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Abstract. This paper offers some new results in the area of programmed quantum discrimination, which
determines whether a data qbit is the same as the first or second of a given pair of program qbits. In
a recent paper [A.J.T. Colin, S.M. Barnett, J. Jeffers, Eur. Phys. J. D 63, 463 (2011)] we examined the
effect of additional classical information on this process. We now extend our work to consider the effects
of replicating some or all of the qbits in the group. As the parameters to the calculations can take many
values in several dimensions, we offer only a sample of results. A suite of programs [A.J.T. Colin, Multiple
qbit discrimination programs, ftp://www.singing-baboon.com/discrimination.zip] allows the reader
to explore the problem space in detail. Turning to a possible application of the method, we investigate
the efficacy of programmed discrimination in the context of data communication. The technique offers a
key advantage over other methods of quantum-based data transmission; namely, that it is insensitive to
any unitary transformation that may occur in transit, provided only that the same transformation applies
equally to all the qbits in the group. However, the technique is costly in its use of resources. Using the best
configuration we could find, with unambiguous discrimination, orthogonal program qbits, and a duplicated
data qbit, the transmission of one binary digit reliably still needs 8 qbits.

1 Introduction1

Much work has been published on a technique called pro-2

grammed discrimination [1,3–15]. Here each bit of data is3

represented by a triad which consists of three qbits:4

– a first program qbit |ψ1〉;5

– a data qbit |ψ2〉;6

– a second program qbit |ψ3〉.7

The program qbits are pure states that correspond to dif-8

ferent points of the surface of the Bloch sphere. The data9

qbit is guaranteed to be identical to one or other of the10

program qbits.11

The discrimination task consists of deciding which of12

the two possibilities, |ψ2〉 ≡ |ψ1〉 or |ψ2〉 ≡ |ψ3〉 is true. In13

this context, as in others, there are two main methods of14

discrimination, neither of which is guaranteed always to15

give the correct result.16

The methods are:17

– Optimal or minimum error, where the discrimination18

process always returns a result, but there is a finite19

probability, which we aim to make as small as possible,20

that this result is wrong. This probability is called the21

error rate [3,16].22

a e-mail: andrew@crm.scotnet.co.uk

– Unambiguous, where the discrimination may give a re- 23

sult guaranteed to be correct, but there will always be a 24

certain probability, known as the failure rate, that the 25

process will return the answer ‘don’t know’ [3–5,16]. 26

Both types of process disturb the qbits in the triad, so 27

that any further measurement will not return a meaningful 28

result. 29

As all three qbits in a triad are unknown, the success 30

rate of any discrimination process is quoted as an average 31

of all possible configurations. 32

Sometimes the problem is not symmetrical between 33

the two program qbits. It may be known in advance that 34

the data qbit is more likely to be identical to one of the 35

program qbits than the other. We can write expressions 36

for the probabilities η1 and η2: 37

η1 = P (|ψ2〉 ≡ |ψ1〉) (1) 38

η2 = P (|ψ2〉 ≡ |ψ3〉) (2) 39

η1 + η2 = 1. (3) 40

This topic has been extensively analysed by several au- 41

thors. In a key paper Bergou et al. [3] have published 42

analytic expressions that give the expected error rates as 43

functions of η1 for both the optimal and unambiguous dis- 44

crimination methods. 45

The states of the two program qbits have mostly 46

been taken as random, with no correlation between them. 47
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Fig. 1. Showing a fixed overlap of cos2(β/2).

However, a recent paper by Colin et al. [1] investigates dis-1

crimination rates for triads where the program qbits have2

certain known relationships. In particular we considered3

three specific configurations:4

(1) The two program qbits have a known overlap. In5

this paper we represent this overlap by an angle β,6

such that 〈ψ1|ψ3〉 = cos2(β/2). This is illustrated in7

Figure 1.8

(2) The program qbits are both located on the same known9

great circle. See Figure 2.10

(3) The program qbits are confined to caps, of known equal11

size, centered on opposite poles of the Bloch sphere.12

The size of each cap is determined by an angle θ, as13

shown in Figure 3.14

The present paper extends this research by considering15

configurations where the data qbit, and either or both of16

the program qbits, are supplied in multiple copies. This17

possibility has also been analysed by other authors [3,7–9]18

but in all these cases the states of the program qbits have19

been taken to be randomly distributed, an approach that20

lends itself to formal mathematical analysis. In contrast21

to other papers in the area, our approach is necessarily22

numerical, as it involves finding the eigenvalues and eigen-23

vectors of large matrices derived from a range of param-24

eters. We obtain practical results for many configurations25

which have so far resisted analytical treatment. For cer-26

tain particular values of these parameters, analytical re-27

sults have already been derived [3], and here our computed28

results agree with the published expressions. In particular,29

two qbits at random locations on the Bloch sphere have30

an average overlap of ( 1√
2 ), and our computation with a31

(fixed) overlap of ( 1√
2 ) gives, as expected, precisely the32

same results.33

A final section of the paper assesses the technique of34

programmed discrimination as a method of data commu-35

nication. We show that imposing a known relationship36

between the program qbits can markedly increase the ef-37

ficiency of communication.38

A key aspect of any scientific paper is that the results39

should be independently verifiable and repeatable. To this40

end we describe our algorithms in some detail.41

Fig. 2. Program qbits on the same great circle.

Fig. 3. Program qbits confined to polar caps.

2 The problem 42

Our basic aim is to extend the analysis in [1] to configura- 43

tions where each of the qbits in the triad may be replicated 44

two or more times. We note that analytic solutions to this 45

problem have already been published [3,9,13], but only for 46

symmetrical configurations where the program qbits are 47

uncorrelated. 48

It is convenient to refer to a configuration which has 49

x copies of one program qbit, y copies of the data qbit, 50

and z copies of the other program qbit as {x, y, z} (for 51

example, {1, 3, 2}). 52

In previous papers the state of a system might have 53

been described as: 54

|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉. (4)

From this point we drop the position indicators 1, 2 and 3 55

because these qbits may be repeated. The notation |ψ〉⊗n 56

signifies the n-fold tensor product |ψ〉⊗|ψ〉⊗...⊗|ψ〉←−n−→ . 57

This problem can be solved in a parameter space that 58

spans many dimensions. Two primary dimensions are: 59

(a) the type of relationship between the program qbits 60

(fixed overlap, same given great circle, and confined 61

to caps); 62

(b) the type of discrimination (optimal or unambiguous) 63

Continuous dimensions include: 64

(c) the a priori probabilities of identity η1 and η2; 65

(d) the degree of overlap (for a known overlap); 66

(e) the size of the caps (for confined qbits). 67
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Within all these dimensions we also consider different pat-1

terns of replication.2

The analysis of any system with a total of n qbits3

involves matrices of dimension 2n × 2n. Increasing values4

of n result in an exponential growth in the size of the5

problem. For n > 3 it is no longer feasible to carry out the6

analysis by hand except in special cases.7

Even with a computer, the exponential nature of the8

problem sets a practical limit to the size of the configu-9

ration that can be analysed. For example, the analysis of10

{1, 2, 4} (7 qbits) is feasible; {5, 12, 8} (25 qbits) is not.11

The parameter space of the problem is massive; it12

would be impractical to explore it in full and present the13

results in this paper. Instead, we display just a few sample14

results, and give the URL of a website that holds our pro-15

grams [2]. Readers can use this software to explore other16

parts of the space in which they have an interest.17

3 Overview18

This section presents a summary of the methods used to19

establish our results. They are similar to those described20

in [1], but have been adapted for computer execution. De-21

tails of the calculations can be found in the appendix.22

The data qbit is always the same as one or other of23

the program qbits. It follows that for any configuration24

{x, y, z}, there are only two possible states of the system:25

|Ψ1〉 = |ψ1〉⊗(x+y)|ψ3〉⊗z (5)26

|Ψ2〉 = |ψ1〉⊗x|ψ3〉⊗(y+z). (6)27

The analysis of each configuration takes two main stages:28

– The first stage sets up density matrices for each of the29

two possible states, both averaged over those parts of30

the Bloch sphere in which the qbits might be found:31

ρ̂1 = |Ψ1〉〈Ψ1| (7)32

ρ̂2 = |Ψ2〉〈Ψ2|. (8)33

– The second stage uses these two density matrices to34

find statistical results.35

Helstrom’s rule [17] allows the optimal discrimination er-36

ror rate to be calculated directly from the two density37

matrices. We substitute various values of η1 and η2 and38

take the following steps:39

(1) compute a difference operator Λ̂ = (η1ρ̂1 − η2ρ̂2);40

(2) find s, the sum of the magnitudes of the eigenvalues of41

Λ̂;42

(3) calculate the error rate as (1− s)/2.43

Finding the unambiguous discrimination failure rate also44

requires several steps and is an order of magnitude more45

laborious. Following the procedure described in [5], we es-46

tablish a POM with three component operators:47

– Π̂1, which unambiguously recognises state |Ψ1〉;48

– Π̂2, which unambiguously recognises state |Ψ2〉;49

– Π̂0, which returns the result unknown. 50

Since one of these outcomes is certain to occur, we may 51

write 52

Π̂0 + Π̂1 + Π̂2 = I (9) 53

or Π̂0 = I− Π̂1 − Π̂2 54

where I is the unit matrix. 55

The steps in the computation are: 56

(1) Using Jacobi‘s algorithm, find the eigenvalues and 57

eigenvectors of the two density matrices ρ̂1 and ρ̂2. Dis- 58

card the eigenvectors with zero eigenvalues, and form 59

the others into two non-square matrices Z1 and Z2. 60

(2) Construct a projector P̂1 from the vectors in Z1 and 61

Z2. Assume that each vector in Z1 is a linear combina- 62

tion of all the vectors in Z2, plus a residual component 63

that is orthogonal to all the vectors in Z2. Build P̂1 64

from these residual vectors, discarding the rest. Con- 65

struct P̂2 in the same way. 66

Confirm that: 67

Tr(ρ̂1P̂2) = Tr(ρ̂2P̂1) = 0. (10)

The algorithm for this procedure is more fully de- 68

scribed in the appendix. 69

(3) At first sight it would seem that P̂1 could be used as it 70

stands as Π̂1, the detector for |Ψ1〉, since it cannot pos- 71

sibly be triggered by state |Ψ2〉, and vice versa. Matters 72

are not so simple, as Π̂0 must be positive-definite; that 73

is, its smallest eigenvalue may not be negative. The 74

best unambiguous recognition rate is attained when 75

the smallest eigenvalue of Π̂0 is exactly zero. We must 76

set: 77

Π̂1 = c1P̂1 (11) 78

Π̂2 = c2P̂2 (12) 79

where c1 and c2 are positive constants less than 1. 80

Clearly, 81

Π̂0 = I− c1P̂1 − c2P̂2. (13)

The constants c1 and c2 are not independent, for any 82

given value of one determines the other, but the re- 83

lationship between them in most cases is not easy to 84

determine analytically. It must be found by an itera- 85

tive numerical method. 86

(4) Given that the state is |Ψj〉, (j = {1, 2}) the probability 87

of detecting is it Tr(ρ̂jΠ̂j). It follows that the overall 88

probability of successful unambiguous discrimination 89

Q is: 90

Q = η1Tr(ρ̂1Π̂1) + η2Tr(ρ̂2Π̂2)

= η1Tr(c1ρ̂1P̂1) + η2Tr(c2ρ̂2P̂2). (14)

For any given value of η1 in the central range this ex- 91

pression can be maximised numerically, using one of 92

c1 or c2 as an independent variable. 93
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Table 1. Fixed overlap optimal discrimination {1, 1, 1}.
β π/6 π/3 π/2 2π/3 5π/6 π
η1

0.25 0.241 0.217 0.183 0.150 0.125 0.116
0.50 0.481 0.428 0.356 0.283 0.231 0.211
0.75 0.241 0.217 0.183 0.150 0.125 0.116

Table 2. Fixed overlap optimal discrimination {1, 6, 1}.
β π/6 π/3 π/2 2π/3 5π/6 π
η1

0.25 0.236 0.196 0.142 0.088 0.049 0.035
0.50 0.471 0.392 0.283 0.175 0.096 0.067
0.75 0.236 0.196 0.142 0.088 0.049 0.035

When η1 or η2 are close to zero, the equation has no1

solution, and it is sometimes best to discard the POM2

in favour of one or other of the projectors P̂1 or P̂2.3

The range over which the full POM is valid depends4

on the configuration being analysed.5

The proportion of measurements, (1 − Q), which return6

the result ‘unknown’ is the failure rate.7

4 Results8

The results in this section are generated by a suite of9

six programs that cover the three types of relationship10

(fixed overlap, known great circle, and polar caps) and11

both modes of discrimination (optimal and unambiguous)12

as applied to each relationship. We present the results of13

the fixed overlap programs in some detail, but give only14

brief summaries for the other two types.15

4.1 Fixed overlap with optimal discrimination16

First we examine multiple copies of the data qbit. Some17

results are given in Table 1 for the configuration {1, 1, 1}18

and in Table 2 for {1, 6, 1}. In these tables the vertical19

axis covers different values of η1. The horizontal axis gives20

different values of β, where the overlap is cos2(β/2). Fig-21

ures in the body of the table represent error rates. Results22

for intermediate cases are not shown but can easily be cal-23

culated using the programs in [2]. In all cases the user can24

adjust the intervals between the values of β and η1.25

Figure 4 is based on the configuration {1, n, 1}(1 ≤26

n ≤ 6). and shows how the error rate varies with the27

number of copies of the data qbit, for various degrees of28

overlap. The error rate generally falls when the number of29

copies is increased, but this effect is most marked when30

the overlap is small, and barely visible when the overlap31

is large.32

Next we investigate the case where there are multiple33

copies of the program qbits, arranged symmetrically. We34

compare configurations of the forms {1, 2n − 1, 1} with35

those of {n, 1, n}, which have the same number of qbits.36

Results show that the error rates are very similar.37

Fig. 4. Configuration {1, n, 1}. Optimal error for fixed overlap
given by β = π/6 (top curve) to β = π (bottom curve) in steps
of π/6.

Table 3. Fixed overlap optimal discrimination for symmetrical
duplication of program qbits, compared to repetition of the
data qbit.

Configuration qbits Error rate Error rate
(β = π/2) (β = π)

{1, 1, 1} 3 0.356 0211
{1, 3, 1} 5 0.306 0.113
{2, 1, 2} 0.308 0.115
{1, 5, 1} 7 0.289 0.077
{3, 1, 3} 0.288 0.076
{1, 7, 1} 9 0.280 0.059
{4, 1, 4} 0.279 0.057

Table 4. Fixed overlap optimal discrimination with asymmet-
rical replication of program qbits.

Confiuration qbits Error rate Error rate
(β = π/2) (β = π)

{1, 1, 1} 3 0.356 0211
{1, 2, 1} 4 0.323 0.146
{1, 1, 2} 0.319 0.138
{1, 3, 1} 5 0.306 0.113
{1, 2, 2} 0.287 0.073
{1, 1, 3} 0.302 0.105
{1, 4, 1} 6 0.296 0.092
{1, 3, 2} 0.272 0.045
{2, 1, 3} 0.294 0.089
{1, 2, 3} 0.272 0.045

Table 3, which is based on η1 = 0.5 and includes 38

columns for β = π/2 and β = π makes this clear. 39

To end this section, we consider various non- 40

symmetrical configurations. For β = π/2 the error rates 41

for al l configurations with the same number of qbits are 42

close to one another, but for β = π the relationship breaks 43

down. Table 4 gives the figures. 44

The interesting conclusion is that in this mode (fixed 45

overlap, optimum discrimination) it makes little difference 46

how the qbits are used provided the arrangement is sym- 47

metrical: any symmetric configuration with n qbits in total 48

will result in substantially the same probable error rate. 49
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Fig. 5. Fixed overlap = 1√
2
, failure rate in unambiguous dis-

crimination for {1, 1, 1}.

Fig. 6. Fixed overlap = 1√
2
, failure rate in unambiguous dis-

crimination for {1, 3, 1}.

4.2 Fixed overlap with unambiguous discrimination1

The results in this section are presented for a mid-range2

overlap (β = π/2). Figures for other degrees of overlap3

can be found by running the programs in [2].4

As we mentioned briefly in the previous section, the5

graph of the relationship between the error rate and η1,6

for any configuration, has three distinct sectors. In the7

centre of the range the best unambiguous discrimination8

is provided by a POM with three components. Outside9

this range, the ‘best’ discrimination rate is obtained by10

using one or other of the projectors P̂1 or P̂2. When η1 is11

small, the error rate is given by:12

Failure rate = η1 + (1− η1)Tr(ρ̂2P̂2). (15)

A similar equation holds when η2 is small.13

It is worth noting that when only one projector is used,14

one of the possible states of the system can sometimes be15

recognised unambiguously, but the other can never be de-16

tected. This suggests that in some circumstances, it might17

be better to keep using the three-component POM, even18

though it does not give the ‘best’ discrimination rates.19

Typical curves are shown in Figures 5–7. Figures 520

and 6 use a fixed overlap of 1√
2 . Corresponding figures21

Fig. 7. Fixed overlap = 1√
2
, probable error rate in unambigu-

ous discrimination for {1, 1, 3}.

Fig. 8. Known great circle, error rate in optimal discrimination
for {1, 1, 1} (upper curve) to {1, 3, 1} (lower curve).

drawn from analytic studies based on random program 22

bits would look the same. We include our results here to 23

give a more complete overview of the topic. The discrim- 24

ination rates that correspond to the individual projectors 25

are shown as dashed lines. 26

These curves illustrate two trends: 27

(1) Symmetrical configurations, where the data qbit is re- 28

peated several times, improve the rate of successful 29

discrimination. They also widen the useful range of 30

the three-component POM. 31

(2) Non-symmetrical configurations, in which one of the 32

program qbits is duplicated, narrow the range of the 33

POM, and give hardly any improvement in the rate of 34

discrimination. 35

4.3 Known great circle with optimal discrimination 36

This set of results has one dimension fewer than the previ- 37

ous set, as we do not need to investigate different overlaps. 38

Figure 8 shows the error rates for three symmetrical 39

configurations – {1, 1, 1}, {1, 2, 1} and {1, 3, 1}. Increasing 40

the number of data qbits gives a modest improvement of 41

some 20% in the correct discrimination rate. 42
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Fig. 9. Error rates (great circle, optimal discrimination) for
{1, 1, 1} (upper curve) to {1, 1, 3} (lower curve).

Fig. 10. Failure rates (great circle, unambiguous discrimina-
tion) for {1, 1, 1} (upper curve) to {1, 3, 1}, (lower curve).

Figure 9 illustrates the error rate for non-symmetrical1

configurations – {1, 1, 1} to {1, 1, 3}. As the number of2

program qbits on the right increases, the discrimination3

rate improves slightly, and the optimum value of η1 shifts4

away from 0.5.5

4.4 Known great circle with unambiguous6

discrimination7

Failure rates for {1, 1, 1} to {1, 3, 1} are shown in8

Figure 10.9

Finally, Figure 11 shows the failure rates for non-10

symmetrical configurations – {1, 1, 1} to {1, 1, 3}.11

4.5 Confinement to polar caps with optimal12

discrimination13

Figure 3 shows how the angle θ is related to the size of the14

polar caps that hold the program qbits. Figure 12 plots15

the variation of the minimum error against η1 for different16

values of θ. As the area of confinement decreases, so does17

the minimum error.18

Fig. 11. Failure rates (great circle, unambiguous discrimina-
tion) for {1, 1, 1} (upper curve), {1, 1, 2} (central curve) and
{1, 1, 3} (lower curve).

Fig. 12. Optimal error rates (polar cap confinement) for
{1, 1, 1}. The upper curve is for θ = π, and the lower one
for θ = π/6.

Doubling up the data qbit has little overall effect ex- 19

cept to decrease the error rate slightly. Doubling up the 20

right program qbit skews the diagram to the right. 21

4.6 Confinement to polar caps with unambiguous 22

discrimination 23

Figure 13 shows how the unambiguous discrimination rate 24

varies with the degree of confinement for various sizes of 25

polar cap. This diagram is for the asymmetric configura- 26

tion {1, 1, 3}, but apart from a small skew it is similar to 27

other configurations in this context. 28

In summary, it appears that discrimination rates in 29

both the minimum error and unambiguous regimes depend 30

strongly on the degree to which the program qbits are 31

confined to the poles of the Bloch sphere. The number 32

of qbits available, whether as data or program qbits, has 33

only minor influence. 34
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Fig. 13. Failure rates (polar cap confinement) for {1, 1, 1}.
The upper curve is for θ = π, and the lower one for θ = π/6.

5 Transmitting data using programmed1

discrimination2

The merits of using qbits to ensure data security are well3

established, and several appropriate protocols have been4

defined [18–20].5

A potential application of programmed discrimination6

is in data transmission. The two possibilities |ψ2〉 ≡ |ψ1〉7

and |ψ2〉 ≡ |ψ3〉 are used to encode the binary digits 08

and 1. In this section we examine the data-carrying capac-9

ity of a data transmission system that uses programmed10

discrimination. We use some of the results presented in11

previous sections of the paper, as well as those derived12

from expressions in other published material [3]. A useful13

measure will be the amount of information, in bits, reliably14

transmitted by a single qbit.15

The advantage of programmed discrimination over16

other methods is that the qbits can be allowed to undergo17

any unitary transformation during transmission without18

affecting the data they represent, as long as the same19

transformation applies to all the qbits in a group. In our20

study this advantage holds for groups in which the over-21

lap of the program qbits is fixed, but not for the other22

two modes, as an arbitrary transformation could move the23

qbits away from a known great circle, or away from given24

polar caps on the Bloch sphere. Another restriction is that25

we only consider configurations in which the two possible26

signals are handled symmetrically.27

It is well known that any digital data transmission sys-28

tem will work at its highest efficiency if the expectations29

of zeros and ones are statistically equal. There exist many30

algorithms to compress data to this standard. We would31

therefore expect that in any discrimination system, η1 and32

η2 (as previously defined in Eqs. (1) and (2) should both33

be 0.5. If one used a configuration with unequal expecta-34

tions where, for example, η1 = 1
3 and η2 = 2

3 , the data35

would have to be recoded so that the ratio of zeros and36

ones was 2 to 1. This is not a realistic proposal.37

Another form of asymmetry occurs when the numbers38

of program qbits of each type are not equal, as in the con-39

figuration {1, 3, 2}. The figures we have derived for these40

configurations are averages, but without symmetry the41

Table 5. Bits per qbit, with random program qbits and opti-
mal discrimination.

Configuration {1, n, 1} {2, n, 2} {3, n, 3}
Data qbits (n)

1 0.02033 0.21921 0.01908
2 0.02304 0.02411 0.02064
3 0.02222 0.02292 0.01959
4 0.02063 0.02111
5 0.01899
6 0.01747
7 0.01613

recognition rates will be different for zeros, as opposed 42

to ones. The analysis of this situation is beyond the scope 43

of this paper. 44

5.1 Using optimal recognition 45

Consider a channel in which the probability of receiving 46

a binary digit incorrectly is p. Shannon‘s Noisy Channel 47

theorem [21] states that provided that p �= 0.5, standard 48

error correction methods allow the channel to be used for 49

error-free transmission, albeit at a reduced data rate. The 50

effective data rate R, per bit transmitted, is: 51

R = 1 + p× log2(p) + (1− p)× log2(1− p) bits. (16)

Suppose a group of n qbits is used to transmit a (classi- 52

cal) bit, with an expected error rate of p. The amount of 53

information k sent by one qbit is: 54

k =
1 + p× log2(p) + (1 − p)× log2(1− p)

n
. (17)

Using error rates for optimal discrimination with no cor- 55

relation between the program qbits [3], the information 56

transmitted per qbit, for various configurations, is shown 57

in Table 5. The efficiency of communication in this con- 58

text, when compared to a possible standard of one qbit 59

per bit, is barely 2% with the configuration {1, 1, 1}. This 60

figure improves slightly as the data bit is duplicated, and 61

then falls away again when further copies are brought into 62

play. With multiple program qbits the best configuration, 63

by a small margin, is {2, 2, 2}. 64

In previous sections of this paper, we have calculated 65

the expected error rates for various configurations, and for 66

various degrees of fixed overlap. For orthogonal program 67

qbits (where the overlap is 0) the number of bits per qbit 68

is shown in Table 6. Here the presence of classical informa- 69

tion gives a four-fold improvement, and further illustrates 70

the small, but real advantage of using multiple qbits. 71

5.2 Using unambiguous recognition 72

Shannon’s theorems are not relevant to the protocol that 73

might be used with unambigous discrimination. Suppose 74

Alice is sending data to Bob [22], using the basic {1, 1, 1} 75

configuration with no correlation between the data qbits. 76
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Table 6. Bits per qbit, with orthogonal program qbits and
optimal discrimination.

Configuration {1, n, 1} {2, n, 2} {3, n, 3}
Data qbits (n)

1 0.08533 0.09690 0.08721
2 0.09978 0.11219 0.10013
3 0.09840 0.10996 0.09800
4 0.09295 0.10339
5 0.08671
6 0.08068
7 0.07513

Table 7. Bits per qbit, with random program qbits and un-
ambiguous discrimination.

Program qbits 1 + 1 2 + 2 3 + 3
Data qbits

1 0.05556 0.04000 0.03061
2 0.06250 0.04630 0.03515
3 0.06000 0.04463
4 0.05556 0.04375
5 0.05102
6 0.04688
7 0.04321

Table 8. Bits per qbit, with orthogonal program qbits and
unambiguous discrimination.

Program qbits 1 + 1 2 + 2 3 + 3
Data qbits

1 0.11111 0.08000 0.06123
2 0.12500 0.09259 0.07031
3 0.12000 0.09184
4 0.11111 0.08750
5 0.10204
6 0.09375
7 0.08642

We know that Bob can only make an identification in one1

sixth of the triads, but in these cases there is no uncer-2

tainty about the outcome. For effective communication3

Bob must use a conventional data link to tell Alice when4

he receives a triad that he recognises. To send a bit re-5

liably, Alice must keep re-transmitting the corresponding6

triad until she learns that Bob has received it. With the7

basic configuration Alice must send an average of six tri-8

ads or 18 qbits for every bit, giving a rate of 0.0555 bits9

per qbit.10

The effectiveness of different configurations without11

correlation is shown in Table 7, and that for zero overlap12

in Table 8. The best overall rate is achieved with the con-13

figuration {1, 2, 1}, using orthogonal program qbits and14

unambiguous recognition.15

6 Conclusion16

Our overall conclusion, which applies over all the cases we17

have considered, is that increasing the qbit count generally18

gives only modest increases in the rate of successful dis- 19

crimination. 20

One exception to the rule, worth noting, is that con- 21

fining the program qbits to small areas near the poles of 22

the Bloch sphere does lead to a substantial improvement 23

in the rate of correct discrimination. But this restriction 24

violates the freedom to subject all the qbits in the triad to 25

any unitary transformation, so the finding is of doubtful 26

value, at least where data transmission is concerned. 27

Another curious result is that in the minimum error 28

mode, the error rate depends mainly on the number of 29

qbits used to transmit a bit, and much less on how they 30

are distributed between program and data qbits. 31

For data transmission, the best performance we could 32

find is given by a configuration with orthogonal qbits, un- 33

ambiguous discrimination and some replication of the data 34

qbit. We would need 8 qbits to transmit a single binary 35

digit reliably. This figure is poor when compared to other 36

communication methods. There would need to be good 37

reasons to justify the use of this method in a practical 38

situation. 39
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ment, and to Andrew Mark Colin and Veronica Colin for a 46

careful reading of the manuscript. 47

Appendix A: Details of the algorithms used 48

This appendix is split into two main sections. The first 49

deals with the calculation of density matrices for each 50

of the three configurations. Once density matrices have 51

been found, they can be used to work out out both the 52

optimal error rate and the unambiguous failure rate in 53

discrimination. 54

The second section describes the algorithms that de- 55

rive the actual rates for a given pair of density matrices. 56

These methods are used for all three configurations. 57

A.1 Computing density matrices 58

This section deals with computing density matrices for 59

each of the three types of relationship between the pro- 60

gram qbits: fixed overlap, given great circle, and confine- 61

ment to polar caps. In each case, the method is based 62

closely on that described in [1], but extended to allow for 63

multiple qbits. 64

A.1.1 Density matrices for fixed overlap 65

Following the approach in [1], we provisionally place one 66

of the program qbits at the north pole of the Bloch sphere. 67

|ψ1(prov)〉 = |0〉. 68
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The other provisional program qbit can be written as:1

|ψ3(prov)〉 = cos(β/2)|0〉+ eiα sin(β/2)|1〉2

where the known overlap is cos2(β/2). This is illustrated3

in Figure 1. This leads to a provisional density matrix:4

ρ̂1(prov) = cos2(β/2)|0〉⊗(x+y+z)〈0|⊗(x+y+z) (A.1)

+ sin2(β/2)|0〉⊗(x+y)|1〉⊗z〈0|⊗(x+y)|〈1|⊗z

where x, y, and z form the pattern of replication.5

The provisional density matrix for |Ψ2(prov)〉 is found6

by placing the other program qbit at the north pole. It is:7

ρ̂2(prov) = cos2(β/2)|0〉⊗(x+y+z)〈0|⊗(x+y+z)

+ sin2(β/2)|1〉⊗x|0〉⊗(y+z)〈1|⊗x〈0|⊗(y+z).
(A.2)

Next we apply a generalising transformation that lets both8

qbits be anywhere on the Bloch sphere. We replace |0〉 by9

the general form:10

|0′〉 = cos(θ/2)|0〉+ eiψ sin(θ/2)|1〉 (A.3)

and |1〉 by the state orthogonal to |0′〉, namely,11

|1′〉 = sin(θ/2)|0〉 − eiψ cos(θ/2)|1〉. (A.4)

The generalised forms of |Ψ1〉 and |Ψ2〉 are now given by12

|Ψ1〉 = cos(β/2)|0′0′0′〉⊗(x+y+z) (A.5)

+ eiα sin(β/2)|0′0′〉⊗(x+y)|1′〉⊗z (A.6)

Ψ2〉 = cos(β/2)|0′0′0′〉⊗(x+y+z) (A.7)

+ eiα sin(β/2)|1′〉⊗x|0′0′〉⊗(y+z).

We can write |Ψ1〉 as the weighted sum of two column13

vectors:14

|Ψ1〉 = cos(β/2)|p〉+ sin(β/2)|q〉 (A.8)

where |p〉 is the expansion of the term |0′0′0′〉⊗(x+y+z), in15

terms of the computational basis states |0〉 and |1〉, and16

|q〉 is the expansion of
(|0′0′〉⊗(x+y)|1′〉⊗z).17

Similarly,18

|Ψ2〉 = cos(β/2)|p〉+ sin(β/2)|r〉 (A.9)

where |p〉 is the same as before and |r〉 is the expansion of19

the term
(|1′〉⊗x|0′0′〉⊗(y+z)

)
.20

Let A denote the outer product |p〉〈p| and B denote21

|q〉〈q|. The density matrix ρ̂1 is the average, over the Bloch22

sphere, of the weighted sum of two matrices A and B:23

ρ̂1 =
1
4π

(
cos2(β/2)

∫
S

AdS + sin2(β/2)
∫
S

BdS
)
.

(A.10)
The integral

∫
S
dS denotes integration over the surface of24

the Bloch sphere.25

Similarly, using the definintion of ρ̂2 we find 26

ρ̂2 =
1
4π

(
cos2(β/2)

∫
S

AdS + sin2(β/2)
∫
S

CdS
)

(A.11)
where C is the outer product |r〉〈r|. 27

We now turn to the calculation of the individual el- 28

ements of the matrices A, B and C. Let n be the total 29

number of qbits in the configuration (n = x+y+z). Each 30

of the matrices will be of order 2n, and we can label the 31

rows and columns by the binary numbers 0 to (2n−1), so 32

that – for example – A[J,K] is the element of A at row J 33

and column K. 34

Each element of any of the three matrices is the av- 35

erage, taken over the surface of the Bloch sphere, of an 36

expression that has two factors: 37

(a) a ket |Xj〉 that is the same for all the elements in 38

column J . 39

(b) a bra 〈Yk| that is the same for all the elements in row 40

K. 41

We may put: 42

I[J,K] =
(

1
4π

) ∫
S

|XJ 〉〈YK | 43

where the integration is over the whole sphere. I stands 44

for A, B or C as appropriate. 45

It is useful to code the current configuration as three 46

binary numbers P , Q and R: 47

P =
0000000000 . . .0000000000

←− n −→ (A.12)

Q =
00000 . . .00000
←− x+ y −→

11 . . . 11
←− z −→ (A.13)

R =
111 . . .111
←− x −→

00000 . . .00000
←− y + z −→ (A.14)

|XJ〉 for any of the matrices A, B or C can now be worked 48

out by taking the appropriate number (P , Q or R) and 49

matching it, bit by bit, against the binary version of the 50

column label J . It is clear, from the definition of |0′〉 and 51

|1′〉 that |XJ〉 will be the product of: 52

– a sign factor s1, which may be +1 or −1; 53

– a term et1iφ where t1 is an integer such that (t1 ≥ 0); 54

– the cosine of the angle (θ/2), raised to the power u1; 55

– the sine of the angle (θ/2), raised to the power v1. In 56

all cases (u1 + v1) = n. 57

The generation of each term in |XJ〉 starts by initialising 58

four integer variables which represent a partial product: 59

– s1 = +1 (the sign of the term); 60

– u1 = 0 (the power of the cosine term); 61

– v1 = 0 (the power of the sine term); 62

– t1 = 0 (the coeffiicent of ψ). 63

The final product will be: 64

|XJ〉 = s1e
t1iφ cosu1(θ/2) sinv1(θ/2). 65
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Each step in generating this product consists of taking a1

digit from one of P , Q or R (say i) and the corresponding2

digit from the binary form of J , (say j) and applying the3

following rule. The order in which the bits are used is4

immaterial:5

– i = 0, j = 0: increment the cosine count u1;6

– i = 0, j = 1: increment the sine count v1 and the7

exponent count t1;8

– i = 1, j = 0: increment the sine count v1;9

– i = 1, j = 1: increment the cosine count u1, and the10

exponent count t1. Change the sign of s1.11

The rule works because each of the four possible combina-12

tions of i and j identifies one of the terms in the expansion13

of |0′〉 and |0′〉 and multiplies it into the partial product.14

The derivation of 〈YK | is the same, except that we use15

a row label K instead of a column label. As we are work-16

ing on a ket, we decrement the exponent count instead of17

adding to it. We find:18

〈YK | = s2e
t2iφ cosu2(θ/2) sinv2(θ/2)19

and expect t2 to be negative.20

The final term to be integrated is the product of |XJ〉21

and 〈YK |. As the integration is over the surface of a sphere22

we factor in sin(θ), in the form 2 sin(θ/2) cos(θ/2).23

The final expression for the average is:24

s

4π

(∫ 2π

0

dφetiφ
∫ π

0

dθ cosu+1(θ/2) cosv+1(θ/2)
)

25

where s = s1× s2, t = t1 + t2, u = u1 +u2, andv = v1 + v2.26

A useful feature of this expression is that it evaluates27

to zero for all values of t except 0. As the values of t1 and t228

for any column or row depend only on the number of ones29

in the binary expansions of J and K, it follows that the30

only non-zero terms in the matrix will be those where the31

intersecting row and column labels have the same number32

of ones. For these cells, the average can be worked out by33

a simple recursive method that uses a standard integral:34

Define I(m,n) as
∫ π
0

cosn(θ/2) sinm(θ/2)dθ. Then35

n = 1⇒ I(m,n) =
1

m+ 1
36

otherwise,37

I(m,n) = I(m,n− 2)− I(m+ 2, n− 2).38

A.1.2 Density matrices when both program qbits39

are on a given great circle40

In this section, it is given a priori that the program qbits41

lie on a pre-defined great circle, as shown in Figure 2.42

We note that any great circle on the Bloch sphere can be43

transformed into any other, just by rotating the sphere.44

The most convenient one to use is the ‘Greenwich merid-45

ian’, where the azimuth angle is always zero. We may put:46

|ψ1〉 = cos(α/2)|0〉+ sin(α/2)|1〉 (A.15)47

|ψ3〉 = cos(γ/2)|0〉+ sin(γ/2)|1〉. (A.16)48

Following the established pattern, 49

|Ψ1〉 = |ψ1〉⊗(x+y)|ψ3〉⊗z. 50

As |ψ1〉 and |ψ3〉 are independent, we can define the den- 51

sity matrix of the first state as: 52

ρ̂1 = λ̂1 ⊗ μ̂1 53

where 54

λ̂1 = ψ1〉⊗(x+y)〈ψ1|⊗(x+y) (A.17)

μ̂1 = ψ3〉⊗z〈ψ3|⊗z. (A.18)

We compute λ̂1 and μ̂1 separately, and then form their 55

tensor product to find ρ̂1. 56

The derivation of the individual terms in either of the 57

matrices follows the general lines described in the previous 58

section. 59

Each term has the form: 60(
1
2π

∫ 2π

0

dω cosv(ω/2) sinu(ω/2)
)

61

where ω stands for α or γ, and (v+u) is twice the number 62

of bits in each row or column label. 63

The integration rule is: 64

– define J(m,n) as
∫ 2π

0
dω cosn(ω/2) sinm(ω/2). 65

Note that (m+ n) cannot be odd; 66

– m and n both odd ⇒ J(m,n) = 0; 67

– n = 0⇒ J(m,n) =
∏m/2
h=1

(
2h−1
2h

)
; 68

– otherwise J(m,n) = J(m,n− 2)− J(m+ 2, n− 2). 69

The density matrix of the second possible state ρ̂2 is found 70

by multiplying λ̂ and μ̂ in the opposite order: 71

ρ̂2 = μ̂⊗ λ̂. (A.19)

A.1.3 Density matrices when the program qbits are confined 72

to polar caps 73

Figure 3 shows the assumed positions of the polar caps 74

that hold the program qbits. Since these qbits are inde- 75

pendent, we can use the approach set out in the previous 76

section, and define each density matrix as the tensor prod- 77

uct of two smaller matrices, entirely based on one or other 78

of the polar caps. 79

We can again define the density matrix of the first 80

state as: 81

ρ̂1 = λ̂1 ⊗ μ̂1 82

where 83

λ̂1 = ψ1〉⊗(x+y)〈ψ1|⊗(x+y) (A.20)

μ̂1 = ψ3〉⊗z〈ψ3|⊗z. (A.21)

The general form of |ψ1〉 is cos(α/2) + eiβ sin(α/2). As- 84

suming that |ψ1〉 is in the northern cap, bounded by the 85
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angle θ, each term in the density matrix λ̂ will be of the1

form:2

1
κ

∫ 2π

0

dβeniβ
∫ θ

0

dα cosu(α/2)sinv sin(α/2)3

where κ is the area of the cap (κ = 2π(1 − cos(θ))) and4

(u + v) = the number of bits needed to label a row or5

column of the matrix.6

The powers v and u are obtained in the same way as7

in the other cases, but the integration process is different:8

– define K(m,n, θ) as
∫ θ
0 dω cosn(ω/2) sinm(ω/2);9

– m and n both odd ⇒ K(m,n) = 0;10

– n = 0 ⇒ K(m,n) =
(

4
m−1

)(
1

1−cos θ

)
(1 − cosm+1

11

(θ/2));12

– otherwise K(m,n) = K(m,n−2, θ)−K(m+2, n−2, θ).13

A.2 Derivation of error rates from the density matrices14

This section describes how error rates can be found from15

any pair of density matrices derived from the two possible16

states |Ψ1〉 and |Ψ2〉. To calculate the results presented17

in Section 4 we applied these methods to density matrices18

generated in the three different ways: fixed overlap, known19

great circle and polar caps. The methods would, however,20

be valid for other pairs of density matrices as well.21

In all cases the calculations involve finding the eigen-22

values of large matrices. For example, to analyse the con-23

figuration {x, y, z} we must find the eigenvalues of two24

matrices, each with 22(x+y+z) elements. This is computa-25

tionally hard, and the time needed grows exponentially26

with the number of elements.27

We define s as 2n where n = x + y + z, total number28

of qbits in the configuration.29

The algorithm for finding the optimum error rate uses30

Helstrom’s rule. It is straightforward and is amply de-31

scribed in the overview Section 3.32

Finding the unambiguous discrimination error rate re-33

quires two main steps and follows the method described34

in [5].35

First we need to find two projectors P̂1 and P̂2, such36

that:37

(a) Tr(ρ̂1.P̂2) = Tr(ρ̂2.P̂1) = 0;38

(b) P̂1 and P̂2 are completely orthogonal to one another.39

Using Jacobi’s method, we calculate the s eigenvectors40

of ρ̂1 and ρ̂2. and discard those withzero eigenvalues. We41

are left with a (rectangular) array Z1 with s rows and x42

columns from ρ̂1, and an array Z2 of dimension s×y from43

ρ̂2. Both x and y may be less than s.44

We suppose that each vector in Z2 is composed of a45

linear combination of all the vectors in Z1, plus a residual46

vector, which is what we need. This allows to write down47

x equations in s unknowns, which would not in general be48

enough to determine the residual vector, as x ≤ s. We can49

find the extra equations by specifying that the residual50

vector is orthogonal to each of the vectors in Z1.51

Fig. A.1. System of equations to calculate projectors.

The conditions can be coded into a set of simultane- 52

ous linear equations, as shown in Figure A.1. Here all the 53

vectors in Z2 have been assembled into a matrix, padded 54

out with zeros. 55

When this system is solved using Gaussian elimination, 56

the resultant array V holds the orthogonal vectors in its 57

lower s columns. Naming them |v1〉 to |vy〉, the projector 58

P̂1 can be constructed as: 59

P̂1 =
y∑
k=1

(|vk〉〈vk|) (A.22)

P̂2 is constructed in exactly the same way. 60

As we have seen in equation (14), the probability for 61

successful unambiguous discrimination is: 62

Q = η1Tr(c1ρ̂1P̂1) + η2Tr(c2ρ̂2P̂2) (A.23)

c1 and c2 are constants which must be selected so that 63

Π̂0, defined in equation (13), has a smallest eigenvalue of 64

zero, and Q has a minimum value. 65

It turns out that the relationship between the con- 66

stants and the smallest eigenvalue of Π̂0 is not linear. We 67

use a version of the golden section search [23] to satisfy 68

these conditions. 69

For certain small values of η1 and η2 the search does 70

not converge, and there are no acceptable values of c1 71

and c2. This defines the range where the three-component 72

POM is not valid. 73

The calculation of unambiguous error rates for any 74

configuration takes much longer than that for minimum 75

error rates. 76
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