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Abstract. We investigate some properties of programmed quantum-state discriminators with simple
programs. Bergou et al. [Phys. Rev. A 73, 062334 (2006)] have considered programmable devices which
are supplied with two distinct but unknown program qbits and one data qbit which is certain to be
identical to one or other of the program qbits. The task is to discriminate between the first and the second
possibility. In this paper, we consider this state-discrimination problem when there is some additional
classical information available. We find that in the minimum error discrimination mode, the probability
of correct discrimination is increased by each type of classical information. The same is broadly true of
unambiguous discrimination, with the chance of success improving when the overlap between the program
qbits is reduced.

1 Introduction

The earliest classical computing machines were designed
to carry out fixed functions, such as multiplication and cal-
culation of square roots, by mechanical means. A major
step in their evolution occurred when Charles Babbage [2]
designed the analytical engine, a machine that could be
adapted to carry out a wide range of different functions,
using a fixed mechanism and supplied with a set of in-
structions as data. This is the fundamental configuration
used in all present-day (classical) computers.

It might be that quantum computers will follow a sim-
ilar line of evolution. Every system proposed at present
depends on hardware dedicated to solving one specific
problem such as searching or factorisation. Designs for
general-purpose quantum computers have yet to be devel-
oped.

The term programmable quantum computer has re-
ceived two different interpretations. On one understand-
ing, it relates to universal quantum gates that can be
switched, by classical control inputs, to perform a flex-
ible range of different functions. Significant advances in
this area have already been reported [3]. The other under-
standing refers to assemblies of gates whose combined uni-
tary function is controlled entirely by quantum inputs, so
retaining the adaptability of a general-purpose computer
without the need to carry out measurements of intermedi-
ate results. It is this latter interpretation that is of interest
here.
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Much of the published work to date has been done by
Bergou et al. [1]. This present paper advances some of their
ideas, by considering the behaviour of certain multi-qbit
quantum systems restricted by known relations between
the qbits.

2 Background

A key aspect of quantum information technology is the
ability to measure the states of individual quantum sys-
tems. Unlike the case with classical systems, there are
strict limits to the accuracy that such measurements can
be made.

Every measurement of a quantum system with a den-
sity operator ρ̂ corresponds to a set of operators {π̂n} for
n = 1, 2, 3 . . . such that the probability of outcome P (j) is
Tr(ρ̂π̂j). As some outcome is certain, the operators sum to
the unit operator Î. If the π̂ operators form an orthonor-
mal set they represent a von Neumann measurement. In
this case, a system prepared in an eigenstate of the as-
sociated observable will give a predictable result. More
generally, the measurement will be a generalised one and
the result will typically be probabilistic irrespective of the
state in which the system was prepared.

For any given system, it is generally possible to find
sets of operators, called probability operator measures
(‘POM’s for short) [4], which can be optimised in vari-
ous ways [5]. In general the probability operators π̂i will
not be orthogonal:

π̂iπ̂j �= π̂iδij . (1)
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The POM formalism has been especially important in the
problem of quantum state-discrimination. Optimal POMs
fall into two distinct categories. The minimum error POM
has one element for each possible state of the quantum
system, and each outcome carries a probability of error.
By comparing the (known) statistical expectation of the
states with the probability given by each element in the
POM, we can find an average error rate in the discrim-
ination between the possible states. On the other hand
the unambiguous discrimination POM has an additional
operator, π̂0, that corresponds to ‘state unknown’. If a
state is recognised at all, the outcome is certain; there is
no doubt at all that the system is in that state. However,
recognition may fail completely. The expression

P (0) = Tr(ρ̂π̂0) (2)

gives the probability that failure to discriminate occurs.
We buy occasional certainty in discrimination at the cost
of frequent total ambiguity.

Measurements do not necessarily need to be applied
to systems such as single qbits. They can also be used to
discover relationships between sets of qbits (for example,
whether two qbits are the same) without probing their
actual values. A simple example, closely related to the
problem of interest, is the comparison of two systems each
prepared in an unknown state [6,7].

Several different configurations of quantum systems
have been considered as information carriers. The sim-
plest arrangement consists of a single system, such as a
polarised photon or isolated atom, where the states can
be described as unit vectors in an N-dimensional Hilbert
space. The system carries a single digit of radix N, with
the several possible values being represented by orthogo-
nal vectors, which we call ‘basis states’. If N = 2 then we
have a two-state system or qbit [8].

If the basis states are orthogonal, they can be recog-
nised without error by a von Neumann measurement. If
the system is in a superposition of two or more orthogo-
nal basis states, the von Neumann measurement will yield
a probabilistic result. The theory of von Neumann mea-
surements has been understood since the publication of
von Neumann’s book in 1932 [9].

Another arrangement also consists of a single quantum
system, but here the possible states are deliberately made
non-orthogonal to one another. No measurement can dis-
tinguish the states with perfect fidelity. This fact is made
the basis of secure data transmission protocols, where the
presence of any eavesdropper will inevitably be detected.
The identification of non-orthogonal states has been inten-
sively researched by Barnett et al. [6], Sedlak et al. [10],
Kleinmann et al. [11].

A third arrangement, which has been considered re-
cently, uses three quantum systems to represent a single
binary digit. Two of the systems, A and C, are called the
‘program qbits’. They are prepared in the states |ψ1〉 and
|ψ3〉, respectively. The third qbit B, known as the ‘data
qbit’, is guaranteed to be in the state |ψ1〉, representing 0,
or |ψ3〉, representing 1. The discrimination problem con-
sists of deciding which of these two possibilities is true and
so retrieving the bit value.

This arrangement would be useful in setting up com-
munication between two remote stations where there is no
prior agreement on the identity of the basis states. This
is because the arrangement is insensitive to any unitary
transformation, so long as it applies to all the qbits iden-
tically.

The error rate of such a hypothetical device, using both
minimum error and unambiguous discrimination POMs,
has been investigated by Bergou et al. [1]. We refer to
these five authors as the ‘Hunter Group’, after the college
at which two of the authors are based. They assume that
the two program qbits are completely unrelated, and find
an average expected error rate when the program qbits are
equally likely to be anywhere on the surface of the Bloch
sphere.

In this paper, we refer to the set of three qbits A, B
and C, prepared in the states {|ψ1〉A, |ψ2〉B , |ψ3〉C} as a
Triad, where the subscripts {A,B,C} identify the position
of the qbits in the Triad state, with the data qbit B placed
between the other two. The state |ψ2〉 will, of course, be
either |ψ1〉 or |ψ3〉. We consider the effect on the average
error rate of additional classical (i.e., certain) information.
The extra information appears as constraints on the values
of the two program qbits. We consider three specific cases
in particular:

– A known overlap between the two program qbits.
– The knowledge that both program qbits lie on a given

great circle on the Bloch sphere.
– The knowledge that one program qbit is restricted to

a cap centered on the north pole of the Bloch sphere,
and the other to a similar cap centered on the south
pole.

We also take into account the effect of different a priori
probabilities of the two outcomes.

3 The computational method
used by the Hunter group

Our calculations have much in common with those used
by the group of authors in [1]. In this section we give an
outline of their methods.

Consider a Triad. As |ψ2〉 must be the same as either
|ψ1〉 or |ψ3〉, there are only two possibilities for the input
state of the discrimination device:

|Ψ in1 〉 = |ψ1〉A|ψ1〉B|ψ3〉C
|Ψ in2 〉 = |ψ1〉A|ψ3〉B|ψ3〉C . (3)

As both |ψ1〉 and |ψ3〉 are unknown, the Hunter group
finds two density matrices, both averaged over the Bloch
sphere:

ρ̂1 = |Ψ in1 〉〈Ψ in1 |

ρ̂2 = |Ψ in2 〉〈Ψ in2 |. (4)
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The states |ψ1〉 and |ψ3〉 are independent of one another,
so ρ̂1 can be written as the tensor product λ̂1 ⊗ μ̂1, where

λ̂1 = |ψ1〉|ψ1〉〈ψ1|〈ψ1|

μ̂1 = |ψ3〉〈ψ3|. (5)

Both λ̂1 and μ̂1 are averaged over the whole Bloch sphere.
For a general qbit |ψ1〉 = cos(β/2)|0〉+eiα sin(β/2)|1〉,

the product state is the four-component vector:

|ψ1〉|ψ1〉 = (cos(β/2)|0〉 + eiα sin(β/2)|1〉)⊗2

=

⎛
⎜⎜⎜⎜⎝

cos2(β/2) |00〉
+eiα sin(β/2) cos(β/2) |01〉
+eiα sin(β/2) cos(β/2) |10〉
+e2iα sin2(β/2) |11〉

⎞
⎟⎟⎟⎟⎠ (6)

so that λ̂1 is the 4×4 matrix which is the tensor product of
this vector and its complex conjugate, where each element
is averaged over the Bloch sphere. Computing this average
gives:

λ̂1 =
1
4π

∫ 2π

0

dα

∫ π

0

dβ|ψ1〉|ψ1〉〈ψ1|〈ψ1|

=
1
6

⎛
⎜⎜⎜⎜⎝

2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

⎞
⎟⎟⎟⎟⎠ , (7)

where the rows and columns correspond, in order, to the
states |00〉, |01〉, |10〉 and |11〉.

Alternatively, |Ψ in〉 is symmetrical in the two compo-
nents |ψ1〉A|ψ1〉B . λ̂1 can be expressed in the normalised
form

λ̂1 =
1
3

(
Î− |ψ−〉〈ψ−|

)
(8)

where |ψ−〉 is the antisymmetric Bell state, so that λ̂1 is
proportional to the projector on to the symmetric two-qbit
subspace.

A similar calculation shows that μ̂ is proportional to
the identity operator:

μ̂1 =
1
4π

∫ 2π

0

dα

∫ π

0

dβ|ψ3〉〈ψ3|

=
1
2

(
1 0
0 1

)
. (9)

Tensor multiplication of these gives

ρ̂1 = λ̂1 ⊗ μ̂1. (10)

This density matrix applies to the first of the two states,
where the first and the second qbits are identical. Simi-
larly, if the second and third qbits are identical,

ρ̂2 = μ̂1 ⊗ λ̂1. (11)

These two density matrices form the basis for calculating
optimum error rates for the minimum error strategy. For
readers who prefer more detail, the full density matrices
are given in Appendix.

3.1 Minimum error

Suppose that η1 is the a priori probability that the data
qbit is the same as |ψ1〉, and η2 the probability that the
data qbit is the same as |ψ3〉. Clearly, η1 + η2 = 1. To
find the minimum error the Hunter group compute the
difference matrix:

Λ̂ =
(
η1ρ̂1 − η2ρ̂2

)
. (12)

Following Helstrom [12], the lowest probability of er-
ror (P.E.) that can be achieved in the discrimination is
given by:

P.E. =
1
2
(1 − z ) (13)

where z is the sum of the absolute values of the eigenvalues
of Λ̂. It is worth noting that when η1 = η2 = 1/2, so that
there is no bias either way, and in the absence of any
classical data, P.E. ≈ 0.356. As η1 tends to 1 (or zero)
the probability of error falls accordingly, in a nearly linear
way.

3.2 Unambiguous discrimination

The Hunter Group’s method is an adaptation of the pro-
cess described in [13], which we summarise below. The
method depends on finding an unambiguous discrimina-
tion POM that consists of the set of operators {π̂0, π̂1, π̂2}
such that π̂1 is orthogonal to ρ̂2, π̂2 is orthogonal to ρ̂1,
and π̂0 = I − π̂1 − π̂2. Possible measurement outcomes
mean:

– π̂1: the system is certainly in state ρ̂1;
– π̂2: the system is undoubtedly in state ρ̂2;
– π̂0: no information about the state is available, and the

original state is changed by the measurement so that
further measurements are useless.

As ρ̂1 is symmetric in qbits |ψ1〉A and |ψ1〉B, π̂2 can
simply be a multiple of the projector PASYMAB on to the
(zero) asymmetric sub-state of these two qbits, so that
〈Ψ1|π̂2|Ψ1〉 = Tr(ρ̂1π̂2) = 0.

This projector is

PASYMAB = |ψ−〉ABAB〈ψ−| (14)

where |ψ−〉AB is the antisymmetric state:

|ψ−〉AB =
1√
2
(|ψ1〉A|ψ1〉B − |ψ1〉A|ψ1〉B

)
. (15)

Given that the system is in state |Ψ inj 〉, (j = 1, 2) the
overall probability of correct identification, pj , is

pj = 〈Ψ inj |π̂j |Ψ inj 〉. (16)



466 The European Physical Journal D

Substituting for π̂j in this equation, and simplifying, it
can be shown that

pj = cj/2
(
1 − |〈ψ1|ψ3〉|2

)
(j = 1, 2) (17)

where c1 and c2 are unknown real positive constants and
〈ψ1|ψ3〉 is the overlap between the two program qbits.

It remains only to find optimum values for c1 and c2,
while ensuring that π̂0 remains a positive operator. The
outcome depends on η1 and η2, the a priori probabilities
that the system is in state |Ψ in1 〉 or |Ψ in2 〉. For a broad
range, centred on η1 = 1/2, the analysis shows that

c1 =
2
3

(
2 −

√
η2/η1

)
(18)

c2 =
2
3

(
2 −

√
η1/η2

)
. (19)

The overall probability of correct unambiguous identifica-
tion of the qbit is given by

P = η1p1 + η2p2. (20)

Substitution from equations (14)–(17) shows that

P =
2
3

(1 −√
η1η2)

(
1 − |〈ψ1|ψ3〉|2

)
. (21)

For this to be valid both c1 and c2 must be non-negative,
and this is only true when 1

5 ≤ η1 ≤ 4
5 . Outwith this

range it is better to use a projective von Neumann mea-
surement aligned with the more frequent possibility. Here
the probability of correct discrimination for η1 > 4

5 is

Phigh η1 =
1
2
η1
(
1 − |〈ψ1|ψ3〉|2

)
. (22)

Conversely, if η1 < 1
5 ,

Plow η1 =
1
2
η2
(
1 − |〈ψ1|ψ3〉|2

)
. (23)

In the case considered by the Hunter group, the position of
the program qbits is undefined, and their average overlap
is 1√

2 . This leads directly to their formula for failure to
make an unambiguous discrimination in the central range
of η of

QF =
2 +

√
η1η2

3
. (24)

This completes our review of some of the Hunter Group’s
principal results. They will be fundamental for our own
findings, which we report in the following sections of the
paper. In particular, we note that the success of unam-
biguous discrimination depends only on two factors: the
a priori frequencies η1 and η2, and the overlap between
the program qbits.

4 The probability of error with a known
overlap between the program qbits

In the sections that follow we shall calculate density ma-
trices ρ̂1 and ρ̂2, analogous to those used by the Hunter

Fig. 1. Bloch sphere with locus of constant overlap with |0〉.

group, but modified to account for the classical informa-
tion which is available.

This part of the paper posits that the two program
qbits of the Triad are not completely independent but
have a known fixed overlap. The problem is tackled in
two stages: firstly we solve a simple case where the posi-
tion of one of the program qbits is fixed, and secondly, we
extend this solution to cover the general situation.

We provisionally place one of the program qbits at the
north pole of the Bloch sphere (|ψ1〉 = |0〉). The other
program qbit can be now written in the general form

|ψ3〉 = cos(β/2)|0〉 + eiα sin(β/2)|1〉. (25)

The overlap is given by:

〈ψ1|ψ3〉 =
(
cos(β/2)〈0|0〉 + eiα sin(β/2)〈0|1〉)

= cos(β/2). (26)

The overlap is independent of α, as shown in Figure 1.
For all values of β except 0 and π, |ψ3〉 lies on a circle of
latitude given by (0 ≤ α < 2π).

4.1 Finding density matrices

We first find provisional density matrices ρ̂1(prov) and
ρ̂2(prov) using our temporary assumption that one qbit is
at the north pole of the Bloch sphere. Taking

|ψ1〉 = |0〉

|ψ3〉 = cos(β/2)|0〉 + eiα sin(β/2)|1〉. (27)

Assuming that |ψ2〉, the data qbit, is the same as |ψ1〉, we
get the product ket

|Ψ1(prov)〉 = |ψ1〉|ψ1〉|ψ3〉
=
(
cos(β/2)|000〉+ eiα sin(β/2)|001〉) . (28)

The provisional density matrix ρ̂1(prov) is the value of
|Ψ1(prov)〉〈Ψ1(prov)| averaged over the circle of constant
overlap. This requires us to average over all values of the
azimuthal angle α, which removes the off-diagonal terms,
leaving

ρ̂1(prov) = cos2(β/2)|000〉〈000|+ sin2(β/2)|001〉〈001|.
(29)
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To find ρ̂2(prov), where |ψ2〉 = |ψ3〉, we use a similar ar-
gument, but this time placing |ψ3〉 at |0〉, instead of |ψ1〉.
We obtain

ρ̂2(prov) = cos2(β/2)|000〉〈000|+ sin2(β/2)|100〉〈100|.
(30)

Next we generalise this result by removing the restriction
that one of the program qbits must be at the north pole.
To make the appropriate transformation we replace |0〉 by
the general form

|0′〉 = cos(θ/2)|0〉 + eiψ sin(θ/2)|1〉 (31)

and |1〉 by the state orthogonal to |0′〉, namely,

|1′〉 = sin(θ/2)|0〉 − eiψ cos(θ/2)|1〉. (32)

The generalised forms of |Ψ1〉 and |Ψ1〉 are now given by

|Ψ1〉 = cos(β/2)|0′0′0′〉 + eiα sin(β/2)|0′0′1′〉

|Ψ2〉 = cos(β/2)|0′0′0′〉 + eiα sin(β/2)|1′0′0′〉. (33)

We can write |Ψ1〉 as the sum of two column vectors:

|Ψ1〉 = |p〉 + |q1〉 (34)

where |p〉 is the expansion, in terms of the computational
basis states |0〉 and |1〉, of the term cos(β/2)|0′0′0′〉, and
|q1〉 is the expansion of eiα sin(β/2)|0′0′1′〉. Similarly,

|Ψ2〉 = |p〉 + |q2〉 (35)

where |q2〉 is the expansion of the term eiα sin(β/2)|1′0′0′〉.
The full forms of these vectors are given in Appendix.

Let A denote the outer product |p〉〈p| and B denote
|q1〉〈q1|. The density matrix ρ̂1 is the average, over the
Bloch sphere, of the weighted sum of two matrices A
and B:

ρ̂1 =
1
4π

(∫
S

AdS +
∫
S

BdS
)
. (36)

The integral
∫
S dS denotes integration over the surface of

the Bloch sphere.
Similarly, using the definintion of ρ̂2 we find

ρ̂2 =
1
4π

(∫
S

AdS +
∫
S

CdS
)

(37)

where C is the outer product |q2〉〈q2|. For completeness,
the expanded forms of these integrals are given in Ap-
pendix.

We complete the computation, and work out the ex-
pected probable error for various values of the a priori
probability η1 and the overlap measure β using Helstrom’s
expression (13). For most values of η1 and β it is con-
venient to use a computer, but in the simplest case, for
η1 = η2 = 0.5 and β = π an analytic solution is readily
accessible. For these values P.E. ≈ 0.211.

Figure 2 presents a set of results for the error rate
expected from Triads with various degrees of overlap be-
tween the program qbits and a range of values for the

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

Overlap between program qbits.

P
ro

ba
bi

lit
y

of
er

ro
r

Fig. 2. (Color online) Probable errors for known overlap be-
tween program qbits. η1 = 0.1 (lower curve) to η1 = 0.5 (upper
curve) in steps of 0.1.

Fig. 3. (Color online) Probability of error against a priori
frequency for overlap = 0 (upper curve), 0.4 (centre curve),
and 0.8 (lower curve).

a priori probabilities. The left-hand border describes the
system when the two program qbits are orthogonal (zero
overlap) and shows that the worst discrimination, for all
overlaps, occurs when η1 = 1/2. For values of overlap close
to 1, a nearly optimal strategy is to choose the most likely
value of the data qbit, depending on η1. The error prob-
ability for η1 = 1/2 and zero overlap (β = π) coincides
with the analytic solution presented at the end of the last
section. Figure 3 gives a different view of some of the same
data. With each value of overlap, the probability of error
increases almost linearly to a maximum when the a priori
expectations of the two states are equal.

4.2 Unambiguous discrimination for a Triad
with known overlap

Finding the failure rate for unambiguous discrimination
uses the same analysis as was presented in [13] and sum-
marised in the previous section. The only difference is that
whereas the Hunter group found an average overlap of the
program qbits of

√
1/2 we can use specific values. Figure 4

shows how the success rate depends on η1 for various fixed
overlaps, using the formula

P =
2
3

(1 −√
(η1η2))

(
1 − |〈ψ1|ψ3〉|2

)
. (38)
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Fig. 4. (Color online) Probability of success in unambiguous
discrimination against a priori frequency for overlap = 0 (upper
curve), 0.4 (centre curve), and 0.8 (lower curve).

5 The great circle case

In the great circle case, we have a priori knowledge that
both the program qbits lie on a given great circle of the
Bloch sphere. This condition is important, as any two ran-
domly selected different points on the Bloch sphere define
some great circle, but we can exploit knowledge of the
specific great circle in the choice of our measurement.

Another point to note is that any given great circle can
be transformed to coincide with the equator, or with what
we might call the extended Greenwich Meridian, just by
rotating it about the sphere. It follows that the error rate
for all given great circles will be the same.

Taking the great circle to be the extended Greenwich
Meridian for which the azimuthal angle is either 0 or π,
we can incorporate both possibilities by writing

|ψ1〉 = cos(α/2)|0〉 + sin(α/2)|1〉
|ψ3〉 = cos(γ/2)|0〉+ sin(γ/2)|1〉 (39)

and allowing α and γ to take values in the range 0 to 2π.
Following the now accustomed pattern, we write

|Ψ1〉 = |ψ1〉|ψ1〉|ψ3〉
ρ̂1 = |ψ1〉|ψ1〉〈ψ1|〈ψ1| ⊗ |ψ3〉〈ψ3|

= λ̂1 ⊗ μ̂1. (40)

Both λ̂1 and μ̂1 must be averaged on our great circle
(rather than the surface of the full Bloch sphere). Av-
eraging λ̂1 over a circle defined by (0 ≤ α ≤ 2π) gives the
density matrix:

λ̂1 =
1
8

⎛
⎜⎜⎜⎜⎝

3 0 0 0

0 1 1 0

0 1 1 0

0 0 0 3

⎞
⎟⎟⎟⎟⎠ . (41)

Similarly, averaging μ̂1 over a circle defined by (0 ≤ γ ≤
2π) leads to:

μ̂1 =
1
2

(
1 0

0 1

)
. (42)

It then follows that

ρ̂2 = λ̂⊗ μ̂. (43)

The density operator ρ̂2 is worked out by a similar method:

ρ̂2 = μ̂⊗ λ̂. (44)

The explicit forms of these two density operators are given
in Appendix.

5.1 Minimum error for a Triad confined to a known
great circle

The minimum-error strategy for distinguishing between
these states requires us to find the eigenvalues of Λ̂, given
in (12). For equal prior probabilities (η1 = 1/2) we find
the minimum error probability P.E. ≈ 0.323.

5.2 Unambiguous discrimination for a Triad
confined to a known great circle

When the two program qbits are confined to a great cir-
cle, their average overlap is

√
1/2. We conclude that the

probability of failure QF is

QF =
2 +

√
η1η2

3
, (45)

as in the general case described by the Hunter group.
For unambiguous discrimination, knowledge that both

program qbits are on a known great circle makes no dif-
ference to the probability of failure, as the overlap of the
two program qbits is the same as when their positions on
the Bloch sphere are unrestricted.

6 The ‘polar cap’ case

The polar cap configuration posits a Triad in which one
program qbit is located in a cap centred on the north pole
of the Bloch sphere, and the other in a cap centred on the
south pole. Both caps are the same size, bounded by lines
of latitude defined by the angle θ, as shown in Figure 5.

6.1 Minimum error in the polar cap case

The northern program qbit may be written as

|ψN 〉 = cos(β/2)|0〉 + eiα sin(β/2)|1〉 (46)

where (0 ≤ β ≤ θ). Similarly, the southern program qbit
is

|ψS〉 = cos(δ/2)|0〉 + eiγ sin(δ/2)|1〉 (47)

where (π − θ ≤ δ ≤ π). The two possible states of the
discriminator are:

|Ψ1〉 = |ψN 〉|ψN 〉|ψS〉
|Ψ2〉 = |ψN 〉|ψS〉|ψS〉. (48)
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Fig. 5. Locations of the two program qbits for the ‘Polar cap’
configuration.

The density matrix for the first of these two states is ob-
tained as before, by averaging the states over the relevant
cap. If we define

μ̂ = |ψN 〉|ψN 〉〈ψN |〈ψN |

λ̂ = |ψS〉〈ψS | (49)

then averaging gives

μ̂1 =
1
κ

∫ 2π

0

dψ

∫ θ

0

dβ sinβμ̂

=

⎛
⎜⎜⎜⎜⎝
a 0 0 0

0 b b 0

0 b b 0

0 0 0 c

⎞
⎟⎟⎟⎟⎠ , (50)

where κ = 2π(1− cos θ) is the surface area of the cap and

a =
1
κ

∫ 2π

0

dα

∫ θ

0

dβ cos4(β/2) sin(β)

=
2
3

(
1 − cos6(θ/2)

1 − cos θ

)
(51)

b =
1
κ

∫ 2π

0

dα

∫ θ

0

dβ cos2(β/2) sin2(β/2) sin(β)

= 4

⎛
⎜⎝

1
4

sin4(θ/2) − 1
6

sin6(θ/2)

1 − cos θ

⎞
⎟⎠ (52)

c =
1
κ

∫ 2π

0

dα

∫ θ

0

dβ sin4(β/2) sin(β)

=
2
3

(
sin6(θ/2)
1 − cos θ

)
. (53)

Similarly, averaging λ̂ over the southern cap gives

λ̂1 =
1
κ

∫ 2π

0

dψ

∫ π

π−θ
dδ sin δλ̂ (54)

=

(
d 0

0 e

)
(55)

Fig. 6. (Color online) Probable error for θ = π/4 (bottom
curve) to θ = π/ (top curve) in steps of π/4.

where

d =
1
κ

∫ 2π

0

dγ

∫ π

π−θ
dδ cos2(δ/2) sin(δ)

=
(

sin4(θ/2)
1 − cos θ

)
(56)

e =
1
κ

∫ 2π

0

dγ

∫ π

π−θ
dδ sin2(δ/2) sin(δ)

=
(

1 − cos4(θ/2)
1 − cos θ

)
. (57)

Tensor multiplication of these two matrices gives the den-
sity operator:

ρ̂1 = μ̂⊗ λ̂. (58)

The second density operator is obtained in the same man-
ner:

ρ̂2 = λ̂⊗ μ̂. (59)

Both matrices, expressed in terms of the variables a to e,
are given in Appendix.

Figure 6 shows how the probable error varies with η1,
for a selection of values of θ. It is worth noting, as a check,
that when θ = π, and the positions of the program qbits
are unrestricted, the results are identical with those of the
Hunter group for a similar configuration.

6.2 Unambiguous discrimination for a Triad
in the polar cap case

As before, the success rate of unambiguous discrimination
is determined only by the ratio of η1 and η2, and by the
overlap of the two program qbits. In the polar cap case the
overlap changes with the angle θ in a non-linear manner,
shown in Figure 7. The corresponding success rates S are
displayed in Figure 8, using the formula

S = 1 − 2
3

(1 −√
(η1η2))

(
1 − |〈ψ1|ψ3〉|2

)
. (60)
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Fig. 7. (Color online) Overlap between polar caps for values
of θ.

Fig. 8. (Color online) Probable error for θ = π/4 (top curve)
to θ = π (bottom curve) in steps of π/4.

7 Conclusions

We have investigated the error rates in discriminating the
two possible states of a Triad, when certain types of ad-
ditional information are available. In practice, this could
often be the case. For example, if the two program qbits
are coded as photons with different linear polarisations,
they will lie on a great circle of the Bloch sphere.

We can report a number of findings, first for mimimum
error measurements:

– When the two program qbits of a Triad are orthogo-
nal, and the two possible states are equally likely, the
probability of error is less than if they were selected
randomly (0.211 as opposed to 0.356). The minimum
error rate rises monotonically as the overlap between
the qbits increases.

– If both program qbits are on the same (given) great
circle, the expected minimum error rate is 0.323.

– If the program qbits are confined to ‘caps’ centred in
antipodeal points on the Bloch sphere, the error rate
grows as the areas increase in size. In particular, if each
area covers just half the Bloch sphere, and η1 = η2 =
1
2 , the error rate in recognition is 0.203.

Our results on minimum error rates broadly confirm our
expectations – that additional classical information about
a Triad can improve the successful discrimination rate. An
interesting result is that the error rate for the case when
the two program qbits are in the northern and southern
hemispheres of the Bloch sphere is actually slightly lower
than the rate for orthogonal program qbits. It seems that

absolute positional information carries more weight than
relational data.

Second, for unambiguous measurements:
In all cases, the failure rate is disappointingly large.

However, the rate is improved when the data qbits are
known to have a small overlap, or are confined to small
areas about antipodeal poles. The knowledge that the pro-
gram qbits are confined to a given great circle makes no
difference to error rate.

This work was supported by the UK Engineering and Physical
Research Council, the Royal Society and the Wolfson Founda-
tion. We specially wish to thank the reviewers for their com-
ments on the first version of this paper, and for pointing out a
significant error in our computations.

Appendix

The appendix gives the density matrices in full for the
various cases of known additional information.

A.1 Hunter group’s analysis

ρ̂1 = λ̂1 ⊗ μ̂1 =
1
12

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.1)

This density matrix applies to the first of the two states,
where the first and the second qbits are identical. Simi-
larly, if the second and third qbits are identical,

ρ̂2 =
1
12

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 1 2 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.2)

A.2 Finding density matrices for constant overlap
of program qbits

|p〉 = cos(β/2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos3(θ/2) |000〉
+eiψ sin(θ/2) cos2(θ/2) |001〉
+eiψ sin(θ/2) cos2(θ/2) |010〉
+eiψ sin(θ/2) cos2(θ/2) |100〉
+e2iψ sin2(θ/2) cos(θ/2) |011〉
+e2iψ sin2(θ/2) cos(θ/2) |101〉
+e2iψ sin2(θ/2) cos(θ/2) |110〉

+e3iψ sin3(θ/2) |111〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(A.3)
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|q1〉 = sin(β/2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos2(θ/2) sin(θ/2) |000〉
−eiψ cos3(θ/2) |001〉

+eiψ cos(θ/2) sin2(θ/2) |010〉
+eiψ cos(θ/2) sin2(θ/2) |100〉
−e2iψ cos2(θ/2) sin(θ/2) |011〉
−e2iψ cos2(θ/2) sin(θ/2) |101〉

+e2iψ sin3(θ/2) |110〉
−e3iψ cos(θ/2) sin2(θ/2) |111〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A.4)

|q2〉 = sin(β/2)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos2(θ/2) sin(θ/2) |000〉
+eiψ cos(θ/2) sin2(θ/2) |001〉
+eiψ cos(θ/2) sin2(θ/2) |010〉

−eiψ cos3(θ/2) |100〉
+e2iψ sin3(θ/2) |011〉

−e2iψ cos2(θ/2) sin(θ/2) |101〉
−e2iψ cos2(θ/2) sin(θ/2) |110〉
−e3iψ cos(θ/2) sin2(θ/2) |111〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A.5)
Note that the computational states are not listed in the or-
der of the corresponding binary numbers, but are grouped
according to the number of |1〉s they contain; this gener-
ates density matrices with compact sub-matrices on the
main diagonal and zeros elsewhere.

Each term in this expansion is the product of the ap-
propriate elements of |0〉 and |1〉. For example, the co-
efficient of |101〉 in the state vector |q1〉 is the product of:
eiψ sin(θ/2)|1〉, cos(θ/2)|0〉, and −eiψ cos(θ/2)|1〉

1
4π

∫
S

AdS =
1
12

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A.6)

1
4π

∫
S

BdS =
1
12

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 3 −1 −1 0 0 0 0
0 −1 1 1 0 0 0 0
0 −1 1 1 0 0 0 0
0 0 0 0 1 1 −1 0
0 0 0 0 1 1 −1 0
0 0 0 0 −1 −1 3 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A.7)

1
4π

∫
S

CdS =
1
12

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 1 −1 0 0 0 0
0 1 1 −1 0 0 0 0
0 −1 −1 3 0 0 0 0
0 0 0 0 3 −1 −1 0
0 0 0 0 −1 1 1 0
0 0 0 0 −1 1 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.8)

A.3 Density matrices for the great circle case

ρ̂1 = λ̂1 ⊗ μ̂1 =
1
16

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 1 0 1 0 0 0
0 0 0 1 0 1 0 0
0 0 0 0 0 0 3 0
0 0 0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; (A.9)

ρ̂2 = μ̂1 ⊗ λ̂1 =
1
16

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 3 0 0 0 0
0 0 0 0 3 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.10)

A.4 Density matrices for the polar cap configuration

ρ̂1 = μ̂⊗ λ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ad 0 0 0 0 0 0 0
0 ae 0 0 0 0 0 0
0 0 bd 0 bd 0 0 0
0 0 0 be 0 be 0 0
0 0 bd 0 bd 0 0 0
0 0 0 be 0 be 0 0
0 0 0 0 0 0 cd 0
0 0 0 0 0 0 0 ce

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; (A.11)

ρ̂2 = λ̂⊗ μ̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ce 0 0 0 0 0 0 0
0 be be 0 0 0 0 0
0 be be 0 0 0 0 0
0 0 0 ae 0 0 0 0
0 0 0 0 cd 0 0 0
0 0 0 0 0 bd bd 0
0 0 0 0 0 bd bd 0
0 0 0 0 0 0 0 ad

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A.12)
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