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ABSTRACT 

Fracture of structures and materials can bring great threat to human life, environment 

and finance. Among all types of fracture mechanisms, one of the most important 

ones to be considered is fatigue fracture. Although many studies have carried out on 

macroscopic point of view, only few studies are focus on crystal level. The main 

objective of this study is to find an alternative way to simulate microscopic fatigue 

cracks. 

Engineers have developed various of techniques (continuum mechanics) and 

numerical methods (Finite Element Method) to study fracture of structures. 

However, majority of these numerical techniques are based on partial differential 

equations and will become invalid when there are discontinuities (cracks and sharp 

concentration gradients) occurring inside the body. To overcome this limitation, a 

continuum mechanics theory based on integro-differential equations, Peridynamics 

(PD), was developed and used for both fracture and fatigue analysis. 

Since the study is focus on crystal level, an ordinary state-based polycrystal PD 

formulation is developed to analyse cubic polycrystalline materials to overcome the 

constraint condition on material constants brought by Bond-based (BB) PD theory. 

The formulation is validated by first considering static analyses and comparing the 

displacement fields obtained from the finite element method and Ordinary State-

based (OSB) PD. As a result, the OSB PD polycrystal model can provide accurate 

displacement fields by comparing it with finite element method. Then, dynamic 

analysis is performed to investigate the effect of grain boundary strength, crystal 

size, and discretization size on fracture behaviour and fracture morphology. 
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In the past decades, several different methods (Stress – Life, Strain – Life and Paris 

Law etc.) have been developed to assist researchers on studying fatigue crack 

propagations, which also have been combined with PD theory by researchers. For 

instance, studies on stress energy release rate of a crack tip (for instance J-integral) 

have been carried out, but few methods are available to calculate the Stress Intensity 

Factor (SIF) which is directly related to a widely used formula to evaluate crack 

propagation rate in fatigue analysis – Paris’ Law. However, using J-integral can 

sometime be quite tricky, due to which path has been chosen for analyse. In this 

study, Displacement Extrapolation Method (DEM) is used to calculate SIF in PD 

framework more conveniently. In DEM, only crack surface needs to be checked each 

time when crack propagates, so the detection of the position of crack tip becomes 

rather important. Although several methods combined with Cohesive Zone Model 

(CZM) have been used to find crack tip in fracture analysis, few studies on crack tip 

tracking technique have been done in PD framework. In this thesis, a new automatic 

crack tip tracking method is discovered and accurately validated by comparing the 

crack growth speed with the existing study. 

In the end, all the above methods, including the implemented polycrystal OSB PD 

formulation, new approach of calculating SIF using DEM under PD framework and 

the all-new crack tip tracking method, are combined with the PD fatigue model to 

provide an alternative way to simulate fatigue crack propagation of polycrystalline 

material. 
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1. INTRODUCTION 

There are four sections in this chapter. In the first section, general information of 

incidents happened in past years which caused due to fatigue was introduced, to 

show the importance of fatigue analysis in human life, and the impact to human 

safety if fatigue fracture was not treat properly. In the second section, the aims of this 

research will be highlighted. The objectives of this research will be introduced in the 

third section, and at last the reviews of past papers on how researchers solved the 

same objectives will be discussed. 

1.1. Background 

The high-speed development of modern technology not only brings convenience to 

human life, but also brings threat if certain procedures could not be followed strictly. 

Although large amount of energy and money have been spent on research of both 

fracture mechanics and fatigue to prevent the incidents, it can still bring significant 

loss to human life when it happens, not only in marine industries, but also other 

fields, such as civil engineering and aerospace industries. One of the most famous 

accidents which took away 101 lives and injured 88 people was the Eschede 

Derailment, Germany on 3rd June 1998. According to (Oestern et al., 2000), one of 

the most important reasons was the fatigue fracture damage occurred at the thin steel 

tyre of one of the dual block wheels at the first coach of the train, and the steel tyre 

was peeled away from the wheel and pricked through the floor and then remain 

embedded. The train was originally equipped with single-cast wheelsets, however, 

the design resulted in great vibration and noise especially at restaurant car. To reduce 

the vibration, the company, ICE, changed the wheels to “wheel-tyre” type wheels, 

which added a thick rubber damper between the wheel body and the thin steel tyre 
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(see Figure 1). Although this type of wheels only used on low-speed trams at that 

moment and never tested on high-speed trains, the change not only solved the 

vibration problem, but also brought great threat on wheels, as the tyres were flattened 

into an ellipse shape when the wheel turned through each cycle, which brought 

fatigue damage to the steel tyre after certain cycles. The failure of steel tyre triggered 

the followed several events resulting in one of the most serious train incidents in 

recent years. 

 

Figure 1. Configuration of the wheel-tyre type wheel which failed at Eschede 23 June 1998 (Smith, 
2013) 

The incidents can not only happen on land transports, but on aerospace field as well. 

In modern human life, airplane has become the most common transportation type for 

a long-distance travel. As the airplane itself has become larger and more advanced, 

safety has become more important as well, otherwise the accident can likely bring 

more serious loss than the trains. On 4th November 2010, the engine of a high-tech 

Airbus A380 aircraft, the largest passenger aircraft ever in human history, from 

Qantas Airline failed after departing from Changi Airport, Singapore (ATSB, 2013). 

The engine failure brought huge impact to the structure and system of the plane, and 
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luckily the plane safely returned to and landed at Changi Airport after management 

by the flight crew. After investigation of the damaged engine, Australian Transport 

Safety Bureau (ATSB) found out that several oil feed stub pipes did not fulfil the 

design specifications, resulting in significantly thin wall of the pipes (Figure 2), 

which reduced the fatigue life of the pipe and fatigue crack occurred. The oil leak 

from the crack finally caused fire inside the engine and blew up the engine structure. 

Although the incident itself was mainly caused by the manufacture failure, otherwise 

the fatigue damage would not happen on the pipe, it still can be seen how important 

the role that fatigue plays in human life. 

 

Figure 2. Wall measurements (units: mm) of the fractured oil feed pipe (ATSB, 2013) 

Not only the oil pipes, but also the engine blades could also result in fatigue damage 

and bring huge threat to passengers. On 27th August 2016, a fan blade of the engine 

of a Boeing 737 which operated by Southwest Airlines was separated from the fan 

disk and caused serious uncontained engine failure. After the investigation operated 

by American National Transportation Safety Board (NTSB), it was clearly found that 
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the separation of the blade was caused due to metal fatigue damage (NTSB, 2016). 

Similarly, about one and a half years later, the incident happened again on 17th April 

2018. Although the incident is still under investigation, NTSB announced that fatigue 

crack was the reason caused by the break of the blade (NTSB, 2018). Unlike the 

previous incident that all passengers and crew members were survived, this time one 

woman was dead, and eight people were injured. 

Fatigue damage could also bring harm in civil engineering, for example the Mianus 

River Bridge at Greenwich, Connecticut, USA collapsed due to both metal corrosion 

and fatigue damage on the pin which connected to the bridge structure (NTSB, 

1984), and the Sgt. Aubrey Cosens VC Memorial Bridge collapsed due to fatigue 

fracture of steel hanger rods, according to Canadian Ministry of Transportation (Ben-

Daya, Kumar and Murthy, 2016). 

Similar to the incidents happened in civil engineering, trains, and planes, fatigue also 

plays relatively important role in marine industries. Researchers did not spend much 

attention on fracture mechanics before World War II (WW2), as cracks thought to be 

too small to threaten large structures such as ships. However, during the war, many 

ships failed and broke into half all in a sudden and in inexplicable ways. One of the 

most popular incidents was the liberty ships. Many liberty ships were built during 

WW2 by US ship industries to transport supplies to Europe. Although most of the 

sinking ships were because of the attack from the German torpedoes, still 1200 

Liberty-class ships (about 30% of all Liberty-class ships) were suffered with cracks 

and 3 of which were broken into half (Wei Zhang, 2016). The cause of the fracture 

was not fully understood at first of the ship Schenectady, one of the three broken 

ships, but later research discovered the fracture was due to the cold weather which 
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change the material of the ship to become highly brittle and fatigue crack initiated 

easily, and then finally caused the failure (Thompson, 2001). The other very famous 

incident was the capsize of the Norwegian semi-submersible drilling platform called 

Alexander L. Kielland in March 1980. A year later, an investigation report concluded 

that the platform collapsed because of a fatigue crack in one of the six bracings, 

which connected the leg to the platform. The fatigue crack propagated and broke the 

bracing, and then triggered the broken of the rest five bracings and disconnected the 

leg to the platform (Norway, 1981). The incident took 123 lives and only 89 people 

survived, making this the worst disaster in Norwegian offshore history after WW2. 

Not only the ships, but offshore platforms are also suffering from fatigue damage. On 

4 December 2015, a 31-year-old platform called Gunashli Platform No. 10, which 

located in the west of oil field Gunashli in the Caspian Sea near Azerbaijan, caught 

fire which caused by the breakage of a high-pressure subsea pipeline (Bagirova, 

2015). The pipeline was damaged in a severe storm, and the wave impact force was 

so strong that an explosion of the gas escaped and finally a fire broke out. Moreover, 

another offshore platform in the same area was collapsed due to the same storm on 

the same day (Azvision, 2015). Both events caused fatalities (one for each case) and 

numbers of lives (30 and 3 respectively) were still missing. Although these platforms 

were damaged due to the heavy storm, the harsh environmental condition can cause 

significant loss of fatigue life of the platform so that the aging condition of the 

platforms in Gunashli field posed a serious risk to safety (Executive, 2016).  

1.2. Aim of Research 

As the incidents have brought great threat to human life, researchers have developed 

different methods, from S-N curve to Finite Element Method (FEM), to prevent these 
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incidents from happening. The aim of this research study is to use PD theory to 

enhance the safety of ship and offshore structures. 

1.3. Objectives of Research 

In order to achieve the aim, the following objectives need to be fulfilled: 

• Creation of a Peridynamic model using Ordinary State-based (OSB) PD 

theory to investigate the microstructural fracture behaviour of cubic crystals. 

• Calculation of the Stress Intensity Factor (SIF) using Displacement 

Extrapolation Method (DEM) under PD framework. 

• Creation of a suitable technique to find the estimate location of the crack tip, 

i.e. Crack tip Tracking Technique. 

• Creation of a new PD fatigue polycrystal model to simulate simple crystal 

structure under cyclic loading condition. 

To verify the method, for example the OSB PD cubic crystal model, introduced in 

this thesis, a more common and widely used FEM has been used as a benchmark 

study. The displacement field (Chapter 3.4.2) and SIF (Chapter 4.4) can be 

calculated using the FEM software ANSYS. The Crack tip Tracking Technique was 

verified by simulating the same problem listed in (Madenci and Oterkus, 2014) and 

comparing the crack growth distance – time curves of the two studies. 

As (De Meo, Zhu and Oterkus, 2016) has already used Bond-based (BB) 

Peridynamic theory to model the fracture behaviour of cubic crystals. According to 

author’s knowledge, there were no research studies available in the literature about 

fracture and crack growth in polycrystalline materials before (De Meo, Zhu and 

Oterkus, 2016). The cubic crystals were chosen for the start of the study due to its 
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relatively simple 6×6 material matrix (only 3 material constants) compare with the 

normal crystal who has 36 different material constants in theory. The studies on more 

complex polycrystalline material can be considered in the future. To overcome the 

PD constant constraint brought by the limitation of BB PD theory, the OSB PD was 

chosen in the study. 

Since SIF plays a very important role in fatigue simulations, i.e. Paris’ Law, it is 

important to find a proper method to evaluate either Critical Strain Energy Release 

Rate or the SIF to calculate crack propagation rate. J-integral has been used by 

(Guanfeng Zhang et al., 2016) to strain energy release rate at crack tip region, and 

(Y. L. Hu and Madenci, 2017) explored a method to calculate strain energy release 

rate for each material points. However, few have used DEM to calculate SIF which 

has been widely used in FEM. 

In order to calculate the suitable number of cycles to jump during fatigue analysis 

using Paris’ Law equation, location of crack tip need to be monitored. Unlike the use 

of FEM and CZM in fatigue analysis, crack tip tracking technique has been well 

developed. However, few research studies have been made in this area, the thesis 

will provide an idea on how to automatically update crack tip location in PD theory. 

Several different PD fatigue models have been developed recently. For example, 

(Guanfeng Zhang et al., 2016) used a method introduced earlier by (Stewart A. 

Silling and Askari, 2014), and (Y. L. Hu and Madenci, 2017) developed a new 

method by calculating strain energy release rate for each material points. This thesis 

extended the PD fatigue formulation given by (Stewart A. Silling and Askari, 2014) 

and coupled a crack tip tracking algorithm to study the fracture behaviour of 2D 

polycrystalline materials. 
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1.4. Literature Review 

1.4.1. Review of Numerical Methods to Predict Structural Damage 

To fulfil the aim of this research, the first objective is to find a proper numerical 

method (tool) to carry out the simulation of structural damage. Nowadays in 

engineering industries, there are several popular numerical approaches under the 

framework of Classical Continuum Mechanics (CCM) used to predict structural 

damage, such as the Boundary Element Method (BEM), the FEM, the CZM 

implemented in FEM by using finite cohesive elements and the eXtended Finite 

Element Method (XFEM). 

The early study of BEM in the field was reported by (Rizzo, 1967) and (Cruse, 1969) 

to solve electrostatic problems. As discussed in (Sadd, 2009), the BEM has two 

major advantages over the FEM. The first advantage is that the equation system of 

boundary elements is much smaller than that of finite elements, resulting in lower 

computational cost. The second advantage is that several studies showed that the 

BEM is more accurate in determination of stress concentration effects. In FEM, 

when dealing with problems of infinite extent, there are difficulties in developing 

appropriate meshes which would significantly affect the accuracy of the results, 

however, BEM only requires boundary meshing which means it could handle infinite 

extent problems automatically, and additional computation is required for the 

solution at internal points. Later after the discovery of BEM, several modifications 

had been developed to overcome the problem when using BEM formulation to model 

discontinuities such as fractures and crack growth. (Aliabadi and Rooke, 1991) 

briefly described and discussed the advantages and limitations of these 

modifications. Among which the main limitation of BEM is that the matrices are 
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unsymmetric and fully populated (common on crystal level analysis) that means it 

will be relatively computational expensive to solve the matrix. 

FEM was also one of the most widely used numerical tools in solving engineering 

problems including solution of discontinuous fields. The discovery of FEM could be 

tracked back to early 1940s by the work of (Hrennikoff, 1941) and (Courant, 1994). 

But the real impetus of the FEM was in the 1960s by the developments of several 

researchers such as (Hinton and Irons, 1968). However, with the development of 

FEM, similar problems as BEM was discovered that FEM was not able to produce 

reasonable accurate results around the crack tip area (Aliabadi and Rooke, 1991). In 

order to overcome this problem, (Tracey, 1971) introduced the determination of 

crack tip element. Moreover, additional difficulties and limitations were found when 

solving the crack propagation problems. For the modelling of propagating cracks, 

remeshing of the model is necessary and easy after the incremental crack growth for 

elastic materials (Madenci and Oterkus, 2014), however, according to (Anderson, 

2005), due to the plastic strain field need to be passed to the remeshed model for 

elastic-plastic materials, the remeshing will bring problems. 

In the 1960s, to overcome the limitations when using FEM to solve dynamic crack 

propagation problems without requirements of remeshing, CZM was introduced by 

(Barenblatt, 1962) and (Dugdale, 1960) to indicate the nonlinear processes at the 

front of a crack. But the actual breakthrough of the method was the developing of 

Cohesive Zone Elements (CZE) by (Hillerborg, Modéer and Petersson, 1976) for 

Mode-I cracks and (Xu and Needleman, 1994) for mixed mode cracks. The 

implementation not only overcame the limitations, but also brought new problems, 

like softening of material properties when decreasing mesh size (Madenci and 
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Oterkus, 2014). Due to the concept of CZM, the propagation of cracks is limited to 

fixed boundaries of elements, which can restrict the crack path (for example crack 

branching) being represented even the mesh is fine (Papoulia, Vavasis and Ganguly, 

2006). 

Since the introduction of XFEM by (Belytschko and Black, 1999) and (Moës, 

Dolbow and Belytschko, 1999) in 1999 to resolve the difficulties of modelling crack 

growth without remeshing, the method was widely used by researchers to solve crack 

propagation problems including mixed-mode cracks (Cox, 2009, Mariani and 

Perego, 2003), however, there are still limitations when solving multiple crack 

growth and complex problems (Zi, Rabczuk and Wall, 2007) and predictions of SIF 

(Rabczuk, Bordas and Zi, 2010). 

In summary, as described above, researchers were trying to overcome the limitations 

on modelling discontinuities using various numerical method. However, there are 

still other problems need to be solved. For example, limitations on solving fully 

populated matrix in BEM, remeshing problem on simulating cracks using FEM, 

restrictions of crack path in CEM, and multi-crack growth problem when using 

XFEM. Since these are quite common problems that need to face when studying 

fractures on crystal level, none of them was suitable for the research study in this 

thesis. 

The numerical methods described in this section are all based on CCM, which are 

formulated using derivatives of the displacement components, therefore the 

mathematical formulation becomes invalid when discontinuities occur inside the 

body (Madenci and Oterkus, 2014). To overcome the problem of discontinuities, 

(Stewart A Silling, 2000) introduced a nonlocal theory called PD theory by changing 



11 
 

the partial derivatives in the governing equations to spatial integrals. Unlike CCM, 

material failure is part of the PD constitutive laws and there are no additional criteria 

needed to predict direction, speed and branching etc of cracks. With these 

advantages, PD can overcome the limitations mentioned in previous paragraphs, 

which is a suitable method to simulate cracks. More detailed information of PD 

theory will be introduced in the Chapter 2. 

1.4.2. Literature Studies on Polycrystalline Materials 

Polycrystalline materials are widely used in many different industrial applications. 

Amongst the various existing polycrystalline materials, metals and ceramics are 

common examples. Polycrystalline materials are composed of individual crystals that 

have a particular crystal orientation and are separated from neighbouring crystals via 

grain boundaries. Microscopic features of polycrystalline materials such as crystal 

orientation, grain boundary strength, etc. may have a significant effect on the overall 

macroscopic behaviour of the material, especially on the fracturing behaviour of 

these materials. Therefore, it is essential to analyse this type of material at the 

microscopic scale, which is the reason why the main objective of this research study 

is to simulate fatigue crack growth of polycrystal material. 

At first, experimental methods were used to study polycrystalline materials. X-ray 

was used by (Gay, Hirsch and Kelly, 1954) to study the deformation of 

polycrystalline metals by rolling, whereas the combination of X-ray diffraction and 

X-ray imaging were used to study 3D characterization of polycrystalline materials at 

the microscale (Ludwig et al., 2009). (Herbig et al., 2011) also used X-ray 

diffraction and tomography to analyse and visualise the growth rate and grain 

orientation of the fracture surface of the metastable beta titanium alloy Ti 21S. 
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Unlike the above researchers who used X-ray as the main experimental procedure, 

(Groeber et al., 2006) applied a dual-beam focused ion beam-scanning electron 

microscope (FIB-SEM) system to study the 3D reconstruction and characterisation of 

Ni-based superalloy.  

Although experimental approaches can be useful to analyse polycrystalline materials, 

it is not always possible to perform such experiments and they can also be very 

expensive. For example, the fatigue analyses of marine structures are normally 

considered as high-cycle fatigue, so it would be un-necessary to study fatigue 

fracture behaviour of crystals using experimental approaches. Hence, numerical 

approaches can be very good alternative. There are various numerical studies 

available as described in previous session, which can also be used for polycrystalline 

material problems. For example, CZM was used by (Barut, Guven and Madenci, 

2006) for micromechanical analysis of crystal plasticity, (Zhou et al., 2012) for crack 

propagation analysis of ceramic tool materials and (Lin, Wang and Zeng, 2017) for 

intergranular and trans-granular fracture of polycrystalline solids. Moreover, BEM 

(Benedetti and Aliabadi, 2013, Sfantos and Aliabadi, 2007a), XFEM (N Sukumar et 

al., 2003, N Sukumar and Srolovitz, 2004) and FEM (CR Chen and Li, 1998, 

Crocker, Flewitt and Smith, 2005, Warner and Molinari, 2006) were also used for 

polycrystalline materials analysis. In addition, for some complex problems, such as 

multi-scale modelling (Sfantos and Aliabadi, 2007b), a combination of different 

methods were usually used for the analysis, for example, CZM and BEM (Benedetti 

and Aliabadi, 2013), BEM and FEM (Sfantos and Aliabadi, 2007b) and CZM and 

FEM (Kraft et al., 2008). In addition, numerical results were usually compared with 

experimental results to examine for the accuracy (Bronkhorst, Kalidindi and Anand, 

1992).  
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As discussed above, although some researchers have used numerical tools (CZM) to 

solve failure in polycrystalline materials (Benedetti and Aliabadi, 2013, Zhou et al., 

2012), the same limitations have been brought to the analysis of fracture of 

polycrystalline materials, i.e. the crack path has been restricted to specific CZEs. 

This is the reason why the fracture behaviours been studied in these papers were 

focused on trans-granular fractures. However, the inter-granular fractures also need 

to be considered, these numerical and experimental approaches are not suitable to 

achieve the main objective of this thesis. 

1.4.3. Literature Studies on Stress Intensity Factors 

As described in the previous two sections, PD theory has the advantage on 

simulating discontinuities problems of polycrystalline materials compare with other 

numerical methods, and SIF is widely used on fatigue analysis, therefore it is 

necessary to find a method to calculate SIF under PD framework. 

SIF was first introduced by (Irwin, 1957) to describe the stress distribution around 

the crack tip region, and widely used to predict fatigue crack growth (Schijve, 2009). 

With the development of the calculation of SIF in the following years, several 

theoretical formulations had been developed to help researchers to determine the 

stress field around crack tips including central crack in an infinite plate under 

uniform uniaxial stress (Rooke and Cartwright, 1976), edge crack in a plate under 

uniaxial stress (Mingchao Liu et al., 2015) and slanted crack in a biaxial stress field 

(George C. Sih, Paris and Erdogan, 1962) etc. On one hand, theoretical formulations 

provide researchers different ways to calculate SIF for non-complex problems; on the 

other hand, they are not quite suitable for complex problems, like inter-granular 

fracture in polycrystals.  
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The numerical methods, such as FEM and BEM, provided researchers more choice 

to calculate the SIF. Analytical solutions were used in some studies for validation of 

numerical results. For example, both (Kishimoto, Aoki and Sakata, 1980) and (Xiao 

and Chen, 2001) used FEM to simulate stress intensity factor and compare the results 

with simple analytical solutions. Moreover, BEM was used by (Blandford, Ingraffea 

and Liggett, 1981) to compute two-dimensional SIF and compared with the results 

calculated from displacement correlation method given by (Shih, de Lorenzi and 

German, 1976), (Barsoum, 1976) and (Ingraffea, 1978). The analytical solutions of 

SIF can be calculated based on various of formulations, such as formulations based 

on stress applied on the crack surface which can be calculated from the force applied 

on the model (Petroski and Achenbach, 1978), and crack opening displacements 

(COD) were computed by (Guinea et al., 1998) using the expression given by (P. C. 

Paris, 1957). (Lim, Johnston and Choi, 1992) summarised and compared different 

displacement-based stress intensity factor formulations. However, many researchers 

usually use numerical methods to simulate either displacement field or stress field 

around the crack tip area, and then use corresponding displacement-based or stress-

based formulation to compute the stress intensity factor. For instance, (Lazzarin and 

Tovo, 1998) used FEM to solve the stress field and then applied it to the formulation 

given by (Gross and Mendelson, 1972). FEM had also been used by (Rybicki and 

Kanninen, 1977) to calculate the displacement field in order to compute the SIF. 

Similarly, BEM was used by (Dominguez and Gallego, 1992) and (Martínez and 

Domínguez, 1984) to simulate the stress and displacement field respectively, and 

then apply the results to the corresponding formulation to compute SIF. Unlike the 

most widely used FEM and BEM, both Boundary Collocation Method (BCM) 

(Zheming Zhu et al., 2006), Finite Difference Method (FDM) (Y. M. Chen, 1975) 
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and XFEM (Nagashima, Omoto and Tani, 2003) can also be used to calculate the 

SIF. Due to the relationship between the strain energy release rate and stress intensity 

factor, both (Parks, 1974) and (Miyazaki et al., 1993) used J-integral to compute the 

strain energy release rate around crack tip and then converted it to SIF. As an 

alternative approach, a new continuum mechanics formulation, peridynamics, can be 

used to determine SIF. (Imachi, Tanaka and Bui, 2018) determined mixed-mode 

dynamic SIFs by using OSB PD based on the J-Integral value of the crack tip. 

(Wenke Hu et al., 2012) and (Panchadhara and Gordon, 2016) presented a procedure 

to calculate J-Integral in bond-based peridynamic framework. (Stenström and 

Eriksson, 2019) proposed a new procedure on J-Integral calculation in PD 

framework by writing J-Integral as a function of displacement derivatives. 

In this thesis, a new approach is presented to determine SIF by using DEM in PD 

framework. PD theory is first used to obtain the displacement field around the crack 

surface. Then, by using the evaluated displacement field, DEM is utilized to compute 

the SIF. Unlike the commonly used J-Integral to calculate SIF in PD framework, 

DEM can directly link the displacement field solved by PD theory with SIF using a 

much simpler formulation, which means the simulation time can be saved 

significantly when carrying out fatigue analysis. As discussed in previous sections, it 

is essential for this study to choose PD theory to simulate fatigue crack growth in 

polycrystalline materials due to the advantages that PD can carry out complex crack 

propagation problem easier than other numerical methods. Moreover, unlike FEM 

who need to couple with CZE to simulate cracks, there’s no alternative approach 

needed for PD. Therefore, the use of DEM under PD framework is necessary. 
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DEM was introduced by (Paul C. Paris and Sih, 1965) and also used by (Nagashima, 

Omoto and Tani, 2003) to calculate SIF. Details of PD theory can be found in 

various studies available in the literature (De Meo, Zhu and Oterkus, 2016, Madenci 

and Oterkus, 2014, Oterkus, Madenci and Oterkus, 2017, Oterkus, Guven and 

Madenci, 2012). The information about PD theory will be given in the following 

chapter. To demonstrate the capability of the coupled DEM and PD approach to 

calculate SIFs, three benchmark cases are considered and PD results are compared 

with analytical and FEM results. 

1.4.4. Literature Studies on Fatigue Analysis Techniques 

Fatigue is one of the main reasons which cause failures in engineering structures, and 

predictions of these failures due to cyclic loadings are usually challenging. Engineers 

and researchers have developed several different methods to overcome the 

challenges. During the late 20th century, experimental methods were mainly used by 

researchers to analyse the fatigue crack propagation. (Reece, Guiu and Sammur, 

1989) studied and compared crack propagations of two alumina under two different 

loading conditions (static and cyclic), and electron micrograph was used to scan the 

fracture surface of static and cyclic cracks and compared differences between them. 

Moreover, optical micrographs were used by (Dauskarat, Marshall and Ritchie, 

1990), (Von Euw, Hertzberg and Roberts, 1972) and (Dauskardt, Yu and Ritchie, 

1987) to monitor the cyclic fatigue crack paths in experiments. However, researchers 

usually used several different methods to analyse the experimental results. Paris’ law, 

which was first introduced by (Paul C. Paris, 1961) to establish the fatigue crack 

propagation rate based on the stress intensity factor introduced in Irwin’s theory 

(Irwin, 1957), was applied by many researchers (Dauskarat, Marshall and Ritchie, 

1990, Von Euw, Hertzberg and Roberts, 1972, Dauskardt, Yu and Ritchie, 1987, 
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Hopper and Miller, 1977, Zheng and Hirt, 1983, Pearson, 1975) to modify the results 

generated from the experiments. Another method which is also widely used in both 

industries and research is the stress-life (S-N) method. For example, the S-N curve 

obtained from the bending fatigue test of a high carbon-chromium specimen was 

used to understand the fracture modes (Shiozawa, Lu and Ishihara, 2001), and 

(Marines et al., 2003) also used the S-N curve to modify the ultrasonic fatigue test 

results of the bearing steel AISI-SAE 52100. Unlike (Donahue et al., 1972) who used 

COD method to calculate SIF in order to estimate the fatigue crack growth rate, 

crack closure was used by (Wolf, 1970, Lindley and Richards, 1974, J. C. Newman, 

1981) to analyse the fatigue crack growth and (Rice, 1967) summarised the 

mechanics of near crack deformation and fatigue crack propagation. 

The development of technology and computational methods also provides 

researchers more options when dealing with fatigue analysis problems. One of the 

most common methods, FEM, has been used by (Dhondt, 1998) to solve the stress 

field around the crack tip region, and then use the S-N curve to predict the fatigue 

life of the structure. Also, (Dong, 2001) used both FEM and S-N curve to study the 

fatigue behaviour of weld joints. Similarly, Paris’ Law has been used by (James C 

Newman, 1976) after solving the stress data around cracking area using FEM. 

However, not only the FEM, but also the BEM has been used by (Gerstle, Martha 

and Ingraffea, 1987) to compute the SIF, which then been used to calculate the 

fatigue crack growth rate using Paris’ Law. Since there are limitations for the FEM 

when dealing with the crack growth problem, Cohesive Element Method (CEM)/ 

CZM has been developed by researchers to overcome this limitation. For example, 

after generating displacement field using CEM, both Paris’ Law and COD method 

were considered by (Nguyen et al., 2001) to compare the propagation rate of both 
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long and short cracks. Both (Roe and Siegmund, 2003) and (Yang, Mall and Ravi-

Chandar, 2001) used CZM to predict fatigue crack growth, however, the former used 

strain energy release rate to compute the crack growth rate, and the latter used Paris’ 

Law. X-FEM, which is also being widely used in fracture mechanics, has been used 

by (N. Sukumar, Chopp and Moran, 2003) to study the three-dimensional fatigue 

crack propagation. Not only the stress related methods can be used for fatigue 

analysis, strain energy related methods can also solve fatigue problems. (G. C. Sih 

and Barthelemy, 1980) provided expressions on calculation of crack growth rate 

based on strain energy density, and claimed that using strain energy density to 

predict mixed mode fatigue crack growth rate is more convenient than SIFs. 

Additionally, a strain energy density model was generated by (Huffman et al., 2017) 

to predict fatigue crack propagation of a pressure vessel mild steel. Moreover, since 

J-integral method can be used to compute the strain energy release rate around crack 

tip region, (Dowling and Begley, 1976) used J-integral to study the elastic-plastic 

fatigue cracking behaviour. Although the methods described above are mainly 

focusing on macroscopic level, they could also be used for fatigue analysis at crystal 

level. For instance, microscopy and X-ray can be used to visualise and monitor the 

fatigue crack pattern at crystal level (Zhai, Wilkinson and Martin, 2000, Chevalier, 

Olagnon and Fantozzi, 1999, L. Liu et al., 2011). Moreover, not only CZM (Bouvard 

et al., 2009) and FEM (Kirane and Ghosh, 2008, L. Liu et al., 2011, Proudhon et al., 

2016), but also the Molecular Dynamics (MD) (Potirniche et al., 2005, Tang, Kim 

and Horstemeyer, 2010) can be used to study fatigue crack growth rate for crystals.  

In this thesis, an alternative numerical approach called PD theory is used to study the 

fatigue crack propagation in polycrystalline structures. PD theory was first 

introduced in (Stewart A Silling, 2000, Stewart A Silling and Askari, 2005) and 
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being used by researchers to solve various types of problems. The PD fatigue model 

was first introduced by (Oterkus, Guven and Madenci, 2010), however, (Stewart A. 

Silling and Askari, 2014) provided another model which can reproduce the well-

known Paris’ Law, and been used by (Guanfeng Zhang et al., 2016) to predict and 

compare the crack pattern with experimental results. A different PD fatigue model 

was introduced by (Y. L. Hu and Madenci, 2017), which is based on the calculation 

of critical strain energy release rate, to predict the fatigue life of composite lamina. 

This thesis will implement the PD fatigue model given in (Guanfeng Zhang et al., 

2016) with a crack tip detecting algorithm, and carried out the analysis in a finite 

element analysis software (for instance, ANSYS) by following expressions given by 

(Macek and Silling, 2007).  
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2. PERIDYNAMIC THEORY 

2.1. Introduction 

The main purpose of this chapter is to introduce PD theory in details and to give 

readers a more in-depth understanding of the advantages of this theory and the reason 

why it was selected to carry out fatigue analysis. There are three different types of 

PD theory which are used by the researchers around the globe. These are BB PD 

(Stewart A Silling, 2000), OSB PD (Stewart A Silling et al., 2007) and Non-

Ordinary State-based (NOSB) PD (Warren et al., 2009). One of the main differences 

between BB PD and OSB PD is that the Poisson’s ratio of the materials is limited to 

1/4 for 3D analysis (1/3 for 2D) in BB PD theory, however, OSB PD theory 

overcomes this limitation by adding dilatation term in the formulation. In NOSB PD, 

since both the stress and strain tensors are used in the formulation, interaction forces 

can be in any directions. In this thesis, OSB PD is used in the simulations of 

polycrystalline materials to overcome the limitation brought by the BB theory (De 

Meo, Zhu and Oterkus, 2016). BB PD is then used to solve the displacement field, 

and then coupled with DEM to calculate the SIF of a crack. At last, the polycrystal 

fatigue analysis is carried out using BB PD theory. 

2.2. Review of Peridynamic Theory 

The new numerical method PD was first introduced by (Stewart A Silling, 2000) 

which reformulated the governing equation of CCM. CCM was first formulated by 

the French mathematician Augustin-Louis Cauchy in the 19th century (Reddy, 2013), 

and assumes that the solid body is continuum, which means that the body can be 

divided into smaller volumes (so called material points). The results (for example 

displacement, temperature and force etc.) can be obtained by solving differential 
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equations under different fundamental laws, such as conservation of mass, energy 

and momentum. FEM, one of the most widely used methods in engineering world, is 

a well-known example of CCM, and has been used in famous commercial software 

(ANSYS, ABAQUS) for structural analysis. Although numerical methods based on 

CCM are widely used, there are several limitations as well. Firstly, CCM is a local 

theory, which means each material point can only interact with its neighbouring 

points. However, when the analysis is at microscopic scale, the material points can 

not only interact with their neighbours, but also other material points within a 

specific region. The interactions between these non-neighbouring points are called 

long-range forces, and need to be considered in microscopic analysis. Therefore, 

CCM is not sufficient enough for analysing at such small scales. Secondly, the 

governing equation of CCM is based on partial differential equations, which means 

the equation cannot be used to analyse the body with discontinuities, i.e. cracks, due 

to the breakdown of mathematical formulation (Stewart Andrew Silling and Bobaru, 

2005). Some external approaches based on fracture mechanics can be applied to 

overcome some part of this limitation, but these approaches may not be suitable for 

micro-scale analysis (Stewart Andrew Silling and Bobaru, 2005). Although MD can 

overcome this limitation for the analysis of micro structures, it also requires more 

computation power in order to achieve the acceptable accuracy. Thanks to the 

development of PD theory, the analysis of micro structures and material failures can 

be completed at the same time. 

2.3. Bond-based Peridynamic Theory 

The equation of motion of a material point x  in CCM can be written as follows:  

 ( ) ( ) ( ), ,t t = +x u x b x  (1) 
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where ( ) x  denotes the density of material point x  and ( ), tu x  denotes the 

acceleration of the material point x  at time t .   represents the gradient operator,   

is the stress tensor, and ( ), tb x  represents the body force applying on material point 

x  at time t , respectively. As mentioned in the previous section, due to the term   in 

the equation, it is not suitable to obtain solutions problems with discontinuities, i.e. 

cracks. 

PD theory overcomes this limitation by replacing the derivative term with integral 

term, and the equation of motion of a material point x  in PD can be written as 

follows (Stewart A Silling, 2000): 

 ( ) ( ) ( ) ( )( ) ( )', ', , , ' ,
H

t t t dV t = − − +
x

x
x u x f u x u x x x b x  (2) 

where ( ), tu x  denotes the displacement of material point x  at time t , and '−x x  

represents the relative distance between material points x  and 'x . 

( ) ( )( )', , , 't t− −f u x u x x x  is the PD bond force between material points x  and 'x ， 

'Vx  represents the volume of material point 'x . As shown in Figure 3, in PD theory, 

the material point x  not only can interact with neighbouring points but also can 

interact with other material points that are far apart.  

In PD theory, it is assumed that the bond force between two material points decreases 

with increasing of the distance between these two points, and when the distance is 

larger than a specific value, there will be no interactions at all. This region is called 

horizon, which can be shown as H x  in Figure 4. The radius of horizon is often 

written as   in PD formulations. 
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Figure 3. Peridynamic Interactions 

The horizon size   is defined manually. The larger the horizon size, the more 

accurate of the result, however, it requires more time for the analysis to complete. 

When   decreases and tends to zero, interactions become more and more local. So 

CCM can be treated as a special case of PD theory. 

 

Figure 4. Peridynamic Horizon 

The pairwise bond force function f  in Equation (2) can be expressed in deformed 

configuration (Figure 5) whose expression can be given below: 

 
'

'
cs

−
=

−

y y
f

y y
 (3) 
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where c  denotes the bond constant which can be expressed in terms of material 

properties in CCM, based on the description given by (Madenci and Oterkus, 2014). 

y  represents the position of the material point x  after deformation, in other words, 

= +y x u . s  is the PD bond stretch which can be defined as: 

 
' '

'
s

− − −
=

−

y y x x

x x
 (4) 

 

Figure 5. Peridynamic Deformed Configurations (Bond-based) 

The relationship between PD bond constant c  and PD bond stretch s  for brittle 

materials can be shown in Figure 6. As shown in Figure 6, when bond stretch s  

exceeds a certain value 0s , PD bond breaks, which means there will be no longer 

interactions between material points associated with this bond (as shown in Equation 

(5)).  
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Figure 6. PD Bond Behaviour (Brittle Materials) 

The 0s  in Equation (5) is called the critical stretch. In PD theory, the local damage of 

a material point is defined as the ratio between the number of broken bonds and the 

number of total bonds. Therefore, a material point with damage value of 0 means that 

there are no broken bonds connected to this material point. And damage value of 1 

means that all bonds connected to this material point are broken. As shown in Figure 

7, half of the bonds within the horizon of a material point are broken, so the damage 

of this material point is 0.5 (Madenci and Oterkus, 2014).   

 ( ) 0

0

1          when 
' ,

0          when 

s s
t

s s



− = 


x x  (5) 

2.4. Ordinary State-based Peridynamic Theory 

Unlike the equation of motion of BB PD theory shown in Equation (2), the equation 

of motion of OSB PD can be written as: 

 ( ) ( ) ( ) ( )( ) ( ), ' , ' , ' ' , ' , ,
H

t t t dH t = − − − − − +
x

xx u x t u u x x t u u x x b x  (6) 

where ( )' , ' ,t− −t u u x x  and ( )' ' , ' ,t− −t u u x x  denote the force density vectors of the 

material points x  and 'x , and '−u u  represents the difference of displacements of 
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the material points x  and 'x  at time t . Similar to Equation (2), H x
 represents the 

PD horizon that defines the range of interaction of a particular material point, and the 

size of the horizon is usually represented by the symbol  . 

 

Figure 7. Damage in Peridynamic Theory 

As shown in Figure 8, the magnitudes of the force density vector t  and 't  between 

material points x  and 'x  are unequal, which can be obtained as: 

 ( )
1 '

' , ' ,
2 '

t A
−

− − =
−

y y
t u u x x

y y
 (7) 

And 

 ( )
1 '

' ', ',
2 '

t B
−

− − = −
−

y y
t u u x x

y y
 (8) 

where A  and B  are parameters which are dependent on material constants, horizon 

and displacement field. 
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Figure 8. Peridynamic Forces between x  and 'x  in Ordinary State-based Peridynamic Theory 

2.5. Numerical Implementation of Peridynamics 

In Peridynamic theory, the structure is discretized into finite number of volumes, and 

each volume represents a material point (as shown in Figure 9). When building up 

the PD model, only material points within the horizon can build up interactions with 

the reference material points, shown as yellow in Figure 9. The discretisation of the 

structure in PD theory are usually uniform, and the grid size is denoted as  . To 

simplify the analysis, the size of horizon is assumed to be symmetric and equals to 

3*  until further notification. Therefore, the discretised form of equation of motion 

(EOM) for BB PD (Equation (2)) can be expressed as: 

 ( ) ( ) ( ) ( )( ) ( )
1

, , , , ,
n

i i j i j i j i

j

t t t V t
=

= − − +x u x f u x u x x x b x  (9) 

where n  is the number of material points within the horizon of material point ix  

(exclude the material point ix  itself). 
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Figure 9. 2D Peridynamic Discretisation 

 

Figure 10. Peridynamic Domain 

The discretised form of equation of motion for OSB PD (Equation (6)) can be 

expressed as: 

 ( ) ( )
( ) ( )( )

( ) ( )( )
( )

1

, , ,
, ,

, , ,

n j i j i

i i j i

j
i j i j

t t
t V t

t t


=

 − − −
 = +
  − −
 


t u x u x x x

x u x b x
t u x u x x x

 (10) 

2.5.1. Volume correction factor 

As shown in Figure 11, since the structure is usually discretised uniformly in PD 

theory, the shape of each material point is square for 2D model. Due to the circular 

size of the horizon, for material points which are close to the edge of the horizon, 
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they are not fully embedded. Therefore, a correction factor needs to be applied to the 

volume term jV  in Equation (9) and (10). This correction factor is called Volume 

Correction Factor, and often written as j  in PD formulation. As explained in 

(Madenci and Oterkus, 2014) and shown in Figure 11, when the bond length 

ij j i r = −  −x x , where 
2

r


= , the volume correction factor is 1j = . When the 

material points are located within the range ijr  −   , the volume correction 

factor is 
( )

2

ij

j

r

r

 


+ −
= . 

 

Figure 11. Volume Correction Factor 

2.5.2. Surface correction factor 

As shown in Figure 12, the circular sized horizon is not always fully embedded 

within the body. When a material point is located close to the free surface (Point 2 in 

Figure 12),  the horizon of this material point is cut into a circular segment shape. To 

improve the accuracy, surface correction factor needs to be applied to the 

formulation. The surface correction factor of a material point can be calculated from 

the values of strain energy density by CCM and PD.  



30 
 

 

Figure 12. Surface Effect in Peridynamic Model 

For example, in BB PD theory, the micro potential of a bond can be expressed as: 

 
21

2
w cs =  (11) 

Since each material point of the bond shares the half of the micro potential w  of this 

bond, the strain energy density of a material point can be calculated by integrating 

the micro potential within the entire horizon, hence: 

 
1

1

2

n
PD

i ij j

j

W w V
=

=   (12) 

The strain energy density of CCM can be expressed based on the stress and strain 

state of a material point, so the expression can be written as: 

 
1

2

CCM

i i iW  =  (13) 

Therefore, the surface correction factor of a material point can be defined as: 
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CCM

i
i PD

i

W
S

W
=  (14) 

Normally in PD theory, in order to approximate the surface correction in any 

direction, the correction factors of a material point in x-, y- and z-directions are 

calculated first, which can be written as: 

  ,
T

x y

i i iS S=g  (15) 

Therefore, the surface correction factor for the bond between material point ix  and 

jx  can be obtained by the mean values as: 

 
2

i j

ij

+
=

g g
g  (16) 

As shown in Figure 13, an ellipsoid is then generated based on the correction factors 

calculated in Equation (15). Since the relative position vector of a bond can be 

expressed as: 
j i

ij

j i

−
=

−

x x
n

x x
, the surface correction of the bond ij  can be determined 

as: 

 

1
2 2 2

x y

ij ij

ij x y

ij ij

n n
G

g g

−

    
    = +
         

 (17) 
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Figure 13. The Ellipsoid for the Surface Correction Factors 

2.5.3. Time integration 

Regarding the time integration in PD theory, the explicit forward and backward 

difference methods are applied. Initially, the displacement and velocity are defined 

by using explicit central difference scheme, which is described in (Stewart Andrew 

Silling and Bobaru, 2005), before the beginning of the integration. The acceleration 

of material point ix  of current time step tn  can be calculated from the equation of 

motion (both Equation (2) and Equation (6)). Therefore, the next time step’s ( 1tn + ) 

velocity and displacement (
1tn

i

+
u  and 

1tn

i

+
u ) can be calculated by using formulations 

given by (Madenci and Oterkus, 2014): 

 
1t t tn n n

i i i t
+
= + u u u  (18) 

and 

 
1t t tn n n

i i i t
+
= + u u u  (19) 

In order to get proper stable numerical solution in explicit time integration, the time 

step size t  needs to be relatively small. Hence, t  can be determined based on a 
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von Neumann stability analysis as described in (Stewart Andrew Silling and Bobaru, 

2005): 

 
2

2
t

c






 


 (20) 

2.5.4. Adaptive dynamic relaxation 

In PD, since the equation of motion is written in dynamic form, in order to solve the 

quasi-static problems, a dynamic relaxation technique can be applied. Based on the 

comments stated in (Kilic and Madenci, 2010), a static solution is actually a steady-

state form of the fluctuating results, which can be obtained by introducing a damping 

factor to the dynamic system. Due to the fact that this damping factor is not always 

determined the most effectively, it needs to be determined every time step using 

Adaptive Dynamic Relaxation (ADR) scheme, which was firstly introduced in 

(Underwood, 1983). 

Therefore, the EOM in PD can be rewritten in terms of ordinary differential 

equations after including the fictitious inertia and damping terms into the system: 

 ( ) ( ) ( ), , , ', , 'dt c t+ =DU X DU X F U U X X  (21) 

where D  is the fictitious diagonal density matrix and dc  is the damping coefficient 

which can be determined by Greschgorin’s theorem (Underwood, 1983) and 

Rayleigh’s quotient, respectively. U  and X  are the displacement and position 

vectors that contain information for all material points in the system, which can be 

expressed as: 

  1 2 3, , ,...,T

m=X x x x x  (22) 
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and 

 ( ) ( ) ( ) ( ) 1 2 3, , , , , ,..., ,T

mt t t t=U u x u x u x u x  (23) 

where m  is the total number of material points in the system.  

The force components of vector F  in Equation (21) can be expressed as: 

 ( )( )
1

n

i ij ji j j i

j

V
=

= − +F t t b  (24) 

To recall, j  represents the volume correction factor applied to the volume of 

material point j , and ijt  is the directional force density vector in OSB PD theory.  

The components of the fictitious diagonal density matrix D  in Equation (21) can be 

computed based on Greschgorin’s theorem as: 

 
2

1

1

4

n

ii ij

j

t K
=

    (25) 

in which ijK  is the stiffness matrix of the system which can be determined by 

deriving from the PD interaction forces with respect to the relative displacement 

vector, and t  is the time step size, which is usually assumed to be 1 in ADR. 

(Madenci and Oterkus, 2014) gives the expression of the elements of the stiffness 

matrix, ijK , after using a small displacement assumption as: 

 
( )

( )
( )

2

1 1

4 1

2

n n n
ij ji ij

ij i i j j

j j j ij ij ijj i

ad
K V V b

  
 

  = =

  − 
 =  = + +
  −  

  
t t e

e
u u

 (26) 
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where e  is the unit vector along x, y and z directions in Cartesian coordinate system, 

a , d  and b  are the PD constants in OSB PD theory, whose expressions will be 

explained in further sections in this thesis. 

The damping factor c  in Equation (21) can be expressed by introducing the lowest 

frequency of the system, while the lowest frequency can be determined from 

Rayleigh’s quotient, as: 

 
T

T
 =

U KU

U DU
 (27) 

Since the components in density matrix D  may contain relatively large values, this 

can lead to significant difficulties to compute   given in Equation (27). However, 

this problem can be solved by rewriting Equation (21) in the following form: 

 ( ) ( ) ( )1, , , ' , , 'n n n n n n n u

dt c t −+ =U X U X D F U U X X  (28) 

The damping coefficient can therefore be expressed as: 

 
( )

( )

1

2

T
n n n

n

d T
n n

c =
U K U

U U
 (29) 

where 1 n
K  is the diagonal “local” stiffness matrix that can be written as: 

 
1

1

1/2

/ /n n
n i ii i ii
ii n

i

F F
K

tu

 −

−

−
= −


 (30) 

Therefore, the velocities and displacements for the next time step can be calculated 

by applying central-difference explicit integration as: 
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( ) 1/2 1

1/2
2 2

2

n n n

n

n

c t t

c t

− −

+
−  + 

=
+ 

U D F
U  (31) 

and 

 1 1/2n n nt+ += + U U U  (32) 

in which n  is the thn  iteration. Since Equation (31) contains a special term which 

represents the velocity at 1/2nt − ,for the initial condition when 0n = , 1/2t −  does not 

have any physical meaning. It is therefore assumed that the initial displacement and 

velocity field are  0 0U  and 0=U , and the integration can then be started by: 

 

1 0
1/2

2

t −
=

D F
U  (33) 
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3. FRACTURE OF POLYCRYSTALLINE MATERIALS 

3.1. Introduction 

As opposed to partial differential equations that traditional approaches are based on, 

PD utilizes integro-differential equations without containing any spatial derivatives. 

Hence, these equations are always applicable regardless of discontinuities such as 

cracks. PD has been used for the fracture analysis of many different types of 

materials and material behaviours (Diyaroglu et al., 2015, Madenci and Oterkus, 

2016, Oterkus and Madenci, 2015, Panchadhara and Gordon, 2016). It has also been 

applied for the analysis of polycrystalline materials (Askari et al., 2008, De Meo, 

Zhu and Oterkus, 2016). However, these studies used either original BB formulation 

(Stewart A Silling, 2000) or NOSB formulation (Stewart A Silling et al., 2007). BB 

formulation has limitations on material constants whereas NOSB formulation may 

encounter the zero-energy mode problem. In order to overcome all these issues, an 

OSB PD formulation (Stewart A Silling et al., 2007, Madenci and Oterkus, 2014) 

can be utilized. This is also the one of the reasons why OSB PD theory is used to 

simulate fracture of polycrystalline materials in this thesis. 

The main purpose of this chapter is to introduce the implementation of OSB PD 

formulation to predict the fracture behaviour and mechanical response of cubic 

polycrystal material by introducing the interface strength coefficient. Firstly, the PD 

results of cubic polycrystalline material are obtained from ADR method for static 

analysis, and the results are compared with those obtained from FEM. Secondly, 

crack patterns are obtained from PD dynamic analysis, and the influence of grain 

boundary strength, crystal size and discretization size on fracture behaviour and 

fracture morphology is investigated. The study in this chapter can be found in (Ning 
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Zhu, De Meo and Oterkus, 2016), and the OSB PD formulation for polycrystalline 

material was utilized for the first time in the literature in order to overcome the 

limitations of BB formulation and zero-energy mode problem of NOSB theory.  

3.2. Ordinary State-based Peridynamic Formulation for a Cubic Crystal 

Similar to the BB PD model presented in (De Meo, Zhu and Oterkus, 2016), the OSB 

model for a cubic crystal can be represented using two types of interactions (bonds), 

as shown in Figure 14.  

 

Figure 14. Type 1 bonds (green dashed lines) and Type 2 bonds (red solid lines) for the OSB PD 

cubic crystal model for a grain orientation (see arrow in the above figure) of 
4


 = . 

These are: 

1. Type 1 bonds (green dashed lines) – interactions along all directions 

( )0 ~ 2 = , 

2. Type 2 bonds (red solid lines) – interactions along the directions of 

1 3 5 7
, , ,

4 4 4 4
    = , 

Grain 
orientations 
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where   represents the angle between the orientation of the bond and the crystal 

(grain) orientation. As an example, bonds within the horizon of a particular material 

point for a grain orientation of 
4


 =  are shown in Figure 14.  

According to OSB PD theory, the strain energy density of a material point can be 

written as (Madenci and Oterkus, 2014): 

 

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )( ) ( )

22

1

2

2

1

' '
'

Tk k

H

J

T j k j k j
j

j k

W a b dH

b V






=

= + − − −
−

+ − − −
−





y y x x
x x

y y x x
x x

 (34) 

where J  is the total number of Type-2 bonds within the family of material points 

( )k
x . 

By using the strain energy density expression given in Equation (34), the 

peridynamic force densities t  and 't  can be obtained as: 

 ( )
1 '

' , ' ,
2 '

t A
−

− − =
−

y y
t u u x x

y y
 (35) 

where  

 ( )1 2 24 4
'

T T TA ad b b s


  =  + +
−x x

 (36) 

with 

 2

1     Type-2 bonds

0        otherwise   
T


= 


 (37) 
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and 

 ( )
1 '

' ' , ' ,
2 '

t B
−

− − = −
−

y y
t u u x x

y y
 (38) 

where 

 ( )1 2 24 ' 4
'

T T TB ad b b s


  =  + +
−x x

 (39) 

In Equations (35) and (38), y  and 'y  represent the location of material points x  and 

'x  after deformation, i.e., = +y x u  and ' ' '= +y x u  (see Figure 8). The PD 

dilatation,  , for a crystal can be expressed as: 

 
( ) ( )' '

'
k

H

d dH


 = − − − 
− y y x x

x x
 (40) 

and the parameter,  , can be defined as 

 
' '

' '

   − −
 =       − −   

y y x x

y y x x
 (41) 

The stretch parameter s  can be expressed as: 

 
' '

'
s

− − −
=

−

y y x x

x x
 (42) 

The PD material parameter a  is associated with the deformation involving 

dilatation, ( )k
 . The remaining material parameters, 1Tb  and 2Tb , are associated with 

deformation of the bonds along the Type 1 and Type 2 bond directions, respectively, 

as shown in Figure 14. All PD material constants can be expressed in terms of 
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material constants of a cubic crystal, ijQ , from classical theory. the procedure for 

obtaining these relationships is presented in Section 3.3. 

When the stretch, 
( )( )k j

s  between material points k  and j  exceeds a critical stretch 

value, 
cs , the interaction breaks and damage occurs. Hence, there will no longer be 

any interaction between these two particles. The critical stretch parameter (2D) can 

be expressed as (Madenci and Oterkus, 2014): 

 

( )2

6 16
2

9

c
c

G
s

   
 

=
 

+ − 
 

 (43) 

where   represents the shear modulus and   is the bulk modulus of the material. 

According to (Anderson, 2005), the critical energy release rate cG  can be obtained 

from fracture toughness IcK , as: 

 
2

     plane stressIc
c

K
G

E
=  (44) 

where E  is the Young’s modulus. 

An “interface strength coefficient” is introduced by (Askari et al., 2008) to 

investigate various fracture modes (intergranular/transgranular)  of polycrystalline 

materials and is defined as: 

 
GB

c

GI

c

s

s
 =  (45) 
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where GB

cs  and GI

cs  denote the critical stretch of interactions that cross the grain 

boundary and the critical stretch of interactions that are located within the grain, 

respectively, i.e., GB represents the grain boundary and GI represents the grain 

interior. 

3.3. Derivation of PD Parameters 

The PD material parameters, a , d , 1Tb  and 2Tb , that appear in the force density 

vector-stretch relations for in-plane deformation of a cubic crystal can be related to 

the engineering constants by considering three different simple loading conditions: 

1. Simple shear: 12 = ; 

2. Uniaxial stretch in crystal orientation direction: 11 = , 22 0 = ; 

3. Biaxial stretch: 11 = , 22 = .  

3.3.1. First Loading Condition (Simple Shear 12 = ) 

In the first loading condition, a constant simple shear strain is applied as shown in 

Figure 15 and the corresponding dilatation and strain energy density from CCM can 

be expressed as: 

 ( ) 0CCM

k
 =  (46) 

And 

 ( )
2

44

1

2

CCM

k
W Q =  (47) 
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For this loading condition, the length of the relative position of material points 
( )jy  

and 
( )k

y  in the deformed state becomes: 

 
( ) ( ) ( )( ) ( )( ) ( ) ( )

1 sin cos
j k j k j j k

   − = + −
 

y y x x  (48) 

 

Figure 15. Simple shear loading condition (x: crystal orientation direction) 

The PD dilatation term can be evaluated as: 

 ( ) ( ) 1 sin cos 0PD

k

H

d dH


     


= + − =    (49) 

in which ( ) ( )j k
 = −x x . As expected, there is no dilatation for this loading condition. 

Therefore, the strain energy density can be calculated as: 

 

( ) ( ) ( ) 

( ) ( )

( )( ) ( )( )( ) ( ) ( ) ( )

2

1

2

2

1

0 1 sin cos

sin cos

PD

Tk

H

J

T j k j k j k j
j

j k

W a b dH

b V


    




  

=

= + + −  

 + −
 −



 x x
x x

 (50) 

or 
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( ) ( )( ) ( )

4 2 2

1 2

112 4

J
PD

T Tk j k j
j

h
W b V b

   


=

  
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Equating expressions of strain energy density from CCM and OSB PD formulations, 

i.e., Equations (47) and (51), results in: 
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1 2
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J
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3.3.2. Second Loading Condition (Uniaxial Stretch in Crystal Orientation 

Direction: 11 = , 22 0 = ) 

In the second loading condition, a constant strain is applied along the direction of 

crystal orientation (Figure 16), and the corresponding dilatation and strain energy 

density from CCM can be expressed as: 

 ( )
CCM

k
 =  (53) 

and 

 ( )
2

11

1

2

CCM

k
W Q =  (54) 

The length of the relative position of material points 
( )jy  and 

( )k
y  in the deformed 

state becomes: 

 
( ) ( ) ( )( )( ) ( ) ( )

21 cos
j k j k j k

  − = + −
 

y y x x  (55) 

Due to this deformation, the dilatation of PD can be evaluated as: 
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or 

 
( )

3

2

PD

k

dh  
 =  (57) 

 

Figure 16. Uniaxial loading condition in crystal orientation direction, x . 

By equating expressions of the dilatation term from CCM and PD formulations, i.e., 

Equations (53) and (57), results in: 

 
3

2
d

h 
=  (58) 

The PD strain energy density for this loading condition can be calculated as: 
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 (59) 
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or 
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Hence, by equating expressions of strain energy density from Equations (54) and 

(60), the following relationship can be obtained: 
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3.3.3. Third Loading Condition (Biaxial Stretch: 11 = , 22 = ) 

In the third loading condition, a constant strain is applied in all directions (Figure 

17), and the corresponding dilatation and strain energy density from CCM can be 

expressed as: 

 ( ) 2CCM

k
 =  (62) 

and 

 ( ) ( ) 2

11 12

CCM

k
W Q Q = +  (63) 

The length of the relative position under this loading condition can be evaluated as: 

 
( ) ( ) ( )( ) ( )( )( ) ( ) ( )

2 21 cos sin
j k j k j k j k

   − = + + −
 

y y x x  (64) 

Hence, the dilatation term in PD formulation can be expressed as: 

 ( )   1PD

k

H

d dH


   


= + −  (65) 
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or 

 
( )

3PD

k
dh   =  (66) 

 

Figure 17. Biaxial Stretch Loading Condition 

By equating the expressions of dilatation from both CCM and PD, i.e., Equations 

(62) and (66), the same expression given in Equation (58) can be obtained. 

Moreover, the PD strain energy density under this loading condition can be evaluated 

as: 
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 (67) 

By equating Equations (63) and (67), a new relationship can be obtained, as: 

 ( )( ) ( )

4

11 12 1 2

1

2
4

3

J

T Tj k j
j

h
Q Q a b V b

 
 

=

  
+ = + +  

   
  (68) 



48 
 

Hence, the OSB PD material parameters can be expressed in terms of engineering 

constants of CCM by utilizing the three relationships given in Equations (52), (61) 

and (68) as: 
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 (69) 

For BB PD, the parameter a  associated with dilatation should vanish, leading to the 

constraint equation 12 44Q Q= , which is a limitation of BB PD in cubic polycrystal 

analysis. 

3.4. Numerical Results and Discussion 

In this section, the results generated from static and dynamic PD analyses are 

presented, and comparisons with FEM results are also provided. For static analysis, a 

single cubic Niobium (Nb) crystal model is considered first and displacement fields 

of PD and FEM are compared. Then, a cubic Molybdenum (Mo) polycrystal model 

with 18 Voronoi grains is analysed, and the PD and FEM displacement fields are 

compared. For the dynamic analysis, the influence of the discretization size and the 

interface strength coefficient ( )  on the results is considered first. Then the 

influence of crystal size on fracture behaviour is investigated. 
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3.4.1. Material data 

Two different materials are considered in this study: niobium (Nb) for single crystal 

static analysis, and molybdenum (Mo) for polycrystal static and dynamic analysis. 

According to (Hosford, 1993), the local stiffness matrix of each individual crystal 

can be written as: 

  

11 12 12

12 11 12

12 12 11

44

44

44

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C
C

C

C

C

 
 
 
 

=  
 
 
 
  

 (70) 

However, for plane stress configuration, the material matrix given in Equation (70) 

can be written by using reduced stiffness matrix following the procedure given in 

(Kaw, 2005) as: 

  
11 12

12 11

44

0

0

0 0

Q Q

Q Q Q

Q

 
 

=
 
  

 (71) 

where ijQ  are the reduced stiffness coefficients and can be expressed in terms of the 

elements of the stiffness matrix, ijC  as: 
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−
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 (72) 
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Therefore, the material properties of Nb and Mo are given in Table 1 as shown below 

(Kaw, 2005): 

Table 1. Material properties of Niobium and Molybdenum 

Niobium Molybdenum 

11C  239.8 GPa 11Q  174.4 GPa 11C  441.6 GPa 11Q  374.5 GPa 

12C  125.2 GPa 12Q  59.82 GPa 12C  172.7 GPa 12Q  105.4 GPa 

44C  28.22 GPa 44Q  28.22 GPa 44C  121.9 GPa 44Q  121.9 GPa 

The fracture toughness of Mo is specified as 24.2 MPaIcK m= (Sturm et al., 

2007), which corresponds to a critical stretch value of 0.008127 for plane stress 

configuration. 

3.4.2. Static analysis 

A cubic crystal model with a length of 152.4 m  and a width of 76.2 m  is 

considered and the number of particles along the horizontal and vertical directions is 

240 and 120, respectively. The values of grid spacing and horizon are 

0.635 mx  =  and 1.915 m = , respectively. A uniform discretization scheme is 

used throughout this study. However, non-uniform discretization can also be possible 

by using small grid sizes at critical regions such as interfaces and utilizing the “Dual-

horizon peridynamics” concept, as introduced by (Ren et al., 2016, Ren, Zhuang and 

Rabczuk, 2016). A horizontal tension loading of P  is applied on the right edge of the 

model and the left edge is fully fixed as shown in Figure 18. The tension loading is 

specified as a body load and applied to a single layer of material points at the right 

edge of the model. The displacement constraint condition at the left edge is also 

imposed to a single layer of material points. To reach the steady-state condition and 

perform static analysis, an ADR technique was utilized as described in (Madenci and 

Oterkus, 2014). 
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Figure 18. Crystal Model for Static Analysis 

3.4.2.1. Static analysis of Nb single crystal 

 

(a) 

 

(b) 

Figure 19. Comparison of displacements between FEM and PD analyses for Nb crystal for 0° 
orientation: (a) horizontal displacements for particles along the central x-axis; (b) vertical 

displacements for particles along the central y-axis 
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The tension loading applied on the right edge of the model is 174.4 MPaP = . In 

ANSYS, the plate was modelled using PLANE 182, with total of 5000 elements.  

Figure 19 and Figure 20 show a comparison of the results obtained from FEM and 

PD analysis under plane stress conditions for crystal orientations of 0° and 45°, 

respectively. Particles located along the central x-axis and y-axis are selected and 

horizontal and vertical displacements are compared, respectively. 

 

(a) 
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(b) 

Figure 20. Comparison of displacements between FEM and PD analyses for Nb Crystal for 45° 
orientation: (a) horizontal displacements for particles along the central x-axis; (b) vertical 

displacements for particles along the central y-axis 

Based on the results presented in Figure 19 and Figure 20, good agreement is 

obtained between PD and FEM analyses. Therefore, it can be concluded that the 

OSB PD crystal model presented in this study can produce accurate results for 

different crystal orientations for a single crystal. 

3.4.2.2. Static analysis of Mo polycrystal 

In the second case, a polycrystal model with 18 randomly orientated grains is 

generated by using Voronoi tessellation. A uniform discretization is utilized. 

Depending on the location of the material point, corresponding grain orientation is 

determined. Hence, Type 2 bonds will exist in many different directions according to 

the random orientation of the crystals. The average crystal size is 2645.16 m  and 

the amount of tension loading applied on the right edge is 374.5 MPaP = . The 

layout of the polycrystal model is shown in Figure 21. Similar with the single crystal 
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model described in previous section, PLANE 182 was used as element type, and total 

number of 3087 elements was modelled. 

 

Figure 21. Model for the static analysis of Mo polycrystal, composed of 18 randomly orientated 
grains with respect to the x-y coordinate system located at the centre of the model 
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Figure 22. Displacement Field Comparison between FEM and PD Analyses for Mo Polycrystal (x-
direction) 
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Figure 23. Displacement Field Comparison between FEM and PD Analyses for Mo Polycrystal (y-
direction) 

3.4.3. Dynamic Analysis of Mo Polycrystal 

For the dynamic analysis, a 5 mm by 5 mm square plate with randomly oriented 

grains is considered as shown in Figure 24. A horizontal velocity boundary condition 

of 5 m/sV =  is applied on both the left and right edges of the model. Three layers of 

virtual particles are placed along the left and right edges to impose this condition, as 

suggested in (Madenci and Oterkus, 2014). A no-fail zone is also imposed on virtual 

particles and their neighbouring particles in order to allow the load to be accurately 

transferred inside the plate. Two pre-existing cracks with a length of 0.4 mm are 

applied at the center of the bottom and top edges, as shown in Figure 25. The time 

step size is specified as 0.05 nsdt =  and the total number of time steps is 100,000, 

i.e., the total simulation time of 5.0 s . The study considers three different interface 

strength coefficient,  , values (0.5, 1.0, and 2.0), three different mesh sizes 

( 74 74 , 150 150 , and 300 300 ) and three different total number of grains (25, 

100, and 400; i.e., different crystal sizes). 
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Figure 24. Polycrystal model for Dynamic Analysis (100 grains) 

3.4.3.1. Effect of PD Discretization Size and Interface Strength Coefficient ( )  

The aim of this analysis is to investigate the effect of the peridynamic discretization 

size on the crack pattern predicted by PD model and the morphology of intergranular 

and transgranular fracture modes when changing the value of the interface strength 

coefficient,  . The horizon is specified as 3.015 x =  , which means that it is 

controlled by changing the PD discretization ( 74 74  particles, 150 150  particles, 

and 300 300  particles). Moreover, three different interface strength coefficients,  , 

values are considered to investigate the intergranular and transgranular fracture 

modes of the polycrystal. 
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Figure 25. Location of the Cracks in the Model for Dynamic Analysis 

 

Figure 26. Fracture pattern of polycrystal when 0.5 =  with 74 74  particles. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 

 

Figure 27. Fracture pattern of polycrystal when 0.5 =  with 150 150  particles. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 
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Figure 28. Fracture pattern of polycrystal when 0.5 =  with 300 300  particles. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 

Figure 26 - Figure 28 show the fracture pattern of the polycrystal under plane stress 

configuration at five different times ( )1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s      for 

0.5 =  with 74 74  particles, 150 150  particles, and 300 300  particles, 

respectively. 

The results show that with an increasing total number of particles, the intergranular 

crack pattern can be predicted more accurately and in more detail. However, the 

simulation time will increase rapidly as well. Therefore, it is important to find a good 

balance between accuracy and time. In this study, 150 150  particles can provide 

appropriate results, which is the reason why most of the simulations in this chapter 

are chosen by using this number of particles. 
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Figure 29. Fracture pattern of polycrystal when 1.0 =  with 74 74  particles. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 

 

Figure 30. Fracture pattern of polycrystal when 1.0 =  with 150 150  particles. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 

 

Figure 31. Fracture pattern of polycrystal when 1.0 =  with 300 300  particles. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 



61 
 

 

Figure 32. Fracture pattern of polycrystal when 2.0 =  with 74 74  particles. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 

 

Figure 33. Fracture pattern of polycrystal when 2.0 =  with 150 150  particles. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 

 

Figure 34. Fracture pattern of polycrystal when 2.0 =  with 300 300  particles. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 
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Figure 29 - Figure 34 show the fracture patterns of the polycrystal at five different 

times ( )1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s      for 1.0 =  and 2.0 =  with 

74 74  particles, 150 150  particles, and 300 300  particles, respectively. 

As described above, similar conclusions can be found in these simulations. For 

instance, branching of cracks can be obtained more clearly by increasing the total 

number of particles, but the simulations become more time-consuming. Moreover, 

the transgranular fracture mode becomes more dominant as the interface strength 

coefficient increases. 

3.4.3.2. Effect of the crystal size 

The aim of this section is to investigate the effect of the crystal size on fracture 

pattern. The plate is discretized by 150 150  particles, containing three different 

numbers of randomly orientated grains (25 grains, 100 grains, and 400 grains). Three 

different grain boundary strength coefficients, 0.5 = , 1.0 =  and 2.0 =  are 

considered to investigate the effect of crystal size for different fracture modes. 

 

Figure 35. Fracture pattern of polycrystal when 0.5 =  with 25 grains in total. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 



63 
 

 

Figure 36. Fracture pattern of polycrystal when 0.5 =  with 100 grains in total. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 

 

Figure 37. Fracture pattern of polycrystal when 0.5 =  with 400 grains in total. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 

Figure 35 - Figure 37 show the fracture pattern of the polycrystal at five different 

times ( )1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s      for 0.5 =  with 25 grains, 100 

grains, and 400 grains, respectively. 

According to the damage plots shown in Figure 35 with 25 grains at 2.0 s , the 

propagation does not always occur from pre-existing cracks. Only the top pre-

existing crack propagates in the 100-grain model and both pre-existing cracks 

propagate in the 400-grain model. This is because with an increase in the total 

number of grains, the probability of the pre-existing cracks being located on a grain 

boundary increases. In other words, since the grain boundary strength 0.5 =  

promotes intergranular fracture mode, the crack can more easily propagate if it is 
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located on the grain boundary. However, for the grain boundary strength values of 

1.0 =  and 2.0 = , there is no such difference observed in fracture behaviour and 

both pre-existing cracks propagate as shown in Figure 38 - Figure 43. 

 

Figure 38. Fracture pattern of polycrystal when 1.0 =  with 25 grains in total. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 

 

Figure 39. Fracture pattern of polycrystal when 1.0 =  with 100 grains in total. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 
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Figure 40. Fracture pattern of polycrystal when 1.0 =  with 400 grains in total. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 

 

Figure 41. Fracture pattern of polycrystal when 2.0 =  with 25 grains in total. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 

 

Figure 42. Fracture pattern of polycrystal when 2.0 =  with 100 grains in total. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 



66 
 

 

Figure 43. Fracture pattern of polycrystal when 2.0 =  with 400 grains in total. From left to right: 

time = 1.5 s, 2.0 s, 2.5 s, 3.0 s, and 3.5 s     , respectively 

3.5. Summary 

In this chapter, a new OSB PD formulation is presented, and related derivations are 

provided. The current model does not have any limitations on material constants as 

in the BB PD theory. Static analyses were carried out for validation purposes and a 

comparison of results between PD and FEM shows that the proposed PD model can 

accurately capture the deformation behaviour of cubic polycrystalline materials. 

Then, dynamic analyses were carried out by considering different configurations to 

investigate the effect of interface strength coefficient, discretization size, and crystal 

size. The observations based on the evaluated results can be summarized as: 

1. Intergranular and transgranular fracture modes can be captured by changing 

the interface strength coefficient. As a future study, by comparing the 

experimental and PD results of crack morphology, actual interface strength 

coefficients can be estimated. Once the interface strength coefficient is 

estimated for a certain material, it could be used as a material parameter for 

researchers to study more complex problems and make the analysis easier. 

2. The accuracy of simulation can be improved by increasing the total number 

of particles for intergranular fracture. However, the difference is not 
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significant for transgranular fracture. In order to prevent the simulation from 

being time-consuming, a good balance should be considered between 

accuracy and simulation time. 

3. Pre-existing cracks can propagate more easily with decreasing crystal size for 

intergranular fracture mode, since there is a higher probability of a pre-

existing crack interacting with a grain boundary. 

As a future study, experimental studies can be used to validate and refine the damage 

predictions of the proposed PD model, which is also the reason why the dynamic 

results were not able to be verified. Moreover, as the current study is mainly focused 

on a 2D model, the formulation can be extended to a 3D model. 
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4. CALCULATION OF STRESS INTENSITY FACTOR 

4.1. Introduction 

This chapter will introduce a new approach to calculate stress intensity factors based 

on a combination of DEM and PD Theory. After obtaining the displacement field 

from PD Theory, by appropriately selecting nodes at the crack tip region and their 

displacements yield SIF at the crack tips. To demonstrate the capability of the 

proposed approach, three different benchmark problems are considered including 

plate with a central crack, plate with an edge crack and plate with a slanted crack. 

Results evaluated from the current approach are compared against analytical and 

finite element analysis results, and good agreement is obtained between three 

different approaches. This shows that coupled DEM and PD Theory approach can be 

an alternative method to calculate SIF. 

4.2. Displacement Extrapolation Method 

The displacement field around crack tip under Mode I loading condition (Figure 45a) 

for linear elastic materials can be written as: 
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Figure 44. Local Coordinate System around Crack Tip 

As shown in Figure 44, u  and v  are displacements in the local Cartesian coordinate 

system, r  and   are the coordinates in the local cylindrical coordinate system at 

crack tip, G  and   are shear modulus and Poisson’s ratio of the material, and IK  is 

the SIF under Mode I loading condition. 

 
Figure 45. Fracture modes: (a) Mode I – crack opening, (b) Mode II – in-plane shear and (c) Mode 

III – out-of-plane shear 

On the other hand, the displacement expressions for a crack tip under Mode II 

loading condition (Figure 45b) can be expressed as: 
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(a)                                  (b)                                           (c) 
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where IIK  is the Mode II SIF. Moreover, the displacement expression for a crack tip 

under Mode III loading (Figure 45c) can be expressed as: 

 
2

sin
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G




=  (78) 

where IIIK  is the Mode III SIF. Hence, the actual displacements around the crack tip 

area for linear elastic materials under mixed-mode loading can be expressed as: 
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where 

 

3 4      plane strain

3
      plane stress

1



 


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

= −
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 (82) 

For material points located at crack surface ( )180 = , Equations (79), (80) and (81) 

can be rewritten as: 
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Therefore, the Mode I, Mode II and Mode III SIF for material points which are 

located at crack surface can be calculated through the displacements as: 
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where v , u  and w  are the relative displacements of one crack face with respect 

to the other. For example, K Mv v v = −  for points K and M shown in Figure 46(a).  

As shown in Figure 46(a), in order to find the SIF at the crack tip ( )0r = , the only 

term that needs to be considered is 
v

r


 for the full crack model. Note that for 

symmetric problems with respect to the horizontal plane, it is sufficient to consider 

half of the model as shown in Figure 46(b) and the relative displacement can be 
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calculated as 2 'v v =  . It can be assumed that 
v

r


 is a linear function for the 

material points at the crack surface: 

 
v

a b r
r


= +   (89) 

 
(a) 

 
(b) 

Figure 46. Crack tip displacements: (a) Full model, (b) Half model 

Unknown constant a  and b  can be determined with the displacements of the 

selected material points (point K, J, M and L in Figure 46). To calculate IK  at the 

crack tip,  0r → , Equation (89) will yield as: 

 
0

lim
r

v
a

r→


=  (90) 

Therefore, the SIF IK  can be computed as: 
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4.3. Implementation of DEM in PD 

As described in previous section, it is essential to find the proper material points 

(including one for the crack tip location and the other two for symmetric problems or 

four for other problems) to compute the stress intensity factor using DEM. The 

numerical implementation is done by implementing the PD formulation in finite 

element framework as described in (Macek and Silling, 2007). The static solution is 

obtained by directly assigning zero to the inertia term and solving a matrix system. 

After the displacement field is obtained (as shown in Figure 47) and proper material 

points are selected (for example, point 41 and 42 in Figure 48), the Mode I stress 

intensity factor IK  can be calculated using Equation (91) with the displacements v  

of the selected material points. The flowchart of the process can be found in Figure 

49. In the current study, the material points which not only closest to the crack tip, 

but also closest to the actual crack surface are chosen to calculated SIF. 

4.4. Numerical Results 

To verify the implementation of DEM in PD framework, several benchmark 

problems, starting from the simple central-cracked problem to the more complex 

slanted-cracked problem, were considered, and the results were compared with both 

analytical solutions and those computed by ANSYS. 
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Figure 47. Displacement Field around Crack Tip Area 

 

Figure 48. Example of Points Selection to Calculate SIF 

4.4.1. Plate with a central crack 

The first problem that was considered was a finite width plate with a crack at the 

centre. As shown in Figure 50, the width and height of the plate were ( )2b =  2m and 

( )2h =  4m, respectively, and a ( )2a =  0.4m long crack was located at the centre of 

the plate. The elastic modulus was specified as 164.3 GPa and Poisson’s ratio is 0.32. 

A tension load of 183 MPa was applied on both top and bottom edges of the plate. 
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Figure 49. Flowchart for Calculation of SIF 

For this particular configuration, (Rooke and Cartwright, 1976) provided a 

theoretical equation on how to compute the Mode-I SIF for the plate with a central 

crack, which can be written as: 
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 (92) 

For the PD simulation, the plate was discretised by 100×200 material points, and the 

thickness of the plate was specified as 0.02m. The normalised SIF calculated from 

PD was compared with the result computed from Equation (92) and the result 

calculated from ANSYS, a commercial finite element software, by using the KCALC 

command. Table 2 shows results and the comparison between PD, analytical and 

ANSYS results. According to these results, SIF calculated from PD theory agree 

very well with the analytical and ANSYS results. The difference between PD and 
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analytical results is less than 5% whereas the difference between PD and ANSYS 

results is less than 3%. 

 

Figure 50. Finite Plate with a Central Crack 

 

Table 2. Summary of SIF results (plate with a central crack) 

 
Mode I normalised SIF 

( /IK a  ) 
Difference 

PD 1.0541  

Equation (92)  1.0050 4.87% 

ANSYS 1.0265 2.69% 

 
4.4.2. Plate with an edge crack 

The second problem which was considered was a plate with an edge crack, as shown 

in Figure 51, the width and height of the plate were ( )b =  1m and ( )2h =  4m, 

respectively, and a ( )a =  0.2m long crack was located at the left edge of the plate. 

The material properties and the tension load are the same as in the first problem. 
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Figure 51. Plate with an edge crack 

For this particular configuration, the SIF can be calculated as: 

 1.12IK a =  (93) 

The plate was also discretized by 100×200 material points and the PD SIF result was 

compared with that computed by Equation (93) given by (Paul C. Paris and Sih, 

1965) and ANSYS, which can be shown in Table 3. Again, a good agreement is 

obtained between PD, analytical and ANSYS results. The difference between PD and 

analytical results is less than 4% whereas the difference between PD and ANSYS 

results is less than 5%. 

Table 3. Summary of SIF results (plate with an edge crack) 

 
Mode I normalized SIF 

( /IK a  ) 
Difference 

PD 1.1637  

Equation (93) 1.1200 3.88% 

ANSYS 1.1133 4.52% 
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4.4.3. Plate with a slanted crack 

The third problem which was considered was a plate with a slanted crack at the 

centre. As shown in Figure 52,   is the orientation of the crack surface with respect 

to x-axis. The width and height of the plate were ( )b =  1m and ( )h =  2m, 

respectively, and the central crack has a length of ( )a =  0.2m. 

 

Figure 52. Plate with a slanted crack 

 

 

The analytical form of SIF for slanted cracks can be expressed as (George C. Sih, 

Paris and Erdogan, 1962): 

 ( )2 2cos sin
2

I

a
K


   = +  (94) 
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and 

 ( )1 sin cos
2

II

a
K


   = −  (95) 

where   is the ratio between the tensile load applied horizontally and the load 

applied vertically. In this section,   was set to 0, which means only tension loading 

is applied at the top and bottom edges of the plate, and   was set to be 60 and 15 

degree. The material properties and the tension load are the same as in the previous 

problem. 

Unlike the PD simulation described in the previous two sections, in order to make the 

analysis more accurate due to the crack is not aligned with horizontal axis, the plate 

was discretized into 160×320 material, and the results of both Mode I and Mode II 

SIFs were computed from PD and compared with SIF calculated by using Equations 

(94) and (95). The results are given in Table 3, Table 4 and Table 5. 

As shown in the tables, a very good agreement is obtained for both Mode I and Mode 

II SIFs between analytical and PD results. The difference between PD and analytical 

results is less than 8% for both Mode-I and Mode-II SIFs. 

 

Table 4. Summary of SIF results (plate with 60 degree slanted crack) 

=60   
Mode I normalized SIF 

( /IK a  ) 
Difference 

PD 0.2702  

Equation (26) 0.2506 7.82% 

 
Mode II normalized SIF 

( /IIK a  ) 
Difference 

PD 0.4600  

Equation (27) 0.4329 6.26% 
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Table 5. Summary of SIF results (plate with a 15 degree slanted crack) 

=15   
Mode I normalized SIF 

( /IK a  ) 
Difference 

PD 1.0022  

Equation (26) 0.9332 7.40% 

 
Mode II normalized SIF 

( /IIK a  ) 
Difference 

PD 0.2632  

Equation (27) 0.2501 5.26% 

 

4.5. Summary 

In this chapter, a coupled DEM and PD Theory approach is utilized to calculate SIF. 

To demonstrate the capability of the proposed approach, three different benchmark 

problems were considered including plate with a central crack, plate with an edge 

crack and plate with a slanted crack. SIF obtained from PD Theory were compared 

against analytical and ANSYS results. For all three cases, it was observed that the 

results obtained with the current approach agree well with analytical and ANSYS 

results. The maximum difference between PD and analytical results is less than 8% 

for all cases including Mode-I and Mode-II SIFs. Finally, it can be concluded that the 

proposed approach can be used as an alternative approach to calculate SIF. Although 

DEM has been widely used in FEM to calculate SIF already, there are few 

researchers who use DEM under PD framework. Unlike the J-integral which need a 

specific path to calculate SIF, DEM can directly link the displacement field solved 

by PD theory with DEM without any modification. As discussed in Abstract, PD has 

many advantages compare with other numerical methods when dealing with 

discontinuity problems. For example, the remeshing is the main problem when using 

FEM to simulate crack growth, but PD can handle it automatically. Since PD has 

been chosen as the tool to solve polycrystal fatigue crack growth problem, it is 
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necessary to discover a method to calculate SIF under PD framework, rather than 

under FEM framework. 
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5. FATIGUE MODEL IN PERIDYNAMIC 

FRAMEWORK 

5.1. Introduction 

This chapter provides simulations to predict crack propagation of polycrystal 

structure under cyclic loads using PD theory. The PD fatigue model utilizes the ε-N 

data and introduces the “bond remaining life” of each bond calculated from its cyclic 

strain which changes over time. The model also captured the traditional Paris’ law 

which is widely used for computing fatigue crack growth. Moreover, a crack tip 

detecting algorithm is introduced in this chapter to face the requirements of the 

fatigue model. Finally, several simulations are carried out to compare the effect of 

how the strength of crystal boundary influences the crack pattern.  

5.2. Fatigue Model in Peridynamic Framework 

The PD fatigue model was recently introduced by (Stewart A. Silling and Askari, 

2014) for linear isotropic materials, which includes all three phases in fatigue failure: 

nucleation, crack growth and static propagation.  

Unlike the failure algorithm described in Chapter 2.3, which was used for analysis of 

linear elastic brittle material, a new algorithm called “remaining life” was introduced. 

The new damage variable ( ), , N x ξ  means the remaining life of a bond ξ  which is 

associated with the material point x , and can be expressed as follows (Stewart A. 

Silling and Askari, 2014): 

 ( ) md
N A

dN


= −  (96) 
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where A  and m  are material constants which can be determined by complying 

against experimental results.   denotes the cyclic bond strain of the bond ξ , which 

can be computed using the equation below: 

 max mins s = −  (97) 

where 
maxs  and 

mins  are the stretch of the bond ξ  under the two extreme loads in this 

cycle. It is assumed that the initial life of the bond ξ  at 0N =  is 1, i.e. ( )0 1 = , and 

the bond breaks irreversibly when ( ) 0N  . Since the material is assumed to be 

linear elastic material, the cyclic bond strain can also be expressed by using only 

maxs  and the load ratio 
min max/R s s= . Hence Equation (97) can be rewritten as: 

 ( ) max1 R s = −  (98) 

which means that only the maximum loading condition needs to be considered in 

simulations.  

The first phase of the PD fatigue model is Phase I: Nucleation. In this phase, the 

material constant A  and m  are calibrated with the experimental results (i.e. the S-N 

curve in strains) of the material, which is shown in Figure 53. 

It was assumed that the first bond in the horizon H x  is broken at 1N  cycle, and the 

corresponding cyclic strain range is 1 . Since the initial bond life of this bond is 

( )1 0 1 = , by integrating Equation (96), it can lead to: 

 1

1 1 1 1
mA N =  (99) 
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where 
1A  and 

1m  denotes the material constants for Phase I analysis. To obtain 
1A  

and 1m , a straight line is fitted to the experimental data in the form of an S-N curve 

in terms of strains, and the constants can be obtained from the function of the fitted 

straight line. Hence the first bond is broken when: 

 
1

1 1

1
m

N
A

  (100) 

 

Figure 53. Calibration of Material Constant for Phase I: Nucleation 

If there is a bond broken at 1  in Phase I, new static analysis needs to be carried out 

at the same cycle. Since the strains of nearby bonds will increase, if the strain of a 

nearby bond is larger than 1 , the bond is broken and another static solution is 

calculated until there are no more bonds broken.  

The second phase of the PD fatigue model is Phase II: crack growth. Unlike Phase I, 

in which Equation (96) is used to evaluate the fatigue life of a bond, the discretized 

remaining life 
n

ij  which is associated with the material points ix  and jx  for a range 
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of discretized range of cycles ( )N n  can be evaluated using backward finite 

differences of Equation (96) as follows (Guanfeng Zhang et al., 2016): 

 
( ) ( )

( ) 2

1

2
1

n n
mij ij n

ijA
N n N n

 


−−
= −

− −
 (101) 

with 

 
0 1ij =  (102) 

where 
n

ij  represents the cyclic bond strain of bond ij  at cycle range n , and 2A  and 

2m  are material constants for Phase II analysis. In order to determine these two 

material constants, the PD remaining life evolution law needs to be calibrated with 

the well-known Paris’ Law (Stewart A. Silling and Askari, 2014), whose data can be 

obtained from experiments. It is assumed that the evolution law for the remaining life 

is only suitable to use for the bonds which are located in the horizon of points that 

are in Phase II or at the crack-tip. The explanation of how to obtain 2A  and 2m  can 

be found in (Stewart A. Silling and Askari, 2014) and (Guanfeng Zhang et al., 2016). 

The transformation of PD fatigue analysis from Phase I: Nucleation to Phase II: 

Crack Growth happens when there’s a point that within its horizon (including itself), 

there is a point with a damage value of 0.5d  . If there is a pre-existing crack 

presented in the model, the points located within the horizon of the crack tip will 

directly switch to Phase II, as there are points whose damage values have already 

reached to 0.5. 
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5.3. Crack Tip Detecting Algorithm 

As described in the previous section, the points which are located within the horizon 

of the crack tip will directly switch from Phase I to Phase II if a pre-existing crack is 

presented in the model, hence it is essential to automatically update the location of 

the crack tip during the simulation. “bwmorph” function with “endpoints” option has 

been used by (Guanfeng Zhang et al., 2016) after converting the PD damage map to 

black and white images in Matlab. There are different crack tip detecting (or 

tracking) algorithms been developed in CZM and FEM (M. Cervera and Chiumenti, 

2006, Saloustros, Pelà and Cervera, 2015, Sancho et al., 2007, Wang and Xu, 2015), 

however, quite less in PD theory. The crack tip detecting algorithm used in this thesis 

is generally following the similar technique introduced in (Miguel Cervera et al., 

2010). There are three steps when using crack tip detecting algorithm in PD 

framework: Firstly, a mesh is generated using PD bonds to connect a material point 

with its neighbouring material points only. In other words, there are no bonds 

exceeding length of x  in this mesh. Therefore, the model is discretised in to unit 

blocks which contain four material points and four bonds with a length of x  in each 

block. Secondly, the four bonds in a block are checked every PD integration to see if 

any of which are broken. If at least one bond breaks, the status of this block will be 

marked as “damaged” (shown as “T” in Figure 54). A “damaged” block means the 

crack tip has already either reached or passed this block. Thirdly, for each 

“damaged” block, its neighbouring blocks need to be checked to see how many of 

these blocks are “damaged”. Hence, the crack tip will be located at the damaged 

block which has only one damaged neighbouring block.  



87 
 

5.4. Numerical Results and Discussion  

5.4.1. Analysis of plate with a central crack problem using crack tip detecting 

algorithm 

Before starting to use PD fatigue model to analyse a polycrystalline material, crack 

tip detecting algorithm needs to be tested by simulating the same problem presented 

in (Madenci and Oterkus, 2014).  

 

Figure 54. PD mesh used in the crack tip detecting algorithm, blue line represents the pre-existing 
crack 

The first problem is a 0.05 m width and 0.0001 m thick square plate with a 0.01 m 

length pre-existing central crack. The plate is discretised with 500×500 material 

points. Moreover, 3 more layers of material points are added on both top and bottom 

edges (as shown in Figure 55) in order to apply 20.0 m/s velocity boundary condition 

to these edges. The horizon   is set as 3.015 times the spacing between material 

points and the critical stretch is 0 0.04472s = . There are 1250 time steps in the 

simulation, and the time step size is 81.3367 10 st − =  .  

In (Madenci and Oterkus, 2014), local damage value was used to determine the 

location of the crack tip, which was based on any material point’s damage exceeding 
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0.38d =  along the x-axis. The growth of the crack with respect of time is shown in 

Figure 56 (blue line), and the crack growth speed can be obtained as 1650 m/s. 

 

Figure 55. Plate with a pre-existing central crack 

The crack growth data can also be obtained using the crack tip detecting algorithm 

when running the same problem, which is shown in Figure 56 (red line), and the 

crack growth speed can be obtained from the slope of the straight line as 1641 m/s. 

By comparing the results with those in (Madenci and Oterkus, 2014), it can be 

concluded that the results are in good fit. 

5.4.2. Fatigue analysis of polycrystalline material 

The PD fatigue analysis is generally following the flowchart given in Figure 57 

where minD  and maxD  represents the critical damage factors, which were introduced 

by (Guanfeng Zhang et al., 2016). The purposes of introducing these two parameters 

are not only to determine the correct crack path with minimal number of static 

solutions, but also to prevent from breaking too many bonds within one static 

solution so that the solution doesn’t become unstable. In each static solution, the 

maximum damage difference ( d ) of material points which are located within a 
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certain area from the crack tip between the previous static solution and the current 

one is compared with the two critical damage factors to determine the next action by 

following the flowchart. The location of the crack tip is updated for each static 

solution as well in order to determine the material points that are in crack growth 

stage.  

 

Figure 56. Crack growth vs. Time (Red – Crack tip detecting algorithm, Blue - (Madenci and Oterkus, 
2014)) 
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Figure 57. Flowchart for PD fatigue analysis with critical damage factors 

5.4.3. Setup of the model 

The geometry of the model can be found in Figure 58. The material used in the 

analysis was the cold rolled SAE 1020 steel, with Young’s modulus of E = 205 GPa 

and Poisson’s ratio of 0.29. According to (Guanfeng Zhang et al., 2016), since there 

is a pre-existing crack in the model, the whole simulation will automatically switch 

to the crack growth phase, hence the key parameters that were used in the analysis 
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are 
6

2 =9.53 10A   and 2 2.1m = . The horizon size is 1.2 mm = , and / 4x  = . The 

force which is exerted on the model is =6000P N . 

 

Figure 58. Geometry of the model used in PD fatigue analysis 

There were three different polycrystalline models considered, with 25, 100 and 400 

grains randomly distributed within the model, respectively. The polycrystal models 

were generated using Voronoi diagram, which are shown in Figure 59, and to make 

the simulation simple, the material in each grain is assumed to be isotropic. To 

investigate various fracture modes of polycrystalline materials, the “interface 

strength coefficient (  )” was first introduced by (Askari et al., 2008) and then 

discussed by (De Meo, Zhu and Oterkus, 2016) and (Ning Zhu, De Meo and Oterkus, 

2016). Similarly, the interface strength coefficient was also considered in this paper 

to study the effect of interface strength with respect to the crack pattern. Unlike   

described in (Askari et al., 2008),   used in this chapter can be defined as: 

 2

2

GI

GB

A

A
 =  (103) 
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where 2

GBA  and 2

GIA  denote the material constants used in the Phase II PD fatigue 

analysis for the bonds that cross the grain boundary and the bonds that are located 

within the grain, respectively. Here, GB means the grain boundary, and GI means the 

grain interior. Therefore, when 1.0  , 2

GBA  is larger than 2

GIA , which means that 

the remaining life of the cross-grain bonds will decrease faster than the in-grain 

bonds, assuming the bonds are applied the same cyclic strain value. In other words, 

1.0   means the grain boundary is weaker, on the other hand, 1.0   represents 

that the grain boundary is stronger. In this paper, the study considers 5 different 

interface strength coefficient,  , values (0.1, 0.5, 1.0, 2.0, 10.0) and three different 

total numbers of grains (25, 100 and 400).  

 

Figure 59. Polycrystal model for PD fatigue analysis. (a): 25 grains, (b): 100 grains and (c): 400 
grains 

5.4.4. Effect of interface strength coefficient on crack patterns 

The first analysis aims to study the crack pattern of intergranular and transgranular 

fracture modes by changing the interface strength coefficient value. 

By comparing the results in Figure 60(a) and (b) with (c), it can be found that there is 

a sharp turn of the crack pattern (red arrow) in both Figure 60(a) and (b), which is 

because that the crack was first propagating within the grain until it reached close to 

the grain boundary, and since the grain boundary in Figure 60(a) and Figure 60(b) is 
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weaker, the crack pattern is much easier to follow the boundary (intergranular 

fracture mode) than Figure 60(c).  

 

Figure 60. Crack pattern of polycrystal with 25 grains. (a) 0.1, 246  cyclesn k = = , (b) 

0.5, 331  cyclesn k = = , (c) 1.0, 345  cyclesn k = = , (d) 2.0, 431  cyclesn k = = , and (e) 

10.0, 429  cyclesn k = =  

Figure 61 and Figure 62 both show more clearly of the influence of interface strength 

coefficient to the crack pattern than Figure 60. When 1.0  (Figure 61(a), Figure 

61(b), Figure 62(a) and Figure 62(b)), which means the bonds across the grain 

boundary are much weaker than those located within the grain, the crack will be 

more likely to propagate along grain boundaries, comparing with crack patterns 

when 1.0   (Figure 61(d), Figure 61(e), Figure 62(d) and Figure 62(e)).  
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Figure 61. Crack pattern of polycrystal with 100 grains. (a) 0.1, 48  cyclesn k = = , (b) 

0.5, 174  cyclesn k = = , (c) 1.0, 345  cyclesn k = = , (d) 2.0, 453  cyclesn k = = , and (e) 

10.0, 784  cyclesn k = =  

 
Figure 62. Crack pattern of polycrystal with 400 grains. (a) 0.1, 51  cyclesn k = = , (b) 

0.5, 214  cyclesn k = = , (c) 1.0, 345  cyclesn k = = , (d) 2.0, 512  cyclesn k = = , and (e) 

10.0, 846  cyclesn k = =  
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5.4.5. Effect of crystal size on propagation speed 

The aim of the comparisons discussed in this section is to find out how the crystal 

size can affect the crack propagation speed. Since it was difficult to track and store 

the crack tip locations cycle by cycle, only total number of cycles when crack 

propagates to similar location ( 12.5 mmx  ) are compared between each case. 

 

Figure 63. Crack pattern of polycrystal when 0.1 = . (a) 25 grains, 246  cyclesn k= , (b) 100 

grains, 48  cyclesn k= , and (c) 400 grains, 51  cyclesn k=  

Figure 63 compares the crack patterns and total number of cycles for 25, 100 and 400 

cycles, respectively, when 0.1 = . It can be found that the 25 grains model required 

much more cycles for the crack to propagate till the certain location (where 

12.5 mmx  ). As shown in Figure 59(a), the pre-existing crack tip is located right 

within a grain, and since the size of the crystal is much larger, the crack needs to 

propagate much longer to reach the boundary. Hence, the crack tip in Figure 63(a) 

required significantly more cycles ( 246  cyclesk ) to reach the target location than 

Figure 63(b) ( 48  cyclesk ). By increasing the total number of crystals, the number of 

bonds which cross the grain boundaries become larger. When 1.0  , which means 

when the grain boundaries are weaker, the model with more crystals have more 

weaker bonds than the model with less crystals, i.e. the crack is much easier to 

propagate. Hence, it is expected that the number of cycles required for the crack tip 
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to reach the target location in the model with more crystals will be less than the 

model with less crystals. However, according to Figure 63(b) and Figure 63(c), the 

400-crystal model required more cycles than the 100-crystal model, which is the 

opposite to what it was expected. This is because with the increasing of the total 

number of crystals within the model, there will be more points that are located at the 

boundary of multiple grains (as shown in red arrows in Figure 59(a)). When the 

crack tip reaches these key points, it required a certain number of cycles to “decide” 

which direction to propagate. The more number of key points are in the model, the 

more cycles are required for the crack tip to “decide” the propagation direction. 

Therefore, the number of cycles required for the crack in 400 crystal model to reach 

the target location is larger than that in 100 crystal model. When the interface 

strength coefficient   is changed from 0.1 to 0.5, the results remain similar. 

 

Figure 64. Crack pattern of polycrystal when 0.5 = . (a) 25 grains, 331  cyclesn k= , (b) 100 

grains, 174  cyclesn k= , and (c) 400 grains, 214  cyclesn k=  

When 1.0  , since the bond that crosses the grain boundary becomes stronger than 

those are located within the grains, the crack will more likely to propagate through 

grains (trans-granular fracture). Hence, more total number of crystals are in the 

model, the more bonds cross grain boundaries and the more cycles are required to 

reach the target location (as shown in Figure 65 and Figure 66). 
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Figure 65. Crack pattern of polycrystal when 2.0 = . (a) 25 grains, 431  cyclesn k= , (b) 100 

grains, 453  cyclesn k= , and (c) 400 grains, 512  cyclesn k=  

 

Figure 66. Crack pattern of polycrystal when 10.0 = . (a) 25 grains, 429  cyclesn k= , (b) 100 

grains, 784  cyclesn k= , and (c) 400 grains, 846  cyclesn k=  

5.4.6. Crack branching in fatigue analysis 

 

Figure 67. Crack pattern of polycrystal when 0.1 = , 100 grains, (a) 7.6  cyclesn k= , (b) 

22.5  cyclesn k= , (c) 31.2  cyclesn k= , and (d) 47.8  cyclesn k=  

As shown in Figure 67, since 0.1 = , which means the fracture in the polycrystal 

model is mainly inter-granular fracture, the crack propagates following the grain 

boundary. However, when the crack tip reaches a certain key point (as shown by red 

arrow in Figure 59(b)), the crack branches, which also captured the similar concept 
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shown in the experiments described in (Vasudevan et al., 1984, Gilbert, Schroeder 

and Ritchie, 1999, Rios, Tang and Miller, 1984). 

5.5. Summary 

In this chapter, a new crack tip detecting algorithm is introduced. By comparing the 

results from the new algorithm with that given in (Madenci and Oterkus, 2014), it 

can  be concluded that the algorithm can correctly detect the crack tip location. And 

then fatigue analysis of polycrystal material is carried out. The approach described in 

(Stewart A. Silling and Askari, 2014) along with the new crack tip detecting 

algorithm are both used in fatigue analysis. The effect of interface strength 

coefficient on crack pattern, crystal size on crack propagation speed and the effect of 

crack branching are considered in the simulations. The observations based on the 

results can be summarised as:  

1. The changing of the interface strength coefficient can capture different 

fracture modes (inter-granular fracture and trans-granular fracture). By 

comparing the experimental results and PD crack patterns, actual interface 

strength coefficients of a material can be estimated in the future. 

2. The size of crystals can affect the crack propagation speed more on inter-

granular fractures, rather than trans-granular fractures. 

3. The crack branching in fatigue analysis can be captured by PD fatigue model 

automatically.  

Due to the lack of experimental results on fatigue analysis of polycrystalline 

materials, the validation of the numerical results was not be able to carry out. 

However, the PD fatigue model has already be validated in (Guanfeng Zhang et al., 
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2016). As for the future study, experiments can be used to validate the PD fatigue 

model. Moreover, a crack detecting algorithm can be extended for 3D model, along 

with the PD fatigue model, since the studies in this paper are mainly focused on 2D 

simulations.   
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6. DISCUSSIONS AND CONCLUSIONS 

6.1. Discussions 

6.1.1. Novelty and contribution to the field 

Polycrystalline materials are widely used in many different industrial applications. 

Among which various polycrystalline materials, metals and ceramics are common 

examples. Since the fracture behaviour of polycrystalline materials can be affected 

by large number of variables, it is quite challenging to design safe structures without 

overdesign. Although experiments can provide valuable information regarding the 

polycrystalline material, the experimental approaches are not always viable. Hence, it 

is necessary to find a proper approach to study polycrystalline materials. The 

computational approaches discovered nowadays have several limitations to capture 

the transition from microscopic defects to macroscopic fractures. As discussed in the 

previous section, (De Meo, Zhu and Oterkus, 2016) provided a formulation to 

overcome these limitations. However, there was still limitation for BB PD 

formulation. The study described in Chapter 3 demonstrates that the limitation can be 

overcome by using OSB PD formulation. 

SIF was introduced by (Irwin, 1957) to describe the stress distribution around the 

crack tip region and was widely used to predict fatigue crack growth (Schijve, 2009). 

Several theoretical formulations had been developed and coupled with different 

numerical methods to help researchers to study crack growth. Among which, J-

integral is widely used in PD theory to compute the SIF around the crack tip region. 

In Chapter 4, DEM has been used to compute the SIF after obtaining the 

displacement field around the crack tip region using PD theory. The usage of DEM 

provides an alternative approach to compute SIF in PD framework. 
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Fatigue is one of the main reasons which causes failures in engineering structures, 

and predictions of these failures due to cyclic loadings are usually challenging. 

Several different approaches have been developed to overcome the challenges, 

including experimental methods (S-N curve, Paris’ law etc.) and numerical methods 

(FEM, CZM and X-FEM etc.). The PD fatigue model has been introduced by 

(Stewart A. Silling and Askari, 2014), and developed by (Guanfeng Zhang et al., 

2016). (Y. L. Hu and Madenci, 2017) provided an alternative way to do the fatigue 

analysis in PD theory. This thesis extended the PD fatigue formulation given by 

(Stewart A. Silling and Askari, 2014) and coupled an crack tip tracking algorithm to 

study the fracture behaviour of 2D polycrystalline materials. 

6.1.2. Gaps and recommended future work 

In Chapter 3, a PD model was introduced to simulate cubic polycrystalline materials. 

In order to overcome the limitation which has been pointed in (De Meo, Zhu and 

Oterkus, 2016), OSB PD has been chosen in this thesis for simulation of cubic 

polycrystals. However, the prediction of the crack pattern was based on the 

assumption of the strength of grain boundary, Experimental studies can be used in 

the future to validate and refine the damage predictions of the proposed PD model. 

Moreover, the polycrystal study in Chapter 3 was mainly focused on 2D model. 2D 

formulation can be extended to 3D formulation to simulate more realistic problems. 

Parallel programming and multiscale modelling can be used to significantly reduce 

the computation time of simulations.  

Concerning the calculation of SIF using DEM under PD framework, it was found 

that the accuracy of the calculation of SIF using DEM depends on the choice of 

reference nodes. Closer the nodes to the crack surface, smaller the discretization 
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sizes and more accurate solution. Since standard squared discretization was used in 

this thesis for PD simulation, the study of triangular discretization can be considered 

in the future to study if the accuracy can be improved. Moreover, Mode III crack 

problems along with 3D problems can also be studied in the future. 

Concerning the PD fatigue model, BB PD theory has been extended for the 

simulation of polycrystalline materials. However, the Poisson’s ratio is limited to 1/3 

for 2D BB PD formulation and 1/4 for 3D BB PD problems. For future studies, OSB 

PD can be considered, and formulations can be extended for fatigue model.  

6.2. Conclusions 

As described in Chapter 1.2, the main objective of this thesis is to use PD theory to 

build up models for analysis of polycrystalline materials. The fracture behaviour 

under dynamic loading conditions and cyclic loading conditions are both considered. 

The main achievements in line with the research objectives of this thesis are shown 

below: 

• OSB PD formulation was developed to support for studying the fracture 

behaviour of polycrystalline materials. The formulation overcomes the 

limitations on material constants as in the BB PD theory. The model captures 

quite accurately for the static deformation behaviour of cubic polycrystalline 

materials between PD and FEM. The dynamic analyses are then carried out, 

and successfully investigate the effect of interface strength coefficient, 

discretization size and crystal size to the fracture behaviour. 

• A coupled DEM and PD theory was developed to calculate stress intensity 

factors. After analysing three benchmark problems and comparing the results 

between DEM+PD, ANSYS and analytical solutions, it could be concluded 
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that the model can provide an alternative approach to accurately compute 

SIFs. 

• A crack tip tracking algorithm was developed to support the fatigue analysis. 

Since it was critical to track the location of the crack tip and update the 

location every cycle, it was necessary to create an algorithm so that the 

location can be updated automatically. The algorithm can meet the 

requirements and provide accurate results after comparing with benchmark 

problem given in (Madenci and Oterkus, 2014). 

• A BB PD model of fatigue analysis of polycrystalline materials was created 

by extending an existing approach. The effect of interface strength 

coefficient on crack patterns, crystal size on crack propagation speed and 

crack branching have been studied. 

6.3. Research outputs 

➢ Zhu, N., & Oterkus, E. (2020). Calculation of stress intensity factor using 

displacement extrapolation method in peridynamic framework. Journal of 

Mechanics, 36(2), 235-243. doi: https://doi.org/10.1017/jmech.2019.62  

➢ Zhu, N., De Meo, D., & Oterkus, E. (2016). Modelling of granular fracture in 

polycrystalline materials using ordinary state-based 

peridynamics. Materials, 9(12), [977]. https://doi.org/10.3390/ma9120977 

➢ De Meo, D., Zhu, N., & Oterkus, E. (2016). Peridynamic modeling of 

granular fracture in polycrystalline materials. Journal of Engineering 

Materials and Technology, 138(4), 

[041008]. https://doi.org/10.1115/1.4033634  

https://doi.org/10.1017/jmech.2019.62
https://doi.org/10.3390/ma9120977
https://doi.org/10.1115/1.4033634


104 
 

➢ De Meo, D., Diyaroglu, C., Zhu, N., Oterkus, E., & Siddiq, M. A. 

(2016). Modelling of stress-corrosion cracking by using 

peridynamics. International Journal of Hydrogen Energy, 41(15), 6593-

6609. https://doi.org/10.1016/j.ijhydene.2016.02.154 

➢ De Meo, D., Diyaroglu, C., Zhu, N., Oterkus, E., & Siddiq, M. A. 

(2015). Multiphysics modelling of stress corrosion cracking by using 

peridynamics. In Analysis and Design of Marine Structures - Proceedings of 

the 5th International Conference on Marine Structures, MARSTRUCT 

2015 (pp. 499-504) 

➢ Oterkus, E., Diyaroglu, C., Zhu, N., Oterkus, S., & Madenci, E. 

(2015). Utilization of peridynamic theory for modeling at the nano-scale. In 

X. Baillin, C. Joachim, & G. Poupon (Eds.), Nanopackaging: From 

Nanomaterials to the Atomic Scale: Proceedings of the 1st International 

Workshop on Nanopackaging, Grenoble 27-28 June 2013 (pp. 1-16). 

(Advances in atom and single molecule machines). 

Springer. https://doi.org/10.1007/978-3-319-21194-7 
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