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Ducted turbines are designed to augment the flow through a rotor and consequently 
increase power extraction, with the aim of reducing the cost of wind energy. Despite 
many years of research, however, much uncertainty remains on a fundamental level: 
uncertainty that is not conducive to maximising performance or to commercial success. 

This work reduces the problem’s complexity and improves understanding of the 
fundamentals by examining the underlying inviscid behaviour of ducted turbines, which 
are also known as diffuser augmented turbines. Numerical results show that the Betz 
limit does not apply, even using duct exit area, confirm the applicability of inviscid 
simulations to attached viscous flow, and clarify the influence of duct geometry. 

A comparison demonstrates that the diffuser conceptual model, which has dominated 
research thus far, is outperformed by an aerofoil conceptual model. The latter gives a 
closer match between intuition and actual performance, is easier to work with, and 
allows the influence of the rotor to be thought of as a change in the flow seen by the 
duct. It is therefore recommended as the standard for future studies.  

Theoretical examinations establish that invalid simplifying assumptions in existing 
theories leave the requirement for empirical parameters intact, and that velocity at the 
rotor may better fill the empirical parameter role than exit pressure or duct drag. A 
detailed derivation for the relationship between inviscid duct drag and augmentation is 
also described for the first time. 

An analysis suggests that ducts inherently reduce the optimum rotor loading in inviscid 
flow, with increases in rotor loading decreasing duct performance by reducing the 
effective duct wall angle and effective free stream velocity magnitude. Viscous effects 
may then increase the optimum, play a larger role than otherwise appears, and have 
greater potential for performance improvements than previously thought. 
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 iv 

 

Many people have contributed to my completion of this work, starting of course with 
my supervisors Peter Jamieson and Professor Mike Graham. Their knowledge and 
advice have been invaluable throughout. Helpful comments from my examiners 
Professor Gerard van Bussel and Doctor Julian Feuchtwang were likewise gratefully 
received. 

I’d also like to thank the staff of the Wind Energy Systems CDT for all the effort they put 
into my education, and I particularly appreciate the patience of Professor Bill Leithead 
and the way Drew Smith always looks out for everyone. Funding from the EPSRC under 
project reference number EP/G037728/1 must also be acknowledged. 

It would not have been possible to reach this point without the continuous support of 
my family, to whom I am extremely grateful. Thanks also to Eilidh for making the 
interminable weeks seem a little shorter, and to my friends and fellow students for all of 
the good times we had.  

  

Acknowledgements 



 v 

 

Abstract ............................................................................................................................................. iii 
Acknowledgements ....................................................................................................................... iv 
Contents .............................................................................................................................................. v 
Nomenclature .................................................................................................................................. ix 
Chapter 1: Introduction ................................................................................................................ 1 

1.1 Conventional Wind Turbines and the Betz Limit ............................................................ 2 
1.2 Ducted Wind Turbines ............................................................................................................... 4 

1.2.1 A Device for Increasing Flow Rate ............................................................................... 4 
1.2.2 Mechanisms of Augmentation ....................................................................................... 7 
1.2.3 The Influence of Viscosity ............................................................................................ 10 
1.2.4 Measures of Performance ............................................................................................ 12 

1.3 Previous Investigative Approaches .................................................................................... 14 
1.3.1 Theory .................................................................................................................................. 14 
1.3.2 Experiment ......................................................................................................................... 14 
1.3.3 Simulation........................................................................................................................... 15 

1.4 The Need for an Inviscid Approach ................................................................................... 16 
1.5 Questions Raised from Previous Research ..................................................................... 17 

1.5.1 Are Ducted Turbine Theories Valid? ........................................................................ 17 
1.5.2 Which Parameters for Duct Geometry? .................................................................. 18 
1.5.3 How Does Duct Geometry Affect Performance? ................................................. 20 
1.5.4 How Do Flow Rate and Rotor Loading Affect Power Extraction? ................ 22 
1.5.5 Does the Betz Limit Apply? .......................................................................................... 23 
1.5.6 How Is the Optimum Rotor Loading Affected? .................................................... 24 

1.6 Research Objectives ................................................................................................................. 25 
1.7 Outline ........................................................................................................................................... 26 
1.8 Summary ....................................................................................................................................... 27 

Chapter 2: Modelling a Ducted Turbine ............................................................................... 28 
2.1 Inviscid Panel Methods ........................................................................................................... 28 

2.1.1 Governing Equations ...................................................................................................... 28 
2.1.2 Solution Methodology .................................................................................................... 30 
2.1.3 Justification of Assumptions ....................................................................................... 32 

2.2 A Panel Method for Ducted Turbines ................................................................................ 33 
2.2.1 Method Outline ................................................................................................................. 33 
2.2.2 Method Details .................................................................................................................. 34 
2.2.3 Results Processing .......................................................................................................... 42 
2.2.4 Simulation Settings ......................................................................................................... 45 
2.2.5 Validation against Actuator Disc Theory ............................................................... 46 
2.2.6 Validation against Inviscid Simulation ................................................................... 52 

 

Contents 



 vi 

 

2.3 Viscous Modelling of Ducted Turbines ............................................................................. 57 
2.3.1 Modelling Approach ....................................................................................................... 57 
2.3.2 Discretising the Flow Field .......................................................................................... 58 
2.3.3 Sources of Error ............................................................................................................... 59 

2.4 Summary ....................................................................................................................................... 61 
Chapter 3: The Behaviour of Ducted Turbines .................................................................. 62 

3.1 Initial Investigations ................................................................................................................ 62 
3.1.1 A Set of Ducted Turbines .............................................................................................. 62 
3.1.2 Area Ratio Does Not Define Performance.............................................................. 64 
3.1.3 Power Is Proportional to Flow Rate at Fixed Loading ...................................... 65 
3.1.4 Optimum Rotor Loading Is Not 8/9 ......................................................................... 66 
3.1.5 Variation of Augmentation with Rotor Loading .................................................. 67 
3.1.6 Influences on Augmentation ....................................................................................... 68 
3.1.7 Variation of Exit Pressure............................................................................................. 70 
3.1.8 The Betz Limit Does Not Apply .................................................................................. 72 

3.2 Right Angled Exit Ducts .......................................................................................................... 74 
3.2.1 The Optimum Shape in Inviscid Flow ..................................................................... 74 
3.2.2 Limits on Ducted Turbine Performance ................................................................. 76 
3.2.3 Small Duct Limits ............................................................................................................. 77 
3.2.4 Small Flanges ..................................................................................................................... 78 

3.3 Applicability to Real Ducted Turbines .............................................................................. 79 
3.3.1 Camber Line Best Matches a Thick Duct ................................................................ 79 
3.3.2 Thin Ducts Can Approximate Thick Ducts............................................................. 83 
3.3.3 Inlets Influence Performance ..................................................................................... 86 
3.3.4 Agreement between Viscous and Inviscid Performance ................................. 91 

3.4 Conceptual Model: A Diffuser or an Aerofoil? ............................................................... 94 
3.5 Summary ....................................................................................................................................... 96 

Chapter 4: Parameters for Duct Shape ................................................................................. 97 
4.1 Diffuser Parameters ................................................................................................................. 97 

4.1.1 Regression Models .......................................................................................................... 98 
4.1.2 Restrictions on Duct Geometry ............................................................................... 101 
4.1.3 Performance Predictions ........................................................................................... 102 
4.1.4 A Limited Approach ..................................................................................................... 105 

4.2 Aerofoil Parameters .............................................................................................................. 107 
4.2.1 Choosing a Measurement Station .......................................................................... 109 
4.2.2 Defining Length to Diameter Ratio ........................................................................ 110 
4.2.3 Making Circulation Dimensionless ........................................................................ 112 
4.2.4 Performance Results ................................................................................................... 115 
4.2.5 A Useful Approach ........................................................................................................ 118 

4.3 The Benefits of an Aerofoil Approach ............................................................................ 119 
4.4 Summary .................................................................................................................................... 121 



 vii 

 

Chapter 5: Testing Current Theories ................................................................................... 122 
5.1 Validation Approach.............................................................................................................. 122 
5.2 Simulations Suitable for Testing Theories ................................................................... 123 
5.3 A Correction for Radial Variations and Radial Velocity .......................................... 126 

5.3.1 Derivation of Correction Factor .............................................................................. 126 
5.3.2 Difference from Boussinesq’s Momentum Coefficient .................................. 127 
5.3.3 Importance of Correction Factor ............................................................................ 129 

5.4 Phillips’ Theory ....................................................................................................................... 130 
5.4.1 Power from an Energy Balance ............................................................................... 131 
5.4.2 Forces from an Axial Momentum Balance .......................................................... 134 
5.4.3 Summary: A Valid Theory ......................................................................................... 137 

5.5 Sørensen’s Theory ................................................................................................................. 138 
5.5.1 Calculations with Exit Pressure .............................................................................. 138 
5.5.2 Calculations with Duct Force ................................................................................... 141 
5.5.3 Final Simplifications .................................................................................................... 142 
5.5.4 Invalid Assumptions .................................................................................................... 144 
5.5.5 Summary: Partly Valid ................................................................................................ 145 

5.6 Werle and Presz’s Theory ................................................................................................... 146 
5.6.1 Calculating Power from Duct Drag ........................................................................ 146 
5.6.2 Calculating Power from Exit Pressure ................................................................. 148 
5.6.3 Summary: Partly Valid ................................................................................................ 149 

5.7 Jamieson’s Theory.................................................................................................................. 150 
5.7.1 Equations Valid for Real Ducts ................................................................................ 150 
5.7.2 Equations for Ideal Diffusers Only......................................................................... 152 
5.7.3 Relating the Real and Ideal ....................................................................................... 154 
5.7.4 Summary: Increased Understanding .................................................................... 155 

5.8 The Need for Further Development ............................................................................... 155 
5.9 Summary .................................................................................................................................... 157 

Chapter 6: A Validated Theory ............................................................................................... 159 
6.1 Drag-Based Derivation ......................................................................................................... 159 

6.1.1 Establishing a Momentum Balance ....................................................................... 159 
6.1.2 Replacing Far Wake Velocity with Rotor Loading ........................................... 161 
6.1.3 Replacing Control Volume Forces with Drag ..................................................... 162 
6.1.4 Calculating Performance ........................................................................................... 166 

6.2 Analytical Investigations ..................................................................................................... 167 
6.2.1 Augmentation, Drag, and Their Momentum Connection ............................. 167 
6.2.2 Power Extraction Matches Numerical Results ................................................. 170 
6.2.3 Optimum Rotor Loading Remains Empirical .................................................... 171 

6.3 Alternative Relationships.................................................................................................... 172 
6.3.1 Based on Axial Induction ........................................................................................... 172 
6.3.2 Based on Exit Pressure ............................................................................................... 173 



 viii 

 

6.4 Power Equations: Informative or Misleading? ........................................................... 175 
6.5 Summary .................................................................................................................................... 177 

Chapter 7: Optimum Rotor Loading and Augmentation Theory ............................... 178 
7.1 Optimum Rotor Loading: Numerical Investigations ................................................ 178 

7.1.1 A Search with Duct Shape Optimisation ............................................................. 178 
7.1.2 A Search with Many Duct Shapes ........................................................................... 181 
7.1.3 The Failure to Reach 8/9 ........................................................................................... 183 

7.2 Augmentation Theory .......................................................................................................... 183 
7.2.1 Circulation or Force Explanation? ......................................................................... 184 
7.2.2 The Missing Factor: Circulation Dispersion or Effectiveness ..................... 187 
7.2.3 Suitability of the Aerofoil Conceptual Model .................................................... 192 
7.2.4 Circulation: A Validated Theory .............................................................................. 196 

7.3 Optimum Rotor Loading: Applying the Theory ......................................................... 196 
7.3.1 Analytical Approach .................................................................................................... 196 
7.3.2 Numerical Approach ................................................................................................... 197 
7.3.3 The Negative Influence on Optimum Rotor Loading...................................... 202 

7.4 The Aerofoil Explanation for Ducted Turbine Performance ................................. 202 
7.5 Summary .................................................................................................................................... 206 

Chapter 8: Conclusions ............................................................................................................. 207 
8.1 The Inviscid Behaviour of Ducted Turbines ................................................................ 207 

8.1.1 The Influence of Duct Geometry on Performance ........................................... 207 
8.1.2 Applicability to Viscous Flows ................................................................................ 208 
8.1.3 Power Extraction, Flow Rate, and Rotor Loading............................................ 208 
8.1.4 Inapplicability of the Betz Limit ............................................................................. 209 

8.2 A Comparison of Conceptual Models ............................................................................. 209 
8.2.1 Explanations for Augmentation .............................................................................. 209 
8.2.2 Parameters for Duct Geometry ............................................................................... 211 
8.2.3 The Benefits of an Aerofoil Model ......................................................................... 212 

8.3 Tests and Extensions of Theory........................................................................................ 212 
8.3.1 The Validity of Existing Theories ........................................................................... 212 
8.3.2 A Correction Factor for Radially Varying Flows ............................................... 213 
8.3.3 The Missing Derivation for Inviscid Drag ........................................................... 213 
8.3.4 Suitability of Empirical Parameters ...................................................................... 214 

8.4 The Optimum Rotor Loading ............................................................................................. 214 
8.4.1 Studies of Theory and Geometry ............................................................................ 214 
8.4.2 An Inherent Reduction in Inviscid Flow .............................................................. 214 
8.4.3 Increases in Viscous Flow ......................................................................................... 215 

8.5 A Better Understanding of the Fundamentals ............................................................ 216 
8.6 Summary of Conclusions ..................................................................................................... 217 
8.7 Summary of Future Work ................................................................................................... 218 

References .................................................................................................................................... 220  



 ix 

 

Latin Symbols 
𝐴𝐴 Area 
𝒜𝒜𝑗𝑗 Ratio of area at 𝑗𝑗 to rotor area 
𝑎𝑎 Axial induction 
𝑎𝑎0 Axial induction without energy extraction for Jamieson’s ideal diffuser 
𝐶𝐶 Circumference 
𝐶𝐶𝐷𝐷 Duct drag coefficient 
𝐶𝐶𝐹𝐹 Coefficient of total duct force per radian 
𝐶𝐶𝑃𝑃 Power coefficient 
𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 Maximum power coefficient 
𝐶𝐶𝑝𝑝 Pressure coefficient 
𝐶𝐶𝑅𝑅 Coefficient of radial duct force per radian 
𝐶𝐶𝑆𝑆 Duct axial force coefficient as defined by Werle and Presz 
𝐶𝐶𝑇𝑇 Thrust coefficient 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 Optimum thrust coefficient for maximum power 
𝐶𝐶𝑣𝑣 Specific heat at constant volume 
𝐶𝐶𝛤𝛤 Duct circulation coefficient 
𝐷𝐷 Rotor diameter 
𝐝𝐝𝒍𝒍 Directed segment of vorticity 
𝐝𝐝𝒔𝒔 Directed line segment 
𝑒𝑒 Internal energy per unit mass 
𝐹𝐹𝐷𝐷 Drag force on duct walls 
𝐹𝐹𝑑𝑑𝑑𝑑 Axial force on portion of streamtube downstream of duct 
𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖 Axial reaction force on flow from duct inside surface 
𝐹𝐹𝑑𝑑,𝑇𝑇𝑜𝑜𝑇𝑇 Axial reaction force on flow from duct outside surface 
𝐹𝐹𝑟𝑟 Reaction force on flow from rotor 
𝐹𝐹𝑇𝑇 Thrust force on actuator disc 
𝐹𝐹𝑇𝑇𝐷𝐷 Total axial force on ducted turbine 
𝐹𝐹𝑜𝑜𝑑𝑑 Axial force on portion of streamtube upstream of duct 
𝐹𝐹𝑣𝑣𝑖𝑖𝑑𝑑𝑣𝑣𝑇𝑇𝑜𝑜𝑑𝑑 Force on control volume from viscous stresses 
𝒇𝒇 Body force per unit mass 
𝐼𝐼𝑗𝑗𝑗𝑗 Influence coefficient for vortex ring 𝑘𝑘 on point 𝑗𝑗 
𝑘𝑘 Constant 
𝐿𝐿 Length 
�̇�𝑚 Mass flow rate 
𝒏𝒏� Unit normal vector 
𝑃𝑃 Power extracted by actuator disc 
𝑝𝑝 Static pressure 
𝑝𝑝𝑙𝑙𝑇𝑇𝑑𝑑𝑑𝑑 Viscous losses inside duct 
𝑄𝑄 Volume flow rate 
𝒒𝒒� Unit direction vector 
𝑅𝑅 Outer radius 
𝑅𝑅2 Coefficient of determination 
ℛ𝑃𝑃𝑜𝑜𝑎𝑎 Power and velocity augmentation ratio relative to a bare rotor at equal 𝐶𝐶𝑇𝑇 
𝑅𝑅𝑑𝑑 Specific gas constant 
𝑟𝑟 Radius, radial position 
𝑆𝑆 Surface 

Nomenclature 



 x 

 

𝑆𝑆𝑗𝑗𝑣𝑣 Circumferential surface 𝑗𝑗 
𝑼𝑼 Velocity 
𝒰𝒰𝑗𝑗 Ratio of axial velocity at 𝑗𝑗 to free stream velocity 
𝑢𝑢 Axial velocity 
𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟 Axial velocity induced by the duct’s vorticity lumped into a single vortex ring 
𝑉𝑉 Volume 
𝑣𝑣 Radial velocity 
𝑥𝑥 Axial position 

Greek Symbols 
𝛼𝛼 Duct wall angle from direction of free stream velocity 
𝛽𝛽 Velocity correction factor for the momentum equation 
𝛤𝛤 Circulation, vortex element strength 
𝛾𝛾 Velocity correction factor for Bernoulli’s equation 
𝛾𝛾𝑃𝑃 Velocity correction factor for Bernoulli’s equation using axial velocity only 
Δ𝑀𝑀 Change in axial momentum flow rate from far upstream to far downstream 
Δ𝑝𝑝 Pressure drop across actuator disc 
Δ𝑠𝑠 Vortex panel length 
𝜻𝜻 Vorticity vector 
𝛬𝛬𝛤𝛤 Circulation dispersion ratio 
𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 Diffuser efficiency 
𝜂𝜂𝛤𝛤 Circulation effectiveness ratio 
𝜃𝜃 Angle 
𝜇𝜇 Dynamic viscosity 
𝜌𝜌 Density  
Φ Velocity potential 

Subscript Symbols 
𝑏𝑏𝑎𝑎𝑟𝑟𝑒𝑒 Bare rotor result 
𝑐𝑐 Chord line 
𝑐𝑐𝑎𝑎𝑚𝑚 Camber line 
𝑑𝑑 Duct 
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 Diffuser 
𝑑𝑑, 𝑑𝑑𝑖𝑖 Portion of streamtube passing through duct 
𝑑𝑑𝑠𝑠 Downstream portion of streamtube 
𝑒𝑒 Duct exit 
𝑒𝑒𝑑𝑑𝑑𝑑 Effective quantity 
𝑑𝑑 Duct inlet 
𝑑𝑑𝑖𝑖 Inside surface 
𝑜𝑜𝑝𝑝𝑜𝑜 Corresponding to maximum power coefficient 
𝑜𝑜𝑢𝑢𝑜𝑜 Outside surface 
𝑟𝑟 Rotor 
𝑟𝑟𝑎𝑎𝑑𝑑 Radial surface of control volume 
𝑟𝑟𝑑𝑑 Downstream side of rotor 
𝑟𝑟𝑢𝑢 Upstream side of rotor 
𝑢𝑢𝑠𝑠 Upstream portion of streamtube 
𝑤𝑤 Far downstream 
𝑤𝑤𝑎𝑎𝑘𝑘𝑒𝑒 Rotor’s wake vorticity 
𝑥𝑥 Axial component, axial direction 
∞ Far upstream, free stream conditions 



Chapter 1: Introduction 1 

We don’t think about ducted turbines in the right way. Despite the allure of cheaper 
wind energy inspiring considerable research since the 1970s, not to mention a century 
long history, common beliefs and points of view still conspire with uncertainty to 
hinder development. Difficulties in this regard stem from the complex aerodynamics 
involved. Adding a structure to draw more air through a wind turbine’s rotor may be 
simple in concept, but interrelationships and the nature of the flow through the duct 
serve only to confuse. 

Figure 1.1: Photographs of a 100kW Wind Lens ducted turbine at Kyushu University in Japan. 
View from upwind side (left) and downwind side with person for scale (right). 

Experiments have nevertheless demonstrated the main effect of a duct: comparing 
ducted and unducted rotors of the same size shows an augmentation of the flow rate 
through the rotor and a consequently larger power extraction. Such an analysis cannot 
test the economic argument, but it does prove that the ducted rotor can exceed the 
theoretical limit on the bare rotor. This conclusion has been the driver for much of the 
interest in ducted turbines, thus far culminating in construction of the 100kW 
prototype [1] in Figure 1.1 at Kyushu University in Japan. 

Investigations have been lacking, however, on more fundamental levels. Two main 
schools of thought exist for the mechanism behind augmentation, for example, but one 

Introduction 
1

Chapter 
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dominates investigations of duct geometry without having been proven superior. Many 
theoretical relationships have been derived, but without sufficient validation and 
comparison. A ducted rotor can exceed the theoretical power extraction limit for a bare 
rotor of equal area, but existing research leaves it unclear if the limit applies when 
using the duct exit area instead. 

Commercial success has not been forthcoming for ducted turbines, and it may be that 
the concept is simply unviable. An incomplete understanding of the fundamentals is not 
conducive to maximising performance, however, and uncertainty over limits on power 
extraction makes a best case economic analysis impossible. There is insufficient 
information to come to a conclusion, and a reduced cost of wind energy may yet arise 
from the ability of the duct to more than double power extraction for a given rotor size 
[2], to allow operation in lower wind speeds [3], and to reduce drivetrain costs [4]. 

Aerodynamics has been the main focus of previous research. However, the majority of 
investigations were limited either to simplified theory or to viscous simulations and 
experiments. An intermediate approach of simplified inviscid simulations instead 
proves useful here when examining the fundamentals and building up a base of 
understanding for future design activities. Existing theories are tested and the 
underlying inviscid behaviour of ducted turbines assessed, while the conventional 
approach to duct geometry studies is challenged and a theoretical limit on power 
extraction shown not to exist.   

This chapter begins with an overview of standard wind turbine theory, followed by an 
introduction to ducted turbines and the different points of view on the mechanism 
behind augmentation. After an examination of the approaches used in previous 
research, the choice to use simplified inviscid simulations is justified. Open questions in 
the existing literature are then identified, leading to a set of objectives for this work and 
an outline of the remaining chapters. 

1.1 Conventional Wind Turbines and the Betz Limit 
Ducted turbines are often described by comparison to the conventional wind turbine, 
sometimes called a bare rotor because it lacks a duct, and extract energy from the flow 
using the same basic principle. Aerodynamic forces act on each of the blades making up 
the rotor, causing the rotor to turn with a conversion to electrical energy in the 
generator. If the influence of these blades is averaged in time, the rotor can be viewed as 
a permeable surface – the actuator disc – that extracts energy from the air flowing 
through it. 

A theoretical momentum analysis [5] of an actuator disc is shown in Figure 1.2, which 
models the fluid as having zero viscosity. The undisturbed free stream flow appears on 
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the left with a purely axial velocity 𝑢𝑢∞, pressure 𝑝𝑝∞, and cross sectional area 𝐴𝐴∞, then 
progressively expands to the rotor area 𝐴𝐴𝑟𝑟 as the axial velocity drops to 𝑢𝑢𝑟𝑟 and the 
pressure increases to 𝑝𝑝𝑟𝑟𝑜𝑜. Energy extraction by the actuator disc manifests as a drop in 
pressure Δ𝑝𝑝, before a gradual return from 𝑝𝑝𝑟𝑟𝑑𝑑  to 𝑝𝑝∞ as the flow continues to expand to 
𝐴𝐴𝑤𝑤 and slow to 𝑢𝑢𝑤𝑤 in the far wake. The power extracted 𝑃𝑃 can be calculated from 
Equation 1.1. 

𝑃𝑃 = Δ𝑝𝑝𝐴𝐴𝑟𝑟𝑢𝑢𝑟𝑟 Equation 1.1 

Figure 1.2: Cross section of the flow through a standard wind turbine, where the rotor is 
represented by an actuator disc. 

Although the momentum analysis makes substantial simplifications, it leads to an 
important theoretical result: the Betz limit. More correctly called the Betz-Joukowsky 
limit [6], it describes the maximum power extraction possible by a wind turbine in 
terms of the power coefficient. For air density 𝜌𝜌, the power coefficient 𝐶𝐶𝑃𝑃 is defined by 
Equation 1.2. 

𝐶𝐶𝑃𝑃 =
𝑃𝑃

1
2𝜌𝜌𝐴𝐴𝑟𝑟𝑢𝑢∞

3
Equation 1.2 

The Betz limit also identifies the optimum pressure drop for maximum power 
extraction in terms of the thrust, or rotor loading, coefficient 𝐶𝐶𝑇𝑇 defined in Equation 1.3. 

𝐶𝐶𝑇𝑇 =
Δ𝑝𝑝

1
2𝜌𝜌𝑢𝑢∞

2
Equation 1.3 
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And finally, the Betz limit specifies the optimum axial velocity at the rotor using the 
axial induction factor 𝑎𝑎𝑟𝑟 defined in Equation 1.4. 

𝑎𝑎𝑟𝑟 = 1 −
𝑢𝑢𝑟𝑟
𝑢𝑢∞

Equation 1.4 

In idealised theory, then, the Betz limit states that the maximum power extraction 
𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is 16/27, or roughly 0.593, found at the optimum rotor loading 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9 and 
axial induction 𝑎𝑎𝑟𝑟,𝑇𝑇𝑝𝑝𝑇𝑇 = 1/3. Equation 1.2 compares the actual power extracted from the 
wind to what is often described as the power in the wind; wind turbines have therefore 
been viewed as extracting less than 60% of what is available. It is the attraction of 
exceeding this value – of beating the Betz limit – that drives much of the interest in 
ducted turbines. 

1.2 Ducted Wind Turbines 

1.2.1 A Device for Increasing Flow Rate 

The most significant change introduced in a ducted wind turbine is the structure 
around the circumference of the rotor, as illustrated in Figure 1.3. Names for this 
structure include duct wall, duct, diffuser, and shroud, although diffuser may also refer 
to the expanding section only. Corresponding names for the entire device are ducted 
turbine, diffuser augmented wind turbine, often shortened to DAWT, and shrouded 
turbine. Inlet, meanwhile, can denote both a contracting section upstream of the rotor 
and the plane where flow enters the duct. The centrebody houses the generator and 
other drivetrain components, and is often held in place by a support structure 
connecting to the duct, supported in turn by the tower. 

Figure 1.3: Illustration of a ducted turbine cross section, identifying the main components. 
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Attempts at commercialising this concept have had limited success, beginning in the 
1990s with the failure of the Vortec 7 to meet expectations [7]. Numerous small scale 
designs [8–13] have since been unsuccessful, and Ogin, formerly FloDesign, collapsed 
after $150,000,000 of investment while developing a 100kW turbine [14, 15]. Tidal 
projects have fared no better, with Lunar Energy [16] unable to progress their design to 
the construction stage [17], and with the 500kW Solon turbine apparently abandoned 
in favour of bare rotor designs by Atlantis Resources after testing in 2009 [18, 19].  

These setbacks, however, have not ended commercial interest. Development of the 
Wind Lens turbine continues, including a multi-rotor configuration [20], and Halo 
Energy has been formed by ex-Ogin employees to focus on sub-10kW designs using 
technology purchased from their former employer [21]. Academic interest may even be 
increasing, evidenced by the introduction of a mini-symposium on the topic at the Wind 
Energy Science Conference in 2017 and its repeat in 2019. 

Commercial designs have generally resembled Figure 1.3, but significant variations are 
possible. Rotors may be of the vertical rather than horizontal axis type [22, 23], while 
the entire structure can be made lighter than air for an airborne device [24, 25], be 
mounted vertically or horizontally on a rooftop [26–29], or have side inlets for the flow 
[30]. It has even been suggested that two high-rise buildings could form a duct with a 
rotor between them [31], that the duct could be in the form of an underground tunnel 
[32], or that the turbine could be mounted on a moving vehicle [33–35]. Tidal stream 
designs sometimes accept flow from either end alternately [36], perhaps with an 
adaptable duct shape to increase power extraction [37]. 

With a focus on the fundamentals of ducted turbine performance, this work is restricted 
to the typical case of a free standing and horizontally mounted duct. Substantial 
diversity of design still exists, however, as demonstrated in Figure 1.4. Ducts need not 
be the wing-like shape shown in Figure 1.3, but they do share the common feature of 
expanding radially downstream of the rotor. Some also incorporate slots in the duct 
wall to re-energise the internal flow, delaying duct wall separation, and radial flanges at 
the exit aimed at increasing augmentation. 

Further reductions in scope were chosen in line with the project objectives. The 
influence of nearby obstructions and of the tower, support structure, and centrebody 
were selected as factors to be considered separately from the fundamentals. While 
there is perhaps some limited evidence of benefit from a contracting duct upstream of 
the rotor without a downstream expansion [38], such devices are also not considered 
here.  
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Figure 1.4: Illustration of various duct designs, scaled to equal duct throat areas. Shapes and 
dimensions are approximations only, while support structures and centrebodies are excluded. 
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Rather than slowing upstream of the rotor, as was seen in Figure 1.2 for a standard 
turbine, the flow can be accelerated by the duct [45] to reach 𝑢𝑢𝑖𝑖 at the duct inlet and a 
value of 𝑢𝑢𝑟𝑟 greater than 𝑢𝑢∞ at the rotor. A resulting contraction of the streamtube [46] 
is visible in Figure 1.5. As in the bare turbine case, the rotor causes a pressure drop Δ𝑝𝑝 
that recovers to 𝑝𝑝𝑒𝑒  at the duct exit and 𝑝𝑝∞ in the far wake as the flow slows to 𝑢𝑢𝑒𝑒 and 𝑢𝑢𝑤𝑤 
respectively. As there can be substantial radial variations in pressure and velocity, 𝑝𝑝 and 
𝑢𝑢 are defined as averages over the cross sectional area at the station specified. 

Figure 1.5: Cross section of the flow through a ducted wind turbine, where the rotor is 
represented by an actuator disc. 

1.2.2 Mechanisms of Augmentation 

Accelerated flow through the rotor leading to increased power extraction is central to 
the concept of a ducted turbine. Explanations for this augmentation differ, however, and 
an investigation of the published literature found two main kinds: one relating to the 
changes in pressure induced by the duct and one treating the duct section as similar to 
a wing. Both are examined here, along with more niche explanations and a possible 
secondary mechanism of increased power extraction per unit mass flow. 

Reduced Pressure Explanation for Mass Flow Augmentation 

A recurring explanation for augmentation was that the duct creates a region of reduced 
static pressure that draws more flow through the rotor. Some authors focused on the 
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confirmed that this pressure can be substantially sub-atmospheric [39, 55], and more 
negative than the pressure immediately downstream of a bare rotor [4]. Viewpoints 
differed on the cause of this reduction, with some attributing it to blockage of the flow 
by the duct [41, 56, 57] and some stating that it is caused by the duct forcing a radial 
expansion of the flow [4, 58, 59]. 

In other studies, the suction effect on the flow was ascribed to the low pressure region 
inside the duct rather than at the exit [2, 57, 60–65]: the diffusion of the flow as the 
duct expands was viewed as causing a reduction in pressure at the duct throat. Some 
authors explicitly considered the reduced pressure at the exit as a contribution to 
augmentation, but one that is enhanced by a further reduction in pressure at the throat 
[41, 56, 57, 66]. An alternative to the diffusion point of view is to consider the duct wall 
as an annular wing that has its low pressure surface on the inside of the duct [39, 67, 
68]. 

Aerofoil Explanation for Mass Flow Augmentation 

A purely aerofoil-based approach characterised the second main explanation for mass 
flow augmentation. Figure 1.6 shows the general form of an aerofoil, which is usually 
the cross sectional shape of a wing but here is flipped to be the upper wall of a duct. The 
chord line connects the leading and trailing edges, and forms a positive angle of attack 𝛼𝛼 
to horizontal when the aerofoil is rotated anticlockwise. Another important parameter 
is the aerofoil’s camber line, defined as the mid-point between the upper and lower 
surfaces, and measured by the maximum distance between the chord and camber lines. 

Figure 1.6: Aerofoil terminology, applied to the upper wall of a duct. 

It has been empirically observed that the flow over an aerofoil leaves smoothly at the 
sharp trailing edge [69]. By introducing camber or by rotating to a non-zero angle of 
attack, the flow near to the aerofoil must therefore adapt within certain limits imposed 
by viscosity. This change can be measured by the circulation 𝛤𝛤 around the aerofoil, 
defined in Equation 1.5 for a closed curve 𝐶𝐶 around the upper duct wall with segments 
𝐝𝐝𝒔𝒔 and velocity vector 𝑼𝑼.  

𝛤𝛤 = �𝑼𝑼 ⋅ 𝐝𝐝𝒔𝒔
𝐶𝐶

 Equation 1.5 
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A positive value of circulation around the upper duct wall by definition means a greater 
axial velocity passing through the inside of the duct than passing by the outside. 
Through the Kutta-Joukowski theorem [69], the change in the flow can also be related 
to the lift force acting on the aerofoil. These two facts serve as the basis of differing 
points of view on the aerofoil explanation of augmentation. 

The first perspective concerns the lift force produced by an aerofoil shape, which 
becomes a radially inward force when the aerofoil is rotated about an axis to form an 
axisymmetric duct. It has been suggested that the consequent reaction force on the flow 
causes it to expand radially downstream of the duct, with mass continuity then leading 
to an increase in the size of the streamtube upstream of the duct and a larger mass flow 
[4, 70–73]. While Aranake, Lakshminarayan, and Duraisamy [74] encountered different 
mass flows through ducts with the same radial force, they suggested that this could be 
accounted for by differences in the position of the leading edge stagnation point. 

The second type of aerofoil-based explanation is related to the circulation developed 
around the aerofoil that causes an acceleration of the flow inside the duct. Some 
authors used circulation to connect radial force to augmentation, stating that the force 
causes circulation rather than describing it as forcing flow expansion [55, 75–77]. 
Phillips [4] considered these explanations equivalent. Other authors took the view that 
the circulation is induced directly by the duct wall shape, and made no reference to the 
radial force [2, 25, 82, 46, 60, 71, 74, 78–81]. 

Other Explanations for Mass Flow Augmentation 

Ducts with an outlet flange typically have been viewed as having a somewhat distinct 
mechanism of augmentation. Separated flow, which will be discussed further in Section 
1.2.3, exists on a flange’s downstream side; some authors described augmentation 
directly in terms of this region having low pressure and drawing more flow through [59, 
83–85], while others specified that the low pressure results from vortex formation [33, 
37, 86–90]. One study attributed the augmentation to obstruction by the flange causing 
the flow to have an ‘easier path’ through the duct [91], while explanations by analogy to 
trailing edge flaps on aerofoils were not found.  

More unusual explanations for the mechanism of augmentation for all ducts included a 
lower pressure on the suction side of the rotor blades leading to an increased blade lift 
force and power extraction [51], and vortex formation or separation as the cause of 
augmentation even in the absence of a flange [92, 93]. One group of authors considered 
augmentation to result from the combination of circulation, reduced pressure at the 
duct exit due to separation, and the area change between throat and exit [60, 78]. 
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Wake Mixing: A Secondary Mechanism? 

Viscous wake mixing downstream of the turbine has been proposed as a secondary 
cause of augmentation [4, 35], an effect not shown in Figure 1.5 where the fluid has no 
viscosity. Additional energy would be transferred from the external flow into the wake 
by this mixing, potentially increasing the optimum rotor loading coefficient compared 
to a bare rotor. As an increase in 𝐶𝐶𝑇𝑇 is equivalent to an increase in the power extracted 
per unit mass flow [4], this augmentation would be additional to any increases in flow 
rate. However, Section 1.5.6 will show that it is not yet clear how the inclusion of a duct 
affects the optimum value of 𝐶𝐶𝑇𝑇. 

Questions Raised 

While both the reduced pressure and aerofoil explanations have frequently been put 
forth to explain the mass flow augmentation, no detailed comparison of the two was 
found in the literature surveyed. It is therefore unclear whether there are advantages to 
one over the other, or if they are truly equivalent. Furthermore, little consideration 
seems to have been given to an aerofoil-based explanation for flanged diffusers. The 
magnitude of any augmentation per unit mass flow through wake mixing is also 
uncertain. 

To ease comparisons between the two main augmentation theories later in this work, 
one viewpoint was selected from each. Reduced exit pressure was chosen over inside 
pressure, as it was commonly included in theoretical models and investigations here 
confirmed an exact theoretical relationship with augmentation. In any case, the 
viewpoints may be equivalent: Phillips suggested that a change in pressure at the exit 
can be translated throughout the entire duct [4].  

There are also reasons to believe that both aerofoil-based viewpoints are equivalent: 
the Kutta-Joukowski theorem states that there is a linear relationship between 
circulation and force for a 2D aerofoil, and some authors have linked the two 
phenomena for ducted turbines. Circulation was chosen as the primary representative 
for the aerofoil-based mechanisms in this work, a decision borne out by the results in 
Section 7.2. 

1.2.3 The Influence of Viscosity 

All real fluids have some non-zero level of viscosity, but models that assume inviscid 
flow can still have value: the basic theory for flow through a wind turbine discussed in 
Section 1.1, for example, makes exactly that assumption. Care must be taken to consider 
the impact of neglecting viscosity, however. For a ducted turbine, using an inviscid flow 
means that the fluid always leaves the duct trailing edge smoothly, but in reality a 
sufficiently large duct wall angle results in flow separation. The main fluid flow then 
leaves the surface early and a region of recirculation results, as illustrated in Figure 1.7. 
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Figure 1.7: Illustration of attached and separated flow on the inside surface of a duct upper 
wall. 

Broadly speaking, separated flow was viewed by other authors as reducing or limiting 
the performance of a ducted turbine [e.g. 50, 55, 66, 94]. Both the lift force and the 
circulation decrease when separation is present on an aerofoil, while inside a diffuser it 
can be viewed as limiting the expansion of the flow [57, 95]. Hjort and Larsen [2] 
introduced a second limitation for highly performing ducts that avoid separation on 
their surface: what they termed diffuser wake stall. In this case, flow reversal can occur 
downstream of the duct exit when pressure recovery in the wake leads to sufficiently 
low velocities. 

The impact of viscous effects on ducted turbines has been measured using the diffuser 
efficiency parameter [39, 55], defined as the ratio between the actual pressure rise in 
the duct’s expanding section to the rise without any viscous effects. Similar parameters 
exist for inlet section efficiency [56, 57] and overall duct efficiency [32]. With the 
inviscid rise calculated from Bernoulli’s equation, the diffuser efficiency 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 is shown 
in Equation 1.6. 

𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 =
(𝑝𝑝𝑒𝑒 − 𝑝𝑝𝑟𝑟𝑑𝑑)𝑃𝑃𝑣𝑣𝑇𝑇𝑜𝑜𝑃𝑃𝑙𝑙

(𝑝𝑝𝑒𝑒 − 𝑝𝑝𝑟𝑟𝑑𝑑)𝑖𝑖𝑖𝑖𝑣𝑣𝑖𝑖𝑑𝑑𝑣𝑣𝑖𝑖𝑑𝑑
=

𝑝𝑝𝑒𝑒 − 𝑝𝑝𝑟𝑟𝑑𝑑
1
2𝜌𝜌(𝑢𝑢𝑟𝑟2 − 𝑢𝑢𝑒𝑒2)

=
𝑝𝑝𝑒𝑒 − 𝑝𝑝𝑟𝑟𝑑𝑑

1
2𝜌𝜌𝑢𝑢𝑟𝑟

2 �1 − 𝐴𝐴𝑟𝑟2
𝐴𝐴𝑒𝑒2
�

Equation 1.6 

This parameter is reduced by viscous losses such as flow separation [55, 57, 96] and 
friction between the duct and flow [55], and there was general agreement that power 
extraction is consequently reduced [4, 32, 39, 49, 50, 56, 96]. Highly efficient diffusion 
has therefore been sought after [55, 79], even before structural requirements from 
increased drag and buffeting forces were considered.  

Viscous effects were not always viewed negatively, however, as was discussed in Section 
1.2.2: a region of separated flow was sometimes considered the cause of augmentation 
for a flanged diffuser. The same argument has been applied to a design with a large 
expansion angle that does not reach the extent of being a radial flange [60]. An inviscid 
flow would also prevent wake mixing and any subsequent augmentation of power 
extracted per unit mass flow. 

Attached Flow Separated Flow 
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1.2.4 Measures of Performance 

Power and Thrust Coefficients 

As with bare rotors, the power coefficient is a commonly used measure of performance 
for ducted turbines. A certain level of controversy exists, however, over the correct 
choice of reference area. Many studies followed the conventional definition and used 
rotor area [4, 55, 76, 77, 97], and it has been suggested that this may be the most 
common approach [98]. Other studies used the duct exit area [36, 43, 53, 81, 99, 100], 
some presented results using both [44, 66, 74, 101], and one suggested using rotor area 
when interested in energy capture and exit area when interested in economics [32].  

Arguments for exit area included the claim that it was the fairest approach by 
comparing using the area of free stream flow intercepted by the ducted turbine [36, 99], 
and that it allowed direct comparison with a bare rotor equal in size to the duct’s 
largest diameter [43, 81, 100, 102, 103]. Foreman, Gilbert, and Oman [50], however, 
argued that any reference area can be chosen so long as it is used consistently: 
questions of economics will always be resolved with cost of energy calculations rather 
than by comparing power coefficient values. 

It is the latter point of view that is accepted here. Vast differences in design can exist 
even when comparing with a fixed reference area, as illustrated in Figure 1.4, so the 
power coefficient cannot be used to determine which design is superior. An assessment 
in Section 4.2.1 suggests that the standard definition involving rotor area, given in 
Equation 1.2, is the most convenient; that definition is therefore used throughout this 
work unless otherwise stated. The rotor loading coefficient is also used in its standard 
form as defined in Equation 1.3. 

Augmentation Ratio 

Another way of measuring the performance of a ducted turbine is the augmentation 
over the performance of a bare rotor. This comparison can be made in a number of 
ways: using power extracted or flow rate through the rotor, using equal bare and ducted 
rotor areas or with the bare rotor equal in area to the duct exit, and using both rotors at 
the same 𝐶𝐶𝑇𝑇 or with the bare rotor always at the Betz limit value of 𝐶𝐶𝑇𝑇 = 8/9. Whatever 
choices are made, a fair comparison requires both rotor designs to be optimised for the 
presence or absence of a duct as appropriate [56], although comparisons may still be 
complicated by factors such as differing tip losses. 

The default definition used here is the ratio of the power extracted by the ducted 
turbine to that from a bare rotor of equal rotor area and at the same rotor loading. An 
actuator disc is always used so that rotor efficiency is at the theoretical maximum, so 
the power and velocity augmentations are equal, giving the augmentation ratio ℛ𝑃𝑃𝑜𝑜𝑎𝑎 in 
Equation 1.7.  
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ℛ𝑃𝑃𝑜𝑜𝑎𝑎 =
𝐶𝐶𝑃𝑃

𝐶𝐶𝑃𝑃,𝑏𝑏𝑃𝑃𝑟𝑟𝑒𝑒
=

𝑢𝑢𝑟𝑟
𝑢𝑢𝑟𝑟,𝑏𝑏𝑃𝑃𝑟𝑟𝑒𝑒

Equation 1.7 

An exit augmentation ratio ℛ𝑃𝑃𝑜𝑜𝑎𝑎,𝑒𝑒 can be defined using the power coefficient calculated 
at the duct exit 𝐶𝐶𝑃𝑃,𝑒𝑒 as in Equation 1.8. 

ℛ𝑃𝑃𝑜𝑜𝑎𝑎,𝑒𝑒 =
𝐶𝐶𝑃𝑃,𝑒𝑒

𝐶𝐶𝑃𝑃,𝑏𝑏𝑃𝑃𝑟𝑟𝑒𝑒
=

𝑢𝑢𝑒𝑒
𝑢𝑢𝑟𝑟,𝑏𝑏𝑃𝑃𝑟𝑟𝑒𝑒

Equation 1.8 

ℛ𝑃𝑃𝑜𝑜𝑎𝑎 > 1 therefore indicates augmentation of the flow, and ℛ𝑃𝑃𝑜𝑜𝑎𝑎 < 1 curtailment of the 
flow. Although 𝐶𝐶𝑃𝑃 𝐶𝐶𝑃𝑃,𝑏𝑏𝑃𝑃𝑟𝑟𝑒𝑒⁄  is undefined at 𝐶𝐶𝑇𝑇 = 0, the equation still holds for the power 
term in the limit as 𝐶𝐶𝑇𝑇 approaches 0 and can be calculated using the velocity term. It 
must also be noted that augmentation is employed only as an aid to understanding, and 
a value above 1 does not imply that the ducted turbine should be preferred to a bare 
rotor. 

Drag Coefficient 

It has been suggested that increased power extraction can exist only in the presence of 
increased duct drag [66], although there can be mass flow augmentation without drag if 
the rotor is not extracting energy [76] and no studies were found viewing drag as a 
cause of augmentation. Phillips [4] proposed the conceptual explanation that the axial 
force is somehow related to the radial force on the duct wall, but did not discuss in 
detail. Investigations of the duct drag 𝐹𝐹𝐷𝐷 are included in this work, usually made 
dimensionless with the drag coefficient 𝐶𝐶𝐷𝐷 defined in Equation 1.9. 

𝐶𝐶𝐷𝐷 =
𝐹𝐹𝐷𝐷

1
2𝜌𝜌𝑢𝑢∞

2 𝐴𝐴𝑟𝑟
Equation 1.9 

Velocity Ratio and Exit Pressure Coefficient 

While axial induction is typically used as a dimensionless measure of velocity for a bare 
rotor, ducted investigations have often used the velocity ratio 𝒰𝒰 defined in Equation 
1.10.  

𝒰𝒰 =
𝑢𝑢
𝑢𝑢∞

Equation 1.10 

The exit pressure coefficient 𝐶𝐶𝑝𝑝,𝑒𝑒 was also frequently encountered due to the reduced 
pressure explanation of augmentation, with a lower case 𝑝𝑝 distinguishing it from the 
power coefficient 𝐶𝐶𝑃𝑃. The definition is given in Equation 1.11. 

𝐶𝐶𝑝𝑝,𝑒𝑒 =
𝑝𝑝𝑒𝑒 − 𝑝𝑝∞
1
2𝜌𝜌𝑢𝑢∞

2
Equation 1.11 
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1.3 Previous Investigative Approaches 
Most of the research reviewed focused on the aerodynamics of ducted turbines, with 
three main approaches used: theory, experiment, and numerical simulation. Theoretical 
investigations endeavoured to build a set of equations that relate various parameters of 
interest, while experiments and simulations were frequently used to test the 
performance of a particular turbine. Each approach is summarised here, with further 
details that are particularly relevant for this work to come in Section 1.5.  

1.3.1 Theory 

The development of simple theoretical descriptions of ducted turbine behaviour was 
relatively common in the literature, with an equation for the power extracted usually 
derived from momentum and energy considerations [e.g. 4, 49, 58, 104]. While some 
theories focused on rotor design [e.g. 49, 96, 105, 106] and so took radial variations of 
the flow into account, the majority [e.g. 4, 63, 96, 107] took a quasi-1D approach: no 
radial variations except a step change between the flow inside the rotor’s wake 
streamtube and the flow outside it radially. A radially constant pressure drop was 
applied to the flow in this approach to model the rotor. 

In itself, developing a set of equations can be a useful way to find the influences on 
performance. Some studies attempted to go further, however, by assessing the relative 
importance of each of the various parameters included in the equations [e.g. 4, 39, 50, 
56]. By holding the other parameters constant, the influence of one could be 
determined by varying it and noting the change in power coefficient. However, 
interrelationships between parameters may limit the accuracy of such an approach. 

Although the starting points for the theories examined were generally similar, the end 
points could be disparate. Almost all required at least one empirical parameter to 
calculate the performance of a particular duct, but no consensus has been reached on 
the most appropriate parameter. Exit pressure coefficient [66], diffuser efficiency [41], 
duct drag [104], velocity at the rotor [55], exit [32], or far wake [76], and rotor loading 
coefficient [108] have all been used, where the references are given as examples. The 
ratio of duct exit to throat area was the only geometrical parameter commonly included 
[e.g. 58, 63, 66, 96]. 

1.3.2 Experiment 

Experiments have commonly been used in the study of ducted turbines, with the most 
frequent type found in the literature being those carried out in a wind tunnel [e.g. 100, 
109–111]. Generally such investigations were part of the design process for a duct [e.g. 
67, 83, 89, 112] or rotor [e.g. 109, 113–115], and involved measurements of the power 
extracted or velocity at the rotor plane.  
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A range of rotor representations were used in these studies, including rotors designed 
for use inside a duct [39, 116] or without a duct [67, 117], mesh screens designed to 
induce a pressure drop [39, 56, 62, 104, 118], and physical rotor models of unclear or 
unspecified design [35, 59, 89, 115, 119]. Some compared the performance of the same 
rotor in and out of a duct [e.g. 65, 100, 111, 120], despite recognition that such a 
comparison is unfair: a rotor optimised for one use will be sub-optimal in the other [67, 
79]. 

Validation of simulation results was another common use for experiments [e.g. 30, 59, 
62, 114]. More unusual investigations included studies of the flow structure [52, 59, 
90], validation of rotor design processes [61, 68], and assessment of real world factors 
such as the performance of two turbines placed in proximity [116], yaw [4, 121], and 
flow turbulence [4, 100]. There have also been occasional field tests of prototype 
ducted turbines, including of the Vortec 7 with a 7.3m rotor diameter [41, 62] and of 
Wind Lens turbines up to a 13m rotor diameter model rated at 100kW [1]. 

1.3.3 Simulation 

The vast majority of numerical studies encountered were carried out using viscous 
Computational Fluid Dynamics (CFD) simulations [e.g. 64, 122–124]. While some 
authors used a full 3D model for the duct and rotor [e.g. 36, 51, 74, 91], most took 
advantage of the geometrical symmetry and simplified the problem with an 
axisymmetric model of a radial slice of duct [e.g. 4, 43, 87, 125]. It was also common to 
treat the flow as steady in time [e.g. 57, 59, 84, 91], with some authors finding little 
difference to the time-averaged power result from unsteady simulations [36, 99, 100]. 

Simplifications were also common for the rotor model, with only the most 
comprehensive studies directly including the rotor blade geometry in simulations [e.g. 
51, 81, 117, 126]. Rather more authors chose to reduce the computational complexity 
by representing the blades indirectly with an actuator disc, imposing a pressure drop 
across the rotor plane [e.g. 85, 127–129]. In some cases no mention of a rotor was made 
at all [e.g. 86, 89, 112, 130], suggesting the study of an empty duct.  

Most investigations focused on one of three topics: inspecting the performance of a 
particular ducted turbine [e.g. 59, 62, 89, 122], testing the influence of various 
geometrical parameters on performance [e.g. 52, 89, 119, 131], and optimising the duct 
shape for maximum power extraction [e.g. 43, 121, 128, 132]. Other studies carried out 
an optimisation of rotor design for ducted turbines [110, 113, 129, 133], highlighting 
the need to avoid simply using a standard bare rotor. Numerical results were also 
occasionally used in testing theoretical descriptions of ducted turbines [41, 55, 134]. 
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Another much rarer class of investigation employed inviscid simulations, either using 
CFD packages with zero viscosity or inviscid panel method codes. This approach has 
been used as a first step in the selection of duct shape [73], to improve understanding 
of the fundamental behaviour of ducted turbines [2, 46, 80], and to quantify the 
influence of wind tunnel wall proximity [135]. There have also been investigations into 
the applicability of ducted turbine theories on an inviscid level [2, 136], and an 
assessment of 3D effects and cavitation risk for a ducted marine current turbine rotor 
[81]. 

1.4 The Need for an Inviscid Approach 
A large body of research already exists for ducted turbines, but the previous section 
shows that the majority was split between only two main categories: the development 
of simplified theory, and design-focused studies using experiments or simulations with 
the full complexity of viscous flow. Research in the space between these groups was 
scarce, mostly comprising some simplified inviscid simulations, examinations of flow 
phenomena, and attempts at validating theoretical equations. 

Significant scope remains for research bridging the gap between theory and design, and 
that is where this work is focused. Inviscid simulations were chosen as the basis of this 
investigation, and have proven to be a useful tool throughout. At first, that may seem a 
surprising choice: a viscous phenomenon sets limits on augmentation through 
separation, and viscous losses generally may be a pervasive cause of reduced 
performance. How can simulations excluding such an important factor be of value? 

Ideally, it would be possible to examine the aerodynamic problem in all its detail and 
come to a complete understanding of the system. Ducted turbines are complex, 
however, suffering from many influencing parameters and an interaction between the 
duct and rotor [4]. Aspects of uncertainty and disagreement therefore still exist in the 
literature, as will become clear in Section 1.5; removing viscosity strips back some of 
the complexity, and allows a clearer picture to emerge of the underlying inviscid 
behaviour.  

Valuable understanding of the overall system can still result from such an analysis. The 
momentum theory underlying the Betz limit, for example, is inviscid [5], but it forms a 
cornerstone in the field of wind energy. An inviscid relationship between lift and 
circulation underlies aerofoil theory, even though the behaviour changes with 
separation and viscosity generally [69]. Likewise an inviscid understanding can inform 
prediction and interpretation of ducted turbine performance, and provide future 
studies with a base from which to isolate and quantify viscous effects. 
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Other authors have also recognised the value of this simplification for theory 
development  in particular [e.g. 55, 58, 76, 137], but also for the numerical studies 
discussed in Section 1.3.3. An inviscid analysis may approximate real flows for designs 
where viscous effects are minimised [46], with the potentially related field of annular 
wings serving as an example that has had a large number of inviscid investigations [80]. 
Qualitative agreement has been found between inviscid simulations and experiment for 
ducted turbines [46, 80], along with approximate quantitative agreement with viscous 
simulations [73, 97]. An inviscid approach also leads to faster simulations [2] and 
allows the remaining assumptions in inviscid theories to be tested [136]. 

1.5 Questions Raised from Previous Research 
An examination of the previous research revealed a number of areas predisposed to an 
inviscid investigation. Focused on the fundamentals, topics still covered a wide range 
including theory, the Betz limit, and the influence of geometrical parameters. A review 
of the relevant literature is presented here with the aim of providing a justification of, 
and background information to, the investigations conducted in this work. The 
questions raised feed into the research objectives discussed in Section 1.6. 

1.5.1 Are Ducted Turbine Theories Valid? 

Previous Research 

Only a few authors investigated the validity of their quasi-1D theories. In general, two 
types of tests were carried out: assessments of theoretical conclusions, such as 
equations for power coefficient, and assessments of particular assumptions made in the 
development of the theory. Comparisons were generally made between theories and 
results from experiments or viscous simulations, even for theories that neglected 
viscous effects.  

Of the assumptions tested, the majority were found to be inaccurate. A linear 
relationship was not found between duct drag and rotor loading [2, 104], exit pressure 
was not independent of local rotor loading coefficient [39], and the quasi-1D 
assumption applied only for ducts with small area ratios [39]. Results for the Vortec 7 
revealed inaccurate assumptions, but did not identify the problem areas [62]. Some 
evidence, however, has been found to support the assumption that a radially constant 
rotor pressure drop maximises power extraction [2], a vortex ring-based theory 
provided accurate centreline velocities [138], and one theory made reasonable 
predictions for power when using experimental results for the other parameters [133]. 

Viscous results have shown some theories to over-predict power coefficients by 
between 15% and 100% [2, 62, 105]. Jamieson [137], however, found good agreement 
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after corrections to allow his ideal diffuser theory to apply to a real duct, although the 
exact meaning of ideal diffuser has not yet been identified. Van Bussel [66] also found 
good agreement with experiment after correcting for mass flow through slots, but he, 
Werle and Presz [108], and Khamlaj [133] all blamed viscous effects for disagreements 
with simulation results at higher rotor loadings.  

Inviscid studies were rare. Hjort and Larsen [2] used an inviscid panel method 
alongside viscous CFD simulations, but suggested that differences between the two 
were due to inferior precision of the panel method rather than the presence of viscous 
effects. Aranake, Lakshminarayan, and Duraisamy [136] used inviscid CFD simulations, 
but validation checks against bare rotor theory revealed errors that reached more than 
10% by 𝐶𝐶𝑇𝑇 = 0.6 and increased further with rotor loading.  

Rather than assessing power coefficient, Lawn [56] compared duct centreline velocities 
and found that the best performing experimental results matched theoretical 
expectations. This approach, however, neglects any radial variations in the flow. Hansen, 
Sørensen, and Flay [55], meanwhile, confirmed one of their key theoretical conclusions: 
that the ratio of power coefficients between ducted turbine and bare rotor is equal to 
the ratio of the mass flows through each rotor. 

Questions Raised 

The prevalence of inaccurate theories and assumptions highlights the importance of 
validation. That does not necessarily mean showing a perfect match between theory 
and reality, but rather showing that a theory is accurate on a chosen level of 
simplification. Bare rotor theory is valid, for example, even though it neglects viscous 
effects. Rather less certainty exists for ducted turbine theories, where validation work 
has not been comprehensive.  

Further study is needed to confirm whether errors in inviscid theories are solely due to 
viscous effects: previous checks using inviscid simulations suffered from accuracy 
problems. Studies have also not always ascertained the source of inaccuracies generally. 
Underlying these theories is the quasi-1D assumption, but experiments have shown 
significant radial variations and it is unclear whether accuracy is consequently affected. 
Finally, Jamieson introduced the ideal diffuser concept, but has left open the question of 
its exact definition. 

1.5.2 Which Parameters for Duct Geometry? 

In principle, any of the sets of parameters found in the literature can be used to 
describe duct geometry so long as they completely specify the shape. Parameters that 
have a clear link to an aspect of performance are more valuable, however; for example, 
angle of attack, camber, and length all have distinct effects on lift for aerofoils [69]. Two 
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main types of parameter were used in studies investigating the influence of duct shape, 
and both are surveyed here. Discussion of their impact on performance follows in 
Section 1.5.3. 

Previous Research: Diffuser Parameters 

The main approach used to describe duct shape relates to the expanding diffuser 
section. Diffuser expansion angle, length, and area ratio make up the basic parameter 
set, where the area ratio is defined as the duct exit cross sectional area divided by the 
duct throat cross sectional area. Any two of these parameters are sufficient to define the 
shape of a straight walled diffuser, and the previous studies are split between those that 
used length and angle [e.g. 37, 47, 89, 131], area ratio and angle [122], and area ratio 
and length [51, 98, 128]. 

Diffuser parameters are defined here as all three of those mentioned above, plus the 
parameters that are used alongside them. The inlet area ratio is included, for example, 
which was more rarely encountered than exit area ratio and was usually controlled by 
fixing the inlet length and angle [37, 48, 112, 131]. Where the duct design included an 
outlet flange, the height of the flange was typically also specified [37, 88, 89, 119, 131].  

Studies using a straight walled duct [e.g. 48, 51, 88, 122] were able to generate the duct 
geometry directly from the basic parameters. The approach with more complex shapes 
is less clear, however, with examples of curvature being introduced without noting how 
to generate the shape from the parameters [98, 131]. Shives and Crawford [57] avoided 
this problem by modifying a NACA0015 aerofoil and then calculating the diffuser 
parameters from the result, while Foote and Agarwal [128] did the same with the 
output of their shape optimisation process.  

Deviations from the basic set of parameters were also found. Shives and Crawford [57] 
used exit and inlet area ratios, along with the inside and outside surface exit angles. 
These were defined relative to the axial direction at the duct trailing edge. Phillips [4] 
also selected the outside surface exit angle and exit area ratio, along with the rather less 
precise recommendations of an inlet design that maximises flow uniformity and an 
inside surface that maximises diffuser efficiency. 

Previous Research: Aerofoil Parameters 

Many of the authors that ascribed augmentation to radial force or circulation did so 
with reference to aerofoils or wings [e.g. 46, 55, 76, 139]. However, unlike with diffuser 
parameters, there have been few investigations of duct shape using aerofoil parameters. 
Those investigations that have been conducted [e.g. 25, 73, 81, 101] have assessed one 
or more of duct wall angle of attack, camber, and thickness.  
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Questions Raised 

Diffuser parameters have proven the more popular for specifying duct shape, but no 
comparison with aerofoil parameters was found that determined their relative utility. It 
remains to be seen whether a clearer link exists between performance and parameter 
for either approach. It is also unclear if the more complex diffuser approaches can be 
used to specify duct shapes, rather than simply measuring geometries generated in a 
different way. 

1.5.3 How Does Duct Geometry Affect Performance? 

A number of experiments and simulations have been used to test how the various duct 
shape parameters affect performance, but the answers have not always been clear. The 
performance impacts found are reviewed in this section, which is again split between 
the diffuser and aerofoil approaches discussed previously. 

Previous Research: Diffuser Parameters 

Diffuser parameters identified as having an influence on performance include diffuser 
section length and angle, exit area ratio, and measures of duct wall shape and inlet 
design. Unique amongst these is the area ratio: the only geometrical parameter found in 
Section 1.3.1 to be included in ducted turbine theories, and one that has been 
considered as having the most significant impact [39, 55, 63, 113, 128]. Differences in 
power extraction have still been found, however, for designs with the same area ratio 
[66, 122]. 

Accurately assessing the importance of area ratio is difficult due to interrelationships: 
even for the simplest case of a straight and thin walled diffuser, a change in area ratio 
also changes diffuser angle or length. Shives and Crawford [57] fitted a regression 
model to CFD simulations to try and isolate the influence of increased area ratio, finding 
decreases in diffuser efficiency and exit pressure. Phillips [4] instead argued that 
diffuser length alone was immaterial, concluding that velocity increased up to an area 
ratio around 3 at a fixed expansion angle. 

A number of other studies attempted to measure the influence of the basic parameters, 
despite the interrelationships. In very general terms, increases in area ratio [51, 98, 
122], diffuser angle [48, 51, 112, 122], and diffuser length [48, 88, 112, 119] led to 
increased velocity at the rotor up to a point, but the increases could have been caused 
indirectly through changes in the other parameters. Indeed, increases in velocity with 
length have been attributed to reduced flow separation due to reduced diffuser angle 
[51, 98, 113, 128].  

More complex designs introduce curved duct walls, but the importance of this change is 
unclear. Area ratio has been considered paramount to the point of excluding curvature 
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from performance investigations [47, 48, 51, 98, 122], but curvature may influence the 
duct radial force [55, 77], exit pressure [4, 56, 57], and viscous losses [4, 55, 124]. 
Phillips [4] argued that viscous losses depend on the internal surface shape, and that 
increased external surface exit angles lead to increased radial projection of the flow and 
lower exit pressure. Shives and Crawford [57] concurred, and proposed the internal exit 
angle as representative of that whole surface. 

Another factor introduced when moving away from the simplest designs is duct wall 
thickness, which Shives and Crawford [57] used as a parameter to generate duct shapes. 
They did not, however, investigate its influence on performance. Nor did any diffuser-
based study encountered. It may be that authors who treat the internal and external 
surfaces as independent consider thickness to be a consequence of the choice of wall 
shapes rather than a parameter in its own right. 

Inlet design was generally viewed in terms of the potential for negative effects on 
power extraction rather than as contributing to augmentation in itself. Careful design 
may avoid or mitigate inlet flow separation [4, 66, 88, 89, 140], and reduce yaw 
sensitivity and flow asymmetry [4], while Khamlaj [133] found no direct influence on 
performance from a theoretical analysis on an inviscid level. Both increases [112] and 
decreases [48] in flow velocity have been reported when increasing inlet length and 
angle, while Shives and Crawford [57] found little impact on power extraction from 
inlet efficiency for inlet area ratios between 1.07 and 1.73.  

Previous Research: Aerofoil Parameters 

Rather fewer studies have explored how performance is affected by changes in the 
aerofoil parameters. One study [81] used inviscid simulations and found increasing 
power extraction with wall angle at fixed camber until a peak at 13°; the peak occurred 
because the rotor area was reduced as the angle increased. Likewise increasing power 
extraction was found with increasing camber, but details of these results were not 
presented. Another inviscid investigation assessed 12 two-dimensional ducts and found 
increased velocity with camber and little change with thickness, although each duct 
shape was from a different aerofoil family [73]. 

Viscous simulations have also been used, with an investigation of 3 duct shapes 
suggesting that increased camber and thickness increase the power coefficient [25], 
and tests with a single shape at a number of wall angles showing increases in power 
coefficient until separation was reached [101]. Wind tunnel tests of a planar aerofoil 
have also shown that the lift coefficient increases with wall angle in the presence of a 
screen representing a rotor, but decreases with rotor loading [141] and tip clearance 
[142]. 
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Some studies have alternatively applied standard aerofoil data to ducted turbines, and 
it has been suggested that the chord angles for separation are equal [81]. Others, 
however, argued that the rotor influences the flow to change the effective angle of the 
duct wall, with increased separation attributed to that effect on the external surface in 
one case [36] and decreased separation internally in others [43, 72]. Designs more 
generally have been based on high lift aerofoils [2, 43], flap [4, 39] and slot [4] data has 
proven useful, and annular aerofoil data was used to explain yaw performance [139]. 

Questions Raised 

Almost all of the studies examined in this section were understandably viscous in 
nature, but it would be valuable to fully establish the underling inviscid contribution to 
performance and later the importance of viscous effects. A number of more specific 
questions exist for the diffuser parameters, not least concerning the importance of area 
ratio. Does its influence reflect its status as the only geometrical parameter used in 
theoretical work, or would changes in other parameters have a large impact on 
performance even at a fixed area ratio? 

Although they are interrelated, it may be possible to isolate each of the diffuser 
parameters with careful selection of duct shape. Would these then have the expected 
influence on performance? Would changes in length really have no impact in inviscid 
flow? It must also be questioned whether inlet design is important to viscous effects 
only, as inlet design affects aerofoil parameters that have an influence on circulation. 

Further study of the aerofoil parameters would be less about resolving confusion and 
more about simply building up basic understanding due to the limited existing 
research. The effect of wall angle on performance seems to match expectations, but it is 
not known how changes in the other parameters affect its influence. Two investigations 
were found that presented camber and thickness results, but one only compared two 
values of each parameter and the other did not hold all other parameters constant. No 
studies were found that examined length or aerofoil family. There is therefore a need for 
wider ranging and more systematic examinations. 

1.5.4 How Do Flow Rate and Rotor Loading Affect Power Extraction? 

Previous Research 

Two points of view dominated the debate on how the power extracted by a ducted 
turbine varies with the flow velocity at the rotor: a linear variation or a variation with 
velocity cubed. A linear relationship was found in the early theoretical work at 
Grumman Aerospace [45], studies near the turn of the millennium by van Bussel [58] 
and Hansen, Sørensen, and Flay [143], and in the equations [65, 66, 77, 105, 115] and 
results [2, 4, 136] of several authors since. 
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Despite van Bussel [58] calling it a common mistake, however, many published studies 
have continued to assert that power extraction varies with velocity cubed [e.g. 84, 85, 
132, 144]. Some authors have used equations based on this point of view to calculate 
results from simulations or experiments [e.g. 28, 86, 112, 119], while some 
experimental results appear to support a velocity cubed relationship [88]. Three cases 
were also encountered where authors argued that power varied with velocity cubed but 
only linearly with the mass flow through the rotor [34, 51, 145], despite velocity being 
proportional to mass flow. 

Also relevant to power extraction is uncertainty over the relationship between flow rate 
and rotor loading. A decrease in mass flow augmentation with rotor loading has been 
found numerically [55], and some authors agree that there is an interaction [27, 122]. 
Other simulations have shown no connection [136], however, which is a belief 
apparently shared by authors who assessed the augmentation provided by their 
designs without including a rotor [e.g. 48, 78, 123, 146]. Some later concluded that 
there is in fact a relationship when their design underperformed with a rotor in place 
[112, 119]. 

Questions Raised 

Although a number of studies already provide evidence of a linear relationship between 
power and velocity at the rotor, some authors remain unconvinced or unaware. 
Additional proof may be of value. Of more interest is the relationship between flow 
augmentation and rotor loading, as it remains an open question whether increased 𝐶𝐶𝑇𝑇 
reduces the augmentation or leaves it unaffected. Given the importance of flow 
augmentation to power extraction, it would be beneficial to determine the true 
relationship.  

1.5.5 Does the Betz Limit Apply? 

Previous Research 

It is relatively well accepted that the Betz limit does not apply to ducted turbines when 
calculating the power coefficient using the rotor area, as supported by a number of 
experimental results [4, 34, 96, 103], numerical results [55, 91, 128], and assertions 
[77, 137]. A common response [2], however, is that the exit area of the duct should be 
used when comparing to the Betz limit rather than the rotor area. 

Some researchers agreed that the Betz limit does apply when using the exit area power 
coefficient [42, 48, 53, 102], but there is also some evidence to the contrary. A 
momentum analysis by van Bussel [66] did not reveal a theoretical limit, while 
simulations have found exit area power coefficients of 0.61 [124], 0.67 [101], 0.73 [43], 
and 0.74 [127]. Of particular note is the value of 0.88 found by Hjort and Larsen [2] for 
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their multi-walled design using CFD, and a value of 0.62 from wind tunnel experiments 
with an optimised Wind Lens turbine [44]. 

The evidence presented here may not convince critics, who could point out that 
absence of proof of a theoretical limit is not proof of absence, and that most of the 
numerical studies did not include an assessment of discretisation error. Both Bagheri-
Sadeghi et al and Hjort and Larsen did state that their discretisation achieved mesh 
independence, but did not quantify the error or describe their testing process. The 
latter’s results were, however, 2% to 17% lower than studies they compared to. Critics 
may also consider experimental error a likely explanation for the modest increases seen 
with the Wind Lens turbine. 

Questions Raised 

In some ways, the assertion that the Betz limit on power extraction does not apply at all 
to ducted turbines would be contrary to conventional wisdom in the wider field of wind 
energy. Strong evidence would be required to persuade critics that the exit area power 
coefficient can actually exceed 0.593, and it is questionable whether the existing data 
would convince. There is a need for highly accurate results that test the applicability of 
the Betz limit on the inviscid level of the theory itself. 

1.5.6 How Is the Optimum Rotor Loading Affected? 

Previous Research 

A range of optimum rotor loadings have been suggested for ducted turbines: below [36, 
55, 97, 99, 128, 129], equal to [58, 66, 105], and above [4, 22, 72, 79, 147] the bare rotor 
value of 8/9. Hjort and Larsen [2] additionally found both higher and lower values for 
different designs. A need to reduce the impedance of the flow caused by the rotor has 
been cited as an explanation for reduced values of 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 [62], while higher values have 
been attributed to viscous wake mixing with the flow bypassing the duct [76, 137]. One 
study, however, found increased 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 using simulations that excluded viscous effects 
[46]. 

Questions Raised 

It is unclear why such a range of optimum rotor loadings exists in the literature. It may 
simply be that duct shape has a significant influence, but no study was found examining 
the nature of any such relationship. Explanations for deviations from 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9 are 
also unsatisfactory, with no justification for why lower rotor impedance may be needed 
with a duct and no reason for an increased 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 without viscous effects. Removing any 
potential viscous mechanisms that would obscure the inviscid behaviour seems a 
prudent first step in addressing these questions. 
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1.6 Research Objectives 
A wide range of questions have been left unanswered in the current literature, as has 
been seen throughout this chapter. These questions are not focused directly on 
designing a particular ducted turbine, but are relevant to producing a solid base of 
knowledge for future design activities. Answers could help maximise performance and 
lead to a reduced cost of wind energy. Objectives were chosen to bring clarity to some of 
these areas, and in combination they form the overall aim of this work: building a better 
understanding of fundamental aspects of ducted turbine performance. 

An exploration of the inviscid behaviour of ducted turbines was the first objective, in 
order to enhance prediction and interpretation of performance. Several different 
analyses were conducted, leading to arguments that the Betz limit does not apply, that 
area ratio is no more important than other parameters, and that inviscid simulations 
can sometimes approximate viscous results. Other studies included simulations 
suggested as upper performance limits, and assessments of the importance of wall 
thickness and inlet design. 

An important part of the overall aim concerns the differing points of view on the 
mechanism of augmentation and on the choice of parameters used to define duct 
shapes. These separate strands led to a single question: what is the better conceptual 
model for ducted turbines? If one must predict how a change in duct shape will affect 
performance through engineering intuition alone, for example, should one think of an 
aerofoil inducing circulation or a diffuser reducing exit pressure? It is argued that the 
aerofoil-based conceptual model is superior.  

The initial objectives concerning theory were validation of existing equations on the 
same level as bare rotor theory, an assessment of radial variations in the flow, and 
clarification of the ideal diffuser concept. However, further objectives arose: finding 
evidence of a link between drag and power extraction missing from current derivations, 
and comparing equations for power coefficient. It is suggested as a result that drag and 
exit pressure be treated as consequences of augmentation rather than as empirical 
parameters from which to calculate power, and that simplifications removing the need 
for empirical parameters entirely are not valid. 

A deeper understanding of optimum rotor loading was the final objective, starting with 
an initial numerical study to confirm that it can differ from the bare rotor value. Further 
investigations tested the influence of duct geometry in inviscid flow, and examined 
theoretical equations for further information. It required more extensive simulations 
combined with an explanation from the aerofoil conceptual model, however, to reach 
the main contention: that there is an inherent reduction in 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 for a ducted turbine in 
inviscid flow. 
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1.7 Outline 
Meeting the objectives set out for this work necessitated the development of an inviscid 
simulation code. Background theory and a detailed description are given in Chapter 2, 
along with a demonstration that it is capable of producing highly accurate results on an 
inviscid level. An approach to viscous CFD modelling using a commercial software 
package is also set out. 

Several small investigations are described in Chapter 3, for example examining area 
ratio, power extraction, and limits on performance. The accuracy of inviscid simulations 
to real flows where separation is avoided is also tested. Results from across these 
investigations are used in an initial assessment of the diffuser and aerofoil conceptual 
models.  

Diffuser and aerofoil parameters are then compared directly in Chapter 4, where both 
approaches are used to generate duct shapes and the difficulty involved assessed. The 
influences of the various parameters on performance are compared to expectations 
from the respective conceptual models. 

Changing focus, Chapter 5 selects three theories from the literature and tests their 
accuracy in inviscid flow. Jamieson’s theory [137] is also examined to improve 
understanding of the ideal diffuser concept, and equations across all four theories are 
compared in an assessment of the parameters included.  

Chapter 6 then presents further derivations, including a numerical study that provides 
the missing link in developing drag-based equations. Theoretical relationships provide 
further context to results from Chapter 2, and alternative equations for power 
coefficient are compared. 

Finally, a numerical study in Chapter 7 suggests that ducts intrinsically reduce the 
optimum rotor loading in inviscid flow. Circulation effectiveness and dispersion ratios 
are then introduced to resolve imperfections in the circulation explanation of 
augmentation, leading to a plausible cause for the negative influence on optimum rotor 
loading. 
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1.8 Summary 
Ducted turbines are designed to augment the flow rate through a rotor and 
consequently increase the power extracted. While the ensuing potential to reduce the 
cost of wind energy has driven research over many decades, there remains an 
incomplete understanding in a number of fundamental areas of the aerodynamic 
problem. The resulting uncertainty is not conducive to maximising performance, and 
may have contributed to a lack of commercial success. 

A review of the existing research found most to be split between only two main 
categories: the development of simplified theory, and design-focused studies using 
experiments or simulations with the full complexity of viscous flow. An intermediate 
approach of inviscid simulations was chosen here to strip back some of the complexity 
of ducted turbines. By building a clearer picture of the underlying inviscid behaviour, 
uncertainty can be reduced and the prediction and interpretation of real ducted turbine 
performance improved. 

Objectives for this work were chosen based on questions raised when reviewing the 
literature. An exploration of the inviscid behaviour of ducted turbines was the first, 
leading to strong evidence that the Betz limit does not apply to ducted turbines 
amongst other results. A comparison was then sought between the diffuser conceptual 
model that has dominated ducted turbine investigations and the aerofoil conceptual 
model that is argued to be superior here. 

Theory was chosen for further examination, to test whether assumptions can truly 
eliminate dependence on empirical parameters, to find a missing link in current 
derivations, and to assess the suitability of the various equations for power extraction. 
Finally, the influence of the duct on the optimum rotor loading was selected for study, 
leading to the conclusion that there is an inherent reduction in inviscid flow. Together, 
these objectives form the overall aim of this work: building a better understanding of 
ducted turbine fundamentals that will be useful in future design activities. 
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The main focus of this chapter is the development of an inviscid panel method for 
modelling ducted turbines. A majority of the results presented in this work are derived 
from this method, and so the theoretical background and assumptions, the modelling 
approach, and validation cases are all described in detail. Viscous modelling is the basis 
of the remainder of the results, and the approach to these simulations is also discussed. 

2.1 Inviscid Panel Methods 
The modelling of fluid flows is not often straightforward, with various simplifications 
applied and assumptions made depending on the situation concerned. These can 
reduce the difficulty of the problem, but they can also place limitations on the 
applicability of the solutions; it is important to be aware of the assumptions in order to 
properly evaluate the results. With reference to Anderson [69], this section will 
therefore provide a brief overview of inviscid panel methods with an emphasis on the 
assumptions which underlie them. 

2.1.1 Governing Equations 

Fundamental physical laws can be applied to derive three important governing 
equations for the solution of continuous fluid flows. The continuity equation states that 
mass cannot be created or destroyed, the momentum equation relates the force acting 
to the fluid’s time rate of change of momentum, and the energy equation states that 
energy can only change form. By assuming incompressible flow, however, the fluid’s 
density is made constant leaving only velocity and pressure as the primary unknown 
variables. These can be found through the solution of the continuity and momentum 
equations alone. 

Momentum Equation 

The Navier-Stokes equation is a statement of the momentum equation, given here for an 
incompressible, constant viscosity, Newtonian fluid in Equation 2.1 [148, Sec. 1.6]. 

𝜕𝜕𝑼𝑼
𝜕𝜕𝑜𝑜 + 𝑼𝑼 ⋅ ∇𝑼𝑼 = 𝒇𝒇 −

∇𝑝𝑝
𝜌𝜌 +

𝜇𝜇
𝜌𝜌 ∇

2𝑼𝑼 Equation 2.1 

𝑼𝑼 is velocity, 𝑜𝑜 is time, 𝒇𝒇 is body force per unit mass, 𝑝𝑝 is pressure, 𝜌𝜌 is density, and 𝜇𝜇 is 
dynamic viscosity.  
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Adding the assumption of inviscid flow then leads to Euler’s equation in Equation 2.2 
[148, Sec. 1.6]. 

𝜕𝜕𝑼𝑼
𝜕𝜕𝑜𝑜 + 𝑼𝑼 ⋅ ∇𝑼𝑼 = 𝒇𝒇 −

∇𝑝𝑝
𝜌𝜌

Equation 2.2 

With the additional assumption of a steady flow negligibly influenced by gravity or 
other body forces, Euler’s equation can then lead to the form of Bernoulli’s equation in 
Equation 2.3 [148, Sec. 2.6]. 

𝑝𝑝
𝜌𝜌 +

|𝑼𝑼|2

2 = constant Equation 2.3 

The left hand side of this equation is constant everywhere in irrotational flows, or along 
a streamline in rotational flows, allowing pressure values that satisfy the momentum 
equation to be calculated from velocity results.  

Potential Flow 

Before moving to the continuity equation, a valuable simplification can be made. First, 
the vorticity vector 𝜻𝜻, which is equal to twice the angular velocity of an infinitesimal 
fluid element, is defined by Equation 2.4. 

𝜻𝜻 = ∇ × 𝑼𝑼 Equation 2.4 

The vorticity transport equation can be derived by taking the curl of the Navier-Stokes 
equation and assuming that any body forces are conservative, leading to Equation 2.5 
[148, Sec. 2.2]. 

D𝜻𝜻
D𝑜𝑜 = 𝜻𝜻 ⋅ ∇𝑼𝑼 +

𝜇𝜇
𝜌𝜌 ∇

2𝜻𝜻 Equation 2.5 

This equation describes the transport of vorticity through the flow, and it can be shown 
that the rate of diffusion is much lower than the rate of convection at high Reynolds 
numbers [148, Sec. 2.2]. Vorticity that is created at a boundary with a solid surface 
therefore remains in the boundary layer and in a thin trailing wake, leaving the 
remaining flow free from vorticity when the upstream flow is uniform. Further 
assuming inviscid flow leads to Equation 2.6 [148, Sec. 2.2]. 

D𝜻𝜻
D𝑜𝑜 = 𝜻𝜻 ⋅ ∇𝑼𝑼 Equation 2.6 

When the upstream flow is uniform and so has zero vorticity, the downstream flow is 
irrotational as no vorticity can be generated. It is then possible to replace the velocity 
vector components with a single scalar value known as the velocity potential Φ at each 
point. Velocity vectors can be calculated with Equation 2.7 [148, Sec. 2.4]. 
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 𝑼𝑼 = ∇Φ Equation 2.7 

Instead of solving for multiple unknown velocity components, a solution need only be 
found for the velocity potential.  

Continuity Equation 

With only the assumption of a continuum fluid, the continuity equation in Equation 2.8 
[148, Sec. 1.6] can be derived. 

 D𝜌𝜌
D𝑜𝑜 + 𝜌𝜌∇ ⋅ 𝑼𝑼 = 0 Equation 2.8 

Adding the assumption of incompressible flow then leads to Equation 2.9 [148, Sec. 
1.6]. 

 ∇ ⋅ 𝑼𝑼 = 0 Equation 2.9 

Finally, substituting Equation 2.7 into Equation 2.9 gives Equation 2.10 [148, Sec. 2.4].  

 ∇2Φ = 0 Equation 2.10 

This is Laplace’s equation, the form of the continuity equation for an incompressible 
and irrotational flow. 

2.1.2 Solution Methodology 

Finding a velocity potential that satisfies Laplace’s equation is at the core of a panel 
method, and it is a boundary value problem: either the velocity potential must be 
defined on all surfaces bounding the flow, or its derivative normal to the surfaces. For 
example, an aerofoil can be represented by a solid boundary with a zero normal velocity 
condition and a return to free stream conditions infinitely far from the aerofoil.  The 
momentum equation is then satisfied in a second stage, where the pressure distribution 
is calculated from the velocity result. 

The linear nature of Laplace’s equation and the boundary conditions makes it easier to 
satisfy, as multiple solutions can be summed into one still valid solution. Complex flow 
fields can therefore be built up from much simpler elementary flows, such as uniform 
flow and the source, dipole, and vortex field singularity solutions. A straight and 
infinitely long vortex filament and a point vortex in 2D flow, for example, induce a 
velocity potential that varies with the azimuthal angle 𝜃𝜃, given for a vortex of strength 𝛤𝛤 
in Equation 2.11. 

 Φ =  
𝛤𝛤

2𝜋𝜋 𝜃𝜃 Equation 2.11 
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Uniform flow can be used to represent free stream conditions, as the velocity is a 
constant value throughout the flow field whose potential satisfies Laplace’s equation. 
Vortex flow is illustrated in Figure 2.1 for both a single vortex filament and a vortex 
sheet, where the induced velocity reduces to zero at infinite distance 𝑟𝑟 from the vortex. 
While vortex flow is rotational in its infinitesimal core, it is irrotational at all other 
points so satisfies Laplace’s equation. Both also enforce the infinity boundary condition. 

Figure 2.1: Illustration of velocity induced by a vortex filament and a flat vortex sheet. 

Wall boundary conditions are not inherently satisfied by the elementary flows 
themselves, but rather through selecting an appropriate combination of elementary 
flows. A vortex sheet forming an aerofoil’s surface, for example, would have a strength 
distribution chosen to prevent flow through the surface in the presence of a uniform 
flow free stream. While there is no unique solution to Laplace’s equation for a closed 
body in two dimensional flow, the empirically observed Kutta condition states that 
attached flow over an aerofoil leaves smoothly at the trailing edge and thereby specifies 
a single strength distribution.   

The purpose of a panel method is to find this strength distribution. However, an 
approximation must first be introduced: the vortex sheet of continuously varying 
strength is split into a series of panels. Into each is inserted a vortex element, such as a 
point vortex or a straight segment of constant strength vortex sheet, and a control point 
where the boundary condition is imposed for that panel. A linear system of equations 
can then be formed relating the strength of each panel to the velocity induced at the 
control points, with the Kutta condition enforced either by the final control point’s 
position or by an explicit statement.  

Solving the system of equations satisfies Euler’s equation, the boundary conditions, and 
the Kutta condition. A complete description of the flow field then results, as the velocity 
induced by the vortex elements and the free stream velocity can be combined to give 
the velocity at any point in the flow field. The static pressure can be determined using 
Bernoulli’s equation, and the lift generated by the aerofoil can be calculated. 
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2.1.3 Justification of Assumptions 

Vortex panel methods are a standard approach to aerodynamic modelling that have 
been widely used since the early 1970’s, and the philosophy behind them has physical 
significance: the viscous boundary layer over a surface is a region of rotational flow, 
which becomes a thin vortex sheet in the limit of infinite Reynolds number. Despite this, 
many assumptions are required that must be justified in terms of the flow being 
modelled and the aim of this work. 

The most significant assumption made is that of inviscid flow, which was found a 
necessary one for achieving the objectives chosen for this work in Sections 1.4 to 1.6. 
Application of the Kutta condition commonly follows from the inviscid assumption [69, 
148], although many ducts in the literature had attached flow [e.g. 39, 55] and therefore 
satisfied it anyway. Irrotational flow also follows: vorticity cannot diffuse through the 
flow, as discussed in Section 2.1.1, and is limited only to the surface of bodies and to 
thin layers if any wakes exist. It is therefore reasonable to represent boundary layers 
with thin vortex panels. 

Below a Mach number of 0.3, the density of a gas varies by less than 5% and 
incompressible flow can be assumed [69, Sec. 1.10.3]. A ducted turbine would require a 
velocity augmentation of 3.6 to reach this threshold at a wind speed of 30m/s, an 
augmentation far larger than those reported in the literature [e.g. 4, 66]. It is likely that 
this assumption is valid for at least a subset of the possible duct designs when 
combined with the actuator disc rotor model used in this work, although 
compressibility effects may become significant in more advanced models due to the 
increased local flow velocity seen over discrete blades. 

Time averaged values for power extraction were little different from those found in 
steady flow by some authors, as discussed in Section 1.3.3, and the reduced complexity 
can be further justified as necessary for examining the fundamentals. Neglecting gravity 
should also have little impact, as it can induce no velocity for incompressible flow 
where density is constant and the variation in pressure with elevation is generally 
negligible compared to the forces caused by the moving fluid [69, Sec. 1.9]. 

The final approximation was discretising continuous variations of vorticity into a series 
of discrete panels, introducing a discretisation error that tends to zero as the number of 
panels approaches infinity. The value of this error is dependent on the details of each 
simulation, and was minimised by choosing an appropriate number of panels as 
described in Section 2.2.4. An additional source of error came from the use of a digital 
computer: numbers can only be represented to a finite number of decimal places. While 
a significant loss of accuracy can sometimes result [149], this rounding error was 
minimised here by using double precision numbers throughout. 
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2.2 A Panel Method for Ducted Turbines 
Where the last section described the general approach and assumptions for a vortex 
panel method, this section presents the details of the method that was implemented in 
Matlab [150] for this work. An outline of the method is given first, followed by details of 
the discretisation, solution and post-processing approaches. The remainder of the 
section covers simulation setup and validation of the model. 

2.2.1 Method Outline 

An axisymmetric approach was chosen to take advantage of the geometrical symmetry 
of a duct, in common with many of the previous investigations discussed in Section 
1.3.3, with vortex rings around the duct’s circumference selected as the vortex element. 
A zero thickness approach was taken to the duct wall, where the vortex rings were 
placed along the duct’s camber line. This approach can be interpreted as modelling a 
theoretical duct that is infinitely thin walled, suitable for examining the fundamentals, 
but Section 3.3.2 will also show it to be a reasonable approximation even for ducts of 
moderate thickness in inviscid flow.  

Modelling the turbine rotor required an additional set of vortex rings that represented 
the surface of the rotor’s wake. Figure 2.2 illustrates this concept with a set of green 
vortex rings taking the shape of the grey duct including an exit flange, a set of blue 
vortex rings expanding to the final wake radius then a blue cylinder showing the far 
wake continuing with constant radius to downstream infinity.  

Figure 2.2: Qualitative illustration of model constituent parts. Shown from left to right are the 
duct rings, wake rings, and semi-infinite vortex cylinder. The duct shape represented by the 
rings is shaded. 
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Wake ring strengths were calculated with an iterative approach, but further iterations 
were needed to account for the influence of the duct and wake vortex ring sets on each 
other. Calculations for each alternated until convergence was reached. The wake rings 
were then relaxed to remain on the surface of the rotor’s wake by modifying the 
position and radius of each ring, necessitating a further layer of iterations. A summary 
of this solution process is shown in Figure 2.3. 

Figure 2.3: Flowchart describing model solution process. 

2.2.2 Method Details 

The Vortex Ring 

The vortex ring was the elementary flow upon which this panel method was built, 
which induces a velocity illustrated by Figure 2.4. While lumping all the vorticity 
associated with a panel into a ring may require smaller panels for the same 
discretisation error, solutions for the velocity induced by a vortex ring were more 
readily available than a conical distributed vorticity element and could be rapidly 
calculated using both a numerical and an analytical technique. 
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Figure 2.4: Isometric illustration of a vortex ring and the velocity it induces. 

Both approaches were used in this work, as the analytical method was faster to 
compute but inappropriate in some circumstances. In the numerical approach the 
velocity induced by a segment of vortex ring was sampled around the ring using the 
Biot-Savart law [69, Sec. 5.2], with the total velocity induced found by integrating 
around the ring. A directed segment of vorticity 𝐝𝐝𝒍𝒍 of strength 𝛤𝛤 induces a velocity 𝐝𝐝𝑼𝑼 
at a distance from 𝐝𝐝𝒍𝒍 described by the radius vector 𝒓𝒓 as calculated by Equation 2.12.  

𝐝𝐝𝑼𝑼 =  
𝛤𝛤

4𝜋𝜋
𝐝𝐝𝒍𝒍 × 𝒓𝒓

|𝒓𝒓|3
Equation 2.12 

The analytical solution [151] to the velocity induced by a vortex ring is shown in 
Equation 2.13 and Equation 2.14. 

𝑢𝑢 =  
𝛤𝛤

4𝜋𝜋 𝑟𝑟𝑣𝑣 ��𝑟𝑟𝑣𝑣 + 𝑟𝑟
𝐺𝐺
𝐻𝐻� 𝐽𝐽2 −

𝑟𝑟
𝐻𝐻 𝐽𝐽1� 

Equation 2.13 

𝑣𝑣 =  
𝛤𝛤

4𝜋𝜋 𝑟𝑟𝑣𝑣 �
𝑥𝑥 − 𝑥𝑥𝑣𝑣
𝐻𝐻 � (𝐽𝐽1 − 𝐺𝐺𝐽𝐽2) Equation 2.14 

These equations are shown in a cylindrical coordinate system, where a velocity (𝑢𝑢, 𝑣𝑣) is 
induced at a location (𝑥𝑥, 𝑟𝑟) by a vortex ring of strength 𝛤𝛤, radius 𝑟𝑟𝑣𝑣, and axial position 
𝑥𝑥𝑣𝑣. Definitions are given in Equation 2.15, where 𝒦𝒦(𝑚𝑚) and ℰ(𝑚𝑚) refer to the complete 
elliptic integrals of the first and section kind respectively. 

𝐽𝐽1 =
4
𝑏𝑏𝒦𝒦

(𝑚𝑚) 𝐽𝐽2 =
4
𝑏𝑏

ℰ(𝑚𝑚)
(1 −𝑚𝑚)

𝐺𝐺 = (𝑥𝑥 − 𝑥𝑥𝑣𝑣)2 + 𝑟𝑟2 + 𝑟𝑟𝑣𝑣2 𝐻𝐻 = −2𝑟𝑟𝑣𝑣𝑟𝑟 Equation 2.15 

𝑚𝑚 =
4𝑟𝑟𝑣𝑣𝑟𝑟
𝑏𝑏2  𝑏𝑏2 = (𝑟𝑟 + 𝑟𝑟𝑣𝑣)2 + (𝑥𝑥 − 𝑥𝑥𝑣𝑣)2 
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One situation requiring the numerical technique was calculation of the velocity induced 
on the surface of a ring itself, needed when determining the wake ring strengths, to 
account for a singularity causing the velocity to increase to infinity as the ring is 
approached. This singularity is illustrated on the left of Figure 2.5. Velocities could still 
be calculated with the analytical method for locations at least one panel length distant 
from the nearest point on a vortex ring, as discussed in Section 2.2.4, and at the duct 
control points between the vortex rings where the singularities balance.  

Figure 2.5: Illustration of singularities in dimensionless velocity (𝑼𝑼 × 𝑹𝑹) 𝜞𝜞⁄  caused by 
proximity to a whole vortex ring (left) and by gap size 𝜽𝜽𝒈𝒈 in an incomplete vortex ring (right), 
for rings of strength 𝜞𝜞. The plotted velocity values are truncated as they tend towards infinity. 

In order to remove the singularity as the ring is approached, the segment of the ring at 
the point of interest was removed. A correction had then to be made to account for a 
second singularity which occurs as the size of the gap is reduced for the axial velocity 
only, as illustrated on the right of Figure 2.5. This correction for the axial velocity 
induced in a gap of size 𝜃𝜃𝑎𝑎 was calculated numerically by measuring the variation in 
non-dimensional velocity with non-dimensional gap size, and had the value 𝑢𝑢𝑣𝑣𝑇𝑇𝑟𝑟𝑟𝑟𝑒𝑒𝑣𝑣𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖
for a ring of radius 𝑅𝑅 and strength 𝛤𝛤 defined in Equation 2.16.  

𝑢𝑢𝑣𝑣𝑇𝑇𝑟𝑟𝑟𝑟𝑒𝑒𝑣𝑣𝑇𝑇𝑖𝑖𝑇𝑇𝑖𝑖 ≈  0.08
𝛤𝛤
𝑅𝑅 ln �

𝜃𝜃𝑎𝑎
𝑅𝑅 � Equation 2.16 
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With the singularities removed, the ring’s local contribution to the induced velocity was 
replaced by the contribution from a two-dimensional vortex sheet element. Based on a 
series expansion of the velocity terms carried out by de Bernardinis [152], this 
contribution can be split into two components. First, a contribution to the axial velocity 
at the point of interest in the gap 𝑢𝑢𝑟𝑟𝑒𝑒𝑝𝑝𝑙𝑙𝑃𝑃𝑣𝑣𝑒𝑒𝑃𝑃𝑒𝑒𝑖𝑖𝑇𝑇 that is given for a panel of strength 𝛤𝛤 and 
length Δ𝑠𝑠 by Equation 2.17.  

𝑢𝑢𝑟𝑟𝑒𝑒𝑝𝑝𝑙𝑙𝑃𝑃𝑣𝑣𝑒𝑒𝑃𝑃𝑒𝑒𝑖𝑖𝑇𝑇 = −
𝛤𝛤

4𝜋𝜋𝑅𝑅 �ln �
Δ𝑠𝑠
𝑅𝑅 � − 1 − ln(2)� Equation 2.17 

Second, a step change 𝑼𝑼𝒔𝒔𝒔𝒔𝒆𝒆𝒑𝒑 between the two sides of the point as the panel surface is 
crossed. Where 𝒒𝒒� is a unit vector describing the direction of the panel, 𝑼𝑼𝒔𝒔𝒔𝒔𝒆𝒆𝒑𝒑 is given by 
Equation 2.18.  

𝑼𝑼𝒔𝒔𝒔𝒔𝒆𝒆𝒑𝒑 = ±𝒒𝒒�
𝛤𝛤
2Δ𝑠𝑠

Equation 2.18 

Duct Model 

Each duct was represented by a set of vortex rings distributed along its camber surface, 
generally with half cosine spacing to concentrate rings near where rapid changes in the 
flow were expected. Figure 2.6 illustrates how the spacing was calculated based on 
distance along the surface of the duct, with a small number of rings for clarity, and that 
the control points for enforcing the boundary conditions were placed half way between 
each ring at the local duct radius.  

Figure 2.6: Illustration showing the axial positions and radii for a set of duct rings and control 
points that have been spaced using the half-cosine method. Marked points show where rings 
pass through the page. 

A final control point one half panel length downstream of the last ring marked the end 
of the duct, ensuring the flow left the trailing edge of the duct smoothly thereby 
satisfying the Kutta condition. A wall boundary condition of zero normal velocity was 
applied to each control point, using a unit surface normal vector 𝒏𝒏� calculated over a 
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short length of duct with central differencing and the surface velocity 𝑼𝑼 as stated in 
Equation 2.19. 

𝑼𝑼 ⋅ 𝒏𝒏� = 0 Equation 2.19 

Duct shapes were specified either with an equation relating duct radius to axial location 
or by interpolating between a set of points with a piecewise cubic Hermite spline that 
prevented overshoot [153]. While this interpolation causes a discontinuous second 
derivative, no impact was expected on inviscid duct performance. Sharp changes in 
curvature could be modelled with the interpolation approach, up to a right angled 
flanged duct. Full cosine spacing was then used in the cylindrical section, as illustrated 
in Figure 2.7, followed by half cosine spacing where the panel lengths at the corner 
were closely matched. 

Figure 2.7: Illustration showing the axial positions and radii for a set of duct rings and control 
points that have been spaced using the right angle method. 

Shapes such as these would experience separation at the sharp corner in real flows, 
which is avoided here due to the inviscid flow assumption. The Kutta condition can 
therefore still applied at the trailing edge. There is, however, a certain contradiction in 
this choice: while panel methods applying the Kutta condition are referred to as inviscid 
[69, 148], it is the viscous mechanism of friction that causes the flow to leave smoothly 
at the trailing edge in a real flow. It may be more precise to think of the inviscid 
assumption as neglecting all viscous phenomena other than the Kutta condition. The 
complexities of separation and viscous losses are still removed, which was the original 
purpose of assuming inviscid flow. 

Once the duct was discretised, ring strengths were found by application of the wall 
boundary condition. Rewriting Equation 2.19 for a particular control point 𝑗𝑗 and 
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separating out the velocity contributions from the free stream 𝑼𝑼∞, the entire wake 
vorticity 𝑼𝑼𝒘𝒘𝒘𝒘𝒘𝒘𝒆𝒆,𝑗𝑗, and the 𝑁𝑁 duct rings gives Equation 2.20. 

 �𝑼𝑼𝑗𝑗𝑗𝑗  𝛤𝛤𝑗𝑗 ⋅ 𝒏𝒏�𝑗𝑗

𝑗𝑗=𝑁𝑁

𝑗𝑗=1

+ 𝑼𝑼∞ ⋅ 𝒏𝒏�𝑗𝑗 + 𝑼𝑼𝒘𝒘𝒘𝒘𝒘𝒘𝒆𝒆,𝑗𝑗 ⋅ 𝒏𝒏�𝑗𝑗 = 0 Equation 2.20 

With 𝑼𝑼𝑗𝑗𝑗𝑗 as the velocity induced by duct ring 𝑘𝑘 at unit strength, an influence coefficient 
𝐼𝐼𝑗𝑗𝑗𝑗 can be defined for its influence on point 𝑗𝑗 with Equation 2.21. 

 𝐼𝐼𝑗𝑗𝑗𝑗 = 𝑼𝑼𝑗𝑗𝑗𝑗 ⋅ 𝒏𝒏�𝑗𝑗 Equation 2.21 

Substituting Equation 2.21 into Equation 2.20 and applying the result to each duct 
control point led to a linear system of equations expressed using matrix notation in 
Equation 2.22. 

 �
𝐼𝐼11 ⋯ 𝐼𝐼1𝑗𝑗
⋮ ⋱ ⋮
𝐼𝐼𝑗𝑗1 ⋯ 𝐼𝐼𝑗𝑗𝑗𝑗

� �
𝛤𝛤1
⋮
𝛤𝛤𝑗𝑗
� = �

−𝑼𝑼∞ ⋅ 𝒏𝒏�1 − 𝑼𝑼𝐰𝐰𝐰𝐰𝐰𝐰𝐰𝐰,1 ⋅ 𝒏𝒏�1
⋮

−𝑼𝑼∞ ⋅ 𝒏𝒏�𝑗𝑗 − 𝑼𝑼𝒘𝒘𝒘𝒘𝒘𝒘𝒆𝒆,𝑗𝑗 ⋅ 𝒏𝒏�𝑗𝑗
� Equation 2.22 

A two-step process was used to find the duct ring strengths [148, Sec. 11.1.1], beginning 
with calculation of the duct ring influence coefficients and the velocity contributions 
from the free stream and wake. Equation 2.22 was then solved for 𝛤𝛤 using an 
appropriate solver that was automatically selected [154]. 

Rotor and Wake Model 

An actuator disc was chosen to represent the rotor in this method, filling the duct cross 
section and causing a radially uniform drop in static and total pressure. The radial 
uniformity is optimum for a bare rotor excluding losses [5, Sec. 3.7.2], while the 
actuator disc itself can be considered as the limit when a rotor tends towards an infinite 
number of blades that are infinitely slender and turning at infinite rotational speed with 
the power and pressure drop held constant [155, Sec. 4.3]. Theoretical and numerical 
investigations of ducted turbines have commonly used actuator discs, as discussed in 
Section 1.3, and the approach is suitable for this work’s aim of examining the 
fundamentals.  

When the number of blades is approaching infinity, with the solidity of the overall rotor 
held finite, the vorticity shed from the blade tips forms a vortex sheet that convects 
downstream with the flow [5, Sec. 3.4]. While the static pressure recovers to 
atmospheric, this boundary of vorticity maintains the total pressure deficit to 
downstream infinity for inviscid flow where the vorticity cannot spread to allow 
velocity recovery. Along with the imposition of a step change in pressure, then, a vortex 
sheet was included in the model on the surface of the wake.  
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Simulations started with a cylindrical sheet of wake vorticity, equal in radius to the duct 
exit, discretised so that the vortex rings were coincident with the control points in the 
centre of each wake panel. The first wake panel length was set equal to the final duct 
panel, with the remainder either of equal panel length or increasing linearly to 4 times 
the initial length over the first 5 rotor diameters of wake length. Discretisation error 
was reduced in most results with variable length panels, compared to the same number 
of fixed length panels, at the cost of increased error for results computed at the wake 
end. 

A semi-infinite vortex cylinder extending to downstream infinity terminated the wake 
vortex rings at their downstream end, of radius and strength per unit length equal to 
the final panel. The vortex cylinder had a velocity contribution that could be calculated 
analytically [156], avoided an unrealistic end shape from a finite length wake, and 
provided a closer match between theory and simulation setup. Five vortex rings 
between the cylinder and the wake rings proper, set equal to the strength and radius of 
the cylinder, prevented numerical problems caused by the junction.  

Wake vortex ring strengths were calculated to prevent a pressure discontinuity across 
the wake surface, as the wake surface is not a physical object and cannot support a 
jump in static pressure. An equation describing this boundary condition was derived by 
considering the pressure at a control point in the wake. To begin, the Bernoulli equation 
was applied twice at this control point: once each for the sides inside and outside the 
wake. The latter is given in Equation 2.23. 

1
2𝜌𝜌

|𝑼𝑼∞|2 + 𝑝𝑝∞ =
1
2𝜌𝜌

|𝑼𝑼𝒐𝒐𝒖𝒖𝒔𝒔|2 + 𝑝𝑝𝑇𝑇𝑜𝑜𝑇𝑇 Equation 2.23 

𝜌𝜌 is the air density, ∞ signifies free stream conditions, 𝑝𝑝 is static pressure, Δ𝑝𝑝 is the 
pressure drop across the rotor, and 𝑜𝑜𝑢𝑢𝑜𝑜 and 𝑑𝑑𝑖𝑖 signify the sides outwith and inside the 
wake. The application inside the wake yields Equation 2.24. 

1
2𝜌𝜌

|𝑼𝑼∞|2 + 𝑝𝑝∞ − Δ𝑝𝑝 =
1
2𝜌𝜌

|𝑼𝑼𝒊𝒊𝒏𝒏|2 + 𝑝𝑝𝑖𝑖𝑖𝑖 Equation 2.24 

To enforce the no pressure jump condition, 𝑝𝑝𝑇𝑇𝑜𝑜𝑇𝑇 and 𝑝𝑝𝑖𝑖𝑖𝑖 are set equal. These two 
equations then lead to Equation 2.25. 

Δ𝑝𝑝 =
1
2𝜌𝜌

(|𝑼𝑼𝒐𝒐𝒖𝒖𝒔𝒔| + |𝑼𝑼𝒊𝒊𝒏𝒏|) (|𝑼𝑼𝒐𝒐𝒖𝒖𝒔𝒔|− |𝑼𝑼𝒊𝒊𝒏𝒏|) Equation 2.25 

The right hand side can be considered in terms of the difference in velocity between the 
two sides 𝚫𝚫𝑼𝑼 and the average of the two velocities 𝑼𝑼� . 𝚫𝚫𝑼𝑼 is given by Equation 2.26. 

|𝑼𝑼𝒐𝒐𝒖𝒖𝒔𝒔| − |𝑼𝑼𝒊𝒊𝒏𝒏| = |𝚫𝚫𝑼𝑼| Equation 2.26 
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𝑼𝑼�  is shown in Equation 2.27. 

1
2 (|𝑼𝑼𝒐𝒐𝒖𝒖𝒔𝒔| + |𝑼𝑼𝒊𝒊𝒏𝒏|) = |𝑼𝑼�| Equation 2.27 

Both of these equations are only valid when the average and difference velocity vectors 
align. The rest of the solution method makes this assumption, and the equations 
derived from this point are incorrect otherwise. When a converged solution for a 
simulation was reached, however, the assumption held as the wake shape solver that is 
described later in this section aligned these velocities while it kept the panels on the 
wake surface. 

Derivations then continued by replacing the vortex ring local to the control point with 
the gap vortex ring discussed earlier in Section 2.2.2. It is the constant strength element 
contained in a gap vortex ring panel that is responsible for inducing the velocity 
difference, shown for a panel of strength 𝛤𝛤 and length Δ𝑠𝑠 in Equation 2.28. 

|𝚫𝚫𝑼𝑼| =  
𝛤𝛤
Δ𝑠𝑠

Equation 2.28 

Splitting the contributions to the average velocity between those influenced by the 
strength of the current panel and those not gives Equation 2.29. 

|𝑼𝑼�| =  �𝑼𝑼𝒈𝒈𝛤𝛤 + 𝑼𝑼𝒐𝒐𝒔𝒔𝒐𝒐𝒆𝒆𝒓𝒓� Equation 2.29 

Here, 𝑼𝑼𝒈𝒈 is the velocity induced by the rest of the gap vortex ring at unit strength and 
𝑼𝑼𝒐𝒐𝒔𝒔𝒐𝒐𝒆𝒆𝒓𝒓 is the velocity induced by all the other sources of velocity in the model.  

Substituting Equation 2.28 and Equation 2.29 into Equation 2.25 using the definitions 
in Equation 2.27 and Equation 2.26 then leads to the boundary condition for the wake 
panels in Equation 2.30. 

Δ𝑝𝑝 = 𝜌𝜌�𝑼𝑼𝒈𝒈𝛤𝛤 + 𝑼𝑼𝒐𝒐𝒔𝒔𝒐𝒐𝒆𝒆𝒓𝒓�
𝛤𝛤
Δ𝑠𝑠

Equation 2.30 

Solving this equation for the unknown 𝛤𝛤 to enforce the boundary condition led to a 
quartic equation for which no analytical solution could be found. A numerical method 
was used instead to find the roots of the polynomial by calculating the eigenvalues of 
the companion matrix [157], with the appropriate root selected as the strength for the 
panel. 

A solution for the complete wake was found by applying Equation 2.30 to each panel in 
turn, with the process then repeated iteratively until convergence to account for 
changes in the wake panel strengths affecting 𝑼𝑼𝒐𝒐𝒔𝒔𝒐𝒐𝒆𝒆𝒓𝒓. To begin the very first iteration in 
a simulation, an initial estimate of the wake strength was found by attributing 𝑼𝑼�  only to 
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the free stream velocity. For a constant strength cylindrical wake and an axial free 
stream velocity, Equation 2.25 then leads to Equation 2.31.  

 𝛤𝛤𝑒𝑒𝑑𝑑𝑇𝑇𝑖𝑖𝑃𝑃𝑃𝑃𝑇𝑇𝑒𝑒 =  
Δ𝑝𝑝Δ𝑠𝑠
𝜌𝜌𝑢𝑢∞

 Equation 2.31 

Separately from the calculation of wake panel strengths, the wake panels were 
displaced so that the wake took up a more realistic shape. In the desired state each 
panel was aligned with the velocity local to it. To begin, the velocity at each control 
point was calculated to find the desired angle of each panel. Then, starting at the duct 
exit, each panel in turn was rotated around its upstream end to match the calculated 
angle. Again an iterative approach was required, with the shape recalculated each time 
a converged set of duct and wake ring strengths was found until a converged wake 
shape was reached.  

2.2.3 Results Processing 

Flow Rate 

A number of results could be found from a converged solution, including calculation of 
the mass flow rate through the duct by splitting the cross section into a set of annuli. 
The velocity was sampled once in each annulus, with the outermost velocity sample 
point placed one local panel length distant from the duct surface to avoid the vortex 
ring singularity and the remaining points spaced equally to the centreline. Where 𝑢𝑢𝑗𝑗 is 
the axial velocity in annulus 𝑗𝑗 of area 𝐴𝐴𝑗𝑗, the volume flow rate though a set of 𝑁𝑁 annuli is 
given by Equation 2.32. 

 𝑄𝑄 =  �𝑢𝑢𝑗𝑗𝐴𝐴𝑗𝑗

𝑗𝑗=𝑁𝑁

𝑗𝑗=1

 Equation 2.32 

Multiplying by the air density then gave mass flow rate �̇�𝑚 in Equation 2.33.  

 �̇�𝑚 = 𝜌𝜌𝐴𝐴𝑢𝑢 = 𝜌𝜌𝑄𝑄 Equation 2.33 

A similar approach was used to find the radius of a streamtube with a known mass flow 
rate, with radius varied using an optimisation algorithm [158] until the required flow 
rate was found. When results were required far downstream, an axial location was 
chosen sufficiently far from the rotor that only negligible changes occurred with 
increased distance. 

Power and Rotor Thrust 

Dimensionless coefficients for power and rotor thrust are discussed in Section 1.2.4, 
with power extraction 𝑃𝑃 itself calculated from simulation results using Equation 2.34. 
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𝑃𝑃 = Δ𝑝𝑝𝐴𝐴𝑟𝑟𝑢𝑢𝑟𝑟 = Δ𝑝𝑝𝑄𝑄𝑟𝑟 Equation 2.34 

Conditions at the actuator disc model of the rotor are indicated with 𝑟𝑟, and 𝑢𝑢𝑟𝑟 is the 
mean axial velocity over the disc cross section. Thrust force 𝐹𝐹𝑇𝑇 was defined only by 
inputs to the simulation through Equation 2.35. 

𝐹𝐹𝑇𝑇 = Δ𝑝𝑝𝐴𝐴𝑟𝑟 Equation 2.35 

Duct Circulation 

Circulation is by definition the line integral of velocity around a chosen closed curve, 
and is equivalently the area integral of all vorticity normal to the surface bounded by 
the curve. For a surface 𝑆𝑆 bounded by a curve 𝐶𝐶 that has the directed line segment 𝐝𝐝𝒔𝒔, 
the circulation can therefore be calculated using Equation 2.36.   

𝛤𝛤 = �𝑼𝑼 ⋅ 𝐝𝐝𝒔𝒔
𝐶𝐶

= �𝜻𝜻 ⋅ 𝐝𝐝𝑺𝑺
𝑆𝑆

 Equation 2.36 

The curve defining the duct circulation 𝛤𝛤𝑑𝑑  was chosen to encompass one half of a cross 
section through the duct, as illustrated in Figure 2.8: the circulation around each half 
would cancel to give zero circulation for a curve encompassing the entire cross section. 

Figure 2.8: Illustration of the closed curve used in the definition of duct circulation 𝜞𝜞𝒓𝒓. 

It was not necessary to carry out either of the integrations shown above, as the 
circulation is equal to the sum of the vortex element strengths enclosed by the curve 
[159]. The duct circulation was therefore found by summing the strengths of the duct 
vortex rings. Based on the results in Section 4.2.3, the duct circulation coefficient 𝐶𝐶𝛤𝛤 
was defined using the rotor diameter 𝐷𝐷 and Equation 2.37. 

𝐶𝐶𝛤𝛤 =
𝛤𝛤𝑑𝑑
𝑢𝑢∞𝐷𝐷

Equation 2.37 

Duct Wall 
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Duct Force 

Calculation of the total force on the duct began by examining an infinitesimal section of 
a single panel’s circumference, which has a contribution 𝐝𝐝𝑭𝑭 to the total force given by 
Equation 2.38. 

𝐝𝐝𝑭𝑭 = −𝜌𝜌𝛤𝛤(𝑼𝑼 × 𝐝𝐝𝒍𝒍) + Δ𝑝𝑝Δ𝑠𝑠𝒏𝒏�|𝐝𝐝𝒍𝒍| Equation 2.38 

The first term on the right hand side is the force on an infinitesimal segment of vorticity 
𝐝𝐝𝒍𝒍 at strength 𝛤𝛤 [160], negative due to the positive anticlockwise definition of 𝛤𝛤 used 
here, where the velocity 𝑼𝑼 is that induced by the remainder of the panel’s vortex ring, 
all other sources of vorticity, and the free stream. Added to that is the influence of the 
rotor’s pressure drop in the second term, where the panel length Δ𝑠𝑠 is modified to be 
the length of the panel in the reduced total pressure region and 𝒏𝒏� is the unit normal 
vector describing the panel surface’s orientation. 

Integration of 𝐝𝐝𝑭𝑭 around the circumference to find the force on the entire panel leaves 
only a drag force, as the radial component cancels out due to the axisymmetry. The 
overall drag force of all the panels combined 𝐹𝐹𝐷𝐷 can then be non-dimensionalised into a 
drag coefficient 𝐶𝐶𝐷𝐷 by Equation 2.39. 

𝐶𝐶𝐷𝐷 =  
𝐹𝐹𝐷𝐷

1
2𝜌𝜌𝑢𝑢∞

2 𝐴𝐴𝑟𝑟
Equation 2.39 

Examination of the radial and total forces took place by converting 𝐝𝐝𝑭𝑭 into a per unit 
radian value and summing across all the panels, as represented by Equation 2.40. 

𝑭𝑭𝒓𝒓𝒘𝒘𝒓𝒓𝒊𝒊𝒘𝒘𝒏𝒏 = � 2𝜋𝜋
𝑗𝑗=𝑁𝑁

𝑗𝑗=1

�𝐝𝐝𝒍𝒍𝑗𝑗�
𝐶𝐶𝑗𝑗

𝐝𝐝𝑭𝑭𝑗𝑗 Equation 2.40 

𝑭𝑭𝒓𝒓𝒘𝒘𝒓𝒓𝒊𝒊𝒘𝒘𝒏𝒏 is then the total force vector acting on the duct per unit radian, where 𝐶𝐶𝑗𝑗 is the 
circumference of each of the 𝑁𝑁 duct panels. The associated coefficient of total force per 
radian 𝐶𝐶𝐹𝐹 is given by Equation 2.41. 

𝐶𝐶𝐹𝐹 =  
|𝑭𝑭𝒓𝒓𝒘𝒘𝒓𝒓𝒊𝒊𝒘𝒘𝒏𝒏|
1
2𝜌𝜌𝑢𝑢∞

2 𝐴𝐴𝑟𝑟
Equation 2.41 

Defining the radial component of 𝑭𝑭𝒓𝒓𝒘𝒘𝒓𝒓𝒊𝒊𝒘𝒘𝒏𝒏 as 𝐹𝐹𝑅𝑅 , positive inwards, the coefficient of 
radial force per radian is defined by Equation 2.42. 

𝐶𝐶𝑅𝑅 =  
𝐹𝐹𝑅𝑅

1
2𝜌𝜌𝑢𝑢∞

2 𝐴𝐴𝑟𝑟
Equation 2.42 
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Duct forces calculated using this approach were validated against results from the 
integral momentum equation for steady inviscid flow applied to a cylindrical control 
volume encompassing the duct. 

Duct Performance Characterisation 

To completely characterise a duct, a batch of simulations was run to measure the 
performance at a pre-determined set of rotor pressure drops. An optimisation 
algorithm then found the optimum rotor loading for maximum power to within a 
specified tolerance using additional simulations, based on a golden section search and 
parabolic interpolation [161]. Results from previous simulations in a batch were used 
to speed computations by providing a set of initial conditions for the wake vortex 
strength and shape iterations.  

Ring strength initial conditions were found by scaling previous results from the 
simulation with the closest pressure drop by the fractional difference in pressure drop. 
Wake end radius predictions were made by fitting a spline to the variation of previous 
results with rotor loading, with the wake shape from the closest previous simulation 
then scaled appropriately. Simulations during the search for maximum power were not 
used as prediction sources due to a consequent increase in the iterative convergence of 
individual simulations. Although not problematic in itself, resulting tiny changes in 
power coefficient caused significant changes in the computed optimum rotor loading. 

2.2.4 Simulation Settings 

Various decisions were required to run simulations, not least the level of iterative 
convergence required for the inner loop checking wake ring strengths, the outer loop 
checking duct and wake ring strengths, and the wake shape loop. Inner and outer loops 
measured the percentage change in ring strengths between iterations, while shape 
convergence was measured by the change in axial position and radius of each ring and 
also by any misalignment between each panel and the local velocity. A threshold of 
0.03% was selected in all cases, as smaller values made a negligible difference to the 
results. 

Other settings were also chosen using test simulations that examined their influence on 
results, including the choice of optimisation tolerance in the search for maximum 
power, the number of segments the gap vortex ring was split into, and the number of 
annuli used in measuring volume flow rate. One panel length was also found to be 
sufficient distance to avoid singularity effects. Velocity components differed by less than 
2.5% when a single ring panel was replaced by 32 rings of the same total strength, 
reducing to 1.5% for velocity magnitude and 1% for velocity components at 1.5 panel 
lengths distant. 
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Finally, discretisation error was held to an acceptable level using a discretisation 
dependence study for each set of simulations. Two parameters controlled the 
discretisation: the length of the final duct panel, from which all panel lengths could be 
calculated, and the length of wake modelled by vortex rings. Although the wake model 
included a semi-infinite vortex cylinder, a sufficient length of expanding wake section 
was needed to achieve convergence of the far wake diameter.   

While the required computational time also had to be considered, it was generally 
expected that the main parameters of interest should change by less than 1% with a 
halving of panel lengths or a doubling of the wake length. A 2% difference in results was 
usually accepted at the highest loading of 𝐶𝐶𝑇𝑇 = 0.95, however, as achieving 
discretisation independency was found to be more difficult as the rotor loading 
increased.  

2.2.5 Validation against Actuator Disc Theory 

Highly accurate inviscid simulations were sought, necessitating rigorous validation of 
the simulation code. Although a number of ducted turbine theories exist, as discussed 
in Section 1.5.1, they were unsuitable for this task as they themselves were to be tested 
by simulations in this work. A partial validation was possible against actuator disc 
theory for a bare rotor [5], however, with further validation against other simulation 
results to follow in Section 2.2.6. 

Simulations of a bare rotor, excluding the duct model, were compared to actuator disc 
theory using seven parameters. The first of these were optimum rotor loading 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 
and power coefficient 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, with a range of rotor loadings being used for the 
remaining five: power coefficient 𝐶𝐶𝑃𝑃, axial induction computed at the rotor 𝑎𝑎𝑟𝑟, axial 
induction computed in the far wake 𝑎𝑎𝑤𝑤, far upstream streamtube radius 𝑅𝑅∞, and far 
wake streamtube radius 𝑅𝑅𝑤𝑤.  

Discretisation Dependence Study 

Three rotor loading coefficients were used in testing discretisation dependence with 
the methodology laid out in Section 2.2.4: 8/9, 0.95, and the optimum as determined by 
the maximisation algorithm. Although 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 should be 8/9 to match theory, the value 
was subject to numerical inaccuracies and therefore had to be validated. As 
discretisation error was expected to increase with rotor loading, results at low loadings 
were not examined. 

Table 2.1 shows how the results varied as the panel lengths were halved, for various 
wake lengths and at the discussed rotor loadings. Examining the rows for a panel length 
of 0.0025 rotor diameters (𝐷𝐷) shows that the change from a panel length of 0.005𝐷𝐷 met 
the criteria of less than 2% change with halved panel length at 𝐶𝐶𝑇𝑇 = 0.95 and less than 
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1% at lower rotor loadings. The results in Table 2.2 for changing wake length show that 
a length of 16𝐷𝐷 was sufficient: the largest change from 16𝐷𝐷 to 32𝐷𝐷 was 0.88%. 

Aside from the choice of resolution for this study, Table 2.1 and Table 2.2 allow two 
more general inferences: first, that the convergence rate of 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 does not place a 
limitation on other variables at that loading, as shown particularly in Table 2.1 where 
several variables show smaller changes than 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. Reaching a converged value for 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 appears unimportant if it is not the parameter of interest.  

It also appears unnecessary to examine all combinations of panel and wake lengths. The 
results show that while there is some interdependence in the choice of these 
parameters, it caused a difference of more than 0.15 percentage points in only 6 cases 
across both Table 2.1 and Table 2.2. All 6 occurred at 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 0.95 and for parameters 
computed at the wake end, reaching 0.52 points at most. As a result the influence of 
panel length and wake length were treated as independent in subsequent studies, 
except when a high accuracy was needed for wake end parameters. 

Table 2.1: Change in bare rotor results as the panel length is halved, for various dimensionless 
wake lengths and rotor loadings. 

Panel 
Length 
(𝑳𝑳 𝑫𝑫⁄ ) 

Wake 
Length 
(𝑳𝑳 𝑫𝑫⁄ ) 

% Difference from Doubled Panel Length 

𝑪𝑪𝑷𝑷 𝒘𝒘𝒓𝒓 𝒘𝒘𝒘𝒘 𝑹𝑹∞ 𝑹𝑹𝒘𝒘 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔
At 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔

0.0025 8 -0.42 -0.09 -0.16 0.02 -0.03 -0.46
0.00125 8 -0.23 -0.08 -0.10 0.04 -0.02 -0.27
0.0025 16 -0.42 -0.09 -0.15 0.02 -0.03 -0.46

0.00125 16 -0.23 -0.09 -0.11 0.02 -0.03 -0.28
0.0025 32 -0.42 -0.20 -0.27 0.05 -0.12 -0.52

0.00125 32 -0.23 -0.09 -0.11 0.02 -0.03 -0.28
At 𝑪𝑪𝑻𝑻 = 𝟖𝟖 𝟗𝟗⁄  

0.0025 8 -0.39 0.81 0.69 -0.18 0.55 
0.00125 8 -0.22 0.45 0.41 -0.11 0.33 
0.0025 16 -0.39 0.81 0.73 -0.18 0.60 

0.00125 16 -0.22 0.45 0.43 -0.11 0.36 
0.0025 32 -0.39 0.81 0.74 -0.18 0.61 

0.00125 32 -0.22 0.45 0.44 -0.11 0.37 
At 𝑪𝑪𝑻𝑻 = 𝟎𝟎.𝟗𝟗𝟗𝟗 

0.0025 8 -0.70 1.15 0.89 -0.37 1.08 
0.00125 8 -0.40 0.65 0.52 -0.20 0.65 
0.0025 16 -0.71 1.17 1.03 -0.38 1.40 

0.00125 16 -0.41 0.67 0.60 -0.20 0.85 
0.0025 32 -0.71 1.17 1.08 -0.38 1.51 

0.00125 32 -0.41 0.66 0.63 -0.20 0.92 
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Table 2.2: Change in bare rotor results as wake length is doubled, for various dimensionless 
panel lengths and rotor loadings. 

Panel 
Length 
(𝑳𝑳 𝑫𝑫⁄ ) 

Wake 
Length 
(𝑳𝑳 𝑫𝑫⁄ ) 

% Difference from Halved Wake Length 

𝑪𝑪𝑷𝑷 𝒘𝒘𝒓𝒓 𝒘𝒘𝒘𝒘 𝑹𝑹∞ 𝑹𝑹𝒘𝒘 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔
At 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔

0.005 16 -0.01 -0.08 0.81 0.02 0.83 -0.05
0.005 32 0.00 0.12 0.30 -0.03 0.27 0.06

0.0025 16 -0.01 -0.08 0.82 0.02 0.83 -0.05
0.0025 32 0.00 0.00 0.18 0.00 0.18 0.00

0.00125 16 -0.01 -0.09 0.81 0.00 0.82 -0.05
0.00125 32 0.00 0.00 0.18 0.00 0.18 0.00

At 𝑪𝑪𝑻𝑻 = 𝟖𝟖 𝟗𝟗⁄  
0.005 16 -0.01 0.02 0.81 0.00 0.76 
0.005 32 0.00 0.00 0.16 0.00 0.15 

0.0025 16 -0.01 0.02 0.85 0.00 0.81 
0.0025 32 0.00 0.00 0.17 0.00 0.16 

0.00125 16 -0.01 0.02 0.88 0.00 0.84 
0.00125 32 0.00 0.00 0.17 0.00 0.17 

At 𝑪𝑪𝑻𝑻 = 𝟎𝟎.𝟗𝟗𝟗𝟗 
0.005 16 -0.07 0.11 1.82 -0.03 2.67 
0.005 32 0.00 0.01 0.45 0.00 0.69 

0.0025 16 -0.08 0.13 1.96 -0.04 2.99 
0.0025 32 0.00 0.01 0.50 0.00 0.80 

0.00125 16 -0.09 0.14 2.05 -0.04 3.19 
0.00125 32 0.00 0.01 0.53 0.00 0.88 



Chapter 2: Modelling a Ducted Turbine 49 

Results at Selected Discretisation 

Figure 2.9 shows reasonable agreement between simulation and theory at the chosen 
discretisation, although differences increased substantially at 𝐶𝐶𝑇𝑇 > 0.8 and reached a 
peak of 4.2%. At 𝐶𝐶𝑇𝑇 = 8/9, however, the difference was still less than 2% in all cases, and 
was 1.1% for 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. General predictions could be made based on this level of 
agreement, but there was not sufficient evidence to consider the model validated. An 
error of up to 4% would introduce too much uncertainty into the validation of ducted 
theories: it would be too easy to dismiss somewhat small differences as numerical 
inaccuracy.  

Figure 2.9: Difference between theory and simulation results for selected parameters, with 
panel length = 0.005𝑫𝑫 and wake length = 16𝑫𝑫.  

Results at Varied Discretisation 

The largest differences in Figure 2.9 were for results with the lowest discretisation 
convergence. Figure 2.10 and Figure 2.11 show how the difference from theory varied 
with increased resolution, in terms of wake length and panel length individually, 
confirming that agreement improved with increased resolution. Looking first at 
𝐶𝐶𝑇𝑇 = 0.95 in Figure 2.10, improvement with increased wake length was substantial for 
wake end parameters and slight for the others. Shorter panel lengths improved all 
results, and they could plausibly be tending towards no difference from theory at small 
or zero length. The same trends were seen at 𝐶𝐶𝑇𝑇 = 8/9. 

A change in the pattern is seen when examining 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 in Figure 2.11. There now 
appears to be a worsening of the wake end parameters above a wake length of around 
16𝐷𝐷 on the right of the figure, but comparison with the left suggests it would likely 
reduce or disappear with increased panel length and so is not indicative of any 
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problems with wake length. 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 itself showed a slight improvement with wake length 
and a larger improvement with panel length. 

Figure 2.10: Difference between theory and simulation results at 𝑪𝑪𝑻𝑻 = 0.95, for a range of panel 
lengths with wake length = 32𝑫𝑫 (left), and a range of wake lengths with panel length = 
0.00125𝑫𝑫 (right). 

Figure 2.11: Difference between theory and simulation results at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔, for a range of panel 
lengths with wake length = 32𝑫𝑫 (left), and a range of wake lengths with panel length = 
0.00125𝑫𝑫 (right). 

Increased resolution led to closer agreement with theory at all three loadings, and 
further increases would probably have delivered even closer agreement. After 16𝐷𝐷, 
however, only the wake end parameters benefitted from increased wake length. That 
the errors reduce towards very small values increases confidence in the model, as it 

-4

-3

-2

-1

0

1

2

00.0020.004

%
 D

iff
er

en
ce

 fr
om

 T
he

or
y

Panel Length (L/D)

-6

-5

-4

-3

-2

-1

0

1

0 10 20 30

%
 D

iff
er

en
ce

 fr
om

 T
he

or
y

Wake Length (L/D)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

00.0020.004

%
 D

iff
er

en
ce

 fr
om

 T
he

or
y

Panel Length (L/D)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 10 20 30

%
 D

iff
er

en
ce

 fr
om

 T
he

or
y

Wake Length (L/D)

𝐶𝐶𝑝𝑝 

𝑎𝑎𝑤𝑤  

𝑅𝑅𝑤𝑤 

𝑅𝑅∞ 

𝐶𝐶𝑝𝑝 

𝑎𝑎𝑤𝑤  

𝑅𝑅𝑤𝑤 

𝑅𝑅∞ 

𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 

𝑎𝑎𝑤𝑤  

𝑎𝑎𝑟𝑟  



Chapter 2: Modelling a Ducted Turbine  51 

 

implies that other sources of error or uncertainty are very small and a careful choice of 
discretisation gives results with a high degree of accuracy.  

Results at Highest Resolution Discretisation 

Returning to a single discretisation across a range of rotor loadings, Figure 2.12 shows 
the difference to theory with a panel length of 0.00125𝐷𝐷 and a wake length of 32𝐷𝐷. The 
magnitude of the differences was much reduced compared to the earlier selected 
discretisation: the largest was 1.1% for far wake radius and 0.8% excluding that, and at 
𝐶𝐶𝑇𝑇 = 8/9 the largest difference was 0.54%. The difference for 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 was 0.36%, and 
comparing 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 at this loading gave a difference of 0.27% from the theoretical value 
of 16/27.  

 
Figure 2.12: Difference between theory and simulation results for selected parameters, with 
panel length = 0.00125𝑫𝑫 and wake length = 32𝑫𝑫. 

Validity of Model 

Validation at the discretisation dependence study resolution demonstrated that both 
the model and the methodology for selecting a discretisation are valid for general use, 
with an error in 𝐶𝐶𝑃𝑃 of less than 2%. Increasing the resolution then confirmed that the 
difference from theory was primarily due to discretisation error, controllable through 
the choice of discretisation. Very close agreement with theory was found at the highest 
resolution: just 0.36% and 0.27% for 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇  and 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 respectively. The model has 
therefore been validated against actuator disc theory to a high degree of accuracy.  
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2.2.6 Validation against Inviscid Simulation 

Validation tests of the duct model compared results from the panel method code to 
results from ANSYS Fluent 15.0 running in an inviscid mode with an actuator disc 
model for the rotor. Five parameters were compared in this study: power coefficient 𝐶𝐶𝑃𝑃, 
velocity at the rotor 𝑢𝑢𝑟𝑟, duct drag 𝐹𝐹𝐷𝐷, duct circulation 𝛤𝛤𝑑𝑑 , and exit pressure 𝑝𝑝𝑒𝑒 . The 
required level of agreement was lower here than in the comparison to actuator disc 
theory, as both sets of results were subject to error and uncertainty. 

Model Details and Discretisation Dependence 

Figure 2.13 shows the duct shape chosen for this study. 2% thickness was added for the 
Fluent simulations, as initial tests without thickness found a region of separated flow 
even without viscosity. Not only did this thickness cause a difference in the results, it 
caused an additional difference for dimensionless parameters defined using rotor area. 
Even if the power results for both simulations were the same, for example, the power 
coefficients would be different. Thin duct dimensions were therefore used for 
dimensionless parameters so that the relative change in coefficient and raw result were 
equal.  

Figure 2.13: Validation duct shape, as used in panel method and with thickness for use in 
Fluent. 

Discretisation dependence study results are shown in Table 2.3 for the panel method 
simulations. An expanding wake length of 8.29𝐷𝐷 was chosen, as doubling it changed the 
results by less than 0.12%. Despite drag and exit pressure difficulties at 𝐶𝐶𝑇𝑇 = 0.95, a 
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duct end panel length of 0.0013𝐷𝐷 was selected. Those results must be treated with 
some caution. Note that at 𝐶𝐶𝑇𝑇 = 0 the wake vortex rings had zero strength and made 
exactly zero difference to the results, and drag was excluded to avoid misleading 
percentages due to tiny numerical variations from its true value of 0.  

Table 2.3: Change in panel method results for validation shape as discretisation is changed 
from duct end panel length = 0.0013𝑫𝑫 and expanding wake length = 8.29𝑫𝑫, at three rotor 
loadings. 

% Difference with 
Halved Panel Length Doubled Wake Length 

𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 
�̇�𝒎 & 𝑪𝑪𝑷𝑷 -0.10 -0.08 -0.69 0 0.00 -0.03
𝑪𝑪𝑫𝑫 - -0.79 3.71 0 -0.01 0.12
𝜞𝜞𝒓𝒓 -0.12 0.29 1.06 0 0.01 0.03
𝒑𝒑𝒆𝒆 -0.16 -0.50 -2.44 0 0.00 -0.08

A grid convergence study for the Fluent results is shown in Table 2.4. The approximate 
relative error is the difference between the 2nd finest and the finest grid results as a 
percentage of the latter, and the grid convergence index is an error estimate at the 
finest grid that is defined later in Section 2.3.3. Poor convergence was found for drag 
and exit pressure at the top two loadings, for circulation at 𝐶𝐶𝑇𝑇 = 0.3 and 0.6, and 
additional error for drag at high loadings was found when testing domain size 
convergence in Table 2.5. While these difficulties must be kept in mind, overall 
convergence was good. 

Table 2.4: Error estimates for chosen Fluent simulation discretisation, calculated from 
simulations with 152,000, 241,000 and 470,000 cells.  

𝑪𝑪𝑻𝑻 0 0.15 0.3 0.45 0.6 0.75 8/9 0.95 
Approximate Relative Error (%) 

�̇�𝒎 & 𝑪𝑪𝑷𝑷 0.1 0.1 0.0 0.1 0.1 0.1 0.3 0.6 
𝑪𝑪𝑫𝑫 - 2.3 0.6 0.3 0.3 0.9 9.8 6.7 
𝜞𝜞𝒓𝒓 0.1 0.3 0.7 2.0 13.8 1.1 0.6 0.6 
𝒑𝒑𝒆𝒆 0.2 0.0 0.2 0.5 0.5 0.5 1.0 1.6 

Grid Convergence Index (%) 
�̇�𝒎 & 𝑪𝑪𝑷𝑷 0.0 0.0 0.0 0.1 0.0 0.0 1.1 1.5 
𝑪𝑪𝑫𝑫 - 0.7 0.2 0.1 0.0 0.1 4.2 167.2 
𝜞𝜞𝒓𝒓 0.0 0.1 8.9 1.8 1.9 1.2 0.9 0.5 
𝒑𝒑𝒆𝒆 0.0 0.0 0.1 0.4 0.2 0.1 4.2 3.2 
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Table 2.5: Change in Fluent results for validation shape with domain length and radius 
doubled from 41.8𝑫𝑫 and 20.9𝑫𝑫 respectively.  

% Difference with 
Doubled Domain 

Dimensions 
𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻 = 0.95 

�̇�𝒎 & 𝑪𝑪𝑷𝑷 -0.01 -0.42
𝑪𝑪𝑫𝑫 - 1.56
𝜞𝜞𝒓𝒓 -0.09 -0.37
𝒑𝒑𝒆𝒆 0.10 0.62

Comparison of Fluent and Panel Method Results 

Visually comparing the Fluent and panel method results in Figure 2.14 to Figure 2.16 
shows very good agreement for power and velocity, diverging only slightly at higher 
rotor loadings. Less good but still reasonable matches were found for the other 
parameters. Special consideration is needed for circulation, which was calculated for 
the Fluent results using Equation 2.43 [69, Sec. 2.13]. 

𝛤𝛤 = �𝑼𝑼 ⋅ 𝐝𝐝𝑺𝑺 Equation 2.43 

This equation was applied to a circular curve surrounding the upper duct wall, but the 
curve extended downstream of the duct exit thereby including some of the wake 
vorticity and reducing the accuracy. It was unclear how small the curve could be before 
excluding duct bound circulation, so the Fluent circulation results at 𝐶𝐶𝑇𝑇 > 0 include an 
additional error that increases with loading. 

Figure 2.14: Power coefficient 𝑪𝑪𝑷𝑷 (left) and velocity in the rotor plane 𝒖𝒖𝒓𝒓 (right) results from 
Fluent and the panel method code. 
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Figure 2.15: Duct drag 𝑪𝑪𝑫𝑫 (left) and circulation 𝑪𝑪𝜞𝜞 (right) results from Fluent and the panel 
method code. 

Figure 2.16: Exit pressure 𝑪𝑪𝒑𝒑,𝒆𝒆 results from Fluent and the panel method code. 
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Figure 2.17: Percentage (left) and absolute (right) difference between panel method and 
Fluent. Large differences due to results passing through zero are excluded from the plot area. 

Figure 2.17 presents the results as a percentage difference from the Fluent results, 
where power coefficient and velocity percentages are identical. Agreement for power 
and velocity was very good, reaching a maximum of 1.7%, while exit pressure reached a 
maximum of 5% as the coefficient tended towards zero. Interpreting the other 
parameters was more difficult, as the results passed through zero near 𝐶𝐶𝑇𝑇 = 0 and 
𝐶𝐶𝑇𝑇 = 0.85 for duct drag and 𝐶𝐶𝑇𝑇 = 0.6 for circulation. This led to spikes in the percentage 
differences that are not representative of the actual accuracy  

A difference of around 5% is realistic for duct drag at the loadings unaffected by the 
error spike, but the discretisation convergence difficulties at 𝐶𝐶𝑇𝑇 = 0.95 may mean the 
actual error was higher there. For circulation, the only reliable value was a 3% 
difference at 𝐶𝐶𝑇𝑇 = 0 due to the wake vorticity included in the Fluent results. Looking at 
the right of Figure 2.13, it is quite plausible that increased wake vorticity with rotor 
loading caused an increasing difference. Nevertheless, there was still moderate 
agreement of 12% or less ignoring spikes. 

Validity of Model 

It is fair to conclude that the panel method code produces accurate results for power 
extracted, velocity at the rotor, and exit pressure, based on maximum differences of 
1.7%, 1.7%, and 5% respectively. Assessment of duct drag was more difficult due to two 
zero-drag loadings; those excluded, 5% is a realistic value. Circulation could not be 
directly assessed above 𝐶𝐶𝑇𝑇 = 0, but if circulation is a cause of augmentation then 
circulation values should be accurate based on the other results. In combination with 
the actuator disc validation, then, these results show the panel method code to be 
suitable for use in this work. 
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2.3 Viscous Modelling of Ducted Turbines 
Alongside the inviscid modelling which made up the bulk of this investigation, the 
commercial package ANSYS [162] was used to set up and solve the Navier-Stokes 
equations [163] for the viscous flow around ducted turbines. Duct geometry was 
created in DesignModeler 15.0, before the discretisation was carried out in Meshing 
15.0.1. Any repairs needed to the generated mesh were completed in ICEM CFD 15.0. 
Fluent 15.0 was then used to set up and carry out the numerical solution process. This 
section describes the choices made in modelling the flow and the approach to 
discretisation and estimating discretisation error.  

2.3.1 Modelling Approach 

ANSYS Fluent gives several choices in the approach taken to solving the Navier-Stokes 
equations, and the appropriate option was selected with reference to the Fluent 
documentation [164, 165]. The pressure based solver and coupled algorithm were 
chosen as appropriate for the incompressible flow being modelled and for speed of 
convergence. The least-squares method was used for the calculation of gradients, the 
second order upwind scheme was used for discretisation of the momentum, turbulent 
kinetic energy and specific dissipation rate convective terms, the second order central 
difference scheme was used for diffusion terms, and the second order scheme was used 
for interpolating pressure values. 

Various turbulence models have been used for ducted turbines, including k-ε [115, 122, 
125], k-ω [115], SST k-ω [55, 57, 99, 129, 131, 166], and direct numerical simulation 
[89, 114]. A comparison of the k-ε and standard k-ω models for a bare rotor found the 
k-ε model to provide a better match to theory [115], but validation work on the SST k-ω
model for separating flow strongly supports its use for ducted turbines [57]. The SST k-
ω model was selected here together with the Enhanced Wall Treatment, which reduces
sensitivity to the near wall mesh size by blending between wall function and fully
resolved approaches depending on the mesh size.

All simulations were run as steady problems, but pseudo-transient relaxation was used 
when convergence difficulties were encountered. This option adds an implicit under-
relaxation based on a pseudo time step Δ𝑜𝑜 that is automatically calculated from details 
of the domain size and flow field, demonstrated for the discretised general transport 
equation in Equation 2.44. 

𝜌𝜌𝑝𝑝Δ𝑉𝑉
𝜙𝜙𝑝𝑝 − 𝜙𝜙𝑝𝑝𝑇𝑇𝑙𝑙𝑑𝑑

Δ𝑜𝑜 + 𝑎𝑎𝑝𝑝𝜙𝜙𝑝𝑝 =  �𝑎𝑎𝑖𝑖𝑏𝑏𝜙𝜙𝑖𝑖𝑏𝑏 + 𝑏𝑏
𝑖𝑖𝑏𝑏

Equation 2.44 

For this equation only Δ𝑉𝑉 is the volume of cell 𝑝𝑝, 𝑖𝑖𝑏𝑏 signifies the neighbouring cells, 𝜙𝜙 
represents a property that is being transported through the flow field and 𝑜𝑜𝑜𝑜𝑑𝑑 indicates 
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the value of this property in the previous solver iteration, 𝑎𝑎 is the linearised coefficient 
for 𝜙𝜙, and 𝑏𝑏 is the constant part of the source term. 

The rotor was modelled as an actuator disc causing a uniform pressure drop using 
Fluent’s built in fan model. This pressure drop was applied across an infinitely thin 
plane leading to a discontinuous change in the pressure, matching the panel method 
code. Many previous ducted turbine studies took an actuator disc approach, as 
discussed in Section 1.3.3, it is considered a valid approach for bare rotors [129], and 
shows good agreement with actuator disc theory [55, 57].  

2.3.2 Discretising the Flow Field 

An axisymmetric approach was taken to match the panel method code, but it was not 
possible to use identical duct shapes: the infinitely thin ducts in the panel method led to 
leading edge separation in results from Fluent, and so some thickness was added. The 
design of the mesh for this geometry was focused on increased resolution near the duct 
and wake surface with a coarser mesh away from the areas of interest to allow a larger 
domain size.  

Figure 2.18 illustrates the general meshing approach: areas A and B consisted of an 
unstructured triangular cell mesh, coarser in area A, and with an automatically 
generated [167] smooth transition in cell size. Edge sizing increased resolution around 
D, representing the duct, E, representing the rotor, and F, placed near the expected 
position of the wake surface. An inflation layer of quadrilateral cells on the duct surface 
ensured cells sufficiently small for modelling the boundary layer. Finally, the small area 
C at the root of the rotor had a quadrilateral mesh to overcome a solution problem 
when using triangular cells. 

Figure 2.18: Illustration of mesh specification approach. Not to scale. 

Fan and no-slip wall boundary conditions were applied to edges E and D respectively, 
while edge F was treated as part of the flow domain. The exit of the domain on the right 
side of Figure 2.18 was set as a pressure outlet at atmospheric pressure, while the 

Area A 

Area B F D 

E Area B 
Area C 
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bottom boundary was the rotational axis of symmetry. A velocity inlet was applied to 
the left and top edges of the domain, with constant axial velocity and turbulence 
parameters specified. Inlet turbulence was required to ensure turbulent boundary 
layers on the duct surface, and reasonable atmospheric values were arbitrarily chosen. 
For a height above ground level 𝑧𝑧 of 40m and a surface roughness length 𝑧𝑧0 of 0.05m 
[168], a turbulence intensity 𝐼𝐼𝑜𝑜 of 15% was calculated from Equation 2.45 [169]. 

𝐼𝐼𝑜𝑜 ≈  
1

ln�𝑧𝑧 𝑧𝑧0� �
Equation 2.45 

A turbulence length scale 𝐿𝐿𝑜𝑜 
𝑃𝑃  of 110m was then found from Equation 2.46 [170]. 

𝐿𝐿𝑜𝑜 
𝑃𝑃 ≈  25

𝑧𝑧0.35

𝑧𝑧00.063 Equation 2.46 

2.3.3 Sources of Error 

Despite their differences, there is a similarity in the sources of error in Fluent and the 
panel method code. Both make an approximation in discretising the problem that had 
to be assessed for its influence on the solution, although the method used for Fluent 
differs and will be described in this section. Rounding error was again minimised by 
using a double precision representation of numerical values. Finally, a choice had to be 
made as to when iterations should be stopped that balanced computational time 
against errors from stopping too early. 

The decision to stop iterations was made partly on the basis of global residuals, which 
compare the two sides of each equation being solved. A drop to 10-3 is recommended by 
ANSYS for globally scaled residuals. As the residuals can be misleading, for example 
when a good initial guess is made for the solution [164], the key performance measure 
of mass flow rate through the duct was also examined. Only when mass flow did not 
change significantly with further iterations was the solution judged converged. 

Both domain size and mesh cell size affect discretisation error, with the former 
evaluated by doubling the domain’s linear dimensions and checking for inconsequential 
changes in the results of interest. Mesh size was assessed using the recommended [171, 
172] Grid Convergence Index approach, developed by Roache [173] and based on
Richardson Extrapolation. Three mesh sizes are required, where mesh 1 is the finest.
The Grid Convergence Index 𝐺𝐺𝐶𝐶𝐼𝐼 estimates the error of a result 𝜙𝜙 as the difference
between the value from mesh 1 and the extrapolated value, and is reported as a
percentage of the mesh 1 value with a safety factor of 1.25.

In the calculation of the grid convergence index, 𝒪𝒪 is the order of the numerical scheme, 
𝑒𝑒𝑃𝑃21 is the approximate relative error which quantifies the difference between the result 
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from mesh 1 and 2, and ℛ21 is the refinement ratio between meshes 2 and 1. 𝐺𝐺𝐶𝐶𝐼𝐼, then, 
is calculated using Equation 2.47.  

𝐺𝐺𝐶𝐶𝐼𝐼 =  
1.25𝑒𝑒𝑃𝑃21

ℛ21
𝒪𝒪 − 1

Equation 2.47 

The approximate relative error is given by Equation 2.48. 

𝑒𝑒𝑃𝑃21 =  
𝜙𝜙1 − 𝜙𝜙2
𝜙𝜙1

Equation 2.48 

In refining the mesh, the number of cells was controlled by adjusting all mesh sizing 
parameters other than the duct boundary layer by a constant factor. Where here 𝒟𝒟 is 
the dimensionality of the mesh and so was set as 2, the total number of cells 𝑁𝑁 can be 
used to calculate the refinement ratio ℛ𝑗𝑗𝑗𝑗 between mesh 𝑗𝑗 and 𝑘𝑘 using Equation 2.49. 

ℛ𝑗𝑗𝑗𝑗 =  �
𝑁𝑁𝑗𝑗
𝑁𝑁𝑗𝑗
�
1
𝒟𝒟�

Equation 2.49 

While 𝐺𝐺𝐶𝐶𝐼𝐼 can be calculated from two meshes if 𝒪𝒪 is set as the formal order of the 
scheme, the error may not reduce exactly as that order suggests and so a safety factor of 
3 would be required [172]. Instead, an apparent order 𝒪𝒪 was calculated from the 
change in results over three meshes using Equation 2.50 [171]. 

𝒪𝒪 =  
1

ln(ℛ21) �ln �
𝜀𝜀32
𝜀𝜀21

�+ ln�
ℛ21
𝒪𝒪 − 𝜎𝜎

ℛ32
𝒪𝒪 − 𝜎𝜎

�� Equation 2.50 

This equation was solved for 𝒪𝒪 using a fixed point iteration algorithm [174] and the 
definitions in Equation 2.51. 

𝜎𝜎 =  1 ∙ sign �
𝜀𝜀32
𝜀𝜀21

� 
Equation 2.51 

𝜀𝜀𝑗𝑗𝑗𝑗 =  𝜙𝜙𝑗𝑗 − 𝜙𝜙𝑗𝑗 
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2.4 Summary 
The majority of simulation results presented in this work are from an axisymmetric 
vortex ring panel method, in which the flow was modelled as inviscid. While the results 
must therefore be treated with caution, as there may be large differences between 
predictions and real flows, an inviscid approach has advantages useful for achieving the 
research objectives set out in the Introduction chapter. Both irrotational and attached 
flow assumptions follow from the choice of inviscid flow, an assessment of flow rates 
found that incompressible flow can reasonably be assumed, and the literature suggests 
little loss of accuracy by assuming steady flow.   

The basis of the method was finding a set of vortex ring strengths that enforced 
boundary conditions of no flow through the duct surface and no static pressure jump 
across the wake surface. Each simulation started with the specification of the thin 
walled duct shape and the pressure drop at the actuator disc, then an iterative solution 
process found the ring strengths and wake shape. To ensure discretisation error was 
kept to an acceptable level, discretisation dependence studies assessed the variation in 
important results with increased resolution for each investigation.  

Validation against actuator disc theory for the case of a bare rotor found very good 
agreement, with a difference from theory of 0.36% and 0.27% for 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇  and 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
respectively. Comparison with inviscid ANSYS Fluent simulations for a ducted turbine 
showed a maximum difference of 1.7% for power, 5% for exit pressure, and 5% for duct 
drag. This agreement was still good given the additional errors incurred by comparing 
to simulation results rather than a validated theory. Together, both tests show that the 
model was capable of predicting the inviscid performance of ducted turbines to a high 
degree of accuracy. 

A second modelling approach using ANSYS Fluent 15.0 was used for viscous 
simulations. The SST k-ω turbulence model was selected with the Enhanced Wall 
Treatment, and a second order approach was used for spatial discretisation of the 
governing equations. As with the panel method, the simulations were steady and 
axisymmetric in nature and represented the rotor with an actuator disc. However, the 
thin ducts from the inviscid simulations had thickness added to avoid leading edge 
separation. Discretisation error was estimated for each simulation using the Grid 
Convergence Index, which is based on Richardson Extrapolation. 
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The primary aim of this chapter is to answer a number of the more straightforward 
questions raised in the introduction in an unambiguous way, using the inviscid panel 
method code to avoid any confusion from varying levels of viscous losses or separation. 
These idealised results are also shown to be reasonable approximations to real ducted 
turbines in some circumstances, and the maximum power extractable by a ducted 
turbine of given dimensions is estimated after an optimisation procedure. Finally, the 
results are drawn together to compare the conceptual models for a ducted turbine: is 
intuition based on a diffuser or an aerofoil closer to the actual behaviour? 

3.1 Initial Investigations 

3.1.1 A Set of Ducted Turbines 

Ducts with fixed length and exit diameter ratios, measured against the throat diameter, 
form the basis of this section. Shown in Figure 3.1, they allowed an assessment of the 
significance of duct shape and produced important results relating to power, rotor 
loading and exit pressure. These ducts were chosen to give a wide range of shapes 
within the limitations of the panel method code, and in all cases the rotor was placed at 
𝑥𝑥 𝐷𝐷⁄  = 0.  

Discretisation convergence was good, as shown in Table 3.1 and Table 3.2, excepting a 
few cases at 𝐶𝐶𝑇𝑇 = 0.95 with relatively small absolute values and ignoring the far wake 
results at 𝐶𝐶𝑇𝑇 = 0.95 which were unused. The worst cases of convergence were always 
for the most extreme shapes, justifying the approach taken in later modelling when 
testing every shape became impractical. 

Table 3.1: Largest magnitude change of result for ducts A to G when discretisation was 
changed from last duct panel length = 0.00125𝑫𝑫 and wake length = 8𝑫𝑫. 

Worst % Difference with 
Halved Panel Length Doubled Wake Length 

𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 

�̇�𝒎 & 𝑪𝑪𝑷𝑷 0.33 0.31 0.71 0.00 0.02 0.65 
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 - 0.09 - - 0.09 - 
𝑪𝑪𝑫𝑫 - 0.12 14.42 - 0.04 1.69 
𝒑𝒑𝒆𝒆 0.17 0.71 2.29 0.00 0.11 1.11 
𝑹𝑹𝒘𝒘 0.02 0.04 0.27 0.04 0.96 6.07 
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Table 3.2: Median change of result magnitude for ducts A to G when discretisation was 
changed from last duct panel length = 0.00125𝑫𝑫 and wake length = 8𝑫𝑫. 

Median % Difference with 
Halved Panel Length Doubled Wake Length 

𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 
�̇�𝒎 & 𝑪𝑪𝑷𝑷 0.24 0.25 0.42 0.00 0.01 0.31 
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 - 0.06 - - 0.02 - 
𝑪𝑪𝑫𝑫 - 0.10 0.37 - 0.01 0.28 
𝒑𝒑𝒆𝒆 0.13 0.21 0.97 0.00 0.01 0.65 
𝑹𝑹𝒘𝒘 0.01 0.03 0.24 0.01 0.47 4.07 

Figure 3.1: Duct shapes A to G, shown in terms of the rotor diameter 𝑫𝑫. 
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3.1.2 Area Ratio Does Not Define Performance 

Area ratio is often treated as the most important geometrical parameter for 
performance, as discussed in Section 1.5.3. It is immediately apparent from Figure 3.2, 
however, that the duct shape has a significant impact at fixed area ratio: power 
coefficient more than doubles going from duct A to G. Similar increases with shape were 
found for dimensionless velocity at the rotor 𝑢𝑢𝑟𝑟 𝑢𝑢∞⁄  in Figure 3.3, while the influence 
on the duct drag coefficient 𝐶𝐶𝐷𝐷 was even larger.  

Figure 3.2: Variation of power coefficient 𝑪𝑪𝑷𝑷 with thrust coefficient 𝑪𝑪𝑻𝑻 for ducts A to G. 

Figure 3.3: Variation of velocity at the rotor 𝒖𝒖𝒓𝒓 (left) and duct drag coefficient 𝑪𝑪𝑫𝑫 (right) with 
thrust coefficient 𝑪𝑪𝑻𝑻 for ducts A to G. 
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When the duct is considered from an aerofoil point of view, the increase in velocity and 
power is quite logical. As the camber of the shape increases from duct A to duct G so 
does the circulation, which induces greater velocity at the rotor. However, these results 
are also consistent with an explanation based solely on the angle of the duct trailing 
edge. Phillips [4] noted that a change in this angle away from the axial direction should 
force a greater expansion in the wake causing an increase in the flow rate through the 
duct. These explanations will be compared further in Section 3.4. 

3.1.3 Power Is Proportional to Flow Rate at Fixed Loading 

Comparison of Figure 3.2 and Figure 3.3 shows that the power extracted 𝑃𝑃 increases 
with velocity 𝑢𝑢𝑟𝑟 at a fixed pressure drop Δ𝑝𝑝, a relationship shown to be linear for rotor 
area 𝐴𝐴𝑟𝑟 and volume flow rate 𝑄𝑄𝑟𝑟 in Equation 3.1 [5]. 

𝑃𝑃 = Δ𝑝𝑝𝐴𝐴𝑟𝑟𝑢𝑢𝑟𝑟 = Δ𝑝𝑝𝑄𝑄𝑟𝑟 Equation 3.1 

However, Section 1.5.4 notes that a misconception of power proportional to 𝑢𝑢𝑟𝑟3 has not 
yet been completely eliminated. Figure 3.4 provides additional evidence of a linear 
variation at fixed loading using the rate of kinetic energy in the streamtubes through 
ducts A to G, as computed far upstream and downstream at 𝐶𝐶𝑇𝑇 = 0.75. 

Figure 3.4: Variation of power coefficient 𝑪𝑪𝑷𝑷 with velocity at the rotor 𝒖𝒖𝒓𝒓, for ducts A to G 
operating at 𝑪𝑪𝑻𝑻 = 0.75. 
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3.1.4 Optimum Rotor Loading Is Not 8/9 

While power is proportional to flow rate at a fixed loading, Figure 3.5 shows the 
optimum loading varied with duct shape and was between 10% and 20% less than the 
bare actuator disc value of 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9. While this evidence cannot show that 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 is 
always reduced, it is clear that care must be taken in discussing augmentation: dividing 
𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 by 16/27 is not equivalent to a comparison at the same loading. The former was 
3% to 8% less than the latter at each duct’s 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 here, less than half the drop in 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇, 
implying through Equation 3.1 a variation in augmentation with 𝐶𝐶𝑇𝑇 that partially 
compensated for the reduced optimum loading. 

Figure 3.5: Variation of 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 with 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 for ducts A to G. The ducts appear in order from A with 
the smallest 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 to G with the largest. 
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3.1.5 Variation of Augmentation with Rotor Loading 

A direct test of augmentation over a bare rotor at the same loading is given in Figure 
3.6, confirming a reduction with 𝐶𝐶𝑇𝑇. The error in assuming otherwise is shown to be 
substantial in Figure 3.7, and further assuming 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9 increases the largest 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
error to 44%. Both assumptions have previously been made, as discussed in Sections 
1.5.4 and 1.5.6. These two assumptions are connected: decreasing augmentation 
implies a drop in velocity more rapid than a bare rotor experiences, reducing 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 by 
changing the balance between flow rate and power extraction per unit mass flow. 

Figure 3.6: Variation of augmentation 𝒖𝒖𝒓𝒓 𝒖𝒖𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆⁄  compared to a bare actuator disc operating at 
the same 𝑪𝑪𝑻𝑻 (left), and percentage reduction in 𝒖𝒖𝒓𝒓 𝒖𝒖𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆⁄  from value at 𝑪𝑪𝑻𝑻 = 0 (right), both for 
ducts A to G. 

Figure 3.7: Percentage error in assuming that the augmentation 𝒖𝒖𝒓𝒓 𝒖𝒖𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆⁄  does not vary from 
its value at 𝑪𝑪𝑻𝑻 = 0 for ducts A to G, where the error is calculated for the actual augmentation at 
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 and for the predicted maximum power if 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 = 8/9 is also assumed. 
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3.1.6 Influences on Augmentation 

Three parameters have been linked to the augmentation performance of ducted 
turbines, as discussed in Sections 1.2.2 and 1.2.4: inviscid duct drag, exit pressure 
coefficient, and duct circulation. Each is tested here, beginning with the ratio of duct 
drag to thrust on the rotor 𝐶𝐶𝐷𝐷 𝐶𝐶𝑇𝑇⁄  in Figure 3.8 for all loadings modelled except zero. A 
clear linear relationship existed, with a best fit of all the data suggesting a gradient of 1 
and an intercept of 1 to within 0.5%. Section 6.1 will present a derivation that leads to 
this relationship. 

Figure 3.8: Variation of augmentation over a bare actuator disc 𝒖𝒖𝒓𝒓 𝒖𝒖𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆⁄  with the ratio of 
inviscid duct drag 𝑪𝑪𝑫𝑫 to thrust on the rotor 𝑪𝑪𝑻𝑻, for ducts A to G. 
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Excluding ducts A and G for numerical reasons, the augmentation ratio was compared 
to the exit pressure coefficient in three ways: directly, with the value of the rotor 
pressure drop subtracted, and with the pressure on the downstream side of a bare 
actuator disc subtracted. None of these approaches gave a unique value of exit pressure 
coefficient for each value of augmentation ratio, as exemplified by Figure 3.9. Plotting 
against the exit augmentation ratio highlights the fact that that these ducts experienced 
exit augmentation when the exit pressure coefficient was more negative than the 
downstream side of a bare rotor. 

Augmentation was also multi-valued for circulation, as Figure 3.10 shows, although the 
parameters were again relatively close to collapsing onto a single curve. Positive 
circulation did not coincide perfectly with exit augmentation; rotor augmentation, 
meanwhile, existed even for the negative values of circulation. Neither exit pressure nor 
circulation achieved anywhere near as perfect an association as drag ratio, even though 
the former two are considered mechanisms of augmentation, but note that rotor 
loading was allowed to vary in this examination and may be a confounding factor. These 
associations will be examined further later in this work. 

Figure 3.9: Variation of velocity augmentation 
at the duct exit 𝒖𝒖𝒆𝒆 𝒖𝒖𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆⁄  with the difference 
between the exit pressure coefficient 𝑪𝑪𝒑𝒑,𝒆𝒆 and 
the pressure coefficient on the downstream 
side of a bare actuator disc at the same loading 
𝑪𝑪𝒑𝒑,𝒓𝒓𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆, for ducts B to F. A negative difference 
indicates that the duct exit pressure was more 
negative that the disc downstream side. 

Figure 3.10: Variation in velocity augmentation 
at the duct exit 𝒖𝒖𝒆𝒆 𝒖𝒖𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆⁄  with dimensionless 
circulation 𝑪𝑪𝜞𝜞 for ducts A to G. 
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3.1.7 Variation of Exit Pressure 

The results in the previous section suggest that substantially subatmospheric exit 
pressures are possible in inviscid flow, with both duct shape and rotor loading having a 
large influence. Figure 3.11 confirms these findings by plotting 𝐶𝐶𝑝𝑝,𝑒𝑒 against 𝐶𝐶𝑇𝑇. Adding 
the value of 𝐶𝐶𝑇𝑇 to 𝐶𝐶𝑝𝑝,𝑒𝑒 on the right of the figure removed the direct contribution of the 
rotor pressure drop from 𝐶𝐶𝑝𝑝,𝑒𝑒 , illustrating a change in 𝐶𝐶𝑝𝑝,𝑒𝑒 associated with changes in 
flow velocity.  

Although the relationships between 𝐶𝐶𝑝𝑝,𝑒𝑒 and 𝐶𝐶𝑇𝑇 appear almost linear, the scale of the 
plot masks a non-linear variation for ducts B and C at least. Adding 𝐶𝐶𝑇𝑇 to 𝐶𝐶𝑝𝑝,𝑒𝑒 did reveal 
close fits to linear relationships where both the gradient and intercept depended on 
duct shape, although it is questionable whether this result is meaningful given that both 
parameters are a function of 𝐶𝐶𝑇𝑇. However, the association may be stronger than seen 
between the pressure coefficient on the downstream side of bare rotor and 𝐶𝐶𝑇𝑇, with 
𝑅𝑅2 > 0.999 in the ducted cases and 𝑅𝑅2 = 0.986 over the same 𝐶𝐶𝑇𝑇 range in the bare case. 

Figure 3.11: Variation of the exit pressure coefficient 𝑪𝑪𝒑𝒑,𝒆𝒆 (left), and the sum of 𝑪𝑪𝒑𝒑,𝒆𝒆 and 𝑪𝑪𝑻𝑻 
(right), both with rotor loading and for ducts B to F. 
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Rotor loading also affected the radial distribution of pressure at the exit, as shown on 
the left of Figure 3.12. 𝐶𝐶𝑇𝑇 was added here simply for clarity, as it prevented overlap at 
the outer radii. Based on the exit pressure coefficient, without removing 𝐶𝐶𝑇𝑇, the 
pressure at the outermost radius was 5.4% of the root value at 𝐶𝐶𝑇𝑇 = 0 and 28.8% at 
𝐶𝐶𝑇𝑇 = 0.95. Both the magnitude and form of this radial variation then also changed with 
duct shape. As will be discussed in Section 5.3, these radial variations add complexity 
when looking for relationships between exit pressure and velocity. 

Figure 3.12: Radial variation of pressure in the exit plane 𝑪𝑪𝒑𝒑,𝒆𝒆: for duct E at 𝑪𝑪𝑻𝑻 = 0 to 𝑪𝑪𝑻𝑻 = 0.95 
(left), and for ducts B to F at 𝑪𝑪𝑻𝑻 = 0.75 (right). 

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1

0 0.15 0.30 0.45
0.60 0.75 0.89 0.95

𝑪𝑪𝑻𝑻:

𝑪𝑪𝒑𝒑,𝒆𝒆 + 𝑪𝑪𝑻𝑻

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0

B C D E F

𝑪𝑪𝒑𝒑,𝒆𝒆



Chapter 3: The Behaviour of Ducted Turbines 72 

3.1.8 The Betz Limit Does Not Apply 

Results in this chapter have shown the ease with which the Betz limit of 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0.593 
can be exceeded in inviscid flow when defining 𝐶𝐶𝑃𝑃 with rotor area. Figure 3.13 provides 
strong evidence that the limit can also be exceeded when 𝐶𝐶𝑃𝑃 is based on duct exit area; 
a ducted turbine can extract more power than a bare actuator disc, even when the disc 
is as large as the duct exit. Practical limits from viscosity will remain, but more trust can 
now be placed in the previous viscous results discussed in Section 1.5.5 that may 
otherwise have been doubted by critics. 

Figure 3.13: Maximum power coefficients achieved by ducts A to G, where a coefficient 
calculated from the rotor area and another calculated from the duct exit area is shown. 

An interesting result that is not obvious from Figure 3.13 is that 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1.04 for duct G, 
based on exit area. While exceeding a value of 1 for 𝐶𝐶𝑃𝑃 may be initially surprising, it is 
really only an artefact of the definition of power coefficient in Equation 3.2. 

𝐶𝐶𝑃𝑃 =
𝑃𝑃

1
2� 𝜌𝜌𝐴𝐴𝑟𝑟𝑢𝑢∞3

Equation 3.2 

Note that the denominator is the rate of kinetic energy passing through an area equal to 
the rotor 𝐴𝐴𝑟𝑟 when the flow is at the free stream velocity 𝑢𝑢∞. In other words, it is the 
power available to a bare rotor when the rotor is not operating rather than a quantity 
that exists with a duct. A ducted turbine that achieves 𝐶𝐶𝑃𝑃 > 1 is only extracting more 
power than is available to a bare rotor; it is not creating power from nowhere and 1 is 
not a theoretical limitation. The increase in available power comes from a larger far 
upstream streamtube area 𝐴𝐴∞, or source area, as shown by Sections 3.1.2 and 3.1.3 
where the ducts are augmenting power through an increased flow rate. 
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Despite the much greater 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 for the ducted turbines, Section 3.1.5 implies that the 
source area reduced at a faster rate with 𝐶𝐶𝑇𝑇 when compared to a bare rotor. Figure 3.14 
also shows that they captured a smaller fraction of the available power, with the 
fraction of the actual source area having a value equal to the rotor loading [175]. 𝐶𝐶𝑃𝑃 > 1 
is therefore not concerning, as there was simply an abundance of available power 
combined with a power coefficient definition that loses its expected physical meaning – 
the ratio of actual to available power – when applied to a ducted turbine. 

Figure 3.14: The maximum power extracted for ducts A to G given as a fraction of the power 
available in each duct’s streamtube source area at zero rotor loading and at the optimum 
loading. Results for a bare actuator disc are also shown. 
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3.2 Right Angled Exit Ducts 

3.2.1 The Optimum Shape in Inviscid Flow 

Of the duct shapes modelled in Section 3.1, the best performing in terms of 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 was 
the right angled duct G. Although consistent with the camber and exit angle 
explanations in Section 3.1.2, too few ducts were modelled to show generality. A more 
thorough test is presented here using an optimisation procedure that found the duct 
shape for maximum mass flow at two rotor loadings. Three stages of discretisation 
were used throughout, shown in Table 3.3, to ensure convergence. 

Fixed nodes at the duct inlet and outlet set an inlet radius of 0.5𝐷𝐷, outlet radius of 0.7𝐷𝐷, 
and length of 0.5𝐷𝐷, and formed the axial and radial bounds for the movable nodes. 
Interpolation between nodes used a piecewise cubic Hermite spline. A single moveable 
node was used first, starting at an axial position of 0.25𝐷𝐷 and radius 0.6𝐷𝐷, before 
repeating with two moveable nodes beginning at 𝑥𝑥 = 0.3𝐷𝐷 and 0.4𝐷𝐷, and at 𝑟𝑟 = 0.51𝐷𝐷 
and 0.53𝐷𝐷. An interior point algorithm [176] was used, with the stopping criteria 
selected by tightening them until they no longer affected the result. 

Table 3.3: Discretisation settings used for each stage of the duct shape optimisation process. 

Stage 1 Stage 2 Stage 3 
Duct Last Panel Length 0.02𝐷𝐷 0.01𝐷𝐷 0.005𝐷𝐷 

Expanding Wake Length 4𝐷𝐷 8𝐷𝐷 8𝐷𝐷 

Table 3.4: Change in results with a finer discretisation for the two node optimum shapes found 
at 𝑪𝑪𝑻𝑻 = 0 and 𝑪𝑪𝑻𝑻 = 8/9 and a right angle shape, where the change was calculated from a last 
duct panel length of 0.00125𝑫𝑫 and expanding wake section of 8𝑫𝑫. 

% Difference with 
Halved Panel Length Doubled Wake Length 

𝑪𝑪𝑻𝑻 = 0 
Shape 

𝑪𝑪𝑻𝑻 = 8/9 
Shape 

Right 
Angle 

𝑪𝑪𝑻𝑻 = 0 
Shape 

𝑪𝑪𝑻𝑻 = 8/9 
Shape 

Right 
Angle 

�̇�𝒎 at 𝑪𝑪𝑻𝑻 = 0 0.01 - 0.16 0.00 - 0.00
�̇�𝒎 at 𝑪𝑪𝑻𝑻 = 8/9 - 0.07 0.11 - -0.02 -0.02

The optimum shapes are shown in Figure 3.15 and Figure 3.16 for one and two 
moveable nodes respectively. All had a fully radial exit angle, while the addition of a 
second movable node brought the only significant deviation closer to a right angle. 
Comparisons to an exact right angled shape, for which the discretisation convergence is 
in Table 3.4, showed that the algorithm didn’t quite reach the true optimum of a right 
angle: the right angle achieved a 0.61% greater mass flow than the Stage 3 shape for 
𝐶𝐶𝑇𝑇 = 0, and 0.25% greater than the 𝐶𝐶𝑇𝑇 = 8/9 shape at its loading. 
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Figure 3.15: Duct shapes that maximised mass flow rate at 𝑪𝑪𝑻𝑻 = 0 and 𝑪𝑪𝑻𝑻 = 8/9 from one node 
optimisation. The resolution of discretisation increased from stage 1 to stage 3. 

Figure 3.16: Duct shapes that maximised mass flow rate at 𝑪𝑪𝑻𝑻 = 0 and 𝑪𝑪𝑻𝑻 = 8/9 from two node 
optimisation. The resolution of discretisation increased from stage 1 to stage 3. 

It must be stressed that these findings are for inviscid flow, and it is not suggested that a 
right angled shape will maximise power for a real ducted turbine. While it is interesting 
to note the similarities between these ducts and those developed for viscous flow at 
Kyushu University [177], the main conclusions to be drawn here are theoretical: within 
the constraints specified, the shape for best performance did not vary with rotor 
loading, was the one with most camber, and had the largest exit angle possible. 
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3.2.2 Limits on Ducted Turbine Performance 

Substantial separation is expected for these right angled ducts when placed into viscous 
flow. It seems reasonable to expect a considerable drop in 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 to ensue, despite both 
viscous wake mixing [4] and vortex formation [88] having been reported as 
mechanisms of augmentation. Therefore, the set of inviscid predictions for right angled 
ducts presented in this section have practical significance as limiting values for a given 
size of duct. A wide range of sizes were used, specified by the length of the cylindrical 
section and height of the exit rim, and the discretisation convergence in Table 3.5 was 
adequate for this purpose. 

Table 3.5: Change in 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 with a finer discretisation for a range of right angled ducts. 
Discretisation was changed from a last duct panel length of 0.005𝑫𝑫 and an expanding wake 
section of 64𝑫𝑫 or shorter: the assessment of wake length was stopped once convergence was 
reached. 

Duct Cylinder Length (𝑳𝑳 𝑫𝑫⁄ ) 0 0 0.125 0.125 0.125 8 8 8 
Duct Rim Height (𝑳𝑳 𝑫𝑫⁄ ) 0.125 4 0 0.125 4 0 0.125 4 

% Difference in 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 with 
Halved Panel Length -1.48 -0.57 0.32 -1.06 -0.39 -0.04 -0.58 -0.33 

% Difference in 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 with 
Doubled Wake Length -0.01 -0.13 0.00 0.00 -0.13 0.00 0.00 -0.02 

 
Figure 3.17 presents results for a subset of the ducts examined that avoided the truly 
outrageous values of 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 possible in inviscid flow. Basing 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 instead on exit area 
shows an optimum rim height rather than ever increasing performance in Figure 3.18, 
and emphasises in Figure 3.19 the asymptotic change with increasing cylinder length 
that was suggested in Figure 3.17. A purely cylindrical duct with zero rim height, 
meanwhile, reduced power compared to a bare rotor. 

 
Figure 3.17: Variation of 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 with cylinder length, for a range of rim heights. 
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Figure 3.18: Variation of exit area 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 with rim height, for a range of cylinder lengths. 

Figure 3.19: Variation of exit area 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 with cylinder length, for a range of rim heights. 

Comparison with an optimised flanged turbine in viscous flow is consistent with the 
inviscid results as limiting values: Oka et al. [44] found 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1.05 for a duct with 
length ratio 𝐿𝐿𝑑𝑑 𝐷𝐷⁄  = 0.25 and radius increase (𝑅𝑅𝑒𝑒 − 𝑅𝑅𝑟𝑟) 𝐷𝐷⁄  = 0.15. None of the ducts 
modelled here matched both dimensions exactly, but a somewhat smaller turbine with  
𝐿𝐿𝑑𝑑 𝐷𝐷⁄  = 0.25 and (𝑅𝑅𝑒𝑒 − 𝑅𝑅𝑟𝑟) 𝐷𝐷⁄  = 0.125 still achieved the larger 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 value of 1.43. 

3.2.3 Small Duct Limits 

Substantial augmentation was found in the previous study even at the smallest sizes, 
albeit only as limiting values; nevertheless, small ducts with modest augmentations 
may be a path to economic feasibility. Three such ducts were tested here, of equal 
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cylinder length and rim height and with sizes given as a percentage of the rotor 
diameter. Discretisation convergence was good, as shown in Table 3.6, while the results 
in Table 3.7 show that appreciable augmentation remained despite the reduction in 
size. While these are again only limiting values, there may be sufficient margin that a 
real ducted turbine of this size could achieve augmentation. 

Table 3.6: Change in results with finer discretisation for right angled shapes with a size of 
0.5% and 5% of rotor diameter. Base last duct panel length = 0.0003125𝑫𝑫 and base expanding 
wake length = 8𝑫𝑫. 

% Difference with 
Halved Panel Length Doubled Wake Length 

0.5% Shape 5% Shape 0.5% Shape 5% Shape 
𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 -0.24 -0.23 -0.01 -0.01
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 -0.21 -0.18 -0.03 -0.04

Table 3.7: Percentage change in maximum power and optimum rotor loading coefficients from 
their bare rotor values with a right angled duct of varied size. 

% Change from Bare Rotor of 0.5% Shape 2.5% Shape 5% Shape 
𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 4.7 23.0 45.6 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 -1.9 -4.4 -5.9

3.2.4 Small Flanges 

A small section of duct at a right angle to the free stream need not form part of a right 
angled duct: it can be applied as a flange to a duct of any shape. Three flanges, with 
heights ranging from 0.5% of rotor diameter to 5%, were applied to the duct in Figure 
3.20 in order to assess this approach. Table 3.8 indicates that good discretisation 
convergence was achieved, while Table 3.9 shows that the flange increased 
performance more than right angled ducts of the same size and that flange height was 
an important parameter. 

Table 3.8: Change in results with finer discretisation for flange test duct shapes, where 
discretisation was changed from last duct panel length = 0.000625𝑫𝑫 and expanding 
wake = 8𝑫𝑫. 

% Difference with 
Halved Panel Length Doubled Wake Length 

Flange Size (% of 𝑫𝑫): None 0.5% 5% None 0.5% 5% 
𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 -0.28 -0.39 -0.30 -0.01 -0.02 -0.03
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 -0.31 -0.22 -0.27 -0.05 -0.07 -0.12
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Figure 3.20: Duct shapes used in the flange study, with a detail view of the duct trailing edge on 
the right. 

Table 3.9: Percentage change in 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 and 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 from the duct without a flange as the flange 
size is varied. 

% Change from No Flange of 0.5% Shape 2.5% Shape 5% Shape 
𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 14.2 34.1 51.7 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 0.2 0.4 0.5 

3.3 Applicability to Real Ducted Turbines 

3.3.1 Camber Line Best Matches a Thick Duct 

A zero thickness duct wall is a significant assumption in this work; while designs with 
little thickness do exist [41, 177], the applicability of the thin walled results to rather 
thicker designs [113, 139] must be tested. As a first step, this section identifies the thin 
shape that best estimates mass flow for the 8% thick aerofoil shown on the left of 
Figure 3.21. The candidate thin shapes are shown on the right of the figure, and 
included the camber line translated radially to maintain the thick duct’s rotor area. 

Thick ducts were modelled using ANSYS Fluent in an inviscid mode, and thin ducts 
using the panel method code. While using two different models is not ideal, Section 
2.2.6 found they agreed to within 1.7% for power and 5% for drag. Discretisation 
convergence tests in Table 3.10 show a largest change in mass flow of 0.87% at 
𝐶𝐶𝑇𝑇 = 0.95 and 0.14% otherwise for the thin shapes, while discretisation convergence for 
all thick shapes used in this section and the next is given by Table 3.11 and Table 3.12 
for thicknesses of 2% and 10%. 
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Figure 3.21: Coordinates for the 8% thick duct and the thin ducts based on it, where the 
reference diameter is the thick duct’s rotor diameter. 

 

Table 3.10: Change in results with finer discretisation for the thin duct shapes. Discretisation 
was changed from last duct panel length = 0.0014𝑫𝑫 and expanding wake length = 8.6𝑫𝑫 for the 
Translated Camber Line and Inside Surface ducts, 0.0013𝑫𝑫 and 8.3𝑫𝑫 for the Actual Camber 
Line duct, and 0.0013𝑫𝑫 and 8.4𝑫𝑫 for the outside surface duct. 

 % Difference in �̇�𝒎 with 
 Halved Panel Length Doubled Wake Length 
 𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 

Translated Camber Line -0.11 -0.08 -0.72 0.00 0.00 -0.03 
Actual Camber Line -0.10 -0.08 -0.69 0.00 0.00 -0.03 

Inside Surface -0.06 -0.14 -0.80 0.00 0.00 -0.04 
Outside Surface -0.14 -0.12 -0.87 0.00 0.00 -0.02 

 
 

Table 3.11: Discretisation error estimates for 2% thick duct Fluent simulations, calculated 
from simulations with 152,000, 241,000, and 470,000 cells. 

𝑪𝑪𝑻𝑻 0 0.15 0.3 0.45 0.6 0.75 8/9 0.95 
Approximate Relative Error (%) 

�̇�𝒎 0.1 0.1 0.0 0.1 0.1 0.1 0.3 0.6 
𝑭𝑭𝑫𝑫 - 2.3 0.6 0.3 0.3 0.9 9.8 6.7 
𝜞𝜞𝒓𝒓 0.1 - - - - - - - 

Grid Convergence Index (%) 
�̇�𝒎 0.0 0.0 0.0 0.1 0.0 0.0 1.1 1.5 
𝑭𝑭𝑫𝑫 - 0.7 0.2 0.1 0.0 0.1 4.2 167.2 
𝜞𝜞𝒓𝒓 0.0 - - - - - - - 
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Table 3.12: Discretisation error estimates for 10% thick duct Fluent simulations, calculated 
from simulations with 84,000, 157,000, and 354,000 cells. 

𝑪𝑪𝑻𝑻 0 0.15 0.3 0.45 0.6 0.75 8/9 0.95 
Approximate Relative Error (%) 

�̇�𝒎 0.4 0.3 0.2 0.0 0.1 0.3 0.7 1.3 
𝑭𝑭𝑫𝑫 - 3.8 1.4 1.0 1.3 3.7 46.2 10.6 
𝜞𝜞𝒓𝒓 0.0 - - - - - - -

Grid Convergence Index (%) 
�̇�𝒎 0.1 0.1 0.0 0.0 0.1 8.8 0.8 0.4 
𝑭𝑭𝑫𝑫 - 1.2 0.9 10.3 1.6 50.9 576.3 41.4 
𝜞𝜞𝒓𝒓 0.0 - - - - - - -

Error estimates for mass flow and circulation results from Fluent were below 1.5% for 
the thick ducts, excepting minor oscillatory discretisation convergence at 𝐶𝐶𝑇𝑇 = 0.75 for 
the 10% duct. Caution must be applied to drag at high loadings, however, although note 
that drag passed through zero near 𝐶𝐶𝑇𝑇 = 8/9 for the 10% duct. The change with 
doubled domain size was ≤ 1% for mass flow and circulation, as Table 3.13 indicates, 
with some further concern for drag.  

Table 3.13: Change in Fluent results for 2% and 10% thick ducts with doubled domain length 
and radius. 

% Difference with 
Doubled Domain Dimensions 
2% Duct 10% Duct 

𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻 = 0.95 𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻 = 0.95 
�̇�𝒎 0.0 -0.4 -0.5 1.0 
𝑭𝑭𝑫𝑫 - 1.6 - 4.8 
𝜞𝜞𝒓𝒓 -0.1 - -0.6 - 

Care is needed when assessing the results because of the effect thickness had on rotor 
area. For example, consider the dimensionless mass flow in Equation 3.3. 

Dimensioness Mass Flow =
�̇�𝑚

𝜌𝜌𝐴𝐴𝑟𝑟𝑢𝑢∞
=
𝑢𝑢𝑟𝑟
𝑢𝑢∞

Equation 3.3 

Even where the mass flows through two ducts are equal, the dimensionless mass flows 
will differ if the rotor areas are different. Figure 3.22 compares the thin and thick ducts 
on a dimensionless basis, while Figure 3.23 gives dimensionless and dimensional 
results as a percentage difference from the thick duct. There was no single thin shape 
that provided the closest match in all cases, and only the outside surface was never the 
best option. However, one of the camber line options was almost always closest, 
including around the approximate value of 0.75 for 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇, and actual camber line has 
the substantial advantage of not changing shape with thickness. 



Chapter 3: The Behaviour of Ducted Turbines 82 

Figure 3.22: Dimensionless mass flow �̇�𝒎 𝝆𝝆𝑨𝑨𝒓𝒓𝒖𝒖∞⁄  for the translated and actual camber line 
ducts, the inside surface duct, and the thick duct the others were based on. 

Figure 3.23: Absolute percentage difference from the thick duct results for dimensionless 
mass flow �̇�𝒎 𝝆𝝆𝑨𝑨𝒓𝒓𝒖𝒖∞⁄  and actual mass flow �̇�𝒎 through the thin ducts. �̇�𝒎 𝝆𝝆𝑨𝑨𝒓𝒓𝒖𝒖∞⁄  and 𝑪𝑪𝑷𝑷 
differences are equal, while the same is true of �̇�𝒎 and 𝑷𝑷. 
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3.3.2 Thin Ducts Can Approximate Thick Ducts 

Taking the camber line as the base thin shape, this section assesses the accuracy of the 
thin duct approximation to ducts of thickness between 2% and 10%. NACA 4 digit 
thickness profiles were added to the fixed camber line with some additional thickness 
near the leading edge, as in the previous section, and the thin shape reached 
𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0.61 at 𝐶𝐶𝑇𝑇 = 0.75 and 𝐶𝐶𝐷𝐷 = 0.07. Discretisation convergence not discussed 
previously for the thin shape is shown in Table 3.14, with only drag at 𝐶𝐶𝑇𝑇 = 0.95 
exceeding a 1% change with increased discretisation. 

Table 3.14: Change in results with finer discretisation for the thin duct shape, where 
discretisation was changed from last duct panel length = 0.0013𝑫𝑫 and expanding wake = 8.3𝑫𝑫. 

% Difference with 
Halved Panel Length Doubled Wake Length 

𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 
𝑭𝑭𝑫𝑫 - -0.79 3.71 - -0.01 0.12 
𝜞𝜞𝒓𝒓 -0.12 - - 0.00 - - 

The impact of changes in rotor area due to thickness is illustrated in Figure 3.24, which 
shows that thickness broadly increased dimensionless mass flow despite decreasing the 
actual mass flow. These changes are equal to those for power coefficient and power 
respectively. Both measures of drag increased in Figure 3.25, however, with differences 
large enough to partly alleviate the discretisation concerns. Note the reversal at high 
rotor loadings is misleading: the value of drag became negative, with thickness 
continuing to act in the same direction to make it less negative. 

Figure 3.24: Percentage change in dimensionless mass flow rate �̇�𝒎 𝝆𝝆𝑨𝑨𝒓𝒓𝒖𝒖∞⁄  and actual mass 
flow rate �̇�𝒎 compared to a thin duct, for ducts with thicknesses of 2% to 10%. 
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Figure 3.25: Percentage change in dimensionless duct drag 𝑪𝑪𝑫𝑫 and actual duct drag 𝑭𝑭𝑫𝑫 
compared to a thin duct, for ducts with thicknesses of 2% to 10%. 

Changes in the dimensionless results can also be thought of as the change in 
dimensional results where the duct has been scaled to hold the rotor area constant, in 
contrast with the actual dimensional results where the rotor area decreases with 
thickness. A third option exists for investigating the influence of thickness that is more 
appropriate for economic comparisons: a duct scaled to hold the rated power constant. 
It was not possible to correctly carry out this comparison here, as 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 was unknown 
for the thick ducts, but approximating by scaling the ducts to achieve equal power at 
𝐶𝐶𝑇𝑇 = 0.75 gave Figure 3.26. These results fell between the other two approaches. 

  
Figure 3.26: Percentage change in actual mass flow �̇�𝒎 and duct drag 𝑭𝑭𝑫𝑫 compared to a thin 
duct, for ducts with thicknesses of 2% to 10% and where the thick ducts have been scaled to 
provide the same power as the thin duct at 𝑪𝑪𝑻𝑻 = 0.75. 
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Figure 3.27 looks at mass flow for 𝐶𝐶𝑇𝑇 = 0, as the influence of thickness was unclear from 
Figure 3.24. No clear impact existed on the zero loading mass flow, with the scatter 
perhaps numerical error, while somewhat larger errors prevented the dimensionless 
mass flow passing through zero. Duct bound circulation, which could not be calculated 
at 𝐶𝐶𝑇𝑇 > 0 for the thick ducts, is given by Figure 3.28. Both measures increased with 
thickness, despite no change in mass flow, and possibly varied linearly. 

Figure 3.27: Percentage change in dimensionless mass flow rate �̇�𝒎 𝝆𝝆𝑨𝑨𝒓𝒓𝒖𝒖∞⁄  and actual mass 
flow rate �̇�𝒎 with duct thickness, at 𝑪𝑪𝑻𝑻 = 0. 

Figure 3.28: Percentage change in dimensionless circulation 𝑪𝑪𝜞𝜞 and actual circulation  
𝜞𝜞𝒓𝒓 with duct thickness, at 𝑪𝑪𝑻𝑻 = 0. Circulation was made dimensionless with rotor diameter, but 
note that the percentage change in actual circulation is equal here to the change in circulation 
made dimensionless with duct or chord length. 
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This investigation shows that thickness does influence inviscid ducted turbine 
performance, but the impact on mass flow was less than 6% for thicknesses up to 6% of 
chord. A thin duct may therefore be a reasonable approximation for ducts with 
moderate thickness, although not for drag where much larger differences existed. While 
increasing thickness did not appear to be advantageous in inviscid flow, it may be 
beneficial in viscous flow to reduce the chance of separation near the leading edge. 

3.3.3 Inlets Influence Performance 

Another difference between real ducts and the designs Sections 3.1 and 3.2 is the 
absence of a contracting inlet section, although the review in Section 1.5.3 identified 
that an inlet section would not be expected to affect performance in inviscid flow. That 
theory was tested for 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 and 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 by combining the three diffuser sections in 
Figure 3.29 with the inlet sections illustrated by Figure 3.30 into a range of duct shapes. 
Discretisation convergence was good for the diffuser sections alone, with a maximum 
change of 0.92% reported in Table 3.15, and was improved in most cases tested with 
the addition of an inlet.  

 

 

 
Figure 3.29: Coordinates for the diffuser sections to which inlets were attached. 
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Figure 3.30: Coordinates for the inlet sections of length 0.025𝑫𝑫, 0.1𝑫𝑫, and 0.5𝑫𝑫. 

Table 3.15: Change in 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 and 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 with a finer discretisation for the inlet study shapes. 
Discretisation was changed from a last duct panel length of 0.005𝑫𝑫 and an expanding wake 
section of 8𝑫𝑫.  

Duct Shape Less 
Camber Base More 

Camber Base Base Base Base 

Inlet Section Length (𝑳𝑳 𝑫𝑫⁄ ) 0 0 0 0.025 0.025 0.5 0.5 
Inlet Diameter (𝑳𝑳 𝑫𝑫⁄ ) 1 1 1 0.8 1.6 0.8 1.6 
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𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 -0.86 -0.80 -0.92 -0.41 0.02 -0.36 -0.37
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In general, Figure 3.31 to Figure 3.33 show that increases in inlet diameter led to a 
reduction in 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, including for inlets smaller than the rotor, while longer inlet 
sections increased performance. As the camber and hence performance of the bare 
diffuser sections increased, so did the performance of the inlets. With increased inlet 
diameter came a reduction in optimum loading in Figure 3.34 to Figure 3.36, but the 
behaviour with increased inlet section length was more complex and depended on the 
relative size of the inlet and exit diameters. 
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Figure 3.31: Influence of inlet size on 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 when combined with Less Camber diffuser section. 

Figure 3.32: Influence of inlet size on 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 when combined with Base diffuser section. 
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Figure 3.33: Influence of inlet size on 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 when combined with More Camber diffuser section. 

Figure 3.34: Influence of inlet size on 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 when combined with Less Camber diffuser section. 
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Figure 3.35: Influence of inlet size on 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 when combined with Base diffuser section. 

Figure 3.36: Influence of inlet size on 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 when combined with More Camber diffuser section. 
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Differences with the addition of an inlet section of up to 9% for 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 5% for 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 
were found for these designs, with the influence of inlets reducing substantially when 
restricted to more reasonable dimensions. The results here therefore support an 
approximation of inlet design not affecting performance outside of viscous effects. 
However, it is an approximation only: the theoretically correct point of view is that inlet 
section design affects the inviscid component of ducted turbine performance. 

3.3.4 Agreement between Viscous and Inviscid Performance 

Examining the underlying inviscid performance of ducted turbines has been valuable 
throughout this chapter, but inviscid modelling may also predict viscous performance 
reasonably accurately when separation is avoided. This result was demonstrated using 
a 4-digit NACA aerofoil [178], with 5% camber maximum at 40% of chord, 4% and 0% 
thickness for the viscous and inviscid results respectively, and a slightly thickened 
leading edge in the viscous case. The aerofoils were rotated to between 5° and 35° from 
axial before being scaled and radially translated to maintain a duct length to inlet 
diameter ratio of 0.4, and were modelled at 𝐶𝐶𝑇𝑇 = 0.75. 

Viscous results were obtained using ANSYS Fluent 15.0, the k-ω turbulence model and 
the simulation setup described in Section 2.3.1, with Reynolds numbers of around 
3×106 based on duct chord length. Discretisation error, shown in Table 3.16, and 
domain size convergence, shown in Table 3.17, were generally reasonable. Concerning 
grid convergence index values did exist, however, for 𝐹𝐹𝐷𝐷 with the 25° duct and �̇�𝑚 with 
the 35° duct. Relatively large percentage changes occurred for drag in the thin 5° duct, 
shown in Table 3.18, but the magnitude of the drag was very small at less than 4% of 
that for the 35° duct. 

Table 3.16: Discretisation error estimates for 5° to 35° duct wall Fluent simulations, calculated 
from simulations with 157,000 to 174,000, 370,000 to 408,000, and 875,000 to 941,000 cells. 
The number of cells differed in each discretisation stage between ducts. 

Duct Wall Angle 5° 15° 25° 35° 
Approximate Relative Error (%) 

�̇�𝒎 0.04 0.00 1.43 1.05 
𝑭𝑭𝑫𝑫 0.07 0.03 0.44 0.16 

Grid Convergence Index (%) 
�̇�𝒎 0.06 0.00 0.78 6.96 
𝑭𝑭𝑫𝑫 0.00 0.01 7.74 0.26 
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Table 3.17: Change in Fluent results for 5° to 35° wall ducts with doubled domain length and 
radius. 

% Difference with 
Doubled Domain Dimensions 

Duct Wall Angle 5° 15° 25° 35° 
�̇�𝒎 -0.32 0.15 -0.12 -0.28
𝑭𝑭𝑫𝑫 -1.82 -0.64 -1.03 -1.25

Table 3.18: Change in results with finer discretisation for the thin walled 5° and 35° ducts in 
inviscid flow. Base last duct panel length = 0.00125𝑫𝑫 and base expanding wake length = 8𝑫𝑫. 

% Difference with 
Halved Panel Length Doubled Wake Length 

5° Shape 35° Shape 5° Shape 35° Shape 
�̇�𝒎 -0.30 -0.51 -0.31 -0.24
𝑭𝑭𝑫𝑫 -7.04 -0.34 -6.36 -0.33

Figure 3.37: Contours of velocity magnitude for ducts with wall angles of 5° to 35° in viscous 
flow. 
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Velocity magnitude contours in Figure 3.37 show that separated flow was apparent by 
the 25° duct and encompassed the entire inside surface at 35°. These are not 
predictions of the actual flow through the ducts modelled: rotor swirl was neglected, 
which reduces separation [79], and the results were not validated. The comparison is 
between duct shapes with particular levels of separation, not a particular duct shape in 
inviscid and viscous flow.  

As the duct wall thicknesses were not equal, dimensionless and dimensional results 
were again different. Comparative power was used to compare dimensional results, 
calculated using the fixed reference 𝐴𝐴𝑟𝑟𝑒𝑒𝑑𝑑 of the 5° duct’s rotor area and Equation 3.4. 

Comparative Power =
𝑃𝑃

1
2� 𝜌𝜌𝐴𝐴𝑟𝑟𝑒𝑒𝑑𝑑𝑢𝑢∞3

Equation 3.4 

Reasonable agreement between viscous and inviscid results is visible in Figure 3.38 
where separation was absent, with an apparent reduction in gradient for the viscous 
curve in the no separation region. The inviscid and viscous drags were surprisingly 
close in separated flow, as shown in Figure 3.39, but without more evidence this is 
likely only coincidence. Inviscid drag was within 13% of viscous at 15°, but rose above 
50% by 5°. The inviscid power coefficient performed better, being within 10% of the 
viscous values for attached flow, suggesting that inviscid modelling may be directly 
relevant to ducted turbine design. 

Figure 3.38: Variation of dimensionless power 𝑪𝑪𝑷𝑷 and comparative power 𝑷𝑷 𝟎𝟎.𝟗𝟗𝝆𝝆𝑨𝑨𝒓𝒓𝒆𝒆𝒇𝒇𝒖𝒖∞𝟑𝟑⁄  with 
duct wall angle, for viscous and inviscid flow. 
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Figure 3.39: Variation of dimensionless drag 𝑪𝑪𝑫𝑫 and comparative drag 𝑭𝑭𝑫𝑫 𝟎𝟎.𝟗𝟗𝝆𝝆𝑨𝑨𝒓𝒓𝒆𝒆𝒇𝒇𝒖𝒖∞𝟐𝟐⁄  with 
duct wall angle, for viscous and inviscid flow. 

3.4 Conceptual Model: A Diffuser or an Aerofoil? 
Each of the investigations in this chapter has had particular theoretical or practical 
implications, but they can also be drawn together to address a question from Section 
1.6: does an aerofoil or a diffuser make a better conceptual model for a ducted turbine? 
The results do not provide a clear answer, but do contain various hints when 
considered in terms of how aerofoils and diffusers could be expected to behave. 

This topic was touched on in Section 3.1.2, which considered the influence of shape on 
performance and concluded that both conceptual models are consistent with the 
results. Increases in camber led to increased circulation [69] and hence velocity from 
the aerofoil point of view, while increased exit angle forced greater expansion of the 
flow thereby reducing exit pressure and increasing augmentation for the diffuser 
concept. 

The viscous results in Section 3.3.4 are also well explained by both viewpoints. The 
reduced mass flow gradient with duct wall angle in viscous flow is consistent with 
increasing viscous losses, and with the presence of a boundary layer changing an 
aerofoil’s effective shape to reduce performance [179]. 

A more speculative approach is needed to explain the reduction in augmentation ratio 
with loading in Section 3.1.5. Exit angle alone cannot explain the result, but the 
difference between exit angle and the expansion of an unaugmented flow might. An 
aerofoil explanation could be the rotor causing a reduction in the velocity magnitude 
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local to the duct and a reduction in the effective wall angle of attack, with a consequent 
reduction in duct circulation. This explanation will be considered further in Chapter 7. 

The expectation from the diffuser conceptual model that performance should be a 
function of duct exit angle did not correspond to results from the right angle, small 
flange, and thickness studies in Sections 3.2.2, 3.2.4, and 3.3.1 respectively. Performance 
varied in the right angle results even though exit angle and all the other diffuser 
parameters identified by Phillips [4] and Shives and Crawford [57] were fixed, and also 
in the flange size results where the only change in the diffuser parameters were minor 
exit area ratio variations. Finally, Phillips identified that exit angle should be measured 
on a duct’s external surface. However, adding thickness reduced this angle without a 
corresponding reduction in mass flow or velocity at 𝐶𝐶𝑇𝑇 = 0. 

All three of these results are consistent with aerofoil behaviour. Performance was 
unique for camber with fixed length and area ratios, and the percentage lift increase 
from Gurney flaps [180] is comparable to the change in mass flow here. Circulation at 
𝐶𝐶𝑇𝑇 = 0 increased linearly with thickness, matching expectations from a Joukowski 
transformation [179] of an aerofoil and explaining the increased velocity. Further, the 
identification of the camber line as the best thin approximation of a thick duct wall 
supports the aerofoil point of view. 

Neither length nor inlet sections were expected to affect inviscid diffuser performance 
from the literature surveyed in Section 1.5.3, but were shown to do exactly that in 
Sections 3.2.2 and 3.3.3 where the other diffuser parameters were held constant. It is 
not clear why either would force a greater flow expansion, but both results are expected 
from aerofoil performance. Adding inlets modified the wall angle of attack and chord, as 
did changing the length of the duct, leading to changes in circulation.  

Both conceptual models are imperfect when their direct influence on augmentation is 
examined: general associations were found between augmentation and both exit 
pressure and circulation in Section 3.1.6, but they were not single valued. Both 
performed roughly as well as each other despite more flaws in the diffuser viewpoint, 
suggesting a closer connection between aerofoil parameters and circulation than 
between diffuser parameters and exit pressure. Although it did not provide the correct 
intuition in every case, however, the aerofoil conceptual model better matched the 
numerical results across the full range of studies and may be more helpful in practice. 
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3.5 Summary 
A number of useful conclusions were drawn from inviscid modelling of a set of ducted 
turbines, where the area and length ratios were held constant. Duct shape had a 
significant impact: power coefficient more than doubled from the least to most 
cambered duct, with even larger changes for exit pressure coefficient and the radial 
variation of exit pressure. The augmentation occurred due to an increased flow rate, 
and decreased with rotor loading as the ducts became less effective. 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 therefore 
dropped by between 10% and 20% from 8/9, and 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 was not single valued for 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇.  

These ducted turbines were also capable of exceeding the Betz limit, even when 
calculated on the basis of exit area. Indeed, the largest power coefficient based on exit 
area was 1.04. However, the ducted turbines actually captured a smaller proportion of 
the available power than a bare actuator disc, and 𝐶𝐶𝑃𝑃  > 1 only indicates an abundance 
of available power combined with a power coefficient definition based on the power 
available to a bare rotor. 

Within the constraints of fixed length and fixed inlet and outlet radii, with the throat at 
the inlet, the best performing shape was found to be a right angle. Even for such a duct 
sized at 2.5% of rotor diameter, 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 was raised by 23%. Adding a radial rim of the 
same size to an existing duct increased 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 by 34%. Performance would likely reduce 
in viscous flow, but these results still have significance if taken as limiting values. 
Comparing less extreme shapes, the inviscid power coefficient was within 10% of the 
viscous value for attached flow.  

Adding thickness to a thin walled duct broadly increased dimensionless mass flow and 
power coefficient despite decreasing the actual mass flow and power. However, 
differences were within 6% for a 6% thick duct; a thin duct may still serve as a 
reasonable approximation for a thick one. Setting such a thin duct as the inside or 
outside surface of a thick duct gave worse agreement than using the camber line, but 
cases were split between the camber line in its natural position and translated to 
achieve the same rotor area. 

An aerofoil appears to make a better conceptual model for a ducted turbine than a 
diffuser, although neither was perfect. The influence of length and inlet sections on 
performance did not tie in with diffuser based expectations, and changes in exit angle 
did not explain some of the shape optimisation, small flange, and thickness results. One 
further flaw applied to both models in testing their direct influence on augmentation: 
general associations exited between augmentation and both exit pressure and 
circulation, but they were not single valued. 
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An important part of a conceptual model for ducted turbines is selection of the 
parameters defining duct shape. Both the aerofoil and diffuser based models are used in 
this chapter to select sets of geometrical parameters, which are compared on the basis 
of practicality and whether the actual performance matches expectations. Each 
approach is examined in turn using results from the inviscid panel method, before a 
comparison suggests that the aerofoil approach is again superior. Preliminary 
investigations in the aerofoil section also compare performance measurement stations 
and various definitions of length to diameter ratio and dimensionless circulation.  

4.1 Diffuser Parameters 
A set of parameters was selected for the diffuser approach based on those found in the 
literature in Section 1.5.2, with the thin duct walls modelled giving equal inside and 
outside exit angles. Duct length was also added as a parameter given the discovery of its 
influence in Section 3.4. The complete list was therefore: the exit area ratio 𝐴𝐴𝑒𝑒 𝐴𝐴𝑟𝑟⁄ , the 
inlet area ratio 𝐴𝐴𝑖𝑖 𝐴𝐴𝑟𝑟⁄ , the duct length ratio 𝐿𝐿𝑑𝑑 𝐷𝐷⁄ , and the exit angle 𝜃𝜃𝑒𝑒 in degrees 
measured from a point 0.5% along the duct surface from the exit. 

Generation of duct geometry followed the process used by Shives & Crawford [57] and 
Hansen et al [55]. A cylindrical duct of given length was specified, followed by 
cambering of the duct wall by rotating each point around the upstream end with an 
angle varying linearly between zero at the inlet and the specified camber angle at the 
exit. The wall was then rotated as a solid body by the rotation angle, and translated 
radially to achieve the desired ratio of rotor diameter to initial cylindrical length. 

These geometry generation parameters differ substantially from the diffuser 
parameters that are used to measure the output geometry and thought to control duct 
performance. An attempt to derive exact relationships between these parameter sets 
failed, and no reliable way was found to select geometry generation parameters that 
would give particular diffuser parameters. It was therefore not possible to vary each 
diffuser parameter in isolation. Geometry generation parameters were instead selected 
randomly and, similar to Shives and Crawford’s approach, a regression analysis was 
used to estimate the influence of the diffuser parameters. 

Parameters for Duct Shape 
4
Chapter 
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4.1.1 Regression Models 

A set of 800 duct shapes formed the sample to which polynomial relationships were 
fitted using stepwise least-squares regression. Geometrical limits were set at 0.1 to 1.2 
for the cylindrical length ratio, 0° to 30° for the camber angle, and −20° to 20° for the 
solid rotation angle. Discretisation convergence for shapes with all combinations of 
these limits is given in Table 4.1, with a 0.75% change exceeded only once in a case of a 
small valued 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, and the shapes themselves are shown in Figure 4.1. These limits led 
to the range of diffuser parameters in Table 4.2 for the sample shapes.  

Table 4.1: Worst and median magnitude change in result when discretisation was changed for 
the discretisation checking duct shapes.  

% Difference with 
Halved Panel Length Doubled Wake Length 

Worst Median Worst Median 
𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 1.86 0.22 0.24 0.01 
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 0.48 0.11 0.71 0.04 

Table 4.2: Minimum and maximum values for diffuser parameters in the 800 duct shape 
regression sample. 

Inlet Area Ratio Exit Area Ratio Length Ratio Exit Angle 
Minimum 1 1 0.05 -16.8°
Maximum 2.37 3.54 0.82 74.9°

Figure 4.1: Duct shapes at the limiting combinations of the geometry generation parameters. 
Short and long ducts shown separately for clarity. 
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Each regression fitting began with linear terms relating the predictor and response 
variables. An automatic method then added and removed terms, by comparing the 
model with and without the term in question: a term was included when its coefficient 
had a statistically significant difference from zero, based on the p-value of an F-statistic 
[181]. This process continued in a stepwise fashion until no further statistically 
significant changes were possible or the upper limit on the model terms was reached. 

Separate models were fitted with 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 as the response variable, where the 
diffuser parameters listed at the start of Section 4.1 were the predictor variables. Two 
different upper limits on the model terms were applied to give two models each for 
𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇: one limited to quadratic terms and one limited to 5th degree 
polynomial terms, both including interaction terms. All four fits were tested against 220 
random validation duct shapes and also against shapes with the geometry generation 
parameter limits. The fit limited to 5th order terms was selected as superior in both 
𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 predictions, as shown in Table 4.3 with more detail for the 5th order fit 
in Figure 4.2 and Figure 4.3. 

Table 4.3: Worst and median magnitude errors from the regression models, for 220 randomly 
generated validation duct shapes and shapes with the geometry generation parameter limits. 

% Prediction Errors for 
2nd Order Fit Limit 5th Order Fit Limit 
Worst Median Worst Median 

Validation 
Shapes 

𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 6.67 0.42 0.31 0.04 
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 1.77 0.28 0.25 0.03 

Limit 
Shapes 

𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 34.1 1.09 4.71 0.13 
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 9.39 0.70 5.78 0.12 
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Figure 4.2: Validation of selected regression model against simulation results at the limits of 
the duct geometry generation parameters. 

Figure 4.3: Validation of selected regression model against simulation results for 220 
randomly generated duct shapes. 
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4.1.2 Restrictions on Duct Geometry 

Even within the sample range seen in Table 4.2, it may be impossible to generate shapes 
with particular diffuser parameter combinations. A multi-objective optimisation 
algorithm [182] tested the feasibility of particular duct shapes by attempting to find a 
suitable set of geometry generation parameters, beginning from initial guesses 
provided by a regression analysis of the parameters in the 800 shape sample. Figure 4.4 
shows the possible duct shapes, defined as all diffuser parameters being within 2% of 
their target. Those not found are not definitively impossible because the optimisation 
was sensitive to the initial guess, but the feasibility of such shapes is in serious doubt. 
These results suggest that the shape generation algorithm may only provide a limited 
subset of the full set of all possible shapes. 

Figure 4.4: Results of the search for possible duct geometries for a range of exit area ratios 
𝑨𝑨𝒆𝒆 𝑨𝑨𝒓𝒓⁄  and exit angles 𝜽𝜽𝒆𝒆, for the combinations of 1 and 1.3 for inlet ratio 𝑨𝑨𝒊𝒊 𝑨𝑨𝒓𝒓⁄  and 0.25 and 
0.6 for length ratio 𝑳𝑳𝒓𝒓 𝑫𝑫⁄ . 
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4.1.3 Performance Predictions 

Predictions for 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 were generated from the regression models in Section 
4.1.1 for duct shapes within the bounds of Table 4.2. Although the aim was to examine 
all the diffuser parameters, inlet ratio was fixed at 1: Figure 4.4 indicates very few 
shapes found above that value, and 50% of the sample shapes had a ratio of 1 with 86% 
at 1.1 or less. Predictions for maximum power are given in Figure 4.5 to Figure 4.7 and 
optimum rotor loading in Figure 4.8 to Figure 4.10. Although simultaneous prediction 
intervals are shown, it must be remembered that some points on these plots may 
represent impossible duct geometries and that the predictions are reliant on the quality 
of the regression analysis. 

Predictions for Maximum Power 

Figure 4.5: Variation of predicted 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 with exit area ratio 𝑨𝑨𝒆𝒆 𝑨𝑨𝒓𝒓⁄ , at selected inlet area ratio 
𝑨𝑨𝒊𝒊 𝑨𝑨𝒓𝒓⁄ , length ratios 𝑳𝑳𝒓𝒓 𝑫𝑫⁄ , and exit angles 𝜽𝜽𝒆𝒆. Dashed lines indicate 95% prediction intervals. 
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Figure 4.6: Variation of predicted 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 with length ratio 𝑳𝑳𝒓𝒓 𝑫𝑫⁄ , at selected inlet area ratio 
𝑨𝑨𝒊𝒊 𝑨𝑨𝒓𝒓⁄ , exit area ratios 𝑨𝑨𝒆𝒆 𝑨𝑨𝒓𝒓⁄ , and exit angles 𝜽𝜽𝒆𝒆. Dashed lines indicate 95% prediction 
intervals. 

Figure 4.7: Variation of predicted 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 with exit angle 𝜽𝜽𝒆𝒆, at selected inlet area ratio 𝑨𝑨𝒊𝒊 𝑨𝑨𝒓𝒓⁄ , 
length ratios 𝑳𝑳𝒓𝒓 𝑫𝑫⁄ , and exit area ratios 𝑨𝑨𝒆𝒆 𝑨𝑨𝒓𝒓⁄ . Dashed lines indicate 95% prediction intervals. 
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Predictions for Optimum Rotor Loading 

 

  
Figure 4.8: Variation of predicted 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 with exit area ratio 𝑨𝑨𝒆𝒆 𝑨𝑨𝒓𝒓⁄ , at selected inlet area ratio 
𝑨𝑨𝒊𝒊 𝑨𝑨𝒓𝒓⁄ , length ratios 𝑳𝑳𝒓𝒓 𝑫𝑫⁄ , and exit angles 𝜽𝜽𝒆𝒆. Dashed lines indicate 95% prediction intervals. 

 
 

  
Figure 4.9: Variation of predicted 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 with length ratio 𝑳𝑳𝒓𝒓 𝑫𝑫⁄ , at selected inlet area ratio 
𝑨𝑨𝒊𝒊 𝑨𝑨𝒓𝒓⁄ , exit area ratios 𝑨𝑨𝒆𝒆 𝑨𝑨𝒓𝒓⁄ , and exit angles 𝜽𝜽𝒆𝒆. Dashed lines indicate 95% prediction 
intervals. 
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Figure 4.10: Variation of predicted 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 with exit angle 𝜽𝜽𝒆𝒆, at selected inlet area ratio 𝑨𝑨𝒊𝒊 𝑨𝑨𝒓𝒓⁄ , 
length ratios 𝑳𝑳𝒓𝒓 𝑫𝑫⁄ , and exit area ratios 𝑨𝑨𝒆𝒆 𝑨𝑨𝒓𝒓⁄ . Dashed lines indicate 95% prediction intervals. 

4.1.4 A Limited Approach 

A cursory assessment would suggest that the diffuser approach performed reasonably 
well for maximum power: variations with exit area ratio and exit angle were fairly 
linear, and behaved as expected. The relationship with length ratio was more complex, 
with no consistent influence on performance, although the results do confirm that 
length should not be excluded from the standard diffuser conceptual model. Relative 
certainty is indicated by the prediction intervals, suggesting a high degree of confidence 
in the mean value of 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 for each diffuser parameter combination, and that there is 
little scatter around that mean. In other words, it would appear that the set of diffuser 
parameters is sufficient to uniquely determine 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. 

However, these findings are not universal. They apply only to duct geometries 
generated using the approach detailed near the start of Section 4.1. While it is possible 
to imagine a range of duct shapes that would produce a given set of diffuser parameters, 
the geometry generation approach limits the possibilities. Indeed, it seems there was 
little variation in shape at a given combination of diffuser parameters: Figure 4.11 
shows that reasonably accurate predictions can be made for the camber and rotation 
angles used in geometry generation from a regression analysis of the four diffuser 
parameters, using the methodology described in Section 4.1.1.  

Instead of a diffuser parameter set being associated with a single value of 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, it may 
simply be that the geometry generation approach gives little choice in how to achieve 
the parameter set. Where only limited variation in the physical shape of the duct is 
possible, there can be little variation in performance. This analysis therefore only shows 
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that 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is uniquely specified using the diffuser parameters when restrictions are 
placed on duct shape. 

  
Figure 4.11: Error in predictions of camber and rotation angles from the regression models 
when tested against 220 randomly generated duct shapes. Errors are given as a percentage of 
the median absolute value of the angles in each case: 16.3° (left) and 9.1° (right). 

In contrast to maximum power, the optimum rotor loading predictions had prediction 
intervals that suggested substantial uncertainty. From the definition of a prediction 
interval, this could indicate either a wide distribution of results around the mean value 
at a given point or uncertainty in the value of the mean itself. Comparison with 
confidence intervals, which measure only the uncertainty in the mean value, showed 
the uncertainty to be concentrated on the value of the mean. While the physically 
impossible predictions of 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 greater than 1 in inviscid flow can therefore be 
dismissed on the basis that the prediction is probably inaccurate, even the lower 
prediction interval reaches peak values greater than any result seen in the simulations 
carried out for this work. 

These unlikely findings highlight that it is unknown whether particular features in the 
predictions are real or an artefact of the regression. Be it due to errors in the fitting 
process, insufficient data for certain ranges of shape, or impossible geometries, 
incorporating a regression analysis into the results can only add uncertainty. Although 
the prediction intervals attempt to quantify that uncertainty they themselves must rely 
on the quality of the regression. 
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4.2 Aerofoil Parameters 
Standard aerofoil parameters were used as a base for setting the duct geometry in the 
aerofoil approach, illustrated in Figure 4.12, beginning with the selection of the NACA 4 
digit aerofoil family [183]. An aerofoil shape was then uniquely specified with camber, 
point of maximum camber, and thickness, all defined as a fraction of the aerofoil chord 
length. Forming that shape into a particular duct design required setting a length to 
diameter ratio and the angle of the aerofoil to the flow axis. Although they may be 
important to performance, it was not feasible to investigate the influences of aerofoil 
family, thickness, and point of maximum camber here. Zero thickness was instead used 
throughout, with the point of maximum camber at 40% of chord.  

Figure 4.12: Illustration of the parameters used to set duct shape in the aerofoil approach. 

Before assessing the aerofoil parameters, three preliminary studies will be described. In 
the first, the duct throat was found to be the most appropriate station for calculating 
performance results rather than inlet or exit. The parameters used in the length to 
diameter ratio were then selected, with aerofoil chord length chosen over duct length 
and throat diameter over inlet diameter. Finally, throat diameter was chosen for the 
definition of dimensionless circulation. 

The linearity of the relationships involved was considered an important criterion for 
decision making in these three studies, in the hope of minimising the number of 
experiments or simulations required to characterise duct performance in future. While 
the relationships weren’t truly linear, choosing the least non-linear option perhaps 

𝑫𝑫
𝟐𝟐

𝜶𝜶 

Aerofoil Parameters 
Aerofoil Family 

Length Ratio 𝐿𝐿𝑣𝑣⁄𝐷𝐷 
Camber 𝐿𝐿𝑣𝑣𝑃𝑃𝑃𝑃⁄𝐿𝐿𝑣𝑣  

Point of Maximum Camber 𝐿𝐿𝑣𝑣𝑃𝑃𝑃𝑃 𝑝𝑝𝑇𝑇𝑖𝑖𝑖𝑖𝑇𝑇⁄𝐿𝐿𝑣𝑣  
Thickness 𝐿𝐿𝑇𝑇ℎ𝑖𝑖𝑣𝑣𝑗𝑗⁄𝐿𝐿𝑣𝑣  

Wall Angle of Attack 𝛼𝛼 
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makes linearity more often a reasonable approximation. When selecting the 
performance measurement station and the length to diameter ratio, the relevant 
relationships were between duct performance and the aerofoil parameters. For 
dimensionless circulation, it was between that parameter and velocity ratio.  

There are many possible measures of linearity that could reasonably be used for these 
studies, with the adjusted coefficient of determination 𝑅𝑅2 [184] for linear fits to the 
data chosen for assessing the measurement station and length ratio. The adjustment of 
this parameter removes the statistical bias seen in the standard 𝑅𝑅2 with small sample 
sizes. For the dimensionless circulation study, where the sample size was much larger, 
Pearson’s correlation coefficient was used to quantify the linear relationships along 
with Spearman’s correlation coefficient to provide the wider context of the monotonic 
relationship strength. 

When interpreting the adjusted 𝑅𝑅2 values, the demonstration in Figure 4.13 should be 
kept in mind: even small differences could represent significant changes in subjective 
linearity. It is also important that fits for certain different parameters at the same 
measurement station produced identical adjusted 𝑅𝑅2 values. At fixed rotor loadings, 
adjusted 𝑅𝑅2 values were equal for 𝐶𝐶𝑃𝑃, velocity ratio, and axial induction, while velocity 
ratio and axial induction adjusted 𝑅𝑅2 values matched at 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. Therefore only one value 
was considered from each of these sets. 

Figure 4.13: Comparison of subjective linearity for two values of adjusted 𝑹𝑹𝟐𝟐, with linear best 
fits shown by the dashed lines. 

A total of 576 duct shapes were modelled for this investigation, chosen to test the 
influence on performance of each aerofoil parameter in turn while the others were held 
constant at a range of values. Discretisation convergence was tested using all four 
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length to diameter ratio approaches, at all eight combinations of the limiting aerofoil 
parameters shown in Table 4.4. Excluding one set of aerofoil parameters leading to 
small values of drag, the changes in result summarised in Table 4.5 were all less than 
0.6%.  

Table 4.4: Range of parameters used in aerofoil approach investigation. 

Length Ratio Camber Angle 
Minimum 0.1 0% -5°
Maximum 1 25% 35°

Table 4.5: Worst and median magnitude change in result when discretisation was changed for 
the discretisation checking duct shapes. Last duct panel length began at 0.00125 times the 
fixed diameter, and expanding wake length at 8 times the fixed diameter. 

% Difference with 
Halved Panel Length Doubled Wake Length 

Loading Result Worst Median Worst Median 

𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 
𝐶𝐶𝑃𝑃 0.37 0.28 0.20 0.00 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 0.16 0.07 0.58 0.02 
𝐶𝐶𝐷𝐷 2.23 0.28 0.35 0.02 

𝐶𝐶𝑇𝑇 = 0 𝑢𝑢 𝑢𝑢∞⁄  0.39 0.17 0 0 

4.2.1 Choosing a Measurement Station 

The performance parameters examined in this study vary depending on where they are 
computed within a duct; this section identifies the most appropriate measurement 
station before the length to diameter ratio approaches are assessed. The inlet, throat, 
and exit stations were tested to find which gave the most linear variation of 𝐶𝐶𝑃𝑃 and 
𝑢𝑢 𝑢𝑢∞⁄  as each aerofoil parameter was varied in isolation. This process was repeated 
with a range of values for the unvaried remaining aerofoil parameters, and median 
values of adjusted 𝑅𝑅2 were calculated for the linear fits. 

All four combinations of length and diameter approaches were examined, with the 
values in Table 4.6 to Table 4.8 being the largest median of the four. The choice of 
station did not often have a large influence, although the exit station was noticeably 
worse than the alternatives with length ratio. While it is not known if the differences 
were statistically significant, it appears that the strongest linear relationships overall 
were found by calculating power coefficient and velocity at the throat. That station was 
therefore used when comparing the length and diameter approaches. 
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Table 4.6: Median adjusted 𝑹𝑹𝟐𝟐 values for linear fits of selected results to wall angle 𝜶𝜶, with 
results computed at the duct inlet, throat, and exit. The largest of the four geometry approach 
medians are shown. 

Median Adjusted 𝑹𝑹𝟐𝟐 for Wall Angle 
Loading Result Inlet Throat Exit 

𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 
𝐶𝐶𝑃𝑃 0.990 0.994 0.993 

𝑢𝑢 𝑢𝑢∞⁄  0.991 0.994 0.997 
𝐶𝐶𝑇𝑇 = 0.75 𝐶𝐶𝑃𝑃 0.991 0.994 0.992 
𝐶𝐶𝑇𝑇 = 0 𝑢𝑢 𝑢𝑢∞⁄  0.989 0.994 0.999 

Table 4.7: Median adjusted 𝑹𝑹𝟐𝟐 values for linear fits of selected results to length ratio 𝑳𝑳𝒄𝒄 𝑫𝑫⁄ , 
with results computed at the duct inlet, throat, and exit. The largest of the four geometry 
approach medians are shown. 

Median Adjusted 𝑹𝑹𝟐𝟐 for Length Ratio 
Loading Result Inlet Throat Exit 

𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 
𝐶𝐶𝑃𝑃 0.990 0.993 0.882 

𝑢𝑢 𝑢𝑢∞⁄  0.992 0.998 0.867 
𝐶𝐶𝑇𝑇 = 0.75 𝐶𝐶𝑃𝑃 0.993 0.994 0.889 
𝐶𝐶𝑇𝑇 = 0 𝑢𝑢 𝑢𝑢∞⁄  0.991 0.996 0.840 

Table 4.8: Median adjusted 𝑹𝑹𝟐𝟐 values for linear fits of selected results to camber 𝑳𝑳𝒄𝒄𝒘𝒘𝒎𝒎 𝑳𝑳𝒄𝒄⁄ , with 
results computed at the duct inlet, throat, and exit. The largest of the four geometry approach 
medians are shown. 

Median Adjusted 𝑹𝑹𝟐𝟐 for Camber 
Loading Result Inlet Throat Exit 

𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 
𝐶𝐶𝑃𝑃 0.996 0.993 0.996 

𝑢𝑢 𝑢𝑢∞⁄  0.998 0.990 0.998 
𝐶𝐶𝑇𝑇 = 0.75 𝐶𝐶𝑃𝑃 0.996 0.994 0.996 
𝐶𝐶𝑇𝑇 = 0 𝑢𝑢 𝑢𝑢∞⁄  1.000 0.987 1.000 

4.2.2 Defining Length to Diameter Ratio 

A similar approach to the previous section was used in assessing the length to diameter 
ratio, extended to include 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 and 𝐶𝐶𝐷𝐷 in Table 4.9 to Table 4.11. C and D designate 
results where duct geometry was generated with the chord and duct length approaches 
respectively, while I and T represent inlet and throat diameter. Only the overall medians 
of the 𝑅𝑅2 values at each loading were considered in judging the best approach, with the 
most linear results highlighted in each table. A tolerance of 0.01 was applied, within 
which results were considered equal. Note that the median 𝑅𝑅2 values for 𝐶𝐶𝑃𝑃 were equal 
to those for 𝐶𝐶𝐷𝐷 to three decimal places at 𝐶𝐶𝑇𝑇 = 0.75. 
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Table 4.9: Median adjusted 𝑹𝑹𝟐𝟐 values for linear fits of selected results to wall angle 𝜶𝜶, used in 
comparing the CI, CT, DI, and DT approaches. The best approaches are highlighted in the rows 
for the overall medians at each loading, using a tolerance of 0.01. 

Median Adjusted 𝑹𝑹𝟐𝟐 for Wall Angle 
Loading Result CI CT DI DT 

𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 

𝐶𝐶𝑃𝑃 0.994 0.992 0.973 0.960 
𝑢𝑢𝑟𝑟 𝑢𝑢∞⁄  0.994 0.991 0.970 0.957 
𝐶𝐶𝐷𝐷 0.992 0.990 0.971 0.956 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 0.901 0.907 0.899 0.904 

Overall 0.984 0.979 0.952 0.946 
𝐶𝐶𝑇𝑇 = 0.75 𝐶𝐶𝑃𝑃 & 𝐶𝐶𝐷𝐷 0.994 0.992 0.973 0.960 
𝐶𝐶𝑇𝑇 = 0 𝑢𝑢𝑟𝑟 𝑢𝑢∞⁄  0.994 0.988 0.965 0.952 

Table 4.10: Median adjusted 𝑹𝑹𝟐𝟐 values for linear fits of selected results to length ratio 𝑳𝑳𝒄𝒄 𝑫𝑫⁄ , 
used in comparing the CI, CT, DI, and DT approaches. The best approaches are highlighted in 
the rows for the overall medians at each loading, using a tolerance of 0.01. 

Median Adjusted 𝑹𝑹𝟐𝟐 for Length Ratio 
Loading Result CI CT DI DT 

𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 

𝐶𝐶𝑃𝑃 0.979 0.993 0.975 0.992 
𝑢𝑢𝑟𝑟 𝑢𝑢∞⁄  0.988 0.998 0.986 0.998 
𝐶𝐶𝐷𝐷 0.983 0.995 0.982 0.994 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 0.401 0.417 0.292 0.316 

Overall 0.967 0.992 0.963 0.991 
𝐶𝐶𝑇𝑇 = 0.75 𝐶𝐶𝑃𝑃 & 𝐶𝐶𝐷𝐷 0.980 0.994 0.976 0.993 
𝐶𝐶𝑇𝑇 = 0 𝑢𝑢𝑟𝑟 𝑢𝑢∞⁄  0.990 0.996 0.987 0.996 

Table 4.11: Median adjusted 𝑹𝑹𝟐𝟐 values for linear fits of selected results to camber 𝑳𝑳𝒄𝒄𝒘𝒘𝒎𝒎 𝑳𝑳𝒄𝒄⁄ , 
used in comparing the CI, CT, DI, and DT approaches. The best approaches are highlighted in 
the rows for the overall medians at each loading, using a tolerance of 0.01. 

Median Adjusted 𝑹𝑹𝟐𝟐 for Camber 
Loading Result CI CT DI DT 

𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 

𝐶𝐶𝑃𝑃 0.972 0.994 0.963 0.993 
𝑢𝑢𝑟𝑟 𝑢𝑢∞⁄  0.964 0.990 0.956 0.989 
𝐶𝐶𝐷𝐷 0.967 0.992 0.961 0.991 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 0.870 0.866 0.871 0.867 

Overall 0.941 0.989 0.933 0.986 
𝐶𝐶𝑇𝑇 = 0.75 𝐶𝐶𝑃𝑃 & 𝐶𝐶𝐷𝐷 0.970 0.994 0.962 0.993 
𝐶𝐶𝑇𝑇 = 0 𝑢𝑢𝑟𝑟 𝑢𝑢∞⁄  0.959 0.987 0.953 0.987 
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In every case a draw existed for most linear, but the combination of chord length with 
throat diameter was the only option to be jointly most linear in every test. Removing 
the threshold and counting only the greatest medians left CT the most linear in 6 cases, 
CI in 3, and the others in 0. Chord length and throat diameter therefore appear to be the 
best approaches, with chord length also avoiding a variation in aerofoil scaling as the 
aerofoil angle is varied at fixed length ratio. Based on this conclusion, a repeat of the 
analysis carried out in Section 4.2.1 using only the CT results – instead of all of the 
length to diameter ratio approaches – confirmed the selection of the throat as the 
measurement station.  

4.2.3 Making Circulation Dimensionless 

A close association between circulation and duct performance was desired for the 
analysis of the aerofoil parameters discussed later in Section 4.2.5, but an appropriate 
length parameter had not previously been determined for dimensionless circulation. 
Chord length, duct length, and inlet, throat, and exit diameter were all therefore tested. 
The performance measurement station was also reassessed in case the best choice for 
the relationship between performance and circulation differed from that in Section 
4.2.1 for performance and the geometrical parameters. 

Choosing velocity ratio as the performance measure, Figure 4.14 illustrates the 
resulting strength of association with circulation at 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. 200 randomly generated duct 
shapes provided the required data, using the length to diameter approach selected in 
Section 4.2.2 and the limits in Table 4.4. The pattern seen was not affected by rotor 
loading or by measuring performance with 𝐶𝐶𝑃𝑃, while the order of the top three 
coefficients was the same using the four sets of non-randomly generated shapes from 
the length and diameter approach tests.  

Using the diffuser parameter shapes from Section 4.1, however, saw a change in the 
measurement station for the greatest Pearson’s coefficient from the duct’s throat to the 
exit with dimensionless circulation defined using chord length. Figure 4.15 shows a 
kink in the throat results for the diffuser shapes, absent from the aerofoil results,  
reducing the overall linearity but not the monotonic relationship strength. Throat 
measurement nevertheless led to greater linearity in the augmentation region, as seen 
by comparison with the exit measurement results in Figure 4.16. 

Explaining with any certainty the change in slope seen for the diffuser results must be 
left to future work, but it is possible that it relates to the change in rotor position with 
changes in duct shape; the rotor was always placed in the smallest cross-sectional area 
in Figure 4.15. Both rotor position and duct shape should influence the velocity at the 
rotor, but the most poorly performing diffuser shapes had rotors in the exit plane. 
Additional changes in duct shape could not therefore move the rotor any further 
downstream, perhaps changing the relationship between circulation and velocity. 
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Figure 4.14: Correlation between performance at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 – computed using the velocity ratio 
𝒖𝒖 𝒖𝒖∞⁄  at the inlet, throat, and exit – and circulation 𝜞𝜞𝒓𝒓 – made dimensionless with chord 
length, duct length, and inlet, throat, and exit diameters. 95% confidence intervals are shown. 

Figure 4.15: Variation of the throat velocity ratio 𝒖𝒖𝒓𝒓 𝒖𝒖∞⁄  with circulation made dimensionless 
using the throat diameter 𝜞𝜞𝒓𝒓 𝒖𝒖∞𝑫𝑫⁄  at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 for 200 duct shapes randomly generated using the 
Chord and Throat aerofoil approach (left) and 1000 shapes randomly generated using the 
diffuser approach (right). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chord Duct Inlet Throat Exit

Pe
ar

so
n 

Co
rr

el
at

io
n 

Co
ef

fic
ie

nt

Inlet Throat ExitVelocity Ratio:

Dimensionless Circulation Approach

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Chord Duct Inlet Throat Exit
Sp

ea
rm

an
 C

or
re

la
ti

on
 C

oe
ffi

ci
en

t

Inlet Throat ExitVelocity Ratio:Velocity Ratio:

Dimensionless Circulation Approach

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

-2 0 2 4 6

Ve
lo

ci
ty

 R
at

io
 -

Th
ro

at

Random CT Aero Shapes

Dimensionless Circulation - Throat

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-2 0 2 4 6

Ve
lo

ci
ty

 R
at

io
 -

Th
ro

at

Random Diffuser Shapes

Dimensionless Circulation - Throat



Chapter 4: Parameters for Duct Shape  114 

 

  
Figure 4.16: Variation of the exit velocity ratio 𝒖𝒖𝒆𝒆 𝒖𝒖∞⁄  with circulation made dimensionless 
using the chord length 𝜞𝜞𝒓𝒓 𝒖𝒖∞𝑳𝑳𝒄𝒄⁄  at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 for 200 duct shapes randomly generated using the 
Chord and Throat aerofoil approach (left) and 1000 shapes randomly generated using the 
diffuser approach (right). 

Overall, measuring performance at the throat appears to give the strongest association 
between performance and circulation. The data for defining dimensionless circulation 
is less clear cut: inlet diameter gave the greatest correlation coefficients, but the values 
did not reach outside the 95% confidence intervals for throat diameter. Although formal 
hypothesis testing was not used, any difference seems slight at most. Throat diameter 
was therefore chosen as it also has the advantage of being consistent with the power 
and drag coefficient definitions, giving the definition of dimensionless duct circulation 
𝐶𝐶𝛤𝛤 in Equation 4.1. 

 𝐶𝐶𝛤𝛤 =
𝛤𝛤𝑑𝑑
𝑢𝑢∞𝐷𝐷

 Equation 4.1 

An explanation for the stronger association with the diameter approaches may come 
from considering two situations where 𝑢𝑢 𝑢𝑢∞⁄  could vary without a corresponding 
change in 𝐶𝐶𝛤𝛤: changes in 𝛤𝛤𝑑𝑑  could affect 𝑢𝑢 𝑢𝑢∞⁄  but not 𝐶𝐶𝛤𝛤 if there were a linear 
relationship between the length parameter and 𝛤𝛤𝑑𝑑 , while changes in the cross sectional 
area 𝐴𝐴 could affect 𝑢𝑢 𝑢𝑢∞⁄  but not 𝐶𝐶𝛤𝛤 if there were no connection between the length 
parameter and 𝐴𝐴. Both of these seem less likely to occur for diameter than for chord 
and duct length. 
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4.2.4 Performance Results 

With the preliminary studies complete, simulation results showing the influence of the 
aerofoil parameters on maximum power coefficient are given by Figure 4.17 to Figure 
4.19 and optimum rotor loading by Figure 4.20 to Figure 4.22. Duct geometry was 
generated using a length to diameter ratio defined with chord length and throat 
diameter 𝐿𝐿𝑣𝑣 𝐷𝐷⁄ . Only a subset of the results used to calculate the linearity in the earlier 
sections is shown here. 

Results for Maximum Power 

Figure 4.17: Variation of maximum power coefficient 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 with duct wall angle 𝜶𝜶, at selected 
cambers 𝑳𝑳𝒄𝒄𝒘𝒘𝒎𝒎 𝑳𝑳𝒄𝒄⁄  and chord length ratios 𝑳𝑳𝒄𝒄 𝑫𝑫⁄ . 
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Figure 4.18: Variation of maximum power coefficient 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 with camber 𝑳𝑳𝒄𝒄𝒘𝒘𝒎𝒎 𝑳𝑳𝒄𝒄⁄ , at selected 
duct wall angles 𝜶𝜶 and chord length ratios 𝑳𝑳𝒄𝒄 𝑫𝑫⁄ . 

Figure 4.19: Variation of maximum power coefficient 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 with chord length ratio 𝑳𝑳𝒄𝒄 𝑫𝑫⁄ , at 
selected cambers 𝑳𝑳𝒄𝒄𝒘𝒘𝒎𝒎 𝑳𝑳𝒄𝒄⁄  and duct wall angles 𝜶𝜶. 
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Results for Optimum Rotor Loading 

Figure 4.20: Variation of optimum rotor loading 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 with duct wall angle 𝜶𝜶, at selected 
cambers 𝑳𝑳𝒄𝒄𝒘𝒘𝒎𝒎 𝑳𝑳𝒄𝒄⁄  and chord length ratios 𝑳𝑳𝒄𝒄 𝑫𝑫⁄ . 

Figure 4.21: Variation of optimum rotor loading 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 with camber 𝑳𝑳𝒄𝒄𝒘𝒘𝒎𝒎 𝑳𝑳𝒄𝒄⁄ , at selected duct 
wall angles 𝜶𝜶 and chord length ratios 𝑳𝑳𝒄𝒄 𝑫𝑫⁄ . 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 0 10 20 30 40
Duct Wall Angle (Degrees)

Lc/D = 0.1

0% 5% 10%
15% 20% 25%

Camber:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-10 0 10 20 30 40
Duct Wall Angle (Degrees)

Lc/D = 0.7

0% 5% 10%
15% 20% 25%

Camber:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30
Camber (%)

Lc/D = 0.1

-5° 0° 5°
15° 25° 35°

Angle:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30
Camber (%)

Lc/D = 0.7

-5° 0° 5°
15° 25° 35°

Angle:



Chapter 4: Parameters for Duct Shape 118 

Figure 4.22: Variation of optimum rotor loading 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 with chord length ratio 𝑳𝑳𝒄𝒄 𝑫𝑫⁄ , at selected 
cambers 𝑳𝑳𝒄𝒄𝒘𝒘𝒎𝒎 𝑳𝑳𝒄𝒄⁄  and duct wall angles 𝜶𝜶. 

4.2.5 A Useful Approach 

Although the chosen length to diameter ratio and performance measurement 
approaches gave the most linear set of results, the linearity in Figure 4.17 to Figure 4.22 
was far from universal. Maximum power coefficient, however, was visibly linear with 
angle and camber for short ducts and with chord length ratio for low angle ducts above 
zero camber. At 𝐿𝐿𝑣𝑣 𝐷𝐷⁄  = 0.1, the median adjusted 𝑅𝑅2 for linear fits to the angle results 
was 0.9989 and to the camber results was 0.9993, while the corresponding value for 
the chord length ratio results above zero camber and at angles of 0° and 5° was 0.9976. 
It may well be feasible to make an assumption of linearity if short ducts prove to be the 
path to economic viability. 

It would be advantageous if thin aerofoil theory [69], used to calculate aerofoil 
circulation in inviscid flow, could be applied to ducted turbines. To test this possibility, 
the thin aerofoil circulation was made dimensionless with the free stream velocity and 
rotor diameter in Equation 4.2. 

𝐶𝐶𝛤𝛤 =
𝛤𝛤

𝑢𝑢∞𝐷𝐷
=
𝜋𝜋𝐿𝐿𝑣𝑣
𝐷𝐷 �𝛼𝛼 +

1
𝜋𝜋
�

d𝑟𝑟
d𝑥𝑥

(cos𝜃𝜃0 − 1)d𝜃𝜃0
𝜋𝜋

0
� Equation 4.2 

𝛼𝛼 is the angle of the duct wall chord line to the axial direction, d𝑟𝑟 d𝑥𝑥⁄  is the gradient of 
the camber line at a given location, and 𝜃𝜃0 corresponds to a particular axial location on 
the chord line 𝑥𝑥 through the transformation 𝑥𝑥 = (𝐿𝐿𝑣𝑣 2⁄ )(1 − cos𝜃𝜃0). Circulation varies 
linearly with angle and the integral camber term, which itself increases with camber 
[69]. The chord length ratio then acts as a multiplier, linearly increasing or decreasing 
circulation depending on the sum of the angle and camber terms.  
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It has already been noted that maximum power did not always vary in a linear fashion. 
Another difference is that chord length ratio did not seem to act perfectly as a 
multiplier, with two cases of a duct shape curtailing the flow experiencing increased 
performance with increased length. Removing the influence of the rotor by examining 
𝐶𝐶𝑇𝑇 = 0 in Figure 4.23, and therefore modelling the case of an axisymmetric aerofoil, 
reveals the expected variation.  

Figure 4.23: Variation of maximum power coefficient 𝑪𝑪𝑷𝑷𝒎𝒎𝒘𝒘𝑷𝑷 (left) and dimensionless velocity 
𝒖𝒖𝒓𝒓 𝒖𝒖∞⁄  at 𝑪𝑪𝑻𝑻 = 0 (right) with chord length ratio. 

The inclusion of the rotor model is only one of the differences from thin aerofoil theory. 
Ducts are not two-dimensional aerofoils, and some of the shapes here violate the 
assumptions of small angles and camber. Comparing power with circulation makes the 
further assumption that both parameters are directly proportional. Nevertheless, the 
maximum power results did match expectations from thin aerofoil theory in a general 
sense: performance increased with angle and camber, and increased length tended to 
amplify the augmentation or diminution of the flow. 

4.3 The Benefits of an Aerofoil Approach 
Aerofoil parameters for the specification of duct shape offer significant advantages over 
a diffuser approach. Even choosing a duct shape is not straightforward for the latter, as 
the parameters which generate the shape differ from the set of diffuser parameters 
used to measure the shape and thought to control duct performance. While that may 
only be a limitation of the particular shape generation method tested, it is unclear if the 
diffuser parameters themselves could be used directly for shape generation. The 
aerofoil parameters, however, both generate and measure the duct shape, making shape 
generation straightforward. 
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A much greater degree of certainty exists for the aerofoil results because of the 
straightforward shape generation, as there was no regression step in which additional 
errors could have been introduced and no doubt over whether a particular duct shape 
is possible. The unrealistically high 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 predictions with the diffuser parameters are a 
likely consequence of these problems, while results for the aerofoil approach were in 
line with all other simulations in this work. Difficulty generating duct shapes with the 
diffuser parameters also led to inlet area ratio not being assessed. 

While the assumptions underlying thin aerofoil theory prevented an exact match with 
maximum power coefficient, the variation in performance was generally as expected. A 
traditional diffuser conceptual model, however, would not have predicted the changes 
seen with duct length. While the variations with exit area ratio and exit angle were 
predictable, it is important to note that these findings apply only to the shape 
generation method tested: one which placed implicit limitations on duct shape for a 
given set of diffuser parameters. It is not known if performance would vary in the 
expected way were these limitations removed. 

None of these difficulties are fatal for the diffuser model. To be useful, the shape 
generation approach must become an explicit parameter, not simply a mechanism 
ignored once the diffuser parameters are generated, and it should use the modification 
introduced here for duct length. However, the advantages of the aerofoil model make it 
the more attractive option, and there exists a wealth of data on aerofoil performance 
that could be investigated for applicability to ducted turbines. 
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4.4 Summary 
A conceptual model for ducted turbines should allow easy identification of how 
performance varies with a limited set of geometrical parameters. Such a model can 
improve understanding generally, form the basis of a design process, or allow a 
systematic approach to shape optimisation. An appropriate choice of parameters is key 
to the usefulness of the model, and two separate sets were tested here: one based on 
the traditional diffuser set of parameters, and one based on an aerofoil set.  

The diffuser parameters used were the exit area ratio, the inlet area ratio, the duct exit 
angle, and – based on the results from Section 3.2.2 – the length ratio. A separate group 
of parameters was used to generate the duct shapes, following the process used by 
Shives & Crawford [57] and Hansen et al [55]. As no reliable way was found of selecting 
shape generation parameters to provide particular diffuser parameters, geometry 
generation parameters were selected randomly and regression analysis used to 
investigate this model. 

Stepwise regression was used to automatically fit models to an 800 duct shape sample, 
with validation against 220 other duct shapes showing the superiority of a fit limited to 
5th order terms. Predictions for 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 were in line with expectations; however, this 
finding is not general due to significant restrictions on duct shape. The shape 
generation approach must therefore be explicitly included in the diffuser parameter set. 
Unrealistically high values were predicted for 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇, reflecting either errors introduced 
by the regression analysis or predictions for duct shapes that are physically impossible 
with this approach to shape generation. 

The NACA 4-digit aerofoil family was used for the aerofoil parameters, with camber, 
aerofoil angle, and length to diameter ratio tested for their influence. The strongest 
linear relationships between those parameters and performance were found when 
measuring performance at the throat and with length to diameter ratio specified using 
chord length and throat diameter. Further testing also found the strongest association 
between dimensionless circulation and performance with measurements at the throat, 
with throat diameter selected as the most appropriate for making circulation 
dimensionless. 

Expectations were met for the 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 results: performance increased with angle and 
camber, while increased length tended to amplify the augmentation or curtailment of 
the flow. 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 results were consistent with conclusions from the rest of this work, and 
did not reach unrealistic values. As the same parameters specified shape and were 
linked to duct performance, a regression analysis was avoided and there was no 
uncertainty over the physical feasibility of particular sets of parameters. Being 
straightforward to use and with less scope for error, the aerofoil approach was selected 
as the superior option. 
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An alternative to simulations for the analysis of ducted turbines is the application of 
physical laws to create a theoretical model that can help build an understanding of the 
fundamentals. A number of quasi-one dimensional theories exist in the literature, 
which have already been used to predict the importance of various parameters to 
performance, but little validation has been carried out thus far. This chapter will 
therefore present tests of four theories to determine where trust should be placed. 

Both the theories of Sørensen [185] and Werle and Presz [108] were chosen for 
evaluation because they aimed to eliminate or reduce empirical parameters, a 
particularly valuable goal if found to be valid. Phillips’ [4] theory was selected as the 
most detailed derivation encountered, along with Jamieson’s [186] due to his 
introduction of the unique ideal diffuser concept and its need for further development. 
All are quasi-1D theories applied to ducted actuator discs, with derivations from 
momentum and energy principles.  

5.1 Validation Approach 
Finding a theory to be valid does not necessarily mean that it closely matches reality: its 
equations are simply correct on a chosen level of simplification, as discussed in Section 
1.5.1. Both the theories investigated and the inviscid panel code are designed to be valid 
for ducted actuator discs in inviscid axisymmetric flow, with the simulation code 
suitable for validating the theories due to the high accuracy demonstrated in Sections 
2.2.5 and 2.2.6. 

To test the validity of an equation, the left and right sides were calculated 
independently from numerical results, with a small inequality suggesting a valid 
relationship. Each theory was examined equation by equation to determine exactly 
where any inconsistencies arose, with alternative versions of some equations 
introduced to allow further testing. While reasonable approximations have their place 
in improving understanding, the aim here was to find theoretically correct relationships 
only. 

Each equation was assessed individually, but in general a difference of less than 1% 
between the sides implied validity: a perfect agreement could not be expected due to 
numerical error in the simulation results. Care was taken to differentiate between 
inequalities due to numerical error and those from an invalid relationship by 
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considering the inequalities at all rotor loadings and the level of discretisation 
convergence of each parameter.  

To prevent misleadingly large errors when the value of an equation tended towards 
zero, inequalities were calculated as a percentage of the median right hand side 
magnitude. Any large percentages therefore represent large absolute inequalities and 
are not due to normalisation with respect to small values. With simulations at 𝑁𝑁 values 
of 𝐶𝐶𝑇𝑇 for a particular duct, the percentage inequality at a particular rotor loading 𝑗𝑗 
between the right hand side 𝑅𝑅𝐻𝐻𝑆𝑆 and left hand side 𝐿𝐿𝐻𝐻𝑆𝑆 of the equation was calculated 
using Equation 5.1. 

𝐼𝐼𝑖𝑖𝐼𝐼𝑢𝑢𝑎𝑎𝑜𝑜𝑑𝑑𝑜𝑜𝐼𝐼𝑗𝑗 =
�𝐿𝐿𝐻𝐻𝑆𝑆𝑗𝑗 − 𝑅𝑅𝐻𝐻𝑆𝑆𝑗𝑗�

Median�
|𝑅𝑅𝐻𝐻𝑆𝑆1|

⋮
|𝑅𝑅𝐻𝐻𝑆𝑆𝑁𝑁|

�

× 100 Equation 5.1 

5.2 Simulations Suitable for Testing Theories 
The simulation results selected for this analysis were required to have a very low level 
of numerical error, so that the approach was sensitive to small differences between 
theory and simulation, and were chosen to minimise the chance of any coincidental 
agreement occurring for all the cases modelled. The latter requirement was met by 
using results at a range of rotor loadings from three duct shapes, VA to VC, with 
substantially differing performance and where multiple geometrical parameters were 
varied between shapes. Both the shapes and performance can be seen in Figure 5.1, and 
all the plotted 𝐶𝐶𝑇𝑇 values were used for validation. 

Figure 5.1: Shape of validation ducts VA to VC in terms of each duct’s rotor diameter 𝑫𝑫 (left), 
and the power performance of each duct (right). 
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Discretisation error was found to be the primary component of numerical error for the 
panel method code in Sections 2.2.5 and 2.2.6; actuator disc theory values for 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 and 
𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 were matched to within 0.36% and 0.27% respectively with the discretisation 
convergence shown in Table 5.1. Similar or better convergence was achieved with the 
validation ducts, using half cosine spacing for the duct and the variable panel length 
wake approach, as shown in Table 5.2 to Table 5.4. Comparisons were to a coarser 
discretisation to match the actuator disc study. The worst case found was 1.3% for far 
wake radius 𝑅𝑅𝑤𝑤, compared to the bare rotor’s 0.9%. 

Table 5.1: Discretisation dependence results from the code validation with actuator disc 
theory study. Change is from a coarser discretisation for panel length = 0.00125𝑫𝑫 and wake 
length = 32𝑫𝑫. 

% Difference from 
Doubled Panel Length Halved Wake Length 
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 

𝑪𝑪𝑷𝑷 -0.23 -0.41 0.00 0.00 
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 -0.28 - 0.00 - 
𝑹𝑹𝒘𝒘 -0.03 0.92 0.18 0.88 

Table 5.2 Change in duct VA results from a coarser discretisation, for last duct panel length = 
0.000625𝑫𝑫 and wake length = 64.0𝑫𝑫. 

% Difference from 
Doubled Panel Length Halved Wake Length 

𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 
�̇�𝒎 & 𝑪𝑪𝑷𝑷 -0.19 -0.21 -0.53 0 0.00 0.00 
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 - -0.12 - - 0.00 - 
𝑹𝑹𝒘𝒘 -0.03 0.12 1.16 0 0.03 0.34 

Table 5.3: Change in duct VB results from a coarser discretisation, for last duct panel length = 
0.000571𝑫𝑫 and wake length = 58.5𝑫𝑫. 

% Difference from 
Doubled Panel Length Halved Wake Length 

𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 
�̇�𝒎 & 𝑪𝑪𝑷𝑷 -0.11 -0.10 -0.56 0 0.00 0.00 
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 - -0.10 - - -0.02 - 
𝑹𝑹𝒘𝒘 -0.02 0.13 1.31 0 0.01 0.19 
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Table 5.4: Change in duct VC results from a coarser discretisation, for last duct panel length = 
0.000625𝑫𝑫 and wake length = 64.0𝑫𝑫. 

% Difference from 
Doubled Panel Length Halved Wake Length 

𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 
�̇�𝒎 & 𝑪𝑪𝑷𝑷 -0.25 -0.29 -0.58 0 0.00 0.00 
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 - -0.13 - - -0.07 - 
𝑹𝑹𝒘𝒘 -0.03 0.10 1.00 0 0.01 0.53 

An expanded discretisation study was carried out including the duct drag coefficient 𝐶𝐶𝐷𝐷, 
the gauge pressure 𝑝𝑝 at the inlet 𝑑𝑑, rotor downstream side 𝑟𝑟𝑑𝑑, and exit 𝑒𝑒, as well was the 
change in momentum from far upstream to far downstream Δ𝑀𝑀. Comparisons to a finer 
discretisation are shown in Table 5.5 to Table 5.7, where large percentage differences 
for 𝑝𝑝𝑖𝑖  and 𝐶𝐶𝐷𝐷 at 𝐶𝐶𝑇𝑇 = 0.95 for ducts VA and VB respectively can be ignored due to 
pressure and drag approaching zero. The largest changes with halved panel length 
otherwise were 0.3% at 𝐶𝐶𝑇𝑇 = 0 and 0.5% at 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇, although they did approach 1% at 
𝐶𝐶𝑇𝑇 = 0.95. Changes with doubled wake length were less than 0.25%. 

Overall, discretisation convergence was both good and in line with the bare rotor study 
that achieved close agreement to actuator disc theory. However, the results of these 
simulations were used to test equations that sometimes amplified numerical 
inaccuracies, so it is important to note where convergence was least good: far wake 
radius, static pressure, and duct drag, all at high rotor loadings. By examining these 
equations at all rotor loadings, and sometimes directly accounting for numerical error, 
the validity of each theory could still be assessed with confidence.  

Table 5.5: Change in duct VA results with a finer discretisation, for last duct panel length = 
0.000625𝑫𝑫 and wake length = 64.0𝑫𝑫. 

% Difference with 
Halved Panel Length Doubled Wake Length 

𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 
�̇�𝒎 & 𝑪𝑪𝑷𝑷 -0.1 -0.11 -0.30 0 0.00 0.00 
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 - -0.13 - - 0.00 - 
𝑪𝑪𝑫𝑫 - -0.10 -0.29 - 0.00 0.00 
𝒑𝒑𝒊𝒊 -0.01 0.20 -10.36 0 0.00 -0.02
𝒑𝒑𝒓𝒓𝒓𝒓 -0.08 0.07 -0.62 0 0.00 0.00
𝒑𝒑𝒆𝒆 -0.10 0.00 -0.64 0 0.00 0.00
𝚫𝚫𝑴𝑴 - 0.06 0.28 - 0.00 0.02
𝑹𝑹𝒘𝒘 -0.01 0.05 0.72 0 0.01 0.06
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Table 5.6: Change in duct VB results with a finer discretisation, for last duct panel length = 
0.000571𝑫𝑫 and wake length = 58.5𝑫𝑫. 

% Difference with 
Halved Panel Length Doubled Wake Length 

𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 
�̇�𝒎 & 𝑪𝑪𝑷𝑷 -0.05 -0.05 -0.32 0 0.00 0.00 
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 - -0.03 - - 0.03 - 
𝑪𝑪𝑫𝑫 - -0.17 -14.71 - -0.05 0.08 
𝒑𝒑𝒊𝒊 -0.40 0.47 0.93 0 0.25 0.00 
𝒑𝒑𝒓𝒓𝒓𝒓 -0.06 -0.13 -0.89 0 -0.05 0.01 
𝒑𝒑𝒆𝒆 -0.09 -0.19 -0.97 0 -0.03 0.01 
𝚫𝚫𝑴𝑴 - 0.20 0.33 - 0.02 0.03 
𝑹𝑹𝒘𝒘 -0.01 0.09 0.79 0 0.01 0.02 

Table 5.7: Change in duct VC results with a finer discretisation, for last duct panel length = 
0.000625𝑫𝑫 and wake length = 64.0𝑫𝑫. 

% Difference with 
Halved Panel Length Doubled Wake Length 

𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 𝑪𝑪𝑻𝑻 = 0.95 
�̇�𝒎 & 𝑪𝑪𝑷𝑷 -0.13 -0.15 -0.32 0 0.00 0.00 
𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 - -0.14 - - 0.00 - 
𝑪𝑪𝑫𝑫 - -0.10 -0.13 - 0.00 0.00 
𝒑𝒑𝒊𝒊 0.29 0.47 -0.61 0 0.00 0.00 
𝒑𝒑𝒓𝒓𝒓𝒓 0.29 0.41 -0.47 0 0.00 0.00 
𝒑𝒑𝒆𝒆 -0.07 0.08 -0.53 0 0.00 0.00 
𝚫𝚫𝑴𝑴 - -0.04 0.18 - 0.00 0.04 
𝑹𝑹𝒘𝒘 -0.01 0.04 0.64 0 0.01 0.09 

5.3 A Correction for Radial Variations and Radial Velocity 

5.3.1 Derivation of Correction Factor 

Unlike the panel method code used for the simulation results, each of the theories 
undergoing validation treats the flow through a duct as radially uniform. Comparing 
results from the two approaches was usually straightforward, with the average across 
the duct cross section used in place of a radially invariant value. In Bernoulli’s equation 
applied to a cross section, however, the velocity magnitude |𝑼𝑼| is first squared at each 
point before being averaged, so a correction factor must be introduced when replacing 
|𝑼𝑼|2������ with |𝑼𝑼|����2. 
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It was also convenient to make a further correction and replace the velocity magnitude 
with the axial velocity 𝑢𝑢 to match the 1D theories. With a correction factor 𝛾𝛾𝑃𝑃, the 
resulting form of Bernoulli’s equation is given by Equation 5.2. 

𝑝𝑝1
𝜌𝜌 + 𝛾𝛾𝑃𝑃,1

𝑢𝑢�12

2 =
𝑝𝑝2
𝜌𝜌 + 𝛾𝛾𝑃𝑃,2

𝑢𝑢�22

2  Equation 5.2 

Throughout this work, properties such as pressure 𝑝𝑝𝑗𝑗  and velocity 𝑢𝑢𝑗𝑗 at a particular 
station 𝑗𝑗 refer to the mean value in that cross section. For clarity, however, velocity is 
treated differently in this section and overbars are used to indicate the mean value. 

From the definition of |𝑼𝑼|2������ and the standard form of Bernoulli’s equation, the 
correction factor in Equation 5.3 can be derived. 

𝛾𝛾𝑃𝑃 =
1
𝑢𝑢�2𝐴𝐴�

|𝑼𝑼|2 d𝐴𝐴
𝐴𝐴

 Equation 5.3 

Where it is preferred to correct only for radial variations and so use velocity magnitude 
rather than axial velocity, the correction factor 𝛾𝛾 in Equation 5.4 should be used.   

𝛾𝛾 =
1

|𝑼𝑼|����2𝐴𝐴
� |𝑼𝑼|2 d𝐴𝐴
𝐴𝐴

 Equation 5.4 

5.3.2 Difference from Boussinesq’s Momentum Coefficient 

The limited discussion found in the general engineering literature suggested that the 
kinetic energy correction coefficient is sometimes incorrectly used for non-uniform 
velocity in Bernoulli’s equation, and that the momentum correction coefficient 𝛽𝛽 should 
be used instead [187, 188]. It will be shown here, however, that 𝛾𝛾 or 𝛾𝛾𝑃𝑃 should be used 
when the velocity has more than one component, rather than 𝛽𝛽. Also known as the 
Boussinesq coefficient, this factor is given for a purely axial flow by Equation 5.5. 

𝛽𝛽 =
1

𝜌𝜌𝑢𝑢�2𝐴𝐴�𝜌𝜌𝑢𝑢2 d𝐴𝐴
𝐴𝐴

 Equation 5.5 

The Boussinesq coefficient is derived from the momentum equation rather than from 
Bernoulli’s equation itself [189]. As Boussinesq wrote his work [190] in French, it was 
necessary to re-derive 𝛽𝛽 to find a form applicable to a flow with multiple velocity 
components for the proper comparison with 𝛾𝛾. To begin, the momentum flow term 
from the momentum equation [69] for the flow through a surface 𝑆𝑆 was applied to an 
arbitrary cross section of flow perpendicular to the axial direction and with area 𝐴𝐴 in 
Equation 5.6. 

�� (𝜌𝜌𝑼𝑼 ⋅ 𝐝𝐝𝑺𝑺)𝑼𝑼
𝑆𝑆

� = ��𝜌𝜌𝑢𝑢𝑼𝑼
𝐴𝐴

d𝐴𝐴� = 𝜌𝜌|𝑢𝑢�|𝛽𝛽|𝑼𝑼|����𝐴𝐴 Equation 5.6 
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To obtain a single value for 𝛽𝛽, the magnitude was taken for the momentum flow term, 
with the right hand side showing a version with mean values and 𝛽𝛽. Although 𝑢𝑢�  is not 
vector valued, |𝑢𝑢�| is still used to account for negative values. Rearranging gives 
Equation 5.7. 

𝛽𝛽 =
1

𝜌𝜌|𝑢𝑢�||𝑼𝑼|����𝐴𝐴
��𝜌𝜌𝑢𝑢𝑼𝑼

𝐴𝐴
d𝐴𝐴� Equation 5.7 

Comparison with Equation 5.4 shows that 𝛾𝛾 and 𝛽𝛽 are different where non-axial 
velocity components exist; in general, they are two distinct correction factors that are 
equal when the velocity vector is normal to a surface. Pressure predictions support the 
use of 𝛾𝛾: values of each correction factor for the duct exit velocity profile in Figure 5.2 
are shown in Table 5.8, and only the 𝛾𝛾 approaches gave the correct 𝐶𝐶𝑝𝑝,𝑒𝑒 of -5.02 when 
calculated using the appropriate forms of Bernoulli’s equation. 𝛾𝛾 is therefore the 
theoretically correct coefficient generally, and 𝛾𝛾𝑃𝑃 here when using axial velocity rather 
than velocity magnitude. 

Figure 5.2: Velocity profiles 𝒖𝒖𝒆𝒆 𝒖𝒖∞⁄  and 𝒗𝒗𝒆𝒆 𝒖𝒖∞⁄  used in comparison of correction factors, 
computed for a duct exit by the panel method code. 

Table 5.8: Pressure coefficients 𝑪𝑪𝒑𝒑,𝒆𝒆 calculated using the correction factors. Both 𝜷𝜷 values and 
𝜸𝜸 were used with velocity magnitude, while 𝜸𝜸𝑷𝑷 was used with axial velocity. 

Factor Value Calculated 𝑪𝑪𝒑𝒑,𝒆𝒆 % Error 
𝜷𝜷 (Axial) 1.18 -5.72 13.9 

𝜷𝜷 (Magnitude) 0.96 -4.48 -10.8
𝜸𝜸 1.06 -5.02 0.0
𝜸𝜸𝑷𝑷 1.59 -5.02 0.0
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5.3.3 Importance of Correction Factor 

Values of 𝛾𝛾𝑃𝑃 for the three ducts chosen in Section 5.2 are given in Figure 5.3, with rotor 
loading, position in the duct, and duct shape all showing a significant influence. 
Although 𝛾𝛾𝑃𝑃,𝑒𝑒 was relatively constant with 𝐶𝐶𝑇𝑇, the changing exit pressure distribution 
seen in Section 3.1.7 suggests a greater variation with other ducts. Neglecting radial 
variations and radial velocities leads to larger equation inequalities than a peak value of 
2 for 𝛾𝛾𝑃𝑃 would suggest, as seen in Figure 5.4 for the equations requiring 𝛾𝛾𝑃𝑃 in Phillips’ 
theory. Introducing the correction factor reduced inequalities by up to 950 percentage 
points, where percentage points measure the arithmetic difference between percentage 
values, with only 14% of the 242 cases improved by less than 5 points. 

The largest inequality reduction was for Equation 5.9, which states that the total 
pressures at the duct exit and in the far wake are equal, with an inequality reduction 
from 946% to 3×10-10%. While using absolute pressure instead of gauge pressure in the 
uncorrected equation saw the inequality drop to around 0.1%, the inequality 
magnitude was still large compared to the rotor pressure drop, and rearranging the 
equation for the static pressure difference would see large percentage inequalities 
return. Inequality reductions still reached 865 points when using absolute pressure in 
all of Phillips’ equations, the maximum reduction then being for Equation 5.16, with an 
improvement greater than 5 points in 58% of the cases. 

Figure 5.3: Values of correction factor 𝜸𝜸𝑷𝑷 calculated at the inlet, throat, and exit for ducts VA to 
VC.   
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Figure 5.4: Inequality reduction from the introduction of 𝜸𝜸𝑷𝑷 for Phillips’ equations, measured 
by the percentage point change in the inequality of each equation where 𝜸𝜸𝑷𝑷 was required. 
Inequalities were calculated as a percentage of the median right hand side magnitude across 
rotor loadings. 

5.4 Phillips’ Theory 
Phillips [4] described an analysis of ducted turbines in his thesis that he credited to a 
confidential report by Snel [191]; the analysis here is based on Phillips’ description. He 
split this theory into two parts, one calculating an energy balance and the other an axial 
momentum balance, and also set out relationships using Bernoulli’s equation before the 
main analysis. In keeping with the rest of this chapter, velocity correction factors were 
added to Phillips’ equations where needed.  

The first relationship links the far upstream pressure 𝑝𝑝∞ and velocity 𝑢𝑢∞ to the values 
at the upstream side of the rotor, 𝑝𝑝𝑟𝑟𝑜𝑜 and 𝑢𝑢𝑟𝑟𝑜𝑜, assuming no losses in the inlet. Although 
the velocity is equal at the upstream side of the rotor 𝑟𝑟𝑢𝑢, in the rotor plane 𝑟𝑟, and on the 
downstream side 𝑟𝑟𝑑𝑑, velocity is specified at station station 𝑟𝑟𝑢𝑢 to stay consistent with 
Phillips. Adding the velocity correction factor 𝛾𝛾𝑃𝑃,𝑟𝑟𝑜𝑜 to Equation 4.21 in Phillips’ work 
gave Equation 5.8.  

𝑝𝑝∞ +
1
2 𝜌𝜌𝑢𝑢∞

2 = 𝑝𝑝𝑟𝑟𝑜𝑜 +
1
2𝜌𝜌𝛾𝛾𝑃𝑃,𝑟𝑟𝑜𝑜𝑢𝑢𝑟𝑟𝑜𝑜2  Equation 5.8 

Table 5.9 shows the results of the validation exercise for this equation, where the 
inequality values listed are the worst for each duct across all the rotor loadings 
simulated. With the addition of the correction factor, the relationship is valid for 
radially varying flow. It should also be valid in one-dimensional flow without the 
correction factor: as discussed in Section 5.1, the validity of an equation can change 
depending on the chosen level of simplification. 
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Table 5.9: Largest absolute inequalities found for Equation 5.8, as a percentage of the median 
right hand side magnitude across rotor loadings. Phillips designated this relationship, without 
the correction factor, 4.21. 

Inequality for Duct VA Duct VB Duct VC 

Equation 5.8 5×10-12% 2×10-12% 2×10-11% 

The next relationship connects properties at the duct exit 𝑒𝑒 to those in the far wake 𝑤𝑤, 
given by Equation 5.9. 

𝑝𝑝𝑒𝑒 +
1
2𝜌𝜌𝛾𝛾𝑃𝑃,𝑒𝑒𝑢𝑢𝑒𝑒2 = 𝑝𝑝∞ +

1
2𝜌𝜌𝑢𝑢𝑤𝑤

2 Equation 5.9 

Numerical inaccuracies meant that the pressure in the far wake did not exactly equal 
the free stream pressure, with differences of up to 0.41% of the pressure drop across 
the rotor. To remove the resulting inequalities, 𝑝𝑝∞ was replaced with the computed far 
wake pressure, found at a distance sufficiently far from the rotor that further increases 
had a negligible effect. The inequality then reduced to zero, as seen in Table 5.10, 
showing the relationship to be valid. 

Table 5.10: Largest absolute inequalities found for Equation 5.9, as a percentage of the median 
right hand side magnitude across rotor loadings. Phillips designated this relationship, without 
the correction factor, 4.22. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.9 1×10-11% 7×10-12% 1×10-11% 

5.4.1 Power from an Energy Balance 

The first step Phillips reported for calculating the energy balance was a relationship for 
the losses in the diffuser section of the duct 𝑝𝑝𝑙𝑙𝑇𝑇𝑑𝑑𝑑𝑑, given in Equation 5.10. 

𝑝𝑝𝑙𝑙𝑇𝑇𝑑𝑑𝑑𝑑 = 𝑝𝑝𝑟𝑟𝑑𝑑 − 𝑝𝑝𝑒𝑒 +
1
2𝜌𝜌�𝛾𝛾𝑃𝑃,𝑟𝑟𝑑𝑑𝑢𝑢𝑟𝑟𝑑𝑑2 − 𝛾𝛾𝑃𝑃,𝑒𝑒𝑢𝑢𝑒𝑒2� Equation 5.10 

As the panel method code models inviscid flow, 𝑝𝑝𝑙𝑙𝑇𝑇𝑑𝑑𝑑𝑑 = 0 in all cases. To provide useful 
percentage values in Table 5.11, each inequality was divided by the pressure drop 
across the rotor; results at 𝐶𝐶𝑇𝑇 = 0 were excluded to avoid dividing by zero. The results 
show that the relationship is a valid one.  

Table 5.11: Largest absolute inequalities found for Equation 5.10, as a percentage of the 
pressure drop across the rotor. Phillips designated this relationship, without the correction 
factors, 4.24. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.10 1×10-11% 5×10-12% 7×10-11% 
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Phillips then used 𝑝𝑝𝑙𝑙𝑇𝑇𝑑𝑑𝑑𝑑 in the energy balance for a ducted turbine, shown with volume 
flow rate 𝑄𝑄 in Equation 5.11. 

𝑄𝑄 �
1
2𝜌𝜌𝑢𝑢∞

2 −
1
2𝜌𝜌𝑢𝑢𝑤𝑤

2 � = 𝑢𝑢𝑟𝑟𝐹𝐹𝑇𝑇 + 𝑄𝑄𝑝𝑝𝑙𝑙𝑇𝑇𝑑𝑑𝑑𝑑 Equation 5.11 

Small inequalities were found for this equation, as seen in Table 5.12, but they appear to 
be numerical error. The inequality was largest at the greatest loadings and the 
relationship depends on velocity in the far wake; the discretisation dependence study 
showed comparable changes for far wake radius at high rotor loading. This relationship 
was therefore judged valid. 

Table 5.12: Largest absolute inequalities found for Equation 5.11, as a percentage of the 
median right hand side magnitude across rotor loadings. Phillips designated this 
relationship 4.25. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.11 0.32% 0.36% 0.26% 

Phillips next defined diffuser efficiency 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 with Equation 5.12. 

𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 =
𝑝𝑝𝑒𝑒 − 𝑝𝑝𝑟𝑟𝑑𝑑

1
2𝜌𝜌�𝛾𝛾𝑃𝑃,𝑟𝑟𝑑𝑑𝑢𝑢𝑟𝑟𝑑𝑑2 − 𝛾𝛾𝑃𝑃,𝑒𝑒𝑢𝑢𝑒𝑒2�

Equation 5.12 

Using 𝑝𝑝𝑙𝑙𝑇𝑇𝑑𝑑𝑑𝑑 redefined with 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 and Equation 5.11, the expression for power extracted 
by the rotor 𝑃𝑃 in Equation 5.13 was derived. 

𝑃𝑃 =  𝑄𝑄
1
2𝜌𝜌 �𝑢𝑢∞

2 − 𝑢𝑢𝑤𝑤2 − �1 − 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑��𝛾𝛾𝑃𝑃,𝑟𝑟𝑑𝑑𝑢𝑢𝑟𝑟𝑑𝑑2 − 𝛾𝛾𝑃𝑃,𝑒𝑒𝑢𝑢𝑒𝑒2�� Equation 5.13

Phillips then reformulated this equation into the power coefficient 𝐶𝐶𝑃𝑃 using the ratio of 
velocity at the rotor to free stream velocity 𝒰𝒰𝑟𝑟 and the ratio of exit area to rotor area 
𝒜𝒜𝑒𝑒 . The result is given by Equation 5.14.  

𝐶𝐶𝑃𝑃 =  𝒰𝒰𝑟𝑟 �1 −
𝑢𝑢𝑤𝑤2

𝑢𝑢∞2
− �1 − 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑��𝛾𝛾𝑃𝑃,𝑟𝑟𝑑𝑑 − 𝛾𝛾𝑃𝑃,𝑒𝑒𝒜𝒜𝑒𝑒

−2�𝒰𝒰𝑟𝑟
2� Equation 5.14

Table 5.13 shows that the previous three equations are valid, although the loss term in 
Equation 5.13 could not be tested.  

Table 5.13: Largest absolute inequalities found for Equation 5.12 to Equation 5.14, as a 
percentage of the median right hand side magnitude across rotor loadings. Phillips designated 
these relationships, without the correction factors, 4.26, 4.28, and 4.29. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.12 1×10-12% 3×10-12% 1×10-12% 
Equation 5.13 0.32% 0.36% 0.26% 
Equation 5.14 0.32% 0.36% 0.26% 
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At this point, Philips noted that it would be more convenient to express power in terms 
of the duct exit pressure rather than the far wake velocity, and began by using mass 
flow continuity to define the velocity at the exit with Equation 5.15. 

 𝑢𝑢𝑒𝑒 = 𝒜𝒜𝑒𝑒
−1𝒰𝒰𝑟𝑟𝑢𝑢∞ Equation 5.15 

Table 5.14 highlights a small error in the numerical results where the mass flow rate 
was not exactly the same at the rotor and exit. While the difference of 0.34% or less 
appears insignificant, it is actually important for the remaining equations in this 
section.  

Table 5.14: Largest absolute inequalities found for Equation 5.15, as a percentage of the 
median right hand side magnitude across rotor loadings. Phillips designated this 
relationship 4.31. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.15 0.01% 0.01% 0.34% 

 
Substituting Equation 5.15 into Equation 5.9 – which was Bernoulli’s equation applied 
between the duct exit and far downstream – then using the definition of exit pressure 
coefficient led to Equation 5.16. 

 �
𝑢𝑢𝑤𝑤
𝑢𝑢∞

�
2

= 𝛾𝛾𝑃𝑃,𝑒𝑒𝒜𝒜𝑒𝑒
−2𝒰𝒰𝑟𝑟

2 + 𝐶𝐶𝑝𝑝,𝑒𝑒 Equation 5.16 

The small inaccuracy in the far wake pressure seen with Equation 5.9 also affected this 
equation through 𝐶𝐶𝑝𝑝,𝑒𝑒 , but inequalities remained above 10% even after correction. 𝒰𝒰𝑟𝑟 
was therefore also calculated from the velocity at the exit and mass continuity to 
compensate for the slight variation in mass flow rate seen in Table 5.14. Table 5.15 then 
shows the equation to be valid. 

Table 5.15: Largest absolute inequalities found for Equation 5.16, as a percentage of the 
median right hand side magnitude across rotor loadings. Phillips designated this relationship, 
without the correction factor, 4.32. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.16 1×10-11% 7×10-12% 1×10-11% 

 
With an expression relating the far wake velocity to exit pressure derived, it was 
substituted into Equation 5.14 to achieve the desired relationship between power 
coefficient and exit pressure, giving Equation 5.17. 

𝐶𝐶𝑃𝑃 =  �1 − 𝐶𝐶𝑝𝑝,𝑒𝑒�𝒰𝒰𝑟𝑟 + �𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑�𝛾𝛾𝑃𝑃,𝑟𝑟𝑑𝑑 − 𝛾𝛾𝑃𝑃,𝑒𝑒𝒜𝒜𝑒𝑒
−2� − 𝛾𝛾𝑃𝑃,𝑟𝑟𝑑𝑑�𝒰𝒰𝑟𝑟

3 Equation 5.17 

Calculating 𝒰𝒰𝑟𝑟 based on the velocity at the exit and 𝐶𝐶𝑝𝑝,𝑒𝑒 using the computed far wake 
pressure, Table 5.16 shows the relationship to be valid. 
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Table 5.16: Largest absolute inequalities found for Equation 5.17, as a percentage of the 
median right hand side magnitude across rotor loadings. Phillips designated this relationship, 
without the correction factors, 4.33. 

Inequality for Duct VA Duct VB Duct VC 

Equation 5.17 0.33% 0.36% 0.14% 

5.4.2 Forces from an Axial Momentum Balance 

With an expression for the power coefficient found, Phillips then went on to describe an 
application of the momentum equation to a ducted turbine. A control volume was 
defined following the streamtube from far upstream, through the duct, to far 
downstream, as shown in Figure 5.5. The control volume was considered in parts, with 
the force acting on it considered separately for the portion upstream of the duct, 
through the duct, and downstream of the duct, plus the force from the rotor.  

Figure 5.5: Illustration of control volume passing through duct. 

Force Calculation for Validation 

The aim here was to test the particular formulations of the momentum equation that 
Phillips described, rather than any sort of test of the momentum equation itself, so 
different forms of the momentum equation could be used to calculate the control 
volume forces. Being interested in axial forces only, the derivation of alternatives began 
with the momentum equation for steady inviscid flow with no body forces. Applying it 
to the upstream portion of the control volume led to Equation 5.18. 

−� 𝜌𝜌𝑢𝑢2
𝐴𝐴∞

d𝐴𝐴 + � 𝜌𝜌𝑢𝑢2
𝐴𝐴𝑖𝑖

d𝐴𝐴

= � 𝑝𝑝
𝐴𝐴∞

d𝐴𝐴 −� 𝑝𝑝
𝐴𝐴𝑖𝑖

d𝐴𝐴 − �� 𝑝𝑝
𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟

𝐝𝐝𝑺𝑺�
𝑃𝑃

Equation 5.18 

In this equation, the 𝑥𝑥 subscript indicates that only the axial component of the result is 
used, and the 𝑟𝑟𝑎𝑎𝑑𝑑 subscript signifies the radial surface 𝑆𝑆 of the control volume. It is the 
pressure on that radial surface combined with the pressure on the upstream end that 

Upstream Portion Downstream Portion Inside Duct 

𝒖𝒖∞ 
𝒑𝒑∞ 
𝑨𝑨∞  

𝒖𝒖𝒘𝒘 
𝒑𝒑∞ 
𝑨𝑨𝒘𝒘 
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constitutes the force on the upstream portion of the control volume 𝐹𝐹𝑜𝑜𝑑𝑑, as defined in 
Equation 5.19. 

𝐹𝐹𝑜𝑜𝑑𝑑 = � 𝑝𝑝
𝐴𝐴∞

d𝐴𝐴 − �� 𝑝𝑝
𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟

𝐝𝐝𝑺𝑺�
𝑃𝑃

Equation 5.19 

Combining Equation 5.18 and Equation 5.19 gave the calculation procedure for finding 
𝐹𝐹𝑜𝑜𝑑𝑑 from the panel method code results, as shown in Equation 5.20. 

𝐹𝐹𝑜𝑜𝑑𝑑 = −� 𝜌𝜌𝑢𝑢2
𝐴𝐴∞

d𝐴𝐴 + � 𝜌𝜌𝑢𝑢2
𝐴𝐴𝑖𝑖

d𝐴𝐴 + � 𝑝𝑝
𝐴𝐴𝑖𝑖

d𝐴𝐴 Equation 5.20 

This procedure required the flow to be computed only at the outlet of the control 
volume portion, as the far upstream end was at free stream conditions. 

Following a similar derivation, the force on the control volume section inside the duct 
𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖 was calculated using Equation 5.21. 

𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖 = −� 𝜌𝜌𝑢𝑢2
𝐴𝐴𝑖𝑖

d𝐴𝐴 + � 𝜌𝜌𝑢𝑢2
𝐴𝐴𝑒𝑒

d𝐴𝐴 −� 𝑝𝑝
𝐴𝐴𝑖𝑖

d𝐴𝐴 + � 𝑝𝑝
𝐴𝐴𝑒𝑒

d𝐴𝐴 + Δ𝑝𝑝𝐴𝐴𝑟𝑟 Equation 5.21 

Finally, the force on the downstream section 𝐹𝐹𝑑𝑑𝑑𝑑 was calculated assuming a return to 
free stream pressure rather than with a directly computed downstream pressure, giving 
Equation 5.22. 

𝐹𝐹𝑑𝑑𝑑𝑑 = −� 𝜌𝜌𝑢𝑢2
𝐴𝐴𝑒𝑒

d𝐴𝐴 + � 𝜌𝜌𝑢𝑢2
𝐴𝐴𝑤𝑤

d𝐴𝐴 −� 𝑝𝑝
𝐴𝐴𝑒𝑒

d𝐴𝐴 Equation 5.22 

Validation of Momentum Relationships 

Modifying Phillips’ expression for the upstream portion force to include the correction 
factors, with 𝛽𝛽 defined using axial velocity only as in Equation 5.5, gave Equation 5.23. 

𝐹𝐹𝑜𝑜𝑑𝑑 =
1
2𝜌𝜌𝑢𝑢∞

2 𝐴𝐴𝑟𝑟𝑜𝑜�(1−𝒰𝒰𝑟𝑟)2 + �2𝛽𝛽𝑟𝑟𝑜𝑜 − 𝛾𝛾𝑃𝑃,𝑟𝑟𝑜𝑜 − 1�𝒰𝒰𝑟𝑟
2� Equation 5.23 

In this equation, the downstream end of the control volume portion is placed at the 
rotor and the momentum balance therefore includes any section of duct upstream of 
the rotor. Phillips, however, also stated that the relation is for the upstream free 
streamtube, suggesting that no part of the duct is included. It appears that the rotor is 
assumed to be at the inlet; rewriting to accommodate a duct where it is not gave 
Equation 5.24. 

𝐹𝐹𝑜𝑜𝑑𝑑 =
1
2𝜌𝜌𝑢𝑢∞

2 𝐴𝐴𝑖𝑖�(1 −𝒰𝒰𝑖𝑖)2 + �2𝛽𝛽𝑖𝑖 − 𝛾𝛾𝑃𝑃,𝑖𝑖 − 1�𝒰𝒰𝑖𝑖
2� Equation 5.24 
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Table 5.17 shows the results of testing this relationship. Equation 5.23 had a large 
inequality for ducts VA and VB but was valid for duct VC due to the presence and lack of 
an inlet respectively. Once the equation had been modified to account for an inlet 
section, it matched in all cases. 

Table 5.17: Largest absolute inequalities found for Equation 5.23 and Equation 5.24, as a 
percentage of the median right hand side magnitude across rotor loadings. Phillips designated 
this relationship, without the correction factors, 4.40. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.23 563.6% 2853% 1×10-11% 
Equation 5.24 0.25% 9×10-11% 1×10-11% 

The force on the flow from the rotor 𝐹𝐹𝑟𝑟 was defined with Equation 5.25, which was also 
the method used to calculate 𝐹𝐹𝑟𝑟 in the panel method code. 

𝐹𝐹𝑟𝑟 = −(𝑝𝑝𝑟𝑟𝑜𝑜 − 𝑝𝑝𝑟𝑟𝑑𝑑)𝐴𝐴𝑟𝑟 Equation 5.25 

Phillips continued the rotor at inlet assumption in calculating the control volume force 
on the inside of the duct. With no inlet the duct consists only of a diffuser section, and 
the force was defined as 𝐹𝐹𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 using Equation 5.26. 

𝐹𝐹𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 = �𝑝𝑝
𝑅𝑅

d𝑟𝑟d𝜃𝜃 Equation 5.26 

Equation 5.27 was then stated, with no details of the derivation supplied and assuming 
zero losses in the diffuser. 

𝐹𝐹𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 = �𝑝𝑝 +
1
2𝜌𝜌𝑢𝑢

2� (𝐴𝐴𝑒𝑒 − 𝐴𝐴𝑟𝑟𝑑𝑑)−
1
2𝜌𝜌𝑄𝑄

2 �
𝐴𝐴𝑒𝑒 − 𝐴𝐴𝑟𝑟𝑑𝑑
𝐴𝐴𝑟𝑟𝑑𝑑𝐴𝐴𝑒𝑒

� Equation 5.27 

The first term on the right hand side is the total pressure in the flow, calculated for 
validation as the free stream total pressure minus the rotor pressure drop. 

As it was derived assuming no inlet, Equation 5.27 was expected to be invalid for ducts 
VA and VB. However, Table 5.18 shows a large inequality even for duct VC, which 
remained above 16% for all rotor loadings. It seems likely that velocity correction 
factors are required to make this relationship valid outside one-dimensional flow, but 
the correct re-derivation could not be found in the time available.  

Table 5.18: Largest absolute inequalities found for Equation 5.27, as a percentage of the 
median right hand side magnitude across rotor loadings. Phillips designated this 
relationship 4.43. 

Inequality for Duct VA Duct VB Duct VC 

Equation 5.27 207.2% 137.0% 90.0% 
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The final section of control volume was the downstream portion, with the force given 
by Phillips as Equation 5.28. 

𝐹𝐹𝑑𝑑𝑑𝑑 =
1
2𝜌𝜌𝑢𝑢∞

2 𝐴𝐴𝑟𝑟𝑜𝑜 �2𝒰𝒰𝑟𝑟 ��𝛾𝛾𝑃𝑃,𝑒𝑒𝒜𝒜𝑒𝑒
−2𝒰𝒰𝑟𝑟

2 + 𝐶𝐶𝑝𝑝,𝑒𝑒�
1 2⁄ − 𝛽𝛽𝑒𝑒𝒜𝒜𝑒𝑒

−1𝒰𝒰𝑟𝑟� −
𝐶𝐶𝑝𝑝,𝑒𝑒

𝒜𝒜𝑒𝑒
−1� Equation 5.28 

The small variation in mass flow through the duct was compensated for by calculating 
𝒰𝒰𝑟𝑟 from the velocity at the duct exit using Equation 5.15. Inequalities above 6% were 
then reduced to those in Table 5.19, showing the equation to be valid. 

Table 5.19: Largest absolute inequalities found for Equation 5.28, as a percentage of the 
median right hand side magnitude across rotor loadings. Phillips designated this relationship, 
without the correction factors, 4.45. 

Inequality for Duct VA Duct VB Duct VC 

Equation 5.28 0.03% 0.03% 0.02% 

At this point, an expression exists for all the forces acting on the control volume. Phillips 
gave Equation 5.29 as the final axial momentum balance for the turbine. 

𝐹𝐹𝑜𝑜𝑑𝑑 + 𝐹𝐹𝑟𝑟 + 𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑑𝑑𝑑𝑑 = 𝜌𝜌𝒰𝒰𝑟𝑟𝑢𝑢∞𝐴𝐴𝑟𝑟𝑜𝑜(𝑢𝑢𝑤𝑤 − 𝑢𝑢∞) Equation 5.29 

While Phillips used 𝐹𝐹𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 in this equation, 𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖 was used instead here so that the force 
was calculated for the entire duct and not just the diffuser section. With this change 
made, Table 5.20 shows that the relationship matched moderately well. The inequalities 
were at their maximum at the largest rotor loading, and by 𝐶𝐶𝑇𝑇 = 0.8 they had more than 
halved. This behaviour is likely due to the reduced discretisation convergence at the 
wake end with high rotor loading, so the relationship appears valid. 

Table 5.20: Largest absolute inequalities found for Equation 5.29, as a percentage of the 
median right hand side magnitude across rotor loadings. Phillips designated this 
relationship 4.46. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.29 1.10% 1.35% 0.85% 

5.4.3 Summary: A Valid Theory 

Despite some difficulties with relationships that are sensitive to numerical error, almost 
all are valid once the appropriate velocity correction factors are in place. Table 5.21 
shows that only the relationship tested in Table 5.18 could not be validated, and that 
was more likely due to a lack of correction factors rather than an error in the equation 
itself. While the final equations derived through the energy and axial momentum 
approaches are valid, however, they rely on a number of empirical parameters. 
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Table 5.21: Summary of conclusions for Phillips’ Equations. 

Table of 
Inequalities 

Phillips’ 
Designation Conclusion for Relationship 

Table 5.9 4.21 Valid with correction factor 
Table 5.10 4.22 Valid with correction factor 
Table 5.11 4.24 Valid with correction factors 
Table 5.12 4.25 Valid 
Table 5.13 4.26, 4.28, 4.29 Valid with correction factors 
Table 5.14 4.31 Valid 
Table 5.15 4.32 Valid with correction factor 
Table 5.16 4.33 Valid with correction factors 
Table 5.17 4.40 Valid with correction factors 
Table 5.18 4.43 Could not validate 
Table 5.19 4.45 Valid with correction factors 
Table 5.20 4.46 Valid 

5.5 Sørensen’s Theory 
In his work, Sørensen [185] set out to develop a theoretical description of ducted 
turbines that could predict the maximum power extracted without empirical 
measurements. He reached an equation that calculates 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 only from geometrical 
measurements of a duct, but made several assumptions that he acknowledged were 
untested. Such a theory would be invaluable to the development of ducted turbines, but 
unfortunately this section will show that it cannot correctly predict 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 for the ducts 
tested.  

5.5.1 Calculations with Exit Pressure 

To begin, Sørensen used a control volume analysis to derive Equation 5.30. 

𝑄𝑄 �
1
2𝜌𝜌𝑢𝑢∞

2 −
1
2𝜌𝜌𝑢𝑢𝑤𝑤

2 � = 𝑃𝑃 + 𝑄𝑄𝑝𝑝𝑙𝑙𝑇𝑇𝑑𝑑𝑑𝑑 Equation 5.30 

Rearranging for the power extracted by the rotor gave Equation 5.31. 

𝑃𝑃 =
1
2  𝜌𝜌𝑢𝑢𝑟𝑟𝐴𝐴𝑟𝑟 �𝑢𝑢∞2 − 𝑢𝑢𝑤𝑤2 − 2

𝑝𝑝𝑙𝑙𝑇𝑇𝑑𝑑𝑑𝑑
𝜌𝜌 � Equation 5.31 

In Equation 5.32, the 𝑝𝑝𝑙𝑙𝑇𝑇𝑑𝑑𝑑𝑑 term was replaced by one involving the diffuser efficiency 
𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 . 

𝑃𝑃 =
1
2  𝜌𝜌𝑢𝑢𝑟𝑟𝐴𝐴𝑟𝑟�𝑢𝑢∞2 − 𝑢𝑢𝑤𝑤2 − �1 − 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑��𝛾𝛾𝑃𝑃,𝑟𝑟𝑢𝑢𝑟𝑟2 − 𝛾𝛾𝑃𝑃,𝑒𝑒𝑢𝑢𝑒𝑒2�� Equation 5.32
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At this point the velocity and area ratios were introduced, giving an equation for the 
power coefficient in Equation 5.33. 

𝐶𝐶𝑃𝑃 = 𝒰𝒰𝑟𝑟�1 −𝒰𝒰𝑤𝑤
2 − �1 − 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑��𝛾𝛾𝑃𝑃,𝑟𝑟 − 𝛾𝛾𝑃𝑃,𝑒𝑒𝒜𝒜𝑒𝑒

−2�𝒰𝒰𝑟𝑟
2� Equation 5.33 

While Sørensen assumed the rotor to be at the inlet when calculating losses, the 
equations could be tested here without modification due to the zero loss simulations. 
Table 5.22 shows the results. All are valid based on the small inequalities found, 
although the equations were not tested in the presence of viscous losses so results may 
differ in that case. 

Table 5.22: Largest absolute inequalities found for Equation 5.30 to Equation 5.33, as a 
percentage of the median right hand side magnitude across rotor loadings. Sørensen 
designated these relationships, without the correction factors, 3.23, 3.24, 3.28, and 3.29. 

Inequality for Duct VA Duct VB Duct VC 

Equation 5.30 0.32% 0.36% 0.26% 
Equation 5.31 0.32% 0.36% 0.26% 
Equation 5.32 0.32% 0.36% 0.26% 
Equation 5.33 0.32% 0.36% 0.26% 

Beginning the process of removing the far wake velocity from the 𝐶𝐶𝑃𝑃 equation, 
Bernoulli’s equation was applied between the duct exit and far downstream in Equation 
5.34. 

𝑝𝑝𝑒𝑒 + 𝛾𝛾𝑃𝑃,𝑒𝑒
1
2𝜌𝜌𝑢𝑢𝑒𝑒

2 = 𝑝𝑝∞ +
1
2 𝜌𝜌𝑢𝑢𝑤𝑤

2 Equation 5.34 

Equation 5.35 is then a dimensionless form of Equation 5.34. 

𝒰𝒰𝑤𝑤
2 = 𝛾𝛾𝑃𝑃,𝑒𝑒𝒰𝒰𝑒𝑒

2 +
𝑝𝑝𝑒𝑒 − 𝑝𝑝∞
1

2� 𝜌𝜌𝑢𝑢∞2
Equation 5.35 

As was discussed in Section 5.4, there was a small numerical inaccuracy in the far wake 
simulation results. Compensating by using the computed far wake pressure rather than 
assuming the free stream value showed the equations to be valid with the inequalities 
in Table 5.23. 

Table 5.23: Largest absolute inequalities found for Equation 5.34 and Equation 5.35, as a 
percentage of the median right hand side magnitude across rotor loadings. Sørensen 
designated these relationships, without the correction factors, 3.30 and 3.31. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.34 1×10-11% 7×10-12% 1×10-11% 
Equation 5.35 1×10-11% 7×10-12% 1×10-11% 
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Using the relationship for far wake velocity, Equation 5.33 was modified to give 
Equation 5.36. 

𝐶𝐶𝑃𝑃 = 𝒰𝒰𝑟𝑟�1 − 𝐶𝐶𝑝𝑝,𝑒𝑒 + �𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑�𝛾𝛾𝑃𝑃,𝑟𝑟 − 𝛾𝛾𝑃𝑃,𝑒𝑒𝒜𝒜𝑒𝑒
−2� − 𝛾𝛾𝑃𝑃,𝑟𝑟�𝒰𝒰𝑟𝑟

2� Equation 5.36

Small numerical inaccuracies also affected this equation. These were compensated for 
by replacing the computed value of the duct exit pressure coefficient by one calculated 
from the mass flow rate at the rotor, mass continuity, and the velocity correction factor 
at the duct exit. Although the differences for 𝐶𝐶𝑝𝑝,𝑒𝑒 were less than 0.5%, Table 5.24 shows 
a large impact existed on the inequalities for duct VC. It also appears that the 
relationship is valid. 

Table 5.24: Largest absolute inequalities found for Equation 5.36, as a percentage of the 
median right hand side magnitude across rotor loadings. Sørensen designated this 
relationship, without the correction factors, 3.32. 

Inequality for Equation 5.36 Duct VA Duct VB Duct VC 
Using 𝐶𝐶𝑝𝑝,𝑒𝑒 as computed 0.11% 0.04% 5.32% 

Using calculated 𝐶𝐶𝑝𝑝,𝑒𝑒 2×10-13% 1×10-13% 2×10-13% 

With an appropriate equation for the power coefficient developed, Sørensen made 
simplifying assumptions in an attempt to find the optimum operating condition. By 
assuming that 𝐶𝐶𝑝𝑝,𝑒𝑒 and 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 do not vary strongly with mass flow rate near the 
optimum, Equation 5.36 could be differentiated with 𝐶𝐶𝑝𝑝,𝑒𝑒 and 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 set as constants. 
This led to the optimum value for 𝒰𝒰𝑟𝑟 shown in Equation 5.37. 

𝒰𝒰𝑟𝑟,𝑇𝑇𝑝𝑝𝑇𝑇 = �
1 − 𝐶𝐶𝑝𝑝,𝑒𝑒

3�𝛾𝛾𝑃𝑃,𝑟𝑟 − 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑�𝛾𝛾𝑃𝑃,𝑟𝑟 − 𝛾𝛾𝑃𝑃,𝑒𝑒𝒜𝒜𝑒𝑒
−2��

Equation 5.37 

It was necessary to assume here that the velocity correction factors were also constant 
near the optimum. The computed values, however, supported this assumption for all 
factors included except 𝛾𝛾𝑃𝑃,𝑟𝑟 for duct VC. 

Based on his result for the optimum rotor velocity, Sørensen derived the maximum 
power coefficient in Equation 5.38 and associated rotor loading in Equation 5.39. 

𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
2
3�

1 − 𝐶𝐶𝑝𝑝,𝑒𝑒

3�𝛾𝛾𝑃𝑃,𝑟𝑟 − 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑�𝛾𝛾𝑃𝑃,𝑟𝑟 − 𝛾𝛾𝑃𝑃,𝑒𝑒𝒜𝒜𝑒𝑒
−2��

�1 − 𝐶𝐶𝑝𝑝,𝑒𝑒� Equation 5.38 

𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 =
2
3 �1 − 𝐶𝐶𝑝𝑝,𝑒𝑒� Equation 5.39 

Table 5.25 shows that large inequalities existed for these relationships, and using the 
calculated value for 𝐶𝐶𝑝𝑝,𝑒𝑒 as in Equation 5.36 did not reduce them. The relationships are 
therefore not valid, likely due to the assumptions being invalid. 
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Table 5.25: Absolute inequalities found at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 for Equation 5.37 to Equation 5.39, as a 
percentage of the right hand side. Sørensen designated these relationships, without the 
correction factors, 3.33 to 3.35. 

Inequality for Duct VA Duct VB Duct VC 

Equation 5.37 30.5% 14.1% 46.8% 
Equation 5.38 15.3% 3.12% 38.6% 
Equation 5.39 35.1% 15.1% 58.2% 

5.5.2 Calculations with Duct Force 

Sørensen then began investigating the role of the force on the duct. Beginning with 
Bernoulli’s equation applied from far upstream to far downstream, and assuming no 
losses inside the duct, he found Equation 5.40. 

Δ𝑝𝑝 =
1
2𝜌𝜌

(𝑢𝑢∞2 − 𝑢𝑢𝑤𝑤2 ) Equation 5.40 

Table 5.26 confirms the validity of this relationship. 

Table 5.26: Largest absolute inequalities found for Equation 5.40, as a percentage of the 
median right hand side magnitude across rotor loadings. Sørensen designated this 
relationship 3.36. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.40 0.43% 0.52% 0.35% 

Applying the momentum equation to a control volume extending from far upstream to 
far downstream gave Equation 5.41, where 𝐹𝐹𝑇𝑇 is the thrust force on the rotor and 𝐹𝐹𝐷𝐷 is 
the axial force on the duct. 

𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐷𝐷 = 𝜌𝜌𝑢𝑢𝑟𝑟𝐴𝐴𝑟𝑟(𝑢𝑢∞2 − 𝑢𝑢𝑤𝑤2 ) Equation 5.41 

Although the control volume being analysed passes through the inside of the duct, 
personal communication with Sørensen confirmed that 𝐹𝐹𝐷𝐷 is the total force acting on 
the duct and not just the force on the portion in contact with the control volume. Table 
5.27 shows that the equation is indeed valid, with reduced discretisation convergence 
for duct drag and far wake conditions at high rotor loadings likely explaining the 0.76% 
result. Around 𝐶𝐶𝑇𝑇 = 8/9, the inequality drops below 0.5% for duct VB and continues to 
drop as the rotor loading decreases. 

Table 5.27: Largest absolute inequalities found for Equation 5.41, as a percentage of the 
median right hand side magnitude across rotor loadings. Sørensen designated this 
relationship 3.37. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.41 0.58% 0.76% 0.58% 
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Combining Equation 5.40 and Equation 5.41, and making the result dimensionless, gave 
Equation 5.42. 

 𝒰𝒰𝑟𝑟 =
1
2

(1 + 𝒰𝒰𝑤𝑤) �1 +
𝐹𝐹𝐷𝐷
𝐹𝐹𝑇𝑇
� Equation 5.42 

Assuming zero losses in the duct, Equation 5.42 was substituted into Equation 5.33 to 
give Equation 5.43. 

 𝐶𝐶𝑃𝑃 =
1
2

(1 + 𝒰𝒰𝑤𝑤)(1−𝒰𝒰𝑤𝑤
2 ) �1 +

𝐹𝐹𝐷𝐷
𝐹𝐹𝑇𝑇
� Equation 5.43 

Table 5.28 shows that both of these relationships are valid. 

Table 5.28: Largest absolute inequalities found for Equation 5.42 and Equation 5.43, as a 
percentage of the median right hand side magnitude across rotor loadings. Sørensen 
designated these relationships 3.39 and 3.40. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.42 0.13% 0.22% 0.30% 
Equation 5.43 0.19% 0.18% 0.08% 

 
Sørensen then assumed that 𝐹𝐹𝐷𝐷 𝐹𝐹𝑇𝑇⁄  was independent of the far wake velocity in order to 
differentiate Equation 5.43 and find the maximum power in Equation 5.44. 

 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
16
27 �1 +

𝐹𝐹𝐷𝐷
𝐹𝐹𝑇𝑇
� Equation 5.44 

With changes of less than 0.2% with increased discretisation for the included variables, 
the inequalities in Table 5.29 suggest that the equation is not valid. Sørensen also 
derived the value of 1/3 for 𝒰𝒰𝑤𝑤,𝑇𝑇𝑝𝑝𝑇𝑇  under the same assumption, which was in error by 
10-14% for ducts VA-VC. While there is some agreement for Equation 5.44, its 
usefulness as an approximation is limited: one must already know 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 so that the 
optimum 𝐹𝐹𝐷𝐷 𝐹𝐹𝑇𝑇⁄  can be used, and using 𝐹𝐹𝐷𝐷 𝐹𝐹𝑇𝑇⁄  at 𝐶𝐶𝑇𝑇 = 0.15 gave inequalities ≈20%. 

Table 5.29: Absolute inequalities found at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 for Equation 5.44, as a percentage of the right 
hand side. Sørensen designated this relationship 3.42. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.44 2.25% 4.03% 2.41% 

 

5.5.3 Final Simplifications 

Beginning an alternative approach, Sørensen applied the assumption of no losses in the 
duct to Equation 5.36 and found Equation 5.45. 

 𝐶𝐶𝑃𝑃 = 𝒰𝒰𝑟𝑟�1 − 𝐶𝐶𝑝𝑝,𝑒𝑒 − 𝛾𝛾𝑃𝑃,𝑒𝑒𝒜𝒜𝑒𝑒
−2𝒰𝒰𝑟𝑟

2� Equation 5.45 
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With the simulation results having zero viscous losses, the inequalities for this equation 
were identical to those for Equation 5.36. Table 5.30 confirms that the relationship is 
valid. 

Table 5.30: Largest absolute inequalities found for Equation 5.45, as a percentage of the 
median right hand side magnitude across rotor loadings. Sørensen designated this 
relationship, without the correction factor, 3.43. 

Inequality for Equation 5.45 Duct VA Duct VB Duct VC 
Using 𝐶𝐶𝑝𝑝,𝑒𝑒 as computed 0.11% 0.04% 5.32% 

Using calculated 𝐶𝐶𝑝𝑝,𝑒𝑒 2×10-13% 1×10-13% 4×10-13% 

Assuming now that the duct exit pressure was independent of mass flow near the 
optimum rotor loading, Sørensen derived the optimum operating conditions in 
Equation 5.46 to Equation 5.48. 

𝒰𝒰𝑟𝑟,𝑇𝑇𝑝𝑝𝑇𝑇 = �
1 − 𝐶𝐶𝑝𝑝,𝑒𝑒

3𝛾𝛾𝑃𝑃,𝑒𝑒𝒜𝒜𝑒𝑒
−2

Equation 5.46 

𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
2

3�3𝛾𝛾𝑃𝑃,𝑒𝑒𝒜𝒜𝑒𝑒
−2
�1 − 𝐶𝐶𝑝𝑝,𝑒𝑒��1 − 𝐶𝐶𝑝𝑝,𝑒𝑒 Equation 5.47 

𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 =
2
3 �1 − 𝐶𝐶𝑝𝑝,𝑒𝑒� Equation 5.48 

Table 5.31 shows that none of these relationships are valid, and the inequalities were 
not improved by using the calculated value for 𝐶𝐶𝑝𝑝,𝑒𝑒 . 

Table 5.31: Absolute inequalities found at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 for Equation 5.46 to Equation 5.48, as a 
percentage of the right hand side. Sørensen designated these relationships, without the 
correction factors, 3.44 to 3.46. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.46 30.5% 14.1% 46.8% 
Equation 5.47 15.3% 3.12% 38.6% 
Equation 5.48 35.1% 15.1% 58.2% 

As a final step, Sørensen assumed that both the duct exit pressure and 𝐹𝐹𝐷𝐷 𝐹𝐹𝑇𝑇⁄  were 
independent of mass flow at the optimum rotor loading. Using 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9, derived 
from the optimum 𝒰𝒰𝑤𝑤 = 1/3, with Equation 5.48 gave 𝐶𝐶𝑝𝑝,𝑒𝑒 = -1/3. Inserting this value 
into Equation 5.47 gave Equation 5.49. 

𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
16

27�𝛾𝛾𝑃𝑃,𝑒𝑒
�
𝐴𝐴𝑒𝑒
𝐴𝐴𝑟𝑟
� Equation 5.49 
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It has already been shown in Section 3.1.2 that the area ratio alone is not sufficient to 
characterise the performance of a duct, and Table 5.32 shows that the addition of 𝛾𝛾𝑃𝑃,𝑒𝑒 
does not make this relationship valid. 

Table 5.32: Absolute inequalities found at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 for Equation 5.49, as a percentage of the right 
hand side. Sørensen designated this relationship, without the correction factor, 3.47. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.49 38.1% 0.90% 93.5% 

5.5.4 Invalid Assumptions 

Sørensen made three important and untested assumptions in an effort to find a 
simplified ducted turbine theory. These were that the exit pressure coefficient does not 
vary with mass flow rate and that the ratio of duct drag to rotor thrust does not vary 
with mass flow rate or far wake velocity. All of these assumptions were applied at the 
optimum rotor loading to derive the optimum conditions.  

Each of these assumptions was tested by plotting against the dimensionless mass flow 
rate �̇�𝑚 (𝜌𝜌𝐴𝐴𝑟𝑟𝑢𝑢∞)⁄  and dimensionless far wake velocity 𝑢𝑢𝑤𝑤 𝑢𝑢∞⁄ , although it was not 
possible to vary these parameters in isolation: 𝐶𝐶𝑇𝑇 was varied to cause the changes in 
mass flow and velocity. Figure 5.6 and Figure 5.7 show the results of these tests, and all 
had a clear variation that did not reduce near the optimum conditions. The assumptions 
therefore do not hold, explaining why the simplified equations derived are not valid. 

Figure 5.6: Difference from the value at the optimum rotor loading for exit pressure coefficient 
𝑪𝑪𝒑𝒑,𝒆𝒆 (left) and force ratio 𝑭𝑭𝑫𝑫 𝑭𝑭𝑻𝑻⁄  (right), for each value of dimensionless mass flow rate 
�̇�𝒎 𝝆𝝆𝑨𝑨𝒓𝒓𝒖𝒖∞⁄  and for ducts VA, VB, and VC.  
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Figure 5.7: Difference from the value at the optimum rotor loading for force ratio 𝑭𝑭𝑫𝑫 𝑭𝑭𝑻𝑻⁄ , for 
each value of dimensionless far wake velocity 𝒖𝒖𝒘𝒘 𝒖𝒖∞⁄  and for ducts VA, VB, and VC. 

5.5.5 Summary: Partly Valid 

Sørensen derived a number of valid equations, some of which require the inclusion of 
correction factors to be valid outside one dimensional flow, as Table 5.33 shows. The 
relationships resulting from simplifying assumptions, however, were unfortunately 
found to be invalid; empirical parameters are still required to calculate duct 
performance.  

Table 5.33: Summary of conclusions for Sørensen’s Equations. 

Table of 
Inequalities 

Sørensen’s 
Designation Conclusion for Relationship 

Table 5.22 3.23, 3.24 Valid 
Table 5.22 3.28, 3.29 Valid with correction factors 
Table 5.23 3.30, 3.31 Valid with correction factors 
Table 5.24 3.32 Valid with correction factors 
Table 5.25 3.33 – 3.35 Not valid 
Table 5.26 3.36 Valid 
Table 5.27 3.37 Valid 

- 3.38 Equal to 3.39 
Table 5.28 3.39, 3.40 Valid 

- 3.41 Equal to 3.36 
Table 5.29 3.42 Not valid 
Table 5.30 3.43 Valid with correction factor 
Table 5.31 3.44 – 3.46 Not valid 
Table 5.32 3.47 Not Valid 
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5.6 Werle and Presz’s Theory 
Werle and Presz [108] took a different approach to simplifying ducted turbine theory. 
While not aiming to completely remove empirical parameters as Sørensen did, they 
drew inspiration from ducted propeller theory to define a duct axial force coefficient 
meant to be invariant with rotor loading.  

5.6.1 Calculating Power from Duct Drag 

Their description of a ducted turbine began with the relationship for the power 
extracted in Equation 5.50, derived from mass, momentum, and energy conservation. 

𝑃𝑃 = �
1
2𝜌𝜌𝐴𝐴𝑟𝑟

(𝑢𝑢𝑤𝑤2 − 𝑢𝑢∞2 ) + 𝐹𝐹𝐷𝐷�
(𝑢𝑢𝑤𝑤 + 𝑢𝑢∞)

2
Equation 5.50 

In this equation 𝐹𝐹𝐷𝐷 was modelled in the same way as it has been for ducted propellers. 
Logically this force should therefore be the total for the duct, although neither Werle 
and Presz nor their ducted propeller reference [192] show that to be true. Using the 
total axial force in Table 5.34 nevertheless shows the relationship to be valid. Note that 
power extraction by the rotor results in a negative value of 𝑃𝑃 in this equation. 

Table 5.34: Largest absolute inequalities found for Equation 5.50, as a percentage of the 
median right hand side magnitude across rotor loadings. Werle and Presz designated this 
relationship 1. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.50 0.07% 0.12% 0.13% 

Equation 5.51 defines their duct axial force coefficient 𝐶𝐶𝑆𝑆. 

𝐹𝐹𝐷𝐷 =
1
2𝜌𝜌𝐴𝐴𝑟𝑟

(𝑢𝑢𝑤𝑤2 − 𝑢𝑢∞2 )𝐶𝐶𝑆𝑆 Equation 5.51 

Using this coefficient in the relationship for velocity at the rotor gave Equation 5.52. 

𝑢𝑢𝑟𝑟 =
1
2

(1 + 𝐶𝐶𝑆𝑆)(𝑢𝑢𝑤𝑤 + 𝑢𝑢∞) Equation 5.52 

Werle and Presz stated that 𝐶𝐶𝑆𝑆 can be measured at 𝐶𝐶𝑇𝑇 = 0 and used for all rotor 
loadings, but Table 5.35 shows that large inequalities ensue unless 𝐶𝐶𝑆𝑆 is calculated for 
each rotor loading individually. While the relationship in Equation 5.52 is therefore 
valid, the assumption of a constant 𝐶𝐶𝑆𝑆 is not. Note that while the variable 𝐶𝐶𝑆𝑆 was 
calculated directly from force using Equation 5.51, the constant 𝐶𝐶𝑆𝑆 value had to be 
calculated from Equation 5.52 itself to avoid a result of 0 0⁄  at 𝐶𝐶𝑇𝑇 = 0. As inequalities 
from the 𝐶𝐶𝑆𝑆 assumption were also greater than 10% in the remaining equations, they 
were tested with a variable 𝐶𝐶𝑆𝑆 to check for other inaccuracies.  
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Table 5.35: Largest absolute inequalities found for Equation 5.52, as a percentage of the 
median right hand side magnitude across rotor loadings. Werle and Presz designated this 
relationship 3a. 

Inequality for Equation 5.52 Duct VA Duct VB Duct VC 

Using 𝐶𝐶𝑆𝑆 at 𝐶𝐶𝑇𝑇 = 0 22.0% 28.3% 22.5% 
Using variable 𝐶𝐶𝑆𝑆 0.26% 0.25% 0.32% 

The total drag on the ducted turbine was then given as Equation 5.53, where 𝐹𝐹𝑇𝑇𝐷𝐷 is the 
thrust force 𝐹𝐹𝑇𝑇 plus the duct drag force 𝐹𝐹𝐷𝐷. 

𝐹𝐹𝑇𝑇𝐷𝐷 =
(1 + 𝐶𝐶𝑆𝑆)𝑃𝑃

𝑢𝑢𝑟𝑟
Equation 5.53 

A second calculation for 𝐹𝐹𝑇𝑇𝐷𝐷 was then given using Equation 5.54. 

𝐹𝐹𝑇𝑇𝐷𝐷 =
2𝑃𝑃

(𝑢𝑢𝑤𝑤 + 𝑢𝑢∞)
Equation 5.54 

Table 5.36 shows that Equation 5.53 is valid when using the variable version of 𝐶𝐶𝑆𝑆, and 
– with the dependence on 𝐶𝐶𝑆𝑆 removed – that Equation 5.54 is valid without proviso.

Table 5.36: Largest absolute inequalities found for Equation 5.53 and Equation 5.54, as a 
percentage of the median right hand side magnitude across rotor loadings. Werle and Presz 
designated these relationships 3b. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.53 using variable 𝐶𝐶𝑆𝑆 0.18% 0.06% 0.20% 

Equation 5.54 0.20% 0.33% 0.27% 

Werle and Presz asserted at this point that Equation 5.50 to Equation 5.54 can be used 
to derive the maximum power coefficient in Equation 5.55, which was made positive for 
power extraction by using −𝑃𝑃 in the power coefficient definition. 

𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
16
27

(1 + 𝐶𝐶𝑆𝑆) Equation 5.55 

Table 5.37 suggests that this relationship is not valid, even when using 𝐶𝐶𝑆𝑆 at 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. All 
the relationships used to derive it are valid with variable 𝐶𝐶𝑆𝑆, so the invalid result here 
comes from an unstated assumption of 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9: this assumption was necessary to 
re-derive Equation 5.55, and it can also be found by substituting 𝑢𝑢𝑤𝑤 from Equation 5.56 
below into a dimensionless form of Equation 5.40. Section 3.1.4 shows that 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9 
is not a valid assumption. 

Table 5.37: Absolute inequalities found at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 for Equation 5.55, as a percentage of the right 
hand side. Werle and Presz designated this relationship 4. 

Inequality for Equation 5.55 Duct VA Duct VB Duct VC 
Using 𝐶𝐶𝑆𝑆 at 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 2.37% 4.09% 2.53% 
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Werle and Presz then derived the optimum values in Equation 5.56 to Equation 5.58. 

𝒰𝒰𝑤𝑤,𝑇𝑇𝑝𝑝𝑇𝑇 =
1
3

Equation 5.56 

𝒰𝒰𝑟𝑟,𝑇𝑇𝑝𝑝𝑇𝑇 =
2
3

(1 + 𝐶𝐶𝑆𝑆) Equation 5.57 

�
𝒰𝒰𝑟𝑟

𝒰𝒰𝑤𝑤
�
𝑇𝑇𝑝𝑝𝑇𝑇

= 2(1 + 𝐶𝐶𝑆𝑆) Equation 5.58 

As expected, Table 5.38 shows that these relationships are not valid. 

Table 5.38: Absolute inequalities found at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 for Equation 5.56 to Equation 5.58, as a 
percentage of the right hand side. Werle and Presz designated these relationships 5a, 5b, 
and 5c. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.56 35.0% 45.7% 34.9% 

Equation 5.57 using 𝐶𝐶𝑆𝑆 at 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 8.58% 11.3% 8.40% 
Equation 5.58 using 𝐶𝐶𝑆𝑆 at 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 19.6% 23.6% 19.6% 

Deriving now a relationship for power coefficient based on rotor loading and duct drag, 
Werle and Presz found Equation 5.59. 

𝐶𝐶𝑃𝑃 = �1 +
𝐶𝐶𝑆𝑆
2 �𝐶𝐶𝑇𝑇�1 + �1 − 𝐶𝐶𝑇𝑇� Equation 5.59 

Despite being derived from the valid Equation 5.50 to Equation 5.54, along with the 
standard definition for 𝐶𝐶𝑇𝑇, Table 5.39 shows large inequalities. Perhaps there was 
another unstated assumption in the derivation. In any case, the relationship is not valid. 

Table 5.39: Largest absolute inequalities found for Equation 5.59, as a percentage of the 
median right hand side magnitude across rotor loadings. Werle and Presz designated this 
relationship 7. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.59 using variable 𝐶𝐶𝑆𝑆 32.9% 45.3% 25.5% 

5.6.2 Calculating Power from Exit Pressure 

Werle and Presz then began a derivation for 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 from 𝐶𝐶𝑝𝑝,𝑒𝑒 with Equation 5.60. 

𝐶𝐶𝑝𝑝,𝑒𝑒 = 𝒰𝒰𝑤𝑤
2 − 𝛾𝛾𝑃𝑃,𝑒𝑒𝒜𝒜𝑒𝑒

−2𝒰𝒰𝑟𝑟
2 Equation 5.60 

This form of Equation 5.60 is different from that shown by Werle and Presz, which 
instead divided rotor velocity by exit area. A typographical error is the most likely 
explanation for the version they presented, as correct relationships were derived from 
it and only a preprint of their paper was accessible. 
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The inequalities for ducts VB and VC were slightly elevated, as Table 5.40 shows. For VB, 
this is simply numerical error: the inequality was at its maximum at high 𝐶𝐶𝑇𝑇, where 
discretisation convergence was least good, and calculating 𝑢𝑢𝑤𝑤 from 𝐶𝐶𝑇𝑇 through 
Equation 5.40 reduced the inequality to 0.01%. The inequality was exaggerated at low 
𝐶𝐶𝑇𝑇 by the median magnitude calculation for VC, with the largest inequality as a standard 
percentage being 0.50%. The relationship was therefore judged valid. 

Table 5.40: Largest absolute inequalities found for Equation 5.60, as a percentage of the 
median right hand side magnitude across rotor loadings. Werle and Presz designated this 
relationship, without the correction factor, 8a. 

Inequality for Duct VA Duct VB Duct VC 

Equation 5.60 0.35% 1.12% 1.23% 

Their alternative calculation for exit pressure coefficient is shown in Equation 5.61. 

𝐶𝐶𝑝𝑝,𝑒𝑒 = 𝒰𝒰𝑤𝑤
2 − 𝛾𝛾𝑃𝑃,𝑒𝑒 �

1 + 𝐶𝐶𝑆𝑆
2 �

2

�1 − 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 + 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝒜𝒜𝑒𝑒
−2�(1 + 𝒰𝒰𝑤𝑤)2 Equation 5.61

Table 5.41 shows that the relationship is valid with the variable 𝐶𝐶𝑆𝑆. 

Table 5.41: Largest absolute inequalities found for Equation 5.61, as a percentage of the 
median right hand side magnitude across rotor loadings. Werle and Presz designated this 
relationship, without the correction factor, 8a. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.61 using variable 𝐶𝐶𝑆𝑆 0.21% 0.55% 0.23% 

Werle and Presz concluded with the additional relationship for 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 in Equation 5.62. 

27
16𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =

1
2�

1 − 9𝐶𝐶𝑝𝑝,𝑒𝑒

𝛾𝛾𝑃𝑃,𝑒𝑒�1 − 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 + 𝜂𝜂𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝒜𝒜𝑒𝑒
−2�

Equation 5.62 

The derivation of this equation required the 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9 assumption. Combined with 
the inequalities in Table 5.42, it is clear that this is not a valid relationship.  

Table 5.42: Absolute inequalities found at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 for Equation 5.62, as a percentage of the right 
hand side. Werle and Presz designated this relationship, without the correction factor, 9. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.62 5.97% 3.09% 8.22% 

5.6.3 Summary: Partly Valid 

The validation here followed a similar pattern to that for Sørensen’s theory: valid initial 
equations but invalid simplifying assumptions, although here Equation 5.59 was also 
invalid despite having no stated assumptions. Werle and Presz assumed that the duct 
axial force coefficient 𝐶𝐶𝑆𝑆 was constant with rotor loading, which was found to be 
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incorrect. As Table 5.43 shows, allowing 𝐶𝐶𝑆𝑆 to vary changed some of the relationships to 
valid ones. The other simplifying assumption made was that 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9. Again this is 
not the case, and the equations derived for optimum conditions are not valid. 

Table 5.43: Summary of conclusions for Werle and Presz’s Equations. 

Table of 
Inequalities 

Werle and Presz’s 
Designation Conclusion for Relationship 

Table 5.34 1 Valid 
Table 5.35 3a Valid with variable 𝐶𝐶𝑆𝑆 
Table 5.36 3b Valid with variable 𝐶𝐶𝑆𝑆 
Table 5.36 3b Valid 
Table 5.37 4 Not valid 
Table 5.38 5a – 5c Not valid 
Table 5.39 7 Not valid 

Table 5.40 8a Valid with correction factor and 
typographical correction 

Table 5.41 8a Valid with variable 𝐶𝐶𝑆𝑆  
and correction factor 

Table 5.42 9 Not valid 
 

5.7 Jamieson’s Theory 
Jamieson took a unique approach in developing his generalised actuator disc theory 
[186]. Rather than attacking the problem directly, he introduced the concept of an ideal 
diffuser: one of infinitely variable shape to account for the changing interaction 
between the diffuser and a variably loaded rotor. The concept, then, is entirely 
theoretical in nature and uses a quite different definition of ‘ideal’ from authors who 
use it to mean ‘without viscous losses’. It is also a concept that has not yet been fully 
defined. This section therefore seeks not to validate the theory but rather to determine 
which equations apply to real ducts and which to ideal diffusers, and to understand 
how the concept of an ideal diffuser is expressed in the equations. 

5.7.1 Equations Valid for Real Ducts 

Jamieson began with a set of relationships derived from the standard definitions of the 
power and thrust coefficients. The first of these was Equation 5.63. 

 
𝑃𝑃
𝐹𝐹𝑇𝑇

= 𝑢𝑢∞
𝐶𝐶𝑃𝑃
𝐶𝐶𝑇𝑇

 Equation 5.63 

Calculating power extracted as the product of thrust and velocity at the rotor, defined in 
terms of the axial induction factor at the rotor 𝑎𝑎𝑟𝑟, gave Equation 5.64. 

 𝑃𝑃 = 𝐹𝐹𝑇𝑇𝑢𝑢∞(1− 𝑎𝑎𝑟𝑟) Equation 5.64 
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From these two relationships, Equation 5.65 was derived. 

𝐶𝐶𝑃𝑃
𝐶𝐶𝑇𝑇

= (1 − 𝑎𝑎𝑟𝑟) Equation 5.65 

Finally, the thrust coefficient was given as Equation 5.66. 

𝐶𝐶𝑇𝑇 =
2Δ𝑝𝑝
𝜌𝜌𝑢𝑢∞2

Equation 5.66 

Application of Bernoulli’s equation between far upstream and the upstream side of the 
rotor gave Equation 5.67. 

𝑝𝑝∞ +
1
2𝜌𝜌𝑢𝑢∞

2 = 𝑝𝑝𝑟𝑟𝑜𝑜 + 𝛾𝛾𝑃𝑃,𝑟𝑟
1
2𝜌𝜌𝑢𝑢∞

2 (1− 𝑎𝑎𝑟𝑟)2 Equation 5.67 

Completing the use of Bernoulli’s equation was Equation 5.68, applied between the 
downstream side of the actuator disc and far downstream.   

𝑝𝑝𝑟𝑟𝑜𝑜 − Δ𝑝𝑝 + 𝛾𝛾𝑃𝑃,𝑟𝑟
1
2𝜌𝜌𝑢𝑢∞

2 (1− 𝑎𝑎𝑟𝑟)2 = 𝑝𝑝∞ +
1
2𝜌𝜌𝑢𝑢∞

2 (1 − 𝑎𝑎𝑤𝑤)2 Equation 5.68

Combining Equation 5.66 to Equation 5.68 then gave Equation 5.69. 

𝐶𝐶𝑇𝑇 = 2𝑎𝑎𝑤𝑤 − 𝑎𝑎𝑤𝑤2 Equation 5.69 

All of these relationships apply to real ducted turbines, as Table 5.44 shows, although 
small numerical errors in the far downstream results had to be compensated for in 
Equation 5.68 by using the computed pressure in the far wake. 

Table 5.44: Largest absolute inequalities found for Equation 5.63 to Equation 5.69, as a 
percentage of the median right hand side magnitude across rotor loadings. Jamieson 
designated these relationships, without the correction factors, 1 to 7. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.63 9×10-14% 9×10-14% 1×10-13% 
Equation 5.64 1×10-14% 2×10-14% 2×10-14% 
Equation 5.65 1×10-13% 9×10-14% 1×10-13% 
Equation 5.66 1×10-13% 9×10-14% 1×10-13% 
Equation 5.67 5×10-12% 2×10-12% 2×10-11% 

Equation 5.68 using 𝑝𝑝∞ in wake 1.37% 1.65% 1.14% 
Equation 5.68 using computed 𝑝𝑝 in wake 2×10-11% 4×10-12% 6×10-11% 

Equation 5.69 0.43% 0.52% 0.35% 
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5.7.2 Equations for Ideal Diffusers Only 

At this point, one main piece of the puzzle remains for calculating the power extracted: 
a connection between the axial induction in the far wake and that at the rotor. Jamieson 
therefore derived the solution in Equation 5.70. 

𝑎𝑎𝑤𝑤 =
2(𝑎𝑎𝑟𝑟 − 𝑎𝑎0)

(1 − 𝑎𝑎0)
Equation 5.70 

This relationship introduces 𝑎𝑎0, which is the axial induction at the rotor without any 
energy extraction. This parameter is the key to the rest of Jamieson’s theory, and serves 
as the single empirical parameter – measured at only one rotor loading – required to 
characterise the performance of an ideal diffuser. Table 5.45 makes clear, however, that 
this is the point where the equations no longer apply to real ducted turbines. 

To compare with a relationship that does apply to real ducts, an alternative was derived 
for this work. An application of the momentum equation, Equation 5.69, and the duct 
drag coefficient definition, led to Equation 5.71. 

𝑎𝑎𝑤𝑤 = 𝑎𝑎𝑟𝑟 + �𝑎𝑎𝑟𝑟2 + 𝐶𝐶𝐷𝐷 Equation 5.71 

This relationship, which Table 5.45 confirms is valid for real ducted turbines, has two 
main differences from Equation 5.70: 𝐶𝐶𝐷𝐷 replaced 𝑎𝑎0 as the empirical parameter and 
the empirical parameter becomes one that varies with 𝐶𝐶𝑇𝑇. Both of these potentially 
show how the concept of an ideal diffuser is expressed in the equations. 

Table 5.45: Largest absolute inequalities found for Equation 5.70 and Equation 5.71, as a 
percentage of the median right hand side magnitude across rotor loadings. Jamieson 
designated this relationship 8. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.70 42.8% 51.4% 42.8% 
Equation 5.71 0.43% 0.81% 0.74% 

Jamieson then substituted for 𝑎𝑎𝑤𝑤 in Equation 5.69. This gave Equation 5.72 for the ideal 
diffuser and Equation 5.73 using the alternative 𝑎𝑎𝑤𝑤 derived here. 

𝐶𝐶𝑇𝑇 =
4(𝑎𝑎𝑟𝑟 − 𝑎𝑎0)(1 − 𝑎𝑎0)

(1 − 𝑎𝑎0)2
Equation 5.72 

𝐶𝐶𝑇𝑇 = −2𝑎𝑎𝑟𝑟2 + 2𝑎𝑎𝑟𝑟 + (2 − 2𝑎𝑎𝑟𝑟)�𝑎𝑎𝑟𝑟2 + 𝐶𝐶𝐷𝐷 − 𝐶𝐶𝐷𝐷 Equation 5.73 

From this relationship for 𝐶𝐶𝑇𝑇 and Equation 5.65, Jamieson then found Equation 5.74. 
The alternative 𝑎𝑎𝑤𝑤 version is given in Equation 5.75. 

𝐶𝐶𝑃𝑃 =
4(𝑎𝑎𝑟𝑟 − 𝑎𝑎0)(1 − 𝑎𝑎0)2

(1 − 𝑎𝑎0)2
Equation 5.74 
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𝐶𝐶𝑃𝑃 = (1 − 𝑎𝑎𝑟𝑟) �−2𝑎𝑎𝑟𝑟2 + 2𝑎𝑎𝑟𝑟 + (2 − 2𝑎𝑎𝑟𝑟)�𝑎𝑎𝑟𝑟2 + 𝐶𝐶𝐷𝐷 − 𝐶𝐶𝐷𝐷� Equation 5.75

Table 5.46 shows that the 𝑎𝑎0 versions of the last two equations do not apply to a real 
duct while the alternative versions do.  

Table 5.46: Largest absolute inequalities found for Equation 5.72 to Equation 5.75, as a 
percentage of the median right hand side magnitude across rotor loadings. Jamieson 
designated these relationships 9 and 10. 

Inequality for Duct VA Duct VB Duct VC 

Equation 5.72 128.9% 85.6% 151.3% 
Equation 5.73 0.04% 0.26% 0.13% 
Equation 5.74 123.8% 88.9% 143.6% 
Equation 5.75 0.03% 0.18% 0.15% 

As 𝑎𝑎0 is fixed for a particular ideal diffuser, Equation 5.74 can be differentiated to find 
the maximum power without any simplifying assumptions. Jamieson found Equation 
5.76 to Equation 5.78 for the optimum conditions. 

𝑎𝑎𝑟𝑟,𝑇𝑇𝑝𝑝𝑇𝑇 =
1 + 2𝑎𝑎0

3
Equation 5.76 

𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
16
27

(1 − 𝑎𝑎0) Equation 5.77 

𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 =
8
9

Equation 5.78 

As expected, Table 5.47 shows that these relationships do not apply to a real turbine. 

Table 5.47: Absolute inequalities found at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 for Equation 5.76 to Equation 5.78, as a 
percentage of the right hand side. Jamieson designated these relationships 11 to 13. 

Inequality for Duct VA Duct VB Duct VC 
Equation 5.76 25.8% 119.6% 20.1% 
Equation 5.77 20.0% 23.9% 21.0% 
Equation 5.78 10.1% 13.8% 10.1% 

Finally, Jamieson derived Equation 5.79 to relate the power and thrust coefficients 
using 𝑎𝑎0. 

𝐶𝐶𝑃𝑃 =
1
2𝐶𝐶𝑇𝑇

(1 − 𝑎𝑎0)�1 + �1 − 𝐶𝐶𝑇𝑇� Equation 5.79 

Repeating this process for the alternative equations gave Equation 5.80, which is 
reasonably similar in form to the ideal version. 

𝐶𝐶𝑃𝑃 =
1
2

(𝐶𝐶𝑇𝑇 + 𝐶𝐶𝐷𝐷)�1 + �1 − 𝐶𝐶𝑇𝑇� Equation 5.80 
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It can be seen from Table 5.48 that the pattern continued and the ideal diffuser 
relationship does not apply to real ducts.  

Table 5.48: Largest absolute inequalities found for Equation 5.79 and Equation 5.80, as a 
percentage of the median right hand side magnitude across rotor loadings. Jamieson 
designated this relationship 14. 

Inequality for Duct VA Duct VB Duct VC 

Equation 5.79 26.8% 34.5% 27.5% 
Equation 5.80 0.30% 0.33% 0.22% 

5.7.3 Relating the Real and Ideal 

Jamieson proposed an efficiency parameter 𝜂𝜂𝑑𝑑 for applying ideal diffuser results to a 
real duct. Efficiency here refers only to the reduction in performance associated with a 
duct being non-ideal in Jamieson’s sense, and not to viscous losses. While the efficiency 
varies with axial induction at the rotor, the approximation that it is fixed was made for 
the relationship between 𝐶𝐶𝑃𝑃 and 𝐶𝐶𝑇𝑇. Jamieson found that this approach worked well 
with simulation results from Hansen et al [143] using the efficiency definition in 
Equation 5.81.  

𝜂𝜂𝑑𝑑 =
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇
8

9�
Equation 5.81 

Equation 5.82 gives the power coefficient using this approximation. 

𝐶𝐶𝑃𝑃 =
1
2
𝐶𝐶𝑇𝑇 �1 − 𝑎𝑎0𝜂𝜂𝑑𝑑 + �1 − 2𝑎𝑎0𝜂𝜂𝑑𝑑 + 𝑎𝑎02𝜂𝜂𝑑𝑑2 − 𝐶𝐶𝑇𝑇 + 2𝑎𝑎0𝐶𝐶𝑇𝑇 − 𝑎𝑎02𝐶𝐶𝑇𝑇� Equation 5.82

It is important to note that 𝑎𝑎0 in this equation still refers to the axial induction at zero 
loading at the associated ideal diffuser’s rotor. It is not the axial induction value for the 
real duct. In Jamieson’s theory, however, the axial induction in the real duct and the 
associated ideal diffuser will match at a single rotor loading. Jamieson took Hansen’s 
duct as matching its associated ideal diffuser at 𝐶𝐶𝑇𝑇 = 0, so he was able to use the real 
induction as 𝑎𝑎0. To apply Equation 5.82 to the results here, Jamieson suggested in a 
personal communication using an estimate of 𝑎𝑎𝑟𝑟 at 𝐶𝐶𝑇𝑇 = 0 divided by 𝜂𝜂𝑑𝑑. 

The inequalities in Table 5.49 were found using that estimate, although above 𝐶𝐶𝑇𝑇 = 0.82 
the terms inside Equation 5.82’s square root summed to a negative number. Those 
loadings were excluded. It is not surprising that there is not an exact match, as Jamieson 
stated that the relationship is theoretically incorrect and intended as an approximation 
only. However, the error in the approximation here is larger than when using Hansen’s 
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results. While the relationship itself may be less accurate than thought, the calculation 
was also based on an otherwise untested estimate for 𝑎𝑎0.  

Table 5.49: Largest absolute inequalities and absolute inequalities at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔  found for Equation 
5.82, as a percentage of the median right hand side magnitude across rotor loadings. Jamieson 
designated this relationship 23. 

Inequality for Equation 5.82 Duct VA Duct VB Duct VC 

Largest 8.92% 14.0% 8.37% 
At 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 8.40% 13.8% 6.47% 

5.7.4 Summary: Increased Understanding 

The first half of the equations derived by Jamieson are applicable to real ducted 
turbines, as Table 5.50 shows. After that point, however, the relationships are valid only 
for ideal diffusers. While it was clear from the concept of a continually varying shape 
that the entire theory could not apply to a real duct, it was not clear how this concept 
was expressed in the equations themselves. Comparison with the alternative form of 
the theory derived from Equation 5.71 suggests possibilities: that an ideal diffuser is 
one without drag, or with a variation of shape that allows a fixed empirical parameter, 
or both.  

Table 5.50: Summary of conclusions for Jamieson’s Equations. 

Table of 
Inequalities 

Jamieson’s 
Designation Conclusion for Relationship 

Table 5.44 1 – 7 Valid for real ducted turbines 
Table 5.45 8 Valid for ideal diffuser only 
Table 5.46 9, 10 Valid for ideal diffuser only 
Table 5.47 11 – 13 Valid for ideal diffuser only 
Table 5.48 14 Valid for ideal diffuser only 

Table 5.49 23 This approximation may be less 
accurate than thought 

5.8 The Need for Further Development 
All of the theories investigated have at least a base of valid equations, but the attractive 
simplifications aimed at reducing dependence on empirical parameters are not 
accurate. A wide range of relationships for power extraction were nevertheless found, 
summarised in Table 5.51 by the parameters needed to calculate 𝐶𝐶𝑃𝑃 for each valid 
equation. Where a theory had no valid equation for power coefficient, equations for 
power were used instead. Although this is not a completely fair comparison, as some of 
these equations assume zero losses while others do not, it does provide a useful 
overview of the various power calculation methods. 
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Table 5.51: Parameters required in Equations for 𝑪𝑪𝑷𝑷, or 𝑷𝑷 where no valid 𝑪𝑪𝑷𝑷 equation existed 
for a theory, with 𝑨𝑨𝒓𝒓, 𝒖𝒖∞, 𝒑𝒑∞, and 𝝆𝝆 excluded. Zero losses are assumed in some relationships. 

Relationship 𝒖𝒖𝒓𝒓 𝒖𝒖𝒘𝒘 𝜸𝜸𝑷𝑷,𝒓𝒓 𝜸𝜸𝑷𝑷,𝒆𝒆 𝜼𝜼𝒓𝒓𝒊𝒊𝒇𝒇𝒇𝒇 𝒑𝒑𝒆𝒆 𝓐𝓐𝒆𝒆 𝑭𝑭𝑫𝑫 𝑭𝑭𝑻𝑻 
Equation 5.14 ● ● ● ● ● ● 

Equation 5.33 ● ● ● ● ● ● 

Equation 5.43 ● ● ● 

Equation 5.50 ● ● 

Equation 5.17 ● ● ● ● ● ● 

Equation 5.36 ● ● ● ● ● ● 

Equation 5.45 ● ● ● ● 

Equation 5.64 ● ● 

Equation 5.80 ● ● 

There is a sharp contrast visible in Table 5.51 between approaches requiring a large 
number and those requiring a small number of parameters. Some of the difference is 
due to the zero losses assumption, but – as was argued in Section 1.4 – this assumption 
is useful if it helps improve understanding. Aside from this, however, it is not clear 
which approach is more helpful. If a large set of parameters are all independent then 
they are all required, but the inclusion of interrelated parameters may simply confuse 
or mislead. It may be impossible to completely remove interrelated parameters, but the 
reduction from three parameters in Equation 5.43 to two in either Equation 5.50 or 
Equation 5.80 shows that valid simplification is sometimes possible. 

Consider the inclusion of both 𝑢𝑢𝑟𝑟 and 𝑝𝑝𝑒𝑒  in an equation. While they are present for 
logical reasons – to calculate flow rate and to replace the far wake velocity – one can be 
calculated from the other using Bernoulli’s equation and mass continuity. Does writing 
the equation with both parameters included anyway subtly imply that they both have 
some separate influence over power? Even if the link between 𝑢𝑢𝑟𝑟 and 𝑝𝑝𝑒𝑒  is known, the 
choice of parameters directly included in an equation must surely guide interpretation 
of it. The question then is not just if the relationships can be simplified in a helpful way, 
but in what different ways can the equations be expressed? Alternative forms of power 
equation will be examined in the next chapter to compare various points of view. 

Another interesting contrast between the theories came from their application of the 
momentum equation. Phillips went into the most detail in his examination, and found 
that the momentum change between far upstream and downstream depended on the 
rotor thrust, force from the internal surface of the duct, and force acting on the 
upstream and downstream portions of the control volume. Sørensen and Werle and 
Presz, however, presented valid equations with only the thrust and total duct forces. 
While it may have been assumed that the upstream and downstream forces sum to zero, 
as in the bare rotor case [4, 5], that does not explain the inclusion of the duct outside 
surface force. No detailed derivation or explanation was found in the literature, so the 
subject is considered further in Chapter 6.  
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5.9 Summary 
Validation of a theory is required for it to be trusted, but little testing has previously 
been carried out for ducted turbine theories. Results from the inviscid panel method 
code suitable for this task were generated by ensuring good discretisation convergence 
across three duct shapes and a range of rotor loadings. Four theories were selected 
from the literature for examination: Phillips’ for his thorough derivation from the 
momentum equation, Sørensen’s and Werle and Presz’s for their proposed 
simplifications, and Jamieson’s to gain increased understanding of the ideal diffuser 
concept. The equations for each were then tested for validity using the simulation 
results. 

Relationships derived from Bernoulli’s equation required modification, however, before 
they could be verified. The velocity squared term in that equation indicates that a mean 
value cannot simply replace a radially varying velocity. A correction factor 𝛾𝛾 was 
derived to account for the difference, with a modification to 𝛾𝛾𝑃𝑃 so that axial velocity 
could replace velocity magnitude. The mean axial velocity could then be inserted along 
with the correction factor into the theoretical equations, which had avoided the issue by 
assuming one dimensional flow. Results in this chapter both show the importance of 
using 𝛾𝛾 with Bernoulli’s equation, and present the correct form of the theories for a 
radially varying flow. 

The investigation of Jamieson’s theory had a somewhat different aim from the others; 
not all of the equations could apply to a real ducted turbine, as they were intended for 
the theoretical ideal diffuser. However, the equations do apply to real ducts until the 
point that the empirical parameter 𝑎𝑎0 is introduced. It appears that the concept of an 
ideal diffuser is expressed in the equations through this parameter being invariant with 
loading, through an absence of duct drag, or through both. Approximations for power 
for a real ducted turbine and its associated 𝑎𝑎0 were also tested and found to be 
somewhat less accurate than expected. 

Testing of the other three theories showed a foundation of valid equations that both 
Sørensen and Werle and Presz built upon with invalid simplifying assumptions. 
Simulation results show that the exit pressure coefficient does vary with mass flow rate, 
and that the ratio of duct drag to rotor thrust does vary with mass flow rate and far 
wake velocity, contradicting Sørensen’s assumptions. For Werle and Presz, the results 
show their assumptions of an invariant drag coefficient and an optimum rotor loading 
of 8/9 to be invalid.  

Two paths forward were identified based on these results. First, there appears to be an 
opportunity for some less ambitious simplification work and an examination of 
different forms of power equation. Second, an interesting contrast exists between 
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Phillips’ detailed derivation of a momentum balance and the less involved derivations in 
the other theories. The former gave a result in terms of duct inside surface drag and 
streamtube control volume forces, while the latter were still valid with only total duct 
drag. A connection between the two is required for a comprehensive theory. 
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Many theoretical descriptions already exist for ducted turbines, but the evaluation in 
Section 5.8 identified the need for another: a detailed derivation beginning from 
general forms of the momentum and energy equations that ends with performance in 
terms of the total inviscid duct drag. One such derivation is given and shown to be valid 
here. Returning to topics first examined in Chapter 3, the relationship between drag and 
augmentation is then explored, and investigations conducted into the power extracted 
and optimum rotor loading. Finally, various formulations for calculating power 
coefficient are derived and compared. 

6.1 Drag-Based Derivation 

6.1.1 Establishing a Momentum Balance 

The derivation begins with the general form of the momentum equation for a volume 𝑉𝑉 
enclosed by a surface 𝑆𝑆 in Equation 6.1 [69]. 

𝜕𝜕
𝜕𝜕𝑜𝑜�𝜌𝜌𝑼𝑼

𝑉𝑉
d𝑉𝑉 + � (𝜌𝜌𝑼𝑼 ⋅ 𝐝𝐝𝑺𝑺)𝑼𝑼

𝑆𝑆

= �𝜌𝜌𝒇𝒇
 

𝑉𝑉
d𝑉𝑉 + 𝑭𝑭𝒗𝒗𝒊𝒊𝒔𝒔𝒄𝒄𝒐𝒐𝒖𝒖𝒔𝒔 −�𝑝𝑝

𝑆𝑆
𝐝𝐝𝑺𝑺 

Equation 6.1 

To apply this equation to a ducted turbine, the two control volumes shown in Figure 6.1 
were specified. Together they make up the streamtube passing through the duct, with 
control volume 1 extending from the upstream side of the rotor to far upstream and 
control volume 2 from the rotor downstream side to far downstream. This split was 
required because Equation 6.1 is not directly applicable to a control volume crossing 
the rotor. 

Figure 6.1: Control volumes for the momentum analysis. 
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Using only the axial component of velocity – as the others are not required to calculate 
power extraction [5] – the assumption of steady inviscid flow with insignificant body 
forces 𝒇𝒇 for control volume 1 leads to Equation 6.2. 

� (𝜌𝜌𝑼𝑼 ⋅ 𝐝𝐝𝑺𝑺)𝑢𝑢
𝑆𝑆1

= −�� 𝑝𝑝
𝑆𝑆1

𝐝𝐝𝑺𝑺�
𝑃𝑃

Equation 6.2 

𝑼𝑼 ⋅ 𝐝𝐝𝑺𝑺 is zero for the circumferential boundary streamtube and equals −𝑢𝑢 d𝐴𝐴 far 
upstream and 𝑢𝑢 d𝐴𝐴 at the rotor. Splitting the pressure term, however, leaves the 
contribution from the circumferential surface 𝑆𝑆1𝑣𝑣 seen in Equation 6.3.   

−� 𝜌𝜌𝑢𝑢2
𝐴𝐴∞

d𝐴𝐴 + � 𝜌𝜌𝑢𝑢2
𝐴𝐴𝑟𝑟𝑟𝑟

d𝐴𝐴

= � 𝑝𝑝
 

𝐴𝐴∞
d𝐴𝐴 −� (𝑝𝑝𝒏𝒏�)𝑃𝑃

𝑆𝑆1𝑐𝑐
d𝑆𝑆 −� 𝑝𝑝

𝐴𝐴𝑟𝑟𝑟𝑟
d𝐴𝐴 

Equation 6.3 

Applying the same process to control volume 2 gives Equation 6.4. 

−� 𝜌𝜌𝑢𝑢2
𝐴𝐴𝑟𝑟

d𝐴𝐴 + � 𝜌𝜌𝑢𝑢2
𝐴𝐴𝑤𝑤

d𝐴𝐴

= � 𝑝𝑝
 

𝐴𝐴𝑟𝑟𝑟𝑟
d𝐴𝐴 −� (𝑝𝑝𝒏𝒏�)𝑃𝑃

 

𝑆𝑆2𝑐𝑐
d𝑆𝑆 −� 𝑝𝑝

𝐴𝐴𝑤𝑤
d𝐴𝐴 

Equation 6.4 

These two equations can be combined using the rotor pressure drop definition in 
Equation 6.5. 

� 𝑝𝑝
𝐴𝐴𝑟𝑟𝑟𝑟

d𝐴𝐴 −� 𝑝𝑝
𝐴𝐴𝑟𝑟𝑟𝑟

d𝐴𝐴 = Δ𝑝𝑝𝐴𝐴𝑟𝑟 Equation 6.5 

It is convenient to recast the control volume pressure forces acting on the resulting 
single control volume into the forces on the portions of that control volume shown in 
Figure 6.2, using the definition in Equation 6.6. 

� (𝑝𝑝𝒏𝒏�)𝑃𝑃
𝑆𝑆1𝑐𝑐

d𝑆𝑆 + � (𝑝𝑝𝒏𝒏�)𝑃𝑃
𝑆𝑆2𝑐𝑐

d𝑆𝑆 −� 𝑝𝑝
𝐴𝐴∞

d𝐴𝐴 + � 𝑝𝑝
𝐴𝐴𝑤𝑤

d𝐴𝐴

= −𝐹𝐹𝑜𝑜𝑑𝑑 − 𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑑𝑑𝑑𝑑 
Equation 6.6 

𝐹𝐹𝑜𝑜𝑑𝑑, 𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖, and 𝐹𝐹𝑑𝑑𝑑𝑑 are the axial forces on the upstream, inside duct, and downstream 
portions of the streamtube respectively. These forces are defined as positive in the 
downstream direction, in contrast to the integral terms which become negative for 
downstream forces. 
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Figure 6.2: Control volume portions for the momentum analysis. 

Combining Equation 6.3 and Equation 6.4 using Equation 6.5, reformulating the 
pressure forces with Equation 6.6, and assuming no radial variation in the flow far 
upstream and downstream leads to Equation 6.7. 

 �̇�𝑚(𝑢𝑢∞ − 𝑢𝑢𝑤𝑤) = Δ𝑝𝑝𝐴𝐴𝑟𝑟 − 𝐹𝐹𝑜𝑜𝑑𝑑 − 𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑑𝑑𝑑𝑑 Equation 6.7 

6.1.2 Replacing Far Wake Velocity with Rotor Loading 

To develop a useful set of equations, the far wake velocity in Equation 6.7 must be 
replaced with a less abstract parameter. Both Phillips [4] and Sørensen [185] used a 
relationship based on the duct’s exit pressure, but the approach taken here is similar to 
Jamieson’s [186] in that the far wake velocity is linked to rotor loading. An appropriate 
relationship can be found by starting with a general form of the energy equation [69] 
and assuming steady inviscid flow with negligible body forces and volumetric heating. 
With 𝑒𝑒 as the internal energy per unit mass of the fluid, these assumptions lead to 
Equation 6.8. 

 −�𝑝𝑝𝑼𝑼 ⋅ 𝐝𝐝𝑺𝑺
 

𝑆𝑆
− 𝑃𝑃 = −� 𝜌𝜌�𝑒𝑒 +

|𝑼𝑼|2

2 �
 

𝑆𝑆
𝑼𝑼 ⋅ 𝐝𝐝𝑺𝑺 Equation 6.8 

 
Figure 6.3: Control volume for the energy analysis. 
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Equation 6.8 is applied to the control volume shown in Figure 6.3, which followed the 
streamtube passing through the duct from far upstream to far downstream, giving 
Equation 6.9. 

� 𝑝𝑝𝑢𝑢
𝐴𝐴∞

d𝐴𝐴 −� 𝑝𝑝𝑢𝑢
𝐴𝐴𝑤𝑤

d𝐴𝐴 − 𝑃𝑃

= −� 𝜌𝜌�𝑒𝑒 +
|𝑼𝑼|2

2 �𝑢𝑢
𝐴𝐴∞

d𝐴𝐴 + � 𝜌𝜌�𝑒𝑒 +
|𝑼𝑼|2

2 �𝑢𝑢
𝐴𝐴𝑤𝑤

d𝐴𝐴 
Equation 6.9 

Assuming axial flow with no radial variation at the control volume ends, a return to 
atmospheric pressure in the far wake, and a calorically perfect gas [69] then gives 
Equation 6.10.  

𝑝𝑝∞𝑢𝑢∞𝐴𝐴∞ − 𝑝𝑝𝑤𝑤𝑢𝑢𝑤𝑤𝐴𝐴𝑤𝑤 − 𝑃𝑃

= −
𝐶𝐶𝑣𝑣
𝑅𝑅𝑑𝑑
𝑝𝑝∞𝑢𝑢∞𝐴𝐴∞ −

1
2𝜌𝜌𝑢𝑢∞

3 𝐴𝐴∞ +
𝐶𝐶𝑣𝑣
𝑅𝑅𝑑𝑑
𝑝𝑝∞𝑢𝑢𝑤𝑤𝐴𝐴𝑤𝑤 +

1
2𝜌𝜌𝑢𝑢𝑤𝑤

3 𝐴𝐴𝑤𝑤 Equation 6.10 

𝐶𝐶𝑣𝑣 is the specific heat at constant volume and 𝑅𝑅𝑑𝑑 is the specific gas constant. Applying 
mass continuity to this equation and rearranging results in Equation 6.11. 

−
𝑃𝑃
�̇�𝑚 =

1
2

(𝑢𝑢𝑤𝑤2 − 𝑢𝑢∞2 ) Equation 6.11 

𝑃𝑃 is then replaced using Equation 6.12 [5]. 

𝑃𝑃 = Δ𝑝𝑝𝐴𝐴𝑟𝑟𝑢𝑢𝑟𝑟  Equation 6.12 

Rearranging the result and using the standard definition for thrust coefficient gives the 
desired connection between the far wake velocity and rotor loading in Equation 6.13. 

𝑢𝑢𝑤𝑤 = 𝑢𝑢∞�1 − 𝐶𝐶𝑇𝑇  Equation 6.13 

The derivation from the momentum equation can then be continued by substituting 
into Equation 6.7 to get Equation 6.14. 

�̇�𝑚𝑢𝑢∞�1 −�1 − 𝐶𝐶𝑇𝑇� = Δ𝑝𝑝𝐴𝐴𝑟𝑟 − 𝐹𝐹𝑜𝑜𝑑𝑑 − 𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑑𝑑𝑑𝑑 Equation 6.14 

6.1.3 Replacing Control Volume Forces with Drag 

Phillips [4] stopped his application of the momentum equation at a point similar to 
Equation 6.14, pointing out the difficulty of determining the forces on the streamtube. 
However, it must be possible to continue: numerical results in Section 5.5.2 suggest 
valid momentum balances exist without the streamtube forces. They included instead a 
duct drag term, although no supporting derivation was found. It was therefore 
hypothesised that the total duct drag is equal and opposite to the sum of the control 
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volume forces. Empirical evidence supporting this hypothesis, gathered from panel 
method simulation results, is presented in this section. 

Approach 

Writing the hypothesis in terms of the reaction force on the flow from the duct inside 
surface 𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖 and outside surface 𝐹𝐹𝑑𝑑,𝑇𝑇𝑜𝑜𝑇𝑇 gives Equation 6.15. 

𝐹𝐹𝑜𝑜𝑑𝑑 + 𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑑𝑑𝑑𝑑 = −𝐹𝐹𝐷𝐷
= 𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑑𝑑,𝑇𝑇𝑜𝑜𝑇𝑇 

Equation 6.15 

The inside duct force cancels, leaving the hypothesis in Equation 6.16. 

𝐹𝐹𝑜𝑜𝑑𝑑 + 𝐹𝐹𝑑𝑑𝑑𝑑 = 𝐹𝐹𝑑𝑑,𝑇𝑇𝑜𝑜𝑇𝑇 Equation 6.16 

By finding each of these forces from simulation results, the accuracy of the equation can 
be tested. 𝐹𝐹𝑜𝑜𝑑𝑑 and 𝐹𝐹𝑑𝑑𝑑𝑑 were calculated using applications of the momentum equation, as 
in Equation 6.17 and Equation 6.18. 

𝐹𝐹𝑜𝑜𝑑𝑑 = −� 𝜌𝜌𝑢𝑢2
𝐴𝐴∞

d𝐴𝐴 + � 𝜌𝜌𝑢𝑢2
𝐴𝐴𝑖𝑖

d𝐴𝐴 + � 𝑝𝑝
𝐴𝐴𝑖𝑖

d𝐴𝐴 Equation 6.17 

𝐹𝐹𝑑𝑑𝑑𝑑 = −� 𝜌𝜌𝑢𝑢2
𝐴𝐴𝑒𝑒

d𝐴𝐴 + � 𝜌𝜌𝑢𝑢2
𝐴𝐴𝑤𝑤

d𝐴𝐴 −� 𝑝𝑝
𝐴𝐴𝑒𝑒

d𝐴𝐴 Equation 6.18 

The integrations at the duct inlet 𝑑𝑑 and exit 𝑒𝑒 were computed directly from numerical 
measurements at those locations. For simplicity, however, the far upstream momentum 
flow was calculated from the mass flow rate computed at the duct inlet and the free 
stream velocity. Reduced discretisation convergence far downstream was avoided by 
using the analytical far downstream velocity from Equation 6.13 with the mass flow 
rate to calculate the momentum flow at 𝑤𝑤. 

𝐹𝐹𝑑𝑑,𝑇𝑇𝑜𝑜𝑇𝑇 was calculated from the total duct drag 𝐹𝐹𝐷𝐷 and the inside reaction force. This 
inside force was computed using the momentum relationship in Equation 6.19. 

𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖 = −� 𝜌𝜌𝑢𝑢2
𝐴𝐴𝑖𝑖

d𝐴𝐴 + � 𝜌𝜌𝑢𝑢2
𝐴𝐴𝑒𝑒

d𝐴𝐴 −� 𝑝𝑝
𝐴𝐴𝑖𝑖

d𝐴𝐴 + � 𝑝𝑝
𝐴𝐴𝑒𝑒

d𝐴𝐴 + Δ𝑝𝑝𝐴𝐴𝑟𝑟 Equation 6.19 

Numerical results were extracted from the three duct shapes described in Section 5.2, 
with the hypothesis checked at a range of rotor loadings. Discretisation convergence is 
shown in Table 6.1 and was acceptable for expanding wake length but poor for changes 
in panel length. Richardson extrapolation [171, 173] was used to compensate, with 
results calculated at the panel lengths stated in Table 6.1’s caption along with double 
and half the resolution. 
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Table 6.1: Worst change in results with finer discretisation for the validation shapes. 
Discretisation was changed from last duct panel length = 0.00125𝑫𝑫 and expanding wake 
length = 16.0𝑫𝑫 for duct VA, 0.00114𝑫𝑫 and 14.6𝑫𝑫 for duct VB, and 0.00125𝑫𝑫 and 16.0𝑫𝑫 for duct 
VC. 

% Difference with 
Halved Panel Length Doubled Wake Length 
𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻 = 0.95 𝑪𝑪𝑻𝑻 = 0 𝑪𝑪𝑻𝑻 = 0.95 

𝑭𝑭𝒖𝒖𝒔𝒔 4.67 8.26 0 0.54 
𝑭𝑭𝒓𝒓,𝒊𝒊𝒏𝒏 8.41 3.31 0 0.14 
𝑭𝑭𝒓𝒓𝒔𝒔 31.2 2.97 0 0.22 
𝑭𝑭𝑫𝑫 - 4.32 - 0.08

Results 

Two forms of the hypothesis are assessed in Figure 6.4: the sum 𝐹𝐹𝑜𝑜𝑑𝑑 + 𝐹𝐹𝑑𝑑𝑑𝑑 − 𝐹𝐹𝑑𝑑,𝑇𝑇𝑜𝑜𝑇𝑇 is 
plotted along with each of the forces, while the inequality of 𝐹𝐹𝑜𝑜𝑑𝑑 + 𝐹𝐹𝑑𝑑𝑑𝑑 = 𝐹𝐹𝑑𝑑,𝑇𝑇𝑜𝑜𝑇𝑇 is given 
as a percentage. As the magnitudes of some forces were much larger than others, the 
percentage was calculated using the largest magnitude force as the divisor. A small 
error in a large force could not therefore cause a misleadingly large percentage 
imbalance. 

In some cases the results in Figure 6.4 were sensitive to the choices made when 
applying Richardson extrapolation. In testing the force imbalance, for example, 𝐹𝐹𝑜𝑜𝑑𝑑 +
𝐹𝐹𝑑𝑑𝑑𝑑 could be calculated from individual extrapolations of 𝐹𝐹𝑜𝑜𝑑𝑑 and 𝐹𝐹𝑑𝑑𝑑𝑑 or from 
extrapolation of the sum 𝐹𝐹𝑜𝑜𝑑𝑑 + 𝐹𝐹𝑑𝑑𝑑𝑑. In this case the latter was more reliable, as the 
former made less consistent predictions with changes in duct discretisation. All other 
extrapolation choices were made on the same basis, but not all differences had a clearly 
superior approach. 

With an error of 1.2% or less, when calculated on the basis of the largest force, the 
upstream and downstream control volume forces must indeed equal the reaction force 
on the flow from the duct outside surface. It therefore follows that the control volume 
forces can be replaced with the total duct drag using Equation 6.20. 

𝐹𝐹𝑜𝑜𝑑𝑑 + 𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖 + 𝐹𝐹𝑑𝑑𝑑𝑑 = −𝐹𝐹𝐷𝐷 Equation 6.20 

Although this result has been found numerically, it is perhaps logical from a theoretical 
perspective. There is no energy extraction outside of the duct, so an application of the 
energy equation shows an eventual return to the free stream velocity outside the duct’s 
streamtube. Nevertheless, there is a momentum drop associated with the force on the 
duct outside surface; this force may be equal to the streamtube forces due to the 
momentum drop transferring into the streamtube passing through the duct.  
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Figure 6.4: Variation of 𝑭𝑭𝒖𝒖𝒔𝒔, 𝑭𝑭𝒓𝒓𝒔𝒔, 𝑭𝑭𝒓𝒓,𝒐𝒐𝒖𝒖𝒔𝒔, and 𝑭𝑭𝒖𝒖𝒔𝒔 + 𝑭𝑭𝒓𝒓𝒔𝒔 − 𝑭𝑭𝒓𝒓,𝒐𝒐𝒖𝒖𝒔𝒔 with rotor loading, where the 
forces are given as a coefficient calculated from free stream velocity and rotor area 𝑭𝑭 𝟎𝟎.𝟗𝟗𝝆𝝆𝒖𝒖∞𝟐𝟐⁄  
for ducts VA, VB, and VC. The bottom right plot shows the difference between 𝑭𝑭𝒖𝒖𝒔𝒔 + 𝑭𝑭𝒓𝒓𝒔𝒔 and 
𝑭𝑭𝒓𝒓,𝒐𝒐𝒖𝒖𝒔𝒔 as a percentage of the largest force. 
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6.1.4 Calculating Performance 

The final abstract parameters in the momentum equation can now be replaced by 
substituting Equation 6.20 into Equation 6.14. Dividing through by 0.5𝜌𝜌𝑢𝑢∞2 𝐴𝐴𝑟𝑟 then gives 
Equation 6.21. 

 2𝑢𝑢𝑟𝑟
𝑢𝑢∞

�1 −�1 − 𝐶𝐶𝑇𝑇� = 𝐶𝐶𝑇𝑇 + 𝐶𝐶𝐷𝐷  Equation 6.21 

Using Jamieson’s approach [186], modified for velocity rather than axial induction, the 
relationship for power in Equation 6.12 can be combined with the definitions of power 
and thrust coefficients to derive Equation 6.22. 

 
𝑢𝑢𝑟𝑟
𝑢𝑢∞

=
𝐶𝐶𝑃𝑃
𝐶𝐶𝑇𝑇

 Equation 6.22 

This equation provides the final piece of the puzzle, and substituting into Equation 6.21 
leads to the relationship for a ducted turbine’s power coefficient in Equation 6.23. 

 𝐶𝐶𝑃𝑃 =
1
2

(𝐶𝐶𝑇𝑇 + 𝐶𝐶𝐷𝐷)�1 + �1 − 𝐶𝐶𝑇𝑇� Equation 6.23 

Velocity at the rotor, meanwhile, is given by Equation 6.24. 

 𝑢𝑢𝑟𝑟
𝑢𝑢∞

=
1
2 �1 +

𝐶𝐶𝐷𝐷
𝐶𝐶𝑇𝑇
� �1 + �1 − 𝐶𝐶𝑇𝑇� Equation 6.24 

An alternative perspective is to rearrange Equation 6.23 and calculate drag from 
performance, as in Equation 6.25. 

 𝐶𝐶𝐷𝐷 =
2𝐶𝐶𝑃𝑃

1 + �1 − 𝐶𝐶𝑇𝑇
− 𝐶𝐶𝑇𝑇 Equation 6.25 

Similar to equations previously derived in the literature [e.g. 66, 95, 108, 185], these 
equations relate the performance of a ducted turbine to the drag force acting on the 
duct. The previous derivations simply stated that such relationships can be derived 
from momentum conservation, however, in contrast with the full detail provided here. 
Starting from an application of the momentum equation to a control volume passing 
through the duct and showing each subsequent step will hopefully aid understanding of 
the derivation and provide further confidence in the results. 

When interpreting theses equations, it should be remembered that the principle 
assumption underlying them is that of inviscid flow. While the influence of viscosity 
must not be forgotten, these equations serve as a base from which the inviscid 
component of ducted turbine performance can be more fully understood and the 
viscous component more easily isolated.  



Chapter 6: A Validated Theory 167 

Testing the final set of performance equations against inviscid simulation results, using 
the method described in Section 5.1, gave the results in Table 6.2. Discretisation 
convergence was reduced for duct VB at high rotor loadings, leading to the elevated 
inequality seen for Equation 6.25. At 𝐶𝐶𝑇𝑇 ≤ 8/9 the largest inequality was 0.72% for that 
duct, leading to the conclusion that the set of equations – and hence the derivation 
behind them – is valid. 

Table 6.2: Largest absolute inequalities found for the performance relationships, as a 
percentage of the median magnitude of the right hand side across all rotor loadings tested. 

Inequality for Duct VA Duct VB Duct VC 
Equation 6.23 0.37% 0.33% 0.22% 
Equation 6.24 0.30% 0.26% 0.30% 
Equation 6.25 0.83% 1.66% 0.39% 

6.2 Analytical Investigations 
A validated theory may be useful for many investigations, but here the focus is on 
returning to topics considered in Chapter 3. Numerical results from that chapter 
concerning the relationship between drag and augmentation, the behaviour of power 
extraction, and the optimum rotor loading will be supplemented with analytical 
conclusions. 

6.2.1 Augmentation, Drag, and Their Momentum Connection 

A very strong correlation was confirmed between inviscid duct drag and augmentation 
in Section 3.1.6. The equations in Section 6.1.4 and in the previous literature [e.g. 66, 95, 
108, 185] already show consistency with that result, but explicitly calculating the 
augmentation brings further clarity. By setting 𝐶𝐶𝐷𝐷 = 0 for the bare rotor case in 
Equation 6.23 and Equation 6.24 and comparing to the ducted result, the augmentation 
can be given by Equation 6.26. 

𝐶𝐶𝐷𝐷
𝐶𝐶𝑇𝑇

=
𝑢𝑢𝑟𝑟 − 𝑢𝑢𝑟𝑟,𝑏𝑏𝑃𝑃𝑟𝑟𝑒𝑒

𝑢𝑢𝑟𝑟,𝑏𝑏𝑃𝑃𝑟𝑟𝑒𝑒
=
𝐶𝐶𝑃𝑃 − 𝐶𝐶𝑃𝑃,𝑏𝑏𝑃𝑃𝑟𝑟𝑒𝑒

𝐶𝐶𝑃𝑃,𝑏𝑏𝑃𝑃𝑟𝑟𝑒𝑒
Equation 6.26 

The link between performance and inviscid drag, then, is straightforward: the ratio of 
drag to rotor loading 𝐶𝐶𝐷𝐷 𝐶𝐶𝑇𝑇⁄  equals the fractional augmentation over a bare actuator 
disc at the same loading �𝑢𝑢𝑟𝑟 − 𝑢𝑢𝑟𝑟,𝑏𝑏𝑃𝑃𝑟𝑟𝑒𝑒� 𝑢𝑢𝑟𝑟,𝑏𝑏𝑃𝑃𝑟𝑟𝑒𝑒� . Figure 6.5 confirms that the 
relationship holds both with the rotor at a duct’s throat and at the exit, using the duct 
shapes from Section 4.2.3. A duct that is augmenting the flow at a given rotor loading 
will experience drag, one that does not influence the flow will not, and one that is 
curtailing the flow will experience a force in the upstream direction. 
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Figure 6.5: Comparison of drag to rotor loading ratio 𝑪𝑪𝑫𝑫 𝑪𝑪𝑻𝑻⁄  and fractional augmentation 
�𝒖𝒖𝒓𝒓 − 𝒖𝒖𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆� 𝒖𝒖𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆�  from simulation results at 𝑪𝑪𝑻𝑻 = 0.75 for 200 duct shapes, with the rotor at 
the duct throat (left) and at the duct exit (right). 

In some ways this is a curious relationship. Recall from Equation 6.20 that a positive 
duct drag is equal to a force on the streamtube control volume in the upstream 
direction: as the augmentation of mass flow and hence drag increases, the force on the 
control volume increasingly opposes the flow. Likewise, a duct that reduces the mass 
flow through the rotor implies a force on the control volume that intuitively should be 
accelerating the flow. In other words, the relationship is the opposite of what may be 
expected. Instead of going from the bare to ducted case by applying a force in the 
downstream direction to accelerate the flow, there is an additional force in the 
upstream direction. 

Consider the relationship for the momentum drop between far upstream and 
downstream Δ𝑀𝑀 in Equation 6.27. 

Δ𝑀𝑀 = �̇�𝑚(𝑢𝑢∞ − 𝑢𝑢𝑤𝑤) = Δ𝑝𝑝𝐴𝐴𝑟𝑟 + 𝐹𝐹𝐷𝐷
= Δ𝑝𝑝𝐴𝐴𝑟𝑟 − 𝐹𝐹𝑜𝑜𝑑𝑑 − 𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖 − 𝐹𝐹𝑑𝑑𝑑𝑑 Equation 6.27 

Positive values of Δ𝑝𝑝𝐴𝐴𝑟𝑟 and 𝐹𝐹𝐷𝐷 imply upstream forces on the flow and a drop in 
momentum, while positive values of the control volume forces 𝐹𝐹𝑜𝑜𝑑𝑑, 𝐹𝐹𝑑𝑑,𝑖𝑖𝑖𝑖, and 𝐹𝐹𝑑𝑑𝑑𝑑 imply 
downstream forces on the flow and a gain in momentum. The method by which 
momentum can change is constrained, however: 𝑢𝑢𝑤𝑤 is fixed by Δ𝑝𝑝 and 𝑢𝑢∞ in Equation 
6.13, so the forces on the control volume cannot influence the far wake velocity. To 
achieve the required change in momentum, therefore, the mass flow rate must vary.  

In an operating wind turbine, there is a momentum drop between far upstream and far 
downstream meaning positive values for �̇�𝑚(𝑢𝑢∞ − 𝑢𝑢𝑤𝑤) and Δ𝑝𝑝𝐴𝐴𝑟𝑟. A force on the control 

-1

0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6

Rotor at Duct Throat

�𝒖𝒖𝒓𝒓 − 𝒖𝒖𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆 𝒖𝒖𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆

-1

0

1

2

3

4

5

6

-1 0 1 2 3 4 5 6

Rotor at Duct Exit

�𝒖𝒖𝒓𝒓 − 𝒖𝒖𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆 𝒖𝒖𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆



Chapter 6: A Validated Theory  169 

 

volume in the upstream direction also reduces the momentum, thereby increasing the 
magnitude of the drop. This reasoning explains the somewhat counterintuitive result of 
increased mass flow rate with increased drag: with only the mass flow rate free to vary, 
it must increase to cause a larger momentum drop for positive drag and negative 
control volume forces.   

The logic here is more straightforward for a rotor increasing the momentum of the flow, 
as in a ducted propeller. With a momentum gain from the rotor, control volume forces in 
the upstream direction would decrease the mass flow rate. The influence of forces on 
the control volume for both ducted turbines and ducted rotors is summarised in Table 
6.3, where Δ𝑀𝑀𝑟𝑟 and Δ𝑀𝑀𝑣𝑣𝑣𝑣 are the axial momentum changes caused by the rotor and 
control volume forces respectively. 

Table 6.3: Influence of control volume forces on mass flow rate, for both the momentum drop 
caused by a rotor and the momentum gain from a propeller. 

Momentum 
Change From 

Rotor 𝚫𝚫𝑴𝑴𝒓𝒓 

Control Volume Force 

Direction Momentum 
Change 𝚫𝚫𝑴𝑴𝒄𝒄𝒗𝒗 

Influence On 
Mass Flow �̇�𝒎 

Drop Upstream Drop Increase 
Drop Downstream Gain Decrease 
Gain Upstream Drop Decrease 
Gain Downstream Gain Increase 

 

  
Figure 6.6: Comparison of radial force per unit radian coefficient 𝑪𝑪𝑹𝑹 and fractional 
augmentation �𝒖𝒖𝒓𝒓 − 𝒖𝒖𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆� 𝒖𝒖𝒓𝒓,𝒃𝒃𝒘𝒘𝒓𝒓𝒆𝒆�  from simulation results at 𝑪𝑪𝑻𝑻 = 0.75 for 200 duct shapes 
(left), with a focus on results near zero augmentation (right). 

Extending this study to consider radial forces shows that there is not an exact 
relationship with augmentation, as shown in Figure 6.6, despite many authors viewing 
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these forces as a cause of augmentation. A significant reduction in scatter is seen as the 
fractional augmentation approaches zero, however, suggesting an inward force on the 
duct when the flow is augmented and an outward force when the flow is curtailed. The 
small values of radial force remaining at zero augmentation could well be numerical 
error, although further work is needed to confirm this hypothesis. 

6.2.2 Power Extraction Matches Numerical Results 

The relationships derived in Section 6.1.4 are dependent on an empirical parameter, as 
they cannot be used to predict the power extracted by a particular ducted turbine 
without results for the inviscid drag. Nevertheless, certain general conclusions can be 
reached. Consider first the rearrangement of Equation 6.11 in Equation 6.28.  

𝑃𝑃
�̇�𝑚 =

1
2

(𝑢𝑢∞2 − 𝑢𝑢𝑤𝑤2 ) Equation 6.28 

With Equation 6.13 demonstrating that the far wake velocity is fixed by the rotor 
loading and free stream velocity, there can be no direct augmentation of the power per 
unit mass flow by a ducted turbine in inviscid flow.  

Dividing Equation 6.28 by 0.5𝜌𝜌𝑢𝑢∞3 𝐴𝐴𝑟𝑟 then leads to Equation 6.29. 

𝐶𝐶𝑃𝑃 =
𝑢𝑢𝑟𝑟(𝑢𝑢∞2 − 𝑢𝑢𝑤𝑤2 )

𝑢𝑢∞3
Equation 6.29 

At a particular rotor loading, power increases linearly with the mean axial velocity at 
the rotor and hence mass flow. This conclusion is consistent with the numerical results 
in Section 3.1.3 and with previous findings [55, 58]. 

None of the equations presented in Section 6.1.4 imply any kind of limitation on the 
inviscid performance of a ducted turbine. With no independent equation for the inviscid 
drag, it can only be stated that the power extracted will continually increase so long as 
the drag does. Indeed, the numerical results in Section 3.2.2 exhibited no indication of a 
limit as the ducts grew to ridiculous proportions.  

Modifying Equation 6.23 to instead provide the exit area power coefficient 𝐶𝐶𝑃𝑃,𝑒𝑒 gives 
Equation 6.30. 

𝐶𝐶𝑃𝑃,𝑒𝑒 =
𝐴𝐴𝑟𝑟
𝐴𝐴𝑒𝑒

1
2

(𝐶𝐶𝑇𝑇 + 𝐶𝐶𝐷𝐷)�1 + �1 − 𝐶𝐶𝑇𝑇� Equation 6.30 

Any limitation on performance remains a practical question: as with the standard 𝐶𝐶𝑃𝑃 
equation, the limit will be set by how 𝐶𝐶𝐷𝐷 actually varies for a particular duct. The 
theoretical description is therefore fully consistent with the numerically based 
conclusion in Section 3.1.8 that the Betz limit does not apply to ducted turbines. 
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6.2.3 Optimum Rotor Loading Remains Empirical 

Of the ducts numerically modelled in Section 3.1.4, all had an optimum rotor loading 
less than the bare rotor value of 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9. Only a limited subset of the possible duct 
shapes were examined there, however, leaving open the question: how do ducted 
turbines affect 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 in general? 

As with maximum power, there is insufficient information to determine the optimum 
rotor loading from the equations in Section 6.1.4 alone. What can be shown is that the 
equations themselves do not require a change in 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 at all. Consider the hypothetical 
case of a ducted turbine where drag varies according to 𝐶𝐶𝐷𝐷 = 𝑘𝑘𝐶𝐶𝑇𝑇 , where 𝑘𝑘 is a constant. 

Inserting the hypothetical drag relationship into Equation 6.23 gives the power for this 
particular turbine in Equation 6.31. 

𝐶𝐶𝑃𝑃 =
1
2

(𝐶𝐶𝑇𝑇 + 𝑘𝑘𝐶𝐶𝑇𝑇)�1 + �1 − 𝐶𝐶𝑇𝑇� Equation 6.31 

Differentiating 𝐶𝐶𝑃𝑃 with respect to 𝐶𝐶𝑇𝑇 will lead to the optimum rotor loading for this 
duct, beginning with Equation 6.32. 

d𝐶𝐶𝑃𝑃
d𝐶𝐶𝑇𝑇

=
d

d𝐶𝐶𝑇𝑇
�
1
2

(1 + 𝑘𝑘)𝐶𝐶𝑇𝑇� +
d

d𝐶𝐶𝑇𝑇
�
1
2

(1 + 𝑘𝑘)𝐶𝐶𝑇𝑇�1 − 𝐶𝐶𝑇𝑇� Equation 6.32

Using the product rule for second term on the right hand side and then the chain rule 
leads to Equation 6.33. 

d𝐶𝐶𝑃𝑃
d𝐶𝐶𝑇𝑇

=
1
2

(1 + 𝑘𝑘) −
1

4� (1 + 𝑘𝑘)𝐶𝐶𝑇𝑇
�1 − 𝐶𝐶𝑇𝑇

+
1
2

(1 + 𝑘𝑘)�1 − 𝐶𝐶𝑇𝑇 Equation 6.33

Setting d𝐶𝐶𝑃𝑃 d𝐶𝐶𝑇𝑇⁄  = 0, rearranging, and squaring results in Equation 6.34. 

(1 + 𝑘𝑘)2

4 =
(1 + 𝑘𝑘)2𝐶𝐶𝑇𝑇2

16(1 − 𝐶𝐶𝑇𝑇) −
(1 + 𝑘𝑘)2𝐶𝐶𝑇𝑇

4 +
(1 + 𝑘𝑘)2(1− 𝐶𝐶𝑇𝑇)

4
Equation 6.34 

Assuming 𝑘𝑘 ≠ -1, Equation 6.34 can be divided by (1 + 𝑘𝑘)2 and rearranged to find 
Equation 6.35. 

0 = 𝐶𝐶𝑇𝑇(9𝐶𝐶𝑇𝑇 − 8) Equation 6.35 

The only valid solution to this equation is 𝐶𝐶𝑇𝑇 = 8/9 for maximum power. It is not known 
if 𝐶𝐶𝐷𝐷 = 𝑘𝑘𝐶𝐶𝑇𝑇 is possible for a ducted turbine, but this result nevertheless demonstrates 
that the relationships derived in this chapter do not imply that 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 must change from 
the bare rotor value.  

𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 consequently remains a practical question, in which augmentation plays a key 
role: Equation 6.26 shows that in reality 𝐶𝐶𝐷𝐷 and 𝐶𝐶𝑇𝑇 are related by augmentation, itself 
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found to be a function of 𝐶𝐶𝑇𝑇 in Section 3.1.5. If augmentation reduces with increasing 
𝐶𝐶𝑇𝑇, 𝑢𝑢𝑟𝑟 for the ducted turbine would by definition reduce at a faster rate with 𝐶𝐶𝑇𝑇 than for 
a bare rotor. So, therefore, would the energy in the flow. As the fraction of energy 
extracted increases identically with 𝐶𝐶𝑇𝑇 for ducted and bare actuator discs, 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 would 
in turn be lower for ducted turbines. Chapter 7 will consider whether augmentation 
actually does reduce in general with 𝐶𝐶𝑇𝑇. 

6.3 Alternative Relationships 
Writing the 𝐶𝐶𝑃𝑃 equation in terms of the thrust and drag coefficients, as in Section 6.1.4, 
is just one of the possible approaches. Alternatives based on axial induction and exit 
pressure are derived here, for later comparison in Section 6.4. 

6.3.1 Based on Axial Induction 

It is common to express the power and thrust coefficients for a wind turbine in terms of 
the axial induction, rather than a single equation with 𝐶𝐶𝑃𝑃 in terms of 𝐶𝐶𝑇𝑇. The same can 
be achieved for ducted turbines, beginning by combining Equation 6.7 and Equation 
6.20 then rewriting in terms of the axial induction at the rotor 𝑎𝑎𝑟𝑟 to find Equation 6.36. 

Δ𝑝𝑝𝐴𝐴𝑟𝑟 + 𝐹𝐹𝐷𝐷 = (𝑢𝑢∞ − 𝑢𝑢𝑤𝑤)𝜌𝜌𝐴𝐴𝑟𝑟𝑢𝑢∞(1 − 𝑎𝑎𝑟𝑟) Equation 6.36 

An application of Bernoulli’s equation assuming no losses in the duct, meanwhile, leads 
to Equation 6.37. 

Δ𝑝𝑝 =
1
2𝜌𝜌

(𝑢𝑢∞2 − 𝑢𝑢𝑤𝑤2 ) Equation 6.37 

Substituting into Equation 6.36 and rearranging to find the far wake velocity using the 
quadratic formula gives the choice in Equation 6.38. 

𝑢𝑢𝑤𝑤 = (1 − 𝑎𝑎𝑟𝑟)𝑢𝑢∞ ± 𝑢𝑢∞�𝑎𝑎𝑟𝑟2 + 𝐶𝐶𝐷𝐷 Equation 6.38 

Given that (1 − 𝑎𝑎𝑟𝑟)𝑢𝑢∞ = 𝑢𝑢𝑟𝑟, the second term on the right hand side of this equation 
must equal the difference between 𝑢𝑢𝑟𝑟 and 𝑢𝑢𝑤𝑤. It is therefore possible to determine the 
correct sign: the negative option must be chosen for 𝑢𝑢𝑤𝑤 < 𝑢𝑢𝑟𝑟, which would be expected 
when the flow is augmented, unaffected, or moderately curtailed. It is theoretically 
possible to obtain 𝑢𝑢𝑤𝑤 > 𝑢𝑢𝑟𝑟, since Equation 6.13 shows that 𝑢𝑢𝑤𝑤 depends only on 𝑢𝑢∞ and 
𝐶𝐶𝑇𝑇, so for severely curtailing ducts the positive option must be used. When 𝑢𝑢𝑤𝑤 = 𝑢𝑢𝑟𝑟, the 
second term is equal to zero and both signs are equivalent. 

Continuing for augmenting ducts leads to Equation 6.39. 

𝑢𝑢𝑤𝑤 = 𝑢𝑢∞ �1 − 𝑎𝑎𝑟𝑟 − �𝑎𝑎𝑟𝑟2 + 𝐶𝐶𝐷𝐷� Equation 6.39 
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Substituting 𝑢𝑢𝑤𝑤 back into Equation 6.36 and using the relationship for power in 
Equation 6.12, with the standard definition of power coefficient, gave Equation 6.40. 

𝐶𝐶𝑃𝑃 = 2 �𝑎𝑎𝑟𝑟 + �𝑎𝑎𝑟𝑟2 + 𝐶𝐶𝐷𝐷� (1 − 𝑎𝑎𝑟𝑟)2 − 𝐶𝐶𝐷𝐷(1 − 𝑎𝑎𝑟𝑟) Equation 6.40 

Similarly, substituting for 𝑢𝑢𝑤𝑤 in Equation 6.36 and using the standard definition of 
thrust coefficient found the relationship in Equation 6.41. 

𝐶𝐶𝑇𝑇 = 2 �𝑎𝑎𝑟𝑟 + �𝑎𝑎𝑟𝑟2 + 𝐶𝐶𝐷𝐷� (1 − 𝑎𝑎𝑟𝑟) − 𝐶𝐶𝐷𝐷 Equation 6.41 

Both the 𝐶𝐶𝑃𝑃 and 𝐶𝐶𝑇𝑇 equations directly reduce to standard actuator disc theory when 𝐶𝐶𝐷𝐷 
is set to zero. Finally, rearranging Equation 6.36 and using the substitution for 𝑢𝑢𝑤𝑤 led to 
Equation 6.42. 

𝐶𝐶𝐷𝐷 = 2�1 −�1 − 𝐶𝐶𝑇𝑇�(1 − 𝑎𝑎𝑟𝑟) − 𝐶𝐶𝑇𝑇  Equation 6.42 

Table 6.4 shows the results of testing the final axial induction relationships against the 
inviscid simulation results. Reduced discretisation convergence at high 𝐶𝐶𝑇𝑇 for duct VB 
led to elevated inequalities for the 𝐶𝐶𝐷𝐷 equation, but the difference fell to less than 0.72% 
for rotor loadings of 8/9 and below. The relationships are therefore valid. 

Table 6.4: Largest absolute inequalities found for the axial induction relationships, as a 
percentage of the median magnitude of the right hand side across all rotor loadings tested. 

Inequality for Duct VA Duct VB Duct VC 
Equation 6.40 0.17% 0.18% 0.15% 
Equation 6.41 0.23% 0.26% 0.23% 
Equation 6.42 0.83% 1.66% 0.39% 

6.3.2 Based on Exit Pressure 

Theoretical descriptions of ducted turbines frequently relate performance to the 
pressure in the exit plane of the duct. All such cases seen in Section 5.8 included both 
the exit pressure and the velocity at the rotor, despite the direct relationship between 
these parameters through Bernoulli’s equation and mass continuity. An alternative is 
derived here that does not involve velocity.  

Beginning with an application of Bernoulli’s equation, assuming zero losses, leads to 
Equation 6.43. 

𝐶𝐶𝑇𝑇 + 𝐶𝐶𝑝𝑝,𝑒𝑒 = 1 − 𝛾𝛾𝑃𝑃,𝑒𝑒
𝑢𝑢𝑒𝑒2

𝑢𝑢∞2
Equation 6.43 
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This equation uses the standard definition of exit pressure coefficient 𝐶𝐶𝑝𝑝,𝑒𝑒 and the 
velocity correction factor 𝛾𝛾𝑃𝑃,𝑒𝑒 described in Section 5.3. Using mass continuity to replace 
the velocity at the exit with the velocity at the rotor then gives Equation 6.44. 

 𝑢𝑢𝑟𝑟 = ±
1

�𝛾𝛾𝑃𝑃,𝑒𝑒

𝐴𝐴𝑒𝑒
𝐴𝐴𝑟𝑟
𝑢𝑢∞�1 − 𝐶𝐶𝑇𝑇 − 𝐶𝐶𝑝𝑝,𝑒𝑒 Equation 6.44 

The positive option matched simulation results for both augmenting and curtailing 
ducts. Substituting into Equation 6.22 leads to Equation 6.45. 

 𝐶𝐶𝑃𝑃 =
1

�𝛾𝛾𝑃𝑃,𝑒𝑒

𝐴𝐴𝑒𝑒
𝐴𝐴𝑟𝑟
𝐶𝐶𝑇𝑇�1 − 𝐶𝐶𝑇𝑇 − 𝐶𝐶𝑝𝑝,𝑒𝑒 Equation 6.45 

Although the aim of relating exit pressure to power without involving velocity has been 
achieved, it has been replaced by the rotor loading which also has an influence on exit 
pressure. It seems more reasonable, however, to treat 𝐶𝐶𝑇𝑇 rather than 𝑢𝑢𝑟𝑟 as a design 
variable held constant to investigate the influence of exit pressure, with velocity and 
power as objectives to optimise. 

An extra empirical parameter has also been introduced in the form of 𝛾𝛾𝑃𝑃,𝑒𝑒, when 
comparing with other theoretical descriptions. This addition reflects the change in 
assumptions away from radially uniform, purely axial flow. It therefore does not 
represent any real additional complexity in the equation, and can simply be set to 1 if 
the simplifying assumptions are desired. 

The augmentation can be calculated by dividing Equation 6.45 by Equation 6.23 with 
𝐶𝐶𝐷𝐷 = 0, giving Equation 6.46. 

 𝐶𝐶𝑃𝑃
𝐶𝐶𝑃𝑃,𝑏𝑏𝑃𝑃𝑟𝑟𝑒𝑒

=
2

�𝛾𝛾𝑃𝑃,𝑒𝑒

𝐴𝐴𝑒𝑒
𝐴𝐴𝑟𝑟
�1 − 𝐶𝐶𝑇𝑇 − 𝐶𝐶𝑝𝑝,𝑒𝑒

1 + �1 − 𝐶𝐶𝑇𝑇
 Equation 6.46 

A relationship between the drag and exit pressure empirical parameters can be found 
by substituting Equation 6.44 into Equation 6.24, leading to Equation 6.47. 

 𝐶𝐶𝑝𝑝,𝑒𝑒 = 1 − 𝐶𝐶𝑇𝑇 −
𝐴𝐴𝑟𝑟2

𝐴𝐴𝑒𝑒2
𝛾𝛾𝑃𝑃,𝑒𝑒 �

1
2 +

𝐶𝐶𝐷𝐷
2𝐶𝐶𝑇𝑇

�
2

�1 + �1 − 𝐶𝐶𝑇𝑇�
2

 Equation 6.47 

With the other parameters held constant, increased drag is associated with reduced exit 
pressure. Both are associated with increased power extraction, and are simply 
alternative ways of representing the underlying performance of the duct. 

Good agreement was found in all cases between the equations and simulation results, 
as seen in Table 6.5. 
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Table 6.5: Largest absolute inequalities found for the exit pressure relationships, as a 
percentage of the median magnitude of the right hand side across all rotor loadings tested. 

Inequality for Duct VA Duct VB Duct VC 
Equation 6.44 0.01% 0.01% 0.34% 
Equation 6.45 0.01% 3×10-3% 0.17% 
Equation 6.46 0.01% 0.01% 0.24% 
Equation 6.47 0.55% 0.60% 0.46% 

6.4 Power Equations: Informative or Misleading? 
In this chapter, and in the literature generally, various perspectives have been used 
when formulating equations for ducted turbines. Examples have been presented here 
for power extraction calculated with velocity, drag, and exit pressure as the empirical 
parameter. All are equally valid, but this section will consider if all are equally useful. 

The simplest equation is found using velocity at the rotor, by rearranging Equation 6.22 
into Equation 6.48. 

𝐶𝐶𝑃𝑃 =
𝑢𝑢𝑟𝑟
𝑢𝑢∞

𝐶𝐶𝑇𝑇 Equation 6.48 

An inviscid drag-based approach was derived in Equation 6.23, repeated here as 
Equation 6.49. 

𝐶𝐶𝑃𝑃 =
1
2

(𝐶𝐶𝑇𝑇 + 𝐶𝐶𝐷𝐷)�1 + �1 − 𝐶𝐶𝑇𝑇� Equation 6.49 

Replacing 𝐶𝐶𝑇𝑇 with the axial induction at the rotor led to Equation 6.40, repeated in 
Equation 6.50. 

𝐶𝐶𝑃𝑃 = 2 �𝑎𝑎𝑟𝑟 + �𝑎𝑎𝑟𝑟2 + 𝐶𝐶𝐷𝐷� (1 − 𝑎𝑎𝑟𝑟)2 − 𝐶𝐶𝐷𝐷(1 − 𝑎𝑎𝑟𝑟) Equation 6.50 

Finally the duct exit pressure was used as an empirical parameter in Equation 6.45, 
repeated as Equation 6.51. 

𝐶𝐶𝑃𝑃 =
1

�𝛾𝛾𝑃𝑃,𝑒𝑒

𝐴𝐴𝑒𝑒
𝐴𝐴𝑟𝑟
𝐶𝐶𝑇𝑇�1 − 𝐶𝐶𝑇𝑇 − 𝐶𝐶𝑝𝑝,𝑒𝑒 Equation 6.51 

All of these equations suffer from the same problem: the parameters are interrelated, 
making their influence difficult to determine. It is logical, however, to examine their 
influence at a particular rotor loading, as 𝐶𝐶𝑇𝑇 can be chosen by the designer and will 
have a single optimum value for a particular turbine. Straightforward relationships then 
exist between 𝐶𝐶𝑃𝑃 and the empirical parameters of velocity and drag in the first two 
equations. 
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Interpretation of Equation 6.50 unfortunately remains problematic, as 𝑎𝑎𝑟𝑟 and 𝐶𝐶𝐷𝐷 are 
correlated even at fixed loading. This relationship is particularly confusing if 𝐶𝐶𝐷𝐷 is 
considered as representing the performance of the duct: the purpose of increasing 𝐶𝐶𝐷𝐷 is 
then to reduce 𝑎𝑎𝑟𝑟, meaning Equation 6.50 cannot be used alone to determine the 
connection between duct performance and power extraction. In the final equation, 𝛾𝛾𝑃𝑃,𝑒𝑒 , 
𝐴𝐴𝑒𝑒 𝐴𝐴𝑟𝑟⁄ , and 𝐶𝐶𝑝𝑝,𝑒𝑒 also remain interrelated at fixed 𝐶𝐶𝑇𝑇. With these relationships being 
unknown, Equation 6.51 yields only limited information. 

A key question in ducted turbine design is the influence of duct geometry on 
performance. Only the exit pressure equation involves a geometrical parameter, but that 
may be misleading rather than useful: it places greater emphasis on area ratio than 
other geometrical parameters without any evidence that area ratio is actually of more 
importance, and it does not make explicit the relationship between area ratio and exit 
pressure. It also implies a use of diffuser-based parameters for ducted turbines when 
Sections 3.4 and 4.3 suggested that aerofoil parameters are more suitable. 

If these equations cannot inform the optimisation of duct geometry, it may be sensible 
to measure the influence on performance directly. Drag and exit pressure changes could 
then be considered as consequences of the augmentation rather than as empirical 
parameters from which to calculate 𝐶𝐶𝑃𝑃. In some cases power could be calculated 
directly in experiments or simulations, but otherwise Equation 6.48 keeps the focus on 
the most direct causes of augmentation: increases in mass flow, and increases in 
optimum rotor loading if that proves to be possible. 
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6.5 Summary 
Can a detailed derivation lead to ducted turbine performance in terms of total duct 
drag? That was the question raised at the end of Chapter 5, and addressed here by 
applying general forms of the momentum and energy equations. An essential result 
came from a numerical study: the forces acting on the surface of the streamtube passing 
through the duct are equal and opposite to the total inviscid duct drag. With this 
information it is possible to go beyond previous detailed derivations and calculate 
power extracted from rotor loading and duct drag. 

Confirmation is provided by the analytical results of the linear relationship between the 
power and drag coefficients. The equations also lead to the intriguing conclusion that 
the mass flow through the turbine grows as the forces on the streamtube increasingly 
oppose the flow. Two factors explain this result. First, the streamtube forces cause a 
momentum drop over and above that caused by the rotor. Second, the far wake velocity 
is fixed by the rotor loading and free stream velocity. The additional momentum drop 
must therefore be associated with an increased mass flow. 

Theoretical results for power are also consistent with earlier numerical results: power 
per unit mass flow is unaffected at fixed rotor loading, power varies linearly with mass 
flow, and there is no indication that the Betz limit should apply. While the equations 
themselves do not impose any change from the bare rotor 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9, empirical results 
are needed to calculate the optimum rotor loading for a particular turbine. A further 
numerical investigation is required to determine how the optimum rotor loading is 
affected in general. 

The inviscid duct drag is not the only basis for calculating the power extracted; 
formulations with velocity, axial induction, and exit pressure are also possible. All suffer 
from the problem of interrelated parameters, however, although those based on 
velocity and drag are straightforward at fixed rotor loading. These equations also give 
little insight into the geometrical design of ducted turbines, and can even be misleading. 
It may therefore be better to consider empirical parameters like drag and exit pressure 
as consequences of augmentation rather than a means to calculate it.  
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Both the numerical results in Section 3.1.4 and the analytical examination in Section 
6.2.3 confirmed that optimum rotor loading coefficients below 8/9 are possible for 
ducted turbines in inviscid flow, an important difference from the bare rotor value [5]. 
Both studies, however, left open the larger question: must 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 be less than 8/9? A 
combination of approaches is used here to find the answer, beginning with a much 
larger scale numerical investigation. The circulation explanation for augmentation is 
then validated, before being used with numerical results to show that increased rotor 
loading reduces augmentation and therefore decreases 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 in inviscid flow. 

7.1 Optimum Rotor Loading: Numerical Investigations 

7.1.1 A Search with Duct Shape Optimisation 

An optimisation approach was the first numerical tactic used, with duct shape modified 
in search of the maximum 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 possible. Thirty starting duct shapes were selected to 
minimise the chance of finding only a sub-optimal local maximum, with the 
optimisation for each completed using an interior point algorithm [176]. The 
optimisation was carried out in two stages, first with a coarser discretisation to bring 
the starting duct shapes closer to optimum and then with a finer discretisation for more 
accurate results. 

Two fixed nodes defined the inlet and outlet for the ducts, and served as bounds for two 
movable nodes that were adjusted during the optimisation. Nodes were interpolated 
between using a piecewise cubic Hermite spline [153]. Duct starting shapes were 
defined using the nodes on the left of Figure 7.1: for each shape, one node was chosen 
and then the second selected from any of the nodes with an equal or greater axial 
coordinate and a greater radial coordinate. These constraints gave thirty possible 
combinations, of which five examples are shown on the right of Figure 7.1. 

Most of the starting shapes ended the first stage of optimisation in relatively similar 
positions, as seen on the left of Figure 7.2. The top 27 ducted turbines all had optimum 
rotor loadings within 0.32% of the maximum found, with three outliers ranging 
between 6.2% and 9.4% lower. Some of the duct shapes were subjectively very similar, 
so only those with the greatest 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 in a group of alike shapes were kept for the second 
stage of optimisation. The remaining 16 shapes are shown on the right of Figure 7.2. 

Optimum Rotor Loading 
and Augmentation Theory 
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Chapter 
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Figure 7.1: Node positions used to generate starting duct shapes (left), and 5 example starting 
duct shapes (right). 

Figure 7.2: Duct shape results from the first optimisation stage (left), and those results 
grouped into 16 starting duct shapes for the second stage (right). Darker lines indicate a 
higher 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 ranking. 
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A last duct panel length of 0.02𝐷𝐷 and an expanding wake length of 8𝐷𝐷 were chosen for 
stage 2 of the optimisation, as that gave adequate 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 discretisation convergence for 
the best stage 1 shape. The spread of the optimum shapes reduced after optimisation at 
the increased resolution, as seen on the left of Figure 7.3. 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 was within 0.11% of the 
best shape for the top 15 shapes, while the single remaining outlier lay 7.9% lower. 

Figure 7.3: Duct shape results from the second optimisation stage (left), where darker lines 
indicate a higher 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 ranking, and the duct shape for maximum 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 (right). 

The shape with the largest optimum rotor loading is shown alone on the right of Figure 
7.3, and achieved 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 0.81. Notable is the smoothness of the shape, in contrast to 
the right angled ducts that maximised power extraction in Section 3.2.1. Discretisation 
convergence for this shape was adequate, with 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 changed by -0.11% and -0.72% by 
doubling the expanding wake length and halving the panel lengths respectively. Given 
the reduced spread between stage 1 and 2, increased resolution also seems unlikely to 
change the shapes found by the optimisation algorithm. Tightening the optimisation 
stopping criteria by an order of magnitude did not change the result. 

Two important limitations exist for this investigation. First, fixed end points were 
enforced, only two movable nodes were used, and the movable nodes were constrained 
within the end point bounds; the optimum found is therefore only the optimum within 
these restrictions. Second, different start points could have led to a result with a greater 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. It is, however, reassuring that the start shapes appeared to be caught in a single 
basin of attraction with an optimum far from the bounds. While the first limitation still 
applies, it seems likely that the result is the global optimum within the constraints 
applied. 
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7.1.2 A Search with Many Duct Shapes 

Some of the shortcomings of the optimisation investigation were addressed by 
examining the duct shapes used in Chapter 4. Although there was no optimisation 
algorithm seeking to maximise optimum rotor loading, 1776 duct shapes were 
modelled with less restrictive constraints on geometry than used in the previous 
section. All of the diffuser and aerofoil parameter duct shapes from Chapter 4 were 
inspected here, giving the geometrical limits shown in Table 7.1 and Table 7.2. Full 
details of the geometry generation and results showing acceptable discretisation 
convergence for 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 are presented in Sections 4.1 and 4.2. 

Table 7.1: Geometrical limits for the diffuser parameter duct shapes. 

Inlet Area Ratio Exit Area Ratio Length Ratio Exit Angle 
Minimum 1 1 0.05 -16.8°
Maximum 2.37 3.54 0.82 74.9°

Table 7.2: Geometrical limits for the aerofoil parameter duct shapes. 

Length Ratio Camber Angle 
Minimum 0.1 0% -5°
Maximum 1 25% 35°

All of the results are plotted against 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 in Figure 7.4, but a great deal of caution 
must be used in interpreting this figure: only some of the duct shapes were chosen 
randomly and the set of shapes is certainly not a representative sample of all possible 
or feasible duct shapes. The features seen on the plot may simply be artefacts of the 
duct shapes that happened to be chosen. 

Figure 7.4: Optimum rotor loading for 1776 aerofoil and diffuser parameter duct shapes. 
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The features in Figure 7.4 can be accounted for, however, so similar results may perhaps 
be found for other sets of duct shapes. An important factor is the strength of the 
influence that a particular duct has on the flow. Consider the lower bound to 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 that 
rises with 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. Ducts in this region are curtailing the flow compared to a bare rotor, 
and appear to be approaching the bare rotor values of 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 and 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 as the ducts 
have less and less influence on the flow. 

Similar reasoning can be applied to the 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 upper bound on the right of the peak. A 
duct that causes a large value of 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is by definition having a large influence on the 
flow. If there is an inherent decrease in 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 with ducted turbines, the only way to 
approach 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9 would be to reduce the influence of the duct. A reduced 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
would logically follow. 

The 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 upper bound to the left of the peak can be partially explained by the linear 
relationship between 𝐶𝐶𝑃𝑃 and 𝐶𝐶𝑇𝑇 at a fixed flow rate through the rotor. As the bound 
appears to have a much greater than linear relationship, however, some other factor is 
also involved. An association between increased 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 and a greater flow rate must 
exist, if this bound is not simply caused by the duct shapes chosen, albeit one that does 
not continue all the way to 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9. 

Figure 7.5 plots the same optimum rotor loadings against the duct length ratio. Again 
the results must be interpreted with caution, but they are consistent with an 
explanation used for the features in Figure 7.4: only the smallest ducts, with the least 
influence on the flow, approach the highest values of 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. The duct for the lowest 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇, meanwhile, is shown by Figure 7.6 to be relatively large with a shape that will act 
to reduce flow rate. 

Figure 7.5: Comparison of 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 and duct length ratio 𝑳𝑳𝒓𝒓 𝑫𝑫⁄  for 1776 duct shapes. 
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Figure 7.6: Duct shapes found with highest and lowest values for optimum rotor loading 
coefficient 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔. 

7.1.3 The Failure to Reach 8/9 

These studies suggest that ducts decrease the optimum rotor loading in inviscid flow, as 
an optimisation algorithm modifying duct shape managed only 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 0.81 while a 
comparison of 1776 duct shapes reached 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 0.84. Smaller ducts in the second case 
led to the higher 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇, as in the limit of no duct 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 must reach the bare rotor value 
of 8/9. A direct search, however, can never prove that 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 must be reduced: there will 
always be other optimisation approaches to try or duct shapes left unexamined. 
Additional evidence is required, and will be found using an alternative approach where 
the mechanism of augmentation is considered.  

7.2 Augmentation Theory 
Throughout this work, an aerofoil conceptual model for the performance of ducted 
turbines has proven useful, but not flawless: a less than perfect association between 
circulation and augmentation was found in Section 3.1.6. This inconsistency must be 
addressed before the mechanism of augmentation can be used to explain the reductions 
in 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. The diffuser conceptual model was not considered for this investigation due to 
the superiority of the aerofoil model in making performance predictions and for 
parameterising duct geometry. 
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7.2.1 Circulation or Force Explanation? 

An initial hypothesis for the cause of the aerofoil inconsistency was that the true 
mechanism of augmentation was the radial or total force acting on the duct, rather than 
circulation. If circulation and force had an imperfect relationship, this hypothesis could 
explain both the usefulness of the aerofoil conceptual model and the imperfect 
relationship between circulation and augmentation. A set of 200 duct shapes randomly 
generated from the NACA 4-digit aerofoil family, as described in Section 4.2.3, was used 
to test the hypotheses by calculating the correlations between axial velocity, circulation, 
and duct forces at 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. Discretisation convergence was good, with the changes above 
1% seen in Table 7.3 caused only by small valued results. 

Table 7.3: Worst and median magnitude change in dimensionless results when discretisation 
was changed for the discretisation checking duct shapes at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔. Last duct panel length began 
at 0.00125𝑫𝑫 and expanding wake length at 8𝑫𝑫. 

% Difference with 
Halved Panel Length Doubled Wake Length 

Result Worst Median Worst Median 
Circulation 1.63 0.11 0.32 0.04 

Radial Force – Throat Rotor 17.25 0.12 11.50 0.04 
Total Force – Throat Rotor 0.43 0.11 0.54 0.03 
Radial Force – Exit Rotor 1.26 0.13 0.56 0.05 
Total Force – Exit Rotor 1.30 0.12 0.56 0.05 

Velocity Ratio 0.37 0.27 0.13 0.00 

Pearson and Spearman correlation coefficients are shown in Figure 7.7 as tests of the 
linear and monotonic relationship strengths respectively; this approach allowed 
relationships of any form to be detected. Both throat and exit-based values were tested. 
In no case was a perfect relationship found, and the force correlations exceeded 
circulation values in only one case: the combination of radial force with the rotor at the 
throat, throat velocity ratio, and the Spearman coefficient. Without formal hypothesis 
testing it is impossible to say if the difference found was statistically significant, but 
such a small difference is not practically significant either way.  

Visually examining the data in Figure 7.8 shows little difference in the scatter, 
confirming that there is no practical difference in the monotonic relationship strengths. 
There is a noticeable difference in linearity, however, with the circulation relationship 
being more linear. A comparison of the radial force and circulation coefficients in Figure 
7.9 is consistent with this finding, as there is a close relationship leading to similar 
Spearman coefficients but it is non-linear leading to dissimilar Pearson coefficients. 
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Figure 7.7: Pearson (left) and Spearman (right) correlation coefficients between axial velocity 
ratios in the duct 𝒖𝒖 𝒖𝒖∞⁄  and proposed mechanisms of augmentation, with 95% confidence 
intervals shown. Calculated at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 for 200 random duct shapes. 

Figure 7.8: Variation of axial velocity at the throat 𝒖𝒖𝒓𝒓 with duct circulation coefficient 𝑪𝑪𝜞𝜞 (left) 
and the coefficient of radial force per radian 𝑪𝑪𝑹𝑹 with throat rotor (right). Calculated at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔 for 
200 random duct shapes. 
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Figure 7.9: Variation of the coefficient of radial force per radian 𝑪𝑪𝑹𝑹 with circulation coefficient 
𝑪𝑪𝜞𝜞 for 200 random duct shapes at all 𝑪𝑪𝑻𝑻 values modelled and with the rotors at each duct’s 
throat. 

Figure 7.10: Pearson (left) and Spearman (right) correlation coefficients between axial 
velocity ratios 𝒖𝒖 𝒖𝒖∞⁄  in the duct and proposed mechanisms of augmentation, with 95% 
confidence intervals shown. Calculated at 𝑪𝑪𝑻𝑻 = 0 for 200 random duct shapes. 
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Figure 7.11: Pearson (left) and Spearman (right) correlation coefficients between axial 
velocity ratios 𝒖𝒖 𝒖𝒖∞⁄  in the duct and proposed mechanisms of augmentation, with 95% 
confidence intervals shown. Calculated at 𝑪𝑪𝑻𝑻 = 0.75 for 200 random duct shapes. 

None of the force options examined provided a perfect relationship with axial velocity, a 
finding that also held for fixed 𝐶𝐶𝑇𝑇 values of 0 and 0.75 in Figure 7.10 and Figure 7.11 
respectively. As the force relationship was no less inexact than the circulation 
relationship, the hypothesis that a force-based mechanism of augmentation would 
resolve the inconsistency in the aerofoil conceptual model must therefore be dismissed. 
While either could potentially be used to explain augmentation, circulation was chosen 
due to the seemingly closer to linear relationship. 

7.2.2 The Missing Factor: Circulation Dispersion or Effectiveness 

While circulation may be the best parameter for explaining the mechanism of 
augmentation, the results of the previous section suggest that it is not able to 
characterise duct performance alone. A simple example verifies this conclusion. 
Consider the case of a duct represented by a single vortex ring, where the axial velocity 
passing through the duct has been computed and is shown in the ‘one ring’ column of 
Table 7.4. With the same total circulation, a second ring can be added to the 
representation and modified with consequent changes in the velocity induced. Both the 
vortex strength and the distance between the vorticity and a point of interest affect the 
velocity. 
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Table 7.4: Axial velocity 𝒖𝒖 passing through a vortex ring alone, and with a second ring added 
and modified. Input parameters changed from the previous column are underlined. 𝑫𝑫 is the 
diameter of the first ring. 

One Ring Two Rings 𝑪𝑪𝜞𝜞 Weighting 
Changed 

Ring 2 Location 
Changed 

𝑷𝑷𝟏𝟏 𝑫𝑫⁄  0 0 0 0 
𝒓𝒓𝟏𝟏 𝑫𝑫⁄  0.5 0.5 0.5 0.5 
𝑪𝑪𝜞𝜞,𝟏𝟏 0.4 0.2 0.1 0.1 
𝑷𝑷𝟐𝟐 𝑫𝑫⁄  - 0.2 0.2 0.3 
𝒓𝒓𝟐𝟐 𝑫𝑫⁄  - 0.9 0.9 1.2 
𝑪𝑪𝜞𝜞,𝟐𝟐 - 0.2 0.3 0.3 
𝒖𝒖 𝒖𝒖∞⁄  1.93 1.58 1.40 1.35 
𝜼𝜼𝜞𝜞 1.00 0.82 0.73 0.70 
𝜦𝜦𝜞𝜞 1.00 1.22 1.38 1.43 

A crucial difference therefore exists between ducted turbines and the aerofoil analogy: 
only the total circulation must be known to calculate lift, but the distribution of 
circulation along a duct’s surface is also required to calculate velocity. One way of 
quantifying this distribution is by comparing the axial velocity actually induced at the 
rotor to the axial velocity induced when the duct is replaced with a single vortex ring of 
the same total strength that is positioned around the rotor. The resulting circulation 
effectiveness ratio 𝜂𝜂𝛤𝛤 is calculated by Equation 7.1. 

𝜂𝜂𝛤𝛤 =
𝑢𝑢𝑑𝑑 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞
𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞

Equation 7.1 

Contributions to the velocity at the rotor from the duct, duct as a single ring, wake, and 
free stream are represented by 𝑢𝑢𝑑𝑑, 𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟, 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒, and 𝑢𝑢∞ respectively. These velocities are 
defined as averages over the rotor plane, with 𝑢𝑢𝑑𝑑 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞ being the actual 
velocity 𝑢𝑢𝑟𝑟. This parameter is conceptually straightforward, but it has a significant 
drawback: the denominator can pass through 0 when 𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟 becomes negative, which can 
occur even for sensible duct shapes at high 𝐶𝐶𝑇𝑇. Plots of 𝜂𝜂𝛤𝛤 can therefore reach extremely 
large values, making them almost impossible to interpret. 

A more practically useful parameter can be defined by taking the reciprocal of 𝜂𝜂𝛤𝛤, giving 
the circulation dispersion ratio 𝛬𝛬𝛤𝛤 in Equation 7.2. 

𝛬𝛬𝛤𝛤 =
𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞
𝑢𝑢𝑑𝑑 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞

Equation 7.2 

This parameter is a measure of how dispersed the positive contributions to the overall 
circulation are from the rotor. When 𝛬𝛬𝛤𝛤 is large, the positive contribtions are far from 
the rotor and their influence on 𝑢𝑢𝑟𝑟 is reduced. The velocity at the rotor is therefore less 
than if 𝛬𝛬𝛤𝛤 were small.  
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Although 𝑢𝑢𝑑𝑑 alone may still become negative, 𝑢𝑢𝑑𝑑 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞ will always remain 
above 0 for a ducted wind turbine. 𝛬𝛬𝛤𝛤 can therefore be plotted without the problematic 
values seen for 𝜂𝜂𝛤𝛤, although either parameter may be useful on a conceptual level. 
Whichever one is used, it must be remembered that the parameters are not intended to 
represent efficiency or inefficiency values to be optimised. They are intended only as 
aids to understanding the mechanism of augmentation. 

These definitions are not the only possibilities for effectiveness and dispersion 
parameters. An alternative that is initially attractive would be 𝑢𝑢𝑑𝑑 𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟⁄  for effectiveness 
and 𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟 𝑢𝑢𝑑𝑑⁄  for dispersion, since these directly compare the velocities induced by the 
vorticity in question. Both, however, suffer from the denominator passing through zero, 
leading to plots that are impossible to interpret and ruling out their use. There is also 
merit to using the physically meaningful value of 𝑢𝑢𝑑𝑑 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞ in the definitions 
selected above, rather than the somewhat theoretical value of 𝑢𝑢𝑑𝑑 alone. 

Figure 7.12 to Figure 7.14 illustrate the behaviour of the circulation dispersion ratio 
with the NACA 4-digit aerofoil shapes used in Section 4.2.4. Use of the circulation 
effectiveness ratio in these plots would have led to extreme values. Discretisation 
convergence tests at 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 found changes of less than 0.30% with halved panel lengths 
for𝛬𝛬𝛤𝛤, and less than 0.31% with doubled expanding wake length. Each value of ΛΓ must 
fall into one of seven categories, all of which are seen in the plots below: 

• 𝛬𝛬𝛤𝛤 > 1 indicates that positive circulation is dispersed away from the rotor.
Concentrating the duct circulation into a single vortex ring at the rotor would
give a velocity greater than the actual velocity at the rotor.

• 𝛬𝛬𝛤𝛤 = 1 signifies that the actual distribution of circulation is equivalent to the
single ring case, with 𝑢𝑢𝑑𝑑 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞ = 𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞ and 𝑢𝑢𝑑𝑑 = 𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟. 

• 0 < 𝛬𝛬𝛤𝛤 < 1 implies a circulation distribution that is effectively more
concentrated than a lumped single ring. Although this may appear to be an
illogical statement at first, two explanations do exist. Both were found in the
results:

o A negative contribution to velocity from the duct that is magnified when
the circulation is lumped into a single ring.

o A single ring representing positive circulation contributions near the
rotor and negative contributions further from it, leading to a reduced
rotor velocity in the single ring case by effectively moving the negative
contributions closer to the rotor.

• 𝛬𝛬𝛤𝛤 = 0 also denotes a greater concentration than in the single ring case, but
some care needs to be taken. Any value of 𝑢𝑢𝑑𝑑 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞ will lead to 𝛬𝛬𝛤𝛤 = 0
when 𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞ = 0, even infinitesimal ones.
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• -1 < 𝛬𝛬𝛤𝛤 < 0 shows that the actual velocity magnitude is greater than the single
ring value, but where the sum 𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞ has become negative due to
the strength of the single ring duct. Negative values of 𝛬𝛬𝛤𝛤 could also
theoretically stem from the actual rotor velocity becoming negative, but such a
device would hardly qualify as a ducted turbine.

• 𝛬𝛬𝛤𝛤 = -1 can be interpreted as the cut off between concentrated and dispersed
for negative 𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞, similar to 𝛬𝛬𝛤𝛤 = 1, in that 𝑢𝑢𝑑𝑑 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞ =
−(𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟 + 𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞). However, note that −𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟 = 𝑢𝑢𝑑𝑑 + 2𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 2𝑢𝑢∞.

• 𝛬𝛬𝛤𝛤 ≤ -1 occurs if the velocity magnitude in the rotor plane would be increased
by concentrating the duct circulation into a single vortex ring when 𝑢𝑢𝑑𝑑𝑑𝑑𝑟𝑟 +
𝑢𝑢𝑤𝑤𝑃𝑃𝑗𝑗𝑒𝑒 + 𝑢𝑢∞ is negative.

Figure 7.12: Variation of the circulation dispersion ratio 𝜦𝜦𝜞𝜞 with duct wall angle 𝜶𝜶, at selected 
cambers 𝑳𝑳𝒄𝒄𝒘𝒘𝒎𝒎 𝑳𝑳𝒄𝒄⁄  and chord length ratios 𝑳𝑳𝒄𝒄 𝑫𝑫⁄ . Calculated at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔. 
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Figure 7.13: Variation of the circulation dispersion ratio 𝜦𝜦𝜞𝜞 with camber 𝑳𝑳𝒄𝒄𝒘𝒘𝒎𝒎 𝑳𝑳𝒄𝒄⁄ , at selected 
duct wall angles 𝜶𝜶 and chord length ratios 𝑳𝑳𝒄𝒄 𝑫𝑫⁄ . Calculated at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔. 

Figure 7.14: Variation of the circulation dispersion ratio 𝜦𝜦𝜞𝜞 with chord length ratio 𝑳𝑳𝒄𝒄 𝑫𝑫⁄ , at 
selected cambers 𝑳𝑳𝒄𝒄𝒘𝒘𝒎𝒎 𝑳𝑳𝒄𝒄⁄  and duct wall angles 𝜶𝜶. Calculated at 𝑪𝑪𝑻𝑻𝒐𝒐𝒑𝒑𝒔𝒔. 

An explanation has now been found for the imperfect relationship between circulation 
and velocity at the rotor, the inconsistency in the aerofoil conceptual model that this 
section aimed to address. It is now clear that the expectation of a perfect relationship 
was based on a faulty assumption, and that both the total circulation and the 
distribution of it along a duct’s surface are needed for a complete characterisation. By 
establishing the importance of the circulation dispersion ratio, circulation can now be 
trusted as an explanation of ducted turbine augmentation. 
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7.2.3 Suitability of the Aerofoil Conceptual Model 

Accurate qualitative predictions from the aerofoil conceptual model have been 
demonstrated throughout this work, and an important discrepancy has now been 
resolved by introducing the circulation dispersion ratio. The axisymmetry of a ducted 
turbine remains an important difference from the aerofoil model, however, 
necessitating the length to diameter ratio in Section 4.2 and illustrated by the disparity 
in the velocity induced by a straight vortex segment in Equation 2.12 and a ring vortex 
in Equation 2.13 and Equation 2.14.  

Further confidence in the applicability of the model is given here by testing quantitative 
predictions. As will be discussed, these predictions cannot reduce the effort needed to 
characterise a ducted turbine’s performance; they are intended only to test the aerofoil 
conceptual model and to improve understanding of ducted turbine behaviour. In 
particular, understanding the change in duct performance with rotor loading is 
desirable before returning to the optimum rotor loading investigation. 

It was therefore hypothesised that the aerofoil model could be used to predict duct 
performance by representing the influence of the rotor’s wake on the duct as a change 
in the free stream velocity. This effective free stream velocity 𝑼𝑼∞,𝒆𝒆𝒇𝒇𝒇𝒇 would differ from 
the actual value through a change in magnitude and the addition of a radial component, 
and was calculated using Equation 7.3. 

 𝑼𝑼∞,𝒆𝒆𝒇𝒇𝒇𝒇 = 𝑢𝑢∞ + 𝑼𝑼𝒘𝒘𝒘𝒘𝒘𝒘𝒆𝒆 Equation 7.3 

𝑼𝑼𝒘𝒘𝒘𝒘𝒘𝒘𝒆𝒆 is defined here as the velocity induced by the wake vorticity at a point on the 
duct surface. The selection of that point is discussed later in this section. 𝑢𝑢∞ is used 
rather than the vector valued 𝑼𝑼∞ because an axial free stream velocity is assumed 
throughout this work. 

A consequence of the radial component to 𝑼𝑼∞,𝒆𝒆𝒇𝒇𝒇𝒇 is a change in the effective wall angle 
of the duct 𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 , defined as the difference between the wall angle and the angle of the 
effective free stream velocity in Equation 7.4.  

 𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 = α − tan−1 �
𝑣𝑣∞,𝑒𝑒𝑑𝑑𝑑𝑑

𝑢𝑢∞,𝑒𝑒𝑑𝑑𝑑𝑑
� Equation 7.4 

The hypothesis, then, was that these two parameters could be used with results at 
𝐶𝐶𝑇𝑇 = 0 to calculate the performance of a ducted turbine at a rotor loading of interest. 
Since the effective parameters were found using simulation results, the method here 
cannot be used to reduce the number of simulations needed to characterise duct 
performance. This study serves only as a test of the aerofoil conceptual model. 



Chapter 7: Optimum Rotor Loading and Augmentation Theory 193 

Approach 

There were two phases in predicting the velocity at a rotor, as part of testing the 
hypothesis. First, the influence of duct wall chord angle at 𝐶𝐶𝑇𝑇 = 0 was found from the set 
of NACA 4-digit duct shapes in Section 4.2.4, where wall angle was varied in isolation 
from the other geometrical parameters. For simplicity, this study used only the ducts 
with a chord length ratio of 0.1 due to the almost linear variation of velocity with angle 
seen when angles less than 0 were excluded. One such example can be seen in Figure 
7.15, with the parameters of each least squares linear fit shown in Table 7.5.  

Figure 7.15: Variation of axial velocity at the rotor 𝒖𝒖𝒓𝒓 with wall angle 𝜶𝜶, for a NACA 4-digit duct 
shape without camber and with a chord length ratio of 0.1. A linear fit for wall angles from 0° 
to 35° is also shown. 

Table 7.5: Gradient, y-axis intercept, and coefficient of determination 𝑹𝑹𝟐𝟐 for linear fits of 
velocity at the rotor 𝒖𝒖𝒓𝒓 to the duct wall chord angle 𝜶𝜶, for each value of duct camber. 

Camber Gradient Intercept 𝑹𝑹𝟐𝟐 
0% 0.1586 0.997 0.9998 
5% 0.1548 1.060 0.9991 

10% 0.1488 1.131 0.9991 
15% 0.1429 1.204 0.9999 
20% 0.1389 1.277 0.9999 
25% 0.1363 1.347 0.9993 

The second phase in predicting the velocity at the rotor was to calculate the effective 
parameters at the desired rotor loading. These stem from the velocity induced by the 
combination of wake and free stream, a velocity that is not constant over the duct 
surface. To calculate which of these velocities was 𝑼𝑼∞,𝒆𝒆𝒇𝒇𝒇𝒇, it was assumed that the tilt of 
the effective free steam velocity from axial would match the tilt of the duct force from 
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the radial direction. The effective free stream velocity was therefore found by an 
optimisation algorithm [161] that varied the location until the difference in tilt angles 
was at a minimum. 

Sufficient information then existed to predict the velocity at the rotor for the chosen 𝐶𝐶𝑇𝑇. 
The duct wall angle was added to the free stream velocity tilt angle to give the effective 
wall angle, from which an initial velocity value could be calculated using the data from 
wall angles at 𝐶𝐶𝑇𝑇 = 0. This velocity was then scaled by the ratio of �𝑼𝑼∞,𝒆𝒆𝒇𝒇𝒇𝒇� to 𝑢𝑢∞: as the 
throat velocity ratio is unaffected by changes in 𝑢𝑢∞, a change in the free stream velocity 
seen by the duct has a linear effect on 𝑢𝑢𝑟𝑟. This process is shown in Equation 7.5, where 
for this equation only 𝑚𝑚 is the gradient of the linear fit and 𝑐𝑐 the y-axis intercept. 

𝑢𝑢𝑟𝑟
𝑢𝑢∞

= �𝑚𝑚𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 + 𝑐𝑐�
�𝑼𝑼∞,𝒆𝒆𝒇𝒇𝒇𝒇�
𝑢𝑢∞

Equation 7.5 

To test the accuracy of this approach, results were taken from the NACA 4-digit duct 
shapes at 𝐶𝐶𝑇𝑇 > 0. Discretisation convergence was checked using four duct shapes at the 
limits of the geometrical parameters described in Section 4.2 with the chord length 
ratio fixed at 0.1. Simulations with a low value for the coefficient of total duct force per 
radian 𝐶𝐶𝐹𝐹 suffered from low accuracy, so results with 𝐶𝐶𝐹𝐹 ≤ 0.05 were excluded. 
Discretisation convergence was otherwise good at 𝐶𝐶𝑇𝑇 ≤ 8/9, as shown in Table 7.6, with 
changes rising above 1% only at 𝐶𝐶𝑇𝑇 = 0.95. 

Table 7.6: Worst and median magnitude change in result when discretisation was changed for 
the discretisation checking duct shapes. Last duct panel length began at 0.00125𝑫𝑫 and 
expanding wake length at 8𝑫𝑫. 

% Difference with 
Halved Panel Length Doubled Wake Length 

Loading Result Worst Median Worst Median 

𝐶𝐶𝑇𝑇 = 0.15 

𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 0.07 0.01 0.00 0.00 
�𝑈𝑈∞,𝑒𝑒𝑑𝑑𝑑𝑑� 0.00 0.00 0.00 0.00 
𝑢𝑢𝑟𝑟 𝑢𝑢∞⁄  0.37 0.13 0.00 0.00 

𝐶𝐶𝑇𝑇 = 8/9 
𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 0.84 0.73 0.04 0.04 

�𝑈𝑈∞,𝑒𝑒𝑑𝑑𝑑𝑑� 0.06 0.06 0.01 0.01 
𝑢𝑢𝑟𝑟 𝑢𝑢∞⁄  0.42 0.33 0.02 0.01 

𝐶𝐶𝑇𝑇 = 0.95 
𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 2.33 2.18 0.34 0.29 

�𝑈𝑈∞,𝑒𝑒𝑑𝑑𝑑𝑑� 0.16 0.13 0.05 0.02 
 𝑢𝑢𝑟𝑟 𝑢𝑢∞⁄  0.83 0.63 0.09 0.07 
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Results 

The combination of 36 duct shapes with simulations at a range of rotor loading values 
above zero gave a set of 496 results. After excluding those with 𝐶𝐶𝐹𝐹 ≤ 0.05 and those 
where 𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 fell below the wall angle fit limit of 0°, a validation set of 191 results 
remained. These are compared to predictions from the effective parameters in Figure 
7.16. Visually good agreement can be seen for the majority of the results, although there 
is a noticeable divergence as the velocity ratio falls below 1. 

At worst, the error magnitude reached 16.4%. As can be seen in Figure 7.17, however, 
large errors were associated with high 𝐶𝐶𝑇𝑇 and low 𝐶𝐶𝐹𝐹, suggesting that they may simply 
be a consequence of reduced simulation accuracy. The majority of predictions were 
reasonably accurate in any case, with only 6 results reaching error magnitudes over 7%. 
Even in the less accurate region below 𝑢𝑢𝑟𝑟 𝑢𝑢∞⁄  = 1 the median error magnitude was 
3.9%, and the overall median was just 1.49%. 

The overall high accuracy of the predictions made using �𝑼𝑼∞,𝒆𝒆𝒇𝒇𝒇𝒇� and 𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 supports the 
hypothesis that they can be used to represent the influence of the wake on the duct. It 
also supports the assumption made in equating the tilt angles of 𝑼𝑼∞,𝒆𝒆𝒇𝒇𝒇𝒇 and 𝐶𝐶𝐹𝐹, which 
could perhaps lead to a satisfying circulation based explanation for the perfect 
relationship between duct drag and augmentation seen in Sections 3.1.6 and 6.2.1. 
Although the circulation dispersion ratio is important for understanding the circulation 
explanation of augmentation, these results also show that it need not always be directly 
considered.  

Figure 7.16: Comparison of predicted and actual axial velocity at the rotor 𝒖𝒖𝒓𝒓, with the line of 
perfect agreement shown, where predictions were made using effective free stream velocity 
𝑼𝑼∞,𝒆𝒆𝒇𝒇𝒇𝒇 and wall angle 𝜶𝜶𝒆𝒆𝒇𝒇𝒇𝒇. 

0

0.5

1

1.5

2

0 0.5 1 1.5 2

P

⁄𝒖𝒖𝒓𝒓 𝒖𝒖∞



Chapter 7: Optimum Rotor Loading and Augmentation Theory  196 

 

  
Figure 7.17: Variation of axial velocity 𝒖𝒖𝒓𝒓 prediction error with rotor loading coefficient 𝑪𝑪𝑻𝑻 
(left) and the coefficient of total duct force per radian 𝑪𝑪𝑭𝑭 (right). 

7.2.4 Circulation: A Validated Theory 

An explanation for the augmentation provided by ducted turbines in inviscid flow has 
now been provided by the combination of circulation and circulation dispersion, 
resolving an earlier inconsistency in the aerofoil conceptual model. Despite the 
underlying difference between a planar aerofoil and an axisymmetric duct, accurate 
quantitative predictions can still be made from effective free stream parameters. While 
the prediction approach requires simulation results to already exist at the desired 𝐶𝐶𝑇𝑇, 
limiting the practical usefulness, it lends credence to the conceptual model in a general 
sense and provides a tool for the analysis of optimum rotor loading.  

7.3 Optimum Rotor Loading: Applying the Theory 
Every numerical investigation in this work found optimum rotor loading coefficients 
less than 8/9, including the large scale searches in Section 7.1. Being numerical 
investigations, however, they cannot show that 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 must always be reduced. Another 
type of evidence will be added here: an explanation for reduced 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 due to an 
increasingly negative influence on duct performance from the wake as 𝐶𝐶𝑇𝑇 increases. 

7.3.1 Analytical Approach 

An analytical solution for the strength of a wake vortex ring could not be found in 
Section 2.2.2 for the general case. Simplifying by attributing the velocity at a wake panel 
only to the free stream velocity, however, led to Equation 2.31 for a cylindrical wake. 
This relationship is repeated here as Equation 7.6. 
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𝛤𝛤 = −
Δ𝑝𝑝Δ𝑠𝑠
𝜌𝜌𝑢𝑢∞

Equation 7.6 

For any positive free stream velocity, wake panel length Δ𝑠𝑠, and rotor pressure drop Δ𝑝𝑝, 
the simplified wake panel strength is negative. Combining the velocity induced by such 
a panel with a free stream velocity leads to the velocity field in Figure 7.18 upstream of 
the vortex ring. A velocity component in the outward radial direction is induced, along 
with a reduction in the velocity magnitude for radial positions less than the ring radius. 
One small exception exists for the latter point: close to the axial position of the ring, and 
where the radial velocity approaches its largest value, the velocity magnitude is 
increased. 

Figure 7.18: Velocity magnitude (left) and radial velocity (right) upstream of a single vortex 
ring of negative strength. Position is given in terms of the ring diameter 𝑫𝑫, with velocity 
magnitude |𝑼𝑼| and radial velocity 𝒗𝒗 given as a proportion of the free stream velocity. Velocity 
values are capped approaching the vortex ring’s singularity. 

Extrapolating to an entire wake by summing individual contributions, radial velocities 
upstream of the wake will increase compared to the single ring, and velocity 
magnitudes will decrease at radii less than the wake upstream end. For a duct of 
smaller radius than the wake, as would be expected for an expanding duct, the effective 
free stream velocity and wall angle will both therefore be reduced as rotor loading 
increases. If the exception of increased velocity magnitude near the ring still exists, it 
will coincide with a significantly reduced effective wall angle. 

7.3.2 Numerical Approach 

Moving beyond the simplified analytical approach required a set of numerical results. 
Effective free stream velocities and wall angles were therefore found for the set of 200 
NACA 4-digit duct shapes randomly generated in Section 4.2.3. As discussed in Section 
7.2.3, results with a low total duct force suffered from accuracy problems and so 
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simulations with 𝐶𝐶𝐹𝐹 ≤ 0.05 were again excluded. An additional problem was found with 
the wider range of shapes used here, as the optimisation algorithm could not always 
match the velocity and force angles in the search for the effective free stream velocity. 
These cases are visible with a large 𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 error in Figure 7.19. 

 
Figure 7.19: Variation of effective wall angle 𝜶𝜶𝒆𝒆𝒇𝒇𝒇𝒇 error, as calculated from velocity, with the 
coefficient of total duct force per radian 𝑪𝑪𝑭𝑭. Force and angle error exclusion criteria are also 
marked. 

The majority of the problematic simulations fell below 𝐶𝐶𝐹𝐹 = 0.05 and were excluded 
anyway, but a number did not. Large 𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 errors were associated with lower total force 
and were more common at higher rotor loadings, suggesting numerical error as a likely 
cause. A second exclusion criterion was therefore set to remove the suspect simulations 
with an 𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 error greater than 0.0003°. The particularly tight threshold was chosen to 
exclude the result away from the main group at 𝐶𝐶𝐹𝐹 ≈ 25.  

Discretisation convergence was acceptable at 𝐶𝐶𝑇𝑇 ≤ 8/9 with the exclusions applied, as 
shown in Table 7.7, although the worst difference was elevated for the circulation 
dispersion ratio at 𝐶𝐶𝑇𝑇 = 8/9. Excluding a small value of 𝛬𝛬𝛤𝛤 reduced the worst difference 
to 1.48%. 𝐶𝐶𝑇𝑇 = 0.95 also saw a small value of 𝛬𝛬𝛤𝛤, but even excluding that the worst 
difference was 4.28%. Other changes reached 3.4%, so some caution is warranted at the 
highest rotor loading. 
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Table 7.7: Worst and median magnitude change in result when discretisation was changed for 
the discretisation checking duct shapes. Last duct panel length began at 0.00125𝑫𝑫 and 
expanding wake length at 8𝑫𝑫. 

% Difference with 
Halved Panel Length Doubled Wake Length 

Loading Result Worst Median Worst Median 

𝐶𝐶𝑇𝑇 = 0.15 

𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 0.07 0.01 0.00 0.00 
�𝑈𝑈∞,𝑒𝑒𝑑𝑑𝑑𝑑� 0.00 0.00 0.00 0.00 
𝑢𝑢𝑟𝑟 0.37 0.10 0.00 0.00 
𝛬𝛬𝛤𝛤 0.21 0.08 0.00 0.00 

𝐶𝐶𝑇𝑇 = 8/9 

𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 0.84 0.43 0.09 0.04 
�𝑈𝑈∞,𝑒𝑒𝑑𝑑𝑑𝑑� 0.09 0.05 0.21 0.01 
𝑢𝑢𝑟𝑟 1.08 0.33 0.39 0.02 
𝛬𝛬𝛤𝛤 2.80 0.14 0.07 0.02 

𝐶𝐶𝑇𝑇 = 0.95 

𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 2.33 0.78 0.47 0.31 
�𝑈𝑈∞,𝑒𝑒𝑑𝑑𝑑𝑑� 0.18 0.11 0.64 0.05 
𝑢𝑢𝑟𝑟 3.41 0.54 1.20 0.09 
𝛬𝛬𝛤𝛤 7.95 0.20 0.56 0.14 

Gradients were calculated to assess the changes of 𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 and �𝑼𝑼∞,𝒆𝒆𝒇𝒇𝒇𝒇� with 𝐶𝐶𝑇𝑇. Accuracy 
was only required insofar as testing if the gradients were above or below zero, 
therefore they were calculated using a backwards difference between somewhat widely 
spaced 𝐶𝐶𝑇𝑇 values. Where 𝑖𝑖 indicates results for the 𝑖𝑖th 𝐶𝐶𝑇𝑇 value in an increasing 
sequence and 𝜑𝜑 the result of interest, the gradient was therefore calculated using 
Equation 7.7. 

�
Δ𝜑𝜑
Δ𝐶𝐶𝑇𝑇

�
𝑖𝑖

=
𝜑𝜑𝑖𝑖 − 𝜑𝜑𝑖𝑖−1
𝐶𝐶𝑇𝑇,𝑖𝑖 − 𝐶𝐶𝑇𝑇,𝑖𝑖−1

Equation 7.7 

Increasingly strong wake vorticity was found to reduce 𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 in all but 6 out of 1292 
cases and �𝑼𝑼∞,𝒆𝒆𝒇𝒇𝒇𝒇� in all cases, as shown in Figure 7.20. The 6 positive 𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 gradients 
can likely be dismissed on the basis that they were associated with both high rotor 
loading and low total duct force, conditions that have previously led to reduced 
accuracy. Extending the analysis to include 𝛬𝛬𝛤𝛤 and 𝑢𝑢𝑟𝑟 in Figure 7.21 found that 
increasing 𝐶𝐶𝑇𝑇 led to less dispersed circulation and decreased velocity, even though more 
concentrated circulation implies greater 𝑢𝑢𝑟𝑟 at a given value of circulation. 
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Figure 7.20: Tukey box and whisker plots showing the gradient of effective wall angle 𝜶𝜶𝒆𝒆𝒇𝒇𝒇𝒇 
(left) and effective free stream velocity magnitude ratio 𝑼𝑼∞,𝒆𝒆𝒇𝒇𝒇𝒇 𝒖𝒖∞⁄  (right) with rotor loading. 
Gradients calculated using a backwards difference between the rotor loadings shown. 
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Figure 7.21: Tukey box and whisker plots showing the gradient of the circulation dispersion 
ratio 𝜦𝜦𝜞𝜞 (left) and velocity ratio at the rotor 𝒖𝒖𝒓𝒓 𝒖𝒖∞⁄  (right) with rotor loading. Gradients 
calculated using a backwards difference between the rotor loadings shown. The left plot 
excludes three outliers at -42.4, -42.9, and -57.5 for 𝑪𝑪𝑻𝑻 = 0.95. 
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7.3.3 The Negative Influence on Optimum Rotor Loading 

Both the simplified analytical approach and the numerical results suggest that the 
influence of the wake increasingly reduces �𝑼𝑼∞,𝒆𝒆𝒇𝒇𝒇𝒇� and 𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 as 𝐶𝐶𝑇𝑇 increases. 
Reductions in the effective free stream velocity can be expected to always reduce the 
axial velocity at the rotor: a velocity ratio 𝑢𝑢/𝑢𝑢∞ is not affected by changes in 𝑢𝑢∞ for 
incompressible inviscid flow, demonstrating the linear relationship between 𝑢𝑢 and 𝑢𝑢∞. 
Numerical tests illustrated this point with a perfect linear relationship between 𝑢𝑢∞ and 
duct circulation, consistent with thin aerofoil theory [69], and no change in the 
circulation dispersion ratio with 𝑢𝑢∞. 

Changing 𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 has a less certain influence on performance. Reduced effective wall angle 
would always lead to reduced performance in the aerofoil model, but that model is 
imperfect due to the influence of circulation dispersion. Indeed, Figure 7.21 shows a 
decrease in 𝛬𝛬𝛤𝛤 with rotor loading and therefore a greater 𝑢𝑢𝑟𝑟 at a given 𝐶𝐶𝛤𝛤 for the duct 
shapes examined here. The velocity at the rotor nevertheless always decreased with 
rotor loading, as seen on the right of Figure 7.21, but it is not certain from this evidence 
that decreases in circulation would always outweigh decreases in the dispersion ratio. 

These results nevertheless provide an explanation for reduced 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇: the combined 
changes in 𝛼𝛼𝑒𝑒𝑑𝑑𝑑𝑑 and �𝑼𝑼∞,𝒆𝒆𝒇𝒇𝒇𝒇� lead to reduced duct performance as rotor loading 
increases. Decreased mass flow then outweighs the increased fraction of energy 
extracted at higher rotor loadings, favouring a lower value of 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. The optimum rotor 
loading for a particular turbine therefore depends on the rate at which duct 
performance reduces with 𝐶𝐶𝑇𝑇. 

Alone, the numerical results in Section 7.1 could not prove that 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 must always be 
reduced. Together with the reasoning here, however, there is a credible argument:  
every duct shape examined numerically had 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 < 8/9, and there is an explanation 
that could plausibly apply to all duct shapes generally. Absent any counterexamples, 
there is strong support for the conclusion that the optimum rotor loading is reduced for 
ducted turbines in inviscid flow. 

7.4 The Aerofoil Explanation for Ducted Turbine Performance 
A number of conclusions can be drawn concerning the behaviour of ducted turbines 
from the investigations in this chapter, going beyond the main conclusion that the 
optimum rotor loading is reduced in inviscid flow. In combination with results from 
earlier chapters, it is now possible to explore the duct circulation, force, and 
augmentation relationships. The variation in these parameters with rotor loading is 
examined in this section from an aerofoil point of view to give a more complete picture 
of the inviscid component of ducted turbine performance. 
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At Zero Rotor Loading 

Beginning at 𝐶𝐶𝑇𝑇 = 0, a ducted turbine will induce a circulation around the duct wall that 
acts to increase the axial velocity at the rotor position 𝑢𝑢𝑟𝑟. Associated with this 
augmentation is a radially inwards force on the duct, with zero drag in inviscid flow at 
this rotor loading. Despite both being considered by other authors as causes of the 
increased velocity, neither circulation nor radial force were found to be perfectly 
correlated with velocity in Section 7.2.1. 

The imperfection for circulation is caused by the dependence of 𝑢𝑢𝑟𝑟 on both the total 
value of circulation and how the contributions to that total are distributed along the 
duct’s surface, as shown in Section 7.2.2. Where positive contributions are concentrated 
near the rotor, the axial velocity is higher than when the positive contributions are 
dispersed away from the rotor. This effect can be quantified by the circulation 
dispersion ratio 𝛬𝛬𝛤𝛤, which is large for dispersed contributions, or the circulation 
effectiveness ratio 𝜂𝜂𝛤𝛤, which is small for dispersed contributions. 

Above Zero Rotor Loading 

When the rotor begins operating, and 𝐶𝐶𝑇𝑇 increases to some moderate value, there are 
consequent changes in duct performance. Section 7.2.3 demonstrates that this influence 
can be thought of as a change in the effective free stream velocity seen by the duct; the 
rotor reduces this velocity and tilts the velocity vector so that the effective wall angle of 
the duct is reduced. A decrease in augmentation therefore follows, which can be 
explained using the aerofoil conceptual model through a decrease in duct circulation.  

Examining the changes directly, Section 7.3.2 confirms a decrease in circulation with 
rotor loading. It also shows a decrease in the circulation dispersion ratio, although the 
positive effect on 𝑢𝑢𝑟𝑟 is never sufficient to overcome the reduction caused by the drop in 
circulation. To explain the reduction in 𝛬𝛬𝛤𝛤, it is necessary to consider the vorticity that 
is shed by the rotor and forms the wake surface: a radially outward velocity is induced 
on the duct surface by this vorticity, and this velocity contribution increases in 
magnitude towards the duct trailing edge.  

To balance the outward velocity induced by the wake vorticity, and maintain zero flow 
through the duct wall, the duct’s vorticity must induce an inward velocity of equal 
magnitude at each point on the duct surface. The strength of the duct’s vorticity 
therefore decreases near the trailing edge, where the largest velocity magnitude is 
required. By reducing the positive contributions to the overall circulation away from the 
rotor, the contributions that remain are concentrated closer to the rotor and 𝛬𝛬𝛤𝛤 
decreases.    



Chapter 7: Optimum Rotor Loading and Augmentation Theory  204 

 

Changes in the effective free stream velocity do not only affect augmentation, with 
Section 7.2.3 demonstrating an impact on the duct force: as the velocity vector tilts 
away from the axial direction, there is an equal tilt in the total inviscid force vector away 
from the radial direction. This connection is important, firstly, because the influence of 
the rotor on velocity varies over the surface of the duct. Finding the location where the 
velocity tilt angle matches the force tilt angle allows the correct effective free stream 
velocity to be selected. 

The tilt angle connection also explains the existence of a drag force in inviscid flow.  
Since the total force vector remains perpendicular to the effective free stream velocity 
vector, an axial force component must be introduced as the velocity vector tilts away 
from the axial direction. This force is conceptually similar to the induced drag on a finite 
wing, which is caused by a change in the effective free stream velocity due to the 
vorticity shed by the wing itself [69]. 

At High Rotor Loadings 

As the rotor loading increases further, the effective free stream velocity continues to tilt 
and reduce in magnitude, the duct circulation and circulation dispersion ratio continue 
to decrease, and the augmentation of the flow through the rotor drops further. The duct 
may eventually begin to curtail the flow rather than augment it, depending on the duct 
design, reducing power extraction below that from a bare rotor at the same rotor 
loading. 

If the duct does begin to curtail the flow, the inviscid drag becomes negative and there is 
an upstream force on the duct. This change is discussed in terms of the momentum 
drop caused by the rotor in Section 6.2.1, but it can also be thought of in terms of the 
aerofoil conceptual model and the effective free stream velocity. Although there is not a 
perfect correlation between force and augmentation, Section 6.2.1 suggests that the 
radial component is inwards for augmentation and outwards for curtailment. For the 
force vector to remain perpendicular to the effective free stream velocity, the axial 
component must therefore be downstream for augmentation and upstream for 
curtailment. 

The Optimum Rotor Loading 

In addition to the direct influence of the duct on power extraction at each value of 𝐶𝐶𝑇𝑇, 
there is an indirect influence through a reduction in the rotor loading for maximum 
power. Section 7.3.3 explains the change in 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 through the change in the effective 
free stream velocity: as the rotor loading increases, the velocity tilts and decreases in 
magnitude, reducing the duct circulation and augmentation. The mass flow is therefore 
decreasing at a faster rate than for a bare rotor, outweighing the increased fraction of 
energy extraction at higher rotor loadings, and leading to a lower value of 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. 



Chapter 7: Optimum Rotor Loading and Augmentation Theory 205 

An explanation can also be provided in somewhat different terms by considering the 
combination of rotor and duct as a net resistance to the flow. This net resistance is 
negative for a ducted turbine, at least at lower rotor loadings, since the influence of the 
duct overcomes the resistance of the rotor to accelerate the flow. As 𝐶𝐶𝑇𝑇 increases, the 
increased resistance from the rotor causes an expansion of the flow, a change in the 
velocity local to the duct, and a consequent decrease in the duct’s augmentation.  

Decreased augmentation is equivalent to increased resistance, so the net resistance to 
the flow is therefore increasing at a faster rate with 𝐶𝐶𝑇𝑇 than for a bare rotor alone. 
There must then be a more rapid drop in mass flow through the rotor, which is 
equivalent to a more rapid drop in the energy available for the rotor to extract. Since 
ducted turbines do not affect the fraction of energy extracted from the flow at a given 
rotor loading, lower 𝐶𝐶𝑇𝑇 values become advantageous and 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 is reduced. 

Underlying these explanations are the investigations of the effective free stream 
velocity in Sections 7.3.1 and 7.3.2. These investigations took simplified analytical and 
numerical approaches respectively, so there cannot be the certainty that exact analytical 
expressions would bring. A numerical optimisation seeking to maximise 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 in 
Section 7.1.1 and an examination of 1776 duct shapes in Section 7.1.2, however, found a 
maximum 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 of 0.84. Combining a plausible explanation with the absence of a single 
duct reaching 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9 strongly supports the conclusion that the optimum rotor 
loading is always reduced for ducted turbines in inviscid flow. 
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7.5 Summary 
Earlier chapters have confirmed that the optimum rotor loading for ducted turbines can 
be less than 8/9, both through numerical results and an analysis of the theory. Here, the 
aim was to discover if 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 must always be less than 8/9 in inviscid flow. Numerical 
results support this hypothesis: an optimisation seeking maximum 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 with 30 
starting duct shapes found no more than 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 0.81, while an examination of 1776 
other duct shapes reached 0.84 by allowing shorter ducts. Direct searches of this type, 
however, leave open the possibility that duct shapes with larger optimum rotor 
loadings exist but were simply not found. 

An accurate understanding of why ducts augment the flow through a rotor could make 
the 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 conclusion more general, but even the most promising lead of circulation and 
the aerofoil model has not been perfect. Tests using the radial or total force on the duct 
similarly suffered from an imperfect association with augmentation. This problem was 
solved by using circulation in conjunction with a circulation dispersion parameter that 
measures the distribution of circulation along a duct’s surface.   

The circulation dispersion ratio introduces a significant difference between ducted 
turbines and an aerofoil-based model of their performance. Nevertheless, that model 
can still be the basis of accurate predictions using the effective free stream velocity and 
duct wall angle caused by the combination of 𝑢𝑢∞ and the velocity induced by the wake. 
Calculating the mass flow through the duct with changes in 𝐶𝐶𝑇𝑇 using that approach gave 
a median magnitude error of just 1.49% in 191 test cases, although note that the 
method is useful only for improving understanding and not for real world predictions. 

Both a simplified analytical approach and a numerical approach with 200 duct shapes 
found a reduction in these effective parameters with increasing rotor loading. This 
result adds a plausible explanation to the search for 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9: the performance of the 
duct reduces with rotor loading, shifting the balance between mass flow and the 
fraction of energy extracted, and reducing the optimum rotor loading.  
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A wide range of investigations were carried out for this work, all working towards the 
overall aim of building a better understanding of fundamental aspects of ducted turbine 
performance. These investigations are split here into the four objectives chosen in 
Section 1.6: exploring the inviscid behaviour of ducted turbines, evaluating the 
competing conceptual models, examining the validity of theory, and deepening 
understanding of the influences on optimum rotor loading. This chapter describes the 
main conclusions, limitations, and future work for each of the objectives. 

8.1 The Inviscid Behaviour of Ducted Turbines 

8.1.1 The Influence of Duct Geometry on Performance 

Influence of Diffuser Parameters 

An assessment of how duct shape affects power extraction formed part of the inviscid 
exploration objective, for geometrical parameters based on diffuser and aerofoil points 
of view separately. The full set of diffuser parameters was used in Section 4.1, showing 
increased 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 with increased exit area ratio and exit angle, and both positive and 
negative changes with increased length. Substantial uncertainty was introduced by the 
need to use a regression analysis to isolate the interrelated parameters, however, so it is 
unclear how far the results can be trusted. Future work could quantify how changes in 
the shape generation approach affect the results, and repeat the process if a way to 
isolate the parameters without regression is found. 

Certain specific questions raised relating to diffuser parameters could be answered, 
however, without needing to rely on a regression analysis. Inlet design and duct length 
were expected to be immaterial in inviscid flow from a review of the literature, but 
Sections 3.3.3 and 3.2.2 found otherwise. Although a change in 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 of up to 4% when 
adding inlet sections up to 0.2 rotor diameters long may still be minor, a 30% increase 
when lengthening a duct by 0.5 rotor diameters is not. Another important question was 
whether area ratio has significantly more impact than other aspects of duct shape. It 
can be concluded that the answer is no, from results in Section 3.1.2 showing 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
more than doubling with changes in shape at a fixed area ratio. 

Influence of Aerofoil Parameters 

No regression was necessary for the aerofoil parameters, and increases in 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 were 
found with wall angle and camber in Section 4.2. A larger chord length ratio generally 
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acted to magnify the existing augmentation or diminution of 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, but not in every 
case. Although only a single aerofoil family was examined at fixed thickness and point of 
maximum camber, these results constitute an investigation that is significantly wider 
ranging and more systematic than any known to have been conducted previously. 

A more limited investigation was conducted into duct wall thickness in Sections 3.3.1 
and 3.3.2. While the variation in rotor area with thickness complicates matters, changes 
in mass flow of less than 6% going from a 0% to 6% thick duct suggest that a zero 
thickness duct wall can reasonably approximate a moderately thick one. It appears that 
the zero thickness representation should be the camber line, rather than the inside or 
outside surface, although agreement may sometimes be improved by translating it 
radially to match the rotor area. Confirmation with additional duct shapes is required, 
ideally using the same simulation code for the thick and thin ducts. 

8.1.2 Applicability to Viscous Flows 

Care must be taken when applying the simulation results in this work to real flows, as 
they lack any contribution from viscous mechanisms of augmentation and the limiting 
effect of flow separation on performance. The large values of power coefficient 
sometimes seen cannot be expected of a real turbine, and the optimised duct shapes are 
not design recommendations. Rotor induced rotation of the flow, however, may 
suppress separation [79, 88] and allow performance closer to the inviscid case than 
expected. 

The inviscid results may even be directly applicable to real flows where separation is 
avoided: Section 3.3.4 found agreement within 10% for viscous and inviscid power 
coefficients with attached flow, for a single duct shape at four wall angles. Either way, 
the results can be combined with an intuitive understanding of viscous effects to 
consider how geometry affects the performance in a real flow, and they allow future 
studies to quantify the influence of geometry on the viscous component of 
performance. 

8.1.3 Power Extraction, Flow Rate, and Rotor Loading 

Two important power relationships were investigated. Further confirmation was found 
of a linear relationship between power extraction and flow velocity, from numerical 
results in Section 3.1.3 and theoretical derivations in Section 6.2.2, hopefully helping to 
dispel the velocity cubed misconception. Numerical results also showed that 
augmentation decreases with rotor loading in Section 3.1.5, rather than staying 
constant, with the error in assuming otherwise reaching above 30% at maximum 
power. Further studies discussed later in Section 8.4.2 suggest that the presence of a 
rotor must always decrease augmentation in inviscid flow. 
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8.1.4 Inapplicability of the Betz Limit 

An assessment of the Betz limit in Section 3.1.8 provides what is perhaps the first 
irrefutable evidence that it does not apply at all to ducted turbines, whether on the 
basis of rotor or exit area. Results even exceeded 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1 with exit area, far above the 
Betz limit of 0.593. With an analysis showing that the power coefficient loses its 
expected physical meaning when applied to a ducted turbine, however, the absence of a 
theoretical limit is not concerning and large values of 𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 simply reflect an 
abundance of available power. 

With a power coefficient that is no longer a measure of actual to available power, debate 
over whether it is more correct to use the rotor or duct exit area in the definition of 𝐶𝐶𝑃𝑃 
is rendered somewhat redundant. The decision need not be arbitrary, however, as the 
more convenient option can be chosen. Overall, it appears that rotor area gives more 
linear changes in 𝐶𝐶𝑃𝑃 with changes in the aerofoil parameters for duct shape, as 
discussed in Section 4.2.1, although only a single aerofoil family was tested. As it is also 
consistent with the bare rotor definition, rotor area appears to be the better choice. 

In place of a theoretical limit, Section 3.2.2 uses right angled shapes to suggest upper 
limits for a given size of duct. Although the result of an inviscid shape optimisation 
process, this approach provides only an estimate. More extreme shapes that may 
increase performance were prevented by the optimisation bounds, and it was assumed 
that viscous mechanisms of augmentation cannot overcome viscous limitations to 
exceed inviscid performance. Nevertheless, it would be interesting to carry out an 
economic analysis with these results: if ducted turbines are not viable in this idealised 
case, what future can they have? 

8.2 A Comparison of Conceptual Models 
Ducted turbines are customarily thought of as diffusers reducing pressure to draw 
more flow through the rotor. Augmentation has alternatively been explained through an 
aerofoil mechanism, but practical applications of this approach have been rare. Both of 
these conceptual models were evaluated for their usefulness in this work’s second 
objective, in terms of the ability to explain augmentation and to provide the better set of 
parameters for duct geometry. 

8.2.1 Explanations for Augmentation 

Diffuser Explanation 

A reduction in exit pressure was the viewpoint selected to represent the diffuser 
conceptual model in Section 1.2.2, but Section 3.1.6 shows the association with 
augmentation to be an imperfect one. Support for the diffuser explanation was found, 
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however, in an equation derived from a momentum balance in Section 6.3.2: 
inequalities of less than 0.2% when tested with simulation results suggest an exact 
relationship. The introduction of a correction factor for radial variations in the exit 
plane explains the improvement, with Section 3.1.7 showing that the variations change 
with rotor loading and duct shape, but a method of predicting the radial variation from 
the diffuser model was not apparent.  

Aerofoil Explanation 

Radial force and circulation are alternative viewpoints for the aerofoil explanation, but 
neither showed a perfect relationship with augmentation in Sections 7.2.1 and 3.1.6. A 
reason for the radial force imperfections has been put forward in the form of changes in 
leading edge stagnation point location [74], although it could perhaps be argued that 
the location changes as a result of the changes in augmentation rather than vice versa. 
That reason was not tested here, but results in Section 6.2.1 are consistent with an 
inwards radial force for augmentation and an outwards radial force for curtailment; 
further work may show scatter in the results near zero augmentation to be numerical 
error.  

To achieve a perfect relationship with circulation, Section 7.2.2 shows that the 
distribution of circulation along the duct’s surface must be considered. A circulation 
dispersion ratio was defined to represent this distribution, resolving discrepancies in 
the circulation explanation. This parameter increased at 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 with wall angle and 
camber, and also with chord length ratio for the better performing ducts. Logical next 
steps would be to examine the influence of thickness and point of maximum camber, 
and test with different aerofoil shape families and rotor loadings. 

The aerofoil model can be extended to view the influence of the rotor as a change in the 
flow seen by the duct. Accurate predictions for flow velocity at a chosen rotor loading 
were made on this basis in Section 7.2.3, using results at 𝐶𝐶𝑇𝑇 = 0 and the effective free 
stream velocity and wall angle, with a median error across 496 results of just 1.49%. 
While the approach required simulation results at the desired 𝐶𝐶𝑇𝑇 and therefore has no 
practical use, it provides further support for the circulation explanation and suggests an 
intuitive way of thinking about the influence of the rotor. 

Although the circulation dispersion changes with wall angle, and so would be expected 
to change with the effective wall angle, it was not necessary to directly consider it when 
making predictions. This apparent exclusion is surprising given the link it provides 
between circulation and augmentation, and would make an interesting topic in future 
investigations. It would also be useful to test the accuracy of predictions with additional 
duct shapes, particularly longer ones without a linear relationship between velocity and 
wall angle, while a method to determine the effective free stream flow without 
simulations would be invaluable. 
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Explanations Compared 

Exact relationships between augmentation and both exit pressure and circulation were 
found, albeit both requiring the inclusion of a further parameter, supporting their use in 
explaining augmentation. An exact relationship in itself doesn’t prove that they actually 
cause augmentation – no one would consider duct drag a cause of augmentation despite 
its exact relationship – but addressing this point is perhaps of philosophical rather than 
practical value. Of much more importance is whether the explanations are helpful for 
understanding how ducted turbines behave. 

Expectations from an aerofoil inducing circulation better matched the simulation 
results in Sections 3.4 and 4.3, compared to a diffuser reducing pressure. A conceptual 
model that more often gives the correct intuition would certainly be more helpful in 
practice. An application of the aerofoil model may also help explain the rather 
counterintuitive increases in drag with augmentation discussed in Section 6.2.1: 
Phillips [4] speculated that some kind of relationship between the axial and radial duct 
forces may be the cause, a relationship found by equating the angles of effective velocity 
and total force in Section 7.2.3. 

With the circulation explanation best for standard ducts, it is worth considering 
whether it can be applied to those with a flange. Inviscid power coefficients for right 
angled shapes in Section 3.2.2 were around 1/3rd greater than those for flanged ducts 
[44] of the same overall size in viscous flow, so separation on a flanged duct could well 
be a limitation on performance rather than a cause. One avenue to consider this 
possibility would be to check if an increase in the strength of the vortices caused by the 
flange is always associated with an increase in performance when compared to inviscid 
results. 

8.2.2 Parameters for Duct Geometry 

Aerofoil parameters were found to be significantly more useful than diffuser 
parameters in Chapter 4. Even choosing a duct shape was more difficult with the 
diffuser approach, as the parameters used to create the shape were not the set of 
diffuser parameters measuring it. A regression analysis was also needed to isolate the 
influence of each diffuser parameter, with prediction intervals up to 50% of the 
prediction values. A clearer link to performance therefore exists in the aerofoil case, as 
each parameter had an independent effect and there was no ambiguity introduced by 
the regression. 

It is not certain whether the shortcomings found for the diffuser parameters here are 
inherent or simply a consequence of the methodology used. Only a single approach to 
shape generation was tested, and it is unclear whether a better approach using the 
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diffuser parameters themselves is possible. Some of the uncertainty introduced by the 
regression could have been caused by the use of an automated process without manual 
fine tuning, although validation of the fits was reasonable.   

Further investigations could possibly lead to a method for directly generating duct 
shapes from the set of diffuser parameters, or if not then perhaps a way to vary the 
diffuser parameters in isolation. But why exert that effort rather than using the aerofoil 
parameters, which are now known to work well? Not only are they straightforward to 
use, but there already exists a vast array of aerofoil families that could be adapted to 
ducted turbines. It is worth considering, however, whether or not the aerofoil 
parameters should change to match the geometrical parameters of whichever aerofoil 
family is used in a study. 

Future work to determine the applicability of existing aerofoil data to ducted turbines 
would be worthwhile, particularly if a way could be found to account for the influence 
of the rotor. It may be sensible to examine analytical solutions for particular aerofoil 
shapes to test the possibility of reformulation for ducted turbines. The analysis 
undertaken here could also be improved by comparing expectations from a ring wing 
formulation of thin aerofoil theory to the simulation results in Section 4.2.5 rather than 
the standard 2D theory that was used. 

8.2.3 The Benefits of an Aerofoil Model 

Both parts of this analysis led to the same conclusion: an aerofoil conceptual model 
outperforms a diffuser one. The former is easier to work with, leads to intuition that 
better matches how ducted turbines actually perform, and has a range of existing data 
that may be applicable to ducted turbines. It is recommended that the aerofoil model 
now be used as standard rather than the previously customary diffuser approach.  

8.3 Tests and Extensions of Theory 

8.3.1 The Validity of Existing Theories 

Three existing theories were examined for their validity as part of the third objective in 
Chapter 5. While there was a base of valid equations on the level of actuator disc theory, 
errors of up to 94% after invalid simplifying assumptions leave the requirement of 
empirical testing in force. It is therefore recommended that these assumptions are 
avoided: that the duct axial force coefficient is constant with rotor loading, that 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 8/9, that the exit pressure coefficient does not vary with mass flow rate near 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇, and that the ratio of duct drag to rotor thrust does not vary with mass flow rate 
or far wake velocity near 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. 
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Jamieson [137] introduced the ideal diffuser in another derivation, a theoretical 
concept designed to improve understanding by considering a duct of infinitely variable 
shape to account for the changing interaction between the duct and a variably loaded 
rotor. Tests in Section 5.7 showed that 7 of Jamieson’s equations apply to real ducts, and 
clarified the definition of ideal diffuser. It appears that it is one without drag, or with a 
variation of shape that allows a fixed empirical parameter, or both. 

Two limitations exist for the approach taken to validation. Simulation results, firstly, 
cannot be completely accurate, so disagreement could have been caused by errors in 
the simulations rather than in the theories. Secondly, assessing whether a particular 
theory was valid required subjective judgement. Generally, however, invalid equations 
had disagreements far larger than the expected simulation error and could not 
reasonably be argued as valid. The use of multiple simulation results minimised the 
chance of an invalid equation appearing valid by coincidence. 

A logical extension of this work would be to increase the complexity of the simulations 
above axisymmetric inviscid flow, and determine the impact of factors such as viscosity 
and radially varying rotor loading on the validity of theory. While previous validation 
work has taken place on a viscous level, no investigation was encountered testing on an 
equation by equation basis. Further theories could also be examined. Bontempo and 
Manna’s [193] is attractive as it uses a semi-analytical approach, and ducted propeller 
theories could be surveyed for any useful differences to ducted turbine theories.   

8.3.2 A Correction Factor for Radially Varying Flows 

The quasi-one dimensional theories were found to apply to the radially varying flow of 
the simulation results when using an area weighted average value instead of a radially 
constant one. An exception exists for derivations from Bernoulli’s equation, however, 
where a correction factor is required due to the velocity squared term. Neglecting this 
factor led to error increases of up to 950 percentage points in Phillips’ theory, with a 
peak factor value of 2. 

Accurate results could not be achieved with the factor typically specified in fluid 
dynamics textbooks, however, so the one derived in Section 5.3.1 must be used instead. 
Further tests of the influence of radial variations would be useful in viscous flow, 
particularly to examine diffuser efficiency. The definition of that parameter neglects 
radial variations, and it would be interesting to see if there is a stronger or weaker 
correlation with augmentation once corrected for. 

8.3.3 The Missing Derivation for Inviscid Drag 

A numerical examination in Section 6.1.3 found the missing link in the detailed 
derivation of a power equation involving duct drag: the forces acting on the streamtube 
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control volume are equal and opposite to the total inviscid duct drag. Confidence in the 
accuracy and generality of this conclusion would be improved with an analytical proof, 
but the numerical approach did use a number of simulations and found errors of 1.2% 
or less. It would also be interesting to carry out a detailed derivation similar to that 
performed here, but with the aim of reaching a set of validated equations for viscous 
flow. 

8.3.4 Suitability of Empirical Parameters 

An equation for power coefficient formulated using velocity at the rotor and rotor 
loading is recommended in Section 6.4 over exit pressure and inviscid duct drag, with 
the former parameters viewed as the direct causes of augmentation and the latter as 
abstracted and potentially distracting. Further opinions on the selection of empirical 
parameters and formulation of equations would be valuable, as reaching a consensus 
approach would ease comparisons between theories, simulations, and experiments. It 
is also suggested that equations involving exit area ratio be avoided because of the 
undue emphasis over other geometrical parameters. 

8.4 The Optimum Rotor Loading 

8.4.1 Studies of Theory and Geometry 

The final objective of this work was to improve understanding of the optimum rotor 
loading for ducted turbines. An investigation based on theory in Section 6.2.3 could not 
determine whether a duct must affect 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇, but did suggest that it is the form of the 
relationship between 𝐶𝐶𝑇𝑇 and augmentation that governs any increase or decrease that 
does occur. Initial numerical results for a small number of duct shapes in Section 3.1.4 
demonstrated a reduction in 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 to values as low as 0.71 

The study in Section 4.2.4 found asymptotically increasing 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 with duct wall angle 
and camber, starting from a base of 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 < 8/9, and asymptotically decreasing 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 
with chord length ratio. A variation in the underlying inviscid values with duct shape is 
likely part of the reason for the range of 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 values found in the literature. Improved 
understanding could be reached by extending this study to other aerofoil families, by 
examining the influence of thickness and point of maximum camber, and by repeating 
the analysis for viscous flow to determine the viscous contribution by comparison to 
these results. 

8.4.2 An Inherent Reduction in Inviscid Flow 

Further numerical studies suggest that a duct always acts to reduce 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 in inviscid 
flow. An optimisation of duct shape with two movable nodes and fixed end points 
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reached only 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 = 0.81 in Section 7.1.1, while an examination of 1776 duct shapes in 
Section 7.1.2 achieved the higher value of 0.84 as the ducts were allowed to be shorter. 
Although 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 > 8/9 was found in one previous study [46] for inviscid flow, the 
evidence here suggests that numerical error in the previous study, which caused 
impossible results of 𝐶𝐶𝑇𝑇 > 1, led to the increased 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. 

A direct search cannot prove that 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 must be reduced, as there will always be other 
optimisation approaches to try or duct shapes left unexamined, but the reductions can 
be explained with the aerofoil conceptual model. An analytical approach with a 
simplified wake suggests in Section 7.3.1 that the presence of a rotor has a negative 
influence on the effective free stream flow in the vicinity of the duct, which would 
reduce the duct’s circulation and performance. Given the connection between 
augmentation and 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 discussed above, a reduction in 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 would be expected.  

A numerical approach without the simplifications of the analytical study in Section 7.3.2 
also generally found a negative influence on the effective free stream flow. Six outliers 
out of 1292 cases were found which showed a positive influence, but these appear to be 
due to numerical error. More problematic were decreases in the circulation dispersion 
ratio, equivalent to increases in the circulation effectiveness ratio. Although these did 
not overcome the negative changes in the effective free stream to give an increased 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇, the evidence presented is not sufficient to show that they never could.  

By investigating changes in the circulation dispersion ratio with duct shape, future 
work could assess whether changes in the effective free stream are ever likely to be 
overcome. Another potential direction would be to examine other aerofoil families in 
the numerical approach to increase the quantity of evidence. Higher resolution 
simulations could be used to determine if the small number of positive changes in the 
effective free stream were truly due to numerical error. Finally, an improved analytical 
approach would increase confidence in the conclusions.  

Despite the imperfections of the analytical and numerical approaches, they introduce a 
plausible explanation for values of 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 less than 8/9. With increased rotor loading 
comes a reduction in the effective duct wall angle and velocity magnitude in the vicinity 
of the duct, reducing power extraction due to decreased circulation and thereby 
favouring a lower 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. Together with the absence of a single reliable counterexample, 
this explanation is suggestive of an inherently reduced 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 in inviscid flow. 

8.4.3 Increases in Viscous Flow 

Combined with the evidence presented in this work, the best fitting explanation for the 
range of 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 values seen in the literature is a lowering of the inviscid base 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 that 
can then be brought back up above 8/9 when certain viscous effects are significant 
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enough. Wake mixing has been recognised as one possible mechanism of increased 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇, as discussed in Section 1.5.6, but a change in effective wall angle and rotor 
induced swirl may also contribute. 

Section 7.3.2 demonstrated that the effective wall angle decreases with 𝐶𝐶𝑇𝑇, supporting 
those authors discussed in in Section 1.5.3 who have recognised that the presence of a 
rotor can change the effective duct wall angle and reduce separation. Any separation 
present without the rotor will therefore progressively decrease with 𝐶𝐶𝑇𝑇, potentially 
increasing 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 through increased augmentation at higher loadings. 

Swirl in the flow induced by the spinning rotor increases with rotor loading at fixed tip 
speed ratio [175] and has been suggested to reduce separation [79, 88]. 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 could 
therefore be increased where separation is reduced at higher rotor loadings. Phillips [4] 
argued that turbulence induced by the rotor explained reduced separation instead of 
swirl, and it would be interesting to test that belief and whether it could also increase 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇. Investigations into the suggestion that the flow experiences less expansion per 
unit duct length due to its tangential velocity may also be fruitful. 

Viscous effects appear able to increase 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 compared to bare rotors, whatever the 
exact cause, with Phillips [4] suggesting that a 5% increase is possible. The inviscid 
conclusion here casts those findings in a new light, changing a 5% increase above 
𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇  = 8/9 into a larger increase from a lower inviscid base. For example, the increase 
would be 11% above the maximum 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 found in Section 7.1.2 or 17% above the 
median. With viscous effects playing a greater role in determining 𝐶𝐶𝑇𝑇𝑇𝑇𝑝𝑝𝑇𝑇 than would 
otherwise appear, there is a greater impetus to determine their relative impact and to 
maximise the potential benefit.  

8.5 A Better Understanding of the Fundamentals 
Much is left to be done to achieve an economically viable ducted turbine, but the studies 
here help solidify the base of knowledge needed to efficiently reach that goal. The 
intuition of future researchers will be improved by an awareness of the inviscid 
behaviour and a change to the aerofoil conceptual model, and ambition need not be 
constrained by the Betz limit any longer. Effort can be based on equations known to be 
trustworthy and clear, and augmentation could be increased by exploiting the 
influences on optimum rotor loading. A better understanding of fundamental aspects of 
ducted turbine performance will now hopefully lead to improved aerodynamic and 
economic performance. 
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8.6 Summary of Conclusions 
An exploration of the inviscid behaviour of ducted turbines has led to useful insights, 
not least concerning the influence of duct shape on the flow. It is now clear that area 
ratio cannot be considered the primary geometrical factor, and that duct length and 
inlet design are relevant to more than just viscous effects. A systematic examination of 
geometrical parameters was performed, and may even directly apply to viscous flows 
when separation is avoided.  

Highly accurate simulations led to strong evidence that the Betz limit does not apply at 
all to ducted turbines, whether on the basis of rotor or exit area, as augmentation 
deprives the power coefficient of its expected physical meaning. Neither the rotor or 
exit area is any more correct in the definition of 𝐶𝐶𝑃𝑃, therefore, but the former is more 
practically useful. Other studies gave further confirmation of a linear relationship 
between power and flow velocity, and demonstrated a decrease in augmentation with 
rotor loading. 

An aerofoil conceptual model for a ducted turbine outperformed a diffuser one in tests 
of their augmentation explanations and a comparison of their parameters for duct 
geometry. The former leads to intuition that better matches how ducted turbines 
actually perform and parameters that are easier to work with. It is recommended that 
the aerofoil model now be used as standard rather than the previously customary 
diffuser approach. 

Attractive simplifications in ducted turbine theories were unfortunately found to be 
invalid, leaving the requirement for empirical parameters intact. Velocity at the rotor 
may be more suited to that role than exit pressure or inviscid duct drag, as the latter are 
abstracted and potentially distracting. Other investigations of theory led to a previously 
missing detailed derivation for the relationship between inviscid drag and 
augmentation, and demonstrated the applicability of quasi-one dimensional theories to 
radially varying flows once a correction factor was derived and introduced where 
appropriate. 

Theoretical considerations show that it is the form of the relationship between rotor 
loading and augmentation that governs any increase or decrease in the optimum rotor 
loading. It appears, however, that the presence of a duct inherently reduces the 
optimum in inviscid flow: with increased rotor loading comes a reduction in the 
effective duct wall angle and velocity magnitude in the vicinity of the duct, reducing 
power extraction due to decreased circulation. Certain viscous effects may then 
increase the optimum, and play a larger role than otherwise appears due to the reduced 
inviscid base. 
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Applying inviscid results to real flows requires caution, but studies throughout this 
work show that it is possible to reach practically useful conclusions. As ducted turbines 
are a difficult problem, leading to uncertainty and disagreement in the literature, the 
inviscid approach has a real advantage in reducing the complexity. With a 
consequentially better understanding of the fundamentals, future investigations are 
now hopefully able to improve the aerodynamic and economic performance of ducted 
turbines. 

8.7 Summary of Future Work 
Further exploration of the inviscid behaviour of ducted turbines could confirm the 
influence of duct thickness with additional duct shapes, ideally using the same 
simulation code for the thick and thin ducts. It would also be interesting to carry out a 
best case economic analysis with the inviscid right angle duct results. If diffuser 
parameters are ever used to specify duct shape, the impact of the shape generation 
approach on the relationships between geometrical parameters and performance could 
be quantified. The ability to isolate the diffuser parameters from each other without 
regression would also be useful. 

Logical next steps for the aerofoil conceptual model would include further 
examinations of the circulation dispersion ratio with additional geometrical parameters 
and rotor loadings. Increased trust in the model would be provided by understanding 
why it was unnecessary to account for circulation dispersion when making predictions 
from effective free stream conditions, as well as further predictions with additional duct 
shapes. A method of calculating the effective conditions without simulations would give 
practical value to the predictive approach. 

The investigation of aerofoil parameters could be extended by considering whether or 
not the parameters should change to match those used for the aerofoil family defining 
the duct shape, and the analysis improved by utilising a ring wing formulation of thin 
aerofoil theory to assess performance expectations. Testing the applicability of existing 
aerofoil data, adapting analytical solutions for particular aerofoil shapes, and 
considering whether the circulation explanation applies to flanged ducts would all aid 
in application of the aerofoil model to design problems.  

Existing theories could be further tested by increasing the complexity of simulations 
above axisymmetric inviscid flow, while the investigation could be widened to include 
other theories and a survey of ducted propeller theories for any useful differences. 
Quantifying the influence of radial variations in viscous flow would also be useful. 
Confidence in the theory derived here would be improved with a completely analytical 
proof, and it would be interesting to carry out a similar derivation for viscous flow. 
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Further opinions on the selection of empirical parameters for theoretical descriptions 
would be helpful in reaching a consensus approach. 

Additional evidence for assessing the inherent reduction of optimum rotor loading in 
inviscid flow could be found in a number of ways. Examining the influence of duct 
geometry with other aerofoil families would increase the quantity of data, while higher 
resolution simulations could exclude numerical error as a factor. Assessing whether 
decreases in circulation dispersion are ever likely to overcome negative changes in the 
effective free stream conditions would be valuable, as would an analytical approach that 
makes less simplifications. 

Further examining the relationship between duct geometry and optimum rotor loading 
with more geometrical parameters and other aerofoil families would provide a useful 
base of knowledge for design work. There is also a strong incentive to investigate any 
beneficial viscous effects: with a reduced inviscid base for the optimum rotor loading, 
any viscous increases play a larger role than otherwise appears, have greater scope for 
maximising the potential benefit, and could potentially lead to a reduced cost of energy 
for ducted turbines. 
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