485 -0.462

γ2 0.3 0.302 0.260 0.286 0.301 0.319 0.344

γ3 0.8 0.801 0.753 0.781 0.800 0.820 0.854

γ4 0 0.000 -0.037 -0.013 0.001 0.014 0.033

γ5 0 0.000 -0.032 -0.013 0.001 0.013 0.032

T = 50;N = 300

β0 0.3 0.299 0.276 0.288 0.302 0.309 0.320

β1 0.2 0.201 0.177 0.191 0.200 0.211 0.223

β2(1) 0.3 0.300 0.288 0.294 0.300 0.307 0.313

β2(2) 0.7 0.700 0.685 0.693 0.700 0.708 0.825

p11 0.7 0.696 0.546 0.642 0.702 0.742 0.825

p22 0.4 0.383 0.130 0.294 0.399 0.461 0.552

δ1 1 1.00 0.989 0.995 1.000 1.005 1.011

δ2 1 0.998 0.981 0.992 1.000 1.005 1.016

γ1 -0.5 -0.499 -0.519 -0.505 -0.498 -0.491 -0.480

γ2 0.3 0.301 0.283 0.293 0.300 0.308 0.320

γ3 0.8 0.798 0.773 0.790 0.798 0.808 0.822

γ4 0 0.001 -0.014 -0.006 0.001 0.007 0.016

γ5 0 0.000 -0.014 -0.007 -0.001 0.005 0.017

T = 50;N = 500

β0 0.3 0.301 0.282 0.293 0.301 0.310 0.321

β1 0.2 0.199 0.177 0.191 0.200 0.207 0.220

β2(1) 0.3 0.299 0.291 0.295 0.300 0.303 0.308

β2(2) 0.7 0.699 0.688 0.695 0.699 0.704 0.711

p11 0.7 0.701 0.530 0.653 0.714 0.752 0.812

p22 0.4 0.396 0.209 0.302 0.406 0.458 0.607

δ1 1 1.000 0.990 0.996 1.001 1.004 1.008

δ2 1 1.001 0.987 0.995 1.002 1.007 1.017

γ1 -0.5 -0.501 -0.514 -0.507 -0.502 -0.495 -0.484

γ2 0.3 0.299 0.285 0.294 0.300 0.305 0.314

γ3 0.8 0.802 0.784 0.795 0.801 0.810 0.821

γ4 0 0.001 -0.016 -0.005 0.001 0.007 0.016

γ5 0 0.000 -0.013 -0.005 0.000 0.006 0.011
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Table 5.5: Distribution of the maximum likelihood estimates of model 5.1 for

different N and T . Results are based on 1000 simulations.
Network Size Parameter value mean Lower 25% Median 75% Upper

T = 100;N = 100

β0 0.3 0.302 0.265 0.287 0.303 0.316 0.339

β1 0.2 0.198 0.163 0.183 0.198 0.213 0.232

β2(1) 0.3 0.299 0.286 0.293 0.299 0.305 0.314

β2(2) 0.7 0.700 0.684 0.693 0.700 0.706 0.717

p11 0.7 0.695 0.600 0.660 0.696 0.735 0.786

p22 0.4 0.392 0.247 0.330 0.396 0.452 0.535

δ1 1 1.000 0.984 0.994 1.000 1.006 1.015

δ2 1 0.999 0.980 0.991 0.999 1.008 1.019

γ1 -0.5 -0.500 -0.522 -0.509 -0.500 -0.491 -0.477

γ2 0.3 0.300 0.276 0.290 0.300 0.310 0.325

γ3 0.8 0.801 0.772 0.788 0.701 0.714 0.832

γ4 0 0.000 -0.022 -0.009 0.000 0.009 0.020

γ5 0 0.000 -0.021 -0.009 0.000 0.008 0.020

T = 100;N = 300

β0 0.3 0.300 0.286 0.295 0.300 0.305 0.313

β1 0.2 0.200 0.179 0.194 0.201 0.206 0.218

β2(1) 0.3 0.300 0.291 0.296 0.300 0.303 0.309

β2(2) 0.7 0.699 0.689 0.695 0.699 0.703 0.710

p11 0.7 0.691 0.590 0.660 0.697 0.734 0.767

p22 0.4 0.385 0.247 0.341 0.396 0.433 0.496

δ1 1 1.000 0.993 0.997 0.999 1.002 1.006

δ2 1 0.999 0.988 0.995 0.999 1.004 1.010

γ1 -0.5 0.501 -0.513 -0.507 -0.501 -0.495 -0.488

γ2 0.3 0.300 0.287 0.295 0.300 0.307 0.314

γ3 0.8 0.800 0.783 0.794 0.800 0.807 0.817

γ4 0 0.000 -0.010 -0.006 -0.001 0.005 0.013

γ5 0 0.001 -0.010 -0.003 0.001 0.005 0.012

T = 100;N = 500

β0 0.3 0.3010 0.2813 0.2926 0.3024 0.3091 0.3161

β1 0.2 0.1982 0.1811 0.1892 0.1975 0.2063 0.2204

β2(1) 0.3 0.3000 0.2924 0.2968 0.3003 0.3024 0.3070

β2(2) 0.7 0.6999 0.6929 0.6968 0.6996 0.7027 0.2094

p11 0.7 0.7043 0.6165 0.6689 0.7030 0.7490 0.7815

p22 0.4 0.3781 0.1903 0.3201 0.3959 0.4374 0.5112

δ1 1 0.9995 0.9936 0.9969 0.9991 1.0026 1.0053

δ2 1 1.0001 0.9882 0.9962 1.0004 1.0045 1.0114

γ1 -0.5 -0.4993 -0.5085 -0.5040 -0.4986 -0.4948 -0.4882

γ2 0.3 0.2999 0.2882 0.2951 0.2996 0.3046 0.3130

γ3 0.8 0.7995 0.7881 0.7939 0.7990 0.8043 0.8140

γ4 0 -0.0007 -0.0079 -0.0046 -0.0012 0.0021 0.0096

γ5 0 -0.0001 -0.0082 -0.0039 0.0003 0.0039 0.0071
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Chapter 6

Twitter Network Data Collection

In this chapter, we provide details of how to extract and process the raw data from

Twitter website. This is divided into the following steps:

1. Background of data collection

2. Get permission to extract data from Twitter website

3. Data processing

6.1 Background

The aim of our data collection is to obtain the target user’s weekly number of tweets

and the relationship network between the target users through the API interface

provided by Twitter, and finally store the data in an excel file to be able to read

into R and used for analysis. Before we start to extract data, we need permission

of Twitter by registering an account on the Twitter API. The twitter API is

located at https://developer.twitter.com/en/docs/twitter-for-websites/

log-in-with-twitter/login-in-with-twitter as shown in Figure 6.1. There

are no legal issues in the data collection process, since the API is provided by

Twitter.

6.2 Get the OAuth Information

First, open the Twitter Developer Platform and log in by clicking the “log in”

button in the upper right corner (if you don’t have a Twitter account, you will

81
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Figure 6.1: Twitter API

have to register one). After logging in, you can click “Apps” in the upper right

corner to enter the “API” console and then click the “Create an app” button, as

Figure 6.2 shown.

Fill in the app name and other related APP information, click “Create”, you

can see your own APP in the API console. Under the “Keys and tokens” column,

it contains the OAuth information that we need next, i.e. API key, API secret key,

Access token and Access token secret, as shown in Figure 6.3. It is worth noting

that each account has limited amount of data that can be downloaded each day.

Due to the amount data we need, more than one account was created for this data

extraction.

6.3 Data Processing

The implementation of this project is divided into the following three steps.

1) Obtain the user-id of the followers of Strathclyde Official Twitter and save

it to txt file (details in section 6.3.1).

2) Obtain the number of tweets per week of Strathclyde Official Twitter fol-

lowers and save it to Excel file.

3) Obtain the relationship matrix between the followers of Strathclyde Official
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Figure 6.2: API Console

Figure 6.3: OAuth Information
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Figure 6.4: User ID Output Result

Twitter. If the i-th account follows the j-th account, then the element in the i-th

row and j-th column of the relationship matrix is defined as 1, otherwise 0.

6.3.1 Obtain the User-ID of the Followers

Our object is all the followers of the official Twitter account of Strathclyde Uni-

versity. These users formed a social network. With the user-ID of these users,

the program can automatically extract all the tweet data of these users, and then

calculate the number of weekly tweets we need. The code and output results are

shown in Appendix C.1 and Figure 6.4, respectively.

6.3.2 Obtain the Number of Tweets Per Week by Strath-

clyde Officical Twitter Followers

Next, we extract the number of weekly tweets of each follower with user id and

username attached. The code is shown in Appendix C.2.

In the above code, we remove the inactive accounts, that is, the account that

have the number of followers less than 80, the number of followees less than 40,

and the total number of tweets less than 200. The details of the resulting data
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Figure 6.5: Number of Weekly Tweets Results

table are shown in Figure 6.5.

6.3.3 Obtain the Relationship Matrix Between the Follow-

ers

After obtaining the number of weekly tweets for all followers, we develop a rela-

tionships matrix between all the followers in this section. Since we removed some

inactive accounts in 6.3.2, the list of user ids here is different from that obtained

in 6.3.1. We need to re-acquire it from the previous file obtained in 6.3.2. The

code is shown in Appendix C.3.

Next, we develop the relationship matrix of all followers and the code is shown

in Appendix C.4. The resulting matrix is a sparse matrix since the network density

(ND) is around 4%.

6.4 Summary

This chapter describes how to use the API to get data and save it to a file. If

you want to get additional data through the API, you can try to get it using the

methods in this chapter. For detailed principles of OAuth authentication, please

see Appendix B.
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Appendix A

Proof

A.1 The Spectral Radius of W

We denote the eigenvalues of W by λ1, λ2, . . . , λN . Its spectral radius ρ(W ) is

defined as

ρ(W ) = max{|λ1|, |λ2|, . . . , |λN |}.

Theorem A.1.1.

ρ(W ) = 1.

Proof. It is easy to know W1 = 1, that is, 1 is one of the eigenvalues of W , which

means max|λi| ≥1. On the other hand, we want to prove max|λi| ≤1. Suppose

there is a λM with |λM | > 1. Then we know λMI − W is a strictly diagonally

dominant matrix since |λM | >
∑

j 6=i |wij| = 1 for all i, where wij denotes the

element in the ith row and jth column. According to Levy-Desplanques theorem,

a strictly diagonally dominant matrix is non-singular, so |λMI −W | 6= 0, which

means λM is not the eigenvalue of W .

The above proof of Theorem A.1.1 uses the following theorem.

Theorem A.1.2 (Levy-Desplanques theorem). A strictly diagonally dominant

matrix is non-singular.

Proof. Let det(A)=0, then a non-zero vector x exists such that Ax = 0; let M be

the index such that |xM | = max(|x1|, |x2|, . . . , |xn|), so that |xj| ≤ |xM |, for every
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j. We have

aM1x1 + aM2x2 + · · ·+ aMMxM + · · ·+ aMnxn = 0,

which implies

|aMM ||xM | = |aMMxM | = |
∑
j 6=M

aMjxj| ≤
∑
j 6=M

|aMj||xj| ≤ |xM |
∑
j 6=M

|aMj|,

that is

|aMM | ≤
∑
j 6=M

|aMj|

in contrast with strictly diagonally dominance definition.

A.2 Proof of LM Value

Proof. To test this hypothesis and obtain the LM value in 3.48, we need to calculate

the maximum value of the function:

f (θ, λ1) = L(θ) + λ1h1(θ). (A.1)

Differentiate the function (A.1) and let it be zero, ∂f
∂θ

= ∂L(θ)
∂θ

+ λ1
∂h1θ
∂θ

= 0 and
∂f
∂λ1

= h1(θ) = 0.

Let

D(θ) =

(
D1(θ)

D2(θ)

)
, (A.2)

where D1(θ) = ∂L(θ)
∂β3

and D2(θ) =
(
∂L(θ)
∂β0

, ∂L(θ)
∂β1

, ∂L(θ)
∂β2

, ∂L(θ)
∂γ1

, · · · , ∂L(θ)
∂γp

)>
.

We know

εt = Yt − B0 −GYt−1

= Yt − (β0 + γ>Z)− (β1W + β2I + β3Jt−1)Yt−1

∼ N(0,Σ0),

where

Σ0 =


σ2

σ2

. . .

σ2

 ,
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so

f (εt) =
T∏
t=1

(2π)−n/2|Σ0|−1/2exp{−1

2
ε′tΣ

−1
0 εt}

and

L(θ) = −nT
2
log(2π)− T

2
log|Σ0| −

1

2

T∑
t=1

ε′tΣ
−1
0 εt

= −nT
2
log(2π)− T

2
log|Σ0| −

1

2σ2

T∑
t=1

ε′tεt

= −nT
2
log(2π)− nT

2
log(σ2)− 1

2σ2

T∑
t=1

N∑
i=1

ε2
ti.

Hence,

∂L(θ)

∂β3

=
∂(− 1

2σ2

∑T
t=1 ε

′
tεt)

∂β3

= − 1

2σ2

T∑
t=1

∂(ε′tεt)

∂β3

= − 1

σ2

T∑
t=1

N∑
i=1

∂εti
∂β3

εti =
1

σ2

T∑
t=1

N∑
i=1

Y(t−1)iεtiI{Y(t−1)i<r}.

Since

∂εti
∂β3

=
∂(Yit − β0i −Mi − β3Y(t−1)iI{Y(t−1)i<r})

∂β3

= −Y(t−1)iI{Y(t−1)i<r},

where Mi is the ith row of the matrix γ>Z + (β1W + β2I)Yt−1, we can also get
∂εti
∂β2

= −Y(t−1)i,
∂εti
∂β1

= −
∑N

j=1 WijY(t−1)j,
∂εti
∂β0

= −1, ∂εti
∂γP

= −ZPi, P = 1, · · · , p.
Review

D2(θ) =

(
∂L(θ)

∂β0

,
∂L(θ)

∂β1

,
∂L(θ)

∂β2

,
∂L(θ)

∂γ1

, · · · , ∂L(θ)

∂γp

)>
,

where

∂L(θ)

∂β0

=
1

σ2

T∑
t=1

N∑
i=1

εti,

∂L(θ)

∂β1

= − 1

σ2

T∑
t=1

N∑
i=1

∂εti
∂β1

εti =
1

σ2

T∑
t=1

N∑
i=1

(
N∑
j=1

WijY(t−1)j

)
εti,

∂L(θ)

∂β2

= − 1

σ2

T∑
t=1

N∑
i=1

∂εti
∂β2

εti =
1

σ2

T∑
t=1

N∑
i=1

Y(t−1)iεti,
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∂L(θ)

∂γP
=

1

σ2

T∑
t=1

N∑
i=1

ZPiεti,where P = 1, · · · , p.

In addition,

I(θ) =

(
I11(θ) I12(θ)

I21(θ) I22(θ)

)
, (A.3)

where

I11(θ) = E

(
−∂

2L(θ)

∂β2
3

)
=

1

σ2

T∑
t=1

N∑
i=1

Y 2
(t−1)iI{Y(t−1)i<r},

I12(θ) = E
(
− ∂2L(θ)
∂β3∂β0

− ∂2L(θ)
∂β3∂β1

− ∂2L(θ)
∂β3∂β2

− ∂2L(θ)
∂β3∂γ1

· · · − ∂2L(θ)
∂β3∂γp

)
= {I21(θ)}>.

Next, we calculate the elements of I12(θ) separately,

E

(
− ∂

2L(θ)

∂β3∂β0

)
=

1

σ2

T∑
t=1

N∑
i=1

Y(t−1)iI{Y(t−1)i<r},

E

(
− ∂

2L(θ)

∂β3∂β1

)
=

1

σ2

T∑
t=1

N∑
i=1

(
N∑
j=1

WijY(t−1)j

)
Y(t−1)iI{Y(t−1)i<r},

E

(
− ∂

2L(θ)

∂β3∂β2

)
=

1

σ2

T∑
t=1

N∑
i=1

Y 2
(t−1)iI{Y(t−1)i<r},

E

(
− ∂

2L(θ)

∂β3∂γP

)
=

1

σ2

T∑
t=1

N∑
i=1

Y 2
(t−1)iI{Y(t−1)i<r}ZPi, P = 1, · · · , p.

Finally, we calculate the various elements of I22(θ),

I22(θ) = E



−∂2L(θ)

∂β2
0
− ∂2L(θ)
∂β0∂β1

− ∂2L(θ)
∂β0∂β2

− ∂2L(θ)
∂β0∂γ1

· · · − ∂2L(θ)
∂β0∂γp

− ∂2L(θ)
∂β1∂β0

−∂2L(θ)

∂β2
1
− ∂2L(θ)
∂β1∂β2

− ∂2L(θ)
∂β1∂γ1

· · · − ∂2L(θ)
∂β1∂γp

− ∂2L(θ)
∂β2∂β0

− ∂2L(θ)
∂β2∂β1

−∂2L(θ)

∂β2
2
− ∂2L(θ)
∂β2∂γ1

· · · − ∂2L(θ)
∂β2∂γp

− ∂2L(θ)
∂γ1∂β0

− ∂2L(θ)
∂γ1∂β1

− ∂2L(θ)
∂γ1∂β2

−∂2L(θ)

∂γ21
· · · − ∂2L(θ)

∂γ1∂γp
...

...
...

...
. . .

...

− ∂2L(θ)
∂γp∂β0

− ∂2L(θ)
∂γp∂β1

− ∂2L(θ)
∂γp∂β2

− ∂2L(θ)
∂γp∂γ1

· · · −∂2L(θ)
∂γ2p

,


where

E

(
−∂

2L(θ)

∂β2
0

)
=

NT

σ2
, E

(
− ∂

2L(θ)

∂β0∂β1

)
=

1

σ2

T∑
t=1

N∑
i=1

N∑
j=1

WijY(t−1)j,
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E

(
− ∂

2L(θ)

∂β0∂β2

)
=

1

σ2

T∑
t=1

N∑
i=1

Y(t−1)i,

E

(
− ∂

2L(θ)

∂β0∂γP

)
=

T

σ2

N∑
i=1

ZPi,where P = 1, · · · , p,

E

(
−∂

2L(θ)

∂β2
1

)
=

1

σ2

T∑
t=1

N∑
i=1

(
N∑
j=1

WijY(t−1)j

)2

,

E

(
− ∂

2L(θ)

∂β1∂β2

)
=

1

σ2

T∑
t=1

N∑
i=1

(
N∑
j=1

WijY(t−1)j

)
Y(t−1)i,

E

(
− ∂

2L(θ)

∂β1∂γP

)
=

1

σ2

T∑
t=1

N∑
i=1

(
N∑
j=1

WijY(t−1)j

)
ZPi,where P = 1, · · · , p,

E

(
−∂

2L(θ)

∂β2
2

)
=

1

σ2

T∑
t=1

N∑
i=1

Y 2
(t−1)i,

E

(
− ∂

2L(θ)

∂β2∂γP

)
=

1

σ2

T∑
t=1

N∑
i=1

Y(t−1)iZPi,

E

(
− ∂2L(θ)

∂γP∂γQ

)
=

T

σ2

N∑
i=1

ZPiZQi,where P,Q = 1, · · · , p.
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The Principle of OAuth

Authentication

In order to crawl these data, we need to log in with the username and password

of Twitter, go inside the website, and grab as much data as possible by focusing

on a large number of users. Of course, due to the privacy settings of some users,

we can’t capture all the user data, but those users whose properties are public can

basically meet the needs of our analysis. Twitter provides an API interface for

us to use, which provides us with great convenience in crawling data. To ensure

security, the website authenticates users based on OAuth authentication.

In order to get the data of the Twitter website, we first need to log in to the

website and then obtain the permission to complete the crawling of the information

resources. Twitter website uses OAuth authentication to control the permissions

of third-party applications, so we will briefly introduce the knowledge of OAuth

authentication.

The purpose of the OAuth protocol is to provide a simple, secure, and open

standard for the authorization of third-party applications. Through this protocol,

a third-party application can obtain the authorization of the website for the user

resource without knowing the username and password. Because OAuth authenti-

cation is simple and secure, more and more Internet service providers provide API

access interfaces and use OAuth authentication to authorize users.

The process of OAuth authentication is shown in Figure B.1 and the steps of

this process are described as follows:
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Figure B.1: The Process of OAuth Authentication

1. The client asks the user to give authorization;

2. User agrees to grant authorization;

3. Request a token from the authentication server based on the authorization

obtained in the previous step;

4. The authentication server authenticates the authorization and issues the

token after confirmation;

5. The client uses the token to request resources from the resource server;

6. The resource server uses the token to confirm the correctness of the token

to the authentication server, and provides resources after confirmation.

Twitter’s OAuth authentication is consistent with the basic authentication

process. We only need to get the Access Token and attach an Access Token in

each HTTP request that needs to authenticate from the Twitter API.



Appendix C

Useful Code

C.1 Code for User ID of the Followers

#!/ usr / b in /env python

# −∗− coding : u t f−8 −∗−
import time

import sys

import csv

#h t t p ://www. tweepy . org /

import tweepy

#Get your Twi t ter API c r e d e n t i a l s and enter them here

consumer key = ”∗∗”

consumer sec re t = ”∗∗”

ac c e s s k ey = ”∗∗”

a c c e s s s e c r e t = ”∗∗”

#h t t p :// tweepy . read thedocs . org /en/v3 . 1 . 0 / g e t t i n g s t a r t e d . html#api

auth = tweepy . OAuthHandler ( consumer key , consumer sec re t )

auth . s e t a c c e s s t o k e n ( acces s key , a c c e s s s e c r e t )

api = tweepy . API( auth )
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i d s = [ ]

for page in tweepy . Cursor ( api . f o l l o w e r s i d s ,

screen name=” UniStrathc lyde ” ) . pages ( ) :

i d s . extend ( page )

C.2 Code for Number of Weekly Tweets

#method to g e t a user ’ s l a s t 100 t w e e t s

def ge t twee t s ( u s e r i d ) :

user=api . g e t u s e r ( u s e r i d )

username = user . screen name

print ” wr i t i ng to {0} twee t s . csv ” . format ( u s e r i d )

i f ( user . f o l l o w e r s c o u n t >80 and user . f r i end s count >40 and

user . s t a tu s e s count >200):

number of tweets = 200

tweets = api . u s e r t i m e l i n e ( id = username , count = number of tweets )

t w e e t s f o r t i m e =[ tweet . c r e a t e d a t for tweet in tweets ]

twee t s l eng th =[ len ( tweet . t ex t ) for tweet in tweets ]

l ength =[0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ]

days=datet ime . date (2017 ,2 ,14)−
t w e e t s f o r t i m e [ len ( t w e e t s f o r t i m e )−1] . date ( )

i f days . days>56:

for i in range ( len ( t w e e t s f o r t i m e ) ) :

days=datet ime . date (2017 ,2 ,14)− t w e e t s f o r t i m e [ i ] . date ( )

i f days . days<7:

l ength [0 ]= length [0 ]+ twee t s l eng th [ i ]

e l i f 7<=days . days<14:

l ength [1 ]= length [1 ]+ twee t s l eng th [ i ]

e l i f 14<=days . days<21:

l ength [2 ]= length [2 ]+ twee t s l eng th [ i ]

e l i f 21<=days . days<28:

l ength [3 ]= length [3 ]+ twee t s l eng th [ i ]

e l i f 28<=days . days<35:

l ength [4 ]= length [4 ]+ twee t s l eng th [ i ]
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e l i f 35<=days . days<42:

l ength [5 ]= length [5 ]+ twee t s l eng th [ i ]

e l i f 42<=days . days<49:

l ength [6 ]= length [6 ]+ twee t s l eng th [ i ]

e l i f 49<=days . days<56:

l ength [7 ]= length [7 ]+ twee t s l eng th [ i ]

with open( ’ xuhui1 . csv ’ , ’ ab ’ ) as f :

w r i t e r = csv . w r i t e r ( f )

data = [ user id , username , l ength [ 0 ] , l ength [ 1 ] , l ength [ 2 ] , l ength [ 3 ] ,

l ength [ 4 ] , l ength [ 5 ] , l ength [ 6 ] , l ength [ 7 ] ]

w r i t e r . writerow ( data )

else :

print ” user {0} have more than 200 tweets in 8 weeks” . format ( u s e r i d )

for i in range ( len ( i d s ) ) :

g e t twee t s ( i d s [ i ] )

C.3 Code for Follower User ID

with open( ’ ∗∗ . csv ’ , ’ r ’ ) as f :

data = f . r e a d l i n e s ( )

nameid =[ ]

for l i n e in data :

l i n e=l i n e . r e p l a c e ( ’\n ’ , ’ ’ ) . s p l i t ( ’ , ’ )

nameid . append ( l i n e [ 0 ] )

del nameid [ 0 ]

int nameid =[ int ( i ) for i in nameid ]
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C.4 Code for Relationship Matrix

for i in range ( numberapi ) :

auth = tweepy . OAuthHandler ( consumer key [ i ] , consumer sec re t [ i ] )

auth . s e t a c c e s s t o k e n ( ac c e s s k ey [ i ] , a c c e s s s e c r e t [ i ] )

ap i [ i ] = tweepy . API( auth )

d=(len ( int nameid ) )

c=range ( numberapi )∗ int ( len ( i d s )/ numberapi )

def g e t f o l l o w s ( user id , ap i ) :

b=[ int ( u s e r i d ) ]

user=api . g e t u s e r ( u s e r i d )

username = user . screen name

f o l l o w e r i d = api . f o l l o w e r s i d s ( id = username )

a=np . z e r o s (d)

s e t1 = set ( int nameid )

s e t2 = set ( f o l l o w e r i d )

s e t3 = se t1 & se t2

f o l l o w e e=l i s t ( s e t3 )

print ( s e t3 )

i f len ( s e t3 )==0:

with open( ’ un fo l low . csv ’ , ’ ab ’ ) as f :

w r i t e r = csv . w r i t e r ( f )

w r i t e r . writerow (b)

print ” user {0} unfo l low ” . format ( u s e r i d )

return

else :

for i in range ( len ( s e t3 ) ) :

n=int nameid . index ( f o l l o w e e [ i ] )

print n

a [ n]=1

b . extend ( a )
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with open( ’ matrix . csv ’ , ’ ab ’ ) as f :

w r i t e r = csv . w r i t e r ( f )

w r i t e r . writerow (b)

print ” user {0} f i n i s h e d ” . format ( u s e r i d )

for j in range ( len ( i d s ) ) :

g e t f o l l o w s ( i d s [ j ] , ap i [ c [ int ( j / 1 3 ) ] ] )

time . s l e e p (20)
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