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Laser metal deposition (LMD) is an advanced additive manufacturing technology that is also 

known as metal 3D printing. It has many industrial applications which include building parts 

with complex geometry from scratch, Remanufacturing, and coating parts with a variety of 

materials. It is being adopted by the industry at a very quick rate, however quality assurance 

is still a hurdle that is being investigated. Defects are an inherent part of the process and are 

caused by many factors which may be unacceptable to industries like the Aerospace industry. 

For this the state of the art presents many NDT solutions to detect defects during the 

deposition process however, these methods have limitations due to the type of sensor being 

used, the high rate of change of the phenomenon the sensor is observing, the level of 

information that can be extracted from the sensor data about the defects and obviously the 

accuracy of the extracted information. This research investigates and develops a defect 

detection methodology that uses a multisensory array in collaboration with a custom data 

fusion algorithm that allows for the detection of defects and predicts features of the detected 

defects. This includes total number of defects, types and quantity of the defect, Max defect 

size and total defected area. This is achieved by first designing and developing a multisensory 

architecture capable of monitoring different parts of the defect development cycle at high 

enough sampling speeds so that information that indicates defects can be effectively 

captured. This is followed by monitoring defect provocation experiments to capture signals 

from a defected sample and training the system on these signals. In the training run the 

system takes the signals from these defect provocation experiments and stiches them onto 

defect information extracted from the XCT scans from the provocation experiments. From 

the stitched data sets events that exhibit anomalous behavior which might indicate the 

presence of a defect are extracted and plugged into a K means clustering algorithm which 

sorts them into clusters. For every cluster a predictor table is formed which are used to 

predict defect features for any new event that is assigned to that cluster. The online data 

fusion algorithm takes in values from the predictor table once a new defect is introduced and 

outputs a predicted range between which the actual value of the defect feature lies in. The 

reliability of the range is also quantified using another value called % confidence which is 

formed using a unique scoring system. The results of this system show a relatively higher 

accuracy than solutions that use a single sensor approach and predicts further information 

about the defects. 
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1.1. What is Laser Metal Deposition? 

Laser metal deposition or LMD is an additive manufacturing technique through which 

structures can be formed by melting metal powder or metal wire (depending on the type of 

LMD process) using a laser source (Sibisi, Popoola, Arthur, & Pityana, 2020). Among other 

LMD techniques Direct Energy Deposition or DED is a process by which energy is focused onto 

a very narrow area to melt a substrate and the material being deposited on the substrate to 

form a melt pool. When the energy source moves off the melt pool at that point, the melt 

pool cools down forming a solid or deposit (Kai Zhang, 2007). Continuously laying down a 

length of these deposits can be called a track and each track that is overlayed over each other 

is known as a layer Figure 1 a. A common DED system is a Laser-based Metal Deposition or 

LBMD system which comprises of a deposition head, Powder Feed System and robotic arm 

or/and rotary table that moves the laser head and/or the table relative to each other. As 

shown in Figure 1 b, A typical deposition head for LBMD which uses powder material contains 

Laser Optics that focuses the laser on to a spot, powder feed nozzles, shield gas nozzle and 

at times sensors. The powder feed system jets metal powder through the nozzles onto the 

melt pool created by the laser and the shield gas controls the spread of the powder along 

with controlling the oxidation of the melt pool in the presence of air. The laser head is usually 

mounted on a 3 to 5 axis CNC that can enable manufacturers to create complex 3D shapes 

with the aid of CAD software’s (Gibson I., 2015). 

The LMD machine has the following basic machine parameters, Laser Power, Laser Spot Size, 

Powder Feed Rate and Scanning Speed. Laser Power is the actual power of the laser which 

increases the intensity of the energy source while spot size is the area of the laser on the 

substrate focused using the laser optics installed in the head. The Powder feed rate is the 

flow of powder delivered into the melt pool and the scanning speed is the speed at which 

the Laser head moves over the surface. 
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Figure 1: a) LMD Process b) LMD Laser Head (Gibson I., 2015) 

1.2. Applications of LMD  

Laser metal deposition has found its applications in multiple major industries like Aerospace, 

Medical, Oil & Gas, Automotive and Tooling. (John H. Martin, 2017)  (Torsten Petrat, 2016) 

(Markus Franz, 2014) 

The Medical industry uses LMD specifically due to its ability to create custom complex shapes 

and the large range of powder materials that can be used in the process. Most alloys are used 

to create custom implants and prostheses like bone replacements, orthopedic implants, and 

dental implants. Some structures take advantage of the porosity or lattice structures to 

improve osteoconductivity1 in bone implants and scaffolding structures. Different powder 

mixes can be used to enhance bioactivity2, osseointegration3, antibacterial and antimicrobial4 

characteristics in the LMD component. LMD can also be used to manufacture complex 

bioresorbable implants that dissolves with the growth of the bone (Kim Vanmeensel, 2018). 

In Aerospace industry LMD is used in rapid prototyping, rapid tooling, direct part production 

and part repair of metal material components. The characteristics of Aerospace components 

fit well with the capabilities of the laser metal deposition specifically because they have a 

 
1 “Osteoconduction is the ability of bone-forming cells in the grafting area to move across a scaffold 
and slowly replace it with new bone over time. Osteoconductive materials serve as a scaffold onto 
which bone cells (osteoblasts and osteoclasts) can attach, migrate, grow and/or divide.” 
2 “Bioactivity is defined as the property of materials to develop a direct, adherent, and strong bonding 
with the bone tissue.” 
3 Osseointegration is the scientific term for bone ingrowth into a metal implant. 
4 “An antimicrobial agent is defined as a natural or synthetic substance that kills or inhibits the growth 
of microorganisms such as bacteria, fungi and algae.” 

a) b) 
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large volume envelope to volume ratio, aerospace parts are difficult to machine and have 

high buy to fly ratios, parts have small production runs, parts that need quick turnaround 

time and parts need to be high performance. Specific applications for LMD include aero 

engine parts manufacturing, utilization of functional graded materials, mold and die repair 

casting and turbine blade repair.  Examples can be found of parts like helicopter engine 

combustion chambers, turbine housing chambers, gas turbine exhaust, blisks, impellers and 

shafts being build using LMD. LMD systems display unique capabilities like low heat input 

during repair, small heat affected zone during repair, the mixture of powder allows superior 

mechanical properties of the build piece and complex shapes can be re-created during repair 

etc. In re-manufacturing and repair it is found that a blisks suffering erosion was repaired 

using LMD. Another interesting example is where the bearing seating area that was worn out 

in a gas turbine engine was repaired using LMD (R.Liu, 2017). One of the highlights in the 

aerospace industry of LMD would be Relativity Spaces’ 3D printed Space rockets that have 

drastically changed the time in which rockets can be built. Relativity Space claims their 

rockets have fewer parts, their production time is 10 times faster and they do not need fixed 

tooling using this manufacturing technique (RelativitySpace, n.d.). 

The Oil and Gas industry are mainly interested in LMD for the cladding purposes for wear 

resistant coating on components in offshore and onshore oil drilling. Particularly in TRUMF 

(TrumpF, n.d.) case study it is found that the metallurgical bond formed using LMD for 

cladding is far more superior than the conventional thermal spray process (A.J.Pinkerton, 

2010).   

1.3. Problems and State of the Art Solutions 

The industries mentioned above have recognized LMD as a future technology and have 

invested in purchasing LMD technology. Even though these industries are currently utilizing 

LMD for specific but limited tasks, they still have not completely overcome the issues that 

are inherent to this process. These issues can hinder the progress Laser Metal Deposition is 

making in terms of a reliable and controllable manufacturing process that can produce high 

quality products with reliability. The two major types of defects that seems to be of 

paramount interest are cracks and pores. Even though there are other kinds of defects that 

are produced during the LMD process (ISO13919-2, 2001) cracks and pores seem to be the 

most important since they can affect the functionality and operational capabilities of the part 

being manufactured. For example, the parts manufactured in the Aerospace industry do not 
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have a tolerance for porosity (Slotwinski, 2014) while certain parts in the medical industry 

prefer a certain level of porosity (Kim Vanmeensel, 2018).  

Most researchers are nearly in agreement on the general types of Porosity seen in LMD parts, 

namely Gas Porosity and Lack of fusion porosity.  Gas porosity is where any type of gas is 

trapped within the deposit during the cooldown of the deposit while lack of fusion porosity 

is incomplete bonding between any two points in the deposit. The researchers also seem to 

agree with the theories of mechanisms that cause these pores. The nomenclature of the 

types of Porosity however depends on the perspective on how they are being observed e.g., 

Pinkerton defines porosity based on the regions it is found in of the deposition (inter track, 

inter layer lack of fusion and interlayer porosity) (A.J.Pinkerton, 2010). 

Cracks on the other hand are undesirable in all industrial applications due to the serious 

ramifications of cracks and micro cracks on the structural integrity and life span of the 

product. There is a good amount of study on the types of cracks that prop up during the LMD 

process and how they are propagated in the material. According to (Wang, 2008) the 

mechanism to crack generation are well understood and cracks can be classified as Structural 

Segregation Cracks, Thermal Stress Cracks, Cracks due to post machining and Slag cracks.  

Whilst there is information on the mechanisms of LMD physics including its Thermodynamic 

and Geometric models and the phenomenon that causes defects in the laser metal 

deposition (A.J.Pinkerton, 2010), there is limited amounts of research found on how to 

effectively monitor, detect defects, and control the process. The general motivation of 

researchers is developing a system that utilizes non-destructive testing or NDT to detect 

defects during the LMD process.  The state of the art involves solutions that use different 

types of Sensors and methodologies which take advantage of the change in thermal( (Ulf 

Hassler, 2016), optical (Wei He, 2019), morphological (Khanzadeh & Bian, 2016), and acoustic 

(Gaja & Liou, 2017) signatures generated when an anomaly occurs in the deposit. A common 

trend in research is to train the machine on bad and good signatures. The good and bad 

signatures are determined through some form metallurgical post analysis of the sample upon 

which the data was collected. 

There is plenty of literature present on the multisensory data fusion solutions to solve 

precision and accuracy problems with control systems in LMD. The goal objective of 

(Vandone & Stefano Baraldo, 2018) and (Song, Bagavath-Singh, Dutta, & Mazumder, 2012) is 

to control build height and dimensions and to do this they use very similar sensors and 
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observe nearly the same phenomenon as in Defect detection solutions. It is ironic that even 

though they use similar monitoring methods the data fusion and multi sensor methodology 

approach is not utilized for defect detection research to improve precision and accuracy of 

detecting defects. 

1.4. Research Aims and Questions 

As discussed in the section the goal of the current state of the art research and the need of 

the industry is of a solution capable of monitoring, detecting, and preventing or correcting 

defects. Critical analysis reveals, each research approach has its limitations and different 

target goals. These goals vary from detection of specific type of Defect, Number of defects, 

Position of defects and Size of Defects. Each of the mentioned features is very important as 

they reveal vital information which determines the quality of the deposition as well as 

information required to take corrective action. However, each method seems to be observing 

different phenomenon’s which occur at different stages of the defect development (The 

phases in which the defect starts to develop and then stops developing or comes into its final 

form) with different sensors and processing hardware which have varying sampling speeds 

and working principles. The trend analysis for the data collected also varies and each method 

uses different defect provocation techniques to carry out their experiments which might 

provoke different types of defects. Post metallurgical procedures and analysis techniques to 

which collected sensor data is compared to are also different. It can be assumed just based 

on the varying methodologies and approaches even before further investigation is revealed 

that each approach has its advantages as well as limitations in detecting and predicting the 

features of the defects. However, one thing is evident; research does not provide a singular 

solution that would be capable of painting a more complete picture of the state of the sample 

i.e., detecting position, type, size, and total number of defects which is more in line with the 

actual need of the industry. 

Considering the need of the industry and the general motivation of the research, the different 

goals and limitations of the current research pose some very important questions regarding 

the current state of the art and require further investigation so that a more complete solution 

may be developed. The following is the overarching research question along with its sub 

questions: 

Research Question: “How can a multisensory data fusion approach overcome the limitations 

of the state-of-the-art Single Sensor Defect Detection solutions for Laser Metal Deposition? “ 
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a) What are the prominent types of defects in LMD including their source mechanisms that 

give rise to these defects, their sizes, types, their developmental time, and the phases 

during which they are formed? (This should give a more complete picture of the entire 

defect development cycle.) 

b) What are the possible provocation techniques (including influence of machine 

parameters on defects) that could give rise to different types of defects?  

c) What are the state of the art in-situ defect detection solutions for laser metal deposition, 

including the phenomenon they observe, the hardware utilized to observe this 

phenomenon and its limitations with respect to the laser metal deposition process and 

lastly the data analysis/processing methodologies including their post/offline analysis 

techniques which are used to verify/ train their system? 

d) At what part of the defect development cycle does a specific sensor pick up a specific type 

of defect? What specific information regarding a defect does a particular Sensor and 

hardware reveal effectively? What data analysis processing and training method used to 

predict the features of a defect is most effective?  

e) What data fusion methodologies in industrial manufacturing could help formulate a 

possible fusion algorithm for defect detection in LMD that utilizes data from multiple 

sensors?   

This investigation will layout a road map on how to design a singular solution capable of 

effectively detecting and predicting useful information regarding those defects. Developing 

this solution is the goal of this research and the specific objectives of this goal are formulated 

after the above-mentioned investigations are carried out. These objectives are explained in 

detail in Chapter 4.  

1.5. Significance of this Research 

According to (Wohlers, 2008), from 2004 to 2007 Additive Manufacturing products and 

services have grown by 116% i.e., $612 million. According to (Lang, 2017), experts have 

predicted AM to become a 20-billion-dollar industry by 2020. It goes on to further explain 

that reports published by Gartner shows that by 2020, 10% of the applications in the industry 

will integrate robotic AM technologies in their manufacturing operations. This will cause 

product release timelines to be reduce by 25% and 75% of all global manufacturers will be 

using some tooling made with AM manufacturing.  
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Major industrial giants like SIEMENS (SIEMENS, n.d.) and Rolls Royce (Royce, n.d.) are now 

heavily invested in Metal 3D printing and are either providing services or creating commercial 

product parts using LMD. Due to the growing market and such heavy players 

adopting/investing in LMD, there is a natural need for quality assurance systems. The 

BigDataLMD project (3dpbm, n.d.) aims to improve the process stability of the LMD process 

by developing a quality assurance tool for Siemens IIoT platform Mind-Sphere. This project 

involves a partnership between Fraunhofer IAPT and Siemens AG ,BeAM/AddUP S.A.S, MT 

Aerospace AG, Safran S.A., ArianeGroup SAS, Precitec GmbH & Co. KG and New Infrared 

Technologies S.L.  EU-funded project Innovative inspection techniques for laser powder 

deposition quality control (INTRAPID, n.d.) has developed NDT methods for inspection of 

parts manufactured using LMD. It is very evident that quality assurance tools in LMD are an 

ongoing effort and there is a serious amount of investment and interest in the endeavor. 

A Quality assurance tool/ method capable of monitoring the process, detecting defects and 

their features will accelerate the acceptability of LMD as a mainstream manufacturing 

technology. Also, A Highspeed, multisensory, Data fusion approach will further open 

opportunities to study the LMD process in detail and through the lens of multiple sensors but 

in correlation to each other.  

1.6. Scope and Limitations 

The main output of the research is to develop a Multisensory data fusion methodology 

capable of detecting defects and predicting their features in LMD. The scope of the research 

is limited to exploring, evaluating, and implementing the most suitable sensor, hardware and 

methodology combination that can detect defects and predict features for these defects 

(Quantity, Type, Size, and defected Area) using a custom sensor fusion algorithm. Inevitably, 

it also involves the development of a hardware and software architecture to handle high 

speed multi-sensory input. This includes designing experiments to provoke a variety of 

defects so that signatures of multiple defects can be collected for training data. The findings 

of this thesis will result in a system capable of detecting multiple phenomenon that indicate 

defect development at high enough speeds so that they can catch the change in these 

phenomena with relatively high accuracy. The signals captured during the LMD monitoring 

should allow for events that indicate the presence or development of defects to be extracted 

which can be used in a data fusion algorithm capable of predicting defect features. Compared 

to the state-of-the-art single sensor approach the high speed, multisensory and data fusion 
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approach should allow for more information to be collected and the fusion of data should 

increase the accuracy of detection of defects. 

Consequently, the research has its limitations. The solution does not aim to create a control 

system that would allow for corrective action to be taken from the predicted results. The 

system does not output single values for a predicted feature instead, it outputs a range in 

which the feature value lies. The research heavily relies on the previous literature and does 

not establish the relation between the sensor signals and the phenomenon being observed. 

The research does not aim to establish which sensor is better at observing what and instead 

relies on literature for that.   

1.7. Thesis Structure 

Chapter 1 introduces the reader to the LMD technologies, its problems, and the current state 

of the art solutions. It also explains the Research Questions and Aims and the Significance of 

the study in the greater picture along with the Scope and limitations of the study.  Chapter 2 

and Chapter 3 aim to investigate in detail the defects in LMD, their source mechanisms along 

with the technologies and methodologies that were used to detect these defects. Chapter 4 

discusses the Specifics of the Knowledge Gap discovered and Objectives of the research. It 

goes on to explain the Methodology of the research i.e., how the research is carried out. 

Chapter 5 goes through the development of the custom multi sensor defect detection 

platform and Chapter 6 explains the experimental design and the experimentation to collect 

training and test data using the custom platform. Chapter 7 goes in details on how the data 

is processed and how the defect detection algorithm is developed. Chapter 8 discusses the 

test runs of the Defect detection Data fusion algorithm along with putting it through a range 

of statistical tests and its performance in comparison to other researchers. Chapter 9 

Summarizes and discusses the entire thesis and puts forth a discussion of further works.  
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Chapter 2:  Defects in LMD
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2.1. Cracks 

According to (Wang, 2008) there are basically two types of cracks: Cold Cracks (400 to 600oC) 

and Hot Cracks (800oC to 1000oC). 75% of these cracks are reported to be cold cracks which 

further enforce the fact that the cooling rates must be lowered to avoid crack 

generation. Here the researcher has established that the cooling rate can go up to 104 oC/s. 

Below 200oC crack generation is relatively lower however crack expansion is comparatively 

higher due to contraction tension.  The research mainly observes cracks as a function 

of Temperature instead of time e.g., For Ni45 material, the time taken for the deposit to 

cooldown from 600oC to 400oC is the time in which 54.3% of cracks are created in their 

experiment.  Table 1 shows the % cracks generated at different temperature intervals during 

their experiment in different material types. 

Temp(oC) 1000-1200 800-1000 600-800 400-600 200-400 0-200 

Ni60 % Cracks 1.1% 23.1% 15.4% 42.7% 12.5% 5.2% 

Ni45 % Cracks 0 12.2% 16.5% 54.3% 15.6% 2.4% 

Co02 % Cracks 2.3% 17.2% 22.2% 49.6% 10.5% 2.2% 

Table 1: Percentage Cracking in Temperature Ranges (Wang, 2008) 

 

Table 2: The composition of Laser Cladding Materials in Table 1 (Fujun Wang, 2008) 

The above mentioned are of 4 Forms of Cracks; Slag Cracks, Cracks caused by Structural 

Segregation, Cracks caused by thermal stresses and cracks caused by post machining Figure 

1. Slag Cracks are created by the slag produced in the melt pool due to impurities which are 

usually caused at the grain boundaries. Impurities here are defined as slagging elements or 

oxides generated during the process due to reactions. Structural segregation cracks are 

caused at the combining sites of coating and substrate. This happens due to both the thermal 

and structural stresses5. Thermal stress are mechanical stresses created due to the change in 

 
5 “Local stress which occurs immediately in front of the weld toe or weld end notch (or on the inside 
of the plate in front of the weld spot) is designated structural stress.” 
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temperature. Cracks caused by high thermal stresses are mainly due to the difference in the 

thermal expansion coefficients of the substrate and cladding materials. The last kind of cracks 

(Post machining) are caused due to the post deposition grinding that is used to smooth out 

the irregularities in the surface which can cause other internal cracks to rise to the surface.   

 

Figure 2: Classification of Cracks 

The study also examines what they call extended forms of crack or what is generally called 

crack propagation. This is where cracks will extend further to become further elongated or 

grow is different directions. They find cracks that extend along the direction of maximal 

shearing stress, extend towards the substrate, extending towards the overlapping cladding 

and cracks that extend in multiple directions. The study theorizes that the cracks that extends 

towards the substrate is due to residual stress and the cracks in the overlapping cladding are 

extended parallel to the cladding. Lastly the cracks that extend in multiple directions are the 

ones caused due to various stress states of the cladding.  

(Wu, Cui, & Xiao, 2020) establishes through their experiments that there is a proportional 

relationship between the depth of the crack and the peak temperature observed over the 

crack. This is usually a larger temperature compared to the rest of the melt pool or sample. 

These observations were made over cracks with widths that ranged from 120µm to 

399µm and depths that ranged from 122.71µm to 280.13µm. 

(Barun Haldara, 2018) also concludes that Cracks and Spalling are created by thermal stresses 

developed due to rapid solidification. The study goes on to explain the nature of these 

stresses to be compressive and tensile however tensile stresses are what the study 

holds responsible for the cracking. Spallings are where the material breaks down into smaller 

bits or spalls from the larger body. Spallings are created due to cracks in the LMD coating that 

are parallel to the surface. As per the definition spallings visually look like Slag Cracks in Figure 

3(a). The research classifies the observed cracks as two types: Vertical Hair Cracks( Figure 4) 

and Segmented Cracks. Both these cracks are created to accommodate strain that is mainly 

a product of the thermal cycling in the deposition of multiple layers. Thermal Cycling in the 
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LMD process is where the material goes through two extreme temperatures usually at a very 

rapid rate. Crevices are formed due to lack of fusion between two adjacent overlapping 

layers. 

 

Figure 3: a) Slag Cracks b) Structural Segregation Cracks c) the cracks caused by thermal 

stress d) Cracks caused by machining (Wang, 2008) 

 

Figure 4: Vertical Cracks in Laser clad layer using 75%WC+25%Ni (Barun Haldara, 2018) 

(Gaja & Liou, 2017) classify their defects as cracks and pores which are simulated by mixing 

two powders namely, Ti-6Al-4V and H13 tool steel. The mentioned powder 

Vertical Cracks 
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mixture has a non-uniform shape and size and different thermal coefficients of expansion 

which should most definitely cause cracks to occur during the process due to high level of 

thermal stresses.  Optical Image (Figure 5) shown in the research infers that crack widths 

maybe as small as approximately 1µm width and of a length of over 500µm. 

 

Figure 5: Cracking in Ti-6Al-4V and H13 tool steel LMD Deposit (Gaja & Liou, 2017)  

(Segerstark, 2017) research creates cracks by using high laser power, high scanning speed 

and low powder feed rate. When the defect samples are observed under SEM it is discovered 

that all cracks observed were Heat Affected Zone Liquation Cracks and formed during re-

solidification phase or when liquid metal was still present. This observation suggests that re-

melting and re-solidification under certain LMD machine parameter settings may cause 

cracks. In their Samples total crack lengths or TCL measured from 60µm to 2350µm as shown 

in Table 3 & the machine parameter for these run are given in Table 4 where Lp, Vs ,Mp and 

Pfoc are the laser power, Laser Scanning speed, powder feed rate and Powder standoff 

distance respectively.  

 

Table 3: Total Crack Length (TCL) for set parameters (Segerstark, 2017) 
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Table 4: Machine Parameter Setting (Segerstark, 2017) 

(J.Yu, 2013) experiments give insight on how certain chemical composition in LMD powder 

can cause the final product to be more sensitive to cracking. The research specifies that 

cracks are formed in interdendritic regions. The experiment establishes that Sulphur, 

Silicone, Phosphorus and Nitrogen content in the powder influences susceptibility to 

cracking in the product of LMD. Silicon can form low melting eutectic phases in 

the interdendritic region and along the grain boundaries which is why it increases 

crack susceptibility in the work piece. Grain boundaries are the juncture between two gain 

structures or crystals in the material. Eutectic point is the lowest melting point between a 

mixture of the composition of the solids. This can be seen in a Eutectic phase diagrams (A. 

Ramakrishnan, 2020). Interdendric regions are between the dendrites. Dendrites are tree like 

structures of crystals growing as the material solidifies. Table 5 shows that 

crack susceptibility increases or decreases with the content of S + P +Si in the powder. The 

experiment also shows that the nitrogen content is detrimental to the crack 

solidification resistance of the work piece which can also be seen in Table 5. 
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Powder Number S+ P+ Si (wt.%) S+P (wt.%) 
N Content 

(wt.%) 
Cracking Fabrication Method 

1 2.25 0.02 0.047 Yes Water Atomized 

2 1.445 0.125 - Yes Water Atomized 

3 0.553 0.023 0.062 No Gas Atomized 

4 0.541 0.041 0.09 Yes Gas Atomized 

5 0.475 0.035 - No Gas Atomized 

6 0.384 0.044 - No Gas Atomized 

Table 5: Sulphur, Phosphorus, Silicon and Nitrogen Content effect on cracking (J.Yu, 2013) 
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2.2. Pores and Porosity  

(A.J.Pinkerton, 2010) classifies defects as 3 types: inter-track, interlayer, and intra-layer 

porosity. Inter track porosity is caused by horizontally aligned tracks and form at the base of 

the tracks. Inter layer porosity is caused by the lack of fusion between vertically aligned 

deposits while an intra layer porosity corresponds to is spherical pores within the deposition 

layers. These kinds of pores are said to be caused by trapped gas or moisture and can go on 

to produce larger voids. Lack of fusion which leads to porosity can be caused by low or 

improper specific energy provided during the bonding process in the sample, misplaced 

tracks and the existence or formation of oxide layer which can hinder fusion.  

(Gaja & Liou, 2017) in their research induce pores by mixing 6Al-4V and H13 tool steel 

powder. The pores generated in the process are due to surface powder contamination, 

gasses trapped due to difference in physical size of the two powders as shown in Figure 6 (b) 

and due to the oxidation effect as the experiment is carried out in a non-enclosed 

environment. These surface oxides stay in solid state which causes incomplete melting and 

induces voids. The gas pores detected are spherical in shape and the inferred size is 

approximately 125µm as shown in Figure 6 (a).  
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Figure 6: a) Typical Gas Pore Shape & Size b) Ti-6Al-4V and H13 powder shape and size (Gaja 

& Liou, 2017)   

(John A. Slotwinski & E.J. Garboczii, 2014) measure and analyse porosity in samples produce 

by Laser Additive Manufacturing using different techniques. In their experiment the level of 

porosity increases in their samples with increase in hatch speed or spacing. Both bulk 

porosities and local porosities were observed in the samples. Observation showed that pores 

are often not perfectly spherical in shape, hence, to measure their size in 3D and shape the 

researchers have employed the following technique:  For each pore the largest length in the 

x, y and z directions were averaged over the entire pores samples and weighted by pore 

volume. Table 6 shows the average length and standard deviation of pores in x, y and z 

directions along with resolution of XCT scans used to measure the pores. The standard 

deviation was calculated in all directions so that an understanding of width distribution can 

be obtained. 

 

 

a) 

b) 
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Sampl

e 

Resolution 

(µm/voxel) 

X-

Direction Porosity Avera

ge & Standard Deviation 

(µm) 

Y-

Direction Porosity Averag

e & Standard Deviation 

(µm 

Z-

Direction Porosity Averag

e & Standard Deviation 

(µm) 

1-2 0.82 89.7 + 73.9 92.8 + 72.0 73.2 + 40.6 

1-2 2.54 70.4 + 49.0 70.6 + 50.9 62.6 + 33.1 

Table 6: Porosity Geometry and Dimensions (John A. Slotwinski & E.J. Garboczii, 2014) 

The research also mentions that sometimes pore may be joined/ connected in multiple 

directions across different layers. There is also a mention that where there are large amounts 

of Porosity, cracks are also present as shown in Figure 7(a).   

(Barun Haldara, 2018) suggest pores are either created by entrapped gases or gases released 

due to oxidation. Gas entrapment is caused due to moisture in the oxide layer, or the 

shielding gas being trapped or even due to grease on the surface of the work piece.  The gas 

pores are also created when gases like hydrogen released during oxidation and get trapped 

during solidification.  These may be reduced if the process is held in thermal vacuum 

chamber, by adding Freon to the shielding gas to reduce hydrogen, addition of Li which 

promotes formation of Lithium hydride which may absorb hydrogen, or the proper laser 

power may also reduce holes and porosity. Figure 7(b) taken from the research show pores 

in a cross-section of the sample and the max inferred size from the scale of a single pore 

seems to approximately 200µm. 

 

Figure 7: a) Porosity and Crack features (John A. Slotwinski & E.J. Garboczii, 2014) b) Surface 

Porosity in LMD Sample (Barun Haldara, 2018)  

a) b) 
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(Gary K.L. Ng, 2008) states in his research that the two kind of porosities that are seen in LMD 

can be classified as Gas Porosity and Lack of fusion porosity. The research claims that gas 

porosity is caused by gas entrapment in the deposit be it due to oxidation or the inability 

of shielding gas to escape before the deposit solidifies. He describes the shape of these gas 

pores to be spherical and that they are not confined to any location in the deposit. Lack of 

fusion porosity as the name suggest is caused when the two materials surfaces do not fuse 

completely due to which a void is left in between them. The geometry of lack of fusion 

porosity is irregular and can usually be found at intersections of the deposited tacks. Garry 

also explains that like lack of fusion porosity, gas porosity may not be eliminated by 

optimizing machine parameters however it can be greatly reduced to a very minute amount 

(0.037%). Figure 8 shows an image of high-level gas porosity and in their research, it is 

mentioned that pores as small as 6µm have been observed. 

 

Figure 8: Transverse cross section of laser deposit using Inconel 718 powder over steel 

plates that shows Gas Porosity. (Gary K.L. Ng, 2008) 

(Tiangang Zhang & Ronglu Sun, 2015) In Zhang’s study they too attribute pores to 

gas entrapment and oxidation gas produced in the process. The research establishes that gas 

bubbles remain trapped as porosity in a sample because the solidification rate which is 

(dependent on cooling rate) is greater than the escape velocity of the gas bubbles. The 

samples show that the majority of the pores in the binding region (fusion zone) and pore size 

is usually greater than 30µm.  The research also shows that pores generated are a result of 

free sulphur and oxygen which combine to form SO2 . The gasses produced are the following:  
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2MoS2 +7O2  ->  2MoO3 + 4SO2 (Equation 1: Chemical 
Reactions that produce 

gases) 
 

(Jon Iñaki Arrizubieta, 2018) study develops a model which amongst other features of the 

LMD sample can predict pore generation. The mechanisms of trapped gas during the 

deposition process and the mechanisms of shrinkage cavities generated due to the 

contraction of the material are used as the basis for their its porosity prediction model. To 

predict the occurrence of Gas porosity in a certain region the model calculates the amount 

of time each element is in liquid state.  If the region has a higher time for which it is liquid 

than the threshold time it has a higher probability of trapping gas.  As far as porosity due to 

shrinkage cavity is concerned; if a region is liquid and is surrounded by solidified material it 

has a higher probability of pores. This is because of contraction of material in the liquid solid-

state change may cause voids. 

(Saad A. Khairallah, 2020) uses models to study the pore formation phenomenon and 

dynamics of the melt pool that causes these defects. The study goes on to classify defects as 

depression collapse, lateral pores, open pores, and trapped pores. Figure 9 explains the 

formation of a pore of the defect development phases where pores are created due to 

depression collapse. Lateral Pores are pores caused by un-melted powder particles that don’t 

merge with the melt pool. Open pores are causes by incomplete remelting of the pervious 

layers and trapped pores are large ellipsoidal pores that get trapped beneath the surface due 

to the fast laser ramp down time (Shut off time). From the study pores generation times are 

also observed to be as low as 11us and 85us.  
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Figure 9: a) Pore formation due to Depression Collapse b) Pore formation due to Vortex 

(Saad A. Khairallah, 2020) 

 

a) 

b) 
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2.3. Other Defects  

The (ISO 13919-2, 2001) classifies defects and their acceptability standards in laser welding 

which is the closest standard to the Laser Metal Deposition process available. The standards 

document classifies the kind of defects observed Figure 10 and shows the level of 

acceptability on three quality levels: Moderate(D), Intermediate(C) and 

Stringent(B). (Verhaeghe & Hilton, 2004) 

The Standards show that in Class B or Stringent Quality Levels Cracks of any kind are not 

allowed however Pores, Porosity and Localised Porosity are allowed given that they meet 

a certain criterion.  For example, Gas Pores and Porosity is allowed as far as the pore length 

(𝑙) in any direction is less than 0.3 times the thickness (max 4mm) of the deposit (𝑡) and for 

laser beam welding it must be smaller than 3% of the projected area(𝑓). The projected area 

here is calculated by multiplying the thickness of the workpiece by the length of the weld. 

Weld length being the actual length of weld or 100mm whichever is smaller. For clustered 

porosity or localised linear porosity, the previous above rules apply but along with that, the 

inter-distance between any two single pores (∆𝐿) determines if they are considered as 

combined or clustered porosity and for clustered porosity the outer inner distance (𝐿𝑐)  is 

considered as the criteria for quality standard. Table 7 shows the acceptability criterion for 

Clustered Porosity, Porosity and Gas pores in intermediate, moderate, and stringent 

standards. The levels here refer to production quality and not for the fitness for purpose of 

the product manufactured. 

The defects mentioned in Figure 10 are caused by porosity, thermal stresses, incorrect 

machining or machining setup, high cooling rates and impurities in the substrate. Crater 

Pipe defects are similar to craters in physical feature and are caused by gas pores that escape 

to the surface. Shrinkage cavities are caused by high cooling rates which cause materials to 

contract/shrink which ends up creating a cavity at the surface. Solid inclusions may occur due 

to impurities in powder or powder that is not melted completely. Lack of fusion as discussed 

usually occurs due to difference in thermal gradient of high cooling rate. Sagging again is 

caused by large porosity escaping during the cooling process causing the deposition to sag 

and weld splatter is common due high powder feed rate but can be machined 

off later.  Incomplete Penetration, Undercut, Access weld metal, Linear 

Misalignment, Incomplete fillet grove Deviation from specified axis is more of welding 
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problems but hardly occur in the LMD process with the advancement in terms of the 

precision of LMD machines. 

 

Figure 10: Defect Classification as per ISO 13919-2 

Type of 

Defect 
Diagrams 

Standard 

B 

Standard 

C 

Standard 

D 

Porosity & 

Gas Pores 

 

𝑓 ≤ 3% 

𝑙 ≤ 0.3𝑡 

𝑓 ≤ 6% 

𝑙 ≤ 0.4𝑡 

𝑓 ≤ 10% 

𝑙 ≤ 0.5𝑡 

Clustered 

Porosity 

 

𝑓 ≤ 2% 

𝑙 ≤ 0.3𝑡 

(Max 

4mm) 

∆𝐿 = 5𝑡 

(Max 

5mm) 

𝐿𝑐 ≤ 𝑡 

𝑓 ≤ 5% 

𝑙 ≤ 0.4𝑡 

(Max 

5mm) 

∆𝐿 = 5% 

(Max 

10mm) 

𝐿𝑐 ≤ 𝑡 

𝑓 ≤ 15% 

𝑙 ≤ 0.5𝑡 

(Max 

6mm) 

∆𝐿 = 25𝑡 

(Max 

15mm) 

𝐿𝑐 ≤ 2𝑡 

Table 7: ISO 13919-2 standards for Pores and Porosity 



 

25 | P a g e  
 

2.4. Influence of Machine Parameters on defects  

(Rasheedat M. Mahamood, 2014) investigates the relation of porosity to Laser Power and 

Scanning Speed experimentally using Ti6Al4V powder on a hot rolled Ti6Al4V plate. 

Particularly average porosity and average pore size in samples were observed. It is observed 

that with Laser Power increasing from 400W at 800W the average porosity was significantly 

reduced from 18% to 8.5%. However average pore size increased significantly with the same 

scanning speed at higher Laser Power (800W). When scanning speed was decreased the 

average pore size decreased which explains that even though porosity decreases at higher 

laser power due to more energy being provided to the system which causes a more 

complete melting of the powder, a higher scanning speed does not allow sufficient time for 

trapped gas to escape before the deposit solidifies. This shows that Laser power and Scanning 

Velocity are inversely regarding the formation of pores. By tuning the machine parameters, 

they were able to achieve a completely porosity free sample as shown in Figure 11.  

 

Figure 11: Average Porosity and pore size reduction thought LMD parameter manipulation 

(Rasheedat M. Mahamood, 2014) 

(Gary K.L. Ng, 2008) establishes in his experiment the relation of Laser Power, Scanning 

Speed, Powder Feed rate, Shielding Gas, Percentage overlap with build height, Porosity and 

Lack of Fusion using Inconel 718 powder on steel plates as shown in Figure 12.  The results 

show that Laser Power and Powder feed-rate has a significant influence on Gas Porosity 

but Shielding Gas rate seem to have the most influence due to gas entrapment.   Lack of 

fusion is heavily influenced by the combination of Laser Power and Scanning Speed. As far as 

build height is concerned Shielding gas rate and scanning speed are inversely proportional to 

build height whereas all other parameters have a direct relation with build height. 
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Figure 12: Effect of LMD parameters on a) Gas Porosity Defects, b) Lack of Fusion and c) 

build height (Gary K.L. Ng, 2008) 

(C Y Kong, 2010) deposit Inconel 718 powder on to Inconel 718 plates and in their 

experiments discover optimised process parameters to get a high-quality product. The 

criteria established for the grade of the product by the researchers is shown in Figure 13.  

 

Figure 13: Grading Criteria for Solidification Defects (C Y Kong, 2010) 

a) b) 

c) 
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All samples had a porosity of less than 50𝜇𝑚 and an overall low level of porosity which was 

achieved by machine feed rates (scanning speed) of less that 1000mm per minute. The only 

porosity seen in the samples is attributed to powder quality and high Shielding gas 

rates.  With high laser power of 1400W and high powder feed rate, cracks are less likely to 

occur. It is also stated that cracks are not significantly influenced by beam 

spot Size and machine feed rate. Lack of fusion can be minimised by ramping up the spot size 

of the Laser. Figure 14 shows machine feed rate and powder flow rate influence on Porosity, 

Lack of Fusion, Cracking and root Penetration predicted by Design Expert Software for 1400W 

and beam spot size 1.5mm.  

 

Figure 14: a) Machine Feed Rate and Powder Flow Rate effects on Lack of Fusion and 

Cracking as predicted by Design Expert Software b) Machine Feed Rate and Powder Flow 

Rate effects on Porosity and Penetration as predicted by Design Expert Software (C Y Kong, 

2010) 

a) 

b) 



 

28 | P a g e  
 

Even though the purpose of the study by (Mohammad H. Farshidianfar, 2016) was to monitor 

cooling rates and not the defects generated in LMD, the study gives an insight on how cooling 

rates is affected by scanning speed. The cooling rates govern the time it takes for material to 

solidify and from the literature in this chapter it is well established that the quick solidification 

of the material can cause defects like porosity and cracks to be formed. Using 316L stainless 

steel the study observes the cooling rate in relation to machine parameters and this indirectly 

indicates a relation of scanning speed with defect generation. Figure 15 shows the effect of 

scanning speed on melt pool temperature and cooling rate. The higher the cooling rate the 

more likely it is that defects will occur.   

 

Figure 15: (a) Relation between Cooling Rate and Scanning Speed (b) Relation between 

Meltpool Temprature and Scanning Speed (Mohammad H. Farshidianfar, 2016) 

On the matter of cooling rate (Zavala-Arredondo & Haider Ali, 2018) state that typical cooling 

rates can be as low as 103 oC/s and go up to 107 oC/s. The study suggests that very high cooling 

rates may cause cracking in brittle materials since cooling rates and residual stress have a 

direct correlation. 
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2.5. Discussion   

The majority researchers are at a consensus that cracks, and pores or porosity are an 

inherent problem in Laser Metal Deposition. However, how these defects are classified is 

slightly different depending on the researcher and reference to which these defects are 

being observed. Mostly these are classified by the source mechanism responsible for them 

or the temperature region they are found in or the location in the deposit they are found in. 

Table 8 shows how Pores and Cracks are classified in LMD research. 

Classification Bases Defect Type Classification 

Temperature Region Crack Hot and Cold Cracks 

Source Mechanism Crack 
Slag Cracks, Structural Segregation Cracks, 

Thermal Stress Cracks, Post Machining Cracks 

Physical Appearance Crack Vertical Hair Cracks, Segmented Cracks 

Region of Deposit Porosity 
Inter-layer Porosity, Intra-Layer Porosity and 

inter track porosity 

Source Mechanism Porosity 

Gas Porosity and Lack of Fusion Porosity, 

Depression Collapse Pores, Lateral Pores, 

Open Pores and Trapped Pores 

Measurement Criterion Porosity Bulk Porosity and Local Porosity 

Table 8: Pore and Cracks classification in LMD research 

The experimentation reviewed in this thesis shows that crack length can range from 

anywhere between 60μm to 2350μm, crack width can range from  1μm to  399μm and crack 

depth 122.71μm to 280.13μm. Research also reveals a relationship between Temperature 

measured over cracks and the crack depth. The relation of crack depth would show that a 

thermal sensor could be used to reliably capture cracks and their depths. 

General cooling rates can range from 103oC/s to 107oC/s depending on material and machine 

parameters etc. The approximate time for a single crack can be calculated using cooling rates 

based on the number of cracks generated in a specific temperature interval however, this 

approximate might not be very reliable. It is however known that the majority (75%) cracks 

develop and expand at the lower temperatures (600oC to 0oC). This means that if you want 
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to catch a crack being generated, the observation of the cooling phases should be given more 

weightage than the heating stages.  

As far as cracks are concerned most research agrees that cracking across different materials 

is caused by high thermal stresses, high cooling rates, powder chemical composition, powder 

thermal coefficient, powder quality (Uniformity, shape, and size) and machine parameters 

(Scanning Speed, Laser Power and Powder Feed Rate). A good understanding of how to avoid 

cracking or even eliminating it is found in the literature. A widely suggested technique to 

avoid cracking is to pre-heat the powder before the deposition process which should 

also slightly help in melting the powder quicker. Cooling rate seems to be key in 

controlling the generation of cracks and can range from 103 𝑜𝐶/𝑠 all the way up to 107 𝑜𝐶/𝑠. 

Hence controlling or having the knowledge of cooling rates of a certain material in LMD is 

essential to predict if a defect will occur. It is also important to lay emphasis on the fact that 

inside the melt-pool, different regions may have different cooling rates which is why it is 

correct to assume that a stable melt pool is one where its temperature distribution is 

relatively uniform. A stable melt pool is less likely to have cracks or even other defects. 

Post machining may also cause crack or existing cracks to extend. When a high level of strain 

is built up inside the material and further stress is added through post machining, crack 

extension/propagation is a way for the material to relieve built up strain. A lot of current LMD 

machines utilize hybrid manufacturing methods where first LMD is carried out and any 

imperfections are smoothed out by subtractive tools. Another way of avoiding cracks is the 

right combination of relatively high laser power, relatively low scanning speed and to some 

extent relatively high powder feed-rate. Lastly powder quality in terms of its shape and size, 

impurities, and the content of Silicon, Phosphorous Sulphur and Nitrogen increases the 

crack susceptibility in a material. Where all the above information provides techniques to 

avoid cracks, it also provides vital information on how to provoke cracks. 

Porosity is one of the more important defects to be controlled and identified since at times 

it is a desirable feature and at times it is partially accepted and at times it is completely 

unacceptable in certain LMD applications. It is clear from the research that porosity levels 

can be controlled but it is not clear to what extent. Some researchers even claim 

that porosity may not be eliminated but reduced to an insignificant amount.  This is probably 

why the EN ISO 13919-2 standards allow a certain amount of porosity, given that they meet 

specific quality criterion.  
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The reviewed literature show that pores come in different shapes and sizes. Gas pores are 

spherical in shape and lack of fusion pores have a more irregular shape but are still round. 

However, there is a distinction made between voids and pores based on shape. The general 

projected or 2D size from microscopic or XCT images is 6μm to 200μm for spherical pores or 

ellipsoidal pores and for non-spherical pores in x, y, and z direction 𝑥 =

74.4μm to 89.7μm , 𝑦 = 70.6μm to 92.8μm 𝑎𝑛𝑑 𝑧 = 62.6μm 𝑡𝑜 73.2μm. 

Once again there is only a slight difference in classification of pores between researchers 

however it seems that they all agree upon the reason's pores are generated in the LMD 

process. It seems that porosity is caused by entrapped gases be it from oxidation, by product 

of chemical impurities or the shielding gas or even moisture. Most researchers consider the 

defects created by lack of fusion to be pores too but there are few who have not classified it 

as a pore. Gas often gets trapped due to the quick cooling of the deposit in LMD and are often 

seen in regions where both solid and liquid of the material exist at the same time. Un-melted 

powder is also given attributes to causing pores.  

The interesting attribute about pores as a defect is they are acceptable even in the most 

stringent quality standards given that they pass a certain dimensional criterion. Hence it 

might be more important to figure out the level of porosity than just simply find out if a piece 

has pores or not.  

There is no empirical evidence on the timing of pore generation because the LMD process is 

very quick. However, from certain models the plausible times for a pore to be generated can 

be found. According to the model presented by (Saad A. Khairallah, 2020), gas pores or 

entrapped pores development time can be as low as 11 μs and 85 μs.  

Porosity can be significantly reduced by optimising machine parameters. Basically, giving the 

gas bubbles enough time to escape the melt pool before solidification is the objective. By 

decreasing scanning speed and increasing laser power this can be achieved however this 

means increased build height which can be mainly controlled using powder-feed-rate. Hence, 

when controlling porosity using machine parameters it is important to observe the build 

height too.   

A conclusion can be drawn from the influence of machine parameters study that Pore Sizes 

increase with Laser Power and reduce with reduction in scanning speed. General Porosity 

decreases with increase of laser power and General Porosity increases with increase in 
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powder feed rate and shielding gas rate. Cooling Rate however is heavily influence by 

Scanning speed i.e., as scanning speed increases so does the cooling rate and the average 

temperature of the melt pool decreases with higher cooling rates. Lack of fusion increases 

with powder feed rate and decreases with scanning speed. All these relationships can be 

used to decrease defects or if need provoke them.  

EN ISO 13919-2 mentions a few other defects, but they all seem to be caused by the same 

source mechanisms; pre-existing porosity, thermal stresses, incorrect machining or 

machining setup, high cooling rates and impurities in the substrate. However, since they 

aren’t many of these other type of defects in LMD it would be sensible to just focus on Cracks 

and Pores. 

In conclusion it is learnt the typical sizes and shapes of Cracks and Pores that are observed in 

LMD. These features should help identify these defects when observed in the experiments 

for this research. It can also be concluded that since the other type of defects are not as much 

in quantity it would be better to concentrate on cracks and pores and classify all other defects 

as “other defects”. From the literature the knowledge of defect generation time, the 

temperature zones, and geometric regions that the majority defects appear in, and the 

cooling rates at which they are generated is also gathered. This should help identify the 

specification of sensors and systems that can be used to observe these defects. 

Understanding the source mechanisms for the defects can also help design experiments to 

provoke a variety of these defects. 
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Chapter 3: Process 
monitoring, Defect 
Detection Methodologies 
and Systems in LMD 
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The major focus of this chapter is to investigate the LMD technologies and methodologies 

used to monitor and detect defects online. The aim is to discover the physical phenomena 

that occur during the LMD process which can be leveraged to effectively indicate defects. 

Consequently, the state of the art is studied to discover hardware that is typically used to 

detect these phenomena and the specifications of the hardware necessary to effectively pick 

up these defects. The investigation will also aim to study the methodologies researchers 

employ to monitor the LMD process and detect defects. This will include the defect 

provocation techniques, post analysis methods, any modeling or machine learning 

techniques employed as well as any signal transformation and processing techniques utilized 

in their methodology.  

The last part of this chapter also looks at the Multisensory systems and data fusion 

methodologies in the state of the art that are used to monitor the LMD process or detect 

defects in an LMD sample. A study of popular data fusion architectures employed in 

manufacturing is also carried out to understand and possibly design a customized data fusion 

method. 

3.1.  Optical Camera Defect Detection and LMD Monitoring Systems 

(Barua & Frank Liou, 2014) uses vision-based technique to detect defects like cracks and 

porosity based on the cooling curve generated by the deposit. The experimentation employs 

a SLR Camera6 fitted with Macro lens for zoom and a neutral density filter to observe the 

entire deposit. The concept is to observe the spectral radiance of the deposit and as result 

observe the intensity of the image pixels of the deposit. The relation between the spectral 

radiance of ideal black body in vacuum and temperature and wavelength is given by Plank’s 

equation ((Equation 2).  

𝐿λ =
𝐶1

λ5. (𝑒
(

𝐶2
λT

)
− 1)

 
(Equation 2: Planck equation for 

spectral radiance) 

 

𝐶1 = 2ℎ𝑐2   (Equation 3: First Radiation 
Constant) 

 

𝐶2 =
ℎ𝑐

𝑘
            (Equation 4: Second Radiation 

Constant) 

 
6 SLR(Single-Lens reflex Camera) 
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𝐿λ = 𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑅𝑎𝑑𝑖𝑎𝑛𝑐𝑒 (
𝑊

𝑠𝑟 𝑚2𝑚
) 

λ = 𝑊𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑏𝑜𝑑𝑦 𝑖𝑛 𝑣𝑎𝑐𝑐𝑢𝑚(𝑚) 

𝐶1& 𝐶2 = 𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 

𝑇 = 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 (𝐾) 

h = Planck′s constant(6.63 x 10−34 J s ) 

c = 𝑆𝑝𝑒𝑒𝑑 𝑜𝑓 𝐿𝑖𝑔ℎ𝑡(2.99 x 10−8 m s−1) 

k = 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛′𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡(1.38x10−23 J ˚K−1 ) 

Figure 16 Shows that at higher temperatures the wavelength decreases and however with 

increase in wavelength spectral radiance decreases after certain temperature points. 

According to measurements made by the pyrometer the highest temperature range 

recorded for their experiment was 2700K (2426.85°C) and hence the magnitude of spectral 

radiance of an ideal body would correspond to 0.5μm -0.8μm. 

 

Figure 16: Spectral Radiance at unity emissivity derived from Planck’s equation 

The heat flow of the melt pool acts as an indicator of whether a defect is present in the object 

or not. In a normal or ideal case when the melt pool is generated the rest of the substrate 

acts as a heat sink and allows the heat to dissipate uniformly into the substrate. Heat flow is 

disrupted in the presence of defects such as porosity or cracks and hence high temperature 

regions form around these defects in the melt pool (Liu, Kumar, Bukkapatnam, & 
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Kuttolamadom, 2021). This leads to sudden temperature deviations from the normal 

temperature gradient hence creating an opportunity for the observer to identify the 

presence of a defect. Because there is a relation between temperature and spectral radiance 

an optical camera can be said to be suitable to indirectly pick up temperature. Using the 

images obtained with a SLR camera the author creates temperature gradient curves by 

associating the Incandescence of the deposited material to RGB values associated with 

temperatures which are calibrated using a pyrometer beforehand. Incandescence is the 

emission of electromagnetic radiation from a heated body because of temperature. A non-

defected deposit temperature curve is compared to defected deposit temperature curves to 

determine if the sample is defected. The research points out that emissivity can affect the 

sensor readings but since their study is observing patterns of temperature gradient and not 

the actual temperature intensity to be an indicator of defect, emissivity may not make a big 

difference in the defect detection process.  

(Tao Liu, 2019) manages to achieve real time defect detection system using an imaging 

system that utilizes Principal Component Analysis or PCA and support vector machine or SVM 

to detect and classify defects. The research uses a CCD7 camera mounted inside the laser 

head which takes images of the melt pool and extracts the following features of the melt 

pool: Area, Perimeter, Compactness, Centroid x, Centroid y, Height, Width, Average 

Grayscale values, Number of Pixels and Average Temperature. The camera captures RGB 

images, each image is filtered and then turned into a grey scale image. Using thresholding 

the gray scale image is then converted into a binary image to establish a region of interest or 

ROI. A PCA analysis (Gawade, Singh, & Guo, 2022) is applied to these features to reduce the 

dimension of the set and then their PCA coefficients are used to establish the strength of the 

relationship between the principal components generated. The defect detection principle 

remains the same i.e., heat flow is interrupted due to the presence of defects and shape and 

size of the melt pool changes to accommodate to the necessary heat flow of the system. The 

first 2 PCA components are used to build an SVM classifier (Gaikwada, Yavaria, Montazeria, 

& Kevin Colea, 2020) for slag inclusion type of defect and the first 3 PCA components are 

used to build the SVM classifier for bulge type of defect. Since PCA reduces the dimension of 

the entire set only inferences can be made about which one of the Principal Component 

represents what part of the original features set. According to the author the first Principal 

 
7 CCD(Charged-Coupled Device) 
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component in their experiment represents the composition of the Melt pool size, the second 

one represents the cooling rate and the third one represents shape. The author concludes 

that the PCA components relation to the accuracy of the classifier is complex, given that if 

the right components are not chosen it reduces or increases accuracy of the system. 

(Liu, Farahmand, & Kovacevic, 2014) use a Charged Couple Device or CCD Camera to observe 

the powder particle flight in the LMD process. The powder particles are illuminated by a 

532nm green laser light and the reflection from the particles was picked up with a camera 

with an exposure time of 0.02s. From the max frame rate the exposure time is calculated to 

be 50fps (𝐹𝑃𝑆8 =
1

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒
) . An average of 25 images is taken to compensate for motion 

blur. The study aimed to observe particle velocity, powder concentration distribution, 

intersection position of the powder streams, and intersection position of the powder streams 

and laser beam. The CCD camera is picking up the luminance intensity of the particles which 

is explained by “Mie’s theory” or “Mie’s Scattering”. (Lockwood, 2016) (Liu, Farahmand, & 

Kovacevic, 2014). Luminance intensity is the measure of the wavelength-weighted power 

emitted by a light source in certain direction. Mie theory explains the scattering and 

absorption of light by a spherical particle of arbitrary size and refractive index. From this 

research it derives that the luminance intensity is proportional to the number of particles 

irradiated per unit area. Particle velocities are calculated to be from 2.4m/s to 4.9m/s. Even 

though the Laser beam and particle interaction is measured using thermal camera, the 

researcher reveals that thermal emission of particles is affected by the concentration of the 

powder in the area being observed and hence might not be the best way for quantitative 

measures. This means for low concentration areas the optical camera method of 

observations might be the best to study powder interaction. The study points out that Optical 

Sensors can pick up important information about the powder interactions with LMD. 

(Robert Sampson, 2020) uses a Complementary Metal Oxide Sensor or CMOS camera and 

develops an improved image processing technique to observe the melt pool geometry. They 

use NIR COMS machine vision camera which is coaxially installed into the laser metal 

deposition camera. The camera is installed with an optical density filter for wavelengths of 

200 -750nm which allows only to view light of certain wavelengths. The algorithm uses the 

directional emittance phenomenon to calculate melt pool dimensions which they found to 

 
8 FPS (Frames Per Second) 
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be a much more accurate method than the commonly used emissivity-based technique. 

Directional emittance is due to grey body radiation not emitting equally in all directions 

hence part of the substrate might be emitting strong radiation due to the angle it is being 

observed at even though, the temperature might be lower. The research points out that 

commonly used emissivity based binary threshold method (pixel intensity values are 

correlated to materials melting temperature) is often subject to erosion and dilation (in the 

image) therefore are unreliable in measuring melt pool dimensions. 

 

Figure 17: a) A schematic representation of directional emittance from a flat surface. b) 

Directional emittance of a blackbody and real body. (Robert Sampson, 2020) 

(James C. Haley, 2018) study the powder particle interaction with the melt pool using 4 

different highspeed cameras at 200 000 FPS. Particle speed was recorded depending on the 

direction and it was found to be 2-5m/s. The research found particles to impact of the melt 

pool surface and cause a ripple, float on the surface and then being observed into the melt 

pool. The time a particle stays on the melt pool before being absorbed is called residence 

time. It also states that the lowest residence time of a particle on the melt pool can range 

from 32µs to 1210µs and average time of 370µs. The study was able to observe the exact 

process of how the melt pool solidifies around the unmolten particles found on the surface 

of the LMD sample. The study shows that the radiance of these particles can be detected 

hence their state of interaction with the melt pool can be observed too. 
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Figure 18: a) Melt pool particle Monitoring. b) Microstructure shows unmelted powder. c) 

particle ignited when entering laser beam zone. d) Particle landing and solidifying on the 

surface (James C. Haley, 2018) 

3.2. Thermal Camera Defect Detection and LMD Monitoring Systems 

(Ulf Hassler, 2016) presents an in-situ defect detection system that utilizes a high-speed 

thermographic sensor and optical 3D scanning. Initially using the Comsol Multipysics 

software package was used to estimate the temperatures and thermal contrast signatures at 

different diameter thickness and depths and dimension defects. This also gave them in an 

approximate way that the thermal camera frame rate must be 0.5 to 1kHz since that max 

thermal contrast is reached within 0.2ms after excitation.  During their experimental phase 

they simulate defects using two methods a) A combination of machine parameters that yield 

suboptimal properties which lead to defects like porosity and b) creating physical deformities 

like drilled and punched holes on the material upon which the deposition is supposed to take 

place. The research uses an IRCAM Equus 327k SM equipped with M25 focus lens which is 

producing a 128 by 128-pixel thermal image. The Camera has a frame rate 1Khz and measures 

temperatures from 300 to 1500 oC. The captured image intensity is converted to temperature 

by using a data base on given black body calibration for the material.  The image segments 

spots based on temperature threshold is decided by the researchers. An interesting 

exception in this process is that the start and end of the weld process is not recorded. Each 

frame is compared to the reference image by overlaying them over each other and 

subtracting the image from the reference image. This yields the difference in characteristics 

of the reference and current thermal image in the form of deviations. The results show that 



 

40 | P a g e  
 

deviations of certain magnitudes can be found in the thermal images of samples that contain 

defects up to a certain size. As a result, this method can also be related to invalid machine 

parameters which implies they could be used for tuning the machine parameters. 

(Khanzadeh & Bian, 2016) use an advanced infrared thermal imaging system to capture high 

speed melt pool data streams. They use Self Organizing maps or SOM to cluster the melt pool 

based on their morphology and link the patterns in these clusters to different type of 

porosities. The results are validated using X-Ray tomography of the sample after it is 

deposited. The process involves first Identifying the boundary of the melt pool based on 

temperature which should allow the extraction of the contour of the melt pool. Once this is 

done the contour is now transformed from the cartesian coordinate space to polar space to 

be represented as a function. A non-parametric curve fitting called the cubic spline is applied 

to this function to interpolate and form a curve. This is done because different melt pools 

may yield different points when their contour is converted to the polar coordinate system, 

hence after the cubic spline method is applied the same number of points can be evaluated. 

The points after interpolation are known as the features of the melt pool morphology. After 

this the melt pool shape are put through unsupervised machine learning methodology called 

SOM. This converts the higher dimensional space data to two-dimensional space and as a 

result uses the features to cluster different melt pool shapes based on their similarities. The 

Clusters that are not like others are interpreted as anomalies. Along with the difference in 

shape and size of morphology the defects can be classified using average peak temperature. 

The location is extracted using the SOM method (Zhengtao Gan, 2019) and compared with X 

ray CT and found that the systems accuracy was 62.75%. The system successfully captures 

pores, geometric inaccuracies, lack of fusion defects and unmelted areas. 

(Liu, Farahmand, & Kovacevic, 2014) in their study uses optical camera to observe the powder 

flight path but uses Thermal Camera in collaboration with a pyrometer to observe the melt 

pool. The pyrometer is used to measure the emissivity of the melt pool since the material 

does not act as a perfect black body. This emissivity value is used to calibrate the thermal 

camera which observes the overall melt pool temperature distribution or thermal 

distribution, melt pool size and cooling rates. The research found that along the head of the 

melt pool the thermal gradient is sharp due to the heat sink effect but in contrast the 

temperature on the sides is slightly higher due to unmelted particles and oxides formed at 

the edges. Even though thermocouples were used in their study they were embedded into 
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the substrate and were are only successful at giving temperature trends but not the correct 

temperature. The research discovers that the melt pool temperatures range from 1420 oC to 

1750 oC and the cooling rates were from 7 x103 oC to 1.2 x104 oC/s.  

3.3. Acoustic Emission Defect Detection and LMD Monitoring Systems 

(Gaja & Liou, 2017) used acoustic emission sensors to detect and classify pores and cracks by 

employing PCA and K-means clustering technique. Acoustic emission sensors are basically 

piezo electric transducers that generate signals based on the elastic waves that travel 

through the material due to a change in the material or a sudden release in energy. Hence 

AE sensors pick up the signals release when cracks and pores are formed. The setup involves 

a single (Kistler’s 8152B211) AE sensor attached to Picoscope 2205A oscilloscope to capture 

the AE signal stream and then forward it to a computer. The experimenters use powder 

contamination and non-uniform shape and size of the powder as a provocation technique to 

produce defects like pores and cracks. The signals generated by the defects are known in this 

research as Events. Events are AE signals whose amplitudes cross a specified threshold and 

then eventually return below threshold. From each one of these events features like 

amplitude kurtosis, energy number of counts, duration and rise are extracted. The research 

claims that no AE noise was detected from the CNC or the noise level was much smaller than 

the signal of interest and only signals between 100kHz to 1 MHz were allowed through the 

frequency filter. The data shows that all features were normalized and PCA was implemented 

for the dimensionality reduction tool and since the first two PCA components explained the 

majority of the variance they are selected for the K means Clustering algorithm (Hossein 

Taheri, 2019). The author does mention that once PCA is implemented and the chosen 

components are used in the K means clustering algorithm, the result of the K means 

clustering will not reflect the features in their original dimensions i.e., PCA reduces the 

dimension of the original feature set to a smaller dimension or principal components which 

are then used in the K means algorithm. The K means clustering algorithm is an unsupervised 

machine learning algorithm that groups similar data points based on their features. The K 

means requires the “K” value or number of clusters to be generated to be given to the 

algorithm in the beginning and hence an extra step to discover the optimal K for the data set 

must be carried out. This research uses the silhouette method to calculate optimal K values 

and the method reveals that the optimal K value for this data set was 2.  Two very distinct 

clusters are generated and an Analysis of Variance or ANOVA on the cluster centers reveals 
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that the means of features of two clusters are significantly different and hence the researcher 

concludes that the source mechanisms of the two signals are also different. The events in 

both clusters are analyzed and two major finds are made: a) The porosities produce shorter 

decay time and less amplitude and b) cracks produce shorter duration and high amplitude 

signals. Observation of the sample under a microscope shows that the number of cracks and 

pores are strongly correlated with the number of events found in both clusters.  

(Fujun Wang, 2008) proposes a novel method of crack detection using acoustic emission 

sensors. The setup uses two acoustic sensors attached to a cuboid specimen upon which laser 

metal deposition is carried out. The specimen has two holes through which a water input 

pipe passes through to control its cooling. As signal processing and conditioning unit a PAC 

Spartan AT/72 acoustic emission detection device is used which calculates the position and 

time of the crack generation and extension. Two sensors are used so that the position can be 

calculated. In conjunction with these signals an FEA or Finite Element Analysis in ANSYS 

software is carried out and from this analysis the corresponding temperature ranges can be 

calculated. Water cooling is use in this experiment as crack controlling and provocation 

technique. Using this method, the authors were able to classify the type of cracks and the 

temperature interval in which they are generated. 

(Gaja & Liou, 2018) use acoustic data to develop a Logistic Regression or LR Model and 

Artificial Neural Network ANN to evaluate their performance against the K means Clustering 

method for defect classification. The means squared error for the LR model and the error 

from the 3 layered ANN have a very little difference between them, but the ANN performed 

slightly better. The author says both methods can be used as a successful classification 

method to classify defects.  

3.4. Pyrometers Defect Detection and LMD Monitoring Systems 

(Wu, Cui, & Xiao, 2020) use an Infrared Monochrome Pyrometer or IMP to detect cracks, 

their depth and position during the laser metal deposition process. The IMP is mounted on 

one side of the nozzle head and can measure temperatures up to 150-1200 oC in an extremely 

small spot size. During defected sample run, the IMP device detected significantly high peaks 

over the defects and no peaks were detected by the IMP during the non-defected sample 

run. Hence the author concludes the sensor display high sensitivity. The temperature peaks 

coincide with the position of the defects and the crack depth is proportional to the 
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temperature at the peak observed. The research implies that stable trends in temperatures 

with smaller changes shows that the sample is possibly defect free. 

(Jon Iñaki Arrizubieta, 2018) develops a numerical model that uses the heat and mass transfer 

equations in LMD and based on the thermal fields predicts the probability of pore formations 

among other things. The experiment uses two color pyrometers with a range of 550 oC to 

2500 oC to compare the model results to experimental temperatures.  

Pyrometers are often not found to be used on their own in LMD experiments instead they 

are used either in conjunction with other sensors like thermal cameras or optical cameras. 

As mentioned above (Liu, Farahmand, & Kovacevic, 2014) also use a pyrometer along with a 

thermal camera for temperature measurement but the pyrometer is specifically focused on 

the center of the LMD machines laser spot. The pyrometer seems to measure temperatures 

up to 470–3000 oC with sampling time of 0.5s and a spot size of diameter 0.25mm.  

(Song, Bagavath-Singh, Dutta, & Mazumder, 2012) also develops a closed loop control system 

that controls the melt pool temperature and build height using three CCD cameras and one 

two color pyrometer. The camera is used to monitor the build height while the pyrometer is 

used to measure temperature of the melt pool. As far as the melt pool is concerned the 

pyrometers data is used as an input for the temperature controller. The pyrometer measures 

temperatures from 1,000°C to 3,000°C with an accuracy of ±10°C and measured wavelengths 

were set 1.3μm and 1.63μm. Even though the study of control systems are not the interest 

of this investigation, the researchers successfully demonstrate the deposition on a turbine 

blade with varying widths. 

3.5. Ultrasonics Defect Detection and LMD Monitoring Systems 

(Cerniglia, Scafidi, Pantano, & Lopatka, 2013) uses Laser Interferometry to detect sub surface 

and surface defects in LMD samples. The system basically picks up the ultrasonic waves 

generated by the pulsating laser. This ultrasonic signal is disturbed in the presence of defects 

and its Time of flight or TOF i.e., the time the wave takes to travel from the position of origin 

to the sensor changes. An FE model is used to recognize the wave propagation patterns in 

un-defected pieces so than during actual experiments defected wave propagation can be 

recognized. On the Experimental work piece physical defects of different sizes are generated 

using laser machining and Electro Discharge Machining. Certain characteristics of the 

ultrasonic waves like width and TOF of the generated Wave front can be used to calculate 

the size and depth of the defect. The defect detection algorithm however utilized the 
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characteristics of the hyperbolic shape of the ultrasonic reflections. The system successfully 

identifies defects up to 100 µm and a depth of up to 700 µm. The author says the technique 

does have inherent issues like large signal to noise ratio and selection of optimum parameter 

for analysis which requires further work. 

(John A. Slotwinski & E.J. Garboczii, 2014) carries out an extensive study on how ultrasonic 

sensor can be used to determine the level of porosity in a sample. The system uses 

longitudinal wave pulse-echo time-of-flight measurements using 5Mhz ultrasonic transducer 

with an element of 12.7mm diameter. The shock impulse excitation is generated, and its 

ultrasonic reflections are picked by a commercial 30Mhz pulse reviver system. Ultrasonic 

echoes are read by 300 Mhz digital oscilloscope that was sampling data 2.5GS/s. The research 

establishes a linear relationship between bulk porosity and wave speed using Equation 5. 

𝑣 = 𝑣𝑜 + βϕ 

Equation 5: Wave speed and porosity relationship 

𝑣 = 𝑊𝑎𝑣𝑒 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 , 𝑣𝑜 = 𝑤𝑎𝑣𝑒 𝑠𝑝𝑒𝑒𝑑 𝑖𝑛 𝑎 𝑓𝑢𝑙𝑙𝑦 𝑑𝑒𝑛𝑠𝑒 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, β

= slope , ϕ = measured porosity 

3.6. Data Fusion Architectures and Models 

(White, 1991)’s Joint Directors of laboratories or JDL architecture Figure 19 is one of the 

oldest data fusion architectures present. Even though it was originally made for military 

usage it is used and adapted for many non-military applications. JDL presents 5 levels of data 

fusion: Source processing, Object refinement, Situation Refinement, Threat Refinement and 

Process refinement. The Sources component of the JDL architecture is the live information 

while the Human Computer interaction HCI component is where the data fusion results are 

used to make decisions. Important part of the Data fusion Architecture is the data base 

management system that manages the source data base and fusion data base. Level 0 is 

where the lowest level or Raw data is processed or transformed into a form that will be 

processable by the next data fusion components. Level 1 then uses process or transformed 

data to identify the entities, their state, location, direction etc. Level 2 is where based on an 

entities state, predictions or estimations are made about its relation to other entities in its 

environment. Level 3 is where based on the relations of the entities calculated in step 2, risks, 

vulnerabilities, and operational probabilities are predicted. Level 4 is the process refinement 

step where information that was lacking is identified so that results can be improved. If all 
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these steps were to be applied to let’s say a vision-based system that predicts defects based 

on anomalous geometric features observed, the following is how the system would work; 

level 0 - Input raw data and process it for noise and combine into data which can be 

understood i.e. image in with a bunch of pixels.  Level 1 – Use image processing to identify 

shapes and boundaries of geometries in the image. Level 2 – where do these shapes lie within 

boundaries. Level 3 -Do the geometry match the defected ones in the data bases or are these 

other features? Level 4 is to identify if the results were accurate and which part of the 

information was lacking. 

 

Figure 19: Joint Directors of Laboratories (JDL) architecture (White, 1991) 

(Luo & Kay, 1989) developed a data fusion architecture (Figure 20) that handles multi sensor 

integration. The data is taken from multiple sources (Sn) at different levels (Signal, Pixel, 

Feature and Symbol) and used for data fusion at each level. The data representation levels 

go from low level to high level. The outputs of the fusion centers or Nodes (Xn,n+1 ) at each 

level are used as an input in the fusion center on the level above it. Signal level data is the 

lowest level data or raw data or even conditioned data, Pixel level is where data is still lower-

level data but in a relatively more useful form like a pixel image, feature level data is where 

data represent specific features or characteristic from signal or pixels and symbol level data 

is decisions or logic from signals. (Esteban, Starr, Willetts, & Hannah, 2005) clearly points out 

that in Luo and Kays architecture a clear distinction is made between multi sensor integration 

and multi sensor data fusion. Multi sensor integration is where information from multiple 

sensors is used for a particular task whereas multi sensor data fusion is what is happening at 

the Fusion Centers i.e., actual combination of data. 
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Figure 20: Luo and Kay's Architecture (Luo & Kay, 1989) 

Dasrathay’s Architecture (Figure 21) is mentioned in a review paper by (Meng, Jing, & Zheng 

Yan, 2020). The architecture mentions 5 fusion processes in terms of input and output data. 

First is DAI-DAO (data in data out fusion) in which raw data inputs are refined using a fusion 

process. Second is DAI-FEO (data in feature out) is where some abstract information is 

extracted from processed data which can be called a feature. Third is FEI-FEO (feature in 

feature out fusion) where a multiple feature would yield another feature through the fusion 

process. An example of this could be where two boundary features in image processing could 

be used in a data fusion algorithm to form a shape. Second last is the FEI-DEO (feature in 

decision out fusion) where based on features a logical conclusion is made. Lastly is DEI-DEO 

(decision in and decision out) where based on multiple decisions an output decision is yielded 

by the fusion algorithm.  
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Figure 21: Dasarathy's architecture (Meng, Jing, & Zheng Yan, 2020) 

(Esteban, Starr, Willetts, & Hannah, 2005) mentions the water fall fusion model (Figure 22) 

in their review. The model is where data fusion happens at different level of data however it 

is also continuously receiving feedback at signal level and being fused with the input signal 

to generate a more accurate decision-making output. Level 1 is where signal level data fusion 

happens and level 2 is where features are extracted, and these features are fused to output 

predictions about the state of the system. Level 3 is where predictions are evaluated, and a 

decision is outputted based on them. The model can be used for multiple or single data inputs 

because at level 1 the feedback from the controls will always be the second input. 
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Figure 22: Water Fall Model (Esteban, Starr, Willetts, & Hannah, 2005) 

3.7. Multisensory and Data Fusion systems in LMD 

(Vandone & Stefano Baraldo, 2018) use data fusion to develop a control system that is 

capable of monitoring and controlling the width and the height of the deposit. The data 

fusion approach utilizes features extracted from online thermal camera data, online optical 

camera data, machine parameter data and offline data from the 3D surface reconstruction 

of the deposit developed using stereoscopic cameras. The data fusion process is used to build 

a mathematical process model which can be used to predict and hence control the 

dimensions of the deposit. The data is time synced using the laser on time as a start marker 

which is recorded by all three input sources. Thermal and optical images are used to extract 

the brightness of the melt pool along with its width. The offline machine data is used to 

extract the position and time of the laser during the deposition. The offline 3D scan study 

reveals details about the geometry. As mentioned all this data is used to construct a model. 

(Song, Bagavath-Singh, Dutta, & Mazumder, 2012) develop a control system to monitor and 

control the built height of the deposit. The system employs a two-color pyrometer to 

measure melt pool temperature and three CCD cameras in triangulation set up to monitor 

the build height. This paper has been mentioned in parts in section 3.4 however here it is 

being mentioned for its multisensory approach and fusion algorithm. Two controllers; a 

master height controller and slave temperature controller are deployed in series to control 

the melt pool temperature and height and growth. Even though it is not labeled as a fusion 
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algorithm in the grand scheme of the design, the system is fusing data from different sources 

at two points in the research. First point is where to the three cameras where image 

processing is applied to decipher height which is a feature, Height calculated according to 

each camera is then fused to calculate the decision of whether it has crossed a threshold or 

not. In the grand scheme of the system, data fusion is taking place from sensor data to predict 

the output by both controllers and based on this the laser power is being controlled. It’s 

important to mention that due to the nature of this system it is a closed loop system. This is 

because the sensor input is in fact feedback from the corrective action that was made by the 

control system.  

(Clijsters, Craeghs, & S. Buls, 2014) use a high-speed multisensory approach (Christopher B. 

Stutzman, 2018) (Renken & Stephan Albinger, 2017) (Jungeon Lee, 2021) to monitor the melt 

pool using custom hardware and software. The researchers emphasize how important the 

custom high speed hardware setup is in the context of implementing their mapping algorithm 

which not only allows melt pool monitoring but also allows for the detection of variations in 

the melt pool which can be linked to porosity. The need for the high-speed system is because 

the variations in the melt pool are very quick as a response to the development of defects. If 

the system is not fast enough it will miss out on essential modeling data. The system uses a 

FPGA as DAQ unit which collects and processes data from the two sensors at a very high 

sampling rate (10KHz to 20Khz). Melt pool intensity, area, length, and width is then calculated 

and compared to the reference data of a steady state melt pool which is then used to 

calculate estimates for the quality of the layer. These estimates are used to develop a 2D 

map of the layer using a mapping algorithm. The defected quality maps are verified by cutting 

up the sample and then studying them under XCT. This is one of the very few research papers 

which touches upon defect detection using data fusion even though positioning of defects 

seems to be incorrect in their results as per their own claim. 

(Chabot, Rauch, & Hascoët, 2019) presents a feasibility study for a proposed control system 

model that utilizes multiple sensors with data fusion to monitor and control build height in 

LMD. The system monitors the LMD system including machine parameters to calculate 

scanning speed, Flow Rate, Temperature, Geometry, and leaves room within their 

architecture for any other monitoring strategy. All this data is fed into a controller that also 

takes in values from a process model and based on the set values and then manipulates 
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power, flowrate, scanning speed and stick out (nozzle standoff distance) to control the LMD 

process.  

3.8. “High Speed” measurement systems and “Online” monitoring 

High speed is a relative term with no unified definition at a systems level and often associated 

with systems that collect data at very high sampling rates or have high data transfer rates  

(Hult, 2020) (JRPANEL, 2020). In the world of data acquisition systems, the term high speed 

is inherited by the entire system due to the high-speed semiconductor electronics that it 

utilizes. This electronics is usually the high-speed analog to digital converter (ADC) electronics 

or the high-speed system clock both of which are integral parts of a data acquisition system.  

As far as ADCs are concerned anything above 1 Mega Samples Per Second (MSPS) is 

considered High Speed and can go all the way up to 1 Giga Samples per second (Drachler & 

Murphy, 1995) (Yun-Jeong Kim, 2004).   

In the realm of Imaging systems and Cameras any device that records video above 60 frames 

per second can be considered high speed (Bridges, 2021). These Cameras are often used to 

record quick events like Vehicle Impact Testing, Projectile Tracking, Flow Visualization, 

Material Testing, Vibration, Crack Propagation etc (Manin, Skeen, & Pickett, 2018). Modern 

high speed thermal imagers start at 1000 FPS and can go up to 30000 FPS and frame rates 

(Richards, 2021). 

Some LMD systems or other measurement systems will use the terminology online or offline 

to describe their process monitoring methodology (Vandone & Stefano Baraldo, 2018) 

(Wang, 2008) (Tang, Wang, Zhang, & Wang, 2017) (Zhang, 2019) (Fang, et al., 1998).The term 

“Online” is most often seen to represent the systems that collect data while the process is 

ongoing and is quite often used in systems that utilize online machine learning but is not 

necessarily exclusive to machine learning. In an online system the sequence of data captured 

is critical. The purpose of an online systems and online data analysis is to draw conclusions 

or derive predictions based on the data available at that current point in time relative to the 

process or position being monitored during the process. This becomes even more clear when 

it offline data analysis is understood which is processing of data collected as a batch after the 

process has been completed. A simple example of an online system would be (Wei Feng, 

2022) study where an online method of data collection in which the temperature distribution 

of the melt pool is measured using a thermal camera. Based on the difference between the 

temperature distribution of a non-defected melt pool and the temperature distribution of 
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the melt pool at a given point in time or position during the LMD process a prediction can be 

made on the existence of a defect at that point in time or position. 

3.9. Discussion 

From the above investigation of the state of the art it is evident that elaborate work has been 

done on single sensor LMD process monitoring and LMD defect detection using different 

approaches and different hardware.  Critical analysis reveals that two major phenomena of 

the LMD process are monitored using Nondestructive testing technologies: The heat flow of 

the melt pool and the geometry of the melt pool. These two-reveal information about the 

stability of the melt pool. Defects create disturbances in the Heat flow around the defect 

which causes high temperature zones. This may also affect cooling rates in that region and 

as a result in the entire melt pool. The spectral radiance of the melt pool is dependent on its 

temperature and as a result it can be seen those sudden changes in the temperatures will 

cause sudden changes in spectral radiance. The defects also cause a change in the materials 

internal structure because of which acoustic emission waves are propagated in the material. 

The formation of physical defects and disturbances in the heat flow can cause the melt pool 

to change in shape and size. Figure 23 shows how defects can cause changes in certain 

phenomenon of the melt pool which as a result can be observed through changes in certain 

properties and resultant phenomenon.  

 

Figure 23:Physical Phenomenon that occur due to defects 

In state of the art of the research it is found that different types of Thermal Cameras, Optical 

Cameras, Pyrometers, Ultrasonic and Acoustic emission sensors are used for in situ 
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monitoring of the changes in the above-mentioned properties and phenomenon. The 

thermal features and Spectral Radiance are often measured using cameras that operate 

within a wavelength region of (as per the literature) 200nm all the way up to 890nm. This is 

deciphered from the hardware specifications and Natural Density Filters used on the 

cameras. Cameras that operate in the visible range (approx. 400nm-750nm) are often used 

to observe the spectral radiance or the geometry of the melt pool and in some cases used to 

track the powder particles interaction with the melt pool. Thermal Camera depending on the 

type of thermal camera usually observe the IR range (approx. 750nm- 1000nm). The problem 

in measuring temperature using thermal cameras is that the emissivity values must be fed 

into the thermal camera to convert the IR intensity to Temperature. In a chaotic (uneven 

temperature distributions with different materials in different phases existing at one time 

and quickly changing states) melt pool is that emissivity of certain regions might be different 

to others hence incorrect or anomalous temperature may be shown in thermal image. This 

problem can be managed by using a pyrometer to calculate the emissivity that most 

accurately represents most of the melt pool. Likewise, the issue with visual cameras are that 

they cannot detect IR spectrum of the electromagnetic radiation and to observe the melt 

pool the right level Density Filter must be applied otherwise reflections and excessive light 

saturate the optical sensor. Temperature ranges of the overall melt pool depends on the 

material and its melting temperature. In this literature study max temperatures observed 

depending on the study were from 1750oC to 2426.85°C. Thermal Cameras compared to 

Pyrometers however have lower overall temperature ranges but thermal Imagers provide a 

lot more information in terms of thermal distribution of the melt pool. For image sensors 

there is ample amount of inference and evidence that they need to be of a high sampling 

rate to capture the quick change in observable phenomenon. The defect development time 

frame has been discussed in the previous chapter, but some researchers will decide the 

sampling rate of their system based on the excitation time (time it takes for the laser to raise 

the melt pool to max temperature). However, this time does not account for the time it takes 

for a change in the observation phenomenon due to a defect. For example, the time it can 

take for a floating particle to melt completely into the melt pool at an average is 370µs. And 

if moving particles are observed, the max speed of a particle recorded is 4.9m/s and to view 

its movement per 1 mm would take approx. 205 µs. In research the sampling rates of high-

speed cameras are a lot more (up to 200000FPS) than thermal Cameras (Up to 1000 FPS). 
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2D Geometrical measurements are usually made by using image processing and at times 

stereoscopic calculations are made to get build height of the deposit. (Robert Sampson, 

2020) shows that the directional emittance phenomenon causes the uneven radiance of light 

due to the angle it is being observed. By using this phenomenon instead of using usual 

emissivity-based approach a more accurate methodology of image processing could possibly 

be developed to get a more accurate geometric reading of the melt pool. The features of an 

Acoustic emission signal can reveal a lot about the nature of the wave and if these features 

are clustered, they can be used to classify defects. As per theory, acoustic waves can be 

created by cracks or pores or even by thermal and mechanical changes in the material. Not 

only can Acoustic waves be used to detect cracks at the point of generation but are also 

capable of revealing information about crack propagation.  

Based on the phenomenon used to detect defects and the sensors used to detect them, 

acoustic emissions occur while the defect is developing. The disruption of heat flow is 

detected during and after the defect has developed although the maximum effect should be 

seen after the defect has occurred. Lastly the powder flight and interaction with melt pool 

and the residence time (time particle stays un-melted on or in the melt pool) for a particle 

can be considered a precursor to a defect since the longer the particles stay on the surface 

of the melt pool the more chances are of it staying un-melted. The physical geometry of the 

melt pool is also an after effect of defects being generated and hence can be said to occur 

after a defect has occurred. This information may help build a timeline for which 

phenomenon and property change in relation to the defects generated. These can be known 

as the observation windows of each sensor as seen in Figure 24. 
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Figure 24: Observation Window of different sensors during the LMD process 

In terms of methodologies the common theme is to take worst case readings and compare 

them to best case readings and the deviations reveal the anomalies. Most systems will only 

output if a deposit contains or does not contain defects, but some reveal further details of 

the defect features. The features that exhibit defected traits can be identified in a few ways; 

Cooling curves can reveal anomalous melt pools, melt pool shapes can identify defected 

a) 

b) 

c) 
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deposits, ultrasonic wavefront features can reveal the defect size and thermal spikes or 

concentrated thermal zones over defects can reveal their depth and size. 

Machine learning algorithms within data fusion techniques can improve the reliability and 

accuracy of information (Meng & Xuyang Jing, A survey on machine learning for data fusion, 

2020). Data fusion Models can be built using Artificial Neural Networks, K-means clustering, 

Self-organizing maps, and Logistic Regression and at time linear regression (relation of 

porosity with speed of ultrasonic waves) which can be used to predict defects in an online 

process.  The methodology to develop these models take the aid of simulations models or 

carrying out experiments where detects are provoked though different methods. Signals 

collected from the simulated defects are used to build certain models that can be used to 

predict defect features. To link the signals to the defects, a post analysis study is often done 

though metallurgical analysis by cutting the sample up and observing it under a microscope 

or using XCT to observe defect position, size, and type.  Each methodology is dependent on 

their goal, which can be simply detect defects or classify them or approximate their position 

and at times their size. 

Data fusion for defect detection in laser metal deposition has little to no work on it except 

for the paper on (Clijsters, Craeghs, & S. Buls, 2014). With that being said, examples of multi-

sensory systems that use data fusion to observe the process are found in the literature. But 

the goal of all of them is to monitor build height and maintain stable melt pool geometry. 

They mostly use a combination of thermal and optical cameras or multiple optical cameras 

or a combination of pyrometers and an optical camera. The majority of the multisensory 

research in LMD aims to create a control loop system to control build height and melt pool 

temperature. There is heavy focus on time stamping the data and having a very higher data 

acquisition rate. (Clijsters, Craeghs, & S. Buls, 2014) uses a custom DAQ system with a sample 

rate of up to 20KHz. As far as data fusion architectures are concerned most closed loop 

systems seem to be using the Waterfall model for data fusion however (Luo & Kay, 1989) 

model allows multisensory integration data fusion for data at different levels. 

The investigation reveals that insufficient work is present on multisensory data fusion 

systems with the specific aim of defect detection. Single sensory systems exist but they are 

each observing different phenomenon that can be used to predict defects. Other than the 

difficulty in filtering and processing data regarding the change in a phenomenon or property 

of the melt pool, the phenomenon itself has limitations of what it can reveal about the 
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defects e.g., Intensity of temperature spike can reveal information of crack depth whereas 

observing spectral radiance may not be able to do so. Even the timeline of when a change in 

an observable phenomenon or property occurs in relation to defect development varies. This 

is probably why research endeavors that utilize single sensory approaches can only ascertain 

certain details about the defect. It is also learnt that LMD system observations require 

highspeed sensory and data collection systems, and the required sampling rate can be   

calculated using the information regarding the plausible defect generation times. Lastly, it is 

understood that control systems that use a multisensory approach with data fusion are much 

more successful in achieving their goals. Hence designing a multisensory data fusion 

methodology using an existing data fusion architecture may be fruitful idea in a defect 

detection system.
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Chapter 4: Research Design 

and Methodology 
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4.1. Specific gaps and Objectives 

From the literature review it can be concluded that there is a very large gap in terms of 

reliable and efficient defect detection systems in laser metal deposition. Even though the 

concepts of NDT in LMD to detect defects using specific phenomenon and properties is well 

established in terms of which sensor signal properties may reveal defects, they all come with 

their limitations in revealing the type, level, and reliability of information. The type of 

information being Thermal, Spectral, Geometric, and structural while the level of information 

is what can be deciphered from the type of information e.g., Defect Type, Defect quantity, 

Defect Size, Defect position etc. The reason why level of Information is important in LMD is 

because it is the need of the industry to be able to establish their own acceptability standards 

contrary to the Bad or Good sample approach. The reliability of information here is the 

accuracy of the information e.g. A pyrometer can relate the position of a crack to the time 

when a temperature spike is observed, and multiple AE sensors can be used to locate the 

position of the crack as well. However, the accuracy of one from the other may vary 

depending on multiple factors and hence one sensor alone may not be able to provide 

reliable information. On top of this the sensors that detect them have their limitations in 

terms of what parts of the defect development process they are capable of viewing 

(Observation Window Figure 24) and their sampling rates. Not only this but there are 

inherent problems in processing their data e.g., emissivity calculations, direction emittance, 

signal classification (e.g., whether an AE signal belongs to a pore or crack), boundary 

detection etc. details of which are mentioned in Chapter 3. With that being said, the state of 

the art presents many novel solutions to improve these problems, but they cannot 

compensate for the shortcomings of the phenomenon being observed, the speed with which 

the melt pool properties change and of course the level of information that can be 

deciphered from specific methodologies of defect detection. A multisensory approach could 

be the solution since it makes up for the shortcomings of the level of information collected; 

however, it does not solve the problem that each sensor data represents a different 

observable phenomenon, and that each sensor must be fast enough to keep up with the 

changing phenomenon and properties. Even though each sensor may tell overlapping stories 

about the LMD process they tell them in very different languages i.e., each views a different 

phenomenon and outputs different signal types. Hence there is a need for a solution that 
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could bridge the disconnection between a multisensory system so that they may tell the 

same story and this solution must be capable of high-speed data handling. 

A data fusion approach can solve this problem where all sensor data can be processed and 

fused to tell the same story and compensate or correct others in places where their data may 

be lacking or weak. As far as sampling rates of the sensors are concerned, they can be 

approximated by the defect development times given in the literature. But this would mean 

that a custom platform that is capable of handling such highspeed sensors must be 

developed. Practically speaking all sensors will not be at the same sampling rate and hence 

the system must time stamp each sensor stream using a single clock or at least have the 

record of the lag or lead between the sensors internal clocks. As for the level or amount of 

information received from the fusion process, it can be used to create a model capable of 

predicting defects with some quantified level of reliability. This approach of a multisensory 

defect detection system that utilizes data fusion and predicts the properties of the defects 

detected can solve the shortcomings mentioned above. Hence the specific objective from 

this point onwards are as follows: 

1. Design and develop a system architecture for a platform capable of online 

monitoring of the LMD process at very fast rates. This includes high speed data 

handling and processing. 

2. Design experiments to provoke defects during the LMD process and collect signal 

data during these experiments using the developed platform. 

3. Based on the signal data collected, develop a method that can detect and predict 

specific features of the defects using data fusion. 

4.2. Research Methodology 

The problem being tackled here is that the current state of the art defect detection solutions 

does not provide all types of information, does not provide a high level of information, and 

does not provide information with reliability. This being due to the type of phenomenon 

being observed, the sensor with which the phenomenon is being observed and how quickly 

the properties of the phenomenon change. The solution to the level and type of information 

is a multisensory approach, the solution to quick change in the properties of the 

phenomenon is the high-speed sampling rate approach and the solution to the reliability of 

the information is data fusion. In conclusion the overall solution proposed is the development 
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of an Online Defect detection methodology using a high-speed multisensory data fusion 

system. As shown in Figure 25, The four main steps of the methodology are as follows: 

Development of System Architecture, Collection of Training Data, Training the system and 

testing the system.   

 

Figure 25: Overall Research Methodology 

4.2.1. Development of System Architecture 

This part of the research methodology involves the design and development of hardware and 

software capable of syncing data collection times of the sensors and representing them on a 

single timeline with respect to the deposition being monitored. Chapter 5 goes into detail 

regarding the design and implementation of the system architecture however this section 

discusses the methodology of the development and justifies the design choices.  

The system uses three sensors: High Speed Optical Camera or HS Camera, a Thermal Camera 

and 2 Acoustic Emission Sensors. These three types of sensors are chosen since the research 

aims to catch as much of the deposition cycle (Figure 24 a) with the help of multiple sensors. 

The deposition cycle in this research is the time window of the entire deposition process 

where the powder charts a trajectory towards the melt pool, the laser melts or remelts the 

melt pool, the powder interacts with the laser and the melt pool, the laser moves off the 

melted zone and allows that part of the deposition to cool down and solidify. The HS optical 

camera as per the research aims to capture the part of the deposition cycle where powder 
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flies towards the melt pool, interacts with the melt pool and then captures the phase where 

the melt pool cools down to a certain extent. The Thermal camera captures the part of the 

deposition cycle where the powder interacts with the melt pool and the phase where the 

melt pool cools down and solidifies. The Acoustic emission sensors are chosen to capture any 

part of the deposition cycle during which the material undergoes major and sudden 

structural changes i.e., when defects develop. It is known from the literature that these 

develop during certain temperature ranges and are classified as hot and cold cracks. For 

pores it is known that they develop during the melting and remelting phases of the deposition 

cycle and form or get trapped in the solidification phase. All these capture windows can be 

seen in Figure 24 a & b during the deposition cycle. 

These sensors are also chosen since they capture the major phenomenon whose properties 

are indicators of a defect being present. The phenomenon are the Heat flow and structural 

changes of the deposited melt pool. The thermal imager can capture the thermal intensity, 

the Highspeed optical camera will capture the spectral Radiance of the powder particles and 

the melt pool and AE sensors will capture the acoustic waves generated when defects are 

formed. The details of exactly what features of these signals are captured that would indicate 

the presence of defects are discussed in Section 4.2.3. 

The sampling rate of each sensor is decided on the minimum time it would take to pick up a 

certain detail of the deposition cycle that could indicate a defect. Based on the sampling rate 

chosen, sensors with sampling rates in similar vicinity are chosen. The minimum time it takes 

for a sensor to pick up a certain detail is calculated using pore generation times, residence 

time of particles and typical cooling rates found in the literature. The sampling rate of DAQ 

unit is calculated using the Nyquist Theorem considering the fastest sensor in a multi sensor 

array. The calculations for this are detailed in Chapter 5 where the implementation of the 

system is discussed. 

The General system Architecture is represented by Figure 26 where An are the accessories 

for a specific sensor e.g. Lenses and Filters, Sn represents the Sensor and Cn represents the 

respective conditioning units for each sensor. All this data is received by the highspeed data 

bus in sequential order at the DAQ’s sampling rate. The processing Unit does any necessary 

user defined operation of raw data processing and time stamping and stores it in the buffer 

memory. The time it takes for the data to be collected from each sensor, processed, stored 

in the buffer memory and then transferred to the CPU unit is known as the acquisition time. 
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The time data is not being collected from the sensors due to the processing, storing, and 

transferring is known as a dead band in this application. When acquisition is complete all the 

data is transfer to the CPU unit for high level processing and then the cycle repeats itself. 

High level processing would be running a machine learning algorithm and data fusion 

operations. The reason why this is not carried out in the processing and Acquisition unit is 

because it adds to the overall acquisition time and will increase the dead band.  This 

highspeed bus is controlled by the processing units and it is responsible for the scheduling 

and the ordering of the data collection, processing, storage, and transfer. However due to 

practical reasons the final system did not use the exact same structure, but it uses the general 

structure as guideline and is discussed in detail in Chapter 5. This is because of limited 

availability of equipment and how the available modules fit together. 

 

Figure 26: General System Architecture 

The Timing system is very critical to the system and uses two types of clocks: Internal Clock 

and a Universal Clock. A universal clock is a separate clock which starts when the detection 

system is turned on and is used as the initial trigger for all sensors to turn on at the same 

time. The internal clocks of the system are the sensors own clocks. When data is acquired, it 

is already time stamped by its own clock but when it gets to the processing unit it is given 

another time stamp that records what time the data reached the DAQ unit and is then stored. 
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The difference in these times determines the lag and lead of the sensor and is used to sync 

all sensor data time to one timeline.  

4.2.2. Collecting Training Data 

This part of the methodology is where the defect provocation experiments are developed, 

and the experimentation is carried out. During these experiments data is collected and stored 

as training data. The deposited sample is observed using XCT to identify details regarding the 

defects and the physical dimensions of the deposits themselves. The implementation and 

details of this phase are discussed in Chapter 6. 

The defect provocation methods are designed based on the critical analysis carried out in the 

literature that details the conditions under which defects are generated. These range from 

machine parameters to powder quality and contamination, deposition on physically 

deformed areas as discussed in Section 2.5 and Section 3.9. Four provocation techniques are 

utilized to provoke defects: Contaminated powder, Surface finish, machined deformities, and 

machine parameters. The surface finish and physical deformities are very similar, but Surface 

quality provocation technique gives a very rough surface quality whilst the physical 

deformities are machined into the work piece e.g., holes and machined lines of certain depth. 

Deposited samples are produced using all 4 methods and online data is collected during each 

deposition. The reason for using all defect provocation methods is because each defect 

provocation experiment technique should theoretically generate different types, amounts 

and sizes of pores and cracks.  A system that is trained on all possible signals from a variety 

of defects will be capable of catering to a multitude of defect types, variations, and their 

resultant signals. The reasoning for the selection of these four experiments is further 

discussed in 6.1 with respect to what type of variation each experiment is intended to 

produce, and details of these experiments are discussed in Chapter 6.  

Two types of Post Analysis measurements are made on the deposited samples for which data 

is collected: Physical Measurements and XCT measurements. The Physical measurements 

include the length of the deposit and the average width of the deposit in mm using a Vernier 

caliper tool. These measurements should help convert the scale of the measurements of XCT 

images into mm. The XCT measurements involves calculating the number of the XCT images 

that only show the deposited track length and the width of the deposit in pixels.  XCT images 

are further used to identify defects and further calculate their position and size. 
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For physical measurements the Vernier is used to measure the length of the track of the 

deposited track in mm. The width of the deposit is calculated by taking physical 

measurements of the deposited track at 3 points along the length of the deposited track; 

25% of the length, 50% of the length and 75% of the length (Figure 27). The average width of 

these points represents the physical width of the deposited track in mm. The reasons for 

taking three measurements are that at times the width of the tracks may slightly very along 

the length and to get a more uniform measurement an average of the readings at different 

points is taken. 

 

Figure 27:Method of measuring physical width 

XCT images are vertical slices or cross-sectional images of the deposit at certain depths along 

the length of the deposit. From these 2D cross sectional images of the deposited tracks, 

defects can be identified and the area and position of the 2D projections of these defects can 

be calculated. Firstly, from the entire set of XCT images the XCT images that only represent 

that deposited track are isolated. This is done by establishing a reference line which is at the 

surface level of the deposited piece and then identifying the first image before which the 

build height crosses the reference line. The end of the deposit is identified by the first image 

where build height of the deposited track falls below the reference line (Figure 28). The total 

number of images in between these identified images represent the XCT for the deposited 

track being analyzed. This total number also represents the length of the deposited track in 

XCT images or number of frames. To convert this length from frames to mm the physical 

measurements of the deposited track are used to calculate the depth in mm for each frame 

it represents. The image analysis tool Image J is used to measure the width of the deposited 

track in pixels at 3 points along the length of the deposited track; 25% of the length, 50% of 

the length and 75% of the length. The average width of these points represents the width of 
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the deposited track in pixels. The physical width of the deposited track can be used to 

calculate the mm per pixel of the XCT image. 

 

Figure 28: XCT deposit Identification Method 

Now that scales have been established, defects and their type can be identified and their 

position along the length of the deposited track in the direction of how the deposition was 

laid down can be measured. Through edge detection the boundaries of the defects and the 

deposit are made prominent. Based on (ISO 13919-2, 2001) and the XCT voxel size a criterion 

is formulated based on which pores, cracks and other defects are identified (Table 19). After 

identification the frame at which the defect first appears and the frame after which it 

disappears is recorded. Using this the center frame is calculated and based on this frame the 

length along the deposition in the direction of the deposition is calculated in mm for the 

defect. This is the position of the defect relative to the length of the deposit (Figure 29). 

Another assumption here is that the epicenter of all defects is their center which may not be 

true for all defects. The max size of the defects can be measured in pixels by the Image J 

measurement tool and then converted to mm later.  
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Figure 29: Defect Position and sizing method 

An essential calculation here is to identify the position of these defects in terms of the time 

they come into existence relative to the total time of deposition. This calculation assumes 

that the time of generation of a defect is dependent on their epicenter position.  

The total time of deposition can be calculated using 3 sources; a) laser on and off times seen 

using the highspeed camera and b) the time that the machine recorded when the laser was 

turned off then on and lastly the time recorded by the Universal Clock of the developed 

defect detection system.  

4.2.3. Training the System 

The overall training method of the system involves combining the online sensor data and 

offline defect data into spatial and time domain data sets, extracting “Events” from these 

combined data sets, clustering the Events for each sensor, analyzing and processing the 

distribution of data in each cluster which will allow prediction of a range within which a 

specific feature of a detected defect lies. At this point a data fusion algorithm is developed 

which outputs a range of values for a particular feature of a defect. The actual defect feature 

value should be within this range. Along with this it calculates the percentage confidence of 

the predicted range based on how many sensors picked up the defect and how far away did 

it lie from its appointed cluster center in the clustering algorithm.  

The combination of the online and offline data sets is also known as data stitching which is a 

method by which data sets are combined revealing a deeper insight into the information 

relayed by the combined data set (Stark, et al., 2017) (Sjoedahl & Oreb, 2002) (Zhu, 2012). 

During this combination the information of the data sets is not changed, rather the data sets 

are overlayed on each other as they have a common independent variable. In this case the 

sensor data is mostly in the time domain and the offline data is in the spatial domain. Using 
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machine parameters and physical measurements of the deposit, the data that exists in the 

spatial domain can be converted into the time domain and data that exists in the time domain 

can be converted into the spatial domain. After this conversion the sensor data can be 

stitched onto the XCT defect data which will generate 2D graphs that will allow the detection 

of sensor data trends and features that are indicative of defects in relation to defect data in 

both time and spatial domain. From the literature the signal features and trends that indicate 

the presence of defects are called “Events”. The reason why this method of data analysis is 

chosen is because data signals on their own without their relation to defect data may be 

misleading i.e., an Event is observed but no defect developed at that time or position. It is 

also because when the Event data is placed in the clustering algorithm, clusters formed will 

have considered defect data as well as signal data which is how it allows for a predictive 

algorithm to be developed. It is important to mention that the reason why both time and 

spatial data sets are constructed is because some events rely on time and others on position. 

For example, a sudden spike in the thermal gradient as per literature is indicative of the 

presence of a defect. The position of this spike in the melt pool can reveal defect position 

and the magnitude of the spike can reveal the depth of the defect hence this event must be 

recorded in the spatial domain. 

Figure 30 shows the Data fusion Methodology used to create the model which enables the 

online fusion algorithm to predict ranges for specific features. This developed methodology 

takes influence from (Luo & Kay, 1989)’s data fusion architecture. The main sources of data 

for the multi-sensory data fusion system are the data from the Sensors, the XCT data, the 

physical measurements and machine parameters. This data can be representing the lowest 

level of data i.e., signal and pixel level. The XCT and Physical measurements are used in 

combination to create data sets that represent defect size relative to the position of the 

defect along the length of the deposit in the direction that the deposit was laid down and 

defect size relative to the deposition time. This is done so that defect size can be viewed in 

reference to when it was generated during the deposition and where along the length of the 

deposit it lies. This step also prepares the data so that it can be integrated with the sensor 

data later to form stitched data which can allow for sensor data to be analyzed in relation to 

the defects. Notice that the research only takes into consideration the position of the defects 

along the length of the deposition and not along the width of the deposit. This is because of 

the nature of how deposited tracks are laid down. Each deposit is formed by overlapping a 

certain number of tracks. The deposits in the experiments are made up of 3 tracks at 30% 
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overlap (Figure 69 b) and the post analysis of the defects does not allow the distinction 

between the track and hence it is near impossible to tell which track the defect was 

generated in. 

 

Figure 30: System Training Data Fusion Methodology 

The data from the Optical Camera is processed and converted in intensity data. This data is 

already in the time domain but is not synced to the start and end time of the deposition of 

each track. This time can be identified by visually detecting laser on and off times from the 

captured image. To generate a data set of the optical images that represents pixel intensity 

in relation to the position along the length of deposition (spatial Domain), once again the 

physical measurements data is utilized. The intensity mentioned here is the pixel intensity of 
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the CMOS sensor which in fact is just a voltage output based on the number of photons 

incident on that CMOS pixel sensor. The number of photons will be converted to charge 

which is then read out as voltage. This voltage is then represented as a digital number from 

0 to 255 for an 8-bit image. Even though the spectral radiance is not directly being read, the 

value represented by the pixel intensity is heavily dependent on the phenomenon and the 

exact magnitude of irradiance represented by pixel intensity is not important since this study 

is interested in change in pixel intensity or change in patterns of pixel intensity. With the 

optical camera, reflection from approaching spherical particles and their interaction with the 

deposition can be seen. The radiance due to excessive temperatures in the melt pool is also 

registered by the optical camera. 

Similarly, the data captured using the thermal camera represents thermal images in which 

each pixel represents thermal intensities i.e. This is radiation of the IR spectrum converted 

to voltage and represented by pixel intensities and once again this is non calibrated to 

emissivity values, so it does not show correlated temperatures however each pixel intensity 

shows the thermal intensity being received by a point in the image. In a similar manner the 

thermal intensities for each track can be isolated through the thermal images of when the 

laser is turned on and when it is turned off and hence can be viewed in sync with deposition 

time. Just like the Optical camera data, a data set is generated which represents the thermal 

intensities in relation to position along the length of the deposit. I.e., Thermal Data 

represented in the spatial domain. This can be calculated by using the physical measurements 

of the deposit.   

Since AE data continuously collects data, the AE data for each track needs to be isolated from 

the main AE data stream. This can be done using the time each deposition started and where 

it stopped. For this the Universal Clock time stamps, the start and stop times recorded by the 

Thermal camera and the AE data internal clock time stamps are used to calculate time 

windows in which the deposition was taking place. This way AE data in relation to the 

deposition time for each track can be viewed. Even though most Events (data that indicates 

an anomaly) can be extracted from the time and frequency domain for the AE signal, for the 

sake of investigation AE signal position is also calculated using TOF calculation from the two 

AE Sensor signals. This in essence can generate an AE data set that displays the position of 

the signal in spatial domain i.e., relative to the length along the deposition.  
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At this point all data is processed and converted into time and spatial domain and can now 

be individually stitched with the Defect data. This is mainly done to correlate defects to the 

signals being observed. From this stitched data Events are extracted which represent 

anomalous behavior in the signals. In the scope of this research Events are data sets which 

contain information regarding values for certain signal features and defect data that 

correlates to signal features. Defect data includes Total Defects, Total Cracks, Total Pores, 

Total Defected area, and Max Defect size. The signals that represent a possible anomaly are 

taken from the elaborate single sensor research in the literature.  

For the optical camera data, for every 2mm of deposition length Max Intensity and Intensity 

Spike frequency is extracted. If the intensity crosses a certain threshold it is recorded as an 

Event and the Max Intensity, Intensity spike frequency and Total Defects, Total Cracks, Total 

Pores, Other Defects, Max Defect Size, and total defected area under this event is recorded 

(Figure 31). The Event for the thermal data is determined when the thermal intensity see a 

sudden rise and then sudden fall in temperature forming a peak. For this event rise time 

(Time taken to reach max amplitude), fall time (time taken to fall below threshold after max 

amplitude is reached), Heating Rate and Cooling Rate, Variance in amplitude, peak thermal 

intensity, and average thermal intensity are recorded. Along with this all the defect features 

that are associated with this event (Figure 32). For the Acoustic emission when a certain 

threshold is crossed it is considered an Event. For this event its Amplitude, Rise Time, Ring 

Counts, Energy, Duration and Max Frequency for every 200Khz bands up to 1Mhz are rec-

orded.  The above-mentioned defect features that lie within the times of these signals are 

also recorded as a part of these events (Figure 33). The methods to establish threshold values 

for each sensor are discussed in detail in Chapter 7. 
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Figure 31: Optical Event and its features 

 

Figure 32:Thermal Event and its features 

 

Figure 33: AE Event and its features 
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All these collected Events for each sensor are then put through a machine learning algorithm 

called K means clustering. This algorithm groups Events with like data into clusters based on 

their Euclidean distance from their appointed clusters centers also known as cluster 

centroids. The distribution of the data of the events of each cluster is analyzed using box and 

whisker plots which allows for outliers to be omitted. Max and min extremes of the 

distribution are calculated using interquartile ranges for each data type (Figure 34). These 

Max and Min values for each feature for each sensor serve a predictive range. 

 

Figure 34: Box and Whisker plot working (Galarnyk, 2018) 

Figure 35 shows the algorithm which outputs a singular range and % confidence value for 

each feature. Each sensor data cluster outputs individual predictive ranges for each feature 

i.e., Max and Min values within which the actual feature value should lie. The algorithm scans 

all three sensors continuously to see if a Hit is received within a specific time window. A Hit 

means that an event has been detected. For each hit received within that time window, its 

Individual predictive ranges and individual confidence scores are added to the data fusion 

equation. If within that time window all 3 sensors receive a hit, then the system does not 

wait for any more hits and just outputs a combined range and confidence value. An example 

of the scanning window is shown in Table 9. 

Time Window AE Sensor Hit 

(𝑨𝑬𝑹𝒂𝒏𝒈𝒆) 

HS Camera Hit 

(𝑯𝑺𝑹𝒂𝒏𝒈𝒆) 

Thermal Camera Hit 

(𝑻𝒉𝑹𝒂𝒏𝒈𝒆) 

Add to Fusion Equation 

100ns to 200ns Yes Yes Yes 𝐴𝐸𝑅𝑎𝑛𝑔𝑒 , 𝐻𝑆𝑅𝑎𝑛𝑔𝑒 , 𝑇ℎ𝑅𝑎𝑛𝑔𝑒 
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200ns to 300ns No Yes Yes 𝐻𝑆𝑅𝑎𝑛𝑔𝑒 , 𝑇ℎ𝑅𝑎𝑛𝑔𝑒 

400ns to 500ns No No Yes 𝑇ℎ𝑅𝑎𝑛𝑔𝑒 

Table 9: Scanning Window Example 

Along with this a value called % confidence is calculated and is outputted to allow for the 

manufacturer to know how confident they can be in this predicted range. This % value is 

based on how far the Events lie from their respective cluster centers. Once the system 

receives a hit on a particular sensor the Euclidean distance of the event from its appointed 

cluster is compared to a criterion based on the 68–95–99.7 rule, also known as the empirical 

rule. Using this criterion, a score is given to each Hit called the individual confidence score. 

All the individual scores for a sensor Hit within a certain time window or when all three types 

of sensors catch data within that time window are combined using a custom algorithm and a 

% confidence value is generated. The logic being that the further an event lies from its 

respective cluster centroid the less alike it is to the events closer to the cluster centroid and 

hence their data will also be different.  This process is explained in detail in Section 7.3 where 

the data fusion algorithms implementation is discussed. 
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Figure 35: Data Fusion algorithm 

4.2.4. Testing the System 

Testing the system involves taking a random sample and passing it through the system and 

later validating the results using post sample analysis (XCT analysis). The only difference will 

be that the algorithm does not use defect data as a source input in the data fusion algorithm 
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should correctly predict the range if a defect signal is found. S2 in Figure 36 represents the 

Target Measurements or Dimension of the deposit. This is the target dimensions fed into the 

LMD machine or based on these dimensions the LMD operator will set his machine settings. 

After the comparison of the system results with the actual defects found in the deposit using 

XCT, the accuracy of the system can be calculated. The output of the system and its accuracy 

are compared with other methodologies and models of defect detection in the state of the 

art along with statistical tests to validate the hypothesis regarding accuracy.  

 

Figure 36: Online Data Fusion Methodology 

The major metric of verification of the systems output is its accuracy of the predicted features 

compared to the state-of-the-art research. Since the system takes influence from the 
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signal data can be used in the models and accuracy measurement methods of other 

researchers. This should allow for a level playing field when comparing accuracies of 

methodologies as data used in them is the same. The multi-sensory data fusion system 

predicts Total number of Defects, Total Number of Pores, Total Number of Cracks, Max Size 

of defect and Total Defected Area which is more features than any single state of the art 

method, however, the major difference is that it outputs a range instead of a single value for 

a predicted feature unlike the state-of-the-art research.  There are two methods using which 

a single value can be produced for the sake of comparison. First method is where the average 

of the predicted range is taken and a multi regression equation is used to produce a single 

value for each detected Event. The second is where an equivalent look up table is formed 

where if the predicted value lies within the actual range, it is given a score of 1 (100% 

accuracy) and if the value lies outside the range, it is given a score of 0 (0% accuracy). Using 

the first method a value for a certain feature will be produced. For example, for Total Defects 

detected a single value is generated and this value can be put into the accuracy verification 

method presented by (Khanzadeh & Bian, 2016) and then the calculated accuracy can be 

compared with their result. The same can be done to compare with the output accuracy of 

(Barua & Frank Liou, 2014)’s model and (Gaja & Liou, 2018)’s model. The Accuracy calculated 

from the first method is also verified via the Wilcoxon Signed Rank test to determine if there 

is a probability that a more extreme result might be possible based on the sample set. The 

reason for choosing the Wilcoxon signed Rank test is because of the nature of the distribution 

of the data. This is discussed in further detail in Section 8.2.3 explained why a one sample T 

test was not used instead. For the second method the Binomial Test is utilized to verify 

whether a more extreme results than the calculated accuracy is probable. The Binomial test 

is used because the data being analyzed is non-parametric and dichotomous since the 

equivalence table is used.   

4.3. Discussion 

The methodology chapter explains the overall outline of how the research was carried out 

and provides justification for the research design choices. The methodology chapter does not 

go into elaborate details as there are dedicated chapters explaining these steps. 

The specific gaps were identified as limitations in the type of information, level of information 

and reliability of information in the state of the art. The limitations are found in single sensor 

approaches since they only observe a single phenomenon which can only provide a single 
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type of information and limited level of information and a low level of reliability. It is also 

important to mention that each sensor is observing a certain window in the deposition cycle 

and the phenomenon being observed are very quick to change. This adds another dimension 

of problems since the sensor observing the phenomenon must be quick enough to collect 

sufficient information that can indicate the development or presence of a defect and must 

be observing a window of the deposition cycle in which signs of the development of a defect 

can be captured. 

The solution presented is a high-speed multisensory online defect detection system which 

uses data fusion to detect and predict features of the detected defects. This includes Total 

Defects, Pores, Cracks, Max defect size and defected Area. The multiple sensors are there to 

solve the problem of type, level, and reliability. The highspeed system caters for the 

quickness of the LMD process itself and the sampling data from multiple high-speed sensors. 

To combine all types of data streams into single type, a custom data fusion method is 

implemented. The data fusion method also improves the reliability of output of the system. 

The research methodology involves first developing a system capable catching defects at fast 

rates and managing the high-speed sensor array. After this system it used to capture signals 

from experiment where defects are purposely provoked. The samples from these 

experiments are analyzed using XCT where defect position, type and size is determined. Using 

machine settings and physical measurements of the experimental samples the defect size 

can be observed in reference to deposition time and position along the deposition length in 

the direction of how the deposition was laid down.  

The system can be trained with the defect data from the defect provocation experiments to 

predict defect features. The data for each sensor needs to be converted into spatial and time 

domain and then defect data is stitched onto it. Using the stitched data for each sensor the 

Events which indicate defects can be extracted. These events contain features of the signal 

which display anomalous data and are recognized using the literature of the state of the art. 

Each of these events are then fed into the K-means clustering algorithm which groups events 

with like features. The K means groups data based on their Euclidean distance from cluster 

centers. The data for each cluster is analyzed using box and whiskers plot and the outliers are 

omitted and a new max and min range is established for the distribution for each feature. 

These ranges serve as predictive ranges for each feature depending on the sensor cluster, 

they lie in.  
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The clustering algorithm then detects events that lie within a certain time window and fuses 

them using a data fusion equation to output a single predictive range for each feature. The 

reliability in the predictive ranges is measured by % confidence value. This value uses the 

Euclidean distance from the cluster centers as a criterion to establish whether the predictive 

range will be precise or not. This is based on the fact that Events that lie further away from 

their appointed cluster centers have less similar data compared to the events closer to the 

cluster centers.  

The online defect detection algorithm uses the trained data and target deposition dimension 

to accomplish the same goal as the method used to train the system. A random sample is put 

through the online defect detection algorithm and XCT is used to compare the systems 

output to the actual defects in the sample. This accuracy and system output is also compared 

to other methodologies and models utilized in the state of the art for further validation. The 

details regarding the systems design, implementation and development is explained in 

Chapter 5, The Experimentation and its details are explained in Chapter 6 and the details 

regarding the data processing and fusion methodology are explained in Chapter 7.



 

79 | P a g e  
 

 

Chapter 5: System 

Architecture and 

Development 



 

80 | P a g e  
 

5.1. Sensors Specifications 

The three sensors chosen for the system were High Speed optical Camera, Thermal Camera 

and 2 acoustic emission sensors. These sensors are chosen based on the observation 

windows that they are capable of viewing in the deposition cycle. The combination of these 

3 sensor types allows the monitoring of much of the deposition cycle from powder trajectory 

to deposit cooldown. Sensor specifications need to be decided accordingly so that the 

maximum amount of data regarding the deposition and defect development can be 

collected. Hence deciding on sampling rates for each sensor is critical but very high sampling 

rates are accompanied by a multitude of issues which cause further complications in a 

multisensory system. This means as sensor speeds increase other problems start propping 

up which includes Overexposure issues, Data size, data streaming issues, online Data transfer 

limitations, Time stamping issues, Environmental Noise and increase in DAQ’s dead band 

time. The solution to all these is to find a sweet spot for sampling speeds where the above-

mentioned problems can be reduced but the systems detection capability is not 

compromised.  

Five properties are found in the literature which can be used to estimate the time required 

to pick up a phenomenon or property and specifications on the capability of the sensor with 

regards to temperature and the number of defects it can pick up under certain conditions. 

These four properties are Powder velocity, Powder Residence Time, Pore Generation Time, 

Cracks Generation Temperature Zones and Typical Cooling Rates. The quickest, Average and 

bare minimum timing values for these properties are used to calculate Best, Average and 

Worst-Case scenario values where best case catch the most amount of detail, Average Case 

is where relatively good amount of detail is captured and worst case is the bare minimum to 

capture enough detail. Based on these values as shown in Table 10, sampling rates closest to 

or less than the Best Case timing values are utilized in this research. As mentioned earlier 

very quick sampling rates can cause further issues hence the aim is to keep a sampling rate 

using timing values within the Best Case and Worst Case. To understand these additive 

problems that occur due to very high sampling rates, how these sensors work must be 

understood.  
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 Best Case Average Case Worst Case 

Particle Velocity 5 m/s at 12mm 

Standoff distance 

𝑡1𝑚𝑚 = 220µs 

3.5 m/s at 12mm 

Standoff distance 

𝑡1𝑚𝑚 = 285.7µs 

2 m/s at 12mm 

Standoff distance. 

𝑡1𝑚𝑚 = 500µs 

Residence Time 32 µs 307 µs 1210 µs 

Pore Generation 11 µs 48 µs 85 µs 

Crack Generation 42 - 54.3% of Cracks 

in 200°C window at 

cooling Rate of 104 

°C/s. 

𝑡200°C = 20000µs 

75% of Cracks in 

600°C window at 

cooling Rate of 104 

°C/s. 

𝑡600°C = 60000µs 

100% of Cracks in 

1200°C window at 

cooling Rate of 104 

°C/s. 

𝑡1200°C = 120000µs 

Cooling Rates 107 °C/s 

𝑡1°C = 0.1µs 

104 °C/s 

𝑡1°C = 100µs 

103 °C/s 

𝑡1°C = 1000µs 

Table 10: Best, Average and Worst-Case values 

The Highspeed camera used in this research is a Photron FastCam SA-X2 which is capable of 

recording at frame rates of up to 120000 FPS coupled with and Nikkon AF-P DX Nikkor 18-

55mm F/3.5-5.6G Focus Lens upon which a natural density filter (ND 1000) is fixed. High 

Speed Cameras take images at very high rates and hence the time the image sensor is 

exposed to light decreases with increase in Frame Rates. This time is called shutter duration 

and is related to shutter speed. This means at higher frame rates the amount of light required 

to capture a visible or reasonably lit image also increases. This presents a unique challenge 

since in LMD process the amount of light reflected by the melt pool fluctuates between 

extremes at different parts of the melt pool which can cause the image sensor to either 

capture no image due to the lack of light or completely saturate under standard aperture 

settings. Using hit and trial the right combination of Frame Rate, Camera aperture, ND filter 

F stop values and distance of an illumination source are discovered which present an 

acceptable highspeed image. An acceptable high-speed image is where the image does not 

get over saturated during high temperature region formation and images are not completely 

dark due to low temperatures. Enough of the melt pool should be visible but differentiable 

from the background to capture extreme events. Using image J software, the overall image 
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pixel intensity can be seen as shown in Figure 37 and this can be used as reference to find 

the right settings. Images where maximum pixel intensity is below 35 are chosen as reference 

images since the do exhibit excessive activity and the melt pool is visible along with powder 

particles without being very bright. The Images should be able to show contrasts in spectral 

radiance compared to other parts of the melt pool. Using this method, the Frame rate was 

set at 10,000 frames per second, aperture set f/11, Natural Density filter with an f stop 

reduction of 10 chosen and an 85W CFL9 as an illumination source of 5386 Lumens is placed 

approximately 20 inches from the work piece. Another major issue faced with the Optical 

camera is the resolution since it increases the data size which causes streaming and 

downloading issues. It was seen that anything below 256 x 256 did not show the trajectory 

of powder particles. The HS data at 10000Frames/s and 256 by 256 resolution for a 3 track 

11mm deposition which takes about 5 seconds can be as large as 15GBs. Using a single 

Gigabit ethernet port with a CAT 7 Cable this would theoretically take 120 seconds not 

including overhead times. The photon SA-X2 has dual channel Gigabit Ethernet interfaces 

hence two ports CAT 7 cable which can support 10Gbps is used to download the video. 

Theoretically the dual channels should allow download of an entire clip in 60 seconds not 

including overheads. The video is temporarily stored in a buffer memory in the camera and 

download to the PC when needed for analysis. However, due to some technical issues video 

data transfer during the deposition was corrupted at times and for the sake of reducing 

experimental time the Video data was download after the deposition was completed and 

video data time synced using that start time and stop time recorded by the HS Data 

acquisition script detailed in Section 5.3.   

The thermal camera utilized is a NIT Tachyon 16K Uncooled MWIR 128x128 pixels infrared 

camera with high-speed frame rates up to 4000 FPS. The camera detects the IR region which 

ranges from 1.0µm to 5µm. Thermal Camera presents a different issue due to high frame rate 

selections. This is because with frame rate the random noise in the thermal images increases. 

This is unacceptable as the system is supposed to be sensitive to small changes even at the 

pixel level and noise could be interpreted as an event which would be misleading. Hence a 

tradeoff is made by setting the Thermal cameras frame rate to a 1000 frames per second. At 

this setting noise goes down significantly. 

 
9 Compact Fluorescent Lightbulb 



 

83 | P a g e  
 

 

Figure 37:HS Camera Calibration method 

AE sensors used are Kistler Type 8152C AE piezo electric sensors made for high temperature 

environments. This was coupled with a Kistler Type 5125C Piezotron coupler or conditioning 

unit. The rate at which AE data is sampled depends on the sampling rate of the data 

acquisition unit collecting the data. From Table 10 it is known that the quickest time for a 

best-case timing value is that of a cooling rate of 107 °C/s where change of 1°C takes 0.1µs. 

To collect a sample at every 0.1µs a sampling rate of 10,000,000 Samples/s or 10 MS/s is 

required. According to Nyquist theorem the sampling rate should at least be twice that of the 

minimum sampling rate. But it is a common practice to keep a sampling rate 4 times that of 

the minimum sampling rate to get better results.  Hence two times the minimum sampling 

rate would be 20 MS/s and four times would be 40MS/s. Hence, a Digitizer unit (DAQ) which 

is capable of sampling at 50MS/s is chosen. The AE hardware collects 1024 data points per 

sensor or 2048 data points in total at a sampling rate of 50 Mega sample per second or 

50MS/s. This means that 1 data point is collected per 0.00000002s hence to collect 2048 data 

points will take a total time of 40.96µs. Once 2048 data points are collected, they are then 

transferred to the temporary buffer storage. In other words, the acquisition unit continuously 

collects data for 40.96µs then stops recording, transfers data to temp storage and then 
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resumes data collection. As explained earlier the time in which data is not being collected is 

called a dead band.  

The sensor configuration and sampling rates are compared to the Best, Average and Worst-

case timing values as can be seen in Table 11. The pore generation times, and residence times 

are collected from literature as they were presented. The time it takes for a powder particle 

to move 1mm is calculated by the particle velocity times found in the literature and nozzle 

standoff distance in experiments in this research. Crack generation times for a % of total 

cracks in a certain temperature window with a specific cool down rate are calculated from 

data collected from literature. Lastly, using the different cooling rates provided in the 

literature, the time it takes to observe a change of 1°C can be calculated. All the values 

collected from literature are discussed in detail in Section 2.5 and 3.9. It can be seen that 

most sampling rates fall between best case and worst case except that the HS and Thermal 

camera sampling rates are not quick enough to capture pore generation times. The HS 

camera sampling rate lies within the best-case timing values to capture Particle Velocity 

movement and Crack Generation. They lie within an Average Case for Residence Time and 

Cooling Rates. From these values it can be concluded that the HS camera can track a particle 

with a velocity 5m/s every 1mm of its movement. It can track any particle with a residence 

time of over a 100µs and observe any change that happens when temperature changes by 

1°C if the cooling rate is 104°C/s. The HS camera just falls shy of the worst-case capture time 

for pore generation since single pore develops quicker that the time it takes to capture a 

single frame. However, this means that it is still capable of capturing the effect of multiple 

pores in a single frame. The thermal camera is incapable of catching powder trajectory as 

explained in the literature but meets the bare minimum for residence time and cooling rates. 

This means that if a particle is resident on or in the melt pool for greater than or equal to 

1000µs there is chance to capture a defect caused by this particle. For cooling rate, it shows 

that the thermal camera can capture a change of 1 °C with a single frame if the cooling rate 

is 103 °C/s. It shows that it capable of capturing crack generation of 42% to 50% of cracks 

within 200°C window at a cooling rate 104°C/s. It shows a best-case capture time for crack 

generation times but is slower than the worst case for the pore gen times. The AE sensor 

shows best case capture times for pore generation, crack generation times and cooling rates.   
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  Particle 

Velocity 

Residence 

Time 

Pore 

Generation 

Time 

Crack 

Generation 

Time 

Cooling 

Rates 

High 

Speed 

Camera 

10000 FPS or 

100µs/Frame 

Best 

Case 

Average 

Case  

Greater 

than worst 

Case 

Best Case Average 

Case 

Thermal 

Imager 

1000 FPS or 1000 

µs/Frame 

N/A Worst 

Case 

Greater 

than worst 

Case 

Best Case Worst 

Case 

Acoustic 

Emission 

Camera 

Continuous 

sampling for 

40.96 µs and 1 

sample is 

collected at 0.02 

µs 

N/A N/A Best Case Best Case Best Case 

Table 11: Sensor Best, Average and Worst Case 

5.2. Hardware Architecture 

The ideal practical implementation of the general architecture (Figure 26)  would implement 

5 modules: PC, Gigabit Ethernet Card, FPGA with Digitizer and High-speed Raid Array 

(Storage). All these modules would be sharing a single Highspeed full duplex data bus in a 

single Chassis (Figure 38). This system along with its advantages is discussed in detail in 

Chapter 9. However due to unforeseen circumstances and budget constraints the exact 

practical implementation of the general system architecture could not be implemented. This 

research does however implement a similar hardware architecture except for the part where 

all modules share a single High speed data bus and a single chassis. Even though the system 

is connected in a different way it’s still follows the same guidelines provided by the General 

System Architecture. As seen in Figure 39 the system is divided in 4 general parts as seen in 

the general architecture (Figure 26) Pre–Condition Units, Sensors, Post Conditioning Units, 

Processing and Acquisition Units, buffer Storage and PC.   
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Figure 38: Ideal Hardware Architecture 

Gigabit 

Ethernet FPGA 

Computer 

Digitizer 

Raid Array 

High Speed Data Bus 

AE Sensors Thermal 

Camera 

HS Camera 



 

87 | P a g e  
 

 

Figure 39: System Architecture Parts 
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CAT 7 cables plugged into a Dual Gigabit ethernet Card. This card is plugged into the PC’s 

motherboards PCIe Slot. Likewise, the thermal Camera transfers data via a CAT 5 cable into 

another Gigabit ethernet port plugged into the motherboard’s PCIe slot. The PCIe in modern 

computer architecture are meant for high-speed peripherals e.g., High Speed graphics arrays. 

Even though CAT 7 cables are capable of through putting 10000Mbps the NIT Thermal Imager 

was not compatible with CAT 7 Cables and hence a CAT 5e cable was used which is capable 

of through putting 1000Mbps. The AE sensors are connected to their Kistler Type 5125C units 

which condition and digitize the analog data and then output it to a Digitizer attached to an 

FPGA module via SMB accessory. The FPGA captures and stores it in a temporary memory 

buffer later to be transferred to the PC when the system collection cycle is complete. This is 

discussed in detail in the software section.  Using DMA technology, the AE data is transfer via 

the PCIE controller to the PC which is capable of through putting 40Gbps in each direction 

simultaneously. The PCIE controller, the FPGA and the Digitizer module are all fitted into a 

single Highspeed data bus Chassis.  Table 12 shows a list of the modules and parts used to 

implement the above-mentioned architecture. A large part of the system was implemented 

using National Instruments hardware due to its modular nature and the fact that LabView is 

a part of the conglomerate of software’s used to write the Acquisition software. Figure 41 

shows the picture of how the actual hardware was connected and used. 

 

Figure 40:Hardware Architecture 
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# Hardware Name 

1.  High Speed Data Bus Chaisis NI PXIe-1082, 8-slot 3U PXI Express Chassis 

2.  FPGA NI PXI-7954R FlexRIO FPGA Module 

3.  Analogue Signal Interface NI 5752 32-Channel Digitizer Module for FlexRIO 

4.  Dual Gigabit Ethernet Card  Gigabit PCIE Network Card for Intel E1G42ET - 

82576 Chip 

5.  PCIE Interface NI PXIe-PCIe8381, x8 Gen2 MXIExpress for PXI 

Express Interface, 3m 

Table 12: List of Hardware Modules 

 

 

Figure 41: Highspeed Multisensory System 
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Camera Interface Script, DMA IP Core VI and AE VI.  Two scripts (AE and DMA IP Core) are 

implemented in the FPGA using LabVIEW and four scripts (Thermal Camera Interface, 

acquisition script, Highspeed Camera SDK and Universal Timer Script) are implemented on 

the PC using LabVIEW and C# Scripts. 

Figure 44 shows the flow chart for the Acquisition script which is the main script that manages 

all the sensors and is written in LabView. This turns on the Universal Timer at the Start of the 

program and then starts the sensors in the order of Thermal, High Speed and AE. After this it 

goes into the AE acquisition loop which receives data from the AE VI and time stamps it using 

the universal timer. The data received by the acquisition loop is the data from the AE sensor 

bundled into a single datagram. The datagram is unbundled and 1024 data points for each 

sensor are separated, time stamped and stored in TDMS file format. If the deposition is 

completed a stop button is pressed and the timer script is turned off and all programs are 

stopped.  

 

Figure 42: Software Architecture 
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Figure 43:Acquisition VI 

 

Figure 44:Acquisition Flow Chart 
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The Universal Timer script is the universal Clock which broadcasts a high precision timer to 

all other scripts. This script is the first to be activated by the acquisition script so that it 

becomes a reference to all other scripts. The universal timer utilizes an API called QPC or 

Query Performance counter which utilizes the CPU frequency (Ticks) to calculate time 

elapsed with high precision. For the PC that this script was running at the frequency 3312832 

Hz and hence the interval between each tick is 301.85ns. Typical access time for the script 

from the QPC register is 30 ns which makes the overall tick time to 330 ns. Data is 

broadcasted over a dedicated virtual port on the PC machine using Universal Datagram 

Protocol or UDP and its multicast capability. UDP is a lossless low latency protocol often used 

in time sensitive applications. Figure 45 shows the flow chart for the Universal Timer Script. 

 

Figure 45:Universal Timer Script Flow Chart 
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Figure 46: High-Speed Camera SDK VI 

 

Figure 47: High Speed VI Flow Chart 
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once again using a UDP listener as shown in the flow chart of the script in Figure 49. 
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Figure 48: NIT Tachyon Application Software 

 

Figure 49: Thermal Script Flow Chart 

The AE VI is written in LabVIEW and implemented in the FPGA. 1024 Data points are collected 

continuously for each AE sensor at 50MS/s and bundled into one package and stored in the 

dedicated DMA IP core of the FPGA. The Direct Memory Access or DMA Engine is a system 

that controls data transfer from the FPGA buffer storage to the RAM of the PC. This is done 

by developing a FIFO buffer at both ends i.e., HOST PC and FPGA as shown in Figure 50. Since 

the DMA controller handles data transfer this allows for the FPGA to collect data instead of 

spending valuable time transferring data when the host computer is free to collect it. This 

effectively reduces the dead time of the data collection system.  
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Figure 50: Workings of DMA Engine in LabView 

 

Figure 51: All Software Scripts during deposition 

5.4. Discussion 

This chapter explains in detail the system architecture which is a combination of hardware 

and software. The hardware includes the sensors and its accessories along with the actual 

acquisition hardware. To decide the frame rates which will allow sufficient information to be 

gathered that reveals the presence of defects a criterion is developed. This criterion 

establishes 3 values: best, average, and worst-case timing values for detecting certain 

deposition or defect properties. These properties include Particle velocity, Particle Residence 
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time, Pore Generation Times, Temperature windows in which defects develop and cool down 

rates. Particle velocity which allows for the tracking of particles movements per 1mm. This is 

used as a precursor to detect the interaction of the powder particle with the melt pool. E.g., 

a particle which displays low intensity approaches the melt pool then interacts with it and 

causes a large spike in intensity in the melt pool. A spike as per the literature is a sudden very 

high temperature zone which has developed due to a disturbance in the heat flow cause by 

an anomaly. Hence if particles can be tracked their anomalous interactions can be tracked 

too. The second property based on which timing values are calculated is Particle residence 

time. The particle residence time is the time a particle spends on or in the melt pool before 

being melted. This once again is a window in which powder interaction with the melt pool 

occurs and from the literature, It is known that the longer the residence time the greater 

chance the particle will stay un-melted which causes defects to develop. Pore generation 

times are the time it takes for a pore to develop and as pores develop the heat flow in its 

surrounding is disturbed and hence it is vital for this window to be detected. Temperature 

windows in which a certain number of defects develop is also important to be observed. This 

is dependent of the total temperature window and the cooling rate with which the 

temperature window cools down. The literature also provides an approximate range in % of 

cracks developed in these windows. Lastly the cooling rates are used to calculate the time it 

takes for the melt pool temperature to change by 1°C. This means an increase or decrease in 

temperature can be detected with a precision of 1°C, this is of course depended on cooling 

rates. It is important to mention that temperature changes often do not increase until the 

defect is large enough to affect the heat flow and consequently to create high temperature 

zones.  

It would be intuitive to choose sensor sampling rates that are based on the best-case timing 

of the five properties mentioned above however extremely high sampling rates bring unique 

challenges with them which include over exposure of image sensor, large data size, large 

dead bands and time stamping issues. To overcome this issue of over exposure in the HS 

camera the right combination of frame rate, aperture setting, Natural Density Filter and an 

illumination is chosen. Data size is managed by keeping resolution of images by 256 x 256 

and data transfer rates are increased by using dual Gigabit ethernet capabilities of photron 

Fast Cam being used to capture high speed video. The noise in the thermal camera is lowered 

by reducing the sampling rate of the camera. It is important to mention that even though NIT 

tachyon 16K thermal camera is already being utilized in LMD monitoring in other projects its 
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data transfer capabilities are limited to Cat 5 cables only. The AE outputs data continuously 

however due to the nature of how all data acquisition units work it can only be listened to 

for a certain time (40.96µs) and then the acquisition unit stops listening to complete the task 

of data storage or transfer and then it goes back to collecting samples. The main objective is 

to reduce the dead time by keeping the buffer size small (1024 data points) and using DMA 

engine. This decreases the overall time of dead time and a high sampling rate of the digitizer 

50MSps further decreases the dead band.  

The sampling rates are compared with the Best, Average and worst-case timing values and it 

is found that the sampling rates for the thermal camera and HS Camera are too low to capture 

the generation time for a single pore. However, this does not mean that both sensors are 

incapable of catching the effects of multiple pores all together. More so the HS speed camera 

is just shy of the worst-case pore generation times. Another major advantage of having a 

multisensory system is that AE sensor covers for blind spots of the other sensors i.e., it is fast 

enough to collect data faster than the best-case timing for pore generation.  

Figure 52a shows the electromagnetic spectrum and the corresponding wavelengths. Figure 

52b shows the spectral response with respect to wavelength with reference to temperature. 

Figure 52c shows the spectral response of the monochrome HS Camera. In between the HS 

camera and Thermal Camera, they cover a wavelength range of 0.4µm to 5µm however the 

spectral response varies. The HS camera shows highest response around 0.7um and these 

are the region where the melt pool temperature is up to (4726.85°C)5000K. This is good in 

the sense that extremely high temperature zones will show exceptional spectral radiance. 

Thermal IR camera covers 1µm to 5µm which show high spectral response over temperature 

regions from 226.85°C (500K) to 4726.85°C (5000K). These are all temperature regions where 

either defects are generated or where the effects of defect development are reflected in 

temperature changes and consequently spectral radiance.  

It is worthwhile mentioning that the hardware architecture that was implemented is not the 

exact as is implementation of the general system architecture (Figure 26) but still uses the 

same general structure i.e. preprocessing units attached to sensor, sensor attached to post 

processing unit, post processing unit attached to Processing and acquisition unit, Processing 

and acquisition unit is attached to buffer memory and buffer memory is attached to high 

speed data bus which is connected to a PC (Figure 39). Ideally all these modules should have 

been fitted into a single chassis connected via a single full duplex data bus.  
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Figure 52: a) Electromagnetic Spectrum b) Spectral Response c) Specteral Response Photron 

FASTCAM SA-X2 

The software architecture is a conglomerate of scripts written in C# and LabView which are 

communicating with each other for triggering and time stamping purposes. These scripts 

include Thermal Camera Interface Script, Acquisition Script, HS Camera Script, AE Script, and 

Universal Timer script. Acquisition script turns on and off all sensors along with the Universal 

timer Script. The Universal timer uses a physical hardware timer which measures ticks at 

intervals of 330ns including the QPC register access time. This time is broadcasted to all 

scripts using a virtual port and UDP multicast ability. All scripts record start and stop time 

which can be used to sync data for all sensors. 

a) 

b) c) 
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Chapter 6: Experimentation
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The experimentation chapter includes specific details and experimental design and 

experimentation. Here the defect provocation experiments their design are discussed in 

detail and along with that the details of the experimental setup and few calibration and 

configuration techniques are also discussed. 

6.1. Defect Provocation Experiments 

The main objectives of defect provocation experiments are to generate a variety of defects 

through different methods so that the system can be trained on a variety of signals. Four 

main types of defect provocation experiments are designed and carried out as shown in Table 

13. The reason for the selection of these four experiments is that each provokes a specific 

type of pore or crack with varying quantities and sizes. Since their source mechanism varies, 

each type of defect should theoretically provide a slightly varied change in phenomenon 

which should produce a varied signal picked up by the sensors. Along with this the four types 

of provocation experiments should produce different sizes of defects. For example, the 

contaminated powder experiments should primarily produce gas pores and some lack of 

fusion pores, The surface finish experiment should produce cracks and pores due to lack of 

fusions specially in the bonding regions, the Machined deformities experiment should mainly 

produce cracks due to the sudden change in thermal distribution disrupting uniform heat 

flow and lastly, The Machine parameters experiments should produce both cracks and pores 

with varying quantity and size. The details of these experiments is explained in section 6.1.1, 

6.1.2, 6.1.3, 6.1.4 and they leverage or adapt provocation methods discussed in Chapter 2. 

Two types of powder are used for the experiments Ferrium S53 and TI 6Al 4V depending on 

the experiments. The work pieces upon which the deposit is laid down are rectangular blocks 

(150mm x 64mm x 40mm) made up of Titanium and Stainless steel (SS) depending on the 

experiment. Upon each block AE sensors are placed and fixed at a known distance from the 

center as shown in Figure 54. This allows for lateral distance measurements to be made from 

the AE sensors which are later used in TOF calculations. All depositions were made from left 

to right (facing the deposit) and all Deposits are mostly 3 tracks overlaid on each other with 

a 30% overlap with a Target measurement of 11mm by 2.5mm as shown in Figure 53. The 

reason why single-track deposits are not studied in these experiments is because 3 track 

deposits are a more realistic application of LMD since when using LMD to build a structure 

either tracks are overlapped or deposited on each other layer by layer. Defects may develop 

in remelting of previous tracks which is the point of the defect provocation experiments i.e., 
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produce plenty of varying defects with different provocation methods to get a variety of 

signals. 

In general, there is no need for a control experiment for each provocation experiment since 

defect provocation methods are very well established however, control experiments are still 

added to observe any contrasts. In the literature and Machine process settings for 

Contaminated Powder, Surface Finish Experiments are the same (Table 17) except for the 

Machine parameters experiments whose machine process parameter vary with each deposit 

as shown in (Table 14). Machined deformities are induced in the block by cutting a 1mm wide 

and 1mm deep grove (Figure 53) into the work piece upon which a deposit is laid.   

 Title Brief Explanation Work Piece  Control Powder  

1 
Contaminated 

Powder 

Defects are induced 

using contaminated 

powder 

Stainless 

Steel 

Non-

Contaminated 

Powder 

Ferrium 

S53 

2 
Surface 

Finnish 

Defects are induced 

by deposition on 

EDM finished surface 

Titanium 

Milled Surface 

TI 6Al 4V 

3 
Machined 

Deformities  

Defects are produced 

by depositing over 

Indented feature 

machined into the 

sample 

Titanium 

Non -

Deformed 

Surface TI 6Al 4V 

4 
Machine 

Parameters 

Defects are induced 

varying machine 

parameters 

Titanium 

Optimum 

Machine 

Parameters 

TI 6Al 4V 

Table 13: Summary of Experiments 
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Figure 53: Deposition Tracks 

 

Figure 54: Deposition Diagram 

6.1.1. Contaminated Powder Experiment 

The objective of this experiment is to provoke gas and lack of fusion porosity in the deposition 

itself. It is established in the literature that impurities in the powders tend to induce these 

defects. A simple way of acquiring this contaminated powder or “dirty powder” is to collect 

unburnt/ un-melted powder from a previous deposition by ramping up the powder feed 

speed and lowering the laser power on the LMD machine. The un-melted powder is mixed 

with the pure “Virgin” powder and this mixture of powder is used to construct the deposition 

in this experiment. 
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The un-melted powder develops an oxide layer and in essence changing its chemical 

composition. This disrupts the melting process of the powder metal and in theory should 

increase residence time which causes powder particles to remain un-melted within the 

deposit which can cause defects to form. The change in chemical composition can cause 

further gases to be formed which may get trapped in the deposit.  

As shown in Figure 55 the experiment only has one independent variable in the context of 

the experiment which is the contaminated powder. The dependent variables are the cracks 

and pores generated and constant independent variables are the machines process 

parameters. A total of 5 deposits are laid down with the contaminated powder experiment 

and 5 deposits are laid down using the virgin powder. 

 

Figure 55: Contaminated Powder Experiment 

6.1.2. Surface Finish Experiment 

The objective of this experiment is to induce defects by depositing over a work piece whose 

surface is prepared using Wire Electrical discharge machining. Wire EDM surface becomes an 

ideal for producing defects due to two factors a) Poor surface finish can be achieved using 

certain process parameters b) A thin protective layer forms on the surface due to certain 

process parameters. In their investigation (Prathipati, 2019) shows that by manipulating 
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pulse on time and peak current can change surface roughness and a thin protective layer 

consisting of carbides and oxides can be induced on the surface.  These two properties make 

it an ideal breeding ground for defect development. This can be seen in Figure 56a where the 

surface finish of wire EDM is rough compared to that of the milled surface in Figure 56b. Even 

though these images are not obtained using a microscope rather XCT scan their scales are 

displayed on the images. 

 

Figure 56: a) Surface Finish EDM b) Surface Finish Milled 

As shown in Figure 57 the experiment only has one independent variable in the context of 

the experiment which is the Surface Finish. The dependent variables are the cracks and pores 

generated and constant independent variables are the machines process parameters. A total 

of 3 deposits are laid down with the on the Wire EDM finish workpiece and 3 deposits are 

laid down on the milled surface work piece as this serves as the control. 

a) b) 
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Figure 57: Surface Finish Experiment 

6.1.3. Machine Deformities Experiment 

Similar methods to  (Barua & Frank Liou, 2014) are used to provoke and simulate cracks 

during the LMD process by introducing a physical feature on the workpiece itself upon which 

a deposition is made. As mentioned earlier this is 1mm width by 1mm depth slit machine on 

to the work piece. In this case the deposit is laid over both EDM workpiece and Milled 

Workpiece. Depositing over EDM in theory should produce more defects due to the nature 

of the EDM surface as explained above and the slit/grove upon which the deposit is laid.  

As shown in Figure 58 the experiment only has one independent variable in the context of 

the experiment which is the Machine Deformities. The dependent variables are the cracks 

and pores generated and constant independent variables are the machines process 

parameters. A total of 3 deposits are laid down the on the Wire EDM finish workpiece and 3 

deposits are laid down on the milled surface work piece. 
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Figure 58: Machined Deformities 

6.1.4. Machine Process Parameters 

This experiment is carried out to provoke defects using machine process parameters which 

is well established in the literature. Even though by manipulating Laser Power, Powder Feed 

Rate, Scanning Speed, Shield Gas Rates defects can be generated, it is also true, any random 

combination will not generate a realistic deposit with specific dimensions. Too low a powder 

feed rate leads to a nonrealistic deposit which don’t allow for sufficient build height and 

volume. It is known from the literature that a combination for a low powder feed rate and 

low laser power can cause defects to generate. As shown in Table 15 different combinations 

of powder feed rate and laser power is used until a sufficient volume is achieved which 

represents the target dimensions. The melt pool develops sufficient volume at 6.5% of the 

established powder feed rate and at Laser Power from 500 to 300W it is seen those deposits 

start developing defects (Figure 60). 

As shown in Figure 59 the experiment only has two independent variables in the context of 

the experiment which is the Machine Process Parameters. The dependent variables are the 

cracks and pores generated and controlled independent variables are the Powder feed rate 

and laser power. The constant independent variables are powder Quality (Unused powder), 

Surface Finish (EDM cut work piece), Scanning Speed(10mm/sec) and Shield Gas Rate (41 lpm 
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@1.5bar). A Total of 13 deposits are laid down however only 5 pieces showed sufficient build 

volume that could be analyzed later. 

 

Figure 59: Influence of Machine Parameter 

 

Laser Power Scanning Speed Powder Feed 
rate 
10 lpm @2bar 

Shielding Gas 
Rate 

Nozzle 
standoff 
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250 -550W 10mm/sec 4 -7.5% 41 lpm 
@1.5bar 

12mm 

Table 14: Machine Process Parameters 
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Figure 60:Powder Feed Rate and Laser Power Sample 

# Laser Power Powder Feed rate (10 lpm @2bar) Sufficient build height 

1 250 4% No 

2 275 4% No 

3 300 4% No 

4 375 5% No 

5 425 5% No 

6 425 6% No 

7 425 7% No 

8 550 6.5% No 

9 500 6.5% Yes 

10 450 6.5% Yes 

11 400 6.5% Yes 

12 350 6.5% Yes 

13 300 6.5% Yes 

Table 15: Defect Provocation using Machine Parameters experimental Runs 

Insufficient build 
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Sufficient build 
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6.2. Experimental Setup 

As shown in Figure 61 the experimental setup is so that all cameras are at a certain distance 

from the deposition on a tripod at different levels. The Acoustic Emission sensors are 

attached at a known distance on both sides of the substrate block.  

 

Figure 61: Experimental Setup diagram 

The AE sensors are clamped on to the substrate using bolts after the coupling silicone gel is 

applied in between the AE piezoelectric sensor and the workpiece as shown in Figure 63. 

Cameras are focused on to the area where deposition is to be made using a technique where 

the actual target dimensions are drawn on a piece of paper and place on the work piece 

(Figure 62). This helps establish the position of where the deposit will be made using the 

internal optics LMD Machine along with allowing the researchers to establish sufficient focus 

and FOV that the entire deposit is captured during deposition. The Camera angles, positions 

and focus lengths are set based on hit and trial along with the distance of the illumination 

source (Figure 64).  
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Figure 62: Calibration and Paper 

 

 

Figure 63: (a) AE Clamping (b) LMD Head 

Calibration Paper 

Laser Head 



 

111 | P a g e  
 

 

Figure 64: Experimentation Setup 

The substrate plates are first washed with water, dried, and then degreased with acetone. 

After this the plates are pre-heated before deposition begins. Along with the plates the 

powder is also preheated by setting the hopper jack temperature to 40oC. 

Since post analysis is being carried out by a XCT and the materials used are Titanium and 

Stainless Steel the pieces need be to cut up to a thickness of 2.5 mm to allow for XCT to image 

the piece with sufficient accuracy.  

6.3. Discussion  

As shown in Figure 65 four types of experiments are carried out to provoke defects. The 

defect provocation methods utilized different factors found in the literature that may cause 

defects to occur. Contaminated powder uses the change in chemical composition and oxide 

layers around the powder particles. The EDM surface finish takes advantage of the additive 

oxide layer and uneven surface finish which causes lack of fusion defects. Machined 
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deformities take advantage of depositing over a machine groove upon which deposition is 

made. This causes lack of fusion on the sides of the deposit inside the groove. The last is the 

process parameters which are manipulated to provoke defects. Low powder feed rate and 

low laser power causes the powder to stay un-melted and causing the deposit too cool 

quickly causing pores to get trapped inside and cracks to develop. To find the ideal 

provocation parameters is not within the scope of this research and any conditions which 

may produce defects are utilized. 

 

Figure 65: Defect Provocation Experiments 

The experiment uses two AE sensors fixed onto the work piece on both side at known 

distance, so time of flight maybe used to calculate position of AE signal origin. In hindsight 

two sensors only take into consideration the horizontal distance and vertical distance from 

the deposits to the AE sensors is not measured. This may cause inaccuracies in calculating 

position however in the context of AE signal the position calculation is not important since 

other sensors cover for it. Thermal Camera and HS Camera are mounted on tripod and angled 

to view the deposition from a relatively safe distance. The distance of the cameras is based 

on whether the deposits are within FOV of the camera and are in Focus since a blurry image 

is not acceptable. This can be done by placing a paper with images of where the deposits will 

be laid down on the work piece. Using these images, the laser head is aligned and Camera 

angles, Camera distance, Camera focus and Illumination source distance is determined. 

Figure 66 shows the block upon which depositions were made. Notice that there are a few 

single-track deposits in Figure 66c.  This is because single track deposits do not yield sufficient 

defects and are also not practical since in real deposition applications layers are built over 

each other or at least with a certain % overlap in single layer coating applications. 
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Figure 66: Work Piece with deposits 

Figure 67 shows the deposited sample after they are cut up to be placed in the XCT machine 

to be scanned.  The samples must be as thin as possible for accurate images to be extracted 

in which defects can be distinguished. Cutting pieces to such a thin thickness specially with 

materials like titanium is the special cutting tools required and if they are cut too thin, they 

start bending due to the heat. A solution is to cut them at lower speed and with sufficient 

cooling liquid. Due to this issue sample deposits were cut in a manner so that two may stay 

connected and are differentiated from within XCT images.  

A valid discussion maybe why microscopic analysis was not carried out like other research 

since it provides a valid zoom scale and pixel to mm conversion is not required.  However, to 

be observed under the microscope the piece needs to be cut up and observed at certain 

interval of depths underneath the microscope. The grinding process may cause further 

defects or cracks to develop due to residual stresses. The depth to which the pieces are 

grinded must also be selected carefully since some defects may be grinded away during that 

process.  

a) 

b) 

c) d) 
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Figure 67: Samples cut to thickness
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Chapter 7: Data Analysis 
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This chapter discusses the details of the processing of the data collected from the 

experiments discussed in the previous chapter. The end goal of the data analysis chapter was 

to process the raw data and observe it in the Time Domain (Data w.r.t time) and Spatial 

domain (Data w.r.t the length of the deposit in the direction of deposition) using a custom 

data processing methodology as shown in Figure 68 to extract Events that will be used as 

inputs to the Clustering Algorithm. This is discussed in detail for each sensor and how each 

signal features from different sensors reveal about the defect that causes them.  

Data is observed in Time Domain to observe the signals for each sensor in relation to 

deposition time. To sync the time of all three sensors 2 types of clocks are used: The internal 

clock of the sensor and the universal clock of the Data Acquisition System (DAQ).   

Data observed in the Spatial Domain aims to see how data varies with the length of the 

deposit in the direction of the deposition. This can be calculated using machine parameters 

and the physical measurements of the sample itself. The machine parameters are the settings 

of the LMD machine and physical measurements are dimensions of the physical deposit 

taken using a Vernier Caliper. 

The position of the defects relative to the deposit length in the direction of the deposition is 

calculated using from the X-ray Computed Tomography (XCT) of the samples from these 

experiments. The Defect position can also be calculated in the Time Domain using machine 

parameters.  

The Defect data is stitched on to the processed Sensor data for each sensor. This stitched 

data allows for trends in the signals to be observed in relation to the defects in the Time and 

Spatial domain. Signal trends and features known as Events are then extracted from the 

Stitched Data and used in K means clustering analysis to identify Events with like features. 

The collective features for each cluster for each sensor are statistically analyzed and 

predicted feature value ranges are established with respect to clusters. The average of the 3 

sensor’s predicted ranges is considered as the overall predicted feature Range. The % 

Confidence of the predicted value are established based on their Euclidian distance from their 

respective cluster centers. A Confidence Score for Sensor is added together to give the overall 

% Confidence.      
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Figure 68: Data Processing and Event Extraction Method 

7.1. Data Processing 

Data the sensors is recorded in a raw format where the High-Speed Optical camera displays 

Gray Scale Images, the Thermal Camera outputs Thermal Images and the Acoustic Emission 

sensors output voltage signal in mV. All this data must be filtered and processed for it to be 

converted into a more useful format from which Events can be extracted which can be used 

as inputs for the clustering algorithm. There were multiple challenges that are faced when 

processing data for this PhD Thesis which include the Range of data types due to multiple 

sensors, loss of data during processing and the sheer amount of data due to high sampling 

rates for the sensors used. Table 16 contains the list of software used for data extraction and 

processing. 

# Software Operation 

1 MATLAB Feature calculations, extraction, and Raw 

processing 

2 MATLAB Signal Analyzer App AE feature extraction and data processing 

3 ImageJ  XCT, High Speed Optical and Thermal Image 

Processing 

4 NIT Visualization Software Thermal Data Processing and feature extraction 
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5 MATLAB Classification learner 

App 

Clustering Analysis and Data fusion algorithm 

Table 16: Software Used for Data Processing and Extraction 

7.1.1. Machine Parameters 

The machine parameters of the LMD (Laser Metal Deposition) deposition are not only 

essential in the scope of this PhD Thesis to provoke defects but also in the derivation of 

essential measurements and calculation of errors. Table 17 displays the machine parameters 

used in the 3 types of defect provocation experiments. 

Provocation Method 
Laser Power 

W 

Scanning 

Speed  

mm/s 

Nozzle 

Gas 

l/min 

Carrier 

Gas 

l/min 

Contaminated Powder 550 10 10 4 

Surface Finish 850 10 10 4 

Machined Deformities 850 10 10 4 

Table 17: Laser Metal Deposition Machine Parameters 

7.1.2. Physical Measurements 

The deposits are physically measured using an electronic Vernier Caliper with resolution of 

0.1mm and accuracy of ± 0.2𝑚𝑚. As shown in Figure 69 a single deposit is comprised of 3 

tracks with a 30% overlap. The length and width of each deposit is recorded for spatial 

calculations.  The width taken of the deposit is the average of 3 points along the length. The 

first measurement is taken at 20% of the length, the second at 50% of the length and the 

third at 80% of the length for all samples. An average of all three width measurements is 

taken and this width is used for further calculations. 
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Figure 69: (a) Deposited tracks (b) Measurements Diagram 

7.1.3. X-Ray Computed Tomography (XCT) Data Analysis 

As shown in Figure 70 (a) the sample to be tested is placed on a rotary stage and is rotated 

through a fixed angle step. At each Step, X-Rays are passed through the sample which are 

then caught at a Detector plate behind the sample also called the Matrix Detector. The Matrix 

Detector records these patterns as 2D radiographs. Using a reconstruction algorithm 

(Commonly known as filtered back-projection) the 2D radiographs are utilized to create a 3D 

data set consisting of horizontal reconstructed tomographic slices stacked together along the 

z axis in grey scale value as shown in Figure 70 (b). The XCT was carried out at the AMRL lab 

at the University of Strathclyde using a Nikon XT H 225 LC X-ray computed tomography 

system fitted with a Debeb CT 10kN cell. The XCT machine parameters used to carry out the 

XCT on the samples are given in Table 18.     

L 

W 

(a) (b) 

30% Overlap 
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Figure 70: (a) XCT Imaging method (Kastner J., 2018) (b) XCT Image Slice 

Photon Energy 

(KV) 

Exposure 

Time (S) 

Image 

Resolution(pixels) 

Voxel Size 

(mm) 

 Angular Step 

(Deg) 

140KV 1415.00 2000x2000 0.00805779 0.1145882 

Table 18: XCT Machine Parameters 

7.1.3.1. Detected Defect Types 

The defects identified in the XCT data slices are based on the Literature reviewed in Chapter 

1. Even though many types of defects can be identified and classified as described in (ISO 

13919-2, 2001), for the sake of simplicity in the scope of this research defects are classified 

as 3 types as shown in  

Table 19. 

Defect Group Criteria  Description Measured Features 

Pores 

(Figure 71 

(a)) 

1. Must be spherical. 

2. Diameter must be 

significantly 

greater than voxel 

size(0.008mm) 

All gas and lack of 

fusion pores are 

considered as pores. 

1. Diameter  

2. Projected Area 

Crack 

(Figure 71 

(b)) 

Identified based on EN 

ISO 13919-2 

Standards criteria for 

cracks. 

Defects that are 

shaped lines and have 

an area of less than 

1mm2 . 

1. Avg Length  

2. Avg Height 

3. Projected Area 

Other 

Defects 

(Figure 71 

(c)) 

Voids, Crater Cracks, 

Shrinkage Cavity etc. 

All other defects that 

do not come under 

the classification of 

Cracks of Pores are to 

1. Avg Height  

2. Avg Width 

3. Projected Area 

(a) (b) 
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be considered in this 

group. 

 

Table 19: Defect Classification Criterion 

 

Figure 71: (a) Pores Identified in XCT Images (b) Cracks in XCT Images (c) Other Defects in 

XCT Images 

Some of the Interesting facts determined by the research is defect propagation or how one 

defect begets other defects. The Literature in Chapter 1 does elaborate the study of crack 

propagation, but it does not mention 2 other phenomena observed in the XCT data; 1. Cracks 

can cause other pores (Figure 72 (a)), 2. Pores can cause other pores (Figure 72 (b)). 

 

(a) 

(b) 

(c) 
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Figure 72: a) Cracks causing Pores b) Pores causing other pores 

The following are the steps taken for the quantification of the defects and their features: 

1. Feature Recognition: As shown in Figure 73 (a) the Sobel edge detection method is 

applied to the entire image sequence to outline features. This outlines all the defects 

and allows for defect types to be identified and measured. 

 

Figure 73: a) Edge Detection for feature recognition b) Deposit width measurement 

(a) 

(b) 

(a) 

(b) 
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2. Identify Depth of each XCT Image Slice (Frame): Manually Identify from the Images 

where the deposit starts and where it ends. Record the number of frames of the 

deposit and use the physical measurement of the deposit to calculate the depth of 

each frame in mm using the following equations: 

𝐹𝑇 = 𝐹𝐸 − 𝐹𝑆 

 (Equation 6: Total Length 
of the Deposition in 

frames) 
 

 

𝐷𝐹 =
𝑙

𝐹𝑇
 

 

 (Equation 7: Depth each 
frame represents in mm) 

 
 

𝐹𝑇 = 𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑟𝑎𝑚𝑒𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐿𝑒𝑛𝑔𝑡ℎ 

𝐹𝑆 = 𝐹𝑟𝑎𝑚𝑒 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 𝑠𝑡𝑎𝑟𝑡𝑠 

𝐹𝐸 = 𝐹𝑟𝑎𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 𝑒𝑛𝑑𝑠 

𝐷𝐹 = 𝐷𝑒𝑝𝑡ℎ 𝑝𝑒𝑟 𝑓𝑟𝑎𝑚𝑒 𝑖𝑛 𝑚𝑚 

𝑙 = 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑙𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 𝑖𝑛 𝑚𝑚 

3. Establish measurement scale: Defect features are measured from the XCT images, 

and their measurements are made in Pixels. To convert this to mm the measurement 

scale is calibrated using the physical measurement of the avg width of that deposit. 

As shown in Figure 73 (b) the width measured in pixels along with the physically 

measured width are used to calculate the length each pixel measures in mm.   

 

4. Identify all classifiable defects: All defects are identified based on the criterion 

mentioned in Table 19 and sorted into groups. 

5. Measure Features: Measure features for all identified defects are based on the 

criteria mentioned in Table 19  from the processed XCT images.  

6. Position of Defects w.r.t to deposition length: For each defect, the frame at which 

the defect first appears (Fs) and the frame at which it disappears (FE) is recorded.  The 

origin point of this defect is considered the median frame (Fm) in between Fs and FE . 

Using 𝐷𝐹 from (Equation 7 the length at which the defects origin lies with respect to 
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the deposition length can be calculated. This length can be observed in Figure 75 as 

Lo. A fundamental assumption in this calculation is that the epicenter of all defects 

are their center points. This however may be true for most defects but in the cases 

of cracks this may not be true.  

 

Figure 74: a) Laser On Images b) Laser Off Images 

 

Figure 75: Defect Origin with respect to deposition length 

7. Calculate Defect position in time domain: To calculate when the defect must have 

occurred during the deposition cycle the position of the defects are used along with 

the Laser On and Laser Off times detected using the High Speed Camera sensor and 

the Laser Scanning speed of the Laser Metal Deposition Machine mentioned in Table 

17.    

a. Total Laser On Time: The Laser on and off time can best be identified from 

HS (High Speed) optical images as shown in Figure 74. When the laser is on 

it causes a circular dark ring feature to appear around the deposit and when 

(a) 

(b) 

Direction Of Deposition 
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the laser is turned off this ring feature disappears. (Equation 8 shows the 

calculation for total laser on time. 

b. Defect Time w.r.t Total Deposition time: Using defect position, the time at 

which the defect appear during the deposition can be calculated using 

(Equation 9. 

𝐹𝑇𝑜𝑡𝑎𝑙 𝑂𝑛 = 𝐹𝑂𝐹𝐹 − 𝐹𝑂𝑁 

 

(Equation 8: Total Laser 

On Frames) 

 

 𝑇𝑒 𝑂𝑛 =
𝐹𝑇𝑜𝑡𝑎𝑙 𝑂𝑛

𝐻𝑆𝐹𝑃𝑆
  

(Equation 9: 

Experimentally calculated 

Total Laser On Time) 

 

𝐹𝑇𝑜𝑡𝑎𝑙 𝑂𝑛 = 𝑇𝑜𝑡𝑎𝑙 𝐹𝑟𝑎𝑚𝑒𝑠 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑙𝑎𝑠𝑒𝑟 𝑖𝑠 𝑜𝑛 

𝐹𝑂𝐹𝐹 = 𝐹𝑟𝑎𝑚𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑙𝑎𝑠𝑒𝑟 𝑡𝑢𝑟𝑛𝑠 𝑜𝑓𝑓 

𝐹𝑂𝑁 = 𝐹𝑟𝑎𝑚𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑙𝑎𝑠𝑒𝑟 𝑡𝑢𝑟𝑛𝑠 𝑜𝑛 

𝑇𝑒𝑂𝑁 = 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝐿𝑎𝑠𝑒𝑟 𝑖𝑠 𝑜𝑛 

𝐻𝑆𝐹𝑃𝑆 = 𝐻𝑖𝑔ℎ 𝑆𝑝𝑒𝑒𝑑 𝑂𝑝𝑡𝑖𝑐𝑎𝑙 𝑆𝑒𝑛𝑠𝑜𝑟 𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒 

𝑇𝑐𝑂𝑛 =
𝑙

𝑉𝑙
  

(Equation 10: Total Deposition 

Time) 

 

𝑇𝑐𝑂𝑁 = 𝑇𝑜𝑡𝑎𝑙 𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 

𝑉𝑙 = 𝐿𝑎𝑠𝑒𝑟 𝑇𝑟𝑎𝑣𝑒𝑙 𝑆𝑝𝑒𝑒𝑑 

𝑙 = 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑙𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 𝑖𝑛 𝑚𝑚 

 

 

 

𝐸 = 𝑇𝑐𝑂𝑁 − 𝑇𝑒𝑂𝑁 
 (Equation 11: Error between 

Laser On Time Calculated 
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from HS Frames and Laser 

On Time calculated from 

Laser Scan Speed) 

𝐸 = 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 𝑖𝑛 𝑇𝑖𝑚𝑒 

𝐷𝑡 =
𝐷𝑝 × 𝑇𝑒𝑂𝑁

𝑙
 

 (Equation 12: Defect 

Position in Time Domain) 

 

𝐷𝑝 = 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝐷𝑒𝑓𝑒𝑐𝑡 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑚𝑚 

𝐷𝑡 = 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐷𝑒𝑓𝑒𝑐𝑡 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑡𝑜 𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑠 

𝑇𝑒𝑂𝑁 = 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝐿𝑎𝑠𝑒𝑟 𝑖𝑠 𝑜𝑛 

𝑙 = 𝑃ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑙𝑦 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 𝑖𝑛 𝑚𝑚 

Figure 76 show the Defect Size vs Defect Position relative to the deposit in the direction of 

the deposition while Figure 77 shows The Defect Size vs time during the deposition when 

they were generated. The graphs allow for further extraction of two more important bits of 

information; a). How closely these defects are packed together over a specific length; b). The 

type of defects along with the time at which they were generated during the deposition. 

These later become important when the signal data is overlayed on to these graphs to 

correlate what the effect of the above-mentioned parameters have on the signal data. 

 

Figure 76: Defect Type and Size Spatial Domain 
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Figure 77: Defect Size and Type in Time Domain 

Table 20 shows some of the basic statistics of the types of defects found in the samples for 

all 3 defect provocation methods. This also might give an insight on the effect provocation 

techniques have on the Size of the defects. Largest Pore and Crack are seen with provocation 

technique of Surface Finish. The most consistency in the size of Pores can be found in Con-

taminated Powder provocation technique and for cracks it would be Machined Deformities 

technique. All techniques utilized to provoke defects agree with the literature and were suc-

cessful at creating sufficient amounts and variety of defects.  

Provocation 

Method 
Stats 

Contaminated 

Powder (mm) 

Surface Finish 

(mm) 

Machined 

Deformities 

(mm) 

Pores 

Average 0.009866 0.025283 0.011927 

Max 0.045239 0.693978 0.237583 

Min 0.001257 0.000314 0.000127 

StdDev 0.009866 0.025283 0.034464 

 

Cracks Average 0.0091 0.008183 0.006138 
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Max 0.0152 0.0189 0.008526 

Min 0.0044 0.003225 0.003525 

StdDev 0.0091 0.008183 0.002066 

 

Other 

Average 0.150674 0.02279 0.143398 

Max 0.150674 0.056019 0.7462 

Min 0.150674 0.004761 0.004428 

StdDev 0.150674 0.02279 0.297043 

Table 20: Defect Size Statistic 
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7.1.4. High Speed Optical Sensor Data Processing & Feature Extraction 

High Speed Data Images were captured 256 by 256 in 8-bit gray scale images. These images 

capture the light intensity from the melt pool in other words it captures the Incandescence 

of the melt pool. As the temperature of the of the melt pool increases its spectral radiance 

also increases. The value of each pixel is linearly related to the intensity of light received by 

the sensor (Barua & Frank Liou, 2014). When a defect is created it changes the thermal 

conductivity at the point due to which heat dissipation is disturbed hence increasing the 

temperature and radiation at that point. By the image sensor this is registered as a single or 

group of high intensity cluster of pixels as shown in Figure 78. 

 

Figure 78: a) Stable Melt pool b) Segregated Small Events c) Big Event. 

From the HS image data, two types of phenomena are observed; groups of merged high 

intensity pixels (Figure 78 (c)) and then groups of segregated high intensity pixels (Figure 78 

(b)) are observed which pop up from time to time. In the scope of this research these will be 

called Events. The generation of these Events can often be seen when powder particles are 

absorbed into the melt pool (Figure 79 (a)) or when a powder particle is rejected from the 

melt pool (Figure 79 (b)). It is also seen that smaller events can merge or grow into bigger 

events (Figure 78 (c)). Sometimes powder particles are absorbed into the melt pool without 

causing an event; This is called a clean fuse (Figure 79 (c)). It should also be mentioned some 

of the high intensity reflection received from the melt pool at the start of the deposition is 

due to the angle between the melt pool and the Optical sensor itself. At times of light 

(a) (b) 

(c) 
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captured by the image is also due directional emittance phenomenon mentioned by (Robert 

Sampson, 2020). 

 

Figure 79: a) Powder Impact Event, b) Powder Particle Rejection, c) Powder Particle Clean 

Fuse  

The following are the methods used to process these images into useful data: 

1. Thresholding: To extract useful data from these images a threshold value for stable 

melt pool must be first established. This can be done by extracting stable melt pool 

images ( Figure 78 (a)) from the entire sample and taking its maximum value for each 

sample and then taking the avg of that set. A stable melt pool in the context of the 

HS Optical Images of the melt pool is an image with no high intensity pixels or pixel 

groups. Since this is an 8-bit image each pixel can represent an intensity from 0 -255. 

The threshold of each sample is usually the same (102).    

2. Z projection: Melt pool images are overlayed for each track using a method called Z 

projection. Since the objective is to only find the high intensity pixels and specially at 

points on the image where high Intensity pixels re-appear, the Summation method 

of Z projection is implemented as shown in Figure 80 (a). 

(a) 

(b) (c) 
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3. Angle Correction: The deposition is at a certain angle to the Optical Sensor. To profile 

the Z projected image correctly, the image must be made parallel to the viewing 

plane as shown in Figure 80 b. 

4. Sharpening Filter: A Sharpening Filter is then applied to the image (Figure 80 c) so 

that regions with high intensity pixels are highlighted further. This filter uses a 3 by 3 

spatial convolutions where each pixel is replaced by a weighted average of its 

neighbors within this spatial matrix. (Equation 13 shows the 3x3 Weighing factors for 

the sharpening filter. 

−1 −1 −1
−1 12 −1
−1 −1 −1

 

 

 (Equation 13: Weighted 
Average Coefficient 

Matrix) 
 

 

5. ROI Isolation: A ROI (Region of Interest) is established around the deposit to isolate 

the track from the environment as shown in Figure 80 d.   

 

Figure 80: a) Z Projection b) Angle Correction c) Image Sharpening d) ROI 

6. Set Spatial Scale: To convert from measurements from pixels to mm the measured 

physical length of the deposit is used to set the scale to convert measurement from 

pixels to mm. 

7. Surface Profile: A 3D surface plot is generated (Figure 81 (a)) which enables the 

visualization of the high intensity pockets along the length and width of the deposit. 

This further reinforces the hypothesis that high intensity areas only form around 

defected regions.  

8. Profile Plot:  For the simplification of data processing since the end goal is data fu-

sion, a profile plot is generated (Figure 81 (b)) which basically averages each column 

(a) (b) (c) (d) 

ROI 
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in the width direction in the ROI. This does however introduce the probability of los-

ing data of isolate single events. 

 

Figure 81: a) 3D Surface Intensity Plot b) 2D Intensity Profile Plot  

The profile graph for each track is then overlayed on the same graph as defect size in both 

time (Figure 83) and spatial domain (Figure 82). This will now allow for the extraction of use-

ful data in relation to the defects which will be called Events which will serve as input for the 

clustering algorithm. The intensity values considered are the ones above the set threshold 

value. Table 21 shows the features extracted from the graphs above for every 2mm of depo-

sition length. 

 

(a) 

(b) 

Threshold 
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Figure 82: HS data stitched onto Defect data in Spatial Domain 

 

Figure 83: HS Data stitched on to Defect data in Time Domain 

 Feature Explanation Extraction Source 

1 Max 

Intensity 

Over 2mm of deposition length the max 

Intensity observed. 
Spatial Domain 

2 
Intensity 

Spike 

Frequency  

Over 2mm, the frequency of Intensity spike is 

observed. An intensity spike here is defined as 

a change in intensity whose total duration is 

less than 0.05s. 

Time Domain 

3 Total 

Number of 

pores  

Total number of Pores within this 2 mm of 

length 
Spatial Domain 
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4 Total 

Number of 

cracks 

Total number of Cracks within this 2 mm of 

length 
Spatial Domain 

5 Total 

Defected 

Area 

The sum of projected area of all the defects 

within this area.  
Spatial Domain 

6 Max Defect 

Size 

Max size of defect detected within in this 

area. 
Spatial Domain 

7 
Defect 

Spatial 

Density 

This is the measure of how closely packed the 

defects are to each other within this area. This 

is the variance of the defect position within 

the area and is hence a dimensionless value. 

Spatial Domain 

Table 21: HS Data Event Feature Extraction 
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7.1.5. Thermal Sensor Data Processing & Feature Extraction 

The thermal camera captures 8 Bit, 128 x 128 Thermal Intensity images at 1000 Frames per 

second as shown in Figure 84 a. As explained by (Barua & Frank Liou, 2014) and (Ulf Hassler, 

2016) in thermal cameras the cooling rates and intensity are affected in regions where 

defects are formed. Since the thermal camera picks up IR and the thermal conductivity is 

disturbed when a defect is generated the temperature fluctuations in this region increases 

along with how quickly and uniformly the melt pool cools.  

 

Figure 84: a) Raw Thermal Image b) Raw Thermal Profile 

In the following are the steps taken to convert the thermal Data Images into useful data from 

which signal features can be extracted: 

Calculate Thermal Data points in Spatial Domain: In this specific case the thermal data is 

time stamped by two sources; The DAQ Universal Time stamp and the calculated time stamp 

stitched into the Thermal Data Image Frames.  

Identifying Track Specific Data: Thermal data captures a continuous data during the 

deposition of all 3 tracks as shown in Figure 84 b. The thermal Intensities observed during 

the deposition can be clearly distinguished from the track is not being deposited since the 

values cross a threshold value. At the average threshold value in all samples and tracks is 

58.94. Thermal data for each track is extracted based on when the min threshold was crossed 

and when the amplitude falls back below the threshold. This threshold value is to isolate 

thermal intensities for a single track during the deposition of multiple tracks and is not to be 

confused with the thresholding value to extract events. 

Track Deposition Time: Total Data Frames for each track can be established using (Equation 

14 were the frame in which the amplitude drops below threshold is subtracted by the start 

frame at which the threshold amplitude was crossed. Using the cameras Hardware sampling 
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frame rate, the collective total time for the deposition of the track is calculated as shown in 

(Equation 15.   

𝑇𝐹𝑇𝑜𝑡𝑎𝑙 = 𝑇𝐹𝐸𝑛𝑑 − 𝑇𝐹𝑆𝑡𝑎𝑟𝑡 

 (Equation 14: Total 

Frames for the 

deposition of a single 

track) 

 

𝑇𝐹𝑆𝑡𝑎𝑟𝑡 = 𝐹𝑟𝑎𝑚𝑒 𝑎𝑡𝑤ℎ𝑖𝑐ℎ 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑓𝑖𝑟𝑠𝑡 𝑐𝑟𝑜𝑠𝑠𝑒𝑠 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝑇𝐹𝐸𝑛𝑑 = 𝐹𝑟𝑎𝑚𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑓𝑎𝑙𝑙𝑠 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

𝑇𝐹𝑇𝑜𝑡𝑎𝑙 = 𝑇𝑜𝑡𝑎𝑙 𝑓𝑟𝑎𝑚𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑟𝑎𝑐𝑘 

𝑇𝑡𝑇𝑜𝑡𝑎𝑙 =
𝑇𝐹𝑇𝑜𝑡𝑎𝑙

𝑇𝐹𝑃𝑆
  

(Equation 15: Total 

Deposition time for a 

single Track) 

 

𝑇𝑡𝑇𝑜𝑡𝑎𝑙 = 𝑇𝑜𝑡𝑎𝑙 𝑇𝑖𝑚𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑟𝑎𝑐𝑘 

𝑇𝐹𝑃𝑆 = 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐶𝑎𝑚𝑒𝑟𝑎 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 

Thermal Data in spatial domain: The Thermal Data points are converted into spatial domain 

i.e., position of data points along the deposition length by using the physically measured 

length.  The thermal data points are interpolated over the entire physically measured length 

of the deposit. This can however reduce the accuracy of thermal data point in the Spatial 

Domain, but it is better than the method used in HS data processing where Data Images are 

used to determine deposition length. The reason the former method being more accurate is 

because the thermal image captures ambient temperatures of the region around the track 

as well as shown in Figure 84 a. Hence it becomes near impossible to distinguish temperature 

regions that lie within the boundaries of the track itself as a result this will skew any spatial 

measurement taken from the Thermal Data Image.   

This data is then overlayed on to the defect data to stich the two data sets together in Time 

(Figure 86)and Spatial domain (Figure 87). Using this stitched data, certain anomalous trends 

can be identified, and key features are extracted from these Events.  
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From the thermal data it is known from Figure 86 that in the defected regions the cooling 

rates and temperature amplitude rise very quickly. It is also observed that in non-defected 

depositions temperatures are relatively stable as shown in Figure 85. Hence for the thermal 

data set, the sudden change in amplitude greater than 103 Thermal Intesity/s  followed by 

a dip in temperature gradient is considered an event and the Table 22 shows the features 

extracted for each event. 

 

Figure 85: Raw Data for a defect free deposition Track 

 

Figure 86: Thermal Data in Time Domain  
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Figure 87: Thermal Data in Spatial Domain 

 

# Feature Explanation 
Extraction 

Source 

1 Length  This is length in mm of this event with respect to 

the length of deposition Track.  

Spatial 

Domain 

2 Duration  This is the time the event crosses threshold and 

falls back below it.  

Time Domain 

3 Rise Time The time it takes for the event to reach max 

amplitude 

Time Domain 

4 Fall Time Time taken for the event to drop down below 

threshold from max amplitude 

Time Domain 

5 Heating Rate The thermal gradient of the part of the event to 

reach max amplitude  

Time Domain 

6 Cooling Rate The Thermal gradient of the part for the event to 

reach min amplitude 

Time Domain 

7 Peak Amplitude Maximum amplitude of this event Time Domain 

8 Avg Amplitude Average amplitude of the entire event Time Domain 

9 Standard 

Deviation  

This determines the variation of temperature in 

the event around its avg temperature. 

Time Domain 
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3 Total Number 

of pores  

Total number of Pores within this event Time Domain 

4 Total Number 

of cracks 

Total number of Cracks within this event Time Domain 

5 Total Defected 

Area 

The sum of projected area of all the defects within 

this area of this event  

Time Domain 

6 Max Defect Size Max size of defect detected within in this area. Time Domain 

7 Defect Spatial 

Density 

This is the measure of how closely packed the 

defects are to each other within this area. This is 

the variance of the defect position within the area 

and is hence a dimensionless value. 

Spatial 

Domain 

Table 22: Thermal Data Event Feature Extraction 

An interesting observation in Figure 88 in the data for Track 3, a large defect spike is seen 

corresponding to large defect of an area of more than 0.15mm2.  This increases the time it 

takes for the sample to cool down.  

 

Figure 88: Cooling rates being affected due to large defect

T1 

T2 

T3 

Large Defect 



 

140 | P a g e  
 

7.1.6. Acoustic Emission Sensor Data Processing & Feature Extraction 

The AE sensors pick up Acoustic signals during the changing of the material in form of bursts 

and continuous signals. The data received lies within the range of 100Khz to 1Mhz and the 

system is looking for “Events” as shown in Figure 90. An event is a signal whose amplitude 

crosses threshold amplitude and returns to near zero after a certain duration.  

Before processing AE signals, it is important to differentiate machine and powder noises. 

Figure 89 show the FFTs (Fast Fourier Transform) and Spectrograms for the Machine only 

deposition run (Figure 89 (a)), Powder only Figure 89(b) deposition run and Raw data 

collected during the deposition for a Sample run of defected sample Figure 89(c). The 

objective of the Machine only test was to record the AE data when the motor and arm is 

turned on and the data for the Powder only Test is to record the AE Data for the when the 

powder is jetted on to the substrate. From the FFT graphs it can be concluded that an actual 

deposition creates a significantly higher number of Event signals with high power specially 

between the frequencies of 100Khz - 200Khz and 600 Khz -850 Khz.  Therefore, the Powder 

and Machine test between these frequencies ranges exhibits a lot less activity compared to 

the data collected during the defected sample deposition run as shown in Figure 89 (c) in the 

frequency domain.  From the spectrograms in Figure 89 it can be observed that at the above-

mentioned frequencies that the maximum power and average power of the signal is also 

higher for the defected sample deposition run compared to the Powder and Machine Test as 

shown in Table 23. 

Deposition Run 
100 to 

200Khz 
 600Khz- 850Khz  

 Max 

Power(dB) 

Avg Power(dB) Max Power (dB) Avg Power(dB) 

Machine Test 6 1.26 -1.8 -4.1 

Powder Test 7 8.9 -1.1 -3.6 

Deposition Test 8.1 11.23 -0.1 -2.06 

Table 23: Frequency and Power Comparison 
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Figure 89: a) Machine Only AE FFT and Spectrogram b) Powder only AE FFT and 

Spectrogram c) Track Deposition AE FFT and Spectrogram 

The following are the steps taken to condition the data: 

1. Data Offset: Raw Data offset is calculated for each sensor so that the no zero value 

for both AE sensors is the same. 

2. Bandpass Filtering: The data is subjected to a digital Bandpass filter from 100Khz to 

1Mhz to remove any other noise that might have creeped into the signal. Even 

though as per (Gaja & Liou, 2017) the signal noise in AE is much lower than the event 

a) 

b) 

c) 
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signals themselves, this step is to make sure noises of another nature do not creep 

into the signal.  

3.  Moving Mean: Even though this may cause some data loss in the signal it makes it 

easier for data to be extracted from the signal itself. 

4. Fast Fourier Transform: FFT is applied to the signal for observation in the Frequency 

domain. 

5. Spectrogram: A spectrogram is derived to observe the signal Time-Frequency 

domain i.e. observe the Signal Frequencies in relation to time.   

Since the AE sensor is continuously picking up data, the points at which the deposition starts 

and the points at which the material has cooled down to temperatures lower than 100 Deg 

C need to be identified. This is because according to (Fujun Wang, 2008) it is known that 

majority of defects develop and propagate above 200 Deg C hence the AE monitoring should 

stop for temperatures lower than that.  This can be determined by the start and stop frame 

of each thermal Data for each track. The important thing here is to sync the acoustic emission 

time and thermal data times first using the DAQ Universal Clock. Using (Equation 16 the lag 

between the time at which the thermal camera starts recording and the time at which the 

AE sensor starts recording is calculated. After this the time at which the deposition of a single 

track starts and ends can be calculated using the start and stop frames obtained from the 

thermal data using (Equation 17 and  

(Equation 18. Now the time delay between the two sensors is added to sync their times 

((Equation 19 and  

(Equation 20).    

𝑡𝑠𝑦𝑛𝑐 = 𝑡𝑇𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝐷𝑎𝑞 − 𝑡𝐴𝑈𝑛𝑖𝑣𝑠𝑒𝑠𝑎𝑙 𝐷𝑎𝑞 

 

 (Equation 16: 

Thermal and 

Acoustic signal 

Time Difference) 

 

𝑡𝑇𝑠𝑡𝑎𝑟𝑡 =
𝑇𝐹𝑆𝑡𝑎𝑟𝑡

𝑇𝐹𝑃𝑆
 

 (Equation 17: Time at 

which deposition Starts) 
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𝑡𝑇𝑒𝑛𝑑 =
𝑇𝐹𝑒𝑛𝑑

𝑇𝐹𝑃𝑆
 

(Equation 18: Time at 

which deposition Ends) 

 

𝑡𝐴𝑠𝑡𝑎𝑟𝑡 = 𝑡𝑇𝑠𝑡𝑎𝑟𝑡 + 𝑡𝑠𝑦𝑛𝑐 

 (Equation 19: Time 

Synced Deposition Start 

time) 

𝑡𝐴𝑒𝑛𝑑 = 𝑡𝑇𝑒𝑛𝑑 + 𝑡𝑠𝑦𝑛𝑐 

  

(Equation 20: Time Synced 

Deposition End time) 

 

𝑡𝑇𝑠𝑡𝑎𝑟𝑡 = 𝑇𝑖𝑚𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑟𝑎𝑐𝑘 𝑠𝑡𝑎𝑟𝑡𝑠   

𝑇𝐹𝑠𝑡𝑎𝑟𝑡 = 𝐹𝑟𝑎𝑚𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑟𝑎𝑐𝑘 𝑠𝑡𝑎𝑟𝑡𝑠 

𝑇𝐹𝑃𝑆 = 𝐹𝑟𝑎𝑚𝑒𝑟𝑎𝑡𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑆𝑒𝑛𝑠𝑜𝑟 

𝑡𝑇𝑒𝑛𝑑 = 𝑇𝑖𝑚𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎 𝑠𝑖𝑛𝑔𝑙𝑒 𝑡𝑟𝑎𝑐𝑘 𝑒𝑛𝑑𝑠 

𝑡𝑠𝑦𝑛𝑐

= 𝑇ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐶𝑎𝑚𝑒𝑟𝑎 𝑙𝑎𝑔𝑠 𝑏𝑒ℎ𝑖𝑛𝑑 𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝐶𝑎𝑚𝑒𝑟𝑎  

𝑡𝑇𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝐷𝑎𝑞

= 𝑇𝑖𝑚𝑒 𝑆𝑡𝑎𝑚𝑝 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑤ℎ𝑒𝑛 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐶𝑎𝑚𝑒𝑟𝑎 𝑆𝑒𝑛𝑠𝑜𝑟 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 

𝑡𝐴𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝐷𝑎𝑞

= 𝑇𝑖𝑚𝑒 𝑆𝑡𝑎𝑚𝑝 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 𝑤ℎ𝑒𝑛 𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑆𝑒𝑛𝑠𝑜𝑟 𝑑𝑎𝑡𝑎 𝑖𝑠 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑 

Data between the 𝑡𝐴𝑠𝑡𝑎𝑟𝑡   and 𝑡𝐴𝑒𝑛𝑑 for each track is Isolated from the continuous AE data 

for further data extraction. After this a threshold is identified for each sensor using the Hsu-

Nielsen source which also known as pencil lead break method (Ramin Madarshahian, 2019). 

From the AE data for each deposition track, Events are identified as shown in Figure 90. These 

events can be identified by isolating signal envelopes that cross the determined threshold 

values (25). By analyzing the isolated signals in Time Domain and Frequency domain (Figure 

91) use full features are extracted for each event as shown in Table 24. 
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Figure 90: a) AE Event Features b) AE Events 

 Feature Explanation Extraction Source 

1 Amplitude The maximum amplitude of the Event. This 

is picked up from raw data to avoid data 

loss. 

Time Domain 

2 Rise Time The time taken for the amplitude to rise to 

Max amplitude from when it first crossed 

the threshold value 

Time Domain 

3 Ring Counts After the threshold has been crossed the 

number of times the signal crosses the 

threshold until falling below it once again 

Time Domain 

a) 

b) 
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4 Energy Time taken for the event to drop down 

below threshold from max amplitude 

Time Domain 

5 Duration It is the total time the signal stays above 

the threshold value after it crosses it for 

the first time. 

Time Domain 

7 Position of Source Using 1D Time of flight(TOA) analysis from 

both sensors the position can be 

calculated.  

Time Domain 

6 Max Frequency 

band Amplitudes  

This is the Max amplitude of the 

frequencies (per 100Khz) within that 

signal. This is determined using the 

Spectrogram and FFT analysis. 

Frequency and 

Frequency Time 

Domain. 

Table 24: AE event Feature Extraction 

 

Figure 91: Signal Event Analysis 

As per Mohamed (Shehadeh, 2006) and (Kaphle, 2012) the position of the source of the AE 

wave can be calculated using multiple sensors. In Truss like or cylindrical structures or 

structures whose length is significantly shorter than their width, 1 D Time of Flight method 

can be used to locate the position of the source. Since the objective is to determine the 

Event 

Power at that Frequency Event 

Frequency Spectrum for 

that event 
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defects along the length of the deposit, this method is sufficient for this research as shown 

in Figure 92(a). (Equation 21 is used to calculate the position of each defect using the data of 

the of two features. 

𝐿1 = 𝑐. 𝑇1  

(Equation 21: AE Source 

Position using TOA 

method.) 

𝐿2 = 𝑐. 𝑇2  

𝐿1 − 𝐿2 = 𝑐. (𝑇1 − 𝑇2) = −𝑐∆𝑡  

𝐿1 + 𝐿2 = 𝐷  

𝐿1 =
1

2
(𝐷 − ∆𝑡. 𝑐) 

 

𝐿1 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑜 𝑠𝑒𝑛𝑠𝑜𝑟 𝑡ℎ𝑎𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑓𝑖𝑟𝑠𝑡 

𝐿2 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑡𝑜 𝑠𝑒𝑛𝑠𝑜𝑟 𝑡ℎ𝑎𝑡 𝑠𝑖𝑔𝑛𝑎𝑙 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑠𝑒𝑐𝑜𝑛𝑑 

D = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 

𝑐 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑠𝑜𝑢𝑛𝑑 𝑖𝑛 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝑇1 = 𝑇𝑖𝑚𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑜𝑟 𝑡ℎ𝑎𝑡 𝑟𝑒𝑐𝑖𝑣𝑒𝑠 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 𝑓𝑖𝑟𝑠𝑡  

𝑇1 = 𝑇𝑖𝑚𝑒 𝑎𝑡 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 𝑟𝑒𝑎𝑐ℎ𝑒𝑠 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑜𝑟 𝑡ℎ𝑎𝑡 𝑟𝑒𝑐𝑖𝑣𝑒𝑠 𝑡ℎ𝑒 𝑠𝑖𝑔𝑛𝑎𝑙 𝑠𝑒𝑐𝑜𝑛𝑑 

∆𝑡 = 𝑇𝑖𝑚𝑒 𝑑𝑖𝑓𝑓𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑡𝑤𝑜 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 𝑟𝑒𝑐𝑖𝑣𝑒 𝑡ℎ𝑒𝑖𝑟 𝑠𝑖𝑔𝑛𝑎𝑙𝑠 
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Figure 92: AE Source Position Calculation 

The final step is to calculate the position of the defect relative to length of the deposition 

which can be achieved using (Equation 22. All deposits are laid from Left to Right as shown 

on Figure 92 (b). 

𝐿𝐷 = 𝐿1 − 𝑋2 

 

 (Equation 22: AE Source 

Position along the length of 

deposition) 

𝐿𝐷 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 𝑡𝑜 𝑡ℎ𝑒 𝐷𝑒𝑓𝑒𝑐𝑡  

𝑋2 = 𝑙𝑒𝑛𝑔𝑡ℎ 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑜𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑡𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 

Figure 93 shows the AE data for each track stitched on to the defect position with respect to 

time. It can be observed that the main events occur around the area where defects are 

densely populated, and the amplitude of the defects agrees with the defect sizes. 
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Figure 93: AE Data stitched onto Defect Data in Time Domain 

It is important to mention the AE Data when stitched on to defect data it was out of sync and 

was manually adjusted 0.1s which also means the data for the first 0.1s of the deposition is 

lost. The time domain AE graph shows that the amplitude of the event varies with the size of 

the defects and there is peak at the point of the defect. This could also mean that the rise to 

max amplitude could be considered a precursor to a defect being formed.  

Figure 94 shows AE event source positions stitched onto defect data in the spatial domain. 

Some event sources seem to be within 0.5 mm of the areas with densely populated defects 

or some large defects, but some data points calculated originate from outside the deposition. 

This inaccuracy might be caused by the 1D TOA methodology or due to AE wave type or due 

to AE signal attenuation explained by (Shehadeh, 2006). 

 

Figure 94: AE Sources Stitched onto Defect Data in Spatial Domain 

It is also important to be mentioned here that sometimes one sensor might cross the 

threshold and the other might not. In this case due to the uncertainty of the source of the 

signal, this signal is not considered as an event.
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7.2. Machine Learning 

After Events are extracted from the stitched data, the data is prepared to be fed as input into 

an unsupervised learning algorithm called K means clustering as training data. The 

conclusions drawn from the Clustering Analysis will form the bases for the defect detection 

algorithm which can be seen in Figure 95 along with procedure that leads up to it. 

 

Figure 95: Machine Learning Procedure 

7.2.1. Scaling Data 

Since the objective is to cluster multiple variables with different ranges which at times can 

be drastically different from each other, the data set needs to be normalized. This is mainly 

since K-Means clustering algorithm utilizes the calculation of distances and if ranges are not 

the same, some variables might influence the results more than others. In this case z scaling 

is used for the normalization method which is governed by (Equation 23. 

𝑍𝑠𝑐𝑜𝑟𝑒 =
𝑉𝑎𝑙𝑢𝑒 − 𝜇

𝜎
 

 (Equation 23: Z-Score 

Calculation) 

Z scaling caters for outliers but does not put each feature data set of an Event on the exact 

same scale. For the data set it is understood that some sensors will respond to what might 

be considered outliers since they do represent extreme defects. But it is also known that the 

K-means clustering algo is heavily dependent on the Euclidian distances and that data sets 

with different ranges can affect how data is clustered. Choosing this scaling method then 

becomes a balancing act for catering for the outliers yet not having drastically different scales 

in features. Table 25 shows the minimum and maximum z score of each feature in their 

respective data sets. 
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HS Sensor Events Scaling 

Z Score Max Min 

Max Intensity 2.066 -1.775 

Spike Frequency 2.786 -1.649 

Max Defect Size 2.403 -0.706 

Total Defected Area 2.283 -1.008 

Defect Spatial Density 3.027 -0.891 

# Total Defects 2.361 -1.512 

# Pores 2.422 -1.476 

# Cracks 2.535 -0.475 

#Other Defects 2.175 -0.648 

Thermal Sensor Events Scaling 

Z Score Max Min 

Total Time/s 2.377176 -2.07055 

Rise Time 1.825285 -0.84258 

Fall Time 1.285444 -1.59725 

Rise Rate  2.278414 -0.99746 

Cool down Rate 0.867352 -1.78013 

Max Amplitude 1.484784 -0.90098 

# Total Defects 1.810366 -1.33702 

# Pores 1.827115 -1.4014 

# Cracks 3.859186 -0.29339 

Other Defects 2.759893 -0.58103 

Max Defect Size 2.814012 -0.7062 

Total Defected Area  3.118105 -0.96367 

Defect Spatial Density 2.537594 -2.0098 



 

151 | P a g e  
 

AE Sensor Events Scaling 

Z Score Max Min 

Amplitude mV 2.246979 -2.15615 

Rise Time/us 1.556022 -1.21182 

Duration/us 2.013733 -1.9261 

Energy 2.283653 -1.29982 

Ring Counts 1.816553 -2.16023 

Max  Amplitude of any frequency band /dB 3.605616 -1.28701 

Max Frequency above threshold/Khz 1.234209 -2.29284 

Median Frequency 1.717752 -1.57687 

Mean Frequency Khz 1.89425 -2.0853 

100Khz - 200Khz 0.615177 -3.21635 

200 Khz - 300 Khz 1.106976 -1.36497 

300 Khz - 400 Khz 2.611538 -0.40568 

400Khz - 500Khz 1.219099 -1.26817 

500Khz - 600 Khz 1.813193 -0.68938 

600Khz - 700Khz 1.16923 -0.87679 

700Khz - 800Khz 0.936537 -1.27535 

800Khz - 900 2.446727 -0.40903 

900-1Mhz 5.003702 -0.19245 

# Total Defects 2.803539 -1.1544 

# Pores 2.969018 -1.19748 

# Cracks 3.475652 -0.33909 

Other Defects 2.589614 -0.58855 

Total Defected Area / mm2 4.188766 -0.55736 

Max Defect Size/ mm2 4.234336 -0.46508 
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Defect Spatial Density 2.715908 -1.12782 

Table 25: Z-Score Scaling of Event Features 

7.2.2. K-means Clustering 

K-means clustering is an unsupervised machine learning algorithm which allows for the 

grouping of Events based on the similarities in their features for each sensor. It is very 

important to understand the internal workings of the K-means Clustering Algorithm as it 

plays a very vital role in the data fusion algorithm. 

The K means clustering algorithm has 3 major steps as shown in Figure 96. It iterates through 

steps 2 and 3 to divide the data into K number of groups. 

1. Initialization of Centroids: Randomly Initialize K number of Centroids with random 

position. MATLAB does this by using K means ++ algorithm. In K means ++ the first 

centroid is placed at a random point and the following centroids are placed on a 

probability proportional to the squared distance away from the nearest centroid. The 

aim is having the initial centroids as far away from each other as possible (Arthur & 

Vassilvitskii, 2007). 

2. Cluster Assignment: Calculate the Euclidean Distance from each data point to each 

centroid and assign to the Cluster of the Centroid to which the calculated Euclidean 

distance is the least. 

3. Move Centroids: Once data points have been assigned to a cluster, Calculate the mean 

of all these points and move the centroid to this mean.  

Steps 2 and 3 are iterated until the centroids stop moving position i.e. the iteration at which 

K means algorithm converges.  
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Figure 96: K-means Clustering Algorithm 

The number of Clusters must be manually chosen before running the K means Algorithim. 

There are multiple techniques to select the optimal number of K (clusters) but the one 

utilized here is “Calinski-Harabasz Index” also known as Variance Ratio Criteria. The criterion 

calculates the ratio between clusters dispersion and inter cluster dispersion for all clusters. 

This is calculated over a range of K values and the K value at which the highest Calinski-

Harabasz score achieved is chosen.  

Figure 97 shows the Calinski-Harabasz Index Score over a range of K values for each sensor 

Data set and based on those graphs, Table 27 shows Optimal K for each Sensor. 

 High Speed Data Thermal Sensor 

Data  

Acoustic Emission Data 

Smallest Distortion 225.98 164.258 383.62 

Table 26: Smallest Distortion for each sensor for K means runs 

 

1. Initialize Centroids 

2. Cluster Assignment 

3. Move Centroid 

Centroid 1 

Centroid 2 

Cluster 1 

Cluster 2 

New Centroid 1 

Position 

New Centroid 

2 Position 



 

154 | P a g e  
 

 

Figure 97: a) Calinski-Harabasz Index for HS data Events, b) Calinski-Harabasz Index for 

Thermal data Events, c) Calinski-Harabasz Index for AE data Events  

 High Speed Data Thermal Sensor Data  Acoustic Emission Data 

Optimal K 2 2 2 

Table 27: Optimal Number of K Cluster for all sensors 

Often with a high dimensional data set Principal Component Analysis is applied to reduce the 

data sets dimension before applying K-means Clustering to it. In this case PCA is not applied 

a) 

b) 

c) 
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before implementing K means due to the inherent issues that come with dimensional 

reduction; a) After PCA components are put though K means it is difficult to read back the 

original feature set which is a major concern when making the feature predictions and b) 

Dimensionality reduction means loss of data which cannot be afforded since the Raw data 

values have already gone through so much processing and filtering. Often higher dimensional 

data can cause relatively less accurate clusters compared to when dimensionality reduction 

techniques like Principal Component Analysis are applied to them. But this is a tradeoff this 

research is willing to make due to the above-mentioned reasons and the dimensions of the 

data sets are not considered to be significantly high.  

The Sum of Squared Distances to the centroid aka Distortion is calculated each time the en-

tire K means algorithm is implemented. Running the K means algorithm multiple times can 

give a wide range of Cost Functions. By choosing the K means Clustering run that gave the 

lowest Cost Functions ((Equation 24), the best Clustering results can be achieved. For each 

sensor K- means cluster is run 1000 times and the K means run that has the smallest Distor-

tion is chosen as shown in Table 26. 

𝐽(𝑐, 𝜇) = ∑ ||𝑥𝑖 − 𝜇𝑐(𝑖)||2

𝑚

𝑖=1

 
 

(Equation 24: Cost 
Function) 

 

𝑐(𝑖) = 𝐼𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟(1,2. . 𝐾) 𝑡𝑜 𝑤ℎ𝑖𝑐ℎ 𝑥𝑖  𝑖𝑠 𝑎𝑠𝑠𝑖𝑛𝑔𝑒𝑑 

𝑥 = 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡 

𝜇𝑐(𝑖) = 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑒𝑛𝑡𝑒𝑟𝑜𝑖𝑑 𝑜𝑓 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑡𝑜 𝑤ℎ𝑖𝑐ℎ 𝑥𝑖  𝑖𝑠 𝑎𝑠𝑠𝑖𝑛𝑔𝑒𝑑 

𝑚 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑜𝑖𝑛𝑡𝑠 

𝐾 = 𝑇𝑜𝑡𝑎𝑙 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑠 

Often Clusters of higher dimension data sets can be visually misleading in terms of cluster 

centroid positions and cluster overlap since they only show a few dimensions. Figure 98(a) 

shows a 3-dimensional scatter plot and Figure 98 (a), (b) and (c) show 2D projections of the 

scatter from different angles. When only observing the 2D projections they may appear to 

be altogether different clustering scatter graphs but mathematically the cluster assignment 

of data and centroid position is justified and based on the K means Euclidean distance 

calculations for multiple dimensions. Figure 98(a),Figure 99 and Figure 100 show the 
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Clustering results for the High-Speed Data Events, Thermal Data Events and AE Data Events 

respectively.  
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Figure 98: a) HS Data Clustering plot in 3D b) XY Projection HS Data Clustering, c) XZ Projection HS Data 

Clustering, b) YZ Projection HS Data Clustering 

b) X-Y View c) X-Z View 

d) Y-Z View 

a) 
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Figure 99: Thermal Data Clustering 

 

 

Figure 100: AE Data Clustering 



 

159 | P a g e  
 

7.3. Defect Detection Algorithm 

The defect detection algorithm utilizes the Clustering Graphs of all three sensors to predict 

the features and % confidence (In the prediction) for a new point introduced into those 

trained cluster models. Using the produced cluster models, predictive ranges can be derived 

for a feature of a particular Cluster that should be able to justify representing any new point 

that is assigned to that Cluster. A confidence score that estimates the accuracy of this 

prediction can also be assigned to this predictive range. All these ranges take into 

consideration all three Sensor Cluster Models and Fuse their data to come up with a single 

output of a Feature Range and its % Confidence. Figure 101 shows the Data Fusion Algorithm 

which is discussed in detail in the following sections. 
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Figure 101: Data Fusion Algorithm 

7.3.1. Feature Range Prediction 

The distribution of some feature sets may be considered normal however the majority does 

not fit any distribution and hence drawing any conclusion based on a known distribution is 

not possible on all feature sets. Another approach would be to statistically analyze the 

distribution of the collective values for each data feature set using Box Plots as shown in 
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Figure 102, Figure 103, Figure 104, Figure 105 and Figure 106 . These plots display what is 

known as the “five number summary” in descriptive statistics which should allow an 

understanding of the distribution of the feature sets. The five number summary includes the 

Maximum, Minimum, Upper Quartile, Lower Quartile and Median values for that feature set. 

The maximum and minimum values of the box plot are calculated using the interquartile 

range. The interquartile range (IQR) is the distance between the upper quartile and lower 

quartile range. The largest point in the data set within a distance 1.5 times the IQR from the 

upper quartile range is consider the maximum. Similarly, the smallest point in the data set 

within a distance 1.5 times the IQR from the lower quartile in the opposite direction is the 

minimum. Any other points that lie outside the Max and Min are considered outliers.   

 

Figure 102: Box and Whiskers plot for Total Defects for a) HS Cluster Events, b) Thermal 

Cluster Events, c) AE Cluster Events 

 

 

a) b) 

c) 
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Figure 103: Box and Whiskers plot for Total Pores for a) HS Cluster Events, b) Thermal Cluster 

Events, c) AE Cluster Events 

a) b) 

c) 
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Figure 104: Box and Whiskers plot for Total Cracks for a) HS Cluster Events, b) Thermal 

Cluster Events, c) AE Cluster Events 

a) b) 

c) 
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Figure 105: Box and Whiskers plot for Max Defect Size for a) HS Cluster Events, b) Thermal 

Cluster Events, c) AE Cluster Events 

a) b) 

c) 
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Figure 106: Box and Whiskers plot for Total Defected Area for a) HS Cluster Events, b) 

Thermal Cluster Events, c) AE Cluster Events 

Once the outlier for each feature is eliminated, the min and max values from their respective 

Box plots are chosen to form predictive ranges for each Sensor and each sensor Cluster 

shown in Table 28. Interesting observations can be made by analyzing the individual box 

plots, but this will be discussed briefly in the discussions section and mostly left to further 

works. 

 
Cluster 1 

 
Total Defects Pores Cracks Defect Size Total Defected Area 

 
Max Min Max Min Max Min Max Min Max Min 

HS 57 5 54 5 9 1 0.7462 0.01 1.1871 0.0529 

Thermal 73 13 73 13 8 5 0.694 0.0117 2.096 0.166 

AE 26 2 26 1 5 3 0.6574 0.0051 0.2552 0.0036 

 
Cluster 2 

 
Total Defects Pores Cracks Defect Size Total Defected Area 

a) b) 

c) 
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Max Min Max Min Max Min Max Min Max Min 

HS 79 20 76 19 0 0 0.7462 0.0855 1.853 0.836 

Thermal 38 12 38 12 0 0 0.2552 0.0055 1.195 0.048 

AE 14 5 12 4 0 0 1.163 0.05 0.694 0.011 

Table 28: Predictive Ranges for Sensor Clusters 

The Following equations are a rudimentary way to fuse data from each sensor and come up 

with a final predicted range for a new point introduced into the Data fusion Algorithm. 

𝐹𝑀𝑎𝑥 =
𝐹𝐻𝑆𝑀𝑎𝑥 + 𝐹𝑇ℎ𝑀𝑎𝑥 + 𝐹𝐴𝐸𝑀𝑎𝑥

𝑛
 

 (Equation 25: 

Predicted Feature 

Max Value) 

 

𝐹𝑀𝑖𝑛 =
𝐹𝐻𝑆𝑀𝑖𝑛 + 𝐹𝑇ℎ𝑀𝑖𝑛 + 𝐹𝐴𝐸𝑀𝑖𝑛

𝑛
 

 (Equation 26: 

Predicted Feature 

Min Value) 

 

𝐹𝑅𝑎𝑛𝑔𝑒 = 𝐹𝑀𝑎𝑥 𝑡𝑜 𝐹𝑀𝑖𝑛 

 (Equation 27: 

Predicted Feature 

Range) 

 

𝐹𝑅𝑎𝑛𝑔𝑒 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑅𝑎𝑛𝑔𝑒 

𝐹𝑀𝑎𝑥 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑥 𝑉𝑎𝑙𝑢𝑒 

𝐹𝑀𝑖𝑛 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑖𝑛 𝑉𝑎𝑙𝑢𝑒 

𝐹𝐻𝑆𝑀𝑎𝑥 = 𝐻𝑖𝑔ℎ 𝑆𝑝𝑒𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑅𝑎𝑛𝑔𝑒 𝑀𝑎𝑥 𝑉𝑎𝑙𝑢𝑒 

𝐹𝑇ℎ𝑀𝑎𝑥 = 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑅𝑎𝑛𝑔𝑒 𝑀𝑎𝑥 𝑉𝑎𝑙𝑢𝑒 

𝐹𝐴𝐸𝑀𝑎𝑥 = 𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑛𝑔𝑒 𝑀𝑎𝑥 𝑉𝑎𝑙𝑢𝑒 

𝐹𝐻𝑆𝑀𝑖𝑛 = 𝐻𝑖𝑔ℎ 𝑆𝑝𝑒𝑒𝑑 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑅𝑎𝑛𝑔𝑒 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑉𝑎𝑙𝑢𝑒 

𝐹𝑇ℎ𝑀𝑖𝑛 = 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑅𝑎𝑛𝑔𝑒 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑉𝑎𝑙𝑢𝑒 

𝐹𝐴𝐸𝑀𝑖𝑛 = 𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑛𝑔𝑒 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑉𝑎𝑙𝑢𝑒 

𝐹𝐴𝐸𝑀𝑖𝑛 = 𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑅𝑎𝑛𝑔𝑒 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑉𝑎𝑙𝑢𝑒 
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𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑒𝑛𝑠𝑜𝑟𝑠 

7.3.2. Percentage Confidence 

Theoretically the clustering algorithm groups Events with similar features based on their 

distance from their respective cluster centroids. Based on this, each cluster group should 

have similar feature values but the further they move away from their respective cluster 

centroids the more dissimilar the features will get compared to those closer to the centroid. 

The Defect detection algorithm aims to predict an estimated range for the Total Number of 

Defects, Pores, Cracks and Max Defect Size. The variance trends for these features in the 

Clustering output for the training data of the HS Cluster 1, HS Cluster 2, Thermal Cluster 1, 

Thermal Cluster 2, AE Cluster 1, AE Cluster 2 can be seen in Figure 107,Figure 108,Figure 

109,Figure 110,Figure 111 and Figure 112 respectively. The graphs display a general trend 

that as the events move away from their cluster centers, the dispersion of their features 

compared to the ones closer to the cluster center increases. The variance trends are 

calculated using the variance for each feature set at 𝜇,  𝜇 + 1𝜎 and 𝜇 + 2𝜎. Sometimes it is 

seen that even though some features may have an increasing trend they seem to have a 

variance change of lower than 0.1 across the range.  

 

Figure 107: HS Cluster 1 Variance vs Distance from Cluster Centroid 
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Figure 108: HS Cluster 2 Variance vs Distance from Cluster Centroid 

 

Figure 109: Thermal Cluster 1 Variance vs Distance from Cluster Centroid 
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Figure 110: Thermal Cluster 2 Variance vs Distance from Cluster Centroid 

 

Figure 111: AE Cluster 1 Variance vs Distance from Cluster Centroid 
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Figure 112: AE Cluster 2 Variance vs Distance from Cluster Centroid 

Based on the conclusion that within a cluster the further a point moves from the cluster 

centroid the more dissimilar features it will have compared to the ones closer to the cluster 

center, a confidence score system can be developed that will predict how dissimilar a new 

point will be compared to the predicted Feature Range for that cluster. To establish how 

much further away from the cluster centers do the feature predictions stop becoming 

reliable, the distribution of the Euclidian Distance from the Centroid for each event/point 

appointed to the Cluster must be observed. The answer to; what % of the training data lies 

within what range of its distribution will help determine the intervals based on which score 

can be given to a point.   

It can be concluded from Figure 114 that the Euclidean distances of the training data clusters 

from the respective centroids in all; High Speed Data, Thermal Data and AE data is roughly 

normally distributed. From the probability plot or QQ plots (Quantile-Quantile plots) it is seen 

that most data roughly lie on or in the very close proximity of the best fit line and within 95% 

confidence intervals.  
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The Null Hypothesis here (Data is normally distributed) is not rejected for the Alternative 

hypothesis (Data is NOT normally distributed) as P> 0.05(α=0.05) for all the data sets.  

If data has a ideal Standard Normal Distribution often the “3 Sigma Rule” can be assumed. It 

states that 99.73% of the data should lie within 3 standard deviations of the sample set. 

When considering that the sample set under discussion is Euclidean distance (𝑋) from the 

centroid, the data points closest to the centroid and the vast majority are the ones that lie 

within 1 standard deviation of the mean (0 > 𝑋 ≤ 𝜇 + 1𝜎). 27% of the points should lie 

between 1 Std Dev and 2 Std Dev of the mean (𝜇 + 1𝜎 < 𝑋 ≤ 𝜇 + 2𝜎) which is a bit further 

away from the centroid and 5% of the data points lie above 2 Std Dev of the mean (𝑋 > 𝜇 +

2𝜎). 

 

As can be recalled in the K means clustering algorithim aims to group data points with similar 

features based on their Euclidean distance from the centroid of that Cluster. The Feature 

Range Prediction methodology proposed in this research utilizes the majority of the data 

within the min and max of the box plots and eliminates the outlier I.e. does not take into 

consideration some of the data. The distribution shows that roughly 68% of the data lies 

within 0 > 𝑋 ≤ 𝜇 + 1𝜎, and 95% within (𝜇 + 1𝜎 < 𝑋 ≤ 𝜇 + 2𝜎). It is also known that 

majority of the data should lie closer to the center of the Cluster by the internal mechanisim 

of K means clustering. Based on these points, it seems to be correct to assume that the 

interval range shown in Figure 113 will serve as a good criteria for defining ranges where an 

individual confidence scoring system can be established. 
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Figure 113: Confidence Interval Range based on "3 sigma rule" 
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Figure 114: Normality Test for Euclidian Distances  

Table 29 shows the individual score given for each sensor. When the data point lies within 

(0 > 𝑋 ≤ 𝜇 + 1𝜎) it is the closest to the centroid and is given a score of 1,if it lies within (𝜇 +

1𝜎 < 𝑋 ≤ 𝜇 + 2𝜎) it is given a score of 0 and finally if more than (𝑋 > 𝜇 + 2𝜎) its given a 

confidence score of -1. As it is evident 1 is the highest confidence score (Closest to centeroid) 

and -1 is the lowest (Furthest from the centeroid. Once all three sensors are alloted a 

individual confidence score, using (Equation 28 a collective confidence score is calculated. 

This Collective Confidence score is used to calculate the % Confidence by mapping the 

Collective Confidence Score on to % Confidence Scale (0 to 100%) using Linear mapping as 
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shown in Figure 115 . It should be noted that the %confidence is a measure of how well the 

fusion algorithm worked.  

Standard Deviations 0 > 𝑋 ≤ 𝜇 + 1𝜎 𝜇 + 1𝜎 < 𝑋

≤ 𝜇 + 2𝜎 

𝑋 > 𝜇 + 2𝜎 

Individual Score 1 0 -1 

Table 29: Individual Scoring System 

𝑝 =  𝑝𝐻𝑆 + 𝑝𝑇ℎ + 𝑝𝐴𝐸  
 (Equation 28: Collective 

Confidence Score) 

 

𝑝 = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 

𝑝𝐻𝑆 = 𝐻𝑖𝑔ℎ 𝑆𝑝𝑒𝑒𝑑 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 

𝑝𝑇ℎ = 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐷𝑎𝑡𝑎 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 

𝑝𝐴𝐸 = 𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒   

% 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = (𝑝 − 𝐴) × (
𝐷 − 𝐶

𝐵 − 𝐴
) + 𝐶 

 (Equation 29: % 

Confidence Score) 

 

𝐴 = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 𝑅𝑎𝑛𝑔𝑒 𝑆𝑡𝑎𝑟𝑡 

 𝐵 = 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 𝑅𝑎𝑛𝑔𝑒 𝐸𝑛𝑑 

𝐶 = % 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑅𝑎𝑛𝑔𝑒 𝑆𝑡𝑎𝑟𝑡 

 𝐷 = % 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 𝐸𝑛𝑑 

 

Figure 115: % Confidence Scale 
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7.4. Discussion 

This Chapter explains the step-by-step detail on how the system is trained and how it outputs 

its prediction ranges for specific features. It explains how raw data is processed converted to 

time and spatial domain and stitched with defect data collected offline. It further explains 

the steps of extracting Events out of these stitched data sets and then clustering them and 

using the data distribution of the data in each cluster to construct a prediction table. It also 

explains how the working of the K means clustering algorithm can be leveraged into 

approximating how reliable or precise the predicted values will be. At the end it shows how 

the fusion equation works and how % confidence scoring system is developed and 

implemented.  

Firstly, the defect data is extracted from the XCT scan images and using specific criteria and 

scaling techniques the type, position and size of the defects can be established with respect 

to the direction of how the deposition was laid down. This data is also converted into the 

time domain by the aid of the laser head scanning speed i.e., how fast the laser head moves 

over the deposit and physically measured length of the deposit. The limitation of this method 

is that the research assumes that the defects are created at the same time as the laser head 

is over that position along the length of the deposit where the defect developed. It also 

assumes that the epicenter of the defects lie at their geometric centers. While this may not 

always be true, the fact that the melt pool size at instant is very small for a single track and 

the extremely quick cooling rates would dictate that these defects would not develop that 

far off from the laser beam spot. Figure 116 show the avg size of defects generated during 

the defect provocation.  It is seen that largest avg cracks are created in the contaminated 

powder experiment and largest avg pores are generated in the surface finish experiments. 

Figure 117 shows the same graphs compare to avg size found in the literature and it can be 

seen that it is much larger than the defects generated in the experiments of this research. 

This may be a good thing since it may go to show that the proposed system can catch smaller 

defects. 
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Figure 116:Avg Defect Size in defect provocation Experiments 
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Figure 117: Avg Defect Size compared to Avg size found in literature 

The HS speed camera data is processed, and a reconstruction is made of the images using a 

technique called Z projection. In this technique melt pool images are overlapped over each 

other. The overlap technique is such that is sums the pixels the image that overlap each 

other. This means that if a high intensity pixel overlaps one with a lower intensity the 

reconstructed image will display the intensity of the higher pixel at that point. The advantage 

of this can be seen in Figure 118 where if a previous frame displays high intensity pixels at a 

certain point they are not lost in the overlapping process and also show position along the 

length in the reconstructed image. 
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Figure 118: a) Frame by Frame overlap using z projection b) Image reconstruction retaining 

high intensity pixel positions 

An intensity plot is used to construct an intensity profile along the length of the deposit. As 

shown in Figure 119 this method takes each Column along the width of the deposit and takes 

the average intensity of that column. This yields a singular value which is used to construct 

and intensity profile which is then converted in time and spatial domain and stitched to 

defect data. Certain events are extracted using a thresholding technique from the stitched 

intensity profiles. This technique establishes a threshold value using a melt pool image that 

is stable i.e., does not contain any high intensity pixel zones. The threshold establishes what 

levels of intensities need to be crossed so that the signal that crosses this threshold will be 

called an Event. The justification of the thresholding technique is intuitive since high intensity 

pixel zones equal high temperature zones and wherever high temperature zones develop 

there is a likely hood that a defect will develop. Events extracted from the stitched data are 

plugged into the clustering algorithm which groups events with like features.  

High intensity Pixels with developed each layer High intensity Pixels retain position in reconstructed image 

Direction of Deposition 

Length of the deposition 
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Figure 119:  Method of intensity profile construction 

For the thermal images a similar technique is used to develop temperature profiles which are 

converted into spatial domain. Both time domain and spatial domain data is stitched on to 

defect data to generate new data sets. From these data sets Events are extracted using a 

thresholding technique which looks for quick change in thermal intensities. Any signal that 

has a certain rise rate which is followed by a fall is considered an Event. Once again events 

are extracted and clustered to generate two distinct clusters. It is found that defect size 

increases cool down rate, and this is an agreement with literature which states that cooling 

is affected due to development of defects since they disturb the heat sync effect not allowing 

the heat to dissipate efficiently.  

Even though AE data in time domain is sufficient to be stitched to defect data for events to 

be extracted, an attempt was made to stich calculated position of an AE Event on to the 

defect data. Position data was unreliable since only two sensors were used to calculate 

position and some events gave anomalous position data. The position for events that are 

caused by large defects only provide relative accurate position data.  It is however found that 

signal amplitude might be related to defect size since large defects coincide with high 

amplitude AE events. AE data events are extracted from stitched data in the time domain 

and clustered to develop a prediction table. When analyzing spectrum of the AE signal it is 

found that a single event contains different frequencies of varying power. This may indicate 

that a single envelope may not represent a single event and could represent a superimposed 

wave containing the signal of multiple waves generated from different defect sources. 

 All Events for each sensor are clustered using a unsupervised learning algorithm called K 

Means clustering algorithm. K means uses the Euclidean distance to assign an event to 
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specific cluster to which a point is closest.  Using The Calinski-Harabasz scoring method the 

optimal number of K clusters are determined and it turns out the optimal number of cluster 

for all 3 sensor data was 2. This may be because the defects are of two types: Cracks and 

Pores and clusters formed are based on this. This theory is supported by the fact that for 

each sensor one cluster only contains cracks and the other contains pores and cracks.  The 

distribution of each cluster of each sensor is analyzed and using a box and whisker plots out 

liers are eliminated and as result produces new max and min values. These values will serve 

as prediction range if a new event is appointed to a particular cluster. 

After the prediction tables are established, it is placed in the data fusion equation which 

combines the results for all three ranges for a particular feature to form one single predictive 

range. The reliability of this fused range is determined by % confidence value. The % 

confidence value is formed by the individual confidence score of each sensor. This is 

established based on how far from the cluster center the new event lies. The further away 

from the cluster center the new Event lies the less likely it is to be like the events closer to 

the cluster center. Hence the distance of an event from the cluster center becomes a metric 

of how accurate the prediction value will be. 
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Chapter 8: Statistical 

Analysis and Verification 
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The system aims to predict a feature range for a single new Event (New point) or Group of 

Events for an entire sample (Group of points) during a deposition. It collects the data during 

the deposition, processes the data, Extracts events from the processed data and places them 

in the Sensor Cluster Models and assigns them to a Cluster closest to them. Based on the 

cluster appointed to them, the system predicts a range for the features and based on the 

distance from the cluster centroid, gives the prediction a confidence score. Predicted Feature 

Ranges from all 3 Sensors Cluster Models are “fused” using (Equation 27 and the final % 

Confidence is calculated (Equation 29. 

8.1. Feature Prediction   

The system predicts the ranges for Total number of Defects, Total Number of Pores, Total 

Number of Cracks, Max Size of defect and Total Defected Area. The accuracy/ functionality 

of the system is put through multiple statistical tests and compared to other methodologies 

of defect detection. Particularly it is tested for number for Total Defects and defect 

classification. As per the research carried out for this thesis, other systems are not capable 

of predicting Max defect size and Total Defected Area and hence it is verified using statistical 

tests.   

8.1.1. Feature Range Prediction 

The systems’ primary function is to predict a range in which the detected Events actual value 

lies. To verify the accuracy of the system the data from a random sample is analyzed whose 

XCT analysis is also available to us. Using Table 30, every time the system predicts the correct 

feature range for an event, the event is given a score of 1 (100% accurate) and every time 

the new points feature lies outside the predicted range the Event is given a score of 0(0% 

accuracy). Using this method, a table containing a binary data set of (Accurate and Inaccurate 

predictions) can be created from which the accuracy of the system can be judged. 

 Within Predicted Range Outside Predicted Range 

Appointed Accuracy Score 1(100%) 0(0%) 

Table 30: Binary Output Look Up Table 

Table 31 shows a set of randomly selected events from a sample and their accuracy score 

calculated using the method mentioned above. Where D# is the Total Defects, # Total Pores, 

# Total Cracks, MDS is the max defect size and DA is the defected area. 
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Table 31: Binary Accuracy Data fused Predictions for a random Sample  
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8.1.2. Single Feature Value Prediction 

Most researchers have developed systems or used methodologies that predicts a single 

number for a feature e.g.  (Khanzadeh & Bian, 2016) uses Self Organizing Maps to predict 

total number of defects. Even though the system is not designed to predict a single value, for 

the sake of having values to compare with other researchers the thesis will go a step further 

to devise a method by which the system can predict a single value.  

For this average values ((Equation 30) are used of the predicted feature range for all the 

events and their actual average feature values ((Equation 31) taken from the stitched data. 

𝐹𝑎𝑣𝑔 =
𝐹𝑀𝑎𝑥 + 𝐹𝑀𝑖𝑛

2
 

(Equation 30: Avg Feature 

Value Calculation) 

     

𝐷𝑎𝑣𝑔 =  
𝐷𝐻𝑆 + 𝐷𝑇ℎ+𝐷𝐴𝐸

3
 

(Equation 31: Average 

Actual Defect Value 

Calculation) 

 

𝐷𝐻𝑆 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑒𝑓𝑒𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝐻𝑖𝑔ℎ 𝑆𝑝𝑒𝑒𝑑 𝑆𝑒𝑛𝑠𝑜𝑟 𝐸𝑣𝑒𝑛𝑡  

𝐷𝑇ℎ = 𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑒𝑓𝑒𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝑆𝑒𝑛𝑠𝑜𝑟 𝐸𝑣𝑒𝑛𝑡 

𝐷𝐴𝐸 =  𝐴𝑐𝑡𝑢𝑎𝑙 𝐷𝑒𝑓𝑒𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝐴𝑐𝑜𝑢𝑠𝑡𝑖𝑐 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑆𝑒𝑛𝑠𝑜𝑟 𝐸𝑣𝑒𝑛𝑡 

𝐷𝑎𝑣𝑔 = 𝐴𝑐𝑡𝑢𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐷𝑒𝑓𝑒𝑐𝑡 𝑉𝑎𝑙𝑢𝑒 

𝐹𝑎𝑣𝑔 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑉𝑎𝑙𝑢𝑒 

Using the tables constructed from (Equation 30 and (Equation 31 a multi variable regression 

models can be developed from the collection of events for each feature. Using Table 32, 

models are constructed for Total Defects, Total Pores, Total Cracks, Max Defect Size and Total 

Defected Area. 

𝐹𝑎𝑣𝑔 by HS Cluster 

Prediction 

((Equation 30) 

𝐹𝑎𝑣𝑔 Thermal 

Cluster Prediction 

((Equation 30) 

𝐹𝑎𝑣𝑔 by Acoustic 

Emission Cluster 

Prediction 

((Equation 30) 

Actual Average 

Feature ((Equation 

31) 

Table 32: Data Variables used to create single value predictions 
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(Equation 32 shows the Regression model used to predict single values for the Total Defects. 

It’s important to mention that the data is normalized before the models are constructed and 

the model output is scaled accordingly to reflect real data values.  

Total Defects = 26.9 + 9.98𝐻𝑆𝑎𝑣𝑔 + 3.53 ∗ 𝑇ℎ𝑎𝑣𝑔 + 6.3𝐻𝑆𝑎𝑣𝑔
2 − 14.72𝐻𝑆𝑎𝑣𝑔𝑇ℎ𝑎𝑣𝑔 − 0.15𝐴𝐸𝑎𝑣𝑔 

(Equation 32: 

Single Value 

Predictor 

Model using 

Multiple 

variable 

Regression) 
 

The modeling data shows that Multi Regression Models are not efficient method of 

representing the system but a necessity for comparison with the other research. In places 

where the model gives negative values, they are considered 0. Table 33 shows the results of 

the Multiple Regression Models and the % Accuracy in their representation for a randomly 

selected sample of Events.  

HS 
HS 

Scaled 
Th 

Th 

Scaled 
AE 

AE 

Scaled 

Total De-

fects 

Regression 

Fit Predic-

tion 

% Accu-

racy 

31 -0.01813 25 0.323149 0 -1.46987 39.5 27.26855 69.0343 

31 -0.01813 43 1.196524 14 1.102404 33 30.19885 91.51168 

31 -0.01813 0 -0.88987 14 1.102404 24 22.27695 92.82063 

31 -0.01813 43 1.196524 0 -1.46987 29 30.5847 94.53553 

31 -0.01813 0 -0.88987 14 1.102404 21.5 22.27695 96.38627 

31 -0.01813 0 -0.88987 0 -1.46987 29 22.66279 78.14756 

31 -0.01813 43 1.196524 0 -1.46987 28 30.5847 90.76894 

49.5 1.440462 43 1.196524 1 -1.28614 55 32.4939 59.07982 

31 -0.01813 43 1.196524 3 -0.91867 32.33333 30.50202 94.33613 

31 -0.01813 0 -0.88987 11 0.551202 29 22.35963 77.10218 

       Average %  84.37231 

Table 33: Accuracy for single value prediction using Multiple Regression Model 
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8.1.3. Feature Prediction for an entire sample  

For the entire sample the defects are calculated a little differently as recurring defects are 

taken into consideration due to 30% overlap between the three layers. Also, the 

methodology of calculating the Total Defect, Pores and Cracks is different from how the Max 

Defect Size is calculated. Total Defected area however cannot be calculated for the entire 

sample because the calculation cannot take % overlap into consideration since this feature is 

an Area and hence makes this a feature predicted only for single events. 

The total number of defects, cracks and pores for each sensor data is calculated by first 

calculating the estimated Overlap compensation as shown in (Equation 33. This takes into 

consideration % Overlap (which in the case of the deposits produced during the experiments 

of this research is 30%) and the Number of Overlapping zones. The next step is to again the 

sum of that entire feature set for all events from the calculated approximate of the overlap 

compensation. The compensated sums for all 3-sensor data can now be plugged into the 

previous used (Equation 25 and (Equation 26 to calculate the final range prediction for the 

feature. 

𝑍 = ((∑ 𝑥𝑖

𝑛

𝑖=1

) × %𝑂𝑣𝑒𝑟𝑙𝑎𝑝) × 𝑁  … 

(Equation 33: Overlap 

Compensation 

Calculations) 

 

𝐹 = ∑ 𝑥𝑖

𝑛

𝑖=1

− 𝑍  
(Equation 34: Calculating the 

feature for an entire sample) 

 

𝑁 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟𝑠 

𝑛 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 

𝑥 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑉𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛𝑡 

𝑍 = 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 

𝐹 = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑛𝑡𝑖𝑟𝑒 𝑠𝑎𝑚𝑝𝑙𝑒  

For the confidence score for the entire sample, the sum of all the individual scores of the 

events for each sensor data is calculated and then use the linear mapping technique to 

project the sum of score onto a range of -1 to 1. The range being projected is calculated by 
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using the total number of events from which the score was calculated as shown in Table 34. 

Now it is simply put through the same process by plugging it in (Equation 28 and calculating 

the overall % Confidence using (Equation 29. 

A (Original Min) B (Original Max) C (New Range Min) D (New Range Max) 

𝑇𝑜𝑡𝑎𝑙 # 𝐸𝑣𝑒𝑛𝑡𝑠 

× (−1) 

𝑇𝑜𝑡𝑎𝑙 # 𝐸𝑣𝑒𝑛𝑡𝑠 -1 +1 

Table 34: Range of Each Sensor Data when calculating for entire sample 

The singular value for the Max Defect Size is calculated by taking the Max and Min Range of 

Max size feature from the predicted ranges of all the events. The average is taken from the 

Max Defect Size from each respective sensor data sets and this becomes the predictor range. 

The results for the feature prediction for the entire sample are shown in Table 35 along with 

the actual defects and Max Defect size found in that entire sample through XCT. Intuitively 

taking the average of Max defect size may seem wrong but it is important to understand 

these are prediction values which may be over or underestimating hence to take largest num-

ber may be in accurate. 

 Total Defects Pores Cracks Max Defect Size % Confidence Score 

 Max Min Max Min Max Min Max Min  

 224.6667 32 218.1333 30 27.46667 9.6 0.706394 0.016166 

62.02% 

mean 128.3333 124.0667 18.53333 0.36128 

Actual 158 144 9 0.693978  

Table 35: Results for Feature Prediction for an entire sample 

For the entire sample it can be seen that predicted defect ranges are much larger (Values 

between Max and min) than the ones calculated for a single event. However, the actual 

values (values collected via Stitched data) do lie within the predicted ranges. The mean values 

of the ranges are much closer to the actual quantities of defects although it can be seen that 

mean value for the cracks for the sample has been over approximated. It can also be seen 

that the confidence score has dropped even lower to 62%.
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8.2. Total Number of Defects 

This section looks at the methodologies used to verify results for total defects and compare 

them to other researchers. It also uses Statistical Methods to verify the calculated results for 

the Total Defects predicted Range and  

8.2.1. Precision Calculation 

(Khanzadeh & Bian, 2016) suggest a verification method by calculating the precision of the 

system using (Equation 35 for an entire sample. The method divides the number of defects 

detected via the Self Organizing Maps method and the number of defects detected via the 

XCT during post analysis study of the deposit. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐷𝑒𝑓𝑒𝑐𝑡𝑠 𝑣𝑖𝑎 𝑀𝑒𝑡ℎ𝑜𝑑𝑜𝑙𝑜𝑔𝑦

𝑋𝐶𝑇 𝐷𝑒𝑓𝑒𝑐𝑡𝑠
× 100 = 62.75%  

(Equation 35: 

Accuracy 

Verification 

Method by 

(Khanzadeh & 

Bian, 2016)) 

 

If the total mean number of total defects predicted (Table 35) is plugged into (Equation 35, it 

outputs an accuracy of 81.22% as far as predicting total number of defects in the entire 

sample is concerned. (Khanzadeh & Bian, 2016) computes their systems precision to be at 

62.75% when it comes to predicting the total number of defects in the entire sample using 

their methodology. Hence it can be concluded that the total defects prediction using the 

Multi Sensor Data Fusion methodology yields a much higher precision using the proposed 

precision calculation methodology.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
128.33

158
× 100 = 81.22%  

(Equation 36: Precision 

Verification using predicted 

total defects) 

 

8.2.2. Linear Regression Model 

(Barua & Frank Liou, 2014) use Sum of residuals (SOR) or SSR technique to verify their 

research statistically hence to use this technique some sort of regression model was 

developed. Since a similar vision-based technique was used in the methodology presented 

by this research, a model is generated using Regression Analysis on the High-Speed Data to 

predict Total Defects.  
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Term Coefficients Standard Error P-Value 

Constant 0.00 0.139 1 

Max Intensity  -0.289 0.141 0.047 

Spike Frequency -0.277 0.141 0.056 

 

𝑦 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑛

𝑖=1

 

𝑦 = 0.00 − 2.89𝑥1 − 2.77𝑥2 

𝑥1 = 𝑀𝑎𝑥 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 , 𝑥2 = 𝑆𝑝𝑖𝑘𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

 

Max Intensity 
Spike  

Frequency 

Model  

Predicted 

Model  

Predicted  

Non-Scaled 

Actual Accuracy 

0.22559 -0.92855 0.322403 22.0508 41 0.537824 

-0.65903 -0.88353 0.054278 19.55857 36 0.543294 

1.288564 -0.92855 0.629603 24.90623 29 0.858835 

-1.40759 0.647988 -0.58629 13.60452 20 0.680226 

-1.77598 -1.06952 -0.217 17.03703 32 0.532407 

0.478563 -0.9335 0.396884 22.74311 41 0.55471 

-0.8186 0.785626 -0.45419 14.83232 36 0.412009 

0.238261 0.499713 -0.06956 18.40747 29 0.63474 

-0.96849 -0.21953 -0.21908 17.01769 21 0.810366 

-1.73093 -1.35945 -0.12367 17.90452 31 0.577565 

1.275667 -0.92259 0.624225 24.85624 41 0.60625 

-1.03683 -0.10575 -0.27035 16.54114 35 0.472604 
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-0.66903 1.260516 -0.54251 14.01141 29 0.483152 

0.422106 0.658937 -0.06054 18.49137 21 0.880541 

-0.00376 -0.92199 0.254305 21.41783 23 0.93121 

 

Average 

Sample Ac-

curacy % 

63.43823 

 

Table 36: Output of the Linear Regression Model 

8.2.3. Wilcoxon Signed Rank test for Total Defects Accuracy   

The precision verification methodology and linear regression model yield an accuracy of 

62.75% and 63.43% respectively. Even though precision wise the multisensory system yields 

a higher accuracy a statistical verification needs to be carried out of the accuracy of the 

multisensory system in comparison to the two % accuracies mentioned above. A statistical 

method to validate this would be to use the Wilcoxon Signed Rank test for One Sample. 

Wilcoxon Signed rank test is meant to determine if a median of a population is equal to a 

theoretical value (Null Hypothesis) or the median of population is not equal to a theoretical 

value (Alternative Hypothesis). The reason for using Wilcoxon Signed Test for this purpose 

instead of One sample t test is because the Population distribution is non-parametric i.e., 

does not follow any known or well understood distribution. To use this test the population 

distribution of the data must be symmetric, and the sample being analyzed must be a random 

sample. 

The Null Hypothesis here is that the median value in this set is 63.43 and claim i.e., the 

Alternative Hypothesis is that the accuracy produced by the proposed methodology is higher 

than 63.43. Table 37 shows the results from the Wilcoxon Signed Rank Test and a P value of 

0.01. The P values are much lower than the significance level of 5% which means the null 

hypothesis can be rejected in favor of the alternative hypothesis that the median value is 

greater than 63.43. It is very important to mention that this only means that there is sufficient 

evidence to reject the null hypothesis NOT that there is no chance for the null hypothesis to 

be true. 
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𝐻0: 𝜂 = 63.43%   vs.  𝐻𝐴: 𝜂 > 63.43% where 𝛼 = 0.05 

N Wilcox Statistic P Estimated Median 

10 54   0.004 85.48 

Table 37: Wilcoxon Signed Rank test for one Sample 

8.2.4. Binomial Test for Total Defects Range Accuracy  

The Multi Sensor Fusion Defect Detection Methodology is designed to predict a range within 

which the feature’s values should lie. Hence the approach where the system outputs a single 

value isn’t the best methodology to measure the systems accuracy. Table 31 shows a 

classification (1 or 0) method using which it could establish if the system gave an accurate 

range for an event or not. To verify this, Binomial Test is run on that same random collection 

of events to figure out whether this system gives a better accuracy at predicting defect ranges 

compared to the most accurate result (63.43%) in the LR model (Table 36). 

A Binomial test can be used to statistically test a hypothesis for the non-parametric 

population where data is dichotomous (1-Accutrate or 2-Not Accurate). The test assumes the 

data is dichotomous and nominal, the sample size is significantly less than the population 

size, the sample is a fair representation of the population, and the data items are 

independent. 

The Null Hypothesis in this case is that the capability of a system to get the right range is 

(Average Accuracy 63.43%) and consequently the Alternative Hypothesis is that the accuracy 

is greater than that number using the proposed system. Using (Equation 37 the probability 

which will help determine the chance to observe a more extreme result is calculated. Table 

38 shows that a P value of less than 0.05 is produced and hence the null hypothesis can be 

rejected in favor of the alternative hypothesis. 

𝑃(𝑋) =
𝑛!

(𝑛 − 𝑋)! 𝑋!
 . 𝑝𝑋 . 𝑞𝑛−𝑋 

(Equation 37: Binomial 

Probability Formula) 

𝑞 = 1 − 𝑝 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 

𝑋 = The number of successful Samples 

𝑛 = The number of randomly selected items 
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𝐻0: 𝑝 = 0.6344 (63%)   vs.  𝐻𝐴: 𝑝 > 0.6344 (63%) where 𝛼 = 0.05 

n p q X P Value 

10 0.6344 0.3656 10 0.010559 

Table 38: Binomial Test for total Defects 
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8.3. Defect Classification 

Defect Classification in the proposed system is done based on the cluster that the new data 

points belong to and how close they are to their respective cluster centers. For verification 

of the logistic regression model, (Gaja & Liou, 2018)’s work is used as a reference. They use 

the same variables that are used in the clustering analysis for Acoustic Emission in this 

research.  This allows for the multi–Sensor Data fusion process for defect detection in direct 

energy deposition’s performance to be compared with the above-mentioned research. 

𝑦∗ = 𝑙𝑛 (
𝑝

1 − 𝑝
) = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖

𝑛

𝑖=1

 

(Equation 38: Generic 

Logistic Regression 

Model) 

 

𝑦∗ = 𝑙𝑛 (
𝑝

1 − 𝑝
) = −12.2 + 2.37𝑥1 − 4.78𝑥2 + 46.23𝑥3 + 0.11𝑥4 − 34.48𝑥5 + 4.91𝑥6 − 0.06𝑥7 … 

… (Equation 39: Logistic Regression Model developed by (Gaja & Liou, 2018)) 

 

𝑥1 = 𝑅𝑖𝑠𝑒 𝑇𝑖𝑚𝑒 

 𝑥2 = 𝑃𝑒𝑎𝑘 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 

 𝑥3 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛, 

𝑥4 = 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠, 

𝑥5 = 𝑅𝑖𝑛𝑔 𝐶𝑜𝑢𝑛𝑡𝑠 

𝑥6 = 𝐸𝑛𝑒𝑟𝑔𝑦 

 𝑥7 =  𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

The AE data for two samples is used as an input to this model and it classifies the defect for 

each event (Table 39).  

Rise 

Time 

Peak  

Ampli-

tude 

Duration 

Kur-

to-

sis 

Ring 

Counts 
Energy Frequency y* 

Model 

Defect 

Classifi-

cation 

 

-1.1385 -1.05706 -0.82559 0 -0.83463 -0.67126 -1.9057907 -22.4158 Pore  

-1.12017 0.026233 -1.41986 0 -1.49743 1.192348 0.80643365 -23.1831 Pore  

-0.4053 0.386653 1.733102 0 0.49096 0.712826 -0.4880747 51.7135 Crack  



 

194 | P a g e  
 

1.363556 0.026233 0.043817 0 -0.17184 -0.13482 -1.0460053 -1.74241 Pore  

-0.55194 1.470621 1.050785 0 1.153757 0.618254 -0.2412271 -8.69131 Pore  

-0.53361 0.386653 1.782625 0 1.153757 0.483892 -1.2324387 29.76623 Crack  

0.749497 0.026233 -1.03468 0 -0.17184 -0.50332 0.69793314 -54.9708 Pore  

1.097769 0.386653 0.186883 0 0.49096 0.587086 -0.429607 -16.8268 Pore  

-0.54277 -1.05706 -1.43637 0 -0.83463 -0.97703 -0.0160164 -50.8552 Pore  

-0.53361 -0.69664 -0.0002 0 0.49096 -1.07712 -0.0390773 -32.3588 Pore  

-1.17516 1.108756 0.896713 0 1.816553 -0.7565 -0.7717621 -45.1328 Pore  

-1.1385 -0.69664 -0.25882 0 -0.83463 -0.64888 -2.0853032 2.18351 Crack % Accuracy 

Pores/Actual Pores 9/144 6.25% 

Total Cracks/Actual Cracks 3/9 33.3% 

Total Defects 12/158 7.59% 

Table 39: Logistic Regression Model Output 

The Logistic Regression Model predicts that the sample has 9 pores, 3 cracks in a sample 

which contained 144 pores and 9 Cracks. (Gaja & Liou, 2018) and (Gaja & Liou, 2017) it is 

established that for a single event the Clustering method is good at classifying and detecting 

Pores and Cracks. They compare this to an artificial neural network and Logistic Regression 

Model. Even though it seems that the Logistic Regression Model correctly identifies defect 

types, it seems to be incapable of detecting all the pores and cracks. This may not be the 

methodology limitation rather the sensors inability to pick up all the signals. In comparison 

the multi sensor data fusion method seems to predict the number of total pores and Cracks 

with higher relative accuracy ((Equation 40 and … (Equation 41) however, it seems to over 

approximate cracks. In hindsight practically speaking over estimation of defects is better than 

underestimating defects. With multi–Sensor Defect Detection System it is seen that in a ran-

dom sample of events, the system correctly classifies 10 pores but only correctly classifies 5 

Cracks in 10 events. This is testament to the system inaccuracy in prediction of Cracks and is 

a plausible indication of underfitting of data as far as cracks are concerned. Underfitting is 

where training data shows high error in both test and training data.   

 

𝑃𝑜𝑟𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(198.6 + 113.2 + 60.4)/3

144
× 100 =

124

144
× 100 = 86.11% … 

… (Equation 40: Pore Prediction Accuracy) 
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𝐶𝑟𝑎𝑐𝑘 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(24 + 15.6 + 16)/3

9
× 100 =

18.53

9
× 100 = 205% (𝑂𝑣𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛) … 

… (Equation 41: Crack Prediction Accuracy) 
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8.4. Defect size and total Defected Area 

The system can predict the size of Largest Defect in an event and the total defected area in 

an event. Total Defected Area is sum of areas of all the defects detected in an event and Max 

defect is the largest possible defect regardless of classification. The same Accuracy 

classification(Table 30: Binary Output Look Up Table) is applied to the entire training data for 

Max Defect Size and Total Defected area to see the overall accuracy of the system as shown 

in Table 40. 

 Max Defect Size Total Defect Area 

Training Data Accuracy 94% 98% 

Table 40: Accuracy of Max Defect Size and Total Defect Size for training data  

8.4.1. Binomial Test for Max Defect Size and Total Defected Area Range Accuracy  

Random data for a test sample is chosen and it is put through a binomial test to evaluate the 

hypothesis that the accuracy of the system is equal to the accuracy of the training data or 

less than the accuracy of the training data. The reason of why the alternative hypothesis is 

looking for probability that the accuracy is less than that of the training data is because it 

would be a matter of concern if the accuracy is lower since the accuracy training data is 

already very high. Table 41 shows the Binomial Tests and it reveal that for both test P values 

are greater than 0.05 which means the null hypothesis CANNOT be rejected in favor of the 

alternative hypothesis and there is not sufficient evidence to support that there is chance the 

data is lesser than the training data. 
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 Hypothesis N p q X P Value 

Max Defect Size 

Binomial Test 

𝐻0: = 0.94 (94%) 

vs. 

𝐻𝐴: < 0.94 (94%) 

where 𝛼 = 0.05 

10 0.94 0.06 10 0.53861511 

Total Defected 

Area Size 

Binomial Test 

𝐻0: = 0.98(98%) 

vs. 

𝐻𝐴: < 0.98 (98%) 

where 𝛼 = 0.05 

10 0.98 0.02 10 0.81707281 

Table 41: Hypothesis Testing for Max Defect Size and Total Defected Area 

8.5. Discussion 

The Statistical analysis and Verification Chapter mainly aims to analyze the performance of 

the system by comparison to other methods and uses statistical methods that would imply 

that there is enough evidence for the hypothesis of the system accuracy. The system is made 

to predict data fused ranges for Total Number of defects, Total number of Pores, Total 

Number of Cracks, Max Defect Size and Total Defected Area. 

For the sake of comparison, the systems range needs to be converted into single values. Even 

though this is NOT the output function of the original system this is the need so that the 

systems accuracy can be compared. For this purpose, a multiple variable regression model is 

generated using Minitab however this method will lower the systems original accuracy. The 

multiple regression model outputs single values for Total number of defects inputting the 

data from all three sensors predicted ranges. 

The second accuracy measure is of the systems original function. I.e., output feature range. 

To calculate the accuracy per event a look up table is used which will give 100% accuracy 

score if the actual value lies within the predicted range and 0% accuracy score if it does not 

lie within that range. This way the systems performance can be rated. Table 42 shows the 

Accuracy of prediction feature values using different methods some of which are presented 

by other researchers. One of the reasons the multi sensor data fusion method show 100% 

accuracy is because the training data is very well fitted however the accuracy in predicting 
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cracks is relatively lower. Majority methods aim to predict total number of defects and only 

one predicts defect type i.e., classifies defects. Most other methods do not predict Max size 

and total defected area. Even though AE Logistic Regression Model is pretty accurate in 

predicting whether an event contains pores or cracks it cannot predict total number of pores 

or cracks in the entire sample correctly. The same goes for optical and SOM methods which 

are accurate to some extent in predicting total number of defects. This might be testament 

that the single sensor approach has its limitations compared to the multisensory approach. 

 
Single Event or 

Entire Sample 

Total 

Defects 

Total 

Pores 
Total Cracks 

Max 

Defect 

Size 

Total 

Defected 

Area 

Multi Sensor Data Fusion 

Method (range prediction) 
Avg per event 100% 100% 50% 94% 98% 

Multi Sensor Data Fusion 

Method (Single Value 

Prediction) 

Entire Sample 81.22% N/A N/A N/A N/A 

Avg per Event 84.37% 86.11% 

205% 

(𝑂𝑣𝑒𝑟  

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛) 

N/A N/A 

Optical Camera Data Linear 

Regression Model 
Avg per Event 63.34% N/A N/A N/A N/A 

AE sensor Logistic Regression 

Model 
Entire Sample 6.25% 6.25% 33.3% N/A N/A 

Precision Calculation Method Entire Sample 62.75% N/A N/A N/A N/A 

Table 42: Methodologies and their Accuracies 

The System carries out statistical test and are shown in Table 43 to test out hypothesis of 

accuracy. These statistical tests are only used to calculate whether there is a probability that 

accuracies more extreme than the ones calculated based on the sample set may be observed. 
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Feature Test Type Hypothesis P Value Rejected 

Total Defects 

Wilcox 

Statistic  

𝐻0: 𝜂 = 63.43%   vs.  

𝐻𝐴: 𝜂 > 63.43% where 

𝛼 = 0.05 

0.004 𝐻0 

Binomial 

Test 

𝐻0: 𝑝 = 0.6344 (63%)   

vs.  𝐻𝐴: 𝑝 >

0.6344 (63%)where 

𝛼 = 0.05 

0.010559 

𝐻0 

Total Pores N/A N/A N/A N/A 

Total Cracks N/A N/A N/A N/A 

Max defect 

Size 

Binomial 

Test 

𝐻0: = 0.94 (94%) 

vs. 𝐻𝐴: < 0.94 (94%) 

where 𝛼 = 0.05 

0.53861511 𝐻𝐴 

Total Defected 

Area 

Binomial 

Test 

𝐻0: = 0.98(98%) 

vs. 𝐻𝐴: < 0.98 (98%) 

where 𝛼 = 0.05 

0.81707281 𝐻𝐴 

Table 43: Statistical Tests 
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Chapter 9: Conclusion and 

Further works. 
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This chapter aims to conclude the research by providing a summary of the key findings of the 

research considering the research aims and objectives. It will explain what contributions the 

study makes to the current field along with the limitations of the study. Lastly it will present 

possible future works. 

This study aimed to investigate and develop a solution capable of solving the limitations (type 

of information, level of Information, and reliability of information) of the single sensor 

approach in online defect detection systems in laser metal deposition. The type of 

information here is the phenomenon the system observes, the level of information is the 

feature that can be inferred or predicted from the phenomenon being observed and lastly 

the reliability of the information is how accurately a feature can be predicted from the 

information available. 

The research presents a solution to the above-mentioned problems in the form of a 

methodology that can detect defects and generate prediction ranges for the total quantity, 

type, size, and defected area of the detected defects with relatively higher accuracy. Not only 

this, but the research provides a unique multi-sensory platform architecture that is an 

essential part of this methodology. The platform uses specific sampling times to pick up 

essential windows of the defect development cycle. Along with this it develops a unique data 

fusion algorithm which combines data from different sensors to present a singular prediction 

range along with a confidence value which is a metric for how reliable the generated 

prediction range is. When compared to the state of the art this system provides a higher 

accuracy in terms of predicted total defects and type of defects along with their quantities. 

The system also provides predictions for two other features: Max Defect Size and total 

defected area which are not seen in systems in the state of the art.  

The system and its results show that it was successful in detecting defects and predicting the 

features of these results with relatively higher accuracy than the methods in the literature. 

The system can predict Total Defects, Total Pores, Total Cracks which some previous systems 

have been able to predict too (Khanzadeh & Bian, 2016), however as mentioned earlier the 

system also predicts Total Defected Area and Max defect size which is not seen in the state-

of-the-art literature. The results show that the system has an accuracy of 81.22% in predicting 

total number of defects in an entire sample and an accuracy of 86.11% in predicting total 

number of defects per detected Event. Since the study takes a lot of its events from other 

literature it was possible to feed the same data into models that existed in the literature. The 
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Linear model used by (Barua & Frank Liou, 2014) yields an accuracy of 63.34% in detecting 

total number of defects and (Khanzadeh & Bian, 2016) methods yields and accuracy of 

62.75%. Logistic Regression models used by (Gaja & Liou, 2018) yield an accuracy of 6.25% in 

predicting pores and 33.3% accuracy in predicting cracks. The relative higher accuracy can be 

attributed to many things that was done differently in this study which includes the multi-

sensory system designed based on timing of the defect development cycle, Data Stitching 

technique, Training the system on a variety of provocation techniques and the unique Data 

fusion methodology. 

The research extracts events from stitched data sets that contain both signal and defect data 

in both time and spatial domain. This approach allows for “Events” that indicate the presence 

of possible defects that exist both in time and spatial domain to be extracted. This is one of 

the reasons why the system yields a higher accuracy compared to “Events” extracted from 

single domain extraction methods seen in (Fujun Wang, 2008) (Gaja & Liou, 2017) (John A. 

Slotwinski & E.J. Garboczii, 2014) (Barua & Frank Liou, 2014). Along with the fact that these 

signals can be seen in reference to the defects which verifies previous literature in terms of 

signal change when a defect develops, and the relation of these signals to the properties of 

the defect (Wu, Cui, & Xiao, 2020). (Gaja & Liou, 2017) states that the number events roughly 

agree with the number of defects found in the post analysis microscopic study. However, 

they do not have any mechanism through which they can correlate an AE event to a specific 

defect or group of defects found in the microscopic analysis. This problem is solved by 

stitching data as this method allows for defects to be directly corelated to signals instead of 

assuming a certain signal trend is associated with a certain defect or group of defects. With 

regards to signal indicating certain properties of the detected defect, it is found that certain 

sensors will show signal change based on the size of the defect detected. For example, large 

defects increase cooling rates, and the AE Amplitude is also relatively higher. 

Another reason for having higher accuracy is because of the highspeed multisensory 

approach and architecture mentioned in Chapter 5. A multisensory approach has allowed for 

the system to observe more than one phenomenon and an efficient data collection system 

makes sure that even if the sensor collects data at high sampling rate, the mutli-sensor data 

can be time stamped using a singular timeline. Therefore, the system architecture and 

consequently defect detection platform is an essential component of the methodology as 

without it the high data speeds become unmanageable. This is probably why (Clijsters, 
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Craeghs, & S. Buls, 2014) emphasizes that a custom data collection system is essential for a 

multisensory defect detection system. The multisensory approach allows for the monitoring 

of different windows or phases of the defect development cycle. This should provide a more 

complete picture of before during and after of the defect development cycle. This study also 

attempted to understand the timing of the defect development cycle Chapter 3 and Chapter 

5 which shows that the defects can develop as quickly as 0.1µs seconds and that certain 

sensors can only capture certain parts of the defect development cycle due to the 

phenomenon they are observing. When observed in the light of the accuracy this 

methodology presents it is evident that a single sensor approach (specially hardware that 

samples at slower rates) are incapable of capturing the entire defect development cycle 

leading to a lower level of information and lower accuracy. 

At this point it is also important to mention that one of the reasons for the relatively higher 

accuracy is because the system is trained on a multitude of defects varying in type, quantity 

and size which produced by the variation in Defect provocation techniques utilized in this 

study. These provocation experiments discussed in Chapter 6 took influence from the studies 

of (Barua & Frank Liou, 2014), (Gaja & Liou, 2017) and (Rasheedat M. Mahamood, 2014) and 

designed experiments that use physical deformities on the sample, contaminated powder, 

surface finish and machine parameters to provoke defects. As discussed in Chapter 7 a 

comparison is made between the quantity and sizes of the defects found in the literature and 

this study. It is found that contaminated powder experiments generate larger sizes of cracks, 

and the surface finish experiments produces larger pores. Compared to the sizes found it in 

the literature the development system can detect smaller size of defects which is testament 

to the systems sensitivity and efficiency (Reliability). 

The data fusion aspect combines the prediction ranges from different sensors to produce a 

singular range. The data fusion architecture developed takes influence from the (Luo & Kay, 

1989)’s architecture for multi sensor integration. The range generated from the data fusion 

equation compensates for sensors who aren’t as efficient at determining certain features 

e.g., AE data was proven to be inefficient at calculating the source position of defects 

however the HS camera due to its fast frame rate and frame overlapping technique used is 

quick to capture changes and the position of the defects rather accurately. Hence in the part 

of HS camera compensates for the weakness of AE sensor in the fusion equation. The 

reliability of the data is developed by a clever scoring system that relies on Euclidean 
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distances from the cluster centers. This theory is validated by calculating the forecasted 

variance graphs of the data at certain distances from the Cluster and it is found that as data 

points move away from their cluster center, the variance in their features of the data points 

increases (Chapter 7). This also goes to show that using K means cluster may have an added 

advantage compared to other unsupervised machine learning methodologies if used in this 

manner. 

The research heavily relies on previous literature and in a way validates previous works. Two 

plausible publications are a product of this research. The first one is “Defect Detection in LMD 

using Custom Data Fusion Algorithm” which details the unique data fusion methodology 

which uses stitching data from multiple sensors and extracting events from it which are 

clustered and based on these cluster prediction tables are formed. These prediction tables 

are used to predict the features of any new Event depending on which cluster it is assigned. 

The prediction of each sensor is combined using a data fusion equation. The reliability of the 

prediction range that the data fusion equation produces is determined by a % confidence 

value generated using a unique scoring system. The second publication “Multi-Sensory 

Defect detection architecture system for LMD” focuses on the architecture of the system and 

its timing specification to capture quick changes in defect development windows. 

In the grand scheme of things this research lays the road map for multi-sensory defect 

detection systems in LMD. It lays down the foundation by establishing the basic specification 

required to build such a machine even if it is for control purposes. Since it is built on a National 

Instruments system, is modular and uses industrially approved equipment this can be readily 

adopted and modified by the industry. The ability to predict the features of defects will allow 

for manufactures to set their own quality standards and will cut down on down time during 

post analysis to see if a sample has defects. It is also known when different material powders 

are used to build a sample the machine process parameter are fine-tuned to find the 

optimum process parameters. This system could help in calibrating the process parameters 

so that the ones chosen to do not generate any defects.  

One of the major limitations of this study is that the architecture uses two busses, and all its 

modules are not incorporated in a single chassis. A single chassis to house all hardware 

modules and a single full duplex bus for communication would have significantly increased 

the efficiency of the system. The data for just 10 deposits was over 4 terabytes which includes 

High Speed video, Thermal camera images, AE images and XCT. All this data had to be 
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scanned through and processed and some of the samples weren’t even utilized in the thesis. 

The analysis of each data type was done on different software’s which further increases 

analysis time. Better and automated analysis tools for all data types would improve the 

quality, quantity of data that can be extracted and be utilized to improve system training. 

Figure 120 shows the future works that can stem from this research. With multiple sensors 

integrated into a single LMD monitoring system a study can be carried out to observe the 

signal trends more closely. Since the system allows before, during and after monitoring of 

the defect development cycle, a Zero-defect manufacturing approach can be taken if a 

precursor signal to the development of a defect can be discovered. Once the precursor signal 

is discovered a corrective action to stop the defect from ever formulating can be taken. 

Second research that can be carried out is to use the system to observe all three phenomena 

in relation to each other e.g., what happens when there is a temperature spike observed in 

the thermal camera? What is observed in the AE or HS optical signal at this time. This will 

allow for a better understanding of the limitations of the signals collected from the melt pool. 

An improved fusion algorithm can be developed using empirical modeling. This will allow for 

researchers to understand which sensor outputs a stronger information or accurate 

information on a particular defect feature. Further research that is required is improved 

defect position calculation whether it is through multiple AE sensors or a better image 

processing technique.  Lastly a closed loop control system needs to be built for this system 

so that after defects are detected corrective action may be taken. 
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Figure 120: Future Works (HMDF stands for High Speed Data Fusion System) 
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