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Abstract

In this thesis we use bifibrations in order to study relational parametricity. There are three

main contributions in this thesis. First, through the lenses of bifibrations, we give a new

framework for models of parametricity. This allows us to make some of the underlying

categorical structure in Reynolds’ original work clearer.

Using the same approach we then give a universal property for the interpretation of forall

types: they are characterized as terminal objects in a certain category. The universal

property permits us to prove both Reynolds’ Identity Extension Lemma and Abstraction

Theorem.

The third contribution consists in defining two-dimensional parametricity. The insight

derived from the bifibrational approach leads to a generalization of parametricity to proof-

relevant relations, incorporating higher-dimensional relations between relations. We call

the resulting theory two-dimensional parametricity.
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Chapter 1

Introduction

In this work, we start by introducing the notion of parametricity. We then recall and

abstract Reynolds’ fibrational model using bifibrations, which yields a framework for models

of System F. Finally, we reach two dimensions by defining two-dimensional parametricity.

In this chapter we give an introduction and an overview on the contents of this thesis.

1.1 Polymorphic functions

Polymorphic functions are functions defined for all types. The idea is that a polymorphic

function computes terms whose types depend on the types given as input, e.g. for every

input type they compute a term. We write f : ∀X.T (X) for a polymorphic function. If A

is a type, we have that fA : T [X 7→ A], e.g. fA is a term of type T [X 7→ A] obtained by

substituting the type A for the free occurrences of X.

Polymorphic functions can be divided into two families: ad hoc and parametric. The ad hoc

polymorphic functions behave differently according to the input type, while the behaviour

of the parametric ones is uniform in the input type.

Consider for example a function sum : ∀X.X → X → X which is defined for natu-

ral numbers by sum(nat)(n,m) = n + m and for lists by the concatenation of lists

sum(list(A))([x0, . . . , xn], [y0, . . . , ym]) = [x0, . . . , xn, y0, . . . , ym]. This function is ad hoc,

because it inspects the input type in order to return the result: the sum for natural numbers

or concatenation for lists.

On the other hand consider the polymorphic function reverse : ∀X.list(X)→ list(X)

which reverses the elements of a list. It is clear that the function does not depend on

1
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the input type: the function “reverse a list of natural numbers” behaves the same as the

function “reverse a list of characters” or “reverse a list” of every other type. This is the

characteristic of parametric polymorphic functions.

In this thesis we focus on parametric polymorphic functions, or just parametric functions.

If the intuitive distinction between ad hoc and parametric functions is clear, it is not

evident how to formalise it. Reynolds had the great intuition to use relations in order

to characterise parametric functions. The idea is to use relations in order to identify

parametric functions: they are the ones preserving all the relations.

Relational parametricity has proven to be one of the key techniques for formally establishing

properties of software systems, such as representation independence [ADR09, DNB12],

equivalences between programs [HD11], or deriving useful theorems about programs from

their type alone [Wad89].

There are several motivations at the basis of the work presented in this thesis. First of all

we wanted to give a neat, simple and minimal framework for models of System F which

allows us to enjoy the consequences of parametricity, something which we think was missing

in the literature on parametricity. In this way we can reach the core of the theory and this

clear vision simplifies the second part of our work: the definition of higher dimensional

parametricity.

An additional advantage of this approach is the strength given by the possibility to use

both fibrational and opfibrational properties. This will be central in some of the results.

1.2 Attention! Impredicativity!

We have to warn the readers that in this thesis we will use impredicativity. Impredicativity

means the possibility to define objects by quantifying over a range which includes the

object to be defined itself. This operation is delicate and it can lead to paradoxes. One of

the most well-known paradoxes deriving from impredicativity is Russell’s paradox from set

theory. The paradox arises when we try to define the set R = {x ∈ Set|x /∈ x}, e.g. the

set of sets which are not elements of themselves. It follows that if R /∈ R, then actually R

should be an element of itself, and if R ∈ R, it should not be an element of itself.
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Another well known paradox based on impredicativity is the liar paradox deriving from the

sentence “this sentence is false”. If this sentence was true, then it affirms that the sentence

is false and vice versa.

There are situations in which is possible to use impredicativity safely. For example consider

a group G and a subset S ⊂ G of elements of G. A priori this is not a subgroup and if we

want to find the smallest subgroup generated by S we can take the intersection of all the

subgroups G′ ⊂ G such that S ⊂ G′.

The impredicativity of polymorphic functions is due to the fact that polymorphic functions

quantify over types living at the same level where they live. Reynolds proved in [Rey84]

that parametrric polymorphism is incompatible with classical set theory.

Further work showed how to deal with this. The material presented in this thesis makes

sense in the (intuitionistic) internal language of a topos [Pit87], or in the Calculus of

Constructions with impredicative Set. A fully formalised relational model of System F in

this last setting has been constructed in [Atk09]. For this reason every time that we use

set-theoretic notation, we are actually working with the latter meta theory.

1.3 Structure of the thesis

The thesis is divided into three parts: in the first one we present some background material

and some preliminary results. In the second part we present the work on parametricity: the

model and a characterisation of the interpretation of forall types via universal properties.

Finally in the third part we present the work on two-dimensional parametricity.

Part I: Background, Notation and Preliminaries

In Chapter 2 we introduce a notion central to this work: bifibrations. We start the chapter

by recalling the basics of category theory. This is also useful in order to fix the notation.

We continue with the definition of bifibrations and some of their properties. This is all

well-known from the literature.
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Chapter 3 is devoted to the notion of fibrations of relations. We use this fibrational

definition of relations in order to construct relational models of parametricity. We see that

relations over sets (where a relation is a subset R ⊆ A×B) is a particular instantiation

of fibration of relations. When we have full comprehension, we can recover some of the

usual intuitive behaviours of relations from the fibrational notion. Moreover the fibrational

structure permits us to define two particular classes of relations: equality relations and

graph relations. They correspond, in the case of relations over sets, to the relations

{(a, b) ∈ A × A such that a = b} and {(a, b) ∈ A × B such that fa = b} for a map

f : A→ B respectively.

In Chapter 4 we focus on the type theory. We start by recalling how cartesian closed

categories are models of simply typed lambda calculus. We need this result because System

F is an extension of the simply typed lambda calculus, and, similarly, the framework of

models of System F we define extends the one for the simply typed lambda calculus. We

then introduce System F and recall a way to model it using category theory: λ2-fibrations.

We use the λ2-fibrational structure in order to construct our framework of models of

System F based on bifibrations. The internal language in a λ2-fibration provides a powerful

tool to reason about categories and we use it to prove some properties which follow from

our framework of models of System F. For this reason we recall the internal language for

System F in a λ2-fibration at the end of the chapter.

Part II: Bifibrational Parametricity

We present our framework of models of System F in Chapter 5. We first give the model

based on bifibrations. We show how to interpret types and terms, we prove that they satisfy

Identity Extension Lemma and Abstraction Theorem, and that all the given structure

forms a λ2-fibration, i.e., a model of polymorphism.

Chapter 6 is a sanity check: we show that some of the well known consequences of

parametricity follow from the model we define: existence of initial algebras and final

coalgebras and dinaturality.

In Chapter 7 we focus on the most delicate point in parametric models: the interpretation
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of forall types. We present a way to interpret forall types using universal properties.

This approach distinguishes itself from others because it allows us to prove the Identity

Extension Lemma and the Abstraction Theorem as a consequence of the axioms. In many

other frameworks interpretation of forall types comes with strong conditions which “bake-in”

the Identity Extension Lemma.

Part III: Two-Dimensional Parametricity

Part III is devoted to the study of two-dimensional parametricity: not only there are

parametric terms, but also the proofs can be parametric. We start with Chapter 8 in which

we present intensional Martin-Löf type theory. In fact Martin-Löf type theory provides a

suitable meta language for studying two-dimensional parametricity, and in particular it

allows us to speak about two-dimensional equalities.

In Chapter 9, using the machinery introduced in Chapter 8, we define two-dimensional

parametricity. The critical point is to interpret forall types and write the right logical

relation which allow us to prove the Identity Extension Lemma and the Abstraction

Theorem.

We conclude this part with Chapter 10 in which we show two applications of two-dimensional

parametricity. First we use two-dimensional parametricity to prove coherence of proofs,

in particular the coherence of the naturality proofs used in Chapter 5 to show that

parametricity implies dinaturality. The second result is that two-dimensional parametricity

implies 2-naturality.

1.4 Related literature

There is a rich literature on relational parametricity. Hermida, Reddy, and Robin-

son [HRR14] give a good introduction.

Since category theory underpins and informs many of the key ideas underlying modern

programming languages, it is natural to ask whether it can provide a useful perspective on

parametricity as well. Ma and Reynolds [MR92] developed the first categorical formulation
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of relational parametricity using the framework of PL-categories (see [See87]). Their

models allow to show isomorphisms involving closed types, but nothing can be said about

types containing free variables. Moreover, Birkedal and Møgelberg discovered that not

all expected consequences of parametricity necessarily hold in their models (see [BM05]

and [RR94]).

Another line of work, which was begun by O’Hearn and Tennent [OT95] and Robinson

and Rosolini [RR94], and later refined by Dunphy and Reddy [DR04], uses reflexive graphs

to model relations and functors between reflexive graph categories to model types. This is

the state of the art for functorial semantics for parametric polymorphism. Interpreting

types as functors is conceptually elegant and Dunphy and Reddy show that this framework

is powerful enough to prove expected results, such as the existence of initial algebras for

strictly positive type expressions [BB85]. However, working with reflexive graph categories

means to work with internal categories in a particular presheaf category, so that all

of the internal category theory applies automatically. We propose to instead to avoid

internalisation by taking the fibrational view of logic from the outset, and thus to analyse

parametricity through the powerful lens of categorical type theory [Jac99].

In doing so, we follow an extensive line of work by Hermida [Her93,Her06] and Birkedal and

Møgelberg [BM05], who use fibrations to construct sophisticated categorical models not

only of parametricity, but also of its logical structure in terms of Abadi-Plotkin logic [PA93].

Abadi-Plotkin logic is a formal logic for parametric polymorphism that includes predicate

logic and a polymorphic lambda calculus, and thus requires significant machinery to handle.

Using this machinery, Birkedal and Møgelberg are able to go beyond Dunphy and Reddy’s

results and, for instance, prove that all positive type expressions — not just the strictly

positive ones as for Dunphy and Reddy — have initial algebras. However, these impressive

results come at the price of the complexity of the notions involved. Our aim is to achieve

the same results in a simpler setting, closer to Dunphy and Reddy’s functorial semantics,

where with functorial semantics we mean that the interpretation of types is given by

functors. We end up with a notion of model in which each type is interpreted as an equality

preserving fibred functor and each term is interpreted as a fibred natural transformation.

This is quite similar to the models produced by the parametric completion process of



1.4. Related literature 7

Robinson and Rosolini [RR94] (see also Birkedal and Møgelberg [BM05]) and to Mitchell

and Scedrov’s relator model [MS93], but with a more general notion of relation given by a

fibration. We thus combine the generality of Birkedal and Møgelberg’s fibrational models

with the simplicity of Dunphy and Reddy’s functorial semantics.

In our work is central the use of bifibrations to achieve this goal in the study of parametricity.

This is not necessary for the definition of our framework, for which Lawvere equality [Law70]

(i.e., opreindexing along diagonals only) suffices, but it helps considerably with both the

concrete interpretation of ∀-types in Chapter 7 and the handling of graph relations. At

a technical level, our strongest result is to use our simpler framework to recover all the

expected consequences of parametricity that Birkedal and Møgelberg [BM05] prove using

Abadi-Plotkin logic. In particular, we go beyond Dunphy and Reddy’s result by deriving

initial algebras for all positive type expressions, rather than just for strictly positive ones.

Note that in a recent work Ghani, Nordvall Forsberg and Simpson (see [GNFS16]) achieved

initial algebras (and final coalgebras) for all positive type expressions by using a fibrational

generalisation of reflexive-graph categories.

Our approach to parametricity by universal property differs from the ones present in the

literature. In fact none of the cited papers tackles the question we tackle in our work.

Indeed, many follow the modern trend to bake in Identity Extension into their framework.

In contrast, we prove the identity extension property from more primitive assumptions.

Since our work on universal parametricity requires bifibrations, this part builds on the

bifibrational model presented in Chapter 5.

The work on two-dimensional parametricity complements the more proof-theoretic work

on internal parametricity in proof-relevant frameworks [BCM15,BJP12,Pol15]. Relevant is

also the work on parametricity for dependent types in general [AGJ14,KD13], assuming

proof-irrelevance.

This part requires to work with cubical structures [BHS11]. Cubical relations, but in a

proof-irrelevant presentation, appear in [Gra09]. We adapt such definition for proof-relevant

relations. Interestingly cubical techniques also arises in the semantics of Homotopy Type

Theory [BCH14].
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1.5 Contributions

The contributions appearing in this document are based on the papers that I wrote:

[GJNF+15] with Neil Ghani, Patricia Johann, Fredrik Nordvall Forsberg and Tim Revell,

[GNFO15] with Neil Ghani and Fredrik Nordvall Forsberg and [GNFO16] with Neil Ghani

and Fredrik Nordvall Forsberg. I collaborated to the general development of all the material

present in these papers. In particular my specific tasks were the following:

• Proof of the Graph Lemma 3.12.

• I developed the categorical formulation of Reynolds’ relational parametricity presented

in Chapter 5.

• I proved that the proposed interpretation of System F via bifibrations forms a

λ2-fibration (Theorem 5.24).

• I reformulated and proved that parametricity implies dinaturality using our model.

• I proved all the results in Chapter 7 on universal parametricity.

• I gave the interpretation of types in the 2 dimensional parametricity (Subsection 9.1

with proofs).

• I defined the graph functor for 2 dimensional parametricity and I proved the results

in Section 10.2.

1.6 Notation

We use the notation C,D, E , . . . for categories.

Given a category C, we denote by |C| the discrete category of C, e.g. the class (or set) of

objects in C.

Given two objects A and B in a category C, HomC(A,B) is the collection of morphisms

from A to B in C, possibly avoiding the subscript C when the category is clear from the

context.
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With Cop we denote the opposite category of C, e.g. the category whose objects are the

objects of C and HomCop(A,B) = HomC(B,A).

The category of sets and morphisms between them will be denoted Set, while Cat consists

in the category of small categories and functors between them.

Composition of morphisms, functors and natural transformations is expressed by ◦ or

juxtaposition, so that, given two morphisms f : A→ B and g : B → C, g ◦ f or gf denote

their composite A→ C.

Given two parallel functors F,G : C → D, a natural transformation α from F to G will be

denoted as α : F ⇒ G : C → D.

For A and B objects in a category C, we denote by A×B their product, and the projections

are π1 : A × B → A and π2 : A × B → B. Given f : C → A and g : C → B, we denote

by 〈f, g〉 : C → A × B the unique morphism identified by the universal property of the

product.

Dually A + B denotes their sum (coproduct), with i1 : A → A + B and i2 : B → A + B

representing the structure maps of the sum.

Finally, given two morphisms f : A→ C and g : B → C, their pullback is represented by

the diagram

A f×g B

f∗(g)
��

g∗(f) // B

g

��
A

f
// C.

Given s : D → A and t : D → B such that f ◦ s = g ◦ t, we denote 〈s, t〉 : D → A f×g B

the unique mediating morphism.



Part I

Background, Notation and

Preliminaries
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Chapter 2

Bifibrations

In this section we recall some results from category theory, and we introduce bifibrations and

their properties. We assume the reader is familiar with the basic notions of category theory

in particular the definition of categories, functors, natural transformations, adjunctions.

limits and colimits. The classical reference for the subject is Mac Lane [ML98]. Another nice

book, in which there are examples also from logic and computer science is Awodey [Awo10].

The subject of fibrations and opfibrations is well treated in Jacobs [Jac99]. The book,

beside giving a great introduction to the subject, shows how fibrations can be used to give

categorical semantics for different type theories. Unless explicitly specified, we refer to it

for the definitions and theorems in this chapter. Most of the fibrational theory that we use

in this thesis can be found also in Hermida [Her93] and his work is strictly related to the

one presented here.

Note that by (op)fibration we refer to what is sometimes called (op)cartesian (op)fibration

or Grothendieck (op)fibration in literature. Since we will only refer to these kind of

(op)fibrations, we will drop the adjective (op)cartesian.

2.1 Categorical notions

We first fix some terminology. Given a functor U : E → B we say that an object X in E is

over or above an object I in B if UX = I. Similarly a morphism f in E is over or above

a morphism u in B if Uf = u. A morphism in E is called vertical if it is above an identity

morphism in B.

We now recall some notions and properties we need.

11
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2.1.1 Properties of adjoint functors

We assume the reader is familiar with the definition of adjoint functors, the unit and counit,

triangular identities and natural isomorphism between Hom-sets. It is well known that

every left adjoint preserves colimits, while every right adjoint preserves limits.

We will often use the following result.

Lemma 2.1. Let L a R be a pair of adjoint functors

• R is full and faithful if and only if the counit of the adjunction is a natural isomor-

phism;

• L is full and faithful if and only if the unit of the adjunction is a natural isomorphism.

2.1.2 The Frobenius and Beck-Chevalley conditions

We recall two conditions on adjoint functors: the Frobenius condition and the Beck-

Chevalley condition.

Consider a pair of adjoint functors L a R. The Frobenius condition, which sometimes is

also called Frobenius reciprocity, is about the canonical morphism

L(C ×R(B))
〈Lπ1,Lπ2〉−−−−−−→ L(C)× L(R(B))

id×εB−−−−→ L(C)×B

where ε : L ◦R→ Id is the counit of the adjunction L a R.

Definition 2.2. We say that a pair of adjoint functors L a R satisfies the Frobenius

condition (Frobenius reciprocity) if the canonical morphism L(C ×R(B))→ L(C)×B

is an isomorphism.

If both the domain and codomain categories are cartesian closed, this condition is equivalent

to requiring that the right adjoint preserves exponentiation. In fact, consider a pair of

adjoint functors L a R, with L : C → D, and C and D are cartesian closed. Let C be an

object in C, A and B be two objects in D. If the Frobenius condition holds for L a R, then
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we have the series of isomorphisms

HomC(C,R(A)R(B)) ∼= HomC(C ×R(B), R(A))

∼= HomD(L(C ×R(B)), A)

∼= HomD(L(C)×B,A)

∼= HomD(L(C), AB)

∼= HomC(C,R(AB))

and by Yoneda R(A)R(B) ∼= R(AB).

For the Beck-Chevalley condition consider a commutative (up to isomorphism) square of

functors

C F ∗ //

G∗

��

C′

K∗

��
D

H∗
// D′

(2.3)

where F ∗ and H∗ have left adjoints F! and H!, respectively. In this situation there is a

canonical morphism

H! ◦K∗
H!◦K∗ηF−−−−−−→ H! ◦K∗ ◦ F ∗ ◦ F!◦

∼=−→ H! ◦H∗ ◦G∗ ◦ F!
εHG

∗◦F!−−−−−→ G∗ ◦ F!, (2.4)

where ηF is the unit of the adjunction F! a F ∗ and εH is the counit of the adjunction

H! a H∗.

Definition 2.5. We say that (2.3) satisfies the Beck-Chevalley condition if the canon-

ical morphism (2.4) H! ◦K∗ → G∗ ◦ F! is an isomorphism.

Analogous conditions arise when G∗ and K∗ have left adjoints or considering the dual

notion where the functors have right adjoints instead of the left ones.

Example 2.6. The diagonal functor ∆: C → C×C acts on objects by X 7→ (X,X) and on

morphisms by f 7→ (f, f). If C is a category with products, the product functor × : C × C

is defined on objects by (X,Y ) 7→ X × Y , and on morphisms by (f, g) 7→ f × g. It is well

known that ∆ is the left adjoint of ×. For every functor F : C → D, the following diagram
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commutes

C ∆ //

F
��

C × C

F×F
��

D
∆
// D ×D.

For such a square, requiring that the Beck-Chevalley condition holds is equivalent to asking

that F preserves products: the Beck-Chevalley condition translates into the isomorphism

F ◦ (×)
∼=−→ (×) ◦ (F × F ), which, when applied to any pair of objects (X,Y ), gives

F (X × Y ) ∼= F (X)× F (Y ).

2.2 Fibrations and opfibrations

There are two structures captured by the notion of fibration. The first one is that fibrations

generalise collections of sets (X)i∈I indexed over a set I, and the second one is substitution:

given a function f : I → J and a J-indexed collection (Xj)j∈J , we can form an I-indexed

collection whose i-th component is Xfi.

(I) Collection. There are two equivalent way to present collections of sets. They are

represented in Figure 2.1.

X

Xi Xj. . . ϕ−1(i) ϕ−1(j). . .

I

X

ϕ

I
i j. . . i j. . .

(ii)(i)

Figure 2.1: Different representations of a family of sets
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(i) Pointwise (or split) indexing: (Xi)i∈I is thought as a collection where each Xi is a

set. We can think it as a function I → Set which maps i 7→ Xi.

(ii) Display indexing: a family is a map ϕ : X → I. The sets in the family are identified

as the pre-image sets ϕ−1(i) = {x ∈ X |ϕ(x) = i} for i ∈ I.

It is not difficult to see that these notions are equivalent (see [Jac99]). Similarly there

are two representations also for fibrations, and there is a standard method, called the

Grothendieck construction, to go from the pointwise representation to the display one.

(II) Reindexing. Substitution along a function between indexes as seen above is modeled

abstractly by reindexing. We see the example of the codomain functor cod : Set→ → Set,

but we first need some terminology.

Definition 2.7. Let F : C → D be a functor and let D be an object in D. The fibre or

fibre category over D is the category CD with

CD objects C in C such that F (C) = D.

morphisms f : C1 → C2 such that F (f) = idD.

For every category C, there is the arrow category C→ which consists of

C→ objects morphisms f : X → I in C.

morphisms (α, β) : (f : X → I) → (g : Y → J) is a pair of mor-

phisms α : X → Y , β : I → J in C such that the following

diagram commutes

X
α //

f
��

Y

g

��
I

β
// J.

In the case of C = Set, the objects of Set→ are families of sets, presented by display

indexing, which are indexed over every possible set.

The codomain functor cod : Set→ → Set is defined by cod(f : X → I) = I and
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cod(α, β) = β. The fibres of this functor are the slice categories C/I, where I is an

object in C. The slice category is defined as follows:

C/I objects morphisms f : X → I with fixed codomain I.

morphisms α : (f : X → I)→ (g : Y → I) is a morphism α : X → Y

in C such that the following diagram commutes

X
α //

f ��

Y

g��
I.

The objects of Set/I are families of sets indexed over I.

For a morphism u : I → J in Set, substitution along u consists of an operation which

takes a family indexed over J and returns a family over I. In terms of cod, this operation

is a map from the fibre over J to the fibre over I. Specifically, consider a family of sets

ψ : Y → J indexed over J and let u : I → J be a morphism in Set. By substitution one

obtains the family (Yu(i))i∈I . The corresponding display representation can be obtained by

pullback

X
ψ∗(u) //

u∗(ψ)=ϕ
��

Y

ψ
��

I u
// J.

The set X is of the form X = {(i, y) ∈ I × Y |u(i) = ψ(y)} with obvious projection

morphisms. The family ϕ : X → I corresponds exactly to (Yu(i))i∈I as shown by the

equalities

Xi = ϕ−1(i) ∼= {y ∈ Y |ψ(y) = u(i)} = ψ−1(u(i)) = Yu(i).

By construction it is clear that it satisfies a universal property which is captured by the

categorical notion of cartesian morphism.

Definition 2.8. Let U : E → B be a functor. A morphism f : X → Y in E is cartesian

over u : I → J in B if Uf = u and if for every g : Z → Y in E whose image factorises as

U(g) = u ◦ w for some w : U(Z) → I, there exists a unique h : Z → X in E over w such
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that f ◦ h = g. The condition is expressed by the diagram

Z

h
$$

g

$$
E

U

��

X
f

// Y

UZ

w

$$

u◦w=Ug

$$

B

I u
// J

If f is cartesian over u we also say that f is a cartesian lifting of u.

When every map has a cartesian lifting we have a fibration.

Definition 2.9. A functor U : E → B is a fibration if for every Y in E and u : I → UY

in B, there is a cartesian morphism f : X → Y above u.

The dual notion of fibration is that of an opfibration. A functor U : E → B is an opfibration

if the opposite functor Uop : Eop → Bop between the opposite categories is a fibration. It is

useful to unwind this definition, showing the universal lifting property for opfibrations.

Definition 2.10. Let U : E → B be a functor. A morphism f : X → Y in E is opcartesian

over u : I → J in B if Uf = u and if for every g : X → Z in E whose image factorises as

Ug = v ◦ u for some v : J → UZ, there exists a unique h : Y → Z in E over v such that

h ◦ f = g. The condition is expressed by the diagram

Z

E

U

��

X
f

//

g
00

Y

h

::

UZ

B

I u
//

Ug=v◦u
00

J

v

::

If f is opcartesian over u we also say that f is an opcartesian lifting of u.
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Definition 2.11. A functor U : E → B is an opfibration if Uop : Eop → Bop is a fibration.

Equivalently, if above every morphism UX → J in B, there is an opcartesian morphism

X → Y in E .

Finally we can define bifibrations.

Definition 2.12. A bifibration is a functor which is at the same time a fibration and an

opfibration.

If U : E → B is a fibration or opfibration, the category E is called the total category and

B is called the base category.

Given two cartesian liftings f : X → Y and f ′ : X ′ → Y of u with the same codomain, there

exists a unique vertical isomorphism ϕ : X
∼−→ X ′ with f ′ ◦ ϕ = f . The isomorphism and

its inverse can be found using the universal property of the cartesian morphisms applied to

the commuting diagrams Uf ◦ id = Uf ′ and Uf = Uf ′ ◦ id in the base category. Dually,

for two opcartesian liftings g : X → Y and g′ : X → Y ′ of u with the same domain, there

exists a unique vertical isomorphism ψ : Y
∼−→ Y ′ with ψ ◦ g = g′. In fact, it holds:

Proposition 2.13. Cartesian (opcartesian) liftings over the same morphism and with the

same codomain (domain) are unique up to unique vertical isomorphism.

Given Proposition 2.13 it is useful to be able to speak about the cartesian lifting and the

opcartesian lifting. In order to do that we need to fix cartesian and opcartesian morphisms

for fixed codomain and domain and this often requires the use of the axiom of choice.

Definition 2.14. A fibration U : E → B is called cloven if it comes equipped with a

choice of cartesian lifting for each object Y of E and map f : I → UY .

Dually there is the notion of cloven opfibration.

Definition 2.15. An opfibration U : E → B is called cloven if it comes equipped with a

choice of opcartesian lifting for each object X of E and map f : UX → J .

In the rest of this thesis all the (op)fibrations that we consider will be assumed to be cloven.

We call the choice of (op)cartesian morphisms in a cloven (op)fibration a cleavage .



2.3. Examples of fibrations 19

Consider a cloven bifibration U : E → B. We fix the notation for the cartesian and

opcartesian morphisms in the cleavage. Given u : I → J in B, we denote the cartesian

lifting of u with codomain Y as u§Y : u∗Y → Y and we say that u∗Y is the reindexing of

Y along u. We denote the opcartesian lifting of u with domain X as uX§ : X → ΣuX and

we say that ΣuX is the opreindexing of X along u. When clear from the context we

drop the Y in u§Y or the X in uX§ .

We conclude this section with some properties of cartesian morphisms, but we first need

some more notation for the statement of the lemma. Given a fibration U : E → B, a

morphism u : I → J in B and two objects X,Y in E over, respectively, I and J , we denote

by Eu(X,Y ) the morphisms from X to Y over u.

We express the following properties for cartesian morphisms: the dual properties hold for

opcartesian morphisms.

Lemma 2.16. Let U : E → B be a fibration.

• the cartesian lifting of an isomorphism is an isomorphism;

• all isomorphisms in E are cartesian;

• for every u : I → J in B and X,Y in E over, respectively, I and J , Eu(X,Y ) ∼=

HomEI (X,u
∗Y );

• for f : X → Y and g : Y → Z in E , if f and g are cartesian, so is g ◦ f . If g and g ◦ f

are cartesian, so is f .

2.3 Examples of fibrations

In this section we give some important examples of fibrations, opfibrations and bifibrations

with some of their properties.

Example 2.17. The identity fibration Id : B → B.

For every category B, the identity functor over itself is a fibration. Every fibre has only

one object |BI | = {I}, and the cartesian lifting of any morphism f in the base is f itself. It
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is also an opfibration with the opcartesian lifting of f given, again, by f itself, and hence

it is a bifibration.

Example 2.18. The codomain fibration cod : C→ → C.

When the category C has pullbacks, the codomain functor is a fibration. To see this,

consider the diagram

Z
γ′
//

h
��

β′

''
X

α′
//

f
��

Y

g

��
K

γ //

β

77I
α // J

representing the universal property for the cartesian morphism which is formed by pullback.

The bottom row of the diagram can be thought of as living in the base category C. The

morphism g : Y → J is an object in C→ living over J , and the cartesian morphism over α is

given by (α′, α). In fact, given a morphism (β′, β) : h→ g for which, in the base category,

there is a morphism γ : K → I such that β = α ◦ γ, there is a unique (γ′, γ) : h→ f such

that (β′, β) = (α′, α) ◦ (γ′, γ). The universal property of cartesian morphisms is exactly

the universal property of the pullback since g ◦ β′ = α ◦ γ ◦ h.

In general every functor cod : C→ → C is an opfibration. In fact it is not difficult to check

that given f : X → I, the morphism (id, α) : f → α ◦ f is opcartesian over α : I → J .

Example 2.19. The domain opfibration dom : C→ → C.

This example is the dual of the codomain fibration. Consider the functor which projects on

the domain. It is defined as dom(f : X → I) = X and dom(α′, α) = α′. If the base category

has pushouts, the following diagram describes how to find the opcartesian morphisms

Z
γ′
//

h
��

β′

''
X

α′
//

f
��

Y

g

��
K

γ //

β

77I
α // J
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where (γ′, γ) is opcartesian over γ. It is similar to the case of the codomain fibration, with

the difference that, in this case, the upper row lives in the base category.

In general every functor dom : C→ → C is a fibration. In fact it is not difficult to check that

given g : Y → J , the morphism (α, id) : g ◦ α→ g is cartesian over α : X → Y .

Example 2.20. The subset fibration sub : Sub(Set)→ Set.

We denote by Sub(Set) the category

Sub(Set) objects subsets X ⊆ I.

morphisms f : (X ⊆ I) → (Y ⊆ J) is a morphism f : I → J in Set

such that for every x ∈ X, f(x) ∈ Y , e.g. morphisms

preserving subsets.

The functor sub : Sub(Set) → Set which sends an object (X ⊆ I) 7→ I and a morphism

f 7→ f , is a fibration. Given a morphism u : I → J in Set, the reindexing along u of Y ⊆ J

is given by the object u∗Y ⊆ I defined by u∗Y = {i ∈ I |u(i) ∈ Y }. The cartesian lifting u

with codomain Y ⊆ J is u itself. It is obvious that u preserves the subset u∗Y .

The subset functor is also an opfibration. Given u : I → J in Set, the opreindexing

along u of X ⊆ I consists of the object ΣuX ⊆ J defined by ΣuX = {j ∈ J | ∃x ∈

X such that ux = j}. The opcartesian lifting of u with domain X ⊆ I is again u itself.

The subset fibration is a particular case of the following more general fibration.

Example 2.21. The subobject fibration sub : Sub(C)→ C.

Let C be a category. There is an equivalence relation ∼sub over monomorphisms defined by

(m : X → I) ∼sub (m′ : Y → J) if and only if I = J and there is an isomorphism φ : X → Y

such that m′ ◦ φ = m. We denote by Sub(C) the category

Sub(C) objects equivalence classes [m] of monomorphisms with respect

to ∼sub.
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morphisms α : [m : X → I]→ [n : Y → J ] is a morphism α : I → J

for which it exists a morphism α′ : X → Y in C such

that the following diagram commutes

X
α′ //

��
m
��

Y
��
n
��

I α
// J.

Note that morphisms are well defined. In fact, if α′ exists it is unique since n is a

monomorphism.

The subobject functor sub : Sub(C)→ C sends sub([m : X → I]) = I and sub(α) = α. It is

well defined since I and α are independent of the choice of the representative. A morphism

α : [m]→ [n] as in the diagram X
α′ //

��
f
��

Y
��
g

��
I α

// J

is cartesian if and only if the diagram is a pullback square

X
α′ //

��
f

��

Y
��
g

��
I α

// J,

i.e. sub : Sub(C)→ C is a fibration if and only if C has pullbacks of monomorphisms along

arbitrary maps.

When C has an epi-mono factorisation system (E,M) (see [Jac99] for the definition of

factorisation systems), the functor sub : Sub(C)→ C is also an opfibration. In fact consider

a morphism u : I → J in C. For every object i : X � I in the fibre over I, the composition

u ◦ i factorises as m ◦ e with m mono and e epi. The opreindexing of i along u is Σui = m

and the cartesian lifting of u is (e, u)

X
e //

��
i
��

Y
��
m
��

I u
// J

The universal property of opcartesian morphisms follows from uniqueness of the diagonal
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morphism in the left lifting property.

Example 2.22. The families of sets fibration fam : Fam(Set)→ Set.

The category Fam(Set) consists of

Fam(Set) objects pairs (I, P ) with I in Set and P : I → Set a function which

associates a set to every element of I.

morphisms (u, α) : (I, P ) → (J,Q) is a function u : I → J in Set and a

family of morphisms αx : Px→ Q(ux) in Set for x ∈ I.

The functor fam sends fam(I, P ) = I and fam(u, α) = u.

If u : I → J is a morphism in Set, the reindexing of (J,Q) along u is defined by u∗(J,Q) =

(I,Q ◦ u). The cartesian lifting u§(J,Q) is given by the morphism (u, id).

This functor is also an opfibration and thus a bifibration. Given u : I → J in Set, the

opreindexing of (I, P ) along u is given by Σu(I, P ) = (J, y 7→
∐
{x∈I|ux=y} Px), where∐

is the disjoint union of sets. The opcartesian lifting u
(I,P )
§ is given by the morphism

(u, α), where αx(p) = (x, p) is well defined since (x, p) ∈ ΣuP (ux) =
∐
{x′∈I|ux′=ux} Px

′.

Categorically it is the structure map of the coproduct iPx : Px→
∐
{z∈I|uz=ux} Pz.

Example 2.22 generalises.

Example 2.23. The family fibration fam : Fam(C)→ Set.

For every category C we define the category Fam(C) as follows:

Fam(C) objects pairs (I, P ) with I in Set is a set of indices and P : I → C a

function which associates an object of C to every element of I.

morphisms (u, α) : (I, P ) → (J,Q) is a function u : I → J in Set and a

family of morphisms αx : Px→ Q(ux) in C for x ∈ I.

The functor fam : Fam(C)→ Set acting on objects as fam(I, P ) = I and on morphisms as

fam(u, α) = u is a fibration.

For every morphism u : I → J in Set, the the reindexing of (J,Q) along u gives u∗(J,Q) =

(I,Q ◦ u). The cartesian lifting u§(J,Q) : u∗(J,Q)→ (J,Q) is defined by the pair (u, id).
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In the case that C has set-indexed coproducts
∐

, the family fibration of C is an opfibration,

and hence a bifibration. Given u : I → J morphism in the base category Set, the

reindexing of (I, P ) along u gives Σu(I, P ) = (J, y 7→
∐
{x∈I|ux=y} Px). The opcartesian

lifting u
(I,P )
§ : (I, P ) → Σu(I, P ) is defined by the pair (u, α) where α is given by the

injections of the components Pz in the coproduct
∐
{x∈I|ux=uz} Px, for every z ∈ I.

Example 2.24. The fibration of relations over Set rel : Rel→ Set× Set.

We consider the category Rel of relations over sets, and morphisms between them preserving

relations.

Rel objects triples (A,B,R ⊆ A × B) with A and B in Set, while R ⊆

A × B is an object in Sub(Set). We write (A,B,R) for

(A,B,R ⊆ A×B).

morphisms pairs (f, g) : (A,B,R) → (A′, B′, R′) with f : A → A′ and

g : B → B′ in Set, such that f × g(R) ⊆ R′ in Sub(Set).

The functor rel : Rel → Set × Set which sends an object (A,B,R) 7→ (A,B) and a

morphism (f, g, ) 7→ (f, g) is a fibration. Given (f, g) : (A,B) → (A′, B′) in Set × Set,

the reindexing of (A′, B′, R′) along (f, g) is (A,B, (f, g)∗R′) where (f, g)∗R′ = {(a, b) ∈

A× B | (fa, gb) ∈ R′}. This coincides with the reindexing along f × g for the subobject

fibration sub : Sub(Set)→ Set.

The functor rel is also an opfibration. The opreindexing along (f, g) : (A,B) → (A′, B′)

maps (A,B,R) 7→ (A′, B′,Σ(f,g)R) where

Σ(f,g)R = {(a′, b′) ∈ A′ ×B′ | ∃(a, b) ∈ R such that (fa, gb) = (a′, b′)}.

2.4 Reindexing and opreindexing functorially

If a fibration U : E → B has a cloven structure, cartesian and opcartesian morphisms induce

functors between fibres.

Definition 2.25. Given a cloven bifibration U : E → B, every morphism u : I → J in B

induces a functor u∗ : EJ → EI and a functor Σu : EI → EJ defined as
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u∗ : EJ → EI objects u∗Y is the domain of the cartesian morphism u§Y .

morphisms the morphism f : Y → Y ′ in EJ is mapped to the unique

morphism

u∗Y
u§Y //

u∗f
��

Y

f
��

u∗Y ′
u§
Y ′

// Y ′

which exists and is unique over id by the universal property

of u§Y ′ .

Σu : EI → EJ objects ΣuX is the codomain of the opcartesian morphism uX§ .

morphisms the morphism f : X → X ′ in EI is mapped to the unique

morphism

X
uX§ //

f
��

ΣuX

Σuf
��

X ′
uX
′
§

// ΣuX
′

which exists and is unique over id by the universal property

of uX§ .

We call u∗ the reindexing functor along u and Σu the opreindexing functor along u.

Note that, in general, the operation mapping a morphism u to u∗ is only (contravariantly)

pseudofunctorial. We have indeed the following commuting diagrams

X

∼=
��

id

  

u∗v∗(X)

∼=
��

u§
v∗X // v∗(X)

v§X

!!
id∗X

id§X

// X (v ◦ u)∗(X)
(v◦u)§X

// X

(2.26)

where the isomorphism X ∼= id∗X follows from the fact that id§X is the cartesian morphism

over the isomorphism id, hence an isomorphism by Lemma 2.16 and the isomorphism

u∗v∗(X) ∼= (v ◦ u)∗(X) arises from the following standard argument for fibrations. Both

(v ◦ u)§X and v§u∗X ◦ u
§
X are cartesian morphisms (composition of cartesian morphisms is a
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cartesian morphism, again Lemma 2.16) and both of them are over v ◦ u. Of course, the

following diagram in the base commutes:

I
v◦u

��
I v◦u

// J.

Using the universal property of (v ◦u)§X first, and v§u∗X ◦u
§
X after, there are two morphisms

f : u∗v∗(X) → (v ◦ u)∗(X) and g : (v ◦ u)∗(X) → u∗v∗(X) which are unique over id and

make the diagram commute. We have that f ◦ g : (v ◦ u)∗(X)→ (v ◦ u)∗(X) is the unique

morphism over the identity such that (v ◦ u)§X ◦ f ◦ g = (v ◦ u)§X and since id satisfies such

property, using uniqueness f ◦ g = id. The symmetric reasoning holds for the proof of

g ◦ f = id and it is not hard to check that the isomorphisms in diagram (2.26) yield natural

isomorphisms id⇒ id∗ and u∗v∗ ⇒ (v ◦ u)∗.

In some cases the isomorphisms u∗v∗(X)
∼=−→ (v ◦ u)∗ and X

∼=−→ id ∗ (X) are identities.

Definition 2.27. A split fibration is a cloven fibration for which the isomorphisms in

diagram (2.26) are identities id
=−→ id∗ and u∗v∗

=−→ (v ◦ u)∗. The cleavage involved is then

called a splitting.

We finish this section with the definition of the Beck-Chevalley condition for bifibrations.

We first show that, in a bifibration, reindexing and opreindexing are adjoint functors. It is

known (see [Jac99]) that this adjunction characterises bifibrations as follows:

Lemma 2.28. Let U : E → B be a fibration. Then U is a bifibration if and only if for

every morphism f : I → J in B, f∗ has left adjoint Σf .

The Beck-Chevalley condition in the case of bifibrations assumes the following form.

Definition 2.29. Let U : E → B be a bifibration. We say that U satisfies the Beck-
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Chevalley condition if, for every pullback square

A
t //

s
��

B

f
��

C g
// D

in B, the canonical natural transformation Σs ◦ t∗ → g∗ ◦ Σf defined as

Σs ◦ t∗
Σs◦t∗ηf−−−−−→ Σs ◦ t∗ ◦ f∗ ◦ Σf

∼=−→ Σs ◦ s∗ ◦ g∗ ◦ Σf
εsg∗◦Σf−−−−−→ g∗Σf

is an isomorphism, with ηf the unit of the adjunction Σf a f∗, and εs the counit of the

adjunction Σs a s∗. Note that the isomorphism Σs ◦ t∗ ◦ f∗ ◦Σf

∼=−→ Σs ◦ s∗ ◦ g∗ ◦Σf derives

from the fact that reindexing and opreindexing are defined up to isomorphism.

We are interested in the following consequence of the Beck-Chevalley condition.

Lemma 2.30. Let U : E → B be a bifibration that satisfies the Beck-Chevalley condition.

For every monomorphism f : I → J in B and every object X over I, the unit ηX : X →

f∗ΣfX is an isomorphism. Equivalently, for every monomorphism f : I → J in B, the

functor Σf : EI → EJ is full and faithful.

Proof. The square

I
id //

id ��

I
f��

I
f
// J

is a pullback since f : I → J is a monomorphism. The

Beck-Chevalley condition implies that the composition

Σidid∗
Σidid∗ηf−−−−−→ Σidid∗f∗Σf

=−→ Σidid∗f∗Σf
εidf∗Σf−−−−−→ f∗Σf

is an isomorphism. Using the fact that the (op)cartesian lifting of an isomorphism is

an isomorphism, the functors id∗ and Σid are full and faithful, hence the counit εid is an

isomorphism. By the two-out-of-three for composition of isomorphisms, we have that

Σidid∗ηf is an isomorphism, and since Σid and id∗ are full and faithful, the unit ηf is an

isomorphism, making Σf full and faithful.
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2.5 Constructing new fibrations from old

We now study how to obtain new fibrations starting from given ones.

Lemma 2.31. Let U : E → B be a fibration and F : B′ → B a functor. The pullback of U

along F in Cat

B′F×U E
U∗(F ) //

F ∗(U)
��

E

U
��

B′
F

// B

defines a new fibration F ∗(U) : B′F×U E → B′. We say that F ∗(U) is obtained via change

of base from U along F .

It is possible to describe concretely the fibration F ∗(U) as follows. The objects of B′F×U E

are pairs (I,X), where I is an object in B′, while X is an object in E , and such that

F (I) = U(X). The morphisms are pairs (u, f), with u in B′, f in E , and such that

F (u) = U(f). The functor F ∗(U) projects out the first component. The cartesian lifting of

u : I → J in B′ with codomain (J, Y ), is given by (u, (Fu)§Y ) : (I, (Fu)∗Y )→ (J, Y ), where

the second component is cartesian with respect to the fibration U . This is well defined

since F (J) = U(Y ) and then F (u) : F (I) → U(Y ). It is immediate to verify that this

satisfies the universal property of cartesian morphisms.

Example 2.32. The fibration of relations over sets in Example 2.24 arises from the subset

fibration via change of base along the product functor

Rel

rel
��

// Sub(Set)

sub
��

Set× Set −×−
// Set,

where the product functor sends the pair of objects (A,B) to A × B and the pair of

morphisms (f, g) to f × g.

By duality it also holds

Lemma 2.33. Change of base preserves opfibrations, i.e. if U : E → B is an opfibration

and F : B′ → B a functor, then F ∗(U) is an opfibration.
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Combining Lemmas 2.31 and 2.33 it follows

Corollary 2.34. Change of base preserves bifibrations, i.e. if U : E → B is a bifibration

and F : B′ → B a functor, then F ∗(U) is a bifibration.

Composition of fibrations is a fibration:

Lemma 2.35. If U : E → B and U ′ : E ′ → E are fibrations, then so is the composite

U ◦ U ′ : E ′ → B.

Proof. The cartesian lifting is obtained by iterating the lifting along the two fibrations. In

detail, consider a morphism u : I → J in B and let Y be an object in E ′ over J respect to

U ◦ U ′, i.e. (U ◦ U ′)Y = J . We first compute the cartesian morphism u§UY with codomain

UY with respect to the fibration U . Then we iterate and compute the cartesian lifting

(u§UY )§Y with respect to the fibration U ′ which corresponds to the cartesian lifting of u with

codomain Y with respect to the fibration U ◦ U ′.

It is not difficult to see that the dual holds for opfibrations

Lemma 2.36. If U : E → B and U ′ : E ′ → E are opfibrations, then so is the composite

U ◦ U ′ : E ′ → B.

As a direct consequence of Lemmas 2.35 and 2.36 it follows:

Corollary 2.37. If U : E → B and U ′ : E ′ → E are bifibrations, then so is the composite

U ◦ U ′ : E ′ → B.

There is a trivial way to obtain a bifibration from every functor F : E → B. This consists of

the construction of the discrete functor |F | : |E| → |B|, where we write |E| for the discrete

category of E . The discrete functor |F | acts like F on the objects and trivially on the

morphisms.

Lemma 2.38. For every functor F : E → B, the discrete functor |F | : |E| → |B| is a

bifibration.
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Proof. This is obvious since the only morphisms in the base and in the total category are

identities and the identities in the total category over the identities in the base category

are the (op)cartesian lifting satisfying, in this case, a vacuous universal property.

Lemma 2.39. Let U1 : E1 → B1, . . . , Un : En → Bn be (op/bi)fibrations. Then U1×. . .×Un

is a (op/bi)fibration.

Proof. The cartesian and opcartesian morphisms are obtained componentwise.

In particular, from the above Lemma follows that if U : E → B is a (op/bi)fibration, so is

the n-fold product Un.

2.6 Fibred category theory

We now consider the fibred structure. We start with the notion of fibred functors.

Definition 2.40. Let U : E → B and U ′ : E ′ → B′ be two fibrations. A fibred functor

from U to U ′ consists of a pair of functors G : B → B′ and F : E → E ′ such that U ′◦F = G◦U

and F maps cartesian morphisms to cartesian morphisms.

A fibred functor will be denoted (F,G) : U → U ′, and often represented as a commuting

square

E

U
��

F // E ′

U ′

��
B

G
// B′.

Example 2.41. For every fibration U : E → B and every functor F : B′ → B, the pair of

functors (U∗(F ), F ) obtained via change of base

B′F×U B
U∗(F ) //

F ∗(U)
��

E

U
��

B′
F

// B

defines a fibred functor (U∗(F ), F ) : F ∗(U)→ U .
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Every fibred functor induces functors between fibres

Lemma 2.42. Let U : E → B and U ′ : E ′ → B′ be two fibrations and let I be an object

in B. Every fibred functor (F,G) : U → U ′ induces a functor FI : EI → E ′GI between the

fibres.

The functor FI is the restriction of F to the fibre — this is well defined, since U ′◦F = G◦U .

If H : E → B and H ′ : E ′ → B′ are two functors, then every commuting diagram

|E|

|H|
��

F // |E ′|

|H′|
��

|B|
G
// |B′|

defines a fibred functor (F,G) : |H| → |H ′| because the preservation of cartesian morphisms

is trivially satisfied. When the preservation of cartesian morphisms is vacuous, we can also

call such functors lifted functors.

The next step is to define fibred natural transformations.

Definition 2.43. Given two parallel fibred functors (F,G), (H,L) : U → U ′, where U : E →

B and U ′ : E ′ → B′, a fibred natural transformation consists of a pair of natural

transformations α : F ⇒ H and β : G ⇒ L such that every component αX is over the

component βUX .

Given two parallel fibred functors (F,G), (H,L) : U → U ′, we write the fibred natural

transformation as (α, β) : (F,G)⇒ (H,L), and the data is represented in the diagram

E

U

��

F
((

H

66�� α E ′

U ′

��
B

G
))

L

55�� β E ′.

The composite of fibred functors is a fibred functor and it is easy to see that the identity

functor is a fibred functor. In this way fibrations and fibred functors form a category.
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Definition 2.44. The category Fib has

Fib objects small fibrations U : E → B.

morphisms fibred functors (F,G) : U → U ′

E ′ F //

U
��

E

U ′

��
B′

G
// B.

Example 2.45. We call fib : Fib→ Cat the functor which forgets the fibrational structure.

In particular it sends a fibration U : E → B to the base category B and a fibred functor

(F,G) : U → U ′ to G.

The functor fib is a large fibration, where the reindexing of U : E → B along G : B′ → B

consists of the fibration G∗(U) obtained via change of base

B′F×U E

G∗(U)
��

U∗(G) // E

U
��

B′
G

// B

and the cartesian lifting of G is (U∗(G), G).

We have now all the ingredients to introduce the notion of fibred adjunction.

Definition 2.46. Given two fibred functors (F,G) : U → U ′ and (H,L) : U ′ → U , we say

that (F,G) is fibred left adjoint of (H,L) if F is left adjoint to H, G is left adjoint to L

and the unit and the counit of the adjunction F a H are over the unit and the counit of

the adjunction G a L.

A particular class of fibred functors is given by fibred functors of the form (F, Id) : U → U ′,

where U : E → B and U ′ : E ′ → B are over the same base B. In this case a fibred functor

from U to U ′ is simply a functor F : E → E ′ such that the following diagram commutes
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and F preserves cartesian morphisms

E F //

U ��

E ′

U ′��
B.

We say that the functor F is fibred above B, or simply fibred if B is clear from the context.

This construction determines the category FibB of fibrations with base category B and

fibred functors above the identity on B. In fact FibB is the fibre above B with respect to

the fibration fib : Fib→ Cat described in Example 2.45. Notice then that every fibration

U : E → B is also a fibred functor

E U //

U ��

B

IdB��
B

and this makes the identity on B the terminal object in FibB.

If we restrict ourselves to the fibred functors in FibB, the notions of fibred natural

transformations and fibred adjunctions simplify. Thus a fibred natural transformation

over B is a natural transformation between fibred functors above B whose components are

vertical. A fibred adjunction above B is an adjunction between fibred functors above B

such that the unit and the counit are vertical.

2.7 Fibrewise structure

In this section we study the structure inside the fibres. In ordinary categories it is possible

to define notions like product or coproduct via, for example, universal properties. In the

case of fibrations and opfibrations we want that every fibre has some distinguished property,

and we want it to behave well with respect to the fibrational structure, e.g. that reindexing

and opreindexing preserve it.

Definition 2.47. Let ♠ be some categorical property or structure (for example some limit

or colimit). We say that a fibration has fibred ♠’s if all the fibres have ♠’s and reindexing
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functors preserve ♠’s.

It is useful to distinguish between two strengths for the structure ♠. Such structure can be

specified. An example is the specified binary product which assigns to every pair of objects

X,Y a specified product cone (X × Y, π1, π2). In this case, for definition 2.47, we ask that

the reindexing functor preserves the specified structure on the nose. On the other side,

the weaker version is given when the structures are simply preserved up to isomorphism.

For example, in the case of products, a product cone is mapped to a product cone. When

we work with split fibrations we will implicitly use the stronger version, while the weaker

version is the natural one in a non-split context.

Sometimes, when it is clear from the context that we are speaking about fibred properties,

we drop the adjective fibred.

Definition 2.48. Let (F,G) : U → U ′ be a fibred functor. We say that (F,G) preserves

fibred ♠’s if for each object I in B the functor FI : EI → E ′GI preserves ♠’s.

A notion which we will often use is the following

Definition 2.49. A fibred CC fibration or fibred cartesian closed fibration is a

fibration with fibred finite products and fibred exponential objects.

Change of base preserves fibred structures.

Lemma 2.50. Let ♠ be as in Definition 2.47. If a fibration U : E → B has fibred ♠’s,

then so has the fibration F ∗(U) obtained via change of base along a functor F : B′ → B.

Moreover the associated morphism of fibrations F ∗(U)→ U preserves ♠’s.

Proof. The fibre of F ∗(U) over I is isomorphic to the fibre of U over FI. If one of them has

♠’s then so does the other one. They are preserved under reindexing, since the reindexing

functors of F ∗(U) are obtained from those of U .

2.8 The truth functor

The truth functor is defined as follows
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Definition 2.51. Let U : E → B be a fibration. If the fibred functor (U, Id) has a fibred

right adjoint (K, Id), then we call K : B → E the truth functor.

The truth functor can be characterised by fibred terminal objects as shown by the following

result (see [Jac99]).

Lemma 2.52. A fibration U : E → B has fibred terminal objects if and only if the fibred

functor (U, Id) : U → Id has a fibred right adjoint (K, Id) : Id→ U

E

U
��

U
))⊥ B

id
��

K

ii

B.

This functor will play an important role in this thesis. It is evident from the commuting

diagram that U ◦K = Id.

Given a fibration U : E → B, when K exists, it sends every object I in the base to the

fibred terminal object in EI . Given a morphism u : I → J in the base category, there is

an isomorphism u∗KJ
∼=−→ KI since fibred terminal objects are preserved by reindexing

functors. We then obtain Ku : KI → KJ as the composite KI
∼=−→ u∗KJ

u§KJ−−−→ KJ .

Lemma 2.53. Let U : E → B be a fibration with truth functor K : B → E . The truth

functor is full and faithful.

Proof. The vertical morphisms in the fibration id are only the identities. It follows that

the components of the counit of the adjunction U a K are identities. Using Lemma 2.1 we

can conclude that K is full and faithful.

The following examples justify the terminology.

Example 2.54. Given a category C with pullbacks, the codomain fibration, see Example

2.18, has a truth functor. It sends an object I in C to the identity morphism idI which

represents the constantly true predicate.
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Example 2.55. The truth functor for the identity fibration Id : B → B is given by the

identity functor again. In fact the fibre over every object X in B consists of in the object

X itself and the identity for X. The object X is trivially terminal and reindexing trivially

preserves terminal objects in the fibres.

Example 2.56. In the subset fibration, see Example 2.20, there is a truth functor and

it sends a set I to I ⊆ I. In general every subobject fibration, see Example 2.21,

sub : Sub(C)→ C has a truth functor which sends an object I in C to the class of monomor-

phisms of the identity monomorphism idI which represent the constantly true predicates.

Example 2.57. In the families of sets fibration, see Example 2.22, the truth functor K

sends a set I to (I, i 7→ 1), where 1 is the set with only one element.

Example 2.58. In the family fibration over C, see Example 2.23, if C has terminal object

1, the truth functor exists and it sends a set I to KI = (I, i 7→ 1).

Example 2.59. In the fibration of relations over sets, see Example 2.24, the truth functor

sends (A,B) to (A,B,A × B ⊆ A × B), e.g. the truth relation where every element is

related with every other element.

Example 2.60. The fibration fib, see example 2.45, has truth functor which sends a

category B to the identity functor IdB.

2.9 Structure between fibres

We now focus on the structure between fibres. We start by defining the weakening functor.

Definition 2.61. Let U : E → B be a fibration where B has cartesian products. For

every projection πI,J : I × J → I, the reindexing functors π∗I,J : EI → EI×J are called the

weakening functors.

Definition 2.62. Let U : E → B be a fibration, I an object in B, and B has cartesian

products. We say that U has simple I-products if

• for every object J in B, every weakening functor π∗J,I : EJ → EJ×I has a right adjoint∏
(J,I);
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• the adjunction satisfies the Beck-Chevalley condition: for every morphism u : K → J

in B and I in B, the canonical natural transformation u∗ ◦
∏

(J,I) →
∏

(K,I) ◦(u× id)∗

is an isomorphism.

EJ u∗ //

π∗J,I
��

EK
π∗K,I

��
EJ×I

∏
(J,I)

WW

(u×id)∗
// EK×I

∏
(K,I)

WW

We say that U has simple products if it has simple I-products for every object I in B.



Chapter 3

Fibrations of relations

Relations play a central role in this thesis. We saw in Example 2.24 that relations over sets

are fibred over Set× Set. In this chapter we describe a general notion of relations arising

via change of base along the product functor. We call the fibrations obtained in this way

fibrations of relations. The fibrational structure lets us define some fundamental relations:

truth relations (every element is related to every other element), equality relations (every

element is related only with itself) and graph relations (the ones arising from the graph of

a function). We prove properties of such relations which justify their names. Finally we

show a link between relations thought of as subobjects and the fibrations of relations. This

is obtained by using the comprehension functor and motivates the name of the fibrations

of relations.

3.1 Relations fibrationally

In Example 2.32 we saw that the fibration rel : Rel→ Set× Set arises via change of base

along the functor − × −. More generally, a binary relation can be thought as a triple

(A,B,R), where R represents a relation between A and B. This point of view underlies

the following definition.

Definition 3.1 (see [Jac99]). Given a fibration U : E → B, where B has binary products,

the fibration rel(U) : Rel(E)→ B×B obtained via change of base along the product functor

−×−
Rel(E)

rel(U)

��

J // E

U
��

B × B −×−
// B

(3.2)

38
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is called fibration of relations obtained from U .

The objects in the category Rel(E) consist of triples (A,B,R) where A and B are objects

in B, while R is an object in E such that UR = A× B, i.e. R is over A× B. Note that

there are two closely related fibrations rel(U) and U involved: objects (A,B,R) in the

total category of rel(U) over (A,B) and objects R in the total category of U over A×B.

For this reason we will sometimes say that an object R is over A and B. We can abstractly

think of the objects of the total category as predicates over the objects in the base category,

and binary relations are predicates over a product. Clearly this can be generalised to n-ary

relations considering n-ary products.

Example 3.3. If we start from a subobject fibration sub : Sub(C)→ C, where C has binary

products and pullbacks, the fibration of relations rel(sub) : Rel(Sub(C))→ C × C consists

of the category Rel(Sub(C)) whose objects are triples (A,B, [m : R � A × B]) and the

functor rel(sub) which sends (A,B, [m]) to (A,B). This represents the intuitive notion of a

binary relation R over A and B as a subset of the product A×B.

Example 3.4. Consider the codomain fibration cod : B→ → B, where B has pullbacks

and binary products. The fibration of relations rel(cod) : Rel(B→)→ B×B consists of the

category Rel(B→) whose objects are (A,B, f : R→ A×B) and the functor rel(cod) sends

(A,B, f) to (A,B).

Example 3.5. Consider the families of sets fibration fam : Fam(Set)→ Set. The fibration

of relations rel(fam) : Rel(Fam(Set))→ Set×Set obtained from it consists of the category

Rel(Fam(Set)) whose objects are triples (A,B, P ), where P : A×B → Set, and the functor

rel(fam) sends (A,B, P ) to (A,B).

The relations in Example 3.3 are proof-irrelevant relations, i.e. they are relations which

only say whether there exists a proof relating two elements. In fact, in the case of Rel,

given a relation (A,B,R ⊆ A×B) the only thing we can say is that a ∈ A and b ∈ B are

related in R or not. Note that the proof-irrelevant notion is strictly related to the fact that

the associated fibration is faithful. In order to see this consider the Example 3.3. Given a

morphism (f, g) : (A,B) → (A′, B′) in the base category B × B, and given two relations
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(A,B, [m : R� A×B]) and (A′, B′, [m′ : R′ � A′ ×B′]) above, respectively, (A,B) and

(A′, B′), there is at most one morphism (f, g, α) : (A,B, [m])→ (A′, B′, [m′]) above (f, g).

In fact morphisms preserve relations by sending related elements to related elements and if

there is no choice on the proofs relating two elements, we have faithfulness.

The relations in the Examples 3.4 and 3.5 are proof-relevant relations, i.e. they admit

possibly more than one proof relating two elements. In fact, consider Example 3.4 with the

category C = Set and a relation (A,B, f : R→ A×B) in Rel(Set→). Two elements a ∈ A

and b ∈ B are related if there is an element r ∈ R such that f(r) = (a, b), and in general

there could be more than one such element. We can write the set of elements relating

a and b as R(a, b) = f−1(a, b) = {r ∈ R | fr = (a, b)}. More generally, if the morphism

f : R→ A×B is not a monomorphism, it can be thought of as a proof-relevant relation.

Similarly, in Example 3.5, consider a relation (A,B, (A×B,P )) in rel(Fam(Set)). Two

elements a ∈ A and b ∈ B are related if there is an element in P (a, b). More generally, the

set P (a, b) is the set of proofs relating a and b. Note that these possibilities of multiple

proofs mean that the previous two fibrations are not faithful.

3.2 The equality functor

For each set A it is possible to define the equality relation over it by EqA = {(a, a) | a ∈

A} ∼= A. Formally EqA = (A,A, {(a, a) | a ∈ A} ⊆ A × A) or, thinking of subsets as

equivalence classes of monomorphisms, EqA = (A,A, [δ : A → A × A]), where δ is the

diagonal morphism 〈idA, idA〉 : A→ A×A. This map, in the case of fibration of relations

over sets (Example 2.24), extends to a functor Eq : Set→ Rel by sending every morphism

f : A→ B to Eq(f) := (f, f, f) : Eq(A)→ Eq(B).

The construction of equality functors is standard in any bifibration with the necessary

infrastructure [Jac99]. We first describe the process for the bifibration in Example 2.24

and then generalise it. As we noted in Example 2.32, the bifibration rel arises via change of

base from the subset bifibration sub. We first consider the truth functor K with respect to

sub, which sends a set A to A ⊆ A. We then opreindex KA along the diagonal morphism

δA : A→ A×A. In this way we obtain ΣδAKA = {(a, a) | a ∈ A} ⊆ A×A which is exactly
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the equality relation. This leads us to the general definition of the equality functor for a

bifibration of relations rel(U) : Rel(E)→ B × B.

Definition 3.6. Let U : E → B be a bifibration with fibred terminal objects. If B has

products, the equality functor Eq : B → Rel(E) for rel(U) is the functor induced by the

map X 7→ ΣδXKX, where δX is the diagonal morphism δX : X → X ×X.

The action of Eq on the morphisms is given by universal property of opcartesian morphisms

as shown by the following diagram:

KX
(δX)§ //

Kf

��

EqX

Eq(f)

��

KX
δX //

f

��

X ×X

f×f

��

over

KY
(δY )§

// EqY Y
δY

// Y × Y

For this definition, it is enough to ask for opreindexing along diagonals δX only (see e.g.

Birkedal and Møgelberg [BM05]). Graph relations (Section 3.3), will require the use of all

the opfibrational structure to opreindex along arbitrary morphisms.

Lemma 3.7. The equality functor Eq : B → Rel(E) is faithful.

Proof. Given two morphisms f, g : X → Y in B with Eq(f) = Eq(g), we have (f, f) =

rel(U)(Eq(f)) = rel(U)(Eq(g)) = (g, g) and then f = g.

In general the truth functor is not full as shown by the following counterexample.

Non-example 3.8. In the identity fibration Id : B → B, the equality functor sends an

object X to X ×X and a morphism f : X → Y to f × f : X ×X → Y × Y . The functor

is not full, since morphisms from X ×X to Y × Y are not always of the form f × f .

3.3 The graph functor

Every morphism f : A→ B in Set defines a graph relation 〈f〉 = {(a, b) | fa = b} ⊆ A×B.

These relations can be characterised by using the fibrational structure. In fact consider
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the fibration rel : Rel→ Set× Set and a morphism (f, id) : (A,B)→ (B,B) in Set× Set.

The reindexing of Eq(B) along (f, id) results in (A,B, (f, id)∗Eq(B)) where (f, id)∗Eq(B) =

{(a, b) | fa = b} which is exactly the graph relation resulting from f . Clearly this operation

can be reproduced in any fibration of relations with an equality functor.

Definition 3.9. Let U : E → B be a bifibration with fibred terminal objects and products

in B. The graph of f : X → Y in B is 〈f〉 = (f, idY )∗(EqY ) in Rel(E).

It is not difficult to show that the graph of the identity morphism is the equality relation, as

one would expect. In fact, since reindexing preserves identities, 〈idX〉 = (idX , idX)∗(EqX) =

Eq X for every object X of B.

Recall that rel is also an opfibration. It is possible to characterise the graph relations in

Rel using the opcartesian structure as well. Let f : A → B be a morphism in Set, and

consider the morphism (id, f) : (A,A)→ (A,B) in Set× Set. The opreindexing of Eq(A)

along (id, f) is (A,B,Σ(id,f)Eq(A)) where Σ(id,f)Eq(A) = {(a, b) | fa = b} which, again, is

the graph relation associated to f . In the general case of bifibrations, the two constructions

are equivalent if the fibration satisfies the Beck-Chevalley condition.

Lemma 3.10 (Lawvere [Law70]). Let U : E → B be a bifibration with fibred terminal

objects and products in B. If U satisfies the Beck-Chevalley condition, then the graph of

f : X → Y can also be described by 〈f〉 = Σ(idX ,f)(EqX).

Proof. For every morphism f : X → Y in B the following diagram is a pullback

X
f //

δX
��

Y

δY

��

X ×X
id×f

��
X × Y

f×id
// Y × Y.

In fact consider an object Z and two morphisms h : Z → Y and t : Z → X × Y such

that δY ◦ h = (f × id) ◦ t. By universal property of the product t = 〈t1, t2〉 and we have

〈f ◦ t1, t2〉 = (f × id)◦ t = δY ◦h = 〈h, h〉. We then have that t2 = h = f ◦ t1 and the unique
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morphism satisfying the pullback condition is t1 : Z → X. In fact if there was another

t′ : Z → X satisfying pullback condition, we would have (id×f)◦δX ◦t′ = 〈t′, f ◦t′〉 = 〈t1, t2〉

and then t′ = t1.

By using the Beck-Chevalley condition for the above pullback we have

(f × id)∗ ◦ ΣδY
∼= Σid×f ◦ ΣδX ◦ f

∗.

Using this equivalence, and that fibred terminal objects are preserved by reindexing, we

have:

(f × id)∗(EqY ) = ((f × id)∗ ◦ ΣδY )(KY )

∼= (Σid×f ◦ ΣδX ◦ f
∗)(KY )

∼= Σid×f (ΣδX (KX))

= Σid×f (EqX)

which proves that the two definitions of the graph relations are equivalent.

Being able to describe graph relations in terms of either reindexing or opreindexing lets us

use both of their universal properties when proving theorems about them.

The graph functor for Rel(U) : Rel(E) → B × B is the functor 〈 〉 : B→ → Rel(E)

mapping f : X → Y in B to 〈f〉 in Rel(E). To see how 〈 〉 acts on morphisms, recall that

if f : X → Y and f ′ : X ′ → Y ′ are objects of B→, then a morphism from f to f ′ is a pair

of morphisms g : X → X ′ and h : Y → Y ′ such that f ′ ◦ g = h ◦ f

X

f
��

g // X ′

f ′

��
Y

h
// Y ′.

The universal property of cartesian morphisms in Rel(U) guarantees the existence of a
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unique morphism 〈g, h〉 : 〈f〉 → 〈f ′〉 over (g, h) such that the following diagram commutes:

〈f〉
(f,id)§ //

∃ !〈g,h〉
��

Eq Y

Eq h

��
〈f ′〉

(f ′,id)§
// Eq Y ′

over

(X,Y )
(f,id) //

(g,h)
��

(Y, Y )

(h,h)
��

(X ′, Y ′)
(f ′,id)

// (Y ′, Y ′).

It is possible to define a similar action on the morphisms also for the equivalent definition

of for the graph relations based on the opcartesian morphisms. Naturally in this case we

use the opcartesian property

Eq X
(id,f)§ //

Eq g

��

〈f〉

∃ !〈g,h〉
��

Eq Y ′
(id,f ′)§

// 〈f ′〉

over

(X,X)
(id,f) //

(g,g)
��

(X,Y )

(g,h)
��

(X ′, X ′)
(id,f ′)

// (X ′, Y ′).

The two actions on the morphisms are equivalent. In fact consider the diagram

Eq X
(id,f)§ //

Eq g

��

〈f〉

∃ !〈g,h〉
��

(f,id)§ // Eq Y

Eq h

��
Eq Y ′

(id,f ′)§

// 〈f ′〉
(f ′,id)§

// Eq Y ′,

where the outer diagram commutes. If 〈g, h〉 is found using the cartesian property of (f ′, id)§,

using again the cartesian property of (f ′, id)§ we derive that 〈g, h〉◦ (id, f)§ = (id, f ′)§ ◦Eq g,

and then 〈g, h〉 is the unique morphism which can be found using the opcartesian property

of (id, f)§ as well. The dual argument holds applied to the opcartesian morphism (id, f)§.
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Lemma 3.11. If the underlying bifibration satisfies the Beck-Chevalley condition, then

〈 〉 : B→ → Rel(E) is full and faithful if and only if Eq : B → Rel(E) is.

Proof. If the graph functor is full and faithful, the equality functor is full and faithful

because it is a particular instantiation of the graph functor.

Let f : X → Y and f ′ : X ′ → Y ′ be two objects in B→. Given a morphism (g, h) : f → f ′

in B→, the morphism 〈g, h〉 : 〈f〉 → 〈f ′〉 is defined via the universal property of 〈f〉 =

(f, id)∗EqB. This ensures that 〈g, h〉 is over (g, h), and thus that the graph functor is

faithful. For fullness, consider α : 〈f〉 → 〈f ′〉 over (α1, α2). The opcartesian definition of

〈f〉 – given by Lemma 3.10 since the Beck-Chevalley condition is satisfied by assumption –

and the cartesian definition of 〈f ′〉 give a map β : EqX → EqY ′ as shown in the following

diagram

EqX
(id,f)§ // 〈f〉 α // 〈f ′〉

(f ′,id)§// EqY ′.

By fullness of Eq, we get a map t : X → Y ′ such that Eq t = β and thus (t, t) = U(Eq t) =

U(β) = (f ′ ◦ α1, α2 ◦ f) from which we can derive that Uα : f → f ′ in B→ since f ′ ◦ α1 =

t = α2 ◦ f . The cartesian morphism over (g, id) can then be used to show that α satisfies

the universal property defining 〈Uα〉 and thus α = 〈Uα〉 proving fullness.

The proof uses the opfibrational characterisation of the graph functor from Lemma 3.10.

The main tool we will use for deriving consequences of parametricity in Chapter 5 is the

Graph Lemma, which relates the graph of the action of a functor on a morphism with the

relational action of the functor on the graph of the morphism. Note that in the statement

of the lemma we restrict to functors which preserve equality. We will see that this is a

central feature in Reynolds’ relational model which corresponds to the Identity Extension

Lemma.

Theorem 3.12 (Graph Lemma). Let U : E → B be a bifibration satisfying the Beck-

Chevalley condition and let F1 : Rel(E) → Rel(E) and F0 : B → B be two functors such

that Rel(U) ◦ F1 = (F0 × F0) ◦ Rel(U) and F1 ◦ Eq = Eq ◦ F0. For every morphism

h : X → Y in B, there are vertical morphisms φh : 〈F0h〉 → F1〈h〉 and ψh : F1〈h〉 → 〈F0h〉

in Rel(E).
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Proof. The definitions of 〈F0h〉 and 〈h〉 give morphisms (idF0 , F0h)§ : Eq (F0X)→ 〈F0h〉

and F1((idX , h)§) : F1(Eq X)→ F1〈h〉. The following diagram commutes:

(F0X,F0X)
(idF0X

,F0h)
// (F0X,F0Y )

(F0X,F0X)
(idF0X

,F0h)
//

(idFoX ,idFoX)

OO

(F0X,F0Y )

(idF0
,idF0

)

OO

Thus, by the universal property of the opcartesian map (idF0X , F0h)§, there is a unique

morphism φh : 〈F0h〉 → F1〈h〉 such that the following diagram commutes:

F1 (EqX)
F1((idX ,h)§) // F1〈h〉

Eq (F0X)

=

OO

(idF0X
,F0h)§ // 〈F0h〉

∃!φh

OO

Moreover, φh is over (idF0X , idF0Y ) and thus vertical. A similar argument using the

universal property of (idF0X , F0h)§ gives the existence of a unique vertical morphism

ψh : F1〈h〉 → 〈F0h〉.

3.4 Comprehension

We have seen how relations can be treated abstractly as objects (A,B,R) in the total

category of a fibration of relations. A more concrete — but less general — approach to

relations is to consider them to be spans.

Definition 3.13. Let B be a category. The category Span(B) of spans in B has as objects

pairs of morphisms with the same domain

X
s2

  

s1

~~
A B.

A morphism between two spans consists of a triple

(f, g, h) : (X, s1, A, s2, B)→ (X ′, s′1, A
′, s′2, B

′)
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where f : X → X ′, g : A→ A′ and h : B → B′ are morphisms in B such that s′1 ◦ f = g ◦ s1

and s′2 ◦ f = h ◦ s2

X
s2

""

s1

}}
f

��

A

g

��

B

h

��

X ′

s′2

!!

s′1

}}
A′ B′

A natural question is whether the abstract, fibrational notion of relation behaves sufficiently

like the concrete, span-based relations so that theorems concerning the latter can be

generalised to the former. The answer is that, yes, this is possible if more structure is

present. This structure is known as comprehension and is used widely in categorical

logic [Jac99]. In particular, it guarantees the existence of the functor rel(P) below – if

furthermore the comprehension is full, then rel(P) has a fibred left adjoint L:

rel(E)

rel(P)
--

>

rel(U)
��

Span(B)

〈π1,π2〉
~~

L
ll

B × B

(3.14)

where 〈π1, π2〉 is the obvious functor 〈π1, π2〉 : Span(B) → B × B sending an object

(X, s1, A, s2, B) 7→ (A,B) and a morphism (f, g, h) 7→ (f, g). This adjunction between

rel(E) and Span(B) allows the transfer of results mentioned above. We note in passing

that much of this structure arises from applying rel : FibB → FibB×B (defined by pullback

along × ) to the diagram

E
P

++

U
��

B→

cod
��
B

up to the isomorphism rel(B→) ∼= Span(B). Here, comprehension again guarantees the

existence of P, and full comprehension implies that P has a left adjoint B→ → E . In the

remainder of this section, we introduce comprehension and full comprehension, and show
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that the above relationship (3.14) between relations and spans holds in this setting.

Definition 3.15 ([Ehr88]). Let U : E → B be a fibration with truth functor K. The

fibration U admits comprehension if K has a right adjoint { } : E → B, called the

comprehension functor.

The following well-known result shows how comprehension allows objects in the total

category of a fibration to be seen as morphisms in the base category. We will use this

technique in Chapter 7 in order to show how objects in the total category of a fibration of

relations can be seen as spans in the base category.

Lemma 3.16 ([Jac93]). Let U : E → B be a fibration with K a { }. Comprehension

induces a functor P : E → B→ defined by P(X) = U(εX) where ε is the unit of the

adjunction K a {}. For f : X → Y in E , P is defined by P(f) = ({f}, U(f)). Furthermore,

the assignment πX := U(εX) is a natural transformation π : { } → U .

Proof. Note that the construction of π and P relies on U ◦K = Id. In fact the naturality

of π follows by applying U to the naturality condition of ε. Using the same argument we

define P as shown in the diagram

X
f // Y

U(K{X})
{f} //

U(εX)

��

_

��

U(K{Y })

U(εY )
��

UX
U(f)

// U(Y ).

We can adapt the above lemma to the setting of relations and spans as follows:

Lemma 3.17. Let U : E → B be a fibration with K a { }. The map sending an object

(A,B,R) of rel(E) to πR : {R} → A×B extends to a functor rel(P) : rel(E)→ Span(B).

Proof. The component R of an object (A,B,R) of rel(E) is by definition an object R of

EA×B. The action of P gives a morphism πR : {R} → A×B which is an object of Span(B).
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The action of rel(P) on morphisms is defined similarly recalling that all the morphisms in

Rel(E) are of the form (f, g, h) with U(h) = f × g and we can isolate the two components

obtaining ({h}, f, g).

We now construct the candidate left adjoint L : Span(B)→ rel(E). In order to do so we

need opfibrational structure.

Lemma 3.18. Let U : E → B be an opfibration with truth functor K. The map which

sends (X, s1, A, s2, B) in Span(B) to (A,B,Σ〈s1,s2〉KX) in Rel(E) extends to a functor

L : Span(B)→ Rel(E).

Proof. Given a morphism (f, g, h) : (X, s1, A, s2, B) → (X ′, s′1, A
′, s′2, B

′) in Span(B),

L(f, g, h) is defined using the universal property of 〈s1, s2〉§KX in the following diagram

Σ〈s1,s2〉KX
L(f,g,h) // Σ〈s′1,s′2〉KX

′

KX

〈s1,s2〉§KX

OO

Kf
// KX ′

〈s′1,s′2〉
§
KX′

OO

over the diagram

A×B g×h // A′ ×B′

X

〈s1,s2〉

OO

f
// X ′.

〈s′1,s′2〉

OO

in B, which commutes since (f, g, h) is a morphism in Span(B).

We need the following result in order to prove that L and rel(P) are adjoint functors.

Lemma 3.19. Let U : E → B be a fibration with K a { }. For every object A in B, the

morphism πKA is an isomorphism πKA : {KA} ∼= A.

Proof. Since K is full and faithful, the unit η of the adjunction K a { } is a natural

isomorphism. Using the triangle identity εKA ◦ K(ηA) = id we have εKA = K(ηA)−1.

Finally πKA = U(εKA) : {KA} ∼= A.
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In order to show that L is actually left adjoint to rel(P), a little extra structure is required:

Definition 3.20 ([Jac93]). We say that a fibration U : E → B admits full comprehension

if U admits comprehension, and the functor P : E → B→ induced by { } from Lemma 3.16

is full and faithful.

Note that, just like [Jac93], we require P to be both full and faithful in order for U to

admit full comprehension.

Lemma 3.21. Let U : E → B be a faithful bifibration with truth functor K and full

comprehension. Then L a rel(P).

Proof. We describe a natural isomorphism

Homrel(E)(L(X, s1, A, s2, B), (A′, B′, R′)) ∼=

HomSpan(B)((X, s1, A, s2, B), rel(P)(A′, B′, R′)).

Given (f, g, α) : (A,B,Σ〈s1,s2〉KX)→ (A′, B′, R′) in rel(E), consider the composition α ◦

〈s1, s2〉§ : KX → R′ in E . By applying P, we obtain the commuting diagram

{KX}
{〈s1,s2〉§} //

πKX

��

{Σ〈s1,s2〉KX}
{α} //

πΣ〈s1,s2〉
KX

��

{R′}

πR′

��
X

〈s1,s2〉
// A×B

f×g
// A′ ×B′.

and since πKX is an isomorphism by Lemma 3.19, we can send the morphism (f, g, α)

to ({α ◦ 〈s1, s2〉§} ◦ π−1
KX , f, g) which is a morphism from 〈s1, s2〉 : X → A × B to πR′ :

{R′} → A′ ×B′ in Span(B).

In the other direction, consider (f, f0, f1) : 〈s1, s2〉 → πR′ in Span(B). Using the universal
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property of 〈s1, s2〉§ we obtain

KX
Kf //

〈s1,s2〉§ %%

K{R′}
εR′ // R′

Σ〈s1,s2〉KX
f#

::

over the diagram

X
f //

〈s1,s2〉 ""

{R′}
πR′ // A′ ×B′

A×B
f0×f1

99

in B, which commutes since (f, f0, f1) is a morphism in Span(B). We map (f, f0, f1) to

(f0, f1, f
#).

Direct calculation using faithfulness of the fibration and fullness of P proves that these

maps are inverse of the one another, as well as naturality.



Chapter 4

System F and categorical models

In this chapter we introduce System F and the notion of the λ2-fibration and we show how

a λ2-fibration constitutes a model of System F.

System F, also known as the (Girard–Reynolds) polymorphic lambda calculus or the

second-order lambda calculus, is an extension of the simply typed lambda calculus which

has quantification over types. It was introduced independently by Girard [Gir71] as a

logical system and by Reynolds [Rey74] in computer science. A good reference available

online is given by Girard, Taylor and Lafont [GTL89].

We start by introducing the simply typed lambda calculus and then we extend it to System

F. At the same time we present categorical interpretations for the two systems. We conclude

the chapter by recalling the notion of the internal language of a model.

We recall some definitions and properties of type theory in order to fix the notation, but in

general we assume that the reader is familiar with the basic notions of type theory like

terms, types, contexts, free variables, type substitution, α, β and η-equivalences and so on.

The reader less familiar with type theory can find a good introduction to the subject in

Pierce [Pie02].

4.1 Type theory

In this section we introduce the notion of type theory with the terminology and the notation

we use. Type theory is a class of formal systems. At the basis of each of these formal

systems there are different rules. The choice of different rules results in systems with very

different features.

52
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In a type system there are terms and types. We use (possibly indexed) lower case latin

letters a, t, x, t1, xn . . . for terms, where the x and indexed x’s are for term variables, and

we use (possibly indexed) capital latin letters A, T,A1, Tn, . . . for types. We write a : A for

a has type A. Often types are thought of as propositions. From this point of view, a term

a : A is a proof of A.

A context consists of a collection of given data (usually terms or type variables). We use

Greek capital letters Γ,∆, . . . for contexts.

In a type system, in order to state what is well defined, we have judgments. In this work

we use four different judgments:

• context judgments: Γ ctx meaning “the context Γ is well formed”;

• type judgments: Γ ` A type meaning “the type A is well formed in the context Γ”;

• term judgments: Γ ` a : A meaning “the term a has type A in the context Γ”;

• equality judgments: Γ ` a ≡ a′ : A meaning “the terms a and a′ of type A are

equal in the context Γ”. We call these equalities judgmental equalities in order

to differentiate them from a different notion of equality we will introduce later.

Judgments are specified by providing inference rules. A typical inference rule has the

form
I1 . . . In

I

It says that we may derive the conclusion I, provided that we have already derived the

hypothesis I1, . . . , In. There may be extra side conditions that need to be checked before

the rule is applicable. A derivation of a judgment is a tree constructed from such inference

rules with the judgment at the root of the tree. It has shape of the form

· · ·
I11

C1 · · ·
· · ·
In1

C2

I1
B1 · · ·

· · ·
I1j

C3 · · ·
· · ·
Iij

C4

Ij
B2

I A
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4.2 The simply typed lambda calculus

Traditionally the simply typed lambda calculus, denoted by λ→, is presented as a type

theory with only one type constructor → for arrow types. We extend the system with the

constructor × for products. This is justified by the fact that we model the calculus in

cartesian closed categories which naturally come with products. For the same reason we

could also add the unit type. However, in this work, we will only need the product types

and then, for simplicity, we will consider only them.

A context Γ in the simply typed lambda calculus consists of a list x1 : T1, ..., xm : Tm of

distinct term variables xi with type Ti. Term constants ∆ ` c : T and base types can be

added if desired. We have term variables for which there is the following rule:

xi : Ti ∈ Γ
Γ ` xi : Ti

This says that if xi : Ti is a term variable in context Γ, then we can form the term xi : Ti

in context Γ.

Given two types T1 and T2, we can form the type T1 × T2 which consists of the product of

T1 and T2. We can introduce terms of product type using the following rule

∆ ` t1 : T1 ∆ ` t2 : T2

∆ ` (t1, t2) : T1 × T2.

This says that given two terms t1 : T1 and t2 : T2 we can form the pair (t1, t2). Dually we

have projections
∆ ` t : T1 × T2

∆ ` π1 t : T1

∆ ` t : T1 × T2

∆ ` π2 t : T2

There are additional rules describing the behaviour of terms of product type:

• First projection of a pair: if we project out the first component of a pair (t1, t2)

we obtain t1:
∆ ` (t1, t2) : T1 × T2

∆ ` π1 (t1, t2) ≡ t1 : T1



4.2. The simply typed lambda calculus 55

• Second projection of a pair: if we project out the second component of a pair

(t1, t2) we obtain t2:
∆ ` (t1, t2) : T1 × T2

∆ ` π2 (t1, t2) ≡ t2 : T2

• Surjective pairing: a term t : T1 × T2 is equal to the pairing of its projections:

∆ ` t : T1 × T2

∆ ` t ≡ (π1 t, π2 t) : T1 × T2

• Congruence of pairing: if we pair equal terms the pairs are equal

∆ ` t1 ≡ s1 : T1 ∆ ` t2 ≡ s2 : T2

∆ ` (t1, t2) ≡ (s1, s2) : T1 × T2

• Congruence of projections: the projections of equal pairs give equal terms

∆ ` t ≡ s : T1 × T2

∆ ` π1 t ≡ π1 s : T1

∆ ` t ≡ s : T1 × T2

∆ ` π2 t ≡ π2 s : T2

Next we focus on arrow types. Given two types T1 and T2, we can form the type T1 → T2

which consists of the functions from T1 to T2. The rule used to introduce terms for arrow

types is called λ-abstraction:

∆, x : T1 ` t : T2

∆ ` λx.t : T1 → T2.

This says that given t : T2 where t might depend on x : T1, we can abstract over x (or bind

x in t), obtaining the function λx.t. The λ notation explicitly emphasises that the function

depends on x : T1.

We call term application, or λ-application the rule used to eliminate terms of arrow

types given by the rule
∆ ` f : T1 → T2 ∆ ` t : T1

∆ ` f t : T2
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This says that if t2 is a function from T1 to T2 and t1 is a term of type T1, the application

of t2 to t1 gives, as a result, a term of type T2.

Let Γ, x : A ` t : T and Γ ` a : A be two term judgments. We denote by t[x 7→ a] the

term obtained by substituting a in every free occurrence of x (see [Pie02]). Substitution

can be iterated: if we have the term judgment Γ, x : A, y : B ` t : T , the term judgment

Γ, x : A ` b : B and the term judgment Γ ` a : A, we can derive Γ ` t[y 7→ b][x 7→ a] : T .

We write σ = ([y 7→ b], [x 7→ a]) and we denote the substitution as σ : (Γ, x : A, y : B) 7→ Γ.

Moreover we use the notation Γ ` t[σ] : T for the result of the substitution.

Finally, in the simply typed lambda calculus there are additional rules describing the

behaviour of terms of arrow type:

• α-equivalence: terms are the same up to renaming of bound variables

∆ ` λx. t ≡ λy. t[x 7→ y] : T1 → T2

• β-equivalence: term application of a λ-term is given by substituting the argument

into the body of the term:

∆ ` (λx. t) s ≡ t[x 7→ s] : T2

• η-equivalence: abstracting and immediately applying has no effect:

x /∈ FV (t)

∆ ` t ≡ λx. t x : T1 → T2

where FV (t) is the set of free variables in t.

• Congruence of term application: if we apply two equal functions t1 and t2 to

two equal terms s1 and s2, the results are the same

∆ ` t1 ≡ t2 : T1 → T2 ∆ ` s1 ≡ s2 : T1

∆ ` t1 s1 ≡ t2 s2 : T2



4.3. Interpreting the simply typed lambda calculus in a CCC 57

• Congruence of λ-abstraction: two λ-terms are equal if their bodies are equal:

∆, x : T1 ` t1 ≡ t2 : T2

∆ ` λx. t1 ≡ λx. t2 : T1 → T2

This rule is also called the ξ-rule.

Moreover there are three more rules which assures that the judgmental equality ≡ is an

equivalence relation

• Reflexivity:

∆ ` t ≡ t : T

• Symmetry:
∆ ` s ≡ t : T
∆ ` t ≡ s : T

• Transitivity:
∆ ` t ≡ s : T ∆ ` s ≡ u : T

∆ ` t ≡ u : T

4.3 Interpreting the simply typed lambda calculus in a CCC

We now give the details of the interpretation of the simply typed lambda calculus in a

cartesian closed category. In order to settle the notation, recall that a category C with

finite products is cartesian closed if the functor −×A : C → C has a right adjoint A⇒

for each object A, i.e., for each A, B, there is an object A⇒ B and an isomorphism

θ : HomC(∆×A,B) ∼= HomC(∆, A⇒ B)

natural in ∆ and B. We denote the evaluation map of the exponential objects by

evA,B : (A⇒ B)×A→ B.

The simply typed λ-calculus is interpreted in a cartesian closed category by interpreting

each type A as an object [[A]], contexts ∆ = x1 : A1, . . . , xn : An as [[∆]] = [[A1]]× . . .× [[An]],

and each term x1 : A1, . . . , xn : An ` t : B as a morphism [[x1 : A1, . . . , xn : An ` t : B]] :
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[[A1]]× . . .× [[An]]→ [[B]], which, when x1 : A1, . . . , xn : An and B are clear from the context

or they are not relevant, we denote just by [[t]] for brevity.

We interpret types inductively by mapping every base type A to an object [[A]] in the

category, and then, using the cartesian closed structure, we interpret [[A1×A2]] = [[A1]]×[[A2]]

and [[A1 → A2]] = [[A1]]⇒ [[A2]].

The term interpretation is given inductively as follows:

[[x1 : A1, . . . , xn : An ` xi : Ai]] = πi : A1 × . . .×An → Ai

[[∆ ` (t1, t2) : A1 ×A2]] = 〈[[∆ ` t1 : A1]], [[∆ ` t2 : A2]]〉

[[∆ ` π1 t : A1]] = π1 ◦ [[∆ ` t : A1 ×A2]]

[[∆ ` π2 t : A2]] = π2 ◦ [[∆ ` t : A1 ×A2]]

[[∆ ` λx . t : A→ B]] = θ([[∆, x : A ` t : B]])

[[∆ ` f t : B]] = evA,B ◦ 〈[[∆ ` f : A→ B]], [[∆ ` t : A]]〉

Each substitution σ : ∆ 7→ Γ gives rise to a morphism [[σ]] : [[Γ]] → [[∆]], and one can

prove that [[Γ ` t[σ]]] = [[∆ ` t]] ◦ [[σ]]. In particular [x 7→ a] : (Γ, x : A) 7→ Γ is given by

〈id, [[a]]〉 : Γ→ Γ×A. It is easily checked that [[(λx . t) a]] = [[t[x 7→ a]]].

This model is sound:

Theorem 4.1. If ∆ ` t ≡ s : A in simply typed lambda calculus, then [[t]] = [[s]] : [[∆]]→ [[A]]

in the cartesian closed category.

We will often implicitly use the following lemma:

Lemma 4.2. We have the following:

1. θ−1([[` λx : A . x]]) = id[[A]].

2. For all ∆ ` f : B → C and ∆ ` g : A→ B, we have θ−1([[` λx . f(g(x))]]) = θ−1([[∆ `

f ]]) ◦ 〈π1, θ
−1([[∆ ` g]])〉.

3. In particular, if ∆ is empty then θ−1([[` λx . f(g(x))]]) = θ−1([[` f ]]) ◦ θ−1([[` g]]) up

to the isomorphism 1×B ∼= B.
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Proof. 1. θ−1([[` λx : A . x]]) = θ−1(θ([[x : A ` x]])) = id[[A]].

2. For simplicity we write [[f ]] and [[g]] instead of, respectively, [[∆ ` f ]] and [[∆ ` g]]. We

have

θ−1([[∆ ` λx . f(g(x)) : A→ C]]) = θ−1(θ([[∆, x : A ` f(g(x)) : C]]))

= ev ◦ 〈[[f ]] ◦ π1, ev ◦ 〈[[g]] ◦ π1, π2〉〉

= ev ◦ 〈[[f ]] ◦ π1, ev ◦ ([[g]]× id)〉

= ev ◦ 〈[[f ]] ◦ π1, θ
−1([[g]])〉

= ev ◦ ([[f ]]× id) ◦ 〈π1, θ
−1([[g]])〉

= θ−1([[f ]]) ◦ 〈π1, θ
−1([[g]])〉

3. One part of the isomorphism 1 × B ∼= B is given by 〈!B, id〉, where !B : B → 1

is the unique morphism from B into 1. By uniqueness of this morphism, we have

!1×A = π1 = !B ◦θ−1([[g]]), so that θ−1([[` λx . f(g(x))]]) = θ−1([[` f ]])◦〈!B, id〉◦θ−1([[`

g]]) ∼= θ−1([[` f ]]) ◦ θ−1([[` g]]) simply by instantiating (2).

4.4 System F

System F extends the simply typed lambda calculus by permitting abstraction not only

over terms, but also over types. For this reason there are two different classes of variables:

• type variables of the form X1, ..., Xn,

• term variables of the form x1 : T1, ..., xm : Tm.

The two different classes of variables form two different contexts:

• the type context consists of a list of type variables X1, ..., Xn, and we typically

denote it by Γ,

• the term context consists of a list of term variables x1 : T1, ..., xm : Tm, which we

typically denote by ∆.
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Type judgments

Xi ∈ Γ
Γ ` Xi type

Γ ` T1 type Γ ` T2 type

Γ ` T1 → T2 type

Γ ` T1 type Γ ` T2 type

Γ ` T1 × T2 type

Term judgments

xi : Ti ∈ ∆
Γ; ∆ ` xi : Ti

Γ; ∆ ` t : T1 × T2

Γ; ∆ ` π1 t : T1

Γ; ∆ ` t : T1 × T2

Γ; ∆ ` π2 t : T2

Γ; ∆ ` t1 : T1 ∆ ` t2 : T2

Γ; ∆ ` (t1, t2) : T1 × T2

Γ; ∆, x : T1 ` t : T2

Γ; ∆ ` λx.t : T1 → T2

Γ; ∆ ` f : T1 → T2 Γ; ∆ ` t : T1

Γ; ∆ ` f t : T2

Figure 4.1: The simply typed lambda calculus with type variables

A context in system F consists of both a type context Γ and a term context ∆ such

that every type Ti in ∆ is well formed according to Γ, i.e. there are type judgments

Γ ` Ti type for every Ti in ∆ = x1 : T1, ..., xm : Tm. When we write Γ ` ∆ it means that

the previous condition is satisfied for every type Ti in ∆ and we can form the context

Γ; ∆ = X1, ..., Xn;x1 : T1, ..., xm : Tm.

Traditionally there are three classes of types: type variables, arrow types and forall types,

but, like in the case of simply typed lambda calculus, we also add product types. We

consider α-convertible types equivalent. If desired, base types or other type constants

Γ ` C type can also be added to the system. It is possible to add term constants Γ; ∆ ` c : T

as well. We still have term substitution as in the simply typed lambda calculus, and there

is also substitution for types.

System F is an extension of the simply typed lambda calculus. We recall the rules for

the simply typed lambda calculus with type variables in Figure 4.1, where we omit the

congruence relations and the rules making ≡ an equivalence relation. Compared to section

4.2 the only difference is that we also have a context of type variables.
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The crucial type judgment for system F is the one which forms forall types:

Γ, X ` T type

Γ ` ∀X.T type

This says that if a type T is formed assuming a type variable X, it is possible to abstract

over X obtaining the type ∀X.T . Note that, once X is bound in ∀X.T , the type variable X

does not appear anymore in the type context. This structure corresponds to the structure

of second-order logic, where one can quantify over properties (see Girard [Gir71]).

The introduction rule is given by Λ-abstraction:

Γ, X; ∆ ` t : T

Γ; ∆ ` ΛX.t : ∀X.T (X /∈ FTV(∆))

where X is not a free type variable in ∆. This rule permits to abstract over types.

The elimination rule is type application:

Γ; ∆ ` t : ∀X.T Γ ` A Type

Γ; ∆ ` t A : T [X 7→ A]

which says that applying a type A to a term t of type ∀X.T , we obtain a term t A of type

T [X 7→ A], where T [X 7→ A] denotes the capture-free substitution of the type A for the

free occurrences of X in the type T .

The judgmental equalities for terms of forall type are:

• α-equivalence:

Γ; ∆ ` ΛX. t ≡ ΛY. t[X 7→ Y ] : ∀X.T

• β-equivalence:

Γ; ∆ ` (ΛX. t)A ≡ t : T [X 7→ A]

• η-equivalence:
X /∈ FTV (t)

Γ; ∆ ` t ≡ ΛX. tX : ∀X.T
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• Congruence of type application:

Γ; ∆,` t1 ≡ t2 : ∀X.T
Γ; ∆ ` t1A ≡ t2A : T [X 7→ A]

• Congruence of Λ-abstraction (or ξ-rule):

Γ, X; ∆ ` t1 ≡ t2 : T

Γ; ∆ ` ΛX. t1 ≡ ΛX. t2 : ∀X.T

Extensionality Because of the η-equivalence and the congruence of λ and Λ abstraction,

it is easy to derive extensionality for both functions and type abstractions:

Proposition 4.3.

1. Γ; ∆ ` t ≡ s : T1 → T2 iff Γ; ∆, x : T1 ` t x ≡ s x : T2.

2. Γ; ∆ ` t ≡ s : ∀X.T iff Γ, X; ∆ ` tX ≡ sX : T .

Proof. The left-to-right directions are just the congruence rules. For the other direction,

we have

t
η
≡ λx.t x

ξ
≡ λx.s x

η
≡ s

and similarly for type abstractions.

4.5 Categorical models of System F – λ2-fibrations

λ2-fibrations are standard categorical models of System F (see [See87,Jac99]). The point of

Chapter 5 is to construct a λ2-fibration based on bifibrations for modelling parametricity.

We start with some definitions which will lead to the notion of λ2-fibration as given

in [Jac99].

Definition 4.4. Consider a fibration p : E → B and an object T in E . We say that T is

a generic object if for every object X in E there exists a morphism u : pX → pT and a

cartesian morphism f : X → T over u.
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Equivalently T is a generic object if for every object X in E there exists a unique morphism

u : pX → pT and a vertical isomorphism f : u∗(T )→ X.

In the case of split fibrations, the definition simplifies to the notion of split generic object.

Definition 4.5. A split fibration p : E → B has a split generic object if there is an

object Ω in B together with a collection of isomorphisms ξI : B(I,Ω)
∼=−→ |EI | natural in I

with respect to reindexing; that is, for v : J → I, the following diagram commutes

B(I,Ω)
ξI //

◦v
��

|EI |

v∗

��
B(J,Ω)

ξJ
// |EI |.

Definitions 4.4 and 4.5 are linked by the following lemma (see [Jac99]).

Lemma 4.6. A split fibration p : E → B has a split generic object if and only if there is

an object T in E with the property that for every object X in E , there exists a unique

morphism u : pX → pT such that u∗T = X.

Proof. If there is a split generic object (Ω, ξ), take T = ξΩ(idΩ). Then for every X ∈ EI we

have that ξ−1
I (X) : I → Ω satisfies

ξ−1
I (X)∗(T ) = ξ−1

I (X)∗(ξΩ(idΩ)) = ξI(idΩ ◦ ξ−1
I (X)) = X,

where the second equality holds because of the naturality of ξ. It is easy to see that ξ−1
I (X)

is the unique morphism u satisfying this property: we have X = u∗T = ξI(u) where we use

again naturality of ξ for the second equality. Since ξI is an isomorphism, we can conclude

that ξI(ξ
−1
I (X)) = X = ξI(u), hence ξ−1

I (X) = u.

In the reverse direction assume T in E as in the statement of the lemma, and write Ω = pT

in B. For every I in B and u : I → Ω let ξI(u) = u∗T . This is clearly a bijection. Moreover

ξI(u ◦ v) = (u ◦ v)∗T = v∗(u∗T ) = v∗(ξI(T )), for every v : J → I.

Definition 4.7. We say that a fibration p : E → B is
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• a λ → -fibration if it is a fibred CC fibration with a generic object T (we write

Ω = pT ) and B has finite products;

• a λ2-fibration if it is a λ→ -fibration with simple Ω-products, where Ω = pT .

A λ→ -fibration is split when the fibration itself is split, the cartesian closed structure in the

fibres is preserved on the nose by reindexing and the generic object is split. A λ2-fibration

is split, if the underlying λ→ -fibration is split and moreover the Beck-Chevalley condition

for simple products holds in the form that the canonical isomorphism is the identity.

We can now interpret simply typed lambda calculus with type variables in a λ→ -fibration

p : E → B which we can assume to be split (see [See87]). We use the objects in the base

category of the λ→ -fibration to model type contexts. The cartesian closed structure in

the fibres allows us to interpret arrow types and term contexts exactly as for the case of

simply typed lambda calculus with cartesian closed categories.

We start from a type judgment Γ ` T type. We interpret [[Γ]] as an object in B and [[T ]]

is an object in E[[Γ]], i.e. an object in E which lives in the fibre over [[Γ]]. Every type

context Γ is of the form Γ = X1, . . . , Xm and we interpret it as [[Γ]] = Ω× . . .× Ω︸ ︷︷ ︸
m-times

. The

interpretation of types is done by induction on type judgments. A base type ` A type

is interpreted as an object [[A]] in E living over the terminal object 1 of B (the terminal

object exists since it is the empty product and in B there are finite products). A type

variable X ` X type is interpreted as ξΩ(idΩ). When we have a judgment for type variables

like X1, . . . , Xn ` Xi type, with i ∈ {1, . . . , n}, the interpretation is given by π∗i ξΩ(idΩ),

where πi : Ω× . . .× Ω︸ ︷︷ ︸
n-times

→ Ω in B is the projection on the i-th component. This operation

corresponds to the weakening of the context. Note that, by the definition of the generic

object, we have π∗i ξΩ(idΩ) 6= π∗j ξΩ(idΩ) if i 6= j.

The interpretation of product types Γ ` U × V type and arrow types Γ ` U → V type is

given by the cartesian closed structure in the fibres. In fact both [[U ]] and [[V ]] live in the

fibre over [[Γ]], and we can define [[U × V ]] := [[U ]]× [[V ]] and [[U → V ]] := [[U ]]⇒ [[V ]] in the

fibre over [[Γ]].

If we want to model System F we need to add another feature: the interpretation of forall
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types. λ2-fibrations allow us to interpret forall types by using simple Ω-products, where Ω

is the generic object. Given Γ ` ∀X.T , we define [[∀X.T ]] := ∀[[Γ]]([[T ]]), where ∀[[Γ]] is the

right adjoint to the reindexing functor π∗1 : E[[Γ]] → E[[Γ]]×Ω which exists because there are

simple Ω-products. When [[Γ]] is clear from the context, we write only ∀. Note that this is

well defined since [[T ]] lives in the fibre over [[Γ, X]], which, by definition, is [[Γ]]× Ω.

The next step is the interpretation of term contexts and terms. Given a term context

∆ = x1 : T1, . . . , xn : Tn, its interpretation is given by the product [[∆]] = [[T1]]× . . .× [[Tn]]. A

term judgment Γ; ∆ ` t : T is interpreted as a vertical morphism [[t]] : [[∆]]→ [[T ]]. Since the

morphism is vertical it lives in the fibre over [[Γ]]. In order to show how to interpret terms,

we first need to model type substitution, which is fundamental in the interpretation of terms

of forall types. Each substitution σ : Γ 7→ Γ′ gives rise to a morphisms [[σ]] : [[Γ′]]→ [[Γ]]. In

particular consider the substitution σ = [X 7→ A] : Γ, X 7→ Γ, we saw that by iterating we

can cover also substitutions of the form [X1 7→ A1, . . . , Xn 7→ An]. It is possible to prove

that [[σ]] : [[Γ]]→ [[Γ]]×Ω in B is given by [[σ]] := 〈id, ξ−1
Γ ([[A]])〉. The following lemma shows

that substitution is given by reindexing:

Lemma 4.8. Let Γ, X ` T type and Γ ` A type be two type judgments. The interpretation

of Γ ` T [X 7→ A] type is given by [[T [X 7→ A]]] = 〈id, ξ−1
Γ ([[A]])〉∗([[T ]]).

Proof. The proof is done by induction on type judgments.

Type variables. Let Γ, X ` X type be a type judgment for a type variable X. Recall

that X[X 7→ A] = A and X[Y 7→ A] = X if Y 6= X. For the first case we simplify and

consider the judgment X ` X type, the general case follows by weakening. We have that

ξ−1
Ω ([[A]])∗([[X]]) = ξ−1

Ω ([[A]])∗(ξΩ(idΩ))

= [[A]]

where the second equality uses the same argument as in the proof of Lemma 4.6. In the

other case note that π[[X]] ◦ 〈id, ξ−1
Γ ([[A]])〉 : Γ → Ω is equal to π[[X]], where, by abuse of

notation, we denote by π[[X]] the morphisms projecting the component related to X both
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with domain Γ and Γ× Ω, since it is clear from the context to which one we refer. Since

the fibration is split, we have

〈id, ξ−1
Γ ([[A]])〉∗ ◦ π∗[[X]] = (π[[X]] ◦ 〈id, ξ−1

Γ ([[A]])〉)∗

= π∗[[X]]

and, by definition of weakening, we conclude π∗[[X]](ξΩ(idΩ)) = [[X]].

Product types. Let Γ, X ` U × V type and Γ ` A type be two type judgments. Using

the induction hypothesis and the fact that reindexing preserves fibred products we have

the following derivation:

[[(U × V )[X 7→ A]]] = [[U [X 7→ A]× V [X 7→ A]]]

= [[U [X 7→ A]]]× [[V [X 7→ A]]]

= 〈id, ξ−1
Γ ([[A]])〉∗[[U ]]× 〈id, ξ−1

Γ ([[A]])〉∗[[V ]]

= 〈id, ξ−1
Γ ([[A]])〉∗([[U × V ]])

Arrow types. Let Γ, X ` U → V type and Γ ` A type be two type judgments. Using

inductive hypothesis and the fact that reindexing preserves fibred exponentials we have

the following derivation:

[[(U → V )[X 7→ A]]] = [[U [X 7→ A]→ V [X 7→ A]]]

= [[U [X 7→ A]]]⇒ [[V [X 7→ A]]]

= 〈id, ξ−1
Γ ([[A]])〉∗[[U ]]⇒ 〈id, ξ−1

Γ ([[A]])〉∗[[V ]]

= 〈id, ξ−1
Γ ([[A]])〉∗([[U → V ]])

Forall types. Let Γ, X ` ∀Y.T type and Γ ` A type be two type judgments. If we have

(∀Y.T )[Y 7→ A] = ∀Y.T , this formula come from some weakening and then the thesis follows

similarly to the case of type variables X[Y 7→ A] = X. Otherwise consider the following

derivation in which we use Beck-Chevalley condition to swap ∀ with reindexing and the
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induction hypothesis:

[[(∀Y.T )[Z 7→ A]]] = [[∀Y.(T [Z 7→ A])]]

= ∀[[Γ]]((〈id, ξ−1
Γ ([[A]])〉 × idΩ)∗[[T ]])

= 〈id, ξ−1
Γ ([[A]])〉∗(∀[[Γ]]×Ω([[T ]])).

Note that the second equality holds because [[T ]] lives over the object [[Γ]]× Ω× Ω, but we

have that 〈id, ξ−1(A)〉∗ : E[[Γ]]×Ω → E[[Γ]]. We are then in a weaken case and it holds that

(〈id, ξ−1(A)〉 ◦ π)∗ = (π ◦ (〈id, ξ−1(A)〉 × id))∗.

We now describe how to interpret terms, by induction on the term. Let |Γ| = n and

∆ = x1 : T1, . . . , xm : Tm.

Term variables. The interpretation of a term variable Γ,∆ ` xi : Ti is given by the

projection: [[xi]] := πi : [[T1]]× . . . [[Tm]]→ [[Ti]].

Product pairing. Consider Γ; ∆ ` (u, v) : U × V . By the induction hypothesis, we have

that [[u]] : [[∆]]→ [[U ]] and [[v]] : [[∆]]→ [[V ]]. We define [[(u, v)]] : [[∆]]→ [[U × V ]] as 〈[[u]], [[v]]〉.

Product projections. Consider Γ; ∆ ` πi t : Ui, where i ∈ {1, 2}. By the induction

hypothesis we have that [[t]] : [[∆]]→ [[U1]]× [[U2]], and we define [[πi t]] : [[∆]]→ [[Ui]] as πi ◦ [[t]]

where πi is the projection morphism in the category.

Function terms. Consider Γ; ∆ ` λx.v : U → V . By the induction hypothesis, we have

that [[v]] : [[∆]]× [[U ]]→ [[V ]]. We define [[λx.v]] : [[∆]]→ [[U → V ]] by θ([[v]]).

Term application. Consider Γ; ∆ ` t : U → V and Γ; ∆ ` u : U , we want to interpret

Γ; ∆ ` tu : V . Its interpretation is given by postcomposing with ev (the evaluation map for

exponential objects). In detail we define [[tu]] : = ev ◦ 〈[[t]], [[u]]〉, where [[t]] and [[u]] are given

by the induction hypothesis.
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Type abstraction. Given Γ, X; ∆ ` t : T we want to interpret Γ; ∆ ` ΛX.t : ∀X.T . We

denote by ν : Hom(π∗[[Γ]],Ω[[∆]], [[T ]]) ∼= Hom([[∆]], [[∀X.T ]]) the isomorphism given by the

adjunction. Using the induction hypothesis we have [[t]] : [[∆]] → [[T ]] and we consider

[[t]] ◦ π§[[Γ]] : π
∗
[[Γ]],Ω[[∆]]→ [[T ]]. We then define [[ΛX.t]] := ν([[t]] ◦ π§[[Γ]]).

Type application. The last term judgment we want to interpret is Γ; ∆ ` tA : T [X 7→ A]

assuming Γ; ∆ ` t : ∀X.T and Γ ` A type. We use the universal property of cartesian

morphisms in order to interpret tA. First, using the universal property of π§1, we find the

following morphism

[[∆]]

id

##
α

��
over

[[Γ]]

id

##
〈id,ξ[[Γ]]([[A]])〉

��
π∗1[[∆]]

π§1

// [[∆]] [[Γ, X]] π1

// [[Γ]].

Next, using the universal property of 〈id, ξ−1
Γ ([[A]])〉§, we can find [[tA]] as follows

[[∆]]
ν−1([[t]])◦α

((

[[tA]]
��

over

[[Γ]]
〈id,ξΓ([[A]])〉

''
id
��

[[T [X 7→ A]]]
〈id,ξ−1

Γ ([[A]])〉§
// [[T ]] [[Γ]]

〈id,ξ([[A]])〉
// [[Γ, X]].

This model is sound:

Theorem 4.9. If ∆ ` t ≡ s : A in System F, then [[t]] = [[s]] : [[∆]]→ [[A]].

As a consequence of soundness we have that, given two term judgments Γ; ∆ ` f : A→ B

and Γ; ∆ ` g : A → B, if [[Γ; ∆, x : A ` fx]] = [[Γ; ∆, x : A ` gx]], then [[Γ; ∆ ` f ]] =

[[Γ; ∆ ` g]]. Similarly, given two term judgments Γ; ∆ ` t : ∀X.A and Γ; ∆ ` s : ∀X.A, if

[[Γ, X; ∆ ` tX]] = [[Γ, X; ∆ ` sX]] then [[Γ; ∆ ` t]] = [[Γ; ∆ ` s]].

4.6 Internal language

The internal language allows us to use type theory to reason about categories. In Chapter

5 the use of internal language will allow us to prove properties of the categorical model. We
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reach the internal language of a λ2-fibration in two steps: we first focus on the cartesian

closed structure in the fibres and present the internal language given by the simply typed

lambda calculus, and then we extend it to the λ2-fibration as System F. There is a

comprehensive presentation of internal language in Taylor [Tay99].

4.6.1 Cartesian closed categories

Let C be a cartesian closed category. In this subsection we show that we can use simply

typed lambda calculus in order to reason about C.

The idea is to use the fact that if we specify all the type constants and term constants of a

particular simply typed lambda calculus, then we completely identify it. What we do is

taking a cartesian closed category C and from this category we derive the type and term

constants which form a simply typed lambda calculus. In this way, we can reason about

the category using expressions in simply typed lambda calculus. In order to make this

useful we will need to add some morphisms which will allow us to work with the internal

language, like for example to treat exponential objects of C as arrow types in the type

system or products in C as products of types in the type system.

We describe a map internal : |CCC| → {λ→-calculi} where CCC is the category of cartesian

closed categories (small cartesian closed categories with specified structure and functors

preserving the structure on the nose), while the codomain is the collection of all the different

simply typed lambda calculi.

Type constants

Every object A in C defines a type constant ` A type.

Term constants

Every morphism f : A→ B defines a term constant ` f : A→ B.

Duplication isomorphisms: we need terms in order to identify 1 with the unit type,

A1 ×A2 with A1 ×A2 and A1 → A2 with A1 ⇒ A2. These terms are:
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• unit type:

` ? : 1

• product types:

` prodA,B : (A×B)→ A×B

• arrow types:

` lamA,B : (A→ B)→ A⇒ B

Term equalities

First of all we want to think of morphisms f : 1→ A as terms of type A. In order to do

that we add an equality making 1 the unit type:

x : 1 ` x ≡ ? : 1.

In this way, given f : 1→ A in the category, we have f ? : A in the syntax.

We add another rule which identifies term application and substitution in the following

way: for every pair of morphisms f : 1→ A and g : A→ B in the category we have

` g (f ?) ≡ (g ◦ f) ? : B

For the product types we add the equations

t : A×B ` prodA,B(π1 t, π2 t) ≡ t : A×B

t : A×B ` (π1(prodA,B t), π2(prodA,B t)) ≡ t : A×B

Here π1 : A×B → A and π2 : A×B → B are the internal terms corresponding to the

external projections π1 : A×B → A and π2 : A×B → B. The equations above thus state

that A×B ∼= (A×B). Semantically, we interpret prodA,B as the identity morphism. We

will often abuse notation and treat A×B and (A×B) as identical.
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Next we add the following equations for function types:

x : A⇒ B ` lamA,B (λa . evA,B (x, a)) = x : A⇒ B

y : A→ B ` λa . evA,B (lamA,B y, a) = y : A→ B

Here, evA,B : (A⇒ B)×A→ B is the internal term corresponding to the external evaluation

map evA,B : (A ⇒ B) × A → B (up to the isomorphism (A⇒ B) × A ∼= (A⇒ B)×A).

The equations above thus state that A⇒ B ∼= (A→ B). Semantically, we interpret lamA,B

as the identity morphism. We will often abuse notation and treat A⇒ B and (A→ B) as

identical.

We now extend this internal language to λ2-fibrations.

4.6.2 λ2-fibrations

Let p : E → B be a λ2-fibration. In this subsection we show that we can use polymorphic

lambda calculus in order to reason about p.

We use the same idea as in the case of cartesian closed categories and simply typed lambda

calculi: we specify all the type constants and term constants of a particular polymorphic

lambda calculus.

We describe a map internal : {λ2-fibrations} → {λ2-calculi} where {λ2-fibrations} is the

collection of λ2-fibrations, while the codomain is the collection of all the different poly-

morphic lambda calculi. Recall that a type context is of the form Γ = X1, . . . , Xn and

we interpreted it as [[Γ]] = Ω× . . .× Ω︸ ︷︷ ︸
n-times

. In a λ2-fibration the interpretation lives in the

base category, but, thanks the previous observation, only objects of the form Ω× . . .× Ω︸ ︷︷ ︸
n-times

correspond to type contexts.

Type constants

For every type context Γ and object A in E[[Γ]], add a constant Γ ` A(Γ) type, where

Γ = X1, . . . , Xn and A(Γ) = A(X1, . . . , Xn) is given with its type variables as arguments.
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Term constants

For every context Γ and vertical morphism f : A → B in E[[Γ]], add a term constant

Γ ` f : A(Γ)→ B(Γ).

Duplication isomorphisms: in this case we need to identify also ∀A(Γ) and ∀X.A(Γ, X),

so that we have the following terms:

• unit type:

` ? : 1()

• product types:

Γ ` prodA,B : (A(Γ)×B(Γ))→ A×B(Γ)

• arrow types:

Γ ` lamA,B : (A(Γ)→ B(Γ))→ A⇒ B(Γ)

• forall types:

Γ ` LamA : (∀X.A(Γ, X))→ ∀A(Γ)

Term equalities

We add an equality making 1 the unit type:

λx : 1() ` x ≡ ? : 1(),

and again we identify term application and substitution: for every pair of morphisms

f : 1→ A and g : A→ B in the category we have

` g (f ?) ≡ (g ◦ f) ? : B()



4.6. Internal language 73

We have the following equations for product and arrow types:

Γ; t : A×B(Γ) ` prodA,B((π1)A,B t, (π2)A,B t) ≡ t : A×B(Γ)

Γ; t : A(Γ)×B(Γ) ` ((π1)A,B(prodA,B t), ((π2)A,B(prodA,B t)) ≡ t : A(Γ)×B(Γ)

Γ;x : A⇒ B(Γ) ` lamA,B (λa . evA,B (x, a)) = x : A⇒ B(Γ)

Γ; y : A(Γ)→ B(Γ) ` λa . evA,B (lamA,B y, a) = y : A(Γ)→ B(Γ)

For every object A in the total category of a λ2-fibration and substitution σ : Γ 7→ Γ′ in

the type system, we define A(Γ)[σ] = [[σ]]∗A(Γ′).

Finally for forall types we have the equations

Γ;x : ∀A(Γ) ` LamA (ΛX.εA x) = x : ∀A(Γ)

Γ; y : ∀X.A(Γ, X) ` (ΛX.εA (LamAy)) = y : ∀X.A(Γ, X)

Here εA is the term corresponding to the counit ε : π∗∀ → Id of the adjunction π∗ a ∀. The

equations above thus state that ∀A(Γ) ∼= ∀X.A(Γ, X). Semantically, we interpret LamA as

the identity morphism. We will often abuse notation and treat ∀A(Γ) and (∀X.A)(Γ, X)

as identical.
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Chapter 5

Bifibrational parametricity

In this chapter we recall Reynolds’ relational model for System F and in particular the

two properties which permit to restrict to parametric polymorphic functions: the Identity

Extension Lemma and the Abstraction Theorem. We show that Reynolds’ model forms

a λ2-fibration where the objects in the total category have a fibrational structure. The

λ2-fibration constructed in this way is part of a more general framework of models of System

F in which we can express the Identity Extension Lemma and the Abstraction Theorem.

As a sanity check we conclude this chapter by showing that the expected properties of

parametricity follow. This chapter is based on our work [GJNF+15].

Note that since we want to cast everything within the unifying framework of fibrations,

we will use the language of fibrations also if, in some case like Theorem 5.3 or Theorem

5.6, the fibrational properties are unnecessary. In any case the fibrational structure will be

essential in Chapter 6.

We fix some notation for this chapter. Consider a bifibration U : E → B and the associated

fibration of relations rel(U) : Rel(E) → B × B. Objects in the base category B will be

denoted by A and B, possibly indexed like for example Ai and Bi, and relations by R

and indexed Ri, where R is a relation between A and B, and Ri is a relation between Ai

and Bi. With Ā and B̄ we denote n-tuples of objects (A1, . . . An) and (B1, . . . , Bn) in B,

while R̄ is an n-tuple (R1, . . . , Rn) of relations between Ā and B̄ living in Rel(E). Note

that an alternative way to say that R is a relation between A and B, is to say that R is in

Rel(E)(A,B), i.e. the fibre over (A,B) with respect to rel : Rel(E)→ B × B.

75
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5.1 Reynolds’ relational model

In this section we recall Reynolds’ set-theoretic model based on [Rey83]. We remind that,

in order to have a set theoretical model, we need to work in the (intuitionistic) internal

language of a topos [Pit87], or in the Calculus of Constructions with impredicative Set

because, as Reynolds discovered, there are no set-theoretic models if the meta-theory is

classical logic [Rey84].

We skip most of the proofs in this section because the results are a particular instantiation

of more general statements appearing later in this chapter.

In this section and the following we restrict to the case of the fibration of relation rel : Rel→

Set×Set. For this reason Ā or B̄ will be n-tuples of sets, R̄ will be an n-tuple of relations

over sets, and so on.

5.1.1 Semantics of types

Reynolds presents two “parallel” semantics for System F: a standard set-based semantics

J−K0, and a relational semantics J−K1. Types are interpreted as maps which take (respec-

tively) an n-tuple of sets (relations) to a set (relation). We represent such maps as functors

with discrete domain since, in these cases, a functor is just a map between objects. Given

Γ ` T type, where the type context Γ contains |Γ| = n type variables, Reynolds defines

interpretations JT K0 : |Set|n → Set and JT K1 : |Rel|n
(Ā,B̄)

→ Rel(JT K0Ā,JT K0B̄) by structural

induction on type judgments as follows:

Type variables. The interpretation of type variables is given by projection maps:

JXiK0Ā = Ai and JXiK1R̄ = Ri

Product types. The interpretation of product types is given by using cartesian products:

JU × V K0Ā = JUK0Ā× JV K0Ā

JU × V K1R̄ = JUK1R̄× JV K1R̄.
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Arrow types. The interpretation of arrow types is given by using exponential objects:

JU → V K0Ā = JUK0Ā⇒ JV K0Ā

JU → V K1R̄ = JUK1R̄⇒ JV K1R̄

where the exponentiation in the category of relations is defined by R⇒ S = {(f, g) | (a, b) ∈

R implies (fa, gb) ∈ S}, i.e. the set of pairs of maps preserving the relations.

Forall types. The interpretation of forall types is based on maps f :
∏
S:SetJT K0(Ā, S)

which take a set S as input and compute an element of the set JT K0(Ā, S):

J∀X.T K0Ā = {f :
∏
S:Set

JT K0(Ā, S) | ∀R′ ∈ Rel(A′,B′) . (fA
′, fB′) ∈ JT K1(Eqn Ā, R′)}

J∀X.T K1R̄ = {(f, g) | ∀R′ ∈ Rel(A′,B′) . (fA
′, gB′) ∈ JT K1(R̄, R′)}

We call the condition ∀R′ ∈ Rel(A′,B′) . (fA
′, fB′) ∈ JT K1(Eqn Ā, R′) the parametricity

condition because it is the condition which cuts down all the polymorphic functions to

the parametric ones.

The definitions of J∀X.T K0 and J∀X.T K1 depend crucially on one another. Thus, there are

not really two semantics – one based on Set and one based on Rel – but rather a single

semantics based on the fibration rel : Rel→ Set× Set.

The two level semantics is such that the relational interpretation of every type preserves

equality relations1 as stated by the Identity Extension Lemma:

Lemma 5.1 (Identity Extension Lemma). If Γ ` T type then JT K1◦|Eq||Γ| = Eq◦JT K0.

The Identity Extension Lemma is key for many applications of parametricity.

1Reynolds’ approach also handles “identity relations” that are not equality relations, such as the
information order on domains. In this work, like many others [BFSS90,BM05,Her06,PA93], we only treat
equality relations.
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5.1.2 Semantics of terms

Reynolds’ main result is his Abstraction Theorem, stating that all terms send related

environments to related values. Reynolds first gives set-valued and relational interpretations

of term contexts ∆ = x1 : T1, . . . , xn : Tn by defining J∆K0 = JT1K0 × · · · × JTnK0 and

J∆K1 = JT1K1 × · · · × JTnK1. He then interprets each judgment Γ; ∆ ` t : T as a family

of functions JtK0Ā : J∆K0Ā → JT K0Ā by induction on term structure. We denote by

(a1, . . . , an) an n-tuple of elements in J∆K0Ā where n = |∆|.

Term variables. The interpretation of a term variable Γ, x1 : T1, . . . , xm : Tm ` xi : Ti,

with 1 ≤ i ≤ m, is given by

JxiK0Ā(a1, . . . , an) = ai.

Product pairing. Consider Γ; ∆ ` (u, v) : U × V . By the induction hypothesis, we have

the two families of morphisms JuK0 : J∆K0 → JUK0 and JvK0 : J∆K0 → JV K0. For every Ā in

|Set||Γ| and every element t ∈ J∆K0Ā, we define J(u, v)K0Ā t := 〈[[u]]Ā, [[v]]Ā〉 t

JUK0Ā× JV K0Ā
π1

uu
π2

))
JUK0Ā JV K0Ā

J∆K0Ā.
JuK0Ā

ii 〈JuK0Ā,JvK0Ā〉

OO

JvK0Ā

55

Product projections. Consider Γ; ∆ ` πi t : Ui, where i ∈ {1, 2}. By the induction

hypothesis we have the family of morphisms JtK0 : J∆K0 → JU1K0 × JU2K0, and we define

Jπi tK0 := πi ◦ JtK0 where πi is the projection morphism in Set.

Function terms. Assume Γ; ∆ ` λx.v : U → V and let u be an element in JUK0Ā. The

interpretation Jλx.vK0Ā(a1, . . . , an) is the map JUK0Ā→ JV K0Ā given by

Jλx.vK0Ā(a1, . . . , an)u := JvK0(a1, . . . , an, u).

It is well defined since, by induction, JvK0 : J∆K0 × JUK0 → JV K0.
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Term application. Let Γ; ∆ ` t : U → V and Γ; ∆ ` u : U be two term judgments. By

induction

JtK0Ā(a1, . . . , an) : JUK0Ā→ JV K0Ā and JuK0Ā(a1, . . . , an) ∈ JUK0Ā

and then we can define

JtuK0Ā(a1, . . . , an) := JtK0Ā(a1, . . . , an)(JuK0Ā(a1, . . . , an)).

Type abstraction. Consider Γ,∆ ` ΛX.t : ∀X.T . By the induction hypothesis we have

a family of morphisms JtK0 : J∆K0 → JT K0. We use this family to define the element

JΛX.tK0Ā(a1, . . . , an) : ΠS : SetJT K0(Ā, S) as follows

JΛX.tK0Ā(a1, . . . , an)S := JtK0(Ā, S)(a1, . . . , an).

It is well defined since, in the type abstraction rule, X does not appear in ∆ and for

this reason (a1, . . . , an) ∈ J∆K0Ā = J∆K0(Ā, S). Note that, a priori, this element does not

satisfy the parametricity conditions. The parametricity conditions will follow from the

Abstraction Theorem as we will show in the proof of Theorem 5.2. Formally, this means

that we have to define the interpretation of terms and prove the Abstraction Theorem

simultaneously.

Type application. Consider the term judgment Γ; ∆ ` tV : T [X 7→ V ]. By the induction

hypothesis JtK0Ā(a1, . . . , an) ∈ J∀X.T K0Ā. The interpretation is given by

JtV K0Ā(a1, . . . , an) := JtK0Ā(a1, . . . , an)JV K0Ā.

The Abstraction Theorem shows how to interpret terms at the relational level: it states

that the set level interpretation of terms naturally extends to the relational level.

Theorem 5.2 (Abstraction Theorem). Consider the term judgment Γ,∆ ` t : T . For every

n-tuple of relations R̄, if (a, b) are related in J∆K1R̄, then (JtK0Āa, JtK0B̄b) are related in
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JT K1R̄.

Proof. This result is a particular case of the more general Theorem 5.26. Anyway, it is

interesting to see the case of type abstraction because it shows how this theorem is related

to the parametricity condition.

The interpretation for type abstraction is given by

JΛX.tK0Ā(a1, . . . , an)S = JtK0(Ā, S)(a1, . . . , an).

Note that (JΛX.tK0Ā aA, JΛX.tK0B̄ bB) are related in JT K1(R̄, R) for every relation R. In

fact, by definition of JΛX.tK0, it is equivalent to prove that (JtK0(Ā, A) a, JtK0(B̄, B) b) are

related in JT K1(R̄, R) for every relation R, which follows by the induction hypothesis and

the observation that, since X does not appear in ∆, we have J∆K1(R̄) = J∆K1(R̄, R) for

every relation R and in particular (a, b) ∈ J∆K1(R̄) = J∆K1(R̄, R).

It follows that if JΛX.tK0Ā a is in J∀X.T K0Ā for every Ā and a ∈ J∆K0Ā, then the Ab-

straction Theorem holds for JΛX.tK0. Note that using the Identity Extension Lemma we

have (a, a) ∈ J∆K1Eq(Ā) = Eq(J∆K0Ā) and then (JΛX.tK0Ā aA, JΛX.tK0Ā aB) are related

in JT K1(Eq(Ā), R) for every R. This latter condition is in particular the parametricity

condition and then we have the thesis.

5.2 Reynolds’ model as a λ2-fibration

In this section we restructure Reynolds’ model presented in Section 5.1 in order to produce

a λ2-fibration.

5.2.1 Reynolds’ model, restructured

The interpretation of types in Subsection 5.1.1 comes with the fibrational structure

rel : Rel→ Set×Set. Reynolds’ definitions of J−K0 and J−K1 entail the following theorem:

Theorem 5.3 (Fibrational Semantics of Types). Every judgment Γ ` T induces a fibred



5.2. Reynolds’ model as a λ2-fibration 81

functor [[T ]] : |rel||Γ| → rel.

|Rel||Γ|
JT K1 //

|rel||Γ|
��

Rel

rel

��
|Set||Γ| × |Set||Γ|

JT K0×JT K0

// Set× Set

Reynolds does not give a functorial action of types on morphisms. This is reflected in

the appearance of discrete categories in Theorem 5.3. As a result, Reynolds’ pointwise

interpretation of function spaces is the exponential in the functor category |rel||Γ| →

rel [Rob94]. In fact instead of acting on morphisms, the interpretation of types acts on

graph relations induced by morphisms. For now, we simply note that the use of discrete

domains does not take us out of the fibrational framework; Lemmas 2.38 and 2.39 ensures

that [[T ]] is a functor between fibrations.

We use the following definition to restate the Identity Extension Lemma from a fibrational

perspective.

Definition 5.4. We say that a fibred functor (F1, F0 × F0) : |rel|n → rel is equality

preserving if F1 ◦ |Eq|n = Eq ◦ F0.

Within fibrational language it is possible to state the Identity Extension Lemma exactly as

Theorem 5.5 (Identity Extension Lemma). Let Γ ` T type be a type judgment. Then

[[T ]] is equality preserving, i.e. the following diagram commutes

|Rel||Γ|
JT K1 // Rel

|Set||Γ|
|Eq||Γ|

OO

JT K0

// Set

Eq

OO

Note that when we say equality reserving, we mean to map the discretisation |Eq||Γ| of
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equality on the left to equality on the right. The left-hand discretisation is not the equality

functor in the discrete fibration.

Using fibrational language we can restate the Abstraction Theorem in the following way:

Theorem 5.6 (Abstraction Theorem). Let Ā, B̄ ∈ Set|Γ| and R̄ ∈ Rel|Γ|(Ā, B̄). We can

interpret every judgment Γ; ∆ ` t : T as a fibred natural transformation (JtK1, JtK0 × JtK0) :

[[∆]]→ [[T ]].

|Rel||Γ|
J∆K1

++

JT K1

33�� JtK1

|rel||Γ|

��

Rel

rel

��
|Set||Γ| × |Set||Γ|

J∆K0×J∆K0
,,

JT K0×JT K0

22�� JtK0×JtK0 Set× Set

Proof. We have that (JtK1, JtK0 × JtK0) is a fibred natural transformation if and only if JtK1

and JtK0 are families of morphisms with JtK1 living over JtK0 × JtK0. In fact the condition

to be fibred, i.e. preservation of (op)cartesian morphisms, is trivially satisfied since the

domain is discrete. Using Theorem 5.2 we can interpret JtK1 = (JtK0, JtK0, JtK0 × JtK0).

The fibrational version makes it clear that the Abstraction Theorem states the existence of

additional algebraic structure to JtK0 given by JtK1 and, more generally, the interpretation

of terms as fibred natural transformations.

5.2.2 The λ2-fibration

We can now present the λ2-fibration associated to Reynolds’ model based on the fibrational

presentation just given. The base category N Eq is defined as

N Eq objects natural numbers n ∈ N.

morphisms a morphism from n to m consists of m-tuples of equality

preserving fibred functors Hi : |rel|n → rel.
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Note that a morphism h = (H1, . . . ,Hm) : n→ m in N Eq gives rise to a functor

(H1(−), . . . ,Hm(−)) : |rel(U)|n → |rel(U)|m

defined by

(H1(−), . . . ,Hm(−))j(X1, . . . , Xm) = ((H1)j(X1, . . . , Xm), . . . , (H1)j(X1, . . . , Xm))

where j ∈ {1, 0} and every Xi lives in the correct category.

The total category FEq is defined as

FEq objects equality preserving fibred functors from |rel|n to rel for

some n ∈ N.

morphisms a morphism (h, η) : F → G, where F : |rel|n → rel

and G : |rel|m → rel, consists of a morphism h =

(H1, . . . ,Hm) : n → m in N Eq and a natural transfor-

mation η : F → G ◦ (H1(−), . . . ,Hm(−)).

The λ2-fibration is given by the functor p : FEq → N Eq defined by

p : FEq → N Eq objects p(F : |rel|n → rel) = n.

morphisms p(h, η) = h.

That p is a λ2-fibration will follow as an instantiation of the general framework we present

in the next section.

5.3 Bifibrational relational parametricity

In this section we want to show that the λ2-fibration p : FEq → N Eq is a particular

instantiation of a more general framework for parametric models of System F. For the rest of

the chapter we consider a fibration of relations rel(U) : Rel(E)→ B×B arising via change of

base from a fibration U : E → B. For brevity we denote by T = (T1, T0) : |rel(U)|n → rel(U)
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a fibred functor (T1, T0 × T0) as shown in the following diagram

|rel(E)|n

|rel(U)|n
��

T1 // rel(E)

rel(U)

��
|B|n × |B|n

T0×T0

// B × B.

We generalise Definition 5.4 to a general fibration of relations rel(U) : Rel(E)→ B × B.

Definition 5.7. Let rel(U) : rel(E)→ B×B be a fibration of relations with equality functor

Eq : B → rel(E). We say that a fibred functor (F1, F0) : |rel(U)|n → rel(U) is equality

preserving if F1 ◦ |Eq|n ∼= Eq ◦ F0.

We generalise N Eq in the following way

Definition 5.8. We define the category N Eq
rel(U) as

N Eq
rel(U) objects natural numbers n ∈ N.

morphisms a morphism h : n → m consists of m-tuples of equality

preserving fibred functors Hi : |rel(U)|n → rel(U).

Again every morphism h = (H1, . . . ,Hm) : n→ m in N Eq
rel(U) gives rise to a functor

(H1(−), . . . ,Hm(−)) : |rel(U)|n → |rel(U)|m

defined by

(H1(−), . . . ,Hm(−))j(X1, . . . , Xm) = ((H1)j(X1, . . . , Xm), . . . , (H1)j(X1, . . . , Xm))

where j ∈ {1, 0} and every Xi lives in the correct category.

The generalisation of FEq is the following one:

Definition 5.9. The category FEq
rel(U) is given by

FEq
rel(U) objects equality preserving fibred functors from |rel(U)|n to rel(U)

for some n ∈ N.
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morphisms a morphism (h, η) : F → G, where F : |rel(U)|n → rel(U)

and G : |rel(U)|m → rel(U), consists of a morphism h =

(H1, . . . ,Hm) : n → m in N Eq
rel(U) and a fibred natural

transformation η : F → G ◦ (H1(−), . . . ,Hm(−)).

Definition 5.10. We define the functor p : FEq
rel(U) → N

Eq
rel(U) as

p : FEq
rel(U) → N

Eq
rel(U) objects p(F : |rel(U)|n → rel(U)) = n

morphisms p(f, η) = f

In the rest of this section we are going to prove that p : FEq
rel(U) → N

Eq
rel(U) is a λ2-fibration.

5.3.1 The functor p is a fibration with generic object

We start by showing that the functor p is a fibration, actually a split one.

Proposition 5.11. The functor p : FEq
rel(U) → N

Eq
rel(U) is a split fibration.

Proof. Let h = (H1, . . . ,Hm) : n→ m be a morphism in N Eq
rel(U) and G : |rel(U)|m → rel(U)

be an object in FEq
rel(U) over m. We denote by H = (H1(−), . . . ,Hm(−)). The domain of

the cartesian morphism over h is given by G ◦H and the cartesian morphism is (h, id).

Let F : |rel(U)|l → rel(U) be an equality preserving fibred functor and (q, η) : F → G be a

morphism in FEq
rel(U) for which there is a morphism k : l→ n in N Eq

rel(U) such that h ◦ k = q.

We want to show that (h, id) has the cartesian property. The unique morphism from F

to H ◦ G over k is given by (k, η), where η : F ⇒ G ◦ Q = G ◦ H ◦ K. It is clear that

(q, η) = (h, id) ◦ (k, η). For the uniqueness notice that the first component k is fixed, and if

there was another η′ such that id ◦ η′ = η, then η′ = η.

The fibration p has a split generic object.

Lemma 5.12. The split fibration p : FEq
rel(U) → N

Eq
rel(U) has split generic object Ω = 1.

Proof. Since it is a split fibration for the generic object we need an object Ω in N Eq
rel(U)

such that HomN Eq
rel(U)

(n,Ω) ∼= |(FEq
rel(U))n| for every object n in N Eq

rel(U). It is immediate
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to see that the morphisms from n to 1 in N Eq
rel(U) are equality preserving fibred functors

F : |rel(U)|n → rel(U) which are exactly the objects in |(FEq
rel(U))n|.

The next step is to prove that p is fibred cartesian closed.

5.3.2 The fibration p is fibred cartesian closed

The fibres (FEq
rel(U))n are given by

(FEq
rel(U))n objects equality preserving fibred functors from |rel(U)|n to

rel(U).

morphisms if F : |rel(U)|n → rel(U) and G : |rel(U)|n → rel(U), a

morphism (id, η) : F → G consists of a fibred natural

transformation η : F → G.

We first study the general case in which the objects of FEq
rel(U) are fibred functors, not

necessarily equality preserving. In detail let Frel(U) be the category

Frel(U) objects fibred functors from |rel(U)|n to rel(U) for some n ∈ N.

morphisms if F : |rel(U)|n → rel(U) and G : |rel(U)|m → rel(U), a

morphism (h, η) : F → G consists of a morphism h =

(H1, . . . ,Hm) : n → m in N Eq
rel(U) and a fibred natural

transformation η : F → G ◦ (H1(−), . . . ,Hm(−)).

Clearly p : FEq
rel(U) → N

Eq
rel(U) extends to a functor p : Frel(U) → N

Eq
rel(U) defined as

p : Frel(U) → N
Eq
rel(U) objects p(F : |rel(U)|n → rel(U)) = n

morphisms p(f, η) = f

The fibres for Frel(U) are given by

(Frel(U))n objects fibred functors from |rel(U)|n to rel(U).
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morphisms if F : |rel(U)|n → rel(U) and G : |rel(U)|n → rel(U) a

morphism (id, η) : F → G consists of a fibred natural

transformation η : F → G.

Then we use the following lemma in order to restrict to the case of (FEq
rel(U))n:

Lemma 5.13. Let D be a cartesian closed category and C be a full subcategory of D. If C

is closed under the cartesian closed structure from D, i.e. 1 ∈ C, and if X,Y are objects in

C then X × Y , X ⇒ Y are in C, then C is cartesian closed, inheriting the cartesian closed

structure from D.

Proof. Using full and faithfulness it is clear that 1 is terminal in C and that if X and Y

are objects of C then X × Y in D is also the product in C.

For the exponential we have that

HomC(X × Y,Z) = HomD(X × Y,Z)

∼= HomD(X,Y ⇒ Z)

= HomC(X,Y ⇒ Z)

which is the natural isomorphism of the adjunction × Y a Y ⇒ .

Lemma 5.13 applies for (FEq
rel(U))n which trivially injects into (Frel(U))n for every n ∈ N and

the injection is full.

Note that we are in the situation where the objects in the fibres are fibred functors

T : |rel(U)|n → rel(U) like in the case of Reynolds’ model

|Rel(E)|n

|rel(U)|n
��

T1 // Rel(E)

|rel(U)|n
��

|B|n × |B|n
T0×T0

// B × B
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and the morphisms are fibred natural transformations η : T → G

|Rel(E)|n
T1

,,

G1

22�� η1

|rel(U)|n

��

Rel(E)

rel(U)

��
|B||Γ| × |B|n

T0×T0
,,

G0×G0

33�� η0×η0 B × B.

The condition that p is fibred cartesian closed is essential for interpreting term contexts

∆ = x1 : T1, . . . , xn : Tn as [[∆]] = [[T1]]× . . .× [[Tn]], the product types using the cartesian

product and the arrow types U → V as exponential objects [[U ]]⇒ [[V ]]. In order to see how

it works fibrationally, we first start by studying the simpler case of the category |C|n → C

whose objects are functors F : |C|n → C for some fixed n, and a morphism η : F → G is a

natural transformation. We will then extend the result to fibred functors.

Lemma 5.14. If C is cartesian closed, then |C|n → C is cartesian closed.

Proof. Limits are computed pointwise. Moreover, since the domain of the functors are

discrete categories, in order to have a natural transformation it is enough to provide a

family of morphisms since the condition to be natural is trivially satisfied.

The terminal object in |C|n → C is the constant functor K1 sending every object to 1, the

terminal object in C. Note in fact that for every object F in |C|n → C there is a unique

natural transformation ! : F → K1 whose components are the unique maps !A : F (A)→ 1.

The product of two functors F,G : |C|n → C is given componentwise by the formula

(F × G)(A) = F (A) × G(A). In fact, given a third functor H : |C|n → C, and two

natural transformations η : H → F and η′ : H → G, the unique natural transformation
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ε : H → F ×G has components

F (A)×G(A)

πFA

ww

πGA

''
F (A) G(A)

H(A)

εA

OO

ηA

gg

η′A

77

identified by the universal property of the product F (A)×G(A).

Finally also the exponentiation is given componentwise. Let F,G,H : |C|n → C be three

functors and consider a natural transformation η : H×F → G. The exponentiation F ⇒ G

is given by the formula (F ⇒ G)(A) = F (A)⇒ G(A), and the universal property is given

pointwise by

H(A)× F (A)

ηA

((

∃!ε×id

��
(F (A)⇒ G(A))× F (A) evA

// G(A)

which is the universal property for the exponential object F (A)⇒ G(A) in C.

In the fibre (Frel(U))n objects are fibred functors from |rel(U)|n to rel(U). If Rel(E) and B

are cartesian closed, then both |Rel(E)|n → Rel(E) and |B|n × |B|n → B×B are cartesian

closed. This is not enough for two reasons. First in order to have a λ2-fibration we want

that reindexing functors preserve structure in the fibres. We will see that reindexing

functors are given by precomposition and it is not difficult to check that precomposition

preserves the needed structure on the nose. The second reason is that we want fibred

functors, which means that we want the following diagrams to commute

|Rel(E)|n

|rel(U)|n

��

F1×G1 // Rel(E)

rel(U)

��

|Rel(E)|n

|rel(U)|n

��

F1⇒G1 // Rel(E)

rel(U)

��
|C|n × |C|n

(F0×G0)×(F0×G0)
// C × C |C|n × |C|n

(F0⇒G0)×(F0⇒G0)
// C × C
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for every two fibred functors F,G : |rel(U)|n → rel(U), i.e. the cartesian closed structure

should be preserved by the fibration. For this reason we introduce the following definition:

Definition 5.15. A fibration U : E → B is an arrow fibration if it admits truth functor,

both E and B are CCCs, and U preserves the cartesian closed structure.

Change of base preserves arrow fibrations.

Lemma 5.16. If U : E → B is an arrow fibration, so it is rel(U) : Rel(E)→ B × B.

Proof. This is straightforward to check.

As a direct consequence of Lemma 5.14 and Lemma 5.16 we have the two following results:

Lemma 5.17. If U : E → B is an arrow fibration and F,G : |rel(U)|n → rel(U) are two

fibred functors, then F ×G = (F1 ×G1, F0 ×G0) and F ⇒ G = (F1 ⇒ G1, F0 ⇒ G0) are

fibred functors.

Proof. It follows from Lemma 5.14, Lemma 5.16 and the definition of arrow fibrations.

Corollary 5.18. If U : E → B is an arrow fibration, then p : Frel(U) → N
Eq
rel(U) is fibred

cartesian closed.

Proof. By Lemma 5.17, we have exponential objects and products. The terminal fibred

functor is given by K1 sending every relation R to (1,1,1) and every object A in B to 1.

Since U : E → B is an arrow fibration, so it is rel(U) : Rel(E)→ B × B which means that

terminal object is preserved and K1 is a fibred functor.

The following results from [Jac99] can be used to find arrow fibrations.

Lemma 5.19. Let U : E → B be a bifibration with fibred terminal objects and B be a

CCC. If U : E → B is a fibred CCC and has simple products, then E is a CCC and U

preserves the cartesian closed structure.
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Change of base preserves simple products and fibred structure, so rel(U) is a fibred CCC

with simple products if U is. Moreover, B × B is a CCC if B is. Lemma 5.19 thus derives

structure in rel(U) from structure in U .

Finally we restrict to FEq
rel(U) and prove that also p : FEq

rel(U) → N
Eq
rel(U) is fibred cartesian

closed. As shown by Reynolds in [Rey83], exponential objects in the case of rel preserve

equality. In general we need the following definition:

Definition 5.20. A fibration of relations Rel(U) is an equality preserving arrow

fibration if it is an arrow fibration and Eq : B → Rel(E) preserves exponentials and

products.

Lemma 5.21. Let U : E → B be an equality preserving arrow fibration, then the fibration

p : FEq
rel(U) → N

Eq
rel(U) is fibred cartesian closed.

Proof. By Lemma 5.13 and Lemma 5.14, we need only to prove that every fibre (FEq
rel(U))n

is closed under products, exponentials and has terminal object. This means that we need

to prove that if F,G : |rel(U)|n → rel(U) are two equality preserving fibred functors, then

F ×G, F ⇒ G, and K1 are equality preserving.

For the equality preservation of K1 note that, by definition, the truth functor K is a right

adjoint. In particular, it preserves the terminal object. By definition Eq(1) = Σδ1K(1)

and δ1 : 1→ 1× 1 is an isomorphism. Hence (δ1)§ : 1 ∼= K(1)→ Eq(1) is an isomorphism

by Lemma 2.16.

Using the fact that we are in a equality preserving arrow fibration and that both F and G

are equality preserving, we have the following derivations:

Eq(F0(Ā)×G0(Ā)) ∼= Eq(F0(Ā))× Eq(F0(Ā))

∼= F1(Eqn(Ā))×G1(Eqn(Ā)),
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and

Eq(F0(Ā)⇒ G0(Ā)) ∼= Eq(F0(Ā))⇒ Eq(F0(Ā))

∼= F1(Eqn(Ā))⇒ G1(Eqn(Ā)).

This gives the thesis.

The following result helps in determining when a fibration of relations is an equality

preserving arrow fibration:

Lemma 5.22. Let U : E → B be a bifibration with fibred terminal objects and B be a

CCC. If Eq : B → Rel(E) has a left adjoint Q, then Eq preserves products. Moreover Eq

preserves exponentials iff Q satisfies the Frobenius property. Such a Q exists if U : E → B

has full comprehension, Eq : B → Rel(E) is full and B has pushouts.

Proof. We have that Eq preserves products because it is a right adjoint. The part on the

preservation of exponentials is Proposition 6.2 in Hermida and Jacobs [HJ98]. They study

the case of homogeneous relations (relations on one set), but the same proof is applicable

here because the proof’s structure uses only functorial arguments. For the last part, if we

have comprehension and pushouts, then Q can be defined as mapping a relation R over

(A,B) to the pushout of π1 and π2, where 〈π1, π2〉 : {R} → A×B is the canonical map:

{R} π1 //

π2

��

A

��
B // Q(R)

To see thatQ is left adjoint to Eq = Σδ◦K, first note that Eq a { }◦J , where J : Rel(E)→ E

arises from the pullback construction of Rel(E):

Rel(E)

Rel(U)

��

J // E⊥
Σδ

oo

U
��

{}
��

a a

B × B ×
// B

K

OO
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Since Eq is always faithful and is full by assumption, the unit of the adjunction Eq a { }◦J

is a natural isomorphism, i.e., {Eq(A)} ∼= A for all A. By the universal property of the

pushout, morphisms f : Q(R)→ C are in bijective correspondence with pairs of morphisms

f1 : A → C and f2 : B → C such that f1 ◦ π1 = f2 ◦ π2. This is only the case if the

following diagram commutes:

{R} f1◦π1//

〈π1,π2〉
��

{Eq(C)}

δ
��

A×B
f1×f2

// C × C

But this is exactly the diagram from the definition of full comprehension. Thus, by full and

faithfulness of Eq, this diagram commutes iff there is a morphism g : R→ Eq(C) such that

π1 ◦ f1 = {g}. In other words, morphisms from Q(R) to C are in bijective correspondence

with morphisms from R to Eq(C), as required.

For the Frobenius property, we need to show that Q(R × EqC) = Q(R) × C, i.e., that

Q(R)× C is the pushout

{R} × C π1×id //

π2×id

��

A× C

��
B × C // Q(R)× C

Here, we have used the facts that {Eq(C)} = C and that {} is a right adjoint and thus

preserves products. However, since B is a CCC, we have that × C is a left adjoint and

thus preserves colimits.

5.3.3 Simple Ω-products

In order to interpret forall types we need simple Ω-products.

We saw that the fibres (FEq
rel(U))n have equality preserving fibred functors |rel(U)|n → rel(U)

as objects and fibred natural transformations as morphisms. Recall that the generic object

Ω is given by 1 in N Eq
rel(U), and the product is the sum of natural numbers.

The projection πn : n + 1 → n consists of the family of functors (πn)i : |Rel(U)|n+1 →

Rel(U) for 1 ≤ i ≤ n, where (πn)i projects out the i-th component. We denote with the
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same notation πn the functor πn : |Rel(U)|n+1 → |Rel(U)|n which projects out the first n

components. In the proof of Lemma 5.11 we saw that reindexing is given by precomposition

and that weakening π∗n : (|Rel(U)|n →Eq Rel(U))→ (|Rel(U)|n+1 →Eq Rel(U)) is given

by precomposition ◦ πn.

The previous observations lead us to the following definition:

Definition 5.23. Rel(U) is a ∀-fibration if, for every projection πn : |Rel(U)|n+1 →

|Rel(U)|n, the functor ◦πn : (|Rel(U)|n →Eq Rel(U))→ (|Rel(U)|n+1 →Eq Rel(U)) has

a right adjoint ∀n and this family of adjunctions is natural in n.

Definition 5.23 is equivalent to asking that p has simple Ω-products. We write ∀ for ∀n

when n can be inferred. This definition follows, e.g., Dunphy and Reddy [DR04] by “baking”

the Identity Extension Lemma into the definition of forall types — in the sense that the

very existence of ∀ requires that if F is equality preserving then so is ∀F — rather than

relegating it to a result to be proved post facto. If U is faithful, then Definition 5.23 can

be reformulated in terms of more basic concepts using its opfibrational structure. The

Identity Extension Lemma then becomes a consequence of the definition, rather than an

intrinsic part of it. We will come back later to this in Chapter 7.

5.3.4 Fibred functors with discrete domains form a parametric model

All the structure considered in this section is assumed to be split. We sum up the results

obtained so far in the following theorem:

Theorem 5.24. If Rel(U) is an equality preserving arrow fibration and a ∀-fibration, then

p : FEq
rel(U) → N

Eq
rel(U) as in Proposition 5.11 is a λ2-fibration in which types Γ ` T type are

interpreted as equality preserving fibred functors [[T ]] : |Rel(U)||Γ| → Rel(U) and terms

Γ; ∆ ` t : T are interpreted as fibred natural transformations [[t]] : [[∆]]→ [[T ]].

Proof. By showing that p is a λ2-fibration we can model System F as we described in

Section 4.5. It naturally follows that we interpret types as equality preserving fibred

functors and terms as fibred natural transformations since they are the objects and the

morphisms in the fibres of p. By Proposition 5.11, the functor p a fibration. The base
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category N Eq
rel(U) has finite products given by natural number addition, and 1 is a generic

object Ω for N Eq
rel(U) as shown in Section 5.3.1. By Corollary 5.18 the fibres are cartesian

closed. Finally, p has simple Ω-products since Rel(U) is a ∀-fibration. Thus, p is a

λ2-fibration.

It easily follows that Identity Extension Lemma and Abstraction Theorem hold:

Corollary 5.25 (Identity Extension Lemma). Let rel(U) : Rel(E)→ B×B be an equality

preserving arrow fibration and ∀-fibration, and let Γ ` T type be a type judgment. Then

JT K1 ◦ |Eq||Γ| = Eq ◦ JT K0, i.e. the following diagram commutes

|Rel||Γ|
JT K1 // Rel

|Set||Γ|
|Eq||Γ|

OO

JT K0

// Set

Eq

OO

Corollary 5.26 (Abstraction Theorem). Let rel(U) : Rel(E) → B × B be an equality

preserving arrow fibration and a ∀-fibration. We can interpret every term judgment

Γ; ∆ ` t : T as a fibred natural transformation (JtK1, JtK0) : [[∆]]→ [[T ]].

|Rel(E)||Γ|
J∆K1

,,

JT K1

22�� JtK1

|rel(U)||Γ|

��

Rel(E)

rel(U)

��
|B||Γ| × |B||Γ|

J∆K0×J∆K0
++

JT K0×JT K0

33�� JtK0×JtK0 B × B

Unwinding the interpretation of System F in λ2-fibrations as shown in Section 4.5, we see

that, for every fibration U : E → B satisfying the hypotheses of the theorem, we get the

following: for every System F type Γ ` T and term Γ; ∆ ` t : T , we get

1. a standard interpretation of Γ ` T as a functor JT K0 : |B||Γ| → B;

2. a relational interpretation of Γ ` T as a functor JT K1 : |Rel(E)||Γ| → Rel(E);
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3. the standard and relational interpretation of Γ ` T form a fibred functor (JT K1, JT K0) :

|rel(U)||Γ| → rel(U);

4. the Identity Extension Lemma in the form of Corollary 5.25, i.e., a proof that [[T ]] is

equality preserving;

5. a standard interpretation of Γ; ∆ ` t : T as a natural transformation JtK0 : J∆K0 →

JT K0; and

6. the Abstraction Theorem in the form of Corollary 5.26, i.e., a proof that Γ; ∆ ` t : T

has a relational interpretation as a natural transformation JtK1 : J∆K1 → JT K1 over

JtK0 × JtK0.

Theorem 5.24 also gives a powerful internal language [Jac99], where base types in type

context Γ are given by fibred functors |Rel(U)||Γ| →Eq Rel(U), and base term constants

in term context ∆ are given by fibred natural transformations [[∆]]→ [[T ]]. Thus, we can

use this language to reason about our models using System F. This will be used in the

proofs of Theorems 6.3 and 6.7 below.



Chapter 6

Consequences of parametricity

In this chapter we use the framework that we introduced in Chapter 5 in order to derive

expected consequences of parametricity: existence of initial algebras, existence of final

coalgebras and dinaturality.

6.1 Existence of initial algebras

Let F : C → C be an endofunctor. An F -algebra is a pair (A, kA) with A an object

of C and kA : FA → A a morphism. We call A the carrier of the F -algebra and kA

its structure map. A morphism h : A → B in C is an F -algebra homomorphism

h : (A, kA) → (B, kB) if kB ◦ F (h) = h ◦ kA. An F -algebra (Z, in) is weakly initial if,

for any F -algebra (A, kA), there exists a mediating F -algebra homomorphism fold [A, kA] :

(Z, in)→ (A, kA). It is an initial F -algebra if fold [A, kA] is unique.

Let F = (F1, F0) : rel(U) → rel(U) be an equality preserving lifted functor (note that

the domain of F is not discrete and that F need not preserve cartesian morphisms) with

a strength t = (t1, t0), i.e., a family of morphisms (t0)A,B : A ⇒ B → F0A ⇒ F0B

and (t1)R,S : R ⇒ S → F1R ⇒ F1S with (t1)R,S over ((t0)A,B, (t0)C,D) if R is over

(A,B) and S is over (C,D), such that t preserves identity and composition. A functor

with a strength is said to be strong. Because of the discrete domains, t is a natural

transformation from ⇒ to F ⇒ F in |rel(U)|2 →Eq rel(U), which is the full subcategory

of |rel(U)|2 → rel(U) whose objects are the equality preserving fibred functors, and thus

α, β; · ` t : (α → β) → (F [α] → F [β]) represents the action of F on morphisms in the

internal language (see Section 4.6), and where F acts on the objects as F (A) = F (A). All

type expressions with one free type variable occurring only positively give rise to strong
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functors, but there are further examples of such functors, for instance if the model contains

non-System F type constructions with natural functorial (and relational) interpretations —

for example, those of dependent types in Set. We will show that an initial F0-algebra exists.

For this, we first construct a weak initial F0-algebra, which can be done in any λ2-fibration.

Using the internal language, we define Z by (Z1, Z0) = [[∀X.(FX → X)→ X]].

Lemma 6.1. Z0 is the carrier of a weak initial F0-algebra (Z0, in0) with mediating

morphism fold0[A, k] and Z1 is the carrier of a weak initial F1-algebra (Z1, in1) with

mediating morphism fold1[A, k].

Proof. Using the internal language, we first define the term fold = ΛA.λk : FA →

A.λz. z A k. We then define fold i[A, k] = θ−1([[fold Ak]]i), where θ is the natural bijection

θ : HomC(Γ×A,B) ∼= HomC(Γ, A⇒ B) of the adjunction −×A a A⇒ −, and A and k

are the internal expressions corresponding to the components of another F0- or F1-algebra

(A, k), as appropriate. We further define (in1, in0) = θ−1([[λx.ΛX.λk. k (t (fold X k)x)]]),

where t is the internal representation of the strength of F . By equational reasoning in

System F, fold0 and fold1 are algebra homomorphisms:

fold [A, k] ◦ in = θ−1([[λz. z A k]]) ◦ θ−1([[λx.ΛX.λk. k (t (fold X k)x)]])

= θ−1([[λx.((λz. z A k)( ΛX.λk. k (t (fold X k)x)))]])

= θ−1([[λx.(k (t (fold Ak)x))]])

= θ−1([[k]]) ◦ θ−1([[t (fold Ak)]])

= k ◦ F (fold [A, k])

To show that fold0 is unique, we use the graph relations from Section 3.3. Recall that

a category with a terminal object 1 is well-pointed if, for any f, g : A → B, we have

f = g iff f ◦ e = g ◦ e for all e : 1 → A. We only consider well-pointed base categories;

well-pointedness is used to convert internal language reasoning in non-empty contexts

to closed contexts, so that we can apply semantic techniques such as Theorem 3.12. In

detail, if we have a term judgment Γ; ∆ ` t : T , its interpretation is given by the fibred

natural transformation [[t]] : [[∆]]→ [[T ]] and we compose it with a natural transformation
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k : 1→ [[∆]] obtaining [[t]] ◦ k : 1→ [[T ]]. We will often only say that we use well pointedness

and leave implicit the morphism k writing only [[t]].

The next results use the map ψh : F1〈h〉 → 〈F0h〉 given in the Graph Lemma 3.12.

Lemma 6.2. Assume that the underlying bifibration satisfies the Beck-Chevalley condition,

and that Eq is full.

1. If B is well-pointed, then fold0[Z0, in0] = idZ .

2. For every F0-algebra homomorphism h : (Z0, in0) → (A, kA), we have that h ◦

fold0[Z0, in0] = fold0[A, kA].

Proof. 1. We want to show J` fold Z0 in0K0 = J` λz.zK0. By the ξ- and η-rules, which

are valid in all λ2-fibrations by soundness Theorem 4.9, it suffices to show that

JX; k : F0X → X ` λz . (fold Z0 in0) z X kK0 = JX; k : F0X → X ` λz . z X kK0

By well-pointedness, this reduces to showing Jλz. (fold Z0 in0) z AkAK0 = Jλz. z A kAK0

for any natural transformation k : F0 → Id. We first prove fold0[A, kA] ◦ fold0[Z0, in0] =

fold0[A, kA]. The following diagram commutes by weak initiality:

F0Z0
F0 (fold0[A,kA]) //

in0

��

F0A

kA
��

Z0
fold0[A,kA]

// A

so (in0, kA) : F0 (fold0[A, kA])→ fold0[A, kA] is a morphism in B→. The graph functor

then gives a morphism 〈in0, kA〉 : 〈F0 (fold0[A, kA])〉 → 〈fold0[A, kA]〉, and thus a

F1-algebra k1 defined by 〈in0, kA〉 ◦ ψfold0[A,kA] : F1〈fold0[A, kA]〉 → 〈fold0[A, kA]〉.

By weak initiality of Z1, the following diagram commutes:

F1Z1
F1 (fold1[〈fold0[A,kA]〉,k1]) //

in1

��

F1〈fold0[A, kA]〉

k1

��
Z1

fold1[〈fold0[A,kA]〉,k1]
// 〈fold0A, kA]〉
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By the Identity Extension Lemma, Z1 = EqZ0 = 〈idZ0〉, so fold1[〈fold0[A, kA]〉, k1]

is actually a morphism from 〈idZ0〉 to 〈fold0[A, kA]〉. Since fold1[〈fold0[A, kA]〉, k1] is

over (fold0[Z0, in0], fold0[A, kA]), and Eq is always faithful and is full by assumption,

Lemma 3.11 gives that fold1[〈fold0[A, kA]〉, k1] = 〈fold0[Z0, in0], fold0[A, kA]〉 and the

following diagram commutes:

Z0
fold0[Z0,in0] //

idZ0

��

Z0

fold0[A,kA]

��
Z0

fold0[A,kA]
// A

By the definition of fold ,

[[λz. (fold Z0 in0) z AkA]]0 = [[λz. (foldAkA) ((fold Z0 in0) z)]]0

= [[λz. (foldAkA) z]]0

= [[λz. z A kA]]0

Thus fold0[Z0, in0] = idZ0 as required.

2. Let h : (Z0, in0) → (A, kA). The definition of 〈 〉 and the Graph Lemma give a

unique morphism k1 = 〈in0, kA〉 ◦ ψh : F1〈h〉 → 〈h〉, and by weak initiality of Z1

we have in1 ◦ fold1[〈h〉, k1] = k1 ◦ F1 (fold1[〈h〉, k1]). By the Identity Extension

Lemma, Z1 = EqZ0 = 〈idZ0〉, so that fold1[〈h〉, k1] is a morphism from 〈idZ0〉 to

〈h〉. Since fold1[〈h〉, k1] is over (fold0[Z0, in0], fold0[A, kA]), Lemma 3.11 gives that

fold1[〈h〉, k1] = 〈fold0[Z0, in0], fold0[A, kA]〉 and the following diagram also commutes

by fullness of the graph functor:

Z0
fold0[Z0,in0] //

idZ0

��

Z0

h
��

Z0
fold0[A,kA]

// A

Thus, h ◦ fold0[Z0, in0] = fold0[A, kA,].
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The proofs of the two parts of Lemma 6.2 are similar: both use the graph functor to

map commuting diagrams in B to morphisms in Rel(U), and then use the Graph Lemma

to see that these morphisms are F1-algebras. Lemma 6.1 and Lemma 6.2 together now

immediately imply the main result.

Theorem 6.3. If the underlying bifibration satisfies the Beck-Chevalley condition, Eq is

full, and B is well-pointed, then (Z0, in0) is an initial F0-algebra.

Proof. By Lemma 6.1, we know that (Z0, in0) is a weak initial F0-algebra. We must show

that h = fold0[A, kA] for any kA : F0A→ A and any F0-algebra morphism h : (Z0, in0)→

(A, kA). By Lemma 6.2(2), fold0[A, kA] = h ◦ fold0[Z0, in0] and since fold0[Z0, in0] = idZ0

by Lemma 6.2(1), we have h = fold0[A, kA], as required.

One may wonder if the above result can be strengthened to get not only an initial F0-

algebra, but also an initial F1-algebra. Certainly this is possible for the relations fibration

rel : Rel→ Set, since relations in Rel are proof irrelevant: maps either preserve relatedness

or not. This translates in the axiomatic bifibrational setting to requiring the fibration

Rel(E)→ B × B to be faithful. When it is, the weak initial F1-algebra is, in fact, initial:

faithfulness implies the required uniqueness.

6.2 Existence of final coalgebras

We can also dualise the proof from the previous section to show the existence of final

coalgebras in the usual manner [Has94]. This requires us to first encode existential types

in System F.

We encode existential types by ∃X.T = ∀Y.(∀X.(T → Y )) → Y . We can support the

introduction and elimination rules and they are the following

Γ ` A type Γ; ∆ ` u : T [X 7→ A]

Γ; ∆ ` 〈A, u〉 : ∃X.T (X)

Γ; ∆ ` t : ∃X.T Γ, Z; ∆, y : T [X 7→ Z] ` s : S

Γ; ∆ ` (open t as 〈Z, y〉 in s) : S

with the conversion open 〈A, t〉 as 〈Z, y〉 in s = s[X 7→ A, y 7→ t] by defining 〈A, t〉 =

ΛY.λf.f A t and open t as 〈Z, y〉 in s = t S (ΛZ.λy.s). Using parametricity we can prove the
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following commutation property and η-rule for existential types:

Lemma 6.4. Assume the underlying bifibration satisfies the Beck-Chevalley condition,

and that Eq is full.

1. Let Γ; ∆ ` t : ∃X.T , let Γ, Z; ∆, u : T [X 7→ Z] ` s : S and let Γ; ∆ ` f : S → S′

with ∆ being empty and for a closed type S′. Then Jf(open t as 〈Z, u〉 in s)K0 =

Jopen t as 〈Z, u〉 in f(s)K0.

2. If Γ; ∆ ` t : ∃X.T with ∆ empty, then Jopen t as 〈Z, u〉 in 〈Z, u〉K0 = JtK0.

Proof. 1. We first define a morphism α : Eq(1) → ∀(JT K1 ⇒ 〈JfK0〉) in Rel(E)|Γ|

over (h, h′), where h = JΛX.λy.sK0 and h′ = JΛX.λy.f(s)K0. By adjointness of

∀ and exponentials, this is equivalent to a morphism Eq(1) × JT K1 → 〈JfK0〉 over

h̃ = JsK0 and h̃′ = Jf(s)K0. Since S′ is closed, JS′K1 = Eq(JS′K0) by the Identity

Extension Lemma, and Jf(s)K1 : Eq(1)× JT K1 → Eq(JS′K0) is over (h̃′, h̃′) (recall that

Eq(1)× JT K1
∼= JT K1). The following triangle commutes:

(1× JT K0,1× JT K0)

(h̃′,h̃′)

((

(h̃,h̃′)

��
(1× JSK0, JS′K0)

(JfK0,id)
// (JS′K0, JS′K0)

Thus, the cartesian property of 〈JfK0〉 gives a unique α : Eq(1)× JT K1 → 〈JfK0〉 over

(h̃, h̃′), or equivalently, α̂ : Eq(1) → ∀(JT K1 ⇒ 〈JfK0〉) over (h, h′). From this, we

construct the morphism ev ◦ 〈[[t]]〈f〉, α̂〉 : J∆K1 → 〈JfK0〉 over (Jt S hK0, Jt S′ h′K0). This

is in fact a morphism between graph relations, and fullness of the graph functor gives

that the following diagram commutes:

J∆K0
Jt S hK0 //

id

��

S

JfK0

��
J∆K0 Jt S′ h′K0

// S′
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By unfolding our encoding of open t as 〈Z, u〉 in s = t S (ΛZ. λu . s), this exactly says

that Jf(open t as 〈Z, u〉 in s)K0 = Jopen t as 〈Z, u〉 in f(s)K0.

2. By function extensionality, it is enough to show that for every type variable Z and

term variable y, we have [[Z; y : ∀X.T → Z ` (open t as 〈X,u〉 in 〈X,u〉)Z y]] = [[Z; y :

∀X.T → Z ` t Z y]]. In this context, define f : ∃X.T → ∃X.T by f p = pZ y. We

have

J(open t as 〈X,u〉 in 〈X,u〉)Z yK0 = Jf(open t as 〈X,u〉 in 〈X,u〉)K0

= Jopen t as 〈X,u〉 in f(〈X,u〉)K0

= Jt Z yK0

Here, the first equality is by the definition of f , the second by (1), and the last one

by the definition of open and 〈 , 〉.

If F : C → C is an endofunctor, an F -coalgebra is a pair (A, kA) with A an object of

C and kA : A → FA a morphism. We call A the carrier of the F -coalgebra and kA

its structure map. A morphism h : A → B in C is an F -coalgebra homomorphism

h : (A, kA) → (B, kB) if kB ◦ h = Fh ◦ kA. An F -coalgebra (W, out) is weakly final

if, for any F -coalgebra (A, kA), there exists a mediating F -coalgebra homomorphism

unfold [A, kA] : (A, kA)→ (W, out). It is a final F -coalgebra if unfold [A, kA] is unique.

Let F = (F1, F0) : Rel(U) → Rel(U) be an equality preserving lifted functor with a

strength t. We show that the final F0-coalgebra exists. Again, we first construct a weakly

final coalgebra by defining W = (W1,W0) = [[∃X.(X → F (X))×X]].

Lemma 6.5. W0 is the carrier of a weakly final F0-coalgebra (W0, out0) with mediating

morphism unfold0[A, k] and W1 is the carrier of a weakly final F1-coalgebra (W1, out1)

with mediating morphism unfold1[A, k].

Proof. The structure of the proof is similar to the proof of Lemma 6.1. We first con-

struct the term unfold = ΛA.λw : A → FA.λx.〈A, (w, x)〉, and define unfold i[A, k] =

θ−1[[unfold Ak]]i, where θ is the bijection corresponding to the adjunction −×X a X ⇒ −,
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and (A, k) are the internal expressions corresponding to the F0- or F1-coalgebra (A, k), as

appropriate. We define the structure maps (out1, out0) by

out i = θ−1[[λz.open z as 〈Z, v〉 in (t (unfold Z (π1v)))(π1 v (π2 v))]]i,

where t is the strength of F . By equational reasoning in System F, unfold0 and unfold1

are coalgebra morphisms:

out ◦ unfold [A, k] = θ−1[[λx.open 〈A, (k, x)〉 as 〈Z, u〉 in
(
t(unfold Z (π1 u)) (π1 u (π2 u))

)
]]

= θ−1[[λx.t(unfold Ak) (k x)]]

= θ−1[[t(unfold Ak)]] ◦ θ−1[[k]]

= F (unfold [A, k]) ◦ k

which proves the thesis.

We proceed similarly to Lemma 6.2. This time, we use the opfibrational part of the Graph

Lemma which gives the map φh : 〈F0h〉 → F1〈h〉 to construct F1-coalgebras.

Lemma 6.6. Assume the underlying bifibration satisfies the Beck-Chevalley condition,

wellpointedness and that Eq is full.

1. For every F0-coalgebra morphism h : (A, kA)→ (B, kB) we have unfold0[B, kB] ◦h =

unfold0[A, kA].

2. unfold0[W0, out0] = idW0 .

Proof. 1. Since h is a coalgebra morphism, kB ◦ h = F0h ◦ kA. Applying the graph

functor, we obtain the morphism 〈kA, kB〉 : 〈h〉 → 〈F0h〉, which by composing with

the morphism of the Graph Lemma gives an F1-coalgebra φh ◦ 〈kA, kB〉 : 〈h〉 → F1〈h〉.

By weak finality, we have a F1-coalgebra morphism unfold1[〈h〉, ψh ◦ 〈kA, kB〉] :

(〈h〉, ψh◦〈(kA, kB)〉)→ (W1, out1). Since W1 = Eq(W0) = 〈idW0〉, and since the graph

functor is full by Lemma 3.11, we see that (unfold0[A, kA], unfold0[B, kB]) : h→ id

in B→, i.e., unfold0[A, kA] = unfold0[B, kB] ◦ h.
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2. By function extensionality, it is enough to prove Junfold W0 out xK0 = JxK0 for a

fresh variable x : W0. We first note that by (1), unfold0[A, k] = unfold0[W0, out ] ◦

unfold0[A, k] for any A, k : A → F (A), i.e., by the definition of unfold0[A, k],

for any type X, and terms h : X → F (X), and y : X we have [[〈X, (h, y)〉]] =

[[unfold W0 out 〈X, (h, y)〉]].

[[x]] = [[openx as 〈Z, u〉 in 〈Z, u〉]]

= [[openx as 〈Z, u〉 in 〈Z, (π1 u, π2 u)〉]]

= [[openx as 〈Z, u〉 in (unfold W0 out 〈Z, (π1 u, π2 u)〉)]]

= [[unfold W0 out (openx as 〈Z, u〉 in 〈Z, (π1 u, π2 u)〉)]]

= [[unfold W0 out (openx as 〈Z, u〉 in 〈Z, u〉)]]

= [[unfold W0 out x]]

Here, the first equality comes from Lemma 6.4(2), the second one from surjective

pairing, the third from the observation above, the fourth from Lemma 6.4(1), and

the fifth and sixth respectively from surjective pairing and Lemma 6.4(2) again.

Putting things together, we have constructed a final coalgebra.

Theorem 6.7. If the underlying bifibration satisfies the Beck-Chevalley condition, and if

Eq is full, then (W0, out0) is a final F0-coalgebra.

Proof. By Lemma 6.5, (W0, outd) is weakly final. We must show that h = unfold0[A, kA]

for any kA : A → F0A and any F0-coalgebra morphism h : (A, kA) → (W0, out0). By

Lemma 6.6(1), unfold0[A, kA] = unfold0[W0, out0] ◦ h and since unfold0[W0, out0] = idW0 ,

by Lemma 6.6(2), we have h = unfold0[A, kA], as required.

6.3 Parametricity implies dinaturality

We show that the axiomatic foundations for parametricity can be used to prove that

dinaturality can be deduced from parametricity. First, the definition of dinaturality:
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Definition 6.8. If F,G : Bop × B → B are mixed variant functors, then a dinatural

transformation t : F → G is a collection of morphisms tX : FXX → GXX indexed by

objects X of B such that, for every morphism g : X → Y of B, the following hexagonal

diagram commutes:

F X X
tX // G X X

G(idX ,g)

$$
F Y X

F (g,idX)
::

F (idY ,g) $$

G X Y

F Y Y
tY

// G Y Y
G(g,idY )

::

We note that the proof applies to all mixed variant functors with equality preserving

liftings, not just strong such functors.

Theorem 6.9. Let (F1, F0), (G1, G0) : rel(U)op × rel(U)→ rel(U) be equality preserving

lifted functors. Further, let t0A : F0AA → G0AA be a family indexed by objects A of B,

and t1R : F1RR→ G1RR be a family indexed by objects R of Rel(E) such that if R is over

(A,B), then t1R is over (t0A, t
0
B). Then t0 is a dinatural transformation from F0 to G0.

Proof. Let g : A→ B be a morphism in B. Let φ : EqA→ 〈g〉 and ψ : 〈g〉 → EqB be the

maps associated to the opreindexing and reindexing definitions of 〈g〉. The morphism

F1(EqB)(EqA)
F1ψφ // F1〈g〉〈g〉

t1〈g〉 // G1〈g〉〈g〉
G1 φψ // G1(EqA)(EqB)

is such that F1 ψ φ is over (F0(g, idA), F0(idB, g)), t
1
〈g〉 is over (t0A, t

0
B), and G1 φψ is over

(G0(idA, g), G0(g, idB)). Since F1 and G1 are equality preserving, F1(EqB)(EqA) =

Eq (F0BA) = 〈idF0BA〉 and G1(EqA)(EqB) = Eq (G0AB) = 〈idG0AB〉. Finally, by the

fullness and faithfulness of the graph functor we have

F0BA

id
��

F0(g,idA) // F0AA
t0A // G0AA

G0(idA,g) // G0AB

id
��

F0BA
F0(idB ,g)

// F0BB
t0B

// G0BB
G0(g,idB)

// G0AB
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This proves the required hexagon commutes.

Theorem 6.9 applies in particular to the interpretation of terms t : ∀X.FXX → GXX

where F and G are type expressions with one free type variable. As is well known,

dinaturality reduces to naturality when F and G are covariant.

Note that the results on naturality are possible because System F has limited expressiveness.

If one moves to dependent types, not every function of type ∀X.FX− > GX is natural

anymore (see [ml15]).



Chapter 7

Universal parametricity

We saw in the previous chapter that the interpretation of product types and arrow types

is supported by universal properties in our framework. For example the arrow types

are interpreted, both at the relational and the base level, as exponential objects in their

respective categories. Using this universal property we saw that it is possible to derive

the Identity Extension Lemma and the Abstraction Theorem. The situation is less clear

for forall types. For example, the solution adopted in the previous bifibrational model

has baked the Identity Extension Lemma into the definition. In this section we study a

universal property underpinning the interpretation of forall types which permits to prove

the Identity Extension Lemma and the Abstraction Theorem in an axiomatic manner. The

result holds for a large class of models axiomatically built from faithful bifibrations which

admit full comprehension – this includes, for instance, subobject bifibrations.

The material presented in this chapter is based on [GNFO15], and we use the same notation

as in Chapter 5 for objects in the base and total category of a fibration of relations

rel(U) : Rel(E)→ B × B.

7.1 Reynolds’ parametrically polymorphic functions

In this first section we analyze the universal property behind Reynolds’ set theoreti-

cal interpretation of parametric forall types in the setting of the relations of fibrations

108



7.1. Reynolds’ parametrically polymorphic functions 109

rel : Rel→ Set× Set, which we recall is given by

J∀X.T K0Ā = {f :
∏
X:Set

JT K0(Ā,X) | ∀R ∈ Rel(A,B). (fA, fB) ∈ JT K1(Eq Ā, R)}

(f, g) ∈ J∀X.T K1R̄ iff ∀R ∈ Rel(A,B). (fA, gB) ∈ JT K1(R̄, R). (7.1)

Note that if we were only to consider ad-hoc polymorphic functions, i.e. the collection

∏
A:Set

JT K0(Ā, A)

then we could characterise this collection as the product of the functor JT K0(Ā,−) :

Set → Set (näıvely assuming the product exists), that is, as the terminal JT K0(Ā,−)-

cone. Including Reynolds’ condition that a parametrically polymorphic function f :∏
S:SetJT K0(Ā, S) is one where for every relation R ∈ Rel(A,B) we have that (fA, fB) ∈

JT K1(EqĀ, R) cuts down the the number of ad-hoc polymorphic functions. Now the

key bit. Define νA : J∀X.T K0Ā → JT K0(Ā, A) to be type application, i.e. νAf = fA.

Then Reynolds’ parametricity condition that for all R ∈ Rel(A,B), if f : J∀X.T K0Ā, then

(fA, fB) ∈ JT K1(EqĀ, R) is equivalent to a morphism Eq (J∀X.T K0Ā) → JT K1(EqĀ, R)

over νA and νB. Generalizing, we have:

Definition 7.2. Let F = (F1, F0) be a pair of functors with F0 : |Set| → Set and

F1 : |Rel| → Rel such that F1 is over F0×F0. An F -eqcone is an F0-cone (A, ν) such that

there is a (necessarily unique since rel is faithful) F1-cone with vertex EqA over (ν, ν). The

category of such cones is the full subcategory of F0-cones whose objects are F -eqcones.

Our axiomatic definition is linked to Reynolds’ definition in the following way:

Theorem 7.3. Assume Γ, X ` T type. For every tuple Ā, Reynolds’ set of parametrically

polymorphic functions J∀X.T K0Ā from (7.1) is the terminal F -eqcone for the pair of functors

F = (JT K1(EqĀ,−), JT K0(Ā,−)).

Proof. Application at A, defined by νAf = fA, makes J∀X.T K0Ā a vertex of a JT K0(Ā,−)-

cone. The uniformity condition on elements of J∀X.T K0Ā ensures this cone is an F -eqcone.
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To see that this is the terminal such, consider any other F -eqcone (A, η). As this is a

JT K0(Ā,−)-cone, there is a unique map η̄ of such cones into
∏
A:SetJT K0(Ā, A). However,

the fact that (A, η) is an F -eqcone means the image of this mediating map lies within

J∀X.T K0Ā. Hence we have a morphism of F -eqcones A→ J∀X.T K0Ā. The uniqueness of

this mediating morphism follows from the uniqueness of η̄.

We can also give a universal property to characterise J∀X.T K1R̄.

Definition 7.4. Let F = (F1, F0) and G = (G1, G0) be pairs of functors |Set| → Set and

|Rel| → Rel with F1 over F0×F0, G1 over G0×G0, and let H : |Rel| → Rel with H over

F0 ×G0. A fibred (F,G,H)-eqcone consists of an F -eqcone (A, ν), a G-eqcone (B,µ) and

a H-cone (Q, γ) over (ν, µ). The category of such cones has as morphisms triples (f, g, h),

where f is a morphism between the underlying F -eqcones, g is a morphism between the

underlying G-eqcones and h is a (again necessarily unique) morphism of H-cones above

(f, g).

The above definition can be understood as follows. For every relation R ∈ Rel(A,B) we

need two things to be related, which is forced by γ. That the related things are instances

of polymorphic functions is reflected by the fact that γR is over (νA, µB). This intuition

can be formalised via the following theorem:

Theorem 7.5. Assume Γ, X ` T type. For every relation R̄ ∈ Rel
|Γ|
(Ā,B̄)

, we have that

the relation J∀X.T K1R̄ from (7.1) is the terminal fibred (F,G,H)-eqcone for the functors

F = (JT K1(EqĀ,−), JT K0(Ā,−)), G = (JT K1(EqB̄,−), JT K0(B̄,−)) and H = JT K1(R̄,−).

Proof. We have the F -eqcone (J∀X.T K0Ā, ν) and the G-eqcone (J∀X.T K0B̄, µ), where

νAf = fA and µAg = gA are given by type application. The object J∀X.T K1R̄ lives

over (J∀X.T K0Ā, J∀X.T K0B̄), and (J∀X.T K1R̄, (ν, µ)) is an H-cone over (ν, µ). Given any

other fibred (F,G,H)-eqcone (A, ρ), (B, τ), (Q, (ρ, τ)), by terminality there are two unique

morphisms h0 : A→ J∀X.T K0Ā and h1 : B → J∀X.T K0B̄. The pair of morphisms (h0, h1)

defines a morphism Q→ J∀X.T K1R̄ which is unique by faithfulness of the fibration.

In Theorems 7.9 and 7.17 below, we will see that this gives another proof that Reynolds

concrete model satisfies the Identity Extension Lemma and the Abstraction Theorem.
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Next step is to turn to the universal property we will use to define the object of paramet-

rically polymorphic functions in our axiomatic framework. We carefully formulated the

definitions of this section so that they seamlessly generalise to the fibrational setting. We

assume for the rest of the chapter that U : E → B is faithful fibration.

7.2 Eqcones and fibred eqcones

We start by generalizing the definition of eqcones for a faithful fibration U : E → B and

the fibration of relations rel(U) : Rel(E)→ B × B obtained via change of base from U .

Definition 7.6. Let F = (F1, F0) : |rel(U)| → rel(U) be a fibred functor. An F -eqcone

is an F0-cone (A, ν) such that there is a (necessarily unique since U is faithful) F1-cone

with vertex EqA over (ν, ν). The category of such cones is the full subcategory of F0-cones

whose objects are F -eqcones. We denote by ∀0F the terminal object of this category, if it

exists. We denote by ∀0F also the vertex of the terminal cone, when it exists. It will be

clear from the context to which one we refer.

The universal property defining the relational interpretation of parametrically polymorphic

functions smoothly generalises also to the fibrational setting:

Definition 7.7. Let F = (F1, F0) and G = (G1, G0) be fibred functors |rel(U)| → rel(U)

and let H : |Rel(E)| → Rel(E) be over F0 ×G0. A fibred (F,G,H)-eqcone consists of an

F -eqcone (A, ν), a G-eqcone (B,µ) and an H-cone (Q, γ) such that Q is over A×B, and

γ is over (ν, µ). A morphism (A, ν,B, µ,Q, γ) → (A′, ν ′, B′, µ′, Q′, γ′) in the category of

such cones consists of triples (f, g, h) where f : (A, ν) → (A′, ν ′), g : (B,µ) → (B′, µ′),

and h is a (again necessarily unique) morphism of H-cones above (f, g). We denote the

terminal object of this category by ∀1(F,G,H), if it exists. By abuse of notation, we

denote by ∀1(F,G,H) also the vertex of the H-cone in ∀1(F,G,H); it will always be clear

from context to which one we refer.

We next show how to interpret forall types using our axiomatic definition. We show that

they support:
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1. A fibred semantics: our axiomatic definitions do not by definition guarantee that

if R̄ ∈ Rel(U)n
(Ā,B̄)

, then J∀X.T K1R̄ is a relation between J∀X.T K0Ā and J∀X.T K0B̄,

so we prove this axiomatically.

2. Equality preservation: since we do not restrict to the case of equality preserving

fibred functors, the preservation of equalities does not come for free. Again, we prove

it from the axiomatic definition.

3. The interpretation of terms: we need to prove that, in the axiomatic setting, we

can interpret terms of forall types as fibred natural transformations. In order to do

so we again construct a model of System F in the form of a λ2-fibration.

We prove equality preservation (item 2) for subobject fibrations first, and then generalise

it to the case of faithful fibrations which admit full comprehension. The proofs of the

fibred semantics (item 1) and of the interpretation of terms (item 3) do not require an

instantiation to any particular fibration. These proofs are general enough that they can be

derived uniformly from Definitions 7.6 and 7.7.

7.3 A fibred semantics

The proof that if R̄ ∈ Reln(Ā,B̄), then J∀X.T K1R̄ is a relation between J∀X.T K0Ā and

J∀X.T K0B̄ crucially requires opfibrational structure.

Lemma 7.8. Consider an opfibration rel(U) : Rel(E) → B × B. Let F = (F1, F0) and

G = (G1, G0) be fibred functors |rel(U)| → rel(U) and assume H is over F0 × G0. Then

∀1(F,G,H) is over ∀0F × ∀0G.

Proof. The forgetful functor which maps a fibred (F,G,H)-eqcone to its pair of underlying

F -eqcones and G-eqcones is an opfibration, since it inherits the opfibrational structure of

rel(U) : Rel(E)→ B×B. Any opfibration V : D → C which has terminal objects 1C in the

base and 1D in the total category, also has a terminal object Σ!1D in the total category

over the terminal object 1C in the base, where ! : V (1D)→ 1C is the unique morphism from



7.4. Equality preservation 113

V (1D) to the terminal object. Since terminal objects are defined up to isomorphism, we

can take ∀1(F,G,H) to be over ∀0F × ∀0G.

This lemma, when taken with the usual treatment of function spaces (and assuming ∀0 and

∀1 exist), ensures that we have replicated Reynolds’ original fibred semantics within our

axiomatic framework. That is, for all judgments Γ ` T type, (JT K1, JT K0) forms a fibred

functor |Rel(U)|n → Rel(U).

7.4 Equality preservation

We saw in Section 7.1 that the axiomatisation gives the right interpretation of forall types

for relations over sets. We now show that the Identity Extension Lemma can be proven

instantiating the axiomatisation with any subobject bifibration in Section 7.4.1. We then

generalise this further to bifibrations with full comprehension in Section 7.4.2.

7.4.1 Subobject fibrations

In a subobject fibration, the functor Eq : B → Rel(E) maps an object X to the mono

〈idX , idX〉 : X ↪→ X × X. Thus to show Eq(∀0F (A)) = ∀1(F, F, F1)(EqA), we need to

show:

Lemma 7.9. Let U be a subobject bifibration and F = (F1, F0) : |rel(U)| → rel(U) be a

fibred functor which is equality preserving. If the terminal fibred (F, F, F1)-eqcone exists

and it is given by the monomorphism 〈v1, v2〉 : ∀1(F, F, F1) ↪→ ∀0F × ∀0F , then we have

〈v1, v2〉 = 〈id, id〉 : ∀0F ↪→ ∀0F × ∀0F .

Proof. The heart of the proof is to show that v1 = v2. To see this, let πX : ∀0F → F0X be

the natural transformation of the terminal F -eqcone ∀0F , and let γR : ∀1(F, F, F1)→ F1R

be the natural transformation of the F1-cone in ∀1(F, F, F1). By Lemma 7.8, for every X,

γEqX : ∀1(F, F, F1)→ F1(EqX) = Eq(F0X) = F0X is over (πX × πX). By the definition of
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the equality functor in a subobject fibration, we have

∀1(F, F, F1)
γEqX //

〈v1,v2〉
��

F1(EqX) = Eq(F0X) = F0X

〈id,id〉
��

∀0F × ∀0F πX×πX
// F0X × F0X

Thus πXv1 = γEq(X) = πXv2 and (∀1(F, F, F1), γEq(−)) is a F -eqcone with F1-cone given

by γR. Hence both v1 and v2 are mediating morphisms into the terminal F -eqcone, and

thus v1 = v2. Furthermore, they are vertical since 〈id, id〉 ◦ vi = 〈v1, v2〉. We can now show

that Eq(∀0F ) is isomorphic to ∀1(F, F, F1). In one direction, Eq(∀0F ) is easily seen to be

a fibred (F, F, F1)-eqcone and hence there is a map of subobjects Eq(∀0F )→ ∀1(F, F, F1).

In the other direction, v1 is a map of subobjects since v1 = v2. These maps are mutually

inverse, as they are both vertical and the fibration is faithful.

The Identity Extension Lemma for fibred functors (T1, T0) : |rel(U)|n+1 → rel(U) immedi-

ately follows by instantiating F0 = T0(Ā,−) and F1 = T1(EqĀ,−).

Corollary 7.10. Let U be a subobject bifibration and (T1, T0) : |rel(U)|n+1 → rel(U) be

an equality preserving fibred functor. Then

Eq(∀0T (Ā, )) ∼= ∀1((T0(Ā, ), T1(EqĀ, )), (T0(Ā, ), T1(EqĀ, )), T1(EqĀ, ))

for every n-tuple Ā of objects in the base category B.

This lemma shows that in the axiomatic setting instantiated to subobject fibrations, all

type expressions are interpreted not just as fibred functors |rel(U)|n → rel(U), but as

equality preserving fibred functors.

7.4.2 Faithful bifibrations which admit full comprehension

We now generalise the previous section to faithful bifibrations which admit full compre-

hension. In order to do so, we first prove some properties of the comprehension functor.

Consider an opfibration rel(U) : Rel(E)→ B × B obtained via change of base as in (2.31).

We define the functor S : E → Rel(E) as follows:
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Lemma 7.11. Let rel(U) : Rel(E) → B × B be an opfibration. The map on objects

P 7→ ΣδUPP extends to a functor S : E → Rel(E).

Proof. The functor S acts on a morphism f : P → Q in E via the universal property of

(δX)§ as follows:

P

f

��

(δX)§ // ΣδXP

S(f)

��
Q

(δY )§

// ΣδYQ

over the diagram

X

U(f)
��

δX // X ×X
U(f)×U(f)
��

Y
δY

// Y × Y.

in B which obviously commutes.

Lemma 7.12. The functor S : E → Rel(E) is left adjoint to the projection functor

J : Rel(E)→ E defined as in Diagram (3.2).

Proof. We explicitly give the unit η and counit ε of the adjunction since we will use

them later. The unit component ηP : P → ΣδUPP , is given by ηP := (δUP )§. The

counit component ε(A,B,R) : (A×B,A×B,ΣδA×BR)→ (A,B,R), is given by ε(A,B,R) :=

(π1, π2, pA,B), where π1 and π2 are, respectively, the first and second projections, while

pA,B is given by the universal property of (δA×B)§ with respect to the diagrams

R
(δA×B)§ //

id
��

ΣδA×BR

pA,B
xx

R

over the commuting diagram

A×B
δA×B //

id
��

(A×B)× (A×B)

π1×π2uu
A×B.
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in B. Naturality and triangle identities follow from direct calculation and opfibrational

properties.

Hence we have a string of adjunctions

Rel(E)

J

66⊥ E
S

ss

{ }

77⊥ B.
K

xx

Note that Eq = S ◦K. By composing the adjunctions, we obtain Eq a {J( )}. From now

on, we will assume that the equality functor is full and faithful. As we saw in Chapter 5,

this assumption is essential in order to derive the usual consequences of parametricity in

the bifibrational axiomatisation.

Before proving the Identity Extension Lemma, we need one more result about the compre-

hension functor.

Lemma 7.13. Let π : { } → U be a natural transformation as in Lemma 3.16 and

Eq be full and faithful. The unit of the adjunction Eq a {J( )} is an isomorphism

η
Eq,{J}
A : A ∼= {ΣδKA} since Eq is full and faithful and it holds πEq(A) = δ ◦ ηEq,{J}.

Proof. Consider the following diagram:

A
η
K,{ }
A //

id
��

{KA}
πKA
��

{(δA)§} // {ΣδKA}
πΣδKA

��
A

id
// A

δ
// A×A.

The left square commutes since it arises as the application of U to the triangle identity

ε
K,{ }
KA ◦KηK,{ }A = id. The right square commutes since it is given by P((δA)§) (where P is

defined in Lemma 3.16). The morphism (δA)§ is the unit of the adjunction S a J , and the

composition {(δA)§} ◦ η
K,{ }
A is the unit η

Eq,{J}
A of the adjunction Eq a {J(−)}, which is an

isomorphism since Eq is full and faithful by assumption. Hence πEq(A) = δ ◦(η
Eq,{J}
A )−1.

Again, the key point in the proof of the Identity Extension Lemma is in showing that,

given π∀1F1 = 〈v1, v2〉 : {∀1(F, F, F1)} → ∀0F × ∀0F , we have v1 = v2.
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Lemma 7.14. Let U be a faithful bifibration which admits full comprehension and

F = (F1, F0) : |rel(U)| → rel(U) be a fibred functor which is equality preserving. Then the

morphism π∀1F1 = 〈v1, v2〉 : {∀1(F, F, F1)} → ∀0F × ∀0F is such that v1 = v2.

Proof. The terminal fibred eqcone comes, for every object A in B, with a morphism γEq(A)

over νA × νA, which, by Lemma 7.13, is sent, up to isomorphism, by P to the commuting

diagram

{∀1(F, F, F1)}

〈v1,v2〉

��

{γEq(A)} // F0(A)

δ

��
∀0F × ∀0F νA×νA

// F0(A)× F0(A)

from which we conclude ν ◦ v1 = ν ◦ v2.

The system ({∀1(F, F, F1)}, ν◦v1) defines an F -eqcone, where the equality cone part is given

by precomposing the terminal F -eqcone (∀0F0, ν) with Eq(v1) : Eq({∀1F1}) → Eq(∀0F ).

It follows that both v1 and v2 define an eqcone morphism from ({∀1F1}, ν ◦ v1) to the

terminal eqcone (∀0F, ν), hence v1 = v2 by uniqueness.

Lemma 7.15. Let U be a faithful bifibration which admits full comprehension and

F = (F1, F0) : |rel(U)| → rel(U) be an equality preserving fibred functor. The vertex of the

F1-cone in ∀1(F, F, F1) is isomorphic to Eq(∀0F ), if it exists.

Proof. We give two vertical morphisms h : Eq(∀0F )→ ∀1(F, F, F1) and s : ∀1(F, F, F1)→

Eq(∀0F0) and since the fibration is faithful, their compositions are necessarily identity

morphisms.

The terminal F -eqcone (∀0F, ν) defines a fibred (F, F, F1)-eqcone whose F1-cone vertex

is Eq(∀0F ) and the vertices of the F -eqcones are ∀0F . There is a unique morphism h

from this cone to ∀1(F, F, F1) and it is vertical since both the fibred (F, F, F1)-eqcones are

over (∀0F,∀0F ). In fact, being (∀0F,∀0F ) terminal, the unique morphism (∀0F,∀0F )→

(∀0F,∀0F ) is the identity.
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For the other morphism, by Lemma 7.14, we have a commuting diagram

{∀1F1}
v1 //

〈v1,v1〉

��

∀0F

δ

��
∀0F × ∀0F

id
// ∀0F × ∀0F.

and using fullness and faithfulness of P, there is a unique morphism s : ∀1F1 → Eq(∀0F )

such that {s} = v1 and U(s) = id.

Again, the Identity Extension Lemma for fibred functors (T1, T0) : rel(U)|n+1 → rel(U)

immediately follows by instantiating Lemma 7.15 with F0 = T0(Ā,−) and F1 = T1(EqĀ,−).

Corollary 7.16. Let U be a subobject bifibration and (T1, T0) : |rel(U)|n+1 → rel(U) be

an equality preserving fibred functor. Then

Eq(∀0T (Ā, )) ∼= ∀1((T0(Ā, ), T1(EqĀ, )), (T0(Ā, ), T1(EqĀ, )), T1(EqĀ, ))

for every n-tuple of objects in the base category E .

These lemmas show that once again in our axiomatic setting, all type expressions are

interpreted not just as fibred functors |rel(U)|n → rel(U), but as equality preserving fibred

functors. We now turn to the construction of a model exploiting this fact.

7.5 ∀-fibrational structure

Consider the functor p : FEq
rel(U) → N

Eq
rel(U) as in Definition 5.10. In this section we finally show

that if the fibre (FEq
rel(U))Ω over the generic object Ω has terminal fibred (F,G,H)-eqcones

then p has simple Ω-products. In this way, we find a condition for being a ∀-fibration. If p

is also an equality preserving arrow fibration, we get a λ2-fibration where we can interpret

terms of System F.

Lemma 7.17. Let p : FEq
rel(U) → N

Eq
rel(U) be the functor as in Definition 5.10. If (FEq

rel(U))Ω

has terminal fibred (F,G,H)-eqcones for every pair of fibred functors F,G : |rel(U)| →
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rel(U) and H : Rel(E) → Rel(E) over F0 × G0, then p has simple Ω-products. In

particular the right adjoint to π∗ : (FEq
rel(U))n → (FEq

rel(U))n+1 is given by the functor

Π = (Π0,Π1) : (FEq
rel(U))n+1 → (FEq

rel(U))n which sends an equality preserving fibred functor

F : |rel(U)|n+1 → rel(U) to the fibred functor whose components are

(Π0F )Ā = ∀0(F0(Ā,−), F1(EqĀ,−))

and

(Π1F )R̄ = ∀1((F0(Ā,−), F1(EqĀ,−)), (F0(B̄,−), F1(EqB̄,−)), F1(R̄,−)).

Proof. We show that there is a natural isomorphism between π∗G → F and G → ΠF ,

where F is in (FEq
rel(U))n+1 and G is in in (FEq

rel(U))n. Consider a fibred natural transformation

(τ, ξ) : π∗G→ F . Note that (π∗G)0(Ā,X) = G0(Ā) for every X. Hence τĀ,− and ξEq(Ā),−

define an (F0(Ā,−), F1(Eq(Ā),−))-eqcone with vertex G0(Ā), so that there is a a map

ρ0 : G0(Ā) → (Π0F )Ā into the terminal such. Similarly ξR̄,− over (τĀ,−, τB̄,−) defines

a fibred ((F0(Ā,−), F1(Eq(Ā), )), (F0(B̄, ), F1(Eq(B̄),−), F1(R̄, ))-eqcone and there is a

unique morphism ρ1 : G1(R̄) → (Π1F )R̄ which together with ρ0 makes up a fibred

natural transformation G→ ΠF . In the other direction, composition with the projections

(νA, νB, γR) turns natural transformations G→ ΠF into natural transformations π∗G→ F .

By the universal property of terminal fibred eqcones, these correspondences are mutually

inverse. The Beck-Chevalley condition boils down to the fact that both (f∗ ◦Πm)FĀ and

(Πn ◦(f× id)∗)FĀ are defined to be the terminal eqcone for the same functor F (fĀ,−).

Recall that using Lemma 5.22 we showed how the equality preserving arrow fibration

structure arises from standard structure, e.g. that our original fibration U : E → B

is cartesian closed, and that the functor Eq has a left adjoint satisfying Frobenius. To

summarise, in this section we have proven:

Theorem 7.18. Let U : E → B be a faithful bifibration which admits full comprehension

and U is cartesian closed. Assume that the functor Eq has a left adjoint satisfying Frobenius,

and the terminal fibred eqcones exist. Then the functor p : FEq
rel(U) → N

Eq
rel(U) as in Definition
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5.10 is a λ2-fibration and thus a model of System F where the Identity Extension Lemma

and the Abstraction Theorem hold in the sense of Corollaries 5.25 and 5.26. �

From this theorem it follows that we have the same model as in Chapter 5. Hence all the

usual expected consequences of parametricity shown in Chapter 5 follow.



Part III

Two-Dimensional Parametricity
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Chapter 8

Proof-relevant relations

Throughout the previous part of the thesis, we worked with faithful fibrations. Faithfulness

is a reasonable assumption, as it corresponds to proof-irrelevant relations, which is a standing

assumption in the literature. In this part of the thesis, based on the paper [GNFO16], we

start to study what happens when we remove the faithfulness assumption and we work

with proof-relevant relations. We will see that, in order to recover parametricity, we need

another layer of relations: relations between relations which we call 2-relations.

The work that we present here is only the first step of a wider project. We introduce

two-dimensional parametricity in a concrete way, like Reynolds’ set theoretical model that

we presented in Section 5.1.

Since we are working with proof relevant relations, we need a notion of proof relevant

equality and this is provided by intensional Martin-Löf type theory. Note that we are still

studying System F: the use of Martin-Löf type theory is to provide a meta-mathematics

that we need for the proof relevant framework. A standard reference for Martin-Löf type

theory, also if not in its intensional form, is [ML84], but also [Uni13] has good introductory

chapters.

In this chapter we introduce intensional Martin-Löf type theory and we give the definition

of two-dimensional relations in intensional Martin-Löf type theory.

8.1 Intensional Martin-Löf type theory

Intensional Martin-Löf type theory is an extension of the simply typed lambda calculus,

different from System F, where the two important features are the dependent types and

122
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the identity types. We refer to the intensional Martin-Löf type theory as MLTT, since we

will only use the intensional version.

8.1.1 Dependent types

So far we did not give an environment in which types live: we just assumed as primitive

the notion of types. We want now to collect together types, like in a type of types.

Every type A lives in the universe of (small) types, and we formally express it by writing

A : Type, where Type is the universe of (small) types. Note that we need that Type /∈ Type,

in order to avoid situations similar to Russel’s paradox for set theory.

A dependent type is a type which depends on a term variable. We write x : A ` B type

for a type B which depends on the term variable x : A. A dependent type is sometimes

called family of types and denoted by B : A→ Type. In fact a dependent type consists

of a collection of types B(a) : Type indexed over terms a : A.

Example 8.1. An example of a dependent type is given by the type of vectors VecT (n)

parametrised by their length, i.e. VecT (n) is the type of vectors with n components.

Equivalently, we may write n : nat ` VecT type.

The dependence of types from terms requires new rules to construct contexts. A context in

Martin-Löf type theory consists of a list of term variables x1 : A1, . . . xn : An where xi 6= xj

if i 6= j. The list may be empty. We use the Greek letters Γ or ∆ for the context. In a

context each type must be well-formed in the context composed of the previous variables

of the list. The judgment Γ ctx formally expresses the fact that Γ is a well-formed context.

The formal rules for the context are the following

ctx

x1 : A1, . . . , xn−1 : An−1 ` An type

(x1 : A1, . . . , xn : An) ctx

where, in the second rule, the variable xn must be distinct from the variables x1, . . . , xn−1.

We have the usual rule for term variables

xi : Ai . . . , xn : An ctx

x1 : A1, . . . , xn : An ` xi : Ai
i ∈ {1, . . . , n}
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8.1.2 Dependent functions (Π-types)

Dependent functions, sometimes called dependent products or Π-types, are a more

general version of arrow types. The elements of a dependent product are functions whose

codomain type changes depending on the input term. The following rule shows how to

form dependent function types:

Γ ` A type Γ, x : A ` B type

Γ ` (Πx : A)B(x) type

Example 8.2. Consider Vecnat as in Example 8.1. The dependent function veczero mapping

n to the vector [0, . . . , 0] of length n has type veczero : (Πn : nat)Vecnat(n).

We can introduce terms of dependent function type using the following rule

Γ, x : A ` b : B

Γ ` λ(x : A).b : (Πx : A)B

This is clearly reminiscent of the introduction rule for arrow types, but with dependencies

taken into account. Similarly we have the other rules:

• Term application
Γ ` f : (Πx : A)B Γ ` a : A

Γ ` f(a) : B[a/x]

• β-equivalence
Γ, x : A ` b : B Γ ` a : A

Γ ` (λ(x : A).b)(a) ≡ b[a/x] : B[a/x]

• η-equivalence
Γ ` f : (Πx : A)B

Γ ` f ≡ (λx.f(x)) : (Πx : A)B

where B[a/x] is the type obtained by substituting a in x.

When x : A does not occur freely in B, this means that B does not depend on terms of

type A, and, as a special case, we obtain the ordinary arrow types A→ B := (Πx : A)B.

We will abbreviate the expression λ(x : A).b as λx.b, with the understanding that the

omitted type A should be filled in appropriately before type-checking.
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8.1.3 Dependent pair types (Σ-types)

Just as dependent functions generalise arrow types, dependent pairs generalise products.

Dependent pairs are also known as dependent sums or Σ-types.

We can form a dependent pair type using the following rule:

Γ ` A type Γ, x : A ` B type

Γ ` (Σx : A)B : type

Example 8.3. Consider again VecT as in Example 8.1. The terms of type (Σn : nat)VecT

consist of pairs (n, [x1, . . . , xn]) where n is a natural number and [x1, . . . , xn] is a vector of

length n, with xi : T for every i ∈ {1, . . . , n}.

The way to introduce terms of dependent pair type is by pairing, as shown by the following

rule:
Γ, x : A ` B type Γ ` a : A Γ ` b : B[a/x]

Γ ` (a, b) : (Σx : A)B

We can eliminate terms of dependent pair type using the following rule:

Γ, z : (Σx : A)B ` C type Γ, x : A, y : B ` g : C[(x, y)/z] Γ ` p : (Σx : A)B

Σ ` ind(Σx : A)B(C, g, p) : C[p/z]

The computation rule is a judgmental equality explaining what happens when elimination

rules are applied to results of introduction rules. In the case of dependent pair types the

computational rule is

Γ, z : (Σx : A)B ` C type Γ, x : A, y : B ` g : C[(x, y)/z]

Γ ` a : A Γ ` b : B[a/x]

Γ ` ind(Σx : A)B(C, g, (a, b)) ≡ g[(a/x, b/y] : C[(a, b)/z]

which says that elimination applied to a pair (a, b) reduces exactly to g(a, b).

When B does not contain free occurrences of x : A, as a special case we obtain the cartesian

product A×B := (Σx : A)B.
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8.1.4 The identity type

The way MLTT handles with identities is the second distinguishing feature of the system.

Given a type A and two terms a, b : A, we have the identity type IdA(a, b). Terms

p : IdA(a, b) are proofs that a is equal to b. Given a type A : Type, we have the family

of types IdA : A → A → Type. It is convenient to use the standard symbol of equality

a = b for IdA(a, b), and, for clarity, we may also write a =A b. If we have a term of type

a =A b we say that a and b are equal, or sometimes propositionally equal if we want to

emphasise that this is different from the judgmental equality a ≡ b.

The following rule shows how to form identity types:

Γ ` A : Type Γ ` a : A Γ ` b : A

Γ ` a =A b : Type

We expect that there should be a way to construct a term of type a =A a for every term a

of type A. In fact there is the following rule

Γ ` A : Type Γ ` a : A

Γ ` refla : a =A a

Thus, we have a dependent function

refl : (Πa : A)(a =A a)

which is called reflexivity, and it introduces a term of identity type which is a proof that

every term of type A is equal to itself (in a specific way). In particular, this means that if

a and b are judgmentally equal (a ≡ b) then we also have an element refla : a =A b. This is

well typed because a ≡ b means that also the type a =A b is judgmentally equal to a =A a,

which is the type of refla.

The induction rule for identity types is very important. It can be seen as stating that the

family of identity types is freely generated by the elements of the form reflx : x = x. Due

to its importance, we first analyze the induction rule which is as follows: given a family of
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types

C : (Πx, y : A)(x =A y)→ Type

and a function

c : (Πx : A)C(x, x, reflx),

then there is a function

f : (Πx, y : A)(Πp : x =A y)C(x, y, p)

which satisfies the computation rule

f(x, x, reflx) ≡ c(x).

Formally the rule is

Γ, x : A, y : A, p : x =A y ` C : Type

Γ, z : A ` c : C(z, z, reflz) Γ ` a : A Γ ` b : A Γ ` p′ : a =A b

Γ ` ind=A(C, c, a, b, p′) : C(a, b, p′)

and the computation rule is

Γ, x : A, y : A, p : x =A y ` C : Type Γ, z : A ` c : C(z, z, reflz) Γ ` a : A

Γ ` ind=A(C, c, a, a, refla) ≡ c[a/z] : C(a, a, refla)

We use the same notation as in [Uni13] and we write ind=A , but traditionally ind=A is

known as J .

For the identity on function types we rely on the following axiom:

Axiom 8.4 (Function extensionality). The function

happly : Id(Πx:A)B(x)(f, g)→ (Πx : A)IdB(x)(f(x), g(x))

defined using path induction in the obvious way (see [Uni13]) is an equivalence in the sense
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that there exists an inverse function and the two compositions are identities. In particular,

we have an inverse

ext : (Πx : A)IdB(x)(f(x), g(x))→ Id(Πx:A)B(x)(f, g)

This axiom is justified by models of Type Theory in intuitionistic set theory. It also follows

from Voevodsky’s Univalence Axiom [Voe10], which we do not assume in this thesis. We

will use function extensionality in order to derive the Identity Extension Lemma for arrow

types, as in e.g. [Wad07].

The corresponding statement for sigma types requires more tools. In fact given two terms

(a, p) and (b, q) of type (Σa : A)B(a), one would expect them to be equal if they are equal

componentwise. This is not possible to do straightforward because p : B(a) and q : B(b)

live in different types. We will see in Section 8.2.4 how to do that.

8.2 Homotopy interpretation of MLTT

In this section we show some properties of MLTT and sketch how one can think of MLTT

from the point of view of homotopy theory.

The key idea in homotopy type theory is that an identity type IdA(a, b) can be thought of

as the type of paths from a to b. In the rest of this thesis, we will use terminology and

intuitions of homotopy type theory. For example, we follow the practice of calling the

induction on identity types path induction.

The rest of this section develops the algebra of the identity types. We first construct a

map which sends every path to its inverse.

Lemma 8.5. For every type A and every x, y : A there is a function

−1 : (x =A y)→ (y =A x)

such that refl−1
x ≡ reflx for every x : A. We call p−1 the inverse of p.
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Proof. By path induction it is enough to define the map for every x and reflx. We define

refl−1
x ≡ reflx.

The composition of paths corresponds to transitivity of equality.

Lemma 8.6. For every type A and every x, y, z : A there is a function

� : (x =A y)→ (y =A z)→ (x =A z)

such that reflx � reflx ≡ reflx for every x : A. We call p � q the concatenation or composite

of p and q.

Proof. We apply path induction two times: The first to p and the second to q and we

reduce to the case in which we have only x and reflx. We define reflx � reflx ≡ reflx.

The following lemma shows the behaviour of refl, inverses and composition.

Lemma 8.7. Suppose A : Type, x, y, z, w : A, p : x =A y, q : y =A z and r : z =A w. We

have the following:

1. p = p � refly and p = reflx � p

2. p−1 � p = refly and p � p−1 = reflx

3. (p−1)−1 = p

4. p � (q � r) = (p � q) � r.

Proof. The proof of each of the points uses induction on paths.

1. By induction on p it reduces to reflx � reflx = reflx.

2. By induction on p it reduces to refl−1
x

� reflx = reflx.

3. By induction on p it reduces to refl−1−1

x = reflx

4. By induction on p, q and r it reduces to reflx � (reflx � reflx) = reflx = (reflx � reflx) � reflx.
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Recall that a groupoid is a category where every morphism is invertible. Thus, so far in

this section, we proved that the identity types IdA(a, b) have the structure of a groupoid,

up to propositional equality. In fact, by considering IdId... , one can show that each type

comes equipped with the structure of an ∞-groupoid (see [LL10,vdBG12]).

8.2.1 Functions are functors

Since types are groupoids, it is natural to study if functions between types have functorial

behaviour.

Lemma 8.8. Suppose f : A→ B is a function. Then for any x, y : A there is an operation

ap(f) : (x =A y)→ (f(x) =B f(y)).

Moreover, for every x : A we have ap(f)(reflx) ≡ reflf(x).

Proof. By induction, it suffices to assume p is reflx. In this case we can define ap(f)(reflx) ≡

reflf(x) : f(x) = f(x).

The map ap( ) behaves functorially.

Lemma 8.9. For functions f : A → B and g : B → C, and for paths p : x =A y and

q : y =A z we have

• ap(f)(p � q) = ap(f)(p) � ap(f)(q).

• ap(f)(p−1) = ap(f)(p)−1.

• ap(g)(ap(f)(p)) = ap(g ◦ f)(p).

• ap(idA)(p) = p.

Proof. By path induction.



8.2. Homotopy interpretation of MLTT 131

8.2.2 Homotopies and equivalences

We define a homotopy between functions as follows:

Definition 8.10. Let f, g : (Πx : A)P (x) be two dependent functions with codomains the

type family P : A→ Type. A homotopy from f to g is a dependent function of type

(f ∼ g) := (Πx : A)(f(x) =P (x) g(x)).

Lemma 8.11. Homotopy is an equivalence relation. That is, we have terms of types

(Πf : (Πx : A)P (x))(f ∼ f)

(Πf, g : (Πx : A)P (x))(f ∼ g)→ (g ∼ f)

(Πf, g, h : (Πx : A)P (x))(f ∼ g)→ (g ∼ h)→ (f ∼ h)

The following lemma expresses a naturality condition for homotopies:

Lemma 8.12. Suppose H : f ∼ g is an homotopy between two functions f, g : A→ B and

let p : x =A y. Then we have H(x) � ap(g)(p) =f(x)=Bg(y) ap(f)(p) �H(y) and we can draw

this condition as a commutative diagram:

f(x)
ap(f)(p)

H(x)

f(y)

H(y)

g(x)
ap(g)(p)

g(y).

A function f : A → B is said to be an equivalence if it has homotopy left and right

inverses and we write

isequiv(f) := ((Σg : B → A)(f ◦ g ∼ idB))× ((Σh : B → A)(h ◦ f ∼ idA)).

If there exists an equivalence between two types A and B, we write A ∼= B and the type of
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equivalences between two types is denoted by

(A ∼= B) :≡ (Σf : A→ B)(isequiv(f)).

8.2.3 n-Types

In this thesis we restrict the attention to types where identity proofs of identity proofs are

unique, i.e. to types A where IdIdA(x,y)(p, q) is trivial. Garner in [Gar09] has investigated

the semantics of Type Theory where all types are of this form. They are particular cases

of n-types which are defined inductively as follows:

isContr(A) := (Σa : A)(Πx : A)IdA(a, x) Contr := (ΣX : Type)(isContr(X))

isProp(A) := (Πx, y : A)isContr(IdA(x, y)) Prop := (ΣX : Type)(isProp(X))

isSet(A) := (Πx, y : A)isProp(IdA(x, y)) Set := (ΣX : Type)(isSet(X))

is-1-Type(A) := (Πx, y : A)isSet(IdA(x, y)) 1-Type := (ΣX : Type)(is-1-Type(X))

...
...

is-n-Type(A) := (Πx, y : A)is-(n-1)-Type(IdA(x, y)) n-Type := (ΣX : Type)(is-n-Type(X))

...
...

The types isContr, isProp and isSet are also called, respectively, is-(-2)-Type, is-(-1)-Type

and is-0-Type. For our purposes, it is enough to restrict to the first four levels. Here Prop

is the collection of propositions, i.e. types with at most one inhabitant up to identity,

while Set is the collection of sets, i.e. types whose identity types in turn are propositional.

Finally, we are interested in 1-Type which is the collection of 1-types, i.e. types whose

identity types are sets. Furthermore, all three of Prop, Set and 1-Type are closed under

Π- and Σ-types. The witness that a type is in some of these classes is itself a proposition,

and so we will abuse notation and leave it implicit – if there is a proof, it is unique up to

identity.

If P : A→ Prop, then we write {x : A |P (x)} for (Σx : A)P (x). Since P (x) is a proposition

for each x : A, we have that Id{x:A |P (x)}((a, p), (b, q)) ∼= IdA(a, b). For this reason, we will
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often leave the proof p : P (a) implicit when talking about an element (a, p) of {x : A |P (x)}.

We also suggestively write a ∈ P for P (a).

We recall some of the properties of n-types. We refer to [Uni13] for the proofs.

Lemma 8.13. For every type A, the following are equivalent:

• A is contractible;

• A is equivalent to the singleton 1.

Lemma 8.14. For any type A and any a : A, the type (Σx : A)IdA(a, x) is contractible.

Lemma 8.15. The hierarchy of n-types is cumulative in the following sense: given a

number n ≥ −2, if X is an n-type, then it is also an (n+ 1)-type.

Lemma 8.16. Let n ≥ −2, and let A : Type and B : A→ Type. If A is an n-type and for

all a : A, B(a) is an n-type, then so is (Σx : A)B(x).

Lemma 8.17. Let n ≥ −2, and let A : Type and B : A→ Type. If A is an n-type and for

all a : A, B(a) is an n-type, then so is (Πx : A)B(x).

8.2.4 Transport

Let P : A → Type be a family of types and p : a =A b be a path. Intuitively, we would

expect that if a and b are the same, then P (a) and P (b) should be related. This is the

case and the following lemma shows how they are related:

Lemma 8.18. Suppose P is a family of types over A and that p : x =A y. Then there is a

function p∗ : P (x)→ P (y).

Proof. By induction we can assume p is reflx. In this case we can take (reflx)∗ : P (x)→ P (x)

to be the identity function.

This operation gives rise to a transport term of type

tr : (P : A→ Type)→ IdA(x, y)→ P (x)→ P (y)
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where tr(P, p) ≡ p∗. Given a type family P : A → Type, two terms x, y : A, a path

p : IdA(x, y), and a term u : P (x) when convenient we use the more concise notation tr(p)u

instead of tr(P, p)u when it is possible to infer P .

Using transport we have the following characterisation of equality in Σ-types (see [Uni13]):

Lemma 8.19. Id(Σx:A)B(x)((x, y), (x′, y′)) ∼= (Σp : IdA(x, x′))IdB(x′)(tr(B, p)y, y′).

Some useful results on transport are the following:

Lemma 8.20. Given P : A→ Type, p : x =A y, q : y =A z and u : P (x), we have

q∗(p∗(u)) = (p � q)∗(u).

Lemma 8.21. Let f : A → B be a function and consider a type family P : B → Type,

p : x =A y and u : P (f(x)). We have

tr(P ◦ f, p)u = tr(P, ap(f)p)u.

Lemma 8.22. Let P,Q : A→ Type be two families of types and f : (Πx : A)P (x)→ Q(x)

a family of functions. If p : x =A y and u : P (x), then we have

tr(Q, p)f(x, u) = f(y, tr(P, p)u).

When P : A→ Type is a family of types of the form P (x) = IdA(a, x), P (x) = IdA(x, a) or

P (x) = Id(x, x) where a : A, the transport is given by composition of paths as specified by

the following lemma:

Lemma 8.23. For any type A, P : A→ Type and p : IdA(x1, x2), we have

• if P (x) = IdA(a, x) and q : IdA(a, x1), then tr(P, p)q = q � p;

• if P (x) = IdA(x, a) and q : IdA(x1, a), then tr(P, p)q = p−1 � q;

• if P (x) = IdA(x, x) and q : IdA(x1, x1), then tr(P, p)q = p−1 � q � p.
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Thanks to the transport we can generalise the functorial behaviour of functions to dependent

functions. In general, given a dependent function f : (Πx : A)P (x), if p : x = y, it makes no

sense to ask if f x is equal to f y because they live in two different types P (x) and P (y).

Using the transport we can move between the two types and we have:

Lemma 8.24. Suppose f : (Πx : A)P (x) is a dependent function. Then we have a map

apd(f) : (Πp : x =A y)(p∗(f(x)) =P (y) f(y)).

Proof. By induction, it suffices to assume p is reflx. It follows that the desired equation is

(reflx)∗(f(x)) = f(x) which clearly holds.

8.3 Impredicativity and MLTT

In order to make proof-relevant relations precise, we work in the constructive framework of

impredicative intensional Martin-Löf Type Theory [ML72]. Impredicativity allows us to

quantify with Π-types over all types of sort Type in order to construct a new object of sort

Type. Following [Atk12], we will use impredicative quantification in the meta-theory to

interpret impredicative quantification in the object theory:

X : Type ` B type

` (ΠX : Type)B type

This simplifies the presentation, and allows us to focus on the proof-relevant aspects of the

logical relations.

We stress that we are not assuming Uniqueness of Identity Proofs, as that would in effect

result in proof-irrelevance once again. From now on, we will however restrict attention to

types where identity proofs of identity proofs are unique, i.e. to types A where IdIdA(x,y)(p, q)

is trivial. We work with Prop, Set and 1-Type as defined in Subsection 8.2.3.

8.4 Proof-relevant relations

We now define proof-relevant relations:
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Definition 8.25. The collection of proof-relevant relations is denoted PrRel and consists

of triples (R0, R1, R), where R0, R1 : 1-Type and R : R0 × R1 → Set. The 1−type of

morphisms from (R0, R1, R) to (R′0, R
′
1, R

′) is

(Σf0 : R0 → R′0)(Σf1 : R1 → R′1)(Πa : R0, b : R1)R(a, b)→ R′(fa, gb).

Note that PrRel has a natural categorical structure. In the rest of this chapter we take

relation to mean proof-relevant relation. The above definition means that morphisms

between relations have a proof-relevant equality and, thus, showing morphisms are equal

involves constructing explicit proofs to that effect. Indeed, the equality of morphisms is

given by

Id((f0, f1, f), (f ′0, f
′
1, f
′)) ∼= (Σφ : Id(f0, f

′
0), ψ : Id(f1, f

′
1)) Id(tr(φ, ψ)f, f ′).

However, since R : R0 × R1 → Set has codomain Set, while R0 and R1 are 1−types, the

complexity of R compared to R0 and R1 has decreased. This means relations between

proof-relevant relations are in fact proof-irrelevant (see Section 8.5).

When not differently specified, when we say “consider a relation R” we mean the triple

(Ro, R1, R), and we write R : PrRel(R0, R1), or R : R0 ↔ R1, and call R a relation

between R0 and R1. Similarly, a morphism f : R→ R′ consists of a triple (f0, f1, f). Given

f : R → R′ and r : R(a, b), formally we should write f a b r for the application of f to r.

However, when a and b can be inferred, we simply write f r. If we still want to emphasise

the elements a and b, we may write f(a,b) r.

If R : PrRel(R0, R1) and P : PrRel(P0, P1), then we have 1 : PrRel(1,1), P × R :

PrRel(P0 ×R0, P1 ×R1) and R⇒ P : PrRel(R0 → P0, R1 → P1) defined by

1(x, y) := 1

(R× P )((x, y), (x′, y′)) := R(x, x′)× P (y, y′)

(R⇒ P )(f, g) := (Πx : R0, y : R1)(R(x, y)→ P (fx, gy))
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These exponentials have the right universal property:

Lemma 8.26. Let R : PrRel(R0, R1), R′ : PrRel(R′0, R
′
1), and R′′ : PrRel(R′′0 , R

′′
1).

There is an equivalence abs : (R×R′ → R′′)→ (R→ (R′ ⇒ R′′)) with inverse app : (R→

(R′ ⇒ R′′))→ (R×R′ → R′′).

Proof. The function abs is defined as

abs = λt.(λa.λb.t0(a, b), λa′.λb′.t1(a′, b′), λa.λb.λp.λa′.λb′.λp′.t(a, a′)(b, b′)(p, p′))

and the function app is defined as

app = λt.(λa.t0(π1a)(π2a), λb.t1(π1b)(π2b),

λa.λb.λp.t(π1a)(π1b)(π1p)(t0(π1a), t1(π1b))(π2a)(π2b)(π2p)).

By using function extensionality it is not difficult to show that abs◦app = id and app◦abs =

id.

We will also make use of the equality relation Eq(A) for each 1-type A:

Definition 8.27. Equality Eq : 1-Type → PrRel is defined by Eq(A) = (A,A, IdA) on

objects and Eq(f) = (f, f, ap(f)) on morphisms.

Proposition 8.28. Eq is full and faithful in that (EqX → EqY ) ∼= X → Y .

Proof. By function extensionality and Lemmas 8.14 and 8.13, we have

(EqX → EqY ) = (Σf : X → Y )(Σg : X → Y )(Πxx′)IdX(x, x′)→ IdY (fx, gx′)

∼= (Σf : X → Y )(Σg : X → Y )IdX→Y (f, g)

∼= (Σf : X → Y )1 ∼= X → Y .

Similarly, the exponential of equality relations is an equality relation. Here, we abuse

notation and use the same symbol for equivalence of types and isomorphisms of relations:



8.5. Relations between relations 138

Proposition 8.29. For all X,Y : 1-Type, we have (EqX ⇒ EqY ) ∼= Eq(X → Y ).

Proof. By extensionality it is enough to show

((Πx, x′ : X)Id(x, x′)→ Id(fx, gx′)) ∼= (Πx : X)Id(fx, gx)

for every f, g : X → Y . Functions can easily be constructed in both directions and proved

inverse using extensionality and path induction.

8.5 Relations between relations

Intuitively, 2-relations should relate proofs of relatedness in proof-relevant relations. Al-

though conceptually simple, formalizing 2-relations is non-trivial as various choices arise.

For instance, if R and R′ are proof-relevant relations, one may consider 2-relations between

them as being given by functions

Q : (Πa : R0, a
′ : R′0, b : R1, b

′ : R′1) (R(a, b)×R′(a′, b′))→ Prop

with the intuition of (p, p′) ∈ Q(a, a′, b, b′) being that Q relates the proof p to the proof

p′. However, the natural arrow type of such 2-relations does not preserve equality. The

problem is that, while a is related to b, and a′ is related to b′, there is no relationship

between a and a′ and b and b′. Thus, we were led to the following definition which seems

to originate with Grandis (see e.g. [Gra09]):

Definition 8.30. A 2-relation consists of the following 1-types and proof-relevant relations

between them

Q00OO

Q0r

��

oo Qr0 // Q10OO

Q1r

��
Q01

oo
Qr1

// Q11
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together with a predicate

Q : (Πa : Q00, b : Q10, c : Q01, d : Q11)

Qr0(a, b)×Q0r(a, c)×Qr1(c, d)×Q1r(b, d)→ Prop

A morphism of 2-relations consists of 4 functions between each corresponding node, 4 maps

of relations such that each is over the appropriate pair of morphisms of 1-types, and a

predicate stating that proofs related in one 2-relation are mapped to proofs which are

related in the other 2-relation.

Thus a 2-relation is a 9-tuple and, even worse, a morphism of 2-relations is a 27-tuple! This

combinatorial complexity is enough to scupper any noble mathematical intentions. We

therefore develop a more abstract treatment beginning with the indices in a 2-relation. This

extends the notion of reflexive graphs [RR94,OT95,DR04] to a second level of 2-relations;

this notion, in turn, is just the first few levels of the notion of a cubical set [BH81].

Definition 8.31. Let I0 be the type with elements {00, 01, 10, 11} of indices for 1-types,

and I1 the type with elements {0r, r0, 1r, r1} of indices for proof-relevant relations. Define

the source and target function @ : I1 ×Bool→ I0 where w@i replaces the occurrence of r

in w by i. We write w@i as wi.

8.5.1 I0-types

Next we develop algebra for the types contained in 2-relations.

Definition 8.32. An I0-type is a function X : I0 → 1-Type. To increase legibility we write

Xw for Xw. The collection of maps between two I0-types is defined by

X → X ′ := (Πw : I0)Xw → X ′w



8.5. Relations between relations 140

We define the following operations on I0-types:

1 := λw.1

X ×X ′ := λw.Xw ×X ′w

X ⇒ X ′ := λw.Xw → X ′w

If X is an I0-type, define its elements ElX = (Πw : I0)Xw. The natural extension of this

action to morphisms f : X → X ′ is denoted El f : ElX → ElX ′.

Note that elements deserve that name as ElX ∼= 1 → X. The construction of elements

preserves structure as the following lemma shows:

Lemma 8.33. Let X and X ′ be I0-types. Then

El 1 ∼= 1

El(X ×X ′) ∼= ElX × ElX ′

El(X ⇒ X ′) = (Πw : I0)Xw → X ′w

Proof. For the first equivalence it is clear that there is only one map of type (Πw : I0)1.

For the second equivalence, on one side we use the universal property of the product and

we have

(Πw : I0)(Xw ×X ′w) ∼= (X00 ×X ′00)× (X01 ×X ′01)× (X10 ×X ′10)× (X11 ×X ′11).

On the other side we have

(Πw : I0)Xw × (Πw : I0)X ′w
∼= (X00 ×X01 ×X10 ×X11)× (X ′00 ×X ′01 ×X ′10 ×X ′11).

The two are equivalent up to reordering.

The third equality holds by the definition of El.

Finally, we show how to interpret abstraction and application over I0-types:
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Lemma 8.34. Let X,X ′ and X ′′ be I0-types. The function

abs = λf. λw. λx. λx′. f w (x, x′) : (X ×X ′ → X ′′)→ (X → (X ′ ⇒ X ′′))

is an equivalence with inverse

app = λf. λw. λy. f w (π1y) (π2y).

Proof. The proof is just straightforward calculation using function extensionality.

8.5.2 I1-Relations

Next we develop algebra for the relations contained in 2-relations.

Definition 8.35. An I1-relation is a pair (X,R) where X is a I0-type and R is a function

of type R : (Πw : I1)PrRel(Xw0, Xw1). The collection of maps between two I1-relations is

defined by

(X,R)→ (X ′, R′) := (Σf : X → X ′)(Πw : I1)(Rw ⇒ R′w)(fw0, fw1)

We can represent a I1-relation (X,R) using the following picture:

X00OO

R0r

��

oo Rr0 // X10OO

R1r

��
X01

oo
Rr1
// X11.

We define the following operations on I1-relations:

1 := (1, λw.1)

(X,R)× (X ′, R′) := (X ×X ′, λw.Rw ×R′w)

(X,R)⇒ (X ′, R′) := (X ⇒ X ′, λw.Rw ⇒ R′w)
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If (X,R) is an I1-relation, define its elements

El(X,R) = (Σx : ElX)(Πw : I1)Rw(xw0, xw1)

The natural extension of El to morphisms (f, g) : (X,R) → (X ′, R′) is denoted El(f, g) :

El(X,R)→ El(X ′, R′).

We can represent an element (x, p) of an I1-relation (X,R) using the following picture

x00OO
p0r

��

oo pr0 // x10OO
p1r

��
x01
oo
pr1
// x11

where pr0 : Rr0(x00, x10), p0r : R0r(x00, x01), pr1 : Rr1(x01, x11) and p1r : R1r(x10, x11).

Note that elements deserve that name as El(X,R) ∼= 1 → (X,R). The construction of

elements preserves structure as the following lemma shows:

Lemma 8.36. Let (X,R) and (X ′, R′) be I1-relations. Then

El 1 ∼= 1

El((X,R)× (X ′, R′)) ∼= El(X,R)× El(X ′, R′)

El((X,R)⇒ (X ′, R′)) = (Σf : El(X ⇒ X ′))(Πw : I1)(Rw ⇒ R′w)(fw0, fw1)

Proof. For the first equivalence we have that, by definition, El1 = (Σx : El1)(Πw : I1)1(?, ?)

which is clearly equivalent to 1.

By definition of El, for the second equivalence we have that

El((X,R)× (X ′, R′)) = El(X ×X ′, λw.Rw ×R′w)

= (Σx : El(X ×X ′))(Πw : I1)(Rw ×R′w)(xw0, xw1).
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Using Lemma 8.33 we can consider x being a pair (z, z′) and rewrite

(Σx : El(X ×X ′))(Πw : I1)(Rw ×R′w)(xw0, xw1) ∼=

(Σ(z, z′) : El(X)× El(X ′))(Rr0(z00, z10)×R′r0(z′00, z
′
10)×

R0r(z00, z01)×R′0r(z′00, z
′
01)×

Rr1(z01, z11)×R′r1(z′01, z
′
11)×

R1r(z10, z11)×R′1r(z′10, z
′
11)).

We can be reorder the above equation obtaining

(Σz : El(X))(Rr0(z00, z10)×R0r(z00, z01)Rr1(z01, z11)×R1r(z10, z11))×

(Σz′ : El(X ′))(R′r0(z′00, z
′
10)×R′0r(z′00, z

′
01)×R′r1(z′01, z

′
11)×R′1r(z′10, z

′
11))

which, by unwinding the definition, is exactly El(X,R)× El(X ′, R′).

The last point holds by definition.

Finally, we show how to interpret abstraction and application over I0-types:

Lemma 8.37. Let (X,R), (X ′, R′) and (X ′′, R′′) be I1-relations. There is an equivalence

abs : ((X,R) × (X ′, R′) → (X ′′, R′′)) → ((X,R) → ((X ′, R′) ⇒ (X ′′, R′′))) with inverse

given by app : ((X,R)→ ((X ′, R′)⇒ (X ′′, R′′)))→ ((X,R)× (X ′, R′)→ (X ′′, R′′)).

Proof. The proof is similar to the proof of Lemma 8.26, but rests crucially on the fact that

R⇒ P : PrRel(R0 → P0, R1 → P1).

8.5.3 2-Relations

Finally, we develop the same algebra for 2-relations.

Definition 8.38. The collection of 2-relations is denoted 2Rel and consists of pairs

((X,R), Q) where (X,R) is an I1-relation and Q is a function Q : El(X,R)→ Prop. The
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collection of maps between two 2-relations is defined by

((X,R), Q)→ ((X ′, R′), Q′) := (Σ(f, g) : (X,R)→ (X ′, R′))

(Π(x, p) : El(X,R))(p ∈ Q(x)→ (El g p) ∈ Q′(El f x))

Note that 2Rel has a natural categorical structure with 2-relations ((X,R), Q) as objects

and a morphism (f, g) : ((X,R), Q)→ ((X ′, R′), Q′) is a morphism (f, g) : (X,R)→ (X ′, R′)

of I1-relations satisfying the condition in Definition 8.38.

We write Q for ((X,R), Q) and given (x, p) : El(X,R) such that p ∈ Q(x), we just write

p ∈ Q(x) leaving implicit that (x, p) : El(X,R). We represent p ∈ Q(x) using the following

picture:

x00

Q

oo pr0 //
OO

p0r

��

x10OO
p1r

��
x01
oo
pr1
// x11

where pr0 ∈ Rr0(x00, x10), p0r ∈ R0r(x00, x01), pr1 ∈ Rr1(x01, x11) and p1r ∈ R1r(x10, x11).

We use this graphical representation when convenient.

Similarly we can picture a 2-relation Q as

Q00
oo Qr0 //

OO

Q0r

��
Q

Q10OO

Q1r

��
Q01

oo
Qr1
// Q11

and we say that Q is indexed by the above diagram. Note that the subscript by convention

determines that e.g. Q00 is in 1-Type, Qr0 is in PrRel and Q in 2Rel.

Finally we write f : Q → Q′ for a morphism between two 2-relations Q and Q′ with

components f = (f00, f10, f01, f11, fr0, f0r, fr1, f1r, f), where fij : Qij → Q′ij in 1-Type or

PrRel depending on the index, and f is a proof that if (p, q, p′, q′) ∈ Q(a, b, c, d) then

(fr0 p, f0r q, fr1 p
′, f1rq

′) ∈ Q′(f00 a, f10 b, f01 c, f11 d). Note that f , when it exists, is unique

because it is a condition on propositions. For this reason when we need to specify a

morphism between two 2-relations sometimes we leave f implicit and we do not write it if
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we know that it exists.

We define the following operations on 2-relations

1 = (1, λ .1)

((X,R), Q)× ((X ′, R)′, Q′) = ((X,R)× (X ′, R′),

λ(x, y)λ(p, q).p ∈ Q(x) ∧ q ∈ Q′(y))

((X,R), Q)⇒ ((X ′, R′), Q′) = ((X,R)⇒ (X ′, R′),

λ(f, g).(Π(x, p) : El(X,R))p ∈ Q(x)⇒ (El g p) ∈ Q′(El f x))

Lemma 8.39. Let ((X,R), Q), ((X ′, R′), Q′) and ((X ′′, R′′), Q′′) be 2-relations. There is

an equivalence

abs : (((X,R), Q)× ((X ′, R′), Q′)→ ((X ′′, R′′), Q′′)) ∼=

(((X,R), Q)→ (((X ′, R′), Q′)⇒ ((X ′′, R′′), Q′′)))

with inverse app.

Proof. Note that if X,X ′ and X ′′ are I0-types, and if f : X ×X ′ → X ′′ then absf : X →

(X ′ ⇒ X ′′), and for any x : ElX,x′ : ElX ′, and w : I0

(Elf) (x, x′) w = (El (absf) x w)(x′ w)

Similar results hold for app and for the analogous lemmas for I1-sets. This, together with

Lemma 8.37, extensionality and direct calculation gives the result.

As in cubical and simplicial settings, there is more than one “degenerate” relation in two-

dimensional relations. For example, we can duplicate a relation vertically or horizontally.

These operations induce two functors defined by the following lemmas:
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Lemma 8.40. The map sending a relation R to the 2-relation Eq‖(R) indexed by

R0

Eq‖(R)

OO

R
��

ooEq(R0) // R0OO

R
��

R1
oo
Eq(R1)

// R1

and defined by (p, q, p′, q′) ∈ Eq‖(R)(a, b, c, d) if and only if tr(p, p′)q =R(b,d) q
′ extends to

a functor Eq‖ : PrRel→ 2Rel.

Proof. Consider a morphism (f, g, t) : (A,B,R) → (A′, B′, R′). The functor Eq‖ sends

(f, g, t) to (f, f, g, g, ap(f), t, ap(g), t). We need to check that if (p, q, p′, q′) ∈ Eq‖(R)(a, b, c, d)

then (ap(f) p, t q, ap(g) p′, t q′) ∈ Eq‖(R
′)(f a, f b, g c, g d), and, by definition, this is true

if and only if tr(ap(f)p, ap(g)p′)t q =R(f b,g d) t q
′. We know that tr(p, p′)q =R(b,d) q

′. We

use path induction and we can assume a ≡ b and c ≡ d, while p ≡ refla and p′ ≡ reflc.

We then have tr(refla, reflc)q =R(b,d) q
′, that is q =R(b,d) q

′ and then we can conclude

tr(reflf a, reflg c)t q =R(f b,g d) t q
′.

Lemma 8.41. The map sending a relation R to the 2-relation Eq=(R) indexed by

R0

Eq=(R)

oo R //
OO

Eq(R0)
��

R1OO
Eq(R0)
��

R0
oo
R
// R1

and defined by (p, q, p′, q′) ∈ Eq=(R)(a, b, c, d) if and only if tr(q, q′)p =R(c,d) p
′ extends to

a functor Eq= : PrRel→ 2Rel.

Proof. Consider a morphism (f, g, t) : (A,B,R) → (A′, B′, R′). The functor Eq= sends

(f, g, t) to (f, g, f, g, t, ap(f), t, ap(g)). The proof that if (p, q, p′, q′) ∈ Eq=(R)(a, b, c, d)

then (t p, ap(f) q, t p′, ap(g) q′) ∈ Eq=(R′)(f a, g b, f c, g d) uses the same argument used in

the proof of Lemma 8.40.

There is another different kind of degeneracy, which in the cubical set context is called

connection [BHS11], and it is defined as follows:
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Lemma 8.42. The map sending a relation R to the 2-relation CR indexed by

R0

CR

ooEq(R0) //
OO

Eq(R0)
��

R0OO

R
��

R0
oo
R
// R1

and defined by (p, q, p′, q′) ∈ C(R)(a, b, c, d) if and only if tr(q−1 � p)p′ =R(b,d) q
′ extends to

a functor C : PrRel→ 2Rel.

Proof. Consider a morphism (f, g, t) : (A,B,R) → (A′, B′, R′). The functor C sends

(f, g, t) to (f, f, f, g, ap(f), ap(f), t, t). The proof that if (p, q, p′, q′) ∈ C(R)(a, b, c, d) then

(ap(f) p, ap(f) q, t p′, t q′) ∈ C(R′)(f a, f b, f c, g d) uses the same argument used in the

proof of Lemma 8.40.

There is of course also a symmetric version which swaps the role of Eq(R0) and R, but we

will not make us of this in the current thesis.

Note that all the compositions Eq‖ ◦ Eq, Eq= ◦ Eq and C ◦ Eq give the same functor.

Lemma 8.43. We have that Eq‖ ◦ Eq = Eq= ◦ Eq = C ◦ Eq.

Proof. All the three functors goes from 1-Type to 2Rel and if we apply them to a 1-type

A all the three resulting 2-relations are indexed by the same diagram

AOO

Eq(A)
��

oo Eq(A) // AOO

Eq(A)
��

A oo
Eq(A)

// A.

Given the elements p ∈ Eq(A)(a, b), q ∈ Eq(A)(a, c), p′ ∈ Eq(A)(c, d) and q′ ∈ Eq(A)(b, d),

we have that (p, q, p′, q′) ∈ Eq‖ ◦ Eq(A)(a, b, c, d) if and only if tr(p, p′)q =Eq(A)(b,d) q
′,

(p, q, p′, q′) ∈ Eq= ◦ Eq(A)(a, b, c, d) if and only if tr(q, q′)p =Eq(A)(c,d) p
′ and (p, q, p′, q′) ∈

C ◦ Eq(A)(a, b, c, d) or if and only if tr(q−1 � p)p′ =Eq(A)(b,d) q
′. These three conditions are

equivalent. In fact all the elements p, q, p′, q′ are identity proofs between terms of the same

type, and, in this case, transport is given by composition of paths as shown by Lemma
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8.23. Unwinding the first condition tr(p, p′)q =Eq(A)(b,d) q
′ we obtain p−1 � q �p′ =Eq(A)(b,d) q

′

which corresponds also to the condition tr(q−1 � p)p′ =Eq(A)(b,d) q
′. By precomposing with

inverses we obtain q−1 � p � q′ =Eq(A)(c,d) p
′ which is exactly tr(q, q′)p =Eq(A)(c,d) p

′.

For the action on the morphisms note that all the three compositions send a morphism

f : A→ A′ to the morphism (f, f, f, f, ap(f), ap(f), ap(f), ap(f)).

Definition 8.44. We call Eq2 the functor resulting from the composite Eq‖ ◦ Eq, which,

by Lemma 8.43, is the same as the composites Eq= ◦ Eq and C ◦ Eq.

Proposition 8.45. The functor Eq‖ is full and faithful.

Proof. Let (f0, f1, f), (g0, g1, g) : (A,B,R)→ (A′, B′, R′) be two morphisms in PrRel such

that Eq‖(f0, f1, f) = Eq‖(g0, g1, g), which, by unwinding the definition of Eq‖, means

that (f0, f0, f1, f1, ap(f0), f, ap(f1), f) = (g0, g0, g1, g1, ap(g0), g, ap(g1), g). It immediately

follows that (f0, f1, f) = (g0, g1, g) and we have the faithfulness.

For fullness, consider a morphism f : Eq‖(R) → Eq‖(R
′). Using the fullness of Eq, we

have that the morphism (f00, f10, fr0) : Eq(R0)→ Eq(R′0) has components f00 = f10 and

fr0 = ap(f00). Similarly the morphism (f01, f11, fr1) : Eq(R1)→ Eq(R′1) has components

f01 = f11 and fr1 = ap(f01). Finally, in order to prove that f0r = f1r, consider the

elements (a, b) ∈ R0 ×R1 and r ∈ R(a, b). Clearly (refla, r, reflb, r) ∈ Eq‖(R) and then its

image (ap(f00)refla, (f0r)a,br, ap(f01)reflb, (f1r)a,br) = (reflf00a, (f0r)a,br, reflf01b, (f1r)a,br) ∈

Eq‖(R
′) which, by definition of Eq‖, means that tr(reflf00a, reflf01b)(f0r)a,br = (f1r)a,br, i.e.

f0r = f1r. We then have f = Eq‖(f00, f01, f0r).

Again, we can prove that exponentiation preserves all the degeneracies and the connection:

Proposition 8.46. For all R,R′ : PrRel, we have

1. an equivalence Eq‖R⇒ Eq‖R
′ ∼= Eq‖(R⇒ R′)

2. an equivalence Eq=R⇒ Eq=R
′ ∼= Eq=(R⇒ R′)

3. an equivalence CR⇒ CR′ ∼= C(R⇒ R′).
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Proof. For the point (1) note that Eq‖R⇒ Eq‖R
′ is indexed over

(R0 → R′0)

Eq‖R⇒Eq‖R
′

oo
EqR0⇒EqR′0 //

OO

R⇒R′
��

(R0 → R′0)
OO

R⇒R′
��

(R1 → R′1) oo
EqR1⇒EqR′1

// (R1 → R′1)

while Eq‖(R⇒ R′) is indexed over

(R0 → R′0)

Eq‖(R⇒R′)

oo
Eq(R0→R′0)

//
OO

R⇒R′
��

(R0 → R′0)
OO

R⇒R′
��

(R1 → R′1) oo
Eq(R1→R′1)

// (R1 → R′1)

and the two are equivalent up to the equivalences φ : EqR0 ⇒ EqR′0
∼= Eq(R0 → R′0) and

φ′ : EqR1 ⇒ EqR′1
∼= Eq(R1 → R′1).

The proof consists in first proving that

if (p, q, p′, q′) ∈ (Eq‖R⇒ Eq‖R
′)(f, g, f ′, g′)

then (φp, q, φ′p′, q′) ∈ Eq‖(R⇒ R′)(f, g, f ′, g′),

and it follows by unwinding the definition of the 2-relations and the definition of the

equivalence φ.

Next we need to prove the opposite direction of the implication:

if (t, q, t′, q′) ∈ Eq‖(R⇒ R′)(f, g, f ′, g′)

then (φ−1t, q, φ′−1t′, q′) ∈ (Eq‖R⇒ Eq‖R
′)(f, g, f ′, g′),

which, in this case, follows by unwinding the definitions and by path induction. Since

the 2-relations have values in Prop, the maps back and forth are enough to define an

equivalence.

The proofs of item (2) and item (3) follow the same structure of the proof of item (1). The

difference is that the permutation in the shape over the 2-relations are indexed requires to
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adjust the argument.



Chapter 9

Two-dimensional parametricity

We now have the structure needed to define a two-dimensional, proof-relevant model

of System F. Each type judgment Γ ` T type, with |Γ| = n, will be interpreted in the

semantics as

JT K0 : |1-Type|n → 1-Type

JT K1 : |PrRel|n → PrRel

[[T ]]2 : |2Rel|n → 2Rel

by induction on type judgments with JT K1 over JT K0 × JT K0, and [[T ]]2 over JT K1 × JT K1 ×

JT K1 × JT K1. This is similar to the previous work on bifibrational functorial models of

(proof-irrelevant) parametricity presented in Chapter 5, but with an additional 2-relational

level. To give an idea, the picture of bifibrational parametricity presented in Theorem 5.6

generalises in the two-dimensional setting to the following

|2Rel|n

|∂1|n

!!

|∂4|n

}}

|∂2|n

��

|∂3|n

��

[[∆]]2
,,

[[T ]]2

22[[t]]2�� 2Rel

∂1

��

∂4

��

∂2

��

∂3

��
|PrRel|n

|∂1|n

��

|∂2|n

��

J∆K1

,,

JT K1

22JtK1�� PrRel

∂1

��

∂2

��
|1-Type|n

J∆K0

,,

JT K0

22JtK0�� 1-Type
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[[X0, . . . , Xn ` Xk type]]iȲ = Yk [[S → T ]]iȲ = [[S]]iȲ ⇒i [[T ]]iȲ

J∀X.T K0Ā = { f0 : (ΠA : 1-Type)JT K0(Ā, A),

f1 : (ΠR : PrRel)[[T ]]1(Eq(Ā), R)(f0R0, f0R1) |
(∀Q : 2Rel) (f1Qr0, f1Q0r, f1Qr1, f1Q1r) ∈

[[T ]]2(Eq2(Ā), Q)(f0Q00, f0Q10, f0Q01, f0Q11) (A0.1)

∧ (∀A : 1-Type) ΘT,0(f1Eq(A)) = reflf0 A}. (A0.2)

(J∀X.T K1R̄)((f0, f1), (g0, g1)) = {φ : (ΠR : PrRel)[[T ]]1(R̄, R)(f0R0, g0R1) |
(∀Q : 2Rel)(

(f1Qr0, φQ0r, g1Qr1, φQ1r) ∈
[[T ]]2(Eq‖(R̄), Q)(f0Q00, f0Q10, g0Q01, g0Q11)

(A1.1)

∧ (φQr0, f1Q0r, φQr1, g1Q1r) ∈
[[T ]]2(Eq=(R̄), Q)(f0Q00, f0Q10, g0Q01, g0Q11)

(A1.2)

∧ (f1Qr0, f1Q0r, φQr1, φQ1r) ∈
[[T ]]2(CR̄,Q)(f0Q00, f0Q10, f0Q01, g0Q11)

)
}

(A1.3)

(φ0, φ1, φ2, φ3) ∈ ([[∀X.T ]]2Q̄)(f, g, h, l) iff

(∀Q : 2Rel) (φ0Qr0, φ1Q0r, φ2Qr1, φ3Q1r) ∈
[[T ]]2(Q̄,Q)(f0Q00, g0Q10, h0Q01, l0Q11)

Figure 9.1: Interpretation of types

where the ∂’s from 2Rel to PrRel are the maps projecting out the proof-relevant compo-

nents of the 2-relations, while the ones from PrRel to 1-Type project out the 1-types of

the proof-relevant relations. Finally in this chapter we consider System F without product

types which, in any case, can be added since there are products at every level and products

at one level live over products at the level below.
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9.1 Interpretation of System F types in two-dimensional para-

metricity

The full interpretation of types can be found in Fig. 9.1. For type variables and arrow

types, we just use projections and exponentials at each level. Elements of [[∀X.T ]]0Ā consist

of an ad-hoc polymorphic function f0, a proof f1 that f0 is suitably uniform, and finally

(unique) proofs (A0.1) and (A0.2) that also the proof f1 is uniform. The ΘT,0 appearing

in condition (A0.2) derives from the Identity Extension Lemma 9.2, which means that this

lemma needs to be proven simultaneously with the definition of the interpretation. In

other words, this is an inductive-recursive definition (see [DS99]). Condition (A0.2) says

that, assuming the Identity Extension Lemma i.e. ΘT,0 : JT K1 ◦ Eq ∼= Eq ◦ JT K0, the only

way to define f1Eq(A) without looking at the type — i.e. in a uniform way — is to pick

refl. We do not know if condition (A0.2) follows from the others or not.

Elements of ([[∀X.T ]]1R̄)(f, g) are proofs φ that are suitably uniform in relation to f and

g, both with respect to equalities (conditions A1.1 and A1.2) and connections (condition

A1.3). The presence of connections might surprise. The idea behind the use of connections

is the following. Let T2 be a polymorphic 2-relations indexed by

T0

T2

OO
T1

��

oo T1 // T0OO
T1

��
T0
oo
T1

// T0,

and consider (p, q, p′, q′) ∈ T2(f, g, l, h). For T2 being polymorphic means that for every

2-relation Q we have the 2-relation T2(Q) indexed by

T0Q00

T2(Q)

OO

T1Q0r

��

oo T1 Qr0 // T0Q10OO

T1 Q1r

��
T0Q01

oo
T1 Qr1

// T0Q11,
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and the following elements are related in T2(Q)

f Q00

T2(Q)

OO

q Q0r

��

oo pQr0 // g Q10OO

q′Q1r

��
hQ01

oo
p′Qr1

// l Q11.

We want to prove that p, q, p′ and q′ are the same (up to transport) and we try to apply

the same technique used in relational parametricity: we use the Identity Extension Lemma.

We expect that the two-dimensional generalisation of the Identity Extension Lemma is

given by T2(Eq‖)
∼= Eq‖(T1) and T2(Eq=) ∼= Eq=(T1), from which we can derive that for

every relation R we have the following related elements:

f R0

Eq‖(T1R)

OO

q R

��

oo pEq(R0) // g R0OO

q′R

��

f R0

Eq=(T1R)

OO

q Eq(R0)

��

oo pR // g R1OO

q′ Eq(R1)

��
hR1

oo
p′ Eq(R1)

// l R1 hR0
oo

p′R
// l R1.

The left square proves that tr(λX.pEq(X), λY.p′ Eq(Y ))q = q′, while the right one that

tr(λx.q Eq(X), λY.q′ Eq(Y ))p = p′, but we cannot find any relation between p and q or p′

and q′ and so on. For this reason we use the connection C and we extend the Identity

Extension Lemma to connections as well: T2(C) ∼= C(T1). In this way we obtain

f R0

C(T1R)

OO

q Eq(R0)

��

oo pEq(R0) // g R0OO

q′R

��
hR0

oo
p′R

// l R1

and we can relate all the four edges together. Note that the two kinds of equalities and the

one kind of connection are enough to link together all the four edges, and since we want to

keep the logical relation minimal, we do not include the “symmetric” connection.

We want to prove the two-dimensional version of the Identity Extension Lemma in the

setting of two-dimensional parametricity for Eq‖, Eq= and C. In order to do so we first

characterise equality in the interpretation of ∀-types in the following way (note that
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Id([[∀X.T ]]2Q̄)f̄ (φ̄, ψ̄) is trivial by assumption, since ([[∀X.T ]]2Q̄)f̄ is a proposition):

Lemma 9.1. For all f, g : [[∀X.T ]]0Ā, we have the equivalence

ϕ : Id[[∀X.T ]]0Ā(f, g) ∼= { τ : (ΠA : 1-Type)Id[[T ]]0(Ā,A)(f0A, g0A) |

(∀R : PrRel) (f1R, τR0, g1R, τR1) ∈

Eq=(JT K1(Eq(Ā), R))(f0R0, f0R1, g0R0, g0R1)}

Proof. It follows by unwinding the definition of identity types and using Lemma 8.19 and

function extensionality.

From now on when we write τ : Id[[∀X.T ]]0Ā(f, g), we actually think it living in the image

of ϕ. One last step before proving the two-dimensional Identity Extension Lemma: we

introduce a notation which will make it easier to read the proofs in the rest of this chapter.

Let Q be a 2-relation and consider the following elements which are related in Q:

a

Q

OO

q

��

oo p // bOO

r

��

a′

Q

OO

q′

��

oo p′ // b′OO

r′

��
c oo s

// d c′ oo
s′

// d′.

The type of the 8-tuples (a, b, c, d, p, q, r, s) and (a′, b′, c′, d′, p′, q′, r′, s′) is the Σ-type

(Σ(a, b, c, d) : Q00×Q10×Q01×Q11)(p, q, r, s) : Qr0(a, b)×Q0r(a, c)×Qr1(c, d)×Qr1(b, d),

and for this reason if we want to prove that (a, b, c, d, p, q, r, s) = (a′, b′, c′, d′, p′, q′, r′, s′)

we first need four proofs

α : a = a′ β : b = b′ γ : c = c′ δ : d = d′,

and then transport (p, q, r, s) along (α, β, γ, δ) and prove that the result is equal to

(p′, q′, r′, s′), i.e. tr(α, β, γ, δ)(p, q, r, s) = (p′, q′, r′, s′). In order to do that we need four
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more proofs

x : tr(α, β) p = p′ y : tr(α, γ) q = q′ z : tr(γ, δ) r = r′ w : tr(β, δ) s = s′.

An efficient way to represent all these data is by using the following picture

a′OO

q′

��

oo p′ //

α x

b′

β

OO

s′

��

y

a oo
p //

OO
q
��

bOO
s�� w

c oo r
// d

c′
γ

oo
r′

//
z

d′
δ

We will often use the following argument: if (p, q, r, s) ∈ Q(a, b, c, d) and (a, b, c, d, p, q, r, s) =

(a′, b′, c′, d′, p′, q′, r′, s′), then (p′, q′, r′, s′) ∈ Q(a′, b′, c′, d′). We represent this argument in

a similar picture as before, but we fill the middle of the inner square:

a′OO

q′

��

oo p′ //

α x

b′

β

OO

s′

��

y

a
Q

oo p //
OO

q
��

bOO
s�� w

c oo r
// d

c′
γ

oo
r′

//
z

d′
δ

We can now prove the two-dimensional Identity Extension Lemma (note that since in this

chapter we only use the two-dimensional version of the Identity Extension Lemma, we

drop the adjective “two-dimensional”)

Theorem 9.2 (Identity Extension Lemma). For every type judgment Γ ` T type, we have

1. an equivalence ΘT,0 : JT K1 ◦ Eq ∼= Eq ◦ JT K0,

2. an equivalence ΘT,‖ : [[T ]]2 ◦ Eq‖
∼= Eq‖ ◦ JT K1 over ΘT,0,

3. an equivalence ΘT,= : [[T ]]2 ◦ Eq=
∼= Eq= ◦ JT K1 over ΘT,0, and

4. an equivalence ΘT,C : [[T ]]2 ◦C ∼= C ◦ JT K1 over ΘT,0.
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Proof. The proof is done by induction on type judgments. For type variables, all statements

are trivial. For arrow types, this is Propositions 8.29 and 8.46. It is left to prove it for

forall types.

For the point 1 we define the maps

Θ∀X.T,0 : J∀X.T K1Eq(Ā)(f, g)→ Eq(J∀X.T K0Ā)(f, g)

Θ−1
∀X.T,0 : Eq(J∀X.T K0Ā)(f, g)→ J∀X.T K1Eq(Ā)(f, g)

for all f , g and show that they are inverses. Using the induction hypothesis, we first define

Θ∀X.T,0(φ) := λ(A : 1-Type).ΘT,0(φEq(A))

where ΘT,0(φEq(A)) goes from JT K1(Eq(Ā, A))(f0A, g0A) → Eq(JT K0(Ā, A))(f0A, g0A).

The condition from Lemma 9.1 is satisfied by (A1.1) together with the induction hypothesis.

In fact the axiom (A1.1) instantiated with Eq=(R) gives

f0R0

[[T ]]2(Eq‖(Eq(Ā)),Eq=(R))

oo f1 R //
OO

φEq(R0)

��

f0R1OO

φEq(R1)

��
g0R0

oo
g1R

// g0R1.

Using the induction hypothesis plus the fact that Eq‖ ◦ Eq = Eq= ◦ Eq we have that

[[T ]]2(Eq‖(Eq(Ā)),Eq=(R)) ∼= Eq=(JT K1(Eq(Ā), R))

and we obtain

f0R0

Eq=(JT K1(Eq(Ā),R))

oo f1 R //
OO

ΘT,0(φEq(R0))

��

f0R1OO

ΘT,0(φEq(R1))

��
g0R0

oo
g1R

// g0R1
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and hence λA.ΘT,0(φEq(A)) is a proof that f = g by Lemma 9.1.

We define the inverse morphism as Θ−1
∀X.T,0(τ) := λR : PrRel. tr(refl, τ R1)f1R. We need to

check that conditions (A1.1), (A1.2) and (A1.3) are satisfied. We verify (A1.1) in detail,

(A1.2) and (A1.3) follow analogously and we only sketch their proof. If Q : 2Rel, using

axiom (A0.1) we obtain

(f1Qr0, f1Q0r, f1Qr1, f1Q1r) ∈ [[T ]]2(Eq2(Ā), Q)(f0Q00, f0Q10, f0Q01, f0Q11)

while we want to prove

(f1Qr0,Θ
−1
∀X.T,0(τ)Q0r, g1Qr1,Θ

−1
∀X.T,0(τ)Q1r)

∈ [[T ]]2(Eq‖(Eq(Ā)), Q)(f0Q00, f0Q10, g0Q01, g0Q11)

and in order to do that, we prove that

(f0Q00, f0Q10, f0Q01, f0Q11, f1Qr0, f1Q0r, f1Qr1, f1Q1r) =

= (f0Q00, f0Q10, g0Q01, g0Q11, f1Qr0,Θ
−1
∀X.T,0(τ)Q0r, g1Qr1,Θ

−1
∀X.T,0(τ)Q1r)

by considering the following picture:

f0Q00OO

Θ−1
∀X.T,0(τ)Q0r

��

oo f1Qr0 //

reflf0Q00
(4)

f0Q10

reflf0Q10

OO

Θ−1
∀X.T,0(τ)Q1r

��

(?)

f0Q00

(A0.1)

oo f1Qr0 //
OO

f1Q0r

��

f0Q10OO

f1Q1r

��
(?)

f0Q01

Lemma 9.1

oo
f1Qr1

// f0Q11

g0Q01

τQ01

oo
g1Qr1

// g0Q11

τQ11

where the squares (?) follow from the definition of Θ−1
∀X.T,0(τ), the top condition (4)

trivially follows from transporting along refl, and the last square derives from Lemma 9.1.
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Similarly condition (A1.2) follows from the picture

f0Q00OO

f1Q0r

��

oo
Θ−1
∀X.T,0(τ)Qr0

//

reflf0Q00
(?)

g0Q10

τQ10

OO

g1Q1r

��

(4)

f0Q00

(A0.1)

oo f1Qr0 //
OO

f1Q0r

��

f0Q10OO

f1Q1r

��
9.1

f0Q01

(?)

oo
f1Qr1

// f0Q11

f0Q01

reflf0Q01

oo
Θ−1
∀X.T,0(τ)Qr1

// g0Q11

τQ11

and condition (A1.3) from

f0Q00OO

f1Q0r

��

oo f1Qr0 //

reflf0Q00
(4)

f0Q10

reflf0Q10

OO

Θ−1
∀X.T,0(τ)Q1r

��

(4)

f0Q00

(A0.1)

oo f1Qr0 //
OO

f1Q0r

��

f0Q10OO

f1Q1r

��
(?)

f0Q01
oo
f1Qr1

//

(?)

f0Q11

f0Q01

reflf0Q01

oo
Θ−1
∀X.T,0(τ)Qr1

// g0Q11

τQ11

We now check that Θ∀X.T,0 ◦Θ−1
∀X.T,0 = id and Θ−1

∀X.T,0 ◦Θ∀X.T,0 = id. One way round

Θ∀X.T,0(Θ−1
∀X.T,0(τ))(A) = ΘT,0(tr(refl, τA)f1Eq(A)).

If we consider the related elements

f0A

Eq=(JT K1(Eq(Ā,A)))

OO

refl

��

oo f1 Eq(A) // f0AOO

τ A

��
f0A oo

Θ−1
∀X.T,0(τ) Eq(A)

// g0A
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and we apply the induction hypothesis Eq=(JT K1(Eq(Ā, A))) ∼= Eq2(JT K0(Ā, A)), we obtain

ΘT,0(Θ−1
∀X.T,0(τ) Eq(A)) = tr(refl, τ A)ΘT,0(f1 Eq(A)).

In this way we obtain the thesis from the following equalities

ΘT,0(Θ−1
∀X.T,0(τ) Eq(A)) = (tr(refl, τ A)ΘT,0(f1 Eq(A)))

= ΘT,0(f1 Eq(A)) � τ A

= τ A,

where for the last equality we used condition (A0.2).

The other way round is

Θ−1
∀X.T,0(Θ∀X.T,0(φ))(R) = tr(refl,ΘT,0(φEq(R1)))f1R.

Instantiating condition A1.3 with Eq=(R) we have the related elements

f0R0

[[T ]]2(Eq2(Ā),Eq=(R))

OO

f1 Eq(R0)

��

oo f1R // f0R1OO

φEq(R1)

��
f0R0

oo
φR

// g0R1

and using the induction hypothesis [[T ]]2(Eq2(Ā),Eq=(R)) ∼= Eq=(JT K1(Eq(Ā), R)), we

obtain

tr(ΘT,0(f1 Eq(R0)),ΘT,0(φEq(R1)))f1R = φR,

which is the thesis.

The proofs of item 2 and item 3 are similar. They require just to adjust the argument to

the permutation of the orientation of the 2-relations Eq‖ and Eq=. We see in detail the
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proof of item 2. We first show that if

(φ, ρ, ξ, χ) ∈ [[∀X.T ]]2Eq‖(R̄)(f, g, h, l) then

(Θ∀X.T,0(φ), ρ,Θ∀X.T,0(ξ), χ) ∈ Eq‖(J∀X.T K1R̄)(f, g, h, l),

which means to prove that tr(Θ∀X.T,0(φ)R0,Θ∀X.T,0(ξ)R1)ρR = χR for every relation R.

By unfolding the definition of Θ∀X.T,0, we obtain

tr(Θ∀X.T,0(φ)R0,Θ∀X.T,0(ξ)R1)ρR = tr(ΘT,0(φEq(R0)),ΘT,0(ξ Eq(R1)))ρR.

By definition, if we instantiate [[∀X.T ]]2Eq‖(R̄) with Eq‖(R) we obtain the following related

elements

f0R0

[[T ]]2(Eq‖(R̄),Eq‖(R))

OO

ρR

��

oo φEq(R0) // g0R0OO

χR

��
h0R1

oo
ξ Eq(R1)

// l0R1

and using the induction hypothesis [[T ]]2(Eq‖(R̄, R)) ∼= Eq‖(JT K1(R̄, R)), we obtain the

thesis: tr(ΘT,0(φEq(R0)),ΘT,0(ξ Eq(R1)))ρR = χR.

In the opposite direction we want to prove that if

(φ, ρ, ξ, χ) ∈ Eq‖(J∀X.T K1R̄)(f, g, h, l) then

(Θ−1
∀X.T,0(φ), ρ,Θ−1

∀X.T,0(ξ), χ) ∈ [[∀X.T ]]2(Eq‖R̄)(f, g, h, l),

which, by definition of [[∀X.T ]]2(Eq‖(R̄)), means to prove that for every 2-relation Q we have

(Θ−1
∀X.T,0(φ)Qr0, ρQ0r,Θ

−1
∀X.T,0(ξ)Qr1, χQ1r) ∈ [[T ]]2(Eq‖(R̄), Q)(f Q00, g Q10, hQ01, l Q11).
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The thesis follows from the following picture:

f0Q00OO

ρQ0r

��

oo
Θ−1
∀X.T,0(φ)Qr0

//

reflf0Q00
(?)

g0Q10

φQ10

OO

χQ1r

��

(4)

f0Q00

(A1.1)

oo f1Qr0 //
OO

ρQ0r

��

f0Q10OO

ρQ1r

��
(I)

h0Q01

(?)

oo
h1Qr1

// h0Q11

h0Q01

reflh0Q01

oo
Θ−1
∀X.T,0(ξ)Qr1

// l0Q11

ξQ11

where the middle square A1.1 is the axiom applied to ρ ∈ J∀X.T K1(R̄)(f, h), the top and

bottom squares (?) are the definition of Θ−1
∀X.T,0, (4) is given by transport along refl and

(I) is the hypothesis (φ, ρ, ξ, χ) ∈ Eq‖(J∀X.T K1R̄)(f, g, h, l) which, applied to Q1r, implies

that tr(φQ10, ξ Q11)ρQ1r = χQ1r. As we said the proof of item 3 is similar.

What is left to prove is item 4. First we show that if

(φ, ρ, ξ, χ) ∈ [[∀X.T ]]2C(R̄)(f, g, h, l) then

(Θ∀X.T,0(φ),Θ∀X.T,0(ρ), ξ, χ) ∈ C(J∀X.T K1R̄)(f, g, h, l),

which, by unfolding the definition of Θ∀X.T,0, means to prove that for every relation R we

have that (ΘT,0(φEq(R0)),ΘT,0(ρEq(R0)), ξ R, χR) ∈ C(J∀X.T K1R̄)(f, g, h, l). We obtain

the thesis by instantiating [[∀X.T ]]2C(R̄) with C(R) and using the induction hypothesis

[[T ]]2C(R̄, R) ∼= C(JT K1(R̄, R)):

f0R0

C(JT K1(R̄,R))

oo
ΘT,0(φEq(R0))

//
OO

ΘT,0(ρEq(R0))

��

g0R0OO

χR

��
h0R0

oo
ξR

// l0R1
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Finally we want to prove the other direction: if

(φ, ρ, ξ, χ) ∈ C(J∀X.T K1R̄)(f, g, h, l) then

(Θ−1
∀X.T (φ),Θ−1

∀X.T (ρ), ξ, χ) ∈ [[∀X.T ]]2(CR̄)(f, g, h, l),

which means that we need to prove that (Θ−1
∀X.T (φ)Qr0,Θ

−1
∀X.T (ρ)Q0r, ξ Qr1, χQ1r) ∈

[[T ]]2(CR̄,Q)(f Q00, g Q10, hQ01, l Q11) for every 2-relation Q. In order to do that we

consider the following picture

f0Q00
oo

Θ−1
∀X.T,0(φ)Qr0

//

reflf0Q00

OO

Θ−1
∀X.T,0(ρ)Q0r

��

(?)

g0Q10

φQ10

OO

χQ1r

��

(?)

f0Q00OO

f1Q0r

��

oo f1Qr0 //

ρ(Q00)−1 9.1

f0Q10

ρ(Q10)−1

9.1

h0Q00

[[T ]]2(C(R̄),Q)

oo h1Qr0 //
OO

h1Q0r

��

h0Q10OO
ξQ1r

��
(IV)

h0Q01

(4)

oo
ξQr1

// h0Q11

f0Q01

ρ(Q01)−1

h0Q01

ρQ01

oo
ξQr1

// l0Q11

refll0Q11

where it should be at this point clear where every square comes from but (IV), which comes

from the hypothesis (φ, ρ, ξ, χ) ∈ C(J∀X.T K1R̄)(f, g, h, l) applied to the relation Q1r.

9.2 Interpretation of terms

We next show how to interpret terms. A term Γ; ∆ ` t : T , with |Γ| = n, will give a

“standard” interpretation

JtK0Ā : J∆K0Ā→ JT K0Ā,

for every Ā : 1-Typen, a relational interpretation

(JtK0R̄0, JtK0R̄1, JtK1R̄) : J∆K1R̄→ JT K1R̄,
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for every R̄ : PrReln, and finally a 2-relational interpretation

((JtK0Q̄−, JtK1Q̄−), [[t]]2Q̄) : [[∆]]2Q̄→ [[T ]]2Q̄

for every Q̄ : 2Reln, where we have written e.g. JtK0Q̄− for the map of I0-types with

components (JtK0Q̄−)w = JtK0Q̄w : J∆K0Q̄w → JT K0Q̄w and similarly for JtK1Q̄−. At each

level, ∆ = x1 : T1, . . . , xm : Tm is interpreted as the product

[[x1 : T1, . . . , xm : Tm]]i = [[T1]]i × . . .× [[Tm]]i .

The full interpretation is given in Fig. 9.2. Variables, term abstraction and term application

are again given by projections and the exponential structure at each level. For type

abstraction and type application, we use the same concepts at the meta-level, but in

the case of type abstraction we also have to prove that the resulting term satisfies the

uniformity conditions (A0.1), (A1.1), (A1.2) and (A1.3).

Lemma 9.3. The interpretation in Fig. 9.2 is well-defined.

Proof. The interpretation of Γ; ∆ ` ΛX.t : ∀X.T is type-correct, since ∆ is weakened with

respect to X in Γ, X; ∆ ` t : T which means that [[Γ, X ` ∆]] = [[Γ ` ∆]]◦π1. For this reason

we write just [[∆]], and it will be clear from the arity of the input to which one we refer. The

uniformity conditions (A0.1), (A1.1), (A1.2) and (A1.3) can all be proven using [[t]]2. In fact,

in order to prove (A0.1), we apply [[t]]2(Eq2(Ā), Q) : [[∆]]2(Eq2(Ā), Q) → [[T ]]2(Eq2(Ā), Q)

to the following related elements

a oo
Θ−1

∆,0(refla)
//

[[∆]]2(Eq2(Ā),Q)

OO

Θ−1
∆,0(refla)

��

aOO

Θ−1
∆,0(refla)

��
a oo

Θ−1
∆,0(refla)

// a

which are related because they are obtained by applying the string of equivalences

Eq2(J∆K0Ā) ∼= Eq‖(J∆K1(Eq(Ā))) ∼= [[∆]]2(Eq2(Ā)) which derives from the Identity Ex-
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[[x0 : T0, . . . , xn : Tn ` xk : Tk]]iX̄ = πk [[∆, x : T ` t : T ]]i = [[∆ ` t : T ]]i ◦ π1

J∆ ` λx. t : S → T K0Ā(γ) = λs. J∆, x : S ` t : T K0Ā(γ, s)

J∆ ` λx. t : S → T K1R̄(γ) = λs0. λs1. λs. J∆, x : S ` t : T K1R̄((γ0, s0), (γ1, s1), (γ, s))

[[∆ ` λx. t : S → T ]]2Q̄((x, p), γ) = λ((x, p), γ). [[∆, x : S ` t : T ]]2Q̄((x, x), (p, p))(γ, γ)

Jf tK0Ā(γ) = JfK0Ā(γ) (JtK0Ā(γ))

Jf tK1R̄(γ0, γ1, γ) = JfK1R̄(γ0, γ1, γ, JtK0R̄0(γ0), JtK0R̄1(γ1), JtK1R̄(γ0, γ1, γ))

[[f t]]2Q̄((x, p), γ) = [[f ]]2Q̄((x, p), γ, JtK0Q̄i(x), JtK1Q̄j(p), [[t]]2Q̄((x, p), γ))

JΛX.tK0Ā(γ) = (λA. JtK0(Ā, A)γ, λR. JtK1(Eq(Ā), R)Θ−1
∆,0(reflγ))

JΛX.tK1R̄(γ0, γ1, γ) = λR. (JtK1(R̄, R))(γ0, γ1, γ)

[[∆ ` ΛX.t : ∀X.T ]]2Q̄((x, p), γ) = λQ. [[t]]2(Q̄,Q)((x, p), γ)

J∆ ` t[S] : T [S 7→ X]K0Ā(γ) = fst(JtK0Ā(γ))(JSK0Ā)

J∆ ` t[S] : T [S 7→ X]K1R̄(γ0, γ1, γ) = JtK1R̄(γ0, γ1, γ)(JSK1R̄)

[[∆ ` t[S] : T [S 7→ X]]]2Q̄((x, p), γ) = [[t]]2Q̄((x, p), γ)([[S]]2Q̄)

Figure 9.2: Interpretation of terms

tension Lemma, to the related elements

a

Eq2(J∆K0Ā)

oo refla //
OO

refla

��

aOO

refla

��
a oo

refla
// a,

and using the fact that [[∆]]2(Eq2(Ā), Q) = [[∆]]2Eq2(Ā). The image of [[t]]2(Eq2(Ā), Q)
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applied to the previous related elements is exactly the Axiom (A0.1):

JtK0(Ā,Q00)a

[[T ]]2(Eq2(Ā),Q)

oo
JtK1(Eq(Ā),Qr0)Θ−1

∆,0(refla)
//

OO

JtK1(Eq(Ā),Qr0)Θ−1
∆,0(refla)

��

JtK0(Ā,Q10)a
OO

JtK1(Eq(Ā),Qr0)Θ−1
∆,0(refla)

��
JtK0(Ā,Q01)a oo

JtK1(Eq(Ā),Qr0)Θ−1
∆,0(refla)

// JtK0(Ā,Q11)a.

For conditions (A1.1), (A1.2) and (A1.3) we use the same argument but applied to different

elements and two-relations. In order we use

a oo
Θ−1

∆,0(refla)
//

[[∆]]2(Eq‖(Ā),Q)

OO

r

��

aOO

r

��

a oo
r //

[[∆]]2(Eq=(Ā)Q)

OO

Θ−1
∆,0(refla)

��

bOO

Θ−1
∆,0(reflb)

��
b oo

Θ−1
∆,0(reflb)

// b a oo r
// b

a oo
Θ−1

∆,0(refla)
//

[[∆]]2(C(Ā),Q)

OO

Θ−1
∆,0(refla)

��

aOO

r

��
a oo r

// b

In order to prove soundness we need the following lemma:

Lemma 9.4. Let Γ; ∆ ` t : T be a term judgment. Consider

ΘT,0 ◦ JtK1Eq(Ā) ◦Θ−1
∆,0(a, b) : IdJ∆K0Ā(a, b)→ IdJT K0Ā(JtK0Ā a, JtK0Ā b).

We have that ΘT,0 ◦ JtK1Eq(Ā) ◦Θ−1
∆,0 = ap(JtK0Ā).

Proof. By induction on terms and unwinding the definition of ΘT,0.

Theorem 9.5. The interpretation defined in Fig. 9.2 is sound, i.e. if Γ; ∆ ` s = t : T ,

then there is pĀ : IdJT K0Ā(JsK0, JtK0) and qR̄ : IdJT K1R̄(tr(pR̄0
)(JsK1), JtK1). (We automatically

have tr(p, q)[[s]]2 ≡ [[t]]2 by proof-irrelevance of 2-relations.)
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Proof. We need to check that the β- and η-rules for both term and type abstraction are

respected. For term abstraction, this follows from Lemmas 8.34 and 8.37.

That the β-rule for type abstraction is respected follows from direct calculation, while we

need a little work in the case of the η-rule for type abstraction. Let ∆; Γ ` t : ∀X.T be given

and let JtK0Āγ = (f0, f1). Showing JΛX.t[X]K0 = JtK0 means giving p0 : Id(λA.f0A, f0) and

p1 : Id(λR.(JtK1(Eq(Ā), R)Θ−1
∆,0(reflγ)), snd(JtK0Āγ)). For p0, we choose p0 = refl. In order

to give p1, note first that we have the following morphism

λp : Eq(J∆K0Ā)(a, b).Θ∀X.T,0(λR.(JtK1(Eq(Ā), R)Θ−1
∆,0 p)) :

Eq(J∆K0Ā)→ Eq(J∀X.T K0Ā)

between two equality relations. Such morphism satisfies the hypothesis of Lemma 9.4 and

then using Lemma we have: Θ∀X.T,0(λR.(JtK1(Eq(Ā), R)Θ−1
∆,0(reflγ)) = reflJtK0Ā γ . For this

reason, if we instantiate the above equation with a relation R, we obtain:

JtK1(Eq(Ā), R)Θ−1
∆,0(reflγ) = Θ−1

∀X.T,0(reflJtK0Ā γ)R

= tr(refl, refl)f1R

= f1R

= snd(JtK0Āγ).

Finally things are exactly lined up to make tr((p0, p1))(JΛX.t[X]K1) = JtK1 trivial.

This model reveals hidden uniformity not only in the “standard” interpretation of terms

as functions, but also in the canonical proofs of this uniformity via Reynolds relational

interpretation of terms. In more detail: consider a term Γ; ∆ ` t : T with |Γ| = n.

By construction, our model shows that if R̄ : PrReln, a : J∆K0R̄0, b : J∆K0R̄1 and p :

J∆K1R̄(a, b), then JtK1R̄ p : JT K1R̄(JtK0R̄0 a, JtK0R̄1 b), i.e. JtK1R̄ p is a proof that JtK0R̄0 a

and JtK0R̄1 b are related at JT K1R̄. This is a proof-relevant version of Reynolds’ Abstraction

Theorem. Furthermore, if Q̄ : 2Reln, (a, b, c, d) : J∆K0Q̄00× J∆K0Q̄10× J∆K0Q̄01× J∆K0Q̄11
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and (p, q, r, s) ∈ [[∆]]2Q̄(a, b, c, d), then

(JtK1Q̄r0 p, JtK1Q̄0r q, JtK1Q̄r1 r, JtK1Q̄1r s) ∈

[[T ]]2Q̄(JtK0Q̄00 a, JtK0Q̄10 b, JtK0Q̄10 c, JtK0Q̄11 d)

This is the Abstraction Theorem “one level up” for the proofs JtK1, which we will put to

use in the next chapter.



Chapter 10

Applications

of two-dimensional parametricity

In this chapter we show applications of two-dimensional parametricity. We generalise some

of the techniques and results obtained in Chapter 6. In order to do that we work in a

2-categorical setting.

We start the chapter by recalling the two-dimensional categorical notions that we need.

We then equip 1-Type, PrRel and 2Rel with a 2-categorical structure which allows us to

define the graph functor for proof-relevant relations. In particular we need a notion of

fibration between 2-categories in order to supply the proof relevant version of the graph

lemma. The graph lemma is essential in order to give the applications of two-dimensional

parametricity, but it is not enough. In fact we need to generalise the graph functor and the

graph lemma to 2-relations. This operation leads to the definition of the 2-graph functor

and to the 2-relational graph lemma.

At this point we will have all the tools that we need in order to give some applications.

We first show a coherence condition for the naturality proofs defined in Section 6.3. We

then conclude the chapter by showing that two-dimensional naturality implies 2-naturality.

10.1 Two-dimensional categorical structure

In order to define the graph relations and graph 2-relations for, respectively, PrRel and

2Rel we need the higher dimensional structure of such categories and the right definition

of cartesian morphisms in this setting.

169
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We start by recalling the definition of a 2-category as in [Bor94]:

Definition 10.1. A 2-category C consists of

• a class of objects C,

• for each pair A,B of elements of C, a small category C(A,B),

• for each triple A,B,C of elements of C, a bifunctor

cA,B,C : C(A,B)× C(B,C)→ C(A,C),

• for each element A of C, a functor

uA : 1→ C(A,A)

where 1 is the discrete category with just one object.

Such a system should satisfy the following axioms

• associativity axiom: for A,B,C and D elements in C, the following equality holds:

cA,C,D ◦ (cA,B,C × id) = cA,B,D ◦ (id× cB,C,D),

• unit axiom: for A and B objects in C, the following equalities hold:

cA,A,B ◦ (uA × id) ◦ ir = id = cA,B,B ◦ (id× uB) ◦ il,

where ir : C(A,B) ∼= 1× C(A,B) and il : C(A,B) ∼= C(A,B)× 1.

The elements of C are called objects or 0-cells, the objects in the category C(A,B) are

called 1-cells or morphisms and we denote them as f : A→ B, and finally we call 2-cells

the morphisms in C(A,B) and we denote them by α : f ⇒ g.

The bifunctor c gives the composition of morphisms. Given f ∈ C(A,B) and g ∈ C(B,C),

we denote the composition c(f, g) := g ◦ f . With this composition, objects and 1-cells
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form a category where unit and associativity of composition are given by the unit and

associativity axiom in Definition 10.1. We denote the category of objects and 1-cells by C0.

Note that the functor c equips also the 2-cells with a composition structure which we

call horizontal composition (of 2-cells). Given two 2-cells α : f ⇒ g and β : h ⇒ k,

where f, g : A → B and h, k : B → C, we denote the horizontal composition β ∗ α :=

c(α, β) : h ◦ f ⇒ k ◦ g.

The 2-cells inherit another composition, which we call vertical composition (of 2-cells),

from the categorical structure of C(A,B). Given α : f ⇒ g and β : g ⇒ h, the vertical

composition is denoted by β ◦ α : f ⇒ h.

All these compositions have identity. The functor uA : 1→ C(A,A) identifies the identity

morphism for the object A respect to the compositions defined by c. The categorical struc-

ture on C(A,B) furnishes the identity for 1-cells with respect to the vertical composition.

Example 10.2. A standard example of a 2-category is obtained by choosing small cate-

gories as objects, functors as 1-cells and natural transformations as 2-cells.

Example 10.3. Every ordinary category C can be viewed as a 2-category with the trivial

2-cells, i.e. each category C(A,B) is discrete.

The notion of functors generalises to 2-functors:

Definition 10.4. Given two 2-categories C and D, a 2-functor F : C → D consists of

• for every object A in C, an object F (A) in D;

• for every two objects A,A′ in C, a functor

FA,A′ : C(A,A′)→ D(F (A), F (A′)),

which satisfy the axioms

• compatibility for composition: for A,A′ and A′′ objects in C

FA,A′ ◦ cA,A′,A′′ = cF (A),F (A′),F (A′′) ◦ (FA,A′ × FA′,A′′),
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• unit: for every object A in C

FAA ◦ uA = uF (A).

For the sake of brevity we will often write F instead of FA,A′ . Any 2-functor F : C → D

induces a functor on the category of objects and 1-cells which we denote by F0 : C0 → D0.

There is also the notion of 2-natural transformations. In order to define it, we first need

two functors. Let A and f : A′ → A′′ be, respectively, an object and a 1-cell in a 2-category

C. We define the functor C(A, f) : C(A,A′)→ C(A,A′′) as

C(A, f)(g) = f ◦ g C(A, f)(α) = idf ∗ α.

Similarly, the functor C(f,A) : C(A′′, A)→ A(A′, A) is defined as

C(f,A)(g) = g ◦ f C(f,A)(α) = α ∗ idf .

A 2-natural transformation between two parallel 2-functors is defined as follows:

Definition 10.5. Let C and D be two 2-categories and F,G : C → D be two 2-functors. A

2-natural transformation θ : F ⇒ G consists of a morphism θA : F (A)→ G(A) for every

objects A in C which, for every two elements A,A′ in C, satisfies

D(F (A), θA′) ◦ FA,A′ = D(θA, G(A′)) ◦GA,A′ .

In order to understand better the definition, we unwind the equality. Let α : f ⇒ g be

a 2-cell, with f, g : A → A′. The left hand side gives D(F (A), θA′) ◦ FA,A′(α) = idθA′ ∗

F (α) : θA′ ◦ F (f)⇒ θA′ ◦ F (g). The other side, similarly, gives D(θA, G(A′)) ◦GA,A′(α) =

G(α) ∗ idθA : G(f) ◦ θA ⇒ G(g) ◦ θA. From the equality of these two 2-cells we obtain

θA′ ◦ F (f) = G(f) ◦ θA, which is the usual naturality condition, and idθA′ ∗ α = α ∗ idθA .

We now show that 1-Type, PrRel and 2Rel have a 2-categorical structure:

1-Type objects 1-types A.
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1-cells f : A→ B morphism of 1-types.

2-cells u : f ⇒ g is a proof u : f = g.

PrRel objects proof-relevant relations R = (R0, R1, R).

1-cells f = (f0, f1, f) : R→ R′ is a morphism of relations.

2-cells u = (u0, u1, u) : f ⇒ g is a proof that f = g, i.e. u0 : f0 = g0,

u1 : f1 = g1 and u : tr(u0, u1)f = g.

2Rel objects 2-relations Q = (Q00, Q10, Q01, Q11, Qr0, Q0r, Qr1, Q1r, Q).

1-cells f = (f00, f10, f01, f11, fr0, f0r, fr1, f1r, f) : Q → Q′ is a mor-

phism of 2-relations.

2-cells u = (u00, u10, u01, u11, ur0, u0r, ur1, u1r, u) : f = g, where

• uj : fj = gj with j ∈ ({0, 1} × {0, 1}),

• ui : tr(ui0, ui1)fi = gi with i ∈ ({r}×{0, 1}∪{0, 1}×{r})

and i0 substitutes r with 0 and i1 substitutes r with 1,

• u : tr(u00, u10, u01, u11, ur0, u0r, ur1, u1r)f = g, which is

trivial because it acts on propositions.

For each one of the above data is clear that objects and 1-cells form a category. We

need to define the horizontal and vertical composition of 2-cells. Note that, also if the

2-cells are given by equalities, the 2-categorical structure is not trivial since equalities are

proof-relevant.

We start from the horizontal composition of 2-cells. We define the horizontal composition

v ∗ u : h ◦ f ⇒ k ◦ g where u : f ⇒ g, and v : h ⇒ k, f, g : X → Y and h, k : Y → Z are,

respectively, two 2-cells and two 1-cells in

• 1-Type: v ∗ u : h ◦ f = k ◦ g is defined by the composition of paths

ap(h)u a � v(g a) : (h ◦ f) a = (k ◦ g) a
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• PrRel: v ∗ u : tr(v0 ∗ u0, v1 ∗ u1)h ◦ f = k ◦ g is defined by first using

apd(h)u : tr(ap(h0)u0, ap(h1)u1)(h ◦ f) = h ◦ g

and then by composing with

v(g ) : tr(v0, v1)(h ◦ g) = k ◦ g.

• 2Rel: in this case v ∗ u has 9 components: 4 living in 1-Type, 4 living in PrRel, and

for these 8 we have already defined the horizontal composition, and the last one has

trivial composition because it is a proof that two maps between two propositions are

equal.

Next we define the vertical composition v ◦ u : f ⇒ h where f, g, h : A→ B, u : f ⇒ g and

v : g ⇒ h are 1-cells and 2-cells in

• 1-Type: v ◦ u : f ⇒ h is defined by u � v.

• PrRel: v ◦ u : f ⇒ h is defined by apd(tr(v0, v1))u � v : tr(v0, v1)(tr(u0, u1)f) = h.

• 2Rel: again u has 9 components: the first 8 live in 1-Type and PrRel and we have

already defined the composition for them, while the last one has trivial composition

because it is a proof that two maps between two propositions are equal.

It is straightforward to check that both vertical and horizontal composition have unit given

by refl and the associativity of the compositions derives from the associativity of path

composition.

There are two 2-functors in which we are interested:

pr-rel : PrRel→ 1-Type× 1-Type objects R 7→ (R0, R1).

1-cells (f0, f1, f) 7→ (f0, f1).

2-cells (u0, u1, u) 7→ (u0, u1).
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2rel : 2Rel→ PrRel×PrRel objects Q 7→ (Q0r, Q1r).

1-cells f 7→ ((f00, f01, f0r), (f10, f11, f1r)).

2-cells u 7→ ((u00, u01, u0r), (u10, u11, u1r)).

Since they are projections, it is clear that they are both functorial. Moreover the domains

are well defined: the product of two 2-categories has a 2-categorical structure which is

given componentwise.

We conclude this section with the notion of proof-relevant cartesian morphisms. There are

different definitions of cartesian morphisms with respect to higher dimensional functors, see

for example Hermida [Her99], Street [Str80] or Lurie [Lur09]. The proof-relevant cartesian

morphisms that we use are, in particular, cartesian morphisms in the sense of the definition

presented in [Lur09].

Definition 10.6. Let U : E → B be a 2-functor. We say that a morphism f : X → Y in E

is proof-relevant cartesian over l : I → J in B with respect to the functor U if Uf = l

and if for every g : Z → Y in E and 2-cell u : l ◦m⇒ U(g) for some m : U(Z)→ I, there

exists a morphism h : Z → X in E over m and a 2-cell v : f ◦ h⇒ g in E over u such that

h is unique up to 2-cells. That is if there is another morphism h′ : Z → X in E over m and

another 2-cell v′ : f ◦ h′ ⇒ g in E over u, then there is a 2-cell w : h⇒ h′. The condition is

expressed by the diagram

Z

h %%
v

g

$$
E

U

��

X
f
// Y

UZ

m
%%
u

Ug

$$
B

I
l
// J

Dually we have the definition of proof-relevant opcartesian morphisms:

Definition 10.7. Let U : E → B be a 2-functor. We say that a morphism f : X → Y in

E is proof-relevant opcartesian over l : I → J in B with respect to the functor U if

Uf = l and if for every g : X → Z in E and 2-cell u : m ◦ l⇒ U(g) for some m : J → UZ,
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there exists a morphism h : Y → Z in E over m and a 2-cell v : h ◦ f ⇒ g in E over u such

that h is unique up to 2-cells. That is if there is another morphism h′ : Y → Z in E over

m and another 2-cell v′ : h′ ◦ f ⇒ g in E over u, then there is a 2-cell w : h ⇒ h′. The

condition is expressed by the diagram

Z

E

U

��

X
f
//

v

g //

Y
h

99

UZ

B
I

l
//

u

Ug 00

J
m

99

Clearly the above definitions are a generalisation of the cartesian and opcartesian morphisms

defined in Chapter 2, taking in consideration that we want to lift also the 2-cells. In fact,

since we are working in a proof-relevant framework, it is not enough to say that some

diagram commutes, but we need to provide the proof that it commutes, i.e. we need a

2-cell filling the diagram.

We will just write cartesian and opcartesian morphism since we are working in a proof-

relevant framework and it will be clear that we refer to Definition 10.6 and Definition

10.7.

10.2 Graph relations and graph 2-relations

Relations representing graphs of functions are key to many applications of parametricity.

Definition 10.8. Let f : A → B in 1-Type. We define the graph of f as the relation

〈f〉 := (A,B, λa. λb. IdB(fa, b)) in PrRel.

The following result shows that, similarly to the proof-irrelevant case in Section 3.3, it

is possible to characterise graph relations using proof-relevant cartesian and opcartesian

morphisms:

Lemma 10.9. Let f : A→ B be a morphism in 1-Type. We have that:
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1. the morphism (f, id, id) : 〈f〉 → Eq(B) in PrRel is proof-relevant cartesian over (f, id)

with respect to the 2-functor pr-rel;

2. the morphism (id, f, ap(f)) : Eq(A)→ 〈f〉 in PrRel is proof-relevant opcartesian over

(id, f) with respect to the 2-functor pr-rel.

Proof. It is not difficult to see that the morphisms (f, id, id) and (id, f, ap(f)) are well

defined. For the cartesian property consider the following diagram:

R

g

##
h

��
u

(R0, R1)

(g0,g1)

%%

(h0,h1)

�� (u0,u1)
over

〈f〉
(f,id,id)

// Eq(B) (A,B)
(f,id)

// (B,B)

where the 2-cell (u0, u1) of the right diagram is given by hypothesis. In order to define h

we need to define a term h(r0,r1)r : Id((f ◦ h0)r0, h1 r1) for every r ∈ R(r0, r1). We define

it as h(r0,r1)r = (u0 r0) � (gr0,r1 r) � (u1 r1)−1. The 2-cell u : tr(u0, u1)h = g is defined using

Lemma 8.7. In fact, by unwinding the definition of h and transport, u should be a proof

that (u0 r0)−1 � (u0 r0) � (gr0,r1 r) � (u1 r1)−1 � (u1 r1) = gr0,r1 r for every r ∈ R(r0, r1).

The morphism h is unique up to 2-cells since, if there was another morphism h′ over (h0, h1)

and u′ : (f, id, id) ◦ h′ = g over (u0, u1), we would have tr(u0, u1)h = g = tr(u0, u1)h′ and

then, by composing with tr(u0, u1)−1, we obtain h = h′. Note that the first two components

are fixed because of the condition of living over (h0, h1).

For the opcartesian morphism we consider this other diagram

R

u

(R0, R1)

(u0,u1)

Eq(A)
(id,f,ap(f))

//

g

OO

〈f〉

h

gg

(A,A)

(g0,g1)

OO

(id,f)
// (A,B)

(h0,h1)
hh

where the right 2-cells is given by hypothesis, and h is defined for every r : f a = b by

h r = tr((u0 a)−1, (u1 a)−1 � (ap(h1)r)) g refla.
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In order to define u we use path induction obtaining the equality:

g(a,a)refla = tr(u0 a, u1 a)(tr((u0 a)−1, (u1 a)−1 � (ap(h1)refla)) g(a,a) refla.

Finally we want to prove that if there is another h′ : 〈f〉 → R over (h0, h1) and u′ : h′ ◦

(id, f, ap(f)) = g over u, then h = h′. By composing u and (u′)−1 we obtain the equality

tr(u0, u1)(h◦ap(f)) = g = tr(u0, u1)(h′◦ap(f)) and then we can derive h◦ap(f) = h′◦ap(f)

which is not enough because what we need to prove is that for every p : f a = b we have

h(f a,b)p = h′(f a,b)p. In order to do so consider (refla, p) : (a, f a) = (a, b), and using Lemma

8.22 we have:

h(a,b)p = h(a,b)(tr(reflfa, p)reflf a)

= h(a,b)(tr(reflfa, p)(ap(f)refla))

= tr(refla, p)(h(a,fa)(ap(f)refla))

= tr(refla, p)(h
′
(a,fa)(ap(f)refla))

= h′(a,b)(tr(reflfa, p)reflf a)

= h′(a,b)p

which proves the thesis.

The map 〈−〉 extends to a functor 〈−〉 : 1-Type→ → PrRel where 1-Type→ has morphisms

f : A → B in 1-Type as objects and a morphism (α, β, p) : f → g, where f : A → B and

g : A′ → B′, consists of two morphisms α : A→ A′ and β : B → B′ in 1-Type, and a proof

p : (Πx : A) IdB′(g(α(a)), β(f(a))) that the following square commutes

A

f
��

α // A′

g
��

B
β
// B′.

We define the action of 〈−〉 on the morphisms in the following way:

〈α, β, p〉 = (α, β, λa. λb. λ(r : fa = b). p(a) � ap(β)(r)) : 〈f〉 → 〈g〉.
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It is straightforward to see that the morphism 〈α, β, p〉 completes the following diagram

〈f〉
(f,id,id) //

〈α,β,p〉

��

Eq(B)

Eq(β)

��

over

(A,B)
(f,id) //

(α,β)

��

(p,refl)

(B,B)

(β,β)

��
〈g〉

(g,id,id)
// Eq(B′) (A′, B′)

(g,id)
// (B′, B′).

which represents the universal property of the cartesian morphism (g, id, id) : 〈g〉 → Eq(B′).

Just like Eq is full and faithful, so is 〈−〉 : 1-Type→ → PrRel:

Lemma 10.10. The graph functor 〈−〉 : 1-Type→ → PrRel is full and faithful.

Proof. For the faithfulness consider 〈α, β, p〉 = 〈α′, β′, p′〉. It is immediate to derive that

α = α′ and β = β′. The equality of the third component gives that for every r : f a = b it

holds p(a) � ap(β)(r) = p′(a) � ap(β′)(r). Since β and β′ are equal, we can compose both

the sides with ap(β)(r)−1 and obtain p(a) = p′(a) for every a.

For the fullness note that, by Proposition 8.28, Eq is full and faithful and we have both

the cartesian and opcartesian properties for the graph functor. For this reason we can use

the same argument that we used in the proof of Lemma 3.11.

The main tool for deriving consequences of parametricity is the Graph Lemma, which

relates the graph of the action of a functor on a morphism with its relational action on the

graph of the morphism.

Theorem 10.11. Let F0 : 1-Type → 1-Type and F1 : PrRel → PrRel over F0 × F0 be

functorial. If F1(Eq(A)) ∼= Eq(F0A) for all A, then for any f : A→ B, there are morphisms

(id, id, φF,f ) : 〈F0f〉 → F1〈f〉 and (id, id, ψF,f ) : F1〈f〉 → 〈F0f〉.

Proof. Using the cartesian and opcartesian property of the graph functor, we can reproduce

the same argument that we used in the proof of Theorem 3.12.

Note that in our proof-relevant setting, this theorem does not construct an equivalence

〈F0f〉 ∼= F1〈f〉. Instead, we only have a logical equivalence, i.e. maps in both directions, and
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that seems to be enough for all known consequences of parametricity. (In a proof-irrelevant

setting, the constructed logical equivalence would automatically be an equivalence.)

Next, we consider also graph 2-relations. Since we have multiple “equality 2-relations”,

one could expect also multiple graph 2-relations, but for the application we have in mind,

one suffices. Given functions f , g, l and h, we write �(f, g, l, h) for the 1-type of proofs

that the square

A
f //

h
��

B

g

��
C

l
// D

commutes, i.e. �(f, g, l, h) = (Πx : A)IdD(g(fx), l(hx)). We define the category (1-Type→)→

as the one with commuting squares (f, g, l, h, p) as objects and a morphism

(α, β, γ, δ, q, r, q′, r′, t) : (f, g, l, h, p)→ (f ′, g′, l′, h′, p′)

in (1-Type→)→ consists of four morphisms α : A → A′, β : B → B′, γ : C → C ′ and

δ : D → D′, and four proofs q : �(α, f ′, β, f), r : �(β, g′, δ, g), q′ : �(γ, l′, δ, l) and

r′ : �(α, h′, γ, h) such that they form a “commuting cube”

B
β //

g

��

B′

g′

��

A

f ??

α
//

h

��

A′
f ′

??

h′

��

D
δ

// D′

C γ
//

l
??

C ′
l′

??

i.e. such that t : p′ ?r′ ?q′ = q ?r ?p, where p′ ?r′ ?q′ and q ?r ?p are pastings of the squares

that proves that both ways from one corner of the cube to the opposite one commutes.

We unwind the previous condition and formally explain what we mean by a “commuting

cube”. We start first from l′ ◦ h′ ◦ α. The pasting r′ ? q′ : l′ ◦ h′ ◦ α = δ ◦ l ◦ h is formally

represented by

l′ ◦ h′ ◦ α
ap(l′)r′

l′ ◦ γ ◦ h
q′(h( ))

δ ◦ l ◦ h,
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and the pasting q ? r : g′ ◦ f ′ ◦ α = δ ◦ g ◦ f is defined in a similar way:

g′ ◦ f ′ ◦ α
ap(g′)q

g′ ◦ β ◦ f
r(f( ))

δ ◦ g ◦ f.

They form two 2-cells, but in order to compare the two of them we need that they agree

on the boundary, and we can use p′ and p to fill the gap:

g′ ◦ f ′ ◦ α
p′(α( ))

l′ ◦ h′ ◦ α r′?q′
δ ◦ l ◦ h

ap(δ)(p−1)
δ ◦ g ◦ f.

The “commuting cube” condition p′ ? r′ ? q′ = q ? r ? p follows by composing with p both

the sides of the equality p′ ? r′ ? q′ ? p−1 = q ? r, and explicitly is a proof of type

λa.p′(αa) � ap(l′)(r′ a) � q′(h a) = λa.ap(g′)(q a) � r(f a) � ap(δ)(p a).

Naturally the commuting cube condition can be expressed using the 2-categorical structure

of 1-Type as well. For example the pasting p′ ?r′ ?q′ is represented by the following diagram:

B
g′

��

A′

f ′ ..

h′

��r′

A

α ..

h
//

h
// C γ

//

l 00

C ′

p′

q′

l′ // D′

D δ

AA

and using the 2-categorical notation we have p′ ∗ idα : g′ ◦ f ′ ◦ α = l′ ◦ h′ ◦ α, idl′ ∗ r′ : l′ ◦

h′ ◦ α = l′ ◦ γ ◦ h, and q′ ∗ idh : l′ ◦ γ ◦ h = δ ◦ l ◦ h. It is not difficult to check that

p′ ? r′ ? q′ = (q′ ∗ idh) ◦ (idl′ ∗ r′) ◦ (p′ ∗ idα). Similarly we can rewrite also q ? r ? p using the

2-categorical notation.

Lemma 10.12. Let p′ and r′ be two 2-cells as in the above picture. If h = id, h′ = id, and

g′ = id, we have that p′ ? r′ = p′ ∗ r′.

Proof. The equality follows from straightforward calculation and Lemma 8.12.
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We can now define

Definition 10.13. Let (f, g, l, h, p) be an object in (1-Type→)→. We define the 2-graph

of (f, g, l, h, p) as the 2-relation

〈f, g, l, h, p〉2 = (〈f〉, 〈h〉, 〈l〉, 〈g〉, λ(a, b, c, d). λ(q, r, s, t). ap(g)q � t = p(a) � ap(l)r � s).

The 2-graph 2-relation 〈f, g, l, h, p〉2 says that the two ways to prove h(l(a)) = d using p, q,

r, s, t are in fact equal.

Again, more abstractly, we can see the 2-graph relations being domains of proof-relevant

cartesian morphisms or codomains of proof-relevant opcartesian morphisms with respect

to the 2-functor 2rel : 2Rel→ PrRel×PrRel.

Lemma 10.14. Let (f, g, l, h, p) be a commuting square

A
f //

h
��

B

g

��
C

l
// D

i.e. an object in (1-Type→)→. We have that

1. (f, id, l, id, id, 〈f, l, p〉, id, id) : 〈f, g, l, h, p〉2 → Eq‖(〈g〉) in 2Rel is proof-relevant carte-

sian over ((f, l, 〈f, l, p〉), (id, id, id)) : (〈h〉, 〈g〉) → (〈g〉, 〈g〉) with respect to the 2-

functor 2rel.

B
id //

OO

〈g〉

��

BOO

〈g〉

��

A
��

〈f〉
??

f
//

OO

〈h〉

��

B
��

Eq(B)

??

OO

〈g〉

��

D
id

// D

C
l

//
��

〈l〉
??

D
�� Eq(D)

??

2. (id, f, id, l, ap(f), id, ap(l), 〈f, l, p〉) : Eq‖(〈h〉)→ 〈f, g, l, h, p〉2 in 2Rel is proof-relevant

opcartesian over ((id, id, id), (f, l, 〈f, l, p〉)) : (〈h〉, 〈h〉)→ (〈h〉, 〈g〉) with respect to the
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2-functor 2rel.

A
f //

OO

〈h〉

��

BOO

〈g〉

��

A
��

Eq(A)

??

id
//

OO

〈h〉

��

A
��

〈f〉

??

OO

〈h〉

��

C
l

// D

C
id

//
��

Eq(C) ??

C
�� 〈l〉

??

Proof. We first need to check that the two morphisms are well defined. In the first case

consider the related elements (q, r′, q′, r) ∈ 〈f, g, l, h, p〉2(a, b, c, d) and we want to show

that their images

faOO

p(a) � ap(l)r′

��

oo q // bOO

r

��
lc oo

q′
// d

are related in Eq‖(〈g〉)(fa, b, lc, d), i.e. tr(q, q′)(p(a) �ap(l)r′) = r. By definition of transport

and Lemma 8.21 first and then by composing both sides with ap(f)q, this is equivalent to:

tr(q, q′)(p(a) � ap(l)r′) = r

⇒ (ap(f)(q))−1 � p(a) � ap(l)r′ � q′ = r

⇒ p(a) � ap(l)r′ � q′ = ap(f)(q) � r

which is exactly the hypothesis condition for (q, r′, q′, r) being in 〈f, g, l, h, p〉2(a, b, c, d).

For the second morphism consider the related elements (q, r′, q′, r) ∈ Eq‖(〈h〉)(a, a′, c, c′),

that is tr(q, q′)r′ = r and, by definition of transport plus Lemma 8.21, we rewrite it as

(ap(h)q)−1 � r′ � q′ = r. We want to show that their images

aOO

r′

��

oo ap(f)q // fa′OO

p(a′) � ap(l)r

��
c oo

ap(l)q′
// lc′
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are related in 〈f, g, l, h, p〉2, i.e. that ap(g)(ap(f)q) � p(a′) � ap(l)r = p(a) � ap(l)r′ � ap(l)q′.

Using Lemma 8.12, we have ap(g◦f)q �p(a′) = p(a)�ap(l◦h)q, and from (ap(h)q)−1 �r′ �q′ = r

we derive ap(h)q = r′ � q′ � r−1. Using these equalities we can rewrite

ap(g)(ap(f)q) � p(a′) � ap(l)r = p(a) � ap(l)r′ � ap(l)q′

p(a) � ap(l)(ap(h)q) � ap(l)r = p(a) � ap(l)r′ � ap(l)q′

p(a) � ap(l)(r′ � q′ � r−1) � ap(l)r = p(a) � ap(l)r′ � ap(l)q′

and we can simplify everything obtaining refl = refl.

We now prove that (f, id, l, id, id, 〈f, l, p〉, id, id), which we denote by (〈f, l, p〉, id)§, is carte-

sian over (〈f, l, p〉, id) : (〈h〉, 〈g〉) → (〈g〉, 〈g〉). In order to do that consider the following

diagram:

Q

t

))
s

��
u

over

(Q0r, Q1r)

(u0r,u1r)

(t0r,t1r)

))
(s0r,s1r)

��
〈f, g, l, h, p〉2

(〈f,l,p〉,id)§
// Eq‖(〈g〉) (〈h〉, 〈g〉)

(〈f,l,p〉,id)
// (〈g〉, 〈g〉).

In order to complete the triangle on the left we need to find sr0, sr1, s, ur0, ur1 and u

because the other components are given since they live over the 2-cell on the right hand

side.

The components sr0, sr1, ur0 and ur1 are defined using the universal property of the cartesian

morphism (f, id, id) : 〈f〉 → Eq(B) with tr0 : Qr0 → Eq(B) over the 2-cell (u00, u10) and the

cartesian morphism (l, id, id) : 〈l〉 → Eq(D) with tr1 : Qr1 → Eq(D) over the 2-cell (u01, u11).

In particular we recall the definitions of sr0 and sr1: if m ∈ Qr0(a, b), then (sr0)(a,b)m =

u00a � (tr0)(a,b)m � (u10b)
−1, and if o ∈ Qr1(c, d), then (sr1)(c,d)o = u01c � (tr1)(c,d)o � (u11b)

−1.

The components s and u act on propositions and then it is enough to prove that if

(m, j, o, n) ∈ Q(a, b, c, d) then their images

s00aOO

s0rj

��

oo sr0m // s10bOO

s1rn

��
s01c oo sr1o

// s11d
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are related in 〈f, g, l, h, p〉2, that is we need to show that

ap(g)(u00a � (tr0)(a,b)m � (u10b)
−1) � (s1r)(b,d)n =

p(s00a) � ap(l)(s0r)(a,c)j � u01c � (tr1)(b,c)o � (u11d)−1.

Since t is a morphism between 2-relations, the following elements are related

t00a

Eq‖(〈g〉)

OO

(t0r)(a,c)j

��

oo
(tr0)(a,b)m // t10bOO

(t1r)(b,d)n

��
t01c oo

(tr1)(c,d)o
// t11d

which means that tr((tr0)(a,b)m, (tr1)(c,d)o)(t0r)(a,c)j = (t1r)(b,d)n. By using the proofs uij

we can rewrite the previous equality as

(s1r)(b,d)n =

tr(u00a � (tr0)(a,b)m � (u10b)
−1, u01c � (tr1)(b,c)o � (u11d)−1)p(s00a) � ap(l)(s0r)(a,c)j

which, by definition of transport together with Lemma 8.21 and moving elements between

the two sides, gives the equality that we wanted to prove.

For the uniqueness note that most of the components are fixed by living over (s0r, s1r), sr0

and sr1 are unique up to 2-cells since they are defined using the cartesian property of the

graph functor, and s is unique because it is a map between propositions.

It is left to prove that (id, f, id, l, ap(f), id, ap(l), 〈f, l, p〉), which we denote by (id, 〈f, l, p〉)§,

is opcartesian over (id, 〈f, l, p〉). In order to do that, consider the following diagram:

Q

u
over

(Q0r, Q1r)

(u0r,u1r)

Eq‖(〈h〉) (id,〈f,l,p〉)§
//

t

OO

〈f, g, l, h, p〉2

s

gg

(〈h〉, 〈h〉)

(t0r,t1r)

OO

(id,〈f,l,p〉)
// (〈h〉, 〈g〉).

(s0r,s1r)

ff
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We define sr0, sr1, ur0 and ur1 using the universal property of the opcartesian morphism

(id, f, ap(f)) : Eq(A) → 〈f〉 with tr0 : Eq(A) → Qr0 over the 2-cell (u00, u10) and the

opcartesian morphism (id, l, ap(l)) : Eq(C) → 〈l〉 with tr1 : Eq(C) → Qr1 over the 2-cell

(u01, u11). In particular we recall the definitions of sr0 and sr1: ifm ∈ 〈f〉(a, b), (sr0)(a,b)m =

tr((u00 a)−1, (u10 b)
−1 � (ap(s10)m))(tr0)(a,a) refla and if o ∈ 〈l〉(c, d), then (sr1)(c,d)o =

tr((u01 c)
−1, (u11 d)−1 � (ap(s11)o))(tr1)(c,c) reflc.

Since s and u act at on propositions, in order to define them it is enough to prove that for

every (m, j, o, n) ∈ 〈f, g, l, h, p〉2(a, b, c, d), their images

s00aOO

s0rj

��

oo sr0m // s10bOO

s1rn

��
s01c oo sr1o

// s11d

are related in Q. Consider the following picture:

s00a oo
sr0m //

(u00a)−1

OO

s0rj

��

(?)

s10b

ap(s10)m

OO

s1rn

��

(4)

s10fa

(4)

(�)

(u10a)−1

OO

s1r(p(a) � ap(l)j)

��

t00a

Q

oo
(t0)(a,a)refla //

OO

(t0r)(a,c)j

��

t10aOO

(t1r)(a,c)j

��
t01c

(?)

oo
(tr1)ccreflc

// t11c

(u11c)−1

s11lc

s01c

(u01c)−1

oo
sr1o

// s11d

ap(s11)o

where the middle square is the image of t applied to (refla, j, reflc, j) ∈ Eq‖(〈h〉)(a, a, c, c),

the two squares with (?) are given by definition of sr0 and sr1, and the two squares with

(4) are given by u0r : tr(u00, u01)s0r = t0r and u1r : tr(u10, u11)s1r = t1r up to moving the

transport on the other side of the equality. The square (�) requires a little more work.
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Consider the following picture

aOO

j

��

oo m //

refla (?)

b

m

OO

n

��

(4)

a

〈f,g,l,h,p〉2

oo ap(f)refla //
OO

j

��

faOO

p(a) � ap(l)j

��
c

(?)

oo
ap(l)reflc

// lc

c

reflc

oo
o

// d

o

where the middle square is the application of (id, 〈f, l, p〉)§ to (refla, j, reflc, j), the two squares

with (?) are given by path composition, the (4) is trivially obtained by transporting along

refl, and the remaining one derives from the fact that n is the unique element which

completes the outer square. In fact, by definition of 〈f, g, l, h, p〉2, the right most element

should be equal to (ap(g)m)−1 � p(a) � ap(l)j � o which, using the fact that (m, j, o, n) ∈

〈f, g, l, h, p〉2(a, b, c, d), is n. We then have tr(m, o)(p(a) � ap(l)j) = n, and using apd(s1r)

we obtain exactly tr(ap(s10)m, ap(s11)o)(s1r(p(a) � ap(l)j)) = s1rn which is (�).

Finally the uniqueness of the morphism follows like before: most of the components are

fixed because they live over (s0r, s1r), the morphisms sr0 and sr1 are unique up to 2-cells

because of the opcartesian property of the graph functor, and the remaining component is

unique because it acts on propositions.

The 2-graph map extends to a functor 〈−〉2 : (1-Type→)→ → 2Rel by sending a mor-

phism (α, β, γ, δ, q, r, q′, r′, t) : (f, g, l, h, p) → (f ′, g′, l′, h′, p′) in (1-Type→)→ to the mor-

phism 〈α, β, γ, δ, q, r, q′, r′, t〉2 = (α, β, γ, δ, 〈α, β, q〉, 〈α, γ, r′〉, 〈γ, δ, q′〉, 〈β, δ, r〉, χ), where

we have already seen how each component is defined but χ. Since the component χ acts on

propositions, we only need to show that given (m, j, o, n) ∈ 〈f, g, l, h, p〉2(a, b, c, d), their

images

αaOO

〈α,γ,r′〉j

��

oo 〈α,β,q〉m // β bOO

〈β,δ,r〉n
��

γ c oo
〈γ,δ,q′〉o

// δ d
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are related in 〈f ′, g′, l′, h′, p′〉2. By unwinding the definition of 〈−〉 and 〈−〉2 we need to

show that

ap(g′)(q(a) � ap(β)m) � r(b) � ap(δ)n =

= p′(αa) � ap(l′)(r′(a) � ap(γ)j) � q′(c) � ap(δ)o.

Using Lemma 8.12 and Lemma 8.9 we can rewrite the left hand side as

ap(g′)(q(a) � ap(β)m) � r(b) � ap(δ)n =

ap(g′)(q a) � r (f a) � ap(δ)((ap(g)m) � n)

and the right hand side as

p′(αa) � ap(l′)(r′(a) � ap(γ)j) � q′(c) � ap(δ)o =

p′(αa) � ap(l′)(r′ a) � q′(h a) � ap(δ)((ap(l)j) � o).

Since (m, j, o, n) ∈ 〈f, g, l, h, p〉2(a, b, c, d), we have

ap(δ)((ap(g)m) � n) = ap(δ)(p(a) � (ap(l)j) � o).

When then reduced to prove

ap(g′)(q a) � r (f a) � ap(δ)(p(a)) � ap(δ)((ap(l)j) � o) =

= p′(αa) � ap(l′)(r′ a) � q′(h a) � ap(δ)((ap(l)j) � o)

and we see that the last part ap(δ)((ap(l)j) � o) is the same, the first part of the left hand

side is q ? r ? p, while the first part of the right hand side is p′ ? r′ ? q′, and we have t which

proves that they are the same.
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The morphism 〈f, g, l, h, p〉2 completes the following diagram

〈f, g, l, h, p〉2
(〈f,l,p〉,id)§ //

〈α,β,γ,δ,q,r,q′,r′,t〉2
��

Eq‖(〈g〉)

Eq‖(〈β,δ,r〉)
��

〈f ′, g′, l′, h′, p′〉2
(〈f ′,l′,p′〉,id)§

// Eq‖(〈g′〉)

over

(〈h〉, 〈g〉)
(〈f,l,p〉,id) //

(〈α,γ,r′〉,〈β,δ,r〉)
��

((q−1,q′−1,ξ),(refl,refl,refl))

(〈g〉, 〈g〉)

(〈β,δ,r〉,〈β,δ,r〉)
��

(〈h′〉, 〈g′〉)
(〈f ′,l′,p′〉,id)

// (〈g′〉, 〈g′〉)

which represents the cartesian property of the morphism (〈f ′, l′, p′〉, id)§ : 〈f ′, g′, l′, h′, p′〉2 →

Eq‖(〈g′〉). Every component in the diagram has already been defined but ξ. The component

ξ should be a proof that tr(q−1, q′−1)(〈β, δ, r〉◦〈f, l, p〉) = 〈f ′, l′, p′〉◦〈α, γ, r′〉. By unwinding

the previous equality and using the same techniques that we used so far, we obtain that

we need to prove

ap(g′)(q a) � r(f a) � ap(δ)(p(a) � ap(l)w) � q′−1(c) =

p′(αa) � ap(l′)(r′(a) � ap(γ)w)

for every w : h a = c in 〈h〉. By composing both sides with q′(c) and using Lemma 8.9 we

can rewrite the previous equality as

ap(g′)(q a) � r(f a) � ap(δ)(p a) � ap(δ)(ap(l)w) =

p′(αa) � ap(l′)(r′ a) � ap(l′)(ap(γ)w) � q′(c).

Using Lemma 8.12 we obtain the equality ap(l′)(ap(γ)w) � q′(c) = q′(h a) � ap(δ)(ap(l)w)

and then

ap(g′)(q a) � r(f a) � ap(δ)(p a) � ap(δ)(ap(l)w) =

p′(αa) � ap(l′)(r′ a) � q′(h a) � ap(δ)(ap(l)w)
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and simplifying both sides finally we have

ap(g′)(q a) � r(f a) � ap(δ)(p a) =

p′(αa) � ap(l′)(r′ a) � q′(h a)

and t is exactly a proof of such equality. Finally it is straightforward to check that

〈f, g, l, h, p〉2 satisfies the cartesian property using that most of the components are fixed,

two of them are defined using the cartesian characterisation of the graph functor, and the

last component is unique because it acts on propositions.

Lemma 10.15. The 2-graph functor 〈−〉2 : (1-Type→)→ → 2Rel is full and faithful.

Proof. The faithfulness can be derived componentwise from the faithfulness of the graph

functor.

We have that Eq‖ is full and faithful by Proposition 8.45, and we have both the cartesian

and opcartesian properties for the 2-graph functor. For this reason we can use the same

argument that we used in the proof of Lemma 3.11.

This lemma can be used to prove a 2-relational version of the Graph Lemma:

Theorem 10.16 (2-relational Graph Lemma). Let F2 : 2Rel→ 2Rel be functorial, and

over (F0, F1) where F0 and F1 are as in Theorem 10.11. If F2(Eq‖R) ∼= Eq‖(F1R) for all R,

then for any (f, g, h, l, p) in (1-Type→)→, there are two morphisms

φ2 : 〈F0f, F0g, F0h, F0l, ap(F0)p〉2 → F2〈f, g, h, l, p〉2

ψ2 : F2〈f, g, h, l, p〉2 → 〈F0f, F0g, F0h, F0l, ap(F0)p〉

in 2Rel over (φ, φ) and (ψ,ψ) from Theorem 10.11.

Proof. We can use the same argument that we used in the proof of Theorem 3.12.
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10.3 Two dimensional naturality

As we showed in Chapter 6, a very well known result about parametricity is that all System

F terms of the right type are natural (see e.g. [Rey83,PA93]). We can extend this result to

2-naturality thanks to two-dimensional parametricity. We start by recalling the standard

theorem that holds also with proof-irrelevant parametricity and show that we need a

coherence condition for naturality proofs in the case of two-dimensional parametricity.

Theorem 10.17 (Parametric terms are natural). Let F (X) and G(X) be functorial type

expressions in the free type variable X in some type context Γ. Every term Γ;− ` t :

∀X.F (X)→ G(X) gives rise to a natural transformation JF K0 → JGK0, i.e. if f : A→ B

then there is nat(f) : Id(JGK0(f) ◦ JtK0A, JtK0B ◦ JF K0(f)).

Proof. We construct nat(f) using the relational interpretation of t: by construction,

JtK1 〈f〉 : JF K1(〈f〉)→ JGK1(〈f〉), hence using Theorem 10.11,

ψG,f ◦ JtK1 〈f〉 ◦ φF,f : (Πxy) 〈JF K0f〉(x, y)→ 〈JGK0f〉(JtK0Ax, JtK0B y)

and since refl : 〈JF K0f〉(a, (JF K0f)a) for each a : JF K0A, we can define

nat(f) := ext(λa. (ψG,f ◦ JtK1 〈f〉 ◦ φF,f ) a ((JF K0f)a) refl).

In two-dimensional parametricity naturality alone is not enough anymore. In order to

see that, consider the equivalence (see [Rey83]) [[A]] ∼= [[∀X.(A→ X)→ X]] which holds

for all types A. From a categorical perspective this as an instance of the Yoneda Lemma

(see e.g. [ML98]) for the identity functor. The right hand side of the equation consists of

natural transformations from the Hom functor A→ X to the identity functor X.

In a more expressive theory such as (impredicative) Martin-Löf Type Theory with proof-

irrelevant identity types and function extensionality, we can go further even without

a relational interpretation, as pointed out by Steve Awodey (personal communication).

Taking inspiration from the Yoneda Lemma once again, we can show

A ∼= (Σt : (ΠX : Set)(A→ X)→ X) isNat(t) (10.18)
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where

isNat(t) := (ΠX,Y : Set)(Πf : X → Y )Id(A→X)→Y (f ◦ tX , tY ◦ (f ◦ ))

expresses that t is a natural transformation.

The above isomorphism (10.18) relies on A being a set, i.e. that A has no non-trivial higher

structure. If we instead consider A : 1-Type, the isomorphism (10.18) fails; instead we have

A ∼= (Σt : (ΠX : 1-Type)(A→ X)→ X)(Σp : isNat(t)) isCoh(p) (10.19)

where

isCoh(p) := (ΠX,Y, Z : 1-Type)(Πf : X → Y )(Πg : Y → Z)

(pX Z (g ◦ f)) = (p Y Z g) ? (pX Y f)

expresses that the proof p is suitably coherent. Proof-irrelevant parametricity can not ensure

this coherence conditionan extension of the usual naturality argument to proof-relevant

parametricity guarantees this extra uniformity of the proof as well:

Theorem 10.20 (Naturality proofs are coherent). Let F , G and t be as in Theorem 10.17.

The proof nat : isNat(JtK0) is coherent, i.e. for all f : A → B and g : B → C, there is a

proof coh(f, g) : Id(nat(g ◦ f), nat(g) ? nat(f)).

Proof. We construct coh(f, g) using the 2-relational interpretation of t. By construction,

[[t]]2〈f, g, g ◦ f, id, refl〉2 : [[F ]]2〈f, g, g ◦ f, id, refl〉2 → [[G]]2〈f, g, g ◦ f, id, refl〉2, hence using

Theorem 10.16,

φ2 ◦ [[t]]2〈f, g, g ◦ f, id, refl〉2 ◦ ψ2 :

(Π(x̄, r̄))
(
r̄ ∈ 〈F0f, F0g, F0(g ◦ f), id, ap(F0)p〉2x̄

→ (JtK1r̄) ∈ 〈G0f,G0g,G0(g ◦ f), id, ap(G0)p〉2(JtK0x̄)
)
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We define

coh(f, g) := ext(λa. (φ2 ◦ [[t]]2〈f, g, g ◦ f, id, refl〉2 ◦ ψ2) (a, (F0f)a, F0(g ◦ f)a, a) ¯refl)

— this works, since φ2 and ψ2 are over (φ, φ) and (ψ,ψ) respectively, since nat(h) is defined

to be (φ ◦ JtK1 ◦ ψ)refl, and since the 2-relation 〈G0f,G0g,G0(g ◦ f), id, ap(G0)p〉2 exactly

says that pasting the two diagrams produces the third in this case.

Finally we can prove that we have 2-naturality:

Theorem 10.21 (2-naturality). Let F (X), G(X) be 2-functorial type expressions in the

free type variable X in some context Γ. Every term Γ;− ` t : ∀X.F (X)→ G(X) gives rise

to a 2-natural transformation JF K0 ⇒ JGK0, i.e. if f, g : A→ B and α : f ⇒ g, then there

is a proof

(nat(f), nat(g), nat2(f, g)) : reflJtK0B ∗ F (α) = G(α) ∗ reflJtK0 A.

Proof. Note that since reflJtK0B∗F (α) : JtK0B◦F (f) = JtK0B◦F (g) andG(α)∗reflJtK0A : G(f)◦

JtK0A = G(g) ◦ JtK0A, we need to use nat(f) and nat(g) in order to identify the boundaries

of the two 2-cells. For this reason what we prove is that tr(nat(f), nat(g))(G(α)∗ reflJtK0A) =

reflJtK0B ∗ F (α), which, by unwinding the definition of transport, is

nat(f)−1 � (G(α) ∗ reflJtK0A) � nat(g) = reflJtK0B ∗ F (α).

We can think to the proofs G(α), F (α), reflJtK0A and reflJtK0B as squares by adding identities:

for example G(α) : id ◦ f = g ◦ id. In this way we can use Lemma 10.12 and by definition

of ?, we can rewrite the previous equality as

nat(f)−1 ? G(α) ? reflJtK0A ? nat(g) = reflJtK0B ? F (α)

and by composing both the sides with nat(f) we find that the lemma holds if we can prove

G(α) ? reflJtK0A ? nat(g) = nat(f) ? reflJtK0B ? F (α).
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In order to show that the above equality holds, we use the same technique that we used in

the proof of Theorem 10.20, but in this case we consider the morphism [[t]]2〈f, id, g, id, α〉2 :

[[F ]]2〈f, id, g, id, α〉2 → [[G]]2〈f, id, g, id, α〉2.



Chapter 11

Conclusion and future work

This thesis is just the first step towards the study of higher dimensional parametricity. The

work presented in Chapters 5 and 7 allowed us to grab the essence of parametricity and

present it in a suitable way for the generalisation to higher dimensions. The results presented

in those two chapters suggest that, in order to study higher dimensional parametricity, we

should leave the world of faithful fibrations and for this reason we worked with proof-relevant

relations in Chapter 9.

The first difficulty we met was in the choice of the shape of higher dimensional relations.

The cubical definition of higher dimensional relations in Grandis [Gra09] worked well for

us. It might be interesting to study two-dimensional parametricity using other different

shapes for 2-relations: globular (see [Lei04]), simplicial (see [Rie08] or [Fri08]), etc. We

have pointed out that our first approach using globular relations does not work, but this

might be due to the fact that we related proofs p and p′ defined over different elements,

i.e. p ∈ R(a, b) and p′ ∈ R(a′, b′). Nonetheless, this approach might work defining globular

2-relations only for proofs with fixed boundaries. Papers from topological algebra show

that there is a link between the different approaches (see for example [AABS02]) which

bring different advantages (see discussions [of09] and [of17], or the comparision of the

simplicial and cubical sets models of Martin-Löf Type Theory in Bezem, Coquand and

Huber [BCH14]).

Another observation on Chapter 9 is that we presented a concrete model and not a general

framework. We tried to introduce the material in such a way that it exposes the categorical

structure underlying it. We expect that it is possible to prove that the model we defined

forms a λ2-fibration p, and generalises the work of Chapter 5. In particular, the objects

195
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in the total category of p should be fibred functors on three layers corresponding to

2Rel, PrRel and 1-Type. This is work in progress and there are two big questions which

immediately arise. First we need to find the right definition of fibrations for proof-relevant

relations. In this thesis we saw 1-Type, PrRel and 2Rel as 2-categories and defined

proof-relevant cartesian morphisms. This definition worked well for the concrete case that

we studied, but for the generalisation we might need a stricter definition. For example

it is possible to strengthen the notion of proof-relevant cartesian morphisms by asking

uniqueness also for 2-cells. There are papers on parametricity which do not require the

opfibrational structure, but only some opcartesian liftings (see [HRR14]). In this thesis we

took a similar approach by asking only for the needed cartesian and opcartesian liftings.

In Chapters 5, 6 and 7 we showed clear advantages of having both the fibrational and

opfibrational structure, for this reason it would be nice to have them.

There is a second question on the nature of 2-relations. If we want to keep track of all the

four relations, considering 2Rel over PrRel4 is the most natural choice. On the other

hand we can think of a 2-relation as a relation between two other relations, i.e. considering

2Rel over PrRel2. In this case we must choose an orientation: we can display relations

vertically and 2-relations horizontally or vice-versa. One would expect the two orientations

to be equivalent.

These two questions assume more relevance if we think of the natural evolution of two-

dimensional parametricity into ω-parametricity, i.e. infinite-dimensional parametricity. In

fact, in the infinite-dimensional case where the complexity increases exponentially, it is

important to use the best approach. We have some work in progress on logical relations

for ω-parametricity which assume that, also if relations are proof-relevant, the equality

relations are proof-irrelevant at each level. We use a cubical approach which extends the

work on two-dimensional parametricity presented in Chapter 9 and we managed to prove

the Identity Extension Lemma at each level. We expect that, using techniques similar to

the ones used in Chapter 9, the Identity Extension Lemma generalises to the case where

equalities are proof-relevant. The next step will be to prove that the Abstraction Theorem

holds and that we have a model of System F.
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Another interesting point to study is the generalisation of the results of Chapter 7 to

two-dimensional parametricity. Since the world of parametricity is relational, the universal

property was based on cones living at two different levels: one at the set level and one at

the relational level. We then expect that the generalisation uses three different levels of

cones: one for sets, one for relations and one for 2-relations.

Finally, since this work is only the first step, there is plenty of work to do in showing the

behaviour of two-dimensional parametricity — the applications presented in Chapter 10

are only the tip of the iceberg.
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