
A New Apparatus for Experiments
with Caesium Bose-Einstein

Condensates

Craig David Colquhoun

Experimental Quantum Optics and Photonics Group
Department of Physics and SUPA

University of Strathclyde

A thesis presented in the fulfilment of the requirements for
the

degree of

Doctor of Philosophy

2019



This thesis is the result of the author’s original research. It has been composed
by the author and has not been previously submitted for examination which has
led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the
United Kingdom Copyright Acts as qualified by University of Strathclyde Regu-
lation 3.50. Due acknowledgement must always be made of the use of any material
contained in, or derived from, this thesis.

Signed:

Date:

i



Abstract

This thesis reports on the design and construction of an experimental appara-
tus capable of generating Bose-Einstein condensates (BECs) of spin-polarised
caesium-133 atoms. Caesium condensates offer excellent control over interatomic
interactions due to the rich landscape of low-field magnetic Feshbach resonances,
which enables the study of quantum gases in attractive and repulsive interaction
regimes.
An ultra-high vacuum system, laser systems and magnetic field coils were assem-
bled to trap and cool the atoms from room temperature to temperatures on the
order of 1 nK. Absorption imaging was implemented as a means to detect the
number and density distribution of the atoms.
Laser cooling and trapping methods are introduced, and the effects of each cooling
stage on the gas are demonstrated. The final cooling stage, evaporative cooling,
is presented by way of examining the gas after it has undergone each evaporation
phase so we observe the onset of Bose-Einstein condensation.
Evaporative cooling produces BECs containing on the order of 2×105 atoms, with
a condensate fraction of 0.48. We demonstrate that the atom number can be fine-
tuned by removal of the most thermal atoms in the trap. We also exhibit our
ability to observe expanding condensates in a guiding beam for durations of up
to 1 s, and our ability to cause the condensate to implode, by tuning interactions.
Measuring the temperature of the gas in sub-nK regimes is currently a chal-
lenge when using traditional time-of-flight thermometry. Some modifications to
the apparatus have been described, that would permit thermometry using dilute
caesium atoms in a different spin state to probe the main gas.
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Chapter 1

Introduction

When laser cooling was experimentally realised in 1985 by Steven Chu and co-

workers [1], it marked the beginning of a new field of physics based around cold

atoms and triggered a race to new low temperature regimes, which stimulated

the advancement of laser and vacuum technology. Atomic vapours were soon

routinely being cooled to ultracold regimes below 10 µK using newly developed

laser cooling methods [2]. The importance of these milestones was apparent, as it

was widely speculated that laser cooling could serve as a gateway to Bose-Einstein

condensation.

After evaporative cooling was developed, rubidium-87 was evaporatively cooled

to quantum degeneracy by the group of C. E. Wieman and E. A. Cornell at

the National Institute of Standards and Technology in Boulder, Colorado, form-

ing the first Bose-Einstein Condensate (BEC) [3]. This was quickly followed by

sodium [4] and lithium [5] BECs. As an indication of the substantial importance

of their discoveries, Nobel prizes were awarded to William Phillips [6], Steven

Chu [7] and Claude Cohen-Tannoudji [8] in 1997 for the development of laser

cooling methods; and Carl Wieman, Wolfgang Ketterle [9] and Eric Cornell [10]

in 2001 for the experimental realisation of BECs.

While work on other atomic species was ongoing, a new field was developing
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1.1. HISTORY OF CAESIUM COOLING

as this interesting state of matter finally allowed the observation of some effects

usually described as wave behaviour. Atom lasers [11], solitons [12, 13], vortices

[14, 15] and matter-wave interference [16] are some examples of the behaviours

that were observed in BECs.

Some years passed by before caesium was condensed, but it was not from lack

of trying. All prior BECs were formed in magnetic traps, however the states of

caesium that would permit magnetic trapping always led to catastrophic losses

during evaporative cooling. Caesium was an elusive BEC goal until late 2002,

when Rudolf Grimm’s group in Innsbruck evaporatively cooled a spin-polarised

sample of atoms in a state that required some unusual techniques to be used

[17,18].

This thesis describes the development and construction of a new apparatus de-

signed to produce caesium BECs and to study quantum systems in optical lattice

potentials. The results of each cooling stage that leads to our Bose-Einstein con-

densation are presented herein, and a preliminary experiment to measure ultra-

low temperatures in small systems is discussed.

1.1 History of Caesium Cooling

Caesium has been used as the frequency and time standard since 1967, based on

improvements made to the first atomic clock made from caesium in 1955 by L. Es-

sen at the National Physics Laboratory in the UK [19]. Continual improvements

to clock stability were made over the years and in 1989, after the advent of laser

cooling, M. A. Kasevich and co-workers designed an atomic fountain clock [20].

The idea of atomic fountains was that atoms could be laser cooled and launched

into a ballistic trajectory using a light pulse, allowing for a low velocity spread

and longer interrogation times than previously possible, further improving the

accuracy of atomic clocks.

2



1.1. HISTORY OF CAESIUM COOLING

Research was focused on reaching lower temperature regimes with caesium

because it is the heaviest stable alkali metal, so it was thought to be easier

to slow caesium atoms than lighter alkali atoms, and because of the expected

improvement to the performance of atomic fountain clocks. Due to the fact

fountain clock precision was being limited by atom collisions [21, 22], it became

a priority to create a Bose-Einstein condensate (BEC) of caesium atoms [23].

The first attempts to create a caesium BEC used states that could be cooled

in magnetic traps, and initial low temperature results for atoms in the |F,mF 〉=
|4, 4〉 state, seemed promising [24]. After the first BEC was created using rubid-

ium by E. Cornell and co-workers in 1995 [3], a similar evaporative cooling scheme

was attempted with caesium. For the |4, 4〉 state, however, it was found that spin

relaxation rates were too high for evaporative cooling to succeed [25–27]. The

|3,−3〉 state, which was previously considered as a viable option [23], became the

new focus [28, 29]. The |3,−3〉 state also resulted in high levels of inelastic colli-

sion loss - the best phase space density achieved with this state was two orders

of magnitude too low for Bose-Einstein condensation to occur [30,31], even with

suppression of the dipolar relaxation that caused the loss [32].

During this time, many studies were performed on collisions in caesium [27,33–

38], with some suggesting that the |3, 3〉 ground state could yield more favourable

results, however the energetic ground state is always a ‘high-field seeking’ state,

and non-magnetic traps were necessary [36, 37]. Success was eventually found

with this state in Innsbruck in 2002, when T. Weber and co-workers used an

optical trap with magnetic levitation and a magnetic field bias to tune interatomic

interaction strengths [39,40].

3



1.2. WHY CONDENSE CAESIUM?

1.2 Why Condense Caesium?

With its large mass and large hyperfine splitting, caesium is well suited to optical

cooling methods [24, 41]. The separation of the D1 and D2 lines is also ideal

for studies with spin-dependent optical lattices, which was demonstrated with

rubidium-87 [42, 43], and while the work in this thesis was ongoing, caesium-

133 [44].
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Figure 1.1: Calculated Feshbach spectrum for the |3, 3〉 state of caesium. The
solid red line shows the s-wave scattering length in Bohr radii with respect to
magnetic field, the dashed red lines indicate Feshbach resonances, where the
scattering length goes to infinity, and the dotted black line indicates 0 G. Figure
obtained from [45].

Another reason for the use of caesium is the rich landscape of Feshbach res-

onances at low external magnetic fields, as is shown in Fig. 1.1. In particular, a

very wide magnetic Feshbach resonance at -11.7 G results in a very large negative

scattering length at zero magnetic field with a zero crossing at 17 G. Using this

Feshbach resonance, the scattering length of caesium can be reliably tuned from

being extremely attractive at external magnetic fields of 0 G, to being repulsive

at 17.1 G, with stability provided by the width of the resonance. For a similar
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1.3. THERMOMETRY OF BOSE-EINSTEIN CONDENSATES

amount of control over interactions in rubidium-87 one would need to resort to

magnetic fields of 1007 G [46], or 907 G for sodium-23 [47]. While this tunabil-

ity is crucial for efficient evaporative cooling in caesium, it also allows for the

observation of interesting interaction regimes without the requirement for bulky

magnetic field coils and cooling systems.

One more reason to use caesium is simply that there is only a handful of

caesium Bose-Einstein condensates worldwide. At the time of writing, there

are known to be caesium BECs in Innsbruck [39], Chicago [48], Durham [49],

Ljubljana [50] and now Glasgow [51].

1.3 Thermometry of Bose-Einstein Condensates

Temperature measurements of cold atoms are usually performed by measuring

the time-of-flight expansion of atom clouds, because their rates of expansion are

determined by the temperature of the sample. Once a Bose-Einstein condensate

is produced, it gathers in the centre of the cloud, forming a high-density core

which does not expand at the same rate as the thermal component due to in-

teractions. Usually a ‘bimodal’ fitting procedure which deconstructs the cloud

into thermal and condensed components is used, but works at its best when these

components are of roughly equal proportions [52]. For highly pure Bose-Einstein

condensates, it is difficult to measure the temperature of the sample because the

size and expansion energy of the thermal component are comparable to those of

the condensate. It has been reported that accurate time-of-flight thermometry

of a Bose gas is limited to temperatures of more than 30% of the critical tem-

perature for Bose-Einstein condensation [53]. Because of this limitation, and the

fact that time-of-flight thermometry is a destructive technique, the development

of alternative thermometry methods is underway.

Thermometry schemes that use small amounts of ‘probe’ atoms to thermalise

5



1.4. THESIS OVERVIEW

with and measure the temperature of a larger reservoir of atoms have been im-

plemented, both with two species of atom [54], and with two spin states of the

same species [53]. Similar non-destructive schemes have been proposed, either

by measuring the phase change of quantum dot probes as a result of the mea-

surement [55], or by measuring the position and momentum spread of probes

after coming into contact with the system being measured over many measure-

ments [56], but these have not yet been experimentally realised.

The work in this thesis is geared towards performing such temperature mea-

surements for Bose gases with very low thermal fractions. Preliminary results are

obtained using time-of-flight measurements, however this method is less accurate

for sub-nK temperatures which tend to have very high condensate fractions [57],

so we consider some improvements for future work.

1.4 Thesis Overview

The majority of the work detailed in this thesis was performed during the building

of our experimental apparatus. The Chapters that follow indicate the theory

used during this process, as well as some preliminary results for cooling and

experiments with a caesium Bose-Einstein condensate, with the following layout:

• Chapter 2 describes the theory used when cooling caesium atoms from room

temperature to a Bose-Einstein Condensate.

• Chapter 3 outlines the theory of Bose-Einstein Condensates in various in-

teraction regimes.

• Chapter 4 introduces the vacuum setup, laser systems and computer control

solutions which ensure the smooth running of our experiments (a more in-

depth description of our laser arrangement can be found in the thesis of

Andrea Di Carli [58]).

6



1.5. PUBLICATIONS ARISING FROM THIS WORK

• Chapter 5 contains the results obtained throughout the course of cooling

and early benchmarks for our Bose-Einstein Condensate.

• Finally, chapter 6 details our next steps for realising quantum temperature

probes using our setup.

1.5 Publications Arising From This Work

• C. D. Colquhoun, A. Di Carli, S. Kuhr, and E. Haller Note: A simple

laser shutter with protective shielding for beam powers up to 1 W Review

of Scientific Instruments, 89, 126102 (2018) - Editor’s Pick

• A. Di Carli, C. D. Colquhoun, S. Kuhr, and E. Haller Interferometric

measurement of micro-g acceleration with levitated atoms New Journal of

Physics, 21 053028 (2019)

• A. Di Carli, C. D. Colquhoun, G. Henderson, S. Flannigan, G. L. Oppo,

A. J. Daley, S. Kuhr, and E. Haller Excitation modes of bright matter wave

solitons Submitted to Physical Review Letters (2019)

1.6 Author Contributions

The caesium Bose-Einstein condensate apparatus was constructed in collabora-

tion with one other PhD student, Andrea Di Carli, whose project ran concurrently

with the author’s. As such, many of the aspects, tasks and procedures described in
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fitting of results, as exemplified in Sections 3.4 and 5.1.3; towards the design and
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in Section 4.6; and towards the programming of the control computer and USB
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and aligning most of the optics surrounding the vacuum chamber, optimising the

experiment, programming much of the experimental sequence and providing the-

oretical insight for the experiments we performed. All activities were performed

under the supervision and guidance of Dr Elmar Haller.
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Chapter 2

Cooling to a Bose-Einstein

Condensate

Laser cooling of atoms has become commonplace in cold atom labs around the

world and has shaped modern physics research since its first implementation

over 30 years ago. The usefulness and importance of laser cooling cannot be

overstated, with several new fields of physics being realised as a direct result of

its development. This Chapter provides the theoretical background for each stage

of the process we execute to cool atoms to degeneracy.

Caesium atoms at room temperature move with a velocity distribution cen-

tred around 190 m/s which makes the atoms difficult to trap, manipulate or even

observe for more than a few milliseconds. This can be a problem for precision

experiments where results are obtained by observing the atoms over long dura-

tions. Our aim is to cool the atoms to nanoKelvin temperatures, with velocities

of 10−3 m/s, so that we may observe quantum physics on a macroscopic scale.

We reach our desired temperature using a sequence of cooling stages, utilising

magneto-optical traps (MOTs), degenerate Raman sideband cooling [59], and a

combination of magnetic levitation and small and large dipole traps to perform

all-optical evaporative cooling [39, 40]. The theories behind these methods will
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2.1. DOPPLER COOLING

be discussed in this Chapter.

Laser cooling uses the radiation pressure of light to slow down the atoms.

The concept of radiation pressure was theorised in the 17th century by Johannes

Kepler as the reason a comet’s tail is always directed away from the Sun [60]. At

the time this theory was criticised by the likes of Sir Isaac Newton, but it was later

predicted by James Clerk Maxwell in his theory of light in 1873 [61]. It wasn’t

until 1933 that radiation pressure was experimentally realised by Frisch [62], using

a sodium lamp to deflect a beam of sodium atoms. Upon the invention of the

laser, Ashkin demonstrated that it was possible to accelerate macroscopic pellets

suspended in water using laser radiation, and indicated that atoms and molecules

could be accelerated in the same way [63]. It wasn’t long before this effect was

proposed by Hänsch and Schawlow to cool neutral atoms [64], and Wineland

and co-workers to cool ions [65]. The slowing of an atomic beam using radiation

pressure was demonstrated by W. D. Phillips and H. Metcalf in 1982 [66], and 3D

cooling and optical molasses were realised in 1985 by S. Chu and co-workers [1],

securing radiation pressure as the main effect responsible for the initial cooling

of atoms in most ultracold physics labs.

2.1 Doppler Cooling

Radiation pressure can transfer momentum to atoms in an atomic vapour if the

light has a frequency close to an atomic transition, which causes the atoms to

scatter photons more frequently. The transition rate depends strongly on the

frequency of the light with relation to the transition being excited. Due to the

optical Doppler effect, the frequency of the light experienced by the atoms differs

when they move relative to the light source. If they propagate towards (away

from) a resonant light source, the light frequency will appear higher (lower) than

the source is producing, resulting in an apparent ‘blue-detuning’ (‘red-detuning’)
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2.1. DOPPLER COOLING

of the light.

The method of Doppler cooling is based on this frequency shift, and the cor-

responding change of absorption rates [64]. Each time an atom absorbs a photon,

the momentum from that photon is transferred to the atom in the direction the

photon was travelling. The atom becomes excited for a short time, before emit-

ting another photon in some random direction, pushing the atom in the opposite

direction. The momentum vector from that photon is given by p = ~k where ~

is the reduced Planck constant, k = 2π/λ is the wave vector of the light and λ is

its wavelength.

hk

hk

a) b)
ω=ω0 +Δ

Figure 2.1: Diagrams of Doppler cooling mechanisms. a) The atoms absorb more
photons from the light source towards which they propagate. b) The transfer of
momentum that occurs when a photon is absorbed, then emitted.

Consider an atom moving in one dimension towards a monochromatic laser,

which has been slightly red-detuned from the atom’s resonance. In the reference

frame of the atom, the light is closer to its resonance frequency than in the lab

reference frame, so it absorbs a photon and receives a momentum ‘kick’ of ~k from

the light source with a higher probability. Although it emits another photon in

a random direction and receives a recoil ‘kick’ in the opposite direction, over

several million absorption and emission events, the net effect is that the atom is

eventually pushed away from the light source. If we add a second red-detuned

laser to counter-propagate towards the first as illustrated in Fig. 2.1, the atom will

preferentially absorb photons from the light source towards which it propagates,

slowing it in that dimension. Extending this idea to three dimensions so that
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2.2. MAGNETO-OPTICAL TRAP

we have three orthogonal pairs of counter-propagating beams, we can slow the

expansion of a cloud of billions of thermal atoms, cooling it.

The motion of the atom never stops completely - the random directionality

of spontaneous emission causes a recoil heating effect comparable to the rate

of cooling at lower temperatures. These competing effects eventually reach an

equilibrium, resulting in a lower temperature limit for Doppler cooling [67]

TD =
~Γ

2kB
, (2.1)

where Γ is the atomic natural linewidth, and kB is the Boltzmann constant. The

natural linewidth for the 6S1/2 → 6P3/2 transition of caesium is 2π × 5.22 MHz,

which corresponds to a Doppler temperature of 125µK [68].

As the atoms near the Doppler temperature, the laser beams provide a viscous

damping force in the opposite direction to which the atoms propagate, forming

an ‘optical molasses’. Optical molasses can sometimes cool the atoms to below

the Doppler temperature, and although the atoms are confined for finite periods

of time by the molasses, they are not trapped - trapping is achieved by combin-

ing optical molasses with the Zeeman effect caused by the presence of external

magnetic fields.

2.2 Magneto-Optical Trap

In 1982, William Phillips and Harold Metcalf devised a method of slowing and

bunching beams of atoms with a position dependent force using laser beams and a

magnetic field gradient [66]. This process is based on the idea that as the atoms

lose their velocity and their Doppler shift is reduced, their transition energies

are lowered by virtue of the Zeeman effect, so that they can still be excited

by the red-detuned laser. E. L. Raab and co-workers extended this principle

to three dimensions, enabling the simultaneous cooling and trapping of sodium
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2.2. MAGNETO-OPTICAL TRAP

atoms [69]. Where Doppler cooling exerts a velocity-dependent force on the

atoms, the combination of lasers and magnetic field gradients produces a position-

dependent force, resulting in a magneto-optical trap (MOT).

σ-

mF=1

mF=-1

mF=0mF=0

|B|

mF=0mF=0

mF=1

mF=-1

σ- σ+σ+

Position0

Figure 2.2: Schematic of a magneto-optical trap in 1D with only three excited
mF states shown, for simplicity. The magnetic field varies with position, so do
the mF =±1 levels. The mF =−1 level is lowered to become resonant with the
circularly polarised beams, which cause σ− transitions on the sides they enter.
Because the direction of the magnetic field changes in the centre position of the
MOT, these same beams will cause σ+ transitions after crossing the 0 position
point, but because the mF =1 level has been shifted further from resonance with
the light, these transitions are far less likely.

A MOT works in two or three dimensions with the correct configuration of

quadrupole magnetic field and circular polarisations of red-detuned laser light, as

shown in Fig. 2.2. In our case, the cooling and trapping lasers are red-detuned

from the F = 4 → F ′= 5 transition of caesium, because if the atoms are excited

to the F ′= 5 state, they can only decay back down to the F = 4 state, allowing

for continuous cycling of this transition. In the case of an off-resonant F = 4 →
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2.2. MAGNETO-OPTICAL TRAP

F ′= 4 transition occurring, the atoms could decay into the F = 3 ground state,

which because it is 9.2 GHz detuned from the F =4 state, is dark to the cooling

transition. Repump light is necessary to excite these atoms from F =3→ F ′=4,

so these atoms can decay back to the F = 4 ground state, rejoining the cooling

cycle.

At the centre of the trap, the atoms experience no magnetic field, so they

absorb an equal number of photons from each beam. As they drift from the

centre position and experience magnetic fields, the energies of the mF levels are

Zeeman shifted by

∆E = ~∆ω = mFgFµB
∂B

∂z
z, (2.2)

where µB is the Bohr magneton, ∂B/∂z is the magnetic field gradient in the

direction z and gF is the Landé g-factor associated with the F state. The di-

rection of the magnetic field defines whether σ+ or σ− transitions are caused by

circularly polarised light of the same handedness. In the 1D case in Fig. 2.2, the

magnetic field is always positive, however the direction of the magnetic field, and

hence the quantisation axis of the atoms, changes. Once the atoms have travelled

far from the centre position, towards positions of positive magnetic field, their

excited negative mF states are shifted to lower energies, so the atoms will pref-

erentially absorb light that will induce σ− transitions. The polarisation of the

light is selected so that it will induce σ− transitions on the side that it enters,

so atoms that absorb it will be sent to the centre position. After it passes the

centre position, this same light will cause σ+ transitions because of the change

in direction of the quantisation axis of the atoms but, because the mF =1 levels

have been shifted further away from resonance, this is unlikely to happen.

This trapping method is often used in 2D, creating a cigar-shaped trap that

can be used as a cold atom source for an experimental chamber [70]; or in 3D as

a method to cool and trap atoms so that they can be cooled further for loading

weaker traps.
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2.2. MAGNETO-OPTICAL TRAP

An atom cloud can also be compressed in the MOT by increasing the magnetic

field gradient and the detuning of the cooling beam, this usually results in a higher

atom density which can be convenient for performing the next step in the cooling

sequence with minimal atom losses, at the expense of heating the sample.

With the complex magnetic field and laser polarisation arrangement that re-

sults in a 3D MOT, two sub-Doppler cooling mechanisms often occur and are

difficult to suppress - polarisation gradient cooling and Sisyphus cooling. In

the following Sections, these mechanisms are considered in their simplest case,

formed in 1D by two overlapping counter-propagating laser beams in either cir-

cular polarisations of opposite handedness, or orthogonal linear polarisations. In

a six-beam MOT, a complicated polarisation arrangement is formed in the beam

overlap volume, which causes both cooling mechanisms to occur simultaneously.

Polarisation Gradient Cooling

In the 1D picture, if we keep the same beam configuration as in Fig. 2.2 and

remove the magnetic field gradient, the two circularly polarised beams interfere

to form a standing wave of linearly polarised light, which precesses in a spiral along

the direction of light propagation [2]. An atom that propagates towards one of

the light sources observes its light blue-shifted towards resonance, and the other

light source red-shifted away from resonance. As light with a linear polarisation

can be said to consist of equal amounts of right-handed and left-handed circular

polarisations, the atom then sees more of one circular polarisation than another,

causing an asymmetry in the likelihood of absorbing light from the source towards

which it propagates over the other. Figure 2.3 illustrates this effect, with the

relative transition strengths for an atom in stationary and moving cases. If the

atom moves towards the σ+ beam, its energy levels are shifted further apart with

increasing mF states. The amount of energy lost from each absorption event is

equal to the shift in energy from the mF to the mF +1 state, which allows for
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2.2. MAGNETO-OPTICAL TRAP

lower temperatures than the Doppler limit calculated from Eq. 2.1.

Figure 2.3: Illustration of polarisation gradient cooling in the σ+ − σ− configu-
ration. a) The combination of counter-propagating right handed and left handed
circularly polarised beams form a rotating linear polarisation. b) A stationary
caesium atom in this beam configuration experiences equal amounts of both cir-
cular polarisations, which are now denoted as σ+ and σ− for the transitions they
induce. The AC stark shift for the different Zeeman states is proportional to
the transition strengths indicated, which have been normalised to integer values.
The atom is most probably in the lowest-lying mF =0 state. c) The atom is now
moving towards the σ+ polarised light source, which is Doppler shifted towards
resonance whereas the σ− is shifted further from resonance. As a result, the
transition strengths are altered to favour the higher mF → m′F transitions, and
so the light shift affects these states more. This difference in energy from mF to
mF+1 is the amount of kinetic energy in the atom that is converted to potential
energy as the atom is pumped towards mF = 4 (such as the decay indicated by
the dotted line). b) and c) have been adapted from a figure in [71].
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2.2. MAGNETO-OPTICAL TRAP

Sisyphus Cooling

If we now consider the MOT beams in 3D without a magnetic field gradient, the

configuration of polarisations in the beam overlap volume is not so trivial. As

well as the aforementioned σ+−σ− configuration of polarisation gradient cooling,

the atoms are also subjected to the lin-⊥-lin, or ‘Sisyphus cooling’, configuration.

Sisyphus cooling usually occurs when orthogonal linearly-polarised beams are

overlapped with one another. The beams interfere to form a pattern of linear and

circular polarisations with varying degrees of ellipticity, which shifts the ground

Figure 2.4: Illustration of polarisation gradient cooling in the lin-⊥-lin configura-
tion. a) The polarisation configuration produced when two counter-propagating,
orthogonally linearly polarised beams are overlapped. The polarisation of the
light deforms through space, with Linx, right-handed circular, Linz and left-
handed circular polarisations all occurring periodically, with varying degrees of
elliptical polarisations occurring intermediately. b) The potential shift of the
ground mF states of an atom as it propagates through this polarisation configu-
ration, and the absorption-emission cycle that results in Sisyphus cooling.
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2.3. DEGENERATE RAMAN SIDEBAND COOLING

state mF levels sinusoidally in position space, as illustrated in Fig. 2.4. An atom

experiencing a positive potential shift in an mF state it occupies can be said to be

climbing a ‘potential hill’. As it climbs the hill, it gains potential energy bringing

it closer to resonance with the light, making it more likely to absorb a photon.

When the atom absorbs a photon, it spontaneously emits, either decaying back

down into its original mF state, losing no energy, or decaying into the other lower

mF state, losing an energy of E = ~(ωabs − ωsp), where ωabs and ωsp refer to

the frequency of the light absorbed by the atom and the frequency of the light

emitted by the atom, respectively. If the latter occurs, the atom is ready to climb

the potential hill once more.

2.3 Degenerate Raman Sideband Cooling

After the atoms have been cooled and trapped in the MOT, they are in a mixture

of hyperfine and Zeeman states. This is problematic for magnetically levitating

them because different Zeeman states are affected differently for the same mag-

netic field gradient. We use degenerate Raman sideband cooling as the next

cooling stage because it cools the atoms to their lowest motional level, with the

added advantage of polarising them in a high-field seeking state [18] so there is

no need for an additional optical pumping stage. In addition, Raman sideband

cooling is well suited for the all-optical BEC production because compared to

other methods, it cools atoms faster, to similar temperatures [59,72] with a lower

level of loss [73]. A diagram of the degenerate Raman sideband cooling process

for caesium is shown in Fig. 2.5. In the case of caesium, an optical lattice is

formed using lasers that are resonant with the F = 4 → F ′= 4 transition, which

pumps atoms to the energetically lower F = 3 state, so the lattice beams are

then 9.2 GHz red-detuned with respect to all the possible transitions. The atoms

are then attracted to the points of highest intensity in the lattice, where if they
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Figure 2.5: A diagram of the Raman sideband cooling process. The green double-
ended arrows indicate Raman transitions between Zeeman states, either increas-
ing or decreasing the vibrational state. The red arrows show the transition to
an AC-Stark shifted excited state, and the subsequent decay back to the ground
vibrational level in the lowest energy mF state, which is a dark state.

have low energies, they are said to be in the Lamb-Dicke regime. In this regime,

the atoms are so tightly bound that photon recoils are suppressed, allowing the

cooling of atoms to their motional ground state. The atoms experience harmonic

potentials that conserve their vibrational levels ν, and they are mostly unaffected

by recoils due to absorption and emission. The lattice light induces two-photon

Raman transitions, which couple the degenerate vibrational levels in different

Zeeman states. Using a magnetic field to lift the degeneracy of the vibrational

levels by ~ω, the level ν in state mF becomes degenerate with the ν ± 1 levels in

the mF ± 1 states.
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A polarising beam is blue-detuned from the closed transition F =3→ F ′=2,

and is mostly σ+ polarised, with a small π component. When the atoms become

excited and decay back to this ground state, they increase in mF and conserve

vibrational states because they are in the Lamb-Dicke regime. Eventually, we end

up in the case of the atoms alternating between the |3, 3, ν=1〉 and |3, 2, ν=0〉
levels, the former being a dark state to the polarising beam, and the latter being

dark to only the σ+ component of the light. The role of the π component of the

beam is to finally pump the atoms into the dark |3, 3, ν=0〉 state. The atoms

are now in the lowest motional level, spin polarised in the high-field seeking state

we desire so they can be magnetically levitated against gravity. The theoretical

recoil cooling limit is given by

TR =
~2k2

mkB
, (2.3)

which is 198 nK for caesium having absorbed and emitted a single 852 nm pho-

ton [68]. The first attempts to perform Raman sideband cooling on caesium

yielded temperatures of 280 nK [72] and 250± 30 nK [59], approximately 1.5 re-

coil temperatures. The lowest temperature limit in Raman sideband cooling is

set by the rate of photon reabsorption, which occurs in dense clouds.

2.4 Magnetic Levitation

Once the atoms have been cooled so that they can be contained in much weaker

traps than before, their weight becomes a limiting factor. Caesium is the heavi-

est stable alkali and any trap containing caesium atoms needs to counteract the

effects of gravity. In optical dipole traps, this would require the use of an im-

practical amount of laser power. Instead, we magnetically levitate the atoms

against gravity before introducing the dipole trap so that it takes less optical

power to trap the atoms. This additionally eliminates the effects of gravitational
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sag during the evaporative cooling process, and ensures that all the atoms are of

the same spin [39,40,74]. Magnetic levitation is also advantageous for observing

atoms over longer durations than time-of-flight measurements would allow, and

makes it convenient for a single region of interest to be selected for several images

across multiple measurements. If our cloud is in a mixture of states and we apply

a magnetic field gradient in the vertical direction (z axis) before releasing them

from a trap, each state will experience a different gravitational acceleration, and

the states separate spatially, because each mF level experiences a different poten-

tial. If we levitate one of these states perfectly, this will result in a large loss of

atoms as we lose all other states, because each mF state experiences a different

potential Umag due to the magnetic field in the z axis, Bz, according to

Umag = µBgFmFBz, (2.4)

where µB is the Bohr magneton. We need the gradient of this potential to coun-

teract the gravitational potential energy Ugrav = mgz, so we obtain the equation

for magnetic field gradient
∂Bz

∂z
=

mg

µBgFmF

, (2.5)

which for the |3, 3〉 state of caesium is 31.14 G/cm. However, this perfect lev-

itation in the vertical direction z introduces an ‘anti-trapping’ potential in the

horizontal xy plane (see Fig. 2.6). In free-space, this causes an expansion of

the levitated cloud in the horizontal plane, and in a dipole trap this reduces

the horizontal trap depth [39, 40]. This anti-trapping potential takes the form

of a parabola, with an outward radial force originating from its turning point at

(x, y) = (0, 0)

F = mα2r, (2.6)
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Figure 2.6: The curvature of the levitation field flattens off at higher magnetic
field values, the atoms are located at the bias field value B0 = 17 G. The equipo-
tential surfaces all centre on zero magnetic field, each subsequent surface indicat-
ing a difference of 2 G.

where r =
√
x2 + y2 is the distance from (0, 0), B0 is the magnetic field at (0, 0)

and α is a parameter defining the curvature of the parabola

α = g

√
m

3µBB0

. (2.7)

This α parameter causes a position-dependent acceleration, which results in

the following equations of motion with time-dependent position r(t) and velocity

vr(t) [75].

r(t) = r(0) cosh(αt) + α−1vr(0) sinh(αt) (2.8)

vr(t) = vr(0) cosh(αt) + αr(0) sinh(αt) (2.9)

z(t) = vz(0)t+ z(0). (2.10)

As the cloud spreads out, the magnetic field gradient along the z axis is reduced,

causing the atoms to fall. According to Eq. 2.7, there is a 1/
√
B0 dependence on
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the curvature of the levitation potential, so it becomes practical to introduce a

homogeneous bias field to prevent atoms sliding downwards over short levitation

durations.

2.5 Dipole Trap

After Raman cooling, the atoms are in a temperature regime where an additional

dissipative process would only serve to heat them, so we now implement a method

of trapping the atoms using a conservative force. By using far-detuned, off-

resonant laser beams, we suppress absorption and emission events and a different

trapping force begins to dominate. Unlike the radiation pressure force which

is parallel to beam direction, the dipole force is strongest where the intensity

gradient is steepest, which is usually in the transverse axis of the beam. Because

the dipole force is conservative, a dipole trap can be used to trap atoms, but

additional processes are required to cool them to degeneracy.

2.5.1 Dipole Force

We can approximately describe this force as a result of the induced electric dipole

of an atom oscillating in an electromagnetic field of frequency ω [76]. In the case

of a neutral atom in a oscillating electric field E(t) = E cos(ω t), the oscillation

of the dipole moment p(t) is approximated to be a damped harmonic oscillator

d2p(t)

dt2
+ Γω

dp(t)

dt
+ ω2

0p(t) =
e

me

E0 cos(ωt) (2.11)

where e and me are the charge and mass of an electron, and we have made scalar

approximations E(t) = |E(t)| and p(t) = |p(t)|. The rate of radiative energy loss,

23



2.5. DIPOLE TRAP

Γω, serves as the damping rate of this oscillator, and is given by the equation

Γω =
e2ω2

6πε0mec3
, (2.12)

where ε0 is the permittivity of free-space and c is the speed of light. The in-

duced dipole moment, p0, is related to the E field amplitude by the complex

polarisability of the electron,

αp =
e2

me

1

ω2
0 − ω2 − iωΓω

, (2.13)

where ω0 is the resonance frequency of the oscillator. The real part of the po-

larisability is used to calculate the interaction potential of the dipole moment

Udip,

Udip = − 1

2ε0c
Re(αp)I. (2.14)

Since I is the intensity of the driving field, and the intensity of a Gaussian laser

beam is inhomogeneous in position-space, the dipole force is obtained by taking

the gradient of this potential

Fdip(r) =
1

2ε0c
Re(αp)∇I(r). (2.15)

The nature of the real part of the polarisability is illustrated in Fig. 2.7, where

it can be seen that Re(αp) has a dispersive response centered around ω0(∆ =

ω − ω0 = 0). For a blue-detuned driving field (∆>0), Re(αp) is positive, and for

a red-detuned field it is negative. This indicates that for a red-detuned field the

dipole potential is negative and therefore the dipole force attracts the oscillator

towards intensity maxima; and similarly that a blue-detuned field repels the oscil-

lator from the intensity maxima. The radiative scattering rate which arises from

the imaginary part of the polarisability is calculated by considering the power
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Figure 2.7: A graph of the real and imaginary parts of the polarisability vs detun-
ing in atomic linewidths near an atomic resonance at frequency ω0, illustrating
the nature of the dissipative and conservative forces experienced by atoms in an
electromagnetic field with respect to the detuning of the field.

absorbed by the oscillator at ω, as a stream of photons with energy ~ω

Pabs =
ω

ε0c
Im(αp)I, (2.16)

Γsc(r) =
Pabs

~ω
=

1

~ε0c
Im(αp)I(r). (2.17)

By substituting Re(αp) and Im(αp) into Eqs 2.14 and 2.17 respectively, we get

the equations

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r), (2.18)

Γsc(r) =
3πc2

2~ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I(r) (2.19)
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which are valid for any value of ω. Often, by making the rotating wave approx-

imation and the assumption that ω/ω0 ≈ 1, these equations can be simplified

to

Udip(r) = −3πc2

2ω3
0

Γ

∆
I(r) (2.20)

Γsc(r) =
3πc2

2~ω3
0

(
Γ

∆

)2

I(r). (2.21)

This simplification emphasises an outcome that is crucial for the possibility of

dipole traps. We can see that the dipole potential scales as I/∆, and the scat-

tering rate scales as I/∆2, which indicates that for large values of detuning the

atoms can be trapped with a low probability of being heated due to scattering

events. We can calculate the radial and axial trap frequencies, ωrad and ωax, of a

single dipole trap beam using the harmonic approximation [77]

ωrad =

√
4Udip

mr2
=

√
12Pc2

mr4ω3
0

(
Γ

∆

)
(2.22)

ωax =

√
2Udip

mz2
r

=

√
24Pc4

mr6ω5
0

(
Γ

∆

)
(2.23)

where r is the beam waist radius, zr = πr2/λ is the Rayleigh length and P is the

optical power. Using this notation to identify the trap frequencies, the geometric

mean trap frequency ω̄ is calculated by ω̄ = 3
√
ω2

radωax.

2.5.2 Dimple Trap

There are many different dipole trap configurations [76] - single beam traps are

used to trap atoms in the focus of a laser beam, which only offers strong confine-

ment in the radial direction. Confinement in the axial direction is much weaker,

as the Rayleigh length of a Gaussian beam is typically much larger than its waist.

Crossed dipole traps, where the foci of two beams overlap, provide confinement
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Figure 2.8: Graphs of the potential experienced by an atom in a) a Gaussian beam
and b) the same Gaussian beam with a more tightly-focused Gaussian beam in
its centre. The shape of this potential is what gives the ‘dimple trap’ its name.

in three dimensions with higher atom densities. This is because the increase in

intensity in the beam overlap region provides a deeper trapping potential, and

tighter axial confinement in each beam. Note that simply increasing the trap

depth would not improve confinement substantially (with the
√
Udip dependency

seen in Eqs 2.22 and 2.23), but it is the deformation of the potential provided by

the second beam that increases the capacity for cooling.

This effect was investigated by Pinkse and co-workers [78], who showed that by

introducing a much tighter beam in the centre of the dipole trap, the phase space

density of the trapped gas can be increased without affecting its temperature.

This trap configuration was dubbed a ‘dimple’ trap, because of the shape of its

potential (a comparison between dipole and dimple potentials can be seen in

Fig. 2.8). Atoms collide in the original, wider part of the trap and occasionally

find themselves in the dimple section, where they are confined more tightly. In

this way, the wider beam behaves as a reservoir that loads the dimple through

elastic collisions, increasing the density of the gas. This results in an increase of

phase space density, with minimal effect on the temperature of the gas since the

dimple is in thermal contact with the reservoir. By increasing the depth of the

dimple potential, Stamper-Kurn and co-workers [79] demonstrated the ability to
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2.5. DIPOLE TRAP

form a BEC reversibly without evaporative cooling, measuring a 50-fold increase

in the phase space density of their sample. Because a high phase space density is

required to form a BEC, this dimple potential is critical for the beginning of an

optical evaporation process.

2.5.3 Evaporative Cooling

Because a dipole trap is a conservative potential, additional methods need to be

implemented for cooling atoms to degeneracy while they are in the trap. These

‘evaporative cooling’ methods result in the release of the most energetic atoms

from the trap, cutting off the high-end tail of the Maxwellian velocity distribution,

and cooling the cloud as a whole. The most common method of evaporation

involves using rf pulses on atoms contained in a magnetic trap to transfer them

from a magnetically trapped state to a non-trapped state, which is not suitable

for cooling caesium [18,39]. Instead, we take an optical approach to evaporative

cooling which takes advantage of the dimple beams and magnetic levitation.

By slowly ramping down the intensities of the ‘reservoir’ beams and keeping

the ‘dimple’ beam intensities constant, we deform the potential in a way that

allows the hottest atoms to escape the trap. These atoms carry more than the

average kinetic energy of the gas with them, cooling it. In order for thermalisation

to occur, and for the dimple trap to be loaded with atoms, the atoms need to

undergo elastic collisions in the reservoir.

The efficiency of the evaporative cooling process depends on the ratio between

elastic and inelastic collisions, the latter of which causes losses that do not con-

tribute to the desired cooling effect. Three different effects constitute inelastic

collisions: collisions of the atoms with the background gas, and two-body and

three-body losses. Background gas collisions are unlikely to cause significant loss

in an ultra-high vacuum environment, and because the atoms are spin-polarised

into the lowest energy state, spin-exchange collisions which result in two-body
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losses are also negligible. The only effect which can cause significant loss in this

system is three-body recombination, caused when two atoms form a molecule

while interacting with a third. Each three-body recombination event can result

in the loss of two or three atoms, and recombination heating [80].

The rate of inelastic collisions is given by the differential equation

ṅ(r, t) =
−n(r, t)

τ
− L2n

2(r, t)− L3n
3(r, t), (2.24)

where n(r, t) is the atom density in the trap, τ is the 1/e trap lifetime, and

L2 and L3 are the coefficients of two-body and three-body losses, respectively.

The exponent of the density in each loss term scales with the number of atoms

participating in the collision, for instance two-body losses require two atoms to

converge on the same position, so the probability of this occurring scales with n2.

Integrating Eq. 2.24 over the atom cloud gives

Γin =
dN

dt
= −N

τ
− L2 〈n〉N − L3 〈n2〉N, (2.25)

where N is the atom number, 〈n〉 is the mean atom density in the trap given by

〈n〉 =
1

N

∫
n2(r)d3r, (2.26)

and 〈n2〉 is given by

〈n2〉 =
1

N

∫
n3(r)d3r, (2.27)

which for a Gaussian distribution can be written as 〈n2〉 = 8/
√

27 〈n〉2 [81]. The

three-body loss rate coefficient is given by

L3 = niC
~
m
a4, (2.28)

where ni is the number of atoms lost per three-body recombination event and
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C is a dimensionless parameter. L3 〈n2〉 can be expressed in terms of N and T ,

giving a three-body loss rate of

dN

dt
= − L3√

27

(
mω̄2N

2πkBT

)3

, (2.29)

so the only direct way three-body loss can be reduced is by keeping the scattering

length low.

The rate of elastic collisions is calculated by

Γel = 〈n〉σ 〈vrel〉 , (2.30)

where 〈vrel〉 is the average relative velocity of the atoms in the trap

〈vrel〉 =

√
16kBT

πm
(2.31)

and σ is the collision cross-section given by

σ =
8πa2

1 + k2a2
, (2.32)

where k is the de Broglie wave vector given by

k =

√
16mkBT

π~2
. (2.33)

Finally the evaporation efficiency, γ, which describes the fractional gain of phase

space density for a fractional atom loss, is defined as [82]

γ =
ln(PSD′/PSD)

ln(N ′/N)
(2.34)

where N and PSD are the initial atom number and phase space density, and N ′

and PSD′ are the final atom number and phase space density for evaporative
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cooling. The phase space density gives a measure of how close the gas is to Bose-

Einstein condensation, hence γ is an important parameter during evaporative

cooling - it measures what ratio of the ‘lost’ atoms contribute to the desired

cooling effect.
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Chapter 3

Bose-Einstein Condensation

Bose-Einstein Condensates (BECs) are a state of matter of bosonic particles which

occurs at temperatures close to absolute zero. Due to the quantum statistics of

bosons, a macroscopic number of particles accumulates in the energetically lowest

quantum state at low temperatures. The quantum statistical treatment for bosons

was first presented for photons by Bose in 1924 [83], which Einstein extended to

bosonic matter particles, predicting Bose-Einstein Condensation in an ideal gas of

bosons in 1925 [84]. The first BEC wasn’t experimentally realised until 70 years

after Bose and Einstein’s predictions, when C. Wieman and co-workers produced

a BEC made of 2× 104 rubidium-87 atoms in July 1995 [3].

The properties of this new state of matter opened up a new world of research

possibilities. The phase coherence and wave-like nature of BECs allows for ex-

periments in atom interferometry [16] and atom lasers [11]; collective excitations

allow for the observations of solitons [12], vortices [14] and the speed of sound in

the condensate [52]; and the tunability of interactions in BECs enables studies

in condensate collapse [85, 86], as well as molecule formation [75, 87] and loss

mechanisms [80,88].

In addition, work on creating BECs from other species of alkali atoms con-

tinued, and before the end of 1995 there were already lithium [5] and sodium [4]
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3.1. BOSE-EINSTEIN STATISTICS

BECs. However, the creation of caesium BECs remained elusive due to its com-

plex scattering properties, and it was not until 2003 that caesium was successfully

condensed [39], but it required some deviation from the standard methods [17].

3.1 Bose-Einstein Statistics

The Bose distribution function [52],

Nν(T ) =
1

e(εν−µ)/(kBT ) − 1
(3.1)

gives the number of atoms Nν in any given state ν, where εν is the energy of that

state, µ is the chemical potential, kB is the Boltzmann constant and T is the

temperature of the gas. At high temperatures, the total atom number is

N =
∑

ν

Nν(T ), (3.2)

where the atoms are distributed across many states, and the occupation of each

state Nν � 1. The occupation of any given state is limited such that µ < εν ,

however this breaks down for low temperatures which causes occupation numbers

to diverge. Instead, we split Eq. 3.2 into two parts, allowing us to distinguish

between atom numbers into these two temperature regimes so that

N = N0 +NT = N0 +
∑

ν

Nν(T ) (3.3)

where N0 is the number of atoms that have condensed, and NT is the number of

thermal atoms.
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3.2. PHASE TRANSITION

3.2 Phase Transition

The transition from a cloud of thermal atoms to a BEC depends on the phase

space density of the atoms. The phase space density is given by

PSD = n̂λ3
dB, (3.4)

where n̂ is the peak atom density, and λdB is the thermal de Broglie wavelength

given by [52]

λdB =

√
2π~2

mkBT
, (3.5)

where ~ is the reduced Planck constant, and m is the mass of an atom. The BEC

transition occurs when the thermal de Broglie wavelength becomes comparable

to the spacing between the atoms, so that the phase space density is on the order

of unity. This increase in phase space density is achieved through reducing the

temperature and increasing the peak atom density of the cloud as illustrated in

Fig. 3.1.

In a three dimensional (3D) harmonic trap with trapping frequencies ωx,y,z

and potential

U(r) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (3.6)

the peak density n̂ is given by the equation

n̂ = Nω̄3

(
m

2πkBT

)3/2

, (3.7)

where ω̄ = 3
√
ωxωyωz is the geometric mean of trap frequencies. The phase space

density of a thermal gas can be determined by inserting Eqs 3.5 and 3.7 into

Eq. 3.4, however if the parameters of the trap are well known, for example in the

case of a harmonic trap,

PSD = N

(
~ω̄
kBT

)3

, (3.8)
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λdBd

a) b) c) d)

Figure 3.1: A simple illustration depicting the formation of a Bose-Einstein Con-
densate, adapted from Ref. [52]. a) The atoms are well separated, and can be
treated as point particles at high temperatures. b) When reducing the tempera-
ture of the gas, the size of the atomic wave packets increases, until c) the wave
packets overlap and form a condensate. d) At T = 0, all particles accumulate in
the ground state and form a BEC.

can give a more accurate measure of the phase space density in optically dense

samples. An upper limit on the temperature of a trapped BEC is defined by the

critical temperature TC

kBTC = ~ω̄
(
N

ζ(3)

)1/3

, (3.9)

where ζ(x) =
∑∞

n=1 1/nx is the Riemann-zeta function, with ζ(3) ≈ 1.202 [89].

Using this definition of TC in Eqs 3.5 and 3.7, we find that the phase space density

at the critical temperature is close to unity, with PSD = ζ(3) ≈ 1.202.

Below TC , the fraction of atoms in the ground state, the condensate fraction,

increases for lower temperatures, with

N0

N
= 1−

(
T

TC

)3

, (3.10)

which is plotted in Fig. 3.2. The sharp increase of the condensate fraction at

temperatures just below TC is indicative of a phase transition.
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Figure 3.2: Theoretical calculation of condensate fraction vs the temperature of
the gas relative to the critical temperature, plotted from Eq. 3.10.

3.3 Mean Field Approach

For a time-dependent potential, the equation describing the ground state is

i~
∂

∂t
Φ(r, t) =

(
−~2∇2

2m
+ U(r, t) + g|Φ(r, t)|2

)
Φ(r, t), (3.11)

where g is an interaction coefficient related to the inter-atom s-wave scattering

length a by

g =
4π~2a

m
. (3.12)

For a static potential, the ground state is described by

(
−~2∇2

2m
+ U(r) + g|φ(r)|2

)
φ(r) = µφ(r), (3.13)

where Φ(r, t) has the form Φ(r, t) = φ(r)e−iµt/~. These Gross-Pitaevskii equations

(derived independently by Gross [90] and Pitaevskii [91] in 1960) take the form

of non-linear Schrödinger equations because of the non-linear |φ|2 and |Φ(r, t)|2

terms, which correspond to the density n(r). The ground-state energy of the
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3.3. MEAN FIELD APPROACH

system is a function of the density, giving

E[n] =

∫
dr

[
~2

2m
|∇√n|2 + nUext(r) +

gn2

2

]
= Ekin + Eho + Eint, (3.14)

where Ekin, Eho and Eint correspond to the kinetic ‘quantum pressure’ energy

only present in inhomogeneous systems, the harmonic oscillator and mean-field

interaction energies, respectively. Taking the ratio of Eint ∝ N2|a|/a3
ho to Ekin ∝

N/a2
ho leads to a parameter which emphasises the importance of interactions in

a BEC
Eint

Ekin

∝ N |a|
aho

, (3.15)

where aho =
√

~
mω̄

is the harmonic oscillator length of the trap containing the

BEC. The ratio of interaction to kinetic energies gives a useful gauge of stability

in an attractive (a < 0) BEC. When the scattering length is negative, the con-

densate contracts to minimise its overall energy and so the ‘quantum pressure’

increases. When the interactions become strongly attractive (a�0), the kinetic

energy is outweighed by the interaction energy and the condensate becomes very

dense, causing collisional losses. Because Ekin and Eint scale differently with atom

number, a critical atom number can be calculated using [92,93]

NC = 0.575
aho

|a| , (3.16)

where the prefactor is determined by approximating a spherical trap. If the

condensate exceeds this atom number, the kinetic energy is no longer large enough

to maintain stability in the condensate. A BEC collapse known as a ‘Bose-nova’

can be caused if a large BEC is produced under conditions of large positive

scattering length before the interactions are adjusted to be strongly attractive

[85, 86]. Equation 3.15 also leads to an important approximation for a highly

repulsive BEC (a� 0) - the Thomas-Fermi approximation.
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3.4. THOMAS-FERMI APPROXIMATION

3.4 Thomas-Fermi Approximation

In the case of a BEC with a high atom number, the ratio N |a|/aho (Eq. 3.15)

becomes very large and the kinetic energy of the BEC is dwarfed by its interaction

energy. In this case, the kinetic energy can be neglected leading to a simple

solution for the density distribution of the BEC [89]

n0(r) = |φ(r)|2 = max

(
µ− U(r)

g
, 0

)
, (3.17)

which takes the form of an inverted parabola with zero density cut-off points

at µ = U(r). In this approximation, the size of the BEC, the Thomas-Fermi

radius, is determined by the chemical potential and the trap potential. Assuming

a spherical potential so that µ = U(|r| = R) = mω2R2/2, the Thomas-Fermi

radius is calculated to be

RTF =

√
2µ

mω2
= aho

ω̄

ω

(
15Na

aho

)1/5

. (3.18)

By normalising the density distribution N =
∫
drn(r), an equation relating the

chemical potential to the atom number [89]

µ =
~ωho

2

(
15Na

aho

)2/5

, (3.19)

and an equation for the peak density

n̂ =
µ

g
(3.20)

are obtained.

When the condensate is released from the trap and allowed to expand, its

shape evolves as a rescaling of its original parabolic form [94–96]. Now considering

a cigar shaped trap, the condensate will expand faster in the axis within which
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it was more tightly confined. The expansion rate of the Thomas-Fermi radii for

the radial and axial directions of the condensate are given by [52]

Rr(t) = Rr(0)
√

1 + τ 2 (3.21)

Rax(t) = Rr(0)ε−1
(

1 + ε2
[
τ arctan τ − ln

√
1 + τ 2

])
(3.22)

where Rr(0) and Rax(0) are the original Thomas-Fermi radii in the radial and

axial directions which can be calculated from Eq. 3.19, ε = ωax/ωr is the aspect

ratio of the trap and τ = ωrt. This allows us to determine the density of the BEC

during expansion.

3.4.1 Thermal Density Distribution

For temperatures approaching the BEC critical temperature TC , the gas is de-

scribed by a semi-classical regime, where the influence of quantum statistics be-

comes significant and results in a divergence from Maxwell-Boltzmann statistics.

In this regime, the density of the gas is given by [97]

nT (r) =
g3/2(ze−U(r)/kBT )

λ3
dB

, T ≥ TC (3.23)

where for a harmonic potential of the form U(r) = mω2r2/2 is the trap potential

with frequency ω, z = eµ/kBT < 1 is the fugacity of the gas, and the function g3/2

is a polylogarithm of the form ga(z) =
∑∞

n=1 z
n/na, which indicates the role of

quantum statistics on the density distribution of thermal atoms.

Integrating this over the imaging axis y, the column density,

ñT (x, z) =

√
2πkBT

mω2
y

g2(ze−U(x,z)/kBT )

λ3
dB

, (3.24)

is obtained, which can be fitted to images of the gas to derive its properties.

Below TC , the fugacity of the gas becomes 1 and we require a different fitting
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procedure that includes both its thermal and condensed components.

3.4.2 Bimodal Distribution

The study of the density distribution of a quantum gas facilitates the measure-

ment of many properties of a Bose gas over the temperature range 0≤ T ≤ TC .

A combined study of density distributions of a quantum gas both in-situ and

after free-expansion allows us to determine the temperature and interaction en-

ergy of the gas. At finite temperature, the density distribution of the quantum

gas typically combines the features of a thermal gas and a BEC (Sections 3.4

and 3.4.1).

Given that the density distribution of the atoms depends on which regime

they are in, finding a fitting procedure that can simultaneously determine the

properties of both the thermal and condensed atoms can be challenging. In an

interacting gas, the condensed and thermal components of an atom cloud impose

forces on one another, resulting in the thermal atoms being pushed outwards by

the condensed atoms from the centre of the cloud. This regime requires cou-

pled equations for the different density profiles. In this case, the in-situ density

distribution for the thermal component of the atom cloud for T <TC is

nT (r) =
g3/2(e−(U(r)+2gn0(r))/kBT )

λ3
dB

, (3.25)

where n0 is the condensate density given by the Thomas-Fermi approximation in

Eq. 3.17. By summing Eqs 3.17 and 3.25, we find the 3D density distribution

of an interacting gas containing both thermal and condensed atoms - a bimodal

distribution.

Figures 3.3 and 3.4 present our simulations of a quantum gas using this

method. Figure 3.3 shows a slice through the centre of a condensate with and

without the thermal component, which illustrates the interactions between the
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Figure 3.3: Density profiles of a slice from the centre of a quantum gas simu-
lated using Eqs 3.17 and 3.25, with a temperature T/TC = 0.96 and repulsive
interactions. a) Density profile of the gas containing thermal and condensed
components. b) Only the thermal component of the gas. Interactions with the
condensed fraction displace the thermal component from the centre to the edge
of the cloud. c) The line profile through the centre of the quantum gas with
(white area) and without (grey shaded area) the condensate fraction. The effect
of interactions between the components is even more apparent. d) The integrated
density profile of this slice with and without condensate. Some detail from the
interaction artefact is lost.

thermal and condensed components. The line profile also shows the effects of in-

teractions in the densities of these components, but this information is lost in the

integrated density profile. In Fig. 3.4, we can see the full condensate, integrated

over the imaging axis to appear like absorption images we would produce exper-

imentally. From looking at the simulated image with and without the condensed
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Figure 3.4: A simulated quantum gas with the same parameters as in Fig. 3.3,
integrated along the imaging axis. a) Density profile for the gas, with and b)
without the condensed component. c) Integrated density profile of the gas with
(white area) and without (grey-shaded area) the condensed component.

component, and the integrated density profile, we can see that all the information

regarding interactions is now lost. This helps to illustrate the challenge of fitting

bimodal density distributions to absorption images.

When imaging time-of-flight density distributions of a quantum gas, the effects

of interactions between the thermal and condensed components on the expansion

of the gas are not easily determined. As a result, we disregard the interaction

term in the equation describing the density of the thermal component. The

column density of the full bimodal distribution after a time-of-flight duration is

then [52,98]

ñ(x, z, t) =
1

(λdBω̄t)3

√
2πkBT

m
t2 g2

(
e
−m(x2+z2)

2kBTt
2
)

+ ñ0(0) max

(
1− x2

R2
r(t)
− z2

R2
ax(t)

, 0

)3/2

,

(3.26)

where ñ0(0) is the peak column density and Rr and Rax are the radial and axial

Thomas-Fermi radii after the duration t. An example of this fitting method

is shown in Section 5.1.3, and is used throughout Section 5.3 to determine the

properties of the BEC.

42



Chapter 4

Experimental Setup

This Chapter describes the experimental apparatus we use to create and probe

Bose-Einstein condensates. The vacuum setup, laser systems and computer con-

trol all must be synchronised with microsecond precision to perform experiments

reliably and reproducibly. Here, I discuss the main parts of the vacuum chamber,

lasers and electronics we use, how they were prepared and how they are interfaced

with the computer system.

Section 4.1, describes the vacuum setup including the vacuum pumps, the

source of caesium atoms and the glass cells within which experiments take place.

The laser configuration, atomic transitions addressed by the lasers and their roles

in the cooling process are outlined in Section 4.2. Sections 4.3 and 4.4 detail

our method of generating magnetic fields, and the construction of the coils used

to accomplish this. In Section 4.5, the computer control arrangement, and how

the computers interface with the experiment and one another are described, and

finally in Section 4.6 our uses for microcontrollers in the lab environment are

presented.
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4.1 Vacuum Setup

Ultracold atoms experiments require an ultra-high vacuum setup to minimise

heating and loss due to collisions with background gases. Our vacuum setup was

designed to be compact and versatile so there is plenty of space for the plethora

of optics required to operate the experiment, and the experimental cells have

excellent optical access. A diagram and a photo of the vacuum apparatus at an

early stage of development are shown in Fig. 4.1. The setup is made primarily

of stainless steel, with exceptions of the 2D+ MOT cell and main experimental

cell, which are made of quartz glass. The cells are connected by a differential

pumping tube, which enables a pressure differential of three orders of magnitude

between them. The pressure differential is maintained by two ion pumps and a

Ti sublimation pump, and we monitor the vacuum using pressure gauges.

4.1.1 Caesium Source

The setup contains two oven sections, implemented by small bellows close to

the 2D+ MOT section. Currently one oven contains a glass ampoule with 5 g

of caesium. The second bellow is currently empty, which permits the addition

of a second atomic species at a later date, if desired. The caesium was initially

released by bending the bellow after the bakeout procedure, cracking the ampoule

inside. The caesium vaporises in the high vacuum environment and diffuses into

the 2D+ MOT. We control the caesium flux with a manual valve, which separates

the oven section from the glass cell.

4.1.2 Glass Cells

The use of glass cells in our vacuum rather than metal science chambers with

glass windows increases the number and size of laser beams that can be used in

our experiment, and reduces magnetisation and eddy currents. Both glass cells
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Figure 4.1: Images of the vacuum chamber. a) A computer generated render of
the vacuum apparatus. Atoms are pre-cooled in the ‘high-pressure’ 2D+ MOT
in the glass cell on the left, accelerated through the hole in the gold mirror and
through the differential pumping tube to the glass cell on the right. Here the rest
of the cooling process and experiments are performed. b) A photo of the vacuum
setup in an early development stage, just after bakeout and before the addition of
optics or magnetic field coils. The red tint around all the edges of the 2D+ MOT
cell is the epoxy used to bond the cell, which is not present on the glass cell on
the right, the UHV region used as our main experimental cell, as this was bonded
using an optical contact method. The bellow containing caesium is wrapped in
aluminium foil.
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(manufactured by Japan Cell) are made from quartz, and are of identical di-

mensions, both 40 x 40 x 140 mm internally. They differ, however, in the methods

used to bond them. The glass plates forming the 2D+ MOT cell are held together

using an epoxy which, because it would be likely to outgas in the UHV region,

would not be suitable for the main experimental cell. The experimental cell is

formed using optical contact bonding, which relies on intermolecular forces. An

anti-reflective coating is used on both the inside and outside of the windows on

the 2D+ MOT cell, but only on the outside of the main experimental cell, because

the optical bonding method would not work if the inside were also coated. The

differences in these glass cells can be clearly seen from the photo of the vacuum

setup shown in Fig. 4.1. Furthermore, the neck of the main experimental cell is

45 mm longer than that of the 2D+ MOT cell (100 mm compared to 55 mm). This

increased distance from the vacuum chamber reduces the effects of eddy currents

circulating in the stainless steel body, which would produce undesired magnetic

fields at the position of the atoms after the magnetic field coils were switched off.

Above and below this cell are pieces of anodised aluminium breadboard, which

hold magnetic field coils in place, and add more surfaces to which optics can be

secured for three dimensional optical access.

The glass cell that houses the 2D+ MOT section contains a vacuum pressure

of 10−8 mbar. At the neck of this cell, there is a gold plated aluminium mirror,

rotated 45◦ from the longitudinal axis, to reflect the ‘plus’ beam. There is a hole

in the centre of this mirror to allow atoms to propagate through the differential

pumping tube towards the main experimental cell. The experimental cell contains

a pressure of 10−11 mbar.

4.1.3 Pumping

The difference in pressure between the two glass cells is possible because of the

differential pumping tube. The conductance of the differential pumping tube is
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given by

C ≈ 0.125× d3

L
(4.1)

where d=4 mm is the diameter of the tube, and L=150 mm is its length, giving a

conductance value of 0.053 l/s. The pressure difference is maintained by an 8 l/s

ion pump (Agilent Vacion pump 8 l/s) in the 2D+ MOT section, and by a 55 l/s

ion pump (Agilent Vacion plus 55 l/s) for the experimental cell, for which we also

use a titanium sublimation pump (VacGen ST22). A hot filament pressure gauge

(Agilent Varian MBA2-200T) used in combination with a controller (XGS 600),

provides readings of the pressure in the UHV region of the vacuum chamber.

4.1.4 Magnetic Shielding

Because the ion pumps contain permanent magnets, their magnetic fields will

interfere with magnetic fields produced during our experimental procedures if

left bare. We have µ-metal shields that encase the ion pumps to reduce the

magnetic field experienced by the atoms in the main experimental cell to less

than 1 G. In addition, both glass cells are surrounded by shim coils, to minimise

stray magnetic fields. The shim coil pairs are made from 0.5 mm wire and can

generate homogeneous magnetic fields up to 5 G with the flow of co-propagating

electric currents.

4.1.5 Preparation and Assembly

To prepare the vacuum chamber for our experiments, it was necessary to clean

each part individually then heat the vacuum chamber as a whole. This process

served to remove dirt and impurities, such as water, which reduced the potential

rate of background collisions. All the metal parts we used were initially bathed in

an ultrasonic bath containing acetone and then an ultrasonic bath of isopropanol,

and wrapped in aluminium foil until they were ready to be used. We constructed
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the vacuum chamber incrementally and checked for leaks at each stage using a

turbo pump, helium and an atomic mass spectrometer. Once fully constructed,

we wrapped the entire chamber in aluminium foil to evenly distribute heat be-

fore introducing heating tape and thermocouples for the bakeout process, and

wrapping in foil once more for heat retention. Bakeout is necessary to minimise

impurities, especially water, sticking to the inner walls of the chamber after the

pumping process. We performed the bakeout by heating the chamber over two

days to a maximum temperature of 150◦C. Great care was taken to avoid in-

troducing a temperature gradient across different regions, as this could damage

the glass cells or windows in the chamber. While monitoring the temperature

using thermocouples at several sections of the chamber between the layers of alu-

minium foil, we increased the temperature by 5◦C every hour until we reached

the maximum temperature, which we maintained for ten days before reducing the

temperature equally as slowly. A turbo pump was run continuously throughout

this process, with our ion and Ti sublimation pumps being switched on during

the cooling stage.

4.2 Laser Configuration

This Section is intended only to give an overview of the lasers used in our ex-

periment, and the techniques used to tune and lock them - the optical setup is

described in more detail in the thesis of Andrea Di Carli [58].

We laser cool caesium-133 atoms using laser wavelengths in the region of

852 nm to excite the 6S1/2 → 6P3/2 transition. Different near-resonant laser

frequencies are used for the MOT/imaging, repumper beams and Raman cool-

ing beams as illustrated in Fig. 4.2. The light frequencies are all produced us-

ing extended cavity diode lasers (ECDLs) using 852 nm laser diodes (Thorlabs

L852P150).
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Figure 4.2: A caesium energy level diagram with the transitions used for various
stages of the experiment.

When not used as part of ECDLs, these diodes typically have linewidths on

the order of 100’s of GHz, which is far too broad to excite a single atomic hyperfine

state - a problem caused mainly by a short cavity length inside the diode. This

problem is alleviated by building the diode into a longer cavity, with a diffraction

grating for frequency-selective feedback, in the Littrow configuration [99].

Each ECDL is connected to a laser driver which adjusts the temperature,

current and piezo voltage of the laser to select its frequency. The temperature

of the extended cavity is controlled and stabilised using a Peltier element on

the underside of the ECDL body. The electrical current used to drive the diode

controls the optical output power generated by the diode, but also affects the

temperature of the small cavity inside, which in turn adjusts the output frequency.

A voltage is applied to a piezo which controls the position of the diffraction

grating, so is used to fine-tune the frequency produced by the laser. Applying a
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Figure 4.3: Diagram of the configuration of diode lasers and optics used. Two
extended cavity diode lasers serve as ‘master’ lasers for the cooling and repump
transitions. Injection seeded ‘slave’ diode lasers provide additional light power at
the same frequencies as the masters. The frequency and intensity of each beam
is controlled by acousto-optic modulators before the light is coupled into optical
fibers, which lead to the experiment. Figure adapted from Ref. [58].

sawtooth wave to the piezo makes it possible to scan over a range of frequencies

for the purpose of spectroscopy. When no frequency sweep is used, our ECDLs

have linewidths of about 300 kHz and can be locked to hyperfine transitions using

polarisation spectroscopy (see Section 4.2.2).

We use saturated absorption spectroscopy to tune the lasers into the desired

frequency range, and the error signal obtained by polarisation spectroscopy to

lock the lasers to specific transitions. Our master cooling laser is locked 70 MHz

blue-detuned from the closed F = 4 → F ′ = 5 transition, and the repumper

master laser is locked 70 MHz blue-detuned from the F = 3 → F ′= 2 transition.

The lasers operate in a single mode at powers of about 100 mW, but to run our

experiment we need to generate significantly more power. We achieve this by
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dedicating a small amount of power from the master lasers to injection locking

of free-running laser diodes, forcing them to output at the same frequency, each

with output powers of up to 150 mW. For our MOTs we need to further increase

the available power by an order of magnitude, which we achieve using tapered

amplifiers (TA, Thorlabs TPA850P10). To fine-tune the laser frequency before

the light is sent to the experiment and for fast switching of powers, acousto-optic

modulators (AOMs) are used. The configuration of these lasers and optics are

shown in Fig. 4.3.

The crossed dipole trap ‘reservoir’ beams are generated by a 200 W, 1070 nm

ytterbium fiber laser (IPG YLR-1070-WC). The reservoir beams have a relatively

large 800µm waist to catch as many atoms as possible after Raman cooling. In

addition, we use light from a 1064 nm Nd:YAG laser (Coherent Mephisto) as the

injection seed for a 1064 nm laser diode, which generates 60 mW of optical power.

This light is then passed through a 50 W fiber amplifier (Nufern NUA-1064-PD-

0050-D0), after which this light is used for crossed dimple beams, which have

tighter waists of 50µm horizontal and 90µm vertical. In a typical experimental

sequence, less than 500 mW of the amplified light is used for the dimple beams, so

this light can also be used to implement an optical lattice. The cooling methods

are covered in more detail in Section 5.2.

4.2.1 Saturated Absorption Spectroscopy

We observe and monitor the frequencies of our lasers by detecting the absorption

spectrum of room temperature caesium atoms in vapour cells. A problem with

this method of spectroscopy is that at room temperature, the Doppler broadening

of the absorption spectrum masks the hyperfine transitions, so the observed ‘dip’

on the spectrum is 100s of MHz wide and locking to a specific atomic transition is

not possible. Saturated absorption spectroscopy is a method which reveals these

transitions within the Doppler-broadened absorption profile, which span tens of
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Figure 4.4: The saturated absorption spectra of room temperature caesium atoms
for the cooling (left) and repump (right) lasers. The cooling laser spectrum
indicates the transitions from the F = 4 ground state to each allowed excited
state, and each crossover between these transitions. The repump laser spectrum
shows all allowed transitions from the F =3 ground state.

MHz instead of hundreds [100,101].

The principle behind saturated absorption spectroscopy is as follows: a laser

that is scanned across the atomic transitions of caesium is split into two beams -

a strong ‘pump’ beam, and a weak ‘probe’ beam [102] - which counter-propagate

through a vapour cell, crossing one another. After leaving the cell, the pump beam

is blocked and the probe beam is directed into a photodiode. The photodiode

signals for the saturated absorption spectroscopy of caesium are shown in Fig. 4.4.

There are three regimes for laser frequency in this scheme: on resonance, between

resonances and non-resonant.

When the laser is resonant with a hyperfine transition, the atoms that are

moving with zero longitudinal velocity with respect to the beam axis, v = 0,

absorb the light. Since the pump beam is close to the saturated intensity of that

transition, the majority of the v = 0 atoms in the beam path are pumped into

the excited state. The counter-propagating probe beam is also resonant with the

v=0 atoms, which are now transparent to the probe light, so this beam is hardly

absorbed. The transitions for this case are annotated with single F ′ values in
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Fig. 4.4.

When the laser is between resonances, the pump beam and probe beam are

both resonant with different velocity classes due to the Doppler shift, so the probe

beam is absorbed by the same amount as if the pump beam were not present.

The third case is when the laser frequency is directly in the centre of two

transitions - the pump beam is absorbed by atoms propagating towards the light

source at a velocity v, which blue-shifts the laser frequency into the higher reso-

nance, and by atoms of the velocity −v, which red-shifts the frequency into the

lower resonance. As a result, most of the atoms of these same two velocity classes

are transparent to the probe beam. These peaks in the absorption spectrum

are known as ‘crossover’ peaks, and tend to be more prominent than the peaks

from the resonance case since they result from two velocity classes rather than

one. If we scan over a Doppler broadened transition using this technique, we

can observe and identify the peak corresponding to each hyperfine transition and

cross-over, which simplifies the action of locking our laser to a specific transition.

The crossover peaks are indicated in Fig. 4.4 with two F values (e.g. F ′=3, 4).

4.2.2 Polarisation Spectroscopy

Once we find the desired hyperfine transition using saturated absorption spectrog-

raphy, the laser must be locked to prevent the frequency from drifting. We use

polarisation spectroscopy to provide a dispersive signal at the desired frequency

for the laser driver to lock the laser to [103–105].

The setup for polarisation spectroscopy, seen in Fig. 4.5, is not dissimilar to

the one for saturated absorption spectroscopy in that they both require pump and

probe beams to be counter-propagating through a reference cell, and the spec-

troscopy can be performed by scanning over the Doppler broadened transmission

spectrum of the atoms.
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Figure 4.5: A simplified schematic of the optical arrangement that enables polar-
isation spectroscopy.

In polarisation spectroscopy, however, the polarisation of each beam becomes

important as the mechanism depends on the birefringence of the medium that

arises when certain closed atomic transitions are populated. The pump beam

should be circularly polarised, repeatedly inducing σ+ or σ− transitions, to pump

the atom towards the closed transition at mF =±F . The probe beam is linearly

polarised at 45◦ from horizontal so that with no pump beam present the beam is

50% transmitted and 50% reflected by the polarising beamsplitter. In this case,

the beam can be said to consist of equal portions of left-handed and right-handed

circular polarisations of light. In the presence of the pump light, the different mF

states are populated asymmetrically, so in the case that mF =+F , we have that

the line strength for the σ+ transition is stronger than that of the σ− transition,

so light of one handedness is absorbed more than the other. In addition to the loss

of light due to spontaneous emission, both circular polarisation components expe-

rience a different refractive index in the medium, so one polarisation is retarded

in relation to the other. For the mF =+F case, this refractive index retards the

light that causes σ+ transitions more than the light that causes σ− transitions,

which results in a relative phase shift of the different circular polarisations, so a

rotation of the linear polarisation. The light is no longer 50% transmitted/re-

54



4.2. LASER CONFIGURATION

flected by the beamsplitter, and when the two components are detected by the

differential photodiode, the result is a dispersive signal.
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Figure 4.6: The polarisation spectra for the cooling (left) and repump (right)
lasers, measured using a difference photodiode. The cooling laser is locked to the
negative slope of the F =4→ F ′=5 transition, and the repump, the positive slope
of the F =3→ F ′=2 transition (both indicated). The locking circuit monitoring
the difference photodiode signal locks to the sharp dispersions of these transitions,
crossing the 0 V point.

The signal obtained from the differential photodiode is used by the laser con-

troller as an error signal for locking, so it is important to maximise this signal

for the desired locking transition. A small coil (not shown) is used to adjust the

magnetic field around the vapour cell to cancel the Earth’s magnetic field [105],

and the polarisations of the beams are adjusted to strengthen the signal for any

closed transition over the others. In Fig. 4.6, we can see the polarisation spec-

troscopy signal for caesium on the cooling and repump transitions. The difference

of the two photodiode signals is used as an error signal which the laser driver uses

for locking, so it is important to maximise the signal for the desired locking tran-

sition. The transitions used for locking are marked with arrows.

Polarisation spectroscopy has a large capture range, as observed in Fig. 4.6,

where the width of the dispersive signals produced by the difference photodiode

define the capture range. We lock to the negative slope of the signal for the
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F = 4 → F ′ = 5 cooling transition, and the positive slope of the signal for the

F = 3 → F ′= 2 repump transition. The range of the slope for the locking signal

of the cooling transition is ∼10.5 MHz, and 22 MHz for the repump transition.

4.3 Magnetic Field Generation

Magnetic fields can easily be generated by passing electrical currents through

copper wire. The strength of the magnetic field produced is calculated using the

Biot-Savart law:

dB =
µ0IdL× r

4π|r|3 , (4.2)

where B is the magnetic field at the distance r away from the wire, dL is the wire

element at the origin, and µ0 is the permeability of free-space. Winding the wire

to form a coil of multiple loops allows us to generate the desired magnetic field

strengths using moderate currents. Multiple coils can be combined in different

configurations to generate the desired magnetic field regime. Most coil config-

urations have that the coils are placed parallel to one another and have either

co-propagating or counter-propagating currents passed through them, the former

generating a uniform magnetic field and the latter a magnetic field gradient. In

the process of building each phase of the experiment, we model the magnetic field

at the position of the atoms using Eq. 4.2, to determine the currents required for

a given number of windings in the coil. Our code takes into account the number

of windings, the thickness and resistivity of the wire, the coil dimensions and

their respective positions. The results of this model are presented in Fig. 4.7,

featuring the visualisation of the coils, and the magnetic field and magnetic field

gradients with respect to position, where the position 0µm indicates the desired

location of the atoms.
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Figure 4.7: Magnetic field coil simulations. a) A visualisation of the magnetic
field coils corresponding to the coils in our setup. Shown are the main experiment
coils (blue), the vertical shim coils (green), and the horizontal shim coils that shift
the magnetic field left/right (brown) or forward/backwards (red) on the imaging
plane. b) The magnitude of the magnetic field vs vertical position, and c) the
magnetic field gradient produced by simulations of coils for a 3D MOT. In this
simulation, the main coils consist of 156 windings of copper wire each, driven at
4.3 A at z positions of 41 mm and -41 mm.
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4.4 Magnetic Field Coils

The coils used for the 2D+ MOT and main experimental cells differ significantly

due to the magnetic fields required from them. Fixed near all the long sides

of the 2D+ MOT glass cell, there are four magnetic field coils for the required

2D quadrupole field. The coils are rectangular in shape with inner dimensions

of 30×150 mm, and made from 0.8 mm diameter copper wire in 14 layers from

the centre, with 10 windings per layer. These are mounted around the glass cell

using a selective laser sintered, graphite reinforced plastic mount. These coils are

operated in the counter-propagating current configuration, creating a magnetic

field gradient in two dimensions. The 2D+ MOT requires magnetic field gradients

of approximately 10 G/cm in two axes, which can be provided by driving the coils

with 1 A of current.

Resting on the pieces of breadboard above and below the experimental cell,

are two main sets of coils which are much larger. The wire used for these coils

is rectangular, measuring 2 x 1 mm. Each coil is separated into seven sections,

so different combinations of sections can be used in various configurations based

on what is required for the experiment, as seen in Fig. 4.8. The red sections

are used to generate magnetic field gradients of ∼12 G/cm (4.3 A) for the 3D

MOT, and 34.1 G/cm (11.85 A) for magnetic levitation. The blue section is used

to create a magnetic field offset for tuning scattering length and increasing the

curvature of the magnetic levitation field (see Fig. 2.6). The zero crossing for

scattering length in the |3, 3〉 state of caesium occurs at 17 G, above which the

scattering length is positive. Positive scattering lengths are required for Bose-

Einstein condensation, so we tend to use magnetic fields above 17.12 G (9.39 A).

As a result, two power supplies are used to drive the coils - connected in the co-

propagating current configuration is the ‘offset’ supply (Delta Elektronika SM120-

50), and the ‘gradient’ supply (Delta Elektronika SM7020-D) is used to drive coils

in the counter-propagating current configuration. These power supplies would
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allow a maximum of 20 A to drive the gradient coils, generating a maximum

gradient of 56.9 G/cm, and 50 A to drive the offset coils, generating a maximum

offset of 113 G. In addition, a 450 V, 4700µF discharge capacitor is used to drive

the green section of the coils in the counter-propagating current configuration,

to provide a levitation gradient quickly. When magnetic levitation is performed,

and all three sets of coils are ramped up simultaneously, the capacitor begins

generating its maximum current after 50µs, as opposed to the 8.4 ms it takes the

two Delta power supplies to level off on the desired currents.

During a routine cooling sequence, while performing levitation and tuning the

scattering length to be positive, the main experimental coils dissipate ∼120 W

of power. Because this can generate a lot of heat, these coils are sealed inside

mounts made of selective laser sintered nylon to allow cooling water to circulate

while in contact with the wire. To aid heat transfer from the wire to the water,

copper fins are used at regular intervals around the mount, serving as heat sinks

(see Fig. 4.8). We cool the coils using a closed circuit of water, which is pumped

by a water cooling pump through one partition of a heat exchanger. Mains water

flows through the other partition in the opposite direction, promoting the transfer

of heat from the closed circuit. Left unregulated, there is a danger that the closed

circuit water could be cooled too much, causing water to condense on the outside

of the coils on the optical bench - for this reason the flow of the mains water is

controlled by a solenoid valve, operated by an Arduino microcontroller connected

to a motor shield, using a digital temperature sensor for feedback. Also around

this cell are six shim coils made using 0.5 mm wire, which compensate for stray

magnetic fields to shift the position of the magnetic field minima to the centres

of the cells in the case of magnetic field gradients.
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Figure 4.8: a) Main experimental coils in their enclosure before being sealed. The
coil sections and the heat sink fins are clearly visible. b) The enclosure after being
sealed. The hosepipes providing cooling water and drainage have been secured
to the hose barbs protruding from the mount. c) An illustration of the different
sections of a single coil. The centremost (green) section is powered by a discharge
capacitor for fast magnetic field generation. The red sections are gradient coils
used for levitation, and the outermost (blue) section is a coil used to generate
a magnetic field offset for tuning interactions. The rest of the sections (grey)
are currently unused. d) A cross-sectional render of the coil mount. The four
grooves surrounding the coils serve as cooling water channels, facilitating the
flow of cooling water around the coils throughout the mount.
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4.5 Computer Control

For any experiment with a complex sequence such as ours, computers are essen-

tial to execute each stage of our sequence with microsecond precision, and in a

consistent, reproducible manner. The computers in our lab carry out camera con-

trol, vacuum monitoring, image processing and analysis, and analog and digital

control of devices during the experimental sequence. In addition, there are several

microcontrollers used as regulation devices, and used to monitor the conditions

surrounding our lasers and vacuum chamber.

The experimental control and data analysis is provided by several computers

in synchronicity, which communicate with one another via a UDP (User Data-

gram Protocol) network protocol. The experimental control tasks and communi-

cations are split between the computers to promote fault tolerance in the system.

The following paragraphs detail how the computers work synchronously with one

another, a flowchart summarising the data flow is shown in Fig. 4.9.

Interface Computer Control Computer
Receives experiment parameters
Communicates with NI cards
Runs experimental sequence

Camera Computer
Sets up cameras for triggering

Saves images to analysis computer

Analysis Computer
Receives and processes images
Analyses absorption images

Plots experimental data
Backs up data to network drive

GUI to set experimental parameters
User initiates sequence

Figure 4.9: Flowchart outlining the role of each computer in the experimental
control arrangement. The user begins the sequence from a GUI on the interface
computer, after which the data is transferred as shown.

Interface computer This is the ‘front end’ computer, which is mainly used to

set experimental parameters and execute the experimental sequence. A Graphical

User Interface (GUI) written in Matlab allows for each parameter to be set, and
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for the sequence to be executed. When we begin the sequence, this computer saves

all the parameters to a file containing Matlab matrices with channel timing and

output information. The file is transferred to the control computer via network

file sharing. Because the interface computer does not control any hardware, we

can change and reprogram sequences while the experimental setup is running.

Control computer A c++ program on the control computer processes incom-

ing files and uses the information therein for hardware control. There are five

National Instruments cards connected to this computer (2x NI-6534(digital), 2x

NI-6733(analog), 1x NI-6723(analog/digital)), giving 40 analog and 64 digital

outputs which generate signals for electronic devices around the lab with timing

limited to either 5µs or 10µs. This computer also sends Standard Commands

for Programmable Instruments (SCPI) via USB and GPIB connections to signal

generators, to prepare them to be used in the sequence.

Camera computer Three cameras are connected to this computer: two CMOS

cameras (MatrixVision BlueFox3-1012bG) and a CCD camera (Allied Vision

Manta G-125B), which are each activated by hardware triggers. At the end

of each cycle, the camera pictures are stored in a Matlab file and a trigger file is

sent via the network to the analysis computer.

Analysis computer Once each set of three images with the experimental pa-

rameters has been saved, this computer processes them to generate an absorption

image, which it displays in a Matlab GUI. The region of interest (ROI) can be

selected by the user, and the application calculates the profile for that ROI, be-

fore performing a selected profile fit. From these fits, the application obtains

properties (width of cloud, atom number etc.), which can be plotted against any

of the experimental parameters.
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4.6 Microcontrollers

Where we use PCs for detailed control of the experiment and analysis, we use

microcontrollers (typically Arduino Unos or Arduino Mega 2560s) for continuous

autonomous monitoring of the lab environment and the feedback-based regula-

tion of some devices, and the communication between our control software with

other devices. The advantages of using microcontrollers include customisability,

the availability of attachments that are simple to implement, the multitude of

software libraries that simplify programming, and their small form factors. The

microcontrollers in our lab are used in several dedicated devices, for example our

shutter drivers, motor drivers for rotation mounts, or the temperature controllers

for our MOT coils and diode lasers. However, the bulk of our microcontrollers

are used for monitoring magnetic fields, temperatures, vacuum pressures and the

presence of water leaks. There are several factors that can affect the stability of

the experiment - air temperature, vacuum pressure, table tilt and leak detection

are some of the properties we monitor constantly. Keeping a close eye on these

values allows both for us to react to drifts before they become critical, and to

ensure the consistency of the results obtained from the experiment.

Each microcontroller that records these parameters and transfers them in

UDP packets via a network switch to a Raspberry Pi which saves the data,

compares the data to our set limits, graphs it, and uploads the graphs to a server

so they can be viewed remotely. There is a warning system put in place for certain

parameters, which alerts users by SMS and email in the case that they exceed

safe limits.

Temperature Small changes in the air temperature surrounding the lasers can

cause them to become unstable, unlock or mode-hop and bigger changes can

cause the optics on the bench to expand or contract, misaligning the laser beam

and decoupling optical fibres. We have several DS18B20 waterproof temperature
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probes around the lab which monitor the water and air from the air conditioning

unit, and the optical benches for any drifts in temperature. There is a warning

system in the event that any of these temperatures drift out of our defined bounds.

Figure 4.10: A series of plots as they appear on our lab monitoring webpage. The
temperatures and magnetic fields in the lab are monitored, the time evolution is
shown.
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Table tilt Our vacuum chamber is on an optical bench that is suspended above

the ground on top of an air-bed to isolate it from vibrations in the building. As a

result, this bench could easily be tilted by a heavy weight on one end of the bench

or a loss of pressure in the air-bed. This can affect the position stability of our

atom cloud, so the tilt of the table is tracked using an MPU6050 accelerometer

and gyroscope breakout board, which is secured to the surface of the optical

bench.

Leak detection Our air conditioning units use water to cool the air flowing

through them, and we use water cooling for our 3D MOT coils. In the event of

a water leak, we need to be able to act quickly to mitigate any damage. For this

reason, we have ‘rain sensor’ modules (YL-83) placed strategically around the

lab. There is a warning system in place for the event of a leak being detected.

4.6.1 Optical Shutters

In most laser labs, the ability to independently extinguish laser beams in a time-

dependent manner is a basic necessity - particularly when stray light can cause

interference or significantly change the observed results. Mechanical optical shut-

ter systems are often used for this purpose, but a driver unit and shutter units

with desirable properties can cost upwards of £1000. Some groups design their

own laser shutters using repurposed materials to save this cost [106–108], and

we have done something similar modifying a mechanical diaphragm shutter that

would otherwise be found in digital cameras. Our laser shutter design and bench-

marks can be found in more detail in Ref. [109], which is featured in Appendix A.

The shutter consists of three solenoids, each of which controls a set of shutter

blades and has its own pair of solder points, allowing for each set of blades to

be controlled independently of the others. One of these blades only serves to

provide a smaller aperture, which we have no use for, so we do not solder to
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Figure 4.11: Photos of our shutter design. a) Front of the shutter, where the filter
blade, and the manual override sliders can be seen. Red arrow 1 indicates the
slider responsible for the motion of the scissor blades, arrow 2 indicates the slider
for the filter blade, and arrow 3 indicates the slider for the (unused) smaller
aperture blade. b) The back of the shutter with solder points clearly visible.
Arrows 1 indicate the solder points for the scissor blades, arrows 2 the solder
points for the filter blade, and arrows 3, the solder points for the (unused) smaller
aperture blade. c) The shutter inside its 3D printed enclosure, with an anodised
disk to prevent backscattered light interfering with the experiment. The foil that
covers the filter blade can be seen through the hole in this disc.

the terminals corresponding to this blade. We refer to the other sets of blades

as ‘scissor blades’, which close in from either side of the aperture and overlap

in the centre, and the ‘filter blade’, which is a larger blade that reaches all the

way across the aperture and is made of a lightly tinted plastic, so only slightly

attenuates the light. We modify the latter by adhering a strip of aluminium foil

to its surface for heat dissipation, which enables us to block laser powers of up to

1 W. After connecting both of the solenoids corresponding to these sets of blades

in series using wire, we secure the shutter in a mount. Images of the shutter

before and after modification are shown in Fig. 4.11.

We designed the mount to interface with optics posts so it can easily be secured

to the optical bench. The mount is 3D printed using PLA plastic, which is used

to dampen vibrations. We enhance this effect by placing the shutter between two

rubber ‘O’ rings, and we place a black anodised aluminium disc in the front of the

mount before screwing it closed. This disc has a 4 mm diameter hole in its centre,

and is used to reduce the amount of light backscattered from the aluminium foil

and prevent the shutter being damaged by a misaligned laser beam.
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Figure 4.12: The circuit diagram for the shutter driver. The design is based
around an ATMega2560 microcontroller connected to a motor driver shield. We
added a digital input, a manual override switch and an LED for each shutter.
For simplicity, this diagram only shows the components for one shutter, but the
motor shield facilitates the use of four shutters simultaneously.

The shutter driver is built using a microcontroller with a motor shield, which

has four independent outputs. These outputs are each connected to a BNC con-

nector via a switch so the shutters can be controlled manually from the driver unit

(see Fig. 4.12 for the connectors used for one shutter). To control the shutters

using the control computer, we attach BNC connectors to four of the microcon-

troller’s digital pins so that it can accept TTL inputs as triggers to open or close

the shutters. When a TTL input or manual switch changes its state, the driver

supplies a 100 ms burst of ∼ ±200 mA of current to the corresponding shutter as

being constantly driven would likely damage the shutters. For the correct cur-

rent, a supply voltage of 5-6 V is required to operate both of a shutter’s solenoids

in series. For multiple shutters to operate simultaneously without failure, we use

an external supply to power them and the microcontroller.

We began testing on a single shutter by exposing it to a prolonged duration of

moderate power. Parts of diaphragm shutters such as the ones we use normally
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Figure 4.13: Transmission signals from a simple experiment designed to test the
blades of our shutter. Both of these plots show results for the shutter blades (red)
and filter blade (blue) a) opening and b) closing. The time on the x axis refers
to the time after the TTL signal has been sent to the shutter driver.

melt or bend when exposed to powers of 50 mW or more. However, because we

adhere aluminium foil to its surface to dissipate and reflect heat, after one hour

of a 1 W, 1064 nm laser beam being incident on the closed shutter, the blades still

work normally.

Next, we performed a simple experiment to test the performance of a single

shutter, which consisted of guiding a laser beam through the shutter aperture

into a photodiode. The photodiode was connected to an oscilloscope so the

detected light levels could be recorded. A signal generator was connected to the

oscilloscope and the TTL input of the shutter driver so both could be triggered

simultaneously. For the purpose of this experiment, only one shutter blade was

operated at any given time so they could be measured separately. We recorded

and analysed 500 consecutive results and allowed the experiment to continue for

a further 5×104 cycles, after which no degradation was detected. The normalised

transmission results of these 500 cycles for each blade are shown in Figure 4.13.

The results of the experiment show that the scissor blades open and close faster

than the filter blade; with an average opening duration from 5-95% transmission

of 790(10)µs and a closing duration from 95-5% transmission of 573(7)µs, com-

pared to averaged opening and closing durations of 1.51(3) ms and 1.46(2) ms
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Figure 4.14: Histograms generated using the data featured in Fig. 4.13. These
histograms show the distribution of a) half-opening and b) half-closing times of
the filter blade, and c) half-opening and d) half-closing times of the scissor blades.

for the filter blade. The lower opening and closing durations from the scissor

blades are expected because they have half the distance to travel, and they may

be lighter than the filter blade with the aluminium foil strip adhered to it. This

is also reflected in the delay from when a change in the TTL signal has been re-

ceived to when the blades have blocked or revealed 5% of the light power. Upon

a change in the TTL signal, the scissor blades took 2.73(2) ms to block 5% of

the light, but only 2.29(2) ms to reveal 5% of it; the filter blade is slower once

again, taking 3.71(3) ms to reveal 5% of the light, and 2.71(3) ms to block 5%

of it. The discrepancies between opening and closing are possible if the beam

was not completely centred, the filter blade was working against gravity in one

direction and assisted in the other, or the amount of friction to be overcome when

opening is greater than that when closing. Knowing that both sets of blades take
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different amounts of time to begin opening and closing brings the opportunity to

connect them to separate outputs of the driver and program to account for this

so they both close simultaneously if this is desired. However, we elect to connect

them both in series to a single output to allow a shutter driver to address more

shutters, as the relative timings of our shutter blades are not critical.

The jitter in a shutter system is determined by measuring the standard devi-

ation in our data, which is usually obtained using histograms (seen in Fig. 4.14)

of the time taken to reach 50% transmission after the TTL signal changes. Un-

fortunately, there was a skew to our data which would affect obtaining the width

parameter of the histogram (see Fig. 4.14). Instead, we simply found the stan-

dard deviations directly from our data. The filter blade has a jitter of 60µs

when opening and 40µs when closing, and the scissor blades have jitter values of

21µs opening and 24µs closing. This gives a measure of both the reliability and

durability of the shutter blades.

4.6.2 DDS controller

An optical lattice has been introduced to the experimental setup (more details

about our optical lattice setup can be found in the thesis of Andrea Di Carli

[58]). Optical lattices are periodic trapping potentials for atoms, as opposed to

harmonic potentials, formed by standing waves of two or more interfering laser

beams [110]. Some optical lattice experiments may involve ‘shaking’ the lattice,

for use in studies of atom tunnelling and band structure. There are different ways

of changing the depth or phase of the lattice potential. Our method involves using

a Direct Digital Synthesiser (DDS) as an external frequency input for our AOM

drivers and modulating the frequency.

Experimental Requirements The DDS is required to have two independent

output channels, be capable of generating sine waves at frequencies of up to
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110 MHz, and be able to sweep ±200 kHz from a central frequency, at a rate of

1 kHz. We use an Analog Devices AD9958 DDS chip because it has two channels

that are independent of one another in frequency, phase and amplitude which

facilitates modulation of one beam while keeping the other constant. This chip

outputs at frequencies of up to 200 MHz, with 0.12 Hz resolution which is also

the smallest step size for frequency sweeps [111]. Depending on the range of a

frequency sweep, the amount of time spent on a single step for this sweep can be

somewhere between 8 ns and 2.064µs. The breakout board amplifies the signal

generated by the chip to an amplitude of 2 V peak-to-peak.

Hardware Because there are many breakout board, driver and software vari-

ants for this chip, a microcontroller was deemed the best option to control it for

consistency. Doing so meant it could be implemented in the current computer

control structure without additional software requirements. An Arduino Due is

used to drive the AD9958, because it works on a 3.3 V digital logic, and all other

Arduinos use 5 V logic which would damage the chip.

The Arduino is connected to an Ethernet port (Funduino W5100) and the data

pins of the DDS breakout board, both of which use the SPI (Serial Peripheral

Interface) protocol to communicate, for which the Arduino only has one set of

pins. As a result, the breakout board and the Ethernet port share SPI clock and

data pins, which makes them susceptible to crosstalk, and corruption of data.

The chip select pins on the Ethernet port and the DDS are used to select the

device that should listen for data, and the software is separated into sections

where either the Ethernet port or the DDS chip is listening.

Software The Arduino has three phases of behaviour - the listening phase,

when it receives UDP packets via the Ethernet port; the parsing phase, when it

interprets the UDP packets; and the execution phase, when it passes instructions

to the DDS chip. When the Arduino is first switched on, it instructs the DDS to
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Figure 4.15: Pinout diagram of the Arduino Due, Ethernet port and DDS circuit
board. The pins labels are colour coded, red for the Ethernet shield, blue for the
DDS and orange for an LCD (not shown). The flow of data from the computer
control system to the Arduino, to the DDS is also represented.

output at a ‘safe value’, so not to damage any connected AOM drivers.

When the RCV CMD pin (shown connected to a BNC in Fig. 4.15) is acti-

vated, the Arduino enters the listening phase. The Ethernet port is selected using

its chip select pin, and the Arduino only listens for data sent to its IP address,

usually consisting of text strings. When the RCV CMD pin is deactivated, the

listening phase ends, the Arduino deselects the Ethernet port and interprets the

UDP strings it has just received, separating each string down to its components.

Each of the strings contains five parameters, each separated by a ‘#’ symbol,

and ends with an ‘@’ symbol so the Arduino can interpret where each parameter

begins and ends. The strings take the format

a#b#c.x#d.y#e.z@ (4.3)

where a is the frequency mode (constant or swept), b is the output channel, c.x

is the start frequency in MHz, d.y is the end frequency in MHz and e.z is the

duration of the frequency sweep (d.y and e.z are always used in commands, but
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are ignored during execution time if single frequency mode is selected). When

the Arduino separates each parameter, it recasts them to the number format the

respective value should take (integer for mode and channel, float for frequencies

and durations), checks that they are within acceptable ranges, and then con-

verts them to binary that the DDS can interpret. For instance, the frequency is

converted to a ‘frequency word’ by

FW =
232f

fclk

(4.4)

where f is the desired frequency in Hz, fclk is the clock rate (125 MHz by default),

232 is the capacity of the DDS’s phase accumulator, and the frequency word has

a value 0≤ FW ≤231. All the converted values are stored in an array so that no

time is spent processing parameters during the experimental sequence.

During the execution phase, the Arduino selects the DDS using its chip select

pin and awaits digital triggers on the EXE CMD and NEXT CMD pins (shown

connected to BNCs in Fig. 4.15). If the EXE CMD pin is activated, the command

currently selected in the array is sent to the DDS and removed from the array,

the next command being selected. If the NEXT CMD pin is activated, the

selected command is removed from the array without being executed, and the

next command is selected. In the event that a frequency sweep, rather than a

constant frequency, has been executed the Arduino uses the profile pins of the

DDS (marked P0, P1, P2 and P3 in Fig. 4.15) to determine the output channel

on which the sweep occurs and in which direction. This can be repeated to ramp

the frequency up and down, for shaking an optical lattice. If the last of the

commands is skipped or executed, the DDS is instructed to output at its safe

value, and the Arduino returns to the start of the program control sequence.

If the RCV CMD pin is activated at any point, the Arduino removes all the

remaining commands from the list, instructs the DDS to output at its safe value,

deselects the DDS and selects the Ethernet port to listen for more commands.
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The code for the DDS driver is included in Appendix D.

Testing The Arduino was tested to confirm that it could receive commands,

understand them and transfer them to the DDS chip successfully. Both output

channels of the DDS were tested simultaneously to ensure that they output at the

desired frequencies, that they were capable of performing the desired frequency

sweeps, and that outputting a signal or performing a linear sweep on one output

channel would not affect the other. These tests were usually performed at low

frequencies for viewing on an oscilloscope screen, so that it could be seen whether

the sweeps were phase coherent. Once we were confident that they were, we

performed tests at higher frequencies using an rf spectrum analyser. We observed

that when we selected a frequency sweep duration, that it took the requested

amount of time to perform the sweep. This was also partially a test of the

Arduino - there is an algorithm in the code that was written to calculate the

smoothest sweep possible given the parameters, i.e. making the frequency steps

as small as possible. As an example, the range of time steps is between 8 ns and

2.048µs, the range of frequency steps is 0.12 Hz to the full range of the sweep. If

we request a 200 kHz sweep in 1 ms, the sweep can not consist of 0.12 Hz steps

of 8 ns in duration, as the sweep would take 13.33 ms to complete. Instead, the

step size must be increased to 1.6 Hz to accommodate the large sweep range. The

Arduino was successful in calculating this need, and the DDS carried these sweeps

out reliably. There were frequency sweeps that could not be tested, as the sweep

could take less time than the refresh rate of the spectrum analyser, but there are

no reasons to suspect that the DDS would not perform them reasonably well.

All the components of the control system described in this chapter, are as-

sembled, configured and programmed to operate synchronously during each ex-

perimental sequence. This results in the reliable production of Bose-Einstein

condensates as is shown in the following chapter.
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Chapter 5

A Bose-Einstein Condensate of

Caesium

In the previous Chapters, I discussed the theory of cooling atoms from room

temperature to degeneracy, the properties of Bose-Einstein Condensates (BECs),

and the physical apparatus which facilitates the methods discussed. This Chap-

ter connects these concepts, presenting experimental results obtained using the

apparatus, and using the theory to discover the properties of the gas we observe.

In Section 5.1, I describe some of the basic experiments we perform to mea-

sure the properties of the atoms and their environment. I detail our method of

detecting the atom cloud and observing its spatial density distribution as well as

methods to measure the conditions at the position of the atoms. In Section 5.2

I present results for each stage of the cooling process. These results reveal how

the atoms behave at several checkpoints in the cooling sequence, and serve as

optimisation benchmarks. Finally, in Section 5.3 I show initial results for our

BEC, with emphasis on our current thermometry capabilities in regimes where

both thermal and condensed atoms are present, and our ability to reproducibly

control the atom number in our condensate.
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5.1 Diagnostic Procedures

By imaging the atoms and determining their internal states, we can measure the

magnetic field at their position, and the powers and widths of the beams that

trap them. This Section details how we perform these measurements, and how

we perform temperature measurements on the atoms in the thermal and partly

condensed temperature regimes.

5.1.1 Absorption Imaging

In order to determine the properties of a gas of ultracold atoms either in-situ or

after some time of flight, it is crucial to image the spatial density distribution of

that gas. This density distribution can be observed by absorption imaging, which

is performed by shining a resonant laser beam onto an atom cloud [52]. The

atoms will absorb some of the light and scatter it elsewhere, casting a ‘shadow’

in the beam, which is directed into the sensor of a CCD camera. If the beam is

propagating along the y axis, the amount of light that reaches the CCD sensor

at each position on the x, z plane is given by the Beer-Lambert law:

I(x, z) = I0(x, z)e−ñ(x,z)σ, (5.1)

where σ = 3λ2/2π is the absorption cross section, and ñ(x, z) =
∫
n(x, y, z)dy

is the column density of the sample at the position (x, z). A map of the spatial

density distribution of the atoms is obtained by imaging the laser beam both

with (I(x, z)) and without (I0(x, z)) the atoms present, and taking the ratio

of these images. This technique requires that the intensity of the light is less

than the saturation intensity of the atomic transition so the exponential decay

of equation 5.1 applies. As a result, the sample must be imaged within a range

of optical densities that allows for a good signal-to-noise ratio, i.e. the atoms are

detected but not all of the light is absorbed. The effects of fringes and shot-to-
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a)

b)

c)
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Figure 5.1: a) An image of the beam incident on the camera sensor. b) An image
of the same beam partially blocked by a cloud of atoms. c) The result of dividing
image b) by image a) and extrapolating for the column density ñ. Not shown is
the image used as background, to subtract from images a and b before they are
divided. All images are rotated so the z axis of the images perfectly matches the
direction of gravity.

shot fluctuations observed in individual images (Fig. 5.1 a) and b)) are reduced

in the calculation of the final absorption image (Fig. 5.1 c)). As well as giving

us the density of the sample, by summing over all pixels on the image, we can

also obtain the total atom number. Further properties of a thermal cloud can be

determined by using a Gaussian fit function for the sum of the columns or rows

for the x or y axes, respectively.

5.1.2 Temperature Measurement

Time-of-flight thermometry, first described in 1988 [67, 112], is the most widely

used technique to perform temperature measurements on cold atom clouds. The

temperature of an atom cloud can be measured by obtaining its width from fits

to its 1D density profile over a range of expansion durations. Once a Gaussian of

the form

f(x) = a exp

[
−
(
x− b
c

)2
]

(5.2)
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Figure 5.2: An example temperature measurement. Images a) - d) are images of
an expanding cloud after 4 ms of Raman cooling after different expansion times.
The plot shows the profiles of each of these clouds in the z-axis, the Gaussian
fits represented by black dotted lines are used to obtain the 1/e cloud width.
The widths are a) 1371(3)µm, b) 1462(3)µm, c) 1535(2)µm and d) 1616(2)µm.
These widths are used to measure the temperature of the sample in Fig. 5.12.

has been fit to the imaged cloud, its width, c, is extracted. By varying the time-of-

flight or expansion time duration while keeping all other parameters constant, we

can measure the rate of expansion of the cloud and extrapolate its temperature.

Because we know the atoms spread out ballistically with a Maxwell-Boltzmann

velocity distribution, the width of the cloud in the axis of expansion i at time t

is given by

σi(t) =

√
σi(0)2 +

kBTi
m

t2, (5.3)

where σi(0) is the width of the cloud at release. Since the temperature depends on

the rate of expansion, the σi(0) term can be neglected. Rearranging equation 5.3

for T , we have

Ti =
σi(t)

2

t2
m

kB
, (5.4)

which makes it trivial to measure the temperature by plotting the width against
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the expansion time and taking the gradient of the line. An example of one such

temperature measurement is shown in Fig. 5.2.

5.1.3 Bimodal Fitting

As discussed in Section 3.4.2, once the cloud has been cooled to temperatures

below the critical temperature for Bose-Einstein condensation, TC , the density

profile of the cloud changes. If we attempt to fit a Gaussian to the 1D density

profile of a cloud below TC , we find that it does not fit as closely as it did with

thermal atoms because of a new, more pronounced peak (shown in Fig. 5.3). The

column density profile is given by Eq. 3.26. Optimising this equation for fitting

to time-of-flight images, we combine most of the variables to form free-fitting

parameters, resulting in a simplified expression

ñ(x, z, t) = Ag2

(
e

1− x
2

σ2x
− z

2

σ2z

)
+Bmax

(
1− x2

R2
r

− z2

R2
ax

, 0

)3/2

(5.5)

where A = 1
λ3dB

1
(ω̄t)3

√
2πkBT
m

t2 , σi = kBT
m
t2, B = ñ0(0), Rr and Rax are all free

fitting parameters. Because there are so many free parameters, we need to analyse

the different components separately to obtain starting parameters and upper and

lower bounds. The procedure for the 1D fit is as follows:

Fit the condensate Because the parabolic condensate portion of the density

profile is responsible only for the peak, this makes a good starting point for our

bimodal fit. A parabola is fit to the top 50% of the 1D profile, the width of this

parabola where it intercepts the x axis is taken to be the initial guess for the

Thomas-Fermi radius. Everything in this fit outside the Thomas-Fermi radius is

set to zero as described by Eq. 3.17. This stage of the fitting procedure is shown

in Fig. 5.3 b).
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Figure 5.3: The steps of the fitting procedure described in the main text using
an absorption image. a) Absorption image of a BEC close to TC . b) Initial fit of
the parabola to the top 50% of the profile. c) Bose-enhanced Gaussian fit to the
data outside the Thomas-Fermi radius determined by the parabola. d) Bimodal
fit using the results of the previous fits.

Fit the thermal atoms As mentioned before, the thermal atoms take a Bose-

enhanced Gaussian form which can be fitted by taking only the data outside the

Thomas-Fermi radius into account. To reduce computation time, rather than

using a polylogarithm summed to infinity, we sum only to 100. The results of

this approximation are remarkably close to those of the infinite sum, and takes

seconds to compute rather than minutes. From this fit (seen in Fig. 5.3 c)), we

can obtain parameters describing the thermal component of the cloud, allowing

us to measure the temperature of the gas once more. Additionally, we can use

the results of both the fits we have performed so far to determine the condensate

fraction in the cloud. We take the parameters of both the fit to the condensate

and the fit to the thermal fraction as starting parameters for the bimodal fit

encompassing both components.

Fit the bimodal Now we have all the starting parameters we need to apply

the full bimodal fit using Eq. 5.5. The fitting procedure is illustrated in Fig. 5.3,

where all the steps of the fitting procedure are demonstrated. The 1D proce-

dure is performed both for the horizontal and vertical axes of the image and the

equations of the bimodal fits are used as a starting point for the two dimensional

bimodal fitting procedure. The two profiles are used to generate a 2D image of

a BEC, then a reiterative nonlinear least squares fitting procedure takes place
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Figure 5.4: Example 2D fit of bimodal density profiles a) The original absorption
image of the Bose gas, b) the final two-dimensional fit to the gas, c) the residuals
between the fit and the original image. d) Density profile of the original image
integrated along the vertical axis (solid black line), and the profile of the 2D fit,
also integrated (red dotted line).

to minimise the error of the 2D fit with respect to the original image. The final

two-dimensional bimodal fit is demonstrated in Fig. 5.4, alongside the original

image and residuals of the fit. Because imaging noise is not taken into account in

our model, the residuals are thought to reflect the speckle pattern on the original

image. Since there are no prominent regions that appear in the error of the cloud,

it is considered that our model closely matches what we image, so the properties

of both the thermal and condensed components of the gas can be determined.
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5.1.4 Microwave Spectroscopy

Microwave spectroscopy is the technique we use to calibrate the magnetic field

experienced by the atoms throughout various stages of our experiment.

The two ground states of caesium are separated by 9.19 GHz, so a microwave

of this frequency can flip the spin of the atoms from F =3→ F =4 and vice versa.

Each ground state is split into multiple Zeeman levels, which are degenerate when

the atoms experience no magnetic field. In the presence of a magnetic field, this

degeneracy is lifted, and each level is shifted by

∆E = h∆f = µBgFmFBz, (5.6)

where µB is the Bohr magneton, gF is the Landé g-factor for the hyperfine state

being probed, mF is the Zeeman level being shifted, Bz is the magnetic field in

the position of the atom on the z axis and ∆f is the detuning from the 9.19 GHz

resonance. The landé g-factor is gF =−1/4 for F = 3, and gF = 1/4 for F = 4,

resulting in the corresponding mF levels being shifted by the same amount but

in opposite directions given the same magnetic field strength.

Given that both mF = 0 levels remain 9.19 GHz apart, and each subsequent

level is split by ±0.35 MHzmF/G, it is possible to probe the magnetic field ex-

perienced by the atoms by scanning over a range of frequencies centred around

9.19 GHz, measuring the spacing between the shifted levels. This is illustrated in

Fig. 5.5 a) and b).

We begin the microwave spectroscopy by pumping the atoms into the F = 3

ground state before using the microwave so that if the microwave is resonant with

a transition, some of our atoms then populate the F = 4 ground state. During

our normal imaging procedure, we image F =4 atoms, so must use repump light

to transfer atoms from the F =3 ground state to the F =4 ground state, however

for microwave spectroscopy we use no repump light. This ensures that we only
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Figure 5.5: An illustration of the principle behind microwave spectroscopy. a)
The mF levels of the ground states of caesium in zero magnetic field. The two
ground states are separated by 9.19 GHz, and all the mF levels in each state are
degenerate. The levels occupied after a microwave transition are determined by
the selection rule ∆mF =0,±1 (an example being indicated by the dotted arrows).
b) The mF levels of the caesium ground states in the presence of a magnetic field.
The spacing between the ground states stays the same for the mF =0→ mF =0
transition, but is reduced for mF <0 transitions, and increased for mF >0 transi-
tions. However, some degeneracies still exist (an example being indicated by the
dotted arrows). c) Atom number vs detuning from the 9.19 GHz resonance, with
different polarisations of light used to pump the atoms - linear polarisation (green
circles), and circular polarisations stimulating σ− (grey squares) and σ+ (yellow
diamonds) transitions. This measurement indicates that the atoms experience a
magnetic field of 0.29 G.

image the atoms that have undergone the microwave transition. This method

can also be used to determine the polarisation of the beam used to pump the

atoms into the F = 3 state - if the polarisation induces σ+ transitions, we will

see a much higher population of the |3, 2〉 and |3, 3〉 states than if we use linearly

polarised light.

Such a measurement is included in Fig. 5.5 c), where it can be observed that

the peaks in atom number due to each microwave transition occur approximately

100 kHz apart, corresponding to a magnetic field of 0.29 G. In the linearly po-

larised result (green circles), peaks corresponding to all transitions can be ob-
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served, indicating approximately equal occupations in all states. When circularly

polarised light is used, in the case of σ+ transitions (yellow diamonds), the high

mF states are more populated so the peaks due to the mF = 2 → m′F = 3,

mF = 3 → m′F = 2 and mF = 3 → m′F = 4 transitions are the most pronounced,

with a smaller peak for the mF = 3 → m′F = 3 transition. This effect is mirrored

for the case of the light causing σ− transitions (grey squares), where the lowest

mF states are populated.

5.1.5 Optical Trap Frequency

The dipole trap frequency, calculated using Eq. 2.22, can be observed experimen-

tally by perturbing an atom cloud while it is trapped, and tracking its centre

of mass position against hold duration in the trap. The perturbation is usually

applied by adjusting the magnetic field gradient on the axis we wish to measure

using shim coils, and quickly restoring it to its original value, causing centre-of-

mass oscillations.

As well as allowing us to more accurately calculate the phase space density

of our sample, the trap frequency can also allow us to better learn the trapping

beam parameters. If the frequency of light used to trap the atoms is well known,

by knowing either the optical power used or the beam waist, measuring the trap

frequency allows us to determine the other.

Fig. 5.6 shows the variation in the centre of mass position when horizontal

oscillations are induced, where we have used a 5 mW beam, and the damped

sine fit applied to the data gives a frequency of 6.97(4) Hz, corresponding to

a beam waist of 101µm. This analysis was performed under the assumption

that there were no other forces acting on the atoms, however magnetic levitation

was active throughout, which inflicts an anti-trapping potential in the horizontal

plane and lowers the total trap frequency experienced by the atoms. The stated

trap frequency of 6.97(4) Hz is actually the total frequency of the trap and the
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Figure 5.6: A measurement of trap frequency in a vertical dipole beam containing
5 mW of optical power, giving a value of 6.97(4) Hz.

optical trap itself has a higher frequency, so the calculated beam waist value is

an overestimation. The following Section describes the analysis taking the anti-

trapping effect into account in pursuit of more accurate measurements of optical

trap frequency.

5.1.6 Levitation Gradient Curvature

As illustrated in Fig. 2.6, the magnetic levitation field has a curvature which

applies an anti-trapping potential on the atoms. This levitation curvature has

an anti-trap frequency which competes against the dipole trap frequency. The

anti-trap frequency, calculated in Eq. 2.7, depends on the magnetic field offset as

α ∝ 1/
√
B0. With a magnetic field offset of 17.2 G at the position of the atoms,

the calculated anti-trap frequency is α = 2π × 3.35 Hz.

An experiment was performed to determine the anti-trapping frequency of

the levitation gradient, using the same method as described in Section 5.1.5 and

varying the power of the trapping beam. The atoms were levitated inside a

vertical dipole beam at different optical powers, and a centre-of-mass oscillation
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Figure 5.7: A comparison of trap frequency vs trap power with and without the
anti-trapping potential. The blue squares show results of trap frequency measure-
ments in a vertically aligned beam with magnetic levitation active. Equation 2.22
is used to indicate the trap frequencies that would be expected without levitation
(dashed line), and is fitted to the experimental data with an offset (solid line).
This fit indicates that the anti-trapping frequency α = 2π×3.63(17) Hz, and that
the dipole beam balances this trapping frequency at a power of 1.05 mW.

was induced. The results of the experiment are presented in Fig. 5.7. Because

we measure the total trap frequency which includes the anti-trapping potential,

the measured frequencies diverge from expected values for lower optical powers.

We still observe the
√
P dependence on the trap frequency from Eq. 2.22, with

a power offset. The anti-trapping frequency is found by calculating the expected

dipole trap frequency for the power at which the experimentally determined total

trap frequency decreases to 0 Hz.

These results indicate an anti-trapping frequency of 2π×3.63(17) Hz, in good

agreement with the previous calculation, and that this anti-trapping frequency

can be cancelled by the trapping frequency of the beam at a power of 1.05 mW,

corresponding to a beam waist of 95µm.
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5.2 Route to a Bose-Einstein condensate

This Section describes our cooling scheme to generate a BEC of caesium atoms.

We first laser cool our atoms and confine them in a cigar-shaped 2D magneto-

optical trap, which is used as a cold atom source for the main experimental

chamber. We catch the atoms in a 3D MOT, then we perform degenerate Raman

sideband cooling before magnetically levitating them. The levitated atoms are

captured in a dipole trap with ‘dimple’ beams through its centre, the larger beams

serving as a reservoir for the smaller dimple beams as their intensities are ramped

down. Finally, the dimple beams are ramped down, evaporating the hottest atoms

and resulting in a BEC.

5.2.1 2D+ MOT

When we load the main experimental chamber, it is important to reduce the rate

of atom loss from as early as possible. One of the methods used to achieve this is

the pre-cooling of atoms from room temperature to temperatures on the order of

mK so they are more likely to be caught by the 3D MOT after being accelerated

through the vacuum apparatus. For this purpose, we use a 2D+ MOT because it

can load atoms from the background gas and increase its density, and it can be

treated as a high-flux cold atom source for the experiment.

As with traditional 2D MOTs, the trap is formed using a combination of laser

beams and magnetic field gradients in two dimensions (see Fig. 5.8), trapping

atoms along the centre of the transverse axes of the glass cell. The added benefit

to a 2D+ MOT, is that laser beams in the third dimension provide additional

cooling in the form of optical molasses. These features are shown in Fig. 5.8,

where we can see the arrangement of optics that allow the MOT to form.

The optics used for the 2D+ MOT are arranged linearly and mounted to

aluminium brackets designed for compactness and simplicity of alignment (see
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Fig. 5.8). Optical fibers are secured to two of the brackets, each delivering 140 mW

of optical power - 137 mW is 4Γ detuned from the F = 4 → F ′ = 5 cooling

transition of caesium, and 3 mW is tuned to the F =3→ F ′=4 repump transition.

Figure 5.8: a) A computer generated render of the 2D+ MOT setup, top-down,
including the push beam. Vertical beams are not shown. b) A diagram of the
beam polarisation and magnetic field configuration in the transverse plane of the
2D MOT.

The beam is collimated to a 25 mm diameter in a cage-mount system. Three half-

wave plates and three beamsplitter cubes are also mounted to each bracket so that

the beam can be split into three equal components on the horizontal transverse

axis, and three on the vertical. Mirrors are secured in two more brackets, each

mirror facing an exit port of the bracket containing beamsplitter cubes, so the

beams are retro-reflected over themselves with complete overlap. Within each

exit port of all four brackets, there is also a quarter-wave plate to produce the

circular polarisations required for trapping in all beams. The result is that there

are three counter-propagating pairs of beams propagating horizontally and three

propagating vertically, each set overlapping in the centre of the trap. Because

these are aligned with the magnetic field gradients, these are called ‘trapping’

beams. The magnetic field gradient is empirically set to ∼ 5 G/cm.

One last 25 mm diameter beam, with 2.7 mW optical power, propagates along
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the longitudinal axis of the trap, coinciding with the three overlap volumes from

the trapping beams. This is reflected from inside the cell using a gold-plated

mirror, and reflected back over itself, forming optical molasses in one dimension.

This is referred to as the ‘plus’ beam. Through its centre is an additional 2.5 mm

diameter beam with 430µW of power which is aimed directly through the hole

in the centre of the gold mirror, through the differential pumping tube, into the

main experimental cell. This is the ‘push’ beam, which accelerates atoms to the

main experimental chamber once they have been cooled.

5.2.2 3D MOT

The 3D MOT catches atoms that have been transferred from the 2D+ MOT,

and cools them further so they can be contained in weaker traps for sub-Doppler

cooling. The 3D MOT also confines the atoms in the centre of the glass cell, at

a position where all subsequent cooling and trapping beams will coincide.

The configuration of laser beams and magnetic fields that forms the 3D MOT

is similar to that of the 2D+ MOT, but with a magnetic field gradient in three

dimensions. This results in trapping in 3D, forming an almost spherical trap

rather than a cigar-shaped one. We accomplish this using the main experimental

coils, with six beams overlapping directly between the centre of the coils. Using

six separate beams rather than retro-reflecting three beams has the advantage

that the forces from all beams on the atoms can be evenly balanced. The cooling

beams are each 25 mm in diameter with 80 mW of optical power resulting in a

peak intensity of 29.6 I/ISAT. The light is 20 MHz (∼ 4Γ) red-detuned from the

F = 4 → F ′ = 5 transition, and the magnetic field gradient is 12 G/cm. After

catching atoms for one second under these conditions, the 3D MOT contains

on the order of 6 × 109 atoms, but we allow for a loading duration of 3 s for a

higher atom number (although the atom number does not seem to be increasing

in Fig. 5.9 because very little imaging light escapes the atom cloud). After 1 s
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Figure 5.9: Loading curves and temperatures in the 3D MOT. a) Atom number vs
loading duration with compression (green squares) and without compression (red
circles). b) Cloud width vs expansion time after 100 ms of MOT loading with
compression (green squares) and without compression (red circles). The solid
lines illustrate fit results using Eq. 5.3 to extract the temperature (264(3)µK
without compression, 42(1)µK with compression). The points for times of flight
below 15 ms were excluded from the fit because the samples were optically dense,
rendering the results unreliable.

loading duration and 15 ms time of flight, the cloud has a size of σx=4.06(5) mm,

σz = 6.15(22) mm before compression, and σx = 2.25(15) mm, σz = 2.18(20) mm

after compression.

A compression phase is implemented in our 3D MOT process to increase the

phase space density of our gas before Raman sideband cooling. Raman cooling

does not increase the density of the atoms as it cools, and the Raman beams are

narrower than the cloud after 3 s of MOT loading. This problem is exacerbated

by the fact we switch off MOT beams and magnetic fields for 2 ms before ramping

up Raman cooling beams, during which time the cloud will expand. To reduce

the number of atoms that will be lost between processes, the cloud needs to be

compressed. Typically, compression is caused by an increase in magnetic field

gradient, however we reduce ours to 10.5 G/cm to avoid potential complications

caused by eddy currents when we begin Raman cooling. The detuning of our

MOT beams is increased to 115 MHz and power is reduced to 50 mW per beam,
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which reduces the rate of reabsorption in the gas. Usually compression is a trade-

off between high density and low temperature; our compression was optimised

for lower temperatures while keeping a high atom number. The reduction in

temperature is possibly due to the loss of the hottest atoms from the trap as the

density of the gas increases.

The loading curves for the MOT without compression, and with 50 ms of

compression can be seen in Fig. 5.9. The measured initial load rate without

compression is 7×109 s−1. This initial load rate does not include atoms that were

not caught in the 3D MOT, so only gives a lower bound on the atom flux from

the 2D+ MOT. After one second loading duration the atom number appears to

plateau, but it is in fact still increasing - the cloud is so dense that it prevents any

light from reaching some of the pixels on the camera sensor, so increases in density

cannot be detected. We also performed temperature measurements comparing the

MOT with and without compression. Because we optimised our compression for

low temperatures rather than maximum atom density, we achieve temperatures at

a fraction of our 3D MOT without compression - without compression, we reach

a temperature of 264(3)µK, or 42(1)µK with compression. By the end of the

MOT sequence the atoms are mostly in the F =4 state due to the repump light

used, and in a mixture of Zeeman states, ready to undergo degenerate Raman

sideband cooling.

5.2.3 Degenerate Raman Sideband Cooling

Degenerate Raman sideband cooling is used to cool our atoms so that their en-

ergies are comparable to dipole trap depths we can produce, with the added ad-

vantage of polarising the atoms into a high-field seeking state, enabling magnetic

levitation.

The Raman cooling beams are configured as in Refs [18, 72, 113] with four

lattice beams and a single polarising beam, as shown in Fig. 5.10. Our lattice
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Figure 5.10: A diagram of the beam geometry used during degenerate Raman
sideband cooling. The laser beams that form the Raman lattice are represented
in red, and the polariser beam in blue. The white arrows indicate the propagation
direction of each beam.

beams are tuned to the F = 4 → F ′= 4 resonance, which pumps the atoms into

the F = 3 state and provides tight confinement for, and couples the degenerate

mF levels of the atoms in the F=3 state, as described in Section 2.3. These beams

are linearly ramped up to 25 mW in 2 ms, because switching them on suddenly

could cause heating in the sample.

The polarising beam is 7.3 MHz blue-detuned from the F = 3 → F ′ = 2

transition, which means the atoms tend to decay into F = 3 with a higher mF

state, with their vibrational states conserved. This beam contains 2 mW of optical

power, polarised mostly circularly with a small π component to perform the

cooling cycle as described in Section 2.3.

Because only a minor energy shift of the mF states is required for Raman

cooling, a relatively small magnetic field is generated. Shim coils are used to pro-

duce this magnetic field, and fine-tune the quantisation axis to ensure the correct

ratio of σ+ transitions to π transitions. We examined the effects of magnetic field

direction on the atom number during Raman cooling (see Fig. 5.11) by adjusting

the current supplied to a pair of shim coils affecting horizontal magnetic fields.

We can see that the number of atoms that survive 3 ms of Raman cooling is highly
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Figure 5.11: Atom number in the |3, 3〉 state (red squares) and the |3, 2〉 state
(green squares) after 3 ms Raman cooling vs the current supplied to the horizontal
shim coils at either side of the experimental chamber. Adjusting the shim coil
current affects the direction of the magnetic field, which determines the ratio of
σ+ to π transitions.

dependent on the quantisation axis of the magnetic field used because this alters

the ratio of σ+ transitions to σ− and π transitions. At the maximum in atom

number in the |3, 3〉 state, there is also a maximum in the number of atoms in the

|3, 2〉 state. This is possibly due to a higher atom density in the Raman lattice,

which leads to higher levels of reabsorption of scattered light. We optimised this

across all shim coils for a maximum of |3, 3〉 atoms in the cloud.

Results of our Raman sideband cooling after shim coil optimisation can be

seen in Fig. 5.12, from which we optimised the cooling process for high atom

number and low temperature. For our temperature measurements we levitated

the |3, 3〉 atoms and tracked the expansion of the cloud over various durations.

The results for lower expansion durations are somewhat problematic because

there is a smaller cloud of |3, 2〉 atoms falling from the main cloud at 1/3g,

overlapping with it. This deforms the 1D Gaussian profiles of the cloud rendering

a fit to the profile impossible until after the clouds have separated (see Fig. 5.13).

We apply temperature fits only to expansion durations exceeding 60 ms to ensure

more reliable results.

We selected a cooling duration of 3 ms because it achieves a temperature
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Figure 5.12: Atom number and temperature after degenerate Raman sideband
cooling. a) Atom number vs Raman cooling duration. b) Cloud width vs expan-
sion duration after 1 ms (brown circles), 4 ms (grey squares) and 10 ms (yellow
diamonds) of Raman cooling. The solid lines illustrate our fit results using Eq. 5.3
to determine temperatures of 974(12) nK after 1 ms, 959(15) nK after 4 ms and
897(19) nK after 10 ms. We only fit to data points that occur after 60 ms expan-
sion, because before then the cloud is optically dense and contains |3, 2〉 and |3, 1〉
atoms, yielding unreliable results.

below 1µK without sacrificing many atoms. Longer durations mainly serve to

diminish the atom number with only incremental improvements in temperature.

The atom loss is thought to be due to collisions, reabsorption and occasional σ−

transitions, all of which result in heating the atoms, causing them to escape the

trap. Reabsorption and collisions are both consequences of high atom density,

however at this stage higher densities take priority over lower temperatures. A

previous implementation of Raman sideband cooling reported 3D temperatures

of 290 nK with an atom density of 1× 1010 cm−3 [72], which is estimated to be a

third of the densities we observe.

After Raman cooling is complete, the beams are ramped down over 600µs

to avoid the cloud expanding after suddenly being released. There are now ∼
3.9× 108 spin polarised atoms with a temperature of . 1µK, corresponding to a

phase space density of 9× 10−5, that are ready to be magnetically levitated.
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5.2.4 Magnetic Levitation

Although the temperature of our atoms is now well below dipole trap depths we

can produce, the lifetime of this trap would be extremely limited because the

downward force due to gravity is much stronger than our dipole force. We use

magnetic levitation to counteract the effects of gravity, which enhances the trap

depth in the z direction and eliminates gravitational sag in the trap.

Levitating one Zeeman state brings with it some added benefits. Different

spin states are separated using this method, so we levitate only atoms in the

|3, 3〉 state and under-levitate all other |3,mF 〉 states, achieving spin purity in

our cloud. In addition, we can observe our cloud over expansion durations far

longer than simple time of flight measurements would permit because unlevitated

atoms would fall from the field of view of our imaging system. In turn, this gives

us the ability to measure atoms in momentum space and in very low energy

regimes.

Magnetic levitation also presents some challenges. Because Raman cooling is

very magnetically sensitive, beginning levitation before releasing the atoms from

the Raman lattice is not an option. We instead need to quickly produce the

required magnetic field offset and gradient after the atoms have been released,

which cannot be done before the atoms have been accelerated by gravity. Our

solution is to use a 400 V discharge capacitor which drives a section of our coils

(the blue section in Fig. 4.8 c)). This produces 20% of the required gradient in

5 ms while the gradient coils ramp up. The discharge coils and gradient coils over-

levitate the atoms for a brief period to bring the atoms to rest, before settling at

the magnetic field gradient that levitates them.

The levitation potential also has a curvature (illustrated in Fig. 2.6) which

can accelerate the expansion of the cloud in the (x, y) plane and cause atoms to

fall if they spread too far from the centre of the curvature. Figure 5.13 shows an

image of a cloud of atoms separating in the presence of a magnetic field gradient,
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Figure 5.13: An absorption image of atom cloud separation after 40 ms of levi-
tation following Raman sideband cooling. The top cloud is made up of atoms in
the levitated |3, 3〉 state, the middle cloud of the |3, 2〉 state, and the faint bottom
cloud of the |3, 1〉 state.

much like a Stern-Gerlach experiment. The separation of states increases with

the expansion duration, so eventually only the |3, 3〉 cloud remains in a position

where the reservoir beams will overlap.

5.2.5 Dipole Trap

As our atoms approach their recoil temperature, it becomes much more difficult to

cool them further using near resonant light. While degenerate Raman sideband

cooling has gotten to within a factor of two of the recoil temperature for cae-

sium [59], the lower temperature limit is set by reabsorption. To cross the recoil

temperature limit, we need to use far off-resonant light to provide conservative

trapping forces. For this purpose, we have a 1070 nm, 200 W IPG ytterbium fiber

laser that we use to form a crossed-beam dipole trap of two ∼100 W ‘reservoir’

beams with overlapping foci. Each of these beams is focused down to a 1/e2 waist
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Figure 5.14: A diagram of dipole trap and optical lattice (not described in main
text) beam geometries. The reservoir beams are represented in red, the dim-
ple beams in blue, and the lattice beams are signified by the yellow ‘pancake’
structure. White arrows indicate the propagation direction of each laser beam.

of 800µm, resulting in a trap depth of 25.4µK. A diagram of the geometry used

for these beams is shown in Fig. 5.14.

In addition, we use light from a 1064 nm Coherent Mephisto Nd:YAG laser to

inject light into a laser diode, which in turn provides seed light for a 50 W fiber

amplifier for narrow ‘dimple’ trap beams. The Mephisto laser has a frequency

linewidth of < 10 kHz, which persists through the amplification process and is

important for the lifetime of the trap. The so-called horizontal and vertical dimple

beams overlap in the centre of the aforementioned crossed-beam dipole trap. The

dimple beam waists at the position of the atoms are 50µm and 90µm respectively,

so these beams are often set to have different optical powers to ensure similar trap

frequencies in all axes. Typically, in the dipole trap the horizontal dimple power

is set to 120 mW, and the vertical power 260 mW. These beams facilitate an order

of magnitude increase in the phase space density of the gas, without affecting its

temperature, which is a good starting point for evaporating to a Bose-Einstein

condensate.

We begin by switching on the reservoir beams at 20 W (the minimum the

laser controller will allow), before ramping them up to 200 W over 40 ms, so not
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Figure 5.15: Lifetime and temperature measurements of atoms in dipole trap. a)
Lifetime measurement of atoms in the dipole trap. There are two distinct rates
of loss - a steep loss rate for the first 150 ms, which settles thereafter. The dotted
line is a fit to the first 100 ms of hold time, and the solid line is a fit to the
data from 200 ms onwards. The latter gives a trap 1/e lifetime of 788(73) ms. b)
Temperature measurements of the atoms in the trap at 200 W after 50 ms (red
squares), at 200 W after 200 ms (green squares), and having ramped down to
130 W over 1300 ms. The solid red, green and blue lines represent fits to the data
used to extract the temperature of the cloud, giving temperatures of 8.95(9)µK,
8.95(2)µK, and 3.77(1)µK, respectively.

to perturb the atoms, before introducing the dimple beams over 2 ms. We allow

100 ms for the required magnetic offset field to be generated for loading the dimple

trap. Under normal circumstances we then ramp the reservoir beams down over

the course of 1300 ms, but for the purpose of this experiment we kept them on full

power for varying hold durations to determine the lifetime and the temperature

of the atoms in this trap. The results of this experiment are found in Fig. 5.15.

It appears that there are two different loss regimes in our lifetime measurement

because for the first 150 ms, atoms that have not been caught in the dipole trap

are still being imaged. These atoms dissipate quickly, resulting in a sharp drop

in the atom number, and the losses observed afterwards are nominal for a dipole

trap so a valid measure of lifetime can be obtained. The 1/e lifetime of our trap

at 200 W is 788(73) ms, still relatively short for a dipole trap. This is possibly

due to the fact that the IPG laser generates light in several modes, resulting in a

large spectral linewidth (∼ 3 nm), which grows for high powers [114]. At 200 W
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this linewidth is presumed to be very broad, and the trap depth is much deeper

than the temperature of the atoms, both of which can cause heating [115, 116].

However, this is not a cause for concern because this regime is short-lived in the

experimental sequence.

We performed temperature measurements on the atoms after hold times of

50 ms and 200 ms (red and green squares in Fig. 5.15 b) at 200 W, a trap depth

of 25.4µK, for which we measure respective atom numbers of 8.4 × 107 and

3.8 × 107. Both of these measurements yield a temperature of 8.95µK. The

temperature of atoms in the trap stays the same over long hold durations, because

the temperature is limited by the finite trap depth. We can only reduce their

temperature by ramping down the optical power used in the trap, which we elect

to do as soon as possible after ramping up the dimple beams. We performed one

more temperature measurement after reducing the reservoir beams to 130 W over

1300 ms. With 1.3 × 107 atoms left, we measure a temperature of 3.77(1)µK.

We usually end our dipole trapping procedure with a phase space density on the

order of 10−4.

5.2.6 Evaporative Cooling

Evaporative cooling is the most common approach to Bose-Einstein condensation.

Where previously the goal was to lose as few atoms as possible, we now deliber-

ately remove the hottest ones to stimulate the cooling of the cloud as a whole.

Evaporative cooling is often performed using rf-evaporation which for some al-

kali atoms results in runaway evaporation due to increases in the atom density

and collision rate. However, because of its scattering properties, the phase space

densities achieved from rf-evaporation of caesium were only fractions of that re-

quired for Bose-Einstein condensation to occur. We use an all-optical approach

which involves reducing the depth of our dipole trap in stages, starting with the

evaporation parameters in [18], then optimising them empirically.
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Figure 5.16: Characterisation of thermalisation in our dimple beams after the
larger reservoir beams have been ramped down. a) Temperature measurements
after various hold durations in the dimple beams. Green squares show a tem-
perature measurement taken after 1 ms, blue diamonds after 100 ms, red circles
after 200 ms, brown circles after 500 ms, and grey squares after 1 s. The solid
line fits to these respective measurements indicate temperatures of 1.379(7)µK,
1.19(1)µK, 1.041(4)µK, 823(5) nK and 688(6) nK. b) Lifetime measurement of
the dimple trap after the pre-ramp. The atom loss rate is very high for the first
100 ms as the atoms that were not loaded into the dimple beams dissipate. Both
lines are exponential decay fits to the data - the dashed line fit tracks the initial
loss of the atoms, and the solid line fit gives a measure of the 1/e trap lifetime,
1.76(24) s. This lifetime is still somewhat short, thought to be because the high
atom density incurs three-body losses.

For each of the four stages in our evaporative cooling process, we are able to

tune the scattering length of the atoms and the trap depth at varying rates. To

avoid heating or sloshing the atoms and to allow longer times for thermalisation,

each step in the process is more gradual than the last, the full evaporation taking

about 10 s. There are four main evaporation stages (pre-ramp and ramps 1-3).

A timing diagram of ramps 1-3 and the changes of scattering length and beam

powers that occur during these ramps is shown in Fig. 5.17.

Pre-ramp The main goal of this stage is to transfer atoms from the reservoir

beams to the dimple beams. The reservoir beams are linearly reduced from 130 W

to 20 W (the minimum allowed by the laser controller) in 1.4 s. During the first

50 ms of this sweep, the magnetic field offset current is ramped to 12.4 A, cor-
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Figure 5.17: Timing diagram for the evaporative cooling sequence. Plots of the
scattering length and horizontal and vertical dimple beam powers are shown, with
dashed lines indicating the beginning of each stage.

responding to a magnetic field offset of ∼ 23 G, to reduce the scattering length

to ∼340 a0, which improves the loading of the dimple trap and facilitates fast

thermalisation [17, 39]. Dimple beam powers are kept constant at 120 mW hori-

zontal power, and 260 mW vertical. After the linear ramp, the scattering length

is reduced to 300 a0.

A measurement of the dimple trap temperature and lifetime after the pre-

ramp is shown in Fig. 5.16. We begin with 2.5× 106 atoms and a trap depth of

5.2µK, but the atom number quickly drops and the temperature does not go far

below 1µK - after 1 s in this trap, only 8× 105 atoms remain with a temperature

of 688(6) nK. We must allow some time for plain evaporation, because continuing

to lower our trap depth before the atoms thermalise will result in high levels
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of loss. However, with peak atom densities on the order of 1012 cm−3, waiting

too long could also result in losses due to three-body collisions - we strike a

balance with 100 ms hold duration before beginning evaporation ramp 1. Now

that the reservoir beams have been switched off, it is more accurate to use the

trap parameters to calculate the phase space density of the gas, from Eq. 3.8.

After these 100 ms, before we begin evaporative cooling, the phase space density

of the gas is 6.04× 10−2.

Ramp 1 - At this stage, it is crucial to reduce the atom density quickly to

reduce three-body losses. The dimple beams are initially linearly ramped down

to 30 mW horizontal and 70 mW vertical in 500 ms, the trap depth reduced to

1.4µK, after which 8 × 105 atoms remain at a temperature of 234.6(9) nK, as

shown in Fig. 5.18. The scattering length is ramped to 250 a0 in the first 20 ms of

the sweep, to limit possible 3 body losses. The phase space density of our sample

is 0.53, we are now within an order of magnitude of the phase space density

required for Bose-Einstein condensation.

Ramp 2 - Only the dimple beam powers are adjusted in this ramp. As we

approach Bose-Einstein condensation, we need to reduce the rate at which we

lower the trapping potential to account for a lower thermalisation rate due to a

reduced collision rate, so we ramp at ∼10% the rate of ramp 1. The beams are

linearly ramped down to 10 mW and 26 mW in 1 s. We now have a trap depth of

500 nK, and 5×105 atoms left at a temperature of 62.7(4) nK (see Fig. 5.18). With

a phase space density of 3.72, we have finally surpassed the phase space density

required for Bose-Einstein condensation to occur. A small condensate fraction in

the cloud can now be observed (see Fig. 5.19). Although the definition of phase

space density becomes less relevant once there are non-thermal atoms in the gas,

it is still calculated for completeness, and so that an evaporation efficiency can

be determined from the results (see Fig. 5.20).
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Figure 5.18: Measurements for each stage in our evaporative cooling process. a)
Temperature measurements after the first ramp (red circles), second ramp (green
squares), and third ramp (blue diamonds). The latter result were obtained by
bimodal fits, as the third evaporation ramp results in a condensate. The solid
line temperature fits yield results of 234.6(9) nK, 62.7(4) nK and 14.0(3) nK. b)
The atom number after each of the ramps detailed in a). Through evaporative
cooling we lose an order of magnitude in our atom number from the dimple trap,
but we cool the gas by a factor of 100, and increase its phase space density by a
factor of 300.

Ramp 3 - Now that we observe a BEC, the goal is to condense as many of the

remaining thermal atoms as possible. The dimple beams are ramped down once

more at a further reduced rate (∼15% the ramp rate of ramp 2) to their final

powers. Typically we sweep down linearly to 1 mW horizontal and 8 mW vertical

in 3 s, giving a final trap depth of 100 nK. For the first 300 ms of this ramp, we

change the magnetic field offset for a scattering length of approximately 210 a0.

We now have a cloud of 2.6×105 atoms at 14.0(3) nK (see Fig. 5.18), a BEC with

a condensate fraction N/N0 = 0.48. While it is possible to ramp the trap down

further for lower temperatures, we would do so at the expense of atom number

for minimal gain.

Absorption images taken after each of the three evaporation ramps are shown
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Figure 5.19: a) Absorption images used for the temperature measurement in
Fig. 5.18 a) - each image is an average of two. b) The 1D density profiles in the z
axis for each of the 60 ms expansion duration images in a) - the peak characteristic
of the existence of a condensate is clearly visible in the orange (ramp 2) and yellow
(ramp 3) profiles. The profiles are each offset by the same amount.

in Fig. 5.19. The top row is an expansion measurement performed after evapo-

ration ramp 1; the centre and bottom rows show expansion results after ramps 2

and 3, respectively, all for the same expansion durations. Although the difference

is not really clear after 20 ms while even the thermal sample is optically dense,

after 40 ms it can be clearly seen that there are only thermal atoms after ramp 1,

there is some condensate after ramp 2 and much more condensate after ramp 3.

In fact, after ramp 3 once the sample has been given 60 ms to expand, the sample

is still optically dense except for some thermal atoms which can be observed.

Having cooled our atoms from room temperature to BEC, we examine the

phase space densities and atom numbers that result from each stage of the cooling

process in Fig. 5.20. It appears that the efficiency falters at certain points in the

process, such as from Raman cooling to the dipole trap. It is worth noting that in

the process of transferring atoms from one trap to another, some initial heating
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is completely normal and these transfers are necessary to be able to cool further.

The loss of atoms from the lowering of the dipole trap from 200 W to 130 W does

not seem worth it for the minimal increase in phase space density, but it is a

necessary evil in a process that produces a BEC.

The leap in phase space density from the dipole trap at 130 W to the evapo-

ration pre-ramp results from the change in regimes for phase space density calcu-

lations. The evaporation pre-ramp was the first stage for which Eq. 3.8 was used,

instead of Eq. 3.4 to calculate the phase space density. The dimple pre-ramp

stage was deemed the most suitable to begin using the trap parameters to cal-

culate the phase space density, which is more accurate than using the properties

of the gas once a condensate starts forming. The efficiency of the evaporation

stages as in Eq. 2.34, is obtained from the gradient of the log-log plot in Fig. 5.20.

The mean evaporation efficiency is 3.2, which indicates that the fractional gain

in phase space density was far greater than the fractional loss of atoms.
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Figure 5.20: Phase space density vs atom number after each stage in the cooling
process on a log-log scale. All points represent stages during our experimental
sequence. The hold times for the dipole and dimple traps are 200 ms for the
‘Dipole 200 W stage’, 1.3 s for the ‘Dipole 130 W’ stage and 100 ms for the ‘Dimple
pre-ramp’ stage. All evaporation ramps are included for completeness, although
phase space density readings could be inaccurate after the BEC transition occurs.
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5.3 Bose-Einstein Condensate Characterisation

Once we have achieved a BEC, we can examine the effects described in Chap-

ter 3, and the properties of a quantum gas. We obtain results using the bimodal

fitting procedure described in Section 5.1.3, and characterise our condensate un-

der various conditions. I will present low energy temperature measurements, our

method of thermal atom reduction, the collapse of a Bose-Einstein Condensate

under attractive interactions and our ability to observe a BEC in a guiding beam

for durations up to 1 s.

5.3.1 BEC Benchmarks

At various stages throughout the cooling process we measured the temperature

of the gas. After our second evaporative cooling ramp we observed the onset

of Bose-Einstein condensation, so began to use our bimodal fitting procedure to

measure the temperature of the thermal atoms. We adjusted the evaporation
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Figure 5.21: Temperature measurements of the thermal component of the Bose
gas after various evaporation ramps as a way of calculating their critical tem-
peratures. a) Temperature measurements after each ramp, yielding tempera-
tures of 18.3(3) nK (yellow diamonds), 16.3(2) nK (green circles), 15.0(3) nK (grey
squares), 3.1(4) nK (blue diamonds) and 676(625) pK (brown circles). b) A plot
of Eq. 3.10, overlapped with our experimental data.
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Figure 5.22: Atom number vs hold duration in the dimple beams after evaporation
(red squares). The solid red lines are exponential decay fits associated with trap
lifetime, for 0 s - 2.5 s, and for 2.5 s onwards.

procedure to have samples with high and low condensate fractions, for analysis of

both regimes. These results are presented in Fig. 5.21, where the temperature fits

begin to break down for high condensate fractions, represented by blue diamonds

and brown circles. From these two fits, it is indicated that the hotter 3.1(4) nK

measurement (blue diamonds) appears to begin with a more compressed cloud

than the colder 676(625) pK measurement (brown circles). This could be ex-

plained partly by an error in the temperature fit due to optically dense results

at 20 ms, and partly by the possibility that the initial expansion of the thermal

component is more driven at 676 pK as the higher condensate fraction pushes

the thermal atoms outwards. Despite this discrepancy, we compare the results

to Eq. 3.10 to identify whether the temperatures we observe are accurate. The

temperatures we obtained are used in conjunction with the total atom number

N0 and condensate number N from our fit to calculate TC using Eq. 3.10, and

N/N0 is plotted against T/TC as in Fig. 3.2. We see in Fig. 5.21 that the T/TC

obtained from the bimodal fit to the atom cloud in both the low and high con-
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Figure 5.23: A study of the trap lifetime and condensate fraction against hold
duration in the trap under different conditions. The red circles in both plots
indicate data taken for dimple beam powers of 1 mW horizontal and 8 mW ver-
tical, and the green squares for powers of 0.3 mW horizontal and 6 mW vertical.
a) A measurement of the lifetime in these traps. The solid red line is a typical
exponential fit to the 1 mW, 8 mW data from 2.5 s hold duration onwards, and
the green solid line is a fit to the 0.3 mW, 6 mW data for the same range of hold
durations. b) Condensate fraction with respect to hold duration in these traps.

densate fraction regimes agree well with the theory.

Examining the trap lifetime following the formation of the BEC in Fig. 5.22,

we see two distinct rates of loss - for the first 2.5 s the rate is much higher as the

hottest atoms that cannot be contained in the trap are lost, and the atoms that

remain thermalise; from 2.5 s onwards, the rate has settled and mainly three-body

loss is observed. The trap lifetime obtained from the second slope is 24.6 s, an

order of magnitude gain on the lifetime measurement before evaporation seen in

Fig. 5.16. The increase in lifetime follows from the decrease in density resulting in

a lower rate of associated inelastic scattering, in addition to the massive reduction

of kinetic energy in the gas.

The density and kinetic energy are reduced again for a further reduction of

dimple beam powers, resulting in an even longer trap lifetime as seen in Fig. 5.23.

For beam powers of 1 mW horizontal and 8 mW vertical, after the first 2.5 s an

exponential decay fit to the data yields a trap lifetime of 27(2) s. However, by

decreasing the powers to 0.3 mW horizontal and 6 mW vertical, we achieve a
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lifetime of 47(8) s. The increase of condensate fractions observed for the same

images demonstrate that most of the atoms that escape the trap are thermal.

For 1 mW and 8 mW, the condensate fraction never exceeds 85%, but for the

0.3 mW horizontal and 6 mW vertical configuration we achieve an almost pure

condensate of 1.4× 105 atoms. It is thought that the drop in condensate fraction

after 15 s is because our bimodal fitting procedure breaks down for condensates

above 95% purity. In general, we use 1 mW horizontal and 8 mW vertical to trap

our BEC and a different method to increase the purity of the condensate.

5.3.2 Thermal Atom Removal

It might happen that after evaporation, there is still a thermal fraction in the

cloud that is not desired. We typically reduce this thermal component by low-

ering the dimple traps linearly to 3 mW horizontal and 6 mW vertical in 400 ms

and reducing the magnetic field levitation gradient over the course of 1.4 s to

somewhere between 98% and 99% of its usual value. This lowers the trap depth

further, just enough that the atoms lost are mainly thermal. The levitation is
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Figure 5.24: A study of our atom number reduction method. a) Atom number
vs the percentage of the acceleration due to gravity the atoms experience in the
trap. b) A demonstration of the reproducibility of this atom number reduction.
The red circles indicate measurements taken at 2.30% of g, the green squares at
2.31% and the blue diamonds at 2.28%.
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held steady at its reduced value for 1 s, and is then ramped back to its original

value in 1.4 s. Where most other sweeps of magnetic levitation current would be

linear, this sweep takes the form of a hyperbolic tangent for a softer transition, as

any sudden changes could result in most atoms being launched or dropped from

the trap. This process results in a drop from 2.5 × 105 atoms in our sample, to

1.5 × 105 atoms with no detectable thermal component. Using this method, by

varying the adjusted magnetic field gradient value, we can reproducibly reduce

the atom number down to about 200 atoms. Our atom number using this method

can fluctuate by ±100 atoms for attempts to reduce our atom number to 600, or

±350 atoms for reduction to 4500 atoms.

5.3.3 BEC Collapse

As noted in Section 3.3, a BEC will collapse if it contains a large number of

atoms and is then tuned to have a negative scattering length [93]. In this case,

the condensate implodes and suffers heavy atom losses, as seen in Fig. 5.25. From

the absorption images in this figure, we can see that the condensate is stable at

5.8 a0, with a condensate fraction of N/N0 = 0.45, which shrinks as the positive

scattering length is reduced. In Fig. 5.25 d) and e), we see the condensate with

attractive interactions. In both cases, about half of the atoms have been lost,

heating has occurred and the clouds take strange shapes, as the collapse has

likely induced unusual oscillations and breathing modes.

5.3.4 Long expansion durations

The ability to observe BECs over long expansion durations (> 100 ms) is limited

by the curvature of the magnetic field gradient, magnetic field fluctuations in the

horizontal axes and the expansion rate of the condensate. Using a vertical guiding

beam, we are able to circumvent the anti-trapping force introduced by magnetic

levitation, and by tuning the interactions of the condensate we limit its initial
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Figure 5.25: The effects of the change of interaction strength after the formation of
a BEC. a) Atom number vs. scattering length clearly shows the atom loss caused
by attractive interactions. b)-d) single-shot absorption images of a condensate in
various interaction regimes. b) 5.8 a0, c) 0.56 a0, d) -2.08 a0, e) -6.04 a0

expansion energy. These measures enable the observation of condensates for

durations of up to 1 s. We demonstrate one such observation in Fig. 5.26, where

several averaged absorption images are shown for expansion durations ranging

from 50 ms to 1 s. The atoms, tuned to 15 a0, are levitated and held in a vertical

guiding beam with a radial trapping frequency of 2π × 2.1 Hz.

We plot the vertical RMS radius of the cloud against expansion duration

to measure the expansion velocity. The RMS radius is calculated with ∆Z =√
1
N

∫
n(z)(z − z̄)2, where z̄ is the centre of mass position of the cloud, n(z) is

the atom density at the position z, and N is the atom number. We observe an ini-

tial expansion velocity of vRMS = 0.128(5) mm/s, corresponding to an expansion

energy of 260(20) pK. The initial expansion is determined by the set interaction

strength, however after 400 ms expansion duration in the guiding beam, the ex-

pansion begins to accelerate. There are some contributing factors in this
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Figure 5.26: Expansion results for a BEC of 1.1× 104 atoms in a guiding beam,
published in Ref. [51], and found in Appendix B of this thesis. a) Averages
of 8 images taken after expansion durations of 50 ms, 200 ms, 400 ms, 600 ms,
800 ms and 1 s. The scale bars represent 50µm on the vertical axis of each
image. b) Vertical RMS radius of the cloud vs expansion duration for the images,
from which we observe two expansion regimes. The solid red line is a fit to the
initial expansion from which we obtain a velocity. c)-d) Horizontally integrated
density profiles for expansion durations of c) 400 ms and d) 600 ms, with blue
lines representing fits to the data. In d), the dashed line represents the position
at which zero scattering length occurs.

acceleration - an effect of the transition from a BEC to a Tonks gas [117, 118];

slight fluctuations of the magnetic field strength and gradient throughout the

expansion; and possibly coupling between horizontal oscillations, which were de-
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tected radially in the beam, and vertical motion.

Also included in Fig. 5.26 are horizontally integrated 1D profiles of the absorp-

tion images after 400 ms and 600 ms expansion durations, where it is apparent

that the expansion of the cloud is asymmetric over longer durations. This is

considered to be because the BEC is expanding along the vertical axis where a

considerable magnetic field gradient exists, so the condensate extends to regions

where the interactions are strongly attractive, so the expansion is hindered on

the lower portion of the cloud.
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Chapter 6

Outlook and Conclusions

During the course of this work, I contributed to developing and building a new,

versatile apparatus designed for the production of caesium Bose-Einstein conden-

sates. We built a vacuum chamber which maintains a pressure of 10−8 mbar in

the section that houses a 2D+ MOT, and 10−11 mbar in the chamber in which

experiments are performed.

We routinely trap 108 atoms in our MOT, cool them close to their lowest

vibrational state using Raman sideband cooling and evaporatively cool them to

degeneracy, tuning interactions to favour elastic collisions. From this process we

produce BECs of 2.5× 105 atoms, with the ability to further increase the purity

and reproducibly reduce the atom number down to 200 atoms, if desired. We

are capable of producing BECs in the sub-nK regime, where time-of-flight ther-

mometry becomes inaccurate.By using a vertical guiding beam, we can observe

the expansion of our condensates for durations up to 1 second, and reduce their

dimensionality to 1D [51].
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6.1 Future Work

Studies on measuring the temperatures of Bose gases with minute thermal compo-

nents will continue. In Ref. [57], the margin of error on the temperature measured

by time-of-flight was ∼20%. It is thought that the accuracy of time-of-flight ther-

mometry methods can be improved by adjusting the interaction regime before the

gas is released. With slightly attractive interactions, the condensate component of

the gas could shrink as the thermal component expands. In this case, more of the

small ‘wings’ of the thermal component could be revealed to obtain temperature

measurements in very low energy regimes.

In previous work, spin excitations of a rubidium BEC, or magnons, were

used to measure the temperature of the main gas [53] down to temperatures of

0.02 TC. Magnons were created by altering the Zeeman states of up to 15% of

their atoms using rf-pulses, keeping them dilute enough to avoid the magnons

condensing. The magnons were then allowed to thermalise in the trap with the

condensate before being released. Finally, a spin-selective imaging technique was

performed to image only the magnons, so they would not be obscured by the

main cloud containing the condensate. In principle, this thermometry technique

can be implemented in our current setup with no modifications to the apparatus.

Using rf-pulses, we can transfer some of the atoms of our condensate from the

|3, 3〉 to the |3, 2〉 state while they are still in the trap, allow them to thermalise

with the condensate and release them. Upon being released, both states would

be separated with a magnetic field gradient, as was demonstrated in Fig. 5.13.

This would make it simple to image both clouds simultaneously and compare the

temperature measurements in a regime where it could be measured from both

to confirm our magnons have thermalised properly, before using the method for

lower temperature regimes.

Our experimental apparatus could also be used to implement less destructive

methods of thermometry than time-of-flight imaging for the sub-nK regime, that
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have been proposed in recent years. In Ref. [55], it was suggested that the phase

readout from different methods of atom interferometry could give an indication of

the temperature of the gas. Schemes for both Mach-Zehnder interferometry and

Ramsey interferometry were suggested, although the latter is considered better for

the purpose of thermometry. Spatial separation of the clouds does not occur with

the Ramsey method, and the phase measured from it is capable of being twice

as accurate as the phase measured using the Mach-Zehnder method. Although

both methods are viable using our apparatus, it would take fewer adjustments

to implement the Mach-Zehnder method. While this thesis was being written

an optical lattice was introduced into the experiment, permitting this type of

interferometry. From this, we were able to determine the phase shift introduced

by having the atoms on one arm of the interferometer pass through a dipole

beam before recombination [51]. If we performed a similar experiment with atoms

trapped in the dipole beam before the interferometry sequence, the phase readout

could indicate their temperature.

Finally, a proposal [56] indicates that thermometry can be performed non-

destructively by repeated measurements of the momentum and position spread

of impurities immersed in a BEC. The proposal suggests trapping a small number

of probe atoms in the centre of a larger atom cloud, allowing them some time

to thermalise with the cloud, and imaging the probes to determine their posi-

tion and momentum spread after thermalisation. Although the example given

in this publication involves using ytterbium atoms to measure the temperature

of a potassium BEC, the calculations are general. The best regime for accuracy

at low temperatures is predicted to be where the coupling strength between the

impurity and the BEC (gIB) is almost equal to the coupling strength of the BEC

atoms with each other (gB), i.e. gIB/gB ≈ 1. Under these circumstances, 100

repeated measurements of the probe position spread could have an uncertainty of

<14% for temperatures around 200 pK, which decreases for higher temperatures
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Figure 6.1: An illustration of how non-destructive measurements could be per-
formed using our experimental apparatus. a) An optical lattice creates flat ‘pan-
cake’ lattice sites, which allows a small number of atoms in each site to be ad-
dressed by a Raman beam (blue), inducing a two-photon transition. b) The
proposed energy levels that could be used. The atoms start off in the |3, 3〉 state
(brown circle), and undergo a Raman transition to the |3, 2〉 state (blue circle)
where they remain as an impurity until they are imaged. A microwave transition
is used to transfer the impurity atoms to the |4, 1〉 state, so they can be imaged
with minimal disturbance to the |3, 3〉 atoms.

or more measurements. In our experiment, an initial study of this method is

feasible if we use an optical lattice to create a 2D system, which would allow us

to implement the analysis of different spin components which would otherwise be

under-levitated or anti-levitated [110, 119]. We could address the atoms in the

centre of the 2D ‘pancakes’ with a two photon Raman transition, to transfer them

from the |3, 3〉 state to the |3, 2〉 state. These atoms should be dilute enough to

avoid condensation, and should have a similar coupling strength with the |3, 3〉
atoms as other |3, 3〉 atoms. After being allowed enough time to thermalise, a

microwave transition could be used to transfer only the |3, 2〉 atoms to the F =4

manifold, preferably to the |4, 1〉 state to be far away from any microwave tran-

sitions available to the |3, 3〉 atoms, before being imaged selectively. In this way,

the position spread of the impurity could be measured with minimal disturbance

to the BEC. The scheme for this proposed experiment is illustrated in Fig. 6.1.

This non-time-of-flight method of thermometry could be used to observe inter-
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esting temperature regimes which occur in Bose gases of lower dimensionalities.

In our setup, we have implemented beams which form an optical lattice, enabling

us to create a quasi-2D Bose gas, which presents the possibility of measuring

temperature in a 2D quasi-condensate regime [117, 120], which could be stud-

ied using the non time-of-flight methods of thermometry presented above. In

addition, modulation of this lattice would allow for studies of excitations, band

structure, and interactions [121].
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Note: A simple laser shutter with protective shielding for beam
powers up to 1 W
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We present the design of an inexpensive and reliable mechanical laser shutter and its electronic driver.
A camera diaphragm shutter unit with several sets of blades is utilized to provide fast blocking of laser
light and protective shielding of the shutter mechanism up to a laser beam power of 1 W. The driver
unit is based on an Arduino microcontroller with a motor-shield. Our objective was to strongly reduce
construction effort and expenditure by limiting ourselves to a small number of modular parts, which are
readily available. We measured opening and closing durations of less than 800 µs, and a timing jitter
of less than 25 µs for the fastest set of blades. No degradation of the shutter performance was observed
over 5·104 cycles. © 2018 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1063/1.5053212

Mechanical optical shutter units have become indispens-
able in modern optics laboratories to provide a time-dependent
extinction of laser light. Depending on the application, a mul-
titude of desirable properties can be identified, such as low
extinction ratios, fast switching times, low time jitter, high
reliability, high repetition rates, small sizes, or long operation
lifetimes.

Commercial products are currently available that fulfil
most of those design requirements at high costs,1 but labo-
ratories often need dozens of shutter units and commercial
solutions can quickly become unaffordable. As a result, many
experimental groups have developed their own shutter designs
with varying design goals and technical approaches,2 e.g.,
based on loudspeakers,3 computer hard drives,4 or piezoelec-
tric devices.5,6

In this article, we present the design of a mechanical shut-
ter and its driver unit with two design objectives. The first
objective is to strongly reduce construction effort and costs
while preserving fast switching times and a high reliability.
We do so by limiting ourselves to a small number of modular
parts which are readily available.7,8 The shutter unit utilizes a
small diaphragm shutter with multiple blades as is normally
used in compact digital cameras, and the driver unit is based on
an Arduino microcontroller with a motor-shield.8 The second
design objective is a protection mechanism that facilitates the
blocking of laser beams up to a continuous power of 1 W. We
implement the protection with a shielding blade that reflects
the laser light.

Details and additional materials for the construction are
available in the supplementary material. Here, we give an out-
line to the design of the shutter blades, the driver unit, the
microcontroller software, and the enclosure of the shutter. An
experimental characterisation of the switching time, the jitter,
and the reliability is provided.

a)Electronic mail: elmar.haller@strath.ac.uk

Figure 1 illustrates the design of the shutter blades. The
shutter contains three sets of blades—a light pair of blades B1
that close from opposite sides of the aperture in a “scissor”
motion, overlapping in the centre and blocking light; a sturdy
filter blade B2 originally intended to attenuate the light in a
camera; and an unused blade with a hole which only limits the
aperture size B3. We utilize blades B1 for fast switching oper-
ations and blade B2 for protection and dispersive reflection of
laser light. Typically, the blades of small diaphragm shutters
are optimized for low weight and friction, and they start to
bend or melt when absorbing laser powers of more than 50
mW. We managed to increase the beam power up to 1 W9 by
adhering a small strip of aluminum foil to filter blade B2 that
dispersively reflects the laser light and dissipates heat. By our

FIG. 1. Images of the (a) back and (b) front of the shutter before modifications
and (c) within its 3D-printed enclosure. Red dashed lines indicate removed
parts, and red arrows point toward the (a) connection terminals of the solenoids
and (b) sliders of the shutter blades. The labels indicate that the connection
terminals and sliders attach to scissor blades B1, filter blade B2, and unused
aperture blade B3.

0034-6748/2018/89(12)/126102/3 89, 126102-1 © Author(s) 2018
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design, most of the reflected light is trapped in the enclosure
of the shutter.

The positions of the blades are controlled by small
solenoids with independent connection terminals as indicated
by red arrows in Fig. 1(a). The shutter blades are bistable with-
out any springs or other self-restoring elements, and a short
current pulse of ±200 mA for a duration of 3 ms is sufficient
to flip the position. The final state of the shutter is determined
by the direction of the current. For simplicity, we typically
connect both blades, B1 and B2, in series by soldering thin
wires to the connection terminals, but an independent control
of the blades is used for the purpose of testing the shutter for
this note.

The shutter driver consists of an Arduino microcon-
troller with a motor-shield (Fig. 2). The microcontroller mon-
itors a digital (TTL) input signal that indicates the state of the
shutter—a low (high) signal corresponds to a closed (open)
state. The detection of a signal change triggers the short current
pulse of the motor-shield with the required current direction
to flip the blades. An operation of both solenoids in series
requires a supply voltage of 5–6 V for the motor-shield to
generate the correct current pulse. It is possible to supply the
shield by the regulated 5 V output of the Arduino microcon-
troller, but a direct connection to the main power supply is
advisable for the simultaneous control of 4 shutters units. For
convenience, we added to the circuit a toggle switch to open
the shutter manually, and a light emitting diode (LED) to indi-
cate the shutter status. We intentionally limited the circuit to
include only essential elements, and all components except
for the microcontroller can be integrated into the front panel
without the need of an additional circuit board.

Our microcontroller software is provided in the supple-
mentary material. The tasks of the program are the tracking of
the shutter status, the detection of a change of the TTL input
signal, and the control of the motor-shield. Timer interrupts are
included for the parallel control of several shutter units. The
use of interrupts allows us to generate current pulses of well-
defined duration without blocking the program flow. We mea-
sured a response delay between the input signal and the current
pulse of 230(30) µs for a simultaneous use of 4 shutters units.

A plastic enclosure is used for the shutter unit to reduce
the coupling of vibrations. The casing is 3D-printed using

FIG. 2. Circuit diagram of the shutter controller. The design is based on an
Arduino microcontroller with a motor-shield. We added a toggle switch to
open the shutter manually by bypassing the TTL input signal, and an LED
to indicate the status of the shutter blades. One motor-shield facilitates the
simultaneous control of 4 shutter units.

fused deposition modeling of polylactide (PLA) plastic. We
sandwich the shutter between rubber “O” rings and a black
anodised aluminum disc with a small hole of 4 mm diame-
ter to further dampen vibrations. The disc reduces possible
backscattering from the aluminum foil adhered to the shutter
blades, and it prevents a melting of the casing material due to
a misaligned laser beam. The corresponding computer-aided
design (CAD)-model files of the enclosure can be found in the
supplementary material.

The final part of this note describes an experiment to
benchmark the speed, time jitter, and robustness of the shutter
and driver unit. We used a photodiode10 and an oscilloscope to
measure the power of a laser beam after it propagated through
the shutter. Timings for the shutter and for the acquisition oscil-
loscope were provided by an NI-multifunction IO device.11

The shutter aperture is 4 mm in diameter, and the laser beam
was collimated with a 1/e2 waist of 1.1 mm. As opposed to
our normal operation, we connected each shutter blade to the
shutter driver separately to study the timed opening and clos-
ing of the blades independently of one another. The intensity
profiles of 500 consecutive opening and closing cycles were
recorded and analyzed (Fig. 3). No degradation was detected
over the course of 5·104 additional cycles.

Figure 3 shows the photodiode signal for a time t after the
trigger signal to (a) open or (b) close the shutter with scissor
blades B1 (blue) and filter blade B2 (red). The photodiode
voltage is normalized for each data set to the signal of an open
shutter. We determine an opening delay between the trigger and
an increase to 5% of the full photodiode signal of 2.29(2) ms
and 3.71(3) ms for blades B1 and B2. The opening durations,
measured by an increase from 5% to 95% of the total signal,
is 790(10) µs and 1.51(3) ms for the two sets of blades. The
closing procedure is slightly faster with a closing delay of
2.73(2) ms and 2.71(3) ms and a closing duration of 573(7) µs
and 1.46(2) ms for blades B1 and B2, respectively. Opening
and closing delays are longer than the electronic response time,
and we expect most of the delay time to be used to overcome

FIG. 3. Transmission signals of the two blades being (a) opened and (b)
closed. The red (blue) lines show the transmission throughout the operation
of filter blade B2 (scissor blades B1). The gray lines show the operation of B2
for a reduced beam waist (see text). The time scale indicates the delay time t
after the change of the TTL input signal.
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FIG. 4. Histograms of opening times for the transmission signals. (a) half-
opening times and (b) half-closing times of filter blade B2. (c) half-opening
times and (d) half-closing times of scissor blades B1.

friction and to separate the overlapping blades. We presume
that the scissor blades are faster than the filter blade because
they close in from both sides and meet in the centre of the
aperture, thus traveling half the distance. Both blades have a
velocity of approximately 1.2 m/s.

Another important property to characterise a shutter is the
reproducibility of operation times. The histograms in Fig. 4
show the variation of the half-opening and half-closing times,
i.e., the time ∆T to reach 50% of the total beam power after
a change of the trigger signal. Our histograms display a low
jitter time with no significant outliers. Filter blade B2 shows
a positive (negative) skew of the distribution for the opening
(closing) process with standard deviations of 60 µs (40 µs).
The distributions of the timing of scissor blades B1 show the
opposite skews with the standard deviations of 21 µs (24 µs).
We speculate that this skewing is due a position dependent
variation of the friction between blades, and the details of the
skewing might vary from device to device. The difference in
opening and closing times for the same blade might be due to a
small misalignment between the center of the shutter aperture
and the laser beam.

For a better comparison with other publications, we reduce
the 1/e2-waist of the beam to 140 µm and repeat the mea-
surements. 500 data sets for the opening and closing of blade
B2 are represented by gray lines in Fig. 3. The reduced
beam waist results in a reduction in the time taken for the

photodiode signal to change between 5% and 95% of the
total signal. For blades B1 (B2), we measure an opening
duration of 137(7) µs [220(5) µs] and a closing duration of
100(4) µs [155(5) µs], which are in agreement with previous
measurements and with the scaling of the beam waist.

In conclusion, we implemented and benchmarked a sim-
ple and robust shutter design based on a diaphragm shutter
with multiple pairs of blades. A lightweight pair of blades is
utilized for fast shutter operation while being protected by a
slower and sturdier blade. The shutter can operate up to a con-
tinuous laser beam power of 1 W. For the opening and closing
of fast blades B1, we measured delays of less than 3 ms, open-
ing and closing durations of less than 800 µs (140 µs for the
smaller waist) and a timing jitter of less than 25 µs. Our design
goal for the shutter and driver units was to strongly reduce con-
struction effort and costs while preserving robustness and high
power operation.

Please see supplementary material for the software of the
microcontroller and for the CAD-model files for the casing of
the shutter.
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Abstract
The sensitivity of atom interferometers is usually limited by the observation time of a free falling cloud
of atoms in Earth’s gravitational field. Considerable efforts are currentlymade to increase this
observation time, e.g. in fountain experiments, drop towers and in space. In this article, we
experimentally study and discuss the use ofmagnetic levitation for interferometric precision
measurements.We employ a Bose–Einstein condensate of cesium atomswith tuneable interaction
and aMichelson interferometer scheme for the detection ofmicro-g acceleration. In addition, we
demonstrate observation times of 1s, which are comparable to current drop-tower experiments, we
study the curvature of our forcefield, andwe observe the effects of a phase-shifting element in the
interferometer paths.

1. Introduction

Precisionmeasurements withmatter waves have shown tremendous advances over the last decades. In
particular, atomicmatter wave interferometers demonstrated a ground-breaking increase of themeasurement
precision of inertial effects, such as rotation [1, 2] and acceleration [3, 4]. In addition, atomicmatter wave
interferometers have been used to determine the fine-structure constant [5], Newton’s gravitational constant
[6, 7], and constraints on dark energy [8]. Similar to optical interferometers, atom interferometers split amatter
wave into two parts, evolve the parts independently along different paths, andfinally recombine thewaves to
form an interference pattern [9]. The interference pattern depends on the accumulated phase shift of thewave
packets during the independent evolution, and themeasured quantity is typically inferred from the shape and
time evolution of the pattern. The sensitivity of interferometers increases with the accumulated phase shift,
which again depends on the evolution time [10]. However, the evolution time of a free falling atom cloud is
limited by Earth’s gravitational acceleration inmost experimental setups, and considerable efforts aremade to
increase the duration, e.g. in fountain experiments [11], drop towers [12, 13], parabolic flights [14, 15] and in
space [16].

In this article, we employmagnetic levitation as a differentmethod to extend the evolution time in
earthbound laboratories.Magnetic levitation relies on the use ofmagnetic forces to cancel the gravitational
acceleration and to levitate the particles in space. Themethod is well established for experiments with ultracold
atoms [17–19], and its experimental implementation, i.e. using a pair of current-carrying coils, is significantly
simpler and smaller than an atomic fountain apparatus or a drop-tower experiment. Here, we study the
advantages and limitations ofmagnetic levitation formatter wave interferometry with themotional states of
Bose–Einstein condensates (BECs), andwe demonstrate thatmagnetic levitation can be employed to reach an
expansion time of 1s, which is comparable to current drop-tower experiments [12]. Furthermore, we utilize
magnetic levitation to create and to interferometricallymeasuremicro-g acceleration in free expansion, andwe
show that the negligible center-of-massmotion of levitated atoms facilitates a direct study of phase-shifting
elements in the interferometer paths.

Other interferometer schemes use external trapping potentials to prevent the gravitational acceleration by
channelling thewave packets alongmagnetic [20, 21] and optical [22, 23]waveguides. External guiding and
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trapping potentials allow for equally long observation times [24], however, they introduce additional challenges.
External potentials can cause spatially varying phase shifts and undesired excitations of thewave packets [23, 24],
which limit themeasurement precision.Our levitation scheme avoids trapping potentials along the gravitational
axis, and it facilitates a tuneable scattering length for future studies of interaction effects in atom interferometers.

This article is structured as follows: section 2 provides an overview of our experimental setup,magnetic
levitation scheme, and the use of amagnetic Feshbach resonance to control the interaction strength of cesium
atoms. Section 3 is used to illustrate the interferometer scheme, and in section 4 we evaluate ourmeasurement
precision. Small changes to themagnetic levitation gradient allow us to createmarginal accelerations of
milli-g (section 4.1) andmicro-g (section 4.2). An additional laser beam in one of the interferometer paths
constitutes a phase-shifting element in section 4.3. In section 5, wemeasure features of themagnetic field
distribution, such as the transversal curvature of the force field. Finally, using a combination of low
interaction strength, low trapping frequencies, andmagnetic levitation we demonstrate long expansion and
observation times in section 6.

2.Magnetic levitation scheme and experimental apparatus

Our experimental apparatus is designed to independently control twoparameters of themagneticfield.The
magneticfield strength = ∣ ( )∣B x y zB , ,0 , at theposition of the atoms (x=y=z=0mm) is used to tune atomic
interactions bymeansof a broadmagnetic Feshbach resonance for cesiumatoms in the strong-field-seeking
Zeeman state = = ñ∣F m3, 3F .We reduce the effects of interaction by settingB0 to 17.4 Gwith an s-wave
scattering length, a, of approximately 65 a0 during the interferometer sequences (figure 1(c)), where a0 isBohr’s
radius. The second controlled parameter is the vertical gradient of themagneticfield,∂z B, which can be adjusted to
exert a vertical pull on the atoms and cancel the gravitational acceleration.Due to theZeeman effect, cesiumatoms
in the given state experience a vertical force that is proportional to themagneticfield gradient, m= ¶F BB zvert

3

4
. For

amassmof a cesiumatom, the levitation gradient can be calculated as∂z B=4mg/(3μB)=31.1 G cm−1 [19, 25].
Here,μB represents the Bohrmagneton and g the gravitational acceleration.

Our coil configuration is based on established designs [18, 19, 25]. It consists of two vertical coils above and
below the atoms (inner diameter 12 cm, separation 6 cm), with 5 independently controllable sections.We
generateB0 and∂z B bymeans of two vertical pairs of coil sections with co- and counter-propagating currents
(outer and inner sections infigure 1(a)). Pairs of shim coils on each axis at distances of approximately 20 cm

Figure 1.Experimental setup. (a)Magnetic field coils to controlB0 (blue, outer coils) and∂z B (red, inner coils). Laser beamswith
small beamwaists (S1, S2) and large beamwaists (H1,H2,H3) trap the atoms, and a lattice L1 is used to split thewave packet during
the interferometer sequence. Top and bottom coils have an inner diameter of 12 cm and a vertical separation of 6 cm. (b)Numeric
simulation of the totalmagneticfield ∣ ( )∣B y z, for∂B/∂ z=31.1 G cm−1 andB0=17.4G,field lines indicate amagnetic field
strength of 2–40 G. (c)Zero crossing of the scattering length at 17.1 G due to a broad Feshbach resonance for cesium atoms.
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from the atoms allow for additional fine control of themagnetic field. Figure 1(b) shows the totalmagnetic field
strengthB(y, z) in the vertical plane as calculated by a numerical simulation of our coils withfinite wire elements.
Thefield can be approximated by amagnetic quadrupolefieldwith a shiftedminimumat a fewmillimetres
below the atom cloud. Experimentally, we determineB0 bymicrowave spectroscopy andwe optimize the
levitation gradient∂z B by varying the levitation current Ilev andminimizing position drifts of a BECduring free
levitated expansion. Additional effects due to horizontalfield curvature and limitations of the levitations scheme
for precisionmeasurements are discussed in section 5.

Thematter waves of our interferometer are provided byBose–Einstein condensates. In our setup, ´2 109

cesium atoms are loaded froma 2D+magneto optical trap (MOT) into a 3DMOTwithin 3 s. The atoms are
cooled by degenerate Raman sideband cooling [26], and then sequentially transferred into two pairs of crossed
optical dipole traps, the first withwavelength 1070 nm, total power 200W,waists 700 μm, and the secondwith
wavelengthλ=1064.495(1) nm, power 400 mW,waists 90 μm (labels S1, S2 infigure 1(a) ). Bose–Einstein
condensation is reached after 6 s of evaporative cooling, and the density distribution of the atoms is detected by
means of resonant absorption imaging after a variable time of levitated expansion and after 1ms of unlevitated
time-of-flight. One cooling cycle has a duration of 15 s and it is similar to [25].

We generate BECs of 2.5×105 atoms in the Zeeman sub-state = = ñ∣F m3, 3F at a scattering length of
a=210 a0, trapped in the crossed laser beams S1, S2with trap frequencies ofωx, y, z=2π×(23.5,17.7,15.4)Hz.
To reduce interactions during the interferometricmeasurement, we tune the scattering length to 65 a0 and
remove atoms by forced evaporationwith a non-levitatingmagnetic field gradient. The BECs for the
interferometermeasurements in this work consist of approximately 8×104 atomswith a thermal fraction below
5%.Vibrational isolation and damping of the optical table is achieved by a pneumatic isolation system (Newport
S-2000A).

3. Interferometer scheme

Weemploy aMichelson interferometer scheme that is based on three Kapitza–Dirac pulses with a standing light
wave (figure 1(a), beamL1) [27]. The pulses change themotional states of thematter waves but leave the internal
states of the atoms unchanged [28]. Our pulse sequence and the resultingmotion of thematter wave packets are
illustrated infigure 2. Afirst pulse splits the BEC into twowave packets with oppositemomenta±2ÿkL. Here,
kL=2π/λ is thewavenumber of the lattice beam and ÿis Planck’s constant. Thewave packets propagate freely
for an evolution timeT1 until we apply a second pulse that inverts the direction of thewave packets and changes
theirmomentumby 4ÿkL. A third pulse is used after an evolution timeT2 to recombine the twowave packets. It
is identical to thefirst pulse and generates three wave packets withmomenta p0=0, p±=±2ÿkL. The relative
population of the recombinedwave packets depends on the acquired phase differenceΔΦ, resulting in a
probability P0 of finding an atom in the p0momentummode

Figure 2. Interferometer scheme. Average of three absorption images of thematter waves after the splitting and the inversion pulses
(left to right: = =T T 01 2 , 6, 12 ms), and after the recombination pulse and an expansion time of 10 ms. All images are taken after an
additional time-of-flight of 1 ms.
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= + DF( ) ( )P P
C
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cos . 1m0

Here,C is the interference contrast and Pm is the offset of the interference signal.We determine P0 from the ratio
of atoms in the p0mode to the total atomnumber in allmomentummodes.

Several factors can contribute to the phase differenceΔΦ. For fallingwave packets with spatially
homogeneous acceleration ac, the phase difference is directly proportional to the center-of-mass displacement
Δz that was acquired during the total interferometer timeΔT=T1+T2+Tpulse. Here,Tpulse represents the
total duration of the pulses. The total phase difference is given by [29]

DF = D + F = D + F( ) ( )k z k a T2 2
1

2
, 2L L c0

2
0

with a term F0 that accounts for additional phase shifts introduced during the initialization process, by noise
such as lattice vibrations [15], or by interactions (see section 4.2).

The pulse sequence used in this experiment is based on previous work [20, 30, 31]. Our splitting and
recombination pulses consist of three sub-pulses of lattice beam L1with durations 60, 110 and 60 μs, and lattice
intensities of 6.6 Er, 0.2 Er, and 6.6 Er. Here, = ( )E k m2r L

2 2 is the recoil energy for cesium at a lattice
wavelength of 1064 nm.Our inversion pulse has aGaussian intensity distributionwith amaximumof 17 Er and
a 1/e-duration of 35 μs. The sub-pulse scheme allows us to reach a splitting efficiency of 96%of the atoms in the
±2kLmodes, andwe speculate that the limit of the efficiency is given by the thermal component of our BEC. The
efficiency of the inversion pulse is lower, 83%, and residual atoms are clearly visible infigure 2 in the 0 and
±2ÿkLmodes.We suspect that this is due to the velocity selectivity of the inversion pulse and the velocity
difference of the acceleratedwave packets.

4. Interferometricmeasurements

4.1.Measuringmilli-g acceleration
Ourmagnetic levitation scheme allows us to apply small forces to the atoms by changing the levitation current
Ilev in the vertical coils with counter-propagating currents.We use this approach to characterize our
interferometer setup for non-zero accelerations. After the preparation of the BECwe increase the current I in the
coils, which create themagnetic field gradient, in 75 ms to the ratios I/Ilev of 1.003, 1.001, and 1.0003. The
acceleration of the BEC ismeasuredwith our interferometer scheme. Figures 3(a)–(c) show the corresponding
measurements ofP0 for varying evolution timesΔT2 withT1=T2. As expected, we observe sinusoidal
oscillations ofP0, which are fitted using equations (1) and (2) (solid lines) to determine the accelerations ac (red
circles, figure 3(d)).

An independentmeasurement of ac, based on the freemotion of the BEC, is provided for comparison.We
measure the shift of the center-of-mass position for an expansion timeTexp of an untrapped BEC in our
magnetic field gradients, =( )z T a T1 2 cexp exp

2 , with afit parameter ac (blue diamonds, figure 3(d)).Wefind
excellent agreement within two standard deviations between the twomethods. However, the sensitivity of the
free expansionmeasurement is limited by the observation time. Although our levitation scheme allows for very

Figure 3. Interferometricmeasurement ofmilli-g accelerations. (a)–(c)Probability of observing atoms in the 0ÿkLmomentummode
for increasing durationΔT and gradient coil currentsΔI/Ilev of (a) 0.003, (b) 0.001, (c) 0.0003. Solid lines represent fits to the data
points using equations (1) and (2). (d)Comparison of the accelerationmeasurement with the interferometer scheme (red circles) and
by the center-of-massmotion (blue diamonds). Error bars indicate one standard deviation of the data points.
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long observation times (section 6), it also induces a horizontal dispersion of the BEC in free space, whichwill be
discussed in section 5.Here, we limit the observation time to 200 ms, which allows us tomeasure the
acceleration for I/Ilev=1.001, 1.003, but not for 1.0003. Themeasurement results infigure 3(d) have relative
uncertainties of approximately 4% for the free expansionmeasurement and 0.5% for the interferometric
approach.

4.2.Measuringmicro-g acceleration
In a secondmeasurement, we utilize the interferometer scheme tominimize the forces on the atoms.We vary
the currents in our shim coils and Ilev with the goal tomaximize the oscillation period ofP0 (red circles figure 4).
For optimal current values, we observe a slow drop of the value ofP0 from approximately 0.75 to 0.45 over
ΔT2≈1600ms2. This reduction is not necessarily caused by a residual acceleration of thewave packets, as it can
also originate fromdephasingmechanisms that are discussed in the next paragraph.However,fitting P0(t)with
equation (1) provides an upper limit to the acceleration experienced by the atoms.We determine an upper limit
for the acceleration of the atoms of ac=70(10)×10−6 g. Atomic fountain interferometers facilitate the
measurement of significantly smaller differential accelerations and reach staggering precisions of the order
Δg/g∼10−10 [3, 4, 32]. Ourmeasurement, however, provides, to the best of our knowledge, the smallest
absolute value for an acceleration that ismeasured directly with ultracold atom interferometry.

We estimate possible sources ofmeasurement errors,fluctuations anddephasingmechanisms. Fluctuations of
a homogeneousmagneticfieldwill only slightly change the interaction strength of our BEC, but deviations of the
magneticfield gradient can induce additional accelerations and alter themeasurement result. In our setup, small
deviations of themagneticfield gradient canoccur as thewavepacketsmoveduring an interferometer sequence
away from the original positionwith optimized levitation.Weestimate fromournumericalmagneticfield
simulation that our coil design causes a relative increase of thefield gradient of 2×10−6 for a vertical position shift
of 50 μm. In addition, thequadratic Zeeman effect induces another deviation of the levitation force of 6×10−6 for
the sameposition shift. As a result, theupper and lowerwavepackets experience a position-dependent
acceleration,which increases the separationof thewavepackets before the inversionpulse, andwhich reduces the
convergence after the inversion pulse. Similar to ourmeasurements in section 5,wewould expect thefinal
displacement of thewavepackets to cause horizontal fringes in the absorption images, whichwedonot observe. As
a result,we conclude that the vertical force gradients are negligible for the time scales of our interferometer.

In addition, the position-dependentmagnetic field strength causes an almost linear change of the scattering
length of approximately±10 a0 over 50 μm (see also section 6). As a result, the atoms in the upper wave packet
experience a stronger interaction and faster phase evolution than atoms in the lowerwave packet. Assuming
constant densities and a linear change of the scattering length, wewould expect the phase shift between thewave
packets to increase withΔT2, and it would be difficult to distinguish this effect from a phase evolution due to

Figure 4. Interferometricmeasurement ofmicro-g accelerations and phase shifts due to a laser beam. (a)Probability of observing
atoms in the 0ÿkLmomentummode vsT1 forminimized acceleration of the atoms (red circles) and for an addition laser beam in the
path of the upperwave packet (blue squares). Error bars indicate one standard deviation of the data points. (b) Illustration of the
position of thewave packets and the additional laser beamduring the pulse sequence. Angles and axes are not to scale in the
illustration.
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acceleration.However, in our setup thewave packets expand after release and the densities decrease strongly
over a timescale of 1/ωx,y, z≈10 ms. The position-dependent scattering lengthwould result in a change of the
oscillation frequencies within 10–15 ms infigures 3(a)–(c), whichwe do not observe, andwe conclude that the
phase shift due to a position-dependent scattering length is belowour sensitivity for thismeasurement.

Fluctuations of the acceleration of the BEC can be caused by time-dependent changes ofB0 and∂z B, either
due to externalmagnetic fields or due to thefinite stability of the currents in our coils.We determine a current
reproducibility of 1.4×10−6 bymeasuring the standard deviation of the current during the interferometer
sequence over 60 consecutive cycles. For each cycle, the currentmeasurement averages over 80 ms.We believe
that the current reproducibility will eventually set the limiting precision for our interferometricmeasurements
with levitated atoms.While it is in principle possible to increase the current reproducibility by 1–2 orders of
magnitude by improving our current regulation electronics, it would be very hard to reach the precision of
atomic fountain experiments. Nonetheless, we believe thatmagnetic levitation schemeswill provide a valuable
technological addition for precisionmeasurements with ultracold atoms. Reducing gravitational acceleration to
micro-g effectively removes the center-of-massmotion of the atoms, and it allows for a directmeasurement of
phase-shifts due to additional elements in the interferometer path.We demonstrate this approach in the next
section by adding a focused laser beam in the upper path of the interferometer and bymeasuring its position-
dependent phase shift on the atoms.

4.3.Detection of phase-shifting elements
Compared to fountain experiments, the center-of-massmotion of ourwave packets is containedwithin a small
spatial region of a few hundreds ofμm, and it is straightforward to add additional phase shifting elements in the
path of thewave packets. As a result, it is possible to use the levitated interferometer scheme to analyze additional
potentials for the atomswith high precision.We demonstrate this approach by adding a horizontal laser beam
(wavelength 1064 nm,waist 40 μm, power 29 μW) approximately 50 μmabove the initial position of the atoms
(figure 4(b)). This beam creates aGaussian dipole potential with a depth of approximately 3 nK, and it
introduces between the upper and lowerwave packets a differential phase shift, which can be detected by the
interferometer. In addition to ameasurement of the AC Stark shift of the lightfield as in reference [33], our setup
facilitates the study of the spatial dependence of the potential.

The effect of the laser beamonP0(t) is clearly visible infigure 4(a)when comparing the data sets with the
beam (blue squares) andwithout the beam (red circles). For increasing durationT1, the upper wave packet
passes twice through the laser beam and it samples increasing spatial sections of the potential.We adjusted the
power of the beam to create a single oscillation of the phase for awave packet that fully transverses the beam,
resulting in aminimumofP0(t) at an evolution timeT1=7 ms infigure 4(a).

Constant propagation velocities of thewave packets during the evolution timesT1 andT2make it easy to
relate the time to the position of the atoms.We use a numericalmodel to integrate the phase shift of the upper
wave packet in the dipole potential of the laser beamover the interferometer path z(t) and include the
unperturbed phase shift asmeasured in section 4.2. Fitting themodel parameters to our data set (blue line
figure 4(a)), we determine a beamposition of 45(1) μm, awaist of 37(4) μmand a beampower of 25(3) μW,
which are in excellent agreementwith the independentlymeasured values.

Ourmodel neglects the spatial extent of thewave packets andwe determine the phase shift at the center-of-
mass position, whereas our experimental sequence averages over local phase shifts within the uppermatter wave
packet. Local phase shifts result in density variations in the profiles of themomentummodes in our absorption
images, butmeasuring the total atomnumber in themomentummodes provides only the average phase shift of
thewave packet.

5. Spatial curvature of the forcefield

Ourmagnetic field configuration does not only provide a verticalmagnetic field gradient to levitate the atoms,
but it also generates aweak, horizontal anti-trapping potential. This potential is a result of the spatial curvature
of our quadrupole-like distribution of themagnetic field (see figure 1(b)). In this section, we demonstrate that
the anti-trapping potential causes an additional interference pattern, which can be employed tomeasure the
anti-trapping frequency or the angle between the lattice beam and the vertical field axis.

Within the quadrupole approximation it is possible to derive simple equations for themagnetic field and for
the forces along the dashed horizontal line infigure 1(b) [19, 25, 34]
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Here, = +r x y2 2 is the horizontal displacement of the atoms from the origin. The quadratic scaling of
Bhorz(r)with r results in aweak, outwards-directed force in the horizontal plane. This anti-trapping effect can be
associatedwith frequencyα, and it causes aweak, position-dependent accelerationwith a time-dependent
horizontal position r(t) and horizontal velocity vr(t) [35]:
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For this calculationwe assume perfect levitation and linear verticalmotion z(t) during the interferometer
sequence.

In an experimental setup there will always be a small anglej between the lattice beamL1 and the vertical axis
of themagnetic field, and a splitting pulsewill always imprint a small velocity component

 j=( ) ( ) ( )v k m0 sinr L along the horizontal direction. Consequently, a small horizontal displacement due to
vr(0) results in an outwards-directed force on thewave packets in the anti-trapping potential, and in afinite
horizontal displacement at the end of the interferometer sequence as illustrated infigure 5(a). The horizontal
distance between thewave packets is typically two orders ofmagnitude smaller than the vertical displacement
during the interferometer sequence, and both distances become comparable only in the proximity of the
recombination pulse and during the expansion time.We illustrate the positions of thewave packets in
figure 5(b) for small delay times of the recombination pulse δt=T2−T1withT1=20 ms.Depending on δt,
the orientation of the blue line connecting thewave packets changes from almost vertical for δt=±0.4ms to
horizontal for δt=0ms.We define an angle θ, which is chosen to be positive clockwise and in the interval
[−90°, 90°], to indicate the orientation of the line, andwe define d(δt) to be the distance between the twowave
packets.

In analogy to Young’s double slit experiment [13, 36], the interference pattern of twowave packets at
distance d(δt) shows a fringe spacing dF of

p= +( ) ( )d t md d . 5F 0

Here, t is the total duration of the interferometer sequencewith t=T1+T2+Tpulse−δt+Texp, and d 00

is a constant phase shift that depends on the initial conditions such as the density distribution [37–39]. In our
absorption images of the interfering wave packets for constant timesT1,Texp and varying delay δt (figure 5(d)),
interference fringes with varying separation dF and angle θ are clearly visible for allmomentummodes p0, p±.

Figure 5.Effect of the forcefield curvature on the interference pattern. (a)Calculated interferometer path of the center-of-mass
positions of the levitatedwave packets with δt=0 ms. (b)Center-of-mass positions of the twowave packets for δt=−0.4 ms (blue),
−0.2, 0,+0.2 ms (grey). Blue parallel lines indicate the orientation of the interference pattern. (c) Fringe angles (red circles) and fringe
spacings (blue squares) versus the delay δt of the recombination pulse, inferred from the data in d. Solid lines showour fit results for
equation (6). (d)Absorption images for varying δt between−2.0 and 2.0 ms in steps of 0.4 ms. Commonparameters are
α=2π×3.29 Hz,j=0.108°,T1=20 ms ,Texp=30 ms.
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From the evolution of the fringes as a function of time delay δt, we infer properties of the curvatureα and the
anglej.We simultaneouslyfit the fringe spacing in equation (5) and the fringe angle θwith
q d d d=( ) ( ( ) ( ))t z t r tarctan . Here z(δt) and r(δt) are the vertical and horizontal positions of thewave packets
for varying δt.We integrate the center-of-massmotion of thewave packets in equation (4)with starting
conditions r(0)=z(0)=0 over all steps of the interferometer sequence to determine z(δt) and r(δt)
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Equations (6) contain two free parameters, the anti-trapping frequencyα and the lattice anglej, which can both
be used tofit our data points infigure 5(c).We choose to constrainα and varyj during the fitting procedure, as
it is experimentally difficult to determine the laser beam angle withmilliradian precision, andwe independently
measuredα by observing center-of-mass oscillations of BECs in optical dipole traps. Thefit results, represented
by solid lines infigure 5(c), show good agreementwith our data points, andwemeasure a lattice angle of
j = ( )◦0.108 7 forα=2π×3.29(5)Hz.

Note thatα scales with B1 0 in equation (3), andwe can use larger values forB0 to reduce the anti-trapping
effect, e.g. by tuning the interaction strengthwith a broadmagnetic Feshbach resonance at 800 G [40]. However,
it will be difficult to reduceα significantly due to its square-root dependence onB0. Instead, it is easier to
compensate the anti-trapping effect with an additional dipole trap, as demonstrated in the next section.

6. Long expansion times

The sensitivity of an interferometricmeasurement increases with the evolution time of thewave packets [12],
but evenwithout the implementation of an interferometer scheme, long observation times of an expanding BEC
facilitate a sensitive accelerationmeasurement. In this section, we demonstrate thatmagnetic levitation allows us
to extend the expansion time of a BEC to 1 s, andwe evaluate advantages and limitations of this scheme for
precisionmeasurements.

Typical expansion times for falling BECs are on the order of tens ofmilliseconds, often limited by the
detection area of the imaging system, by the gravitational acceleration and by the expansion velocity of the gas.
Usually, the expansion velocity of a quantumgas is not caused by the temperature of the gas but by repulsive
interaction during the initial spreading. The current record for long observation times undermilli-g acceleration
is 1 s [12]with an expansion energy of 9 nK. The experiment was performed in a drop tower, and ballistic
expansionwas observed over approximately 500 ms, limited by straymagnetic fields.

In our experiment, we can reduce the interaction energy of the BECby tuning the scattering length close to
0 a0 bymeans of amagnetic Feshbach resonance (figure 1(c)). Further reduction of the expansion energy has
been demonstrated by rapidly changing the scattering length from a positive value to 0 a0 during trap release
[25], but we refrain fromusing this trick to avoid excitations of the BECduring release. Our horizontalmagnetic
field curvature (section 5) introduces another limitation. During long observation times, the BEC expands
horizontally into regionswith a lowermagnetic field gradient, causing a position-dependent sag of the density
profile. In addition, smallfluctuations of the horizontalmagnetic field can break the symmetry and introduce
slowhorizontal drifts.We suppress both effects by keeping a vertical laser beam (H3 infigure 1(a)) on during the
expansion time, thus observing free expansion only in the vertical direction.

In detail,we reduce the trap frequencyby slowly transferring the atoms froma crossed dipole trap of beams S1,
S2 to a crosseddipole trap of beamsH1,H2, andH3withfinal trap frequencies ofωx,y, z=2π×(3.2, 3.4, 2.1)Hz, a
scattering length of 15 a0 and atomnumbers of approximately 1.1×104. Excitations of the BECduring the transfer
are suppressed by smooth changes of the potentialwith a total transfer duration of 4 s. After an additional settling
time of 1 swe switchoff the horizontal beamsH1andH2and study the expansionof theBEC in the vertical beam
H3. The vertical trapping frequency of the laser beamH3 is approximately 25mHz, and the resulting fractional
reductionof the expansionwidth after 1 s is 6×10−4, which is far belowourmeasurement sensitivity for thewidth
of the BEC.

The expansionof theBEC in the vertical direction is clearly visible on absorption images (figure 6(a)) for
expansion times 0–1000ms, andhorizontally-integrated 1Ddensity profiles for expansion times of 400ms and
600ms are given infigures 6(c) and (d). Although the trappedBEC is initially onlyweakly confinedwith almost
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symmetric trap frequencies, it changes dimensionality during the expansionprocess in the vertical beam.
Thedensity of theBECdecreases strongly during the vertical expansion, and the chemical potential becomes
smaller than the transversal harmonic oscillator energyÿωx,y as required for a quasi-1Ddescription [41]. As a
result, wedonot expect a shape-preserving spreading of the density distribution for a 1D expansion because the
BECpasses through various interaction regimes as its density decreases [42, 43]. For illustration,we showafit to
theupper 80%of the 1D-density profilesn(z) for the ‘3Dcigar’-regime [44] (figure 6(c)), butwe refrain froma
complete analysis of the density profiles, which is beyond the scope of this article. Instead,wequantify thewidth

of the expandingBECwith the root-mean-square (rms) radius  òD = -( )( )( ¯)n z z z
N

1 2 1 2
to provide an

estimate of the expansion velocity (red circlesfigure 6(b)).Here, z̄ is the center-of-mass position of the atoms.We
observe an initial interaction driven expansion and a ballisticflight for T 400exp mswith an rms expansion

velocity of vrms=0.128(5)mm s−1 and a corresponding kinetic energy of = ´ ( )mv k2 1 2 260 20Brms
2 pK.

Wenote that this is the expansion energyof theBEC component, but not the initial temperature of the trapped
quantumgas.

Similar to reference [12], wefind an accelerated expansion for longer expansion times,Texp>500 ms.We
expect that the dominant source of the accelerated expansion is the curvature of our levitation gradient due to
the quadratic Zeeman effect and due to our coil design, as discussed in section 4.2. However, the density profiles
of the atoms on the absorption images indicate two other contributions.We observe small radial oscillations for
long expansion times after release from the trap in the guiding beamH3 (see imageTexp=1 s infigure 6(a)).
Those oscillations can couple to the verticalmotion or they can distort the radially integrated density
distribution. In addition, we observe asymmetric 1Ddensity profiles n(z) forTexp>500 ms (figure 6(d)). The
profiles show a slower expansion velocity for the lower part of the cloud than for the upper part.We assume that
this effect is caused by the position-dependent scattering length due to ourmagnetic field gradient. The zero-
crossing of a is indicated infigure 6(d) by a dashed blue line. This asymmetric expansion of a BECwith position-
dependent scattering length requires further investigation that is beyond the scope of this article.Wefind small
position fluctuations for long expansion timesTexp>400 ms of the BECdue to thefinite current stability for
themagneticfield gradient (section 4.2). For illustration, we re-centered the center-of-mass position in the
absorption images for the averaging process infigure 6(a), but all other data infigures 6(b)–(c) results from the
analysis of individual absorption images.

Figure 6. Long expansion times. (a)Average of 6–8 absorption images for each expansion time:Texp=50, 200, 400, 600, 800,
1000 ms.Note that the scaling of the images changes as indicated by the 50 μmscale bar in each picture. (b) rms-widths of the
integrated 1D-density distribution versus expansion time. (c), (d) 1D-density profiles andfits (blue lines) for expansion times of (c)
400 ms and (d) 600 ms.
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7. Conclusion

In conclusion, we experimentally studied the benefits and challenges of the use ofmagnetic levitation schemes
for interferometric precisionmeasurements with ultracold atoms.We employed aMichelson-type
interferometer setupwith BECswith tuneable interaction andmagnetic levitation to demonstrate absolute
accelerationmeasurements in themicro-g regime andwe used the negligible center-of-massmotion of levitated
atoms to study the position-dependent phase shift of the dipole potential of a focused laser beam.Moreover, we
demonstrated expansion times of 1 s for a BEC,which is comparable to current drop tower experiments, andwe
used an extrapolationmethod for the fringe patterns to study the curvature of a force field that acts
perpendicularly to our interferometer setup.

In our setup, limitations of the sensitivity arise frommagnetic fieldfluctuations due to the current
regulation, and fromposition-dependent interactions andmagnetic field gradients. Although the sensitivity in
our setup is significantly lower than the sensitivity of atomic fountain experiments, we believe that levitation
schemes provide interesting features with the prospect of technical applications. Cancelling gravitational
acceleration offers the possibility to combine long observation timeswith compact interferometer setups.
Interesting applications are themeasurement of local variations of electric andmagnetic fields, and ofmeanfield
effects due to atomic interactions.

Acknowledgments

The authors would like to thank ERiis and PFGriffin for helpful discussions.We acknowledge financial support
by the EU through theCollaborative Project QuProCS (Grant Agreement 641277). AdC acknowledges financial
support by EPSRC and SFC via the InternationalMax-Planck Partnership. Theworkwas also supported in part
by the EPSRCProgrammeGrantDesOEQ (GrantNoEP/P009565/1).

References

[1] GustavsonTL, Bouyer P andKasevichMA1997Phys. Rev. Lett. 78 2046
[2] Dutta I, SavoieD, Fang B, VenonB,Garrido Alzar C L,Geiger R and Landragin A 2016Phys. Rev. Lett. 116 183003
[3] Peters A, ChungKY andChu S 1999Nature 400 849
[4] HardmanK S, Everitt P J,McDonaldGD,Manju P,Wigley PB, SooriyabandaraMA,KuhnCCN,Debs J E, Close JD andRobinsNP

2016Phys. Rev. Lett. 117 138501
[5] Bouchendira R, Cladé P, Guellati-Khélifa S, Nez F andBiraben F 2011Phys. Rev. Lett. 106 080801
[6] Rosi G, Sorrentino F, Cacciapuoti L, PrevedelliM andTinoGM2014Nature 510 518
[7] PrevedelliM, Cacciapuoti L, Rosi G, Sorrentino F andTinoGM2014Phil. Trans. R. Soc.A 372 20140030
[8] Hamilton P, JaffeM,Haslinger P, SimmonsQ,MüllerH andKhoury J 2015 Science 349 849
[9] CroninAD, Schmiedmayer J and PritchardDE 2009Rev.Mod. Phys. 81 1051
[10] Debs J E, Altin PA, Barter TH,DöringD,Dennis GR,McDonaldG, AndersonRP, Close JD andRobinsNP 2011 Phys. Rev.A 84

033610
[11] Chiow S-W,Kovachy T, ChienH-C andKasevichMA2011Phys. Rev. Lett. 107 130403
[12] vanZoest T et al 2010 Science 329 1540
[13] MüntingaH2013Phys. Rev. Lett. 110 093602
[14] Geiger R et al 2011Nat. Commun. 2 474
[15] Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A andBouyer P 2016Nat. Commun. 7 13786
[16] BeckerD et al 2018Nature 562 391
[17] AndersonMH, Ensher J R,MatthewsMR,WiemanCE andCornell E A 1995 Science 269 198
[18] HanD J,DePueMT andWeissD S 2001Phys. Rev.A 63 023405
[19] Weber T,Herbig J,MarkM,Nägerl H-C andGrimmR2003 Science 299 232
[20] WangY-J, AndersonDZ, Bright VM,Cornell E A,DiotQ, Kishimoto T, PrentissM, SaravananRA, Segal S R andWuS 2005 Phys. Rev.

Lett. 94 090405
[21] GarciaO,Deissler B,Hughes K J, Reeves JM and Sackett CA 2006Phys. Rev.A 74 031601(R)
[22] McDonaldGD,KuhnCCN, Bennetts S, Debs J E,HardmanK S, JohnssonM,Close JD andRobinsNP 2013Phys. Rev.A 88 053620
[23] Marti G E,Olf R and Stamper-KurnDM2015Phys. Rev.A 91 013602
[24] Burke JHT,Deissler B,Hughes K J and Sackett CA 2008Phys. Rev.A 78 023619
[25] Kraemer T,Herbig J,MarkM,Weber T, ChinC,NägerlH-C andGrimmR2004Appl. Phys.B 79 1013
[26] KermanA J, Vuletic V, ChinC andChu S 2000Phys. Rev. Lett. 84 439
[27] Gould P L, Ruff GA and PritchardDE 1986Phys. Rev. Lett. 56 827
[28] Rasel EM,OberthalerMK, BatelaanH, Schmiedmayer J andZeilinger A 1995Phys. Rev. Lett. 75 2633
[29] Storey P andCohen-Tannoudji C 1994 J. Phys. II 4 1999
[30] WuS,WangY-J, DiotQ and PrentissM2005Phys. Rev.A 71 043602
[31] Robertson B I,MacKellar AR,Halket J, GribbonA, Pritchard JD, ArnoldA S, Riis E andGriffinP F 2017Phys. Rev.A 96 053622
[32] AsenbaumP,Overstreet C, Kovachy T, BrownDD,Hogan JMandKasevichMA2017 Phys. Rev. Lett. 118 183602
[33] Deissler B,Hughes K J, Burke JHT and Sackett CA 2008Phys. Rev.A 77 031604
[34] Sackett CA 2006Phys. Rev.A 73 013626
[35] Herbig J, Kraemer T,MarkM,Weber T, ChinC,NägerlH-C andGrimmR2003 Science 301 1510
[36] AndrewsMR, TownsendCG,MiesnerH-J, DurfeeD S, KurnDMandKetterleW1997 Science 275 637

10

New J. Phys. 21 (2019) 053028 ADCarli et al



[37] WallisH, Röhrl A,NaraschewskiM and Schenzle A 1997Phys. Rev.A 55 2109
[38] Röhrl A,NaraschewskiM, Schenzle A andWallisH 1997Phys. Rev. Lett. 78 4143
[39] Simsarian J E, Denschlag J, EdwardsM,Clark CW,Deng L,Hagley EW,HelmersonK, Rolston S L and PhillipsWD2000 Phys. Rev.

Lett. 85 2040
[40] BerningerM, Zenesini A,Huang B,HarmW,Nägerl H-C, Ferlaino F, GrimmR, Julienne P S andHutson JM2013 Phys. Rev.A 87

032517
[41] PetrovDS,Gangardt DMand ShlyapnikovGV2004 J. Phys. IV 116 5
[42] Öhberg P and Santos L 2002Phys. Rev. Lett. 89 240402
[43] Pedri P, Santos L,Öhberg P and Stringari S 2003Phys. Rev.A 68 043601
[44] Menotti C and Stringari S 2002Phys. Rev.A 66 043610

11

New J. Phys. 21 (2019) 053028 ADCarli et al



Appendix C

Publication: Excitation modes of
bright matter wave solitons

Published in Phys. Rev. Lett.

DOI: 10.1103/PhysRevLett.123.123602

136

https://doi.org/10.1103/PhysRevLett.123.123602


 

Excitation Modes of Bright Matter-Wave Solitons

Andrea Di Carli, Craig D. Colquhoun, Grant Henderson, Stuart Flannigan, Gian-Luca Oppo,
Andrew J. Daley, Stefan Kuhr, and Elmar Haller

Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom

(Received 2 May 2019; revised manuscript received 18 July 2019; published 17 September 2019)

We experimentally study the excitation modes of bright matter-wave solitons in a quasi-one-dimensional
geometry. The solitons are created by quenching the interactions of a Bose-Einstein condensate of cesium
atoms from repulsive to attractive in combination with a rapid reduction of the longitudinal confinement.
A deliberate mismatch of quench parameters allows for the excitation of breathing modes of the emerging
soliton and for the determination of its breathing frequency as a function of atom number and confinement.
In addition, we observe signatures of higher-order solitons and the splitting of the wave packet after the
quench. Our experimental results are compared to analytical predictions and to numerical simulations of the
one-dimensional Gross-Pitaevskii equation.
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The dispersionless propagation of solitary waves is one
of the most striking features of nonlinear dynamics, with
multiple applications in hydrodynamics, nonlinear optics,
and broadband long-distance communications [1]. In fiber
optics, one-dimensional (1D) “bright” solitons, i.e., sol-
itons presenting a local electric field maximum with one-
dimensional propagation, have been observed [2]. They
exhibit a dispersionless flow and excitation modes such as
breathing or higher-order modes [2–4]. Matter waves can
also display solitary dispersion properties. Typically, bright
matter-wave solitons are created in quasi-1D systems by
quenching the particle interaction in a Bose-Einstein
condensate (BEC) from repulsive to attractive [5].
Recent experiments demonstrated the collapse [6], colli-
sions [7], reflection from a barrier [8], and the formation of
trains [9–11] of bright solitons.
In this Letter, we experimentally study the excitation

modes of a single bright matter-wave soliton. In previous
studies, other dynamical properties have been observed,
such as the center-of-mass oscillation of solitons in an
external trap [7] and excitations following the collapse of
attractive BECs [6,12]. Here, we probe the fundamental
breathing mode of a single soliton by measuring its
oscillation frequency and the time evolution of its density
profile. In addition, we observe signatures of higher-order
matter-wave solitons, which can be interpreted as stable
excitations with periodic oscillations of the density profile
and phase, or as a bound state of overlapping modes [3,13].

The shape-preserving evolution of a matter-wave soliton
is due to a balancing of dispersive and attractive terms in
the underlying 3D Gross-Pitaevskii equation (GPE) [14].
For quasi-1D systems with tight radial confinement, we can
approximate the matter wave in the 3D GPE by the product
of a Gaussian wave function for the radial direction and a
function fðzÞ for the longitudinal direction (see Ref. [15]).
Depending on the ansatz for the Gaussian with either
constant or varying radial sizes, fðzÞ satisfies either the 1D
GPE or the nonpolynomial Schrödinger equation [18]. We
make reference to the analytical solutions of the 1D GPE in
the Letter, but use both equations in our numerical
simulations [15].
For the 1D GPE, an ansatz for the normalized longi-

tudinal wave function fðzÞ is of the form

fðzÞ ¼ 1
ffiffiffiffiffiffi

2lz
p sech

�

z
lz

�

; ð1Þ

with a single parameter lz that determines both the
longitudinal size and the amplitude of the soliton.
Solitons form with a value of lz that minimizes the total
energy and that provides a compromise between the kinetic
and the interaction energies. This is illustrated in Fig. 1(b),
which shows the energy of the wave packet for varying
sizes lz [19]. The kinetic energy provides a potential barrier
for small lz that prevents the collapse of the soliton, while
its spreading is inhibited by the interaction energy, which
increases for large lz.
Even without an external longitudinal potential, the

soliton is stable against small perturbations of lz. In a
way, a bright matter-wave soliton creates its own trapping
potential, which defines its size and excitation modes.
Variational methods provide accurate predictions of its size
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at the energy minimum which can be calculated analyti-
cally [13,20] or numerically [19]. For the fundamental
solution (order n ¼ 1) of the 1D GPE with an atom number
N, s-wave scattering length a, and radial trapping fre-
quency ωr, the size lz corresponds to the healing length at

the peak density of the soliton, i.e., lðn¼1Þ
z ¼ a2r=ðNjajÞ

[13,19]. Here, ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmωrÞ
p

is the radial harmonic
oscillator length. Small deviations of lz close to the energy
minimum lead to oscillations of the soliton size. We use
those oscillations resulting from an initial mismatch of lz to
experimentally measure the self-trapping frequency of the
soliton potential.
Our experimental starting point is a Bose-Einstein

condensate of 500–2000 cesium (Cs) atoms in the state
jF ¼ 3; mF ¼ 3i at scattering length of a ¼ þ7a0, where
a0 is Bohr’s radius. The BEC is levitated by a magnetic
field gradient, and it is confined by an optical dipole trap
formed by the horizontal and vertical laser beams LH and
LV [Fig. 1(a)]. An additional magnetic offset field allows us
to tune the scattering length by means of a broad magnetic
Feshbach resonance [21]. Details about our experimental
setup, the levitation scheme, and the removal of atoms can
be found in Refs. [15,22].

Our matter-wave solitons are confined to a quasi-1D
geometry with almost free propagation along the
horizontal direction and strong radial confinement of ωr ¼
2π × 95 Hz provided by laser beam LH. They are generated
with a quench of the scattering length towards attractive
interaction (ai → af), and by a reduction of the longi-
tudinal trap frequency (ωz;i → ωz;f). When changing a and
ωz independently, the quenches excite inward and outward
motions, respectively. Usually, it is desirable to minimize
the excitations of the soliton by matching the initial
Thomas-Fermi density profile of the BEC closely to the
density profile of the soliton [inset of Fig. 1(a)]. However,
we deliberately mismatch the quench parameters to create
breathing oscillations of the soliton in order to study its
self-trapping potential. Quenches with different parameters
are labeled by the symbols Q1–Q7 (see Ref. [15]).
Following an evolution time t in quasi-1D and after a
short period of 16 ms of expansion in free space, we take
absorption images to determine the density profile of the
atoms [Fig. 1(c)]. The cloud size lzðtÞ is determined by
fitting the function A(sechðz=BÞ)2 to the integrated
1D-density profiles with fit parameters A and B [15].
The response of the atomic cloud to the different quenches

is presented in Fig. 1(d). We first quench only the longi-
tudinal confinement by 25% to ωz;f ¼ 2π × 4.3ð2Þ Hz
(quench Q1 in Ref. [15]) while keeping the repulsive
interaction strength constant [Fig. 1(d), diamonds]. The
BEC starts an outwardsmotionwith an oscillation frequency
of 2π × 7.5ð1Þ Hz ≈ ffiffiffi

3
p

ωz;f as expected for a BEC in the
Thomas-Fermi regime [23,24]. In a secondmeasurement,we
additionally quench the interaction strengthaf to−5.4a0 and
increase ωz;i to match the initial size of the BEC to the
expected size of the soliton [Q2, Fig. 1(d), squares]. As a
result,we observe almost dispersionless solitonswith a linear
increase of the cloud size of 0.7ð3Þ μm=s [Fig. 1(d), green
line]. Finally, we deliberately mismatch the initial size of the
BEC by reducing ωz;i (Q3), and generate small-amplitude
oscillations of the soliton with a frequency ωsol of 2π ×
12.8ð4Þ Hz [Fig. 1(d), circles]. This breathing frequency
of the soliton is significantly larger than any breathing
frequency of a BEC or of noninteracting atoms, 2ωz;f ¼
2π × 8.6ð3Þ Hz.We observe no discernible oscillation in the
radial direction after the quenches.
In a second experiment, we demonstrate that the breath-

ing frequency ωsol depends on the interaction term Na in
the 1D GPE, a property typical of the nonlinear character of
the soliton. We choose to change N, since the initial
removal process is independent of the interaction quench,
and we can study ωsol without changing the quench
protocol [Q4, Fig. 2(a), circles]. The measured values of
ωsol decrease for lower N, and they approach the breathing
frequency 2ωz;f for noninteracting atoms in a harmonic trap
[Fig. 2(a), dashed line].
We compare our experimental data points to two

theoretical models. In a numerical simulation of the 1D

FIG. 1. Experimental setup and oscillation measurements.
(a) Sketch of the experimental setup. Inset: Density profiles
for a BEC (solid red line) and for a soliton (dashed blue line).
(b) Total energy of a soliton, a ¼ −5.2a0, ωr ¼ 2π × 95 Hz,
N ¼ 2000, with an external trap, ωz ¼ 2π × 5 Hz (dashed blue
line), and without external trap, ωz ¼ 0 Hz (solid red line).
(c) Absorption images after a free-expansion time of 16 ms [from
dataset with circles in (d)], integrated density profile for t ¼
60 ms (blue line) and fit (dashed red line). (d) Oscillations of a
quantum gas after the quench procedure. Blue diamonds, quench
of only ωz for a BEC (Q1); red circles, additional interaction
quench to create soliton (Q3); green squares, optimized quench
parameters to minimize breathing of the soliton (Q2). Uncertainty
intervals indicate �1 standard error.
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GPE, we use the ansatz in Eq. (1) to set the starting
conditions, and we determine the breathing frequency from
a spectral analysis of the time evolution of the wave
function [15] [Fig. 2(a), triangles]. In addition, we use
an analytical approximation for the breathing frequency
(red line) calculated with a Lagrangian variational analysis
at the energy minimum of the 3D GPE [13,15]. We find that
both models agree well with the trend of the measurements
of ωsol, although our experimental data points are system-
atically lower for large N than our theoretical predictions.
We speculate that this is due to nonharmonic contributions
to the energy of the soliton on the breathing oscillations for
finite oscillation amplitudes [Fig. 1(b)].
To determine the influence of the trapping potential, we

measure the variation of ωsol as we reduce the longitudinal
trapping frequency ωz;f (Q5). Two regimes of ωsol can be
identified in Fig. 2(b) for varying the values ofωz;f. For large
values ofωz;f, the trap dominates the breathing of the soliton
and ωsol increases like 2ωz;f. For small values of ωz;f, inter-
actions dominate the breathing of the soliton andωsol reaches
a constant value. This offset of the breathing frequency is a
result of the “self-trapping” potential of a free soliton.
Again, we compare the experimental results with our

theoretical model [Fig. 2(b), red line] and the numerical

simulations of the 1D GPE. The blue band in Fig. 2(b)
indicates the simulated frequencies for N ¼ 1300 to
N ¼ 1500. The simulation predicts a lower breathing
frequency for the free soliton than the analytical approxi-
mation, but all curves are within the uncertainly range of
the experimental data.
External trapping potentials can in principle alter the

soliton dynamics [7,25,26], causing, e.g., modulations of
the soliton’s tails due to residual nonautonomous terms of
the 1D GPE in a harmonic potential [27]. For the following
experiments, however, we employ trap frequencies that are
significantly smaller than the observed oscillation frequen-
cies of the soliton (2ωz < ωsol) to decouple the influence of
the trapping potential. In summary, for small-amplitude
oscillations we find good agreement of ωsol between
our experimental results and analytical and numerical
predictions based on the 1D GPE (and nonpolynomial
Schrödinger equation [15]).
Breathing oscillations of lz close to the equilibrium size

are not the only possible excitation modes of solitons. The
existence of higher-order solitons has been predicted in the
nonlinear Schrödinger equation [3], and has been observed
for optical solitons in silica-glass fibers [2,4]. A soliton of
order n can be interpreted as a bound state of n strongly
overlapping solitons [13]. By exploiting the equivalence of
the nonlinear Schrödinger equation and 1D GPE, similar
effects were later proposed for bright matter-wave solitons
[13,28], where it was suggested that nth-order solitons can
be generated by a rapid increase of the attractive interaction
strength by a factor n2. Similarly, our simulations of the 1D
GPE show that higher-order solitons can be created for an
increased initial size of the wave packet. An nth-order
soliton forms for a sech-shaped wave function with an

initial size lðnÞz that is the n2 multiple of the healing length

lð1Þz , i.e., lðnÞz ¼ n2lð1Þz [15].
Within the 1D GPE theory, both creation methods result

in the periodic development of multipeaked structures for
higher-order solitons [3,29]; e.g., they create a sharp central
peak with side wings for a second-order soliton [Fig. 3(a)]
and a double peak for a third-order soliton [15]. Sizes and
interaction quenches that do not fulfil the previous con-
ditions lead to a “shedding” of the atomic density in the z
direction. The wave packet oscillates and loses particles
until its size and shape match the next (lower n) higher-
order soliton [3]. For a second-order soliton, the predicted
oscillation period Tð2Þ is [13]

Tð2Þ ¼ 8π

ℏ
m

�

a2r
Njafj

�

2

: ð2Þ

Recently, excitation modes of higher order have also
been used as a test bed for various theoretical models
beyond GP theory. The fragmentation of solitons with an
increased initial width was predicted within the multi-
configurational time-dependent Hartree method for bosons

FIG. 2. Breathing frequency ωsol of the soliton. (a) Atom
number dependence (Q4). Red circles, experimental data; the
uncertainty bars for the atom number indicate the standard
deviation of N over the first 100 ms of each frequency
measurement. Blue triangles, simulation of the 1D GPE [15].
Red line, analytical approximation [13,15]. Dashed gray line,
oscillation frequency of a noninteracting gas, 2ωz;f . (b) Depend-
ence of ωsol on the trap frequency (Q5). Red circles, experimental
data points forN ≈ 1450. Blue area, simulation of the 1D GPE for
N ¼ 1300–1500. Red line, analytical approximation. Dashed
gray line, 2ωz;f .
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[30] and critically discussed [31], and the influence of
quantum effects on the dissociation process was inves-
tigated [32–34].
Here, we apply two different quench protocols to study

the evolution of strongly excited solitons. Depending on the
initial size and the quench parameters, we observe shedding
and fragmentation of the wave packet, and we measure
oscillation frequencies that indicate the creation of higher-
order solitons. To demonstrate the effect of a strong quench
of an elongated BEC, we increase ai and reduce ωz;i before
ramping a and ωz to −5.3a0 and 2π × 0.0ð6Þ Hz in 13 ms
(Q6). Our quench induces an initial spreading of the wave
packet, followed first by a strong shedding of atoms, and
then by the formation of a soliton that contains approx-
imately 1=3 of the initial atom number [Fig. 3(b)]. We
determine the soliton width and find a slow oscillation of
lzðtÞ with a frequency of 2π × 2.4ð2Þ Hz [Fig. 3(c)]. This
frequency is significantly smaller than the expected breath-
ing frequency of first-order solitons, 2π × 6.0 Hz, and it
matches well to the expected frequency of 2π × 2.3 Hz for
second-order solitons in Eq. (2).
Observing shedding and oscillations agrees with the

predictions for higher-order solitons within the 1D GPE
[3]; however, we find a strong dependence on details of the
quench protocol and on the dynamical evolution during the
quench. For a closer match to theoretical works [13], we
implement a double-quench protocol, with a first quench
to generate a soliton with weak attractive interaction,
af ¼ −0.8a0, ωf ¼ 2π × 1.4ð2Þ Hz, and, after a settling
time of 25 ms, a second quench of only the interaction

strength, af ¼ −4.6a0 (Q7). Starting with approximately
2200 atoms, we observe no shedding but a small loss of 300
atoms during the first 60 ms. The vertical density profiles in
our absorption images [Fig. 4(a)] resemble the expected
profiles of a second-order soliton [Fig. 3(a)], and the
vertical width of the wave packet oscillates with a fre-
quency of 2π × 5.6ð6Þ Hz [Fig. 4(b)], which matches the
expected frequency of 2π × 5.2 Hz for second-order sol-
itons (2π × 13.2 Hz for the first-order solitions).
For both measurements [Figs. 3(c) and 4(b)], a small

percentage of absorption images show a splitting of the
soliton into two fragments [inset of Fig. 4(b)], and they are
omitted from the fitting procedure. Because of the destruc-
tive nature of our absorption images it is difficult to
conclude on the evolution and on the cause of the splitting
process. A double-peak structure in the density profile can
indicate the generation of a third-order soliton, fragmenta-
tion due to quantum effects, or simply an insufficient
technical control of our quench parameters. For our setup,
the control of horizontal magnetic field gradients to avoid
longitudinal accelerations is especially challenging [22].
The percentage of images that show a splitting of the wave
packet increases for longer evolution times, and we indicate
their fraction in Fig. 4(b) with a histogram.
In conclusion, we experimentally studied the creation

and the excitation of breathing modes of bright matter-
waves solitons in a quasi-one-dimensional geometry after a
quench of interaction and longitudinal confinement. We
measured the “self-trapping” frequency ωsol for first-order
solitons and its dependence on N and ωz. For stronger
excitations and for a double-quench protocol, we observed
signatures of second-order solitons and the shedding and
splitting of the wave function. Further measurements of the

FIG. 4. Second-order soliton and splitting after the double
quench Q7. (a) Absorption images at time t after the quench and
after 7 ms of free expansion. (b) Time evolution of the measured
width lz of the central wave packet (red circles), sinusoidal fit
with period 180(20) ms (dashed red line). The expected period
from the 1D GPE simulations is 192 ms. The histogram counts
the fraction of images showing a splitting of the wave function
(9 repetitions per time step). Inset: Absorption image of a split
matter wave for t ¼ 210 ms.

FIG. 3. Time evolution after a strong quench of interactions
and trap frequency (Q6). (a) 1D GPE simulation of the
density profiles for a second-order soliton with 1100 atoms,
af ¼ −5.3a0, and with an oscillation period Tð2Þ of 432 ms.
(b) Absorption images at time t after the quench and after 11 ms
of free expansion. (c) Time evolution of the measured width lz of
the central wave packet (red circles), sinusoidal fit with period
420(30) ms (dashed red line). The uncertainty intervals indicate
�1 standard deviation.
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splitting process and the damping of the oscillations due to
shedding are necessary to distinguish technical fluctuations
from higher-order solitons and fragmentation due to quan-
tum effects [32–34].
The data used in this publication are openly available at

the University of Strathclyde KnowledgeBase [35].
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I. EXPERIMENTAL METHODS

A. Controlling the atom number in the BEC

The solitons are confined to a quasi-1D geometry with
almost free propagation along the horizontal direction
and strong radial confinement of ωr = 2π × 95 Hz
provided by laser beam LH . In quasi-1D geometry,
bright matter-wave solitons collapse for large densities
and interactions [1], which for our typical experimental
scattering length of approximately −5 a0 corresponds to
a critical atom number of 2500 [2]. As a result, we need
to strongly reduce the atom number to avoid collapse,
modulation instabilities [3] and three-body loss [4] for a
deterministic and reproducible creation of the soliton.
We remove atoms with a small additional magnetic field
gradient, which pushes the atoms over the edge of the
optical dipole trap. Our precise control of magnetic field
strengths allows us to reduce the atom number down to
200 atoms, with a reproducibility of ±100 for 600 atoms
and ±350 for 4500 atoms, measured as the standard
deviation of the atom number in 50 consecutive runs. A
removal period of 4 s and smooth ramps of the magnetic
field strength are necessary to minimize excitations of
the BEC. Following the removal procedure we measure
residual fluctuations of the width of the BEC below 3.5%.

B. Quench parameters

Several different quench protocols are employed for the
measurements. The quenches are labeled by the symbols
Q1-Q7 in the main article:

Q1 We quench only the trap frequency from ωz,i =
2π × 5.8(2) Hz to ωz,f = 2π × 4.3(2) Hz with a
linear ramp of the laser power of beam LV over
4 ms. Atom number N ≈ 1800, constant interac-
tion strength ai = +7 a0, ωr = 2π×95 Hz.

Q2 In addition to the quench Q1 of the trap frequency,
we also quench the interaction strength from ai =
+7 a0 to af = −5.4 a0 in 4 ms. We minimize oscil-
lations of the width of the soliton by reducing the
initial size of the BEC with ωz,i = 2π× 11.2(2) Hz.
Atom number N ≈ 1800, ωz,f = 2π × 4.3(2) Hz,
ωr = 2π×95 Hz.

Q3 We mismatch the initial size of the BEC before

the quench with ωz,i = 2π × 12.8(4) Hz to gen-
erate small amplitude oscillations of the width of
the soliton. Atom number N ≈ 1700, ωz,f =
2π × 4.3(2) Hz, ωr = 2π×95 Hz.

Q4 Quench to determine the atom-number dependence
of ωsol. We vary the atom number N from 500 to
1700 for the measurement. ωz,f = 2π × 4.3(2) Hz,
ai = +7 a0, af = −5.4 a0, ramp duration 4 ms,
ωr = 2π×95 Hz.

Q5 Quench to determine the dependence of ωsol on the
trap frequency ωz,f . We vary ωz,f from approxi-
mately 1 Hz to 9 Hz. Smaller values of ωz,f result
in larger equilibrium sizes of the soliton, and we
need to reduce the initial trap frequencies ωz,i to
keep the oscillation amplitudes comparable during
the measurements. The typical difference between
ωz,i and ωz,f is approximately 3 Hz. N ≈ 1500,
af = −5.4 a0, ωr = 2π×95 Hz.

Q6 Strong quench starting from an elongated BEC to
excite higher-order oscillations and shedding. The
ratio between the calculated initial Thomas-Fermi
radius of the BEC and the expected width lz of
the soliton is 24. ai = 56 a0, af = −5.3 a0, ωz,i =
2π × 4.9(2) Hz, ωz,f = 2π × 0.0(6) Hz, initial atom
number N ≈ 3000 drops to 1100 after shedding of
atoms, quench duration 13 ms, ωr = 2π×86 Hz.

Q7 Double quench to create a stable soliton in step 1
and quench the scattering length by approximately
a factor of 4 in step 2. Step 1: ωz,i = 2π×4.9(2) Hz,
ωz,f = 2π × 1.4(2) Hz, ai = 29 a0, af = −0.8 a0,
ωr = 2π×86 Hz, quench duration 15 ms, N ≈ 2200.
Settling delay of 25 ms between quenches. Step 2:
reduce interaction strength in 2 ms to af = −4.6 a0,
no change of other parameters.

C. Fit of density profiles

We employ absorption imaging to measure the 2D-
density profile of the soliton, and we integrate over
one radial axis to determine the 1D-density profile (red
line in Fig. 5). The width lz of the soliton in Eq. 1 of
the main article, is determined by fitting the function
A(sech(z/B))2, with fit-parameters A and B, to the in-
tegrated 1D-density profiles (dotted blue line in Fig. 5).
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FIG. 5. 1D-density profile of a soliton. Red line: integrated
density profile of the absorption image for t = 60 ms in Fig. 1c
(main article). Dotted blue line: fitted profile according to
Eq. 1 in the main article.

II. THEORETICAL METHODS

A. The Model

The time evolution of the collective wave function
of N atoms in an external potential with the 3D
Gross-Pitaevski equation (GPE) for a time and space-
dependent collective atomic wave-function, ψ(r, t), is
given by,

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + V (r) + gN |ψ(r, t)|2

]
ψ(r, t),

(1)
where g = 4π~2a/m, m is the atomic mass, and a is the
two-body s-wave scattering length. This semi-classical
field equation can be seen as a mean-field computation,
and describes the dynamics of many weakly interacting
particles at low temperatures when the condition n|a|3 �
1 is satisfied [5], where n is the particle density. Our
external potential V (r) is given by a 3D (anisotropic)
harmonic trap.

For tight radial trapping potentials, ωr � ωz, we can
approximate the 3D wave function with a Gaussian solu-
tion in the radial directions and an arbitrary component,
f(z, t), in the longitudinal direction,

ψ(r, t) = f(z, t)
1√

πarσ(z, t)
exp

[
− (x2 + y2)

2a2rσ(z, t)2

]
, (2)

where ar is the harmonic oscillator length in the radial
direction and σ(z, t) is a free parameter that dictates
the width of the radial wavefunction. Substituting this
ansatz into the 3D-GPE, and integrating over the ra-
dial directions, we arrive at the so called non-polynomial

Schödinger equation (NPSE) [6]

i~
∂

∂t
f(z, t) =

[
− ~2

2m

∂2

∂z2
+ V (z)

+
gN

2πa2rσ(z, t)2
|f(z, t)|2

+
~ωr

2

(
σ(z, t)2 +

1

σ(z, t)2

)]
f(z, t),

(3)

where ωr = ~/ma2r. The condition for σ(z, t) that min-
imizes the action functional integrated along the trajec-
tories in phase space is [6],

σ(z, t)2 =
√

1 + 2aN |f(z, t)|2. (4)

For σ(z, t) = 1, we obtain the ground state of a har-
monic oscillator in the radial directions, and we recover
the usual 1D-GPE

i~
∂

∂t
f(z, t) =

[
− ~2

2m

∂2

∂z2
+ V (z)

+
gN

2πa2r
|f(z, t)|2 + ~ωr

]
f(z, t).

(5)

We have numerically integrated Eqs 3 and 5 using the
split-step Fourier transform method [7], where we exploit
the fact that the kinetic and potential terms in the Hamil-
tonian are diagonal in momentum and real space, respec-
tively.

III. SOLITON BREATHING FREQUENCY

In this section we explain how the numerical calcula-
tions of the soliton breathing frequencies shown in Fig. 2
of the main text were carried out. We begin with the
order 1 soliton solution,

f(z, 0) =
1√
2lz

sech

(
z

lz

)
(6)

where lz = a2r/(N |ai|), and we have used ai = 7 a0. We
then evolve this initial state either with the 1D-GPE
or NPSE to a simulation time of 4000 ms and evalu-
ate the frequency spectrum of the oscillation of the soli-
ton’s centre (z = 0). In Fig. 6 we present the frequency
spectrum for the GPE and a longitudinal frequency of
ωz = 2π × 5 Hz and atom number N = 1300, which
is characteristic of the behaviour for all other ωz data
points. We observe several prominent frequency modes
in the signal, but we select the lowest frequency peak to
compare to the experimental measurements, because the
resolution in the experiment is restricted to low frequency
components.

Fig. 6b also shows the results of the simulation using
both the 1D-GPE and the NPSE (compare with Fig. 2
of the main text). We can see that for these atom num-
bers there are differences between the predictions of the
1D-GPE and NPSE. However these differences are small
compared to the uncertainty in the experimental results.
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FIG. 6. Simulation results for the soliton breathing frequency,
for comparison with Fig. 2 in the main text. (a) Frequency
spectrum calculated using the 1D-GPE with a longitudinal
frequency of ωz = 2π×5 Hz and atom number N = 1300. (b)
Breathing frequency (first peak in the spectrum as in a)) vs.
trap frequency. N ≈ 1300 − 1500 atoms, af = −5.4 a0 for
the NPSE (red) and the GPE (green). The simulations were
evolved in time to 4000 ms.

IV. HIGHER ORDER SOLITONS

Figure 7 shows numerical simulations of the 1D-GPE
for the time evolution of second- and third-order solitons
with initial sizes l

(2)
z and l

(3)
z . Large initial soliton sizes

lead to the periodic formation of local maxima and min-
ima of the density profile. Striking characteristics of the
time evolution are the periodic development of a sharp
central peak with side wings for the second-order soliton
(Fig. 7a,b), and the periodic formation of a broad double-
peak structure for the third-order soliton (Fig. 7c,d).

We also simulate the time evolution of solitons with
the same start conditions using the NPSE and analyse
the results using the root mean square width of the wave
packet for a quantitative comparison (Fig. 8)

zrms(t) =

(
1

N

∫
n(z, t)(z − z̄)2dz

)1/2

. (7)

Here, z̄ is the mean position of the wave packet and
n(z, t) is the 1D-density. We observe small quantitative
differences between the two equations but the overall be-
haviour is very similar.

FIG. 7. Simulation of higher-order solitons in the 1D-GPE.
Temporal snapshots (a) and temporal evolution (b) of the
atomic density profile of an n = 2 soliton for N = 1800, a =

−3.7 a0, l
(2)
z = 10.2 µm = 4l

(1)
z , and an oscillation period of

T2 = 271 ms. Temporal snapshots (c) and temporal evolution
(d) of the atomic density profile of an n = 3 soliton for the

same values of N, a, but with l
(3)
z = 22.8 µm= 9l

(1)
z , and with

a period T3 = 1373 ms. The density profiles in (a) and (c)
are plotted at t = 0 (dotted lines), t = 1/4T (dashed lines),
t = 1/2T (solid lines). The dashed lines in (b) and (d) display
the temporal evolution of the size of the soliton wavepacket
zrms (right scale).
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FIG. 8. Simulation results for the root mean square width of
the soliton as it undergoes second order solitary behaviour,
for the NPSE (blue) and the 1D-GPE (red). Here, ωz = 0 Hz,
with an atom number N = 1800 and a scattering length a =
−3.7 a0.

V. VARIATIONAL APPROACH FOR THE
BREATHING FREQUENCY

In this section, we show how the longitudinal breath-
ing frequency plotted in Fig. 2 of the main article can
be determined from the variational ansatz for the soli-
ton. For a cylindrical cigar-shaped potential the energy
functional of Eq. 1 is given by [2, 8]

E[ψ] =

∫
d3r

[
~2

2m
|∇ψ(r)|2+

1

2
m(ω2

rr
2 + ω2

zz
2)|ψ(r)|2 +

gN

2
|ψ(r)|4

]
(8)
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The energy of a soliton can be determined with a vari-
ational method using the following ansatz for the wave
function

ψ(r, z) =
1√
2lz

sech

(
z

lz

)
· 1√

πlr
exp

(
− r2

2l2r

)
, (9)

where the transverse width lr and longitudinal width lz
are the variational parameters [2, 8]. Combining Eqs. 8
and 9, and rescaling the variables by the transverse fre-
quency ωr, provides an equation for the normalized en-
ergy of the soliton [2]

εGP =
1

2γ2r
+
γ2r
2

+
1

6γ2z
+
π2

24
λ2γ2z +

α

3γ2rγz
, (10)

with εGP = E/~ωr, γr = lr/σr, γz = lz/σr, λ = ωz/ωr,

α = Na/σr, and σr =
√

~/mωr. We can simplify Eq. 10
for our system with weak interactions and strong trans-
verse confinement by neglecting variations of the radial
soliton size, i.e. γr = 1. The energy minimum is found
by calculating the zero-crossing of the first derivative of
Eq. 10 with respect to γz

π2

4
λ2γ4z +

√
ζγz − 1 = 0, (11)

where α = −|α| = −√ζ. Eq. 11 has been solved for an
expulsive potential with ω2

z < 0 [2]. Here, we provide
the solution for a trapping potential with ω2

z > 0. The
longitudinal size of the soliton γ∗z at the energy minimum
is

γ∗z =
F√
ζ
, (12)

with

F = −
√
G

2
+

1

2

√
−2G+

4
√

2

π2
√
G

(
ζ

λ

)2

, (13)

where

G =
∆

π
4
3

(
ζ

λ

) 4
3

− 4

3π
2
3

1

∆

(
ζ

λ

) 2
3

, (14)

with

∆ =
3

√√√√
1 +

√
1 +

64π2

27

(
λ

ζ

)2

. (15)

In order to find the oscillation frequency ωz of the
soliton, the equations of motion for the variational pa-
rameters are determined with a Lagrangian variational
analysis [2]

(
π2

12

)
γ̈z =

γ−3
z

3
− π2

12
λ2γz +

α

3
γ−2
z , (16)

where the time derivative is calculated with respect to
the normalised time τ = ωrt. Again, we have assumed
that the radial size of the soliton is constant, i.e. γr = 1.

For small deviations of the soliton size from its equi-
librium value, we can write the solution as γz = γ∗z +δγz,
where γ∗z is the minimum given by Eq. 12 and δγz is a
small deviation. A linear expansion of Eq. 16 leads to the
expression for the longitudinal breathing frequency

ωz = ωr

√
12

π2

(
γ∗z

−4 +
π2

12
λ2 +

2α

3
γ∗z

−3

)
. (17)

We compare our experimental measurements of the
breathing frequency of the soliton to the predictions of
Eq. 17 in Fig. 2 of the main article (red line).
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Appendix D

DDS Driver Code (Arduino Uno)

1 /*

******************************************************************************

2 * ddsAD9959

3 * Control DDS AD9958 and AD9959

4 *

5 * Craig D. Colquhoun , Glasgow 2017

6
7 TO CHANGE DEFAULT FREQUENCY , CHANGE BOTH THE VALUE OF defaultFreq (

LINE 65 AT TIME OF WRITING) AND THE FOUR commandVect[i].

startFreqWrite VALUES IN THE clearCommandList FUNCTION.

8 TAKE FREQUENCY IN HZ, DIVIDE BY CLOCK FREQUENCY (1 GHZ AT TIME OF

WRITING) AND MULTIPLY BY 2^32, BEFORE CONVERTING TO HEXCODE!

9 *****************************************************************************

*/

10
11 #include <SPI.h>

12 #include <Wire.h>

13 #include <LiquidCrystal_I2C.h>

14 #include <Ethernet.h>

15 #include <EthernetUdp.h>

16 #define UDP_TX_PACKET_MAX_SIZE 256 // increase UDP size

17
18 LiquidCrystal_I2C lcd(0x3F ,20 ,21); // set the LCD address to 0x27

for a 16 chars and 2 line

19
20 /* ***********************************************************

21 // network stuff

22 /********************************************************** */

23
24 // local MAC address , fake

25 byte mac[] = { 0x04 , 0x7D , 0x4B , 0x28 , 0x51 , 0x33 };

26 // local ip

27 IPAddress localIPNum (172, 16, 1, 105);

28 byte gatewayIPNum [] = { 172, 16, 0, 1 };

29 byte dnsIPNum [] = { 8, 8, 8, 8 };

30 byte maskIPNum [] = { 255, 255, 0, 0 };

31
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32 // An EthernetUDP instance to let us send and receive packets over

UDP

33 EthernetUDP Udp;

34
35 // ****************************

36 // Set Pins for arduino

37 // ****************************

38 const int eth_CS = 10; // cable select pin for ethernet shield

39 const int pin_CS = 22; // cable select pin

40 const int pin_IOUpdate = 23; // update pin

41 const int pin_Reset = 24; // reset DDS pin

42 const int pin_RcvCmd = 30; // TTL to receive commands over

Ethernet connection

43 const int pin_NextCmd = 32; // TTL to select next command from

list of received commands

44 const int pin_ExeCmd = 31; // TTL to execute the selected command

45 const int pin_P0 = 40; // input pin P0

46 const int pin_P1 = 41; // input pin P1

47 const int pin_P2 = 42; // input pin P2

48 const int pin_P3 = 43; // input pin P3

49 const int pin_IO1 = 44; // input output pin IO1

50 const int pin_IO2 = 45; // input output pin IO2

51 const int pin_IO3 = 46; // input output pin IO3

52 int profilePin;

53 bool pinStatus = 0;

54
55 int idleDelay = 100;

56
57 // unsigned long startSweepTimer;

58 // unsigned long sweepTimer;

59 // unsigned long durt;

60 String commandString; // String used to store our command list

later

61 bool bHasReset = 0; //Used to check whether the DDS was

reset during the DDSinit function. This is for AOM protection , if

the DDS has begun outputting and is reset it will stop

outputting!

62 static float sineTable [] = {0.00, 0.02, 0.03, 0.05, 0.07, 0.09,

0.10, 0.12, 0.14, 0.16, 0.17, 0.19, 0.21, 0.22, 0.24, 0.26, 0.28,

0.29, 0.31, 0.33, 0.34, 0.36, 0.37, 0.39, 0.41, 0.42, 0.44,

0.45, 0.47, 0.48, 0.50, 0.51, 0.53, 0.54, 0.56, 0.57, 0.59, 0.60,

0.62, 0.63, 0.64, 0.66, 0.67, 0.68, 0.69, 0.71, 0.72, 0.73,

0.74, 0.75, 0.77, 0.78, 0.79, 0.80, 0.81, 0.82, 0.83, 0.84, 0.85,

0.86, 0.87, 0.87, 0.88, 0.89, 0.90, 0.91, 0.91, 0.92, 0.93,

0.93, 0.94, 0.95, 0.95, 0.96, 0.96, 0.97, 0.97, 0.97, 0.98, 0.98,

0.98, 0.99, 0.99, 0.99, 0.99, 1.00, 1.00, 1.00, 1.00, 1.00,

1.00};

63 byte timeStep [90];

64 unsigned int delayTime;

65 double defaultFreq = 72.0;

66
67 typedef enum {

68 CH0 = 0x10 , // Unused

69 CH1 = 0x20 , // Unused

70 CH2 = 0x40 , // Channel 0

71 CH3 = 0x80 , // Channel 1
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72 BOTH = 0xC0 // Channels 0 and 1 simultaneously

73 } ad9959_channels;

74
75 typedef enum {

76 CSR = 0x00 , // Channel select register

77 FR1 = 0x01 , // Function Register 1

78 FR2 = 0x02 , // Function Register 2

79 CFR = 0x03 , // Channel Function Register

80 CTW0 = 0x04 , // Channel Tuning Word 0

81 CPW0 = 0x05 , // Channel Phase Tuning Word 0

82 ACR = 0x06 , // Amplitude Control Register

83 LSR = 0x07 , // Linear Sweep Ramp Rate

84 RDW = 0x08 , // Rising Delta Word

85 FDW = 0x09 , // Falling Delta Word

86 CTW1 = 0x0A , // Channel Tuning Register 1

87 CTW2 = 0x0B , //... and so on

88 CTW3 = 0x0C ,

89 CTW4 = 0x0D ,

90 CTW5 = 0x0E ,

91 CTW6 = 0x0F ,

92 CTW7 = 0x10 ,

93 CTW8 = 0x11 ,

94 CTW9 = 0x12 ,

95 CTW10 = 0x13 ,

96 CTW11 = 0x14 ,

97 CTW12 = 0x15 ,

98 CTW13 = 0x16 ,

99 CTW14 = 0x17 ,

100 CTW15 = 0x18 ,

101 READ = 0x80 // not really a register

102 } ad9959_registers;

103
104 byte CSRbyte = 0x00;

105 byte FR1byte [3] = {0x00 , 0x00 , 0x00};

106 byte FR2byte [2] = {0x00 , 0x00};

107 byte CFRbyte [3] = {0x00 , 0x00 , 0x00};

108 byte CTW0byte [4] = {0x00 , 0x00 , 0x00 , 0x00};

109 byte CPW0byte [2] = {0x00 , 0x00};

110 byte ACRbyte [3] = {0x00 , 0x00 , 0x00};

111 byte LSRbyte [2] = {0x00 , 0x00};

112 byte RDWbyte [4] = {0x00 , 0x00 , 0x00 , 0x00};

113 byte FDWbyte [4] = {0x00 , 0x00 , 0x00 , 0x00};

114 byte CTW1byte [4] = {0x00 , 0x00 , 0x00 , 0x00};

115 //byte default72MHz [4] = {0x24 , 0xdd , 0x2f , 0x1b}; SETTING DEFAULT

FREQUENCY NOW IN clearCommandList () FUNCTION

116 //byte default80MHz [4] = {0x28 , 0xf5 , 0xc2 , 0x8f}; SETTING DEFAULT

FREQUENCY NOW IN clearCommandList () FUNCTION

117 byte chan = 0;

118
119 struct tCommand {

120 int rcvCmd;

121 ad9959_channels chan;

122 double startFreq;

123 double stopFreq;

124 double duration;

125 byte startFreqWrite [4];
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126 byte stopFreqWrite [4];

127 byte riseWord [4];

128 byte fallWord [4];

129 byte rampRate [2];

130 };

131
132 #define maxNCommands 5

133 tCommand commandVect[maxNCommands ];

134 int usedNCommands = 0; // number of commands used

135 int actNCommand = 0; // index of the active command

136
137 // ****************************

138 // setup

139 // ****************************

140 void setup () {

141 // configure pins

142 pinMode(pin_IOUpdate , OUTPUT);

143 pinMode(pin_Reset , OUTPUT);

144 pinMode(pin_CS , OUTPUT);

145 pinMode(pin_P0 , OUTPUT);

146 pinMode(pin_P1 , OUTPUT);

147 pinMode(pin_P2 , OUTPUT);

148 pinMode(pin_P3 , OUTPUT);

149 pinMode(pin_IO1 , OUTPUT);

150 pinMode(pin_IO2 , OUTPUT);

151 pinMode(pin_IO3 , OUTPUT);

152 pinMode(pin_RcvCmd , INPUT);

153 pinMode(pin_ExeCmd , INPUT);

154 pinMode(pin_NextCmd , INPUT);

155 pinMode(eth_CS , OUTPUT);

156 digitalWrite(eth_CS , LOW);

157 Ethernet.begin(mac , localIPNum , dnsIPNum , gatewayIPNum , maskIPNum );

158 Udp.begin (8020);

159 digitalWrite(eth_CS , HIGH);

160
161 lcd.init();

162 lcd.backlight ();

163 lcd.setCursor (0,0);

164 lcd.print("0");

165 lcd.setCursor (0,1);

166 lcd.print("1");

167 setDefaultSetting ();

168 clearCommandList ();

169 }

170
171 void loop() {

172 int retValue;

173 bool bExeFlag = 0;

174 bool doIDisplay = 1;

175
176 if (! digitalRead(pin_RcvCmd))

177 {

178 delay(idleDelay);

179 return;

180 }
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181 digitalWrite(eth_CS , LOW); // Select ethernet

shield so that it can be used without interfering with DDS

182 retValue = receiveCommand (); // Receive

commands through ethernet port

183 digitalWrite(eth_CS , HIGH); // Deselect ethernet

shield in order to send commands to DDS again

184 if (! retValue) return;

185 if (! parseCommandString ()) return;

186 if (commandVect[actNCommand ].chan == CH2) lcd.setCursor (1,0);

187 else if (commandVect[actNCommand ].chan == CH3) lcd.setCursor (1,1);

188 lcd.print("COMMANDS PARSED");

189
190 while(digitalRead(pin_RcvCmd)) delay (1);

191 while(actNCommand <= usedNCommands)

192 {

193 if(doIDisplay == 1)

194 {

195 if (commandVect[actNCommand ].chan == CH2) lcd.setCursor (1,0);

196 else if (commandVect[actNCommand ].chan == CH3) lcd.setCursor (1,1);

197 lcd.print("COMMAND ");

198 lcd.print(actNCommand);

199 lcd.print(" READY");

200 doIDisplay = 0;

201 }

202
203 if (digitalRead(pin_RcvCmd)) return;

204 else if (! bExeFlag && digitalRead(pin_ExeCmd))

205 {

206 executeCommand ();

207 actNCommand ++;

208 bExeFlag = 1;

209 }

210 else if (bExeFlag && !digitalRead(pin_ExeCmd))

211 {

212 bExeFlag = 0;

213 doIDisplay = 1;

214 if (actNCommand == usedNCommands) break;

215 }

216 }

217 setDefaultSetting ();

218 return;

219 }

220
221 // ****************************

222 // clear command structure

223 // ****************************

224 void clearCommandList () {

225 for (int i = 0; i < 5; i++){

226 commandVect[i]. rcvCmd = 1;

227 commandVect[i].chan = BOTH;

228 commandVect[i]. startFreq = defaultFreq;

229 commandVect[i]. stopFreq = defaultFreq;

230 commandVect[i]. duration = 0;

231 // 80 MHz hex value used as default below

232 // commandVect[i]. startFreqWrite [0] = 0x28;

233 // commandVect[i]. startFreqWrite [1] = 0xf5;
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234 // commandVect[i]. startFreqWrite [2] = 0xc2;

235 // commandVect[i]. startFreqWrite [3] = 0x8f;

236 // 72 MHz hex value used as default below

237 commandVect[i]. startFreqWrite [0] = 0x24;

238 commandVect[i]. startFreqWrite [1] = 0xdd;

239 commandVect[i]. startFreqWrite [2] = 0x2f;

240 commandVect[i]. startFreqWrite [3] = 0x1b;

241 //

242 for(int j = 0; j<4; j++){

243 commandVect[i]. stopFreqWrite[j] = 0x00;

244 commandVect[i]. riseWord[j] = 0x00;

245 commandVect[i]. fallWord[j] = 0x00;

246 }

247 for (int j=0;j<2;j++){

248 commandVect[i]. rampRate[j] = 0x00;

249 }

250 }

251 usedNCommands = 0;

252 actNCommand = 0;

253 }

254 // ****************************

255 // Frequency

256 // ****************************

257 void calcParam(int cIndex , ad9959_registers REG , double param){

258 if ((REG == 4) || (REG > 7))

259 {

260 unsigned long paramWord = (unsigned long)(pow(2 ,32)*(param /500));

// Convert from the value given to the word value understood by

the DDS

261 if (REG == 4)

262 {

263 commandVect[cIndex ]. startFreqWrite [3] = (byte) paramWord;

264 commandVect[cIndex ]. startFreqWrite [2] = (byte) (paramWord >> 8);

265 commandVect[cIndex ]. startFreqWrite [1] = (byte) (paramWord >> 16);

266 commandVect[cIndex ]. startFreqWrite [0] = (byte) (paramWord >> 24);

267 }

268 else if (REG == 8)

269 {

270 commandVect[cIndex ]. riseWord [3] = (byte) paramWord;

271 commandVect[cIndex ]. riseWord [2] = (byte) (paramWord >> 8);

272 commandVect[cIndex ]. riseWord [1] = (byte) (paramWord >> 16);

273 commandVect[cIndex ]. riseWord [0] = (byte) (paramWord >> 24);

274 }

275 else if (REG == 9)

276 {

277 commandVect[cIndex ]. fallWord [3] = (byte) paramWord;

278 commandVect[cIndex ]. fallWord [2] = (byte) (paramWord >> 8);

279 commandVect[cIndex ]. fallWord [1] = (byte) (paramWord >> 16);

280 commandVect[cIndex ]. fallWord [0] = (byte) (paramWord >> 24);

281 }

282 else if (REG == 10)

283 {

284 commandVect[cIndex ]. stopFreqWrite [3] = (byte) paramWord;

285 commandVect[cIndex ]. stopFreqWrite [2] = (byte) (paramWord >> 8);

286 commandVect[cIndex ]. stopFreqWrite [1] = (byte) (paramWord >> 16);

287 commandVect[cIndex ]. stopFreqWrite [0] = (byte) (paramWord >> 24);
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288 }

289 else if (REG > 10)

290 {

291 //NOT PROGRAMMED YET

292 return;

293 }

294 }

295 else if (REG == 7)

//If the

register is Linear Sweep Ramp Rate

296 {

297 unsigned long paramWord = (unsigned long) param;

298 commandVect[cIndex ]. rampRate [1] = (byte) paramWord;

299 commandVect[cIndex ]. rampRate [0] = (byte) paramWord;

300 }

301 }

302
303 void programDDS ()

304 {

305 if (commandVect[actNCommand ]. rcvCmd == 1)

306 {

307 writeReg(CSR , commandVect[actNCommand ].chan);

308 writeReg(CTW0 , commandVect[actNCommand ]. startFreqWrite , 4);

309 }

310 else if (commandVect[actNCommand ]. rcvCmd == 2) //if linear sweep

311 {

312 if (commandVect[actNCommand ].chan == CH3) profilePin = pin_P3;

313 else if (commandVect[actNCommand ].chan == CH2) profilePin = pin_P2;

314 writeReg(CSR , commandVect[actNCommand ].chan);

315 if (commandVect[actNCommand ]. startFreq > commandVect[actNCommand ].

stopFreq) //if sweep down

316 {

317 pinStatus = 1;

318 writeReg(RDW , commandVect[actNCommand ].riseWord , 4);

319 writeReg(FDW , commandVect[actNCommand ].fallWord , 4);

320 writeReg(LSR , commandVect[actNCommand ].rampRate , 2);

321 writeReg(CTW1 , commandVect[actNCommand ]. startFreqWrite , 4);

322 writeReg(CTW0 , commandVect[actNCommand ]. startFreqWrite -1, 4);

323 digitalWrite(profilePin , pinStatus);

324 writeReg(CTW0 , commandVect[actNCommand ]. stopFreqWrite , 4);

325 }

326 else // assumed sweeping up

327 {

328 pinStatus = 0;

329 writeReg(CTW0 , commandVect[actNCommand ]. startFreqWrite , 4);

330 writeReg(CTW1 , commandVect[actNCommand ]. stopFreqWrite , 4);

331 writeReg(RDW , commandVect[actNCommand ].riseWord , 4);

332 writeReg(LSR , commandVect[actNCommand ].rampRate , 2);

333 }

334 }

335 else // procedures for new commands will be written here ...

336 {

337 return;

338 }

339 }

340
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341 void calcFreqSweep(int cIndex)

342 {

343 double hzStartFreq;

344 double hzEndFreq;

345 if (commandVect[cIndex ]. startFreq > commandVect[cIndex ]. stopFreq)

346 {

347 hzStartFreq = commandVect[cIndex ]. stopFreq * 1000000;

348 hzEndFreq = commandVect[cIndex ]. startFreq * 1000000;

349 }

350 else

351 {

352 hzStartFreq = commandVect[cIndex ]. startFreq * 1000000;

353 hzEndFreq = commandVect[cIndex ]. stopFreq * 1000000;

354 }

355 unsigned long n = 65536;

356 bool foundFlag = 0;

357 float dTime , dFreq;

358 int k = 10000;

359 int l = 0;

360 int m = 0;

361 int minNValue = 1;

362 unsigned long maxNValue = min(commandVect[cIndex ]. duration

/0.000000008 , (hzEndFreq -hzStartFreq)/0.12);

363 do

364 {

365 dTime = (125000000.0* commandVect[cIndex ]. duration)/n;

366 dFreq = 1.0*( hzEndFreq -hzStartFreq)/n;

367 if ((dFreq < 0.12) || (dTime < 1))

368 {

369 l = 1;

370 n = n - k;

371 }

372 else if ((dFreq > (hzEndFreq -hzStartFreq)) || (dTime > 255))

373 {

374 l = -1;

375 n = n + k;

376 }

377 else if((dFreq <= (hzEndFreq -hzStartFreq)) && (dTime <= 255) && (

dFreq >= 0.12) && (dTime >= 1))

378 {

379 if (k > 1)

380 {

381 m = l*k;

382 n = n + m;

383 k = k/10;

384 }

385 else foundFlag = 1;

386 }

387 else

388 {

389 //error

390 return;

391 }

392 if (((n<minNValue) || (n>maxNValue)) && (k != 1))

393 {

394 m = l*k;
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395 n = n + m;

396 k = k/10;

397 }

398 else if (((n<minNValue) || (n>maxNValue)) && (k == 1)) break;

399 }while (foundFlag == 0);

400
401
402 if(foundFlag ==0)

403 {

404 if (commandVect[cIndex ].chan == CH2) lcd.setCursor (1,0);

405 else if (commandVect[cIndex ].chan == CH3) lcd.setCursor (1,1);

406 lcd.print("PROBLEMi");

407 lcd.print(cIndex);

408 lcd.print("NOnVAL");

409
410 return;

411 }

412
413 dFreq = dFreq / 1000000.0;

414
415 calcParam(cIndex , CTW0 , commandVect[cIndex ]. startFreq);

416 calcParam(cIndex , CTW1 , commandVect[cIndex ]. stopFreq);

417 calcParam(cIndex , RDW , dFreq);

418 calcParam(cIndex , FDW , dFreq);

419 calcParam(cIndex , LSR , dTime);

420 }

421
422 void setDefaultSetting (){

423 clearCommandList ();

424 CFRbyte [0] = 0x00; CFRbyte [1] = 0x03; CFRbyte [2] = 0x00;

425 initDDS(BOTH);

426 programDDS ();

427 lcd.setCursor (1,0);

428 lcd.print("DEFAULT ");

429 lcd.setCursor (1,1);

430 lcd.print("DEFAULT ");

431 }

432
433 void initDDS(byte initChan) {

434 digitalWrite(pin_P0 , LOW);

435 digitalWrite(pin_P1 , LOW);

436 digitalWrite(pin_P2 , LOW);

437 digitalWrite(pin_P3 , LOW);

438 digitalWrite(pin_IO1 , LOW);

439 digitalWrite(pin_IO2 , LOW);

440 digitalWrite(pin_IO3 , LOW);

441
442 digitalWrite(pin_CS , HIGH); // ensure SS stays high

443 SPI.begin();

444 SPI.setClockDivider (2); //Can be integer from 1 -

255 using Due , divides the 84MHz clock rate by this number

445 SPI.setBitOrder(MSBFIRST);

446 SPI.setDataMode(SPI_MODE0);

447
448 if (! bHasReset){

449 resetDDS ();
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450 bHasReset = 1;

451 }

452 writeReg(CSR , initChan);

453 FR1byte [0] = 0xD0; FR1byte [1] = 0x54;

454 writeReg(FR1 , FR1byte , sizeof(FR1byte));

455 writeReg(FR2 , FR2byte , sizeof(FR2byte));

456 writeReg(CFR , CFRbyte , sizeof(CFRbyte));

457 }

458
459 // flip reset pin

460 void resetDDS () {

461 digitalWrite(pin_Reset , HIGH);

462 digitalWrite(pin_Reset , LOW);

463 }

464
465 // trigger update pin

466 void updateDDS () {

467 digitalWrite(pin_IOUpdate , HIGH);

468 digitalWrite(pin_IOUpdate , LOW);

469 }

470
471 void writeReg(ad9959_registers REG , byte value) {

472 digitalWrite(pin_CS , LOW);

473 SPI.transfer(REG);

474 SPI.transfer(value);

475 updateDDS ();

476 digitalWrite(pin_CS , HIGH);

477 }

478
479 void writeReg(ad9959_registers REG , byte *buffer , int len){

480 digitalWrite(pin_CS , LOW);

481 SPI.transfer(REG);

482 SPI.transfer(buffer ,len);

483 updateDDS ();

484 digitalWrite(pin_CS , HIGH);

485 }

486
487 int receiveCommand ()

488 {

489 // buffer to receive string with UDP

490 char UDPBuffer[UDP_TX_PACKET_MAX_SIZE ];

491 int ret = 0;

492 int packLength = Udp.parsePacket ();

493 int expectedResponse = 12;

494 commandString = ""; // clear the commandString

495
496 while (packLength >0) {

497 if (packLength >= expectedResponse) {

498 Udp.read(UDPBuffer , UDP_TX_PACKET_MAX_SIZE); // read packet into

the buffer

499 for (int i = 0; i < packLength; i++){

500 commandString = commandString + UDPBuffer[i];

501 }

502 ret = 1;

503 }

504 packLength = Udp.parsePacket ();
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505 }

506 return ret;

507 }

508
509
510 int parseCommandString () {

511 int ret = 0;

512 String stringParse = ""; // dummy string

513 String stringParseAT = ""; // dummy string

514
515 int chSelect; // channel

516 int rcvCmd; // command mode

517 double startFreq , stopFreq , duration;

518
519 int cIndexAT;

520 int cIndexHASH ,cIndexStart;

521 int cIndexCounter = 0;

522
523 clearCommandList ();

524
525 commandString.trim();

526 if (commandString.length ()==0) return ret;

527 cIndexAT = commandString.indexOf(’@’);

528
529 // parse the commandStrings

530 while (cIndexAT !=-1 && cIndexCounter <maxNCommands) {

531
532 // get the substring up to next @

533 stringParseAT = commandString.substring(0,cIndexAT);

534
535 // get command number

536 cIndexHASH = stringParseAT.indexOf(’#’ ,0);

537 if (cIndexHASH ==-1) return ret;

538 stringParse = stringParseAT.substring (0, cIndexHASH);

539 rcvCmd = stringParse.toInt ();// setting

540 if (rcvCmd <1 || rcvCmd >3) return ret;

541 commandVect[cIndexCounter ]. rcvCmd = rcvCmd;

542 cIndexStart = cIndexHASH +1;

543
544 // get device number

545 cIndexHASH = stringParseAT.indexOf(’#’,cIndexStart);

546 if (cIndexHASH ==-1) return ret;

547 stringParse = stringParseAT.substring(cIndexStart ,cIndexHASH);

548 chSelect = stringParse.toInt ();// setting

549 switch (chSelect) {

550 case 1:

551 commandVect[cIndexCounter ].chan = CH2; break;

552 case 2:

553 commandVect[cIndexCounter ].chan = CH3; break;

554 default:

555 return ret;

556 }

557 cIndexStart = cIndexHASH +1;

558
559 // get start freq

560 cIndexHASH = stringParseAT.indexOf(’#’,cIndexStart);
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561 if (cIndexHASH ==-1) return ret;

562 stringParse = stringParseAT.substring(cIndexStart ,cIndexHASH);

563 startFreq = stringParse.toDouble ();

564 if (startFreq <60 || startFreq >110) return ret;

565 commandVect[cIndexCounter ]. startFreq = startFreq;

566 cIndexStart = cIndexHASH +1;

567
568 // get stop freq

569 cIndexHASH = stringParseAT.indexOf(’#’,cIndexStart);

570 if (cIndexHASH ==-1) commandVect[cIndexCounter ]. stopFreq =

defaultFreq;

571 else {

572 stringParse = stringParseAT.substring(cIndexStart ,cIndexHASH);

573 stopFreq = stringParse.toDouble ();

574 if (stopFreq <60 || stopFreq >100) return ret;

575 }

576 commandVect[cIndexCounter ]. stopFreq = stopFreq;

577 cIndexStart = cIndexHASH +1;

578
579 stringParse = stringParseAT.substring(cIndexStart);

580 if (stringParse.length () <1) commandVect[cIndexCounter ]. duration =

0.0;

581 else {

582 duration = stringParse.toDouble ();

583 if (duration <0 || duration >10) return ret;

584 if (duration ==0) return ret;

585 }

586 commandVect[cIndexCounter ]. duration = duration;

587 calcFreqSweep(cIndexCounter);

588
589 commandString.remove(0,cIndexAT +1);

590 cIndexAT = commandString.indexOf(’@’);

591 cIndexCounter ++;

592 usedNCommands ++;

593 }

594
595 ret = 1;

596 return ret;

597 }

598
599 void executeCommand () {

600
601 if (actNCommand >= usedNCommands) return;

602
603 String str;

604 str = String(commandVect[actNCommand ]. rcvCmd) + " " + String(

commandVect[actNCommand ].chan) + " " + String(commandVect[

actNCommand ].startFreq ,6) + " " + String(commandVect[actNCommand

].stopFreq ,6) + " " + String(commandVect[actNCommand ].duration ,4)

;

605
606 // nothing to be done?

607 if (commandVect[actNCommand ]. rcvCmd == 0){

608 setDefaultSetting ();

609 return;

610 }
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611
612 // single frequency

613 if (commandVect[actNCommand ]. rcvCmd == 1){

614 // display

615 if(commandVect[actNCommand ].chan == CH2) lcd.setCursor (1,0);

616 else if(commandVect[actNCommand ].chan == CH3) lcd.setCursor (1,1);

617 lcd.print("C");

618 lcd.print(commandVect[actNCommand ]. startFreq);

619 lcd.print(" ");

620 CFRbyte [0] = 0x00; CFRbyte [1] = 0x03; CFRbyte [2] = 0x00;

621 initDDS(commandVect[actNCommand ].chan);

622 programDDS ();

623 return;

624 }

625
626 // linear sweep up or down

627 if (commandVect[actNCommand ]. rcvCmd == 2){

628 if(commandVect[actNCommand ].chan == CH2) lcd.setCursor (1,0);

629 else if(commandVect[actNCommand ].chan == CH3) lcd.setCursor (1,1);

630 lcd.print("L");

631 lcd.print(commandVect[actNCommand ].startFreq ,1);

632 lcd.print("-");

633 lcd.print(commandVect[actNCommand ].stopFreq ,1);

634 lcd.print(",");

635 lcd.print(commandVect[actNCommand ]. duration);

636 lcd.print(" ");

637 CFRbyte [0] = 0x80; CFRbyte [1] = 0x43; CFRbyte [2] = 0x00;

//Set DDS to output frequency sweep , and enable linear sweep mode

(for linear or sinusoidal sweeps)

638 initDDS(commandVect[actNCommand ].chan);

639 programDDS ();

640
641 digitalWrite(profilePin , !pinStatus); //Set the profile pin to

whatever it isn’t right now

642 return;

643 }

644
645 // linear sweep up and down

646 if (commandVect[actNCommand ]. rcvCmd == 3){

647 if(commandVect[actNCommand ].chan == CH2) lcd.setCursor (1,0);

648 else if(commandVect[actNCommand ].chan == CH3) lcd.setCursor (1,1);

649 lcd.print("Z");

650 lcd.print(commandVect[actNCommand ].stopFreq ,1);

651 lcd.print("-");

652 lcd.print(commandVect[actNCommand ].startFreq ,1);

653 lcd.print(",");

654 lcd.print(commandVect[actNCommand ]. duration);

655 lcd.print(" ");

656 CFRbyte [0] = 0x80; CFRbyte [1] = 0x43; CFRbyte [2] = 0x00;

//Set DDS to output frequency sweep , and enable linear sweep mode

(for linear or sinusoidal sweeps)

657 initDDS(commandVect[actNCommand ].chan);

658 programDDS ();

659
660 digitalWrite(profilePin , !pinStatus); // Switch the profile

pin to whatever it isn’t set to right now
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661 return;

662 }

663
664 // sine frequency

665 if (commandVect[actNCommand ]. rcvCmd == 4){

666 if(commandVect[actNCommand ].chan == CH2) lcd.setCursor (1,0);

667 else if(commandVect[actNCommand ].chan == CH3) lcd.setCursor (1,1);

668 lcd.print("S");

669 lcd.print(commandVect[actNCommand ].startFreq ,1);

670 lcd.print("-");

671 lcd.print(commandVect[actNCommand ].stopFreq ,1);

672 lcd.print(",");

673 lcd.print(commandVect[actNCommand ]. duration);

674 lcd.print(" ");

675 CFRbyte [0] = 0x80; CFRbyte [1] = 0x43; CFRbyte [2] = 0x00;

//Set DDS to output frequency sweep , and enable linear sweep mode

(for linear or sinusoidal sweeps)

676 initDDS(commandVect[actNCommand ].chan);

677 }

678 }
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[35] M. Arndt, M. Ben Dahan, D. Guéry-Odelin, M. W. Reynolds, and J. Dal-
ibard, “Observation of a zero-energy resonance in Cs-Cs collisions,” Phys.
Rev. Lett., vol. 79, pp. 625–628, 1997.
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[37] C. Chin, V. Vuletić, A. J. Kerman, and S. Chu, “High resolution Feshbach
spectroscopy of cesium,” Phys. Rev. Lett., vol. 85, pp. 2717–2720, 2000.
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