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NOMENCLATURE 

X, Y, Z orthogonal axes 

dx, dy, dz orthogonal components of displacements 

ox' ey, Gz plate rotation and angle of torsion 

Px' Py, Pz orthogonal components of force 

mx, my, mz moments around the orthogonal axes 

V' stress 

E Young's modulus 

Poisson's ratio 

G modulus of rigidity 

I Second moment of area of section 

t plate thickness 

Ac area of concrete section 

As "" steel section 

h centre to centre depth of the structure 

C. D. L. G Composite Double Layer Flat Grids 

D. L. G Double Layer Grid 

RPM Double Layer Grid of Rectangular Parallel 

Mesh configuration 

IRM Double Layer grid of Inclined Rectangular 

Mesh 

d Total depth of the structure 

SDR Span/Depth Ratio 

rs stress in the steel tubes 

U' , 
" concrete slab 

Cr p, 
O -b in-plane and bending stresses in the 

concrete slab 



III 

T maximum tensile force 

C maximum compressive force 

C pm' 
cbm maximum in-plane and bending stresses in 

the concrete slab 

I 
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SYNOPSIS 

This thesis presents an investigation into the 

behaviour of 'Composite Double Layer Space Grid Structures'. 

In this research a reinforced concrete slab was used as 

the top layer of a thin steel tube space frame. The 

stiffness matrix method of analysis was used for the 

theoretical analysis in which the slab was represented by 

'Finite Elements'. 

Two experimental models were designed and constructed 

mainly to verify this analysis and to check its convergency 

and also to study the influenceaftop joint eccentricity. 

The research showed that these structures are more 

rigid and have better stress distribution patterns than 

the comparable double layer grids, and hence can be used 

for larger spans. The critical factor in the design of 

these structures is the buckling of the diagonal shear 

members, hence an 'economical depth' has been found. 

Plate analogy was found to be of great value, by 

which it was possible to explain and predict the stress 

behaviour, also a criterion is found for designing an 

'Efficient Section' where no concrete is subjected to 

tensile action. 

Since this type of structure requires large computer 

facilities, which are neither easily available nor econom- 

ical even for short spans, approximate methods are suggested, 

some of which are based on a plate analogy and do not need 

a computer. Finally a design procedure using these methods 



la 

has been outlined by which it is possible to have a quick 

and approximate idea about the appropriate section 

properties for any given span within the specified loading 

and boundary conditions. 

I 

1 

i 



CHAPTER '1 

INTRODUCTION 

r ." 
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This thesis presents an investigation into the 

behaviour of composite double layer grids. The idea 

behind these structures is to replace the top layer of the 

prismatic flat double layer grid by a continuum such as a 

reinforced concrete slab. Thus the higher in-plane 

rigidity of the slab can be utilised, especially when a 

concrete slab has to be used anyway as cladding, such as 

in car parks, office building, etc. 

Very little work has been done on this topic other 

than that concerning prismatic double layer grids which is 

undoubtedly of relevance to this topic. 

Therefore it was necessary to verify the validity 

of almost all steps taken in this research. 

The stiffness method of analysis was used for the 

theoretical analysis, which is ideally suited to 

accommodate the finite element method which is used for 

the plate analysis. In this analytical solution", a linear 

elastic superposition of stiffness matrices for prismatic 

members in space and for finite element plate members was 

possible. 

The experimental models were designed and constructed 

using steel tubes to represent the prismatic members and 

perspex plate to represent the concrete slab. The first 

model is a composite double layer grid based on a 'square 

parallel mesh' configuration. The second model is a 

-t C1 . 
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tubular pyramid module with its apex. supporting a rect- 

angular perspex plate at, its, centre., "', r 

A series of, laboratory, tests, were doneon, these 

models in order 

a) verify the theoretical, analysis, ,,.. 

b) to check the convergency of the solution, 

c) to find a suitable finite element mesh so as to have 

reasonable results without ,, an . excessive demand on *.. ý, 

computer storage, and, time.:,., 

d) To study the influence of eccentricity at joints 

between, prismatic, members and plate.,, .. 
A general, and versatile suite, of computer programs 

was developed to do the theoretical analysis.,. . This, suite 

uses. direct access disc backing files to store numerical 

data and. results during the execution of the whole program 

suite. ; The program suite. is capable of analysing,. in 

addition to the composite structures, various structural 

systems such as prismatic double. layer. grids, and folded 

plate structures. Data, generating programs were developed 

to prepare the data for the various_. configurations and cases 

analysed, in this research. 

.,, Because 
. of . the, high efficiency of. the.., inclined 

square mesh configuration, -the 
theoretical studies are,; _. 

restricted to. two, configurations both of which are based 

on the 'Inclined Square Mesh', configuration. -,. The, first 

one is termed the 
, 
'Uniform Mesh' while the second one which 

is 
- a,, special., case of the first, one is termed the 'IRM' 

'Composite Structure,, 

A,, 
These, structures, are made of ,a reinforced concrete 
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slab and steel tubes of identical-cross-section. -, - 

Despite the considerable store capacity of 256 K 

available for the: ICL ß1904S, computer}. in, the University= of 

Strathclyde,. the largest problem handled was of 10 x 10 

bays (pyramids), and, this wastonly possible. by, the exclusive 

use of : the : full computer system, for about twenty-five 

minutes. 

Accordingly, all computer run cases in this thesis 

are limited to this rather short span. 

Parameter studies were done to investigate the 

influence of varying the span, depth, slab thickness, and 

the steel tubes cross-section on selected crucial members 

and slab locations. Particular attention was focused on 

the maximum shearing force due to its anticipated 

importance in the design procedure. 

A slab'analogy is suggested as an explanation for 

the behaviour of these structures. Also a method is 

suggested to find the moment of inertia of the section 

from which it is possible to predict the relation between 

the axial stresses in bottom tubes and the in-plane stresses 

in the top slab. Furthermore a criterion is suggested 

from which it is possible to find the section where no part 

of the concrete slab will be under tension, and is termed 

accordingly "The Efficient Section". 

Engineers have always been interested in short simple 

design procedures or, formulae to be used in preliminary 

design and also as an approximate checking tool. 

Certainly, this will be no more so than in this complicated 

field of composite Double Layer Grids. 
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Therefore, an important aim of this research was 

to find such approximate methods. 

Hence a few approximate methods are introduced for 

this purpose. 

Some of these methods still need a computer, whilst 

the others do not. Those which do not need a computer 

are based on the plate analogy 
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CHAPTER 2 

LITERATURE REVIEW 

I Flat composite Double Layer Grids are an evolution 

of double layer space grids, therefore, it is imperative 

and useful to start from this background, and review their 

relevant literature and methods of analysis as a basis 

for the methods which are or ought to be developed for 

analysing and designing flat composite double layer grids. 

2; 1 /Previous Relevant Works 

A. Makowski(l) gives an excellent survey of the 

different types of space structures with their properties, 

advantages, and the different commercial joint systems 
r 

used in their construction. It is useful to emphasize 

from his book the relevant points of interest. 

The efficiency of any design is judged by the 

ability of the structure to distribute as widely as 

possible any applied load, thus achieving a fairly even 

stress distribution over the whole structure. Grid 

space structures are ideally suited for this purpose. 

Last war experience proved that grid space structures 

resisted aerial attacks and explosions much better than 

any other structural system, and local damage rarely, if 

ever, led to a collapse of the whole structure. 

Although the rectangular arrangements for grids 

(Fig. 2.1) is popular, nevertheless, it is not the best 

as far as stress distribution is concerned. A much 

better arrangement is the diagonal grid system (Fig. 2.2) 
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where members form anfoblique angle; with-the boundaries. 

This type is becoming=more popular owing-to its greater 

bending rigidity. - This, is . because, ,. the shorter corner. 

members with their greater relative stiffness provide in 

effect intermediate; supports, for the longer diagonal -- 

members. . ItAs also explained by the, fact thatý. members 

of diagonal jgrids : follow roughly the traj ectories 'of 

principal stresses in -simply `supported slab-under uniformly 

distributed. load. - Therefore, the-members-are-placed both 

in location and orientation where . 
they are mostly needed. 

The most remarkable development for the last few 

years, has been the evolution of various forms of double 

layer grids. Spans of up to 300 ft. have already been 

covered by steel double layer grids. The main advantage 

of these types of structures is that their members are 

mainly under the action of axial forces, which leads to.., 

the full utilization of their strength. , 
Owing to the high 

indeterminancy of these structures, buckling of any member 

under a heavy concentrated load rarely leads to a collapse 

of the whole structure. 

Basically, double layer grids are divided into two 

main, types. 

a) Lattice grids, consisting of intersecting vertical 

lattice girders. 

b) True space grids; which consist of tetrahedra,. 

octahedra, or inverted pyramids having square (Fig. 2.3,2.4) 

pentagonal, or hexagonal bases. 

In practice, the depth of double layer grid-is 

between to of the span. So there is always an 
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ample working'space"for' the`installation, "maintenance, 

modification, and 'services even'`with "small spIans of `say 

80ýft. " This ` factor ` is of special, importänce in office 

buildings. ,"j. ;, ý, t, , . i: 

Due ` to the -regular ' nature 'of "'space ' structures, and 

the " huge number of ' identical 'units, they `are a: typical 

example of the ' prefabricated `mass produced' form of 

construction. S6'fär, steel has been playing a leading 

role on' account Of `its relative low'tlcost ýand'great'strength. 

B. The first noticeable contribution to extend the 

concept of space structures to reinforced concrete slabs, 

is attributed to Castillo. The following are the 

points of relevant interest in his paper. 

He calls his system 'Tridilosa' which is a form of 

reinforced concrete floor slab, in which a relatively 

thin top slab of concrete combined with a structural steel 

space frame beneath. Fig. (2.5) shows the Tridilosa 

assembly. When the system takes the form of a beam it 

is called 'triditrabe'. It is stated that until the 
. 0. rß et. 

'Tridilosa' design was introduced to the market, nobody 

had successfully taken away the unnecessary dead weight 

of the cracked concrete in tension zones of slabs. No 

clue was given to the theory used, other than that the 

calculation of this form of structure can be developed 

from a theory in his book which allows for the 

calculation of all elastic three-dimensional structures. 

*- The ` author ' a. nd `-the "University library were, . unable`°to, get ' 
hold of this book which is written in Spanish language. 
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A loading test was done on a-slab made of 

10' x 10' x 1' 'Tridilosa' assembly with 8"°diameter 

structural steel spaced at 20 in c. c., with 2 in. low -: 

stress concrete slab on the top. The total bearing load 

was about 615 psf. The same structure, but without 
e 

concrete on top, was tested and gave a bearing capacity of 

41 psf only, with failure occurring by buckling of the 

compression rods in the top layer. 

This small test allowed rough confirmation of his 

theory. 

The system has been used in the floor slabs of 

multi storey buildings and car parks in Mexico City in 

Mexico. In one of these buildings, the self weight of 
16 'Tridilosa' floors for a fifteen storey building was 

equal to that of the slabs of an eight storey flat slab 
building, with the added advantage of longer spans and 

greater bearing capacity. 

It is admitted that in comparison with the 

traditional type of slabs, there are two distinct 

disadvantages. 

a) The lack of protection of the steel rods against 

fire and corrosion. 

b) The use of a larger amount of steel for shear 

stresses. 

The former is overcome by painting the uncovered steel 

and covering with concrete all steel under tension. 

The latter is advantageously balanced by the savings 

in tension and compression steel and the volume of concrete 

beneath the neutral axis, and also the savings. in 
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shutterings,., or even the possibility of avoiding 

completely, the use of forme work. -, -, The. problemo of,. 

temperature cracks in this structure is practically non- 

existent since the structure is very rigid. 
'm t4'r rr"" z 

C. A relevant study,,, but with, different outlook, . was 
(4) 

presented. by Chambers ýet . al. ? This study is an 

investigation into another type of space/plate structure. 

They proposed, a Braced Double, Skin , structure , 
(Fig.. 2.6); 

in metal as - an, alternative . toy welded stiffened plating.,,, 

, y-,,,, They used. space/finite , element analysis in their 

dual, theoretical, approach to compare with experiments. 

ý; ". ,, _ , a) Panel skins, were . represented by discrete, strips 

joining . the nodes transversely,, longitudinally,, and a 

diagonally. Since: the. stresses. in the, skin were relatively 

low, the forces, in 
. core -members were effected only slightly, 

but not the ; skin stresses near the joints. ,.,., (a ý ,",, 

(b), Finite element t. was used , to : analyse the, skin 

=stresses.. z,; The . results showed better agreement with the 

test as far as, tubes. and. reaction, but comparison was 

difficult for skin . stresses, °because they were very low. 

, The-following-relevant conclusions were given: 

Resistance to local lateral loading on the skin 

was governed largely ; by °-the , buckling , of -the 4rods . under or 

}near the applied load,, rather. than; membrane action Of the 

skin., 

2. Shear strength., isfrelatively low, , and less than 

, simple; theory, predicts. --s The shear; meant: here is the one 

due to"ihorizontal4forces.: no: t-,. ",, ýýt 

Overall crushing characteristics show that there is 
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a, capacity to"absorb, energy as the struts buckle, and 

simple bending -theory is adequate'-for pure bending. `-"4 

D. Bellamy, J. 
(5) 

has carried.. out an investigation 

into the effects of attaching roofing sheets to the top of 

a* flat D. L. G. He used an 'experimental model' to assess 

the accuracy of his computer analysis. 

The model- was" a parallel rectangular 'meshl 

(PRM-Grid) (Fig. 2.3) loaded under uniformly 'distributed 

loading. " He-used three cladding distances, 21", '41"'and 

6 , ', 'from from the top grid. Fig. ' (2., 7) shows: a top joint in 

the-: model. He used plane stress rectangular finite 

elements-to analyse the. cladding. Joints deflections'; " 

and member'axial-forces compared favourably with''test 

results but not cladding-'analysis. He attributed 'the' - 
discrepancies to the'following: 

a-- The coarseness, of the elements used which' 

itself contributes errors - up:: to , 17.5% on, -deflection, -'and 

more than. that on stresses. ' 

b- Number of-secondary factors, -, such las , initial '' 

lack of straightness. of the sheeting, the overlapping of 

sheetings and their overhangs. - 

His. conclusions were:, --,,, 

1-. - The cladding rhas , had little effect on the" 

behaviourlof the roof structure only when, it'As closest 

to the roof. 

2. The cladding, in general, has had little effect 

on the behaviour of the steel structure roof. 

Therefore, it would appear that if the sheeting is 
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insufficiently strong to carry sizable portion of the 

applied load, say 20% across the spanton. its own, then 

, 
there is no point in including its effect in the analysis. 

A conclusion confirmed the standard design office 

procedure of neglecting the effect of cladding. 

, 
E. Theron 

(6) 
used finite difference calculus to analyse 

flat Double Layer Grids, Then he analysed a flat slab 

of perspex using finite elements method., Then super- 

imposed the two analyses and termed it composite analysis. 

In fact the slab was just acting as a cladding material 

only. 

Using a computer, numerical results. were calculated 

for simplified cases of two D. L. G. systems. Namely, 

(PSM-Grid) (Fig. 2.3), and (ISM-Grid) (Fig. 2.4) made out 

of short 7" plastic, or perspex tubes. Only vertical 

displacements were measured, and subsequently compared 

favourably with analytical, analysis, where experimental 

errors did not have .a 
significant . effect. Then 

_the , 
thin 

perspex plate was cemented to the previous two models and_ 

retested under U. D. L. The vertical displacements 

comparison was , 
favourable as. before. 

No attempt has been made to investigate the influence 

of the various parameters on the behaviour of the structure, 

or the influence of cladding on the structure. 

Y: i .. 
t,. 

ý. Cr 

-' 

r 



13 

2.2 Methods of Analysis 

Basically, there are three lines of analysis for 

double layer grids. 

a) Stiffness Method of Analysis 
(7) 

which is exact 

within the limits of the assumptions of linear prismatic 

bars. It is the most common method, and the most versatile 

one. This method owes its popularity and success, 

naturally to the electronic computers. But because of 

its demand on computers storage capacity and time, 

designers resort to other methods as a preliminary step. 

This method was used by Makowski(l) and Bellamy; (5) - 

Chambers et al. 
(4) 

used it even to represent the continuum 

skin layer. This method is ideal for combination with the 

Finite Elements Method, which could be used to represent 

the continuum as in the case of cladding, 
(5) 

roofing 
(6) 

and 

skin plates. 
(4) 

b) Analytical Methods 

They are mainly means to get approximate design'' 

parameters, leaving the final answer to the stiffness method 

and the electronic computers. 

These methods are usually cumbersome mathematically, 

especially for engineers, and in the end do not give good 

results for the boundary areas and particularly for the 

corners. They are mainly based on plate analogy. 

Theron 
(6) 

used analytical method and found a solution 

for RPM grid and ISM grid. 

Renton 
(8 9,10) 

used continuum analogy using mainly 

the finite difference method. The technique makes use of 

the regularity of such structures by considering only the 
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small set of equations governing the, behaviour of a 

typical module of the structure. These take. the form 

of stiffness equations relating the external loads to the 

module deflections and those of the adjoining ones. 

Renton (8) 
showed the related behaviour of_plane.; _ 

grids, space grids and plates. He also succeeded in.... 

giving equations for many configurations. 
(10) 

c) Plate Analogy 

Plate analogy for flat grid structures has been 

used extensively in the literature. 

Timoshenko(ll) suggested it for one layer rectangular 

grids which is made out of rigid beams (Fig. ' 2.8), by 

considering it a special case of orthotropic plate. He 

took the average values of the bending and torsion 

stiffnesses. 

Plate analogy, in common with other approximate 

methods has difficulties in boundary areas, particularly 

in corners which are a highly stressed part in the plate. 

Renton(lo) recognizes the importance of these drawbacks 

and the difficulty in combating them. 

Makowski 
(12) drew the attention to those points 

also, and confirmed that plate analogy gives a good 

approximation for the central part of the structure. 

However, the difference in shearing forces is much greater 

than in tension and compression layers, and he specified 

'ISM' grids as a case where neither plate analogy nor 

rigorous analytical methods will hold, because of the 

influence of boundary conditions. 
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In certain cases, depending on the type of bracing 

and configuration of the grid, the influence of boundary 

conditions could extend right into the centre of the 

structure. 

Heki(13) confirms the same observations, and adds, 

that, in general, this is due to. the 
. effects- of anisotropy, 

effective rigidity, shear deformation and finiteness of 

mesh length. He suggested that the width of boundary area 

in the case of Double Layer Lattice Grids, is of the 

order \rh-l, where h is the depth of the structure and 1 is 

the span width. This suggested width'is much larger 

than that of solid plates which has been shown by 

Reisner(18) to be of the order t, where t is the slab 

thickness. 

It is clear from the above review, the extent of the 

difficulties facing the stress analyst and the designer in 

the relatively simple cases of ordinary one material, pin 

jointed double layer-grids, due to the rather excessive 

computer requirements. 

Understandably, the difficulties are much more in 

the case of composite double layer grids, where the designer 

and the analyst have to face the added complexity of the 

plate as a shell element, and hence, having in hand a 

structure with six degrees of freedom. 

Therefore, for large-span structures, even the large 

modern computers will have difficulty in accommodating them 

in their rather limited storage capacity and time 

consideration. 
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Fig. 2.1 Rectangular Mesh Grid 
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Fig. 2.2 Inclined Rectangular Grid 
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a] 

. Ltl 

r4 

Ei 

PI 

Fig. 2., 3 Plan of a part of a double layer grid 

with parallel rectangular mesh (PRM) 

Top layer members 

Bottom layer 'members 

-- -- Diagonal shear members 

Q Top joints 

o Bottom joints 

0 
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- Top members 

ý--- Bottom members 

--- -- Pyramids sides inenbers 

Q Top-Joints 

0 Bottom joints 

Fig*. ^. 4 ? )i; rr: cionnl vi ew of a double layeiv grid 
with inclined rectangular ricslics figuration 
(IflM) 
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ll. ý I 

1. In-situ 

2. Precast 

3. Tension 

4. Compress 

5. Bracing 

concrete 
light weight concrete 

steel in lower part of grid 

lion steel in upper part of grid 

members. 

Fig. 2.5 Tridilosa System 

after Castillo 
(2) 
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steel 
plate 

steel 
plate 

structural steel 
rods 

a) Section 

b) Plan 

Fig. 2.6 Braced Double Skin Structure 

after Chambers et al. 
(4) 
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I 

1. Securing bolt 5. Top Grid member 
2. Preform cladding 6. Diagonal member 
3. Washers 7. Joint Boss 

4. Screwed rod 8. Lock nut 

Fig. 2.7 

after Bellamy 
(5) 
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CHAPTER 3 

LABORATORY EXPERIMENTS 

Laboratory experiments were necessary to verify 

the theoretical analysis. Since the idea behind this 

research project was to replace the top layer in double 

layer grids by concrete in the construction field, it was 

decided to use perspex sheet as a laboratory substitute for 

concrete, because it has the advantages of being a linear 

elastic material, and commercially available in different 

sizes and thicknesses, in addition to the ability to 

produce appreciable strains due to its low modulus of 

elasticity. 

Two models were made 

1. Composite Double layer grid model, and will be 

referred to as Model I. 

2. Single pyramid cantilever model, and will be 

referred to as Model II. 

t': 

. ý. 

v, i 
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3.1 Composite, Doubler Layer Grid Mödel"'(MODEL I) 

It was expected that this type of structure would 

be very rigid, therefore the following steps were taken 

to make the model less rigid. r'_Er 

. . n" f ^r t 
ý, 

- 
"i 

ýý,.. 
ay 5 (x'11 

a) Contrary to common practice in ordinary D. L. G. 

where structures have a top layerof larger area than the 

bottom, in this model the top layer was made smaller than 

the bottom one. 

b) Simply supported boundary conditions were 

simulated. 

c) The tubes were chosen to have a small cross 

sectional area with thin walls in order to have appreciable 

axial strains. 

Because it was intended to study the influence of 

the thickness of the to la er and to C. py, p jöints eccentricity 

on the strains in the structure, the model was so designed, 

that it was easy to vary the top layer thickness and its 

eccentricity without changing other parameters. 

The overall dimensions of the model were governed 

by practical considerations, in particular the standard 

sizes of perspex sheets available and cost. Since there 

was no additional advantage in having a rectangular model, 

it was decided to make a square model with a perspex area 

of 48" x 48". 

The dimensions of the tubes were chosen after taking 

into consideration the perspex sheet dimensions, and the 

desire to have all tubes of the same length and diameter. In 

addition, the tube member should be long enough to have the 
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middle third of it unaffected by the end stress conditions 

and with enough circumference to cement three single strain 

gauges longitudinally around it. Therefore annealed cold 

drawn seamless steel tubes were chosen with I" diameter 

and 0.036 in. wall thickness. These are thick enough 

to withstand a jointing process and have the added 

advantage of not losing strength due to the welding heat. 

All tubes were chosen to be of 15" length. 

Taking all the above factors into consideration, in 

addition to the boundary conditions and loading 

requirements, the model was finally designed, and made1as 

shown in Plate Nos. (3.1,3.2) and Fig. 3.1 from the 

following 

a) Bottom flat' layer made of a 60" x 60" tubular 

square grid, each side having four 16" c. c., bays. -A11 

tubes are of 15" x i" x 0.036 inch dimensions (Gauge 20). 

b) Top flat layer of 48" x 48" acrylic perspex 

sheet. 

c) 64 Tubes grouped in fours. Those tubes connect 

the top layer to the bottom layer. 

Four tubes were made of Gauge 16 (t ° . 054 in. ) 

because they were located at the corners of the structure 

so they can transmit the high concentrated reactions to 

the supports. 
.e,. . wry r. 

Basically, the tubes part of the structure is made 

out of identical pyramid units, each one of them is made 

out of eight identical tubes as seen in Fig. 3.2. 

o. m r. ,. ý j"5 ý_x 
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3.1.1 Boundary Conditions, 

Since the structure was internally highly 

indeterminant, ' it'was useful for practical purposes to 

make it externally determinant. This was done by 

supporting, the model at the four corner joints only, and 

also by having only one vertical component at each corner. 

Three different support arrangements were used to 

impose the following restrictions. 

1. Support A restricted in the X and Z directions 

as seen in Fig. 3.3, and Plate No. 3.3. 

2. Support B restricted in the Z direction only, 

as seen in Fig. 3.4. 

3. Support C restricted in the X, Y and Z 
". k. , 

directions, as seen in Fig. 3.5. 

All four joints resting on the supports were free to 

rotate. 

3.1.2 Loading Conditions; 

Because it was -intended to f have -as 'accurateresults 

as possible, it was decided to apply. a single, central. load 

only, 'rather than uniformly distributed loading, to avoid 

any eccentricity errors or, creating undesired bending orý 

torsional strains during loading. " -Therefore; the model 

was so _ made as,, to' have 'a joint at -4 the centre ' of <=the , bottom 

layer- This joint: was, drilled'vertically through its , 

central axis, ýhence"it was possible toýapply a single load 

by using wire steel4ýcablerwhich, was pulled by a hydraulic 

jack. ° This arrangement-hasýthe'additional advantage of 

being-able-to predict almost exactly the strains at the 
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tubes directly connected to this joint, as is the case at 

reaction joints without. resort to any, computer programming 

or complicated calculations. Fig. (3.6) shows the 

central joint. 

3.1.3 Joints Systems 

Two types of joints were used. 

a) The top layer joints. Each of these joints as 
ri 

shown in Fig. (3.7) is made of two metal pieces of'2" x 2" 

x 0.048 in. The bottom piece is made of mild steel, 

while the top one is of aluminium. The pieces were 

connected'together by five bolts-and nuts. The"aluminium 

was used"to lessen the possibility of'creating stress, 

concentrations, in the perspex sheet. Naturally; 'itr 

would have-been preferable'to have both pieces made, of 

aluminium, 'but because -the' steel' tubes , were'brazed.. to,, the^F 

bottom piece, ' it, was not possible to have a' bottom `- ` 

aluminium piece too. This joint arrangement makes it 

easy to change perspex'sheets according to, the"required" 

thicknesses, and`also toýraise the perspex'middle plane 

at `will. 

'b) The bottom , layer 'joints. 'Fig. '3.8' shows. this 

type of joint'-which is' a 'solid 1I" diameter . steel ball: 

Since there were no mild'steel-balls available at the 

time of' model making, ordinary'1I 'in. -, ball "bearings'''were 

used, after being" annealedý'and sand' blasted. »' "" ", -'. ' J''1 

''Spherical joints were chosen because tubes cross- 

sections can fit perfectly on''spherical"surfaces with 

any-orientation desired. '' 
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3.1.4 Assembly of the Model 

The model was quantitatively made out of the 

following 

a) 40 horizontal tubes. 

b) 64 space oriented tubes. 

c) 25 steel ball joints. 

d) 16 plate joints. 

e) 1 acrylic perspex sheet of 48" x 48" x t, where 

t is either 2 in., or j in. or j in., according 

to the thickness required for the test. 

Since it is more practical to assume joints to be fully 

fixed, than to assume them pin-jointed, it was decided to 

fix the tubes rigidly to the joints. A technical problem 

was faced here and had to be overcome, since the tubes 

and balls were rather small in dimension and having in some 

joints eight tubes, it was a rather difficult and delicate 

job. 

The tube wall was very thin in comparison with the 

11" solid steel ball. Therefore, ordinary welding was 

ruled out for fear of burning out the tube's wall', "besides 

the difficulty in controlling the soldering material. 

Brazing with silver solder was used instead, because it 

needs less heat and is more controllable. ! ""' 

Due to the regular nature of the model and the 

desire to have identical orientation in all modules, two 

jigs were made. 

Plate No. 3.4a shows the first jig which was made 

from a4 in. steel cube trimmed into 26 faces. Eight 
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square ones each making an angle of 900 with the horizontal 

plane. Eight trapezoidal faces each making an angle of 

45 0 with the horizontal plane, and another eight 

trapezoidal faces each making an angle of 225°-with the 

horizontal plane. Finally, two parallel octagonal 

horizontal faces, with 14 in. diameter hole drilled 

through one of-them to a depth. of 21 in.,,. .. The . ball was 

secured in the, hole . in an-exact central. position;.. with 

each face representing. certain . tube orientation. 

The second jig which is shown, in , Plate No. 3.4b. 

was made to maintain the proper orientation for, the 

pyramid tubes during brazing. 

Finally a large flat asbestos sheet was used to 

keep the whole model flat and in position when brazing 

the odd connecting tubes. 

3.1.5 Strain and Deflection Measurements 

The model has the useful property of being 

symmetrical about three axes, therefore strain gauging and 

analysis of one eighth (J) of the problem is sufficient. 

Nevertheless, it was useful to utilize this property by 

taking the strains of symmetrical points of expected 

appreciable strains and taking their average, thus 

eliminating the built in eccentricities of jointing and 

assembly. This arrangement gives also a check on the 

accuracy of readings and loading. 

Dial gauges were used to measure vertical 

deflections, and two arrangements of strain gauges were 

used as shown in Fig. 3.11. 
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a) Single resistance strain gauges7type PL-3 

(gauge factor 1.96) were used for the steel tubes. Each 

three of these were located as shown in Fig. 3.9 in order 

to measure axial and flexural strains at the middle cross 

section of the tube. 

b) 450 rosette arrangements of resistance strain 

gauges type PR-10 (gauge factor 2.07), were used to 

measure in plane and flexural strains over the perspex 

surface. Fig. 3.10 shows this arrangement. 

In total, eleven tubes and six perspex points 

were strain gauged, together with eight, dial gauges 

used to measure vertical displacements. 
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3.2 Single Pyramid Cantilever Model (MODEL II),,. 

Because, it was expected that the composite double 

layer grid model may not give appreciable flexural strains 

in the perspex plate, and because it was difficult for 

storage and computer time consideration to check for 

convergency of the solution, and in order to investigate 

joint behaviour in isolation, it was decided to have this 

small model which is shown in Plate No. 3.5. 

This model was made of a typical eight-membered 

pyramid unit which was fixed to a rigid support, then a 

rectangular acrylic perspex sheet of 18" x 12" x i" was 

fixed at its centre to the apex of the pyramid using the 

same top joint type used in the previous model. 

The tubes, and perspex sheet were strain gauged. 

The vertical deflections at three symmetrical points on 

the perspex surface were measured by dial gauges. The 

arrangement and location of strain measuring devices is 

shown in Fig. 3.12. 
r 

Two single symmetrical loadings were applied using 

terylene strings, hence introducing flexural strains at 

the strain gauged points. 

This loading arrangement is seen also in Fig. 3.12. 

Application of symmetrical loading made it possible to 

analyse one quarter of the model instead of analysing the 

full model, and to check strain measurement accuracy and 

to avoid eccentricity errors. Needless to say, that 

joints and strain measuring devices and arrangements 
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followed the same principles as their counterparts in the 

main model. 
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Plate 3.1: Model I, the composite double layer 
model, general and close up views. 



Plate 3.2: The composite double layer grid model, 
and its loading and support arrangement. 
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Plate 3.3: Support A, which is restricted in the 
X and Z-directions only 
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Plate 3.4a: A jig to ensure the proper orientation 
for the tubes in the ball joint. 

L 
Plate 3.4b: A jig made to ensure the proper 

orientation for the pyramid tubes during 
jointing to the ball and plate joints. 



Plate 3.5: Model II, The single pyramid 
cantilever model, its loading and strain 
measurement arrangements. 
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CHAPTER A 

THE THEORETICAL ANALYSIS 

4.1 Introduction 

Since composite double layer grids 'are a combination 

of space oriented members and plate members, 'a comp ösite 

stiffness matrix analysis was used which is a linear 

elastic superposition of stiffness matrices for prismatic 

members' in 'space and for finite plate 'elements. '' 

'' Since the stiffness method of analysis is well 

(7) 
established and'can be found in many text'books, no 

attempt is"made to 'describe it. '' No attempt is made" either 
(15,16) 

to describe the finite elements- method 'for the same reason. 

=Thus, it is implicitly assumed that the structure 

will behave elastically and that all the assumptions of 

small deflection theory upon which the theory of thin 

plates 
(11) 

and the finite element analysis 
(15) 

are based, 

are also valid in this analysis. 

All structures which have been considered are 

composed of either thin steel tubes and perspex sheets, as 

in the practical part of the research, or of thin steel 

tubes and reinforced concrete slab as in the theoretical 

part. 

Because of the practicality of the square based 

configuration, as was seen in the literature review, all 

structures analysed have been based on a square 

configuration. 

Since it was intended to use the finite element 

method as a suitable tool only, hence a simple rectangular 
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element was used. 
(15) The plane stress part, of this, 

element is due to Marshall (21) 
whilst the plate bending 

part of it is due to Zienkiewicz and Cheug ý15,22 ) 

Knowing that the plate bending element is based on a non- 

conforming displacement function which violates the slope 

compatibility conditions, it was necessary to verify the 

convergence of the solution by experiment. 
(15) 

The stiffness matrix for the tubes was that given 

by Livesley 7) 
with the exception of changing the signs of 

the terms relating to the deflection in the Z direction 

and-the rotation about the same axis-in order to be 

compatible with the sign convention used in the finite 

element analysis. The sign-convention followed.: is. shown 

in Fig. (4.1). 

i 
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4.2 Elements Stiffness Matrices and the Overall Assembly 

The-equations connecting the nodal loads and the 

nodal displacements of a structural member can be written 

in many ways. In the equilibrium method which is used 

in this research project the appropriate form is: 

p1 = k11d1 + k12d2 + k13d3 + ... 

P2 = k21d1 + k22d2 + k23d3 + ... 

p3 = k31d1 + k32d2 + k33d3 + ... (4.1) 

where p1, p2 ... etc. are nodal forces; 

dl,, d2 ... etc. are nodal displacements 

kill k12 ... etc. are stiffness submatrices, 

the size of which depends on the number of 

components in the force and displacement 

vectors. 

Equation (4.1) may be rewritten in this form 

ee 

, 
Lpj . 

LkI [d] 
4 

(4.2) 

. where 

[p] e= pi [dl e= di 

p3 
and 

di 
(4.3) 

Pk dk 

pl dl 

and [k]is the member stiffness matrix. 

For a general member in space pi, pj etc., and di, dj 

could be expressed as 
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pi aI px 

Py 

pz 

m x 

my 

.m z 

and ' ýý{d" = 

to 

.5 

d 
x 

d 

d2 

gx 

Ily 
IlZ 

`c4'4) 

I a) 

As far as a tube element isconcerned 'it'does have six 

degrees of freedom, while the 'shell element has five 

degrees of freedom only, namely 

px dx 

py 
and 

dy 
(4.5) 

pz dz 

mx or 

my 91 
Y, 

Fig. (4.2) shows a layout of a typical kli '6 x6 stiffness 

submatrix for a shell element and for a prismatic member. 

The set of load-displacement equations for a complete 

structure may be written in the form 

[p] (4.6) 

where [p] indicates the complete set ofapplied, joint 

loads and.,, 
[dj., indicates the corresponding set of unknown 

joint displacement,, and - 
[k], is 

, 
the stiffness matrix of 

the, structure. 

The non-existence of the sixth -degree of freedom (9'Z) 

in eq.., (4.5) means that the plate element does not have a 

component corresponding to in-plane torsional rigidity. 
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I -w This will have two consequences. -1 t 

1. At nodes where both tubes and plate meet, --, 

which will physically mean that the tubes pyramid apex will 

be free to rotate without any resisting moment (MZ) from 

the plate. 

i. e. Z Mz (tubes) =0 while gz (tubes) 0 

Although this is intuitively appealing, nevertheless, it 

is necessary to investigate the other extreme alternative 

which treats this parameter as a constraint and hence in 

effect assumes that 

Mz(tubes) ý0 whilst z(tubes) a0 

2. At joints where plate members only meet, the 

non-existence of 0z here physically means that 

Mz(plate) a 0. In this context, this assumption 

presents no problem as far as individual joints are 

concerned. But when dealing with the whole structure 

according to eq. (4.6), then equilibrium equations will not 

be solved because the structure stiffness matrix 
Ek] 

becomes singular as long as there are co-planar plates 

which meet alone in one joint. Knowing that, in the 

structuresconcerned, all plate elements are co-planar and 

parallel to the global coordinates, and most of the nodes 

are without tube members, the singularity problem has to 

be faced and be overcome. 

The following are the possible ways to overcome 

singularity 
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a) To assemblefthe equations at, points: where 

elements are co-planar, in local coordinates, >, and then to 

delete the unwanted columns and rows (which are related 

to- &z (plate)) , With --their -corresponding: elements ? in iload , - 

vector. - , The disadvantage:, in(this"method, isithat-it 

needs a , lot of computer work and time to reorganize the 

structural stiffness matrix. 

b) By inserting an arbitrary in-plane stiffness 

coefficient k'e, at such points only. This has been 
z (16) 

suggested by Zienkiewicz. It. leads--to'replacing 

0-0 by k a, x Oz = 0. This on transformation leads to a 
z 

perfectly well behaved set of equations from which all 

displacements including e'z are obtained. As 8'z does 

not ! affect the stresses 'and ' is uncoupled from alb. 

equilibrium equations 'an carbitraryrvalue'of ýk3e, can ; be "" 
z 

inserted, as. an external stiffness withoutiaffecting the 

result. ---,,. s. : t. ,t. F.. ... r'1 tsp. _ýcý 

"- 'f ,r _For a triangular element these were defined by a 

matrix such that in ilocal coordinates equilibrium. is 'not 

disturbed. Thetmatrix dis .{ ' 

, MZ 1 -. 5 -. 5 9z 

Mzj Et Q, 
,1 -. 5 z 

Mzk sym. 1 k 

(4.7) 
4, x1 

where, E is modulus, of Elasticity, t 
,. 
is plate, thickness, 

is elem ent area; _, and, c. is some coefficient to be 

specified, later. This additional stiffness affects the 
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results'because'it occurs at nodes which are not-co-planar. 

However, 'Zienkiewicz showed that 'the 'effect'of 'varying 'öL 

between 1 'and zero ' is 'quite small. For practical 

purposes, he recommends` =`0.03 or less. Following the 

same procedure, for a rectangular element, one can 

presumably use 

Mzi 0.99 -. 33 -. 33 -. 33 6zi 

Mz j . 99 -. 33 -. 33 b-z 
j 

=Oý EtA 
Mzk . 99 -. 33 9- 

zk 

sym. Mzl . 99 e 
zl 

(4.8) 

where A is the area of the rectangle and c,, -' will subsequently 

be chosen to be less than 1 and preferably very small and 

upon trial and error. This method also involves some 

extra programming and introduces a new approximation 

factor. 

c) By inserting a very large number say (1074) at 

the diagonal elements relating to such nodes.,. This in 

effect means 

Mz= k'& x Z=0 
z 

=1074x0=0 

The advantage of this method is it does not involve any 

extra computer work, because it deals with such nodes as 

it deals with constraints. The disadvantage is that it 

needs more storage than method (a). Method (c) was used 

by the author. 
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Because the structures considered are flat and 

because the local coordinates are parallel to the global 

ones, therefore the assembly of finite element stiffnesses 

was made in local coordinates. 
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4.3 The Computer Program 

A complete computer program was developed Ito do " 

the analysis. The Algol programming language was used. 

Since the problems tackled are very demanding both on 

computer time and storage, it was convenient to split the 

analysis into separate programs, each executing a certain 

stage using direct access disc backing files to store the 

numerical data and results during'the execution of the 

whole program suite. The suite was composed of the 

following subprograms. 

I. Program 1 which reads data from a file. 

Members were indexed according to their nature', 

properties, and orientations= 

II. Program 2 which forms the individual stiffness 

matrices for representative samples, also it forms the 

individual transformation submatrices for representative 

orientations. 

III. " Program '3` which plants the individual stiffness 

matrices for all members into their proper locationsin the 

structural stiffness'matrix. Then it does the following 

steps. 

a), Checking-for any diagonal stiffness element pof 

zero value-and substitute it by a large number (1074),. 

thus avoiding singularity=during the later solution stage. 

b) Implementing the prescribed displacements 

(boundary conditions)"by multiplying the displacement and 
74 

substituting their, corresponding diagonal elementsýby 10. 

c) Implementing the spring conditions. if any by 

adding the spring stiffness to its corresponding diagonal 
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element. 

d) Then the whole stiffness matrix is. stored in a 

half-band width form on the disc backing file. 

This program was modified slightly to-suit-the 

composite problem from an existing departmental program 

which only handled elements with equal numbers of nodes. 

The modification was to make it capable of handling 

elements with varying number of nodes. ° r: , 

IV. Program 4 

This is the only program written in the Fortran 

programming language. It is also a departmental program 

which takes the matrix from the disc backing file'store. 

The only modification done was to improve the execution 

time by skipping the division of off-diagonai'elements by 

the relevant diagonal element whenever the value of'this 

element is very large (lO74). This is physically related 

to an imposed boundary condition or node with finite 

elements members only. It meant an improvement of up to 

251 in some problems. Naturally, this would have been 

more if a finer finite element subdivision was used. 

V. Program 5 

This program produces the output results according 

to the requirement and class of the structure analysed. 

It prints out the following: 

1. Nodal displacements in global coordinates. 

2. In relation to tubes, it prints out forces and 

stresses in local coordinates at the end and middle sections. 

3. In relation to Finite Element Members, it 



60 

produces the following in local coordinates. ' 

a) Nodal forces and stresses for each element., 

b) Forces and stresses at the centre of each element, 

by taking the average of related nodal forces and 

stresses. 

c) Average principal forces and stresses at the, centre 

of each element. 

d) Average nodal forces and stresses for each node in the 

slab. This is done, by dividing the, total -forces and 

stresses at the node by the number of contributing 

elements. 

e) Average principal forces and stresses for each node in 

the slab. 
,ei:, 

4. Reaction forces in global coordinates. 

5. Inter-joint forces which are acting on the slab 

nodes as a result of tubes displacements. 
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4.4 The Capabilities of the, Computer Program 

The developed computer program is capable of 

analysing the following cases as individual or, combined 

problems. 

1. Pin-jointed space skeletal structure. - {- . 
2. Rigid jointed space skeletal structure. 

3. Plate under plane stress. conditions only. 

4. Plate under bending conditions only. 

5. Composite analysis in which plate elements 

can take any orientation, such as folded plate 

structures. 

6. Spring analogy analysis (see Chapter'10).. 

It is needless to say that although tubes are the only 

prismatic members considered in this research, this by no 

means limits the generality of the computer program in this 

sense as long as the physical and geometrical properties 

of the members are known. 
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4.5 Data Generating Programs 

It, is obvious that this. -, type of program needs a 

relatively massive, input data especially in large problems. 

Hence it was necessary to generate the data, by computer 

also. Since the program is general, for any. conf iguration 

and with any finite element subdivision,,. it was not 

practical-to include such data generating programs in,,. 

the suite. Thus for each type of configuration covered 

in this research a special generating program was made 

assuming 4 Finite Element subdivisions per 
. 

single pyramid 

base. Each program needs only the number of pyramids 

along each side and the, loading per node as an input. 

ik ply ý, 
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4., 6 Size of the Structures 'Analysed° 

Since all structures analysed in this research are 

symmetrical about three axes, which is indeed the 

characteristic of double layer grids in practice, it was 

theoretically permissible to analyse one eighth of the 

structure only. But this would have meant the use of 

triangularly shaped finite elements which are inferior to 

the rectangular ones, and also would have meant having to 

deal with partially constrained joints. Therefore one 

quarter of the structure was always analysed to represent 
(19) the whole structure. 

Despite this great advantage, and the rather 

considerable store capacity of 256 k available for the ICL 

1904S computer system in Strathclyde University yet the 

number of bays (pyramids)/side used which determines the 

band width and hence the minimum storage requirements 
BW 2 BW, (_ (., ý) +, 2-1) during matrix inversion procedure, was 

still hampered by the limited storage and time capacities 

of the computer facilities available. The largest problem 

handled was of 5x5 bays (per quarter). When 130 k 

storage facility was allocated to the inversion procedure 

for this problem, a total of 75 minutes of execution time 

was required. But when the same problem was granted 230k 

which meant the exclusive use of the machine, the execution 

time was reduced drastically to 25.41 minutes only, i. e. 

an improvement of about 300%. This was the result of the 

reduction in the number of transfers between the disc 

backing file and the core storage from about 500,000 to 
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15,663. The size of the half banded structural matrix of 

the above problem was 1230 x 216, and the span-depth ratios 

were 40,29,22 according to depth classification as., 

shallow, moderate or deep. respectively. Nevertheless, 

this structure is by no means a large span structure 

especially to the extent envisaged.. for_this. type of 

structure. This clearly demonstrates the limitation of 

this method of analysis, and highlights the importance of 

finding an approximate. method (or methods) which dispense 

with the need for such excessive store and. time 

requirements or better still to completely=dispense-with 

the use of the computer, at least for the preliminary 

design steps# 

1 

ý7 ýý 
ýn 

w ,` .r 
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"i ý 
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CHAPTER 5 

THE EXPERIMENTS 

5.1 Introduction 

Many experiments were done-the 
y purpose of, which 

were: 

1. Mainly to verify the theoretical analysis. 

2. ' To " gäin' info matIion about the effects of 

eccentricit in yp joints. This has an important 

practical implication since it is not practical always to 

keep the top: 'joint. without eccentricity, because it means 

limiting, the. cross-sections, used., ., Arta .,, 

Fig., 
, 
5.1; shows top joint conditions for in. and 

in. plates with and without eccentricity. Control of 

eccentricity was managed by inserting perspex packings 

between the kperspex slabl'and ° the bottom piece of' the top 

joint. A side `interest wasto investigate'` the influence 

ofthe' in=plane` rotations in plate. 

As it'was mentioned in Chapter 3, two types of 

models were made. Many tests were donekon both of'them, 

each test was repeated several times to be sure of the 

`consistency of the' 'results. Sträin änd' deflection 

reädingsRwere taken twenty minutes after applying loads 

in order' to lesse"'the- the creep effects in' the pe'rspex, 

Näturally, ", symmetrywäs taken into consideration'by 

'averaging the results of symmetrical members and locations. 

-- 
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5.2 Elastic Constants 

-! --Although both -steel . and perspex are standard test 

materials, but because they are combined in one structure, 

and because perspex is sensitive to creep, temperature, 

and even to thickness, it was thought better to determine 

experimentally the elastic constants, of both of-them. 

5.2. a Mild Steel Tubes 

Three random samples of the steel tubes were tested 

under tension conditions. Average elastic constants were 

found to be 

E -. 31,110,000 psi and ,. lit 0.2877 

which are not far from the standard constants of 30 x 106 

and 0.3 respectively. 

5.2. b Perspex Sheets 

Because three different thicknesses were used in 

Model I, which nominally were I in, in, and I in. Two 

beam samples for each thickness were cut from the same 

model sheets. The length and breadth of the beams were 

12" and 2" respectively. Each sample underwent two pure 

bending tests (not to destruction). Fig. 5: 2 shows a 

sketch of a beam sample with the location of strain and 

dial gauges. 

Fig. 5.3 shows a load/deformation (strain)curve of 

one test only, because the results of the various tests 

were consistent. Table 5.1 shows the average elastic 

constants for two thicknesses only, because the J" beams 

were not tested due to the buckling failure of the j in 
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model, "'--'E 5 is", 'the, 'Modulüs of, Elasticity found from strain 

gauge readings, while Ed. in , Table . 5.1�was -found -, from the 

formula aet,., , <, t 

d p. a (312ý_. T4a2ý 
24EI 

where, d is the, deflection at the centre oft. the, beam, ' and 

p, :a and 1 are, as 'shown in Fig. -... 5.2.. -; , The., discrepancies 

between Es1.7. Ed and E,. might. well, be, due to thickness ,., 

variations in. addition to., the fact, that strain gauges are 

sensitive to,, temperature variations,. and -, even. the 

cementing. of, strain gauges. -in,,, itself might.: induce, some, ", 

local, strains, also "the, dial, gauges readings) -are ', not,., asp 

sensitive as., electric; resistance variations.?  i ea r -', il' rI 
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5.3 Testing of Joints Effectiveness 

It was thought necessary to check that the 

jointing process did not weaken the tubes' strength and 

also that the joints themselves are strong enough to 

stand the expected strains of the tests and to know.. how 

far one can go in loading. Therefore, , three, sample 

tubes with their ball joints were tested under tension, 

and two under, torsion conditions until failure. The load 

was applied by using clamping grips.., 

It, was found that the tubes with their, joints could 

safely stand more than 19000 psi in tension and 200 lbs. 

in torque force. Tubes failed in tension by necking near 

the joint end inserts (Fig. 5.4) whilst brazing failed 

in torsion. -, ,- 

r 

rr 

' ti r7 -' .r 

ýý} 2y ýr+{. ý- fw ., 
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5.4 Testing of Composite Double Layer"Grid Model' 

(MODEL I) 

This model was described in para. 3.1. Three 

different plate thicknesses used at different times, 

namely in., in. and inches. For the 'first''two 

thicknesses, tests were done under two different 

conditions. 

a) No eccentricity in top joints. 

b) Eccentricity in top joints. 

These models and test conditions will be termed as follows 

1. Model IA is Model I with in. plate. 

2. Model IAe is as Model IA but with eccentricity. 

3. Model IB is Model I with in. plate. 

4. Model IBe is as Model IB but with eccentricity. 
5. Model IC is Model I with in. plate. 

ii 

Locations of the strain measuring devices were shown in 

Fig. (3.11), while Fig. 5.5 shows the numbering of tubes 

and perspex locations to be compared with the theoretical 

analysis. Kelvin strain measuring boxes were used for 

monitoring strains for the in. plate, and the J in. 

plate tests, whilst a data logger (Solartron Schlumberger) 

was used for the in. plate cases. A single hydraulic 

retraction jack was used to apply the central load as was 

shown in Plate No. 3.2. 

The jack reaction was taken by the basement roof 

as is shown in Fig. 5.6 which shows a sketch of the 

loading arrangements. 

Table 5.2 shows the experimental strain results 
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for the heavily loaded tubes and'perspex locations only 

for Models IA, IAe, IB, and IBe, in which it is clear 

that not only axial strains dominate the tube's strain 

whilst'in-plane strains dominate the perspex'plate 

strains, but also-'that bending strains in both tubes and 

perspex plate are negligible. '' 

Although 'a' jack of 3 tons was used to apply 4a 

total load of 827 lbs. "for 'the' in. plate' tests' andý'a 

2 tons jack was used to apply a total' load of ; 760.45 lbs. 

for' the J in. plate tests, nevertheless, 'it was thought 

better-to-convert strains into stresses for a projected 

1000 lbs: load in order to have a better grasp for them 

and to have'a base for direct comparison between the' 

various tests. "" 

These converted stress results are shown in Tables 

5.3,5.4ä, 5,4b, 5.5a and 5.5b. These tables also show 

the % ratio between the experimental with eccentricity 

results, and the theoretical results to the normal 

experimental results. Upon investigation of these tables 

it is clear that 

a)`Deflection predictions are good. 

b) Tube axial forces predictions are good also, 

especially in the case of the central and'corner tubes, ' 

(Nos. 7 and 1 respectively)'which are the°mostiheavily 

loaded tubes-in the structure forýthe type-of loading used. 

But-bending stresses were not so good,, probably, because 

they are very low as was shown in table 5.2'and consequently 

are misleading, in addition, strain {gauge readings are '`` 
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sensitive 'to' wall -thickness, and, to the gauge, location :.: - 

and orientation. 

T-- , c) In-plane-stresses in, plates are relatively, 

good, -whilst , bending stresses 'predictions were-not so 

-good or consistent. This is, probably due to the nature 

-of rthe'finite , element used, the-relative -coarseness. of 

, their-subdivision, the impossibility of giving the. exact-, 

'thicknessfof-the plate which is of paramount importance in 

=plate flexural stresses and. finallye-for, "being'very low as 

was shown, in Table 45.2, and hence misleading:, >:, In,, fact, 

upon (measurement {of rthickness around ; -the plate, edges,,, -it 

was; -, found 
, 
that plates do not : have' constant -, thickness. and 

-consequently the average thickness for. the. jAn. 
" and: l, in. 

plates' was, found . to-be x0.457 , in: , and - 0: 248,, in. 

respectively. _1 ; 

*A--uniformlyrdistributed -loadingr, test-:, oni, the1i. -tin. 

-plate model was tried. Using all the static loads 

available ' in 'the -laboratory- which , were-, grouped in 6 four 

sets"ý of 5ý 140 lbs. -each, . i. e. 0.276-psi.,.,, As, expected, the 

strain developed : in ". thelmodel:, were , very low especially in 

the plate. r,, ý; ̀Therefore, no-more-tests of. this sort were ,,.,, 

done. .. x, ,.,, r.. 

'_- -The j in. plate : test (Model? Ic)Y, was done despite 

the knowledge-that the-plateýmighttbe too thin, -but=it 

-was-intended to ý go to. the extreme.!, , In the. event, ° the 

,:. model. , failed in the first test under non-eccentric joint 

, conditions. . As", can be seen from Fig. 5.7 that=there is 

, relatively great variation of thickness all over the area 



74 

down to 0.107 in. i. e.: `15%-less than the nominal thickness, 

in '-some 4places. So appäxently, due to*'t he" extreme 

thinness of 'the plate, 'it was ' difficult to' control 'the' 

jacking system and'suddenly, at 'a loading of 257.5 lbs. 

the jack dial indicator began swinging violently'to, the 

extent that the whole structure was'experiencing, load 

oscillation. Therefore, the test was stopped immediately. 

When another test was done'later, buckling of the plate 

happened in areas with the 'least 'thickness. `' Several 'tests 

were `done 'afterwards and with ' each 'test the plate 'buckled 

at a lesser load than the previous one. In fact'a-load 

of`180 lbs, was enough to'buckle the plate'in the fourth 

run: ' Naturally there was no point in proceeding further 

and testthe'model under-eccentric conditions. When the 

model was dissembled,, a crack was found in the welding at 

one of 'tlie ball°' joints which was away from the buckled 

area. 

'-"Table 5.6 shows the , strain results 'of `the , first 

test above, and Tables 5.7a and 5.7b show the results 

converted into stresses for ' a' projected load of'1000 lbs. 

'It is'interesting toýnotice from these Tables the following: 

a) In-plane stresses in'the buckled, areatare less 

than-theory predicts; ' and'almost"half`the amount expected 

''from the experience of 'the other '-Imodel 'tests; 'while in- 

pläne"stress'in'other'areas of the perspex were higher than 

expected. This is pröbably'due to the high deflection'" 

of the buckled area, so`the plate was no more plane'in 

this area. 
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. -.,,, b) Bending. stresses in the plate were much higher 

than expected,, this is for the same above mentioned reason. 

c) Stress distributions were altered in, the tubes 

, also, so while it is noticed that the central tubes on 

average gave almost the expected stresses, it is clear the 

corner tubes gave almost half the stresses expected 

presumably due to the loss of symmetry. This is almost 

opposite what happened to the perspex plate. Check of 

symmetry was not possible, because, there were no strain 

gauges at the time in the, other corners of the model.., 

d) Deflections were affected very much and they 

gave a clearer picture of the loss of, symmetry and the 

amount of buckling experienced in the centre part of the 

plate at locations F. and G. 

It is interesting, to report that when Model, IC was 

dissembled and examined thoroughly a crack in a joint 

brazing far, from the centre was found. The cracked joint 

was repaired, and Model IB was assembled and tested without 

mishaps. 

Hence it,, is, clear that the stress distribution has 
4- - .,.. 

been changed,, completely due, to this failure., Thus one 

may,. conclude with relief, that this test provesl, what was 

said by Makowski 
(lý 

in para 2.1, that buckling of 
, 
any 

member in a grid structure, rarely, if 
-ever 

leads 
, 
to, a 

collapse of the whole structure. _ý 
Since all model test results for the in. and in. 

plates were linear, hence it suffices to, present figs. 

(5.8,5.9 and 5.10) only which. show the linear relation. of 

load against deflection, tube strains and perspex strains 

respectively. 
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5.5 Testing of the Single Pyramid Cantilever Model 

(MODEL II) 

This model and its purpose was described in para 

3.2. Locations of the strain measurement devices were 

shown in Fig. 3.12. Only a plate of in. thickness was 

used in this test. 

Two types of tests were done. 

1. Flexural Test in which a single; load''normal to 

the. perspex plate surface was applied. as was shown in. 

Plate No. 3.5 and Fig. 3.12. The load was-a-30 lbs., dead 

load applied in increments of 5 lbs. The model was tested 

under eccentric and non-eccentric conditions. The actual 

strain results are shown in Table 5.8, from. which it is 

seen that axial strains, in: tubes are not so many folds 

higher than bending strains, whilst naturally flexural 

strains in-the plate aare - the -dominant. - These 'test 

results will be discussed in para 6.1. 

2. Torsion tests: This test was done as an attempt 

to study the plate in-plane rotation and also to see the 

effectiveness of the joint systems, used in the model. 

It was done by applying an in-plane load as seen in Fig. 

5.12. But because the perspex plate warped under load, 

the perspex strain gauges readings were non-linear, but 

dial gauges results and most tube strain results were 

linear as shown in Fig. 5.13. This test will be discussed 

further in para 6.3. 

From the above tests it was concluded, among other 

things that the joint systems used are good and the analy- 

tical idealization approach gives good consistent results. 
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TABLE 5.1 

ELASTICITY CONSTANTS 
FOR PERSPEX PLATES 

E E 
Method Thickness Poisson s %( - 1) 

ratio by strain by dial d 
gauges Es gauges x 100 

Ed 

0.489 0.38 421000 395000 6.6% 

Test 

0.244 0.38 474000 444000 6.6% 

Manu- E_ 
factur- 
ers 0.38 420000 
Cata- 
logue 
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TABLE 5.3 

MODEL I 

EXPERIMENTAL AND THEORETICAL RESULTS 

"DEFLECTIONS" 

Joint 
N 

in. plate in. plate 

,,. o. 
Model' Model Theor- Model Model Theor- 

IA IAe etical_ IB 
. 

IBe etical 

A 0.01511 . 01511 0.01437 - -' - 
100 95.1 

B - - -I 0.0183 0.0183 . 
0.0204 

N , 
% 100 111 

C 0.02285 0.02503 0.02312 0.0254 0.0251 0.0285 

% 110 101 99 112 

D 0.0333 0.0319 0.0299 0.0343 0.0341 0.0369 

% 96 
-90-, 

99 108 

E 0.020314 0.02031 0.02173 - - - 
% 100 ' 107 

NB: The % 'comparisons are with Model IA, and Model IS 
-' results 

_ 
ýý3 

-- t_ 
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TABLE 5.5b 

EXPERIMENTAL AND THEORETICAL RESULTS 
'STRESSES IN PERSPEX' t-0.25 in. 

0 Type 
of 

STRESSES 

. r4 +) Results 
Tx T Ix I& M ö y y 

y xy 

I a -71.5 -71.5 0.0 -3.4 -3.4 0.0 
b -52.7 -57 0.0 -0.75 -1.94 0.0 
% 74 75 100 22 57 100 

c -53.4 -53.4 30.0 0.02 0.02 0.0036 
% 75 75 °'° 5 5 °<ý 

II a -109 -102 -0.0 
"7.3 

-30 ^0.0 
b -117.5 -102 -0.0 -8.07 4.6 -0.0 
°, b 107 100 100 -110 -15 100 

c -97.4 -51.8 19.2 0.04 0.02 -0.0 
89 51 °ü 1 .. 0 100 

III a -140 -140 0.0 -19 -19 0.0 
b -115.4 -115.4 0.0 -58.1 -58.1 0.0 
% 82 82 100 311 311 100 

c -109.7 -109.7 77.42 0.051 0.051 0.0 
°, 6 78 78 o "" 0 -. 0 100 

Results type a is Experimental results of Model IB 

it It b 11 +r if " Model IBe 

" it c" Theoretical results (16F. E/Pyramid) 
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TABLE 5.7 

MODEL IC 

b-- Axial forces in tubes, and stresses in plate 

Nos. 1 Descriptions 

1 Experiment (1) 
axial forces 

. results in tubes 

i) experiment 
(1) 

ii) theoretical 
iii) % Theory 

experiment 

Locations and types of 
strains 
Tubes 

Corner Centre 

1 la 7 7a 

-180 -165 293.24 402.23 

-351.4 -351.4 351 351 

195 213 120 87 

Perspex plate 

2 Experiment (1) 
moments, stresses 
in Perspex 

a) Point I 

: i) experimental 
results 

ii) theoretical 
results 

iii) % theory- 
experiment 

b) Point II 

i) experimental 
results 

ii) theoretical 
results 

iii) % theory 
experiment 

c) Point III 

i) experimental 
results 

ii) theoretical 
results 

iii) % theory 
experiment 

In-plane Moments 
stress 

crx Qy Mx MY 

-232.33 -218 -0.06 -0.074 

-100.9 -100.9 0.003 0.003 

43 46 5 4 

-341 -214.5 -1.06 -3.9 

-189.8 -107.6 0.0074 0.0034 

56 50 -0.6 -0.08 

-155.4 -155.4 -2.06 

-220.5 -220.5 0.010 

142 142 -0.5 

-2.06 

0.010 

-0.5 
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11 in. 
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a) Test tube sample 
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failure location --1 -ý--- 
Insert 
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b) Ball Joints details and 
failure tendency 

ball joint 

Fig. 5.4 
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I' 

I 

Fig. 5.5 3-Dimension view of Model I showing 
reference numbers for tubes, joints 

and perspex ros. ette locations. 

Z 
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Fig. 5.12 Torsion Test 
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E,.;!,. -, 'CHAPTER 6'.,. ,, r 4L r 

.. arg 

SOME THEORETICAL AND EXPERIMENTAL ASPECTS 

OF THE TESTS 
;. "r-. ri. ,ý''3. ßr-, 

6.1 Checking Convergency of the Solution 

As it was mentioned in para 4.1, it was necessary 

to verify the convergency of the theoretical solution, and 

also to choose the suitable finite element mesh size. Model 

T t- -V t i' ý.. K ̀ . i... äl " _' nit £rýati 5. r'. ,n fir. ,te ,^ IA was used to"check the convergency of the axial force in 
r 

tubes and the in-plane stress in the perspex plate, whilst 

Model II was used to check the convergency of the flexural 
aw iir rf i- jer.., 

y 

stresses in the perspex plate. 

Three square finite element meshes were used in 

Model IA convergency analysis which were 1x1,2 x2 and 

4x4 square elements, while four square finite element 

meshes were used in Model II convergency analysis, namely 

2x2,4 x 4,8 x8 'and 16 x 16 square elements. 

Tables 6.1 and 6.2 and Figs. 6.1 and 6.2 show the 

good convergency of the theoretical results towards the 

experimental results of the significant forces, stresses 

and deflections. Bending stresses in tubes for both 

models, and plate bending stresses in Model I were not 

shown because they were negligible, hence the comparison 

would have been misleading. Naturally, in-plane stresses 

do not exist theoretically in Model II. 

A point worth mentioning is that using 1x1 finite 

element mesh in Model I was good enough as far as stresses 

in tubes are concerned, but not so for deflections, whilst 
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the results"were misleading for plate'stresses. This 

is because the locations on the plate where stresses, .,, 

are measured,. are located in the middle of the, element,. 

where stress variation is very high and not-linear. , 
It is clear from the above tables and Figures that 

axial forces in tubes invariably compare. well with the 

experimental results. In fact,, one can get the axial � ": 
stresses. in. tubes to a good degree of accuracy using 

very coarse, F. E. mesh without resort to fine meshes at all. 

It is further noticed from Table 6.1. that. the use 

of 16 
,x, "16 

F. E. mesh in Model II, which is a very fine 

mesh made differences. in the results of only: -7% in, 

deflection and 20% in flexural stresses in plate and none 

in axial. stresses in the. tubes to, those of a2x2F. E. 

mesh. This shows that a moderate mesh, size say4 x4 

is good, enough even for moments. Therefore a mesh of 

4x4 square Finite Elements was used for the theoretical 

analysis of Model I and a mesh of. 8x8 was used in 

Model. II analysis... .".,., ,r 
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6.2 Effects of Eccentricity of Top Joints 

Fig. 6.3 shows the effects of eccentricity on axial 

stresses in tubes, deflection of joints and 'plärre stresses 

in plate expressed as % ratios which are taken from Tables 

5.3,5.4a, 5.4b, 5.5a and 5.5b in Chapter 5. It is seen 

from this figure and these tables that top joint eccen- 

tricity has a significant effect on the stress conditions 

in the structure. In fact the strain result' s during 

test of Models IAe and IBe were not always linear, hence 

it was not easy to draw a straight line through them 

sometimes. 

Studying the above mentioned tables and Fig. 6.3 

shows that : 

1. Deflections of joints nearest to the point' of 

load application were decreased in the case of -ve 

eccentricity. 

2. Tubes were very much effected, the extent and 

sense of these effects could be related to the plate 

thickness, in other words, to the degree and direction 

of eccentricity. 

a) In Model IAe, the axial stresses have been 

relatively decreased in the far located tube, while no 

apparent change in the tubes located near the centre of 

the structure, with the exception of tube No. 6 in Fig. 

5.5 which has increased. Bending stresses have increased 

substantially. '' 

b) In Model IBe the effect is more pronounced and 

all members are effected tremendously with the exception 

of Tube No. 1 which is a reaction member. 
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- So: the axial stresses in the tubes near the 

centre of - the structure have increased, while they ' 

decreased, drastically -in the far, tubes, - and ieven some 

changed signs. -Almost all bending stresses have- 

increased. .. -, ". _°t. I 'r i 1,1 f, 

3. o Perspex- plate, stresses were affected also,., 

especially in the J. in. , plate' case' (Model' IBe). "- -n"-, 

In-plane-stresses-in general, ýhave, decreased while 

, 
bending-stresses have. -increased. These effects might be 

explained by the sketch as shown in Fig. 6.4. This 

explanation is based upon the fact that 

a) The structure is sustained mainly by a couple 

produced by axial forces in the bottom layer and in-plane 

forces in the top one. The lever arm of this couple is 

equivalent to the distance between the centres of the two 

layers, i. e. the depth of the structure. But since the 

eccentricity in the in. plate case (Model IAe), makes a 

negligible difference to this depth, then its effects are 

negligible on the axial forces in the tubes (except tube 

No. 4 which has negligible strains, therefore, the 

comparison might be misleading). Nevertheless, the 

eccentricity itself still has a more apparent effect on 

the bending stresses in the tubes by increasing them. 

In the case of Model IBe which has a in. plate, the 

eccentricity has more effect on the axial forces because 

of its larger lever arm which in effect increased the 

depth of the structure, and also because of the high 

eccentricity in comparison to the plate thickness, 

therefore its effect is more pronounced on both axial and 
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bending 'stresses . 
; b)-Fig. ` 6.4" might' also 'explain' the' tendency towards 

getting`' lower in-plane-'stresses -and greater bending 

stresses 'in-the plate. ' This`explanation, is'based upon 

the ` fact" that-'eccentricity is 'bound"to' change' the 

deflection' of' the''centre" part ýof 'the plate., elements'where 

the "rösette' gauges are located, "and' thereforel' in-plane 

stresses'andflexural'stresses decrease or increase 

according to the equation. 

pixel=pxe 

so if el 'e then pl is <p and vice versa. The same 

explanation is valid for the change in value and sign of 

the flexural stresses. 

In conclusion, it may be said that 

1. Positive eccentricity effects are: 

a) Increasing the axial strains in the tubes nearest 

to the point of load application while decreasing the 

axial strains in the far located tubes. 

b) To increase the bending strains in almost all 

tubes. 

c) To decrease plane strains while increasing 

flexural strains in the plate. 

2. Negative eccentricity effects are less 

significant in this study case due to having a relatively 

small lever arm in these tests. Nevertheless, it may be 

said that both types of eccentricity tend to have the same 

effects on both tubes and plate elements. 

Although the tests were done under unfavourable 
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conditions as far as eccentricity is concerned in 

comparison. to. the more practical double layer 
- grids., of 

having the top layer larger, 
, 
in, area than the bottom one, 

and of-being under uniformly distributed loading rather 

than under .. single, 
Rloading, tone may still conclude 

, 
that 

eccentricity in top joints should be avoided, and most 

probably will have more. pronounced effects on, the plate 

in the; normal conditions. ý, :,, 
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6.3 , The Plate In-plane Rotation ;,,, . ,, r =< ;" 

As was mentioned 'in para. . 4.2, ' the ' 6'Z' lparameter 

and its counterpart 'Mz' do not 'exist'as far as the thin 

theory of' plates is concerned, unlike the `case 'with the 

tubes. ' Therefore, it is worthwhile to go to the other 

extreme and assume infinite`torsional"rigidity and to see 

if this makes any remarkable differences, ' and ' if so, in ' 

what direction? This was done by' treating '6Z'` at joints 

which have 'both plate 'elements and tube members, as a 

constraint', and assuming it to be equal to zero'. -'This 

theoretical 'test was done on ModelI and the results 

showed "no '"significant difference. Some examples can be 

seen'in'Tables 6". 3. This indifference might well be due 

to the nature of-the structure 'and `the 'type of loading. 

Therefore anöther `theoreticäl" test was' done for the case ' 

of `horizontal loading is As shown in Fig. ''6.5. Ttieý 

comparisön'of the results is shown in Table 6.4, where no 

significant difference is noticed except for the 'Mz' 

parameter for the tubes in the central area. But 'Mz' 

for tubes is not a crucial factor because it is low in 

comparison with other moments. 

In-plane rotation was further investigated by the 

cantilever torsion test mentioned in para. 5.5. A sketch 

of the test orientation was shown in Fig. 5.12. Because 

test arrangements were not sophisticated enough, the 

plate warped and consequently rosettes results were 

completely non-linear or consistent. The test was redone 

but with the same mishap. Nevertheless vertical dial 



109 

gauge readings and most tube. 's strain readings were more 

linear as was shown in Fig. 5.13. Naturally theoretical 

solution for this test is impossible because it is a 

mechanism. The experimental results of this torsion test 

is shown in Table 6.5. 

This discrepancy between theory and test might well 

be due to not simulating the plate joint correctly. In 

fact, this joint is nota single point joint, but a5 

points joint as can be seen in Fig. (3.7). Thus, there 

are in fact in-plane forces which create a couple to 

counter-balance the in-plane torsional moment created by 

the in-plane external load, and hence preventing the 

development of mechanism. 

Therefore, it may be concluded that it is correct 

to assume that the plate element has only five degrees of 

freedom, at least for. the types of structures considered 

in this thesis. 

r t' ýýa 

,J 
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6.4 Effects of changing perspex plate thickness 

There is not sufficient data to give definite 

conclusions about the effects of varying plate thickness. 

This is because of the failure of the in. plate test 

(Model IC) so that there are only results for two 
. .,...,. ,.. ...... ,. w ......... rat 

thicknesses. 

Comparison of the results of the tests on Models IA 

and. IB. as were shown. in Tables 5.3, 
-5.4a, 

5.4b, 5.5a. and. 

5.5b show that 

1. The bending stresses in the tubes have increased 

with the decrease in the plate thickness. '-'This-c'o'incides 

with the theoretical prediction. 

2. The in-plane and flexural stresses in the plate 

have also increased with the decrease in plate thickness 

which is also as predicted by the theoretical analysis. 

3. An unexpected feature is the decrease in axial 

stresses' iri tubes 1 and 7`which should not have changed 

and also the decrease in tube 8 instead of increasing 

according, to theory. This discrepancy might well be due 

to experimental errors. '`ý' 

F-` - 

.,., 
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TABLE 6.1 

THE CONVERGENCY OF THE 
MODEL II 

USING 2 in. PLATE AND 

THEORETICAL SOLUTION 

1000 lb. LOAD 

Method Deflection 

in. 

Tubes 
axial 
force 

lb. 

Moments 
in perspex 

plate 
lb. in. 

1. Experiment without 
eccentricity 0.1405 -19. '875 -10.77 

2. Experiment with 
eccentricity 0.1405 -23.171 -10.644 

BOR 100 117 99 

3. Theoretical 
analysis 

a) 2x2F. E. 
mesh 0.1424 -21.189 -10.8 

%R 101.3 106.7 100.3 

b) 4x4F. E. 
mesh 0.14196 -21.189 -11.42 

`, 6R 101 106.7 106 

c) 8x8F. E. 
mesh 0.14172 -21.189 -11.58 

%R 100.8 106.7 107.5 

d) 16 x 16 F. E. 
mesh 0.1328 -21.189 -13.02 

%R 95 106.7 121 

e) Ratio of 
results of 16 x 93 100 120 
16 mesh/2 x2 
mesh 

N. B. Ra Results (x) 
x 100 

Results (1) 
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Fig. 6.3 Shows the results with eccentricity as percentages 

of those without eccentricity for deflections 
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CHAPTER 7 

'THE UNIFORM MESH' ° 

A POSSIBLE PRACTICAL STRUCTURE ` '" 

7.1 Introduction 

As was mentioned in the Literature Review, " there 

are many types of double layer grids according to their 

basic unit configuration. Six grid types based on 

rectangles 
(24) 

are shown in Fig. 7.1'. ' The most' popular 

grids among them are the following two types. 

1. Grid type 1- which is sometimes termed' 

'Rectangular Parallel Mesh' (RPM) where both top and bottom 

grids are of rectangular patterns, but the top nodes are 

above the centre of the bottom rectangles, and both top 

and bottom sides are parallel to the boundaries. The 

experimental model of this research (Model I) was basically 

of this type. 

2. Grid type 5- which is sometimes termed 

'Inclined Rectangular Mesh' (IRM) in which the bottom 

rectangles are offset diagonally to the top ones and also 

to the boundaries. 

These two grids are termed 'Square Parallel Mesh' 

and 'Inclined Square Mesh' when their basic pattern is a 

square. But it is preferred to stick to 'RPM' and 'IRM' 

terms because the square is a special case of the rectangle. 

It is noticed in the six grids shown, that bottom 

squares are always larger or equal to the top ones. This 

is because, the bottom layer is under tension while the 
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top layer-is-under compression. Since the compressive 

strength 
,, 
for, tubes is less than the tensile strength 

because. of the possibility of buckling,.,, the. top members 

are never made longer than.,, the, bottom members. 

In the case of composite double layer grids which ,., 

are made with the top layer of. concrete plate, and,. the 

remainder of steel tubes, the diagonal shear members will 

be the critical members for design and not , 
the 

. 
top 

plate. This is due to the, high bending stiffness-of. 

the plate. 

Therefore, to get an efficient structure, one 

should aim towards a structure with more uniform shear 

distribution. 
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7.2 The Uniform Mesh 

In order to investigate the properties öf*composite 

double layer grids and to carry out parameter-studies, it 

is necessary to*simulate the relative properties of steel 

and concrete which would not be'possible if unit dimensions 

were used, a''structural model has to-be-used ; for' o be used'for' such 

studies. I"`. 

Bearing'-in mind that thistype of structure is 

expected to be mostly competitive in'large spans and for 

the reasons mentioned'in para'7.1, it was decided to use 

a form based on Inclined Rectangular-Grid, "'which was shown 

in Fig. 2.2. ' This was because it''is-more rigid'and 

exhibits better stress distribution especially near the 

boundaries than the 'IRM' and the'RPM' cönfigüratiöns. 

Also it has a more general configuration, " -since the IRM 

configuration could be 'a special'case of it. This does 

not imply that it is the most efficient or economical. 

This form is shown`in Fig. 7.2, and will be termed 

'The Uniform Mesh' because the'diägonäl shear members 

(pyramid sides)`are'-uniformly distributed ' over the` whole 

area. 

It is useful to mention that the only other'' 

configuration used'in what may be called composite double 

layer grid structures'is the one used'by`Castillo(2) for 

his`-slab and was based on the 'RPM' configuration as was 

shown in Fig. '2.5. 

Another comparable efficient structure could be 

based on the ' IRM' configuration, 'and will be rcalled'The 



125 

'IRM' composite structure", 'and is shown in Fig. 7.3 from 

which it'is seen that the pyramid sides are alternatively 

distributed and the"tube spacing'in', the bottom layer is 

double that'-'of the Uniform Mesh. The Uniform Mesh will 

be particularly efficient in very large spans. For 

shorter spans or for less heavy loads "The 'IRM' 

composite structure" could be used more efficiently. 

All theoretical investigations and the parameter 

studies in Chapter 9 will be based on the 'Uniform Mesh'. 

The following are to be observed. 

a) The basic pyramid unit dimensions are 

120" x 120" x 42.43" as is shown in Fig. 7.4a, concrete 

slab thickness is 5 inches, and tubes are of 4.5 inch 

outside diameter and of Gauge 7, (wall thickness - 0.176 in). 

b) Manufacturer properties and safe load tables were 

used. 
(20) Elastic constants are: 

for steel Es - 30 x 106 psi, µ- - 0.30 

for concrete Ec °4x 106 psi, )-t . 0.15 

c) A load of 100 psf was assumed to be uniformly 

distributed over the top layer including the self weight. 

d) Four finite element subdivisions per pyramid were 

used. In other words a mesh of 2x2 finite elements. 

e) The structure analysed is square in plan in order 

to get the largest span for a given number of joints or 

nodes. The structure is assumed to be simply supported 

along its four bottom sides, and the joints are assumed 

to be rigid. 

f) Due to the double symmetry, one quarter of the 
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structure was analysed only. 

g) Diagonal tubes connecting the top layer joints to 

the bottom layer joints (pyramid sides) are termed 

'Diagonal Shear Members'. 
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7.3 ,. -The . Variables to be-Compared ,-' 

In order to study the structural behaviour of the 

'Uniform Mesh' and to compare it with other alternatives 

in Chapter 8, and also to do the parameter studies'in 

Chapter''10, certain variables"in selected members and 

locations-are chosen to be the basis for this study and 

comparison. 

These variables are: 

1. The deflection of the joint which is located at 

the centre of the bottom layer when it exists, and of the 

node located in the centre of the top layer. 

2. The axial tensile forces in the bottom layer 

belonging to 

a) The tube which passes (or its line of axis) through 

the centre point of the bottom layer, and will be 

called the centre tube, and its axial force will be 

termed 'P'. 

b) The tube with the maximum tensile force, which 

will be termed 'T'. 

3. The axial compressive forces in the diagonal shear 

members which belong to: 

a) The tube which is located near the corner of the 

structure, which will be called the corner tube. 

This was particularly chosen for its high 

compressive force, and will be termed Cc. 

b) The tube with the maximum compressive (shear) force 

which will be termed 'C'. 

4. The central positive moment (stress) and the 
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central in-plane stress which will be termed M, 07b, 
P 

respectively. 

5. The maximum positive and negative moments (stresses), 

and maximum in-plane stresses in the concrete slab. 

These will be termed +M MI -Mm' Tbm' -Tbm' m p 

respectively. 
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AA Spans Used 

In order to study the structural behaviour of the 

. ''Uniform, Mesh' and also to compare it with other 

-alternatives, four different spans were-used. ., = 

1.40 ft. -span made-of-four-pyramid units. ,. . -This 

case-will. be, called DCON2. 

2.60'ft. span, made, of six pyramid units. This 

-will be called-case DCON3. ý" 

3.. i. r 80 ft. span, °. made , of-eight pyramid 7units. This 

will be called case DCON4. 
°-.. ` 

4. " ,- 100 ft. span, made of ten pyramid units. This 

will be called case DCON5. T,; -- 
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7.5 The Stress Analysis of the Uniform Mesh` 

Figs. (7.5,7.6,7.7 and 7.8) show the axial force 

distribution for cases DCON2, DCON3, DCON4 and DCON5 

respectively, while Figs. (7.9,7.10,7.11 and 7.12) show 

the bending moment (Ms) distribution for the slabs of 

these cases respectively. 

Table 7.1 shows the variables mentioned in para 7.3 

for cases DCON2, DCON3, DCON4 and DCON5 with the ratio of 

maximum in-plane stress/maximum bending stresses in 

concrete, and also the ratio of maximum compressive forces/ 

maximum tensile forces in the tubes. 

Studying the above table and figures shows that: 

1. When span is very short, as in case DCON2, the load 

is carried by combination of shear and direct 

compressive forces more than by bending forces. But 

the structure tends to behave like a slab for larger 

spans. This tendency is clearly seen in Table 7.6 

where ratio of maximum shear force/maximum tensile 

force decrease with the increase of span while the 

ratio of maximum in-plane stress/maximum bending 

stress increases with the increase in span. This 

will be discussed further in Chapter 9. 

2. Most bottom layer members are under tension, with the 

exception of some members near the boundaries. The 

maximum tensile force is not in the centre, but is 

always in the tube located under the third top joint 

counted from the top corner along the diagonal and is 

marked by T in the above figures. It is noticed also 
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that bottom layer. members are more or-less-under3 

comparable axial stresses, i. e. there is-no vast 

differences in stresses between the boundary area and 

the centre area. This is specially clear in cases 

DCON4, and DCON5. 

3., Most of the diagonal shear members areýunder, 'compressive 

axial; forces. The highest are in the boundary area. 

The difference between the maximum and corner shear 

forces decrease with the increase of span, until the 

corner force itself becomes the maximum force in case 

DCON5. This shows the tendency of having more or 

less uniform shear distribution in boundary area. 

The maximum compressive force is always less than 

the maximum tensile force (except in case DCON2 where 

shear action was dominating), but the difference is 

not large. This characteristic is useful in the 

design considerations. 

4. Stresses in the slab are negligible at least for the 

range of loading and spans used in comparison with the 

allowable concrete stresses. Furthermore, in-plane 

stresses are negligible in comparison with the flexural 

stresses, as is seen in Table 7.1, although this 

tendency will cease for larger spans, therefore in- 

plane stress distributions were not shown. 

It is noticed that positive flexural stresses are 

higher than negative ones (except case DCON2) and the 

maximum bending moments are in the central area, but 

not at centre point, while negative ones are-in the 

boundary area. This is because of the presence of 
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the internal supports, which means, having a flat 

slab, with rigid supports in the boundary area, 

hence higher -ve moments, and flexible supports 

especially in the central area, hence higher positive 

moments. 

5. It is clear from above that shear members are the 

critical members in design consideration. For 

concrete slab, practical considerations might be the 

deciding factor. 

// 
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TABLE 7.1 

COMPARISON Or PLATE STRESSES AND TUBE'S 

" AXIAL FORCES IN THE UNIFORM MESH 

No. Description CASE 
DCON2 
Span - 40 ft. 

CASE 
DCON3 
Span - 60 ft. 

CASE 
DOOM 
Span - 80 ft. 

CASE 
DCON5 
Span - 100E 

1. Axial forces in tubes (in 
lbs. ) 

a) Tensile forces 

i) Central force (P) 12452 21859 41068 62023 

ii) Maximum force (T) 13602 28214 50835 82333 

b) Compressive(shear) 
forces 

i) Corner force (Cc) -14360 -22860 -40171 -60554 

ii) Maximum force (C) -25409 -2543G -48553 -60554 

2. Stresses in concrete - 
piate (psi) - 

a) Bending moment 

i) Centre point 
stress (Urb) '163 183 265 . 349 

ii) Maximum stress 
Pbm) -392 367 435 520 

b) In-plane stresses 

i) Centre point ( Vp) - -19.4 , -54 - -108 -- -177 

ii) Maximum. ( 0"pßß) -63 -68 -124 -192 

3. Ratios 
, t 

a) Lr pm/ O-bm 0.16 0.186 0.285 0.37 

b) C/T 1.868 0.002 0.955 0.735 

c) C/ Ce 1.77 1.11 1.21 1.0 

d) T/P 1.09 1.29 1.24 1.33 
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GRID TYPE 2 Square on square 
offset diagonally 

GRID TYPE 3 Square on larger square 

GRID TYPE 5 Square on diagonal GRID TYPE 6 Diagonal on square 

Fig. 7.1 Some types of square based grids. 

GRID TYPE 1 Square on square offset 

GRID TYPE 4 Square on larger 
square set diagonally 
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a) Section through D CON 2 
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a) Section through D CON 5 
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CHAPTER 8°� 

SOME ALTERNATIVE STRUCTURES' 

8.1 The Alternatives 

In order to have a clearer picture of the structural 

characteristics of 'The Uniform Mesh' it is better to 

compare it with other possible alternatives. 

These alternatives are 

1. Double layer tubular rigid jointed structure 

which is basically of the same configuration as the uniform 

mesh is, but having a tubular top layer instead of a 

concrete slab. 

2. As alternative 1 but with pin joints. 

3. The 'IRM' composite structure as was described 

in para 7.2. The four spans cases for this type of 

structure will be termed 

DCON2A, DCON3A, DCON4A and DCON5A 

4. The uniform mesh structure but with pin jointed 

tubes. 

Needless to say, that the cases to be compared have 

similar tubes, span and depth. 

Each, of the four alternatives will be dealt with 

briefly, the sole`aim being-to, compare it later with 'The 

g -'"` Uniform'-Mesh'. ' 

.-ýra 

_, .. j 
, 

ýt 
o -- 
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8.2 Brief . Study of-the, Alternatives, ., t '- -, 

8.2.1 The Double Layer Grids (Alt'ernatives 1 and 2) 

Table 8.1 shows the selected axial forces and 

deflections in the four spans, namely 40', "60,80 and 100 

ft. respectively for alternatives 1 and 2. 

Studying this table reveals 

1. Both structures have almost similar behaviour 

and in fact the change in axial forces is negligible. 

2. But there is more difference, although still 

small, in deflections. Alternative 2 has higher 

deflections which is understandable due to it being a pin 

jointed structure; hence of less rigidity, 

3. It is further, -noticed' that: maximum and central 

tensile , forcesi, are of; -the same ýorder,; ibut the ratio between 

them increases, withirthe, increase of span. zw 

4. ,, ; There is, a. big, difference between the "maximum°: 

sheariforce-and-thetcorner one:,,: Theoratioibetween-, them 

increases with theAncrease'"of span. ", -This,: shows that 

there-are. big differences in shear forces in the boundary 

area. 

8.2.2 The 'IRM' Composite Structure 

Table 8.2 shows the selected axial forces, deflections 

and stresses in concrete slab in the 'IRM' composite 

structure. It is seen from this table that 

1. Shear distribution in boundary area is very 

good; as can be concluded from the ratio of maximum shear 

force/corner shear force. 
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2. Tensile"force, distribution is good too, but the 

ratio between the max. tensile force 'T' and the central 

tensile force 'P' increases with the increase of span. 

3. Maximum in-plane stresses 'w'pm' are much less 

than the maximum flexural stresses bm' . But unlike 
T the ratio '/p' in bottom layer the ratio (d- bm ) decreases 

Pm 
with the increase of span. 

It can be concluded from points 1 and 3 that this 

structure also tends', to behave like a slab in larger 

spans, while it was dominated by shear action at span of 
F 

40 ft., with 4 bays only. 

8.2.3 The Uniform Mash but with Pin-jointed'Tubes 

Table 8.3 shows the selected deflections, axial 

forces and maximum stress in this structure. 

It is seen from this table that both shear 

distribution and tensile force distribution are good, and 

also that the structure is dominated by shear action in 

very short spans and by slab action (bending action) in 

larger spans. 

,. f _ 

« 
/ 
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8.3 The Comparativei Study 

8.3.1 The dominance of axial stresses in tubes 

It was found, that axial stresses are the dominant 

design factor in tubes in all the cases investigated. 

Tables 8.4a and 8.4b show examples from cases DCON4 and 

DCON4A which both have spans of 80 ft. to illustrate this 

fact. 
" s"ý : 5i y? pie' -f 

This phenomenon is very useful and was cited in 

Para 2.1 as being the main advantage of grid structures. 

8.3.2 .. The Rigidity of Joints ,... 

' 'It was found that rigidity of joints 
Idoes not have 

overall "appreciable' effects"on, axial `forces in tubes, or 

deflections" or slab stresses. 

But'naturally it=does°have great effects on the 

bending stresses 'in tubes where' `it"makes them the highest- 

at ' the' 'ends. ,r:, :- fz F 

'` Table 8: 1 which shows these forces "and deflections 

in tubular double layer grids (alternatives 1 and 2); and 

Table 7.1-which shows the ' forces, deflections and slab 

stresses "for, the uniform mesh, and, Table, 8.3, which shows 

the forces, deflections and slab stresses for the uniform 

mesh but with pin jointed tubes support the above 

conclusions. 

Therefore, it seems, that there is no significant 

structural advantages in having rigid joints. 

8.3.3 The-effects of using concrete slab 

` The'effects"could be summarized into-the `following: 
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1. . 
Considerable structural rididity is achieved 

by using reinforced concrete slab. instead of the top 

tubular, grid. This is shown by a considerable reduction 

in deflections of up to,, 70% for a span of 100 ft. Table 

8.5 shows the, ratio of the various selected variables in 

the uniform mesh. cases with their counterparts in 

Alternative 1 cases. 

Fig. 8.1 shows graphically the, ratios shown in 

Table 8.5 against the span/depth ratio. 

2. It is seen from the above table and figure, 

that a reduction of 22% in maximum shearing force is 

achieved for a span of 100 ft. 

3. The larger the span is, the more relative 

rigidity is achieved and the more reduction in forces 

too, in comparison with Alternative 1. 

It is noticed that the corner shear force 'Cc' does 

not tally with this conclusion. In fact this does not 

effect the overall tendency but on the contrary shows 

the advantage of this new structure in having a more 

uniform shear force distribution. 

8.3.4 The comparison with the IRM composite structure 

--- Table'8: 6, shows the ratios of the various selected 

variables in, the uniform mesh : as shown - in -, Table 7.1, to 

their'counterparts*in theýIRM composite structure 

(alternative 3) as shown, in I'Table -8.2. 

-- - -Two new variables-have, beeniintroduced in Table,,,, 

: _ý 8.6. These-were 

a) 'The `total length-of all the, tubes "in the rstructure 
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-''in each; case. 

'The total weighted length of`all the tubes in the 

structure in each case. This is found as follows 

If RI is the ratio of the total length ' defined ' 

abov'e'for a uniform mesh case to that of the IRM cömposite 

structure case, and if Rc is the ratio of the1maximum 

'shearing forcesof the same cases then 

weighted length ratio - Rwi R1 X, Rc 

This is based on the assumption that the maximum 

shearing force is the deciding design factor in the two 

cases, and also on the fact that the maximum shear bearing 

members in both cases are of the same length, orientation 

and end support conditions, i. e. both have the same safe 

compressive strength. 

This weighted length ratio (Rwl) is just a useful 

comparison indicator. 

Fig. 8.2 shows graphically the ratios shown in 

Table 8.6. Studying Table 8.6 and Fig. 8.2, one may 

conclude the following: 

1. Reduction in axial forces and deflections are 

achieved by the use of the Uniform Mesh. This tendency 

increases with the increase of span. 

2. The in-plane stresses in concrete are almost 

the same in both structures. This is because they are 

mostly functions of the top layer slab cross-section and 

the external loading system, neither of which are changed. 

3. Bending stresses in concrete have decreased 

showing the same tendency as other forces. This is 
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because bending moments in slab are a function of the 

external load and the vertical-and-rotational displacements 

of the joints. 

4. A reduction of 45% in deflection-is achieved 

in case DCON5 (span - 100 ft. with extra 2.6% expressed 

as weighted length. The prospect in this sense is even 

better for larger spans. This is because the ratio of 

length of steel tubes as shown in Table 8.6 will always 

be less than 2, while shear force ratio will continue to 

decrease with the increase of span. 

ý. -1 'y', 
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t,,... CHAPTER 9 ..,, 

THE SLAB` BEHAVIOUR AND THE' DETERMINATION 

ýOF 'SECTION 'PROPERTIES 

9.1 The Slab Behaviour 

It was mentioned , in--theLiterature ., Review parat 2.2 

that. plate° analogy. has, beenýused: "extensivelyr in, the 

literature-of flat grid structures. It was also mentioned 

that this-. analogy has difficulties in boundary area. 

Therefore, it is only natural to expect'that plate 

analogy will hold even more here because it is nearer to a 

continuum than prismatic double layer grid is. 

Therefore the following is presented to explain and 

help in predicting the behaviour of the Composite Double 

layer grids. 
, 

The Composite Double Layer Grid tends to behave 

like a thin slab, i. e. the load is carried mostly, by bending 

action, but when it is very rigid, then the load is carried 

mostly by combination of shear and direct compressive 

forces. Therefore slab analogy does not hold in the 

boundary area because of its high rigidity. Furthermore, 

because of the high rigidity of the boundary area, athe ,. 

maximum tensile force in the bottom layer is not in the 
ry' a 

centre, as is the case for a homogeneous simply supported 

square slab under uniformly distributed loading,, but is 

always near the boundary area and stays 
, 

there despite the 

increase of the span as it was found in para 7.2. 

Thus it is expected that shear forces will be 

dominant in short spans while in larger spans, tensile 
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forces= in the bottom . layer tubes twill be predominant. 

Fig. ý9. la shows a sketch representing an isolated 

section through the composite structure, ' from which it is 

suggested that the external moment is counterbalanced by a 

couple of, lever-arm (h), where (h) is-the centre-to-centre 

distance between the top and bottom layers. The couple 

is made out of an in-plane top compressive force (C), and 

a bottom tensile force (T), so 

C=T... 
C 9.1 

and M=Txh.... 9.2 

hence T=CM 

or 
T 

94V 0 9.3 
Cf,,.. h 

;..,. r 

so -any, -increase . in -, (h) -means a decrease in : both T , and C. 

The, bending, moment in the top. slab has no such 

clear, linear. relationship- with the depth, of, the structure 

or : the , external moment, . because ; it is in fact produced by 

more complex factors such as 

a)! ), The"superimposed load which has both local and 

general effects. -- ,. -r". "--- 

- . 
b). The vertical and rotational, displacements, of 

its common joints with . 
the diagonal shear. members.,,.. ,. 

c) . Continuity effects. 

This analogy is valid as long as. -the slab behaviour 

dominates, and the extent. of this validity depends, on the 

extent of-this dominance. Therefore it is not expected 

to hold for short spans or for boundary areas but. mainly 

in large spans, and for central areas. 
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9.2 Relätion'; between top slab thickness and stress' 

distribution 

When the composite structure behaves like a slab, 

then one may assume that for a section in such structure, 

the total contraction of the top fibres is equal to the 

total extension of the bottom fibres (Fig. 9. lb). Hence 

there will be a neutral plane somewhere in the section 

where there will be no change in length. This location 

is the same location as the centre of gravity of the 

section, and all fibres above the neutral plane will 

experience compression, while those below it will experience 

tension. 

It is clear from the above that the location of the 

neutral plane has no relation to the span of the structure 

but depends entirely on the nature of the cross-section. 

Therefore an increase in the top slab thickness 

means raising to centre of gravity of the section towards 

the top layer and consequently the redistribution of the 

force system in the section. 

Hence for any cross section, the top layer slab 

will have a certain depth beyond which part of it will 

experience tension, but since concrete is not efficient in 

tension, therefore it is better to have all the concrete 

parts of the structure under compression. 

This conclusion is very important because of its 

expected savings in the weight of concrete and consequently 

on the total weight of the structure. 
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Of course,, the same reasoning is valid with the 

steel tubes, which shoud not be of such a small area or 

a moment of inertia so as to let the centre of gravity of 

the section pass through the concrete layer. 
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9.3 Choosing an Efficient Cross-section 

The following method is suggested to get' an efficient 

cross-section. - 

Following the same reasoning as para 9.2, and 

assuming that the structure is, under plate bending 

dominance, then it is possible to treat an isolated section 

of such structure as a beam section. It could be assumed 

that the cross-sectionremains plane during bending, 

irrespective of whether the section is made of one material 

or-not, therefore, the strain variation is linear from top 

to bottom. r '} 

The location of the neutral axis is not known at 

first, except when"theýcross-section has double symmetry, 

then, the neutral axis will be at the middle height of the 

section: *,. *, -, -- -I,,. a, 

From the theory of pure bending of beams, the 

normal stress Or 
x at any distance 'y' from the neutral axis 

(25). 
is given by 

ExEExkxy.... 9.4 

... , rý=.: kxEcxy, R 1S, = kxESxy .... 9.5 

where K is the curvature of the section when under bending, 

xc' 
Es and V-x s are modulus of elasticity and stress Ecu V' 

for concrete and steel tubes respectively. 

But since the resultant axial force acting on the 

section is zero, , 
therefore 

. 

Pc. "+ ps =. 0 , 0009.6 
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where Pc and Ps are total concrete and steel forces 

respectively. Let dA denote an element of area in the 

cross section at a distance 'y, ' from 
. 
the neutral axis, r 

q, 

therefore 

J 
dxc dAc 

,! 
lxs dAs 0 

and *from 9.5 

k Ec 
fydAA 

+. kEs 
! 

s5 
0". 

". 9.7a 

and 

Eý 
fydA 

+ Es 
f 

YsdAs =-0..:. 9.7b 

cc 

where yc and ys are the distances of dAc and dAs from the 

neutral axis, respectively. 

The bending moment in the section is defined as 

M= 
fprxxyxdA 

" 

.,. M"= 
fGxcxycx. 

dAA+ _xsxysxdAs 

cs 

and from f9.5 

M _. = -" k Ec 
5y2 

x dA ++ ' k. E5 
f 

y2 x dA 

cs 

=k (Ec Ic + Es I)". 
""9.8 

and kM """" 9,9 
ECxIc+Esx Is 

where Ic and-Is are moments of inertia of concrete and 

steel sections about the neutral axis respectively. The 

moment of inertia of the entire equivalent cross-sectional 
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area, is I where 

I= Ic + Is .... 9.10 

Using equations 9.5 and 9.9 will give the stresses 

in the composite-section as functions! of the bending 

moment M. Hence, 
.' 

MxEcxyc 

xc =k Ec Y- -! - .... 9. lla 
Ecxlc + Esxls 

Mx Esxy 
lxs k Es Ys .... 9. llb 

EcxIC. EsxIs 

But since yc C and ys C1 according to Fig. - 9.2 

then, `, -', 

V =,. -. 
MxC T= Mx Cl 

.... 9.12, 
xc IWEc XS ' IE/Es 

where IE = Ec x Ic, +, Es, x. Is 

The second stage is to find the neutral axis. This 

will be found 'from Eq. 9.7b as follows" 

-EcxCx, Ac+.. EsxClxAs=O 
,,, r; : 

-" Ec. "x Cx b'x t+ ES (h-c) As = O' 

where`b is the`width of the concrete slab in the section 

EsrxA 
.5 

._, 
o C 

Ecx x +EsxAsxh 

or 
h, 

Exxt... 
9.13 

1+, -i- ES xs 
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Eýxbxt 
Let ml x ss 

'1 + in C =' 

Using parallel axis theorems, 
(23) 

then 

Ic = Ich + Ac x c2 

.... 9.14 

.... 9.15 

.... 9.16 

where Ic is the moment of inertia of the concrete slab 

around the section neutral axis, and IC is the moment Co 

of inertia of the concrete section around its centre line. 

,., Ic ° 
T2 3-+bxtx 

c2 

.... 9.17 

IS IS +Asxc2 
01 

J 

From Eq. 9.15 it is possible to choose the desired 

section. Ideally, the most effective section is when 

the neutral axis is exactly in the middle height of the I 

section, which is an I-beam or identical top and bottom 

layers. Also, it is ideal if permissible stresses are 

achieved simultaneously in both top and bottom layers. 

But for the cases considered in this research it is 

not practical or efficient to get c- 
h/2 because the 

section will be very heavy due to the use of. a very large 

steel area. In the same time if a thick concrete slab 

where used and a very small steel area, then there is a 

possibility that the neutral axis will lie through the 

concrete layer, which is not advisable either. This is 

because concrete tensile strength is negligible, therefore 

the concrete area below the neutral axis is not only 
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useless, but also unnecessary-. dead weight. 

Hence, the following procedure will just give the 

section where the neutral axis will lie at the bottom 

fibres of the--concrete slab, i. e. c= 
t/2, 

and this will 

be considered as a minimum requirement to get an efficient 

use of the concrete. Obviously, the choice of the exact 

value of c will depend afterwards on economical, 

architectural consideration besides the permissible'- 

stresses°'for steel and concrete. ` 

-. So from Eq-.. 9.15 1. 

th 
c= /2 

+ml 

and 1+ ml t 

.. 
2t 

-1= 
2h 

tt ml , but according to Eq. 9.14 

Ecxbxt 
1Ex 

ss 

EC 

x 
btý 

s (2h - t) . `... '. 9.19 
s 

Formula 9.19 is a good guide for getting an efficient 

use of concrete. 

It is therefore shown that stress distribution 

really depends on the cross-section only and its 

constituents. It is also noticed that the contribution 

from the shear members in this case is limited to providing 

the depth, which is naturally 'a very important factor in 

the moment of inertia, not forgetting, their basic function 

in transferring the shear. 

The thickness of the concrete slab (t) can be found 



174 

from Eq. 9.19 in terms of steel area (As). 

Exb 
Assume__ n= --, then Eq., 9.19 becomes 

A nt2. 
sa2h- t 

2A xh -txA = nt2 ss 

and 

nt2 + A. xt- 2Ash =0.... 9.20 

The solution of this quadratic equation gives the 

thickness,. as 

-As± 
\AS2+ 

8nx ASxh 
t .... 9: 21 

n 

Equations 9.12,9.15 and 9.21 will be used later in the 

approximate analyses to be presented in chapter 11. 

Eq. 9.19 could be used to show roughly the way in 

which the bottom layer steel area, and the top concrete 

layer thickness are related to each other. Eq. 9.19 

could be expressed. as 

AS t2 ýG 2h t 

This is because Es, Ec and b are constants. By assuming 

't' to be negligible in comparison to 2h, which it is 

expected to be in practice, then 

tc V2h x As or tV AS .... 9.22 
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CHAPTER 10 

' PARAMETER STUDIES 

10.1 Parameters to-be Studied 

The parameters to, -, be studied°"are, defined in Fig. 

(7.2) and (7.4b). The four previous basic cases 

described in pars 7.4.1 were used as a basis for parameter 

studies. The parameters are: 

1. Span of the structure: cases DCON2, DCON3, DCON4 

and DCON5 were used to study the variation of span parameter .j. w 

since they spanned 40 ft., 60 ft., 80 ft., and 100 ft. 

respectively. 

DCON5, was not used any more in the other parameter 

studies because of , 
its huge computer requirements. 

2. Structural depth seven different depth were 

used 

a) 30 in. The relevent cases will be called DCON2S, 

DCON3S and DCON4S. 

b) 36.22"in. The relevant-cases will be called 

DCON2 S1, DCON3 31 and DCON4 S1. 

c) 42.43 in. These are the basic cases DOON2, 

DCON3 and DCON4. 

d) 48.65 The relevant cases will be called 

DCON2D, DCON3D and DCON4D. 

e) 54.86 in. The relevant cases will be called 

DCON2D1, DCON3DL and DCON4D1 

f) 84.86 The relevant cases will be called 

DCON2D2, DCON3D2 and DCON4D2. 
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This depth was chosen because, -diagonal shear 

membors`mako'an'anglo of 45°"withthe"plane°of the bottom 

tubular'layor. _1 

g), 120 in. The relevant cases will be called 

DcON2D3, DCON3D3 and DcON4D3. 

3. The concrete slab thickness (t): - 

Five different thicknesses were used. 

a) 2.5 in. The cases will be called DCON20, 

DOON30 and DCON40. 

b) 5 in. which are the basic cases DCON2, 

DOON3 and DCON4. 

c) 7.5 in. The relevant cases will be called 

DCON21, DCON31 and DCON41. 

d) 10 in. The cases will be called DCON22, DOON32 

and DCON42. 

o) 12.5 in. The cases will be called DOON23, 

DCON33 and DcON43. 

4. The thickness of wall tubes 

The study was limited to DCON3 only, because this 

parameter is easier to foresee than others. The 

thicknesses are 

a) tt - 0.176, D- 41 in., which is the basic 

case of DCOIN3. 

b) tt M 0.212 in., D- 4j in., the case will be 

called DcON391. 

c) tt = 0.252 in., D- 41 in., the case will be 

called DCON3M2. 
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-5.. The. outside diameter of tubes (D) 

The study of this parameter was limited to case 

DCON3 also, like the wall thickness parameter and for the 

same reason. The wall thickness was kept constant, 

these diameters were 

a) 'D --41 in., G7 which is-the-basic case of 

DCON3. 

b) D 51 in., G7 and will be'called case 

DCON3M3. 

C) D= 61 in., G=7 and will be called case 

DCON3M4. 
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10.2 Some, Definitions 

1. A factor 'R' will be used in tables and figures 

to indicate the variation of forces, stresses and 

deflections with various parameters. 'R' is defined as: 

R Value of a variable at case x 
.... 10.1 

Value of the same variable at case 1 

In this way absolute values for the variables are obtained 

which make it possible to plot any combination of them 

using the same scale. 

2. A factor of safety against over stressing will 

be used as a parameter. If the safe compressive force 

for the diagonal shear members is Cs, and C as defined 

before, is the maximum compressive (shear) force in the 

shear members, then the factor of safety here is defined as 

c 
F ý, s 

s Zr .... 10.2 

The safe compressive force (load) is found from the 

manufacturer's catalogue. 
(20) 

The effective length is 

assumed to be 0.85. x, where Q is the shear member length. 

This is because the shear member is effectively held in 

position at both ends and partially restrained in direction 

at both' ends. 

10.2.1 The Span/Depth Ratio (SDR) 

A span is defined here as the shortest distance 

between the centres of two corner joints along one side of 

the bottom layer, as was shown in Fig. 7.2. 

Fig. 7.4b showed a section through the structure. 
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It `is `clear that a formula{ has °to -be found to. give a better 

expression, for f, the rspan/. depth ratio, -, because , the =cross- 

section is. not: a, homogeneous solid slab.,. Therefore, to 

define =the depth of. the . structure tas "the ; distance : between 

the centre of-concrete. slab, and the centre of steel tube 

is not enough; because it-doesknot: take_. into consideration 

the variation of slab thickness or tube cross-section 

properties.: 

Hence, -, the-formula below is devised. to define the 

depth as 

d=h+t+ .... 10.3 

where d is the depth used in expressing the span/depth 

ratio (SDR) only. 

h is the centre to centre distance between concrete 

slab layer and the bottom tubes layer. 

'h' is really the z-component of the diagonal shear 

member length as given to the computer. 

t is the thickness of the concrete slab layer, and 

D is the outside diameter of bottom layer tubes. 
-, ti 

t was taken instead of 
t/2 in order to give more 

weight to the flexural rigidity of the slab. In effect 

it is assumed that tubes' centre lines meet the slab at 

the bottom fibres and not at the middle plane, and hence 

'd' is accordingly the distance between the top fibres in 

the slab and the bottom fibres in the tubes, and not the 

centre to centre distance. 

This formula was tested and found to give better 

correlation with force variations, than the standard 
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definition, ýIin the* parameter studies to be presented in 

Chapter 10, when there is one span but with variable 

section properties. But when the span varies while the 

section is constant, then both definitions have the same 

correlation with the forces.; 

.. The span over depth ratio is defined as 

span of the'structure S SDR °ý .... 10.4 
the depth - 

while the standard span. over depth ratio will be termed 

SHR -h.... 10.5 

In order-to-distinguish clearly between 'd' and 'h', 'd' 

will"be termed 'effective depth' while 'h' will be termed 

the 'structural depth'. -.,, ,_,., 
Few examples-for cases; with, 80 ft. --span only.. are. 

tobe given here -to show that -the-: 'effective depth's gives , 

abetter correlation--with the forces than, the structural 

depth' does. 
- 

Figs. 10.1 and 10.2 show clearly that maximum i1 

tensile and shear forces vary more smoothly with I'SDR' 

than with 'SHR' due to the change of the 'structure depth' 

only. 

Fig. 10.3 shows the smooth variation of maximum 

tensile and shear forces with 'SDR' due to the change in 

slab thickness only, which is impossible to show in the 

case'of 'SHR', because 'SHR' will be constant in these 

cases. 

/I 
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10.3 Variation in, Span- 

Table 7.1 has already shown the effect Of changing 

the span of the structure on the various forces, 

deflections, ' and stresses in the structure. 

Table 10.1 shows these effects but expressed by 

the f actor 'R' as 'defined ' in'para. 10.2. 

Fig. 10.4 shows these effects against the span/ 

depth ratio 'SDR'. ' It is shown in thisfigure that 'all 

forces 'and stressesrvary almost linearly after case DCON3 

which has a "span of`60 ft, (SDR = 14.5), while there is 

no significant difference in them between case DCON2 

(span '40' ft) and case DCON3, except for the maximum 

tensile force 'T''. 

It is seen from Fig. 10.5 which shows the'rate of 

change of these forces 'R' with the square of the spans 

(span 2 ); that both the maximum tensile force 'T' and the 

maximum in-plane stress 'w'pm' vary linearly with (span2). 

This can be expressed as 

M=Q-ga2 .... 10.6 

as defined by Timoshenko(11) where M is the moment in 

homogeneous slab, q is the intensity of the load, a is 

the span of the slab, and °C. is a coefficient depending 

on the shape and the boundary conditions of the slab. 

Fig. 10.6 shows the variation of the deflections 

with 'SDR', while Fig. 10.7 shows that the deflections 

vary linearly with the (span4) which can be expressed as 

w 13 q a4 .... 10.7 
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as defined also=by'Timoshenko, 
ý 

where wý°is the 

deflection of a homogeneous slab, and q and, a are as 

defined before, while 113 is a coefficient which depends 

on the shape and boundary conditions of the slab. 

Therefore, it is clearly shown that composite 

double layer grids tend to behave like, a slab especially 

in large spans as. was anticipated in para 9.1. 

Table 10.2 shows that the-, in-plane compressive 

forces become greater than the axial tensile forces in 

larger spans.. This is probably due to the increase of 

curvature, -and 
hence to, the increase in moments in the 

concrete slab. 
- 

Therefore, despite the fact that the in- 

plane and flexural stresses are uncoupled yet, due to the 
R. 

presence of the tubes,, then they will be affected by 

each, other.. ", 
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10.4 Variation in the Depth of the'Structure 

Tables (10.3,10.4 and 10.5)'show values of the 

forces and stresses in the crüci'äl members and locations 

as outlined in para'7.3, at various depths together with 

their relative values 'R' for spans of 40,60 and 80 ft. 

respectiively. Table 10.6 shows comparison of in-plane 

and axial tensile forces. 

Figs. (10.8,10.9 and 10.10) show graphically the 

'R' values for these forces and stresses against the 'R' 

values for 'SDR'. 

Studying those tables and figures leads to the 

following remarks and conclusions. 

1. Central tension 'P', maximum tension 'T', central 

plane stress ' 
p' and maximum plane' st 

pm 
have a 

linear relationship with 'SDR', and in f act, their 

variations and that of 'SDR' are almost 'the same. " All 

these forces and stresses decrease with the increase of 

the depth. 

2. Maximum compressive forces have almost the same 

linear relationship with 'SDR' for the short span of 40 ft., 

but tends to divert from that in extreme deep conditions 

for, larger- spans, presumably due to higher rigidity. - c 

3. °,. Maximum . bending moments does not have such 

linear relationship in the 40 ft. span, but tends to do 

so for larger spans. 

4. a It cis noticed 'from, table <10.6, that 'thereuis 

an 'almost #exact 'equilibrium -between `the central in-plane 

and axial tensile forces in the 60 ft. span cases, and 
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tends to be 'so -also , for -deeper cases of span 80 ft., and 

far from equilibrium in the 40-ft. span cases. This is 

because the 40 ft. span cases are very rigid, "therefore 

slab analogy. does not hold, while, the shallow 80 ft. span 

cases have higher stress intensity, therefore the 

assumption of uniform stress distribution over the width 

of the section is not so valid. 

5. The absolute values of neither 'SDR'-, nor 'SHR' 

as seen in the above tables are viable scales of stress 

conditions, in other words, an equal value of 'SDR' or 

'SHR' for two different spans does not mean that the two 

structures under the same strain conditions qualitatively 

or quantitatively., 

6. A corollary to that mentioned in point '1' 

above, is the possibility that analysis of a structure of 

a certain span will be enough to predict the stress 

conditions for the same span but with different depths. 

This is because 
at r 

SDR ,, p{ 
R=" WDR-P 

oo 

and P=Rx Po 

where -P , is°. a: general -force to be-predicted for a case., 

with4span/depth-ratio, ýof -'SDR',. while 'SDR 
0' -and, P0". are 

the known values. ,, y, ' r -.. I. ., '. I- 

7. 
-Fig. 

10.11 shows that the rate of. change . ̂of 

the central forces�in the. ". three spans investigated are 

really similar and vary linearly with 'SDR'. ; ,.: ,-A,, 

I 
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10.5 ý Variation. in, the 'concrete slab thickness 

Tables (10.7,10.8 and 10.9) show the effects of 

changing slab thickness according to para 10.1 on various 

forces and stresses in the crucial members and locations 

as outlined in para 7.3, together with their relative 

values 'R' for the usual spans of 40,60 and 80 ft. 

respectively. Table 10.10 shows the ratios of plane 

stress forces to the orthogonal axial forces at the 

centre. 

It is of interest to mention that according to 

para. 9.3, for a section with depth (h) of 42.43 in., 

which is the height of all the cases to be studied in this 

paragraph, 5 inch is the maximum thickness for an 

efficient cross-section, beyond which part of the concrete 

will be under tension. 

Studying the above tables together with their 
f 11 'oli , 

accompanying Figs. Nos. (10.12,10.13,10.14,10.15,10.16 

and 10.17) leads to the following observations. 

1. In regard to axial forces in the tubes 

a) These forces decrease with the increase in 

thickness. Figs. 10.12 and 10.13 show the almost linear 

nature of the variation after a thickness of 7.5 inches, 

for the three spans and for both central and maximum shear 

force, and also the change in forces is very small between 

thicknesses of 2.5 in. and 5 in. These observations 

support that 5 inches is a critical thickness. 

b) The rate of change of shear force is not high 

despite the fact that the thickness has been increased 
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fivefold.; Knowing that shear force is really the 

critical factor in the design supports the need for using 

a thin practical slab. 

2. In regard to the in-plane stress in the slab, 

it decreases substantially with the increase in thickness, 

but the rate of decrease of the in-plane force is of the 

same order to that of the axial force in the bottom layer 

tubes. 
c Table 10.10 shows that the ratio ofP (in-plane 
x 

force/axial orthogonal force) is near unity in most cases 

and tends to be more than 1 in thin concrete slab cases 

of spans 60 and 80 ft. while those with span 40 ft. tend 

to be less than unity. 

All the above observations can be clearly explained 

by the slab behaviour tendency as outlined in para. 9.1, 

and also as just explained in para. 10.5. 

When increasing the slab thickness, the centre of 

gravity of the section moves upward towards the concrete 

hence the concrete slab will be taking more and more 

bending moments because of the increase in its rigidity 

For the same reason, the plane stress will be less, as 

well as the axial stress in the tubes. 

4. The maximum negative moments show less tendency 

to increase with the increase in thickness as is seen in 

Fig. 10.17. This is because its location is always 

directly over the boundary supports. Therefore the 

variation of the thickness does not make a substantial 

difference, unlike the case in areas far from the supports. 
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10.6 Variation'of'.. theThickness of Wall Tubes 

Table 1. l1-ý shows I three' cases of' different walle 

thickness as'outlined'in para 10.1, which-shows that both 

axial forces`and 'in-plane stresses have changed with* `the 

increäse of '- the steel 'area, "while bending moments have' ' fi -- 

decr'e'ased. " This ` is explained, because-- of the movement 

of the` centre of gravity` of' the' sect ion' towards the "', lower 

area, hence the' steel will take more, `stresses"andl the' 

total in-plane stress in the slab will' increase' 

aIccoidingly, whiles 'the slab' will experience- liess flexural 

stresses 
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10.7 Variation in the Outside Diameter of Tubes (D) 

Table 10.12 shows three cases having tubes with 

different outside-diameters as outlined 'in para 10.1... - 

As expected from para. 9.1, " the, increase in tube 

outside diameter meant a lowering. "of the centre of.. gravity 

of the section hence. increasing the tensile forces in the 

bottom layer and 'also an increase "in the in-plane forces 

in the concrete-layer of almost, equal rate to that. "of 

the. increase.; in depth. At the same time there was a 

decrease zin shearing! forces at a rate equal to that ! of . 

the`SDRtaccompanied by a decrease in the flexural stresses 

in the slab. " 
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-10.8 ýAn°Investigation into, an Economical Depth 

To study the best economical depth, it is important 

to-study'among other factors, the relation between depth 

and maximum compressive force in the shear members, the 

safe compressive load, and the total amount of steel used 

in the structure in each case. 

Table 10.13 shows the factor of safety (against 

overstressing) for each case, together with the total 

length of steel tubes. 

Fig. 10.18 shows curves of factor of safety together 

with total length of tubes used plotted against the 

structural depth of the structure (h). It is clear from 

this figure that a depth of 84.85 in. is the best depth. 

This is because, the amount of steel increases 

slowly and almost linearly with the increase of the depth. 

For a depth of 84.85 the amount of increase in steel is 

18% in the three different depths, while the factor of 

safety increases sharply with the increase of depth up to 

84.85 in. depth where it acquires an increase of about 80% 

for the three cases, then it starts to decrease. 

This result in fact did not come as a surprise, 

since a depth of 84.85 in. in this particular section means 

that the shear diagonal members make an angle of 45° with 

the bottom horizontal plane, which is an ideal 

orientation. 

Finally Fig. 10.19 shows the variation of factor of 

safety with SDR for the three spans from which it is 

clearly shown that SDR does not have any structural 
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significance when it is treated as an absolute figure, 

but it does have significance when it--is related to the 

same span. 
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TABLE 10.7 

THE EFFECT OF SLAB THICKNESS VARIATIOi ON FORCES IN 'THHE, ýý? Y3 

UNITORS MSES1I' SPAN - 40 ft. ß '" 

No. Description CASES 

DCON20 DC0N2 DCON21 DODN22 DCON23 
t-2.5 in. t5 in. t-7.5 in. t- 10 in. t- 12.5 1 

1 T2Soctive depth 47.25 49.75 52.25 54.75 57.25 

2 Span/depth ratio (SDR) 10.15 "9.662 9.2 8.78 8.4 

SDR (DCON2) 
SDR (DCON20) 

0.952 0.906 0.865 0.827 

3 Concrete plate 

a) Moments (lb-in) 

i) Central (E1) 317 680 1446 2500 3G53 

R 2.145 4.56 7.9 11.5 

ii) Max. +ve (M ) 1187 1369 1939 2832 3848 

"R 1.153 1.633 2.386 3.24, 

iii) max. -vo (-Dm) -1458 -1631 -1795 -1781 -1543 
R 1.12 1.23 1.2 1.06 

b) Stresses (psi) 

i) Certral in-plane (C'p) -40.7 -19.4 -11.6 -7.3 -4. G 

0.48 0.285 0.18 0.113 

i,, ) Central B. M. Q'b) 3G1 163 154 150 140 

R 0.54 0.51 0.493 0.46 

4 Tubes 

a) Tensile lorccs (1b") 

i) Central (P) --' 'ý 13300 12453 11122 9406 7881 

R 0.94 0.84 0.71 0.6 

ii) Maximum (T) 14438 13602 12091 10183 8302 

R " 0.963 0.850 0.721 0.59 

b) Compressive forces (lb) 

j) Corner (Cc) -14124 -14361 -14191 -13845 -13-136 

R 1.02 1.00 0.08 0.05 

ii) Maximum (C) -25656 -25409 -24347 -22828 ""21163 
R 0.99 0.95 0.89 0.83 

.I 

!I 
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TABLE 10.8 

THE EFFECT OF SLAB THICKNESS VARIATION ON FORCES IN 
'THE UNIFORM MESH' 

Span - 60 ft. 

CASES 

Nos Descriptions 
DCON30 DCON3 DCON31 DCON32 DCON33 
t-2.5in. t-5 in t-7.5in. t-10 in. t- 12.5 in. 

1 Effective depth 47.25 49.75 52.25 54.75 57.25 

2 Span/depth ratio 
(SDR) 15.24 14.5 13.8 13.2 12.6 

SDR(X) Re 
SDR(DCON20) 0.95 0.906 0.866 0.83 

3 Concrete plate 

a) Moments (lb. in) 
i) Central (M) 324 764 1877 3C'39 5696 

R 2.36 5.8 11.2 17.6 
ii) Max. +ve (Mm) 1090 1529 2559 4161 6033 

R 1.4 2.35 3.8 5.5 
iii) Max. -ve (-Mm) -1373 -1447 -1519 -2115 -2702 

R 1.05 1.11 1.54 1.97 

b) Central stresses (psi) 

i) In-plane (0'P) -112 -53.5 -37 -20 -12.5 
R 0.48 0.33 0.18 0.11 

--ii) Flexural (Q b) 311 183 200 218 219 
R 0.59 0.64 0.702 0.704 

4 Tubes 

a) Tensile forces (lbs) 

i) Central (P) 22730 21859 20112 17390 14286 
R 0.96 0.885 0.765 0.63 

ii) Maximum (T) 29870 28214 25101 20996 16720 
R 0.946 0.84 0.703 0.560 

b) Compressive forces 
(lbs) 

i) Corner (Cc) -23162 -22860 -21176 -18690 -16061 
R 0.987 0.914 0.807 0.693 

ii) Maximum (C) -25280 -25436 -25095 -24391 -23508 
R 1 0.99 0.965 0.93 
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TABLE 10.9 

THE EFFECT OF SLAB THICKNESS VARIATION ON FORCES IN 

'THE UNIFORM MESH' 

Span - 80 ft. 

Cases 

No. Description DCON40 DCON 4 ' DCON41 DCON42 DCON43 
t-2.5in. t-5 in. t-7.5in. t- 10in. t-12.5in. 

1 Effective depth 47.25 49.75 52.25 54.75 57.25 

2 Span/depth ratio 
(SDR) 20.3 19.32 18.4 17.5 16.8 

R- SDR(X) 0.952 0.906 0.862 0.827 SDR (DCON20) 

3 Concrete plate 

a) Moments (lb. in) 

i) Central (M) 370 1103 2887 5748 9236 
R 2.98 "7.81 15.54 25 

ii) Max. +ve(Mm) 1196 1813 3544 6305 9648 
R 1.516 2.963 5.3 8.1 

iii) Max. -ve(-Mm) 1355 1731 3060 4702 6106 
R 1.28 2.26 3.5 4.5 

b) Central stresses 
(psi) 

i) In-plane (rp) -224 -108 -66 -43 -28 
E 0.48 0.3 0.2 0.12 

ii) Flexural (6 b) 355 265 308 345 355 
R 0.75 0.87 0.97 1 

4 Tubes 

a) Tensile forces (lbs) 

i) Central (P) 42634 41068 38089 33476 27948 
R 0.963 0.89 0.78 0.66 

ii) Maximum (T) 53462 50835 45607 38545 31005 

R 0.95 0.85 0.72 0.58 

b) Compressive forces 
(lbs) 

i) Corner (Cc) -41023 -40171 -36751 -31581 -25925 
R 0.98 0.9 0.77 0.63 

ii) Maximum (C) -48872 -48553 -47168 -45010 -42595 
R 0.99 0.96 0.92 0.87 
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CHAPTER 11 

APPROXIMATE ANALYSIS 

11.1 Introduction 

The difficulties facing the analyst and the designer 

in the field'of'space structures was mentioned in Chapter 2 

and Chapter 4 as a result of the great demands on 

computer time and storage. Table 11.1 shows the rate of 

increase in time used for the five spans studied in this 

work and also the computer storage used in each case 

together with the time and storage needed for ordinary 

doube layer grid of the same configuration and span. This 

table shows the extent of facilities required to solve 

problems with such short spans, where the maximum span 

attempted was made of 10 pyramid units (10 bays) only. 

Therefore, the need for quick approximate methods 

is very clear, so the designer can have a fair idea about 

the section needed for certain span without resort to the 

exact analysis. 

Many attempts were made during this research to 

find such methods. Successful attempts only are to be 

presented in this chapter. These attempts are classified 

into two categories 

I. Methods using computer 

II. Methods which do not need computer and based 

upon plate analogy. 

These methods are not claimed to be alternatives to the 

exact method used in this thesis, but only as tools to be 

used in the preliminary design. They are based on the 
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assumptions that 

a) The structure is flat and made of two parallel 

layers. 

b) The concrete slab has a moderate thickness. 

c) The structure is supported along the four sides. 

d) The structure is built of identical units. 
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11: 2f ComputerriMethods 

It was seen in the convergency analysis in para. 

6.1 and in Tables 6.1 and 6.2 that the change in axial 

forces in tubes was negligible during the variation of 

the finite'element meshes. This is because the top 

layer slab does mainly two functions, 

To transmit-, loads to the tubes. 

.. . 2. -To . support the structure. by giving planar 

rigidity parallel to that given by the 

lower,, tubular_ layer. 

It seems. that- the use of one finite element per pyramid 

base (1 x1 mesh) almost fulfilled these . two ., functions. 

These. observations led to two methods (lst and 3rd). 

1.: Using a , 'l .x1, ', F. E. mesh only for the composite, 

structure. 

2. Using F. E. method only for the analysis of the 

structure. _, 
3.. Spring analogy method. 

11.2: 1 ° Using' a1x 1' Finite"'Element Mesh l for °the Analysis 

In this method the composite structure is analysed 

with only one finite element per pyramid base (1 x1 mesh). 

Then the top joint deflections are fed back to the slab 

problem, as. constraints. -a Then the slab. alone is analysed, - 

using a-finer mesh..,. The,. results obtained by this method 

(for, the experimental Model I) were not promising, because 

the moments. got were much higher than the, exact results 

for. the, same . mesh. . 
This . is. due to. the larger deflections 

obtained when using large mesh, as was seen in the 
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convergency-analysis in para 6.1. -This is in addition to 

the fact that. this methodstill needs excessive computer 

requirements,. while the other.. methods, as will be -seen, 

yield better, results with fewer. requirements.. 
,,, 

11.2.2 Using'Finite Elements Only 

In this method the slab alone is analysed as a 

homogeneous slab of thickness 't' giving it the same 

loading and boundary conditions of the structure as seen 

in Fig. 11.9b. 

This new slab is then analysed using finite elements 

method only and as a plate bending case only. The 

moments found by this method are then used to find the 

axial stresses in the tubes and their equivalent in-plane 

stresses in the concrete. Any of the two plate analogy 

methods to be described in para 11.3 can be used for this 

purpose. 

The results of central stresses for the uniform 

mesh and the 'IRM' composite mesh are shown in Tables 11.3 

and 11.4, using the simple slab approach as to be outlined 

in para 11.4.1, which show they do compare well with the 

exact results. 

11.2.3 Spring Analogy Method 

In-. this method,. it is, assumed that the concrete slab 

is resting on springs as seen in Fig. 11.9c, i. e., the slab 

issrelated to the-tube grid by vertical stiffnesses only,. 

-. -. The tube part. of the. structure-is analysed. first, 

giving it the same boundary and loading conditions as the 
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conditions are in the whole structure. 

So in this case the load attributed to each joint of 

the tube frame is on a uniformly distribution basis. This 

in effect assuming as though that the slab has infinite 

planar and flexural rigidities. This is done by giving 

the top joints of the tubular frame the freedom to move in 

the z-direction only. Then after the analysis of the 

tube frame only, the load at each top joint is divided by 

the vertical joint displacement which gives the spring 

stiffness of that joint. 

Afterwards, the plate alone is analysed under the 

same loading conditions, but adding to it structural 

stiffness matrix, the joint spring stiffnesses from the 

previous step in their proper locations. 

Fig. 11.1,11.2,11.3 and 11.4 show the axial forces 

in tubes found by the use of this method for cases DCON2, 

DCON3, DCON4 and DCON5, expressed as percentages together 

with the exact answers. The results according to these 

figures are excellent, especially in the critical tubes. 

The bending moments results found by this method 

and using the same Finite Element mesh i. e. 2x2 mesh, 

are shown as percentages also in Figs. 11.5,11.6,11.7 

and 11.8 for slabs of 5 in. thickness and related to cases 

DCON2, DCON3, DCON4'and DCON5 respectively. The results 

are very good especially in the central zone which is 

the important part as far as positive bending moments are 

concerned. The negative bending moment results are not 

so good, but since the maximum positive moments are always 
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larger than ithe -maximum , negative Tones ,. (except.: in , case r 

DCON2.. where in fact : the results -in . both, of them. are,,,: 3 .,,; 

excellent), -then this willanot affect the overall picture. 

-The same spring! stiffnesses were added to the 

structural - stiffness , matrix " of idifferent =slab , thicknesses,, 

the results were also good as long as the-slabs-. were not 

very thick. But knowing that thicker slabs means less 

horizontal"axial. forces"in the tubes,. so a rerun of the 

tube frame-is, necessary. -However this did, not give the 

Appropriate answers. Since-axial forces in tubes are, not , 

noticeably different whether joints are rigid or pin 

jointed as shown inaTabler8. l,, therefore spring-analogy. 

analysis for 'the ?. tube -frame ralone was done on , the I 

assumption. that the tubes are pin jointed. 

Fig. "i1.1 showed theseresults-expressed as, ratios 

(not(percentages) of the exact results. These results 

are good, ", but the 
, moments were-not so. good because vertical 

displacements-in, pin-jointed structures are more than in.,, *; 

the rigid jointed structures, hence , they, have, less spring 

stiffness, -, which , means higher moments in, the slab. . 

In-plane-stresses in , the slab 'can -be found easily 

on the assumptionrthat both-axial forces and; in-planeýý 

forces�are-equal in any section. This is based on the 

slab analogy assumption-and justified, according to what 

was shown tobe , the case : in Tables 10.2,1.10.6,10.10 , and 

" 

Therefore , .: :º ýýý.. ,,. 

'e x. t, x, b, -rT,, ýr.. 
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where T ,. is =the (tensile , force jn the . tubes, and in this 

case: let us , take the maximum+tensile force, - t,, is the slab 

thickness, -, and "b is the breadth, of "a ' half (j) pyramid 

base which is; counterbalancing one bottom layer tube. 

Table 11.2 shows % results of the maximum forces, stresses 

and moments got by the spring analogy method which are 

very good, except for the in-plane stress in case DCON2 

which is expected, and the maximum shear force in case 

DCON3 which nevertheless does not affect the overall 

picture as is seen in Fig. 11.2 where it is seen that there 

are larger shear forces with good prediction, so the 

max. shear force according to the spring analogy in case 

DCON3 is 35000 lbs. which is 120% of the maximum shear 

force in the exact analysis. 

The springs-analogy method is very useful for the 

following reasons. 

1. It yields very good results as was seen before. 

2. It is very versatile because it can take various shapes 

and configurations as long as the concrete slab is of 

uniform and reasonable thickness, and as long as there 

is reasonable justification for the assumption that 

there are no displacements at the top joints except 

those in the z-direction. 

3. It needs much less time and storage facilities. 

4. Since the plate is analysed for bending conditions 

only, therefore 3 degrees of freedom are needed only. 

5. A further enhancement in this sense is introduced by 

assuming that the tubes are pin jointed, which means 
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also the use of-31degreesýof freedom. 

6. One-eighth ( )s of the tubular, structure only could be 

, analysed, hence giving a greater opportunity for 

larger, span structures. 
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11.3 Methods Using Plate Analogy,, 

The basis of these methods was really'established 

In Chapter 9 "and in 'Tables K10.29 10.6,10.10 and 10.11 

which showed clearly that there is abalance between 

top in-plane forces and bottom axial forces. 

Also it was shown in para. 10.3 that there was a 

tendency for'the structure to behave like a slab as 

long äs {the spans were not too short. 

It was shown also before that the pläte'analogy 

is valid mostly In the centre area of the slab. Also it 

was seen in'para. 7.5 that the critical members in such a 

structure are the diagonal"shear members which are located 

at the supporting pyramids. It was also shown that the 

maximum shear force in'such members is still less than 

the maximum tensile force (in quantity) in the bottom 

layer. It can'be shown that the . stresses in the plate 

are not high in"comparison to the concrete compressive 

strength. Using the criterion suggested in para. 9.3 

for choosing the efficient section and according to 

equation 9.21, then for the sort of tubes used in the 

study cases of this research namely 4j in. of G. 7., then 

a5 inch concrete slab will be the required thickness. 

So taking an example case DCON5 from Table 7.1, this case 

has a span of 100 ft. with SDR - 24 which is the longest 

span attempted in this research, and is under a uniformly 

distributed load of 100 psf, then, the max. bending stress 

520 psi, and the max. in-plane stress °-192 psi. 

Then the worst case is when 
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stress -520 - 192 =-712 "psi which is-, negligible'even 

for plain concrete compressive strength, disregarding the 

fact that , the, slab will, be reinforced. 

This -conclusion , is further enhanced by the fact 

that. -the , 
tube section used . in,, this case . is not safe., 

according to Table 10.1 where F. S. 0.77. This means 

that in fact if a bigger tube section is to be used then 

the stresses will be even less. 

So in conclusion, if a method is found to predict 

the maximum external moment acting on the cross-section of 

the structure, then it will be possible to find the maximum 

tensile force, and the maximum in-plane stress. Then if 

a method is found to predict also the max. bending moments 

in the concrete slab then it will be possible to design 

the structure on the assumption that the maximum shearing 

force is equivalent to the maximum tensile force, which 

is on the safe side. 

r, 'Y ýý ý 

.. -, ..., a., ,,; ý .. 

ýý 

! 
r" 

ýýý 
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11.4ý'-`Predicting Maximum"'and"Central Tensile For'ces' and 

Maximumfand-Central in=planeýStresses 

Twö -methods were used 

1) Simple slab "approach 

2)'Sla approach, but treating the section as a beam 

section and finding'its Moment of Inertia. 

Asketch of a section through a composite uniform mesh 

structure is shown in Fig. 11.9a. The clear span of the 

section is'ä, 'but because of the high rigidity of the support 

area, it is suggested to take the span as 'a1' by neglecting 

the supporting pyramids when trying to find the central 

tensile and in-plane stresses, while using 'a' for finding 

the maximum tensile and in-plane, stresses. The external 

moment is found from, text books for ordinary thin 

homogeneous slab of spans 'a', or a1 as required for 

similar boundary and loading, conditions. As for this 

research all cases are that of a simply supported square 

slab under uniformly distributed load, then the moment is(") 

2 
m . 0479rq a ti .0o, o 11.1 

where q'isIthe load intensity, "and''a' is the span of the 

homogeneous'slab. 3 

11.4.1 Simple Slab Approach 

Referring to Fig. 9.1a and 11.9a, then 

T-a C 

11.2 

F,. 17 
pxtxb, .... 11.3 

where fi � 
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b -, 60 in. in the uniform mesh configuration, 
. whilst 

b- 120 in. in the IRM composite structure. 

p'p is , in-plane stress 

t is, slab thickness, and both T and C are in the same 

orthogonal direction. 

But the moment above is for one unit length, 

therefore 

;, F-- -M, -, bxm .=Tx h-" 

wherein is the moment according to Eq. F 11.1 -. 

T° -H 'x m .... 11.4 

Since b,, h and m are known then T and C can be found 

easily. 

Table 11.3 shows the results found by, this method 

for the central tensile forces and in-plane stresses for 

the uniform mesh, and Table 11.4 shows the central tensile 

and in-plane stresses found by this method for the IRM 

composite structure. These results compare well with the 

exact solutions results. 

The drawback in this method is that it does not 

take into consideration the properties of the section so 

presumably whatever the concrete slab thickness or tubes 

section, the results will be the same which is not really 

the case. 

11.4.2 ; 
Slab Approach Using Sectional Moment of Inertia 

This-approachAs more flexible because it takes. 

into consideration the , section-: properties. ýI 

-E Referring , back ; to para. 9.3. where the procedure 
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for finding the moment of inertia of the section was laid 

out. The external moments are found as in the previous 

method, then the axial tensile force is found from 

Eq. 9.11b, as 

Px wxs x A. 

P "_" Px r2 

In-plane stress is found from eq. 9. lla. As 

mentioned in sub para. 10.2.2 in defining the span/depth 

ratio 'SDR', the depth needs to be defined clearly, 

therefore two attempts were made to define the centre to 

centre depth of the section 'h'. 

a) h- dl where d1 is-the z-coordinate of the 

diagonal shear member as given in the data for the exact 

method, or 

b) h= d1 + t/2 
.... 11.5 

for the same arguments used in defining 'SDR', needless 

to say that the depth (d) needed in 'SDR' was the total 

depth and not the centre to centre depth. 

Definition (b) yielded better results, as is seen 

in Table 11.5 which shows the results for the uniform 

mesh by these two definitions. The results compare well 

with the exact ones especially for moderate concrete slab 

thicknesses. Hereafter, the centre to centre depth will 

be as defined in 'b' above. 

Table 11.6 shows the results obtained for different 

depths of cases DCON2 and DCON3 which compare well with 

the exact results also. 
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.,.. Tab1e, 11,7 shows maximum axial,, tension, in tubes 

and maximum in-plane, stresses for various spans and depths 

of the uniform mesh. Table 11.7 also shows the results 

of rectangularly shaped uniform meshes which are 

DCON2R which is 3x2 pyramids (bays) 

and DCON2R1 which is 4x2 pyramids (bays) 

Their results compare also well except the in- 

plane stresses as expected due to their very short span. 

Table 11.8 shows the results for the 'IRM' 
w ,3 

composite mesh for the central stress of different spans, 

depths and slab thicknesses. The results compare well 

with exact ones, except for thick concrete slabs (DCON3A2. 

DCON3A3, and DCON3A4). 

Table 11.9 shows the results for the 'IRM' composite 

mesh also, but for maximum stresses, for various spans. 

This comparison is also good. 

Finally a note worth mentioning is that Table 11.7 

for the uniform mesh cases and Table 11.9 for the 'IRM' 

composite cases show that maximum shear forces are always 

less than the maximum tensile forces except for cases 

DCON2 and DCON2A which have very short spans. This 
C 

relation is expressed by /T. 

f. f Cc 
The-same two tables show that, -the ratio '' 

between the, corner. shear force and the central tensile 

force is near unity for the uniform mesh cases, but 

substantially less than that for the 'IRM' composite` 

cases. '* "Therefore the designer will have a rather fair 

idea about the steel'part', of the structure. 

s* ,)E 
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11.5 Predicting the Maximum Positive Bending Moment in 

the Concrete Slab 

Fig.,. 11.9a shows a_ section through, a uniform mesh. 

The. approximate,, method suggested for predicting the 

maximum positive moment is also based, on slab analogy.. 

t.. ý Fig.; 11.10arillustrates the basis of this method. 

According. to this method. it is assumed that there are 

roughly three independent factors contributing, to, positive 

bending moment, in the concrete slab. 

1.. The overhang effect, due to (2). 

2. _. 
The. continuity effects which is determined by both 

the clear, span. and the depth of the structure. 

3. The. inter joints effects which is related to the 

number-of joint connections (i. e. pyramids). and also 

,, 
to where the centre-of gravity of-the section is. 

Thus two formulas were made for two cases 

a) when the slab is thick, this is determined by the use 

of Eq. 9.13 for finding the efficient section as 

described ; , 
in . para. 9.3... , 

b) when the slabis thin. 

The 
. 
formulae are 

b2 0.0479 a2 
I_M=. . +, 7+ (t- t o) (Np - 1) q .... 11.6 

used for condition= , (a)-, 

0.0479 a2 
II- M++ (t - to) q .... 11.7 

rY 

used for condition (b). 

where b, ý a' and ýtI are as, shown In - Fig. 1 11.9a. 

d is the total depth of the structure as defined in 

Eq, 10.3 when span/depth ratio was defined. 
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i. e. d--h +t+2.... 10.3 

In fact the definition of 'd' does not make very 

much difference because its effect is small in comparison 

with other factors. 

to is the efficient thickness for the steel tubes 

used, Eq. 11.6 is valid when t i, 
- to, while Eq. 11.7 is 

valid when t to. t and to are as shown in Fig. 9.1b. 

Np is the number of pyramids along the span, and 0.0479 

is a coefficient taken from Timoshenkoý1t for finding 

central bending moments in a square simply supported, slab 

under uniformly distributed loading. In the above two 

equations, the`first term stands for the overhang effects, 

the second term for '' cönt"inuity' effects, and the third 

term for the inter joints effects. The third terms were 

found by trial and error. to is found as follows. 

Ch Ec xb, x t" "".. 9.13 

1 +. A 

where 'h is the"centre` "to' centre depth, and 'where C is 

defined in Fig. 92 .ý-- For' an efficient section C should 
to'. 

be equal to 

and the centre, to centre distance will be as defined. in 

Eq. 
t 

h dl ý., .... 11.5 

dl is the z-coordinate of the diagonal shear member. 
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Eq. 9.13 'becomes 

t to dI�+ , - 
2Exb 

1+EsxAsxt0 

Exb 
Let 

Ec xAk 1s 

2 2d1 
t0 ° -k- 

t2 
to .°k dl I_ .... 11.8 

Table 11.10 shows the results obtained by using those 

two formulae for cases of span 40 ft. with different slab 

thicknesses and structural depth. Table 11.11 shows the- 

results for cases with span 60 ft., also with different 

depths and thicknesses and even with different tubes 

cross-sections. Table 11.12 shows the results for a span 

of 80 ft. also with different depths and thicknesses. 

Table 11.13 shows the results for a span of 100 ft. for 

the only two slab thicknesses analysed by the exact method 

(due to the excessive computer requirements). 

The formulae used for the IRM composite cases are 

the same as for the 'Uniform Mesh', i. e. Eq. 11.6 when 

t to and when t to then Eq. 11.7 is valid. Table 

11.14 shows the results for IRM composite structures with 

different spans, depths and plate thicknesses. 

It is noticed from all the above tables that the 

approximate results compare very well with the exact ones. 



242 

, 11.6 : -Predicting, Maximum"Negative Bending Moment in 

the Concrete Slab 

. -If, -the top concrete slab is considered as a flat 

slab. resting on rigid columns (which naturally it is not), 

then flat slab analysis could be utilized. For 
,a flat 

: slab made of square panels as seen-in, Fig. 11.10b, 

assuming ao-° bo., and- = 0.1 then, the maximum negative 
° (11) 

-moment near the columns is 

M=0.196 qa 02 = -1960 lb. in. 

where q° 100 psf, and ao ° 10 ft. 

It is noticed that the moment here does not depend on the 

span of the structure, this is because the supports are 

rigid columns. Therefore this equation could be used 

in very short spans only where there might be some 

justification and where the maximum negative moment is 

usually larger than the maximum positive moment. Looking 

back to tables 10.7,10.8 and 10.9 this formula will be 

useful only in cases DCON20, DCON2', DCON30 and DCON40 

where the -ve moment is more than the positive one and 

where 1960 is larger than the four -ve moments in the 

mentioned cases. So the intention is to utilize this 

formula only when it yields larger moments (quantitatively) 

than the +ve'ma C. -' moments found in? pars 11.5. 
3. E, 

V. 

., r .ý...: jn ý 
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11.7 Design? Procedure Using the Approximate Methods 

ti . wir y' ,R 

An outline of a procedure is to be given below, 

utilizing the various approximate methods suggested in this 

chapter. 

Given that the span and loading is known, and 

assuming the structure is simply supported along the four 

sides, then the section properties will be determined as 

follows 

I. The prismatic part of the structure 

1. A hypothetical equilateral pyramid is chosen, 

which divides the span into equal bays, and at the same 

time does not give a very deep or very shallow structure. 

This is determined by architectural, economical and 

practical considerations. 

2. Using the approximate method suggested in 

para. 11.4.1, the maximum tensile force (T) cal be found. 

3. Assuming that the maximum shear force is equal 

to the maximum tensile force just found, then a section is 

chosen such that diagonal shear members will be under safe 

compressive load conditions. This section will be the 

typical one, if it is desired to have all tubes of the same 

section (As). 

II The slab part of the structure 

1. The thickness of the slab is chosen through the 

use of Eq. 9.21, since A. and h are now known. 

2. The maximum in-plane stress (P'pm) is found by 

the use of Eqs. 9. lla or 11.4 assuming C-T. 

3. The maximum positive bending moment (+Mm) is 

found through the use of the method in para. 11.5. 
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4. The maximum negative moment is found as 

suggested in para. 11.6. 

5. The-highest absolute value-from steps (3) and 

(4) is taken as the maximum moment in the slab, and the 

bending stress ( cbm) is found accordingly. 

6. The slab flexural strength is checked for a 

bending stress of (0-bm), and for compressive strength of 

pm). 
If the stresses are found to be very low, and if 

practical considerations permit,. then the thickness is 

reduced reasonably and the procedure repeated from Point 

11-2 above. If the stresses proved to be very high, then 

more reinforcement is added to the reinforced concrete slab 

if possible, otherwise slab thickness increased 

accordingly. 
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TABLE 11.5 

RESULTS OF APPROXIMATE METHODS FOR CENTRAL FORCES 
USING PLATE ANALOGY AND SECTIONAL MOMENT OF INERTIA 
AND THEIR COMPARISON WITH THE EXACT RESULTS FOR 
DIFFERENT PLATE THICKNESSES OF '. THE UNIFORM MESH' 

Approximate App. Method I Method II 
Exact results external (d -- 42.43) t (d -h+ /2) 

Case, span moment - 
Nos. and plate Steel Concrete 0.0479ga? Steel Concrete Percentage Steel Percentage 

thickness 

Span Moment P c 
PAX Cc 

P 
PAX C'c 

= p ft. lb. in/in. - Qp AX ý 6 p 

I t-5 ins. 

1 'DCON2 8804 - 19.4 30 4311 5966 - 19.7 68 101 5649 64 97 
(40 ft. ) 

2 DCON3 15455 - 53.5 50 11975 16572 - 54.6 107 102 15686 101 98 
(60 ft. ) 

3 DCON4 29035 -108 70 23471 32481 -107 112 99 30745 106 95 
(80 ft. ) 

4 DCON5 43850 -179 90 38799 53692 -177 122 100 50824 116 96 
(100 ft. ) 

II t-7.5 ins. 

1 DCON21 7863 - 11.6 5700 - 12.7 73 109 5291 67 101 

2 DCON31 14219 -"32 No change 15834 - 35.3 111 110 14698 103 102 

3 DCON41 26929 - 66.3 in moments 31036 - 69 115 104 28809 107 97 

4 DCON51 40918 -109.5 51304 -114.3 125 104 47622 116 97 

III t- 10 ins. 

1 DCON22 6712 - 7.3 No change 
5251 - 8.7 78 120 4830 72 111 

2 DCON32 12295 -20 in moments 
14587 -24.3 119 121 13419 109 112 

3 DCON42 23667 -43 28590 -47.6 121 111 26301 111 102 

IV t- 12.5 Ins. 

1" DCON23 5572 -4.6 No change 4649 -6.2 83 135 4297 77 125 

2 DCON33 10100 -12.5 in moments 12915 -17.2 128 138 11936 118 128 



250 

:< 
�ý , 

ý- 

,ý ý� 

.. pry�A 

Ei 
P4 

ovi ý-+ W 

Wo 
- . O f=+ 

'D P4 N 

r-1 E-4 

0 
äE 

N E-4 

avl 

' UL/1 

H 
O 

a a . 14 

b ý" 6a 0 C ä 
4-3 

a) U 
$4 , 00 

C 
r-4 
CD 

L 
0 

00 
0) 

.0 (D D 

O (D. 4-3 ý ( D LO 
(1) $4 U . N ti ä rl . 14 
b o 1 1 1 1 

W r-1 N 00 . -4 M 
:j (D L- LO r-4 00 

O CO IV M co 
+. a N dl r-1 N 

bA V] N 
0 

cd rill a h 
c d i 

V-+. 
) C r+ to 

P 
G) G) M M 

.: 
'a cl O r 
r-4 0 
A 

äCä 0 (12 C'') 

U 
U) 
+) 

43 
(D .. ° 

It) 

, -I I. 4 a M CO r4 M 

U O 1 1 1 1 
U 

Cd 
N M 

o) r -1 co O O C) 
4 

. a r-I N 0 N 

cd 

U 00 Co 

M 
+3 

CD 
. r4 C It) M to 

(/2 V 

CH CH 

U d4 t! ] A cD v2 A 

Cd 0 c z 0 
cd 0 

Z H r-1 N H º-4 N 



251 

TABLE 11.7 

THE MAXIMUM TENSILE AND IN-PLANE APPROXIMATE RESULTS 

USING PLATE ANALOGY FOR VARIOUS DEPTHS, SPANS, AND 

SHAPES OF THE 'UNIFORM MESH'. (plate thickness -5 inches) 

Struct- Exact results Approximate results using method (b) 
l 

Nos. Case 
ura 
depth Steel Concrete Span 

'a' 
External 
Moment 

Steel Concrete Percentage 

ins 2 * . ft. 0.0479qa TA 
cm V TA rcm 

pm T Tm 

1 DCON2 42.43 13602 - 83 40 7663 14197 -33.4 104 53 

2 DCON3 " 28214 - 68.3 60 17244 31944 -75.2 113 110 

3 DCON4 It 50835 -123.8 80 30656 56790 -134 112 108 

4 DCON5 82333 -192.3 100 47900 88734 -209 107 109 

5 DCON2S 30 17594 - 84.2 40 7663 19286 -45.4 110 54 

6 DCON2D1 54.86 11162 - 51 if 11206 -26.4 100 52 

7 DCON3S 30 36941 - 92.3 60 17244 43399 -102 117 111 

8 DCON3D1 54.86 22907 - 54.2 it of 25217 -59.4 110 110 

9 DCON2R 42.43 18550 - 82.5 40 12992 17979 -25 97 30 
(3 Bays x 

_« 2 Bays) 

10 DCON2R1 22462 - 57.4 16272 22435 -23.4 100 41 
(4 Bays x 
2 Bays) 

11 DSPRSNG6 of 16874 -275.5 120 68975 27778 -301 109 109 

N. B. The external moment for case No. 9 is m-0.0812 qa2 

The external moment for case No. 10 is m-0.1017 qa2 

Theexact results for case No. 11 is really by spring analogy and therefore 

not exact, because the problem was too big for the available computer 

facilities. 



252 

TABLE 11.8 

THE CENTRAL APPROXIMATE RESULTS FOR THE 'IRM' COMPOSITE 

STRUCTURE WITH DIFFERENT SPANS, DEPTHS AND PLATE THICKNESSES 

USING PLATE ANALOGY AND SECTIONAL MOMENT OF INERTIA. 

Thick- Exact results Approximate method (b) 
S Nos Case ness pan 

ins. ft. Concrete Steel Span External Concrete Steel Percentage 

rp Px 
ft. Moment 

lb. in/in. L7 c 
xs xs 6c 

m- 
0.0479ga1 

77 
x 

6 
p 

1 DCON2A 5 40 - 18.5 15311 30 4311 -19 11397 77 103 

-2 DCON3A of 60 - 50.6 31411 50 11975" -52.62 31659 100" 104 

3 DCON4A it 80 -101.6 56706 70 23471 -103 62051 109 102 

4 DCON5A " 100 -165 87000 90 38799 -170.5 102574 118 103 

1 DCON3A1 7.5 60 - 28.1 26580 50 11975 -31.5 28397 107 112 

2 DCON3A2 10 it - 16 20605 of -20.4 , 
24448 119 128 

3 DCON3A3 12.5 " - 8.7 15232 -13.5 20282 133 155 

1 DCON3AS 5 60 - 65.5 40236 50 11975 -68.4 41015 102 104 
(h - 30in 

2 DCON3A " " - 50.6 31411 -52.62 31659 100 104 

3 D00N3AD1 " " - 41.3 25800 -39.9 25102 97 97 
(h-54.86) 

1 DCON2AS 5 40 - 23 19068 30 4311 -24.6 14765 77 107 

2 DCON2A - 18.5 15311 30 4311 -19 11397 74 103 

3 DCON2AD1 " " - 15.6 12783 -14.4 9037 71 92 



253 

f-I 
f-I 

W 
a 
Q 
H 

W 

U 

H M 
IA H 1-4 

V3 
2 
8 

a H 

0 w 
V3 H 

d 
a ri7i 

z 
W 

P4 
P4 
M 

ö bb I a Lo rn ö 
Cd 

ý b r-4 H 
a) 

E ä H( 

.0 4J I 
rm r4 

v 
v 6 ý' ri CD Lo , -I co t- CO V-4 p 

1-4 N 

ä 
O N 00 CD 

02 Q Ea LO t- P-4 00 
4J (D A ö " CD 0 
r-I . 11 

w 
E o N CD ß 

C) 
ý 

r -1 ý--4 
C 
ILI 

N 
G) r-1 II C 

Cd 0 4-) (n to to M 
13 C)C8 CD ti 0 

lý 

4 140 , -I M 114 
0. O 
a a 

CD 0 0 P 
Cd CH 0 0 

C) 

to 1ý e-1 %4 c0 
P4 -1 b t- 0 

f-4 ce) H 
a LO 00 ce) 0 

w 0 1, .. 1 P-4 C% 
4) U 1 1 

4J H M N C) 
t) 0) mI if) M" It) 00 
Cd a) E-i p CO 0 N 0) 

j H P-4 
N f 

f) 
t) C) 

ý 

r-4 

d d d d 
cr) LO Ö 

Ü 8 
0 0 

Ä 
A A A 

Z 
P4 N CM 



254 

J0 

F 

F 
W 

O 

O 
P4 G4 

-NO 

wvý 
H 
xx OH w 

Wvi 
awýUl 
FW 
z 0 

ýx 
Ei 

C7 
zw. 

as 
w 

H 
1--l 

C/I 

o 

dH 

°xx 
as . 119 

00 M0 N0 DOCD NN 
O 0r- 0C) 0000 

O N 
C OM 0) N 

O W0 "O 
0 '-1 194 MM 

Tf cd mi r-1 r-I r-1 
0 U +ý 

U) d 0 
& 

(1) 00 N to 000 
^ r400cm WL0 c 

cd U +j nNM r-I F-4 
1~ 

rl 
Ö 

N 

Pd 
6) 1111 cqfN0 cD tO t*- M 

9 l- (Q (D L0 'e '434 Cl 0N Ci cli, 
-. ..... 

r-1 r-d e-i r1 rd 
.... 

Nr4 e-4 P4 
N 

OA 

4-3 
o. 

U) h0)mn00 r-4 aoNO 
cd O» Z 00 WM M" N" r-I 00 

DO r-I Cr) C') 00 10 Cr) N 
f ý-1 r-I NM i-1 r-1 r-I r-1 

4J M 
93 LG 

C) 
. r4 r. 

0 MM C) N 
. 
rj Q4) 

Ot L .. Nto MIN 

CH 4 to to M 
W +ý. 

, --i A JN 00 00 ao ao 00 IO tN r-+ 
cd+ý + r-ICD r-ICOr4 NdeQ)m 

4J 4J ON+ :... Iý Cý Ntz .... Iý MMN 
E-4 V4 e -e Lo M M di 1 tD 

+ývv1 ý0 10to 1n 

-4 W4., NMI: ON 10 -. . 
a rl r-1 

rI 
cd 

43 4J Cr) N to CD 
ýý 

- 
NCO 00 

4ý 
:: "; O(MOD 

In 

0 r+NM v2 C2 
Z ÖZÖ ÖZ 

Ö 

(j U 
ÄAÄÄ Hoo 

A 

r-INCLO wNOOC 



t. 

r-I 

r1 
r-4 

W 
a Q 
H 

xw HA0 
N 
rw 

Uw ý. 
w in ý+ 

º F- 

O-k 
pN 00 
Wx +3 +) 

H 

W 

oa ++ 
NI C14 

N 
pN 

l3 

xx ý 
w E-+ ++ 
HN 

ý7Q N 

Nw 
rQ I rý 

Ic 

al: -u n 

Nw ca rý 

xöz +a 0w0 WHº-i 00 

I- jw n 
CO W, En 4. ) 
W E- ca 
xwä 
N0O .ý3 

- Co 

F. E- ,w 
NN 

pää 
äß öEH 

255 

c Co oo t- 0 oo co co N C) 
to- ri Z 

1 Or-+rnoo 00000 0 0 0 0 H r-4 H r-4 r--1 p-1 H r-d H t-1 º- 

H 
ý 

e' O CO LO LC) 0 tN tn' m ) t+: ß) N In N M4 U CM N 
[C) U) 1124 N [C) If) U) " 

H 4 

"rl 
6C H 

(DOco 00 N 
C4 P4 es-. r-1 to CO 0) N 
p4 >, MON Om 

Q H Nýý Ný 

ý" IM4 to 
0) to N O M N- 00 00 N to [) de 0 
Lý N 10 d4 M r1 O to () ON Co e 
el tý 
pH MMchM MCr)NH M M M M 

O II 

"I"ý Ux 
"ý C. ' -W U to M M Lti mnN H U) 00 LQ 

r l cd " ü l 0 CH 9) 0 N CD MN rl U) CA U) H 
ý y 

ý l / ý ýW 4-4 "r1 i-i I1 . I. 3 .f_- 

WUa 41 r e [O N u) u) u) (D 

4) "0 92 . ri C)C)Hcl co to IM In 0 0 CO 
U. V C)"ri 1 N1-0 (D cri MGONd+M U) (I) M to 
c3 N 1.; vi In IA HO mW J" H d4 M d1 M 
x eJ O 

ty 
A r-i N n4 CO r-1 H r-i r-1 rl i-1 e-1 r-1 H 

N1P F3 
te-. H. 

Q> 
.4 

"ý 00 Co oo co t r3 IN F-4 r-1 CO CO dl 
Ufý. (Z. r-i N d' C) r-i rl CD H C- 
C4) CU 'iJ 

wZ3 
"". 

Ndýý 
.... 

NMLONN 
. 

ß) _ O O, 
try u') t, f3 - M dý to Cfl u0 U) 

W 

NN 
Ul 't3 +' 

"ra d) 
NmA acv . uýro 

,Q -tom c3 tf) cü 
ß 7 
L- +O' 

1 
aýx 

" 

to c- ON try t 

sa 
. , s2 M NU)WCD M 
0 4. ' N CD CO GO dý 

CU N O to of CV 
M ei Lo 00 tp 

n 
(0 NN (0 (0 
N i-1 r-IN r-1r. 4C'IIri 

p 
MNejýt' 

N r-I rlNM toU]AAA iN ý, N : r- { r1 
to "CO Cl Cl M MMMMm M "cli " M M 

U II 0000 0000 011 011 O II O )1 
QQÄ 

ÄQ 
U AQ Ä Äý 

+iÄ K -ýAGa +' A+ 
vv uU 

0 
d -1NM n(D NCOG')U 

ý-4 N 
l Aj i 

H-1 
,1 emP r r r 

0 

f 



256 

N 

r-I 
r-I 

xt 
U W 

a W A 
a 0rICY 

c 

HW 
r 

z 

H 
aH oz wFo 
C/I äw 

Ell 
WU2 

O 

zG4ü Hw 
W 

xxý FF 
w 

E-4 ýF 

ýOAU3 

O 
00 
Ö 

w 

M 

äx 
aH 
6ý 

H r-4 r-4 r-4 r-4 H r-4 

HO 4-3 140 LO 0) 
a) : 2; -H tD 0 Lf) t- 

v k OD t- I- CD 
'm P-4 P-4 r-I r-4 

~ ý 
+ O O N O 

GQ 
(1) . 114 d -r4 
a IN º 

N 
Lo 

C 
N 

H 
M 

O 
N 

; >, a M LO N N 
(1) E-+' H 

di 10 
d 

p 
- tý t- 00 r-4 H ce) LO 00 m 14 

O N54 r-+ 00 W N O v 
P4 0 co 
P. ,W LO IO W Cý N to .ý d 0 0. 

11 
0 
-r4 +3 4-3 

Ü 
UI O CM rl M LO C) N 

4H q cd "r1 UI 4J 0 CO N CO C'") N 
4-ý Qi r-I . Li W . «ý t . . . . 

*r1 a +' q LO w 'dý d+ 10 10 

i-) + M d4 L0 N M 0) 00 M 
t) 12) -rf m V-1 to 0 00 r-I tl- ce) r-4 
Cd 14 00 CY'M IV 10 O w CO 

,0 cl 0 H M W r-1 N N H H 
il 0 r-4 

G) 

+a .qq oo ao 00 ao tO N r-I 
V 4-3 H W H M H N d0 CD 1-1 

"rl ' Na 
CH (1) C. 
4i 't1 '0 V LO 1O Ul M " 1O CO 

Ü 
T! l +3 

Cd ý . 
-I .0( r 10 O to 

+) q P4 N 
Ü 

.C M N M CO 
a 4-3 "14 N CD 00 0 
Cd 04.0 

4--) $4 N N O W 0 
V1 q la M M v tO 

l r il H N pqý w m A Ä 
ý z z 

0 
z 
0 

z 
0 

n 
0 

z z 
0 0 

z 
0 Ca 0 V Ä Ä Ä Ä Ä Ä 

ý A 

U) 
0 H N G') L0 W N 00 

z 

4-3 
a 
U L7 
1 

N 

Oi 
M 

NA 

A tA 

-4w v Cd cd 
G) 
Pw 
C 

LO 

+) N 

U 
on 
+-3 U 

"w 

r-1 If) 

C; n 
AA 

4 
" ýj 

q ci 

. -4m a 

n oa 
Az 0 UU 
DA 
cd 

dý 
N 
O" 
U1 O 

Cd z U 
r-I Cd dU 

z 



257 

0 w 
D2 H 
2 H vi w 

O 
0 

CO2 H 
E-+ 
z w ýa o 

cl 0 
: 2 

a 
cý V2 

r4 E-4 

0 w w 

a x N 

0 
NO 

4-) Cq 
() 
dv 

? -I 
N 

c 
U+) 

10 v-4 o - 

.O C) 
N d^ 

c M 
14 U +) 

a) 
cd N 

Cd 
V 

Ö N ý 
00 

$4 1414 t CD r-4 
a o 10 w a; a; o n 

4) +, a N N. 
C) " G) CO LO 
Cd r-4 

"mss 
i -I- 

4 N 

O In 
IQ 

O v 
+) 0 o 

CH .0 W +-) 

A JCý1 + a 00 CO 
c d fl + CD r 
+ý + f4 

E- 'a 'a 
A 

q: v LO 

4V 
t! l 

Cd -r4 Ul +3 to 
r-+ . f; (D It) 
a +3 0 N 

4) r-1 
ril LO LO ä z z U p Ü 

U 
A A 

H N 



258 

dý 

W 
a Q 
H 

w 

Z 

O 
x ä 92 drn 

xx FF 

F 
C42 Fa 
0 
w 

ýU2 

ma V2 

Hx 
w 

CO2 

o 

Ha 
020 

r 
ON 

0 

H 

d oo Lo 
Z N N O a o m 

r b-91 H H 
i4 

F-4 F-4 
H 

P-4 
- 

0 
41 N LO M 00 " O O M M M 

O 00 Cq Lo 00 LO 00 
tý, /ý G 0 CM 00 tto M M Lo t- LO OD 

U >lb .Q m1 N N M r-1 i--I M " N r"I 
4J E-+ 4. u -I 
Cd 

0 
«i 

p 0) 
fL L- de to t- -e m r2 LO M 00 

to 'dl H CO O N M H (D l- p ö 
. . . . . . . . . . 

r-I M CO N M M d+ N 
O 

U) 

r4 UU 
+J +J Ci 0 . (D " H CO CD r-1 
U cd x +) M M M M LO M M 
Q) F-4 U . Z . . . . . 

4H a "r+ C,, M dý M M M dý 
CH f: 
W +1 

(D 
> 4J 

+)+ U 97 M LO M r1 LO 00 00 00 N 
Q (D H. cq cli le 00 CD cri 00 00 ce) 
Cd gi Z LO M de r-I 00 M LO CO to CD 

Cd 0 j2 r" I r-I N M r"1 r-I M M N Xa 
0 

U 

"rl . t: 

4-3 H 00 LO F-4 

H cä " cD N ý-+ to N F-4 (DO +-1 a " _ _ :: 0 . . . ýýý W N 
q-i tip M t U M 

aýx 4-3 C) 
ä +-1 Lo _ _ O LO a +ý a 

4-1 
U .ý M CO M to 
0 1-4 +3 CO " 00 
IL, 

V2 :jV vi to le ci Lt3 

0 0 0 0 0 0 0 0 0 0 
p. w er m oo O " de ca CD ca CD 

G) wl 
Z 

0 
Z Z O $ 

0 O 
U 

O O O 

A A A 
U 
A 

U 
A 

2 2 2 U 
A 

- - - U) 
ý 0 
', ý ri c4 0 de LO cD l- 00 M H 



P 
iý 

Ipo 
,; ýý. 

Ill, i 
\. 

i.. -ý ý, 
i ý`, 
i Ilu! 

0-3 

259 

\` S. 

; ss. \ 
cy 2 

+ve- Tensile farce 

-ve Compressive force 

- -Top layer concrete slab 
Fig. 11.1 shows the exact 

results for case DCON2 

Bottom layer tubes and also the springs 
analogy results for rigid 

- --^-- Diagonal shear members joints (shown as 

app. results x 100) 
exact results 

Q Top layer joints and for pin joints 
conditions (shown as 

0 Bottom layer joints approximate )' 
exact results 

"C Max. compressive force 

T Max. tensile force 

dI II 

1ý--- span - 20 ft. --4 

a) Section through D CON 2 
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-14 

+ve Tensile force 

-ve Compressive force 

---- Top layer ccjc. slab 

Bottom layer tubes 

----- Diagonal shear members 

Q Top layer joints 

O Bottom layer joints 

C Max. compressive force 

T Max. tensile force 

\O Ab 

. '9cs ý 

Fig. 11.2 shows the exact 
results for case DCON3, 
and also the springs 
analogy results for rigid 
joints. Condition shown 
as percentages 

app. results x 100) 
'exact results 
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,/i ý9 \ 



261 

/6z\ 97 / ýg \? 
Cgs\ 

-gýc 6z6i' 468 1"' 

ý/ 

0 .1 tpOß vo, ol VA 1, 

/ý, 1cy\ � 
°p°ýý 

o(Spy 
\ 

go4, ý ý6y \ /'1CL ýý'i 

`-iA- 

d4 ? 
\ \\A Tp 

J, 
/ \°cyc A/ 

\ 

1111 ,. /- Z�? I ýý 
iýý -S ice/ ýý � ? ýd'ýý . uýý i 

+ve Tiasile force Fig. 11.3 shows the 
-ve compressive zorce 

Top concrete layer 

Tubes of bottom layer 

---- Diagonal shear tubes 

Q Top layer joints 

0 Bottom layer joints 

C Max. compression 

T Max. Tension 

exaeL, re5ui-u3 iur case 
DCON4 and also the 
springs analogy results 
for rigid joints 
condition which is 
shown as percentages. 

a) Section through D CON 4 
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Q Top layer joints 

O Bottom layer joints 

C Max, compression 
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-ve Compressive force 

+ve Tensile force 
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Fig. 11.4 shows the exact 
results for case DCON5 
and also the springs 
analogy results for rigid 
joints condition which is 
shown as percentages 

a) Section through D CON 5 
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Fig. 11.5 shows the exact results for bending 
moments in the concrete slab oý case 
DCON2, and also the springs analogy 
results for rigid joints (shown as % 

. of the exact results) and for pin 
-joints conditions (shown only for few 
points as ratio of the exact one). 



264 

V4 M -A 

J. s2q %2st _isZ3 104 _Ir19 
ßt61 ltsi ýoý( ßn3% So/ g8/ t 1ýý . oy% 1� 

±Iti 

-IIýC iZi1- 126 , 1i7 C. I I-1314 1120o 

v; / ioo/ iDf/ qol I ý. ýý (9 f% 

I_III I_ 
2 15'c 

-1-qu Iýqy 249 15s: -' (q2 
"ý 'a" yS( ý9: ý 3y/ 4fß( I ýv 

" I. ý 
_yyt 11181 ý-13ý. C Ilya ýýi 11'Stt T-L44 

yýr I ý'c% 19ýý gyr "`/ yý i ýýi" 

14? 448 - -! 'ý4ý 48y 
483 

I Tic -ý 
c 

sy Ilv=r i-sýý I r>=r s8ý It '/ I %ör/, 

-4ö0 
(11 9r 14Y} Iº: 3 `r'-yq, 115iy 6g 

32% 
AA 

L i"/ 187, I /"$ 
'2c-v 430 -Itz 5os ý"ý S3,1 44ö 

---- Finite Elements subdivisions 

Q Joints 

H Maximum moment 

91q 

2eý/ 

11i 6 

5oq 

pzS3 
no/ 

713 
/07 ? 

1492 
! oo 

/, 0%'/ 
7GLI 

Fig.. 11.6 shows the exact results for bending 
moments in the concrete slab of case 
DCON3, and also the spring analogy 
results for rigid joints condition 
as % of the exact results. 
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Fig. 11.7 shows the exact results for bending moments 
in the concrete slab of case DCON4, and also 
the springs analogy results for rigid joints 
condition as ratio of the exact results 
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Fig. 11.9 
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a) Assumed section for the approximate method 
for finding positive bending moment. 

b) Flat slab panel 

Fig. 11.10 
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°.. -. CHAPTER- 12, 

S .. v -' cs^% 'r än7 C ., 

CONCLUSIONS AND FURTHER STUDIES 

Composite- Double Lä 

the prismatic'1)6uble Layer 

practical application with 

Iarger'spans. 

'the many' studies 'In, 

yer Grids are an evolution of 

Grids, and Icoüld- have they same 

the added possibility-of much 

made in this reseärch' project, 

it ' wasfound that: 

1. The composite stiffness matrix method-of analysis 

yields'reasönable and convergent results. 

2. The eccentricity of top joints whether positive 

or '- negative' has significant' effects on both the prismatic 

members and the slab and is better to be avoided. 

3. That the non-existence of the in-plane rotation 

parameter in'-the plate analysis makes no apparent 

difference"atleast for'the type of structures considered 

in''. 1this thesis. 

'4. '' The plate thickness has' an'important'influence 

upon the strains in the-tubes and naturally in the plate 

itself. A decrease-in thickness'`increases the axial'änd 

bending strains in'the`bottom layer tubes, and also increases 

the in-plane and'flexural strains in the plate and vice 

versa. 

`" ""In `the theoretical part of the research, the 

structural ° behaviour of 'the 'Uniform Mesh' and it's ' parameter 

studies, ° together with the comparison with the tubular 

double layer grids of the same basic configuration, *and' 

with the 'IRM' composite structure showed that: 
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j'' 1. " dAxial 'strains , are the' dominant strains in the 

tubes-, in all': cases investigated-whether, the"tubes, are 

pin-, Jointedlor! rigid-jointed'and whether the structure is 

composite `or 4not. r. -This = is a very useful phenomenon, 

since it means=an: efficient use of'the*prismatic"members. 

2:, '° Rigidity' of ý joints -does -not have ý an* overall 

appreciable', effect,: =other than decreasing the vertical 

displacements fractionally, ' and naturally introducing large 

bending'moments'at`the `ends of the tubes. 

'k 3: ' Considerable structuralrigidity! is achieved by 

using a`: reinforced. concrete kslab `of practical and moderate 

thickness,, instead! of, -the, top. steel tube grids. This is 

shown by'a considerable-reduction in the central deflection 

of'up: toi70%: for"a'span-ofj100wft. (10 bays)'only. 

zr , 
4ä When - the ° span is very short, and the structure 

is very"rigid;, -lthe externalload is carried by"a"combination 

of-shear and direct' compressive`forces. rather than by 

bending action. " The structure tends to behave like a 

slab; inicases of, larger spans, hence the load is carried 

mainly, by=bending°action. --I 

-- /5. -' Most `bottom layer members are under comparable 

tensile "strains -over the area . of the grid. -" 

v6. ý - Most' shear members are , under ° compressive forces, 

which are high at the boundary area, and'are likely°to be 

the decisive factor in the design considerations if it was 

intended°"for practical"reasons to have all the tubes of °_ 

identical cross-section. 

7. Stresses in the slab are negligible in comparison 

.. f. t"ý. i .ar. 
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with the allowable concrete stresses. In-plane stresses 

are much less than flexural stresses, but in-plane stresses 

increase more rapidly than flexural stresses do in larger 

spans. Maximum positive bending moments are in the 

central area and are much higher than the maximum negative 

ones which are at the top joints in the boundary area. 

It`is therefore concluded that practical consideration 

might be the decisive factor in choosing the slab thickness. 

/8. The increase in the depth of the structure 

reduces the stresses in the structure and vice versa. 

9. The increase in the slab, thickness also reduces 

the'"stresses in the structure. 

ý`ý' 10. Shear members are not as sensitive as the 

bottom tensile members or the top slab, to the variation 

in the slab thickness. 

J1. The span/depth ratio is a useful indicator of 

the'-size and rigidity of the structure, but it has no 

specific structural significance. Nevertheless, major 

forces in the structure vary inversely with it when the span 

is"constant, and also major forces vary directly with it 

when the depth is constant. 

-/-12. As far as buckling of shear members and the 

total length'of tubes used are concerned, an orientation 

of 45° with the horizontal plane gives the most (economical) 

depth. 

13. The plate analogy is a valuable asset in these 

structures, from which the following are obtained. 

a. A 'method for finding the moment of inertia of 

the composite section which proved very useful in explaining 
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the composite structural behaviour and also in predicting 

the horizontal forces in the approximate methods,, r 
b) - The formulae-introduced in Eq. 9.21 is very 

useful, by which an efficient thickness for the slab could 

be easily-found,, where: no part, of the-slab will be in the 

tensile zone of theýsection. t- This saves money, and labour 

and more importantly avoids useless dead weight. This 

formulae, was useful also=in. -the approximate methods. 

The approximate-methods themselves yielded very 

good results especially in structures with moderate slab 

thickness and-, with not veryXshort, spans, Among the 

methods using-a. computer, the Spring Analogy Method in 

particular is-very versatile and promising. This is 

because it-can! save a: lot of computer time-and storage, 

andjat-the same time gave very good results for almost all 

tube members and good results too for the important slab 

central area. 

The approximate methods which are based on the 

plate analogy give very good results for in-plane and axial 

stresses. Since the maximum shear force is always less 

than the maximum tensile force in the bottom layer, then 

any preliminary design based on the maximum tensile force 

will be on the safe side. 

The prediction of the maximum positive bending 

moment gives good results also, but the drawback in it is 

that part of it will be based on trial and error when the 

slab is thicker or thinner than the efficient section. But 

this drawback is minimal if a moderate slab thickness is 
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used. The prediction of the maximum negative bending 

moment which is based on the flat slab analogy is very 

rough, but can be useful in rigid cases'with`very short 

span. 

Although it is not claimed that these approximate 

methods are alternatives to the exact analysis, yet they 

can be of great help in-giving a fair idea about the proper 

section when the envisaged span,! is"given. 

As a result of the computer limitations and the 

time available for this research, this thesis is somehow 

not as general as could be the case in some other fields 

of study. Therefore, the scope is quite enormous for 

future research in this unexplored field especially 

towards finding more general approximate methods, and in 

furthering practical applications of this type of structure. 

ýýý 
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