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Figure 1. States of a three-state atom

1. Introduction

The idea of random telegraph dynamics for a single quantum system started with the proposal
by Dehmelt[2] to detect a weak transition by monitoring the fluorescence on a strong one,
as depicted in Figure 1 . The fluorescence observed on the strong transition is interrupted
by periods of darkness during which, we can infer, an absorption has occurred on the weak
transition [3, 4]. Today, the observation of such quantum jumps is a standard technique for
counting trapped ions [5].

In this paper we investigate the effect of a sequence of measurements on the otherwise co-
herent dynamics of a driven two-level atom. On average the dynamics of an ensemble of such
atoms exhibit smooth but damped Rabi oscillations, but individual atoms display a spectrum
of behaviour ranging from interrupted Rabi oscillations to a random telegraph [1]. Central to
our approach is the quantum Monte Carlo method [6–9] in which we simulate the evolution of a
driven single two-level atom interrupted by instantaneous measurements applied stochastically
to the atom. This gives us access to both the evolution of the state and also to the associated
measurement record.

A closed quantum system is one that is free to evolve in time without any external influence.
Such systems obey Schrődinger’s equation; their evolution is predictable and - in principle -
reversible. In practice, closed quantum systems do not occur in nature (except, arguably, for
the whole universe). The best that can be done experimentally is to isolate a system for a very
short time .

Imperfect measurement leads to a possible method of analysing quantum systems which are
open, and do not evolve according to Schrődinger’s equation. A more general form for evolution
of the reduced density matrix of an open system is a master equation in the Lindblad form,
which assumes that the evolution is Markovian, and that the environment of the system is large
enough not to be changed by the process [10–12]:

dρ̂

dt
=
−i
~

[Ĥ, ρ̂] +
∑
j

γj

(
K̂j ρ̂K̂

†
j −

1

2
K̂†j K̂j ρ̂−

1

2
ρ̂K̂†j K̂j

)
, (1)
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where ρ̂ is the reduced density operator, and Ĥ the system hamiltonian. The first term of the
equation expresses its closed evolution, which would take place if there were no external effects.
γ is a rate parameter; Kj , are called Kraus operators [13], and depend on the manner and
strength of the external influences on the system. The Lindblad form has been successfully used
in several contexts, including friction [14, 15]. It has been known since the publication of Von
Neumann’s book [16] in 1927, that a measurement of a quantum system will transform it to one
of its eigenvalues, overriding Schrődinger’s equation. To be specific, if the density matrix of a
quantum system at time t is

ρ̂t =

(
at xt
yt bt

)
(2)

then a measurement will ideally return |1〉 with probability at, and |0〉 with probability bt, leaving
the system in the state that corresponds to the measurement.

More recently, it was realised that a measurement might depart from the ideal and give
a result not always in accordance with the probability amplitudes. Consider a defective
measurement, which only delivers the expected result with probability p. Given the current
state, this measurement will return |1〉 with probability pat + (1− p)bt, and |0〉 with probability
(1 − p)at + pbt. Unless p = 1 the state of the system after such a measurement will not be
one of its eigentates but something intermediate. In particular, if p is near to 0.5, the mea-
surement yields very little information, and makes only a small change to the state of the system.

As imperfect measurements can induce small changes in a system (just like external influences
that gradually destroy its state) it might be possible to use a stream of continuous imperfect
measurements as a surrogate for external influences, with the advantage that such a stream
is easier to analyse than random external effects. This idea was first taken up in papers by
Hornburger [17] and Cresser, Barnett, Jeffers and Pegg [1], and is given a more quantitative
analysis in the present paper.

2. Background

This section is a summary of the paper Measurement master equation, [1], which forms the
background to our own investigation.

The authors derived and used a master equation [10–12, 18, 19] to examine the behaviour
of a quantum system under imperfect, but frequent measurement. The physical system they
considered is an isolated two-state atom, with the bare energy eigenstates |1〉 and |0〉, resonantly
driven by an electromagnetic field. On its own, this dressed atom forms a closed system. The
probable state of the atom undergoes Rabi oscillations, at a rate that depends on the strength
of the applied field.

It is helpful to treat the atom as effectively spinning, and in this context we introduce two
Pauli operators:

σ̂1 = |0〉〈1|+ |1〉〈0|

σ̂3 = |1〉〈1| − |0〉〈0| (3)
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Then the hamiltonian[10] that describes the interaction between the field and the atom is

Ĥ = −~Ω

2
σ̂1 (4)

where Ω is the Rabi frequency.

The application of measurements implies that the system is no longer closed. The evolution
of the atomic density operator may be described by a master equation of the form given in the
introduction.

Energy measurements would ideally correspond to the projectors |1〉〈1| and |0〉〈0|. However,
the measurements may be imperfect, and have only a probability p (p ≤ 1) of returning a
correct result. This is then a generalised measurement described by probability operator measure
(‘POM’) with the elements:

π̂0 = p|1〉〈1|+ (1− p)|0〉〈0| (5)

π̂1 = p|0〉〈0|+ (1− p)|1〉〈1|

These operators are both hermitian and positive, and they satisfy the requirement that
∑

j π̂j =

1 (where 1 is the unit matrix).
As the interaction with the environment takes the form of measurement, each pair of Kraus

operators corresponds to one of the elements of the POM, according to the rule

π̂j = K̂†j K̂j (6)

These relationships do not specify a unique set of operators Kj . The simplest realisations of
these Kraus operators are the square roots of the POM elements which, for our two probability
operators, are:

K̂0 = K̂†0 =
√
p|1〉〈1|+

√
1− p|0〉〈0| (7)

K̂1 = K̂†1 =
√
p|0〉〈0|+

√
1− p|1〉〈1|

Having defined the concept of a imperfect measurement, the paper then considers the aspect of
measurement frequency. Measurements occur at random times, and the authors use a parameter
R, which indicates the average number of measurements per unit time. The presence ofRmodifies
the basic master equation, as follows:

T (ρ̂) =
−i
~

[Ĥ, ρ̂] +R

∑
j

(K̂j ρ̂K̂
†
j −

1
2K̂
†
j K̂j ρ̂− 1

2 ρ̂K̂
†
j K̂j)

 (8)

The fact that ∑
j

(K̂†j K̂j) = 1
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enables us to write the master equation as:

dρ̂

dt
=

(
iΩ

2

)
[σ̂1, ρ̂] + γ(σ̂3ρ̂σ̂3 − ρ̂) (9)

where

γ =
R

2

(√
1− p−√p

)2
(10)

The analytic solution of this equation shows that starting in a pure state (|ψ〉 = |0〉 or |ψ〉 = |1〉
a sufficiently large ensemble of atoms will decay into an average mixed state

ρ̂ = 1
2(|0〉〈0|+ |1〉〈1|) (11)

The decay is oscillatory if γ is small, but exponential for larger values of γ.

The evolution can also be solved numerically using Monte Carlo methods to give individual
quantum trajectories for the atom. The intervals between measurements depend on a random
number generator and the statistics of the measurements are provided by a random process
which mimics the measurement statistics associated with the state. These trajectories are quite
different from the analytic solution; they do not decay, and with high values of γ they exhibit
telegraphing, where the Rabi cycle is suppressed and the atom spends long periods at or near the
upper or lower energy level. Figures 2 to 5 show some simulated trajectories. Figure 2 uses a very
low value of γ. The basic Rabi cycle is hardly disturbed and continues indefinitely. Figure 3 is a
trajectory produced by an intermediate value of γ, and it is not obvious, from the graph, whether
telegraphing is occurring or not. Figure 4 uses a much higher value of γ, and demonstrates the
telegraphing effect. The horizontal scale has been extended to 20 Rabi cycles. Figure 5 illustrates
the details of a trajectory when the system is telegraphing, and switches from one state to the
other. The ‘spikes’ can only occur when the measurements are imperfect.

Figure 2. Trajectory with low gamma
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Figure 3. Trajectory with intermediate gamma

Figure 4. Trajectory with high gamma

Figure 5. Typical switching trajectory when p < 1

In the final section of their paper, the authors provide a qualitative description of several
phenomena which can be seen in these trajectories. In brief, low values of γ have little effect on the
continuous Rabi cycle. High values, combined with perfect measurement, produce telegraphing.
Each dwell at one of the eigenstates is ‘whiskery’ because every measurement is followed by a
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short period during which the atom exectutes a fraction of a Rabi cycle, before being forced back
to the eigenstate. When a measurement is imperfect, it can leave the atom in an intermediate
state. This may lead to ‘jagged’ state changes, as shown in figure 5.

3. A quantitative analysis

Here we offer a quantitative analysis of the phenomena described in [1].

3.1. The simulator

Our results are derived from a simulator, which is based on a 4th-order Runge Kutta integration
procedure using a time-step, δt, of 1

1000 of a Rabi cycle. Our reported statistics are based on
runs of 1000 Rabi cycles, or 106 time-steps. The simulator takes two parameters:

• R, the average rate of measurements. In the simulator this is converted to a fraction q, the
probability of a measurement in any one time-step.

q = δt

(
2πR

Ω

)
, (12)

where Ω is the angular frequency of the Rabi cycle.

• p, the probability that a measurement returns a result in keeping with the current value of
the density matrix. There is a probability (1− p) that this result be inverted.

The Rabi cycle is simulated by solving Schrődinger’s equation

dρ̂

dt
=
−i
~

[
Ĥ, ρ̂

]
, (13)

where

Ĥ =

(
0 −~Ω

2
−~Ω

2 0

)
(14)

and Ω is the angular frequency of the Rabi oscillation.

As an initial value we take

ρ̂ =

(
1 0
0 0

)
, (15)

which corresponds to an initially excited atom.
The occurrence of a measurement during any time cycle is determined by a rectangular random

number generator with a range (0 ≤ g ≤ 1). A measurement takes place if (g < q). It is assumed
that measurements are so rare that there will never be more than one measurement in the same
time-step. The validity of the model is bounded in two ways:

• The model is inaccurate for very high values of R, as there is then a significant chance
that two or more measurements could fall in the same time-step. The simulator does not
handle this situation, but its validity could be extended by using a shorter time-step.
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• When R is very low, there are not enough events, even during 1000 Rabi cycles, to yield
accurate statistics. A longer period of observation would mitigate this problem.

Notwithstanding these practical limitations, the model is accurate over a wide range of values
for R : (0.01 ≤ R ≤ 1000).

The overall effect of an imperfect measurement was computed as follows: suppose that the
measurement has a probability p of being correct, and that when it is applied, the atom is part-
way through its Rabi cycle, so that the probability of its being in state |1〉 is x. Then a correct
measurement, using the projectors |1〉〈1| and |0〉〈0|, would return |1〉 with probability x, and
|0〉 with probability (1 − x). But allowing for the imperfection of the measurement, the actual
probabilities are

P (1) = px+ (1− p)(1− x) (16)

P (0) = p(1− x) + (1− p)x (17)

If the measurement is imperfect, the final state of the atom will not be the same as the result of
the measurement [20, 21]. If the measurement returns |j〉, the change in the density matrix is

ρ̂→
K̂j ρ̂K̂

†
j

Tr(K̂j ρ̂K̂
†
j )
, (18)

where Kj and K†j are defined above, in (8). If p = 1 the effect is to shift the density matrix

exactly to one of the states |0〉 or |1〉, but for any other value of p the density matrix is moved
towards one of the states without actually reaching it.

3.2. Definitions of telegraphing

The atom under investigation alternates between two phases which we term ‘up’ dwells, associ-
ated with the eigenstate |1〉, and ‘down’ dwells, associated with |0〉. Measurements which move
the state of the atom towards a given state are ‘up’ or ‘down’ measurements, respectively.

Telegraphing can be defined in two different ways:

• The Measurement Centred method relies entirely on the record of measurements. A dwell is
defined as the interval between the first measurement to yield a given result (say |1〉) and the
next following measurement that gives the opposite result. Intermediate measurements that
give the same result are ignored. If measurements are widely spaced the atom may undergo
several Rabi oscillations during the dwell. If there are no measurements, the dwell time is
infinite. This model has the advantage that the statistics rely entirely on the outcomes of
measurements, which implies that they could be obtained from real (not simulated) systems.

• The State Centred method defines a dwell as the uninterrupted time period during which
the probability of the atom being at or near one of its energy states |0〉 or 1〉 is greater than
0.5. This is not observable, and can only be found by a device or simulator that ‘knows’ or
can estimate the state of the system between measurements. On the other hand, this defi-
nition is closer to the intuitive understanding of telegraphing, especially for high values of γ.

When an atom undergoes an undisturbed Rabi evolution without any measurements,
then, for the state-centred method, there will be two dwells for each Rabi cycle. The state-
centred method forms a base for the telegraph index, a numerical descriptor of the behaviour
of an atom. Figure 4 illustrates a trajectory with state-centred dwells, most of which last
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Figure 6. A typical measurement-centred dwell record with p = 1

considerably longer than one Rabi cycle. The trajectory shows random-telegraph dynamics.

We present theoretical analyses for both methods with perfect measurement, and compare the
results with readings taken from the simulator.

3.3. Telegraph Index

A comparison of figures 4 and 2 clearly shows that telegraphing is present in one case, but
not in the other. Figure 3 cannot readily be assigned to either of these classes; the presence
of telegraphing is not a binary quality. This suggests the definition of a ‘telegraphing measure’
or index T , which would vary between 0 when a system is not telegraphing at all, and 1 when
measurement is so frequent that the system almost never changes state.

We define the telegraph index to be the time-averaged quantity:

T =
1

τ

∫ τ

0
dt[2〈σ̂3〉2 − 1], (19)

where τ greatly exceeds the Rabi period. For pure Rabi oscillations this quantity is zero, but for
a perfect telegraph evolution, in which at all times the atom is in state |0〉 or state |1〉, it will
be unity. Applying this formula to the trajectories in figures 2 to 4 we find:

Figure Telegraph Index
Figure 2 0.019
Figure 3 0.672
Figure 4 0.958

We would expect the telegraph index to be asymptotic to 1 as γ increases indefinitely. Figure
7, which includes the points listed above and some others, shows that this is so. The fit is not
exact, as the points on the graph are derived from the simulator which (of necessity) uses random
elements.

3.4. Analysis of the measurement centred method, with perfect measurements

This analysis is based on [19]. In this section we assume that measurements that give correct
results (p = 1). A jump is a measurement result that is different to that of the preceding measure-
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Figure 7. Relationship of telegraph index and γ

ment, and a no-jump is a measurement that gives the same result. Both types of measurement
result leave the atom in one or other of the states |0〉 or |1〉.

If Ω is the Rabi frequency, then the uninterrupted Rabi evolution gives

|ψ〉 = cos

(
Ωt

2

)
|1〉+ i sin

(
Ωt

2

)
|0〉 (20)

The first measurement after t = 0 occurs between t and t+ dt. The probability P1 of a jump is:

P1 = e−RtRdt sin2

(
Ωt

2

)
(21)

Likewise, the probability ∼ P1 of a no-jump is

∼ P1 = (1− P1) = e−RtRdt cos2

(
Ωt

2

)
(22)

A dwell includes any number of no-jumps (including none), and is terminated by a single jump.
We can now extend this to the case of several ‘no-jumps’, at times t′, t′′, · · · (working backwards)
followed by a jump at time t. For example,

P3 = e−RtR3dt′′ dt′ dt sin2

(
Ω(t− t′)

2

)
× cos2

(
Ω(t′ − t′′)

2

)
cos2

(
Ωt′′

2

)
(23)

The average time T between changes of state is then:

T =

∫ ∞
0

Rte−Rtdt

[
sin2

(
Ωt

2

)
(24)

+

∫ t

0
Rdt′ sin2

(
Ω(t− t′)

2

)
cos2

(
Ωt′

2

)
+

∫ t

0
Rdt′′ sin2

(
Ω(t− t′)

2

)
cos2

(
Ω(t′ − t′′)

2

)
cos2

(
Ωt′′

2

)
+ . . .]
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Using the technique of differentiation under the integral sign, and converting to Laplace trans-
forms, we obtain

S = L
[∫ ∞

0
e−qRtdt sin2

(
Ωt

2

)]
=

1

2

[
1

qR
− qR

q2R2 + Ω2

]
C = L

[∫ ∞
0

e−qRtdt cos2

(
Ωt

2

)]
=

1

2

[
1

qR
+

qR

q2R2 + Ω2

]
(25)

It then follows that

T =

(
−d
dq

)[
S(qR) +RC(qR)S(qr) +R2C2(qR)S(qR) + · · ·

]
|q=1 (26)

Differentiating and simplifying, we find

T =
2R

Ω2
+

2

R
(27)

This is the dwell time, or average time between changes of state. Using similar methods, we can
also find SD, the standard deviation of the dwell times:

SD =

√(
4R2

Ω4
+

4

R2

)
(28)

A more detailed version of this analysis can be found in [22].

3.4.1. Statistics of measurement-centred dwells

Measurements on the simulator are subject to the expected statistical variation, but the
averages show excellent agreement with the dwell lengths predicted by our formula. We ran
the simulator for some 60 values of R ranging from 0.01 to 1000 measurements per Rabi cycle,
increasing exponentially in steps of 1.2. Figure 8 is a plot of log(R) against log(T ); we use logs
as otherwise small values of R and T would disappear.

The calculated and measured standard deviations also agree well, and yield a plot almost
identical to Figure 8. For any value of R, the average dwell time is about the same as its
standard deviation, which confirms that the dwell times have a negative exponential distribution.

The corresponding analysis for imperfect measurements is beyond the scope of this paper, but
when measurements are sufficiently far apart to ensure that a random number of Rabi cycles
elapse between one measurement and the next, both outcomes of the later measurement are
equally likely. This is not changed by a fractional success rate. We conclude that for sparse
measurements the measurement-centred dwell time is independent of the accuracy of the mea-
surements.
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Figure 8. Agreement between calculated and simulated dwell times for Measurement-centred method with p = 1

3.5. Telegraphing statistics for the state centered method with perfect measurement

Any perfect measurement of the atom will move its state to exactly one or other of the states
|0〉 or |1〉 This fact simplifies the analysis.

When an atom is telegraphing, the state-centred method assumes that it dwells at or near
one of its two possible energy eigenstates for extended periods before it switches to the other.
In this section we calculate the statistics of dwells for a range of values of the parameter R,
the mean measurement frequency, and compare the results with measurements made on actual
(simulated) trajectories. The heart of the method consists of computing the average evolution
of the system for one ‘dwell’ which consists of one or more ‘episodes’. Our explanation is based
on an ‘up’ dwell near |1〉, the high-energy state, but the problem is symmetrical about the two
states, and we could equally well have chosen the low-energy state.

The analysis of the state-centred method is complicated because there are two different ways
that an atom can change its state. On one hand, a measurement that returns the opposite value
to the current dwell state causes an immediate switch, but on the other hand, in the absence
of measurements, the natural Rabi evolution will bring about a switch in a quarter of a Rabi
cycle, as the atom passes through the half-way state - that is, the state in which a measurement
would be equally likely to show that a transition had occurred, or that it had not.

In many cases, an ‘up’ dwell starts in the |1〉 state, directly following an ‘up’ measurement in
the preceding ‘down’ dwell. However, the preceding dwell might have ended with a quarter Rabi
cycle without measurements, in which case the dwell will start in the half-way state. A way to
resolve this complexity is to consider the dwell as consisting of two components:

An initial segment that starts in the half-way state, followed by a final segment that starts in
one of the eigenstates - say |1〉. In many cases the initial segment will be absent, and in some
cases the final segment will vanish. Figure 9 illustrates two types of final segment, and three
types of initial segment.

(1) Type 1 final segments start with an ‘up’ measurement from the preceding ‘down’ dwell. As
time passes, the atom begins to Rabi cycle, until another measurement occurs. As the state
is still near |1〉, the probable result is another ‘up‘ measurement which restores the atom
exactly to the |1〉 state. The exact probability depends on how far the atom has progressed
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Figure 9. Types of segment

on its Rabi cycle since the last measurement. This continues until a measurement returns
‘down’ . This ends the dwell and starts the following ‘down’ dwell at its eigenvalue, without
an initial segment.

(2) Type 2 final segments start in the same way, but ends when the gap between measurements
is quarter of a Rabi cycle, which is long enough for the atom to reach the state where the
two eigenstates are equally probable. This ends the current dwell and starts the next one,
with an initial segment that starts in the half-way state.

(3) Type 3 initial segments start in the half-way state, when the preceding ‘down’ dwell ends
with a quarter Rabi cycle. The initial quarter Rabi cycle is undisturbed by a measurement.

(4) Type 4 initial segments start in the half-way state, but are interrupted by ‘up’ measure-
ments.

(5) Type 5 initial segments start in the half-way state, but are interrupted by ‘down’ mea-
surements. This type of segment is not followed by a final segment, but leads directly to
a dwell in the opposite state.

Now we introduce episodes, the individual components that constitute a segment. An episode
starts when the system is exactly in the upper energy eigenstate, at time t = 0, and will evolve
away from that state. The episode can end in any of three ways:

(1) A measurement can return it to the initial eigenstate (the dwell continues)
(2) A measurement can switch it to the other eigenstate (the dwell ends, and the next one

starts at the eigenvalue in the opposite phase)
(3) If no measurements occur, the atom will execute part of a Rabi cycle, and reach the half-
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way state after a quarter-cycle. (the dwell ends, and the next one starts in the opposite
phase, at the half-way point).

As we shall see, the duration of an episode is variable. The length of a dwell is the sum of
the durations of all the consecutive episodes that return to the initial eigenstate, plus the final
episode.

Consider a system that is modelled by time-steps of duration δt. The probability of a mea-
surement occurring at any step is Rδt. Suppose the system starts in state |1〉, at the ‘top’ of the
Rabi cycle. In the absence of any measurement, the density matrix at time t is

ρ̂ = cos2

(
Ωt

2

)
|1〉〈1|+ sin2

(
Ωt

2

)
|0〉〈0|+ i sin

(
Ωt

2

)
cos

(
Ωt

2

)
(|0〉〈1| − |1〉〈0|) (29)

Each time-step can have three possible outcomes:

(1) With probability (1−Rδt), no measurement takes place. Time moves forward by one step.
(2) With probability Rδt cos2

(
Ωt
2

)
, a measurement takes place, and the atom returns to the

state |1〉. This signals the end of this episode and the start of the next episode in the same
dwell.

(3) With probability Rδt sin2
(

Ωt
2

)
this measurement switches the atom to state |0〉. This

implies the end of this episode and of this dwell.

Figure 10. Probability tree

Figure 10 is a probability tree for such an episode. The ellipses are intermediate states reached
by time-steps in which no measurements take place. Rectangles are terminal nodes . Each arc is
marked with the probability that will be followed.
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• The probability that the atom reaches time t without a measurement is (1−Rδt)t/δt ≈ e−Rt.
• The probability that the atom returns to eigenstate |1〉 at time t is e−Rtδt cos2

(
Ωt
2

)
• Similarly the probability that the atom switches to state |0〉 at time t is e−Rtδt sin2

(
Ωt
2

)
• The duration tn of a quarter Rabi cycle (when no measurements take place) is

tn =
1

4
× 2π

Ω
=

π

2Ω
(30)

The probability p0 that the atom reaches the end of chain, a quarter way round the Rabi cycle,
without any measurements is

p0 = exp

(
−Rπ

2Ω

)
. (31)

The overall probability p1 that the atom completes the episode and returns to the starting
eigenstate is

p1 =

t=tn∑
t=0

δt R cos2(
Ωt

2
) (32)

Similarly, the overall probability p2 that the atom completes the episode and switches to the
opposite eigenstate is

p2 =

t=tn∑
t=0

δt R sin2(
Ωt

2
) (33)

As δt→ 0 these relations can be replaced by

p1 =

∫ tn

0
dt R cos2

(
Ωt

2

)
p2 =

∫ tn

0
dt R sin2

(
Ωt

2

)
. (34)

The average length T of each episode that ends with an ‘up’ measurement can be found by
summing the probabilities of exit at each stage, multiplied by the time of exit. As this type of
episode is not the only possible outcome of the evolution, we must divide by p1, the probability
of the outcome. We may put:

T =

∫ tn

0
dt tR cos2

(
Ωt

2

)
/p1 (35)

Similarly, the average length of an episode that ends with a ‘down’ measurement is

U =

∫ tn

0
dt tR sin2

(
Ωt

2

)
/p2 (36)

Equivalent adjustments must be made to all calculations of average episode length.
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As p1 is a probability (p1 ≤ 1), d1, the total length of a type 1 segment, is:

d1 = T (1 + p1 + p2
1 + p3

1 + . . .) + U = T

∞∑
n=0

pn1 + U =
T

1− p1
+ U. (37)

Similarly, the length of a type 2 segment is

d2 =
T

1− p1
+ tn (38)

The statistics of initial segments can be calculated in a similar way to those of final segments,
except that:

• Each initial segment consists of only one episode

• The segment starts at the half-way state

The following equations serve. p3 to p5 are probabilities, and d3 to d5, expected durations.

p3(segment reaches the eigenvalue state (type 3)) e−tn

p4(segment ends with an ‘up’ measurement(type 4))
∫ tn

0 dt e−Rt cos2(Ωt
2 − πtn)

p5(segment ends with a ‘down’ measurement (type 5))
∫ tn

0 dt e−Rt sin2(Ωt
2 − πtn)

d3( duration of a type 3 segment) 0.25 Rabi cycle = tn
d4(duration of a type 4 segment)

∫ tn
0 dt t e−Rt cos2(Ωt

2 − πtn)/p4

d5(duration of a type 5 segment)
∫ tn

0 dt t e−Rt sin2(Ωt
2 − πtn)/p5

Next we consider the average duration of dwells (as opposed to segments). There are two
patterns of dwell that start at the eigenvalue, and no fewer than six that start with an initial
segment. Figure 11 is a taxonomy of these different dwell types. Each arc of the graph is labelled
with the probability that the arc is traversed, and each dwell type is marked with its duration.

The average dwell length for each of many different values of R was calculated by summing
the durations of each of the dwell types, multiplied by the probability of their occurrence. Where
the initial segment ends with a ‘down’ measurement, the calculation accounts for two dwells (one
of each phase), so the contribution from this type of dwell is halved.

3.5.1. Statistics of measurement-centred dwells

For this part of the investigation the simulator was adjusted to detect steps in which the
probability of one of the energy eigenstates switched from > 0.5 to < 0.5. A run with a given
value of R took 1000 Rabi cycles or 106 steps. This produced a number of dwells varying greatly
in their length, but a roughly constant factor was the standard deviation of the lengths was
close to their average. This is consistent with a negative exponential distribution, as might be
expected, and is typical of a random telegraph [23]. The average dwell times delivered by the
separate runs were close to one another.

The graph in Figure 12 shows that for R values higher than 10 measurements per Rabi cycle,
the relationship between R and the dwell time is almost linear. In this region, the end effects due
to long gaps between measurements are negligible. When measurements are frequent, most of
them occur when the state of the atom is close to one of its energy eigenstates. Here the density
matrix is closely approximated by

ρ̂ =

(
1−

(
Ωt

2

)2
)
|1〉〈1|+

(
Ωt

2

)2

|0〉〈0|+
(
iΩt

2

)
(|0〉〈1| − |1〉〈0|) (39)

if the atom is close state |1〉, with an analogous expression if it is close to state |0〉. The probability
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Figure 11. Taxonomy of dwell types

Figure 12. Measured and calculated dwell times for the state-centred method

of a quarter Rabi cycle without any measurements is negligibly small. With these approximations,
the average episode duration is inversely proportional to R, the frequency of measurement, but
the probability of an episode ending with a ‘down’ measurement is inversely proportional to R2.
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It follows that the dwell time increases linearly with R.

3.6. Observations of dynamics with error-prone measurements

Theoretical analysis of this regime is beyond the scope of this paper, but we offer some observa-
tions derived from the simulator.

3.6.1. Effect of imperfect measurements on dwell times, using the state-centred method

It is to be expected that when measurements are imperfect, any incorrect measurement is
likely to force a premature change of the dwell state, and this is borne out by the simulations.
We collected statistics for three measurement frequencies (in terms of measurements per Rabi
cycle): R = 20, R = 50, and R = 80.

The results are shown in figure 13, which illustrates the relationship between the error rate and
the dwell time for each of the three R values. Error rates in measurement were varied between 0
and 0.5. Any error rate is likely to cause the dwell time to drop sharply, in an (approximately)
exponential decay.

Figure 13. Relationship of dwell times and error rate in measurement

3.6.2. Effect of imperfect measurements on the telegraphing index.

The telegraphing indices for runs with imperfect measurements are shown in figure 14, again
using three values of R. For R = 20 the drop is almost linear, but for higher values of R, a high
degree of telegraphing is maintained even for moderately high error rates.

3.6.3. Dwell state switching under imperfect measurement

Equation (18) shows that the state of an atom after an imperfect measurement is not in
general either of the states |1〉 or |0〉, but rather a superposition of both. When p = 1 each
measurement gives an abrupt change to an eigenvalue, but when p < 1 this is no longer the
case, and switching between dwell states can take several measurements. As each measurement
occurs when the atom is in an intermediate state, the outcome is indeterminate, and the state
can move in either direction. This is illustrated in figure 5.

As well as generating this trajectory, the simulator also produced the corresponding measure-
ment record. Figure 15 is a much-magnified version of figure 5, which shows the relationship of
measurements and the state of the atom. A copy of figure 5 is included for comparison.
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Figure 14. Relationship of telegraph index and R

Figure 15. Imperfect measurements and the state of the atom during switching, using the state-centred method

The measurement record (alone) can also be used to find the dwell state of the atom according
to the measurement-centred method. This is illustrated in figure 16.

Figure 16. Dwell state of the atom during switching, using the measurement-centred method
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4. Conclusion

The concept of frequent measurement is a useful tool for investigating the interaction of an
atom with its environment. The general effect of the interaction is to exert a ‘drag’ on the closed
evolution of the atom, so that it remains at or near one of its eigenstates longer than would
otherwise be the case. We have suggested a ‘telegraph index’ as a measure for this drag, and
offered two possible definitions of telegraphing. Assuming perfect measurements, we have made
theoretical analyses of both definitions of telegraphing. Measurements made with a simulator
agree closely with those found by theoretical analyses. We found that when measurements are
frequent the statistics associated with each of the definitions coincide, but when measurements
are sparse the statistics diverge.

Turning to imperfect measurements (such are defined in [1]) , we have, as yet, no complete
theoretical analysis, but we present graphs produced by the simulator. A general observation is
that imperfect measurements make the atom much less stable; telegraphing times are reduced,
the telegraph index generally drops, and switching between dwell states takes longer, with the
state occupying an intermediate position in which the next measurement could easily be in either
direction. During the switching process the measurement-centred model shows the dwell-state
values oscillating, at a frequency similar to the frequency of measurements.
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