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Abstract

We study the dispersive and dissipative behaviour of the spectral element scheme,

sometimes called the Gauss-point mass lumped finite element scheme, for the wave

equation in detail and provide both a qualitative description of the nature of the

dispersive and dissipative behaviour of the scheme along with precise quantitative

statements of the accuracy in terms of the mesh size, the order of the scheme

and the wave number. We then consider a suggestion of Marfurt (1984) whereby

one can attempt to provide an optimal blending of finite element and spectral

element schemes to obtain a new scheme with superior dispersive and dissipative

behaviour. We study the dispersion and dissipation of this scheme obtained by tak-

ing a weighted averaging of the consistent (finite element) mass matrix and lumped

(spectral element) mass matrix. We show that this optimally blended scheme can

be efficiently implemented merely by replacing the usual Gaussian quadrature rule

used to assemble the mass and stiffness matrices by novel non-standard quadra-

ture rules which are also derived. We then give analytical expressions for the

discrete dispersion relations for the above mentioned schemes for a rectangular

grid, and prove that the analytical expressions for the discrete dispersion error in

higher dimensions can be obtained using one dimensional discrete dispersion error

expressions.
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Chapter 1

Introduction

1.1 Computational wave propagation

Wave propagation phenomena arise in various fields such as acoustics, electromag-

netics and geophysics. Examples of some of the problems in these areas include

exploration geophysics, nondestructive testing, medical imaging, seismic and radar

propagation and security scanning. Ground penetrating radar (GPR) is one of

the examples of exploration geophysics that produces a continuous cross-sectional

profile of subsurface features by transmitting pulses of high frequency radio waves

without drilling or digging. It has applications in civil engineering (detection of

buried sewerage of water and gas, and electrical and telecommunication cables)

[21] and archaeology (imaging of the buried artifacts such as graves and mortuar-

ies) [20]. Other examples of exploration geophysics include seismic tomography,

mineral explorations and many more.

Another example of electromagnetic wave scattering is X-ray Backscattering

which is an imaging technique and has applications both in defence and security.

Specific applications include the detection of buried landmines [51] and the screen-
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ing of people, luggage, vehicles and sea containers [12]. An example of the medical

imaging technique is magnetic resonance imaging (MRI) which is widely used in

radiology to visualise the internal structure and functions of the human body.

It is clear from the above mentioned problems that the accurate simulation

of waves is an important topic. Analytical methods cannot efficiently be used

to analyse such phenomena and thus efficient and reliable numerical simulations

are required. The finite element method [1, 8, 10, 11, 33, 35, 37, 38, 46, 56, 60] is one

of the most appealing computational tools for performing simulations of wave

propagation problems involving complex geometries and materials. Other common

numerical methods include the finite difference method [49], finite volume method

[45], boundary element method [16], spectral method [13] and pseudo-spectral

method [24].

The standard computational methods, including those mentioned above, suffer

from inherent errors such as numerical dispersion (phase error or error in wave-

length) and numerical dissipation (amplitude error). This is evidently the result of

the discrete nature of these methods. These effects can be avoided completely in

one dimension by modifying the numerical scheme and can be reduced by refining

the discretisation in space in higher dimensions [10]. However, refining the mesh

results in a significant increase in the computational cost [37, 38].

To overcome the above limitations requires more accurate and efficient meth-

ods. The development of numerical methods which are less dispersive and dissi-

pative and can propagate waves accurately without requiring finer meshes is the

focus of this thesis.
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1.2 Dispersive and nondispersive waves

Before we delve into the numerical dispersion and dissipation which is the central

topic of this text, we first discuss what dispersive and nondispersive waves are.

Consider the one dimensional Klein-Gordon equation

Utt(x, t) − c2Uxx(x, t) + bU(x, t) = 0, x ∈ R, t > 0, c > 0 and b ≥ 0 (1.1)

where Ut =
∂U

∂t
and Ux =

∂U

∂x
. Inserting a time-harmonic solution of the form

U(x, t) = u(x, t)e−iωt into above equation where ω > 0 is the angular frequency,

we obtain the time-harmonic Klein-Gordon equation

c2u′′(x) − (b − ω2)u(x) = 0, x ∈ R, c > 0 and b ≥ 0. (1.2)

The above equation reduces to the Helmholtz equation for b = 0. We seek a

non-trivial solution of the form

u(x) = Aeikx (1.3)

to equation (1.2), where A ∈ C is an arbitrary constant and k ∈ C is the wavenum-

ber to be determined. Inserting (1.3) into (1.2) and simplifying gives

k = ±
√

ω2 − b

c2
, (1.4)

and therefore, (1.2) has a general solution of the form

u(x) = A1e
ix
√

(ω2−b)/c2 + A2e
−ix

√
(ω2−b)/c2 (1.5)

where A1 and A2 are arbitrary constants. The corresponding time dependent

solution of equation (1.1) is given by

U(x, t) = A1e
i(x
√

(ω2−b)/c2−ωt) + A2e
−i(x

√
(ω2−b)/c2+ωt) (1.6)
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and consists of two waves: one travelling to the left and the other travelling to the

right. We note that however in higher dimensions waves travel in all directions.

The above relation (1.4) between the wavenumber k and the frequency ω is known

as the continuous dispersion relation.

The phase velocity of the wave denoted by vc is defined to be the ratio of the

angular frequency ω to the wavenumber k [35] and is given by

vc =
ω

k
. (1.7)

A wave is defined to be dispersive when the speed of the wave depends on either

the frequency ω or equally well, the wavenumber k, otherwise the wave is defined

to be nondispersive. Inserting k from (1.4) into the above equation, we get

vc = ± ωc√
ω2 − b

. (1.8)

In this case, the wave speed depends upon the frequency only when b is positive

whereas for b = 0 expression (1.8) becomes vc = ±c. Hence, if b < ω2, then

the Klein-Gordon equation is dispersive because waves of different frequencies will

travel at different speeds. Moreover, the Helmholtz equation has nondispersive

solutions and waves will travel with constant speed c in opposite directions.

1.3 Dissipative and nondissipative waves

We now focus our attention on understanding what dissipative and nondissipative

waves are. If the wavenumber k is a complex number i.e. k = kr + ikc ∈ C where

kr ∈ R, and kc is a non zero real number, then the solution is dissipative. For

kc = 0, k ∈ R and the solution is nondissipative. It is clear from (1.4) that k ∈ C

when b > ω2 and hence (1.2) is dissipative for b > ω2. Inserting ω2 − b = −r2,
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where r is a positive real number into (1.4), we get

k = ±r

c
i (1.9)

and for these values of k, (1.2) has a general solution of the form

u(x) = A1e
rx/c + A2e

−rx/c

where A1 and A2 are arbitrary constants. In contrast to (1.5), this solution is not

oscillatory and, for physically relevant solutions, we have decay or dissipation of the

solution as |x|→ ∞. Further details about dispersive, nondispersive, dissipative

and nondissipative waves can be found in [34, 35, 41].

1.4 Numerical dispersion and numerical dissipa-

tion

Numerical dispersion and dissipation has been an area of active research for decades.

However we have not found a satisfactory definition of these effects in the liter-

ature. We start this section by reviewing some of the definitions of numerical

dispersion present in the literature.

Two of the most important and widely cited research monographs for wave

propagation which cover a wide range of topics on finite element methods for the

wave equation are written by Ihlenburg [35] and Cohen [17]. Ihlenburg [35], (1998)

comments on the dispersive discrete solutions obtained with linear finite element

schemes for the Helmholtz equation (see page 124 of [35]), but no explicit general

definition of numerical dispersion is given. Cohen [17], p.102, (2002) says that the

numerical dispersion of a scheme is measured by the ratio of the discrete velocity to

the continuous velocity and manifests itself by producing parasitic waves. One can
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object to this definition on the grounds that in [1, 5, 35], numerical waves obtained

with linear finite element and spectral element schemes are shown to be dispersive

but there are no parasitic waves at all in the sense defined in Cohen [17], p.103.

Basabe [22], (2007) defines numerical dispersion as a numerical noise related

to grid spacing which occurs when the actual velocity of high frequency waves in

the grid is different from the true velocity. Our main objection with this definition

is that the numerical dispersion is not only related to high frequency waves but is

evident for waves of all ranges of frequencies [1, 5, 35].

Oberai and Pinsky [53], (2000) defined numerical dispersion as errors inherent

in the method resulting in numerical waves that propagate with a wavenumber kh

which is different from the continuous wavenumber k. This definition is more

satisfactory but one can question what the authors mean by numerical waves. In

fact Oberai and Pinsky state that for simple problems which have exact plane

wave solutions eikx, it can be shown that the numerical solution is of the form

eikhx. However, this definition is rather confusing in that numerical schemes do

not admit exact plane wave solutions in general. A very similar definition is

given by Kailash [55], (2005) where he defined numerical dispersion as the change

of the wavenumber obtained with the numerical approximations compared to the

corresponding wavenumber of the exact solution. Once again, it is not clear what

is meant by the wavenumber obtained with the numerical approximations.

Ainsworth [1], (2004) defined numerical dispersion as the effect whereby the

numerical scheme fails to propagate waves at the correct speed. The only objection

that we have with this definition is that it is not quantitative.

Before giving a general definition of the numerical dispersion, we shall explain

first what numerical dispersion is in the case of linear finite elements.
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1.4.1 An example of numerical dispersion and dissipation

The objective of this section is to illustrate numerical dispersion and numerical

dissipation in the simple case of linear finite element and spectral element schemes

for the Helmholtz equation

c2u′′(x) + ω2u(x) = 0, x ∈ R, c > 0 (1.10)

obtained by inserting b = 0 into (1.2).

We discretise equation (1.10) using piecewise linear finite elements on a uniform

mesh of size h > 0 and specify the numerical approximation in the form

uh(x) =
∑

j∈Z

ujθj(x)

where θj is the usual piecewise linear hat function associated with node xj . We

obtain the following equation for the value uj of the approximation at node xj =

jh, j ∈ Z:

uj+1 − 2uj + uj−1 +
ω2h2

6c2
(uj+1 + 4uj + uj−1) = 0. (1.11)

We have seen that the Helmholtz equation (1.10) admits non-trivial plane wave

solutions of the form u(x) = Aeikx provided that the wavenumber k is related to

the frequency ω by the continuous dispersion relation

k = ±ω

c
. (1.12)

Obviously, the discrete solution is piecewise linear and (1.11) cannot therefore

have a solution of the form Aeikx. Instead we seek a non-trivial discrete solution

specified by values at the nodes xj = jh, j ∈ Z of the form uj = Aeijkhh with

kh ∈ R denoting the discrete wavenumber. Now inserting uj = Aeijkhh into (1.11)

and performing ordinary manipulations, we get

khh = cos−1

(
6c2 − 2ω2h2

6c2 + ω2h2

)
(1.13)
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which is known as the discrete dispersion relation relating the discrete wavenumber

kh to the frequency ω. The expression (1.13) is also known as the characteristic

equation [14, 60]. Writing the above expression as a series in ωh, we get

kh = ±ω

c
∓ h2

24

(ω

c

)3

+ · · · . (1.14)

We now define the discrete phase velocity denoted by vh as the ratio of the angular

frequency ω to the discrete wavenumber kh and is given by

vh =
ω

kh
.

Inserting kh from (1.13) into above equation and expanding as a series in ωh, we

get

vh = ±c ∓ (ωh)2

24c
+ · · · .

It is evident that the discrete phase velocity depends upon the frequency ω in

contrast to the continuous phase velocity vc = ±c which is constant. These veloc-

ities are different because continuous phase velocity was obtained by inserting a

plane wave solution into (1.10) whereas the discrete phase velocity is obtained by

inserting piecewise linear solution into (1.11) and the difference of them measures

dispersion i.e.

vc − vh = ±(ωh)2

24c
+ · · ·

or, in general the difference vc − vh is given by

vc − vh =
ω

k
− ω

kh
=

ω(kh − k)

kkh
. (1.15)

It is clear from (1.12) and (1.14) that continuous wavenumber k is different from

the discrete wavenumber kh as pointed out in the definitions by Oberai and Pinsky

and Kailash. However, it is not the change of wavenumbers which measures the

numerical dispersion, it is the difference kh−k which measures numerical dispersion
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as it is clear from the above expression. More specifically, for h > 0, the difference

khh−kh gives a measure of the dispersive and dissipative behaviour of a numerical

scheme [1–5, 7, 60]. Therefore, in this thesis we will study the difference khh − kh

for different schemes. Furthermore, it is not the ratio of the velocities which

measures numerical dispersion as defined by Cohen, in fact it is the difference

of the velocities which measures numerical dispersion. The difference vc − vh is

different for different numerical schemes and that is why we see a numerical wave

either lead or lag compared with the exact wave [5, 7] and the definition given

by Ainsworth is much more satisfactory in this regard. Numerical dispersion is

sometimes referred as error in phase or error in wavelength and therefore, replacing

k and kh by k =
2π

λ
and k =

2π

λh
respectively into (1.15), we obtain another

equivalent mathematical form of (1.15) given by

vc − vh =
ω

2π
(λ − λh)

where λ and λh are the continuous and discrete wavelengths respectively.

1.4.2 Numerical dispersion

We have analysed numerical dispersion in detail in the case of linear finite elements

but this kind of analysis is valid for many numerical schemes. Therefore, for the

purpose of the present work, we shall define numerical dispersion as the difference

between the continuous velocity vc and the discrete velocity vh.

The expression (1.14) is markedly different from the actual dispersion relation

(1.12) for the Helmholtz equation. Using (1.12) together with (1.14) and rearrang-

ing, we get

kh

k
− 1 = −(kh)2

24
+ · · · (1.16)
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or,

khh − kh = −(kh)3

24
+ · · · .

The above expression is well known and has already been obtained in many texts

[1, 35, 37, 38, 60].

1.4.3 Implications of numerical dispersion

We shall discuss the implications of (1.16) below. However, before doing so, we

shall consider an alternative approach to approximate problem (1.10) using the

spectral element method [17, 60]. This results in the following equation for the

coefficients ũj:

ũj+1 − 2ũj + ũj−1 +
ω2h2

c2
ũj = 0. (1.17)

Again inserting a non-trivial solution of the form ũj = Ãeijkhh, Ã ∈ C into the

above equation gives

khh = cos−1

(
1 − ω2h2

2c2

)

which is the discrete dispersion relation for the spectral element scheme. Again

expanding as a series in ωh, we get

kh = ±ω

c
± h2

24

(ω

c

)3

+ · · · (1.18)

which is also different from the actual dispersion relation (1.12) for the Helmholtz

equation. Using (1.12) together with (1.18) and rearranging, we get

kh

k
− 1 =

(kh)2

24
+ · · · (1.19)

or,

khh − kh =
(kh)3

24
+ · · ·

which is also well known and has already been given in [17, 60]. Now from expres-

sions (1.16) and (1.19), we can make the following observations:
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(a) The minus sign in front of the leading term for phase error in the expression

(1.16) shows that for the finite element scheme the discrete wavenumber kh is

underestimated i.e. kh < k and results in phase lead. The plus sign in front of the

leading term for phase error in the expression (1.19) shows that for the spectral

element scheme the discrete wavenumber is overestimated i.e. kh > k and results

in phase lag. Moreover, the multiplicative constants in the leading terms for phase

error in the discrete dispersion relations (1.16) and (1.19) are both 1/24. This is

consistent with numerical solutions obtained with both finite element and spectral

element schemes shown in Figure 1.1 where leads and lags of equal magnitudes

are prominent. Furthermore, with linear elements both schemes are second order

accurate i.e.

kh

k
− 1 = O(kh)2

as shown in Figure 1.2.

(b) The mesh size h is also present in the right hand sides of the expressions

(1.16) and (1.19). For very small values of kh i.e. when kh → 0 the discrete

wavenumber kh is approximately equal to the exact wavenumber k. Even when

we are just analysing the one dimensional discrete dispersion relation, as we are

doing here, refining the mesh is computationally very expensive. This is even more

problematic when we are simulating a complex problem in higher dimensions [10].

The dispersive effect while solving time-harmonic wave propagation problems in

one-dimension can be avoided completely [10] but for problems posed over higher

dimensions it can only be reduced [8, 10] by the use of a finer mesh or high order

finite elements. This leads to undesirable computational cost [37, 38], particularly

when complex multi-dimensional simulations are performed.
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Numerical real wave obtained using finite element method
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Figure 1.1: Numerical approximations of the solution to problem u′′(x) +

ω2u(x) = 0, for all x ∈ (0, 1) with boundary conditions u(0) = 1, u′(1)−iωu(1) = 0

obtained for ω = 20 with both finite element and spectral element schemes using

20 linear elements. Phase lead and lag of equal magnitudes are evident and corre-

spond to finite element and spectral element schemes.



Chapter 1 13

10
−2

10
−1

10
0

10
1

10
−10

10
−5

10
0

10
5

kh

co
s(

kh h)
−

co
s(

kh
)

 

 

Finite element scheme
Spectral element scheme

2

1

Figure 1.2: Error in the discrete dispersion relations cos(khh) − cos(kh) ver-

sus nondimensional wavenumber kh for linear finite element and spectral element

schemes. For linear finite element and spectral element schemes the slope of the

lines are two when kh → 0.
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Figure 1.3: Comparison of the exact cosine with discrete cosines of finite ele-

ment and spectral element schemes for linear order elements. Moreover, Cut-off

frequencies are also pointed out both for linear finite and spectral element schemes.
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Figure 1.4: Numerical solutions obtained with both linear finite element and

spectral element schemes dissipate compared with the exact solution.

1.4.4 Numerical dissipation

We now find the range of values of kh for which we have propagating (real kh) and

evanescent (imaginary kh) solutions. Solving the inequality

∣∣∣∣
6 − 2k2h2

6 + k2h2

∣∣∣∣ ≤ 1 (1.20)

we find that for kh < 2
√

3, the rational expression
6 − 2k2h2

6 + k2h2
∈ [−1, 1] and is

shown in Figure 1.3. When kh > 2
√

3, the rational expression
6 − 2k2h2

6 + k2h2
< −1 is

shown in Figure 1.3. For kh < 2
√

3, kh has real values i.e., kh ∈ R and we have

propagating solutions whereas for kh > 2
√

3, kh is a complex number i.e. kh ∈ C

and we have evanescent solutions. The value kh = 2
√

3 is known as the cut-off

frequency of the finite element scheme for p = 1. If the discrete wavenumber kh

is a complex number then numerical dissipation is introduced meaning that the

amplitude of the numerical solution is different from that of the exact solution.

For the spectral element scheme the range of values of kh for propagating and
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evanescent solutions are also shown in Figure 1.3. The cut-off frequency for the

spectral element scheme is 2. Furthermore, in Figure 1.4 we have shown that for

kh = 4 both the numerical approximations obtained with linear finite and spectral

element schemes dissipate compared to the exact oscillatory solution.

In the following section we review the efforts and partial achievements made

by many in the computational wave propagation literature.

1.5 Historical background of discretisation schemes

for the wave equation

Finite elements have been extensively used to simulate wave propagation where

one of the core issues is the existence of numerical errors like numerical dispersion

(phase error) and numerical dissipation (amplitude error). The standard Galerkin

finite element methods developed so far are not able to avoid these errors. Real-

ising the importance of minimising dispersion and dissipation, many researchers

proposed different methods in this regard.

The first detailed study of the dispersive properties of h and hp-version finite

elements for the one dimensional Helmholtz equation was conducted by Ihlenburg

and Babuška [36–38]. In these works they analysed dispersion in the asymp-

totic regime where the non-dimensional wavenumber is very small i.e. ωh → 0.

Babuška et al. [8] also developed a method for the 2-D Helmholtz equation known

as the Generalised Finite Element Method (GFEM). They concluded that disper-

sive effects are not avoidable for the finite element treatment of the Helmholtz

equation but it is possible to design a quasi stabilised finite element method (QS-

FEM) having negligible dispersion. Harari and Hughes [32] presented the Galerkin

least squares (GLS) finite element method to solve the one dimensional Helmholtz
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equation by modifying the variational formulation. Galerkin least squares methods

were developed by appending residuals of the Helmholtz equation in least squares

form to the Galerkin variational formulation. Furthermore, a local mesh parame-

ter was introduced in order to minimise dispersion error. Both of these methods

decreased the number of elements per wavelength required to achieve desired level

of accuracy for a given frequency. However, neither of these methods can be used

to model transient wave propagation phenomenon because of the dependence of

the elemental matrices on the frequencies. This means that parameters introduced

in the modification of the variational formulation depend upon the frequency or

the wavenumber. Consequently, inverse Fourier transform cannot be used which

prohibits the use of these methods for transient wave equation. Later on, Thomp-

son and Pinsky [61] derived optimal GLS mesh parameter for both consistent and

lumped mass approximation for two dimensional Helmholtz equation and further

reduced the dispersion. However, their method failed to cope with anisotropy.

Oberai and Pinsky [53] proposed a new residual based finite element method for

Helmholtz equation by appending terms that are proportional to residuals on el-

ement interiors and inter-element boundaries. They showed that their scheme is

less dispersive and is largely independent of the predominant wave vector direction

for regular bilinear quadrilateral finite elements. They also showed with numerical

examples that this method retains accuracy both for structured and unstructured

meshes.

Several other methods have since been proposed to deal with the issue of nu-

merical dispersion for the Helmholtz equation. Zyserman et al. investigated the

dispersive properties of the scalar and elastic wave equations using nonconform-

ing finite elements [63]. High order discontinuous Galerkin finite element methods

have also been tried with the aim of efficiently resolving the waves of high fre-



Chapter 1 17

quencies without much dispersion and dissipation [2, 4]. For further details about

discontinuous Galerkin methods consult the references given in [2, 4]. Babuška and

Melenk [9] proposed the partition of unity method which requires the behaviour

of the solution to be known in advance, which for most practical applications is

not the case. Cipolla [15] and Oberai and Pinsky [52] introduced the concept of

subgrid modelling. Franca et al. [25] developed the method of residual free bub-

bles while Suleau and Bouillard [58] studied dispersion and pollution of meshless

solutions for the Helmholtz equation using the element free Galerkin method.

The first detailed study of the dispersive and dissipative properties of the p-type

finite element and spectral element schemes of order up to p = 5 was undertaken

by Thompson and Pinsky. They presented the idea of stopping and propagating

bands and showed the dispersion curves and conjectured that elements of order

p has p stopping and passing bands. They also conjectured that the limit of

resolution occurs at πp. They further conjectured that increased phase accuracy

while maintaining the Nyquist limit can be achieved only when elements of order

p ≥ 4 are used. Mulder [50] studied the dispersive properties of the acoustic

wave equation in one dimension using both finite and spectral element methods

and concluded that spectral element methods with Gauss-Lobatto quadrature rules

perform better than both the spectral element method with Chebyshev quadrature

points and standard finite element methods. Cohen [17] presented the Gauss-point

mass lumped finite element scheme and obtained the explicit expressions for the

dispersion error for elements of order up to 3 for the transient wave equation.

Basabe and Sen [22] studied dispersion in 2D with both finite and spectral elements

for both acoustics and elastic wave equations. They provided analytical expressions

for the dispersion error and stability conditions for first order elements as well as

showing dispersion curves numerically for higher order elements.
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1.6 Objectives of the thesis

The objectives of this thesis is to develop more accurate and efficient numerical

methods which are less dispersive and dissipative and can be used directly in both

the frequency and time domains. It is clear from expressions (1.16) and (1.19)

that when the solution is approximated with linear finite elements and spectral

elements both the order and the magnitude of the multiplicative constant in the

leading term for phase error are the same. This observation prompts the following

questions:

1. Do both the finite element and spectral element schemes give the same order

of accuracy for phase error as the order p is increased?

2. Does the magnitude of the multiplicative constant in the leading term for

phase error reduce as the order p is increased?

Answers to these questions are important because a clear understanding of the

dispersive and dissipative properties of a scheme is not only valuable theoretically

but serves as an initial guess (an a priori error estimate) in practical problems

[1, 60]. Thus the development of numerical or computational methods which are

less dispersive and dissipative has been and still is an issue for the numerical

analysis community [31, 59]. Relatively recently, it is realised [1, 2, 4–7] that a sharp

analysis of numerical dispersion and dissipation is possible with the derivation of

explicit expressions for discrete dispersion relations. The following two measures

are used as a basis for grading a method:

1. the order in ωh of the leading term for the error;

2. the magnitude of the multiplicative constant in the leading term for the error.
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The development of methods which either improve the order in ωh or magnitude

of the multiplicative constant in the leading term for the error is the focus of this

thesis.

The first specific aim of this work is to study the dispersive and dissipative be-

haviour of the spectral element method. We derive explicit expressions for discrete

dispersion relations for the spectral element method broadly adopting a similar ap-

proach to that used in [1]. We then study dispersive and dissipative behaviour of

the scheme in the cases (a) for fixed order of approximation p, as ωh tends to zero,

or (b) for a fixed mesh of size h with ωh ≫ 1, as the order of the scheme p is

increased. We also compare results obtained using the spectral element scheme in

the case of both (a) and (b) to that of the finite element scheme. Moreover, we

present numerical results to verify the accuracy of spectral element schemes to that

of finite element schemes. The second specific aim of this work is to develop higher

order numerical methods following the suggestion of Marfurt to reduce dispersion

and dissipation error. More importantly, we establish an equivalence between the

optimally blended scheme and non-standard quadrature rules in the case of arbi-

trary order approximation p as ωh tends to zero. Furthermore, we study dispersive

and dissipative properties of this scheme for a fixed mesh of size h with ωh ≫ 1,

as the order of the scheme p is increased. The final specific aim of this work is

to extend the one-dimensional results of the finite element, spectral element and

optimally blended schemes to higher dimensions for fixed order of approximation

p, as ωh tends to zero on a rectangular grid.
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1.7 Organisation of the thesis

In Chapter 2, we describe the spectral element scheme for the scalar wave equation

which is sometimes called the Gauss-point mass lumped finite element scheme. We

study the dispersive behaviour of the scheme in detail and provide a quantitative

description of the nature of both the dispersive and dissipative behaviour of the

scheme in the case of (a) for fixed order of approximation p, as ωh tends to zero, or

(b) for a fixed mesh of size h with ωh ≫ 1, as the order of the scheme p is increased.

We adopt the same approach used by [1] in the analysis of the conforming finite

element method, and derive explicit expressions for discrete dispersion relations

for the spectral element method.

In Chapter 3, we study the dispersion and dissipation of the novel numerical

scheme obtained by taking a weighted averaging of the consistent (finite element)

mass matrix and lumped (spectral element) mass matrix in the case of both (a)

and (b). Furthermore, we establish an equivalence between the optimally blended

scheme and the novel non-standard quadrature rule.

Chapter 4 is devoted to extending the one-dimensional results of the finite

element, spectral element and optimally blended schemes to higher dimensions.

In this chapter we show that for a rectangular grid, the analytical expressions

for the discrete dispersion error in higher dimensions can be obtained using one

dimensional discrete dispersion error expressions.
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Dispersive and dissipative

behaviour of the spectral element

method

2.1 Introduction

The spectral element method [13] is a spectrally accurate algorithm for solving

a wide variety of partial differential equations on unstructured grids. The com-

putational domain is typically broken into quadrilateral elements, within each of

which the variables are approximated by high degree polynomials. A set of dis-

crete equations for the coefficients is derived using a weak form of the problem

in which the integrals are approximated using a quadrature rule. In particular,

if the Gauss-Legendre-Lobatto quadrature rule is chosen in conjunction with a

Lagrange basis for the approximation based at the nodes of the Gauss-Legendre-

Lobatto rule, then the resulting mass matrix is diagonal in certain cases. For this

reason, the same approach is sometimes described the Gauss-point mass lumped

21
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finite element scheme [17, 19] in the finite element literature.

The fact that the mass matrix is diagonal means that the method is particu-

larly attractive for the efficient numerical simulation of wave phenomena, if used

in conjunction with an explicit time-stepping scheme. The approach has found

widespread application in a variety of areas ranging from acoustical waves [46], hy-

drostatic fluid flow [39], tumour angiogenesis [62], reaction-diffusion problems [48],

edge finite element approximation of Maxwell’s equations [18] and seismic wave

propagation [42–44].

Despite the widespread usage of the spectral element method for computational

wave propagation loc. cit., there seems to be no detailed study of the dispersive

and dissipative properties of the scheme in the case of (a) for fixed order of approx-

imation p, as ωh tends to zero, or (b) for a fixed mesh of size h with ωh ≫ 1, as the

order of the scheme p is increased. However, it was only relatively recently [1] that

a complete, sharp analysis of the dispersive behaviour of conforming finite element

methods was given for finite elements of any order p as the mesh-size h is reduced

and, as the order of the method p is increased on a fixed mesh. The analysis of [1]

was carried out in the context of the Helmholtz equation but similar results were

subsequently obtained for discontinuous Galerkin finite element methods [2, 4] and

for edge element approximation of Maxwell’s equations [3].

The goal of this chapter is to study dispersive and dissipative properties of the

spectral element scheme in detail and to provide both a qualitative description of

the nature of the dispersive and dissipative behaviour of the scheme, along with

precise quantitative statements of the accuracy, in case of both (a) and (b). For

this we adopt a broadly similar approach to one used by [1] in the analysis of

the conforming finite element method, where the key step in the analysis was the

derivation of an explicit expression for the dispersion relation for the numerical
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scheme. Here we derive the corresponding discrete dispersion relation for the

spectral element method. However, the discrete dispersion relation for the finite

element case obtained in [1] took the form of a rational function expressed in

terms of Padé approximants for the tan and cot functions. In contrast, in the case

of the spectral element method considered here, the discrete dispersion relation

again assumes the form of a rational function but this is no longer related to Padé

approximants.

This chapter is organised as follows. We start by developing a uni-dimensional

model problem in Section 2.2. In Sections 2.3 and 2.4, discrete dispersion relations

are derived for linear and higher order approximating elements for the model prob-

lem. Moreover, numerical results obtained with both spectral element and finite

element methods are shown. Sections 2.5 and 2.6 contain proofs of the results.

2.2 Model problem and its discretisation

Consider the one-dimensional model problem of wave propagation

∂2u

∂t2
− ∂2u

∂x2
= 0, x ∈ (0, 1), t > 0 (2.1)

subject to the boundary conditions

u(0, t) = e−iωt and
∂u

∂x
(1, t) +

∂u

∂t
(1, t) = 0 for t > 0,

and initial conditions

u(x, 0) = u0(x) and
∂u

∂t
(x, 0) = v0(x), for x ∈ (0, 1)

where ω > 0 is the angular frequency. The variational formulation of the above

problem is: Find u(x, t) ∈ H1(0, 1) along with the initial and boundary conditions

such that

d2

dt2
(u, v) + (u′, v′) +

∂u

∂t
(1, t)v(1) = 0, ∀v ∈ H1

E(0, 1), t > 0
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where (·, ·) denotes the L2-inner product on (0, 1) and H1
E(0, 1) = {v ∈ H1(0, 1) :

v(0) = 0} where H1(0, 1) is the usual Sobolev space. We construct a semi-

discretisation in space by introducing a partition Gh = {jh, j = 0, 1, . . . , K} of

the interval (0, 1) into K subintervals of equal length h = 1/K. Let Vhp ⊂ H1
E(0, 1)

be the corresponding space of continuous piecewise polynomials of degree p ∈ N

defined on Gh. We seek an approximate solution uhp ∈ Vhp such that

d2

dt2
(uhp, vhp) +

(
u′

hp, v
′
hp

)
+

∂uhp

∂t
(1, t)vhp(1) = 0, ∀vhp ∈ Vhp.

We can construct a basis for Vhp in terms of basis functions {Θℓ}p
ℓ=0 defined on a

reference element (−1, 1) as follows. Let −1 = ζ̃0 < ζ̃1 < . . . < ζ̃p = 1 be distinct

nodes on [−1, 1] and define Θℓ ∈ Pp(−1, 1) by the conditions Θℓ(ζ̃m) = δℓm. The

corresponding global basis functions for the entire mesh are denoted by {θi}N
i=1

and satisfy θi(1) = 0 for i = 1, 2, . . . , N − 1, then uhp can be written as

uhp(x, t) =
N∑

i=1

αi(t)θi(x) x ∈ (0, 1), t ≥ 0

where αi are smooth complex-valued functions satisfying

N∑

i=1

(
(θi, θj)

d2αi

dt2
(t) + αi(t)

(
θ′i, θ

′
j

)
+

dαi

dt
(t)δiNδjN |θN(1)|2

)
= 0 (2.2)

for all j = 1, 2, . . . , N. By letting ~α denote the vector whose components are

αi, i = 1, 2, . . . , N, (2.2) can be written in matrix form as

M
d2~α

dt2
+ C

d~α

dt
+ K~α = ~0, (2.3)

where, for i, j = 1, 2, . . . , N

Kij =
(
θ′i, θ

′
j

)
, Mij = (θi, θj) and Cij = δiNδjN |θN(1)|2. (2.4)

We may define a fully-discrete scheme by discretising the temporal derivative

using centred differences with step-size ∆t > 0 to give

[M +
∆t

2
C]~αn+1 = [2M− (∆t)2K]~αn − [M − ∆t

2
C]~αn−1, n = 1, 2, 3, . . . (2.5)
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where ~αn ≈ ~α (n∆t). The matrices Kij and Mij appearing in (2.4) are the con-

sistent stiffness and mass matrices, which can be assembled in the usual fashion

from the corresponding matrices defined on the reference element as follows:

K̂ℓm =
2

h

∫ 1

−1

dΘℓ(s)

ds

dΘm(s)

ds
ds ∀ℓ, m ∈ {0, 1, 2, . . . , p} (2.6)

and

M̂ℓm =
h

2

∫ 1

−1

Θℓ(s)Θm(s)ds ∀ℓ, m ∈ {0, 1, 2, . . . , p}. (2.7)

Observe that at each time-step it is necessary to invert the matrix M +
∆t

2
C.

In practise the mass matrix M is often replaced by a lumped mass matrix M̃

[40] which means that each time-step involves the inversion of the diagonal matrix

M̃+
∆t

2
C. The lumped mass matrix is obtained by employing the spectral element

method [13].

To derive the spectral element scheme we replace the integrals appearing in

(2.6)-(2.7) with a numerical quadrature rule. The (p + 1)-point Gauss-Lobatto

quadrature rule is defined by

∫ 1

−1

f(s)ds ≈ Q(p)(f) =

p−1∑

ℓ=1

w̃ℓf(ζ̃ℓ) +
2

p(p + 1)
[f(−1) + f(1)] (2.8)

where {ζ̃ℓ}p−1
ℓ=1 are taken to be the zeros of L′

p, and Lp is the p-th order Legendre

polynomial [28] with the weights given by ([56], eq.(4.10-26))

w̃ℓ =
2

p(p + 1)[Lp(ζ̃ℓ)]2
∀ℓ ∈ {1, 2, 3, . . . , p − 1}. (2.9)

The quadrature rule is exact for polynomials of degree at most 2p − 1. Now,

using (2.8) to approximate the integrals, the elemental stiffness and mass matrices

appearing in (2.6)-(2.7) are replaced by the following forms:

K̂ℓm ≈ 2

h
Q(p)(Θ′

ℓΘ
′
m) =

2

h

p∑

r=0

dΘℓ(ζ̃r)

ds

dΘm(ζ̃r)

ds
w̃r ∀ℓ, m ∈ {0, 1, 2, . . . , p}
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and

M̂ℓm ≈ h

2
Q(p)(ΘℓΘm) =

h

2

p∑

r=0

Θℓ(ζ̃r)Θm(ζ̃r)w̃r ∀ℓ, m ∈ {0, 1, 2, . . . , p}.

As the product
dΘℓ

ds

dΘm

ds
∈ P2p−2, the element stiffness matrix is not affected by

the use of the quadrature rule, whereas the mass matrix will be different.

A key idea in the spectral element method is that by choosing the nodes used

to construct the basis functions to coincide with the nodes used in the quadrature

rule, the elemental mass matrix becomes diagonal:

M̂ℓm ≈ h

2
Q(p)(ΘℓΘm) =

h

2
δℓmw̃ℓ ∀ℓ, m ∈ {0, 1, 2, . . . , p}

and consequently the matrix M̃+
∆t

2
C will be diagonal. The corresponding fully-

discrete scheme takes the form

[M̃ +
∆t

2
C]~αn+1 = [2M̃− (∆t)2K]~αn − [M̃ − ∆t

2
C]~αn−1, n = 1, 2, 3, . . .

where, thanks to the use of the quadrature rule, it is now only necessary to invert

a diagonal matrix at each time step.

2.3 Dispersive and dissipative behaviour in space

In order to focus on the spatial discretisation, we consider a time harmonic solution

of the form u(x, t) = U(x)e−iωt for ω > 0 fixed where the spatial component U

satisfies the equation

−U ′′(x) − ω2U(x) = 0, x ∈ (0, 1) (2.10)

with boundary conditions U(0) = 1, U ′(1) − iωU(1) = 0. Here, we choose non-

homogeneous Dirichlet data.
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The analytical solution of the above problem is U(x) = eiωx, so that both

the real and imaginary parts oscillate. In Figure 2.1, we present the numerical

approximations obtained using piecewise linear elements with both finite element

and spectral element methods. The phase lead and phase lag of the numerical

approximations are clearly visible. Furthermore, it is evident that the phase lead

occurs when the solution is approximated using the finite element method (full

integration) whereas phase lag corresponds to the approximation obtained with the

spectral element method (numerical quadrature). Whilst it is possible to eradicate

numerical dispersion and dissipation due to temporal discretisation completely, by

using, for example an exponential integrator, this is much more problematic in

the case of spatial discretisation. In the one-dimensional case it is possible to

modify the scheme to obtain a non-dispersive approximation in space, but this is

not possible in higher numbers of spatial dimensions [10].

2.3.1 Dispersion and dissipation of linear elements

Let us study the dispersive and dissipative behaviour of the finite element and

spectral element schemes in more detail. Let Vh1 denote the set of continuous

piecewise linear functions with nodes located at the nodes of the grid Gh. We seek

an approximation Uh1 ∈ Vh1 of problem (2.10) satisfying Uh1(0) = 1 such that

B(Uh1, vh1) = 0, ∀vh1 ∈ Vh1 ∩ H1
E(0, 1) (2.11)

where

B(Uh1, vh1) = (U ′
h1, v

′
h1) − ω2(Uh1, vh1) − iωUh1(1)vh1(1).

We can write Uh1 in the form

Uh1(x) =
N∑

i=0

αiθi(x)
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Figure 2.1: Numerical approximations of the solution to equation (2.10) obtained

for ω = 20 with both finite element and spectral element methods using (a) 20,

(b) 30, (c) 40 and (d) 80 linear elements.
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where θi(jh) = δij for all i, j = 0, 1, . . . , N are the usual piecewise linear hat

functions associated with the nodes in the grid. Substituting Uh1 into (2.11) and

taking vh1 = θj for j ∈ {0, 1, . . . , N}, we obtain α0 = 1, and

N∑

i=0

αiB (θi, θj) = 0, j = 1, 2, . . . , N.

Furthermore, since the mesh is uniform, we may express B(θi, θj) in terms of

B(θ0, θ1) and B(θ1, θ1) to obtain that the above conditions are equivalent to

α0 = 1,

αj−1B (θ0, θ1) + αjB (θ1, θ1) + αj+1B (θ0, θ1) = 0, j = 1, 2, . . . , N − 1

αN−1B (θ0, θ1) + αN

[
1

2
B (θ1, θ1) − iω

]
= 0.

(2.12)

The system (2.12) is a second order difference equation for which we seek a solution

of the form αj = cλj where c and λ are constants to be determined. Inserting this

form into the equations for j = 1, 2, . . . , N − 1 gives

λ +
1

λ
= −B (θ1, θ1)

B (θ0, θ1)
.

It is convenient to express λ in the form λ = e±iµ(1)h, where µ(1) ∈ C is given by

cos µ(1)h = −1

2

B (θ1, θ1)

B (θ0, θ1)
. (2.13)

Hence, using linearity, αj is given by

αj = b1 cos(jµ(1)h) + b2 sin(jµ(1)h), ∀j = 0, 1, 2, . . . , N.

Applying the first condition from (2.12) gives

1 = α0 = b1 cos(0) + b2 sin(0) ⇒ b1 = 1.

Similarly, after elementary manipulations the final condition in (2.12) gives

b2 =
[B(θ0, θ1) sin(Nµ(1)h) sin µ(1)h − iω cos(Nµ(1)h)]

[B(θ0, θ1) cos(Nµ(1)h) sin µ(1)h + iω sin(Nµ(1)h)]
, ∀j = 0, 1, 2, . . . , N.
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Consequently, the solution of (2.12) is give by

αj =
[B(θ0, θ1) cos(N − j)µ(1)h sin µ(1)h + iω sin(N − j)µ(1)h]

[B(θ0, θ1) cosNµ(1)h sin µ(1)h + iω sin Nµ(1)h]
, ∀j = 0, 1, 2, . . . , N.

All of the foregoing arguments apply equally well to the spectral element scheme

leading to the same expression for the coefficients αj with the bilinear form B(·, ·)

replaced by B̃(·, ·), where B̃(·, ·) denotes the bilinear form for the spectral element

method obtained using reduced integration. We expect that µ(1)h → ωh as h →

0, corresponding to the fact that the frequency of the discrete approximation

approaches the frequency of the true solution as the grid Gh is refined. For finite

h > 0, the difference µ(1)h − ωh gives a measure of the dispersive and dissipative

behaviour of the numerical scheme. We can calculate µ(1)h explicitly for the above

schemes as follows. The first order basis functions on the reference element are

given by

Θ0 = (1 − s)/2 and Θ1 = (1 + s)/2, ∀s ∈ [−1, 1].

Hence, by applying a change of variable, we obtain

B(θ0, θ1) =
2

h

∫ 1

−1

(Θ′
0Θ

′
1 − κ2Θ0Θ1)ds = −2κ2 + 3

3h
(2.14)

and

B(θ1, θ1) =
4

h

∫ 1

−1

(Θ′2
1 − κ2Θ2

1)ds = −2(4κ2 − 3)

3h
(2.15)

where κ = ωh/2. Similarly,

B̃(θ0, θ1) =
2

h

[
1∑

ℓ=0

(
Θ′

0(ζ̃ℓ)Θ
′
1(ζ̃ℓ) − κ2Θ0(ζ̃ℓ)Θ1(ζ̃ℓ)

)
w̃ℓ

]
= −1

h
(2.16)

and

B̃(θ1, θ1) =
4

h

[
1∑

ℓ=0

(
Θ′2

1 (ζ̃ℓ) − κ2Θ2
1(ζ̃ℓ)

)
w̃ℓ

]
=

2(1 − 2κ2)

h
(2.17)

with ζ̃0 = −1, ζ̃1 = 1 and w̃0 = w̃1 = 1. Consequently, we obtain

µ(1)h = cos−1

(
3 − 4κ2

3 + 2κ2

)
(2.18)
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for the finite element scheme and

µ̃(1)h = cos−1
(
1 − 2κ2

)
. (2.19)

for the spectral element scheme. If κ = ωh/2 ≪ 1, then the discrete dispersion

relations (2.18) and (2.19) may be expressed as a series in ωh to give the well-known

results ([60], eq.(41)):

µ(1)h − ωh = −(ωh)3

24
+ · · ·

and

µ̃(1)h − ωh =
(ωh)3

24
+ · · · .

Note that the leading term in the phase differences in these expressions are identi-

cal in magnitude but have opposite sign. These expressions confirm the behaviour

observed in Figure 2.1 where it was observed that the finite element scheme ex-

hibits phase lead whilst the spectral element scheme exhibits phase lag of equal

magnitude. Moreover, these expressions were previously derived by a different

method in Chapter 1.

2.3.2 Dispersion and dissipation of quadratic elements

In Figure 2.2, we show the effect of raising the order of the approximation from

p = 1 to p = 2 whilst keeping the same number of degrees of freedom. It is clear

from Figure 2.2(a) that if we use piecewise quadratic elements instead of piecewise

linear elements both the phase lag and phase lead are decreased compared with

Figure 2.1(a) where the same number of degrees of freedom are used. Moreover,

both the phase errors are reduced as can be seen in Figure 2.2(a). In particular, by

employing a similar argument to the one used in the case of first order elements,

we obtain the following expressions

µ(2)h − ωh = −(ωh)5

1440
+ · · ·
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and

µ̃(2)h − ωh =
(ωh)5

2880
+ · · ·

(see Theorem 2.4.2 which we will prove later). Observe that the order of the error

is higher for the quadratic elements as is to be expected. However, we also observe

that, as before, the signs of the leading terms in the error are opposite but in this

case, the magnitude of the error in the spectral element scheme is one half that of

the finite element scheme in the limit ωh → 0.

2.3.3 Dispersion and dissipation of higher order elements

In Figure 2.3 we present the results obtained by increasing the order of the ap-

proximating elements while again keeping the number of degrees of freedom fixed.

Comparing the results in Figures 2.1(a) and 2.2(a) with those in Figure 2.3, we

observe that the convergence is rather rapid as the order of the method is increased

even with a fixed number of degrees of freedom. This suggests that it is more effi-

cient to seek convergence by raising the order of the method rather than refining

the mesh in the cases of both finite element and spectral element schemes.

We shall also investigate the nature of the convergence behaviour of the schemes

as the order p → ∞ on a fixed mesh. In Figure 2.4, we present the numerical

approximations obtained on a fixed mesh of size h = 1 with frequency ω = 80

for orders of approximation p = 37 to p = 45. It is observed that for orders

p ≤ 41, both finite element and spectral element schemes fail to resolve the wave,

with the spectral element scheme exhibiting wild over-shoots and under-shoots.

However, once the order reaches p = 42, there is a dramatic improvement in the

resolution of both schemes and for p ≥ 44, both schemes provide an essentially

exact approximation of the wave. We see that the convergence behaviour of the

higher order schemes, whereby h is fixed and p is increased, is quite different from
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Figure 2.2: Numerical approximations of the solution to equation (2.10) obtained

for ω = 20 with both full and spectral element methods using (a) 10 and (b) 15

quadratic elements.
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(d) p = 10

Figure 2.3: Numerical approximations of the solution to equation (2.10) obtained

for ω = 20 using (a) seven cubic (b) five quartic (c) four 5th order (d) two 10th

order elements.
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Figure 2.4: Numerical approximations of the solution to equation (2.10) obtained

for p = 37 to p = 45 with ωh = 80. The error in the discrete dispersion relations

of both waves is compared.
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that of fixed order approximation. In particular, over a very narrow range of p (in

this case from p = 37 to p = 45), the approximate solution changes from being

little more than garbage to providing an essentially exact representation of the true

wave. Figure 2.4(j) sheds some light on the nature of this dramatic change in the

qualitative behaviour of the schemes over a very narrow range. In particular, we

see that µ̃(p)h−ωh mirrors precisely the kind of sharp transition around p ≈ ωh/2

seen in the approximate waves. Moreover, for p ≪ ωh, it is seen that µ̃(p)h for the

spectral element scheme is of completely the wrong magnitude (compared with ωh)

thereby accounting for the erratic over-shoots and under-shoots in the unresolved

regime.

2.4 Higher order discrete dispersion relations

We now derive and study the exact discrete dispersion relation for elements of

arbitrary order. Our objectives are twofold. Firstly, we wish to compare the phase

accuracy of finite element and spectral element schemes of fixed, but arbitrary,

order p as the mesh-size becomes small. In particular, we shall show that the

superiority of the spectral element scheme observed earlier is maintained for all

orders p ≥ 2. Secondly, we have the more ambitious goal of explaining the dramatic

behaviour of the convergence of the schemes as the order is increased on a fixed

mesh. The key to both of these analyses will be an explicit expression for the

discrete dispersion relation for the spectral element scheme. Such expressions

have been obtained (also above) for relatively low orders p = 1, 2 whereas our new

result will be valid for arbitrary order p ∈ N. Let Vhp denote the set of continuous

piecewise polynomials of degree up to p ≥ 2 on the grid Gh. In order to obtain the

discrete dispersion relation for higher order elements, following [1], we introduce
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basis functions {θ̃(p)
i }N

i=0 ∈ Vhp satisfying the conditions

θ̃
(p)
i (jh) = δij, jh ∈ Gh (2.20)

and

B̃(θ̃
(p)
i , vhp) = 0 ∀vhp ∈ V ♭

hp (2.21)

where

V ♭
hp = {vhp ∈ Vhp : vhp(jh) = 0, xj ∈ Gh}

with {θ(p)
i }N

i=0 defined similarly using B(·, ·) in place of B̃(·, ·). We seek a solution

Uhp ∈ Vhp of (2.10) of the form

Uhp(x) =
N∑

i=0

αiθ̃
(p)
i (x)

satisfying Uhp(0) = 1 such that

B̃(Uhp, vhp) = 0, ∀vhp ∈ Vhp ∩ H1
E(0, 1).

Now, following the arguments used in (Section 2.2, [1]), we arrive at the expressions

for higher order discrete dispersion relations for spectral and finite element schemes

cos µ̃(p)h = −1

2

B̃(θ̃
(p)
1 , θ̃

(p)
1 )

B̃(θ̃
(p)
0 , θ̃

(p)
1 )

(2.22)

and

cos µ(p)h = −1

2

B(θ
(p)
1 , θ

(p)
1 )

B(θ
(p)
0 , θ

(p)
1 )

. (2.23)

Theorem 2.4.1. Let κ > 0 be given. Define sequences {ap}∞p=1 and {bp}∞p=1 re-

cursively by the rule

ap+1 = −2p + 1

κ
bp + ap−1

bp+1 =
2p + 1

κ
ap + bp−1





(2.24)
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for p ∈ N with a0 = 1, a1 = 1, b0 = 0 and b1 = 1
κ
. Then, the discrete dispersion

relation for the spectral element method is given, for p ∈ N, by cos µ̃(p)h = R(p)(2κ)

where

R(p)(2κ) = (−1)p

[
ap (κbp−1 + pap) + bp (κap−1 − pbp)

ap (κbp−1 + pap) − bp (κap−1 − pbp)

]
. (2.25)

The above expression is a rational function of κ since both {ap}∞p=1 and {bp}∞p=1

proved in Lemma 2.5.2 are polynomials in powers of κ−1, whilst the numerators

and denominators are polynomials of degrees 2p and 2p − 2 in κ respectively.

Hence, the degree of R(p)(2κ) is [2p/2p − 2] for all p ∈ N. Consider the first order

approximation (p = 1), then using (2.24) and (2.25), we find that

cos µ̃(1)h = R(1)(2κ) = 1 − 2κ2

in agreement with our expression (2.19). Table 2.1 gives closed form expressions

for R(p)(ωh) for p = 1, 2, 3, 4 along with the leading terms in the series expansion

for the error when ωh ≪ 1.

2.4.1 Accuracy at small wavenumbers

The following theorem (proved in Section 2.5) gives the leading term for the error

in the discrete dispersion relation when ωh ≪ 1, for arbitrary order p ∈ N.

Theorem 2.4.2. Let p ∈ N. Then, the error in the discrete dispersion relation for

the spectral element method is given by

cos µ̃(p)h − cos ωh = − 1

2p

[
p!

(2p)!

]2
(ωh)2p+2

2p + 1
+ O (ωh)2p+4 (2.26)

or, if ωh is sufficiently small,

µ̃(p)h − ωh =
1

2p

[
p!

(2p)!

]2
(ωh)2p+1

2p + 1
+ O (ωh)2p+3 . (2.27)
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Order p R(p)(ωh) µ̃(p)h − ωh

1 1 − (ωh)2

2

(ωh)3

24

2
(ωh)4 − 22(ωh)2 + 48

2((ωh)2 + 24)

(ωh)5

2880

3
−(ωh)6 + 92(ωh)4 − 1680(ωh)2 + 3600

2((ωh)4 + 60(ωh)2 + 1800)

(ωh)7

604800

4
(ωh)8 − 260(ωh)6 + 16176(ωh)4 − 267120(ωh)2 + 564480

2((ωh)6 + 108(ωh)4 + 7560(ωh)2 + 282240)

(ωh)9

203212800

Table 2.1: The discrete dispersion relation R(p)(ωh) = cos µ̃(p)h for order p ap-

proximation given in Theorem 2.4.1. We also indicate the leading term in the

series expansion for the error when ωh ≪ 1 (see Theorem 2.4.2) .
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The leading terms in the series expansion for the error obtained using spectral

element method all have positive signs, thereby explaining the phase lag observed

in the previous section. This result in the case p = 1 agrees with the expression (41)

given in Thompson and Pinsky [60]. The case of general order p approximation

is not conducted by Thompson and Pinsky, who nevertheless conjectured that

the leading term in the expressions should be of order (ωh)2p+1. The correctness

of this conjecture is confirmed by Theorem 2.4.2. More interestingly, for higher

orders the spectral element scheme provides p-times better accuracy as compared

to the discrete dispersion relation obtained with finite element scheme [1], where

one finds that the corresponding result for the finite element scheme is:

µ(p)h − ωh = −1

2

[
p!

(2p)!

]2
(ωh)2p+1

2p + 1
+ O (ωh)2p+3 . (2.28)

It is evident from expression (2.27) that the error for the spectral element scheme

has an additional multiple of 1/p for elements of order p ∈ N when compared with

(2.28), again with a sign change.

2.4.2 Accuracy at large wavenumbers

We now consider the error estimates for high wavenumbers i.e. ωh is large even

though h is small. The next theorem gives a full description of the behaviour of

the error for large ωh as the order of the approximation p is increased.

Theorem 2.4.3. Suppose that ωh ≫ 1. Then the error E (p) = cos µ̃(p)h − cos ωh

in the discrete dispersion relation for the spectral element method passes through

four distinct phases as the order p ∈ N is increased:

1. Constant Magnitude Phase: For p = O(1), E (p) ≈ (−1)p (ωh)2

2
.
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2. Oscillatory Phase: For 1 ≪ 2p+1 < ωh−o(ωh)1/3, E (p) oscillates and decays

to O(1) as p is increased.

3. Transition Zone: For ωh− o(ωh)1/3 < 2p+1 < ωh+ o(ωh)1/3, the error E (p)

oscillates without further decrease.

4. Super-Exponential Decay: For 2p + 1 > ωh + o(ωh)1/3, E (p) decreases at a

super-exponential rate:

E (p) ≈ sin(ωh)

2

(
ωh

4p

)2

f(
√

1 − (ωh/(2p + 1))2)p+1/2 (2.29)

where f : w → (1 − w)/(1 + w) exp(2w) so that in the case where 2p + 1 >

ωhe/2

E (p) ≈ sin(ωh)

2

(
ωh

4p

)2 [
ωhe

2(2p + 1)

]2p+1

. (2.30)

Figure 2.5 shows the behaviour of the actual error obtained with the spectral

element scheme for different values of ωh with increasing order p. It is seen that

the behaviour is consistent with the predictions of Theorem 2.4.3. It is interesting

to compare the results in Theorem 2.4.3 with those obtained in [1] for the finite

element scheme. Observe that if Ep
FE denotes the corresponding error for the finite

element scheme then using the above result and Theorem 3.3 of [1], we have

E (p) ≈
(

ωh

4p

)2

Ep
FE. (2.31)

Broadly speaking, this means the performace of the two methods is similar in terms

of (a) the fact that there is a sharp transition to super-exponential convergence,

and (b) the transition occurs at the same threshold. The most significant difference

in the behaviour of the spectral element and finite element schemes occurs in the

unresolved regime where 2p + 1 < ωh − o(ωh)1/3. For the finite element scheme,
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(d) ωh = 160

Figure 2.5: Behaviour of the error in the discrete dispersion relation for spectral

element scheme at high wavenumbers ωh ≫ 1 as the order p is increased. The

transition region between the oscillatory decaying phase and the super-exponential

decay of the error is indicated in each case (see Theorem 2.4.3) and occurs when

2p + 1 ≈ ωh.
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the error is of order 1 whereas for the spectral element scheme, the error is of order

1
2
(ωh)2. This behaviour was observed in Figure 2.4 where it was found that the

spectral element scheme over-shoots and under-shoots erratically in this range. In

summary, in agreement with [1], we recommend that the order p and the mesh-size

h is chosen so that

2p + 1 > ωh + C(ωh)1/3, (2.32)

where C is a fixed constant and can be taken as unity in practice.

2.5 Proofs of the results

This section provides the proofs of the results for the error in the discrete dispersion

relation for the spectral element method.

2.5.1 Basic polynomials

For u, v ∈ H1(−1, 1), let B̂(·, ·) denote the bilinear form

B̂(u, v) = Q(p)(u′v′) − κ2Q(p)(uv) (2.33)

where Q(p) is the quadrature rule (2.8) and κ > 0 is a fixed constant. We introduce

basic polynomials Φp, Ψp of degree at most p ∈ N satisfying

Φp(1) = 1, Φp(−1) = (−1)p+1 : B̂(Φp, v) = 0 ∀v ∈ Pp ∩ H1
0(−1, 1) (2.34)

and

Ψp(1) = 1, Ψp(−1) = (−1)p : B̂(Ψp, v) = 0 ∀v ∈ Pp ∩ H1
0(−1, 1). (2.35)

Throughout, it will be assumed that κ does not coincide with an eigenvalue for

this problem so that the polynomials are uniquely defined by these conditions.
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Thanks to the fact that Pp is finite dimensional, existence of these polynomials

follows directly. Moreover the bilinear form (2.33) is invariant under the change of

variable from x to −x meaning that Φp and Ψp are either even or odd functions.

Now if p is odd, then from (2.34), we have Φp(1) = 1 = Φp(−1), which implies Φp

is not an odd function and therefore Φp is an even function. Furthermore, if p is

even, then from (2.34), we get Φp(−1) = −1 = −Φp(1), which implies Φp is not an

even function and therefore Φp is an odd function. Similarly, it is now easy to see

that Ψp is an odd and even function for odd and even integers respectively. These

polynomials will play a central role in the derivation of the discrete dispersion

relation. The following theorem provides explicit closed forms for the expressions

B̂(Ψp, Ψp) and B̂(Φp, Φp), which we shall need later.

Theorem 2.5.1. Let p = 2, 3, 4, . . . , then

B̂(Φp, Φp) = −2κ
ap

bp

(2.36)

and

B̂(Ψp, Ψp) = −2κ
(p + 1)ap−1 + pap+1

(p + 1)bp−1 + pbp+1

, (2.37)

where {ap}∞p=1 and {bp}∞p=1 are defined in Theorem 2.4.1.

Proof. We begin by considering Φp. If p is odd, then as explained above Φp is

an even function which implies Φp ∈ Pp−1. Similarly, in the case when p is even,

Φp is an odd function which implies Φp ∈ Pp−1. Hence, Φp ∈ Pp−1 for all p ∈ N.

Let v ∈ Pp ∩ H1
0(−1, 1), then vΦp and v′Φ′p ∈ P2p−1, so that (2.33) integrates the

function exactly when u = Φp, and we obtain

B̂(Φp, v) =

∫ 1

−1

(
Φ′pv′ − κ2Φpv

)
dx = 0 ∀v ∈ Pp ∩ H1

0(−1, 1).

Hence, we see that Φp = Φp
e or Φp = Φp

o, where Φp
e and Φp

o are polynomials

analysed in ([1],(4.1)-(4.2)) and from ([1],(4.13)-(4.14)), again using the fact that
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the quadrature rule is exact in this case, we have

B̂(Φp, Φp) =

∫ 1

−1

(
Φ′pΦ′p − κ2ΦpΦp

)
dx = −2κ

ap

bp

(2.38)

which proves the assertion for Φp.

We now consider Ψp and for the remainder of the proof superscripts will be

omitted since no confusion is likely to arise. Since Ψ and v ∈ Pp and Ψ′ and

v′ ∈ Pp−1, we can use the fact that the quadrature rule is exact for P2p−1 and

integration by parts to obtain

Q(p)(Ψ′v′) =

∫ 1

−1

Ψ′v′dx = [vΨ′]1−1 −Q(p)(Ψ′′v) = −Q(p)(Ψ′′v) (2.39)

since v(±1) = 0. Combining this result with (2.35) gives

Q(p)(Fv) =

p−1∑

ℓ=1

w̃ℓF (ζ̃ℓ)v(ζ̃ℓ) = 0 ∀v ∈ Pp ∩ H1
0(−1, 1). (2.40)

where F = (Ψ′′ +κ2Ψ) ∈ Pp. Fix J ∈ {1, 2, 3, . . . , p−1} and let v ∈ Pp∩H1
0(−1, 1)

be chosen such that v(ζ̃ℓ) = δℓJ , then (2.40) implies that F (ζ̃J) = 0. Hence, F = 0

at the zeros of L′
p where Lp is the Legendre polynomial of degree p. Hence, F takes

the form

F (x) = Ψ′′(x) + κ2Ψ(x) = (ς + σx)L′
p(x) (2.41)

for some ς, σ ∈ R. Also, parity considerations imply that ς = 0 and σ can never

be zero otherwise Ψ ∈ Pp−2 and the bilinear form (2.33) will become exact and

we will get back to the case of Φ. Now using the following identity satisfied

by Legendre polynomials xL′
p(x) =

1

2p + 1

(
(p + 1)L′

p−1(x) + pL′
p+1(x)

)
, obtained

using equations (13)-(14) given in ([23], Section 10.10), equation (2.41) becomes

F (x) =
σ

2p + 1

(
pL′

p+1(x) + (p + 1)L′
p−1(x)

)
. (2.42)

Define a polynomial Υn ∈ Pn by the rule

Υn(x) =

⌊n/2⌋∑

j=0

(
− 1

κ2

)j+1

L
(2j+1)
n+1 (x) (2.43)
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where ⌊·⌋ denotes the integer part. It is elementary to verify that

Υ′′
n(x) + κ2Υn(x) = −L′

n+1(x). (2.44)

We may write

Ψ(x) = αΥp(x) + βΥp−2(x) (2.45)

for suitable constants α and β, and in addition

Ψ′′(x) + κ2Ψ(x) =α
(
Υ′′

p(x) + κ2Υp(x)
)

+ β
(
Υ′′

p−2(x) + κ2Υp−2(x)
)

= −
(
αL′

p+1(x) + βL′
p−1(x)

)
.

Comparing the last equation with (2.42), we are led to the conclusion that α =

−σp/(2p + 1) and β = −σ(p + 1)/(2p + 1), and with these values, (2.45) becomes

Ψ(x) = − σ

2p + 1
(pΥp(x) + (p + 1)Υp−2(x)) . (2.46)

Applying the boundary condition Ψ(1) = 1, we obtain σ = −(2p + 1)/η(1), pro-

vided that η(1) is non-zero, with η(1) = (p + 1)Υp−2(1) + pΥp(1). Consequently,

Ψ is given by

Ψ(x) =
η(x)

η(1)
. (2.47)

We wish to obtain a closed form expression for B̂(Ψ, Ψ) = Q(p)(Ψ′2)−κ2Q(p)(Ψ2).

The function Ψ′2 ∈ P2p−2, is integrated exactly by the quadrature rule, so that

Q(p)(Ψ′2) =

∫ 1

−1

Ψ′2dx = [Ψ′Ψ]1−1 −
∫ 1

−1

ΨΨ′′dx = 2Ψ′(1) −Q(p)(Ψ′′Ψ)

and therefore,

B̂(Ψ, Ψ) = 2Ψ′(1) −Q(p)(Ψ′′Ψ) − κ2Q(p)(Ψ2) = 2Ψ′(1) −Q(p)(Ψ(Ψ′′ + κ2Ψ)).

Equation (2.41) implies that Q(p)(Ψ(Ψ′′ + κ2Ψ)) = Q(p)(σxΨL′
p(x)) and therefore,

B̂(Ψ, Ψ) = 2Ψ′(1) +
2p + 1

η(1)
Q(p)(xΨL′

p(x)). (2.48)
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Now, using the quadrature rule (2.8), we obtain

Q(p)(xΨL′
p(x)) =

p−1∑

ℓ=1

w̃ℓΨ(ζ̃ℓ)L
′
p(ζ̃ℓ)−

2

p(p + 1)
Ψ(−1)L′

p(−1)+
2

p(p + 1)
Ψ(1)L′

p(1),

and then, since ζ̃ℓ for all ℓ = 1, 2, 3, . . . , p − 1 are the zeros of L′
p, we get

Q(p)(xΨL′
p(x)) =

2

p(p + 1)

(
(−1)p+1L′

p(−1) + L′
p(1)

)
, (2.49)

and then substituting for L′
p(±1) using the expression

L(d)
n (±1) =





(n + d)!

d!(n − d)!

(±1)n+d

2d
for d = 0, 1, 2, . . . , n,

0 otherwise,

(2.50)

(see ([1], eq(4.7))), gives Q(p)(xΨL′
p(x)) = 2. Substituting this value into equation

(2.48), we obtain

B̂(Ψ, Ψ) =
2

η(1)
(η′(1) + 2p + 1) (2.51)

after straightforward manipulations. Now, as in [1], using (2.43) together with

(2.50), the values of Υ and its derivatives at the boundary x = 1 are given by

Υ′
p(1) = ap+1 − 1, Υ′

p−2(1) = ap−1 − 1, Υp(1) = −bp+1/κ and Υp−2(1) = −bp−1/κ,

where ap+1, ap−1, bp+1 and bp−1 are the expressions obtained from the recurrence

relation (2.24). A proof of this will be provided in Lemma 2.5.2 below. Conse-

quently, the values of η(1) and η′(1) may be written in the form

η(1) = − 1
κ

((p + 1)bp−1 + pbp+1)

and

η′(1) + 2p + 1 = (p + 1)ap−1 + pap+1.

Finally, inserting the above values into (2.51) and simplifying gives

B̂(Ψ, Ψ) = −2κ

[
(p + 1)ap−1 + pap+1

(p + 1)bp−1 + pbp+1

]

which completes the proof.
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We now give closed form expressions and present some elementary properties

of the coefficients ap and bp defined in (2.24).

Lemma 2.5.2. Let {an}∞n=0 and {bn}∞n=0 be defined as in (2.24). Then κnan is a

polynomial of degree n in κ, and

an =

⌊n/2⌋∑

k=0

(−1)k

(2k)!

(n + 2k)!

(n − 2k)!

1

(2κ)2k
, n = 0, 1, 2, . . . (2.52)

while κnbn is a polynomial of degree n − 1 in κ, and

bn =

⌊(n−1)/2⌋∑

k=0

(−1)k

(2k + 1)!

(n + 2k + 1)!

(n − 2k − 1)!

1

(2κ)2k+1
, n = 1, 2, 3, . . . (2.53)

with b0 = 0 and ⌊.⌋ denoting the integer part. Moreover, these series satisfy




sin(κ − πn/2) cos(κ − πn/2)

cos(κ − πn/2) − sin(κ − πn/2)







an

bn


 =

√
πκ

2




Jn+1/2(κ)

−Yn+1/2(κ)


 (2.54)

where J and Y are cylindrical Bessel functions of the first and second kind respec-

tively [28].

Proof. It is elementary to prove (2.52) and (2.53) using mathematical induction.

The statement regarding κnan and κnbn are then simple consequences of (2.52)

and (2.53). For n = 0, expression (2.52) reads as

a0 =
(−1)0

(2 × 0)!

(2 × 0)!

(2 × 0)!

1

(2κ)2×0
= 1,

while, for n = 1, expression (2.52) reads as

a1 =
(−1)0

(2 × 0)!

(1 + 2 × 0)!

(1 − 2 × 0)!

1

(2κ)2×0
= 1.

Similarly, expression (2.53) gives

b1 =
(−1)0

(2 × 0 + 1)!

(2 × 0 + 2)!

(1 − 2 × 0 − 1)!

1

(2κ)2×0+1
=

1

κ
,
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so the result holds for n up to 1. Now, assume that the series are valid for n up to

p. We consider separately the cases where p is odd and even. Firstly, we suppose

p is odd so that p = 2r + 1 for some r ∈ N. Then (2.24) gives

a2r+2 = −4r + 3

κ
b2r+1 + a2r.

Now, substituting series (2.52) and (2.53) into above equation, we have

a2r+2 = −4r + 3

κ

(
r∑

k=0

(−1)k

(2k + 1)!

(2r + 2 + 2k)!

(2r − 2k)!

1

(2κ)2k+1

)

+
r∑

k=0

(−1)k

(2k)!

(2r + 2k)!

(2r − 2k)!

1

(2κ)2k

= 1 − 4r + 3

κ

(
r−1∑

k=0

(−1)k

(2k + 1)!

(2r + 2 + 2k)!

(2r − 2k)!

1

(2κ)2k+1

)

+

r∑

k=1

(−1)k

(2k)!

(2r + 2k)!

(2r − 2k)!

1

(2κ)2k
+

(−1)r+1

κ

4r + 3

(2r + 1)!

(4r + 2)!

(2κ)2r+1

= 1 − 4r + 3

κ

(
r∑

k=1

(−1)k−1

(2k − 1)!

(2r + 2k)!

(2r − 2k + 2)!

1

(2κ)2k−1

)

+

r∑

k=1

(−1)k

(2k)!

(2r + 2k)!

(2r − 2k)!

1

(2κ)2k
+

(−1)r+1

κ

4r + 3

(2r + 1)!

(4r + 2)!

(2κ)2r+1

= 1 +
r∑

k=1

(−1)k

(2k)!

(2r + 2k + 2)!

(2r − 2k + 2)!

1

(2κ)2k
+

(−1)r+1

(2r + 2)!

(4r + 4)!

(2κ)2r+2

=

⌊r+1⌋∑

k=0

(−1)k

(2k)!

(2r + 2k + 2)!

(2r − 2k + 2)!

1

(2κ)2k
.

Substituting r in terms of p, we get

ap+1 =

⌊(p+1)/2⌋∑

k=0

(−1)k

(2k)!

(p + 2k + 1)!

(p − 2k + 1)!

1

(2κ)2k
.

Hence, the series for an is valid for n up to p + 1. We now consider the series for

bn. Starting with

b2r+2 =
4r + 3

κ
a2r+1 + b2r
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and using (2.52) and (2.53), we have

b2r+2 =
4r + 3

κ

(
r∑

k=0

(−1)k

(2k)!

(2r + 2k + 1)!

(2r − 2k + 1)!

1

(2κ)2k

)

+

r−1∑

k=0

(−1)k

(2k + 1)!

(2r + 2k + 1)!

(2r − 2k − 1)!

1

(2κ)2k+1

=
1

κ

(
r−1∑

k=0

(−1)k

(2k)!

(2r + 2k + 1)!

(2r − 2k + 1)!

4r + 3

(2κ)2k

)

+

r−1∑

k=0

(−1)k

(2k + 1)!

(2r + 2k + 1)!

(2r − 2k − 1)!

1

(2κ)2k+1
+

(−1)r

κ

4r + 3

(2r)!

(4r + 1)!

(2κ)2r

=

r−1∑

k=0

(−1)k

(2k + 1)!

(2r + 2k + 3)!

(2r − 2k + 1)!

1

(2κ)2k+1
+

(−1)r

(2r + 1)!

(4r + 3)!

(2κ)2r+1

=

⌊r+1/2⌋∑

k=0

(−1)k

(2k + 1)!

(2r + 2k + 3)!

(2r − 2k + 1)!

1

(2κ)2k+1
.

Now, replacing r in terms of p, we get

bp+1 =

⌊p/2⌋∑

k=0

(−1)k

(2k + 1)!

(p + 2k + 2)!

(p − 2k)!

1

(2κ)2k+1
.

Hence, the series bn is valid for n up to order p + 1. This concludes the proof in

the case when p is odd. We now consider the case when p is even, so that p = 2r

for some r ∈ N. For the series ap, beginning with

a2r+1 = −4r + 1

κ
b2r + a2r−1
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and with the aid of series (2.52) and (2.53), we arrive at

a2r+1 = −4r + 1

κ

(
r−1∑

k=0

(−1)k

(2k + 1)!

(2r + 1 + 2k)!

(2r − 2k − 1)!

1

(2κ)2k+1

)

+
r−1∑

k=0

(−1)k

(2k)!

(2r + 2k − 1)!

(2r − 2k − 1)!

1

(2κ)2k

= 1 − 4r + 1

κ

(
r−1∑

k=1

(−1)k−1

(2k − 1)!

(2r + 2k − 1)!

(2r − 2k + 1)!

1

(2κ)2k−1

)

+
r−1∑

k=1

(−1)k

(2k)!

(2r + 2k − 1)!

(2r − 2k − 1)!

1

(2κ)2k
+

(−1)r

κ

4r + 1

(2r − 1)!

(4r − 1)!

(2κ)2r−1

= 1 +
r−1∑

k=1

(−1)k

(2k)!

(2r + 2k + 1)!

(2r − 2k + 1)!

1

(2κ)2k
+

(−1)r

(2r)!

(4r + 1)!

(2κ)2r

=

⌊r+1/2⌋∑

k=0

(−1)k

(2k)!

(2r + 2k + 1)!

(2r − 2k + 1)!

1

(2κ)2k
.

Now, writing the above expression in terms of p, we obtain

ap+1 =

⌊(p+1)/2⌋∑

k=0

(−1)k

(2k)!

(p + 2k + 1)!

(p − 2k + 1)!

1

(2κ)2k
.

Hence, the series an is valid for n up to order p + 1. Now, for bn starting with

b2r+1 =
4r + 1

κ
a2r + b2r−1

and using (2.52) and (2.53), we have

b2r+1 =
4r + 1

κ

(
r∑

k=0

(−1)k

(2k)!

(2r + 2k)!

(2r − 2k)!

1

(2κ)2k

)

+
r−1∑

k=0

(−1)k

(2k + 1)!

(2r + 2k)!

(2r − 2k − 2)!

1

(2κ)2k+1

=
r−1∑

k=0

(−1)k

(2k + 1)!

(2r + 2k + 2)!

(2r − 2k)!

1

(2κ)2k+1
+

(−1)r

(2r + 1)!

(4r + 2)!

(2κ)2r+1

=

⌊r⌋∑

k=0

(−1)k

(2k + 1)!

(2r + 2k + 2)!

(2r − 2k)!

1

(2κ)2k+1
.
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Replacing r by p, we finally have

bp+1 =

⌊p/2⌋∑

k=0

(−1)k

(2k + 1)!

(p + 2k + 2)!

(p − 2k)!

1

(2κ)2k+1
.

Hence, the series bn is valid for n up to order p + 1. Therefore, by induction, we

have proved that the series {an} and {bn} are both valid for all integer n ≥ 0.

We will now prove the identity (2.54). For this we begin with the following

identity which is given in ([28], eq.(8.461)1)

Jn+1/2(κ) =

√
2

πκ

{
sin
(
κ − π

2
n
) ⌊n/2⌋∑

k=0

(−1)k

(2k)!

(n + 2k)!

(n − 2k)!

1

(2κ)2k

+ cos
(
κ − π

2
n
) ⌊(n−1)/2⌋∑

k=0

(−1)k

(2k + 1)!

(n + 2k + 1)!

(n − 2k − 1)!

1

(2κ)2k+1

}
(2.55)

while combining identities (8.461)2 and (8.465) of [28] gives

Yn+1/2(κ) = (−1)n−1

√
2

πκ

{
cos
(
κ +

π

2
n
) ⌊n/2⌋∑

k=0

(−1)k

(2k)!

(n + 2k)!

(n − 2k)!

1

(2κ)2k

− sin
(
κ +

π

2
n
) ⌊(n−1)/2⌋∑

k=0

(−1)k

(2k + 1)!

(n + 2k + 1)!

(n − 2k − 1)!

1

(2κ)2k+1

}
(2.56)

where Jn+1/2 and Yn+1/2 are cylindrical Bessel functions of the first and second

kind respectively. For non-negative integer n both the series in the first and second

terms of the above identities are exactly the same as an and bn given in equations

(2.52) and (2.53) respectively. Hence (2.55) and (2.56) result in

Jn+1/2(κ) =

√
2

πκ

(
sin
(
κ − π

2
n
)

an + cos
(
κ − π

2
n
)

bn

)
(2.57)

and

Yn+1/2(κ) = (−1)n−1

√
2

πκ

(
cos
(
κ +

π

2
n
)

an − sin
(
κ +

π

2
n
)

bn

)
. (2.58)

Now, with the aid of the identities

cos
(
κ +

π

2
n
)

= (−1)n cos
(
κ − π

2
n
)
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and

sin
(
κ +

π

2
n
)

= (−1)n sin
(
κ − π

2
n
)

,

equation (2.58) takes the form

Yn+1/2(κ) = −
√

2

πκ

(
cos
(
κ − π

2
n
)

an − sin
(
κ − π

2
n
)

bn

)
. (2.59)

Hence, by writing (2.57) and (2.59) in matrix form, we obtain




sin(κ − πn/2) cos(κ − πn/2)

cos(κ − πn/2) − sin(κ − πn/2)






an

bn


 =

√
πκ

2




Jn+1/2(κ)

−Yn+1/2(κ)


 ,

which completes the proof.

Note that a typographical error in [1] for (2.54) has been rectified here.

Equations (2.36) and (2.37) provide compact representations for the terms B̂(Ψp, Ψp)

and B̂(Φp, Φp) respectively. We first consider B̂(Ψp, Ψp) for even values of p. Using

Lemma 2.5.2, we see that κpap and κpbp are polynomials of degrees at most p and

p − 1 in κ respectively, i.e. κpap ∈ Pp, and κpbp ∈ Pp−1. Consequently, it is not

difficult to verify that κpap+1, κ
pap−1 ∈ Pp and κp+1bp−1, κ

p+1bp+1 ∈ Pp. Hence,

B̂(Ψp, Ψp) is a rational function of degree [p + 2/p] in κ for even values of p. Sim-

ilarly, for odd values of p, B̂(Ψp, Ψp) is a rational function of degree [p + 1/p − 1]

in κ. Now, as Φp ∈ Pp−1 for all p ∈ N i.e. Φp is polynomial of degree p − 1 in κ,

the quadrature rule in bilinear form (2.33) is exact for Φp. Hence, from Theorem

4.2 in [1], it is clear that B̂(Φp, Φp) is also a rational function of κ for even and

odd values of p. As p = 2N for even values of p, from Theorem 4.2(2) in [1],

B̂(Φp, Φp) is a rational function of degree [p/p − 2] in κ. Similarly, for odd values

of p, B̂(Φp, Φp) is a rational function of degree [p + 1/p − 1] in κ when 2N + 1 is

replaced by p in Theorem 4.2(1) from [1].

Moreover, in [1] it was shown that B̂(Φp, Φp) could be represented in terms of
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Bessel functions as follows:

B̂(Φp, Φp) = −2κ
Jp+1/2(κ) sin κ − Yp+1/2(κ) cos κ

Jp+1/2(κ) cos κ + Yp+1/2(κ) sin κ
with κ 6= mπ

and

B̂(Φp, Φp) = 2κ
Jp+1/2(κ) cosκ + Yp+1/2(κ) sin κ

Jp+1/2(κ) sin κ − Yp+1/2(κ) cos κ
with κ 6= (m + 1/2)π.

The following result extends these results to B̂(Ψp, Ψp).

Corollary 2.5.3. Let p = 2, 3, . . . , then

1. if p is even and κ 6= (m + 1/2)π for all m ∈ Z,

B̂(Ψp, Ψp) =

2κ
(p + 1)(Jp−1/2(κ) cotκ + Yp−1/2(κ)) − p(Jp+3/2(κ) cotκ + Yp+3/2(κ))

(p + 1)(Jp−1/2(κ) − Yp−1/2(κ) cot κ) − p(Jp+3/2(κ) − Yp+3/2(κ) cotκ)
, (2.60)

where J and Y are cylindrical Bessel functions of the first and second kind respec-

tively;

2. if p is odd and κ 6= mπ for all m ∈ Z,

B̂(Ψp, Ψp) =

2κ
(p + 1)(Yp−1/2(κ) cot κ − Jp−1/2(κ)) − p(Yp+3/2(κ) cot κ − Jp+3/2(κ))

(p + 1)(Jp−1/2(κ) cotκ + Yp−1/2(κ)) − p(Jp+3/2(κ) cotκ + Yp+3/2(κ))
. (2.61)

Proof. This corollary is proved separately for even and odd order polynomials.

Consider first the case when p is even. Since, the series {ap} and {bp}, for non-

negative integers p, satisfy identity (2.54), using (2.54) the values of ap−1, ap+1 and

bp−1, bp+1 are given as follows

ap−1 =

√
πκ

2

[
Jp−1/2(κ) cos κ + Yp−1/2(κ) sin κ

]

ap+1 =

√
πκ

2

[
−Jp+3/2(κ) cos κ − Yp+3/2(κ) sin κ

]

bp−1 =

√
πκ

2

[
−Jp−1/2(κ) sin κ + Yp−1/2(κ) cosκ

]

bp+1 =

√
πκ

2

[
Jp+3/2(κ) sin κ − Yp+3/2(κ) cos κ

]
.





(2.62)
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Now, inserting these values into (2.37) and rearranging gives (2.60), which com-

pletes the proof in the even case. Now consider the case when p is odd and once

again we find the following values of ap−1, ap+1 and bp−1, bp+1 using (2.54):

ap−1 =

√
πκ

2

[
Jp−1/2(κ) sin κ − Yp−1/2(κ) cos κ

]

ap+1 =

√
πκ

2

[
−Jp+3/2(κ) sin κ + Yp+3/2(κ) cos κ

]

bp−1 =

√
πκ

2

[
Jp−1/2(κ) cos κ + Yp−1/2(κ) sin κ

]

bp+1 =

√
πκ

2

[
−Jp+3/2(κ) cos κ − Yp+3/2(κ) sin κ

]
.





(2.63)

Now, inserting these values into the expression (2.37) and performing straightfor-

ward manipulations gives (2.61), which completes the proof.

In [1], it was shown that B̂(Φp, Φp) was related to certain types of Padé approx-

imant. Here, it is not the case that B̂(Ψp, Ψp) is a Padé approximant. We have the

following results for errors B̂(Ψp, Ψp) + 2κ tanκ and B̂(Φp, Φp)− 2κ cotκ denoted

by E (p)
Ψ (κ) and E (p)

Φ (κ) respectively for even integers and B̂(Ψp, Ψp)− 2κ cotκ and

B̂(Φp, Φp) + 2κ tanκ denoted by E (p)
Ψ (κ) and E (p)

Φ (κ) respectively for odd integers:

Theorem 2.5.4. Let p ∈ N satisfy p ≥ 2. Then

1. if p is an even integer, then

1. if κ 6= (m + 1/2)π, m ∈ Z,

E (p)
Ψ (κ) = B̂(Ψp, Ψp) + 2κ tanκ

= −1

2

(
1 +

1

p

)[
p!

(2p)!

]2
(2κ)2p+2

2p + 1
+ O(κ2p+4),

(2.64)

2. if κ 6= mπ, m ∈ Z,

E (p)
Φ (κ) = B̂(Φp, Φp) − 2κ cotκ = 2

[
p!

(2p)!

]2
(2κ)2p

2p + 1
+ O(κ2p+2); (2.65)

2. if p is an odd integer, then
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1. if κ 6= mπ, m ∈ Z,

E (p)
Ψ (κ) = B̂(Ψp, Ψp) − 2κ cotκ

= −2

(
1 +

1

p

)[
p!

(2p)!

]2
(2κ)2p

2p + 1
+ O(κ2p+2),

(2.66)

2. if κ 6= (m + 1/2)π, m ∈ Z,

E (p)
Φ (κ) = B̂(Φp, Φp) + 2κ tanκ

=
1

2

[
p!

(2p)!

]2
(2κ)2p+2

2p + 1
+ O(κ2p+4).

(2.67)

Proof. Since the quadrature rule is exact for Φp in the bilinear form (2.33). More-

over the estimates (2.65) and (2.67) are the same as equations (4.16) and (4.15)

in [1], for p = 2N and p = 2N + 1 respectively. Therefore, we have

E (p)
o (κ) = E (p)

Φ (κ) = 2

[
p!

(2p)!

]2
(2κ)2p

2p + 1
+ O(κ2p+2)

and

E (p)
e (κ) = E (p)

Φ (κ) =
1

2

[
p!

(2p)!

]2
(2κ)2p+2

2p + 1
+ O(κ2p+4).

Now, to prove estimates (2.64) and (2.66) consider the case when p is even.

Straightforward manipulations beginning with equation (2.60) give

B̂(Ψp, Ψp) + 2κ tan κ = − 2κ

cos2 κ
Q̃p+3/2(κ)

(
1 − Q̃p+3/2(κ) tanκ

)−1

(2.68)

where

Q̃p+3/2(κ) =
(p + 1)Jp−1/2(κ) − pJp+3/2(κ)

(p + 1)Yp−1/2(κ) − pYp+3/2(κ)
. (2.69)

The behaviour of Q̃p+3/2(κ) is studied in Section 2.6, where the following estimate

is proved in Lemma 2.6.1 for κ ≪ 1:

Q̃p+3/2(κ) =
1

2

(
1 +

1

p

)[
p!

(2p)!

]2
(2κ)2p+1

2p + 1
+ · · · . (2.70)
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With the aid of this estimate, we obtain that

B̂(Ψp, Ψp) + 2κ tanκ = −1

2

(
1 +

1

p

)[
p!

(2p)!

]2
(2κ)2p+2

2p + 1
+ · · · .

The assertions concerning polynomials of odd order are proved starting with (2.61)

in a similar fashion, and we have

B̂(Ψp, Ψp) − 2κ cotκ = − 2κ

sin2 κ
Q̃p+3/2(κ)

(
1 + Q̃p+3/2(κ) cotκ

)−1

. (2.71)

Finally inserting (2.70) into above equation and performing ordinary manipula-

tions give

B̂(Ψp, Ψp) − 2κ cotκ = −2

(
1 +

1

p

)[
p!

(2p)!

]2
(2κ)2p

2p + 1
+ · · ·

as required.

2.5.2 Proof of Theorem 2.4.1

The proof of the Theorem 2.4.1 now follows using a virtually identical argument

to the proof of Theorem 3.1 in [1]. For the sake of completeness, we give an outline

here.

Proof. For x ∈ (0, h), the functions {θ̃(p)
i }N

i=0 can be written in terms of the basic

polynomials Φ and Ψ using s = 2x/h − 1:

θ̃
(p)
0 (x) =

(−1)p

2
[Ψp(s) − Φp(s)]

and

θ̃p
1(x) =

1

2
[Ψp(s) + Φp(s)]

where the expressions for θ̃p
0(x) and θ̃p

1(x) take the correct values at the boundary

points x = 0 and x = h. Moreover, we define V ∈ Pp ∩ H1
0 (−1, 1) by V (s) =
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vhp(x), where vhp ∈ V ♭
hp is supported on (0, h). Now, using the change of variable

s = 2x/h − 1, we obtain

B̃(θ̃
(p)
1 , vhp) = h−1B̂(Ψp + Φp, V )

which vanishes because of the basis polynomials defined in (2.34)-(2.35). Conse-

quently, the orthogonality property is satisfied. Similar arguments hold in the case

of θ̃
(p)
0 . Since ωh = 2κ, the change of variable reveals that

B̃(θ̃
(p)
1 , θ̃

(p)
1 ) = h−1B̂(Ψp + Φp, Ψp + Φp).

Furthermore, exploiting the parities of Ψ and Φ, we obtain

B̃(θ̃
(p)
1 , θ̃

(p)
1 ) = h−1[B̂(Ψp, Ψp) + B̂(Φp, Φp)].

Similar arguments give

B̃(θ̃
(p)
0 , θ̃

(p)
1 ) = (−1)p(2h)−1[B̂(Ψp, Ψp) − B̂(Φp, Φp)].

Substituting these results into equation (2.22) gives

cos µ̃(p)h = (−1)p+1 B̂(Ψp, Ψp) + B̂(Φp, Φp)

B̂(Ψp, Ψp) − B̂(Φp, Φp)
(2.72)

and equations (2.36) and (2.37) show that after simplification (2.72) can be written

as

cos µ̃(p)h = (−1)p (p + 1) (apbp−1 + bpap−1) + p (apbp+1 + bpap+1)

(p + 1) (apbp−1 − bpap−1) + p (apbp+1 − bpap+1)
∀p ∈ N.

Finally, using the recurrence relation defined in (2.24), we have

cos µ̃(p)h = (−1)p ap (κbp−1 + pap) + bp (κap−1 − pbp)

ap (κbp−1 + pap) − bp (κap−1 − pbp)
∀p ∈ N.
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2.5.3 Proof of Theorem 2.4.2

We use Theorem 2.5.4 to prove Theorem 2.4.2 as follows:

Proof. We first consider the case when p is even. We start with equations (2.64)-

(2.65) and write B̂(Ψp, Ψp) and B̂(Φp, Φp) in terms of E (p)
Ψ and E (p)

Φ respectively:

B̂(Ψp, Ψp) = E (p)
Ψ (κ) − 2κ tanκ

and

B̂(Φp, Φp) = E (p)
Φ (κ) + 2κ cotκ.

Now, inserting these expression into (2.72), and performing ordinary calculations,

we obtain

cos µ̃(p)h =
sin ωh

[
E (p)

Ψ (κ) + E (p)
Φ (κ)

]
+ 2ωh cosωh

sin ωh
[
E (p)

Ψ (κ) − E (p)
Φ (κ)

]
+ 2ωh

(2.73)

where ωh = 2κ. Subtracting cosωh on both sides of the above equation and

simplifying gives the expression for the error in the discrete dispersion relation:

cos µ̃(p)h − cos ωh

=
sin ωh

ωh

{
E (p)

Φ sin2

(
ωh

2

)
+ E (p)

Ψ cos2

(
ωh

2

)}{
1 +

sin ωh

2ωh

(
E (p)

Φ − E (p)
Ψ

)}−1

.

(2.74)

In particular, for small ωh i.e. κ = ωh/2 ≪ 1, it then follows that

cos µ̃(p)h − cos ωh =

(
ωh

2

)2

E (p)
Φ + E (p)

Ψ + · · · (2.75)

where (
ωh

2

)2

E (p)
Φ =

1

2

[
p!

(2p)!

]2
(ωh)2p+2

2p + 1
+ · · ·

and

E (p)
Ψ = −1

2

(
1 +

1

p

)[
p!

(2p)!

]2
(ωh)2p+2

2p + 1
+ · · · .
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Substituting these values into equation (2.75), we get

cos µ̃(p)h − cos ωh = − 1

2p

[
p!

(2p)!

]2
(ωh)2p+2

2p + 1
+ · · · .

We now consider the case when p is odd. In this case, starting with equations

(2.66)-(2.67) and following the arguments used for the even order case, we arrive

at

cos µ̃(p)h − cos ωh

=
sin ωh

ωh

{
E (p)

Ψ sin2

(
ωh

2

)
+ E (p)

Φ cos2

(
ωh

2

)}{
1 +

sin ωh

2ωh

(
E (p)

Ψ − E (p)
Φ

)}−1

.

(2.76)

For small ωh i.e. κ = ωh/2 ≪ 1, we have

cos µ̃(p)h − cos ωh =

(
ωh

2

)2

E (p)
Ψ + E (p)

Φ + · · · (2.77)

where
(

ωh

2

)2

E (p)
Ψ = −1

2

(
1 +

1

p

)[
p!

(2p)!

]2
(ωh)2p+2

2p + 1
+ · · ·

and

E (p)
Φ =

1

2

[
p!

(2p)!

]2
(ωh)2p+2

2p + 1
+ · · · .

Now, substituting these values into (2.77) and simplifying gives

cos µ̃(p)h − cos ωh = − 1

2p

[
p!

(2p)!

]2
(ωh)2p+2

2p + 1
+ · · · .

Hence, it is once again evident that the leading term in the remainder is the same,

regardless of the parity of the polynomial order p. It is also worth noting that

unlike [1] there are no parity dependent dominating terms in the expressions for

the error. Furthermore, for small µ̃(p)h − ωh, we obtain the approximation

cos µ̃(p)h − cos ωh = −(µ̃(p)h − ωh) sinωh + · · ·
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which for small values of ωh reduces to

cos µ̃(p)h − cos ωh = −(µ̃(p)h − ωh)ωh + · · · .

Using above approximation gives estimate (2.27).

2.5.4 Proof of Theorem 2.4.3

Proof. We begin with the regime where p ≪ ωh. The series (2.52)-(2.53) defined

in Lemma 2.5.2 give:

ap = 1 − (p + 2)!

8(p − 2)!κ2
+ O(κ−4)

and

bp =
(p + 1)!

2(p − 1)!κ
− (p + 3)!

48(p − 3)!κ3
+ O(κ−5).

Now, substituting these values into (2.25) we obtain

R(p)(2κ) = cos µ̃(p)h ≈ (−1)p+1

6
(2p4 + 4p3 + p2 − p − 12κ2)

after elementary calculations. Since κ = ωh/2 ≫ 1, we can also obtain

R(p)(2κ) = cos µ̃(p)h ≈ (−1)p (ωh)2

2
.

As E (p) = R(p)(2κ)−cos ωh, the error in the discrete dispersion relation for p ≪ ωh

is given by

E (p) ≈ (−1)p (ωh)2

2
∀p ∈ N such that p ≪ ωh.

Now, for the rest of the proof we make use of the fact that

E (p)
Ψ (κ)

cos2(ωh/2)

ωh
= −Q̃p+3/2(κ){1 − Q̃p+3/2(κ) tanκ}−1 (2.78)

which can be verified by rewriting equation (2.68), where the quotient Q̃p+3/2(κ)

is studied in Theorem 2.6.2 given in the next section. Since the quadrature rule
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is exact in bilinear form (2.33) for Φp, we can use ([1], eq.(4.22)) with p = 2No,

namely

E (p)
Φ (κ)

sin2(ωh/2)

ωh
= −Qp+1/2(κ){1 + Qp+1/2(κ) cotκ}−1 (2.79)

where the behaviour of the quotient Qp+1/2(κ) is studied in the appendix of [1].

First of all, consider the case when p is even with κ = ωh/2 ≫ 1 fixed. The

behaviour of the error E (p) in different regimes will be determined by the behaviour

of either Q̃p+3/2(κ) or Qp+1/2(κ).

We consider the preasymptotic regime where 2p + 1 < ωh − o(ωh)1/3 for both

Qp+1/2(κ) and Q̃p+3/2(κ). For p in this range, it is evident that in the asymptotic

regime both Q̃p+3/2(κ) and Qp+1/2(κ) oscillate around unity but the error E (p)

does not oscillate around unity because the denominator of (2.74) becomes very

small. Therefore, the error E (p) starts from (ωh)2/2 and decays by several orders

of magnitude to O(1).

Both Qp+1/2(κ) and Q̃p+3/2(κ) have the same bounds for p in the transition

region, i.e p in the transition region satisfies ωh−o(ωh)1/3 < 2p+1 < ωh+o(ωh)1/3.

Moreover, with spectral element method the term appearing in the denominator

of (2.74) is oscillating around unity for ωh ≫ 1 which was not the case with the

finite element method. In addition, from Theorem 2.6.2, the quotient Q̃p+3/2 is

also oscillating in this region whilst Qp+1/2 decays algebraically at a rate O(p−1/3)

which is proved in Theorem A.2 of [1]. Hence, Q̃p+3/2 dominates Qp+1/2 in the

error expression and therefore, the error E (p) oscillates in the transition region.

In the super-exponential region, where p satisfies 2p + 1 > ωh + o(ωh)1/3, the

term appearing in the denominator of (2.74) is of O(1) for ωh ≫ 1. Hence, the

error E (p) is dictated by the behaviour of the sum of Q̃p+3/2 and Qp+1/2. Since in

this region both Q̃p+3/2 and Qp+1/2 decay at a super-exponential rate, the error

E (p) also decays at a super-exponential rate as it is the sum of Q̃p+3/2 and Qp+1/2 .
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Now, consider the case when p is odd. Equation(2.71) implies that

E (p)
Ψ (κ)

sin2(ωh/2)

ωh
= −Q̃p+3/2(κ){1 + Q̃p+3/2(κ) cotκ}−1

and similarly, for Φp, equation (4.21) of [1] with 2Ne + 1 replaced by p gives

E (p)
Φ (κ)

cos2(ωh/2)

ωh
= −Qp+1/2(κ){1 − Qp+1/2(κ) tanκ}−1.

For the odd order case, the proof of the error expression (2.76) follows exactly the

same arguments for the oscillatory, transition and super-exponential regions as in

the even order case.

2.6 Analysis of Q̃m(κ)

We now consider the behaviour of the quotient Q̃m(κ) for both cases, i.e. when

κ ≪ 1 and κ ≫ 1. This quotient is defined by

Q̃m(κ) =

(
m − 1

2

)
Jm−2(κ) −

(
m − 3

2

)
Jm(κ)

(
m − 1

2

)
Ym−2(κ) −

(
m − 3

2

)
Ym(κ)

, m = integer +
1

2
(2.80)

and appeared in equation (2.69) in a form which we shall prove is equivalent to

the above in the following lemma for small values of κ.

Lemma 2.6.1. Let m = integer + 1/2 and let Q̃m be defined as above. Then, for

κ ≪ 1,

Q̃m(κ) =
1

2

(2m − 1)

(2m − 3)

[ (
m − 3

2

)
!

(2m − 3)!

]2
(2κ)2m−2

2m − 2
+ · · · . (2.81)

Proof. Write m = n+1/2, where n ∈ Z. For small κ, identities (8.440) and (8.399)2

of [28] give

Jn+1/2(κ) =
2n+1

√
π(2n + 1)!!

(κ

2

)n+1/2

− 2n+2

√
π(2n + 3)!!

(κ

2

)n+5/2

+ · · · , (2.82)
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while combining identities (8.465)1 and (8.399)3 along with identity (8.440) of [28]

gives

Yn+1/2(κ) = −(2n − 1)!!

2n
√

π

(κ

2

)−n−1/2

− (2n − 3)!!

2n−1
√

π

(κ

2

)−n+3/2

+ · · · . (2.83)

Moreover, replacing n by n − 2 in the above two identities, we get

Jn−3/2(κ) =
2n−1

√
π(2n − 3)!!

(κ

2

)n−3/2

− 2n

√
π(2n − 1)!!

(κ

2

)n+1/2

+ · · · (2.84)

and

Yn−3/2(κ) = −(2n − 5)!!

2n−2
√

π

(κ

2

)−n+3/2

− (2n − 7)!!

2n−3
√

π

(κ

2

)−n+7/2

+ · · · . (2.85)

Now, inserting these identities into (2.80) and simplifying, we arrive at

Q̃m(κ) =
1

2

(
n

n − 1

)[
(n − 1)!

(2n − 2)!

]2
(2κ)2n−1

2n − 1
+ · · ·

which in terms of m gives the result claimed.

Lemma 2.6.1 shows that Q̃m(κ) also decays algebraically as κ becomes small.

The behaviour of the ratio Q̃m(κ) when the order of the Bessel functions and their

arguments are both very large is shown in Figure 2.6 for κ = 10 and κ = 20. In

this case two distinct phases are observed depending on the order m. It is evident

from both the graphs of Figure 2.6 that the quotient Q̃m(κ) initially oscillates

around unity. As the order m passes through κ+1, there is a relatively short-lived

transition zone where the ratio first increases and then decays at an algebraic

rate as the order m is increased. Therefore, the ratio is still oscillating in the

transition zone. Finally, Q̃m(κ) decays at an exponential rate. The remainder of

the section describes the behaviour of the ratio Q̃m for high wave numbers i.e.

when κ = ωh/2 ≫ 1.

Theorem 2.6.2. Let Q̃m(κ) be defined as above and m = integer +
1

2
. Then, as

m is increased, Q̃m(κ) passes through two phases:
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Figure 2.6: Graphs showing the three phases in the behaviour of |Q̃m(κ)| for (a)

κ = 10 and (b) κ = 20 as the order m is increased.
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1. For m < κ + 1 + o(κ1/3), Q̃m(κ) oscillates around unity but does not decay

as m is increased.

2. For m > κ + 1 + o(κ1/3), Q̃m(κ) decays at a super-exponential rate:

Q̃m(κ) ≈ 1

2

{[
1 −

√
1 − k2/(m − 2)2

1 +
√

1 − k2/(m − 2)2
e2
√

1−k2/(m−2)2

]m − 2

2

×
[

1 −
√

1 − k2/m2

1 +
√

1 − k2/m2
e2
√

1−k2/m2

]m

2
}

(2.86)

so that, for m ≫ κ + 1,

Q̃m(κ) ≈ 1

2

[
κe

2(m − 1)

]2(m−1)

. (2.87)

2.6.1 Preasymptotic regime: m < κ + 1

In the preasymptotic regime we discuss the behaviour of Q̃m(κ) for uniform asymp-

totic expansions of Bessel functions with large order and large argument. More-

over, in this case the value of the order m does not exceed the argument κ + 1

of the Bessel functions. Langer’s formulae given in Section 7.13.4 of [23] provide

uniform asymptotic expansions for Bessel functions of large order and large argu-

ment. Inserting these formulae into (2.80), and performing some manipulations,

give

Q̃m(κ) =
J1/3(zm−2) cos(π/6) − Y1/3(zm−2) sin(π/6) + O((m − 2)−4/3)

J1/3(zm−2) sin(π/6) + Y1/3(zm−2) cos(π/6) + O((m − 2)−4/3)
×





1 − β
J1/3(zm) cos(π/6) − Y1/3(zm) sin(π/6) + O(m−4/3)

J1/3(zm−2) cos(π/6) − Y1/3(zm−2) sin(π/6) + O((m − 2)−4/3)

1 − β
J1/3(zm) sin(π/6) + Y1/3(zm) cos(π/6) + O(m−4/3)

J1/3(zm−2) sin(π/6) + Y1/3(zm−2) cos(π/6) + O((m − 2)−4/3)





(2.88)

where

β =

[
(κ2 − (m − 2)2)

(κ2 − m2)

]1/4
(2m − 3)

(2m − 1)

(
zm

zm−2

)1/2

(2.89)
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with

zm = m(wm − tan−1 wm), wm =
√

κ2/m2 − 1,

zm−2 = (m − 2)(wm−2 − tan−1 wm−2) and wm−2 =
√

κ2/(m − 2)2 − 1.

2.6.1.1 Oscillatory phase: m < κ + 1 − o(κ1/3)

The ratio Q̃m(κ) oscillates with a magnitude of order unity for m small relative

to κ + 1 in the preasymptotic regime. Since, for small m relative to κ + 1, the

arguments zm and zm−2 of the Bessel functions appearing in (2.88) are large and

positive, we can use the asymptotic expansions of Bessel functions with large

arguments given in (8.440)1 and (8.440)2 of [28]:

Jν(z) ∼
(πz

2

)−1/2

cos

(
z − 1

2
νπ − π

4

)
(2.90)

and

Yν(z) ∼
(πz

2

)−1/2

sin

(
z − 1

2
νπ − π

4

)
. (2.91)

Dropping the higher order terms in (2.88), and with the aid of the above expres-

sions, followed by elementary manipulations, we arrive at

Q̃m(κ) ≈ cot
(
zm−2 −

π

4

)



1 − β ′ cos
(
zm − π

4

)
sec
(
zm−2 −

π

4

)

1 − β ′ sin
(
zm − π

4

)
cosec

(
zm−2 −

π

4

)


 (2.92)

with

β ′ =

[
(κ2 − (m − 2)2)

(κ2 − m2)

]1/4
(2m − 3)

(2m − 1)
.

It is evident from Figure 2.7 that the expression (2.92) agrees closely with Q̃m(κ)

and represents qualitatively very accurate behaviour even for modest values of κ

in the preasymptotic regime.



Chapter 2 75

2.6.1.2 Transition zone: κ + 1 − o(κ1/3) < m < κ + 1

Here we consider the behaviour when m approaches κ+1 from the left. Since in this

region the value of the expression (2.89) used in equation (2.88) is approximately

1, using the series representations for Bessel functions given in equation (8.440) of

[28], equation (2.80) becomes

Q̃m(κ) ≈ − 1√
3

+
3

π
Γ

(
2

3

)2 (zm−2

2

)1/3 (zm

2

)1/3

+ · · · . (2.93)

Furthermore, ωm ≃
[
κ − m

m/2

]1/2

and ωm−2 ≃
[
κ − (m − 2)

(m − 2)/2

]1/2

where both wm

and wm−2 are of order 1. Consequently,

zm ≃ 1

3
mω3

m ≃ 2

3

[
κ − m

(m/2)1/3

]3/2

= o(1) (2.94)

and

zm−2 ≃
1

3
(m − 2)ω3

m−2 ≃
2

3

[
κ − (m − 2)

((m − 2)/2)1/3

]3/2

= o(1). (2.95)

Substituting the values of zm and zm−2 into (2.93), we finally arrive at

Q̃m(κ) ≈ − 1√
3

+
1

π
Γ

(
2

3

)2 √
κ − m

√
κ − m + 2

(
36

(m(m − 2))

)1/6

+ · · ·

which is increasing algebraically at a rate of O(m1/3) as m increases in this region.

2.6.2 Asymptotic regime: m > κ + 1

In this regime the order m of the Bessel functions exceeds the argument κ + 1.

Again, using Langer’s formulae from Section 7.13.4 of [23] together with (2.80)
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Figure 2.7: Graphs of |Q̃m(κ)| (given in (2.80)) for m = 1, ..., 2κ, |Osc | (the

absolute value of the right hand side of (2.92)) for m = 1, ..., κ + 1, and |E| (the

absolute value of the right hand side of (2.100)) for m = κ + 1, ..., 2κ. Values of

κ = 10, 20, 40 and 50 are shown. Observe the oscillatory behaviour of |Q̃m(κ)|

and the good qualitative agreement provided by the |Osc | in the preasymptotic

regime m < κ + 1 for ωh ≥ 20. Furthermore, note the quantitative agreement

between |Q̃m(κ)| and |E| in the asymptotic regime m > κ + 1.
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gives

Q̃m(κ) = − π−1K1/3(zm−2) + O((m − 2)−4/3)

I1/3(zm−2) + I−1/3(zm−2) + O((m − 2)−4/3)
×





1 − γ
K1/3(zm) + O(m−4/3)

K1/3(zm−2) + O((m − 2)−4/3)

1 − γ
I1/3(zm) + I−1/3(zm) + O(m−4/3)

I1/3(zm−2) + I−1/3(zm−2) + O((m − 2)−4/3)





(2.96)

where

γ =

[
(m − 2)2 − κ2

(m2 − κ2)

]1/4
(2m − 3)

(2m − 1)

(
zm

zm−2

)1/2

(2.97)

with

zm = m(tanh−1 wm − wm), wm =
√

1 − κ2/m2,

zm−2 = (m − 2)(tanh−1 wm−2 − wm−2) and wm−2 =
√

1 − κ2/(m − 2)2.

Now, writing z = 2
3
ξ3/2 and combining this with (11.1.04) and (11.1.12), given in

[54], gives

π−1K1/3(zm) = Ai(ξm)

(
ξm

3

)−1/2

and

I1/3(zm) + I−1/3(zm) = Bi(ξm)

(
ξm

3

)−1/2

where Ai and Bi denote Airy functions of the first and second kinds respectively

[28]. Again, using formulae (11.1.07) and (11.1.16) from [54], we get

π−1K1/3(zm) ≈
√

3

π

e−zm

2
ξ−3/4
m (2.98)

and

I1/3(zm) + I−1/3(zm) ≈ −
√

3

π
ezmξ−3/4

m . (2.99)

Replacing m by m − 2 in the above expressions will give us the rest of the val-

ues. Now, inserting these values into (2.96), dropping the higher order terms and

simplifying gives

Q̃m(κ) ≈ −e−2zm−2

2

(
1 − γ′e(zm−2−zm)

1 − γ′e−(zm−2−zm)

)
(2.100)
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with

γ′ =

[
(m − 2)2 − κ2

m2 − κ2

]1/4
(2m − 3)

(2m − 1)
. (2.101)

2.6.2.1 Transition zone: κ + 1 < m < κ + 1 + o(κ1/3)

In this region, we start with the expression

Q̃m(κ) ≈ −ξ
1/2
m−2Ai(ξm) − ξ

1/2
m Ai(ξm−2)

ξ
1/2
m−2Bi(ξm) − ξ

1/2
m Bi(ξm−2)

which is obtained from (2.96) by using the formulae (11.1.04) and (11.1.12) from

[54]. Moreover, using series representations for Airy functions, given in equations

(11.1.07) and (11.1.16) of [54], the above expression gives

Q̃m(κ) ≈ − 1√
3
− 31/3

π
Γ

(
2

3

)2

ξ1/2
m ξ

1/2
m−2 (2.102)

where ξm and ξm−2 are related to zm and zm−2 by expressions ξm = (3/2zm)2/3 and

ξm−2 = (3/2zm−2)
2/3 respectively. Using similar arguments to those used before,

we obtain

zm ≃ 1

3
mω3

m ≃ 2

3

[
m − κ

(m/2)1/3

]3/2

= o(1)

and

zm−2 ≃
1

3
(m − 2)ω3

m−2 ≃
2

3

[
m − 2 − κ

((m − 2)/2)1/3

]3/2

= o(1)

or, equally well,

ξm ≃
(

2

m

)1/3

(m − κ) and ξm−2 ≃
(

2

m − 2

)1/3

(m − 2 − κ).

Inserting these values into (2.102), we finally obtain

Q̃m(κ) ≈ − 1√
3
− 1

π
Γ

(
2

3

)2 √
κ − m

√
κ − m + 2

(
36

m(m − 2)

)1/6

+ · · ·

where Q̃m is decreasing algebraically at a rate of O(m−1/3) with increasing m.

Therefore, Q̃m is still oscillating in the transition region. Concluding with spec-

tral element method the ratio Q̃m oscillates longer compared with the ratio Qm

obtained with the finite element method given in ([1], A.2).
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2.6.2.2 Exponential decay phase: m > κ + 1 + o(κ1/3)

When m exceeds κ+1+o(κ1/3) then it is easy to verify that γ′, which is defined in

(2.101), is approximately equal to 1 and consequently equation (2.100) takes the

form

Q̃m(κ) ≈ e−(zm−2+zm)

2
. (2.103)

Replacing zm−2 and zm by wm−2 and wm in the expressions for e−zm−2 and e−zm

respectively, we obtain

e−zm−2 =

[
1 − wm−2

1 + wm−2
e2wm−2

]m − 2

2
and e−zm =

[
1 − wm

1 + wm
e2wm

]m

2

after elementary manipulations. Define a monotonic decreasing function f : w →

(1−w)/(1+w)e2w on [0, 1] with values ranging from 1 and 0. In the limiting case

we find that

f
(√

1 − k2/(m − 2)2
)
≃
[

κe

2(m − 2)

]2

and f
(√

1 − k2/m2
)
≃
[ κe

2m

]2
.

So, substituting the values of e−zm−2 and e−zm into (2.103) and simplifying gives

Q̃m(κ) ≈ 1

2

[
κe

2(m − 1)

]2(m−1)

.

Hence, we obtain a super-exponential rate of decay when m − 1 > κe/2.
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Optimally blended spectral-finite

element scheme for wave

propagation, and non-standard

reduced integration

3.1 Introduction

In this chapter we present an optimally blended spectral-finite element scheme and

provide a simple means by which optimally blended spectral-finite element scheme

can be efficiently implemented.

Even as early as 1984, the possibility of employing a weighted average of the

finite element and spectral element schemes has been conjectured as a means by

which to obtain the most promising, cost-effective method for computational wave

propagation (Marfurt, 1984) [47]. Many authors have even commented on the

effectiveness of the scheme obtained by forming a simple average of the spectral

81
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and finite element schemes in the case of first order elements, but no systematic

treatment or analysis seems to be available.

Challa presented a new scheme in his thesis [14] for the particular cases of

linear and quadratic finite elements. He showed that if entries in the mass and

stiffness matrices are approximated using a quadrature rule with unknown quadra-

ture points, then in the series expansion of the corresponding discrete dispersion

relation one can choose the values of the quadrature points such that two ad-

ditional orders of accuracy as well as superior phase accuracy is achieved. He

extended the scheme to higher dimensions using the tensor product elements on

square meshes. In [26, 27], Fried analysed the dispersive properties of the acoustic

wave equation. He showed that the finite elements with a lumped mass matrix

underestimate the eigenvalues whereas the finite elements with a consistent mass

matrix overestimate these eigenvalues. Moreover, in one dimension he formed high

order accurate finite elements by blending the consistent and lumped mass ma-

trices for both linear and quadratic elements. He found that the optimal values

of the blending parameter for linear and quadratic elements are 1/2 and 2/3 re-

spectively which are exactly the same as the values found in [7]. Interestingly,

his scheme also guaranteed two additional orders of accuracy as well as exactly

the same phase accuracy being achieved for the optimum value of the blending

parameter as obtained in [14] using non-standard quadrature rules. This is con-

sistent with the suggestion of Marfurt [47]. Later on, Guddati and Yue [29, 30]

followed a different line of reasoning and obtained the same quadrature points and

weights obtained in [14] by Challa in the case of linear finite elements on rectan-

gular meshes. Although the above proposed methods are valuable contributions

to the investigation of the dispersion phenomenon, their schemes are valid only for

linear and quadratic elements.
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Seriani and Oliveira [57] consider the possibility of blending the methods using

a criterion whereby the phase error vanishes at a particular, user-specified, value

of the normalised wavenumber. However, this approach means that the blending

parameter is frequency and mesh dependent and may actually result in an increase

in the phase error at frequencies that were originally resolved by the pure finite

and spectral element approaches. In the present work we adopt a more natural

approach to the selection of the blending parameter that is more in the spirit of

the design of methods for computational wave propagation, is to maximise the

order of accuracy in the phase error. We show that the optimal choice of blending

parameter for elements of order p ∈ N is given by weighting the spectral element

method to the finite element method in the ratio p : 1. A rigorous proof of this

fact is provided along with precise error estimates and orders of accuracy in the

phase error.

From an investigation of the literature, we have found that no suitable non-

standard quadrature rules exist in the case of elements of arbitrary order p ∈ N,

such that the resulting scheme is identical to the optimally blended spectral-finite

element scheme. We show such non-standard quadrature rules exist for all orders,

give an explicit construction for the weights and nodes, and study their properties.

The remainder of the chapter is organised as follows. We start with a uni-

dimensional model problem in Section 3.2. In Section 3.3, discrete dispersion

relations are derived for the optimally blended scheme. The rest of the sections

contain proofs of the results.
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3.2 Motivation and overview of main ideas and

results

In order to motivate the ideas, we begin by presenting the discrete dispersion

analysis of the simple 1D model problem.

3.2.1 Piecewise linear approximation in one dimension

Consider the problem

u′′(x) + ω2u(x) = 0, x ∈ R (3.1)

where ω > 0 is a given frequency. We note that this problem is just problem (1.10)

with c = 1. In this case equations (1.11) and (1.17) become

uj+1 − 2uj + uj−1 +
(ωh)2

6
(uj+1 + 4uj + uj−1) = 0 (3.2)

and

ũj+1 − 2ũj + ũj−1 + (ωh)2ũj = 0 (3.3)

for linear finite element and spectral element schemes respectively. In search of

a numerical scheme with superior phase accuracy, we follow the suggestion of

Marfurt [47] and form a blended scheme by taking a linear combination of (3.2)

and (3.3):

uj+1
τ − 2uj

τ + uj−1
τ +

(ωh)2

6

[
(1 − τ)uj+1

τ + 2(2 + τ)uj
τ + (1 − τ)uj−1

τ

]
= 0 (3.4)

where τ ∈ [0, 1] is a parameter whose value is to be determined.

Proceeding as before, we discover that the scheme admits non-trivial solutions

of the form uj
τ = eijµ

(1)
τ h where µ

(1)
τ is the discrete wavenumber for blended scheme

and depends on ωh, and is given by

µ(1)
τ h = cos−1

(
(ωh)2(2 + τ) − 6

(ωh)2(τ − 1) − 6

)
, (3.5)
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or, writing the above expression as a series in ωh,

µ(1)
τ h = ωh +

(ωh)3

24
(2τ − 1) +

(ωh)5

1920
(20τ 2 − 20τ + 9) + · · · . (3.6)

The above expression reduces to those obtained for the finite element and spectral

element schemes in the cases τ = 0 and τ = 1 respectively. However, more inter-

estingly, we observe that by choosing τ = 1/2, two additional orders of accuracy

in the phase are obtained.

3.2.2 Implementation via non-standard quadrature rules

The practical implementation of the blended scheme may at first sight appears to

entail the assembly of the mass matrices for both the finite element and spectral

element schemes, which would be rather unattractive. We can construct another

piecewise linear finite element approximation in which the entries in the mass and

stiffness matrices are approximated using the non-standard quadrature rule

∫ 1

−1

f(x)dx ≈ Q(1)
τ (f) = f (−ζτ ) + f (ζτ) (3.7)

where ζτ =

√
1

3
(1 + 2τ) for all τ ∈ (0, 1]. This rule is exact for linear functions,

but not products of linear functions meaning that the entries appearing in the

mass matrix are under-integrated. The quadrature rule (3.7) is used to develop a

composite quadrature rule I(1)
τ,h on R given by

∫

R

f(x)dx ≈ h

2

∑

j∈Z

{
f(ζτ,h

j ) + f(−ζτ,h
j )
}

= I(1)
τ,h(f)

where ±ζτ,h
j =

(
j +

1

2

)
h ± h

2
ζτ , ∀j ∈ Z.

The new piecewise linear finite element approximation is then defined by seek-

ing a non-trivial function of the form

Uh
τ (ω; x) =

∑

j∈Z

uj
τθj(x), x ∈ R
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such that

I(1)
τ,h(∂xU

h
τ ∂xθp) − ω2I(1)

τ,h(Uh
τ θp) = 0 (3.8)

for all p ∈ Z. Interestingly, the resulting scheme gives precisely the same stencil

as (3.4) for the coefficients {uj
τ}j∈Z

:

uj+1
τ − 2uj

τ + uj−1
τ +

(ωh)2

6

[
(1 − τ)uj+1

τ + 2(2 + τ)uj
τ + (1 − τ)uj−1

τ

]
= 0.

In other words, the scheme coincides with the blended scheme in the case of linear

elements meaning that the blended scheme can be realised in practice by replacing

the standard Gaussian quadrature rule by the non-standard rule (3.7). Similarly,

the optimally blended scheme can be obtained by using the quadrature rule (3.7)

in conjunction with the choice τ = 1/2.

In summary, the non-standard quadrature rule leads to a scheme which admits

a non-trivial solution given by

Uh
τ (ω; x) =

∑

j∈Z

eijµ
(1)
τ hθj(x) (3.9)

where µ
(1)
τ is defined in (3.5).

3.2.3 Extension to multiple spatial dimensions

We now turn to the case of higher dimensional problems and investigate whether

the blending of spectral and finite element approximation offers similar advantages

to those observed in one spatial dimension. Suppose we discretise the equation

−∆u − ω2u = 0 in R
3 (3.10)

using a tensor product grid hZ3 on R3, in conjunction with tri-linear basis func-

tions.

A standard finite element implementation requires the use of a quadrature rule

to approximate the integrals over the reference element K̂ = [−1, 1]3. Generally, a
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tensor product Gauss-Legendre rule would be applied. However, prompted by the

earlier observation we propose to instead use a tensor product rule based on the

non-standard quadrature rule (3.7):

∫

bK

f(x, y, z)dxdydz ≈ f(ζτ , ζτ , ζτ) + f(ζτ , ζτ ,−ζτ) + f(ζτ ,−ζτ , ζτ)

+f(−ζτ , ζτ , ζτ) + f(−ζτ ,−ζτ , ζτ) + f(−ζτ , ζτ ,−ζτ )

+f(ζτ ,−ζτ ,−ζτ) + f(−ζτ ,−ζτ ,−ζτ ) (3.11)

where ζτ =

√
1

3
(1 + 2τ). If we choose τ = 0, then the scheme reduces to the

standard finite element approximation whilst the choice τ = 1 gives the spectral

element scheme. Consequently, the scheme with a general choice of τ may be con-

sidered as a blended approximation. We wish to analyse the dispersive properties

of the resulting scheme. Based on our experience in the one dimensional case, we

seek a non-trivial solution in the three dimensional case in the form

u(x, y, z) = Uh
τ (ωx; x)Uh

τ (ωy; y)Uh
τ (ωz; z)

where ωx, ωy, ωz ∈ R are constants to be determined and Uh
τ is defined in (3.9).

Inserting this expression into the approximate bilinear form associated with

the quadrature rule (3.11) and using a test function v(x, y, z) = θp(x)θq(y)θr(z)

leads to:

I(1)
τ,h(∂xU

h
τ (ωx; x) ∂xθp) I(1)

τ,h(Uh
τ (ωy; y) θq) I(1)

τ,h(Uh
τ (ωz; z) θr)+

I(1)
τ,h(Uh

τ (ωx; x) θp) I(1)
τ,h(∂yU

h
τ (ωy; y) ∂yθq) I(1)

τ,h(Uh
τ (ωz; z) θr)+

I(1)
τ,h(Uh

τ (ωx; x) θp) I(1)
τ,h(Uh

τ (ωy; y) θq) I(1)
τ,h(∂zU

h
τ (ωz; z) ∂zθr)

= ω2 I(1)
τ,h(U

h
τ (ωx; x) θp) I(1)

τ,h(Uh
τ (ωy; y) θq) I(1)

τ,h(Uh
τ (ωz; z) θr) (3.12)

for all p, q, r ∈ Z. Recalling that Uh
τ satisfies (3.8) leads to the following condition

for the parameters ωx, ωy and ωz :

(ω2
x + ω2

y + ω2
z − ω2)I(1)

τ,h(Uh
τ (ωx; x) θp)I(1)

τ,h(Uh
τ (ωy; y) θr)I(1)

τ,h(Uh
τ (ωz; z) θr) = 0
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and as a consequence, we deduce that the new scheme admits a non-trivial solution

provided that

ω2
x + ω2

y + ω2
z = ω2.

The discrete frequency ωh of the discrete solution satisfies

ω2
h =

(
µ(1)

τ (ωx; h)
)2

+
(
µ(1)

τ (ωy; h)
)2

+
(
µ(1)

τ (ωz; h)
)2

and then, thanks to (3.5), we deduce that

ω2
h = ω2 +

h2

12
(2τ − 1)[(ωx)

4 + (ωy)
4 + (ωz)

4] + O(ω6).

We again see that there exists an optimal choice of blending parameter, and more-

over, it coincides with the optimal parameter for the one dimensional case. The

arguments used above extend to any number of dimensions meaning that the op-

timal blending parameter is independent of the number of spatial dimensions.

3.2.4 Numerical example

In practice, by making use of the non-standard quadrature rule, the cost of using

the optimally blended scheme is virtually the same as that of using the pure finite

or spectral element scheme, but can result in markedly superior numerical results.

In order to illustrate the potential of such an approach in multi-dimensions, we

consider the problem

−∇2u(x, y)− k2u(x, y) = 0 in (0, 1)2 (3.13)

subject to Dirichlet boundary conditions:

u = eik1x on Γ1 = {x ∈ (0, 1), y = 0}

u = eik2y on Γ4 = {y ∈ (0, 1), x = 0}
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where k1 and k2 are user-specified constants satisfying k2
1 + k2

2 = k2, and non-

reflecting boundary conditions:

∂u

∂x
− Gu = 0 on Γ2 = {y ∈ (0, 1), x = 1}

∂u

∂y
− Gu = 0 on Γ3 = {x ∈ (0, 1), y = 1}

where G is the usual Dirichlet to Neumann map [35]. The Dirichlet boundary

conditions are chosen so that the exact solution to the boundary value problem

(3.13) is the plane wave solution u(x, y) = ei(k1x+k2y), with the coefficients chosen

to be k1 = 20 and k2 = 1. In Figure 3.1 the accuracy of the real components of the

spectral, finite and optimal scheme solutions obtained with 20 linear elements are

compared for propagation angles of φ = 450 and φ = 63.430 relative to the edge

Γ1. The phase lead and lag are evident and correspond to numerical approxima-

tions obtained using the finite element and spectral element schemes respectively.

Moreover, the phase accuracy of the numerical approximation obtained using the

optimal scheme is noticeably better than that of finite element and spectral element

schemes. In Figure 3.2, we show the effect of increasing the number of elements

in each direction with the same propagation angles as used in Figure 3.1. It is

clear that with 30 linear elements the numerical approximations obtained using

the finite element and spectral element schemes converge to the exact solution but

phase lead and phase lag are still prominent whilst the numerical approximation

corresponding to the optimal scheme is virtually completely resolved.

3.2.5 Extension to quadratic elements

Using similar arguments to those used for first order elements, we obtain the fol-

lowing expression for the discrete wavenumber of the blended scheme for quadratic
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Figure 3.1: Numerical approximations of the solution with linear spectral, finite

and optimal schemes to equation (3.13) using kh = 1 along the directions φ relative

to the x-axis.
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Figure 3.2: Numerical approximations of the solution with linear spectral, finite

and optimal schemes to equation (3.13) using kh = 0.67 along the directions φ

relative to the x-axis.
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elements

µ(2)
τ h = ωh +

3τ − 2

2880
(ωh)5 +

63τ 2 − 126τ + 88

2419200
(ωh)7 + · · · .

For τ = 0 and τ = 1, the above expression reduces to the ones obtained for finite

element [1] and spectral element [5] schemes. The choice τ = 2/3 means the first

term of the above expression vanishes and gives two additional orders of accuracy

in the phase compared with the standard schemes. Furthermore, the absolute value

of the coefficient of the leading term with the optimum value of τ is decreased by

factors of 50 and 25 compared to the leading coefficient obtained with the finite

element and spectral element schemes respectively.

We can extend the scheme to higher numbers of spatial dimensions in precisely

the same way as we described earlier for linear elements, provided that a suitable

non-standard quadrature rule can be identified. One obtains the optimally blended

scheme in the case of quadratic elements if the following quadrature rule:

∫ 1

−1

f(x)dx ≈ 1

3(3 + 2τ)

{
5f

(
−
√

1

5
(3 + 2τ)

)
+4(2+3τ)f(0)+5f

(√
1

5
(3 + 2τ)

)}

(3.14)

is used to approximate the entries in the mass and stiffness matrices. Moreover, for

the optimum value of τ = 2/3, (3.14) reduces to the quadrature rule given in [14].

In Figure 3.3, we show the effect of using piecewise quadratic elements instead of

piecewise linear elements with the same propagation angles relative to the bottom

edge Γ1. As expected, the numerical approximations corresponding to the finite

element and spectral element schemes are respectively leading and lagging even

with quadratic elements but again the optimal scheme performs much better even

when kh is relatively large. The results obtained by reducing the size of the

elements are given in Figure 3.4.
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Figure 3.3: Numerical approximations of the solution with quadratic spectral,

finite and optimal schemes to equation (3.13) using kh = 2.5 along the directions

φ relative to the x-axis.
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Figure 3.4: Numerical approximations of the solution with quadratic spectral,

finite and optimal schemes to equation (3.13) using kh = 2 along the directions

relative to the x-axis.
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3.2.6 Extension to cubic elements

Turning to the case of cubic elements, we have the following expression for the

discrete wavenumber for the blended scheme

µ(3)
τ h = ωh +

4τ − 3

604800
(ωh)7 +

4τ 2 − 15τ + 11

63504000
(ωh)9 + · · ·

where the first term vanishes corresponding to the optimum value of the blending

parameter τ = 3/4 and we again observe that two additional orders of accuracy

are achieved.

Once again, we can extend the scheme to arbitrary order elements provided a

suitable quadrature rule is available. For cubic (and higher order) elements, no

such rule seems to be known in the literature. However, we may use the following

new quadrature rule (which is a special case of Theorem 3.2.1)

∫ 1

−1

f(x)dx ≈ 7840√
681

{
(f(−ζτ

+) + f(ζτ
+))

(39 +
√

681)(
√

681 − 3)
+

(f(−ζτ
−) + f(ζτ

−))

(39 −
√

681)(3 +
√

681)

}
(3.15)

where ζτ
± =

√
2730 ± 70

√
681/70, to approximate entries in the stiffness and mass

matrices which gives us the optimally blended scheme in the case of cubic elements.

The numerical approximations obtained with piecewise cubic elements are shown in

Figures 3.5 and 3.6 for four and five cubic elements in each direction and once again

the optimal scheme performs noticeably better compared to the finite element and

spectral element schemes.

3.2.7 Extension to arbitrary order elements

The question naturally arises of how the above results extend to elements of ar-

bitrary order. In Theorem 3.3.2, we show that for elements of order p ∈ N, the
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Figure 3.5: Numerical approximations of the solution with cubic spectral, finite

and optimal schemes to equation (3.13) using kh = 5 along the directions φ relative

to the x-axis.
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Figure 3.6: Numerical approximations of the solution with cubic spectral, finite

and optimal schemes to equation (3.13) using kh = 4 along the directions φ relative

to the x-axis.
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discrete wavenumber for the blended scheme is given by

µ(p)
τ h = ωh +

1

2

[
p!

(2p)!

]2 [
τ

(
1 +

1

p

)
− 1

]
(ωh)2p+1

2p + 1

+
1

2

[
(p + 1)!

(2p + 2)!

]2
(ωh)2p+3

2p + 3
C(p)

τ + O(ωh)2p+5

where C
(p)
τ is defined in Theorem 3.3.2. In the case τ = 0, this result agrees with

Theorem 3.2 in [1] whilst in the case τ = 1, we obtain the result given in Theorem

2.4.2 of the previous chapter. One immediate consequence of this new result is

that the optimal blending parameter is given by τ =
p

p + 1
. With this choice, we

obtain

µ(p)
τ h = ωh +

1

2

[
(p + 1)!

(2p + 2)!

]2
(ωh)2p+3

2p + 3
C(p)

τ + O(ωh)2p+5

showing that in general we obtain two additional orders of accuracy with the

optimal choice of blending parameter τ . Moreover, in Corollary 3.3.3, we show that

the absolute value of the leading coefficient in the error µ
(p)
τ h−ωh is considerably

reduced by the use of blending. The proof of these statements forms the topic of

the Section 3.4.

3.2.8 Non-standard quadrature rule for elements of arbi-

trary order

The use of such non-standard quadrature rules in the implementation of the opti-

mally blended scheme is rather attractive in practice and provides a simple way to

extend the blended schemes to higher number of spatial dimensions. More specif-

ically it means that an existing, standard finite element code can be adapted to

implement the optimally blended scheme merely by replacing the usual Gaussian

quadrature rule by the non-standard quadrature rule. Unfortunately, the existence

of suitable non-standard quadrature rules for general p-th order elements does not

seem to be available in the existing literature.
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If we denote the bilinear form for the finite element and spectral element

schemes by B(·, ·) and B̃(·, ·) respectively, then the bilinear form for the blended

scheme is given by

Bτ (u, v) = (1 − τ)B(u, v) + τB̃(u, v) (3.16)

for piecewise polynomials u and v. The difference between the bilinear forms for

the finite element and spectral element schemes lies in the fact that the spectral

element scheme uses the Gauss-Lobatto quadrature rule which we denote by Q(p)

to evaluate the integrals, whilst the finite element scheme evaluates (via Gauss-

Legendre quadrature) the integrals exactly. Consequently, the bilinear form for

the blended scheme (3.16) should be based on a quadrature rule Q(p)
τ for which

Q(p)
τ (f) = (1 − τ)

∫ 1

−1

f(x)dx + τQ(p)(f) ∀f ∈ P2p+1.

The following result constitutes the extension of the non-standard quadrature rules

to elements of arbitrary order:

Theorem 3.2.1. Let τ ∈ [0, 1) be fixed, and let Q(p)
τ be a (p + 1)-point quadrature

rule with nodes {ζτ
i }p

i=0 chosen as the zeros of Lp+1 − τLp−1, where Lp+1 and Lp−1

are the Legendre polynomials of degrees p + 1 and p − 1 respectively, with weights

given by

wτ
ℓ =

2[p(1 + τ) + τ ]

p(p + 1)Lp(ζ
τ
ℓ )[L′

p+1(ζ
τ
ℓ ) − τL′

p−1(ζ
τ
ℓ )]

, ∀ℓ = 0, 1, . . . , p. (3.17)

Then, the weights are positive, and the nodes are distinct and contained in (−1, 1).

Furthermore, Q(p)
τ satisfies the following identity

Q(p)
τ (f) = (1 − τ)

∫ 1

−1

f(x)dx + τQ(p)(f) ∀f ∈ P2p+1 (3.18)

where Q(p) is the (p + 1)-point Gauss-Legendre-Lobatto quadrature rule defined in

(Chapter 2, eq.(2.8)). Consequently, Q(p)
τ is exact for all f ∈ P2p−1.
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The proof of this result is given in Section 3.4. Observe that for τ = 0 and

τ = 1, Q(p)
τ reduces to the standard Gauss-Legendre and Gauss-Legendre-Lobatto

rules respectively.

In Table 3.1, zeros and corresponding weights of the optimal quadrature rule

Q(p)
τ are given for the optimum value of the blending parameter τ = p/(p + 1). It

is a simple matter to compute the higher order rules using the expressions given

in Theorem 3.2.1.

Order p Abscissas ζτ
ℓ Weights wτ

ℓ

1 ±0.8164965809 1

2 0 1.2307692308

±0.9309493363 0.3846153846

3 ±0.9643352759 0.1998260144

±0.4293520583 0.8001739855

4 0 0.6937669377

±0.9783156780 0.1217872771

±0.6387313983 0.5313292541

Table 3.1: Nodes and corresponding weights of the optimal quadrature rule Q(p)
τ

for τ = p/(p + 1), and orders p = 1, . . . , 4.
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The quadrature rule Q(p)
τ can then be used to extend the one dimensional

scheme to higher dimensions for elements of arbitrary order as described in Section

3.2 for first order elements. Using the same arguments used there leads to the

conclusion that the discrete frequency ωhp for the resulting scheme satisfies

ω2
hp =

(
µ(p)

τ (ωx; h)
)2

+
(
µ(p)

τ (ωy; h)
)2

+
(
µ(p)

τ (ωz; h)
)2

where ω2
x + ω2

y + ω2
z = ω2. Thanks to (3.20) given in Theorem 3.3.1, we obtain

ω2
hp = ω2 +

[
p!

(2p)!

]2 [
τ

(
1 +

1

p

)
− 1

]
h2p

2p + 1
[ω2p+2

x + ω2p+2
y + ω2p+2

z ] + O(ω2p+4)

which is valid for general τ and for all p ≥ 2. For the optimal choice of τ = p/(p+1),

using Corollary 3.3.3, we have

ω2
hp = ω2 +

8

(2p − 1)

[
(p + 1)!

(2p + 2)!

]2
h2p+2

2p + 3
[ω2p+4

x + ω2p+4
y + ω2p+4

z ] + O(ω2p+6).

3.3 Analysis of dispersion for elements of arbi-

trary order

Our first result gives the discrete dispersion relation for blending of spectral-finite

element approximation for elements of arbitrary order p ∈ N, with blending pa-

rameter τ ∈ [0, 1]; and generalises the particular cases given in Section 3.2. The

following theorems are proved in Section 3.4:

Theorem 3.3.1. Let κ > 0 and consider the sequences {ap}∞p=1 and {bp}∞p=1 defined

by the recursion relations

ap+1 = −2p + 1

κ
bp + ap−1

bp+1 =
2p + 1

κ
ap + bp−1





(3.19)
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for p ∈ N with a0 = 1, a1 = 1, b0 = 0 and b1 = 1/κ. Then, the discrete dispersion

relation for the optimal scheme of order p ∈ N is given by

cos µ(p)
τ h = R(p)

τ (ωh) = (−1)p Λ
(p)
1 (κ) + Λ

(p)
2 (κ)

Λ
(p)
1 (κ) − Λ

(p)
2 (κ)

(3.20)

where κ =
ωh

2
and

Λ
(p)
1 (κ) = ap (κbp−1(τ(p + 1) + p) + p(2p + 1)ap)

and

Λ
(p)
2 (κ) = bp (κap−1(τ(p + 1) + p) − p(2p + 1)bp) .

The sequences {ap}∞p=1 and {bp}∞p=1 originally appeared in Theorem 2.4.1, and

are proved in Lemma 2.5.2 of Chapter 2 in the analysis of the pure spectral element

scheme. For τ = 1 the above expression (3.20) reduces to the discrete dispersion

relation (2.25) obtained in Chapter 2 for spectral element schemes, whilst in the

case τ = 0 expression (3.20) gives an alternative form of the discrete dispersion

relation (3.2) obtained in [1] for finite element schemes. As pointed out in [1],

R
(p)
τ (ωh) is a rational function of degree [2p/2p] in κ for all p ∈ N which, in the

case of the pure finite element method (τ = 0), corresponds to certain types of

Padé approximants.

The following theorem proved in Section 3.4 gives the leading term for the

error in the discrete dispersion relation for the blended scheme with parameter

τ ∈ [0, 1]:

Theorem 3.3.2. Let p ≥ 2 and τ ∈ [0, 1]. Then, the error in the discrete disper-

sion relation (3.20) is given by

cos µ(p)
τ h − cos ωh =

1

2

[
p!

(2p)!

]2 [
1 − τ

(
1 +

1

p

)]
(ωh)2p+2

2p + 1

−1

2

[
(p + 1)!

(2p + 2)!

]2
(ωh)2p+4

2p + 3
C(p)

τ + O(ωh)2p+6
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or, if ωh is sufficiently small,

µ(p)
τ h − ωh =

1

2

[
p!

(2p)!

]2 [
τ

(
1 +

1

p

)
− 1

]
(ωh)2p+1

2p + 1

+
1

2

[
(p + 1)!

(2p + 2)!

]2
(ωh)2p+3

2p + 3
C(p)

τ + O(ωh)2p+5 (3.21)

where

C(p)
τ = τ 2 (2p + 3)

(2p − 1)

(
1 +

1

p

)2

− τ(2p + 3)

(
1 +

1

p

)
+ 2

2p2 + p + 1

2p − 1
.

As expected, when τ = 0 or τ = 1 the above result reduces to spectral and

finite element schemes respectively. More interestingly, (3.21) indicates that the

blending term in the error can be eliminated by choosing τ = p/(p + 1) resulting

in an additional two orders of accuracy in the discrete dispersion relation:

Corollary 3.3.3. Let p ≥ 2. For τ = p/(p+1), the error in the discrete dispersion

relation (3.20) is given by

µ(p)
τ h − ωh =

4

(2p − 1)

[
(p + 1)!

(2p + 2)!

]2
(ωh)2p+3

2p + 3
+ O (ωh)2p+5 . (3.22)

Proof. Substitute τ = p/(p + 1) in (3.21) and applying straightforward manipula-

tions, we obtain (3.22) as required.

In Table 3.2 we give closed form expressions for the rational function R
(p)
τ (ωh)

obtained from Theorem 3.3.1 along with the leading terms in the error for ωh ≪ 1

obtained from Theorem 3.3.2 for orders p from 1 up to 3 and τ ∈ [0, 1]. Moreover,

the error in the leading term for the optimum value of τ i.e. τ = p/(p+1) obtained

from Corollary 3.3.3 is given for small wavenumber limit.

We make the following observations regarding the optimally blended scheme:

1. The leading term is two orders more accurate compared with the standard

spectral and finite element schemes, see [1, 5, 35, 60] where the leading term in the

expressions was accurate to order O(ωh)2p. This is illustrated in Figure 3.7 where
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Order p R
(p)
τ (ωh)

1
(ωh)2(τ + 2) − 6

(ωh)2(τ − 1) − 6

2
(ωh)4(2τ + 3) − 2(ωh)2(3τ + 52) + 240

(ωh)4(1 − τ) − 2(ωh)2(3τ − 8) + 240

3
(ωh)6(3τ + 4) − 4(ωh)4(26τ + 135) + 240(ωh)2(τ + 48) − 25200

(ωh)6(τ − 1) + 2(ωh)4(8τ − 15) + 120(ωh)2(2τ − 9) − 25200

Order p µ
(p)
τ h − ωh µ

(p)
τ h, τ = p/(p + 1)

1
(ωh)3(2τ − 1)

24
+

(ωh)5(20τ 2 − 20τ + 9)

1920

(ωh)5

480

2
(ωh)5(3τ − 2)

2880
+

(ωh)7(63τ 2 − 126τ + 88)

2419200

(ωh)7

75600

3
(ωh)7(4τ − 3)

604800
+

(ωh)9(4τ 2 − 15τ + 11)

63504000

(ωh)9

31752000

Table 3.2: The discrete dispersion relation R
(p)
τ (ωh) = cos µ

(p)
τ h for order p ap-

proximation given in Theorem 3.3.1. We also indicate the leading term in the series

expansion for the error when ωh ≪ 1 for both general τ ∈ [0, 1] (see Theorem 3.3.2)

and τ = p/(p + 1) (see Corollary 3.3.3) for p ≥ 2.
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Figure 3.7: Error in discrete dispersion relations of orders p = 1 to 4 versus

wavenumber for finite element, spectral element and optimally blended schemes.

For p-th order finite element and spectral element schemes the slope of the lines is

2p + 2 where as for optimal scheme the slope of the line is 2p + 4.
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it is observed that for a p-th order scheme the slope of the lines with spectral

element and finite element schemes is 2p +2 whereas with the optimal scheme the

slope is 2p + 4.

2. The coefficient of the leading term in the error obtained with the blended

scheme for the optimum value of τ is −2/(4p2−1)(2p+3) and 2p/(4p2−1)(2p+3)

times better compared with the leading terms in the error obtained with finite [1]

and spectral [5] element schemes respectively. This is also illustrated in Figure 3.7

where it is observed that the absolute value of the error for the optimal scheme is

superior to that of the standard schemes even for modest values of ωh.

3. Figure 3.8 shows the frequency spectra of the finite element, spectral el-

ement and optimally blended scheme for elements of order p = 1, . . . , 4. In par-

ticular, one can see the so-called cut-off frequencies of the schemes corresponding

to the values of ωh at which the magnitude of the rational function R
(p)
τ (ωh) be-

comes greater than unity. For such frequencies, the discrete wavenumber µ
(p)
τ is

imaginary and the discrete waves cease to propagate. These frequencies can be

computed explicitly for the first order elements p = 1 by considering when the

inequality |R(p)
τ (ωh)| > 1 is satisfied. Inserting the expression for R

(p)
τ (ωh) from

Table 3.2 reveals that the inequality holds for ωh greater than

ωh =

√
12

1 + 2τ
. (3.23)

For the finite element scheme (τ = 0) and spectral element scheme (τ = 1) we

obtain cut-off frequencies of 2
√

3 and 2 respectively, in agreement with the results

presented in [60]. For the optimally blended scheme, the cut-off frequency is given

by
√

6. These frequencies are indicated in Figure 3.8(a). All of the schemes corre-

sponding to p = 1 elements fail to admit propagating waves for higher frequencies

and thus have single stopping band extending to infinity. In general, the schemes

based on elements of order p have p stopping bands, as shown in Figure 3.8 (b)-(d).
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The so-called spatial resolution limit [60] is defined to be number of elements

per wavelength corresponding to the cut-off frequency. The spatial resolution limit

for p = 1 elements is obtained by inserting (3.23) into (3.5) to obtain

cos µ(1)
τ h = R(1)

τ

(√
12

1 + 2τ

)
= −1

or

µ(1)
τ h = π

giving a spatial resolution limit for the p = 1 elements of

λ

h
=

2π

µ
(1)
τ h

=
2π

π
= 2.

Examination of Figure 3.8 (b)-(d) reveals that for a p-th order scheme, the spatial

resolution limit is given by 2/p elements per wavelength in agreement with the

observation of [60].

3.4 Proofs of the results

This section provides the proofs of general results for the error in the discrete

dispersion relation for the blended scheme.

3.4.1 Basic polynomials

Let p ∈ N be given and τ ∈ [0, 1] be a parameter to be determined. Define the

bilinear form

B̂τ (v, w) = (1 − τ)

∫ 1

−1

(v′w′ − κ2vw)dx + τQ(p)(v′w′ − κ2vw) (3.24)

where Q(p) is the (p + 1) point Gauss-Lobatto quadrature rule and κ > 0 is a

constant. If v, w ∈ Pp then v′w′ ∈ P2p−2 and the quadrature rule Q(p) integrates
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Figure 3.8: Frequency spectra of the one dimensional finite element, spectral

element and optimally blended schemes for elements of order p = 1, . . . , 4.
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this product exactly. Hence, if v, w ∈ Pp then

B̂τ (v, w) =

∫ 1

−1

v′w′dx − κ2

{
(1 − τ)

∫ 1

−1

vwdx + τQ(p)(vw)

}
. (3.25)

We reconsider basic polynomials Φp, Ψp ∈ Pp, ∀p ∈ N defined in Chapter 2:

Φp(1) = 1, Φp(−1) = (−1)p+1 : B̂τ (Φ
p, w) = 0 ∀w ∈ Pp ∩ H1

0(−1, 1) (3.26)

and

Ψp(1) = 1, Ψp(−1) = (−1)p : B̂τ (Ψ
p, w) = 0 ∀w ∈ Pp ∩ H1

0(−1, 1). (3.27)

From (3.26) and considering the parity of Φp, we deduce that Φp ∈ Pp−1 for all

p ∈ N. Moreover, wΦp and w′Φ′p ∈ P2p−1, for w ∈ Pp ∩ H1
0(−1, 1) and it follows

that the quadrature rule Q(p) is exact in (3.24) for w = Φp, so that

B̂τ (Φ
p, w) =

∫ 1

−1

(
Φ′pw′ − κ2Φpw

)
dx = 0 ∀w ∈ Pp ∩ H1

0(−1, 1).

Hence, for Φp the bilinear form (3.24) coincides with the bilinear form (??) consid-

ered in previous chapter and we may therefore quote results for Φp directly from

Chapter 2. In particular, from Theorem 2.5.1 of Chapter 2, we have

B̂τ (Φ
p, Φp) = B̂(Φp, Φp) = −2κ

ap

bp
.

where sequences {ap}∞p=1 and {bp}∞p=1 originally appeared in Theorem 2.4.1. We

shall require the corresponding expression for B̂τ (Ψ
p, Ψp):

Theorem 3.4.1. Let p = 2, 3, 4, . . . . Then

B̂τ (Ψ
p, Ψp) = −2κ

pap+1 + τ(p + 1)ap−1

pbp+1 + τ(p + 1)bp−1

, (3.28)

where 2κ = ωh.
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Proof. For the duration of this proof the superscript on Ψp will be omitted since

no confusion is likely to arise. Suppose w ∈ Pp−1 ∩ H1
0(−1, 1), then Ψw ∈ P2p−1.

Using the fact that the quadrature rule in the bilinear form (3.24) is exact for

functions belonging to P2p−1, and using definition (3.27) we obtain

∫ 1

−1

(Ψ′′ + κ2Ψ)wdx = 0, ∀w ∈ Pp−1 ∩ H1
0(−1, 1). (3.29)

Now, we can write F (x) = Ψ′′(x) + κ2Ψ(x) ∈ Pp in the form

Ψ′′(x) + κ2Ψ(x) =

p+1∑

j=1

αjL
′
j(x) (3.30)

where αj are the scalars and Lj is the Legendre polynomial of degree j. Now

inserting w(x) = (1 − x2)L′
ℓ(x) for 1 ≤ ℓ ≤ p − 2 together with (3.30) into (3.29),

we obtain α1 = α2 = · · · = αp−2 = 0. Also, parity considerations imply that

αp = 0. Hence,

F (x) = Ψ′′(x) + κ2Ψ(x) = αp+1L
′
p+1(x) + αp−1L

′
p−1(x). (3.31)

Now, choosing w(x) = (1 − x2)L′
p−1(x) ∈ Pp ∩ H1

0(−1, 1) in definition (3.27), we

get ∫ 1

−1

F (x)w(x)dx − κ2τ

{∫ 1

−1

Ψ(x)w(x)dx −Q(p)(Ψw)

}
= 0. (3.32)

Also, using (3.31) together with the first term of the last expression gives

∫ 1

−1

F (x)w(x)dx =

∫ 1

−1

(1 − x2)
[
αp+1L

′
p+1(x)L′

p−1(x) + αp−1[L
′
p−1(x)]2

]
dx,

and then exploiting the orthogonality property of the Legendre polynomials, we

obtain ∫ 1

−1

F (x)w(x)dx =
2p(p − 1)

2p − 1
αp−1. (3.33)

The error in the Gauss-Lobatto quadrature rule denoted by E is given by

E =

∫ 1

−1

Ψ(x)w(x)dx −Q(p)(Ψw) = −(p + 1)p322p+1[(p − 1)!]4

(2p + 1)[(2p)!]3
D2p(Ψw)
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using (4.10-27) from [56], with D2p(Ψw) =
(2p)!

(p!)2
Ψ

(p)
p (0)w(p)(0). Moreover, κ2Ψ

(p)
p (0) =

αp+1L
(p+1)
p+1 (0) and w(p)(0) = −p(p − 1)L

(p−1)
p−1 (0). Hence,

E =

∫ 1

−1

Ψ(x)w(x)dx −Q(p)(Ψw) =
2

κ2

(p2 − 1)

2p − 1
αp+1. (3.34)

Now, substituting the values from (3.33) and (3.34) into (3.32), we obtain αp−1 =

τ(p + 1)

p
αp+1. Consequently, (3.31) can be rewritten in the form

F (x) = Ψ′′(x) + κ2Ψ(x) = αp+1

[
τ

(
1 +

1

p

)
L′

p−1(x) + L′
p+1(x)

]
. (3.35)

Observe that we may write

Ψ(x) = σΥp(x) + ρΥp−2(x) (3.36)

for suitable constants σ and ρ where Υ is given in (Chapter 2, eq.(2.43)) and

defined as

Υp(x) =

⌊p/2⌋∑

j=0

(
− 1

κ2

)j+1

L
(2j+1)
p+1 (x) (3.37)

and satisfies the property

Υ′′
p(x) + κ2Υp(x) = −L′

p+1(x). (3.38)

Consequently, we have

F (x) = σ
(
Υ′′

p(x) + κ2Υp(x)
)

+ ρ
(
Υ′′

p−2(x) + κ2Υp−2(x)
)

using the property (3.38), we get

F (x) = −σL′
p+1(x) − ρL′

p−1(x).

Comparing the last equation with (3.35), we are led to the choices σ = −αp+1 and

ρ = −ταp+1(p + 1)/p, and with these values, (3.36) becomes

Ψ(x) = −αp+1

[
τ

(
1 +

1

p

)
Υp−2(x) + Υp(x)

]
. (3.39)



Chapter 3 114

Applying the boundary condition Ψ(1) = 1, we obtain αp+1 = −p/Γ (1), provided

that Γ (1) is non-zero, with Γ (1) = τ(p + 1)Υp−2(1) + pΥp(1). Consequently, Ψ

may be written in the form

Ψ(x) =
Γ (x)

Γ (1)
. (3.40)

We want to obtain a closed form expression for (3.24) and for this we define

ΨI(x) = (x + 1)/2 + (−1)p(1 − x)/2, so

B̂τ (Ψ, Ψ) = B̂τ (Ψ, ΨI) + B̂τ (Ψ, Ψ − ΨI)

= [Ψ′ΨI ]
1
−1 −

∫ 1

−1

(Ψ′′ + κ2Ψ)ΨIdx

applying integration by parts together with (3.35), we get

B̂τ (Ψ, Ψ) = 2Ψ′(1) − 2αp+1

[
1 + τ

(
1 +

1

p

)]

=
2

Γ (1)
[Γ ′(1) + (p + τ(p + 1))]. (3.41)

Now, as in [1, 5], using the values of Υ and its derivatives at the boundary x = 1

in terms of the series ap+1, ap−1, bp+1 and bp−1 which can be obtained from the

recurrence relation (3.19) proved in Chapter 2, Γ (1) and Γ ′(1) can be written as

Γ (1) = − 1
κ

(τ(p + 1)bp−1 + pbp+1)

and

Γ ′(1) + τ(p + 1) + p = τ(p + 1)ap−1 + pap+1.

Hence, inserting the above values into (3.41) and simplifying gives

B̂τ (Ψ
p, Ψp) = −2κ

[
τ(p + 1)ap−1 + pap+1

τ(p + 1)bp−1 + pbp+1

]
(3.42)

which completes the proof.

For both finite element [1] and spectral element [5] schemes it is shown that

B̂τ (Φ
p, Φp) can be represented in terms of Bessel functions. Since the quadrature
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rule is exact for Φp in the bilinear form (2.33) for spectral element scheme and in

the bilinear form (3.24) for optimally blended scheme. Therefore we have:

B̂τ (Φ
p, Φp) = −2κ

Jp+1/2(κ) sin κ − Yp+1/2(κ) cos κ

Jp+1/2(κ) cos κ + Yp+1/2(κ) sin κ
with κ 6= mπ

and

B̂τ (Φ
p, Φp) = 2κ

Jp+1/2(κ) cos κ + Yp+1/2(κ) sin κ

Jp+1/2(κ) sin κ − Yp+1/2(κ) cos κ
with κ 6= (m + 1/2)π

where κ = ωh/2. The following result extends these results to B̂τ (Ψ
p, Ψp).

Corollary 3.4.2. Let p = 2, 3, . . . , then

1. if p is even and κ 6= (m + 1/2)π for all m ∈ Z, then

B̂τ (Ψ
p, Ψp) =

2κ
τ(p + 1)(Jp−1/2(κ) cotκ + Yp−1/2(κ)) − p(Jp+3/2(κ) cotκ + Yp+3/2(κ))

τ(p + 1)(Jp−1/2(κ) − Yp−1/2(κ) cot κ) − p(Jp+3/2(κ) − Yp+3/2(κ) cot κ)
, (3.43)

where J and Y are cylindrical Bessel functions of the first and second kind respec-

tively;

2. if p is odd and κ 6= mπ for all m ∈ Z, then

B̂τ (Ψ
p, Ψp) =

2κ
τ(p + 1)(Yp−1/2(κ) cotκ − Jp−1/2(κ)) − p(Yp+3/2(κ) cot κ − Jp+3/2(κ))

τ(p + 1)(Jp−1/2(κ) cotκ + Yp−1/2(κ)) − p(Jp+3/2(κ) cotκ + Yp+3/2(κ))
. (3.44)

Proof. This corollary is proved separately for even and odd order polynomials.

Consider first the case when p is even. Inserting the values of ap−1, ap+1 and

bp−1, bp+1 given in (Chapter 2, eq.(2.62)) into (3.28) and rearranging gives (3.43),

which completes the proof in the even case. Now consider the case when p is odd

and once again inserting the values of ap−1, ap+1 and bp−1, bp+1 given in (Chapter 2,

eq.(2.63)) into (3.28) and rearranging gives (3.44), which completes the proof.
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For Φp we rewrite expressions (2.65) and (2.67) given in Chapter 2 with higher

order terms. As the quadrature rule is exact for Φp in the bilinear form (3.24), the

estimates (2.65) and (2.67) are exactly the same as equations (4.16) and (4.15) in

[1], for p = 2N and p = 2N + 1 respectively. Therefore, when p is an even integer

and κ 6= (m + 1/2)π, m ∈ Z, then

E (p)
Φ (κ) = 2

[
p!

(2p)!

]2
(2κ)2p

2p + 1
− 2

(2p + 1)2

2p − 1

[
(p + 1)!

(2p + 2)!

]2
(2κ)2p+2

2p + 3
+ O(2κ2p+4)

and when p is an odd integer and κ 6= mπ, m ∈ Z, then

E (p)
Φ (κ) =

1

2

[
p!

(2p)!

]2
(2κ)2p+2

2p + 1
− (2p + 1)2

2p − 1

[
(p + 1)!

(2p + 2)!

]2
(2κ)2p+4

2p + 3
+ O(2κ2p+6).

For E (p)
Ψ (κ), we have the following results.

Theorem 3.4.3. Let p ∈ N satisfy p ≥ 2. Then

1. if p is an even integer, and κ 6= (m + 1/2)π, m ∈ Z, then

E (p)
Ψ (κ) = −τ

2

(
1 +

1

p

)[
p!

(2p)!

]2
(2κ)2p+2

2p + 1
− 1

2

[
(p + 1)!

(2p + 2)!

]2
(2κ)2p+4

2p + 3
C̃(p)

τ

+O(2κ2p+6); (3.45)

2. if p is an odd integer, and κ 6= mπ, m ∈ Z, then

E (p)
Ψ (κ) = −2τ

(
1 +

1

p

)[
p!

(2p)!

]2
(2κ)2p

2p + 1
− 2

[
(p + 1)!

(2p + 2)!

]2
(2κ)2p+2

2p + 3
C̃(p)

τ

+O(2κ2p+4) (3.46)

where

C̃(p)
τ = τ 2

(
1 +

1

p

)2
2p + 3

2p − 1
− τ

(
1 +

1

p

)
(2p + 3) − 1.

Proof. First, consider the case when p is even. Adding 2κ tanκ to equation (3.43)

and applying straightforward manipulations give

B̂τ (Ψ
p, Ψp) + 2κ tanκ = − 2κ

cos2 κ
Qp+3/2

τ (κ)
(
1 − Qp+3/2

τ (κ) tanκ
)−1

(3.47)
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where

Qp+3/2
τ (κ) =

τ (p + 1) Jp−1/2(κ) − pJp+3/2(κ)

τ (p + 1)Yp−1/2(κ) − pYp+3/2(κ)
(3.48)

and for small κ i.e. when κ ≪ 1 is given by

Qp+3/2
τ (κ) =

τ

2

(
1 +

1

p

)[
p!

(2p)!

]2
(2κ)2p+1

2p + 1
+

1

2

[
(p + 1)!

(2p + 2)!

]2
(2κ)2p+3

2p + 3
C̃(p)

τ + · · · .

(3.49)

The behaviour of Q
p+3/2
τ (κ) is studied in the next section and is proved in Lemma

3.5.1. With the aid of this estimate, equation (3.47) together with trivial calcula-

tions simplifies to (3.45). The assertions concerning polynomials of odd order are

proved in a similar fashion. Subtracting 2κ cotκ from equation (3.44) and after

simplification, we obtain

B̂τ (Ψ
p, Ψp) − 2κ cotκ = − 2κ

sin2 κ
Qp+3/2

τ (κ)
(
1 + Qp+3/2

τ (κ) cotκ
)−1

(3.50)

Now, using (3.49) into the above expression and simplifying gives (3.46) as re-

quired.

3.4.2 Proof of Theorem 3.3.2

We now prove Theorem 3.3.2 by using expressions (2.74) and (2.76) which were

derived in Chapter 2 and are valid for small wavenumbers i.e. κ = ωh/2 ≪ 1 for

even and odd order polynomials.

Proof. First consider the case when p is even. We reconsider the expression

cos µ(p)
τ h − cos ωh =

(
ωh

2

)2

E (p)
Φ + E (p)

Ψ + · · · (3.51)

obtained in Chapter 2 for small ω ≪ 1. We have,

(
ωh

2

)2

E (p)
Φ =

1

2

[
p!

(2p)!

]2
(ωh)2p+2

2p + 1
− 1

2

(2p + 1)2

2p − 1

[
(p + 1)!

(2p + 2)!

]2
(ωh)2p+4

2p + 3
+ · · ·
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and

E (p)
Ψ = −τ

2

(
1 +

1

p

)[
p!

(2p)!

]2
(ωh)2p+2

2p + 1
− 1

2

[
(p + 1)!

(2p + 2)!

]2
(ωh)2p+4

2p + 3
C̃(p)

τ + · · · .

Inserting these values into equation (3.51) and simplifying gives

cos µ(p)
τ h − cos ωh =

1

2

[
1 − τ

(
1 +

1

p

)] [
p!

(2p)!

]2
(ωh)2p+2

2p + 1

−1

2

[
(p + 1)!

(2p + 2)!

]2
(ωh)2p+4

2p + 3
C(p)

τ + · · · (3.52)

where C
(p)
τ = τ 2 (2p + 3)

(2p − 1)

(
1 +

1

p

)2

− τ(2p + 3)

(
1 +

1

p

)
+ 2

2p2 + p + 1

2p − 1
.

We now consider equation (2.76) from Chapter 2 for the case when p is odd,

namely

cos µ(p)
τ h − cos ωh =

(
ωh

2

)2

E (p)
Ψ + E (p)

Φ + · · · (3.53)

where

(
ωh

2

)2

E (p)
Ψ = −τ

2

(
1 +

1

p

)[
p!

(2p)!

]2
(ωh)2p+2

2p + 1
− 1

2

[
(p + 1)!

(2p + 2)!

]2
(ωh)2p+4

2p + 3
C̃(p)

τ + · · ·

and

E (p)
Φ =

1

2

[
p!

(2p)!

]2
(ωh)2p+2

2p + 1
− 1

2

(2p + 1)2

2p − 1

[
(p + 1)!

(2p + 2)!

]2
(ωh)2p+4

2p + 3
+ · · · .

Now, substituting these values into (3.53) and simplifying gives equation (3.52),

which is what was required. Finally, for small ωh, the approximation

cos µ
(p)
τ h − cos ωh = −ωh(µ

(p)
τ h − ωh) + · · ·

gives us the required estimate (3.21).

3.4.3 Proof of Theorem 3.2.1

Proof. Let f ∈ Pp be written in the form

f(x) =

p∑

j=0

ℓj(x)f(ζτ
j )
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where ℓj ∈ Pp satisfies ℓj(ζ
τ
k ) = δjk, ∀j = 0, 1, 2, . . . , p. Applying the quadrature

rule Q(p)
τ gives

Q(p)
τ (f) =

p∑

j=0

wτ
j f(ζτ

j )

where {ζτ
j }p

j=0 and {wτ
j }p

j=0 are the nodes and weights of Q(p)
τ respectively. Later,

we show that the quadrature weights defined in (3.17) satisfy

wτ
j =

∫ 1

−1

ℓj(x)dx. (3.54)

Hence, for f ∈ Pp

Q(p)
τ (f) =

p∑

j=0

f(ζτ
j )

∫ 1

−1

ℓj(x)dx =

∫ 1

−1

p∑

j=0

f(ζτ
j )ℓj(x)dx =

∫ 1

−1

f(x)dx

and so Q(p)
τ is exact for all f ∈ Pp. Now, let f ∈ P2p−1 be written in the form

f(x) = Πpf(x) + ̟(x)q(x)

for q ∈ Pp−2 where ̟(x) = Lp+1(x) − τLp−1(x) and Πpf ∈ Pp denotes the inter-

polant to f at the nodes {ζτ
j }p

j=0. Integrating the above equation and using the

orthogonality property of the Legendre polynomials, we get

∫ 1

−1

f(x)dx =

∫ 1

−1

Πpf(x)dx.

Moreover, since ̟ vanishes at the nodes of Q(p)
τ , we can write

∫ 1

−1

Πpf(x)dx = Q(p)
τ (Πpf) = Q(p)

τ (Πpf + ̟q) = Q(p)
τ (f)

and it follows that Q(p)
τ is exact for all f ∈ P2p−1. Since the Gauss-Legendre-

Lobatto rule is also exact for f ∈ P2p−1, it follows that

Q(p)
τ (f) = (1 − τ)

∫ 1

−1

f(x)dx + τQ(p)(f) ∀f ∈ P2p−1 (3.55)

and hence identity (3.18) holds for f ∈ P2p−1.
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Now let f ∈ P2p be written in the form

f(x) = µ̟(x)Lp−1(x) + q(x)

for suitable constant µ ∈ R and q ∈ P2p−1. Since ̟ vanishes at the quadrature

points of Q(p)
τ , we have

Q(p)
τ (f) = Q(p)

τ (q) = (1 − τ)

∫ 1

−1

q(x)dx + τQ(p)(q) (3.56)

where the second step follows from (3.18) applied to q ∈ P2p−1. The orthogonality

property of Legendre polynomials means that

(1 − τ)

∫ 1

−1

̟(x)Lp−1(x)dx = (1 − τ)

∫ 1

−1

(Lp+1(x) − τLp−1(x))Lp−1(x)dx

= −τ(1 − τ)

∫ 1

−1

L2
p−1(x)dx.

Furthermore, since Lp+1 and Lp−1 coincide at the nodes of the Gauss-Lobatto

quadrature rule, we have

τQ(p)(̟Lp−1) = τQ(p)([Lp+1 − τLp−1]Lp−1) = τ(1 − τ)Q(p)(L2
p−1)

and since the Gauss-Lobatto rule has precision 2p − 1, we obtain

τQ(p)(̟Lp−1) = τ(τ − 1)

∫ 1

−1

L2
p−1(x)dx.

Consequently, we deduce that

(1 − τ)

∫ 1

−1

̟(x)Lp−1(x)dx + τQ(p)(̟Lp−1) = 0

and then adding µ times this identity to (3.56) shows that

Q(p)
τ (f) = (1 − τ)

∫ 1

−1

f(x)dx + τQ(p)(f)

for all f ∈ P2p. It is trivial to see that (3.18) now holds for all f ∈ P2p+1 since both

sides of (3.18) vanish identically when f is the odd function f(x) = x2p+1.
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The positivity of the weights can be seen by inserting f(x) = ℓ2
j(x) ∈ P2p into

(3.18) to obtain for τ ∈ [0, 1)

wτ
j = (1 − τ)

∫ 1

−1

ℓ2
j(x)dx + τQ(p)(ℓ2

j ) > 0.

We now show that the nodes {ζτ
i }p

i=0 are real, distinct and lie within the interval

(−1, 1). Suppose this were not the case. Let {ζτ
i }m

i=0 with m < p be the points

where ̟(x) ∈ Pp+1 changes sign in (−1, 1), then the polynomial W (x) = (x −

ζτ
0 )(x−ζτ

1 ) · · · (x−ζτ
m)̟(x) vanishes at the nodes of Q(p)

τ but does not change sign

in (−1, 1). i.e. ∫ 1

−1

(x − ζτ
0 )(x − ζτ

1 ) · · · (x − ζτ
m)̟(x)dx 6= 0. (3.57)

Hence, thanks to (3.18) applied to W ∈ P2p+1, we obtain

0 = Q(p)
τ (W ) = (1 − τ)

∫ 1

−1

W (x)dx + τQ(p)(W ),

but the right hand side is non-zero since W does not change sign, and we obtain

a contradiction. Hence m = p.

Above, we have shown that (3.18) holds provided that the weights satisfy (3.54).

We now show that choosing the weights according to (3.54) implies (3.17) holds.

Observe that ℓJ(x) = ̟(x)/(x− ζτ
J )̟′(ζτ

J ) ∈ Pp so that

wτ
J =

∫ 1

−1

ℓJ(x)dx =
1

̟′(ζτ
J )

∫ 1

−1

̟(x)

x − ζτ
J

dx. (3.58)

We recall the Christoffel-Darboux identity ([56], 4.7-3):

p∑

k=0

Lk(x)Lk(y)(2k + 1) =
Lp+1(x)Lp(y) − Lp(x)Lp+1(y)

x − y
(p + 1), x 6= y.

Choose y = ζτ
J and integrate from −1 to 1 with respect to x to get

∫ 1

−1

Lp+1(x)Lp(ζ
τ
J ) − Lp(x)Lp+1(ζ

τ
J )

x − ζτ
J

dx =
2

p + 1
, p ∈ N. (3.59)
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Now, inserting Lp+1(x) = ̟(x) + τLp−1(x) and Lp+1(ζ
τ
J ) = τLp−1(ζ

τ
J ), gives

2

p + 1
= Lp(ζ

τ
J )

∫ 1

−1

̟(x)

x − ζτ
J

dx + τ

∫ 1

−1

Lp−1(x)Lp(ζ
τ
J ) − Lp(x)Lp−1(ζ

τ
J )

x − ζτ
J

dx

and then using (3.59), we obtain

2

p + 1
= Lp(ζ

τ
J )̟′(ζτ

J )wτ
J − 2τ

p
.

Inserting ̟′(ζτ
J ) = L′

p+1(ζ
τ
J )−τL′

p−1(ζ
τ
J ) in above equation and performing straight-

forward manipulations, we arrive at the conclusion

wτ
J =

2[p(1 + τ) + τ ]

p(p + 1)Lp(ζ
τ
J )[L′

p+1(ζ
τ
J ) − τL′

p−1(ζ
τ
J )]

, ∀J = 0, 1, . . . , p

as required.

3.5 Analysis of Qm
τ (κ)

Now to analyse the behaviour of the quotient Qm
τ (κ)

Qm
τ (κ) =

τ

(
m − 1

2

)
Jm−2(κ) −

(
m − 3

2

)
Jm(κ)

τ

(
m − 1

2

)
Ym−2(κ) −

(
m − 3

2

)
Ym(κ)

, m = integer +
1

2
(3.60)

for both limits, i.e. when κ ≪ 1 and κ ≫ 1, we virtually follow exactly the same

arguments used in the previous chapter for the analysis of the quotient Q̃m(κ).

The quotient defined above appeared in equation (3.48) in a form which we shall

prove is equivalent to the above in the following lemma for small values of κ.

Lemma 3.5.1. Let m = integer + 1/2 and let Qm
τ be defined as above. Then, for

κ ≪ 1,

Qm
τ (κ) =

τ

2

(2m − 1)

(2m − 3)

[ (
m − 3

2

)
!

(2m − 3)!

]2
(2κ)2m−2

2m − 2
+

1

2

[ (
m − 1

2

)
!

(2m − 1)!

]2
(2κ)2m

2m
C̃(m)

τ · · ·

(3.61)
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where

C̃(m)
τ = τ 2

(
2m − 1

2m − 3

)2
m

m − 2
− 2mτ

(2m − 1)

(2m − 3)
− 1.

Proof. Write m = n + 1/2, where n ∈ Z. For small κ, inserting identities (2.82),

(2.83), (2.84) and (2.85) obtained in Chapter 2 into (3.60) and simplifying, we

arrive at

Qm
τ (κ) =

τ

2

(
n

n − 1

)[
(n − 1)!

(2n − 2)!

]2
(2κ)2n−1

2n − 1
+

1

2

[
(n)!

(2n)!

]2
(2κ)2n+1

2n + 1
C̃

(n)
τ + · · ·

where

C̃(n)
τ = τ 2

(
n

n − 1

)2
2n + 1

2n − 3
− τ

n

n − 1
(2n + 1) − 1

which in terms of m gives the result claimed.

Lemma 3.5.1 shows that Qm
τ (κ) also decays algebraically as κ becomes small.

The remainder of the section describes the behaviour of the ratio Qm
τ for high wave

numbers i.e. when κ = ωh/2 ≫ 1.

Theorem 3.5.2. Let Qm
τ (κ) be defined as above and m = integer +

1

2
. Then, as

m is increased, Qm
τ (κ) passes through two phases:

1. For m < κ + 1 + o(κ1/3), Qm
τ (κ) oscillates around unity but does not decay

as m is increased.

2. For m > κ + 1 + o(κ1/3), Qm
τ (κ) converges to the ratio obtained with spectral

element scheme Q̃m(κ) and decays super-exponentially with the same rate as

Q̃m(κ) decays.

The proof of this result is covered in the following sections.
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3.5.1 Preasymptotic regime: m < κ + 1

In the preasymptotic regime inserting Langer’s formulae given in Section 7.13.4 of

[23] into (3.60), and performing straightforward manipulations, give

Qm
τ (κ) =

J1/3(zm−2) cos(π/6) − Y1/3(zm−2) sin(π/6) + O((m − 2)−4/3)

J1/3(zm−2) sin(π/6) + Y1/3(zm−2) cos(π/6) + O((m − 2)−4/3)
×





τ − β
J1/3(zm) cos(π/6) − Y1/3(zm) sin(π/6) + O(m−4/3)

J1/3(zm−2) cos(π/6) − Y1/3(zm−2) sin(π/6) + O((m − 2)−4/3)

τ − β
J1/3(zm) sin(π/6) + Y1/3(zm) cos(π/6) + O(m−4/3)

J1/3(zm−2) sin(π/6) + Y1/3(zm−2) cos(π/6) + O((m − 2)−4/3)





(3.62)

where

β =

[
(κ2 − (m − 2)2)

(κ2 − m2)

]1/4
(2m − 3)

(2m − 1)

(
zm

zm−2

)1/2

(3.63)

with

zm = m(wm − tan−1 wm), wm =
√

κ2/m2 − 1,

zm−2 = (m − 2)(wm−2 − tan−1 wm−2) and wm−2 =
√

κ2/(m − 2)2 − 1.

3.5.1.1 Oscillatory phase: m < κ + 1 − o(κ1/3)

In this region inserting (2.90) and (2.91) given in Chapter 2 into (3.62) and ap-

plying simplification gives

Qm
τ (κ) ≈ cot

(
zm−2 −

π

4

)



τ − β ′ cos
(
zm − π

4

)
sec
(
zm−2 −

π

4

)

τ − β ′ sin
(
zm − π

4

)
cosec

(
zm−2 −

π

4

)


 (3.64)

with

β ′ =

[
(κ2 − (m − 2)2)

(κ2 − m2)

]1/4
(2m − 3)

(2m − 1)
.

3.5.1.2 Transition zone: κ + 1 − o(κ1/3) < m < κ + 1

In this region, we consider the behaviour when m approaches κ + 1 from the

left and the value of the expression (3.63) is approximately 1. Using the series
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representations for Bessel functions given in equation (8.440) of [28], equation

(3.60) becomes

Qm
τ (κ) ≈ − 1√

3
+

3

π
Γ

(
2

3

)2 (zm

2

)2/3
[
τ
(zm−2

2

)1/3 (zm

2

)−1/3

− 1

]
+ · · · . (3.65)

Now, substituting the values of zm and zm−2 from (2.94) and (2.95) into (3.65), we

finally arrive at

Qm
τ (κ) ≈ − 1√

3
+

1

π
Γ

(
2

3

)2

(κ−m)

(
6

m

)1/3
[
τ

√
κ − m + 2√

κ − m

(
m

m − 2

)1/6

− 1

]
+· · ·

which is increasing algebraically at a rate of O(m1/3) as m increases in this region.

3.5.2 Asymptotic regime: m > κ + 1

In this regime the order m of the Bessel functions exceeds the argument κ + 1.

Again, using Langer’s formulae from Section 7.13.4 of [23] together with (3.60)

gives

Qm
τ (κ) = − π−1K1/3(zm−2) + O((m − 2)−4/3)

I1/3(zm−2) + I−1/3(zm−2) + O((m − 2)−4/3)
×





τ − γ
K1/3(zm) + O(m−4/3)

K1/3(zm−2) + O((m − 2)−4/3)

τ − γ
I1/3(zm) + I−1/3(zm) + O(m−4/3)

I1/3(zm−2) + I−1/3(zm−2) + O((m − 2)−4/3)





(3.66)

where

γ =

[
(m − 2)2 − κ2

(m2 − κ2)

]1/4
(2m − 3)

(2m − 1)

(
zm

zm−2

)1/2

(3.67)

with

zm = m(tanh−1 wm − wm), wm =
√

1 − κ2/m2,

zm−2 = (m − 2)(tanh−1 wm−2 − wm−2) and wm−2 =
√

1 − κ2/(m − 2)2.

Now exploiting identities (2.98) and (2.99) for subscripts m and m− 2 into (3.66)

and dropping the higher order terms after simplification gives

Qm
τ (κ) ≈ −e−2zm−2

2

(
τ − γ′e(zm−2−zm)

τ − γ′e−(zm−2−zm)

)
(3.68)
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with

γ′ =

[
(m − 2)2 − κ2

m2 − κ2

]1/4
(2m − 3)

(2m − 1)
. (3.69)

3.5.2.1 Transition zone: κ + 1 < m < κ + 1 + o(κ1/3)

In this region, we start with the expression

Qm
τ (κ) ≈ −ξ

1/2
m−2Ai(ξm) − τξ

1/2
m Ai(ξm−2)

ξ
1/2
m−2Bi(ξm) − τξ

1/2
m Bi(ξm−2)

which is obtained from (3.66) by using the formulae (11.1.04) and (11.1.12) from

[54]. Moreover, using series representations for Airy functions, given in equations

(11.1.07) and (11.1.16) of [54], the above expression gives

Qm
τ (κ) ≈ − 1√

3
+

31/3

π
Γ

(
2

3

)2

ξm

[
1 − τξ−1/2

m ξ
1/2
m−2

]
(3.70)

where

ξm ≃
(

2

m

)1/3

(m − κ) and ξm−2 ≃
(

2

m − 2

)1/3

(m − 2 − κ).

Inserting these values into (3.70), we finally obtain

Qm
τ (κ) ≈ − 1√

3
+

1

π
Γ

(
2

3

)2

(m−κ)

(
6

m

)1/3
[
1 − τ

√
m − 2 − κ√

m − κ

(
m

m − 2

)1/6
]
+· · ·

where Qm
τ is decreasing algebraically at a rate of O(m−1/3) with increasing m.

Therefore, Qm
τ is still oscillating in the transition region.

3.5.2.2 Exponential decay phase: m > κ + 1 + o(κ1/3)

When m exceeds κ+1+o(κ1/3) then it is easy to verify that γ′, which is defined in

(3.69), is approximately equal to 1. Moreover, the value of the blending parameter

τ is also approximately equal to 1 in this region

τ =
2m − 3

2m − 1
≈ 1 when m ≫ 1.

Hence the blending scheme overlaps with spectral element scheme and have the

same superexponential expression (2.87) obtained in the previous Chapter 2.
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Explicit discrete dispersion

relations for Helmholtz equation

in d-dimensions

4.1 Introduction

In this chapter, we study the dispersive properties of finite element, spectral el-

ement and optimally blended schemes using tensor product elements defined on

rectangular grid in d-dimensions. We prove and give analytical expressions for dis-

crete dispersion relations for the above mentioned schemes by adopting the same

approach used in [3] where it is shown that the discrete dispersion relation may be

expressed in terms of that for the approximation of the scalar Helmholtz equation

in one dimension. We show that for a rectangular grid the analytical expressions

for the discrete dispersion error in higher dimensions can be obtained using one

dimensional discrete dispersion error expressions.

This chapter is organised as follows. In Section 4.2, we give continuous discrete

127



Chapter 4 128

dispersion relations and derive discrete dispersion relations using tensor product

meshes valid for d-dimensions. In Section 4.3, discrete dispersion relations are

derived for finite element, spectral element and optimally blended schemes. In

final section the numerical results obtained with these schemes are shown.

4.2 Acoustic wave equation

Consider the acoustic wave equation in d-dimensions

∂2u

∂t2
−△u = 0 in R

d. (4.1)

We seek time-harmonic solutions of the form u(x, t) = eiωtU(x) to the above

equation, so that U satisfies the Helmholtz equation

ω2U + △U = 0 in R
d (4.2)

where ω > 0 is the given angular frequency.

4.2.1 Continuous dispersion relation

Observe that in one dimension, the function u(ω; x) = eiωx satisfies

(u′, v′) = ω2(u, v) ∀v ∈ H1
loc(R) (4.3)

where

H1
loc(R

d) = {v : R
d → R, v ∈ H1(Ω) for all Ω ⊂⊂ R

d}

and

(u, v) =

∫

R

uvdx

is the L2-inner product on R. We note that (4.3) is the variational formulation

of (4.2) in one dimension. Furthermore, it is trivial to verify that the function
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u(ω; x) satisfies

u(ω; x + nh) = eiωhnu(ω; x) ∀n ∈ Z, x, h ∈ R

which is the so called Bloch wave property. To obtain the dispersion relation in

d-dimensions for the acoustic wave equation (4.2), we start with the variational

formulation of equation (4.2) which is given by

ω2

∫

Rd

Uvdx −
∫

Rd

gradU · gradvdx = 0 ∀v ∈ H1
loc(R

d). (4.4)

Now choose U and v as the product of uni-variate functions given by

U(x1, x2, · · · , xd) =

d∏

ℓ=1

u(ωℓ; xℓ) and v(x1, x2, · · · , xd) =

d∏

ℓ=1

vℓ(xℓ)

where {ωℓ}d
ℓ=1 ∈ R are constants to be determined, {vℓ}d

ℓ=1 ∈ H1
loc(R) and u(ω; ·)

is defined above. Substituting U and v into (4.4), we get

ω2

d∏

ℓ=1

(u(ωℓ; ·), vℓ) −
d∑

r=1

(
(u′(ωr; ·), v′

r)
∏

ℓ 6=r

(u(ωℓ; ·), vℓ)

)
= 0. (4.5)

Now, exploiting the identity (4.3), and performing straightforward manipulations,

the above equation simplifies to

(
ω2 −

d∑

r=1

ω2
r

)
d∏

ℓ=1

(u(ωℓ; ·), vℓ) = 0, (4.6)

from which we see that non-trivial solutions of (4.6) exist only when the parameters

{ωℓ}d
ℓ=1 satisfy

ω2 = ω2
1 + ω2

2 + · · · + ω2
d. (4.7)

Equation (4.7) is the well known continuous dispersion relation of the acoustic wave

equation (4.2) which is usually derived by inserting u directly into the differential

equation (4.2).
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4.2.2 Framework for discrete dispersion relations

To obtain the dispersion relation for the discrete case, we partition the real line

R into infinitely many subintervals of uniform length h > 0 with nodes located at

hZ. The space Vhp ⊂ H1
loc(R) is the corresponding space of continuous piecewise

polynomials of degree p relative to the grid. We seek an approximation uhp ∈ Vhp

such that

(u′
hp, v

′) − ω2〈uhp, v〉 = 0 ∀v ∈ Vhp

where 〈·, ·〉 is an appropriate discrete L2-inner product on Vhp. Examples of suitable

choices for 〈·, ·〉 will be given later, but we shall require that for v, w ∈ Vhp,

〈v′, w′〉 = (v′, w′). To obtain the corresponding bilinear form in d-dimensions we

consider the tensor product grid where each side of the grid has length hℓ > 0, ℓ =

1, . . . , d. Let V d
hp ⊂ H1

loc(R
d) denote the space of continuous piecewise polynomials

of degree p in each variable relative to the grid in d-dimensions, then we seek an

approximate uhp ∈ V d
hp such that

〈∇uhp,∇v〉d − ω2〈uhp, v〉d = 0 ∀v ∈ V d
hp (4.8)

where 〈·, ·〉d is the tensor product bilinear form obtained from 〈·, ·〉. Motivated by

the arguments leading to the dispersion relation in the continuous case, we have

the following theorem for the discrete dispersion relation.

Theorem 4.2.1. Suppose there exists a non-trivial function uhp(ω; ·) ∈ Vhp such

that uhp(ω; ·) has

1. the discrete Bloch wave property

uhp(ω; x + nh) = einhξuhp(ω; x), ∀n ∈ Z, x, h ∈ R (4.9)

with discrete frequency ξ = ξ(ω) and satisfies
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2.

(u′
hp, v

′) = ω2〈uhp, v〉, ∀v ∈ Vhp. (4.10)

Let

Ehp(ω) = ξ2(ω) − ω2. (4.11)

Then, the discrete dispersion relation for Helmholtz equation in d-dimensions is

given by

ω2
h = ω2 +

d∑

ℓ=1

Ehp(ωℓ) with ω2 = ω2
1 + ω2

2 + · · · + ω2
d. (4.12)

Proof. By analogy with the derivation of the dispersion relation in the continuous

case, we seek a non-trivial solution Uhp ∈ V
(d)
hp of the form:

Uhp(x1, x2, · · · , xd) =
d∏

ℓ=1

uhp(ωℓ; xℓ) (4.13)

where {ωℓ}d
ℓ=1 ∈ R are again constants to be determined. The corresponding

discrete variational formulation of (4.2) is given by (4.8). Now, substituting v of

the form v =
∏

vℓ(xℓ) and Uhp from (4.13) into (4.8), we obtain

ω2
d∏

ℓ=1

〈uhp(ωℓ; ·), vℓ〉 −
d∑

r=1

(
(u′

hp(ωr; ·), v′
r)
∏

ℓ 6=r

〈uhp(ωℓ; ·), vℓ〉
)

= 0. (4.14)

Now, exploiting the property (4.10), we get

(
ω2 −

[
ω2

1 + ω2
2 + · · ·+ ω2

d

]) d∏

ℓ=1

〈uhp(ωℓ; ·), vℓ〉 = 0

which has non-trivial solutions only when

ω2 = ω2
1 + ω2

2 + · · · + ω2
d. (4.15)

Now, consider

Uhp(x1 + n1h1, x2 + n2h2, · · · , xd + ndhd) =

d∏

ℓ=1

uhp(ωℓ; xℓ + nℓhℓ)
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which, on using property (4.9), gives

Uhp(x1 + n1h1, x2 + n2h2, · · · , xd + ndhd) =

ei[h1n1ξ(ω1)+h2n2ξ(ω2)+···+hdndξ(ωd)]Uhp(x1, x2, · · · , xd). (4.16)

This is the discrete Bloch wave property for Uhp, and hence, the frequency ωh of

the discrete solution satisfies

ω2
h = ξ(ω1)

2 + ξ(ω2)
2 + · · · + ξ(ωd)

2.

Finally, upon using (4.11) together with (4.15) and after applying simple manip-

ulations, the above equation gives (4.12) which is what the claimed result.

Theorem 4.2.1 means that we can obtain the discrete dispersion relation for a

scheme on a tensor product mesh in Rd using results for the discrete dispersion

relation for the scheme in R1. We use this result in the following section to analyse

the finite element, spectral element and a novel, so-called optimally blended scheme

that was introduced in [7].

4.3 Higher order discrete dispersion relations for

finite element, spectral element and optimally

blended schemes in d-dimensions

In this section we will derive the explicit expressions of the discrete dispersion

relations valid in d-dimensions for finite element, spectral element and optimally

blended schemes of arbitrary order.
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4.3.1 Standard finite element scheme

For finite elements we evaluate the stiffness and mass matrices using the (p + 1)-

point Gaussian quadrature rule

∫ 1

−1

f(x)dx ≈ Q(p)
G (f) =

p∑

ℓ=0

wℓf(ζℓ) (4.17)

where {ζℓ}p
ℓ=0 are the zeros of Lp+1 and Lp+1 is the Legendre polynomial of degree

(p + 1). Moreover, weights {wℓ}p
ℓ=0 are given by

wℓ =
2

(1 − ζ2
ℓ )[L′

p+1(ζℓ)]2
∀ℓ ∈ {0, 1, . . . , p}. (4.18)

The Gaussian quadrature rule (4.17) is exact for all polynomials of degree at most

2p + 1, and as a consequence

∫ 1

−1

u′v′dx = Q(p)
G (u′v′) and

∫ 1

−1

uvdx = Q(p)
G (uv)

for all u, v ∈ Pp. Now a composite quadrature rule I(p)
G on R given by

∫

R

f(x)dx ≈ I(p)
G (f) =

h

2

∑

j∈Z

p∑

ℓ=0

wℓf(ζj,h
ℓ ) (4.19)

is constructed using (4.17) where ζj,h
ℓ = (j +

1

2
)h+

h

2
ζℓ, ∀j ∈ Z and ℓ = 0, 1, . . . , p.

The discrete L2-inner product is taken to be

〈u, v〉G = I(p)
G (uv)

and will be exact for u, v ∈ Vhp.

Theorem 4.3.1. Let ω ∈ R be given and there exists a non-trivial uhp ∈ Vhp which

satisfies

(u′
hp, v

′) = ω2(uhp, v), ∀v ∈ Vhp (4.20)

and the Bloch wave property (4.9) with frequency ξ(ω), where

ξ(ω)2 = ω2 −
[

p!

(2p)!

]2
h2pω2p+2

2p + 1
+ O(h)2p+2. (4.21)
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Consequently, the discrete dispersion relation for finite elements in Rd is given by

ω2
h = ω2 −

[
p!

(2p)!

]2
1

2p + 1

d∑

ℓ=1

h2p
ℓ ω2p+2

ℓ + O(h)2p+2 (4.22)

where ω2
1 + ω2

2 + · · · + ω2
d = ω2.

Proof. The existence of uhp is proved in Theorem 3.1 of [1] where it is also shown

that

ξ(ω)2 = ω2 −
[

p!

(2p)!

]2
h2pω2p+2

2p + 1
+ O(h)2p+2.

Hence, applying Thorem 4.2.1, we obtain (4.22) at once.

4.3.2 Spectral element scheme

The only difference for spectral elements compared with finite elements is the re-

placement of the Gaussian quadrature rule (4.17) with the Gauss-Lobatto quadra-

ture rule Q(p) defined by

∫ 1

−1

f(x)dx ≈ Q(p)(f) =

p∑

ℓ=0

w̃ℓf(ζ̃ℓ) (4.23)

where {ζ̃ℓ}p
ℓ=0 are taken to be the zeros of L′

p(x)(1− x2) with weights w̃ℓ given by

w̃ℓ =
2

p(p + 1)[Lp(ζ̃ℓ)]2
∀ℓ ∈ {0, 1, . . . , p}. (4.24)

The Gauss-Lobatto quadrature rule (4.23) is exact for all polynomials of degree at

most 2p − 1. Hence the stiffness matrix is integrated exactly

∫ 1

−1

u′v′dx = Q(p)(u′v′)

whereas the mass matrix is underintegrated

∫ 1

−1

uvdx ≈ Q(p)(uv).
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We use this quadrature rule to develop a composite quadrature rule on R, which

we denote by I(p)
GL(·), following the same construction used in the case of finite

elements. The discrete L2-inner product is taken to be

〈u, v〉L = I(p)
GL(uv).

The only difference now is that the mass matrix will be under-integrated.

Theorem 4.3.2. Let ω ∈ R be given and there exists a non-trivial uhp ∈ Vhp which

satisfies

(u′
hp, v

′) = ω2〈uhp, v〉L, ∀v ∈ Vhp (4.25)

and the Bloch wave property (4.9) with frequency ξ(ω), where

ξ(ω)2 = ω2 +
1

p

[
p!

(2p)!

]2
h2pω2p+2

2p + 1
+ O(h)2p+2. (4.26)

Consequently, the discrete dispersion relation for spectral elements in R
d is given

by

ω2
h = ω2 +

1

p

[
p!

(2p)!

]2
1

2p + 1

d∑

ℓ=1

h2p
ℓ ω2p+2

ℓ + O(h)2p+2 (4.27)

where ω2
1 + ω2

2 + · · · + ω2
d = ω2.

Proof. The existence of uhp is established in Theorem 2.4.2 of Chapter 2 where it

is also shown that

ξ(ω)2 = ω2 +
1

p

[
p!

(2p)!

]2
h2pω2p+2

2p + 1
+ O(h)2p+2.

Equation (4.27) then follows at once from Theorem 4.2.1.

Interestingly, from (4.27) it is clear that for higher orders the spectral element

scheme provides p-times better accuracy as compared to the discrete dispersion

relation obtained with finite element scheme (4.22). The same accuracy in the

case of regular tensor product meshes was conjectured in [5].
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4.3.3 Optimally blended scheme

We now apply Theorem 4.2.1 to a novel scheme introduced in Chapter 3 for

the wave equation, whereby the finite element and spectral element schemes are

blended in such a way that the order of accuracy of the resulting discrete disper-

sion relation is optimised. If the blending parameter is denoted by τ ∈ [0, 1], then

we base the blended scheme on the blended quadrature rule

∫ 1

−1

f(x)dx ≈ Q(p)
τ (f) = (1 − τ)Q(p)

G (f) + τQ(p)(f)

where Q(p)
G and Q(p) are the (p + 1)-point Gauss-Legendre and Gauss-Legendre-

Lobatto quadrature rules defined in the previous sections and give us the standard

finite element and spectral element schemes for τ = 0 and τ = 1 respectively. Fur-

thermore, Q(p)
τ is the (p + 1)-point non-standard quadrature rule given in Chapter

3 valid for elements of arbitrary order with nodes {ζτ
ℓ }p

ℓ=0 chosen as the zeros of

Lp+1 − τLp−1, where Lp+1 and Lp−1 are the Legendre polynomials of degrees p + 1

and p − 1 respectively, with weights given by

wτ
ℓ =

2[p(1 + τ) + τ ]

p(p + 1)Lp(ζτ
ℓ )[L′

p+1(ζ
τ
ℓ ) − τL′

p−1(ζ
τ
ℓ )]

, ∀ℓ = 0, 1, . . . , p. (4.28)

Furthermore, Q(p)
τ satisfies the following identity given in Chapter 3

Q(p)
τ (f) = (1 − τ)Q(p)

G (f) + τQ(p)(f) ∀f ∈ P2p+1 (4.29)

and is exact for all polynomials of degrees at the most 2p−1. We use this quadrature

rule to develop a composite quadrature rule on R, which we denote by I(p)
τ (·), and

follow the same construction used in the previous sections for finite element and

spectral element schemes. The discrete L2-inner product is taken to be

〈u, v〉τ = I(p)
τ (uv).

Once again the mass matrix is under-integrated.
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Theorem 4.3.3. Let ω ∈ R be given and there exists a non-trivial uhp ∈ Vhp which

satisfies

(u′
hp, v

′) = ω2〈uhp, v〉τ , ∀v ∈ Vhp (4.30)

and the Bloch wave property (4.9) with frequency ξ(ω), where

ξ(ω)2 = ω2 +

[
τ

(
1 +

1

p

)
− 1

] [
p!

(2p)!

]2
h2pω2p+2

2p + 1
+ O(h2p+2). (4.31)

Consequently, the discrete dispersion relation for optimally blended scheme in Rd

is given by

ω2
h = ω2 +

[
τ

(
1 +

1

p

)
− 1

] [
p!

(2p)!

]2
1

2p + 1

d∑

ℓ=1

h2p
ℓ ω2p+2

ℓ (4.32)

where ω2
1 + ω2

2 + · · · + ω2
d = ω2.

Proof. The existence of uhp is proved in Theorem 3.3.2 of Chapter 3 where it is

also shown that

ξ(ω)2 = ω2 +

[
τ

(
1 +

1

p

)
− 1

] [
p!

(2p)!

]2
h2pω2p+2

2p + 1
+ O(h2p+2). (4.33)

Now applying Theorem 4.2.1, we obtain (4.32) at once.

It is not difficult to check that the above expressions leads to expression (4.22)

for τ = 0 and (4.27) for τ = 1 which are the discrete dispersion relations cor-

responding to finite element and element spectral element schemes respectively.

More importantly, the first term in expression (4.32) vanishes if we choose blend-

ing parameter τ = p/(p + 1) which shows that the optimal blending parameter is

independent of the number of spatial dimensions. Theorem 4.3.3 gives rise to the

following corollary.

Corollary 4.3.4. Let p ≥ 2. Then for the optimal choice of the blending parameter

τ = p/(p + 1), the error in the discrete dispersion relation (4.32) is given by

ω2
h = ω2 +

8

(2p − 1)

[
(p + 1)!

(2p + 2)!

]2
1

2p + 3

d∑

ℓ=1

h2p+2
ℓ ω2p+4

ℓ + O(h2p+4).
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Proof. Substituting τ = p/(p + 1) in (4.32) and applying trivial manipulations

gives us the required result.

Whilst the cost of all of the schemes is virtually identical, remarkably the

leading error term for the optimal scheme is two orders more accurate compared

with the standard spectral element and finite element schemes given in the previous

sections. Moreover, the coefficient of the leading term in the error obtained with

the blended scheme for the optimum value of τ is −2/(4p2−1)(2p+3) and 2p/(4p2−

1)(2p+3) times better compared with the coefficients of leading terms in the error

obtained with finite element and spectral element schemes respectively.

4.4 Numerical examples

In order to study the behaviour of finite element, spectral element and optimally

blended schemes in practical computations, we consider a simple one dimensional

scattering problem on the interval (0, 3) with fixed ω > 0, and ωs > 0 with relative

density ρ = ω2
s/ω

2 given by

−u′′ − ω2(x)u = f(x) (4.34)

where

ω(x) =





ω, for x /∈ (1, 2),

ωs, for x ∈ (1, 2)
and f(x) =





0, for x /∈ (1, 2),

(ω2 − ω2
s)e

iωx, for x ∈ (1, 2)

with the following non-reflecting boundary conditions applied at both ends of the

domain

u′(0) + iωu(0) = 0 and u′(3) − iωu(3) = 0.

Evidently, the model problem corresponds to scattering of an incoming plane wave

by a slab of relative density ω2
s/ω

2 located on (1, 2). In Figure 4.1 (a), we approx-

imate scattered wave using 35 and 300 linear elements outside and inside the slab
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Figure 4.1: Numerical approximations of the solution to equation (4.34) obtained

for p = 1 with ω = 30 and ρ = 9. Furthermore 35 and 300 elements are used outside

and inside the slab respectively.
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respectively for finite element, spectral element and optimally blended schemes

with given frequency ω = 30 and relative density ρ = 9. Scattered waves on the

left and right side of the slab are shown in Figure 4.1 (c) − (d) to analyse bet-

ter the numerical approximations obtained with all the schemes. The phase lead

and lag of equal magnitudes are clearly visible and correspond to finite element

and spectral element schemes which is consistent with error expressions given in

(4.22) and (4.27). The same observation was made in [5–7, 60] in the case of linear

elements. Furthermore the numerical approximation corresponding to the opti-

mal scheme is noticeably better than that of finite element and spectral element

schemes which was also observed in [7]. Figure 4.1 (b), represents the scattered

wave inside the slab and once again optimal scheme performs better than that

of finite element and spectral element schemes nonetheless phase lead and lag of

equal magnitudes with linear elements are still prominent even inside the slab.

In Figures 4.2 and 4.3, we show numerical approximations obtained for all the

schemes using quadratic and cubic elements. It is clear from Figures 4.2(a) and

4.3(a) that with piecewise quadratic and cubic elements both spectral element and

optimally blended schemes are performing much better than that of finite element

scheme. This conjecture is consistent with analytical results (4.27) and (4.32)

of dispersion error obtained for spectral element and optimally blended schemes.

The magnitude of the leading order error term for spectral element and optimally

blended schemes are O(p−1) and O(p−3) times better than that of the pure finite

element scheme. Moreover, the numerical approximation obtained with finite ele-

ment scheme is unresolved both for quadratic and cubic elements in each region.

The same conjecture is observed even inside the slab which is presented in Figures

4.2(b) and 4.3(b) for quadratic and cubic elements respectively. In Figure 4.4,

we show the effect of using polynomials of different orders in different regions. In
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Figure 4.2: Numerical approximations of the solution to equation (4.34) obtained

for p = 2 with ω = 10 and ρ = 49. Furthermore 10 and 30 elements are used outside

and inside the slab respectively.
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Figure 4.3: Numerical approximations of the solution to equation (4.34) obtained

for p = 3 with ω = 10 and ρ = 115. Furthermore 10 and 30 elements are used

outside and inside the slab respectively.
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Figure 4.4: Numerical approximations of the solution to equation (4.34) obtained

with ω = 30 and ρ = 9 for (a) 35 linear and 50 cubic elements (b) 5 quartic and

15 fifth order elements used outside and inside the slab respectively.
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Figure 4.5: Numerical approximations of the solution to equation (4.34) obtained

with ω = 10 and ρ = 9 using 10 linear elements outside the slab and using (a) ten

cubic (b) 10 fifth order (c) 20 cubic (d) 20 fifth order elements inside the slab.
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Figure 4.4(a), we show numerical results approximated outside the slab with first

order (p = 1) elements whereas cubic elements are used inside the slab. We use

the same number of elements i.e. n1 = n3 = 35 outside the slab as we used in

Figure 4.1 but inside the slab using n2 = 50 cubic elements instead of 300 linear

elements gives us much better results but phase leads and lags of equal magni-

tude are visible outside the slab as we are using linear elements there. Now using

n1 = n3 = 5 quartic elements outside the slab and n2 = 15 elements of fifth order

provides very accurate results as shown in Figure 4.4 (b). In Figure 4.5, we show

that when the waves are fully resolved inside the slab then increasing the order or

the number of elements or both the order and the number of elements inside the

slab do not help the waves outside the slab to converge. Hence, when the waves

are almost resolved inside the slab then the waves outside the slab can be resolved

by either increasing the number of elements or using higher order elements. In the

case where the wave is not resolved inside the slab then increasing the number of

elements or using higher order elements or increasing the number of elements and

using the higher order elements simultaneously outside the slab do not give us a

completely resolved wave and this behaviour is shown in Figure 4.6.
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Figure 4.6: Numerical approximations of the solution to equation (4.34) obtained

with ω = 10 and ρ = 10 for (a) 10 linear (b) 200 linear (c) 10 fifth order (d) 20 fifth

order elements inside the slab and 50 linear elements are used outside the slab in

all cases.
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Conclusions

In this work high-order accurate numerical methods for computational wave prop-

agation are developed for the reduced wave equation (Helmholtz equation). We

started with the mass-lumped finite element scheme in which the mass matrix

becomes diagonal if the nodes for the spectral element scheme are chosen to be

the Gauss-Legendre-Lobattto points in conjunction with a Lagrange basis. This

is sometimes described as the Gauss-point mass lumped finite element scheme.

We then appropriately blended the standard finite element and spectral element

schemes following the suggestion of Marfurt (1984). Finally, we extended the one

dimensional discrete dispersion relations of finite element, spectral element and

optimally blended schemes to higher dimensions using tensor product meshes on

a rectangular grid.

5.1 Spectral element scheme

The main conclusions and comparisons of the spectral element scheme with the

finite element scheme for approximation of a wave of frequency ω are as follows:

150
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1. for fixed order of approximation p, as ωh tends to zero:

(a) both the finite element and spectral element schemes give the same

O(ωh)2p+1 accuracy for the phase error [1, 35, 37, 38, 60];

(b) the multiplicative constant appearing in front of the leading order term

for the error in the spectral element case is −1/p times that for the

finite element case.

The first conclusion agrees with the practical observation that the Gauss-

point mass lumped scheme (i.e. spectral element method) tends to exhibit

phase lag whereas the (consistent) finite element scheme tends to exhibit

phase lead. More interestingly, the conclusion shows that the absolute ac-

curacy of the spectral element scheme is 1/p times better than that of the

finite element scheme despite the use of numerical integration;

2. for a fixed mesh of size h with ωh ≫ 1, as the order of the scheme p is

increased:

(a) for p = O(1), the phase error of the finite element scheme is O(1)

whereas the spectral element scheme is of order 1
2
(ωh)2;

(b) for ωh − o(ωh)1/3 ≤ 2p + 1 ≤ ωh + o(ωh)1/3, the phase accuracy of

both schemes undergoes a sharp transition between an error of order

O(1) and a situation in which both schemes provide an essentially fully

resolved numerical wave;

(c) for 2p + 1 ≫ ωh, the error obtained with the spectral element scheme

performs (ωh/4p)2 times better than that of the finite element scheme.

E (p)
SE ≈

(
ωh

4p

)2

E (p)
FE
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The second conclusion means that in the unresolved regime, the spectral ele-

ment method behaves rather erratically (in numerical examples one sees drastic

over-shooting and under-shooting of the true wave) in contrast with the less erratic

(but still very poor) behaviour of the finite element scheme. Both schemes exhibit

a sharp transition whereby the true wave is essentially fully resolved by increasing

the order from p to roughly order p + 1 or p + 2.

The transition corresponding to the stage where the spectral element scheme

essentially provides full resolution occurs when the order p, the mesh-size h and the

frequency ω are related by 2p+1 ≈ ωh. A mesh of size h corresponds to there being

2π/ωh elements per wavelength. Each element in a p-th order scheme involves p+1

Gauss-Legendre-Lobatto points in each direction, or on average p + 1/2 degrees

of freedom per element in each direction. Consequently, at the point when full

resolution occurs, the scheme requires roughly (p + 1/2) × 2π/ωh = π degrees of

freedom per wavelength. This agrees with the general rule of thumb sometimes

quoted in the context of spectral element methods: π modes per wavelength are

needed to resolve a wave, and the arguments presented here can be regarded as a

rigorous proof of that fact.

Finally, it is worth recalling the fundamental fact that at least two degrees

of freedom per wavelength are needed for any scheme to resolve a wave. Conse-

quently, the ability of the spectral element (and finite element) method to resolve

a wave with π degrees of freedom per wavelength is close to optimal and perhaps

helps to explain the popularity of such methods for computational wave propaga-

tion.
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5.2 Optimally blended scheme

The main conclusions and comparisons of the optimally blended scheme with the

standard finite element and spectral element schemes for approximation of a wave

of frequency ω are as follows:

1. for fixed order of approximation p, as ωh tends to zero:

(a) For p-th order scheme both the finite element and spectral element

schemes are O(ωh)2p+1 order accurate whereas the optimally blended

scheme is O(ωh)2p+3 order accurate;

(b) the multiplicative constant appearing in front of the leading order term

for the error for optimally blended scheme is O(p−3) and O(p−2) times

better than that of the standard finite element and spectral element

schemes respectively;

The first conclusion means that the optimally blended scheme is two orders

more accurate compared with the standard finite element and spectral ele-

ment schemes and tends to exhibit phase lag. Furthermore, for the optimum

value of the blending parameter τ = p/(p+1), the absolute phase accuracy of

the optimally blended scheme is −2/(4p2−1)(2p+3) and 2p/(4p2−1)(2p+3)

times better than that of the finite element and spectral element schemes re-

spectively;

2. the optimally blended scheme can be efficiently implemented by using non-

standard quadrature rule. More specifically it means that an existing, stan-

dard finite element code can be adapted to implement the optimally blended

scheme merely by replacing the usual Gaussian quadrature rule by the non-

standard rules;
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3. the blending parameter τ is independent of the frequency ω and the number

of spatial dimensions. It means that the optimally blended scheme can be

used directly for transient wave propagation problems in contrast to the

GFEM [8] and GLS [32, 53, 61] schemes where the coefficient matrix depends

upon the frequency ω or the wavenumber k.

5.3 Explicit discrete dispersion relations in d-

dimensions

We conclude that analytical expressions for the discrete dispersion relations for

finite element, spectral element and optimally blended schemes in higher dimen-

sions can be obtained using their corresponding one dimensional discrete dispersion

relations. More interestingly, the optimum value of the blending parameter for op-

timally blended scheme is same even for rectangular grids i.e. τ = p/(p + 1) for

all p ∈ N.
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[8] I. Babuška, F. Ihlenburg, E. T. Paik, and S. A. Sauter. A generalized finite

element method for solving the Helmholtz equation in two dimensions with

minimal pollution. Comput. Methods Appl. Mech. Engrg., 128(3-4):325–359,

1995.
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[10] I. Babuška and S. A. Sauter. Is the pollution effect of the FEM avoidable for

the Helmholtz equation considering high wave numbers? SIAM J. Numer.

Anal., 34(6):2392–2423, 1997.

[11] S. C. Brenner and L. R. Scott. The mathematical theory of finite element

methods, volume 15 of Texts in Applied Mathematics. Springer, New York,

third edition, 2008.

[12] J. Callerame. X-ray backscatter imaging: photography through barriers.

American Science and Engineering, Inc., 2006.

[13] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral meth-

ods. Scientific Computation. Springer, Berlin, 2007. Evolution to complex

geometries and applications to fluid dynamics.



Bibliography 157

[14] S. Challa. High-order Accurate spectral elements for wave propagation. Mas-

ters thesis in mechanical engineering, Clemson University, 1998.

[15] J. L. Cipolla. Subgrid modeling in a Galerkin method for the Helmholtz

equation. Comput. Methods Appl. Mech. Engrg., 177(1-2):35–49, 1999.

[16] R. D. Ciskowski and C. A. Brebbia, editors. Boundary element methods in

acoustics. International Series on Computational Engineering. Computational

Mechanics Publications, Southampton, 1991.

[17] G. C. Cohen. Higher-order numerical methods for transient wave equations.

Scientific Computation. Springer-Verlag, Berlin, 2002. With a foreword by R.

Glowinski.
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