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S UNMARY

The hydrodynamics and the breakup of single
oscillating drops which are accelerating from rest
through a continuous phase were studied. Specially
purified chlorobenzene, 1,2~-dichloroethane, and
ethylbromide were used as the drop phase liquids and

double distilled water was used as the continuous phase

liquid.

The motion of the drops was recorded on
cine-film using shadow and schlieren optical systems
and these films were analysed frame by frame, Data is
presented for the variation with time of the veloclty
of fall, the frequency of oscillation and the
eccentricity of nonbreaking drops and the changes 1in

the structure of the wake behind these drops is
described.

A transition of the wake behind the accele -
rating drops from class I to the wake class of the
terminal reglon was observed. The first formation of a
class III attached wake was followed by the onset of
the terminal oscillations of the drop. A mechanism 1is

proposed for the sustaining of these oscillatlions.



The mode of breakup of freely falling drops
was investigated, Secondary drops were formed by a
necking process of the liquid columns which were formed
both at the rear and at the front of the primary drop.
The occurrance and the sizes of the secondary drops
are related to the size and the oscillations of the
primary drop. Theoretical predictions are made of the
ongset of necking and of the rate of necking using
respectively surface free energy considerations and a

momentum balance on the liquid in the column.
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SECTION 1

INTRODUCTION

Drops of one liquid dispersed in another
liquid occur in many industrial operations and processes
such as liquid-liquid extraction and direct contact
heat transfer operations. There are considerable
difficulties in investigating and predicting the
behaviour of drops in commercial equipment in which
there are present large numbers of drops. Therefore in
order to advance the understanding of the physical laws
which govern the behaviour of these drops many
investigations have been made with single drops falling
or rising through a continuous phase. Studies have been
made of the heat and mass transfer occurring in such a
system but the present work is concerned with the

hydrodynamics of such drops.

For the investigation of the hydrodynamics of
drops moving in another liquid it is convenient to

define three periods during the motion; namely :
a) The formation and acceleration period,
b) The period of steady rise or fall which
18 often referred to as the terminal

period,




c) The period of deceleration and coalescence.

There has been considerable progress made towards the

understanding of the hydrodynamics of single drops
during the terminal period and of the coalescence of

drops, but the acceleration period has been little
studied and is not well understood. However, the initial
motion is important, not only because it is relevant to
the terminal hydrodynamics, but also because of its
effects on the transfer rates in liquid-liquid extrac -
tion and in heat transfer operations. The existence of
high mass transfer rates during the initial motion has

been reported by a number of authors whose results have
been reviewed by JEFFRLYS(74) and the importance of the
initial motion in spray towers for direct contact heat
transfer has been discussed by MARKOWITZ and BERGLES(114)
and by LETAN and KEHAT(9®), The first object of the
present work was therefore to investigate the initial
hydrodynamics of drops falling through an aqueous

continuous phase and the findings are presented in

Sections 6 and 7 of the thesis. In this part of the

work the range of drop sizes was chosen so that all
the drops were oscillating in the terminal region
because it was recommended by JEFFREYS(74) that in
liquid-liquid extraction equipment oscillating drops

should be used to obtain high mass transfer rates.

Nonbreaking drops which are oscillating occur

over only a restricted range of drop sizes. It is found
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that when the drop size is above a critical value the
drops break up during the acceleration period(84) and
therefore there is a distribution of drop sizes in the
resulting dispersion., Although the breakup of drops
both in steady sheared motion and when they are falling
freely in air has been studied in some detail there has
been no real study of the breakup of drops whichiis
caused by oscillations during the acceleration period.
The second part of the thesis is devoted to a study of
this type of breakup and the findings are presented in

cections 8 and 9.



SECTION 2

LITERATURE SURVEY

2.1 INTRODUCTION

The present work deals mainly with the
hydrodynamics of the acceleration period of drops which
are 1in free fall. However, any investigation of the
droplet hydrodynamics of the initial period of fall has
to use the hydrodynamics of the terminal period for
comparison. For that reason a survey of the literature
on the hydrodynamics of the terminal period 1is presens
ted below. A survey of the very limited literature on
the acceleration period of fall of drops is presen-

ted under the heading "Initial Hydrodynamics'", For

convenience these surveys on drop hydrodynamics are
divided into five sections. These sections deal with
the velocity of fall or rise, the internal circulation,
the drop shape, the drop oscillation, and the

behaviour of the wake behind the drop. The surveys
presented below also include relevant literature on the
hydrodynamics of both single bubbles and solid spheres
which are moving through a fluid. Literature which
deals only with swarms of drops or only with the heat

and mass transfer characteristics of drop systems 18




not included.

The third part of the literature survey is
devoted to the breakup of drops. Although there have

been many investigations in this field, few of these

are of importance to the present work. Therefore this
survey is confined to those investigations which are

of direct relevance and does not aim at surveying the
complete field of drop breakup. In addition a section
18 included on the formation of drops from a breaking
column of fluid as it has been found that this system
has many similarities with the formation of secondary

drops from a drop which is breaking during free fall.

The last chapter of the survey is devoted to
the literature on the experimental technique which was

used in the present work to make the wakes visible.
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2,2 TERMINAL HYDRODYNAMICS

2,2.,a) Terminal Velocity and Drag Coefficient

Before discussing the theoretical and

experimental work on the terminal velocities and drag
coefficients of drops which has been carried out by
other workers, it 1s necessary to define these
variables. In the case of small drops which do not
oscillate and which fall in a vertical straight line
the definitions are straightforward because the drop
falls at a constant velocity U, and the drag
coefficient can be defined as the ratio of the drag

force FD to the product of the projected frontal area A

2
and the dynamic head ',%'Qa Voo
=
(CD)OO n —_ID—T- (2,1)
'IQD. Uw
Wwhen the drop falls freely at its terminal velocitylkp.
the gravity force will be balanced by the sum of the

buoyancy force and the drag force :
, 1
VRad = V8 g *(Coo AzRala (2.2)

where V is the volume of the drop and g and Qo are
the densities of the droplet and the continuous phases,
respectively. Equation (2.2) can be rearranged to give

for the drag coefficient :

c\ g Sfate Vi g
( D‘.o 2 - % A U2 (2.3)

Q
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At small sizes the drop has a spherical shape and

equation (2.3) reduces to :

ae g0
(o) ‘—"—*—gy

(2.4)

where D is the diameter of the drop. At somewhat larger
sizes the drop still falls in a vertical straight line
with a constant velocity, but deformation of the drop
occurs and its shape approaches that of an oblate
spheroid, If the horizontal axis is DH and the vertical

axis is Dy the drag coefficient can be calculated from

equation (2.3) as :

(CDL':-%—-—S—- 3 0v (2.5)

For larger sizes of drops the definition of the
terminal velocity and the drag coefficient becomes more
obscure because the drops oscillate and move no longer
in a vertical straight line. In this case it is usual
to define the gross terminal velocity as a long
vertical distance travelled by the drop divided by the
corresponding elapsed time where the distance and the
time interval are large enough to let the drop go
through many oscillations. The definition of the drag
coefficient also has to be modified because <the
projected frontal area is no longer constant. For
convenience an equivalent spherical diameter DE,l is
defined as equal to the diameter of a sphere having the

same volume as the drop. This gives :



D

a
| =(—f—F-V,) (2.6)

The drag coefficient is then calculated using the
equivalent sherical diameter and the gross terminal
velocity as if the drop was spherical and was falling

at a constant veloclity :

48R 8 2
(Co)°o T Re UL (2.7)

This 1s the form which is used throughout the present

work.

Theoretical studies of the hydrodynamics of
freely falling drops have been confined to spherical
drops which are falling in a vertical straight line.
These theoretical studies consist of solutions of the

Navier-Stokes equations for a number of ranges of the

Reynolds number.

The Navier-Stokes equations, which describe

the motion in fluids, can be written in dimensionless

form for incompressible flow as

NI I SO
D{__* ,-qradp v _Q?VUf—F-:‘-r— (2.8)

These equations are solved with the appropriate

boundary conditions in conjunction with the continuity

equation :

div U IO (2.9)
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However, they can be solved only when certain

simplifying assumptions are made. There have been two
different approaches to the problem : At low Reynolds
numbers a creeping flow solution has been made and at

higher Reynolds numbers a boundary layer approach has

been used.

The simplest theoretical work at low Reynolds
nunbers was carried out by STOKES(152)(154). He assumed

that creeping flow conditions exist and that the
velocity at the interface is zero, There is no internal
circulation within such drops. Stokes showed that the

drag force on such a drop is :
FD » 31TIéDU°o (2'10)

This, when combined with equation (2.2) gives for the
terminal velocity of fall :

<
(Um,)St : '7’3" &30 (2.11)

la

and when combined with equation (2.4) gives for the
drag coefficient :

.y : 24
20U  Re

The assumption of creeping flow in the analyslis by

(Cp),.= 24

(2.12)

Stokes 1limits the Reynolds number range to Re{l. This
range was extended by OSEEN(123), who took the inertia
terns on the left-hand side of the Navier-Stokes

equation (2.8) partly into account. The improved
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expression for the drag coefficient becomes in this

cage .

(CD)OO"" Re ( l t ""’és—' Rﬁ) (2.13)

This drag coefficient is valid again only for drops

with no internal circulation.

The internal circulation within drops was

considered both by HADAMARD(56)(57) and RYBCZINSKI(1372

independently. They considered drops for which there
was a finite velocity at the interface and continuous

velocity and stress distributions across the interface.
Such drops exhibit internal circulation. If the
nonlinear terms in the Navier-Stokes equation (2.8) are

ignored, the terminal velocity of the drop is given by:

IS4
Uw '(UN)S{: 3’5 +zf&g

This equation predicts higher terminal velocities than

(2.14)

the Stokes solution and only at very high values of the
dispersed phase viscosity does the terminal veloclty
approach the Stokes solution. A solution for drops with
a slower rate of circulation than the drops of Hadamard
and Kybczinski has been attempted by BOUSSINESQ(16)"(212
He assumed a thin layer of higher viscosity near the
liquid interface which reduces the momentum transfer
across the interface and he introduced the concept of

a surface viscosity coefficient e. The terminal

velocity of fall of such a drop is then given by :
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Uoo-(uoo) 2e + D (3M4+3 1) (2.15)

St 2e +D (3/‘&l +.a/a4)
This equation predicts a lower terminal velocity than

the Hadamard-Rybczinski model, but still a higher one

than the Stokes solution. The surface viscosity
coefficient e can only be evaluated from experimental
data and can be used to explain a drag curve
intermediate between those of rigid and fully
circulating fluid spheres. LEVICH(QB), however,
suggested that this surface viscosity was caused by the
Presence of surface-active agents at the interface. He
was able to evaluate e theoretically. Further analysis
of the surface viscosity is outwith the scope of the
theslis and is discussed thoroughly by Levich. All the
theories mentioned above assumed creeping flow

conditions which limits their use to the Reynolds

number range Re ¢ 1.

Several authors have carried out experimental

work on the velocity of fall of droplets at low Reynolds

numbers and the results show good agreement with the

above theories. GARNER and HAYCOCK(43) reported that

thelr data on drag coefficients for Reynolds numbers
less than unity agreed with the Stokes theory rather
than with the Hadamard-Rybczinski theory. This is to

be expected because there was no internal circulation
in most of the drops. SATAPATHY and smITH(139), nowever,
showed that the velocity of fall of large drops at
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Reynolds numbers less than 4 agreed more with the
Hadamard~Rybczinskl theory. Their drops had

internal circulation because they used large drops.

It has been shown that larger drops circulate more

readily than smaller drops and this will be ﬁgn,géfai )
discussed in the next chapter, BDND(14) and BOND

and NEWTON(IS) also reported that the velocity of

fall of small drops which were not circulating

agreed with the Stokes theory, whereas the velocity

of fall of larger drops with internal circulation
agreed well with the Hadamard-Rybczinski theory.
There are no reports in the literature of results
for drops which agree with the Oseen theory
although MGLLER(llB)'s results for solid spheres
did agree with this theory for Re{0.6 . Thus it
appears from the literature that the Stokes and
the Hadamard-Rybczinski theories are sufficient
to predict the terminal velocity at low Reynolds

numbers for drops with and without a rigid interface,

respectively.

At somewhat higher Reynolds numbers a boundary
layer approach was used by LEVICH(97). He considered
bubbles rising in liquids and postulated that the
tangential stresses vanished at the bubble-liquid
interface and solved the Navier-Stokes equations for

the velocity in the boundary layer. His analysis was
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later shown by CHA0(27) to contain some error. Chao
extended the analysis of Levich to liquid-liquid systems
and considered equal tangential velocity components and
equal shear stresses on the two sides of the interface,
but he did not take the flow separation into conside -

ration., Solving the Navier-Stokes equation he calculated
the drag coefficlient as

(Co),, - 1{1169, (l+-9-:%-£-,f:—) b (2.16)

o
where b 18 a property parameter given by

* 2 + 3 (M)
0 = ———— .17
|+ (fdRa)(M /) ]™ 217

Equation (2.16) differs from the original expression
given by Chao. This is due to the ommision of curvature
terms in the boundary condition in the development of
the original expression. The correct expression given
above wag presented in a later study by WINNIKOW and
cHa0{178) | phey also considered the boundary layer
gseparation to a limited extent. They calculated the

total drag as the sum of the viscous drag and the

pressure drag and both of these drags were expressed as
functions of the Reynolds number, the angle of
geparation 95 , and the property parameter Y which 1is
defined in equation (2.17). HARPER and MOORE(62) made

a somewhat more detailed analysis of the contribution
of flow separation at the rear of a spherical drop to
the drag coefficient. WINNIKOW and CHA0(178)'B

experimentally determined drag coefficients were 34 to
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88 ¢, higher than predicted by their theory for
138 {Re {700. This can be attributed to the failure of

the theory to predict an accurate pressure distribution
within the wake region and to the droplet deformation
which was not considered. Their experimental results

agree to a higher degree with Harper and Moore's theory
and in the range 150 (Re <500 the experimental results
were only from 6 to 25 % higher than the predicted
values. This better agreement can be attributed to

their more accurate prediction of the pressure
distribution at the rear of the drop and it is probable
that the neglection of droplet deformation is largely

responsible for the disagreement which remains,

At higher Reynolds numbers the deformation of
the drop is considerable and the motion is further
complicated by the oscillations of the drop. No
theoretical analysis has been attempted in this region

and only empirical relationships exist between the
gross terminal velocity, the drop diameter, and the
physical properties of the systems. A large number of

authors (36)(39)(48)(72)(77)(86)(88)(99)(139)(165)(178)
have reported gross terminal velocities of drops falling
or rising in liquid systems. Considerable differences

exist between the reported values at intermediate drop
sizes, although at higher or lower drop diameters there

is fair agreement among the data. It has been shown by

geveral authors(BB)(39)(84)(loo) that the presence of
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surfactants in the system inhibits the internal
circulation of drops and lowers the terminal velocity
considerably and it is probable that the presence of
trace quantities of surface active impurities accounts

for the differences between the various experimental

results.

The earlier investigations used technical grade

liquids which were contaminated with surface active
impurities. The generalized shape of the curve of the
terminal velocity versus the equivalent spherical

diameter which were obtained is shown in Fig.2.l. In
region A of this curve, where the droplet diameter is
relatively small, the velocity increases with increasing
drop diameter and coincides with the curve for solid
spheres. This 1s because the drops are stagnant and
behave like rigid spheres. At higher diameters, in
region B', the gross terminal velocity of a contaminated
drop is less than that of a solid sphere of the same
diameter. This is mainly because of droplet deformation.
Some of the contaminated systems exhibit a maximum in

the terminal velocity at higher diameters beyond which
the terminal velocity decreases slightly and then

remains constant. There have been several attempts to
correlate the gross terminal velocities of drops in
gsystems which were not specially purified. The earliest
one is due to HU and KINTNER(72) who investigated drops
of 10 technical-grade organic liquids of low viscosity



>

E B d',,, C
” --'-" A ¢ S——

% /‘:/'/ Cl—__‘-_-'

> e

_ /// Bl

O y'

C £

- /

e

Q

b—

Equivalent Spherical Diameter

—— puritied systems
—-—. contaminated systems

-——— solid spheres

FIG. 21 CENERALIZED TERMINAL VELOCITY CURVE




~17-

and high interfacial tension, which were falling in
water. They correlated the drag coefficients with the
Reynolds number, the Weber number, and a dimensionless

physical property group P, defined as :

3
O
p . fw _fw |
Thelr correlation is given by the two equations :
1275
Y =.g- X for 2 (Y70 (2.19)
and
2.37
Y 0045 X for Y 370 (2.20)
where
0.5
Y « (Co)oo We P (2.21)
and
0.5
X «(Re/P )+ o075 (2.22)

The break in the curve at Y = 70 corresponds to the

peak terminal velocity. This correlation was shown by

WARSHAY and coworkers(173) to be also valid for systems
of low interfacial tension but to be insufficient for
gsystems of high viscosity. JOHNSON and BRAIDA(77)
modified the Hu-~Kintner correlation in order to include
the high viscosity systems, by applying an additional
correction factor ("&/&SO“ $o the right hand side of
equation (2.21), where M is the viscosity of water.

A different correlation was presented by KLEE and
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TREYBAL(86) who used 11 technical-grade systems which

had a wide range of properties. They prescnted iwo

correlations, one for each side of the peak velocity :

For region B' in PFig.2.1

-5.18  _0.169
22 =374 (CDL Wi (2.23)
or when solved for the velocity of fall
-0.45 058 ~p.1 _ 070
Um':: 38-3 QO- A? }é DE,I (2.24)
and for region C!
4l 14
Re- 0.00418 (CO)w We (2.25)

or when solved for the velocity of fall

~0.55 g 010 0.1
Vo= 17.6 ¢ 4 b (2.26)

kquation (2.26) suggests that for large drops the gross

terminal velocity does not depend on the drop diameter.

This has been confirmed by other authors(72)(83).

HARMATHY(61) who used the terminal velocities reported

by various authors obtained a correlation similar to

equation (2.26) in the form :
ll[‘,

Upa 1.5 (2_%5{.0:.) (2.27)
s}

Subsequent investigators have worked with

carefully purified systems to eliminate the effect of

surfactants. The generalized shape of the terminal

velocity versus diameter curve for purified systems 18
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given also in Fig.2.1l. In region A, at small drop
diameters it coincides with that of solid spheres and
contaminated drops. At somewhat larger drop sizes, in
region B, the terminal velocity still increases with
increase in drop diameter, but is higher than the
terminal velocity of solid spheres or contaminated
drops of the same size. This increased velocity is
mainly due to internal circulation. Further increase in
the size of the drop increases the drop deformation and
decreases the velocity. At a particular size there is

a definite maximum in the terminal velocity. Around
this peak the drop starts to oscillate. Beyond the peak

the gross terminal velocity decreases with increasing

diameter and approaches the value for contaminated

drops.

THORSEN, STORDALEN, and TERJESEN(164) who
worked with oscillating drops in region C of Fig.2.1,

correlated their data for the gross terminal velocities
of drops in carefully purified systems, which had low

viscosities and high interfacial tension, by means of

the equation -

l[z
Vg « 28 [ ___._.‘.’.'____] 2,2
> 165 = 8 R | (34 +< %) De,r (2.28)

Recently EDGE and GRANT(33) algso worked with oscillating

drops in carefully purified systems and in a system in

which the continuous phase was contaminated with known

amounts of surfactants. They showed that when a




()

concentration of 10~% g/l of sodiumlaurylsulphate was
present in the continuous phase, further addition of
surfactant caused no change in the terminal velocity.
Systems with this amount of contamination were termed
as grossly contaminated systems and they agreed well

with the Hu-Kintner correlation whereas drops in

purified systems had much higher terminal velocities.
They correlated empirically the gross terminal velocity
with the diameter, the frequency of oscillation and

with the values of these two variables at the transition
from nonoscillating to oscillating drops in purified
systems. They also correlated the transition values

of the diameter and of the frequency of oscillation with
the densities and the interfacial tension of the
systems., By combining these correlations the gross

terminal velocity was given by :

(2.29)

where Kl and K2 are functions of the densities and

the surface tension.
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2.2.b) Internal Circulation

A finite viscosity and a mobile interface
makes possible the transfer of shear stresses across

the droplet interface. This induces an internal
Circulation of the liquid within the drop. The internal
circulation of spherical drops with a noncontaminated
interface was first described theoretically by HILL(65)
and by HADAMARD®®)(57) ang rymczinsk1¢*37). ni1a
investigated the motion of a spherical vortex in an
ideal fluid in which viscous drag was absent. The second

theory by Hadamard and Rybczinski examined the vortex
induced by the presence of viscous drag in a fluid
sphere which was falling slowly and steadily through
another fluid. The main features of the two theories
are as follows (Fig.2.2) :
a) In each investigation the velocity
distribution was continuous across the
interface,

b) In Hill's model the sign of the velocity
gradient was different on either side of

the interface whereas in Hadamard-
Rybczinski's model the sign of the velocity
gradient did not change across the
interface,
The velocity distributions which were predicted by the
two theories are shown in Fig.2.2. In both models the
veloclty distribution profile in the drop was quadratic
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with respect to the distance from the center. On the
equatorial plane of symmetry, at a distance of R/{E‘
from the center of the sphere, there was a ring of zero
velocity which is called the stagnation ring. In Hill's
model the maximum circulation velocity, which occurred

in the largest closed streamline, was 1.5 times the

velocity of travel through the medium whereas in the
second model it was always less than half of the

veloclity of travel. It can be seen from Fig.2.2 that
both the Hadamard-Rybczinski model and the Hill model
predict similar velocity distributions within the drop,

but the external flow pattern is different. However,

for a given velocity of fall of the drop, the
circulation velocities will be greater in Hill's case
than in Hadamard-Rybczinski's case. HARPER and MOORE(Gz)
studied theoretically the internal circulation of drops

at somewhat higher Reynolds numbers. They assumed a

spherical droplet shape and a boundary layer around

the drop. The vortices inside the drop were shown to be

similar to Hill's.

A number of authors have attempted to predict
the onset of internal circulation. From surface energy
considerations BOND(14) and BOND and NEWTON(lS)
postulated that the transition from noncirculating to
circulating drops at low Reynolds numbers occurs over

a narrow range of drop diameter and the transition drop

diameter was found to be
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)
D’mms ) ("Q'%E"‘) (2.30)

which corresponds to a transition Eotvis number of 4,
Later HUGHES and GILLILAND(73) used a somewhat more

refined force balance on the surface of the drop and

gave the critical transition drop diameter at which

the drops would be fully circulating as :
2
D . (-—E——-) (2.31)

This corresponds to a transition Eotvos number of 9.

:

The oscillation of the drop is another cause
of the internal motion of the droplet liquid. For the
cage of streamline motion the flow pattern with no
internal vortices was calculated by LAMB(89). He found
that most of the motion occurs near the surface and the
maximum velocity is at the 45° latitude on the surface.

No authors have so far presented any experimental

evidence of this type of internal motion.

Indirect evidence of the internal circulation
of drops has been available for a long time, but the
visualisation of the flow pattern within the drop and

the calculation of circulation velocities has been
achleved only within the last two decades. SPELLS(ISO)

used the photoviscosity effect of high concentration
glycerine solutions in water, SAVIC(141) and GARNER and

HAYCOCK(43) added powdered aluminium to the dispersed
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phase and GARNER(41) and GARNER and SKELLAND(46)(47)(48)
used colour reactions or introduced small coal particles
into the droplet liquid for the visualisation of the
flow pattern within the drop. Both the Hadamard-

Rybczinski and the Hill type of internal circulation

were observed within the drops. BOND(14), BOND and
NBWTON(ls), KINTNER and coworkers(85), HORTON and

coworkers(7l), and GARNER and HAYCOCK(43) showed that
the internal circulation within the drops at low
Reynolds numbers agreed more with the Hadamard -
Rybczinskl theory, whereas the drops of Garner and

Haycock at somewhat higher Reynolds numbers exhibited
an internal circulation closer to Hill's theory. This
is to be expected because at lower Reynolds numbers the
viscous drag is appreciable and Hill did not consider
the effect of the viscous drag on the internal

circulation of the drop.

It was also found experimentally that as the
drop diameter is increased there is not a sharply

defined change from a noncirculating to a circulating
drop and that over a range of drop sizes a drop will

be partly circulating. GARNER and HAYCOCK(43) ghowead

that the fraction of the volume of the drop which was
circulating increased as the drop Reynolds number was
increased. They showed that the internal circulation

was more readily established when the interfacial

tension was decreased or the continuous phase wiscoslity



was increased, but they also showed that the presence
of impurities had an additional effect on the onset of
internal circulation. It was found that, although the

pregsence of surfactants reduces the interfacial tension

and should therefore increase the extent of the internal
circulation, the internal circulation was, in fact,

reduced by their presence. Other authors(48)(164)

reported similar experimental findings. This can be
explained as follows : As the surfactant molecules are

adsorbed at the interface they are swept to the rear of

the drop. Therefore the surfactant concentration will

be higher at the rear of the drop and lower at the

front. This concentration gradient of the surfactant
molecules produces a surface tension gradient on the
surface of the drop which resists the transfer of

momentum across the interface., Thus the internal

circulation is reduced in strength or stopped,
depending on the concentration of the surfactant. Trace

amounts of surfactants will stop the internal
circulation of small drops, whereas higher concentra -
tions are needed for larger drops.

Some authors (134)(139) reported that regular
internal circulation appeared to stop and random

mixing set in when the drops were oscillating. However,

GARNER and SKEI&ﬁND(48) reported one system which showed
vigorous internal circulation although the drop was
oscillating. The flow pattern in oscillating drops 18

still uncertain and needs to be clarified.
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2.2.c) Drop Shapes

Whereas at low Reynolds numbers the drops
have a spherical shape, at higher Reynolds numbers the
shape is distorted approximately into that of an oblate

ellipsoid. This occurs in the range where drops have

higher velocities than those of solid spheres of the
same volume (Fig.2.l1l). The distortion is usually
described by the eccentricity E, defined as the ratio

of the major axis of the ellipsoid to the minor. The
eccentricity increases with drop size, and the drop
looses its horizontal symmetry as the peak drop diameter
in Fig.2.1 is approached, The definition of E then has
to be modified to that of the ratio of the maximum
horizontal diameter DH to the maximum vertical diameter
DV :

D
E ---—-5-'-'—- (2.32)
v

Beyond the peak diameter the drops oscillate and a mean

eccentricity has to be used.

Theoretical analyses of the shapes of drops

have been made by SAIT0(138) and by TAYILOR and ACRIVOS
(162) who found an error in Saito's work., Both of these
analyses dealt with drops moving at low Reynolds numbers
and they are beyond the scope of this thesis. The only
theoretical investigation of the shape of nonoscillating

drops moving at higher Reynolds numbers is the
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dimensional analysis which was made by HARMATHY(GI). He

found that at high Reynolds numbers the shape of
nonoscillating drops moving freely in liquid systems
depended solely on the E&tvos number. A theoretical

analysis of the eccentricities of oscillating drops has
not been attempted.

Experimental measurements of drop

eccentricities, however, have been reported by a number
of authors'+4)(15)(39)(49)(61)(83)(86)(116)(175)(178)

BOND(14) and BOND and NEWTON(IS) reported eccentricities
at low Reynolds numbers. They found that when the E8tvis
number was greater than unity the drop was distorted
from its spherical shape and that circulating drops

were more distorted than stagnant drops. DAVIES<31)(32)
gave 0.4, HARMATHY(61) 0.79, and WINNIKOW and CHAO(178)
0.2 for the critical Edtvds number for deformation to
occur. This disagreement is probably due to the
different amounts of surface active impurities which
were present in the various systems used by these
authors. Several authors have investigated the effect

of surface active agents on drop distortion. GARNIR and
coworkers(4l)(48)(49) found a reduction in the drop
distortion when surfactants were present and they
related this to the reduction in internal circulation.
These authors suggested that if the interface is not

contaminated with surfactants the internal circulation

is greater and this causes an increased centrifugal
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effect which leads to increased deformation of the drop.
several authors(38)(39)(l78) also reported similar
effects of surfactants. However, MELHUS and TERJESEN(IIG)
reported increased deformation when surfactants were

present. The Qifference in the results of Garner and

coworkers and Melhus and Terjesen is probably caused by

the differences in the degree of contamination which
were present in their systems. In Garner's systems the
degree of contamination was low and therefore this had
little effect on. the surface tension but had a large
effect on the internal circulation. Thus their
contaminated drops were less distorted than thelr pure
drops. However, in Melhus and Terjesen's systems the
concentration of the surface active agents was high,
which lowered the surface tension considerably and
allowed the drops to deform and this more than
compensated for the decreased deformation resulting
from the decreased internal circulation. Also EDGE and
GRANT(37) showed that the presence of surfactants
decreases the eccentricity of l,2-dichloroethane drops
falling in water. However, when a concentration of
10"""2 g/l of sodiumlaurylsulphate was present in the
continuous phase, further addition of surfactants
caused no change in the gccentricity of the drops. The
reduction in the interfacial tension at this
concentration was about 2.9% which is small compared

with those in the contaminated systems which were used

by Melhus and Terjesen.
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The dependence of the drop eccentricity on
the E6tvos number, as predicted by HAHMATHY(61), has

been reported by various authors. Harmathy's

semiempirical correlation between the eccentricity and

the EO0tvos number has the form

U 0.6
E - Ec/g

However, the agreement of this correlation with the

= 0.449 (Eé)h (2.33)

published data on eccentricities is very poor. This is

because to obtain equation (2.33), Harmathy used drag

coefficients which were obtained for contaminated
gsystems and for liquid-gas systems with very low or no
internal circulation. He also included systems where
the drops were oscillating and it is doubtful whether
the mean eccentricities of oscillating drops can be
correlated in the same way as the eccentricities of

nonoscillating drops. A simpler correlation was obtained

by WELLEK, AGRAWAL, and SKELLAND(17°) ag .

E « | + 0129 E8 (2.34)

These authors used the eccentricity data for nonoscil -
lating drops in 45 systems. This correlation also

cannot be applied to specially purified systems, because
it was based on contaminated systems which had 1little

or no internal circulation. This can be geen from the

fact that equation (2.34) is similar to correlations
obtained by other authors(40)(45)(132) who investigated

the eccentricities of stagnant drops falling in air.
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WINNIKOW and CHAO(178), however, worked with liquid-
liquid systems which were specially purified and showed

internal circulation. These authors also obtained linear

relationships between the drop eccentricities and the
£K0tvos number for various systems but the linearity

constant was much higher than the one given by Wellek,

Agrawal and Skelland in equation (2.34) and it also
increased with decreasing property parameter Eﬁ which

is defined in equation (2.17). Winnikow and Chao
asgsociated small values of b with more vigorous internal
circulation. This again suggests that increased internal
circulation increases droplet distortion, as suggested

by Garner and coworkers.

There is very little data on the mean
eccentricities of oscillating drops. KEITH and HIXSON(832
KLEE and TREYBAL(SG), and ELZINGA and BANCHERO(39)
found that the eccentricity of oscillating drops in

gsystems which were not specially purified was propor -
tional to the equivalent spherical diameter. Their

calculations of the mean eccentricity of oscillating
drops was very dubious because they were based on rough
averages of maximum and minimum distortions obtained
from a number of still photographs of different drops
of the same size. The scatter of data was also very
large. EDGE and GRANT(SB), however, calculated a mean
eccentricity equal to the ratio of the average DHto

the average Dy over 5 complete oscillation cycles.
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They also obtained a large scatter for the eccentricity,
but the eccentricity seemed to be independent of the

equivalent spherical diameter. It can be concluded

that there is poor agreement in the literature on how
the mean eccentricity of oscillating drops changes

with the equivalent spherical diameter. This is mainly
because of the difficulty in measuring the mean

eccentricity.
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2.2.d) Drop Oscillations

In a given system as the size of the drop is
increased, a size is reached at which the drop is

deformed and assumes generally an oblate ellipsoidal
shape. Such a shape is unstable in low viscosity fields,
and the drop will oscillate. For small drop sizes these
oscillations are axially symmetric periodic changes
between a more oblate form and a less oblate form

although they are commonly referred to as oblate-prolate
oscillations. Larger drops, however, fall through the

continuous phase in an erratic oscillatory motion. This

type of oscillations is described as random wobbling.

There have been no theoretical studies of the
frequency or of the amplitude of oscillation of a drop
moving in a fluld. However, there have been several
studies of the small amplitude oscillations of drops
at rest. The surface-tension oscillations were first

considered by RAYLEIGH(lso). He ommitted the effect

of the continuous phase and obtained for the frequency

of oscillation :

2 | 8 ¢
Wp, = e (n-l](n‘*?.)w (2.35)

This analysis was later extended by LAMB(Bg). He took
the density of the continuous phase into consideration

and obtained for the frequency of oscillation :



—_— (2.36)

which reduces to Rayleigh's result if ;= O . The first
mode of oscillation which can be observed experimentally

is for n=2. This is the case of ellipsoidal deformation
and the frequency is given by :
wﬁ" l 192 o
- 4t 2%,+3% D?

The frequency of oscillation calculated from equation

(2.37)

(2.37) will be subsequently referred to as "Lamb's

frequency of oscillation",

The most extensive analysis of small amplitude
oscillations of a drop at rest in another fluid has
been carried out by MILLLR and SCRIVEN(117) who took
the viscosities of both phases into consideration. They
obtained an equation for the frequency of oscillation
which could only be solved numerically except for a

number of special cases. For the limiting case of low

vigcosity they obtained for the primary mode of

ogcillation :

Wew - wh (2.38)

where

| 2
Wy « W*& 7.7 mﬁ?d?ﬂ)

T v
Leat3Ra10 (MRy\™ ¢ (M Q)
For the case of two inviscid liquids (M uféu' 0) equation

(2.38) reduces to Lamb's solution.
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At the larger amplitude of oscillations which

occur with the larger sizes of drops it has been found

that the frequency of oscillation decreases asg the
amplitude is increased. SCHROEDER and KINTNER(146)

attempted to describe this effect by considering an

amplitude factor b, defined as :

A’
DVM -Dvmin
be | ~—afiat WP (2.40)
=1 -3 Dvors

Using a procedure which was similar to Lamb's they

obtained for the frequency of oscillation :

We b w (2.41)

For small amplitude oscillations b, tends to unity and
equation (2.41) reduces to Lamb's solution. The authors
were not able to determine the amplitude factor [
theoretically. There have beenﬁo other attenpts at a

theoretical analysis for large amplitude oscillations
of drops.

Several authors(22)(36)(37)(38)(39)(43)(48)

(72)(73)(77)(86)(99) (134) (139) (146) (164) (178) 140010

the existence of steady-state nondamping oscillations
for drops moving in a liquid continuous phase. The
onset of these oscillations has been found to occur
near the peak terminal velocity in Fig.2.1 and at a
critical transition Weber number. HU and KINTNER(72)
gave a value of 3.58, and WINNIKOW and CHA0(178) 4.08
for this transition Weber number. EDGE and GRANT(36):
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however, showed that the transition occurred at a break
in the plot of the Weber number against the Ohnesorge
number. They found that the transition Ohnesorge number
1s predicted satisfactorily when the transition
equivalent sherical diameter is given by the equation :

DEI = -—9—-—’6—2:-;— (2.42)
Ctvans (4R [Rd)™

There are few authors who reported detailed
measurements of the frequency and the amplitude of
oscillations. SCHROEDER and KINTNER(146) correlated the

amplitude coefficient b, given in equation (2.40) with
the equivalent spherical diameter as :

0.325
bA= 0.805 DE‘, | (2-43)

The amplitude data was scattered considerably, but they
obtained consistent measurements for the frequency of
oscillations which agreed with equation (2.41) with an
average error of + 9,01 %. The systems which were

investigated by Schroeder and Kintner were not specially

purified before use and were probably contaminated.

Specially purified systems were investigated
by THORSEN, STORDALEN, and TERJESEN(164). They correlated

the drop Strouhal number with the physical constants of
the systems. The Strouhal number appeared to be a

constant and was a function of the dengities only :

Sr‘ 0-535 - 0.32[{‘ %"— (2#44)
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Constant Strouhal numbers were also obtained by EDGE
and GRANT(36)(37)(38). They presented measurements of
the frequency of oscillations for five carefully
purified systems and for one system contaminated with
a surfactant to various degrees. They were able to

correlate thelir data for the frequency of oscillation

in purified systems as :

¥ 0.695
w - w — T (2045)
(82[R4) ° Dgy

The frequency of oscillation was higher for grossly
contaminated systems and agreed with the Schroeder-

Kintner correlation.

Mechanism of Oscillations

There has been much speculation both about
the onset of the oscillations of drops and on the
maintenance of these oscillations. In the literature

there is no agreement on the stage at which a drop,
which is falling from rest, starts to oscillate,
HUGHES and GILLILAND(73) reported that the oscillations

were started by the elongation of the drop at the
forming tip. SCHROEDER and KINTNER(146), however,
observed that tip-induced oscillations tended to die
out. WINNIKOW and CHAO(178) observed that the natural
oscillations of drops didn't start immediately after
detachment from the tip but at some distance from it

and this distance was shorter for larger drops.
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Several authors related the initiation and
the maintenance of oscillations to the shedding of
vortices in the wake behind the drop. SCHROEDER and
kInriER(146) and THORSEN, STORDALEN, and TERJuSEN(L64)
considered that a vortex trail must be present if there
is to be a driving mechanism for the oscillations.
SCHROEDER and XKINTNER considered by analogy an undamped
spring which was perturbed by a continuing outside
force and oscillated at or near its natural frequency
as long as the sustaining mechanism was present. They
suggested that a drop with a vortex trall had a

sustaining mechanism and would oscillate at or near its
natural frequency. However, they gave no details of the
sustaining mechanism. Thorsen and coworkers claimed
that the shedding of the wake into the outer stream
created a pulsating pressure distribution over the

surface of the drop which was considered to be the
driving mechanism for the oscillations of the drop.

Once the oscillation had started there was an interaction

between the interfacial tension force trying to conserve

the spherical form of the drop, and the pulsating
pressure distribution over the surface. DAVIES(33)
suggested that when the frequency of wake shedding was
equal or close to the natural frequency of drop
oscillations this would create a resonance and would
lead to a periodic building up and damping out of the
drop oscillations. EDGE and GRANT'3T), nowever, found
that the frequency of drop oscillations both determined
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and was equal to the frequency of wake shedding.

2.2.e¢) Drop Wakes

When a drop moves through a continuous phase

disturbances occur in the continuous phase behind the
drop. These disturbances are usually referred to as the

wake. Also immediately adjacent to the rear surface of

the drop there may be a region which contains a
quantity of the continuous phase and which moves with

the drop. This region is usually referred to as the
attached wake.

The theoretical determination of the flow
patterns around fluid objects is usually difficult. The
nonlinear Navier-Stokes equations (2.8) need to be
solved with the appropriate boundary conditions. A
general solution is not possible and only approximate

solutions can be obtained when simplifying assumptions

are made.

The symmetrical flow pattern around spherical
drops at low Reynolds numbers was calculated by STOKES
(152)(154). He ignored the inertia terms in the
Navier-Stokes equations. Later OSEEN(123) considered
the inertia terms to a limited extent and obtained a

nonsymmetrical flow pattern. Oseen's solution of

linearized Navier-Stokes equations has been improved by
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GOLDSTEIN(sl), TOMOTIKA and AOI(17O), and PELARCEY and
McHUGH(lzs). These solutions were limited by the
linearizing approximations to Reynolds numbers below 2.
It was also assumed that there was zero velocity at

the interface. HADAMARD(?®) and RyBozInsk1(137),
however, calculated the flow pattern around spherical

drops which were moving at low Reynolds numbers in a

continuous phase and for which there was a finite
velocity at the interface. Under the creeping flow

condition,which was assumed by all the above mentioned

authors, the flow does not separate from the interface
so that there is no attached wake at the rear of the
drop.

At higher Reynolds numbers the inertia terms
in the Navier-Stokes equations become more important
and a solution has not been obtained for drops. However,
the flow pattern has been calculated for the flow
around rigid spheres at moderate Reynolds numbers and
thegse flow patterns have provided a useful starting

point for examining the wakes found experimentally

behind drops.

In solving the Navier-Stokes equations for
the solid sphere important simplifications are poassible,
although at moderate or high Reynolds numbers

approximate methods are still necessary. A discussion

of the methods which have been used to golve the
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Navier-Stokes equations for the flow of fluids around

a rigid sphere at moderate and high Reynolds numbers is
outwith the scope of this thesis and the reader is
referred to papers byKAWAGUTI(BO)(Bl)(SQ), THOM(163).
ALLEN and sourswiLL(3), 11srer(101), genson{75),

HAMIELEC, HOFFMAN and ROSS'98), SPALDING and PATANKAR
(149) ' ana RIMON and cming(133),

Wakes behind solid spheres :

The flow around solid spheres has been well
established experimentally. At low Reynolds numbers the
flow 18 symmetrical as predicted by Stokes. As the
Reynolds number 1is increased the upstream-downstrean
symmetry is lost as predicted by Oseen. At a critical
Reynolds number the flow separates from the interface

forming an attached wake at the rear of the sphere.
This critical Reynolds number was found experimentally

to be 1 by BOND'Y3), between 8.15 and 23.5 by NISI and

(121) ' 14 by GARNER, JENSON, and kEsY(44), 21 by

GARNER and SKELLAND(48), 24 by TANEDA(156)(157)(158),

PORTER

and above 720 by WILLIAMS(177). As the Reynolds number
is further increased the attached wake increases in

size and the circulation within the wake gains in
strength. There 1is no change in the general flow pattern
except for the advance of the separation ring towards
the equator of the sphere. At a certain Reynolds

number the attached wake becomes unstable and starts
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to oscillate about the axis of the motion. Part of the
attached wake is also shed periodically and the wake

has some similarity with the Karman vortex street

behind a cylinder. The critical Reynolds number for this
transition was found to be 130 by TANEDA(157). 150 by
JOHNSTONE and WILLIAMS(78), 200 by NEMENYI(lzo), 270 by
GOLDBURG and FLORSHEIM(SO), between 480 and 520 by
GARNER and GRAFTON(42), 450 by MOLBER(lIB), 500 by
scHMIEDEL(144)

The periodicity of the vortex shedding has

been measured by several authors and usually has been
presented in the form of Strouhal number. Strouhal
numbers for solid spheres have been reported by
noLLER (118) | sermiepEL(144) | GoLpBURG and FLORsHEIM(ZO)
and WINNY(179). The shedding of vortices was described
in detail by Moller. Up to a Reynolds number of 1000
the vortices which were shed were linked together to

form a vortex chain. At Reynolds numbers greater than
1500 only discrete vortices were observed which formed

a vortex street. These vortices were unstable, and

they joined together to form periodic balls of vorticity.
Moller was able to give Strouhal numbers for this
periodicity as well. SCHMIEDEL(144) found that

the periodic discharge of vortices from the

attached wake occurreda in the range 500 { Re {1000.
However, GARNER and GRAFTON(42) observed the shedding
well above a Reynolds number of 1000. GOLDBURG and
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FLORSHEIM(BO) observed irregularities in the shedding
of the wakes at and above a Reynolds number of 650,

Above this Reynolds number the wake was asymmetric,

There is obviously a large discrepancy

between theéese reported values of the critical Reynolds

numbers for the attached wake formation and for the
wake shedding. These authors used different designs of

apparatus and different experimental methods in making
the wakes visible. Also different methods were used
to move the spheres in the fluid and only some of these

allowed side to side motion of the sphere to occur and
each method had a different effect on the flow profile,
The turbulence in the continuous phase and the walls

of the container also could effect the flow pattern.
Also the Reynolds number based on the diameter of the
sphere as the characteristic length is probably not an
adequate criteria for dynamical similarity in the wide

range of systems considered above. These could explain

the discrepancies mentioned above.

Wakes Behind Liquid Drops :

The flow and wake patterns at low Reynolds
numbers have been observed by GARNER and coworkers(4l)
(43)(48)(49) | ang by SATAPATHY and smita(139), GARNER
and HAYCOCK(43) and Satapathy and Smith observed that
for Reynolds numbers less than 1 the flow pattern
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agreed well with the Stokes theory. Nonsymmetrical

flow patterns were observed between Reynolds numbers 1l
and 4 by Satapathy and Smith. The first attached wake
formation was reported to occur at various critical

Reynolds numbers : 4 by Satapathy and Smith, below 10
by MAGARVEY and BIsHOP(10®) at 20 by camn:r(4%),

between 19 and 23 by GARNER and SKilIAND'48?. As the
Reynolds number was further increased the size of the

wake 1increased. Contamination of the interface decreased
the internal circulation which resulted in a movement

of the separation ring towards the equator of the drop
and also in an ihcrease in the size of the attached
wake. This has been observed by GARNER and TAYLEAN(49)
and by LLZINGA and BANCHERO(Bg).

Satapathy and Smith observed that above a
Reynolds number of 40, the wake lost 1its stability and

started to oscillate from side to side, and at a

Reynolds number of 45 it started to break up on

alternating sides of the drop. There is some
disagreement in the frequencies of the wake shedding.
WINNIKOW and CHAO(178) found that the wake shedding
frequency was up to 70% higher than the droplet

frequency of oscillation the difference being greater

for smaller drops. EDGE and GHANT(37), however, were
not able to find any difference between the two

frequencies and in trying to explain Winnikow and

Chao's findings they pointed out that the latter
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investigators obtained their results from single sgtill

shadowgraphs and not from cine-films and were therefore

probably in error.

As in the case of solid spheres there is
disagreement in the reported wvalues of the critical
Reynolds numbers for the onset of the separation of the
flow. It is in fact difficult to decide wvisually when
an attached wake 1s formed at the rear of a drop and
it is a matter of personal opinion. The use of dyes for
the visualisation of the wakes and also the extraneous
impurities which are present in the systems also effect
the internal circulation and this in turn effects the
wake formation. Two more sources of disagreement need
to be taken into consideration when comparing various

results. The critical Reynolds number is defined as

(2.46)

where ?a and p& are the density and viscosity of the
continuous phase, respectively, and {1&dcﬁ£the
critical velocity of the drop relative to the ambient
fluid. GARNER and coworkers(41)(43)(48)(49) and
WINNIKOW and CHA0(178) defined [D]cri£ as the
equivalent spherical diameter of the drop at the onset
of separation. SATAPATHY and SMITH(139) and MAGARVEY
and BISHOP(IOG) defined it as the maximum diameter Dy
of the drop in a horizontal plane. Secondly the use of
a critical Reynolds number as defined in equation(2.46)
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does not take into account the differing physical
properties of the drop phase liquids which were used

by the various authors.

Wake Classification :

It is convenient to classify wakes according
to the nature of the motions set up in the continuous
phase far behind the drop. Although the motion within
the attached wake at the rear surface of the drop
determines the trail far behind, these motions are

much more difficult to observe.

MAGARVEY and‘coworkers(lOS)(106)(107)(109),

who used unpurified systems, described in detall and
classified the droplet wakes at some distance behind
the drop. They recognized six distinct and reproducible
trail configurations for the range of stable drop sizes.
The classes and the range of Reynolds numbers
corresponding to each class are indicated in Table 2.1,
The line of demarkation was not sharp between any two
classes. The trail left by the moving drop was a single
thread regardless of separation, provided the Reynolds
number was less than 210. The double thread
configuration, characterized by the Reynolds numbers
between 210 and 270, was accompanied by an asymmetry

of the attached wake. In the Reynolds number range of
270 to 290 the wake appeared as double thread




Wake
Class

range of Nature of the wake
Reynolds number
0O - 210 Single thread

II 210 - 270 Double thread
III 270 - 290 Double thread with waves

IV 290 - 410 Procession of vortex loops
290 - 700 Double row of vortex rings

700 - 2500 Asymmetrical wake

Table 2,1 Wake classification of MAGARVEY and BISHOP(IOB)

v
V1
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characterized by equally spaced wavy disturbances. This
range was considered as a transition to the next class,
Above a Reynolds number of 290 two distinct wake

patterns were observed. These were classified as either

clagss IV or class V wakes and whichever pattern occurred

seemed to be a matter of chance and the authors
suspected that the initial conditions determined which

class of wake was formed. Class IV wakes were observed
up to a Reynolds number of 410 and were characterized
by a series of vortex loops connected by an intricate
system of vortex filaments. Class V wakes were observed
up to a Reynolds number of 700 and consisted of a
double row of vortex rings. These rings all moved at
the same acute forward angle with the line of fall of
the drop and there was a perfect symmetry. Above a |
Reynolds number of 700 the symmetry was lost and the
discharge of one element did not initiate conditions
which led to a discharge from the diametrically
opposite side of the wake axis as was the case with the
class V wakes. This classification has been adopted by
gseveral authors although the Reynolds number ranges
marking the classes were disputed. DIMIAN and
RUCKENSTEIN(35) and MUNTEAN, DIMIAN, and HRISTESCU(llg)
obtained different Reynolds number ranges to mark the
wake classes, higher or lower ones depending on the
method used to make the wakes visible, The disagreement
in the Reynolds number ranges is probably because of

interfacial contamination and therefore these results
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are only of qualitative importance,

WINNIKOW and CHAO(178) investigated the wakes
behind drops in purified systems. They observed

threadlike wakes at Re = 805 and class III wakes at

Re = 660. This shows that the Reynolds number alone is
not sufficient to determine the wake classes for
purified systems. The change in the wake class was
found to depend on the Reynolds number as well as on
the property parameter b which is defined in equation

(2.17). This property parameter was considered as a

measure of the internal circulation.

EDGE and GRANT(37) who also used specially
purified systems considered only 5 wake classes. These
wake classes are listed in Table 2.2 and illustrated in
Fig.2.3. The transition from one wake type to the other
was not sharply defined and at certain drop sizes the
wake resembled a mixture of two wake classes,
Transition of the wake structure from a thread-like

wake to a vortex street was related to a transition

Ohnesorge number.,



Class Degcription

Nonoscillating drop. Single thread wake.

IT Drop oscillating with small amplitude,.
Single thread wake with pulses.

Drop oscillating vigorously. Chain of
vortices formed along the axis of fall.

II11

Drop oscillating vigorously and falling
IV in a zig-zag path. Vortices shed on
alternate sides of the vertical axis.

Random wobble of the drop. Irregular
detachment of vortices.

.-

Table 2.2 Wake classification by EDGE and GRANT(37)

Fig.2.3 Illustration of the wake classes
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2.3 INITIAL HYDRODYNAMICS

There hasbeen little investigation of the
hydrodynamics of accelerating drops. The main studies
which have been made are on the veloclity of fall and
there are also some observations on the wakes behind
accelerating drops. There does not appear to be any

research on the shapes or on the frequency of

ogcillations of accelerating drops.
2.3.a) Velocity of Fall

There have been a number of theoretical
studies on the velocity of fall of accelerating drops.
For the accelerational motion of a drop falling through

a stagnant continuous phase of infinite extent a force

balance gives :
Ve, 9Y - v ta )"
At dt =~ Y/ ?d'?o) d - CD A 3 U (2.47)

This equation has been solved by LAPPLE and SHEPHERD(gl)
for the velocity of fall of spherical drops at low

Reynolds numbers. The solution can be given in the form

U - (Uc,o)st[l -up(-—’é—%—;——t)] (2.48)

where (Um)% is the Stokes velocity given in equation
(2.11). To obtain the equation (2.48) they assumed the
drag coefficient Cp in equation (2.47) to be given by
the equation (2.12). For higher Reynolds numbers they
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agsumed the drag coefflcient to be constant throughout
the accelerational period and to be equal to that in
the terminal period of fall. The solution is then

given by :

e BlC
U = Uyt 3 & & 870000 (2.49)

The assumption, that the drag coefficient is constant
and equal to that in the terminal period is not based

on any theoretical reason and it is very doubtful.

In the acceleration period there is a

resultant force‘on the drop which varies with time, and
the momentum produced by this force is distributed
between the drop and the surrounding medium. This will
give rise to an effect which is equivalent in a
nonviscous medium to an increase in the effective mass
of the drop. STOKES(151)(153) and later LAMB(Bg) showed
that for a spherical drop the increase in the effective
mass is equal to half of the mass of the medium
displaced by the drop. If this is taken into

consideration equation (2.47) is transformed into :
dU 2
V‘(?d{- %‘-‘-‘]3{ l\”?d'?a) -Cp A %—?— U (2.50)

This equation has been solved By HU and KINTNER(72)

who assumed that the drag coefficient in this equation is
constant and equal to that in the terminal period. They
found that thevelocity of fall is given by :

t (2,51)
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This equation takes into consideration the effect of
the acceleration on the velocity of fall only to a
limited degree. Improved analyses on the accelerational

velocity of fall were made by BASSBT(G)(7)(8),

126)

p1cCIATT and 8066I0¢11) for noncirculating drops

and by PEARCEY and HILL(124) for circulating drops.
These analyses are tedious to use and are limited to
nonoscillating drops. The hydrodynamics of accelerating

drops which are oscillating 1s complex and no author
has attempted to analyse theoretically the motion of
these drops.

Experimental investigation of accelerating
particles has been made mainly in the fields of solid
spheres falling both in air and in water and water
drops falling in air. Reported accelerational drag
coefficients were much higher than the corresponding

terminal drag coefficients(l)(z)(3o)(103)(104)(145).

SCHMIDT(145) fitted his velocity versus time data to a
curve which is given by the equation :
t
Ur—uoo(l'c) (2.52)
where C is a constant.

The accelerational drag coefficient is calculated from

equation (2.52) as :

Cn)w [I t —— Qd Zal (Uoo-U] (2.53)

runon (103) (104)

coefficient :

gave for the accelerational drag



d b D dU
Cp- (Co)w*'g“:"ﬁ"a? dt (2.54)

where m is the mass of the sphere and b the "carried
mass" which is a measure of the increase in the
effective mass mentioned earlier. In Lunnon's

experiments b varied between one half and twice the
displaced mass. The equations (2.53) and (2.54) show

that the accelerational drag coefficients are higher

than the terminal drag coefficients and vary with time.

Thus the assumption of constant drag coefficlents
during acceleration which was made to obtain equation

(2.49) is not valid,

Two authors using widely different systems
observed an oscillation in the velocity against time
curves. This occurred before the terminal velocity was
reached. SCHMIDT(145) observed this phenomenon with wax
spheres falling through water and with rubber balloons
rising in air, and LAWS<92)(93) recorded it with water
droplets falling through air. In Schmidt's case there

was a maximum in the velocity which was followed by a
minimum before the terminal wvelocity was reached. The
maximum was less than the terminal velocity in most of
the cases. To investigate this he looked at the wake
pattern behind the spheres by wetting them with a
coloured dye solution. He observed that at a time
corresponding to the above minimum in the velocity

versus time curve the first shedding of the wake
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occurred. Schmidt concluded that the increase in the
volume of the wake before shedding was reducing the
kinetic energy of the sphere and correspondingly its

velocity. In Laws' case, above a certain drop size the

velocity overshot the terminal velociiy and then

decreased to the terminal value thus exhibiting a
maximum. Laws suggested that the drop distortion was

lower at this maximum than in the terminal region and
that this accounted for the lower ailr resistance.

However, he had no experimental evidence to

gubstantiate this view.



2.3.,b) Wakes

There does not appear to be any theoretical
analysis of the formation of the wake behind
accelerating drops and only the simpler cases of solid
spheres or circular and elliptical cylinders have been
analyzed. These deal mainly with the growth of a wake
behind the body after impulsive start of motion or
during a motion with constant acceleration. The point
at which separation first occurs was found to coincide
with the downstream stagnation point by BOLTZE(lz) for
a sphere after impulsive start of motion, by BLASIUS(IO)

for a circular cylinder both after impulsive start of
motion and for a motion with constant acceleration.
However, for elliptic cylinders in impulsive flow
GGRTLER(53) showed that the attached wake was formed
forward of the rear stagnation point when E> 2/{-\ .

Experimental investigations have been
concerned mainly with the wakes behind solid spheres
and circular cylinders. For spheres falling in water
SCHMIDT(145) observed that the first boundary layer
separation occurred at some point forward of the rear
stagnation point. However, the boundary layer
gseparation was shown by SCHWABE(147)(148), GOLDSTEIN(SZ)
and SCHLICHTING(143) to occur first at the rear
stagnation point for cylinders during constant

acceleration, as suggested by BLASIUs(lo).
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The evolution of a wake behind an
accelerating liquid sphere was observed by MAGARVEY
and BLACKFORD(IOB). Firstly a threadllke wake was
formed which separated somewhere near the rear
stagnation point the exact position of which could not
be determined. Secondly a wake with vortex loops wasg

formed which separated forward of the rear stagnation

roint and then the separation point moved towards the
rear of the drop during the growth of the wake. They

observed that the transition wake patterns which were

found with accelerating drops were different to the
wake types which were found in the terminal region.
However, they did not give details of their results

or of their experimental technique.



2.4 BREAKUP OF DROPS

The breakup of drops has been observed in
widely varying systems. Similarities between these
systems, however, do exist, and three basic types of
breakup have been classified Dby HINZE(GB). These are
the breakup of drops in a viscous liquid flow, the
breakup of drops in a gaseous flow, and the breakup of
drops which occurs during emulsification in turbulent
flow. Theoretical studies of the mechanism of droplet
breakup have been made mainly in two of these fields :
drops in a steady viscous sheared motion and drops
falling in air. The first of these has been analysed
using a procedure based on Rayleigh's theory for the
breakup of a liquid column and is for that reason of
some relevance to the present work. The second type of
breakup is also of some relevance as 1t has been
observed that liquid-liquid systems which have low
interfacial tension often break up in a manner similar
to the breaking of liquid drops falling through air.
There does not appear to be any theoretical analysis
of the mechanism of the breakup of drops falling
freely through another phase, although there have been

geveral experimental studles of these systems.
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2.4,2) Breakup of Drops Falling in Air

During its free fall in air a breaking drop
flattens and it then forms into a rim with a thinner
section that extends behind like a bag. Then the bag

bursts into a fine spray of very small droplets
leaving a ring behind which then disintegrates into a

circle of several droplets. This bursting process is

often described by the term "bag breakup" and was first
observed by LeNARD(I4)(95) ana mocuscawenper(69) and

subsequently by LANB(go) and MAGARVEY and TAYLOR(IIO).
.KLUSENER(87) explained this bag-type deformation of the
drop from pressure-distribution considerations. He
proposed that if the balance between the surface
tension pressure and the dynamic air pressure 1s
disturbed so that the latter is much higher the drop
will disintegrate. This explanation was also supported
by TRIZBNIGG(172) and LITTAYE(19?) and it suggests that
breakup occurs when the Weber number exceeds a critical
value. HINZE(66)(67) showed that this critical Weber
nunber depended both on the variation with time of the
dynamic forces and on the viscosity of the droplet
liquid. He found that for the case of freely falling
water drops in still air the critical wWeber number was
approximately 10. This is somewhat higher than the
value of 2.3 which was suggested by LhVICH(ls) from
theoretical considerations of the breakup of drops in

an ailr flow,
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Although this is the only type of breakup
which has been reported in any detail for drops falling
in air it must be borne in mind that i1t occurs over a
limited range of Weber numbers. This was observed by
LANE(go) who found that when the Weber number was
appreciably higher than the critical value, breakup

occurred in a chaotic way.
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2+4.b) Breakup of Drops in Viscous Sheared Flow

The first work on this mode of breakup is due
to TAYLOR(199)(160)(161) \1\ examined the deformation

and breakup of a drop in another liquid in plane -
hyperbolic or couette-flow conditions. He observed
that the originally spherical drop was pulled out into
a long narrow shape so that ultimately a long
cylindrical column was formed which finally broke up
into droplets. This observation of the cylindrical
threads which form during the breakup led TOMOTIKA(lee)
(169) to apply the theory of liquid jet stability to
the breakup of these threads. The theory which was
developed by Tomotika was in good agreement with

Taylor's observations. Taylor's theory on the deformation
of drops in viscous sheared flow was later modified by

various authors(4)(5)(26)(135)(136)(171). Basing on

thegse modifications KARAM and BELLINGBR(79) suggested
that E< 1/3 for breakup to occur., His experimental
results supported this suggestion.
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2.4.c) Free Fall Breakup in ILiquid-ILiquid Systems

Several types of breakup have been reported
in the literature for drops falling freely through
another liquid.