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Abstract 

 
As a branch of CFD, Meshless method called ‘Smoothed Particle Hydrodynamics’ 

(SPH) has the advantage to deal with complicated free surface flows and some other 

attractive features. In this thesis, a robust, accurate and efficient SPH code was 

developed to simulate the 3D nonlinear free surface flows. MPI (message passing 

interface) was adopted for parallelization. Approximate solid ghost particles were 

proposed to simulate general 3D geometry on solid boundaries. Local pressure 

evaluation method was used to calculate response loads on structure and to simulate 

fully coupling motion between solid and liquid. Some other techniques were 

developed and adopted in our code in order to construct a more accurate and stable 

simulation. 

 

For verification and validation of SPH method, one-phase and two-phase dam break 

and wedge entry were tested with discussion of solid boundary, pressure evaluation 

method and variable smoothed length. Subsequently, the method was used to study 

2D and 3D sloshing and flooding problems. Comparisons were carried out between 

experimental and other numerical results. The features of the phenomenon for 

instance in terms of wave height, structural loads and large deformation of free 

surface were analyzed and discussed. 

 

Key words: SPH (Smoothed Particle Hydrodynamics), three dimension, nonlinear, 

free surface, sloshing, flooding 
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1 Introduction 

The problems of nonlinear free surface flows are critical issues that have to be 

addressed by the research community within the field of naval shipbuilding. For 

example, slamming is one of the leading hydro-elastic problems which persistently 

defy the designers understanding of ship behavior at sea. The problem of sloshing is 

of particular interest when designing ships with large liquid tanks as well as 

investigating the behavior of a breached hull with flooding water, which is 

increasingly considered now as part of the new approach to safety at sea. 

 

However, the theoretical analysis is limited to the cases with small deformations of 

the interface. The non-linearity, viscous effects and strong coupling of fluid-solid 

interaction are the main problems when performing calculations. Therefore the 

development of feasible calculation methods to accurately predict nonlinear 

hydrodynamics should be based on CFD methods. When focusing on CFD methods, 

the standard approach to solving the equations of fluid dynamics with interface 

numerically is to define fluid quantities on a regular spatial grid coupled with 

techniques to capture interface evolution, such as Level Set (LS) or Volume Of Fluid 

(VOF), which are computing derivatives using finite difference or finite volume 

schemes. This is an extremely well studied approach and although most ‘state of the 

art’ methods for fluid dynamics have been developed in this manner, there is still 

much work required to improve them for more general validity. An alternative to all 

of these methods is to remove the spatial grid entirely in which fluid quantities are 

carried by a set of moving interpolation points, which follow the fluid motion. They 

are called the ‘meshless method’. Smoothed Particle Hydrodynamics (SPH) is one of 

the meshless methods. As it is set in a fully Lagrangian frame, SPH has a great 

advantage to capture interface of the fluid naturally without the need of mesh 

refinement. Since SPH was firstly proposed in 1977 (Lucy and Monaghan), it has 

been applied in free surface flows (dam break, Monaghan 1994; slamming, Oger 
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2005). However, SPH still has to overcome the problems of how to handle complex 

boundaries, the stability of calculations and three dimension case calculation 

efficiency. This thesis aims to delve deeply into the SPH method and establish it as a 

creditable method for non-linear hydrodynamics as well as further extend its 

applications to actual 3D nonlinear free surface flows of contemporary significance 

and focus, such as sloshing, slamming and flooding. 

 

1.1 Background and motivation 

Sloshing is one of the nonlinear free-surface flows, which can be defined as dynamic 

load acting over a tank structure as a result of the motion of a fluid with free surface 

confined in the tank. It is a highly nonlinear resonant phenomenon appearing in all 

marine structures containing liquids. This can lead to large local structural loads in the 

tank and has an important effect on the global ship motion.  

 

 

Fig 1.1 Fluid sloshing dynamics 

 

The effects of sloshing loads are of great importance when designing LNG carriers. It 
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is necessary to develop numerical methods which can describe the fluid loading and 

coupling between ship motions and sloshing. 

 

Fig 1.2 LNG carrier 

 

 
Fig 1.3 liquid sloshing in LNG carrier 

 

Several studies based on different numerical approaches to sloshing have been 

conducted by Su Tsung-Chow (1992), Buechmann (1996), Tanizawa (1996), Chen et 

al. (1997), Pawell (1997) and Faltinsen (1999). The majority of them used the 

potential flow model where an incompressible fluid in irrotational motion can be used 
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in many cases to model sloshing, in particular for smooth tanks with limited depths. 

However, dissipation and damping occurs within intermediate and shallow depths due 

to the run-up and overturning of the fluid near the wall and wave breaking in the 

middle of the free surface. Therefore CFD approaches have been employed in recent 

years to resolve free surface flow problems such as VOF (Hirt and Nichols, 1981) and 

the SPH method (Monaghan, 1994). 

 

Concerning water flooding in damaged vessels, a high nonlinear hydrodynamic 

phenomenon was found to be present in this process. Vessel motion can affect water 

flooding and water sloshing in the compartment and conversely, liquid loads due to 

water sloshing in the compartment influence the vessel motion. 

 

 

Fig 1.4 Estonia 

 

The size of passenger ships has been growing for decades, and nowadays many ships 

can accommodate several thousands of people. Therefore, the safety of these ships is 

of the uttermost importance, both in the design phase and onboard in the event of 

accident. When a ship is damaged, for example due to a collision or grounding, water 
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starts to flood in. The internal openings and non-watertight subdivision in the 

watertight (WT) compartment can have a significant effect on the motions of the ship 

during the flooding process. Between the intact position and the final damaged 

condition, if equilibrium can be found, the flooding ship can pass through the 

intermediate stages that can be more hazardous than the final condition. Therefore, it 

is important to be able to evaluate these intermediate stages. Practically, the only 

feasible and accurate way to do this is to use the time-domain simulation of the 

flooding process and recreate the motions of the damaged ship. Moreover, the 

simulation will give an estimation of the available time for an orderly evacuation and 

abandonment, where there is a risk that the ship will capsize or sink. 

 

 

Fig 1.5 Estonia (sailing) 
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Fig 1.6 Estonia (capsized and sank) 

 

The time-domain simulation methods for damage stability and progressive flooding 

have been established for about two decades. The capsizing of the car passenger ferry 

“Herald of Free Enterprise” in 1987 and the sinking of the ferry “Estonia” in 1994 

have had a major influence on this work. Therefore, it is easy to understand why so 

much effort has been put into finding solutions to the problem of water on the vehicle 

deck. However, recently also the performance based damage stability of large 

passenger ships has been studied using simulations. This has become feasible since 

the calculation capacity of the computers has significantly improved. The most 

significant approaches on the flooding simulation are briefly reviewed in the 

following paragraph. 

 

The classical hydraulic model has widely been used in previous studies to calculate 

the floodwater dynamics studies (Santos et al., 2002; Palazzi and De Kat, 2004; 

Ruponen, 2007). The inflow and outflow of water through the damaged opening is 

determined by the modified empirical Bernoulli Equation. The motion of floodwater 

inside the compartment is ignored and its free surface is assumed to be horizontal. An 

improved model for the internal water motion was proposed by Papanikolaou et al. 

(2000), in which the internal water is considered as a lump mass moving freely over a 
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specific path surface. However, the surface of water is assumed to remain flat. A more 

sophisticated model for calculating the internal water dynamics involves using the 

shallow water equation (Santos and Guedes Soares, 2002; Valanto, 2006; Santos and 

Guedes Soares, 2006). Although all the approaches mentioned above are practical and 

efficient in predicting the flood water motion and its impact on the vessel, there are 

some limitations. Firstly, a simple hydraulic model drives the water ingress/egress 

through the opening, and hence the transient dynamics of the flow are ignored. 

Secondly, the surface of floodwater in the compartment is assumed to be either 

horizontal or flat. In the case when the vessel undergoes large amplitudes of motion, 

these approaches lack the ability to model the violent flows with the non-linear free 

surface, even when employing the shallow water theory. Thirdly, the above models 

cannot fully consider the influences of the geometry of the damaged opening and the 

internal layout of complex compartments on the motion of the flood water. Therefore, 

more effective and accurate methods to predict the flood water dynamics are required. 

 

Some methods have been presented in the past few years. The Volume of Fluid (VOF) 

method, proposed by Hirt and Nichols (1981), has become the most popular method 

for calculating free surface flows. Many studies have shown that the VOF method is 

capable to capture sharp interfaces even with large scale overturning and deforming 

(Van’t Veer and De Kat, 2000; Gao, 2001; Woodburn et al., 2002; Gao et al., 2004; 

Cho et al., 2005). 

 

As a ‘meshless method’, SPH was originally developed to deal with astro-dynamical 

problems and has successfully extended to a variety of fluid-dynamic systems. In SPH, 

the formulation is Lagrangian and the fluid is divided into a set of particles. This is 

the main advantage of the method when dealing with free-surface problems, 

compared to Eulerian schemes. The particles in SPH carry the basic characters of 

fluid such as velocity, position and density. The characters come from the use of an 

integral interpolation technique. 
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In the present thesis, the SPH method has been the focus for further development 

leading to an accurate simulation of 3D nonlinear free surface flows. The major 

contributions of this thesis are summarized in the next section. 

 

1.2 Aims and Objectives 
 

The main objective of this thesis is to develop fast and accurate CFD tools based on 

Smoothed Particle Hydrodynamics to simulate 3D Nonlinear Free Surface Flows. 

 

Specific objectives include the following: 

 

1. To critically review SPH theory and relevant applications on Hydrodynamics 

 

2. To construct a more accurate and robust simulation by applying new solid 

boundary condition called ‘approximate ghost particles’ for simulating three 

dimensional cases with general geometries. To search other suitable modifications 

on SPH algorithm to improve the stability of SPH method.  

 

3. To construct fast and efficient CFD tool by increasing the calculation capability: 

Parallelization of the SPH code using Message Passing Interface (MPI) technique 

and reducing the calculation cost: Variable smoothed length technique. 

 

4. To extract correct local properties of fluid (such as local pressure) to construct 

correctly the relation between solid response motion and fluid dynamics. 

 

5. To verify and validate the developed algorithm for stability, consistency and 

accuracy using available analytical, numerical and experimental results. 

 

6. To extend the applications of SPH to 3D free surface flows: three dimensional 
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sloshing and flooding with highly nonlinear phenomenon. 

 

7. To discuss the results deriving from this work and make recommendations for 

further research in this area. 

 

1.3 Structure of the thesis 
 

This thesis can be divided into two main parts consisting of seven chapters. The first 

one is dedicated to the description of the mathematical model and corresponding 

numerical method. The second part describes the verification and validation of the 

SPH code which has been developed for free surface and interface flow. Then 

applications of SPH are extended to 3D nonlinear free surface flows. 

 

A review of the SPH method is presented in chapter 2 and a description of the theory 

of SPH is discussed in chapter 3. Specification of solid boundary conditions is 

detailed present in Chapter 4. Chapter 5 is dedicated to the description of Parallel and 

time evolution strategies. Chapter 6 verifies the SPH method and validates the 

obtained SPH solver with analytical and experimental results. In order to implement 

the SPH method in 3D nonlinear cases, sloshing (Chapter 7) and flooding (Chapter 8) 

cases are simulated using SPH and discussed in detail. Finally, to conclude chapter 9 

presents developments, findings and discusses the main contributions of this thesis. 
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2 Background to SPH 

As a CFD method, the Smoothed Particle Hydrodynamics (SPH) has some features 

which make it highly attractive for simulating dynamic responses of materials 

involving fractures and fragmentation. In this chapter the theory and application of 

Smoothed Particle Hydrodynamics since its inception in 1977 are critically reviewed. 

 

2.1 Overview 

Recently, a new class of numerical solvers - based on the use of scattered sets of 

nodes or particles - has started to be successfully applied to partial differential 

equations (PDE). The name of this class of methods could be characterized as 

meshless, gridless, mesh-free or particle because their main feature is that they do not 

require any mesh. 

 

Smoothed Particle Hydrodynamics (SPH) is one particle method used for obtaining 

approximate numerical solutions of the equations of fluid dynamics by replacing the 

fluid with a set of particles. For mathematicians, the particles are approximate 

interpolation points which carry properties of the fluid. For the physicist, SPH 

particles are discrete material particles of fluid. Either way, this method has a number 

of attractive features. The first of these is that there are no additional advection terms 

in fluid equations because it is in the Lagrangian frame. Secondly, whatever the free 

surface problems, whether they are with one-phase or interface problems with 

multi-phase, SPH can capture the free surface and interface naturally, in contrast to 

finite difference schemes which may find it more difficult. Thirdly, SPH is a mesh 

free method which means there would never be a dynamic mesh problem where fitted 

numerical techniques are required for finite difference methods to deal with 

fluid-solid interaction problems. Finally, SPH has the advantage in the areas of 
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developing codes and computational optimization because the standard SPH method 

uses an explicit algorithm to calculate velocity and pressure. Additionally, there is 

close similarity between SPH and molecular dynamics which means it is possible to 

easily include complex physics. 

 

Over the recent past, much research has been devoted to the case of convection 

problems with the presence of deformable interfaces. When using the common 

numerical methods such as finite-difference and finite element it is difficult to find 

efficient solutions to these complex cases. Such problems could be effectively solved 

by employing particle methods. However, it is difficult to determine which 

interactions between the particles will accurately reproduce the equations of fluid 

dynamics or continuum mechanics. Lucy (1977) and Gingold & Monaghan (1977) 

derived the equations of motion using a ‘kernel estimation technique’ for the density 

term. This gave birth to the ‘Smoothed Particle Hydrodynamics’ (SPH) method. The 

basic idea of this solver is to consider the fluid as a set of (smooth) particles. Each one 

is associated with a kernel function that represents the particle mass as distributed 

along a finite area. The particle moves according to the forces induced by the whole 

particle system and carries information about the dynamic and thermodynamic 

properties of the fluid and their gradients. These quantities evolve according to 

specific mechanical laws. Monaghan and Gingold used this new solver and proposed 

numerical schemes which produced positive results for modeling the fluid dynamics 

of astrophysical phenomena without boundaries.  

 

As SPH is a numerical method to solve the continuum equations which are essentially 

a technique for approximating the real physics, it can be used for a wide range of fluid 

dynamical problems. Although the first application of SPH was to solve astrophysical 

problems, it has also been applied to incompressible flow problems by treating the 

fluid as slightly compressible with an appropriate equation of state between density 

and pressure of fluid (Monaghan 1994). Using this idea, waves breaking on arbitrary 

structures (Monaghan et al 2004, Colagrossi and Landrini 2003) as well as the more 
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classical problems of re-creating waves on beaches (Monaghan and Kos 1999) could 

be simulated. Colagrossi (2004) has made a detailed study based on the application of 

using SPH to simulate breaking waves. In his thesis it is also showed that the SPH 

simulation of sloshing tanks and the bow waves produced by certain ship hulls are 

consistent with results from the experiments. Oger (2005) aimed to create an accurate 

numerical simulation of solid-fluid coupling in free surface flow and tested wedge 

water entries. The evaluation of fluid pressure on solid boundaries proposes that SPH 

could produce results which highlight simple solutions for solving complex 

hydrodynamic problems such as floating bodies coupled with free surface dynamic 

responses, sinking vessels trapped in waves, rogue waves impacting upon structures. 

 

The achievement of solving fluid dynamic problems with interface using the SPH 

method are due to the development of comprehensive techniques which are available 

in the SPH solver. The next section is dedicated to discussion of this state of the art 

specific kind of solver. 

 

2.2 SPH: state-of-the-art 

More than thirty years ago, the first paper describing the SPH technique appeared 

(Lucy 1977) but it was dismissed as a ‘quick and dirty’ scheme. In recent years, the 

SPH solver has been substantially improved and has become a competitive and 

established CFD method. Its main advantage is that the SPH can evaluate fluid 

properties and spatial derivatives without using a computational grid. This avoids the 

complicated numerical problems due to mesh tangling and distortion. Initially this 

technique has been applied to problems in the astrophysical field, as stated in the 

review of the literature Benz (1988). Therefore relevant improvements of the solver 

were achieved within that research area. In recent years, with the advancements in 

computer technology, SPH has become ever more popular in the hydrodynamic field 

because its Lagrangian character makes it simple to be implemented in fluid flows 
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with existing interfaces and free surface even for 3D cases. The main steps leading to 

the most up to date SPH method are summarized and analyzed below 

 

Accuracy and Stability of SPH  

In past research (Gingold and Monaghan 1977, Lucy 1977) the proposed numerical 

schemes did not conserve linear and angular momentum. The basic SPH algorithm 

was improved using a similar method with molecular dynamics in order to conserve 

the exact linear and angular momentum which was applied for compressible 

non-dissipative fluid (Gingold and Monaghan 1983). Moussa and Vila (2000) 

investigated the convergence of SPH by studying the solution of Euler compressible 

equations. Libersky et al. (1993) developed a new meshless formulation to solve the 

solid mechanics. Dilts (1999) showed that the Lagrangian SPH discrete equations can 

be obtained by applying a Galerkin weighted residual scheme to the Eulerian 

conservation laws. 

 

Much of the research into SPH has been done to derive the new SPH form and 

improve its ability to perform accurate interpolations when the particles are not 

uniformly distributed (randomly distributed, close to surface or have particles that are 

not the same size) (Belytschko et al. 1998). In the development of meshless solvers, it 

is apparent that moving least square (MLS) approximations is a generalization of the 

SPH using an interpolate leading to accurate derivatives regardless of the particle 

distribution. A comprehensive description of the MLS is given by Lancaster & 

Salkauskas (1981). The first order form of MLS is named ‘Shepard Function’ 

(Shepard 1968) which can be applied to the data-fitting field. Nayroles et al. (1992) 

proposed using the ‘Diffuse Element Method’ (DEM) when applying the MLS 

approximation within a Galerkin method. Belytschko et al. (1994) improved upon this 

idea and further modified the solver. He renamed it the ‘Element-free Galerkin 

Method’. These new methods are consistent and stable but much more expensive than 

the original SPH form.  
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SPH suffers the crucial problem of a lack of stability. Swegle et al. (1995) 

demonstrated the occurrence of such instability through a dispersion analysis of the 

linear equations. It is caused by the interaction between the spatial derivatives of the 

kernel function and the tensile stresses in the momentum conservation equations. 

When the SPH is applied to the problems where the negative stresses appear, the 

particles don’t repel but attract each other and tend to clump together forming stable 

configurations. Although similar to the fractures and fragmentation of the material, 

these clumping processes are unphysical. Several solutions have been proposed to 

avoid the tensile instability. Morris (1996) investigated the type of instability 

occurring in the case of negative stress and concluded that spline interpolate kernels 

with compact support resulted in instabilities for the standard implementation of 2D 

SPH. Morris (1996) resolved this problem by rearranging the kernel to achieve the 

desired stability properties. If there are a sufficient large number of particle neighbors 

in the interactions, then the Gaussian kernel has good stability properties. However, 

this will lead to an expensive calculation. Monaghan (2000) introduced a small 

repulsive force between the particles with negative pressure to avoid particles 

clumping. The idea is inspired from a similar phenomenon observed with what 

happens in a real stretched solid. This correction ensures the stability of SPH and 

results in small errors in the cases of pressure wave propagation providing the proper 

parameters are used for this artificial repulsive force. In the literature of Gray, 

Monaghan, & Swift (2001), the correction was improved to handle problems with 

elastic solids. 

 

Quinlan et al.(2006) analyzed the truncation error of the gradient estimate using 

Tayler series expansion in 1D. The study showed the main factors responsible for 

second-order convergence of interpolation accuracy. Moreover, Quinlan et al.(2006) 

also showed the interpolation sensitivity could be reduced by renormalization of the 

kernel. Springel (2010) provided a characterization of the overall accuracy of the 

standard SPH scheme with testing the SPH model on several simple cases. The 

convergence of the simulation is achieved by keeping the number of neighbors 
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constant. 

 

Viscosity of SPH  

Monaghan (1992) introduced an artificial viscosity term and added it into the 

momentum equation. This idea is inspired from Von Neumann and Richtmyer (1950) 

who used it to model hydrodynamic shocks. This term solves the problems that the 

SPH scheme suffers from in terms of its instability due to its explicit time integration. 

However, it could bring additional dissipation into the calculation especially in long 

time simulations of low-dynamics flows where strict conservation properties are 

required. 

 

Morris et al. (1997) introduced a way to express the realistic viscous term with the 

SPH formulation in the low Reynolds number flows. This method gives the SPH 

scheme exact conservations of the linear momentum and an approximate conversation 

of angular momentum. Consistency is shown in the cases of Couette and Poiseuille 

flows. Potapov et al. (2001) applies the same formula to the more complex problem of 

a shear flow of large neutrally buoyant particles in a viscous fluid current. 

 

In the first application of SPH towards viscous turbulence flows, the form of a 

Monte-Carlo probability density function particle method is applied to study a variety 

of 2D flows. This shows consistency with the referenced solutions (Welton 1998). 

Wagner & Liu (2000) show that advanced Kernel Particle Methods can be used as a 

basis for a sub grid scale model within Large Eddy Simulations (LES). Reza ISSA 

(2005) applies a SPH mixing length model to a 2D free surface channel and attempts 

to adapt Large Eddy simulation concepts to SPH which is applied to a 3D turbulent 

free surface channel. Recently, Colagrossi et al.(2010) studied the behavior of the 

viscous term for incompressible flows and proved its consistency with the 

Navier-Stokes’ viscous term. 

 

Boundary conditions  
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SPH has a major advantage when dealing with free surface flows because it is not 

necessary to explicitly enforce the free surface boundary conditions: The kinematic 

condition is intrinsically incorporated in the Lagrangian flow description and the 

dynamic condition is also automatically satisfied. When simulating violent 

free-surface flows, for instance during sloshing processes with highly nonlinear 

resonant phenomenon appearing; or during slamming processes when breaking waves 

makes the free surface extremely complex, the SPH method shows great superiority 

over other mesh-based CFD tools which have to solve the algorithm to capture the 

free surface shape and to configure mesh, even dynamic mesh carefully in the free 

surface. Within the SPH strategy it is also possible to model the surface tension 

(Morris 2000, Nugent & Posch 2000). In the latter case, the surface tension is 

introduced by modifying the equation of state. This approach is much easier than the 

technique developed by Morris (2000) and this approach also provides a simple 

mechanism to control the numerical fragmentation of the interface. 

 

With respect to the free-surface conditions, the SPH has difficulties in handling the 

presence of solid boundaries. In the initial use of the SPH method in attempting to 

solve astrophysics problems, the solid boundary condition is not included since 

practical solid boundaries are not of interest in this context. Research into this field 

has been used to apply SPH within fluid dynamics. The first attempt to deal with the 

problem of solid walls employed the method of exerting forces upon the fluid 

particles. The form for the force was guided by the known forces between molecules. 

In real cases, the exerting force has the Lennard-Jones form and the value is based on 

the distance between a fluid particle and a boundary particle. The main drawbacks of 

this repulsive force are: 1) it causes pressure-wave disturbances at the beginning of 

the numerical simulation; 2) It is not suitable to accurately calculate the local 

hydrodynamic loads induced on the structures. Monaghan (1995) uses boundary 

particle forces to simulate boundary forces. This force is based on the SPH kernel and 

it seems appropriate because the pressure forces involve the gradient of the kernel. An 

alternative to this approach is to model the body presence by introducing a layer of 
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“ghost particles” along the body and outside of the physical domain. The density, 

pressure and velocity of such particles are deduced from those of the real particles 

adjacent to the solid boundary. With this technique the local loads on the body can be 

calculated accurately. Colagrossi A and Landrini M (2004) proposed mirroring ghost 

particles to mimic the solid boundary.  This approach results in the smooth behavior 

of the particles close to the modeled boundary. However, close attention is necessary 

when dealing with the complex geometries of the structures. 

 

Recently many other techniques have been proposed to simulate solid boundaries. 

Kulasegaram et al.(2004) introduced a contact force in the momentum equation based 

on boundary integrals. Similarly, Feldman and Bonet (2007) and Di Monaco et 

al.(2009) used an analytic method to compute the intersection between the kernel 

support and solid boundary. This approach could give more accurate results on solid 

boundaries but it leads to a more expensive calculation. Yildiz et al.(2009) proposed 

the multi-tangent algorithm as an extension of ghost technique. The ghost particles are 

obtained using different local boundary normals for non-flat geometry.  

 

Variable smoothed length  

Monaghan (1992) introduced the notion of spatially varying resolution. In the 

simulations performed within astrophysics studies the smoothing lengths are allowed 

to vary their position according to the local density of particles. However, meshless 

methods do not conserve energy when using variable smoothed lengths. Various 

studies (Benz, M.B. Liu & al, Nelson and Papaloizou, Oger G) have been carried with 

the aim of improving the formulation and the efficiency of the variable smoothing 

length technique in SPH. 

 

The variable smoothing length technique is an important tool for general use in the 

field of fluid dynamics. In many cases we only need high accuracy somewhere in the 

fluid domain to avoid expensive calculations. For example, we only distribute a high 

density of particles in the impacting zone of slamming cases which is similar to the 
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idea employed within local refinement. This technique is commonly used in 

mesh-based methods.  

 

 

Applications of SPH to Hydrodynamics  

Monaghan (1994) presents the first applications of SPH towards free-surface flows. 

The use of a stiff equation of state is proposed to link the density and pressure field of 

fluid particles in this approach which has now become quite popular. The density field 

shows fluctuations where amplitude is proportional to the square of Mach number of 

the problem. In particular, the Mach number of fluids is extremely small which means 

the fluid could be treated as perfectly incompressible. In the numerical simulation, the 

fluid is modeled more compressible than in reality in order to avoid expensive 

calculations. However, the speed of sound is still ten times larger than the maximum 

flow velocity. This implies the maximum fluctuations of density are of the order of 

1%. Following the simulations of the 2D dam break (Monaghan 1994) and 

propagation of waves on an inclined beach (Monaghan & Kos 1999), more 

applications on free surface flows have been studied in recent years. Monaghan (1999) 

shows the SPH capability to treat weakly compressible multi-phase flows with small 

density differences between the phases. SPH methods dealing with multi-phase 

fluid-solid flows are available in the literature (Monaghan & Kocharyan 1995 and 

Ritchie & Thomas 2002). González et al., (2003) and Skaar et al., (2006) used the 

Smoothed Particle Hydrodynamics (SPH) method to model the water flooding process. 

Souto Iglesias. A (2006) simulates the highly nonlinear 2D sloshing phenomenon 

produced in a rectangular tank. Oger (2005) gives two dimensional SPH simulations 

of wedge water entries. In this literature, the variable smooth length technique is used 

to reduce calculation time and evaluate the local pressure. Large scale calculation of 

SPH is used for 3D ship slamming cases which produces positive results compared 

with experimental data (Oger 2007).  

 

Recently, Marsh et al. (2010) investigated a shallow-depth sloshing absorber for 
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structural control. Ferrari et al. (2010) simulated a 3D dambreak case with impacting 

problem. Marrone et al.(2011) proposed ‘δ‐SPH’ model for the simulation of violent 

impact flows. Moreover, gravity wave propagation problems in different regimes were 

studied by Antuono et al.(2011) Dalrymple and Rogers (2006); Landrini et al, (2007) 

 

In these cases mentioned above, the trend of the applications of SPH can be clearly 

concluded: complex case with large-scale calculation. The SPH shows the great 

foreground of the actual application in the ship industry. 
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3 Numerical Solution 

 
In this chapter, the theory of SPH is firstly introduced that includes integral 

interpolation techniques, kernel function and neighbor particle search algorithm. The 

second part of this chapter is to describe the SPH strategy developed to simulate Euler 

equations. Finally, viscosity and tensile instability in SPH are discussed and some 

techniques are developed to increase the calculation efficiency. 

 

3.1 SPH mathematical model 

SPH (Smoothed Particle Hydrodynamics) is a grid-less Lagrangin technique, which is 

considered as an alternative numerical technique to analyze high deformation on 

interface. Although Arbitrary Lagrange-Euler (ALE) method and VOF method based 

on pure Eulerian techniques can easily handle gross motions with large deformation 

involved, there will be constraints within accuracy and efficiency of calculations if 

there is severe distortion and material fragment on the interface. In addition, when 

dealing with solid-fluid interaction problem, dynamic mesh will become another 

difficulty in Eulerian method especially for multi-phase cases. 

 

SPH offers a possible solution to these difficulties. The technique is Lagrangian so it 

provides complete fluid information in history by particles without any grid and 

makes interface tracking simple and natural. The lack of a grid also means that 3D 

calculations are as easy as 1D case. Many researchers have chosen SPH as a natural 

technique for large deformation calculations and produced numerous results that 

proved its robust capabilities. 
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Kernel approximation 

For better understanding of SPH, we start with standard Lagrangian finite-difference 

techniques with spatial grid. The grid purposed here is to create a possible way to 

construct approximations of spatial derivatives. 

 

Fig 3.1 finite difference grids 
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Fig 3.2 finite difference grid distortion 

 

This technique is based on the assumption that the same four nodes will always 

surround point P. When the grid distorts, the finite difference approximation will lose 

accuracy. This is different from standard grid-based Lagrangian method. The 

Smoothed Particle Hydrodynamics use an arbitrary collection of interpolation points 

instead of grid based approximations. Using this idea, SPH could avoid grid distortion 

and accuracy problem. The basis of this method is to model fluid domain as a finite 

number of particles, each one carry its local mass and other physical properties. The 

evolution of these particles still obeys to relevant PDE equation but the approximation 

of their properties and spatial derivative doesn’t base on the gird but the kernel 

estimate. 

 

More in detail, 

∫ −= ')'()'()( dVxxxfxf PP δ                 (3.1) 
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Where )'( xx p −δ  is the Dirac delta function. If )'( xx p −δ  is replaced by a kernel 

function ),'( hxxW p −  where h  is known as the smoothing length, the result is 

∫ −= '),'()'()( dVhxxWxfxf PP               (3.2) 

Here Px  is the location of point P where )( Pxf  is evaluated by interpolating known 

value )'(xf  in position 'x  over the domainΩ . In equation (3.2), ),'( hxxW P −  is 

the kernel function and h  is the length scale of the support of W  where the value 

of kernel differs from zero. Physically, h  represents the domain of influence 
PxΩ  

of Px . 'dV  is a differential volume element. This interpolation reproduces )( Pxf  

if the kernel is delta function. In practice, the kernels are functions which tend to the 

delta function as the length scale h  tends to zero. They should also be normalized to 

1 so that the constants are interpolated exactly (Equation 3.3-1).  

∫Ω =− 1'),'( dVhxxW P               (3.3-1) 

The kernel function should have other properties: 

0),'( ≥− hxxW P , if 
Pxx Ω∈' , and zero otherwise.        (3.3-2) 

),'( hxxW P −  decreases monotonously as 'xxP −  increases.             (3.3-3) 
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Fig 3.3 Sketch of the kernel function 

 

The approximation for spatial derivatives is obtained by substituting )( Pxf∇  for 

)( Pxf  in Equation (3.2) 

∫ −∇=∇ '),'()'()( dVhxxWxfxf PP              (3.4) 

The divergence in the integral is taken with respect to the primed coordinate system. 

Now 

),'()'()),'()'((),'()'( hxxWxfhxxWxfhxxWxf PPP −∇−−∇=−∇       (3.5) 

So that 

∫∫ −∇−−∇=∇ '),'()'(')),'()'(()( dVhxxWxfdVhxxWxfxf PPP       (3.6) 

The first term on the right side the equation can be converted by means of the 

divergence theorem into an integral over the surface of the domain of integration 

∫∫ =⋅−=−∇
S

PP dSnhxxWxfdVhxxWxf 0ˆ),'()'(')),'()'((          (3.7) 

Because of Equation (3.3-2) the surface integral is zero. Thus, 

∫ −∇−=∇ '),'()'()( dVhxxWxfxf PP              (3.8) 

Now, the kernel approximation allows spatial gradients to be determined from the 

values of the function and the derivative of the kernel, rather than the derivatives of 

the function itself. Finally, convert from continuous volume integrals to sums over 

discrete interpolation points. 

∑
=

−=
N

j
jij

j

j
i hxxWxf

m
xf

1

),()()(
ρ

              (3.9) 

And 

∑
=

−∇−=∇
N

j
jij

j

j
i hxxWxf

m
xf

1

),()()(
ρ

           (3.10) 

Where ρ  is the density of particle and N  in the number of interpolation particles 

in the domain iΩ . 

 



25 
 

The above equations provide continuous approximations to a function and its spatial 

gradient based on an arbitrary set of discrete interpolation points. No connectivity or 

spatial relation of the points is required. Theoretically, the choice of kernel is arbitrary 

as long as it satisfies Equation (3.3). However, in practical computations, choices of 

the smoothing function affect both the CPU requirements and the stability properties 

of the algorithm. 

 

Kernel function 

The most commonly used kernel functions, ),( hrW  where ji xxr −= , belong to a 

family of B-Spline kernels of both third and fifth order. In addition, the Gaussian 

kernel is also used in the paper (Morris 1996) detailed in Equation (3.11) 
2)/(

2/
1),( hr

dd e
h

hrW −=
π

               (3.11) 

Where d  is the dimension of the problem (1, 2, or 3). Equation (3.11) does not have 

a compact support. Therefore, a cut-off limit δ  is introduced. For the Gaussian type 

kernel, h3  is the typical value, which means 0),( =hrW , if hr 3> . 
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Fig 3.4 Kernel function (Left: Cubic Spline kernel 2D, Right: Gaussian kernel 2D ) 

 

Cubic spline and quintic spline kernel functions are also presented here, i.e. Equation 
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(3.12) is a cubic spline with h2  as cut-off limit is mostly used for its simplicity. 

Equation (3.13) is quintic function which has h3  as cut-off limit. 
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where 1α  and 2α  are constant determined by the dimension of the problem and the 

shape of the kernel function. See Table 1 

 1D 2D 3D 

1α  1 
π7

15  
π2
3  

2α  
120

1  
π478

7  
π120

1  

Table 1: kernel function 

 

A higher order kernel function is superior to low order kernel functions in that the 

second derivative is smooth. The stability of the SPH method depends highly upon the 

second derivative (Morris, 1997). The cubic kernel function has a piece-wise second 

order derivative, which occasionally makes the stability problematic. The three kernel 

functions of 2D is shown below Fig 3.5 
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Fig 3.5 Kernel functions in 2D (Cubic spline, Gaussian and Quintic spline). 

 

The derivative of the kernel function ),( hrW  is 

r
xx

r
hrW

x
hrW ji −

∂
∂

=
∂

∂ ),(),(                 (3.14) 

Derived from Equation (3.11-3.13), 
r

hrW
∂

∂ ),(  would be Equation (3.15-3.17) 

respectively. 
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See 1α  and 2α  in Table 1. 

The comparison between different kernel functions shows cubic spline kernel’s 

simplicity, the Gaussian kernel’s stability and code efficiency (Morris 1996). 

Therefore, the cubic spline kernel with h2  as cut-off limit and the Gaussian kernel 

both with h3  as cut-off limit have been used for cases study in the latter chapter. 

 

Kernel Correction 

Due to the arbitrarily scattered particles, the kernel interpolation does not give perfect 

results which does not satisfy the following equations 

∑ =
j jij dVxW 1)(                (3.18) 

∑ =
j ijijj xdVxWx )(               (3.19) 

∑ =∇
j jij dVxW 0)(               (3.20) 
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∑ =∇⊗
j jijj IdVxWx )(              (3.21) 

Therefore, a constant field will not be reproduced correctly which lead to spurious 

gradient and other numerical errors. 

 

Some alternative techniques can be used for kernel correction. The first order 

correction is Shepard interpolation technique, consists in using 

∑=
j

ji
S
jji dVxWxfxf )()()(             (3.22) 
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Equations (3.22-3.23) allow the reproduction of exact uniform function (3.18, 3.20). 

Furthermore, the computational cost of Shepard correction is quite small. Higher 

order approximations are also possible. Introducing a linear operator )( ixβ  

)()])(())(()([)( 210 ijijiijiii
MLS
j xWyyxxxxxxW −+−+= βββ       (3.24) 

This moving least square kernel MLS
jW  can reproduce correct linear functions and 

equations (3.18-3.21) are satisfied. )( ixβ  is computed through 
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Using this improved kernel the approximation of a given field and of its spatial 

derivatives are given by 

∑=
j

ji
MLS
jji dVxWxfxf )()()(            (3.28) 

∑ ∇=∇
j

ji
MLS
jji dVxWxfxf )()()(            (3.29) 

Where MLS
jW∇  can be evaluated with the formula 
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And the term )( ik xβ  is estimated by solving a linear algebraic problem as below 
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This procedure will result in a slight increase in the computing time because of the 

inversion of the 33×  matrix A  for each fluid particle. 

 

3.2 Neighbor Search Strategy 

 

In practice, the use of a kernel ),( hrW  with cut-off limit implies that each particle 

has finite number of ‘neighboring’ particles which create non-zero contributions to it. 

As a result an efficient and accurate algorithm has to be developed to discover these 

interacting particles.  

 

Following the work done by Hernquist & Katz (1989), consider the ),( hrW  

contribution of a pair of particles depends on the distance between them, the 

following strategy is applied. A background Cartesian squared grid is introduced, 

covering the fluid domain and with mesh size equal to )3(2 hh . Particles are stored in 

this grid and each particle will only interact with the particles inside the same grid cell 

or the particles belonging to the surrounding 8 cells (26 cells in 3D), as shown in 
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Figure 3.6. Therefore only particles that are likely to make contribution will be tested 

and any chance of missing an interaction will be avoided. Due to particle motions, this 

procedure needs to be periodically updated at each time step. This operation is rather 

computationally cheap and efficient. )log( NNO  is expected in the neighboring 

search cost instead of straight search algorithm )( 2NO . 

 

Fig 3.6 Neighbor Search Strategy (2D) 

 

In the case of variable smooth length ( h  is allowed to vary), the interaction radius for 

each particle is different. In order to keep the exact conservation of momentum, 

symmetric combination is considered for each pair. The interaction length is 

2
ji

ij

hh
h

+
= . 

If h  does not vary much, )max( ijhh =  is used as background grid size (Fig 3.6) 

and the efficiency of neighboring search will not decrease immensely. However, as 

the variation of h  is increased, there will be regions where large numbers of 

particles (with small h ) are clustered into single cells. Calculating the interactions 

between these particles in ‘crowded’ cell will be very expensive (Fig 3.7). 
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Fig 3.7 Expensive Neighbor search in crowed cell 

 

The variable smoothed length technique is only used in slamming and flooding cases 

in present thesis, therefore the density of number of the particles is mostly predictable 

during time evolution. Following the idea of TreeSPH (Hernquist 1989), the 

calculation domain is discretized into several pieces in advance for processing 

individually in our parallel code. The maximum kernel length in each piece of domain 

will vary to adapt to the local density of particle number. This procedure can improve 

the efficiency of particles that links significantly (Fig 3.8). 
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Fig 3.8 Neighbor search strategy with variable smoothed length 

  

The developed code is actually organized in simple independent subroutines, without 

requiring any temporary storing within a time step.  

 

3.3 SPH Euler Equations 

In modeling free surface flows with high fragmentation, the Smoothed Particle 

Hydrodynamics (SPH) method has provided good results when used to simulate 

sloshing and flooding problems. 

 

The advantages of SPH can be summarized as follow: SPH is conceptually both 

simple and easy for coding. The Lagrangian nature of SPH means that changes in 

density and flow morphology are automatically accounted for without the need for 

mesh refinement or other complicated procedures.  
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Here is the description of SPH strategy developed to simulate Euler equations.  
 

Governing equations 

The governing equations for fluid flow are the mass and momentum conservation. In 

Lagrangian form, these governing equations can be written as 

01
=⋅∇+ u

Dt
Dρ

ρ
                (3.34) 

ugp
Dt
Du 21

∇++∇−= ν
ρ

             (3.35) 

where ρ  is the fluid particle density; t  is time; u  is the particle velocity; p is 

pressure at the particles; g  is gravitational acceleration; and ν  is the kinematic 

viscosity.  

 

Without viscosityν , Equation (3.35) will become Euler form 

gp
Dt
Du

+∇−=
ρ
1                              (3.36) 

Although Equation 3.36 could be converted straight into SPH form the equation will 

be asymmetric in particles i  and j  which means the momentum will not be 

accurately conserved. Instead, we use 

ρ
ρρρ

∇+∇=
∇

2)( ppp                (3.37) 

Then, the momentum equation in SPH form will be 

∑ ∇⋅+⋅= )()( 22 ij
i

i

j

j
j

i xWpp
m

Dt
Du

ρρ
           (3.38) 

The linear and angular momentum is conserved exactly. 

 

For compressible flows in SPH, density can be determined by simple summation 
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∑= ijji Wmρ                 (3.39) 

When calculating the density on the surface, the result will become incorrect because 

the density falls discontinuously to zero.  

 
Fig 3.9 Lack of neighbor particles on the free surface  

 

Instead, density is determined with the continuity equation (3.34). In SPH form, it is 

∑ ∇⋅−⋅= )()( ijijj
i xWuum

Dt
Dρ             (3.40) 

Having a differential equation for ρ  means that it can be updated at the same time 

as other particle quantities and only one pass over the particles is required to obtain all 

the required information. Also, it can be helpful to improve the pressure field if using 

Equation (3.40) for several time steps and then correct the density by Equation (3.39). 

 

If we move the particles with the velocity of the fluid, then 

i
i u

Dt
Dx

=                  (3.41) 

Monaghan (1989) suggested moving the particles with an average velocity of 

neighboring particles to keep an orderly arrangement of particles which is called 

XSPH. 

Particles are moved according to  
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i Wuu
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Dx )(
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−
+

+= ∑ ρρ
ε            (3.42) 

Where, typically, 5.0=ε  for multi-phase flows, if particle i  is near the interface, 

XSPH correction will lead to wrong results because the mean density is wrongly 

evaluated in Equation 3.42. In our simulations, XSPH correction is only computed 
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without considering the influence of other phase.  

 

Equation of state 

In order to close the Euler equations, equation of state (EOS) is introduced to 

determine the pressure from density which is given as Cpp += )(ρ . This involves the 

assumption of a weakly-compressible fluid which is not always true in most of 

hydrodynamic problems. However, if the deviations of local density from the 

reference fluid density are sufficiently small, this type of error is negligible. Moreover, 

the use of EOS avoids solving pressure from the Poisson equation. As a result, the 

interaction of the code is explicit which only requires small memory occupation 

proportional to the number of particles and it could be extended to parallel program 

easily. 

 

The first equation of state used in the present SPH code is derived from internal 

potential energy. We use J  to denote the volume ratio between the initial and current 

state of the material. J  is defined as 

ρ
ρ 0

0 ==
V
VJ                                       (3.43) 

The pressure is evaluated from  

dJ
dUp −=

,                                             (3.44) 

Where 2)1(
2
1

−= JU κ  is for elastic solids and κ  denotes the bulk modulus. Hence, 

the pressure can be derived from the change of density directly 

)1( 0 −−=
ρ
ρκp                                               (3.45) 

The pressure is thus proportional to the change of the density and the bulk modulus of 

the fluid. Water is almost incompressible and the actual bulk modulus for water is 
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2.2GPa. The sound wave is approximately 1500m/sec and this yield a very small time 

step as the Courant stability requirement has to be met. 

 

In the present problem, the velocities of particles are much smaller than the sound 

speed of the water. Batchelor (1973) gives an equation of state for water, which 

describes sound waves accurately, i.e. Equation (3.46),  

]1)[(
0

−= γ

ρ
ρκp                                     (3.46) 

with 7=γ . The density variation in fluid flow is proportional to the square of Mach 

number, M. An estimation of the upper bound of the velocity of the particles is  

gHv 2= .                                          (3.47) 

Monaghan 1992 shows 0.1 is a good estimation of Mach number for this problem and 

using Equation (3.47) as estimation for sound speed. The bulk modulus,κ , is 

re-evaluated as 

γ
ρκ gH200

=
                                     (3.48) 

This artificial bulk modulus is much lower than the actual value of 2.2Gpa, but it 

works much more efficient because the time step is inversely proportional to the bulk 

modulus. Moreover, the deformation result is also realistic. 

 

This algorithm is rather robust particularly for large free-surface deformation and 

relatively easy for coding. 

 

Alternatively, implicit algorithms depending on solver of the Poisson Equation are 

shown by some author to present exactly incompressible fluids (Koshizuka & Oka 

1996, Cummins & Rudman 1999). Although enhanced stability are shown in these 

paper and their incompressible implicit method allow larger time step for interaction, 

they lost the native advantages to deal with free surface flow, especially high 

deformation free surface in slamming, sloshing and flooding because they have to 
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check the particles whether they are close to free surface or not. Two-phase implicit 

model could solve this problem but the calculation cost is not acceptable for our large 

scale computation because the very small density ratio of water and air will lead to 

much lesser time step to keep the stability between fluid particles and air particles on 

free surface. 

 

3.4 Viscosity 

Basic SPH formulism suffers the absence of dissipation of energy. In order to increase 

the stability of SPH, an additional term ijΠ  is introduced in the momentum equation 

to model the dissipation due to viscous forces. Many forms of artificial viscosity 

(Balsara 1995, Morris 1997) have been proposed, but as the present study are built to 

capture the violent fluid dynamic, the most commonly used artificial viscosity is 

obtained by writing the momentum equation as 
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Where ijΠ  is given by 
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Where )( jiij vvv −=  and )( jiij xxr −= . The expression for ijΠ contains a term that 

is linear in the velocity differences, which produces a shear and bulk viscosity. 

Typical value used for η  is 0.1. The coefficient α  denotes kinematic viscosity 

whose influence has been checked in the range 0.005-0.03. The best choice of α  

should keep stability of the results with acceptable energy dissipation. For instance for 

verification case of dam break, 03.0=α  was chosen. 
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3.5 Tensile Stability 

The tensile stability in SPH results in a clustering of particles. The clustering can be 

found in the cases if the particles carry negative pressure. Monaghan (2000) suggested 

using a small repulsive corrective term applied in the momentum equation. The 

pressure gradient term is modified accordingly to 

n
ij

j

j

i

i

j

j

i

i Rf
PPPP

++→+ 2222 ρρρρ
              (3.52) 

The factor R  can be determined by relating it to the pressure 

ji RRR +=                    (3.53) 

And 

2
i

i
i

P
R

ρ
ε

=  if 0<iP                (3.54) 

otherwise 0=iR . A typical value of ε  is 0.2 though the appropriate value depends 

on smooth length, n  and the number of spatial dimensions. 

Monaghan also suggested a slight force if 0>iP  and 0>jP  as the particles have 

the tendency to form local linear structures. 

)(01.0 22
j

j

i

i PPR
ρρ

+=  if 0>iP  and 0>jP           (3.55) 

Function ijf  is defined with respect to the kernel 

)(
)(

rW
rW

f
h

ijh
ij δ
=                  (3.56) 

In this corrective term, n  must be positive with typically value 4 and rδ  is 

determined from initial distance between particles. Monaghan established that the 

repulsive force between two particles is about 20 times larger if the distance ijr  

decreases from rδ  to 0 and decreases rapidly if the distance is larger than smooth 

length. Only nearest neighbors particles are influenced by the artificial pressure. This 

makes the calculation simple and accurate. 
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4 Boundary conditions 

4.1 Introduction 

If one wants to describe physical behavior of a material using strong form, the partial 

differential equations of continuum mechanics have to be completed by initial and by 

boundary conditions. SPH has the advantage in the case of free boundary condition, 

while the implementation of solid boundary conditions is a drawback for SPH. The 

treatment of solid boundary is one of the critical problems in the research of nonlinear 

free surface flows. In this chapter, different strategies of boundary conditions are 

introduced and discussed in detail.  

 

4.2 Free boundary: kinematic and dynamic condition 

As a basic idea of SPH, the particles are actual material element. The particles along 

the free surface at any given time instant will remain there. In conclusion, using 

Lagrangian tracking of particles will fulfill implicitly the kinematic free surface 

boundary condition. 

 

Moreover, concerning about dynamic condition on free surface, the pressure field will 

fall to zero when approaching the free surface which also means the dynamic free 

surface boundary condition is implicitly fulfilled. However, high frequency pressure 

oscillation is observed because of weak compressibility (sound waves) of fluid. As an 

alternative, the pressure condition can be enforced to be zero along the free surface 

and using incompressible SPH with solving Pressure Poisson Equation. This method 

will become more complex and require the explicit capturing of the particles on the 

free surface that is still problematic especially in the case of high deformation and 

fragmentation of free surface. In another words, the greatest advantage of SPH will be 
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lost. 

 

4.3 Solid boundary 

In SPH method, in order to apply the correct solid boundary conditions for the 

equations in the SPH formulation, the detection of boundary particles is needed to 

impose correct boundary conditions on these particles. Concerning bounded domain 

problems, there are several strategies and mathematical artifacts that allow for 

modeling the presence of boundaries with different degrees of accuracy. 

 

 Lennard-Jones Forces 

The Lennard-Jones form for a boundary particle force is based on known forces 

between molecules (Monaghan 1994). The non-penetration boundary condition is 

enforced by these repulsive forces acting on the particles close to solid boundary. For 

a boundary and fluid particle separated by a distance r , the force per unit mass )(rf  

has the Lennard-Jones form 

2
2010 ))()(()(

r
r

r
r

r
rDrf pp −=                (4.1) 

 

The Lennard-Jones force is purely repulsive and is set to zero if 0rr > , where 0r  is 

the initial particle spacing. The p  constants must satisfy 21 pp > , and coefficient 

D  was chosen by considering the physical configuration. For example, 41=p ,  

22 =p  and gHD =  could be taken where H  is initial water depth.  

 

 Boundary Particle Forces 

Another way to simulate boundary force is boundary particle forces. This force is 

based on the SPH kernel and it seems appropriate because the pressure forces involve 
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the gradient of the kernel (Monaghan 1995). A suitable form is, 
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Where ⊥r  is the perpendicular distance between the fluid particle and the boundary 

particle and v  is a free parameter which determines the strength of the boundary 

force, typically 01.0=v . 

 

In order to apply smooth force from discretized boundary particles, Monaghan (1995) 

introduced a new method consisting of assigning each boundary particle a normal 

direction n  and then calculating the perpendicular ⊥r  and tangential =r distances to 

fluid particles. The boundary force F  proposed by Monaghan is 

nrPrfF )()( =⊥=                  (4.3) 
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 Dummy particles and Ghost particles boundary conditions 

Both Lennard-Jones force and boundary particles force suffer the problems of 

disorder near the boundary. The boundary force is only dependent on the distance 

from the fluid particle to solid boundary without considering the gradient of velocity 

or pressure of the particles. In another words, a stationary fluid particle with high 

pressure is given the same boundary force as a fluid particle with low pressure. 

 

Ghost particle boundary conditions are then proposed to take pressure and velocity 

into account. The basic idea is to simulate the boundary with several layer of ‘ghost 
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particle’ which also carries pressure and velocity as fluid domain. These ghost 

particles are included in the calculation of neighbor search, momentum and 

continuum equations. There are two major ideas of ghost particles boundary condition, 

one of them is dummy particles boundary conditions. 

 

Dummy particles are defined to satisfy the wall boundary no penetration condition. 

Several layers of ghost particles are lying within some specified distance (smoothing 

length) from the boundary. They carry the attributes with time history like fluid 

particles but the position is fixed and velocity is zero at every time step. The effects of 

the fictitious ‘ghost’ particles are explicitly included in the summation for the fields 

and for their gradients. 

 
Fig 4.1 dummy particles 

abD means the internal force on particles are due to ghost particles which depend on 

the pressure gradient. 

 

Dummy particles can provide some accurate results in our tests but they disturb the 

fluid domain excessively. Alternatively dynamic ghost particles boundary conditions 

are available for the tests which offer some additional accurate results particular in the 

pressure evaluation on the boundary. Different from dummy particles, dynamic ghost 
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particles are mirroring particles from fluid domain near the wall boundary and they 

carry the same attributes as the fluid particles but the opposite velocity in normal 

direction of wall boundary. 

 

 
Fig 4.2 dynamic ghost particles 

 

Consider a plane wall, as in figure 3. At each time step, all the particles within a layer 

with thickness h3  from the wall are mirrored inside the body. The characteristics 

given to the ghost particles are 

iwiG xxx −= 2  

ninwniG uUu −= 2  

iiG pp =  

titiG uu =                   (4.5) 

Where nu  and tu  are, respectively, the tangential and normal velocity components 
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to the solid boundary, and nwU  is the local displacement velocity of the solid 

boundary with instantaneous position wx . 

 

Unlike the free surface, the solid boundaries require special care and the 

no-penetration condition must be imposed. Ghost particles method still suffers the 

problem of penetration problem somewhere because of the tensile instability, so we 

constrain the fluid particles’ motion when it is too close to the boundary. The typical 

distance )(ih  from fluid particle i  to its mirror ghost particle g  is the smooth 

length. 

)(ihrig =   if )(ihrig < ,               (4.6) 

and 

0=⋅ igig rv   if 0<⋅ igig rv               (4.7) 

Where igr  and igv  denote the relation between fluid particle i  its mirror particle 

g  

 

Ghost particle boundary condition is adopted in most of our test cases because it could 

offer more accurate results particularly for evaluation of local pressure. However, it 

will be difficult to handle the complex geometry particularly when containing convex 

and concave sharp corner. Corrections have to be enforced to avoid an excess or loss 

of ghost mass. Actually, in the application of SPH in ship hull case, the geometry 

could be believed to be sufficiently smooth. In the latter chapter, approximate solid 

boundary based on dynamic ghost technique will be introduced to simulate arbitrary 

complex geometry. 

 

4.4 Comparison of Results 

As previously outlined, four different methods that are used to deal with solid 
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boundary condition are dedicated to SPH simulation.  

1. L-J force 

2. Boundary force 

3. dummy boundary particles 

4. dynamic ghost particles  

The present chapter is dedicated to show the comparisons between these methods in 

the simulations of free surface flow.  

 

The first case analyzed concerns the accuracy and stability of particles pressure in a 

static tank under gravity effects. Since the particles mostly remain immobile, the 

pressure of single particle could represent the local pressure of the fluid. Two single 

particles are firstly monitored in the calculation with single point I, which is the 

particle on the left corner of the bottom and single point II is on the middle of the 

bottom. 
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Fig 4.3 Pressure of particles with Ghost particle boundary 
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Fig 4.4 Pressure of particles with Dummy particle boundary 

 

The theoretical value of pressure on the bottom of the tank is gDρ , where ρ  is the 

density of the fluid, g  is the gravity and D  is water depth. In Fig 4.3 and 4.4, the 

dummy particles or ghost particles can provide very accurate and stable values of 

pressure (Normalized by gDP ρ/  ) in time series.  
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Fig 4.5 Pressure of particles with Boundary particles force 
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Fig 4.6 Pressure of particles with L-J force 

In the simulations using Boundary particles force and L-J force with typical chosen 

parameter as solid boundary conditions (Fig 4.5-4.6), the pressure values of particles 

on the bottom were found oscillatory and much larger than theoretical value. The 

artificial forces that only depend on the distance between fluid particle and boundaries 
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will significantly disturb the particles that are very close to boundary. Although 

initialization of particles with damping can reduce the oscillation and the error of 

single fluid particle depends on the chosen parameters, the particles close to 

boundaries are inevitably irregular (Fig 4.7-4.9).  
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Fig 4.7 Particles position at time t=10s (L-J force) 



50 
 

0 0.5 1 1.5 2

0

0.5

1

1.5

Pressure: 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

Boundary particles force

 
Fig 4.8 Particles position at time t=10s (Boundary particles force) 
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Fig 4.9 Particles position at time t=10s (Ghost particles) 
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However, if the pressure is evaluated with integral of neighbor particles instead of a 

single particle, the value of pressure is still correct (Fig 4.10). 
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Fig 4.10 Bulk force of static tank (Boundary particles force and L-J force) 

 

The second case is illustrated by considering 2D flow generated after the breaking of 

a dam, as sketched in Fig 4.11. This case concerns the accuracy of flow evolution and 

impact force under different boundary conditions. A vertical wall is placed at a given 

distance from the broken dam, and the fluid flowing along the dry deck then impacts 

against it eventually. The simulations were performed four times with different 

boundary conditions. 
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Fig 4.11 Dam break problem and impact against a vertical rigid wall 

 

Firstly we study this case before fluid impact. Fig 4.12 gives the propagation in time 

of the water-front toe after the dam break. All boundary conditions offer the numerical 

results which agree with each other very well. As expected, although L-J force and 

Boundary particles force significantly disturb the fluid particles close to boundaries, 

the total fluid evolution is still acceptable. 
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Fig 4.12 time evolution of wave front toe 

 

In the research of nonlinear free surface flow, the interaction between solid and fluid 

is one of the most critical issues such as sloshing and slamming. In order to compare 

the stability and accuracy of four boundary conditions, impact forces on the vertical 

wall are evaluated. 

 

The integral of pressure along the wall is commonly used to evaluate the response 

force due to fluid. However, it is not simple to catch the pressure value on the wall in 

particles method. There are three strategies that can be utilized to solve this problem. 

The first idea to extract the local pressure is kernel function convolution at the desired 

boundary point i  

∑
=

−=
N

j
jij

j

j
i hxxWxP

m
xP

1

),()()(
ρ

              (4.8) 
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However, only few particles contribute in this procedure which gives some crude 

results.  

 

The second strategy coming to the mind is to increase the number of particles. Aiming 

at estimating the local pressure at a given point M (Fig 4.13), the value is extracted by 

averaging the fluid particles in the near boundary area around M. The distance is 

typically chosen as hh 52 −  

 
Fig 4.13 Sampling area 

 

Then, the impact force on the wall is 

∫=
wall

sensorMw dSPF                   (4.9) 

 

In meshless method, the solid boundary condition is always carried out with 

additional constraint force from boundaries to avoid fluid penetration. The third 

method to evaluate the force on the boundary is deduced from the summation of 

additional constraint forces.  

 

Moreover, because of the explicit algorithm adopted in SPH method the pressure 

shows oscillations in time series, the larger number of particles distributed can reduce 

the amplitude of the oscillations. In our tests, 51,200 particles are used and the second 

(pressure integration) and the third (summation of boundary force) strategies are 
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adopted for comparison (Fig 4.14-4.21) 
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Fig 4.14 Pressure Integration (Ghost Particles) 
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Fig 4.15 Summation of Boundary force (Ghost Particles) 
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Fig 4.16 Pressure Integration (Dummy Particles) 
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Fig 4.17 Summation of Boundary force (Dummy Particles) 
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Fig 4.18 Pressure Integration (Boundary Particles force) 

 
Time(s)

Im
pa

ct
Fo

rc
e

(N
/g

h)

0 0.5 1 1.5 2
-0.2

0

0.2

0.4

0.6

Summation of Boundary force (Boundary Particles force)

 
Fig 4.19 Summation of Boundary force (Boundary Particles force) 
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Fig 4.20 Pressure Integration (L-J force) 
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Fig 4.21 Summation of Boundary force (L-J force) 

 

In comparison between Fig 4.14-4.21, Ghost particles and dummy particles shows 

additional steady impact force on the wall, but dummy particles have underestimated 

the value of impact force. This is because dummy particles imply non-slip boundary 

condition. Moreover, comparing Fig 4.14 and Fig 4.15 using ghost particles as 
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boundary condition, pressure integration gives additional smooth results than 

summation of boundary force. As a conclusion, ghost particles method is adopted as 

the solid boundary condition in latter study cases and pressure integration proves to be 

good technique to extract local pressure. 

 

4.5 Approximated boundary for ghost particles 

 

As previously outlined, ghost particles give steady and accurate results of local 

pressure but it will be difficult to handle the complex geometry (Fig 4.22). For 

instance, corrections have to be enforced to avoid an excess or loss of ghost mass on 

the convex or concave corner.  

  

Fig 4.22 Complex 3D geometry 

 

Ghost particles imply the knowledge of the local normal to the desired boundary, 

taking into account the position of the particle to be mirrored. However, in general 

case with complex curved surface, the mirror particle is very difficult to obtain. Here 

a method is proposed to extend the application of ghost particle technique to general 

geometry. The 3D boundary is decomposed into flat triangular panels. These panels 

are used to allow the capture of the particles to be mirrored easily. Equations (4.6, 4.7) 
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are still used at this time to prevent particles from penetrating the boundaries. 

 

Consider a curved face (Fig 4.23), it is firstly discretized into many pieces of faces 

which are considered as flat face such as section 1 and section 3. The corner (section 2) 

between two flat faces may lead to excess ghost mass when mirroring fluid particles. 

However, if the number of flat faces is large enough, the corner will be negligible. 

Moreover, the flat face will be very approximate to curved face. 

 

Fig 4.23 Approximation of complex geometry 

  

This pre-processing of geometry is made by Gambit and the results are transferred to 

SPH code. The procedure to capture ghost particles on flat face is simple and each 

fluid particle is mirrored only once on the solid boundary.  

 

To validate this specific method, the simple case is studied where a simple 2D circle 

immersed vertically into calm water. The circle made it possible to derive the exact 

ghost particles, and to compare with the approximated straight line. Compared with 

exact ghost particles, five different numbers of approximate pieces are proposed. The 

immersed part of the circle is divided into 2, 10, 40 and 200 pieces. The total vertical 

forces are monitored and compared with exact ghost particles and shown in Fig 4.24 - 

4.28 respectively. 
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Fig 4.24 Total vertical force (2 pieces and exact) 

Sinking time(s)

To
ta

lF
or

ce
(f

)

0.1 0.2 0.3 0.4
0

50

100

150

200 Exact Circle
10 Pieces

 
Fig 4.25 Total vertical force (10 pieces and exact) 
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Fig 4.26 Total vertical force (40 pieces and exact) 
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Fig 4.27 Total vertical force (200 pieces and exact) 
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Fig 4.28 Total vertical force (1000 pieces and exact) 

 

As great number of pieces is used to approximate the circle, the results are found to be 

very close to the ‘exact one’. Despite of the quality of this simulation (oscillation 

caused by too small number of particles used), the initial distance between fluid 

particles is about 1/500 of immersed arc length, 200 pieces could provide identical 

results to the exact one, the maxima error of force at every single time step is less than 

95% (Fig 4.29) 

 



64 
 

96.89%

98%

95.76%

97.91%

93.91%

97.29%

93.07%

96.80%

86.76%

88%

80.00%

82.00%

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

1000 200 40 10 2

Maxima Error

Average Error

 

Fig 4.29 Average error and maxima error of total force compared to ‘Exact circle 

boundary’ (From left to right 1000, 200, 40, 10, 2 pieces) 
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5 Time evolution and Parallel SPH 

5.1 Time stepping and evolution 

The numerical integration of the ordinary differential equations for the physical 

variables at each particle can be carried out by standard methods with a time-step 

control that involves the courant condition, the force terms, and the viscous diffusion 

term. The time step should be defined following Courant Friedrichs Levy (CFL) 

condition based on the local smoothing length and local sound speed.  

 

One of the most popular integration schemes applied to SPH is the Predictor 

Corrector Scheme. The following equations are used to obtain the field quantities at 

the next time step 

 

002/1

2
~ ftvv Δ

+=  

002/1

2
~ vtxx Δ

+=  

)~( 2/12/1 xρρ =  

,...),~,~( 2/12/12/12/1 ρvxff =  

2/102/1

2
ftvv Δ

+=  

2/102/1

2
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+=  

02/11 2 xxx −=  

02/11 2 vvv −=                  (5.1) 

Here, the superscripts refer to the time step index, and f  is the force per unit mass. 

Another scheme applied in codes is the fourth order Runge-Kutta method: 

00*

2
ftvv Δ

+=  
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The time step should be chosen to accommodate the CFL condition. In SPH 

c
t

h
>

Δ
                   (5.3) 

However, if viscosity is present, it should be taken into account: 

]
)6.01(

min[
α

β
+

=
ic

hdt                                (5.4) 

In Equation 5.4, ic is the speed of sound of the i - th  particle. The minimum dt  is 

evaluated over all the particles. Subsequently, the resulting ordinary differential 

equation system can be integrated in time by schemes such as Runge-Kutta, 

Leap-Frog or any Predictor-Corrector, to ensure at least second order convergence in 
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time. The exact choice of coefficient β  depends on the scheme chosen and it can be 

varied slightly. 2.5 is chosen for forth order Runge-Kutta method and 0.3 in 

Predictor-Corrector in codes. 

 

5.2 Parallel SPH 

In general, SPH calculation demands a lot of memory resources and enormous 

computer processing power. 

 

Firstly, SPH method usually involves a large number of particles to be geometrically 

enough to model the deformation of fluid body. In three dimensional cases, the SPH 

model may involve several millions of particles. 

 

Secondly, the evolution of the particle information should be very time consuming. 

Besides the governing equations themselves, neighbor search, boundary treatment, 

and interactions between particles manifold the complexity of the problem.  

 

 
Fig 5.1 Parallel SPH 

 

For these reasons, standard MPI technique is adopted for parallel SPH code. MPI 

stands for “Message Passing Interface”. It is a library of functions (in C) or 

subroutines (in FORTRAN) that could be inserted into the source code to perform 
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data communication between processes. 

 

The first step in designing a parallel algorithm is to decompose the problem into 

smaller problems. Then, the smaller problems are assigned to processors to be solved 

simultaneously. In SPH code, most of the calculation costs occur in neighboring 

search. Each particle’s acceleration is due to the neighbor particles. Therefore, domain 

decomposition is adopted here. Fluid domain are divided into pieces of the same 

approximate size and then mapped to different processors. Each processor then only 

process the portion of the data that was assigned including neighbor search, 

acceleration, densities update and so on. Of course, the processes may need to 

communicate periodically in order to exchange data. 

 

The main goal of parallel program is to obtain an enhanced performance over the 

serial version. With this in mind, there are several issues to be considered when 

designing parallel code in order to obtain the best performance possible within the 

constraints of the problem being solved. These issues are 

 

 Load balancing is the task of equally dividing work among the available 

processes. It is easy to accomplish because the same operations are being 

performed by all the processes (on different pieces of domain) if the number of 

particles are similar. Sometimes, calculation domain is difficult to decompose 

into equal pieces. For example: Variable smooth length, irregular fluid domain. 

Large number of pieces is divided and different processes could load the data by 

order.  

 

 Minimizing communication 

Total execution time is a major concern in parallel programming because it is an 

essential component for comparing and improving all programs. Three 

components make up execution time: 

1. Computation time 
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2. Idle time 

3. Communication time 

Computation time is the time spent on performing computations. If load 

balancing is optimized, the job would be ideally expected to be finished in 1/Nth 

the time if there are N processors working on a problem.  

 

Idle time is the time a process spends waiting for data from other processors. In 

SPH code, following the neighbor search, acceleration and density calculation, all 

the work will be left to one process while all other processes are in an idle state. 

However, this particular part only includes data collection and particle motion 

updating which only occupy 1%~3% of the total calculation. 

 

Fig 5.2 Discretized domains and shared information 

 

Finally, communication time is the time it takes for processes to send and receive 

messages. Thanks to the explicit algorithm in SPH code, communication could be 

only processed once at each time step if we assign the data to each process 

including necessary ‘shared information’ (Fig 5.2) 

Shared informationDiscretized domain
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6 Verification and Validation 

In this chapter, the features of present SPH solver are outlined. Using these techniques, 

SPH method shows stability and efficiency when dealing with fluid hydrodynamics. 

After that, the developed SPH method is verified and validated through the 

comparison with experiments or other numerical solvers. These test cases are 

discussed: 1) 2D dam break aim at validating the method with standard free surface 

flow using both one-phase and two-phase SPH model; 2) 2D wedge slamming 

6.1 Features of Present SPH solver 

The main features involved in present code are outlined below 

 

 Parallel code based on the MPI technique 

 

Computation ability is always the bottleneck of the CFD method. Parallelization is the 

best option in order to solve this problem. In our code, the MPI technique is adopted 

for parallelization. As the SPH method adopts an explicit algorithm in interactions, the 

efficiency of parallelization is higher than traditional CFD tools (VOF). 

 

 Automatic domain discretization and fluid particles initialization 

 

As a well used method, the discretization strategy is developed to simulate different 

cases including both 2D and 3D, the number of processors, different hydrodynamics 

problems and real time updating for high efficiency. 

 

Similar to the other CFD method based on grid, SPH should pre-process the initial 

condition of fluid by the collocation of the fluid particles in the domain. If the 

geometry of calculation domain is complex or the fluid is not uniform, pre-process 
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software Gambit is firstly used to discretize the domain and the output mesh file can 

be simply transferred to particles information (Fig 6.1).  

 

 
Fig 6.1 Top: Mesh file, Bottom: Particle information 

 

 Complex solid boundary condition technique 

 

SPH has difficulties in handling the presence of solid boundaries.  

 

1.) The first attempt to deal with solid walls involved exerting forces on the fluid 

(Monaghan 1994). This idea is based on the fact that, at a micro scale, it is clear 

the body is made of particles, i.e. atoms or molecules. In the reality, the forces due 

to such particles are relevant within a distance of the order of the atom dimension. 

Numerically, they are approximated as forces acting within distances comparable 

to the resolution length of the simulation.  

 

2.) The boundary particles (Morris 1997) can be used to model both fixed and 

moving bodies. The main drawbacks of such a technique are: (i) it causes 

pressure-wave disturbances at the beginning of the numerical simulation and (ii) it 

is not suitable to calculate accurately the local hydrodynamic loads induced on the 
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structures. 

 

 

3.) An alternative to this approach is to model the body presence by introducing a 

layer of “ghost particles” along the body and outside of the physical domain 

(Cummin & Rudman 1999). The density, pressure and velocity of such particles 

are deduced from those of the real particles adjacent to the solid boundary. With 

this technique the local loads on the body can be accurately calculated however, 

close attention is necessary when dealing with the complex geometries of the 

structures. 

 

‘Ghost particle’ is mostly used in the code to deal with the solid boundary condition. 

This technique implies that the knowledge of the local normal is required on the 

desired boundary, taking into account the position of the particle to be mirrored. 

However, in general case with complex curved surface, the mirror particle is very 

difficult to obtain. At this time, a method is proposed to extend the application of 

ghost particle technique to general geometry. The 3D boundary is decomposed into 

flat triangular panels. These panels are used to allow the capture of the particles to be 

mirrored easily. Software known as ‘Gambit’ is used to transform the boundary into 

tiny flat panels. This process is called the ‘approximate solid boundary’ and has been 

proven to correctly simulate complex geometry problems.  

 

In addition, extra boundary particle control is used to prevent particle penetration 

because of tensile instability. Equation 4.6 and 4.7 are used at this moment to solve 

this problem. 

 

 Variable smoothed length 

 

In the context of astrophysics studies, Monaghan introduced spatially varying 

resolutions in which the smoothed length adapts according to the local number and 
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density of particles (Monaghan 1992). Various studies aiming to improve the 

efficiency of this extension to SPH have been carried out (Hernquist & Katz 1989, 

Nelson & Papaloizou 1994). This technique has been an interesting tool for more 

general use in the field of fluid mechanics because in many cases we do not need the 

high resolution everywhere but in sensitive areas (Oger 2005). In this thesis, the 

variable smoothed length technique is created by modifying momentum equations to 

satisfy conservation requirements. Using this technique, the computation cost of cases 

becomes more acceptable. Additionally accurate results are produced in the cases of 

wedge entry and ship hull slamming. 

 

 Wave height and local pressure evaluation method 

 

The interpolation of local particle volume method is adopted to extract correct wave 

height information.  

 

Many of the general fluid problems require the knowledge of local pressure on solid 

boundaries. However, the standard SPH method suffers from lack of stability which 

leads to irregular pressure in specific points. To extract accurate local pressure, we 

tried the technique called ‘kernel function interpolation’ on space and time history. 

 

 Coupling tank motion with hydrodynamics 

 

The captive tank motion or free tank motion are complied in the code using the same 

explicit fourth order Runge-Kutta method as fluid domain evolution. 

 

The tank boundary is assumed to be not deformable. In each step, free motion of the 

tank will be predicted by the 6 DOF forces and moments due to hydrodynamics. 

Instead of the integral of pressure, the forces in 6 directions are calculated by 

summing up the particles’ interactions between fluid particles and mirroring particles. 
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Where a fluid particle a  is close to boundary and gives its mirror particle b internal 

force with viscous effect. GM  is the external force of the tank. 

 

Roll, pitch and yaw moment could be deduced easily after defining the gravity centre 

of the tank. 

 

 Code structure 

 

The simplified algorithm structure of SPH Parallel code is described in fig 6.2. 
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Fig 6.2 Code structure 
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6.2 Dam break 

Following the specification of solid boundary condition in the case in Chapter 4 (dam 

break, Fig 4.11), the present SPH solver is tested with the experimental setup (fig 6.3) 

to verify the techniques mentioned in previous chapter. One-phase model and 

multi-phase model of SPH are both tested and the results are compared with the one 

that had been experimented. In the experiment, two height sensors are set up on the 

right bottom of the tank. Sensor I and Sensor II are 1.653 and 0.825 respectively away 

from the right vertical wall. 

 

Another pressure sensor  has been used and this is located on the bottom of the 

vertical wall. The height of the sensor is 0.2 meters. 
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Fig 6.3 Dam-break problem and impact against a vertical rigid wall Geometric 

parameter H = 1, L = 2, D = 3, d = 5.366 

 

Fig 6.4 shows the single phase of SPH evolution after the dam has been released. The 

particles’ density is usually initialized as reference value or hydrostatic value. This is 

illustrated in Fig 6.4 (top right). Unlike the mesh-based method, where the pressure 

values will converge according to continuum equation and momentum equation, SPH 
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use explicit algorithm to avoid the resolver of Pressure Poisson Equation, and the 

initial disturbance will cause the pressure oscillation as sound wave. However, the 

problem can be solved if we initialize the pressure of particle as  +0t  results from 

VOF (LES) method. Moreover, Cummin and Rudman (1999) conducted 

incompressible SPH method by solving Pressure Poisson Equation. Incompressible 

SPH code is also developed and the density of particles is initialized here by one tiny 

time step calculation in incompressible SPH code (Top left one in Fig 6.4). It is called 

‘cold start’. 

 

There are more comments on incompressible SPH method here. Because Pressure 

Poisson equation is solved in incompressible SPH, the results are steady and there is 

no oscillation phenomenon for the pressure. The implicit algorithm leads to increased 

interactions in each time step and at the same time, allows larger time step, so the 

efficiency of incompressible SPH is still high. However, the particles on free surface 

have to be captured and defined as reference pressure in order to solve the Pressure 

Poisson equation. In conclusion, one of the most significant advantages of SPH 

method is lost particularly in the nonlinear free surface flows. 

 

The speed of sound is defined as smgH /27.44210 =  according to Equation 3.46, 

artificial viscosity 03.0=α , the number of particles is about 20,000. The details of 

numerical parameters are shown in Table 2 as below 

 

Dimension 2D 

Number of fluids One-phase 

Fluid Density 1000 Kg/m3 

Viscosity Artificial viscosity 0.03 

smoothed length 1.3h, constant smoothed length  

Tensile stability No 
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Table 2: Numerical parameters of SPH for 2D dam break 

 

Solid boundary condition No slip, ghost particles 

Kernel function Cubic spline kernel (2h) 

Gravity -9.81 m/s² 

Kernel correction MLS correction 

Sound speed 44.27m/s 

Initial particle distance 6.25mm 

Total number of particles 51200 

Number of particles in X-direction 320 

Number of particles in Y-direction 160 

Time evolution algorithm fourth order Runge-Kutta 

Duration of simulation 3 s 

Recorded Time step (extracted data) 0.1s 
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Fig 6.4 Regular start (left) and cold start (cold start) 

 

Fig 6.4 shows the difference between regular start and cold start for flow evolution. 

The pressure contour is very smooth in the case with cold start and sound wave is 

observed in the case with regular start. The amplitude of sound wave depends on the 

initial disturbance and the frequency depends on the speed of sound defined in SPH. 

After one second simulation, the sound wave disappears because of the energy 

dissipation that occurred due to the artificial viscosity. Additionally, the latter pressure 

contours agrees very well. 

 

To validate the fluid evolution of SPH results, commercial software Fluent 

(SIMPLE+VOF) is used for comparison in time series (Fig 6.5). 
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Fig 6.5 One-phase SPH results (left) and Fluent results (right) From top to bottom: 

time = 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.0s 

 

The results before the flow impacting on the wall are in good harmony between SPH 

code and Fluent. In the latter results when the time is 2.4~3.0s, the surface shape 

shows a difference. Firstly, the cavity in SPH results at time 2.4s is larger than the 

results of Fluent. It is because one-phase model of SPH implies that the second 

phase’s air is vacant and the air entrapment is neglected. Furthermore, SPH shows 

more fragmentations than VOF method. These fragmentations can be considered as 

breaking waves caused by the impact of flows on the rigid wall or the impinging of 

the backward plunger on the underlying layer of water. Regardless of the accuracy 

and the quality of breaking wave described numerically, SPH has the advantage of 
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producing complex interface than VOF method. In addition, VOF method suffers the 

problems of constructing the correct interface. Although many strategies were 

proposed for VOF method such as geometry re-mesh technique, it requires very fine 

meshes. 

 
 Fig 6.6: Height h of the water at height sensor I  
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Fig 6.7: Height h of the water at height sensor II 

 

Fig 6.6 and Fig 6.7 shows the time evolution of water height measured by the height 

sensor I and II respectively. The SPH case (red solid line) and FLUENT case (blue 

dash line) were compared with the experimented measurements from Zhou (1999). In 

the experiment, standard capacitive wave gauge was setup which is sensitive to the 

wet portion of the wire. The difference between numerical and experimental results 

were observed from time =0.5s to 1.0s because the flow evolution in the experiment 

was characterized by the sudden rise of the water level due to the transition from 

dry-deck to wet –deck on the wave gauge. Moreover, the numerical results of SPH 

and Fluent complement each other before the flow begins to have an impact on the 

wall. Discrepancy of water height was found after time = 2s which was due to the 

difficulty of predicting the cavity and breaking wave. 
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Fig 6.8: Pressure evolution on the pressure sensor on the vertical wall 

 

The normalized pressure gHP ρ/ was measured in fig 6.8. Pressure integration 

method was used to evaluate the pressure of SPH. For comparison, the pressure 

measured from SPH method was filtered by averaging the value every 20 time steps 

(about 0.02s). The results before time = 1.8s agree very well with VOF method. The 

backward plunging water front induces the second pressure peak on the vertical wall 

at time = 1.8s, but limited information about the experiments does not allow a better 

discussion. 

 

In many circumstances, violent fluid-structure interactions lead to air entrapment and 

multi-phase flows. The dynamics of the entrapped air in the impacting cases is an 

important part in FSI problems and has contributed to large and oscillated pressure 
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during the process. Therefore, neglecting the influence of air entrapment may cause 

incorrect results. The simulations are reproduced with the participation of the second 

phase particles. Fluid density is defined as 1ρ  and the second phase density is 2ρ . In 

one-phase simulation, the second phase is vacant which means 0/ 12 =ρρ . Three 

density ratios are simulated in two-phase SPH model: 001.0/ 12 =ρρ (air-water case), 

01.0/ 12 =ρρ  and 1.0/ 12 =ρρ  shown in fig 6.9 
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Fig 6.9 Two-phase SPH model with density ratio 0.001(left), 0.01(center), 0.1(right) 

From top to bottom time = 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 2.8, 3.0 s 

 

SPH has shown its outstanding capability and expansibility to multi-phase model. The 

main features of the flow evolution compliment very well with the different density 

ratios in Fig 6.9. Before the impact, an obvious difference can be observed where the 

greater the 2ρ , the greater the water motion was impeded which was expected. 

Consequently, the water-front velocity decreases when the density of the second phase 

fluid increases. In fig 6.10, the evolution of front wave is compared with different 

density ratio of two phases.  
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Fig 6.10 Time evolution of front wave with different density ratio   

 

With regards to the low density ratio (0.001) of two-phase simulations, the speed of 

sound of the light phase would be very large to retain the stability of flow interface 

which means that calculation time will increase rapidly because the time step size 

depends on the speed of sound.  

 

Regarding the water-air interface, typical values were adopted as 4.1,7 21 == γγ . 

According to the equation of state (Equation 3.45 and Equation 3.46), the speed of 

sound in the water is defined as smc /27.441 = , meanwhile the speed of sound in the 

air is define as smc /6262 = .  

 

However, in SPH simulation especially in 3D simulations, the number of particle was 

too large to attain accurate results, low density ratio of two phases like air and water 

will result in constraints within the calculation cost.  
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6.3 Wedge slamming 

Description of wedge entry 

Slamming is one of the leading hydro-elastic problems which have constantly defied 

designers’ understanding of ship behaviors at sea. It is just as difficult to measure this 

phenomenon in model tests as it is to simulate it properly. Since the first studies by 

von Karman (1929) and Wagner (1932), slamming force prediction problems have 

been plentifully studied. It is a persisting field of research in ship hydrodynamics to 

study the local pressure forces acting on its structures. 

 

The width of the wedge is 0.5 m. The deadrise angle is 30°, wedge free drop with 

vertical velocity of -6.15m/s. When entering the water, the length of wedge is 1 m. 

(more detail in experiment carried out by Zhao [Water entry of arbitrary two – 

dimensional section with and without flow separation, in: 21st Symposium on Naval 

Hydrodynamics, 1997]) 
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Fig 6.11 wedge slamming experiment setup 

 

At time = 0s, the wedge was dropped on calm water with an initial vertical velocity of 

-6.15m/s. The impact generates two jets running out along the wedge with a large free 
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surface deformation, and a strong vertical force was imposed on the wedge. In the 

experiment, the length of this wedge was 1.0m (Fig 6.12), despite the three 

dimensional effects, the flow was regarded as two dimensional case in numerical 

simulation. 

 

0.5m
1.0m

0.5m
1.0m

  
Fig 6.12 3D Wedge in the experiment 

 

To compare the numerical with experimental results, in the SPH simulation the 

motion of the wedge is governed by the experimental motion of the test section. The 

measured velocity in experiments is reported in fig 6.13 as the captive wedge motion 

for SPH code. 
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Fig 6.13Experimental vertical velocity time history 

 

Numerical simulation with variable smooth length 

In the SPH simulation, the calculation domain has to be adapted. In order to ensure 

nearly incompressible fluid with density change of less than 1%, the speed of sound 

was chosen as 80m/s for the water. When the wedge slammed on the water, the sound 

wave generated may have reached the boundary of the water and then reflected back 

on the wedge, In order to avoid this influence, the tank width and depth was chosen to 

be 3.6m and 2.0m respectively. The size was enough to predict the slamming before 

time = 0.025s. 

 

In the first attempt, uniform fluid particles were distributed in the calculation domain. 

Regarding the efficiency of calculation, the initial particle distance 0.006m was used 
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in the simulation. The calculation time was only about half an hour on paralleled SPH 

code with four processors (2.4 GHz). However, the results of vertical force due to 

slamming show large oscillations in Fig 6.14. 

 
Fig 6.14 Vertical force with uniform particle distance 0.006m 
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Fig 6.15 Vertical force with uniform particle distance 0.003m 

 
Fig 6.16 Vertical force with uniform particle distance 0.0015m 
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Fig 6.17 Vertical force with uniform particle distance 0.001m 

 

In latter simulations, larger number of particles was used in the simulation. The results 

for initial particle distance were 0.003m, 0.0015m and 0.001m, which were given in 

fig 6.15, 6.16 and 6.17 respectively. Although the result was very sensitive in number 

of particles and coarser particles gave more oscillated results, all the evolution will be 

correct and totally controlled by momentum equations. Very fine particles with initial 

particle distance 0.001m are necessary to extract the correct local pressure (Fig 6.17). 

Whereas, the number of particles will be 720,000 for this case and the calculation 

time will take more than 4 days. 

 

In order to reduce the calculation costs, variable smoothed length was adopted in the 

wedge entry test. As shown in Fig 6.18, the particles configured in the impacting area 

were very small in order to obtain accurate results. Out of this zone, particles were 

distributed so that smoothed length increases slowly. The ratio of neighbor particles 

was controlled to be less than 1.03 in order to prevent the error resulted from 

asymmetric force term between interaction particles in momentum equation. 
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Fig 6.18 Variable smoothed length 

 

The initial particle distance in impacting zone was 0.001m, but because of variable 

smoothed length the total number of particles are currently only about 176,000. The 

calculation efficiency was improved significantly (Fig 6.19) meanwhile the accuracy 

of results agree with experimental one very well. 
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Fig 6.19 Calculation time comparison 
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The numerical parameters are set up for latter simulation in Table 3 

Table 3: Numerical parameters of SPH for 2D wedge entry  

Dimension 2D 

Number of fluids One-phase 

Fluid Density 1000 Kg/m3 

Viscosity Artificial viscosity 0.01 

smoothed length 1.3h, Variable smoothed length with ratio 1.03 

Tensile stability Yes 

Solid boundary condition No slip, ghost particles 

Kernel function Gaussian kernel (3h) 

Gravity -9.81 m/s² 

Kernel correction Shepard correction 

Sound speed 80m/s 

Initial particle distance Min 1mm 

Total number of particles About 176,000 

Number of particles in X-direction Non-uniform 

Number of particles in Y-direction Non-uniform 

Time evolution algorithm fourth order Runge-Kutta 

Duration of simulation 0.025 s 

Recorded Time step (extracted data) 0.01s 
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Fig 6.20 Total vertical forces (Green solid line: SPH of present thesis, Red solid line: 

SPH of ECN, Blue long dash: experiment, Green dots: Zhao’s analytical result) 

 

The results of vertical forces suggest that the water on the wedge were compared to 

CFD results by ECN, experimental results and analytical data given by Zhao et al. in 

Fig 6.20. The SPH slamming force time history was overestimated than experimental 

data when t > 0.01s, the same situations were shown in other results. This 

overestimation was due to the three dimensional effects because the wedge length is 1 

meter during the experiment but it is regarded as infinite length in numerical 

simulations. Nevertheless, SPH results were in accordance with experimental and 

analytical curves. 

 

Fig 6.21 provides pressure field near the impacting zone at time 0.1s and 0.2s.  

Boundary conditions: L-J force and ghost particles were tested in the simulations to 

validate their accuracies to extract local pressure. In this case, the results agree with 

each other very well. Both methods have demonstrated outstanding pressure field and 
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the similar large free surface deformation with the apparition of two jets were 

observed along the wedge boundaries. 

 

 

Fig 6.21: Top to bottom right: 0.1s, 0.2s Left to right solid boundary: Lernnard-Jone 

Force, Ghost particles  Number of particles: 176,000 Pressure contour Range: 

0~60k Pa 

 

In order to study the efficiency of local pressure evaluation method in SPH, the 

validation was carried out by the experimental record. In the experiment, the wedge is 

fitted with piezoresistive pressure cells with a diameter of 4mm (P1-P5 in fig 6.22).  
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Fig 6.22 Pressure cell P1-P5 fitted on the wedge 

 

Pressure distribution at t=0.00435s
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Fig 6.23 Pressure distribution at t = 0.00435s 
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Pressure distribution at t=0.0158s
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Fig 6.24 Pressure distribution at t = 0.0158s 

 

In fig 6.23 and 6.24, positions of pressure cell P1-P5 and pressure values are 

normalized by Equations (6.2, 6.3) respectively. 

∫
= t

dttV

ZtVZ
0

)(
))(int(/                (6.2) 

)(5.0 2
0

tV
PPCp

ρ
−

=                  (6.3) 

Where 0P  is outside the pressure which is 0 in the SPH simulation, )(tV is wedge 

vertical velocity given in fig 6.13. z is vertical coordinate on the wedge surface. 

 

SPH results are compared with experiment by Zhao, VOF method by EOLE. At the 

instance time 0.00435, local pressure of SPH agrees with VOF, analytic and 

experimental results have been produced very well but it is underestimated at P2. This 

is supposed to be the compressible effects of SPH at the beginning of impact. 

However, this underestimation disappears instantly in 0.0158 seconds. In fig 6.24, 
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SPH results are in accordance with Zhao’s results. However, both SPH and analytical 

results are overestimated when comparing with the experiments which are possibly 

due to the three dimensional effects. In conclusion, SPH method is capable of 

predicting acceptable local pressure in slamming. 
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7 Sloshing 

Sloshing can be defined as dynamic load acting over a tank structure as a result of the 

motion of a fluid with free surface confined inside the tank. It is a highly nonlinear 

resonant phenomenon appearing in all marine structures containing liquids. This can 

lead to large local structural loads in the tank and has an important effect on the global 

ship motion. The effects of sloshing loads are of great importance when designing 

LNG carriers. It is necessary to develop numerical methods which can describe the 

fluid loading and coupling between ship motions and sloshing. 

 

In this chapter, two dimensional and three dimensional sloshing problems are 

simulated with SPH method. The related sloshing effects are discussed with 

comparison by experiments. 

 

7.1 Description of the problem 

Due to the growth of the natural gas market, there is an increasing interest in floating 

production, storage and offloading system for offshore oil and gas. Moreover, the 

increasing size of LNG carrier sailing under extreme weather conditions (Barents Sea, 

North Atlantic) leads to the problem of sloshing which is of particular interest to the 

ships’ designs that hold large liquid tanks. The prediction of loads caused by violent 

sloshing has been taken account as a part of approaches to safety at sea. 

 

Consideration of internal liquid motions is important for the intact and stability of the 

(carrying liquid cargo) ships. The difficulty of the scaling of the experimental impact 

pressure has been extensively analyzed (Bass et al., 1985; Berg, 1987). In order to 

solve this problem, several studies on different numerical approaches to sloshing have 

been reported by Su Tsung-Chow (1992), Buechmann (1996), Tanizawa (1996), Chen 
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et al. (1997), Pawell (1997) and Faltinsen (1999). 

 

Most of them used potential flow model for an incompressible fluid in irrotational 

motion, which can be used in many cases to model sloshing, in particular for smooth 

tanks and finite depths. However, dissipation and damping due to run-up and 

overturning of the fluid near the wall, wave breaking in the middle of the free surface, 

are issues for intermediate and shallow depths. Therefore, the development of feasible 

calculation methods to accurately predict sloshing loads should be based on CFD 

methods. 

 

CFD approaches are used currently to resolve free surface flow problem such as VOF 

(Hirt and Nichols, 1981) and SPH method (JJ, Monaghan, 1994). In Lee et al. (2007), 

a solver based on VOF method for free surface was used to study the impacting force 

due to sloshing. The SPH method has provided good results when used to simulate 

sloshing problems with high fragmentation on free surface (Landrini et al., 2003; 

Souto-Iglesias et al., 2004, 2006). 

 

Two cases are studied in this chapter to analyze the effect of sloshing in the tank for 

which a series of experimental tests have been conducted as well: 1) Two dimensional 

sloshing in the tank partially filled with water with captive excitation horizontal 

motion; 2) Three dimensional sloshing with the tank excited by irregular waves. SPH 

method was developed to simulate these cases and the comparisons are presented and 

discussed. Although the study (Lee et al., 2007) showed that gas cushioning was 

significantly affecting the impact phenomenon, the simulations have been performed 

with one-phase algorithm. The reason was mainly due to the costs connected with 

two-phase formulation. An example of CPU time required by one-phase and 

two-phase solvers is present in Table 4 for the simulation of one period in the tank 

with 70% filling level. 
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waterN  airN  totalN  CPU time 

one-phase 70000 0 70000 1 hour 

Two-phase 70000 30000 100000 20.2 hours 

Table 4: CPU time requirements for one-phase and two-phase SPH solvers 

 

7.2 Benchmark results – Sloshing 

Case 1 – 2D Sloshing test for rectangular model 

Firstly, the simulations were carried out to investigate the features of resonance 

phenomenon of sloshing. The rigid tank shown in fig 7.1 was partially filled with 35% 

fluid. A harmonic sway motion of the tank was forced with the law )sin(wtA . 

Experimental data were reported by Faltinsen (1974) and Olsen & Johnsen (1975). A 

wave height sensor was placed 0.05m from the right wall and the maximum wave 

elevation was recorded.  
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Fig 7.1 Tank model in the experiments by Olsen (1970) 

 

In the experiments, the excitation amplitude mA 05.0=  and a series of excitation 

frequencies 
w

T π2
=  were tested using the following constants where the length was 

mL 1= fluid depth was 35..0/ =Lh  and the natural frequency was sT 27.11 =  

 

In the numerical simulations, the forced sway amplitude increased smoothly then 

remained steady after 10T. The maximum wave elevation was recorded from 20T to 

30T to obtain the steady-state value. 
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Fig 7.2 maximum wave amplitude at the wave height sensor A1 

 

The maximum wave elevation amplitude was compared between SPH solution and 

the experiments. Generally, a good agreement was observed as a result.  

 

The sloshing problem is one of the priority issues to shipyards and shipping 

companies. In order to study how the loads impacting on the structure in sloshing and 

to obtain the experimental results which can be used to verify numerical results, 

sloshing experiments were carried out by DSME (Daewoo Shipbuilding & Marine 

Engineering Co.Ltd 2005). 

 

Experimental setup 
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The tank model was set on the table and it is allowed to move harmonically in 

horizontal direction by the shaking system. Pressure at the tank wall and the 

displacement of the table were measured. At the wall and top of the tank, 9 holes 

(C1~C9) were made to set the pressure sensor. Fig 7.3 shows rectangular model and 

its details. 

 

Fig 7.3 Sketch of tank with 9 pressure sensors (measurement: mm) 
 

The direction of the tank motion is horizontal sway motion, and the motion type is 

harmonic. The tank position is defined as 

)sin( tX ⋅= ωξ  

Where, ω  is the excitation frequency, ξ  is the excitation amplitude which is 20mm 

in experiments.  

The excitation frequency ω  is determined based on the natural frequency nω  of the 

fluid motion in the tank and nω  is obtained by the linear theory as follow 

)tanh(2

L
h

L
g

n ⋅⋅= ππω  

Where g  is the gravitational acceleration and h  is the depth of a still water in the 

tank and L is the length of the tank.  
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In order to investigate the resonance of sloshing, 0.1/ =nωω  is adopted in SPH 

simulation when the filling level is 70%, =ω 5.8185 (rad/sec). The tank forced 

motion is shown in Fig 7.4 
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Fig 7.4 tank motion and velocity 

 

The simulation time is about 15 seconds, which covers 14 periods of motion. 

Numerical parameters SPH in shown in Table 5 In order to compare experimental and 

numerical data, the snapshots at time series were compared with experimental video. 

Experimental data have been provided in the experimental report by DSME. 

 

Dimension 2D 

Number of fluids One-phase 
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Table 5: Numerical parameters of SPH for 2D sloshing  

 

 

 

Fig 7.5 Evolution of fluid during sloshing at time = 1.175s  

Fluid Density 1000 Kg/m3 

Viscosity Artificial viscosity 0.03 

smoothed length 1.3h, constant smoothed length 

Tensile stability Yes 

Solid boundary condition No slip, ghost particles 

Kernel function Gaussian kernel (3h) 

Gravity -9.81 m/s² 

Kernel correction Shepard correction 

Sound speed 40m/s 

Initial particle distance 5mm 

Total number of particles 11200 

Number of particles in X-direction 160 

Number of particles in Y-direction 70 

Time evolution algorithm fourth order Runge-Kutta 

Duration of simulation 15 s 

Recorded Time step (extracted data) 0.025s 
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Fig 7.6 Evolution of fluid during sloshing at time = 1.5s 

 

 

Fig 7.7 Evolution of fluid during sloshing at time = 2.575s 

 

 

Fig 7.8 Evolution of fluid during sloshing at time = 3.45s 
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Fig 7.9 Evolution of fluid during sloshing at time = 4.2s 

 

 

Fig 7.10 Evolution of fluid during sloshing at time = 5.5s 

 

The free surface motion was splendidly reproduced in SPH simulations. The free 

surface shapes at different time series agree with the recorded experimental video 

very well even when the impacting and overturning of the waves occurred. 

 

 
Fig 7.11 Experiment vs. SPH Pressure at sensor c1 in time series 
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Fig 7.12 Experiment vs. SPH Pressure at sensor c2 in time series 

 
Fig 7.13 Experiment vs. SPH Pressure at sensor c3 in time series 
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Fig 7.14 Experiment vs. SPH Pressure at sensor c4 in time series 

 
Fig 7.15 Experiment vs. SPH Pressure at sensor c5 in time series 
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Fig 7.16 Experiment vs. SPH Pressure at sensor c6 in time series 

 
Fig 7.17 Experiment vs. SPH Pressure at sensor c7 in time series 
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Fig 7.18 Experiment vs. SPH Pressure at sensor c8 in time series 

 
Fig 7.19 Experiment vs. SPH Pressure at sensor c9 in time series 
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The numerical oscillation comes from the speed of sound which was related to the 

weekly compressible approach adopted in SPH. 

 

The overestimation of pressure peak value were observed on pressure sensor c6~c9 

which were involved in impact event. Firstly, the impact pressure has a random 

character due to its strong dependence on the wave’s shape just before the impact 

(Bass et al. 1985; Peregrine 2003). Another reason is probably due to the two-phase 

character of the impact phenomena as one-phase solver was used in numerical 

simulation. 

 

The global shape of the pressure curve agrees with the experimental pressure very 

well for all the pressure sensors.  

 

Case 2 – 3D sloshing  

Tests (Principia) have been carried out in 2001 and 2002 by the GIS-Hydro in the 

wave basin of La Seyne/mer – France (BGO First facilities). The experimental set up 

consists of a rectangular barge model supporting two rectangular tanks partly filled 

with water. Regular and irregular wave tests results were available for the beam seas.  

Barge motions and internal wave elevations have been measured.  

 

Benchmark tests are proposed hereafter based on these model tests both for pure 

sloshing conditions, imposing the measured barge motions, and for barge / tanks 

coupling.  

 

The barge has the following features 

 

Length 3m 
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Width 1m 

Height 0.267m 

Mass without tank 127 kg 

Draft 0.108m 

Molded volume 0.285m3

Centre of gravity above keel 0.237m 

Gyration radius (in roll) 0.414m 

Table 6: feature of barge 

 

The model was installed in the basin in the middle of the testing section with its 

longitudinal axis parallel to the wave-maker line (only beam waves were considered).  

 

The mooring system was ensured by 4 cables equipped by springs. The mooring lines 

were attached on the 4 corners of the barge at 0.262m height according to the keel. 

The natural sway period of the mooring system (direction of the waves) was 20s. 

 

The reference point for the measurements of the translation of the barge motion was at 

the deck level (0.267 m above the keel level). 
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Fig 7.20 Sketch of the model 

 

The two tanks were set on the deck of the barge, at mid-ship, with their length in the 

transverse direction. The elevation of the inner bottom of the tanks, with respect to the 

keel, is about 0.3m. 
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The following are the characteristics of the two rectangular tanks: 

 

Length 0.8m 

Width 0.25m

Height 0.6m 

Mass 37kg 

 

The water motion inside the tank was measured by 5 probes:  

• 3 in the tank 2 (higher filling level) at 24mm, 180mm and 350mm from the 

wall closest to the wave-maker. 

• 2 in the tank 1 at 25mm and 180mm from the corresponding wall. 

    

Wave elevations were measured by 5 probes. All were set on the longitudinal axis of 

the basin at different spacing. 

 

 

Fig 7.21 View of the model test set-up in BGO First 

 

The tests were carried out in irregular waves. The sloshing in the tank was induced 

from the 6 DOF (Degrees of freedom) barge motions. 

 

For the numerical model, the inputs were the initial height of the free surface, the 

6DOF displacement of the tank (motions of the barge) and the position of the tank.  



121 
 

 

Test cases 

irregular waves 

Motions of the 

barge 

Filling level 

Irreg 1 6 DOF 39cm 

Irreg 2 6 DOF 19cm 

 

The following figures show the 6 DOF movements of the barge (and the tank) in 

irregular waves. 

 

 

Fig 7.22 irregular waves – direction OY - Hs=6.1 cm, Tp=1.6 s Green: roll (OX) Blue: 

pitch (OY) Purple: yaw 
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Fig 7.23 irregular waves – direction OY - Hs=6.1 cm, Tp=1.6 s Red: heave Blue: 

surge (OX) Green: sway (OY) 

 

In the SPH simulation, one-phase model was considered to avoid expensive 

calculation assumption. Other parameters for SPH are shown in Table 7 

 

Dimension 3D 

Number of fluids One-phase 

Fluid Density 1000 Kg/m3 

Viscosity Artificial viscosity 0.03 

smoothed length 1.3h, constant smoothed length 

Tensile stability Yes 

Solid boundary condition No slip, ghost particles 

Kernel function Gaussian kernel (3h) 

Gravity -9.81 m/s² 

Kernel correction Shepard correction 
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Table 7: Numerical parameters of SPH for 3D sloshing 

 

The sloshing was computed using 2 methods: VOF and SPH. The following figures 

show the comparisons between the two methods and experiments, of free surface 

elevations at different probes, and for the two specified filling levels. The computed 

and measured transient flows were directly comparable because the initial conditions 

were identical for the two cases. The SPH results are shown below (Fig 7.24-7.34) 

 

 

Fig 7.24 SPH snapshots at time t=42.5s (left: H=19cm, right: H=39cm) 

 

Sound speed 28m/s 20m/s 

Initial particle distance 10mm 

Total number of particles 78000 38000 

Number of particles in X-direction 25 25 

Number of particles in Y-direction 80 80 

Number of particles in Z-direction 39 19 

Time evolution algorithm fourth order Runge-Kutta   

Duration of simulation 100 s 

Recorded Time step (extracted data) 0.05s 
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Fig 7.25 SPH snapshots at time t=49.5s (left: H=19cm, right: H=39cm) 

 

 

Fig 7.26 SPH snapshots at time t=50.0s (left: H=19cm, right: H=39cm) 

 

 

Fig 7.27 SPH snapshots at time t=58.0s (left: H=19cm, right: H=39cm) 
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Fig 7.28 SPH snapshots at time t=64.5s (left: H=19cm, right: H=39cm) 

 

 

Fig 7.29 SPH snapshots at time t=65.0s (left: H=19cm, right: H=39cm) 

 

 

Fig 7.30 SPH snapshots at time t=69.0s (left: H=19cm, right: H=39cm) 
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Fig 7.31 SPH snapshots at time t=69.5s (left: H=19cm, right: H=39cm) 

 

 

Fig 7.32 SPH snapshots at time t=70.0s (left: H=19cm, right: H=39cm) 

 

 

Fig 7.33 SPH snapshots at time t=71.0s (left: H=19cm, right: H=39cm) 
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Fig 7.34 SPH snapshots at time t=79.0s (left: H=19cm, right: H=39cm) 

 

The calculations were also performed with VOF method in the absolute reference 

frame. The 6 DOF tank motions (irregular wave) were imposed. The two-phase model 

using the VOF method for interface tracking was considered. The time-step is 0.004s. 

The mesh was coarse, especially in comparison with SPH and experimental results. 

 

 

t = 0.0 s           t = 15.36 s 
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t = 29.759 s           t = 42.558 s 

 

t=49.76s                            t=55.68s 

 
t=58.01s                        t=79.04s 

Fig 7.35: sloshing in the tan k 2 - H=39cm 
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t=0.01s                        t=64.31s 

 
t=64.71s                        t=65.11s 

 
t=69.25s                        t=69.65s 
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t=70.22s                        t=70.86s 

Fig 7.36: sloshing in the tank 2 - H=19cm 

 

The first wave impacts the barge when t = 40s. Subsequently, both the numerical 

models have produced satisfactory results with respect to the measurements and they 

have captured the correct period and irregular evolution of the free surface. The 

comparison of wave amplitude at wave height sensor is given below (fig 7.37-7.44) 

 
Fig 7.37: Comparison VOF – SPH – experiments at the probe Orca 2 
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Fig 7.38: Zoom of comparison VOF – SPH – experiments at the probe Orca 2 

 
 

Fig 7.39: Comparison VOF – SPH – experiments at the probe Orca 3 
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Fig 7.40: Zoom of comparison VOF – SPH – experiments at the probe Orca 3 

 

Fig 7.41: Comparison VOF – SPH – experiments at the probe Orca 4 
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Fig 7.42: Zoom of comparison VOF – SPH – experiments at the probe Orca 4 

 
Fig 7.43: Comparison VOF – SPH – experiments at the probe Orca 5 
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Fig 7.44: Zoom of comparison VOF – SPH – experiments at the probe Orca 5 

 

The amplitudes of free surface elevation between SPH and experiments were 

satisfactory. Some selections of free surface elevation were slightly underestimated 

for VOF method which was probably due to the high coarse local mesh for this case 

of small filling rate. In addition, the SPH simulation has shown high frequency 

oscillations which was due to the weekly compressible water used in the method. 

However, it was negligible in the evaluation of wave height.  

 

The simulation time was 100 seconds for both numerical methods. The total 

calculation cost of SPH is still very expensive (about 10 days), even when 16 

processors are used. Under the same scale of mesh (the mesh size for VOF is equal to 

the size of particles) the comparison for efficiency of both numerical methods is 

discussed as below 

 

 The number of particles will be much less than the number of cells in VOF 

method if one-phase model is adopted for SPH method as VOF uses two-phase 
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model to catch the interface. 

 

 Additional calculation cost to search neighbor particles in SPH method 

 

 The efficiency of calculation is quite similar. VOF allows larger time step because 

implicit algorithm is adopted but additional iterations is required in each time 

step. 

 

Moreover, SPH method could produce sharper free surface than using VOF method. 

In conclusion, SPH is an excellent CFD tool to predict sloshing problems. 
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8 Flooding due to collision damage 

A ship may be damaged due to a collision when it is sailing. As a result, water will 

flood into the damaged compartment immediately. The internal openings and 

non-watertight subdivision in the watertight (WT) compartment can have a significant 

effect on the motions of the ship during the flooding process. When flooding occurs, 

proper lifesaving measures and evacuation procedures are vital for the safety of 

human life. In order to establish relevant guidelines, clear understanding of the 

dynamic behavior of a damaged vessel and the process of water flooding into the 

damaged area is essential. In this process, vessel motion affects the water flooding 

and water sloshing in the compartment and conversely, the violent motion of liquid 

due to water sloshing in the compartment influence the vessel motion. 

 

The non-linearity and strong coupling between flooding loads and ship motion are the 

main problems during the calculations. Therefore, the development of feasible 

calculation methods to accurately predict the hydrodynamics of ship with liquid 

onboard should be based on CFD methods. In this chapter, two dimensional and three 

dimensional flooding in damaged compartments are simulated with SPH method. The 

features of flooding are studied with comparison with experiments and other 

numerical methods. 
 

8.1 Review of flooding 

Several sophisticated methods have been developed over the last decade for the 

simulation of transient flooding of damaged Ro-ro vessels with a flooded vehicle deck. 

The classical hydraulic model is widely used to calculate the floodwater dynamics in 

previous studies (Santos et al., 2002; Palazzi and De Kat, 2004; Ruponen, 2007). The 

inflow and outflow of water through the damage opening is determined by the 
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modified empirical Bernoulli’s equation. The motion of floodwater inside the 

compartment is ignored and its free surface is assumed to be horizontal. An improved 

model for the internal water motion was proposed by Papanikolaou et al. (2000), in 

which the internal water is considered as a lump mass moving freely over a specific 

path surface, yet the water surface is assumed to remain flat. A more sophisticated 

model for calculating the internal water dynamics is to use shallow water equation 

(Santos and Guedes Soares, 2002; Valanto, 2006; Santos and Guedes Soares, 2006). 

Although all the approaches mentioned above are practical and efficient to predict the 

floodwater motion and its impact on the vessel, there are some limitations. Firstly, a 

simple hydraulic model drives the water ingress/egress through the opening, and 

hence the transient dynamics of the flow are ignored. Secondly, the surface of 

floodwater in the compartment is assumed to be either horizontal or flat. In the case 

when the vessel undergoes large amplitudes of motion, these approaches lack the 

ability to model the violent flows with non-linear free surface, even though the 

shallow water theory is employed. Thirdly, the above models cannot fully consider the 

influences of the geometry of damage opening and the internal layout of complex 

compartment on the motion of floodwater. Therefore, it is required to discover other 

effective and accurate method to predict the floodwater dynamics. 

 

Some CFD works have been presented for the simulation of flooding in the past few 

years. Volume of Fluid (VOF) method, proposed by Hirt and Nichols (1981), has 

become the most popular method for calculating free surface flows. Many studies 

have shown that the VOF method is capable of capturing sharp interface even with 

large scale overturning and deforming (Van’t Veer and De Kat, 2000; Gao, 2001; 

Woodburn et al., 2002; Gao et al., 2004; Cho et al., 2005).  

 

SPH (Smoothed Particle Hydrodynamics) method is a mesh free CFD solver which 

has the natural advantage to capture free surface. In addition, SPH has no grid 

problem which is particularly attractive for nonlinear wave-body interaction problems, 

including water flooding and capsizing of a floating body.  
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The objective of this chapter is to investigate the features of flooding in numerical 

ways. Parallel SPH code is developed and the results are compared with VOF method 

and experimental data. Three cases are studied: 1) Water flooding into two 

dimensional damaged boxes: numerical model is defined with different position of the 

damaged areas. 2) Three dimensional flooding into the fixed compartment: 

experiments were carried out by Cho (2005). 3) Simplified ship flooding: Mid-section 

of an actual ship is tested and wave height in the compartment and outside of the ship 

is recorded for comparison. The simulations are still performed with one-phase 

algorithm to avoid high calculation cost. 

 

8.2 Benchmarking results – Flooded compartment 

Case 1 – 2D rectangular box  

In order to validate the flooding case with SPH concerning the coupling with free 

motion tank, numerical models and 2d transient flooding under free motion are 

proposed in fig 8.1-8.3  

0.02

0.02

 

Fig 8.1 Case A with damage open 0.02m above the bottom 
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0.04

0.02

 

Fig 8.2 Case B with damage open 0.04m above the bottom 

 

 
Fig 8.3 Case C with damage open 0.06m above the bottom 

 

All the boxes have the same opening length but with different height on the left frame. 

Other characters are shown in Table 8 as below. 

 

Weight 7.5kg 

Moment of inertia 0.075kg.m2 

Length 0.1m 

Height 0.1m 

Gravity centre above bottom 0.025m 

Horizontal gravity center 0.05m 

Thickness 0.01m 

Draught 0.075m 

0.1

0.02

0.06
0.01
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Table 8: reference of numerical box 

 

The drought of the box is 0.075m before it is open at initial time as it keeps 

equilibrium in still water shown in fig 8.4 
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Fig 8.4 numerical calculation domain 

 

Concerning the boundary condition for calculation domain, the bottom boundary can 

be defined as solid boundary condition which has little effect on the flooding 

evolution. The depth was set up 2.67 times of the initial drought. The width was set 4 

times the length of the box in order to reduce the influence of far field. Regardless of 

the quality of simulation, the numerical models were aiming at the validation of SPH 

method for flooding and VOF method was also used to simulate these cases for 

comparison.  

 

One-phase model was used for SPH method while 1L height of air domain was 
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defined in VOF method. Uniform particles were initialized in the domain. Dummy 

particle boundary condition was adopted on the box which was discretized as several 

layers of boundary particles. The box takes the free motion due to the fluid evolution 

and its surge. Heave force and roll momentum were calculated with summation of 

boundary forces (section 4.4). The total number of particles was about 100,000. The 

damage was opened instantly when the simulation starts. 

 

The snapshots of flooding evolution of Case A, Case B and Case C in time series are 

shown in Fig 8.5, 8.6 and 8.7 respectively. 

 

 

 



142 
 

 

 

Fig 8.5: Case A - From top to bottom 0.1s, 0.2s, 0.3s, and 0.4s From left to right: VOF, 

SPH 
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Fig 8.6: Case B - From top to bottom: 0.1s, 0.2s, 0.3s, and 0.35s.From left to right: 

VOF, SPH 
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Fig 8.7: Case C -From top to bottom: 0.1s, 0.2s, 0.3s and 0.4s.From left to right: VOF, 

SPH 
 

The free surface of SPH agreed with VOF method very well. Both methods were able 

to record the flooding process in time series. When the flooding started, the flooding 

water evolutions were highly nonlinear and they depend on the damaged open and the 

impacting and sloshing phenomena in the damaged compartment. The coupling 

between ship motion and fluid evolution was also very important to predict the final 
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damaged condition. Therefore, it is necessary to use CFD method such as SPH and 

VOF to accurately simulate flooding process and the motion of the damaged ship in 

time-domain. Moreover, the simulation will give an estimation of the available time 

for orderly evacuation and abandonment, where there is a risk that the ship will 

capsize or sink.  
 

 

Fig 8.8 SPH vs. VOF of Surge and heave motion in time series (Case A)  
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Fig 8.9 SPH vs. VOF of Surge and heave motion in time series (Case B)  

 

 

Fig 8.10 SPH vs. VOF of Surge and heave motion in time series (Case C)  
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Fig 8.11 SPH vs. VOF of roll motion in time series  

 

Figs 8.09-8.11 show the results of box motion in time series including surge, heave 

and roll. As expected in linear theory, the flooding will be more violent when the 

damage opening is deeper. At initial time, the larger pressure difference among two 

sides of the box cause larger amplitude of surge motion. When the flooding water 

impacts on the right wall in the box after 0.1s, the box takes positive surge 

acceleration due to the impacting force. The obvious sinking of box begins when the 

flooding water reaches the bottom wall in the box. In addition, the capsizing of the 

box depends on the gravity center of the box and the sloshing phenomena. 

 

SPH results generally are in accordance with FLUENT results. SPH has a simple way 

to achieve fluid-solid interaction whereas mesh-based method has to solve the 

problem of mesh distortion due to the large motion response of structures. 

Case 2 – 3D rectangular box  

Flooding test of Ro-ro ship is proposed in 24th ITTC to investigate the stability under 
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the scenario of damaged compartment being flooded. Simplified model (Fig 8.12) was 

tested by Cho (2005, Maritime and Ocean Engineering Research Institute, KORDI, 

Korea).  

 

This study concentrates on simulation of progressive flooding where the floodwater 

can proceed to undamaged compartments of the ship through the internal openings. 

SPH simulation was carried out and the results were compared with VOF method. 

 

 

 

 

Fig 8.12 Flooding test of Ro-ro ship compartment 

 

The compartment was fixed in the tank with a damage opening along the length of the 

tank. The main characteristics of the compartments are listed in following Table 9 

 

Model scale 48.57 
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Damage side Starboard 

Length 26.714m 

Breadth 25.000m 

Height 9.025m 

Draft 6.400m 

Table 9: Main characteristics of Damaged Compartment of ITTC Ro-Ro Passenger 

Ship 

 

For the simple model, the geometry of damage opening was designed as shown in Fig 

8.13 

26.714m

8.244m

10.0m
9.

02
5m

Damage opening

26.714m

8.244m

10.0m
9.

02
5m

Damage opening

 

Fig 8.13 Geometry of damage opening 

 

The compartment was flooded from the damage opening on the starboard side. The 

model was fixed without any motion being considered. The drought of the 

compartment was 6.4m and the water level outside the compartment was below the 

upper edge of the damage opening at any time. The air was allowed to escape through 

the damage opening. In this case, one-phase model for SPH was adopted for 

efficiency of calculations.  
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Fig 8.14 Results of VOF (Flow 3D) 

 

Three dimensional images were created in order to visualize the flooding process. Fig 

8.14 is the results of VOF method from software Flow 3D (Cho 2005). The case was 

simulated by both SPH and VOF (Fluent) for comparison. The results are provided in 

fig 8.15. 
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Fig 8.15: Snapshots of Flooding in 3D damaged compartment in time series (From 

left to right: SPH, Fluent; From Top to Bottom: 1.5s, 3s, 4.5s, 6s, 7.5s, 9s. 

 

Flooded water evolutions in the damaged tank were given at 1.5s, 3s, 4.5s, 6s, 7.5s, 9s. 

More than one million of uniform particles were used in SPH calculation. The outside 

tank boundary domain was limited to 5 times the damaged compartment’s length 

(125m x 125m in full scale). 16 processors were used for code parallelization. 

 

The general agreement of the results between three different CFD methods was 

satisfactory. In the latter time series, SPH method underestimates the volume and 

velocity of flooded water which was due to the limited tank size which was 7 times 

the damaged compartment’s length for Fluent. The final equilibrium water level in the 

damaged compartment will be equal to drought if the tank is infinite but in the limited 

tank, the water level will be 4% (SPH) and 2% (VOF) of initial drought less than 
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infinite case. 

 

Case 3 – Midship section 

Flooding simulation was also performed for the actual damage onboard the damaged 

ship, on the basis of the measurements by water level sensors.  

 

The model is a 2D midship section of an actual ship (WP4, Model 4, carried out by 

Project NEREUS), built to the scale of 1:28. All the values were given at model scale 

in millimetres. The main dimensions of tank were: 

Length: 93 m, Width: 6.80 m, Water depth: 2.75 m, 

 

The model mass was adjusted to obtain a 6m full scale draught and a COG height near 

the reference water plane. The model's natural roll frequency was 0.848 Hz, as 

measured by free roll decay tests. The following table summarises the main model 

particulars: 

 

Dimension  

Full Scale 

Intact  

Intact Model @ 

1:28 (Theory)  

Intact Model @ 1:28 

(Actual)  

Length (m/mm)  60.000  2142.9  2143  

Breadth (m/mm)  27.800  992.9  995  

Depth (m/mm)  16.000  571.4  628  

Draught (m/mm)  6.000  214.3  214  

KMT (m/mm)  13.967  498.8  Not measured  

GMT (m/mm)  7.967  284.5  Not measured  

Desired KGT (m/mm)  6.000  214.3  187  

Length of Damage Compartment 

(m/mm)  
19.200  685.7  Not Applicable  
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Keel to top of car deck (m/mm)  9.000  321.4  307  

FW Displacement (Tons/kg)  9385.1  427.5  427.3  

Table 10: summarises the main model particulars 

 

Geometry of ship model is below: 

 

 

Fig 8.16: Model Characteristics (side view) 



155 
 

 

Fig 8.17: Model Characteristics (front view) 

 

Wave height was measured in different positions (Fig 8.18). 

 

 

Fig 8.18: Wave probes positions (all dimensions in mm) 

 

In this benchmark case, we have chosen one of the tests as our CFD validation case. 

The ship model took the captive heave motion with initial heel angle 8.5 degree, the 
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heave motion amplitude was 53.6mm and frequency was 0.661 Hz.  

 

SHIP
Constant
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Constant

coarse
Constant
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Variable smooth length

Variable smooth length

Variable smooth 

length

L L

SHIP
Constant

fine

Constant

coarse
Constant

coarse

Variable smooth length

Variable smooth length

Variable smooth 

length

L L  

Fig 8.19 Variable smooth length of particles 

 

In the SPH simulation, over 2 millions particles with variable smooth length were 

initialized in the tank (Fig 8.19). From top view of the tank, constant tiny particles 

were used in the position of ship and the area close to the damage opening to evaluate 

the correct wave height in the compartment. Constant large particles were setup in the 

domain far from the ship and the domain behind the ship. Particles with variable 

smooth length were used for connection. 
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Jump of smoothed lengthJump of smoothed length

 

Fig 8.20 Jump of smoothed length 

 

About 5 periods were simulated in numerical ways. Contrary to slamming case, after 

a long time simulation, some particles will move to new position which cannot be 

predicted in advance. Jump of smoothed length will occur during the simulation. 2D 

example is shown in Fig 8.20. The interaction of two particles with large difference of 

mass will cause reflective force from large particle to the small particle. However, in 

our simulation, the jump of smoothed length has little effect on the results of wave 

height. 
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Fig 8.21: wave height - Experiment results at WP2 and WP4 

 

Fig 8.22: wave height -Fluent results at WP2 and WP4 
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Fig 8.23: wave height -SPH results at WP2 and WP4 

 

The results of wave height at WP2 and WP4 are shown in fig 8.21-8.23. Compared 

with experimental data, the error at start time is mainly due to the initial situation. 

Contrary to the experiment, CFD simulation sets the compartment in still water with 

heel angle and the compartment takes exact proposed heave motion. Since this case is 

not the about the transient problem, we care more about the flooding water and wave 

generated after the simulation of cycle becomes steady.  

 

There is a good agreement on the radiation wave height at WP4 caused by heave 

motion of ship between SPH and experimental results. VOF method underestimated 

the amplitude slightly, which is due to too coarse meshes that may carry large 

numerical dissipations. Fig 8.24 shows the SPH results of free surface shapes in the 

first period. Due to the fact that very shallow flooding water can be detected inside of 

the compartment, the wave height at WP2 shows oscillations in each period. The same 

phenomenon is observed in Fluent’s results. It requires much finer mesh to solve this 
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problem but we are concern about the time it will consume. However, the maximum 

amplitude of wave height in the compartment agrees with the experiments. 
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Fig 8.24 Free surface shape - From left to right: 1.2s, 1.4s, 1.6s 

 

8.3 Summary of Results 

Three different damaged cases have been analyzed with SPH calculations: two 

dimensional damaged boxes, a damaged compartment of ITTC Ro-Ro passenger ship 

and mid-section of an actual ship. The main differences were: in 2D numerical model 

the motion of damaged box is fully coupled with hydrodynamics, the damaged 

compartment was fixed, disregarding any ship motion and the mid-section of an 

actual ship takes captive heave motion in calm water.  

 

Regarding case study 1, two dimensional numerical models were defined to validate 

the SPH code on flooding process and to fully handle the coupling with compartment 

motion in time domain. The results of case study 1 were compared with commercial 

software Fluent. Compared with other CFD method, SPH has great advantage when it 

comes to dealing with the complicated FSI problem with quite simple initialization of 

particles and solid boundaries. 
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Regarding case study 2 and 3, due to the efficient parallel scheme, SPH could predict 

three dimensional progressive flooding correctly and efficiently. Moreover, further 

accurate free surface shape can be provided by SPH. 

 

One-phase solver of SPH was adopted in the simulations of flooding since in all cases 

the air in the compartment was able to escape at any time. In some cases, the effects 

of air pipes can also be significant due to the compression of air that delays the 

equalizing flooding to the undamaged side. Two-phase solver of SPH could be used to 

deal with airflow. However, the time it takes to calculate the additional factors will 

increase significantly. 
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9 Discussion 

A meshless technique based on the Smoothed Particle Hydrodynamics algorithm has 

been developed for the simulations of three dimensional nonlinear free surface flows. 

The Lagrangian character of SPH allows present method to handle accurately large 

deformation and fragmentation of the interface. 

 

Some techniques were developed and adopted in our code in order to allow the 

simulation to be more accurate and stable. The fluid was modeled as weakly 

compressible by introducing an equation of state. This results in a more efficient code 

since it did not necessitate the solution of a Poisson equation for the pressure. In order 

to avoid particle clumping, tensile stability was introduced in the code. Variable 

smoothed length technique was implemented by initializing the particles through 

Gambit. The efficiency of calculation has improved significantly. SPH strategy has 

been combined with fourth-order Runge-Kutta scheme for the time integration of the 

solution. 

 

Furthermore, dam break and wedge entry were tested for verification and validation 

of SPH code. Different solid boundary conditions were compared in these cases and 

the proposed approximate boundary technique was proven to be robust and accurate. 

In addition, this allows a correct evaluation of pressure along the boundary. 

Two-phase SPH solver was tested for 2D dam break to investigate the air influence. 

Variable smoothed length technique was used in the simulation of wedge entry and 

the efficiency was 5~10 times higher than the case using uniform particles. 

Simulations of breaking and reconnection of the interface in slamming problem can 

be easily handled by SPH. The impacting force and local pressure were also predicted 

to be more accurate compared with experiments. 
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Finally, the method has been applied to sloshing and flooding with simulation of five 

cases: 1) two dimensional sloshing in rectangular tanks 2) three dimensional sloshing 

in rectangular tanks 3) two dimensional flooding in damaged box 4) three dimensional 

flooding in fixed rectangular compartment 5) three dimensional flooding in 

mid-section of a ship. 

 

SPH method has been used to simulate sloshing with high nonlinear behavior. 

Comparisons with model tests were presented in the case of 2D sloshing within the 

rectangular tank. Besides good agreement of height wave at particular position, 

impacting pressure and free surface visualization were also provided. Subsequently, 

SPH was extended to simulate 3D sloshing in irregular waves. There have been 

similar agreements with the demonstrated experiments. Comparisons were also made 

with other CFD tools.  

 

Time domain simulation is a very efficient tool to accurately predict progressive 

flooding. SPH method has the natural advantages to handle complicated free surface 

flow and even more complicated and practical applications were implemented in the 

present thesis. Two dimensional damaged boxes with free motion were firstly 

simulated. The coupled motion of the box due to flooding water was predicted and 

comparisons were made between different heights of damage opening. It is very 

meaningful to investigate the influence of instant flooding process on the final 

condition of flooding. 

 

Furthermore, three dimensional compartment flooding cases were tested. Transient 

progressive flooding into the fixed compartment was successfully predicated. Finally, 

a mid-section of ship with damage opening was studied. The ship took a forced heave 

motion. Wave height of flooded water and radiation wave in time series were 

compared with experiments and other numerical results. There was generally a 

satisfactory agreement that occurred during the comparison. 
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10 Conclusion 

The main objective of this thesis is to develop a fast and accurate simulation method 

for 3D Nonlinear Free Surface Flow. Main contributions of present thesis are outlined 

below: 

 

1. Robust and comprehensive SPH parallel codes were developed. Computation 

ability is always the bottleneck of CFD method. Parallelization is the optimal 

option to solve this problem. In our code, MPI technique was adopted for 

parallelization. Since SPH method adopts explicit algorithm in interactions, the 

efficiency of parallel is higher than traditional CFD tool (VOF). 

 

2. Efficient and robust solid boundary condition was proposed which was suitable 

for the complex geometry. Approximated boundary for ghost particles technique 

was introduced in the present thesis. Most of the complex geometries can be 

discretized into simple flat faces, and the algorithm is efficient and stable. The 

benchmark cases have proved the accuracy in the simulation of the solid 

boundary. 
 

3. Variable smooth length technique was developed to improve the calculation 

efficiency. Wedge slamming case was used to demonstrate the stability and 

accuracy of this technique. 
 

4. Multi-phase SPH model was developed. Dambreak case was used to demonstrate 

its advantage to predict the free surface flow with cavity and breaking wave. 

 

5. There were acceptable evaluations of local pressure, tank motion model coupling 

with hydrodynamics. Plenty of general fluid problems which require the 

knowledge of local pressure on solid boundaries. However, the standard SPH 

method suffers from the lack of stability which leads to irregular pressure in 
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specific points. In order to extract the accurate local pressure, some new 

techniques were proposed which were called ‘Pressure Integration and Summation 

of Boundary force’. Furthermore, the solid response loads and momentums were 

derived from this technique. Fully coupling cases between fluid and solid were 

studied in this thesis successfully. 
 

6. Sloshing case with violent resonance was studied and SPH method could predict 

the free surface shape with large deformation and local impacting pressure 

correctly. 
 

7. Flooding cases coupling with free motion tank were studied. The transient 

flooding process and the motion response of damaged tank could be predicted by 

SPH method correctly. 

 

8. The applications of SPH were extended to 3D free surface flows. Three 

dimensional sloshing and flooding cases were studied in the present thesis. SPH 

could simulate 3D free surface flows correctly and efficiently. 

 

Recommendations for Future work 

The present SPH method can be further improved in several aspects 

 

 Variable smoothed length technique 

This technique could reduce the computation time significantly, but currently it is 

the only suitable technique in slamming case. Improved model should be 

developed to extend the application of variable smoothed length on additional 

general cases.  

 

 Incompressible SPH for two-phase model 

Conventional SPH (weekly compressible assumption) suffers the problem of 
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calculation cost to simulate multi-phase model. Incompressible SPH could avoid 

this problem and it will not have the problem to capture free surface particles in 

multi-phase model. 

 

 Coupling SPH with BEM 

More investigation could be done on inflow and outflow boundaries of SPH 

which leads to couple meshless method with Boundary Element Method or VOF 

method. 
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