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Abstract

Partial Discharge (PD) is a well-known indicator of plant failure in electricity facilities.

A considerable proportion of assets including transformers, switch gears, and power lines

are susceptible to PD due to incipient weakness of their dielectric components. These

discharges may cause further degradation of the insulation, which in turn may lead to

subsequent catastrophic failure. The damage that results from PD activity is worth mil-

lions of pounds and endangers the lives of personnel. PD emits electrical pulses in the

form of Radio Frequency (RF) signals which propagate as a travelling wave in the vicinity

of the discharge site and can be detected using dedicated sensors. This has motivated the

use of an enhanced radio-based technique to detect its occurrence at early stage. Early

detection of PD helps utility operators to initiate an emergency maintenance outside the

scheduled times when it is most cost-effective and before the equipment loses performance

or suffers catastrophic failure, hence improving asset management.

Therefore this thesis presents an investigation of an enhanced machine learning ap-

proach to continuous PD localisation using a network of radio sensors. The approach

being investigated relies on location dependent parameters which will be extracted from
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PD measurements. This thesis demonstrates RF-based fingerprinting technique for lo-

cating PD sources using Received Signal Strength (RSS). Furthermore, Signal Strength

Ratios (SSR) between pairs of sensor nodes are used as robust fingerprints given that

the energy emitted by each PD event may be different due to progressive nature of PD

severity as deterioration continues and the fact that different types of PD occur in na-

ture. Sophisticated machine learning techniques are investigated and used to develop PD

localisation models.

This work also investigates the plausibility of using other PD received signal param-

eters for locating PD sources. It has been found that the statistical characterisation of

the received RF signals produces manifold PD features beside RSS. The developed lo-

calisation approach based on the analysis of these statistical features assumes that PDs

generate unique RF spatial patterns due to the complexities and non-linearities of RF

propagation. This approach exploits two distinct frequency bands which hold different

PD information. PD location features are extracted from the main PD signal and the two

sub-band signals. These features are then used to infer PD location. Moreover, due to

the increased dimensionality of data that may result from PD feature generation, feature

selection algorithm; Correlation Based Feature Selection (CFS) is employed for feature

selection and dimensionality reduction. The use of statistical PD features improves local-

isation accuracy.

This study further presents a novel method for RF-based PD localisation. The tech-

nique uses Wavelet Packet Transform (WPT) and machine learning ensemble methods

to locate PDs. More specifically, the received signals are decomposed by the Maximal

Overlap Discrete Wavelet Packet Transform (MODWPT) version of wavelet packet and

analysed in order to identify localised PD signal patterns. The Regression Tree algo-

rithm, Bootstrap Aggregating method and Regression Random Forest (RRF) are used

to develop PD localisation models based on the wavelet PD features. The proposed PD

v



localisation scheme has been found to successfully locate PD with negligible error.

Additionally, the principle of the developed PD localisation system has been validated

using a separate test dataset. This approach is based on purely practical reasons, given

the enormity of separate experiments to be carried out. The data required is collated over

an extended time period.

The results of the investigation presented in this thesis show that an autonomous and

efficient substation-wide RF-based continuous PD localisation system is possible.
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CHAPTER 1

Introduction

1.1 Background

The electricity supply industry has grown over the years to become very critical to human

and societal development all over the world. Unfortunately, the ever increasing demand

on electricity for both home and industrial usage leads to more and more generation,

transmission and distribution of electricity. This naturally increases the stress on electrical

assets such as transformers, cables, and switch gear in electricity substations leading to

increased probability of equipment deterioration. Consequently, these assets could fail

without advance warning. Such failures are sometimes catastrophic and may include

irreversible damage leading to high cost of replacement or repair. The economic losses due

to plant breakdown and unplanned power outage could be substantial. Moreover, energy

regulators such as Ofgem in UK often impose fines on companies for outages/power

cuts. There are also Quality of Service (QoS) incentives available for power operators
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to deliver an acceptable level of performance with respect to number and duration of

interruptions per 100 customers and the number of customer minutes lost [1][2]. As a

result, uninterrupted functioning of these assets is crucial to facilitate efficient and reliable

operations of power systems.

With the high cost associated with building new infrastructure, power utilities now

face the challenge to maximally utilise their ageing electrical equipment which may be

prone to failure to meet the high energy demand whilst minimising operation and main-

tenance cost. This has increased interest in predictive condition-based maintenance over

the traditional time-based strategy, which is not only expensive and labour intensive but

also ineffective in identifying problems that develop between scheduled inspections. Pre-

dictive maintenance techniques are able to evaluate the health condition of equipment in

real-time by performing continuous monitoring. This helps utility operators to perform

maintenance at scheduled times to achieve an acceptable trade-off between the value of

asset, economic burden of failure and cost of maintenance strategy.

With the shift towards condition-based maintenance, various techniques have been re-

searched that can assess the condition of electrical assets and assist in maintenance and

management. One recognised technique is through monitoring of Partial Discharge (PD)

activity [3][4]. The term PD refers to an electrical discharge that only partially bridges

the insulation between conductors. PD phenomenon is caused by highly localised insu-

lation defects such as the existence of voids in solid insulation, at conductor-dielectric

interfaces, gas bubbles, or impurities in liquid insulation and along the surface of insula-

tors [5]. Regardless of the underlying cause, PD is indicative of degraded insulation. The

discharges themselves further deteriorate the quality of the insulation, thereby giving rise

to a vicious circle of atrophy until total failure [6]. Therefore, instituting a continuous

monitoring system permit PD activity to be detected at an early stage and proactive

maintenance can be employed to avoid catastrophic failure of assets. Thus, unplanned
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outages and expensive repair costs can be significantly ameliorated.

The concept of PD monitoring has become a dominant tool for assessing the condi-

tion of electrical equipment [7]. This has fostered growing interest in developing efficient

and practical substation-wide PD based condition monitoring systems. One important

task in building such a system is to develop techniques that can accurately locate the

point of discharge. Locating the point of discharge helps in easy and quick identification

of the piece of equipment that needs repair/ or replacement and hence facilitate main-

tenance activity. The occurrence of PD can be determined using protection equipment

that monitors changes in the electric current [8]. The discharge produces acoustic emis-

sions [9]; consequently, ultrasonic detectors have been used to determine their location.

This is particularly useful in small indoor installations. Another approach is to moni-

tor the radio spectrum for Radio-Frequency (RF) pulses emitted by the discharges [4].

Due to the suitability of RF method for larger substations, much effort has been focused

on the development of RF-based PD localisation technique [10][3]. The conventional RF

techniques for locating PD integrate Time-Difference-of-Arrival (TDoA) or Direction-of-

Arrival (DoA) methods in the monitoring system to trilaterate or triangulate PD location

[6][3]. The contact-sensor methods used to locate PDs can be prohibitively expensive and

resource intensive. Each sensor is dedicated to one item of plant. This has motivated

an investigation into the development of an enhanced approach to PD localisation. To

this end the work presented in this thesis investigates the feasibility of implementing a

relatively inexpensive RF-based autonomous PD localisation system using a network of

sensors in conjunction with flexible models based on machine learning technique.

1.2 Research Objectives

This investigation is driven by the motivation to develop an enhanced PD localisation

system that can be deployed to monitor an entire substation. The work reported in this
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thesis explores the feasibility of deploying a matrix of radio sensors in the form of a

wireless sensor network using commercially off-the-shelf components to locate PD. The

hypothesis explored in this work is that PD location can be inferred from parameters of

the RF signal emitted by PD using sophisticated machine learning algorithm. With recent

technological advancement towards smart grid, autonomous uninterrupted monitoring of

electrical facilities is becoming more desirable. Future smart grids can benefit from the

relatively inexpensive but efficient localisation of PD. It is for this reason that this thesis

explores the problem of machine learning enhanced radio location of PD. More specifically,

the main objectives of this thesis are:

1. To understand partial discharge phenomena that occur in electrical equipment;

2. To investigate the feasibility of deploying a network of sensor for substation-wide

PD localisation;

3. To investigate the implementation of received signal strength (RSS) based finger-

printing technique for PD localisation;

4. To investigate the possibility of using a wide range of PD parameters of the received

RF signals as a base for current and future work on PD localisation;

5. To model the PD location problem using sophisticated machine learning techniques

for efficient PD localisation;

6. To develop robust methods based on feature engineering and machine learning

algorithms to improve the performance of the proposed PD localisation system.

It is important to recognise that PD localisation requires a high level of reliability, flexibil-

ity and robustness. Therefore approaches that take advantage of signal variations due to

multipath are desirable and will be key to the future of condition monitoring in electrical

network. It is believed that the signal analysis and PD locator models developed in this

work will lead to enhanced methods for the localisation of PD in electrical networks.
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1.3 Thesis Statement

Location of PD in each item of plant in electrical substations is a costly and complex task

requiring increasing processing power. This work investigates a relatively inexpensive ap-

proach using an array of sensor that can be deployed for uninterrupted monitoring of an

entire substation where the discharge source can be located as accurate as possible. More-

over, sophisticated machine learning algorithms are explored to reduced computational

burden and enhanced localisation accuracy.

1.4 Main Contributions

The work presented in this thesis resulted in several contributions that complement the

state of the art in the field of PD monitoring. Specifically, this research has:

• Pioneered a new method of PD localisation suited for the entire substation using

off-the-shelf commercial radio sensors. This system has useful characteristics such

as no line-of-sight restrictions, area-wide coverage, accuracy of a few meters. Thus,

this research provides a robust PD localisation system well suited for the cluttered

environment of the electricity substation.

• Developed an enhanced PD localisation model using fingerprinting technique. The

received RF signals captured by the receiver sensors have been explored. Both

absolute received signal strength and the ratios of the signal strength by sensor

pairs are used as PD signal features. The fingerprinting technique provides a good

alternative for PD localisation to signal propagation model where the transmit

power as well as the characteristics of the environment are expected to be known a

priori.

• Produced enhanced PD features to improve PD localisation. Both time-domain
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and frequency domain features are extracted from the RF signals emitted by PD

sources. This provides robust PD fingerprints for PD localisation.

• Developed new PD localisation models based on machine learning algorithms. The

sophisticated machine learning algorithms provide a robust means of estimating PD

location.

• Developed techniques to improve the performance of the PD localisation scheme.

The use of feature engineering and feature selection algorithms enhanced accuracy

and reduce the dimensionality of the feature space for low computational cost.

1.5 Thesis Outline

This thesis consists of seven chapters. Chapter one provides the background of the study,

research aims and objectives, research contributions and the structure of the thesis.

Chapter two provides a general overview on the concept of PD mechanism and defini-

tions of PD. This chapter also provides the causes and effect of PD in electrical equipment

and a general description of the types of PD and characteristics nature of PD waveforms.

A general description of PD detection technique is presented. Furthermore, relevant pre-

vious research work on the application of RF PD monitoring and localisation in electrical

substation are reviewed.

In chapter three, the PD localisation problem is formulated. Experimental procedure

undertaken to demonstrate substation-wide RF PD localisation is presented. The labo-

ratory experiment involves the design of a measurement grid in the laboratory and the

use of pulse generator as PD emulated source. The pulse generator is set to produce

repeatable and characteristic (unique) PD pulse signals at each grid point. Three sensors

(monopole antennas) are deployed at arbitrary positions in the laboratory to capture the
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RF pulses emitted by the PD source. This chapter also provides the description of the

PD data.

Chapter four presents an investigation into the possibilities of implementing fingerprint-

ing technique for PD localisation using Received Signal Strength (RSS). To determine PD

location, the RSS of the RF signals are captured and used as PD input features into the

localisation algorithm. This chapter also introduce a centralized method for PD localisa-

tion. The method consists in defining a model, whose inputs and outputs are respectively

the RSS fingerprints and the PD locations. k-Nearest Neighbour (KNN) and Artificial

Neural Networks (ANN) are used to model PD localisation problem. The chapter con-

cludes with performance analysis and evaluation of the localisation models on the PD

data collected.

Chapter five focuses on localisation methods that combine radio-location fingerprinting

and kernel-based learning technique. Beginning with the original idea of Support Vector

Machine (SVM), a Support Vector Regression (SVR) model is developed for PD locali-

sation. A low complexity variant of the proposed SVR technique; Least Square Support

Vector Regression (LSSVR) is formulated and implemented for PD localisation. More

robust PD features are computed from RSS. Instead of absolute RSS values, their ratios

are used as input to the kernel-based models developed. Different kernels are used to

evaluate the performance of the models with focus on accuracy.

Chapter six introduces technique for improved PD source localisation. Feature en-

gineering and selection tools are explore to develop hybrid machine learning methods

for PD localisation. New PD features are extracted from the RF signals. The PD data

analysis leads to a rich feature database that facilitate PD location. The Correlation

Based Feature Selection (CFS) algorithm is discussed and implemented for feature re-

duction/selection. Also Wavelet signal analysis is used in conjunction with robust ma-
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chine learning techniques to improve PD localisation. Performance evaluation of these

techniques is presented.

Finally, chapter seven is a summary of the thrust of the findings of all research aspects

proposed in this thesis, conclusion, direction and recommendations for future work.

1.6 Research publications
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ensemble method”, IEEE Transactions on Power delivery, vol. 34, no. 4, pp. 1478

1489, 2019.

• E.T Iorkyase, C. Tachtatzis, P. Lazaridis, I. A. Glover, R. C. Atkinson., “Low

Complexity Wireless Sensor System for Partial Discharge Localisation”, IET Wire-

less Sensor Systems, vol. 9, no. 3, pp. 158-165, 2019.

• E.T Iorkyase, C. Tachtatzis, I. A. Glover, R. C. Atkinson., “RF-based location of

partial discharge sources using received signal features”, IET High Volt., 2019, vol.

4, iss. 1, pp. 28–32.

• E.T Iorkyase, C. Tachtatzis, P. Lazaridis, I. A. Glover, R. C. Atkinson., “Radio

location of partial discharge sources: A support vector regression approach”, IET

Science, Measurement and Technology, vol. 12, no. 2, pp. 230–236, 2018.
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• E.T Iorkyase, C. Tachtatzis, I. A. Glover, R. C. Atkinson., “Localisation of partial

discharge sources using radio fingerprinting technique”, Loughborough Antennas
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Propagation Conference (LAPC), Loughborough, 2015.
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CHAPTER 2

Literature Review

2.1 Introduction

A significant cause of plant failure in electrical substations is attributable to insulation

degradation. PD is a result of electrical insulation breakdown irrespective of the causal

mechanism. PD activity is also a predominant cause for further insulation degradation

which may eventually lead to catastrophic failure of electrical equipment with significant

societal and economic consequences. Since PD usually occurs before complete break-

down, PD monitoring provides a forewarning to de-energise plant before catastrophic

failure occurs. As a result, PD monitoring is considered as one of the most valuable non-

destructive means of assessing the insulation condition of assets, thereby condition-based

maintenance strategies can be formulated. In this chapter, the fundamentals of PD are

presented. The definitions and mechanisms that leads to the occurrence of PD are de-

scribed. Methods of PD detection are outlined. This includes the conventional methods
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and the non conventional modern techniques. This chapter also present previous works

on radiometric methods for PD measurement and source localisation.

2.2 Partial Discharge

Partial discharge has been recognised as a pernicious ageing process and a major factor

that accelerates degradation of electrical insulation from the beginning of last century

when High Voltage (HV) technology was introduced in the utility industry for the gen-

eration and long-distance transmission of electrical power [11]. PD monitoring has re-

ceived considerable attention over the last decade as majority of breakdown in electrical

equipment is caused by PD [12][13][14]. According to the International Electro-technical

Commission (IEC) 60270 standard on high voltage test technique - partial discharge mea-

surement, PD is defined as a localised electrical discharge that only partially bridges the

insulation between conductors which may or may not occur adjacent to a conductor [15].

PD generally occurs whenever there is a local electrical stress concentration in the insula-

tion or on the surface of the insulation as a result of dielectric imperfection, such as sharp

edges in ambient air, floating particles in gas insulation and gaseous voids or inclusions

in liquid and solid insulation. The presence of any defect in the insulation structure can

cause this local field enhancement and consequently local perturbation in the insulator

giving rise to impulsive pulses otherwise known as partial discharge. Here, a PD pulse is a

voltage or current pulse resulting from a discharge event and can be measured by suitable

detector circuits [15]. It is important to note that PD activity can occur anywhere within

the dielectric, where the applied electric field strength exceeds the breakdown strength

of that portion of the material. As PD is a small electrical avalanche caused by locally

disrupted electric fields in dielectric materials, it is seen as both a symptom of insula-

tion degradation and a cause for further deterioration of the insulating material [16][17].

Therefore, continuous monitoring of equipment in electricity substations is essential in

detecting and locating PD before it grows into complete breakdown of insulation and
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causes unexpected power failure.

2.3 Partial Discharge Occurrence and Mechanisms

PD usually begins for example within voids, cracks or at conductor-dielectric interfaces

in insulation system, in bubbles within liquid insulations or inclusions within solid di-

electrics. PD can also occur along the surface of solid insulators or boundary between

different insulating materials. The presence of PDs may indicate defects in the insulation

materials.

Generally the occurrence of PD is based on two conditions [18][19]; the first is the

availability of a starting (free) electron to initiate an electron avalanche within the volume

in which discharge is expected and the second is that there must be a sufficiently high

electric field within the volume to start an avalanche by ionisation and create a breakdown

path. The electron avalanche related to the ionisation process leads to the deployment

of free charges on the void surface [20]. The resulting charges move towards the surface

of the void in the direction of the applied field. These charges are then trapped at the

void surface resulting in the apparition of an induced electric field which opposes the

applied electric field. This phenomenon occurs within a very short time (in the range

of microseconds or less). The total field across the cavity drops rapidly and it leads to

the extinction of the discharge. Following this transient event, the trapped charges may

decay through recombination processes of positive and negative charges. After some time,

the field is again large enough to start a new discharge. Since PD are associated with

the ionisation of molecules, the fundamental mechanisms of PD include Townsend and

streamer discharge mechanism [21][18]. In Townsend mechanism, the gap current grows

as a result of ionisation by electron impact and electron emission at the cathode by

positive ion impact [21]. The electrons and ions create a small space charge compared

to the external field and can be neglected, thus the ionisation process is mainly a direct
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ionisation. The Townsend discharge occurs within a short-gap and has the following

forms: rapid and slow rise time spark-type pulses, true pulse-less glows or pseudo-glow

discharges [18] which are all cathode emission sustained discharges. The rise time of these

pulses can be as long as several tens of nanoseconds and its duration can last several

hundreds of nanoseconds [22]. Streamer discharges are independent of cathode emission,

but dependent upon the photoionisation process in the gas volume [18]. The streamer

discharge occurs in longer gaps and involves ionisation wave propagation in a very high

field region where ionisation and influx of electrons at the discharge head is produced by

a space charge field due to the separation of positive and negative charges [18]. The space

charge fields have an important role in the corona and spark discharge in non-uniform

field gaps [23]. Streamer discharges are commonly of shorter duration than Townsend

discharges; the streamer discharge pulse length can vary from 1 ns to 10 ns [18].

In general, the occurrence of PD can be analysed by considering the well known electrical

“a-b-c” model [24] of cavity in a dielectric material. The cavity is usually filled with

gas. The “a-b-c” model assumes that the dielectric components can be replaced with

capacitances. Figure 2.1 shows a potential PD source (gas-filled cavity) in solid or fluid

dielectric material between two electrodes X and Y and its equivalent electrical circuit

(a-b-c model) represented by a simple capacitor arrangement. The gas-filled cavity in

Figure 2.1 (a) is represented as Cc in Figure 2.1 (b), and the two parts of the insulation

above and below the cavity form the two capacitances C
′

b and C
′′

b [25]. The remaining

insulation outside the cavity is represented by Ca = C
′
a + C

′′
a [25]. The total capacitance

of the insulation in series with the cavity is given as in Equation 2.1;

Cb = (C
′

b ∗ C
′′

b )/(C
′

b + C
′′

b ). (2.1)
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Figure 2.1: Basic PD circuit, an insulation system with a cavity defect and Electrical
equivalent circuit, [26][27]

From Figure 2.1, let’s assume the thickness of the insulation is d and that of the void

is t with area A. Here, the values of the the capacitances Ca, Cb and Cc depend on

the geometry or dimensions and dielectric constants of respective portions a, b and c.

Assuming the breakdown strength of the cavity is Ecb, the PD inception voltage can be

derived in terms of the void as follows; Let the capacitance of Cb and Cc be expressed as

in Equations 2.2 and 2.3;

Cb = (εo ∗ εr ∗ A)/(d− t) (2.2)

and

Cc = εo ∗ A/t (2.3)

where εo is the permittivity of vacuum and εr is the relative permittivity of the solid

dielectric. Then the voltage across the void can be calculated as shown in Equation

2.4;

Vc = (Cb/Cb + Cc)Vs. (2.4)
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Substituting Cb and Cc into Vc gives Equation 2.5;

Vc = Vs/[1 + (1/εr(d/t− 1))]. (2.5)

Thus the voltage across the insulation which initiates PD in the void can be expressed

as in Equation 2.6;

Vsi = Ecb.t(1 + 1/εr(d/t− 1)) (2.6)

where Vsi=voltage across insulation which causes the void to start to discharge. Ecb=breakdown

strength of the void material.

PD disrupted voltage associated with the void and the dielectric represented by capaci-

tance in Figure 2.1 is linked to recurrence of discharges. When an alternating current (AC)

voltage is applied, the field gradient in the void begins to increase due to the difference in

permittivity caused by inter-facial polarisation as well as by the shape of the cavity. The

capacitance is charged and the voltage across the void will continue to increase until the

breakdown strength of the gas in the void is exceeded. This causes the void gas to ionise,

causing a spark or a discharge to appear. The first discharge will appear at the crest

or rising part of a half-cycle [28]. When breakdown occurs, charge is transferred across

the void, reducing the voltage across the the void. Once the field across the void has

been sufficiently reduced, the breakdown channel extinguishes. This breakdown process

is shown in Figure 2.2, where Vc representing the voltage in the void is just a fraction

of Vs, the applied voltage. When Vc reaches V +, which is the gas breakdown voltage

inside the void, discharge will occur and the voltage in the void will drop to V − at which

point the discharge stops. After the discharge occurs, the voltage again builds across the

void, as the applied voltage continuous along its normal cycle. At this point, the criti-

cal breakdown strength within the void is not reached before the AC voltage reaches its

peak value, resulting in a single discharge per half cycle. When the applied AC voltage

increase, the critical breakdown strength in the void may again be reached before the AC

voltage reaches its peak value. This results in multiple discharges per half cycle as shown
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in Figure 2.2. This will occur several times. The discharges in the void cause impulses to

concentrate in areas where the applied voltage increases or decreases.

Figure 2.2: Sequence of PD occurrence, [26]

2.4 Partial Discharge Types

Based on the origins and the mechanisms that lead to discharges, PDs can be classified

into four categories, namely; surface discharges, internal discharges, corona discharge, and

electrical trees, [21] [23][29][18].

2.4.1 Internal Discharge

Internal discharges usually occur inside the insulation due to the presence of voids or

inclusion of particles or near insulation interfaces. Figure 2.3a is a representation of a

void internal discharge. It shows the possible locations of voids within the insulation

system. The void may be located between the conductor and insulation wall, or internal
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to the insulation itself, or between the insulation wall and the grounded. These voids are

regarded as weak points within the insulation caused by poor manufacturing or ageing

[30]. They are filled with gas or liquid materials. The filler materials are usually of lower

permittivity and dielectric strength such that the void section is of higher electric field

compared to the surrounding sections of the insulation. PD activity is normally initiated

in the void with less voltage than the breakdown voltage of the whole insulation. This

explains the reason for the random nature of PDs. The discharges are effectively small

sparks occurring within the insulation system, thereby deteriorating the insulation, and

can result in ultimate complete failure. Figure 2.3b shows the effect of these internal

discharges on an epoxy resin busbar [30]. This can result into the so called insulation

treeing.
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(a) Schema of internal discharge

(b) Effect of internal discharge, [30]

Figure 2.3: Internal discharge and its effect
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2.4.2 Surface Discharge

Surface discharge also known as surface tracking [31] usually occur along the interface

between insulation and air. Figure 2.4a is a representation of surface discharge on an

insulation system. At the interface, any irregular protrusion will have a stronger electric

field than the other portions. This stronger electric field ionises the surrounding air,

thereby causing it to become conductive. PD may begin to happen in this region. The

presence of moisture, water pockets or contaminations can form a leakage path to ground.

As a result, a leakage current is generated [32]. The heat generated by the leakage current

due to ohmic loss combine with the area of the ionised air causes vaporisation of the

moisture component of the leakage path, consequently creating cracks and gaps on the

surface. This results in the interruption of current flow at some point, and since the entire

surface is still conductive, most of the voltage drops across the dry surface creating an arc

across it. The heat from the arcs result in the burning of the insulation surface leading to

the production of permanent carbonised paths on the surface otherwise known as surface

tracking. When the moisture has been completely dried, the cavities created between

carbonised paths become new sources of PD. This process continues across the insulation

until failure results. This type of discharge is known to be common in paper insulation but

seldom occurs on polymer or ceramic insulation types [23]. An example of electrical device

under surface tracking is shown in Figure 2.4b. The damage caused by surface tracking

results in permanent electrically conductive path that reduces the effective voltage the

material can withstand and may eventually result in complete breakdown.
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(a) Schema of surface discharge

(b) Effect of surface discharge, [30]

Figure 2.4: Surface discharge and its effect
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2.4.3 Corona Discharge

Corona discharge is a form of electrical discharge that occurs around sharp points or edges

of electrodes placed near an insulating surface [21]. A schema of corona discharge produced

by a sharp pointed electrode is shown in Figure 2.5a. The sharp edges enhance the field

around that region, thus increasing the stress. This high stress can initiate an ionisation

process of the medium (air) surrounding a conductor thus producing the discharge call

corona. The energies such as heat and light produce during corona are of low intensity

and could be considered harmless at the initial stage, however can become damaging to

the insulation over time due to their cumulative effect and failure may occur without

warning. Corona is often see as a glow in the air adjacent to a pointed conductor carrying

high voltage. An example of a glow discharge on an insulator string of an overhead power

line is as shown in Figure 2.5b. Corona discharges constitute economically significant

waste of energy for electric utilities.
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(a) Schema of corona discharge

(b) Effect of corona discharge, [30]

Figure 2.5: Corona discharge and its effect

2.4.4 Electrical treeing

Electrical treeing is a type of discharge known as a pre-breakdown discharge in that

it occurs just before catastrophic failure. It is so named for it tree-like structure [33].
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Electrical treeing emanates from weak spots within the insulation such as gas voids, sharp

electrode edges, or particle inclusion, where the electric field is high. These defective spots

can grow progressively over time forming trees inside the insulation. There are generally

three stages of tree development, namely; initiation, propagation and runaway stages

[34]. The initiation stage is the starting point of tree growth where electrons are released

due to the excitation of the molecules within the weak spot between two electrodes. The

propagation stage represents the phase between the tree initiation and when the first

branch of the tree reaches the opposite electrode. The runaway stage is what is known as

the acceleration phase. It occurs at the point where the tree is almost crossing over the

material to the other electrode.

2.5 Partial Discharge Detection Techniques

The condition of insulation system in high voltage equipment determines to a large ex-

tend the reliability of such equipment. As a result, early detection of any symptom of

insulation deterioration becomes an important component of HV equipment monitoring

and maintenance. PD is considered an effect of dielectric defects and a cause for fur-

ther insulation degradation that can be harnessed for effective condition monitoring of

electrical equipment in substations. Even though there is no direct correlation between

occurrence of PD and HV equipment failure, it has been established that the presence

of PD may lead to complete breakdown of the equipment overtime [20]. The presence

of a defect in an insulation enhances the local electric field such that it exceeds the di-

electric strength of the rest of the insulating medium. This triggers ionisation within the

insulation [35][36]. The liberated electrons that result of the ionisation process are ac-

celerated in a flow of electric current [15]. The current pulse that flows in the insulating

medium is what is known as PD. This current is quenched once the local electric field falls

below the level required to sustain further ionisation [37][38]. Generally, the occurrence

of PD often involves the exchange and dissipation of energy caused by the build up of
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electric field intensity in a local region of the insulator. These energy exchanges manifest

into macroscopic-physical effects such as chemical reactions in the insulation composi-

tion, electrical pulses, acoustic emissions in the audible and ultrasonic ranges due to the

rapid thermal expansion and contraction of the discharge channel [39]. PD also produces

electromagnetic emissions in the form of radio waves, light and heat. Monitoring experts

leverage on the released energies to detect the presence of PD using appropriate sensors

or measuring device.

This section describes a variety of measurement techniques that exploit these funda-

mental physical and chemical processes for the detection of PD. Based on these processes

that occur during a discharge, PD detection methods can be broadly classified into two

groups; namely conventional and non-conventional methods as shown in Figure 2.6.

Non-conventional	methodsConventional	methods	(Based	on
IEC	60270	standard)	

Measurement	of	apparent	charge

Measurement	of	amount	of	pC

Detection	of	chemical	compounds

Detection	of	optical	occurrences

Acoustic	emission	detection	

	Detection	of	electromagnetic	
(radio	waves)	transient

PD	detection	methods

Figure 2.6: PD detection methods

24



2.5.1 Conventional Partial Discharge Detection Methods

This section describe the conventional PD detection techniques that is based on the

measurement of apparent charge;.

2.5.1.1 IEC 60270-based Technique

The standardised electrical method for detecting PD pulses has been described in IEC

60270 standard publication [15]. This technique comprises of a coupling capacitor and is

based on measuring the apparent charge q of the pulse usually expressed in pico-coulombs

(pC). Apparent charge q of a PD pulse is that charge which, if injected within a very

short time between the terminals of the test object in a specific test circuit, would give

the same reading on the measuring instrument as the PD current pulse itself. Due to the

inaccessibility of the discharge site where PD pulses originate, the apparent charge is not

a direct measure of the PD current but is obtained from the voltage drop across the ter-

minals of the test object and is not equal to the actual quantity of charge released at the

discharge site. Phase-resolved PD (PRPD) patterns are often obtained using conventional

IEC 60270 technique. The PRPD consists of PD measurement recorded over a period of

time represented on a 3-dimensional φ − q − n plot, where φ is the phase angle for the

PD pulse, q is the apparent charge and n is the number of discharge [40]. A significant

advantage of IEC 60270 measurement technique is that the PRPD correlate with the

extent of insulation damage and are widely available for different discharge defects and

for different HV components. Other quantities that can be measured include; PD pulse

amplitude, pulse repetition rate, and average discharge current [41][42]. Although the

conventional electrical method is an accurate method for measuring sudden short current

pulse generated during PD activity [42] and is widely used in PD detection, it has sev-

eral limitations. For example, this method cannot provide the location of the discharge

source and the true PD waveform are not recorded during measurement. Moreover, the
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application of the IEC 60270 method in some electrical apparatus such as Gas Insulated

Substation (GIS) can be difficult or impracticable due to the requirement of external

coupling capacitor for individual sources. Therefore, the electrical technique is not ideal

for the proposed substation-wide PD monitoring and localisation system.

2.5.2 Non-conventional Partial Discharge Detection Methods

Several non-conventional techniques such as electromagnetic, optical, and acoustic meth-

ods have been developed over the years for PD detection [43]. These methods are known

as non-conventional because they do not conform to the IEC 60270 standard since they

measure different PD quantities compare to apparent charges set out in IEC 60270 stan-

dard. These methods are discussed as follows.

2.5.2.1 Chemical Detection Technique

PD accelerated current streamer across a void or cavity can influence chemical decompo-

sition of the surrounding insulation material into different components. These chemical

changes can be exploited for the detection of PD in electrical equipment. For example in

SF6 (sulfur hexafluoride) and oil insulation, the chemical reactions will produce a com-

bination of constituent gases such as ozone and nitrous oxide which will diffuse freely or

become dissolved in the liquid. The relative concentrations of by-products produced from

the degradation of the insulation can be related to the type of fault and the rate of reac-

tion can be indicative of the severity of the fault [44]. The most commonly used chemical

detection methods are High Performance Liquid Chromatography (HPLC) and Dissolved

Gas Analysis (DGA) [45]. HPLC measures by-products such as glucose or degraded forms

of glucose, produced from the breakdown of the insulator. The test is carried out in the

laboratory by evaluating samples collected from the insulation. In DGA the volume or

level of the gas produce is indicative of the presences of PD. Different levels of each of

the gases can be correlated to a specific type of fault.
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Although Chemical detection technique have the advantage that measurement are im-

mune to spurious events such as electromagnetic interference, it still has some limitation.

chemical detection technique provides little or no insight into the location of PD [46]. Suf-

ficient by-products or gases have to be collected and taken to laboratory before analysis

can begin. Chemical detection methods are also considered less sensitive for general PD

monitoring. They are often tailored to specific applications and can not be generalised for

different equipment. Chemical detection technique is therefore not suitable for real-time

PD continuous monitoring and hence proposed PD localisation technique considered in

this thesis.

2.5.2.2 Acoustic Detection Technique

PD activity is also accompanied by sound generation and this provides an alternative

for PD detection and localisation. The acoustic signals are pressure waves generated by

the rapid thermal expansion and contraction of the discharge channel. This signals can

range from audible to ultrasonic frequencies. The acoustic waves can propagate from the

discharge site in a narrowband range, approximately 10kHz to 300kHz and can be picked

up by pressure transducers and converted to electrical signals for PD analysis [47]. This

technique is one of the most common technique that has been effectively used for locating

PD in power transformers and Gas Insulated Substations (GIS)[47][48][49][50][51]. The

significant advantage of this method lies in it ability to provides a level of immunity to

external noise sources such as Electromagnetic Interference (EMI), which pose a great

challenge to other methods. However, acoustic emission sensing is less popular with equip-

ment such as cables and enclosed devices due to the complex nature of the acoustic wave

propagation [47]. Also the intensity of the received acoustic wave is inversely proportional

to the distance from the discharge source. Therefore acoustic sensor positions required

can be overwhelming, increasing cost. This makes acoustic detection unsuitable for the

PD localisation scheme proposed in this thesis.
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2.5.2.3 Optical Detection Technique

PD emits electromagnetic radiation during discharge as a result of various processes such

as excitation, ionization and recombination and optical sensors can be used to detect

the electro-luminescence effect produced. Though all electrical discharges emit electro-

magnetic radiation, the optical spectrum depends on the chemical composition of the

insulation medium and the nature of discharge. The optical spectrum ranges from the

ultraviolet to the infrared range. For example the wavelength of faint corona discharge

is between 280nm and 410nm, appearing as purple, about 95 percent is in the ultravi-

olet (UV) region. Strong flash discharge emits radiation in the 400nm - 700nm spectral

range [52]. The optical sensor used for PD detection is a direct function of the optical

spectrum. The advantage of optical detection is it high immunity against electromagnetic

interference and sensitivity compared to conventional method especially for on-site mea-

surement. However, this technique depend on the medium within which PD is expected.

The insulation medium is required to be optically transparent. This limit the used of

optical detection technique to optically transparent medium such as gas and liquid since

most solid dielectrics are not optically transparent. The optical technique is insensitive

to any form of internal PD and can be highly directional. The measuring equipment can

be very costly. This makes it difficult to consider optical technique for the proposed PD

monitoring and localisation scheme.

2.5.2.4 Electromagnetic wave detection Technique

To overcome the limitations of the other detection methods mentioned in this thesis,

electromagnetic wave method for PD measurement was developed. PD usually occur

due to the displacement of charges [53]. This gives rise to a rapid rate of change of

current pulse that occurs during the breakdown process. As the pulse rise time become

shorter due to rapid rate of change, EM waves with energy spectra extending into the

radio frequency region are produced [54]. As a result, a percentage of the PD energy is
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radiated into free-space in the vicinity of the discharge site and can travel to long distances

with minimal attenuation in different medium. This makes radiometric PD measurement

possible without interrupting a facility’s electrical service. It can also be applicable to

all HV power apparatus. PD measurement in higher frequency range (30MHz - 3GHz)

was first proposed for gas-insulated substations [55][56]. This technique has also been

proven for PD diagnostics of HV cable accessories [57] and later for power transformers

as reported in [58]. Researchers have conducted extensive investigations into the capability

of PD detection in the VHF/UHF range for on-site application [59][60][61].

Because of the extremely wide electromagnetic spectrum of PD pulses, which covers

the radio frequency ranges of high frequency (HF 3-30 MHZ), very high frequency (VHF

30-300 MHz) and ultra-high frequency (UHF 300-3 GHz), various kinds of PD couplers

have been developed in the past, which are commonly classified as capacitive, inductive

such as Rogowski coils and high frequency current transformer (HFCT) electromagnetic

sensors [62][63][64]. Recently, much research effort have been directed towards designs of

RF remote sensing units [65][10] for PD detection and computer analysis of the PD signals

obtained. However, one of the most important benefit obtained from this technique is the

ability to locate PD sources. Methods that use remote sensors to detect the propagated

electromagnetic wave at different frequencies such as VHF and UHF [58][66] are among

the simplest ones. The summary of the comparison between different PD detection and

measurement methods is presented in Table 2.1. The RF technique in comparison with

other PD detection techniques is particularly convenient and appropriate PD detection

method for the proposed substation-wide PD localisation system.

2.6 Localisation of Partial Discharge sources

The basic principle of PD monitoring of electrical apparatus is to detect energy release

during PD activity due to the deteriorating condition of the insulation system prior to
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Table 2.1: Comparison of PD detection methods.

Methods Electrical Chemical Optical Acoustic EM/RF
Description Electrical

circuit that
measures the
pulse current
generated
during PD
event as a re-
sult of charge
transfer.

Analysis of
compounds
produced
during chem-
ical changes
that occur
in the com-
position of
dielectric
materials.

Measures
the electro-
luminescence
effect pro-
duced
during PD.

Measures
the acoustic
waves gener-
ated by a PD
event.

Measures elec-
tromagnetic
waves in the
radio frequency
range produced
by PD.

Merit Good sensi-
tivity, high
precision
measure-
ments, very
low signal
attenuation,
standard
for all HV
equipment.

Well es-
tablished
and easy to
measure, im-
mune against
noise, highly
sensitive.

Immune
against
EMI, non-
contact,
applica-
ble to all
voltages.

Non-contact,
applicable
to all volt-
ages, allows
measurement
on equip-
ment under
operating
conditions,
location
of PD is
possible.

Non-contact,
applicable to all
voltages, allows
measurement
on equipment
under operating
conditions, lo-
cation of PD is
possible, can be
calibrated.

Demerit Sensitive to
electrical
noise, im-
practicable
for equipment
under operat-
ing condition,
affected by
EMI.

Cannot
provide loca-
tion of PD,
amount/level
of dissolved
gas has no
correlation
with type of
PD, create
uncertainty.

Insulator
must be
optically
trans-
parent,
highly di-
rectional,
impos-
sible to
calibrate.

Sensitive to
other acous-
tic emissions,
signals can-
not always
propagate
through
insulation.

Interference of
signals by envi-
ronmental noise,
EMI emissions
can prevent PD
detection.

Sensor
types

Capacitive,
inductive

DGA, HPLC Fiber op-
tics (UV)
sensors

Acoustic
sensor, piezo-
electric
sensors, fiber
optic acoustic
sensors.

RF antennas,
HFCT, TEV,
radiometers,
UHF sensor.

Area of ap-
plication

Can be ap-
plied to all
HV equip-
ment

Power trans-
formers, GIS

Power
transform-
ers, GIS
and cables

Power trans-
former and
switchgear

Cab be applied
to all HV equip-
ment
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failure. An important aspect of PD monitoring is the possibility to reliably and accurately

determine the location of a PD source and hence identify the particular item of plant

experiencing PD. As a result of which maintenance can be carried out in the part of

plant most likely to be at risk with high accuracy at significant cost saving.

PD source localisation comes with it challenges such as cost and interference. Given

that PD can occur inside insulator, across the surface of insulating material or around

an electrode and that most practical PD localisation methods depend on the detection of

the energy radiated by PD event, the localisation process is affected by the structure of

the equipment, the nature of the propagation environment and external interference. The

metallic portion of the equipment can form a radiating structure that would influence the

radiation of energy from the PD site. Due to resonance, the specific structure of these

conductors leads to frequency selective radiation and as a consequence, the PD waveform

is distorted. The signal received is not exactly what is been produced at the discharge site.

Other metallic structures in substations may also influence the nature of the PD signal

received due to attenuation, scattering, reflection and multipath propagation. Background

noise/interference from internal or external sources which are not related to the detected

PD signals may occur. These make the noise environment to be cluttered and challenging

for accurate PD localisation.

Nevertheless, the drive towards a national target of 0 % breakdown events culminate

into increased interest to investigate robust and cost effective technique for PD source

localisation in order to enhance continuous monitoring of electrical substations. Radio-

location presents itself as an effective solution for PD localisation problem.

There are several approaches to RF signal based PD source localisation. One of the

technique used is based on TDoA [67][68][69][10][70] from pairs of synchronised receivers.

The Time of Arrival (ToA) of the PD pulses at each sensor can be used to calculate
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the TDoA between each sensor pair. This information can then be used to estimate

the distance from the source to a sensor and thereby trilaterate the location of PD

source. In order to locate PD sources using TDoA, a minimum of three sensors are

required to record PD pulses emanating from the discharge source. RF antennas have

been used to detect and locate PD sources in GIS [71][72][73], AIS [3][74] and power

transformers [17][75] by measuring the TDoA of the RF signals. A TDoA-based method

was proposed by [76] for localisation of PD sources via detection of EM waves generated

by the PD. Here, four time-synchronised antennas were installed with a movable simulated

GIS in a utility’s 500kV substation. The TDoA that provides the basis for the localisation

of PD was determined via first peak technique [67]. Due to the presence of noise, a

smoothing process (moving average) was employed to discard noisy peaks. In [3] the

authors describe an RF-based PD early warning system for an air-insulated substation

where four antenna array were mounted on top of a building. They employed the TDoA

method to trilaterate PD location. Here, the cross-correlation method is used to determine

the TDoA based on wave-front. A radiometric PD localisation method based on TDoA

proposed in [10], consists of four element radio antenna array used to detect the radio

frequency interference generated by PD. The locating equipment is considered suitable

for use in the vicinity of energised HV plant and can locate sources up to 15m from

the array. In [77] and [78], the time delay method based on energy accumulation was

employed to estimate the location of a PD source in three dimensions (3-D). This is

done by finding the knee point where there is a sudden change from the energy curve.

This method depends on human judgement to decide the knee point and this can be

a source of error. The setup is composed of four omnidirectional micro-strip antennas

and four omnidirectional discrete disk-cone antennas. In another investigation [79], the

fourth order cumulant and bispectrum estimation method were used to calculate TDoA

for improved PD source localisation.
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Another technique that has been employ for radiolocation of PD sources is based on Di-

rection of Arrival (DoA) or Angle of Arrival (AoA) [80] of received PD signals. The usual

approach for calculating DoA is to use four receivers in the VHF and UHF bands forming

an array of 2 x 2 elements. This array is virtually expanded to increase the resolution and

then, the direction of the emission of the PD is computed using a multiple signal clas-

sification (MUSIC) algorithm [81]. A remote detection of PD in power transformers has

been demonstrated using mobile wideband radio-frequency (RF) receiving equipment [6].

The antenna array mounted on the roof of a vehicle was moved in steps of 2m around the

transformer in order to monitor the radiated field from all possible positions on the trans-

former. The bearing of PD source was determined by calculating the DoA of the impulse

with respect to each pair of antennas in the array. DoA PD localisation method based on

an L-shaped antenna array proposed in [82], is composed of four UHF omnidirectional

antennas. The DoAs of PD signals were computed using the principle of estimation of

signal parameter via rotational invariance techniques. A vehicle, such as a van, furnished

with the necessary equipment has been used to periodically monitor substations for the

presence of PD [83]. In this investigation, the bearing of the discharge source is determined

by computing the DoA of each possible pair of antennas. The authors in [84] developed

an autonomous PD source localisation inside large power transformer winding under lab-

oratory conditions. This is based on the analysis of measured current energies associated

with different frequencies of the signal. They measured the currents at the bushing tap

point and neutral to earth connection. The assumption used in this work is that differ-

ent PD source locations will generate unique signal profiles in both frequency and time

domain. Wavelet transform algorithm and Principal Component Analysis (PCA) were

applied to PD signals to extract features and reduce the dimensionality of the feature

vectors. They represented their system using a series of finite impulse response filters for

practical purposes. A TDoA method for locating multiple sources of PD using only two

antennas is presented in [85]. One of the receiver antennas is installed in a fixed posi-

tion, while the second receiver is made movable in the circumference of the first one. The
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two receivers are mechanically linked by a rod. The TDoA from the sources collected at

different angles is used to locate the sources. The authors aim at reducing the number

of sensors, hence reducing the cost of instrumentation. Authors in [86] deployed four RF

antennas with different positioning arrangement (square, trapezoidal and pyramidal) in

a volume of cube to detect the radiated electromagnet energy from PD and evaluate the

location of PD sources based on TDoA. In [87], the authors proposed a methodology for

locating single and multiple PD sources using the acoustic signals that emanate from

such sources. The localisation model is based on sequence of arrival and levels of peak

amplitude of the acoustic waves captured by different acoustic sensors mounted on the

outside walls of the cubical box used in the experiment. Another method of PD source

localisation on transformers is presented in [88]. The method is based on singular value

elimination with planar arrangement of UHF sensors. This method uses the gap leak-

age EM wave signals generated during PD event. The method maps the 3-dimensional

coordinate sample set of PD source to 1 dimensional coordinate and uses the improved

box-plot diagram method to eliminate the singular values. The least square method is

then used to find the optimal coordinate of the real PD source. A general survey on the

performance of source localisation algorithms was conducted by authors in [89]. These

include multilateration algorithms; Standard Least Squares (SLS)and Hyperbolic Least

Squares (HLS), Particle Swarm Optimisation (PSO) algorithm, Maximum Likelihood

Estimator (MLE), Bancroft algorithm, Hyperbolic Positioning Algorithm (HPA) and a

combination of these algorithms. The analysis was undertaken with three different sensor

layouts. This was carried out using time differences and errors due to the effect of digital

time sampling.

Previous work on radiolocation of PD sources are based on TDoA/Time Delay Es-

timation (TDE) and DoA [74][90][91][70] of the RF signal. However, time based meth-

ods require accurate synchronisation, making them computationally complex and energy

hungry, hence are not economically viable solution for the proposal substation-wide PD
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localisation system. DoA requires an array of directional antennas and relies on Line Of

Sight (LOS) path which is difficult to achieve in the cluttered substation propagation

environment where PD is expected. It also brings extra computational cost. Both TDoA

and DoA are seen as uneconomic.

The cost/complexity of the aforementioned methods motivates an investigation into meth-

ods based on the use of RSS due to its simplicity, low-power consumption and cost effec-

tiveness. However, the common RSS triangulation approach requires detailed models of

RF propagation and does not account for existing variation. It is practically impossible

to implement in situations where the transmit power is unknown which is the case under

study. An alternative approach considered in this thesis is to use signatures of received

RF signals such as RSS to infer PD location. The key challenge is how to effectively

and efficiently model RSS/location relation and hence derive PD location from RSS. The

complexity of this inverse problem motivates the use of flexible models based on ma-

chine learning. This approach not only obviates the need for a propagation model but

can also improve localisation precision. Also in the proposed method, sensor array does

not require any physical/electrical contact with equipment, and can be permanently in-

stalled for continuous monitoring of energised item of plant. The machine learning based

technique turns the multipath phenomenon to surprisingly good use: by combining the

multipath pattern with other signal characteristics, it creates a signature unique to a

given location. To this end, this thesis focuses on non invasive radio PD monitoring to

develop an enhanced PD localisation system using off the shelf commercially available

sensors.

2.7 Summary

In this chapter, the background of partial discharge phenomena is introduced. Five com-

mon PD detection methods have been compared with each other, including electrical
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detection, chemical detection, optical detection, acoustic detection and electromagnetic

detection. The EM detection method that measures EM waves in the radio frequency

range has been identify as the most suitable PD detection technique for the proposed

PD localisation system. A review of RF-based PD localisation techniques is presented.

The drawbacks of the commonly used PD localisation techniques; TDoA and DoA are

discussed. These techniques are often deploy to monitor one electrical apparatus at a time

and can be prohibitively expensive. The approach employed in this thesis which is the

subject of the next chapter is to deploy inexpensive commercially off-the-shelf sensors at

strategic locations as a proof-of-concept for a substation-wide PD localisation.
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CHAPTER 3

Partial Discharge Measurement and Signal Characterisation for

Source Localisation

3.1 Introduction

The use of radio signals emitted during PD events for localisation is beneficial for many

reasons, as discussed in the previous chapter. This chapter leverages the RF sensing tech-

nology to investigate the feasibility of deploying a matrix of radio sensors in an electrical

substation to monitor the radio spectrum for RF pulses emitted by the discharges and

ultimately determine PD location. The propagation characteristics and properties of the

PD received signals as they relate to localisation are studied. This analysis is needed to

understand the underlying features of location-dependent patterns in the received sig-

nals. The received signal strength is used to demonstrate the location dependence of PD

received signal features. An understanding of the location properties of received signal
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features for fingerprinting can provide help in improving PD localisation system. Mea-

sured PD signals and their derivatives are used in further analysis as input data to train,

and validate proposed PD localisation techniques. To this end, this chapter reports a PD

measurement campaign undertaken in this study as a proof of concept for the proposed

substation-wide PD localisation. A set of mathematical assumptions is proposed at the

end of this chapter based on the analysis. These assumptions will be used in the later

chapters for developing PD localisation models.

3.2 Experimental Setup

In order to evaluate the PD localisation system proposed in this thesis, a systematic

measurement campaign was developed to simulate/emulate PD events in electrical sub-

station and hence produce measurement data for further analysis. The experiment was

conducted in a 19.20 m x 8.40 m laboratory at the University of Strathclyde. The labo-

ratory contains chairs, cubicles, computers, antennas, robot arms and different metallic

objects on the tables, walls and ceiling. There was also human movement/activities in

the laboratory. The radio environment within this laboratory is not necessarily similar to

that in a substation. However, the salient point is that the presence of clutter in both en-

vironments is likely to give rise to a complex, multipath-rich, propagation environments.

The algorithms to be applied herein demonstrate an ability to tune themselves to the un-

derlying radio environment. Furthermore, a more complex (multipath-rich) environment

is likely to give rise to more distinguishable feature and hence facilitates the proposed PD

localisation technique. Therefore, the radio environment within this laboratory is suffi-

ciently complex to enable evaluation of the PD localisation techniques being investigated.

In real-life deployment, a substation may be subject to occasional changes in topography

that affect the radio environment: temporary or permanent changes to the layout. The

proposed system will undertake periodic re-training of the model to accommodate for

these factors.
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The acquisition system for the measurement campaign consists of a pulse generator,

three inexpensive omnidirectional radio frequency (RF) antennas and a high speed four

(4)-channel LeCroy SDA900 serial data analyser with 40GS per sec maximum sample

rate. The pulse generator is capable of generating sub-nanosecond current pulse which is

fed to a monopole antenna. The monopole antenna has a wide bandwidth of 930 MHz (70

- 1000 MHz) with an omnidirectional radiation pattern. The radiating monopole antenna

therefore represents an artificial PD source. During the experiment, the pulse generator

was set in order to generate pulses which have a duration of 10ns, repetition period of

10µs and amplitude of 10V . A sample of the PD emulated pulse is as shown in Figure

3.1.

 

Figure 3.1: Emulated PD pulse.

Figure 3.2 shows the arrangement of the floor map of the laboratory for the experiment.

In this experiment, two distinct data sets were collected: a training set and a test set, all

the training sampling points are indicated by the blue circles which we refer to as PD

training locations and the test points indicated by red squared marks referred to as PD

test locations.
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Figure 3.2: Grid for measurement campaign.

These training and test locations simulate PD sources and are so called given that they

represent different sets of data to be used in this work. There are 144 training sampling

points located on a uniform grid with spacing of 1m. The artificial PD source elevated

at a height of 1.9m was made movable and used to generate emulated PD traces at each

of the 144 sampling points. This implies that the height was constant throughout the

experiment. Therefore, this work will be limited to 2-dimensional localisation problem.

However, the concept used in this thesis can be easily extended to a 3-dimensional prob-

lem. Another measurement was taken at the 32 distinct test points in the same way but

on different days. Both the 144 training and 32 test locations thus represent sources of

discharge. As a proof of concept, three RF antennas positioned at predefined locations in

the laboratory as shown in Figure 3.2, with antennas A1, A2 and A3 stationed at (1.5m,

1m, 1.62m), (15m, 4.5m, 1.62m) and (1.5m, 7m, 1.62m) respectively were connected to the

multichannel digital oscilloscope to capture and record PD measurements. The antennas

are positioned in a triangular configuration. The experiment utilised commercially-off-

the-shelf antennas: 1/4 wavelength antennas operating at 173 MHz to sense radiated

pulses. The maximum gain of the antenna is in fact 200.7 MHz. This is shown in sub-
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sequent chapters. 50 ohms BNC coaxial cables were used to interconnect the antennas

to the oscilloscope terminal in order to minimise the reflections of the signal from the

antennas. The risetime of the pulse is sufficiently fast () to extend into RF spectrum. The

oscilloscope records two separate information; timestamp data and waveform data (three

blocks of time-series data relating to RF signals recorded on each of the three antennas.

All pulses were sampled at 2 GS/s to ensure adequate resolution of the signal in the time

domain. The PD measurements acquired will be used in subsequent analysis and their

derivatives as inputs to the proposed localisation algorithms. This set-up ensures that the

training and testing RF signal samples measured are disjoint enough to provide realistic

results.

3.3 Data Collection

For the purposes of the work reported in this thesis, a training data set of PD measure-

ment was gathered from the experimental set-up described in section 3.2 via the three RF

sensors at each of the 144 grid points (locations). A total of 2880 PD measurements, cor-

responding to 20 consecutive RF measurements per grid point per antenna were collected.

This data is used to build PD radio map for the purpose of training the PD localisation

models developed in subsequent chapters. A second, independent, test set was gathered

in the same way, 20 consecutive RF measurements but at 32 distinct locations (the inter-

grid red squares in Figure 3.2). The first dataset was further divided into training and

validation subsets, which are used to train and optimize the developed PD localisation

models. This will be discussed further in subsequent chapters. The independent test set

was subsequently used to benchmark the performance of the models. PD features (e.g

RSS) extracted from the RF measurement collected are used as fingerprint input vectors

to the localisation algorithms. Such features are expected to be location dependent.
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3.4 PD-Signals De-noising

The RF signals that result from PD measurements are often contaminated by noise from

the environment. This could be from communication systems, switching operations, light-

ning and/or random noise. Such noisy measurements with low signal-to-noise ratio (SNR)

present difficulty in PD detection, feature extraction and by extension PD localisation

[92]. The PD measurements collected during experiment are expected to have different

SNRs. Visualisation and SNR of the signals help to highlight the effect of noise on the

measured signal. Samples of the RF signals recorded during the measurement campaign

are as shown in Figures 3.3 (a), (b), (c) and (d). The definition of SNR used in this thesis

is base on the amplitude of the signal. This definition is given in Equation 3.1 [93]:

SNR = 10log(
N∑
n=1

[X(n)]2/
N∑
n=1

[X(n)− S(n)]2) (3.1)

where X(n) is the measured (original) signal, S(n) represent the de-noised signal, and

N is the length of the signal. The values of SNR (-7.87, -7.20, -4.68 and -3.22 dB) of

the four measured signal samples shown in Figure 3.3 is an indication of the low SNR of

the PD measurements in the reported experiment. The PD signals are totally corrupted

by the presence of noise. As a result, the desired time-domain characteristics of the

signals are not clearly identified. The noise is modelled as white Gaussian noise (which

include quantisation noise and random disturbances), wherein the frequency components

are distributed over all frequency range while the signal of interest lies within a specific

range of frequency. Extracting PD pulses from such noisy measurements before further

analysis is therefore crucial and will be the first step towards the proposed PD localisation

system. It is also important that this is done in such a way that the features of the PD

pulse are preserved as much as possible. The noise component of the measured RF signals

can be removed by de-noising process. The stochastic and transient nature of PD signals

demands sophisticated techniques for its analysis. Wavelet transform technique which
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involves decomposition of measured data and thresholding is usually used for de-noising

PD measured data [94][95]. In this thesis, a de-noising technique [93][96][9] that combines

Wavelets [94][95][97] and Principal Component Analysis (PCA) [98][99] is used to de-noise

the received RF measurements under low SNR without assuming any a priori knowledge

about the PD features.

 

(a) Pulse 1
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(b) Pulse 2

 

(c) Pulse 3
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(d) Pulse 4

Figure 3.3: Noise corrupted PD signals.

3.4.1 Wavelet-PCA de-nosing

The PD data de-noising problem can be modelled as in Equation 3.2;

X(n) = S(n) + e(n) (3.2)

where X, the measured signal is m-dimensional (m = number of data channels) which

contains information on the propagation environment, S is the PD signal of interest, and

e is the noise (white Gaussian) component of the measured signal. The goal is to recover

the approximate signal of interest by removing the effect of noise as much as possible.

The de-noising technique used in this thesis is carried out in two stages, namely; Wavelet

decomposition and PCA. The resulting lower detail coefficients that contain the noise are

then eliminated by thresholding. The flowchart for the Wavelet-PCA de-noising technique

used in this thesis is as shown in Figure 3.4.
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Measured	PD	Data

Wavelet	Decomposition

PCA	on	wavelet
coefficients

De-noised	PD	signals

Keep	components	from
approx.	coeff.

Threshold		components
from	detail	coeff.

Reconstruct	the	de-noised	signals	from	simplified	detail
and	approx.	coeff.	using	inverse	wavelet	transform

Figure 3.4: Flow chart of the wavelet-PCA de-noising.

3.4.1.1 Wavelet De-noising

The wavelet-based de-noising method is the most commonly used technique for removing

noise interferences from partial discharge (PD) measurements. This is based on threshold-

ing the detail coefficients that contain the noisy component of the measured signal. The

wavelet de-noising process is accomplished in three steps. Firstly, the signal is decompose

into approximation and detail coefficients up to 8 levels using the Daubechies wavelet

filter [95]. Figures 3.5 (a), (b), (c) and (d) show the decomposed approximation, A8 and

46



detail coefficients, Di, i = 1, ..., 8 of the PD samples. The decomposed signal x can be

expressed in the form of Equation 3.3;

x̂(n) = Σ+∞
k=−∞(x, φJ,k)φJ,k(n) + Σj≤JΣ+∞

k=−∞(x, ψj,k)ψj,k(n) (3.3)

where φ is the scaling function and ψ is the wavelet function.
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(b) Pulse 2
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D
ec

o
m

p
o

si
ti

o
n
 l

e
v
el

 

Samples 

(d) Pulse 4

Figure 3.5: PD wavelet decomposition.

The approximate coefficients, aj,k = (x, φj,k), describe the overall waveform of the signal,

whereas detail coefficients dj,k = (x, ψj,k), describe the fine localise features of the signal.

In other words, the energy in the signal of interest is distributed amongst the higher scale

coefficients whereas the lower scale coefficients contain the energy of the noise. Hence

the lower scale detail coefficients correspond to the noisy part of the signal. Thresholding
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these detail coefficients via a defined threshold say τ eliminates the noise component of

the signal and thus highlight the important information. This forms the second step in

the wavelet de-noising technique. In PD de-noising, the most frequently used thresholding

rule is soft thresholding, which shrinks all detail cofficients dj,k below τ to 0 [96]. In this

thesis, we employ the universal fixed form of soft thresholding as defined in Equations

3.4 and 3.6 respectively. This selection is informed by the fact that PD measurements are

often characterised by low signal-to-noise ratio (SNR).

τ = σ̂
√

2log(N) (3.4)

where N is the length of the signal and σ̂ the estimate of the noise standard deviation

given by Equation 3.5 [96].

σ̂ =
√

2mad(d1)/0.6745 (3.5)

where mad(d1) is the median absolute deviation of the detail coefficients at level 1.

ηsoft(x) =


x− τ x > τ

0 x ≤ τ

x+ τ x < −τ

(3.6)

where x is the data and τ is the threshold. The third and final step involves the re-

construction of a de-noised version of the original signal from the threshold coefficients

using the inverse wavelet transform. Wavelet de-noising method is preferred because it

does not consider homogeneous noise structures and generates accurate reconstruction

of the de-noised signal with respect to original signal [98]. However, the classical wavelet

de-noising technique requires prior knowledge of signal characteristics and that the PD

triggers above the noise level [97][100]. Therefore another layer of de-noising otherwise

known as PCA is desirable.
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3.4.1.2 PCA

PCA is a statistical method used in the analysis of multi-channel data through an or-

thonormal projection. PCA does not only have ability to decompose a signal into con-

stituent components but also to remove uncorrelated noise in the signal. As a result, PCA

has been applied to many areas of research including data compression, digital image en-

hancement, dimensionality reduction and de-noising. Even though PCA methods vary

significantly with application, they are similar in that they deconstruct a multi-channel

signal into a set of orthogonal bases of decreasing energy. Geometrically, the PD data can

be seen as an m× n in an n-dimensional data space, where m is the number of channels

and n is the number of locations where measurements were taken. Given the measured

PD data consisting of multiple traces, xi,j, i = 1, ..., n; j = 1, ...m, where the ith trace

is associated with a particular location and j represent a particular channel of observa-

tion at that location. What PCA does is to generate a rotation matrix that rotates the

coordinate system of the data traces onto a set of orthogonal directions called Principal

Component (PC) directions such that the first axis is along the direction where the data

has greatest variance and so on [101][102]. In such a rotation, the resulting components

are in order of decreasing energy. The first components with most energy tend to capture

the coherent data signal whereas the later components with less energy tend to represent

the incoherent noise in the data. The rotation matrix can be defined by decomposing the

covariance matrix C of the data into its corresponding eigenvalues and eigenvectors as in

Equation 3.7;

C = V PV T (3.7)

where P is a diagonal matrix consisting of eigenvalues of C and V is the eigenvector

matrix whose columns are the corresponding eigenvectors. The eigenvectors define the

PC directions and the matrix V T is the rotation matrix that decomposes the measured

(original) signal into such components. In compact notation, this decomposition is given
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in Equation 3.8.

Φ = V TX (3.8)

And the measured PD signal can be reconstructed by Equation 3.10;

X̂ = V Φ (3.9)

It is important to note that the eigenvector matrix V is a unitary matrix and satisfies

V V T = I, where I is an identity matrix. Thus the reconstruction is exact and unique.

Mathematically the reconstructed signal is exactly equal to the original measured signal

when all PCs are included. Reconstructing with selected subset of PCs would yield a trun-

cated reconstruction that is devoid of the energy captured in the discarded components.

For example, incoherent noise often populates later PCs and discarding them during re-

construction would yield a cleaner signal that is minimally affected by the noise. Thus to

perform de-noising of the measured PD signals, only selected subset of the PCs are used

in the reconstruction stage. In matrix notation, this is given by Equation 3.10.

S = V BV TX (3.10)

where B is a diagonal matrix, with ones at the rows corresponding to the components used

for reconstruction, and zeros everywhere else. In this work, PCA is used to offer an addi-

tional de-noising layer to the multivariate wavelet de-noising method before thresholding

is carried out. PCA is performed on the wavelet detail coefficients before thresholding

to eliminate noisy and redundant components of the measured signals. In like manner,

it is performed on the wavelet approximation coefficients in order to keep only the most

informative features of the PD signals. Kaiser’s rule [103] is used to select the minimum

number of retained principal components. In Kaiser’s rule, components whose eigenvalues

are greater than the average eigenvalue or have their 95% confidence limits encompassing

the average eigenvalue are retained. This is because these components summarise more
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information than any of the original variable.

 

(a) Pulse 1

 

(b) Pulse 2
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(c) Pulse 3

 

(d) Pulse 4

Figure 3.6: De-noised PD signals.

The PD de-noised signal samples are shown in Figure 3.6. The de-noised signals represent

truncated versions of the measured signals. This is done for better visualisation of the

PD pulses of interest. By comparing the measured PD signals in Figure 3.3 with the

de-noised signals in Figure 3.6, it can be concluded that the wavelet-PCA technique

employed in this thesis provides effective de-noising. Although there are losses in the de-
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noising process which is evident in the reduced amplitude of the reconstructed de-noised

signals, it presents us with representative PD signals that will be used in subsequent

analysis for PD localisation.

3.5 Spatial variability

Spatial variability occurs when a measured quantity at different spatial locations exhibits

values that differ across the locations. In the PD localisation system proposed, it is im-

portant to assess the spatial variability of any measured quantity to be used as fingerprint

to a localisation algorithm. Here, the PD dataset collected as described in section 3.3 is

used to test for spatial variability of PD fingerprints. RSS is used to demonstrate PD fin-

gerprint spatial variability. The RSS of the PD signals is calculated as the sum of squares

of the samples. The contributions of the three RF sensors used during the measurement

campaign is also investigated.

3.5.1 Spatial variation of PD location fingerprints

The performance of the proposed PD fingerprinting localisation system depends greatly

on the variation of location fingerprints. Signal variation gives an indication of the degree

to which PD fingerprint, such as RSS patterns differ from location to location. Theo-

retically, a source of emission at a given location is expected to produce similar RSS

values over time. And two different locations with different distances from the same mea-

suring device should have different RSS values. However, in a propagation environment,

RSS attenuates with increasing distance between the source of emission and receiver.

Obstruction, reflection and scattering from various objects within the environment leads

to variations in RSS over small time scales. This causes the RSS to decay in a random

fashion. The net effect of these variations is a lower SNR, which leads to high error.

Therefore, the average of the 20 measurements taken at each location is computed and
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used in order to smooth out the effect of variations and increase the SNR. These values

can be grouped together as patterns of RSS at a particular location. In order to inves-

tigate the spatial variability of RSS patterns at different locations, RSS measurements

collected at each grid point in the experimental laboratory were considered. Figures 3.7

(a), (b) and (c) show the PD signal strength pattern in the radio environment for each of

the three sensors. The figures reveal both the complexity of the propagation environment

and the unique spatial signatures created by PD signal strength at different locations

which facilitate the application of fingerprinting technique.
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Figure 3.7: PD RSS spatial pattern.

3.5.2 Effect of sensor positioning on PD fingerprint separa-

tion

To investigate the effect of each receiving sensor on RSS spatial variation at different

locations, six locations in the experimental laboratory were considered. Three of these

locations are from one half of the laboratory where antennas 1 and 3 are positioned and

the other three locations from the other half where antenna 2 is positioned as shown on

the floor grid in Figure 3.2. This forms two groups of three locations each. For clarity, we

call the first group top half locations (where antennas 1 and 3 are positioned) and the

second group bottom half locations (where antenna 2 is positioned). The distance between

one location and another in each group is 6 meters. Figures 3.8 (a), (b) and (c) show the

location separation of RSS measured from pairs of antennas at three locations at top half

and Figures 3.9 (a), (b) and (c) show that for RSS measured from pairs of antennas at

three locations at bottom half. The red markers represent the pattern from location 1,

the blue markers represent that from location 2 and the green markers those measured
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from location 3 in both groups. Patterns from each location can be grouped together as a

cluster. This is because RSS has limited range and the signal often concentrates around

some average value. The more distinct this separation is i.e, the further apart the marker

clusters are, the easier it is for any location estimation method to make decision. For the

locations in the top half of the laboratory, it can be seen that sensor 3 does not really help

in separating RSS from location 2 (blue) and location 3 (green). RSS from sensor 2 on the

other hand are beneficial when it comes to differentiate between location 1 (red) and the

other two locations. RSS from sensor 1 are the most convenient in differentiating the three

locations considered. In the case of locations in the bottom half of the lab., RSS from

sensor 3 helps in separating location 3 (green) from location 1 (red) and 2 (blue). Sensor

2 is beneficial in differentiating location 2 (blue) from the other two locations. Again RSS

from sensor 1 contribute more to the separation of all the three locations.
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(a) Antenna 1 and 2

 

(b) Antenna 1 and 3
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(c) Antenna 2 and 3

Figure 3.8: PD Figerprint Separation from three location at top end of the lab.

 

(a) Antenna 1 and 2
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(b) Antenna 1 and 3

 

(c) Antenna 2 and 3

Figure 3.9: PD Figerprint Separation from three location at bottom end of the lab.

It can also be seen that measurements from each sensor reveals very different signal

separation patterns at different locations. It is important to note that the sensors do

not have the same level of significance when it comes to PD localisation at a particular

location. This may be attributed to a sensor’s propagation path. The thought in this

thesis is that combining the effect of the three sensors on signal separation pattern at
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each location will be beneficial to the overall performance of the PD localisation system.

This is demonstrated in Figures 3.10 (a) and (b), where the RSS of PD from the three

sensors are considered. It can be seen that there is an increase in the separation distance

of the RSS clusters for each location when the contributions of the three sensors are taken

into consideration. This is further proved in our investigation in the next chapter.

 

(a) Top end

 

(b) Bottom end

Figure 3.10: PD Figerprint Separation from three location at both ends of the lab.
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3.6 Assumptions for RSS location fingerprints

For the purposes of modelling the proposed PD localisation system based on location

fingerprints, each RSS element ri in the location fingerprint R = (r1, r2, ..., rn) is assumed

to be a random variable with the following assumptions.

• The RSS features in each location fingerprint are assumed to be mutually indepen-

dent.

• The mean of the RSS is assumed to be constant and can be used as fingerprint

since the RSS samples exhibit clustering.

3.7 Summary

This chapter investigates the feasibility of deploying a network of inexpensive radio sensors

to monitor RF pulses emitted during PD events in order to determine the location of PD.

The PD measurement campaign carried out to demonstrate the proposed substation-wide

PD monitoring and localisation system is reported. PD data collection and preparation

is also outlined in this chapter. The measured RF signals have been de-noised via wavelet

technique to extract PD pulses. It is these de-noised signals that will form the bases for

further analysis. The location-dependent property of the RF received signals have been

demonstrated using RSS. The spatial variability of RSS as PD location fingerprints was

established. In the next chapter, an investigation into the use of RSS in conjunction with

machine learning algorithms for PD localisation would be carried out.
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CHAPTER 4

Investigation into the use of Radio Fingerprinting for Localisation

of Partial Discharge Sources

4.1 Introduction

In the previous chapter, the underlying assumption that PD received signals exhibit

location-dependent characteristics has been established using Received Signal Strength

(RSS). This implies that RSS can be used to infer PD location. Generally, RSS-based

localisation methods require knowledge of the underlying radio propagation environment

such that a suitable propagation model that defines the relationship between RSS and

distance to receiver sensor can be built. However, in the case under study it is not ap-

propriate to use a ready-made propagation model due to multipath problem that often

characterise the real-life radio environment in which PD is experienced. Moreover, a de-

tailed RF propagation modelling is non trivial. To this end, this chapter investigates an

64



alternative method based on radio fingerprinting technique for PD localisation. Firstly,

the PD localisation problem is presented, followed by an empirical investigation into the

use of RSS as PD location fingerprint for PD source localisation. The state of the art

is outlined. Machine learning algorithms have been identified and used to model RSS-

location relation and hence derive PD location. Furthermore, performance evaluation of

the developed models is carried out with particular focus on accuracy.

4.2 Problem Statement

Many PD localisation methods proposed in the literature are based on estimating the

distance between the measuring unit and the discharge source. Such methods are either

time-based using the TDoA techniques [67][68], angle-based using the AoA techniques

[82], or power-based by employing the RSS [104][105]. Distance estimates are then com-

bined using either triangulation, or trialateration to estimate PD locations. TDoA and

AoA techniques are complex and have power hungry signal processing cost. They also

have stringent measurement (e.g LoS) requirement in order to performance well. The

cost/complexity of these approaches prompt an investigation into methods based solely

on the use of RSS measurements due to their low-power consumption and cost compet-

itiveness. One common approach using RSS is based on variation of radio path-loss law

inversion [106]. The intensity of radio waves is said to diminished with distance and this

can be exploited to determine signal location. Theoretically, free space path-loss varies in

strength as an inverse square law [106] and is very simple and straightforward to imple-

ment. However, in real life applications such as PD localisation considered in this thesis,

the measured signal power can be significantly altered by the presence of multipath caused

by reflection and diffraction, additive noise, shadowing and/or obstructions and No Line

of Sight (NLOS). Due to the harsh environment, unreliable measurements of RSS re-

sult in deterioration of the localisation performance. Moreover, the radiated power of the

PD RF signal is not known a priori, therefore accurate range values (distance between
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the transmitter and receiver) become difficult to compute. Furthermore, the path-loss

model for the considered environment is both unknown and generally different for each

path travelled by PD signals from their sources to receiving sensors. Assumptions can be

made regards radiated power and path-loss index. However, this can further degrade the

localisation accuracy.

Localisation techniques based on fingerprinting are more reliable because they do not

make any assumption about the propagation channel or require estimate of RF channel

parameters. However, fingerprinting often involve a resource intensive survey stage where

a new radio map (of signatures) is needed each time a change occur in the propagation

environment in order to maintain the needed accuracy. In this thesis we suggest a low-

cost Wireless Sensor Network (WSN) approach where the network itself builds the spatial

RSS map of signatures autonomously and continually. With this approach PD monitoring

system can be permanently deployed and thus monitor the substation in real-time at low

cost without interruption. This chapter provides a method for PD localisation using

fingerprinting technique based on PD RSS data in conjunction with K-nearest neighbor

algorithm (KNN) [107][105] and Artificial Neural Network (ANN) [108][109].

4.3 Mathematical Formulation

The low-cost approach proposed in this thesis is based on the deployment of wireless

sensors at arbitrary but known locations in the substation compound; these sensors can

record radio emission from PD sources in real time. The locations of these sources can

be inferred by sophisticated machine learning algorithms. Owing to the topography of

assets in a substation, PD localisation in this setting can be regarded as a 2 dimensional

(2-D) problem. Let the compound be modelled as a finite 2-D location space L. Each

location l ∈ L, is taken as a reference PD source emitting RF signals where our training

data set is gathered. The signal strengths of PD are collected from m receiving sensors.
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We denote the m-dimensional received signal strength space as R. Each element in this

space is a vector whose entries represent the signal strength values captured by different

sensors. Sampling from the received signal strength space R at location l at time t,

denoted by r(l, t), can be viewed as a vector stochastic process. However, in this work,

the PD localisation problem is defined as a stationary process, therefore the time index

is dropped. For the remaining of the thesis, we refer to this process as r(l) and whenever

the location index l is dropped, we refer to the received signal strength vector as r. It is

also assumed that the samples measured from different sensors are independent.

Therefore the PD localisation problem becomes a mapping of the received signal

strength onto PD source location. This can be modelled as in Equation 4.1;

L = f(r) + e(r) (4.1)

where r ∈ R is the signal strength vector from n locations, captured by m sensors. f

is the function of RSS. And e accounts for the noise. The PD RSS fingerprint map can

therefore be expressed as in Equation 4.2;

R =



r1i (1) r1i (2) . . . r1i (m)

r2i (1) r2i (2) . . . r2i (m)

. . . . . .

. . . . . .

. . . . . .

rni (1) rni (2) . . . rni (m)


(4.2)

A column of the matrix is a RSS vector that contains measurement collected by a sensors

from n distinct PD sources (locations).
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The key challenge is to develop a model that can determine the planar location of PD

sources based on PD fingerprint data at low cost. Both the receiving sensor nodes and

PD sources are made stationary during measurement.

4.4 Location Fingerprinting Technique

Location Fingerprinting (LF) in the context of PD localisation is a technique that

utilises radio signals to determine PD location by characterising the radio signal en-

vironment in which PD is expected. The location fingerprinting approach exploits the

relationship between PD signal measurements and a specific spatial location. In other

words, a PD physical location is mapped into a unique measure in radio signal space

and the model created is used to infer PD location. In this chapter, the measured pa-

rameter used is the received signal strength. The strength of a signal is known to have

a high correlation with distance travelled from it source to a receiver [110]. In the harsh

environment of the substations, wireless signal propagation is severely affected by dense

multipath, attenuation and NLOS which renders traditional parametric geolocation tech-

niques (e.g trilaterarion) ineffective and complex for actual implementation. The location

fingerprinting technique however, turns the multipath phenomenon to surprisingly good

use: by combining the multipath pattern with other signal characteristics, it creates a

signature unique to a given location.

Generally, the procedure for fingerprinting based localisation technique is divided into

two phases: a database construction phase and localisation phase [111]. The wireless nodes

are deployed in an approximately regular grid topography. The grid spacing, which is the

distance between the closest locations is reported in meters. In the database construction

phase, the RSS from PDs generated at different grid points are collected with associated

known locations and stored in a database otherwise called a radio map. The radio map is

a reflection of how the signal propagates. The vector of RSS values at a point (location)
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on the grid is known as the location fingerprint of that point. This vector creates a unique

RSS pattern for that location. In this thesis, the average RSS suggest a single feature

per fingerprint. In the localisation phase, whenever PD occurs at any location within the

area considered, the measured fingerprint is compared to fingerprints entries stored in the

radio map and appropriate algorithm is used to determine the location of the PD source.

The basic structure of the location fingerprinting system is as shown in Figure 4.1.

 

Figure 4.1: PD location fingerprinting system.

4.5 Location Fingerprint

A location fingerprint based on radio signal characteristics such as RSS is the basis for

representing a unique location. An underlying assumption is that each location in the ra-

dio propagation environment exhibits a unique RF signature [112][105]. The environment

is calibrated to capture the full dynamic of the signal characteristic at each location.

Thus, the more cluttered the signal propagation is, the more unique the location finger-

print. A location fingerprint used in this chapter is a vector of RSS values measured by

the receivers and corresponding location label. To create a location fingerprint, a number

of measurements of RSS vectors are collected at each location. Each RSS element of a
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vector can be considered as a random variable. The average RSS from each location is

calculated and recorded as an element in the location fingerprint. The dimension of the

vector is determine by the number of receivers used.

4.6 Machine Learning Techniques for PD Location

Estimation

A PD location estimation technique is a procedure that exploits the relationship between

location dependent signal parameters otherwise known as fingerprints and location in-

formation to infer PD source location. As earlier mentioned in section 4.2, RSS is used

here as PD fingerprints. The key challenge is how to effectively and efficiently model

RSS/location relation and hence derive PD location from RSS. The complexity of this

problem motivates the use of sophisticated machine learning algorithms for PD location

estimation. The RSS fingerprints from different locations and their corresponding loca-

tion coordinates form a training data set that is used to create estimator models that

relate PD fingerprints and location coordinates.

4.6.1 K-Nearest Neighbour Regression Model

The k nearest neighbour algorithm is one of the simplest and well known machine learn-

ing algorithms widely used for classification and regression tasks (function approximation

which interpolates between known samples). It is an intuitive fit with the problem of infer-

ring the propagation environment between arrays of radio sensor nodes. For PD location,

k nearest neighbour algorithm is considered as a regression problem which consists in

mapping PD signal input features (fingerprints) onto dual output corresponding to loca-

tions in 2-dimensional space. The idea of k nearest neighbour technique is based on the

assumption of locality in feature space. KNN regression for PD localisation consists of
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database construction and the location estimation phases. Database construction com-

prises the collection and storage of known examples. Each example consists of a data

point having PD fingerprint (i.e RSS from a source) labeled with its physical location

coordinate. In the location estimation phase, KNN finds k examples in the database

whose RSS values are closest (most similar) to the new PD observation in feature space

(of fingerprint). In the nearest-neighbour calculations each fingerprint is represented as

a vector of average RSS with entries for each receiver sensor. To determine PD location,

is based on averaging the physical location coordinates of the selected closest examples

otherwise known as k-nearest neighbours. The estimated PD location of the new observa-

tion is given by Equation 4.3, which is the arithmetic average of the location coordinates

of these k closest neighbours.

(x̂, ŷ) =
1

k
Σk
i=1xi, yi (4.3)

where (x̂, ŷ) represent the coordinates of the estimated PD location and (xi, yi) is the

location of the ith closest neighbour.

The determination of the similarity of measurements is based on distance measure

in signal (feature) space. The common choice for the comparison measure is Euclidean

distance [107]. Suppose there are n location fingerprints in the database denoted by

R = r1, r2, ..., rn and each fingerprint has a one-to-one mapping to a set of locations

L = l1, l2..., ln. A sample of new fingerprint vector measurement collected is denoted as s.

Assuming that these measurements were collected by m sensor nodes, then the sample of

new fingerprint vector is s = (s1, s2, ..., sm) and each fingerprint in the database can be

denoted as ri = (ri,1, ri,2, ..., ri,m). Therefore, the similarity between the new observation

s and the fingerprints in the database ri from m sensor nodes according to Euclidean

distance can be expressed as in Equation 4.4;

Deuc(s, ri) =
√

(Σm
j=1(sj − ri,j)2) (4.4)
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which is the distance in the signal (feature) space between the new observation s and

the fingerprint in the database ri. Given the euclidean distance Deuc, that computes

the similarity in signal space, the procedure with k nearest neighbour algorithm is to

select the location of the fingerprint j that has the shortest signal distance. Another

similarity measure considered in this work is the Mahalanobis distance metric [113].

The Mahalanobis distance Dmal(s, ri) between a location fingerprint ri and a new sample

vector s, given a covariance matrix of location fingerprint Σ can be defined as in Equation

4.5;

Dmal(s, ri) =
√

(s− ri)TΣ−1(s− ri) (4.5)

Mahalanobis distance measure takes into account the correlations of the random finger-

print components and is independent of the scale of measurements [114]. Thus it can

be used for measuring the similarity of an unknown sample set to a known one. Both

the Euclidean distance and the Mahalanobis distance are used in this thesis and direct

comparisons between the two are given.

The value of the parameter k has an impact on the performance of the KNN locali-

sation model. When only one neighbour (k=1) is considered in the k nearest neighbour

algorithm, the algorithm becomes the so-called nearest neighbour algorithm (NN). Here,

the closest neighbour becomes the location estimate. This is demonstrated later in this

chapter where optimal value of the parameter k is obtained through cross validation.

In the KNN algorithm, all the k nearest neighbours in the fingerprint space contribute

uniformly to the final PD location estimate regardless of their distances from the new

observation in the coordinate space. This however limits the performance of the models

especially in a large space. In the next subsection, an approach to overcome this bottle

neck is discussed.
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4.6.2 Weighted KNN

The KNN algorithm discussed in Section 4.6.1 can be improved by introducing a weight

factor. The weights account for the degree of contribution of each of the k neighbours

according to their similarity distance to the new observation in the fingerprint space such

that the closest neighbours contribute more to the final location estimate than neighbours

farther away. This balances the variations in the fingerprints. To this end, the distance

measure used to search for the nearest neighbours is transformed and used as weights

to the k nearest neighbours. The commonly used weight factor is the inverse of the

neighbours similarity distance from the new observation. It is important to note that

there are other weighting function that can be considered. The choice of this function

will be discuss later in this chapter. The improved KNN algorithm has the ability to

smooth out the impact of noisy training data by taking the weighted average of the

nearest neighbours. This enhances localization accuracy. The improved KNN algorithm,

herein called the Weighted K-Nearest Neighbour (WKNN), replaces Equation 4.3 with

Equation 4.6;

(x̂, ŷ) =
Σk
i=1wi ∗ (xi, yi)

Σk
i=1wi

(4.6)

where

wi =
1

D(s, ri)
(4.7)

Equation 4.7 is the weight of each neighbour and D is the fingerprint similarity distance

between the new observation and the samples in the database.

Despite the advantages of the KNN algorithm such as ease of implementation and

the minimal training or tuning requirement, KNN still has some limitations. The KNN

algorithm discussed is based on a smoothing approximation. In reality the locations in

the signal or fingerprint space do not perfectly correspond to locations in the physical

space. Also since the estimates are a function of the grid point’s position, the accuracy
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of the KNN algorithm will be dependent upon how much location fingerprints can be

separated in signal space. As expected, the location error decreases when the density of

fingerprint increases, but the decreasing rate slows down during the thickening of the radio

map. Unfortunately, the PD signal measured by the sensor nodes represents a complex,

non-linear surface which cannot be captured by the KNN algorithm. In addition, as the

number of fingerprints in the database increases, the computational complexity of KNN

also increases and may be prohibitive for deployment in a large substation. Conversely,

an Artificial Neural Network (ANN) presents itself as a viable alternative for PD location

fingerprinting due to its ability to accommodate highly non-linear relationships.

4.6.3 Artificial Neural Network Model

Artificial neural networks (ANNs) are the most commonly used computational learning

techniques for solving function approximation problems [115][116]. They essentially imi-

tate the learning process of biological neural networks through the use of interconnected

nodes, often called neurons. Each node is a simple processing element that responds to

the weighted inputs it receives from other nodes. In its basic form, a neuron computes

its output using a weighted sum of its inputs and its activation function. The activa-

tion function introduces non-linearity and robustness in the network. Each connecting

link between nodes is associated with a weight that can be tuned based on experience,

making the neural network capable of learning. Given sufficient neurons and a set of

input-output data, the ANN can be trained to approximate any continuous function

arbitrarily well.

The attractive features of ANN include its robustness to noise in the inputs due to

the orthogonality among the output values of the hidden nodes, its ability to learn, and

subsequently recognise complex and non-linear relationships between input and output

vectors without any prior knowledge of the relationship. In this thesis, ANN is employed
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as a tool to infer PD source locations from measured PD features (RSS) based on prior

knowledge obtained during the training of the neural network. Two variants of ANN; the

Multilayer Perceptron (MLP) [117], and Generalized Regression Neural Network (GRNN)

[118] models have been developed to determine PD locations given the received signal

strength of the PD traces.

4.6.3.1 Multilayer Perceptron Partial discharge Localisation Model

The Multilayer Perceptron (MLP) is the most popular, and widely used feedforward

neural network [107] model for any arbitrary input-output mapping problem. MLP is ap-

plicable to function approximation, pattern classification, signal analysis amongst others

[105][107][109][119]. In the context of PD localisation, it consists of a non-linear mapping

from a set of PD input features (RSS) onto the dual output variables representing the

location coordinates of the PD source. Here, the neural network learns from knowledge

represented by an RSS-location data set consisting of input-output examples. The MLP

network architecture consists of three layers as shown in Figure 4.2. The first layer is

the input layer, where the nodes are the elements of the PD feature (RSS) vector. The

second layer is the hidden layer where the computation takes place. It is so called since

it does not contain input or output units. The third layer is the output layer which rep-

resent the output of the localisation process. A linear activation function is used in the

input and output layers. A sigmoidal activation function shown in Equation 4.8 which

normalises all values between the range of 0 and 1 is used in the hidden layer to provide

robustness against outliers or extreme values. Other activation functions could be used.

The performance of the MLP model is reported later in this chapter.

f(x) =
1

(1 + e−x)
(4.8)
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Figure 4.2: MLP network architecture

In general, a backpropagation algorithm [120][121][122] trains a feedforward network.

In the training process, the network is trained to build a model of a set of PD features

(RSS) as a function of PD locations so that the network can generalize and predict outputs

from inputs that it has not seen before. The backpropagation training algorithm works as

follows: first, an input pattern (PD fingerprints) is presented to the network via the input

layer and these input signals are passed to the next layer in a feed-forward fashion. The

network output is then compared to the desired output and the error computed. This

error is then back-propagated through the network and the neuron weights are adjusted

to minimize the error. This process of feeding forward signals and back propagating the

error is repeated iteratively until the error of the network is minimized. It is through the

successive modification of the adaptive weights that the neural network is able to learn

the underlying non-linear relation between the PD features and PD location. A fully

connected MLP PD localisation model is as shown in Figure 4.3.
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Figure 4.3: MLP model for PD localisation

The choice of an optimum network structure is important in modelling MLP neural

network. This includes, the determination of input and output nodes, number of hidden

layers and number of hidden neurons. Determination of the required number of input

and output nodes is a relatively easy task because it is a problem-oriented task. For PD

localisation problem, the number of input nodes is directly determined by the number of

PD features; in the case under study, we have a network of three input nodes since we have

three PD features (RSS from 3 antennas). The number of output nodes is determined

by the dimension of the location coordinate. For a 2-dimensional location problem, the

number of output nodes is two. Also for function approximation problems with limited

data, only one hidden layer is sufficient to approximate the function. In addition, the

number of hidden layers increase feature extraction capability of the network at the cost of

significant extended training and operational time of the network. Therefore, one hidden

layer is adopted in this thesis. The number of hidden neurons is set to approximately

half the product of the number of input and output plus one. Therefore a 3-4-2 network

model with three inputs nodes, four hidden neurons and two outputs nodes is adopted in
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this work.

In order to improve the generalisation of the MLP model (that is models ability to

do well on unseen data rather than just training set) and avoid overfitting, Bayesian

Regularisation (BR) [123][124] is used to train the network. In a BR network, the objective

function (such as mean sum of squares of the network error) to be minimised is modified

by adding a penalty term (sum of squares of the network weights). This penalises (set

near zero) large weights that may be introduced in order to obtain smoother mapping.

Hence BR network trains on a number of effective network parameters or weights. The

network uses the knowledge acquired during training to provide interpolated values for

the location coordinates of the unseen test data.

4.6.3.2 Generalised Regression Neural Network Partial discharge Localisa-

tion Model

A generalized regression neural network (GRNN) is proposed as an alternative neural

network method for PD localisation. This approach presents multiple advantages over

MLP networks. The main advantage of GRNN is in its learning speed. In the GRNN

network optimisation process only one free parameter (smoothness parameter) has to

be adjusted in “one-pass” (forward) through the training data. The single-pass learning

means no back-propagation [116][125] is required. GRNN learns in a fraction of time it

takes other training algorithms such as BP. Unlike MLP, it does not require an iterative

procedure for training. It is consistent and its estimate always converges to a global

minimum. Hence it produces high accuracy in the estimation. The algorithm provides

smooth approximation of target function even with sparse data in a multidimensional

space. Whereas BP needs a large size of training data. In this thesis, GRNN carries out

a non-linear mapping from PD features onto PD source location, drawing the function

directly from the training data. The GRNN network has a fixed structure with an input
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layer, a hidden (pattern) layer, a summation layer and an output layer that are fully

connected as shown in Figure 4.4.
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Figure 4.4: GRNN model for PD localisation

During training, the relationship between the fingerprints and the PD location coordi-

nates is memorised and stored. The training data contain input-output mapping. Once

the inputs are presented to the GRNN the weight parameters are determine instantly.

The weights between the input and each pattern neuron are set to unity. In each pat-

tern unit, a radial (Gaussian) basis function kernel is used as an activation function to

calculate the output value. The Gaussian kernel is given by Equation 4.9;

θ(r, ri) = exp(− dθ

2σ2
), dθ = (r − ri)T (r − ri) (4.9)

where dθ is the squared euclidean distance between the training samples ri and the new

observation r. σ is the smoothing (spread) factor of the kernel. The summation layer

is subdivided into S-summation neuron (summation units) and D-summation neuron (a

single division unit). The S-summation neuron determines the sum of the weighted out-
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puts of the pattern layer. The D-summation neuron determines the unweighted outputs

from the pattern layer such that the estimated output to an unknown input vector is

computed using Equation 4.10.

(x̂, ŷ) =
Σn
i=1(wi) ∗ θ(r, ri)

Σn
i=1θ(r, ri)

(4.10)

where (x̂, ŷ) represent predicted values of x and y coordinates of PD location associated

with the observed fingerprint r, wi is the activation weight for the pattern layer neuron

at i and n is the number of training samples. θ is the activation function defined in (4.9).

The weights of the pattern neuron to D-summation neuron connections are set to unity,

while weights of the pattern neurons to S-summation neuron connections are set to the

output value of the training samples.

The GRNN network has only one unknown parameter, spread factor, σ. The appropri-

ate value of the spread factor can be determined using exhaustive search method. This

process of optimisation will be carried out in the next section.

4.7 Performance Evaluation

This section provides an empirical evaluation of the performance of the RSS-based PD

localisation models developed in section 4.6. The PD data collected during the experiment

described in chapter 3 is used for this evaluation. The first data set collected from the 144

grid points is treated as training data points and their location coordinates are assumed

to be known. The second data set collected from 32 distinct locations within the same

environment is treated as test data with only the RSS values used for location estimation.

Their location information are assumed to be accurate and subsequently used as reference

data for validation. All the estimated locations using the developed models are compared

with the reference locations to calculate distance error.
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4.7.1 Performance Evaluation Metrics

Performance metrics provide the basis for evaluating and comparing partial discharge

localisation models. Therefore, the performance of the models described in Section 5.5

is evaluated and compared based on the following metrics: accuracy, percentile, preci-

sion, Mean Squared Error (MSE), Root Mean Square Error (RMSE) and Cumulative

Distribution Function (CDF).

4.7.1.1 Accuracy

Accuracy is the most used metric to evaluate the performance of a localisation model.

It represents the difference between the actual location and the estimated location. This

metric is generally measured as the Euclidean distance between the estimated location

and the actual location, as defined by 4.11

Acc =
√

(xest − xactual)2 + (yest − yactual)2 (4.11)

where (xest, yest) are the x and y coordinates estimated by the localisation model, and

(xactual, yactual) are the actual x and y coordinates. This metric is often represented by

the mean distance error.

4.7.1.2 Mean Squared Error

Mean Squared Error takes the average of the square of the difference between the actual

values and the predicted values.

MSE =
√

(xest − xmedian)2 + (yest − ymedian)2 (4.12)
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4.7.1.3 Root Mean Square Error

RMSE of a model measures the square root of the average squared difference between

the estimated location and the actual location. RMSE metric allows us to compute the

localisation error for both X and Y coordinates. The RMSE value per each coordinate

can be computed by 4.13 and 4.14

RMSEx =

√
1

n
Σn
i=1(xest − xactual)2 (4.13)

RMSEy =

√
1

n
Σn
i=1(yest − yactual)2 (4.14)

Here n is the number of estimates. The RMSEx and RMSEy values can be combined

to compute the overall RMSE, which is the net error of the localization algorithm. The

ovreall RMSE can be computed as in 4.15:

RMSEoverall =
√

(RMSE2
x +RMSE2

y) (4.15)

4.7.1.4 Precision

Precision is defined as a measure of the consistency in the performance of a location

algorithm at a certain level of accuracy. In other words it measures the reproducibility of

successive location estimates. It is used to assess the robustness of a localisation model

as it reveals the performance variation of location estimates over the entire considered

environment. This metric can be measured as the standard deviation in the location error.

However, in this thesis precision is measured as the distribution of distance error between

the estimated location and the actual location. The distribution function described in

section 4.7.1.6 is used for measuring the precision of each localisation model.
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4.7.1.5 Percentile

A percentile is a measure used to indicate the value below which a given percentage of

observations in a group of observations falls. To determine percentiles in this thesis, the

rank (R) of the percentile is first computed. This is done using the following formula in

Equation

R = (Pct/100) ∗ (N + 1). (4.16)

where Pct is the desired percentile and N is the number of observations. If the rank is an

integer, the percentile is the observation with rank R. However, when R is not an integer,

the percentile is computed by interpolation as follows;

1. Separate the integer portion of R defined as IR and the fractional portion defined

as FR.

2. Find the observations with rank IR and with rank IR + 1.

3. Compute the difference between the observations found in 2.

4. Finally, compute the percentile by multiplying the difference in 3 by FR and add

the result to the lower observation.

4.7.1.6 Cumulative Distribution Function

The cumulative distribution function is used to describe the distribution of random vari-

ables. In this thesis, CDF indicates the time fraction or probability that the location

error is less than or equal to a certain value. Mathematically, CDF of a random variable

(localisation error) E is expressed as in Equation 4.17;

FE(e) = P [E ≤ e] =

∫ e

∞
FE(u)du, for all e ∈ R. (4.17)
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This implies that, for a given localisation error e, FE(e) is the probability of having local-

isation error less than or equal to e. FE(e) goes to 0 as e gets smaller (−∞). Conversely,

FE(e) goes to 1 as e gets larger (∞). In this thesis, CDF is described by the percentile

format. The location model whose CDF graph reaches high probability values faster is

preferred because its distance error is concentrated in small values. In the next section,

the critical parameters that affect the performance of the machine learning algorithms

used in the PD localisation problem under investigation are optimised via exhaustive

search method.

4.7.2 Optimal k-parameter in KNN

One important evaluation of the KNN location algorithm is to study how its performance

varies with the number of neighbours (k) chosen for interpolation in the localisation phase.

We start with k = 1, which is otherwise known as the nearest neighbour (NN) method.

Figure 4.5 represents the variations in the localisation Mean Square Error (mse) with

10 different values of k. It can be observed that as k increases, the mse decrease to an

absolute minima and then increase again. When the value of k increases initially, the

underlying variations of signal strength at a single neighbouring point is averaged out

with increasing k, resulting in decrease of error distance. The errors in signal strength

vectors at different neighbours are assumed to follow different patterns. Hence averaging

over more neighbours may yield more accurate results. However, for larger values of k,

the errors again increase as many grid points which are closer in signal space but much

farther in physical space are at this point included in the computation of the final result

thereby leading to greater deviations from the actual location. The optimal value of k

(the value of k with the lowest mse) is given as 5.
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Figure 4.5: Optimal value of k for KNN model.

4.7.3 Optimal spread factor in GRNN

The hyper-parameter in the GRNN model; spread factor affects the performance of the

model and hence needs to be carefully chosen in order to optimise the GRNN model. In

this study, an exhaustive search method is used on a range of spread factors to determine

the optimum spread factors for the model. The optimum spread factor for the GRNN

model was determined according to the mean squared error (mse) criterion using the PD

training data. Figure 4.6 shows the variation of mse vs spread factor. It appears from the

figure that the optimal value of the spread factor is approximately 0.31 with the lowest

mse value. Therefore, for optimum performance, 0.31 is used as the value of spread factor

in GRNN model.
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Figure 4.6: Optimal value of spread factor for GRNN model.

4.7.4 Effect of weight factor on performance of WKNN

In the WKNN algorithm, the weight factor is important in contributing to the localisation

accuracy. Nearest neighbours are expected to have higher weights, in order to contribute

more to the location coordinates compared to farther neighbours which should have lower

weights. We investigate the impact of different weight functions on the location accuracy

of WKNN model. The weight functions considered in this thesis are listed in Table 4.1

and assigned as types A− E.

Table 4.1: Weighting function.

Type Expression of wk
A 1

D

B 1
D2

C 1
D3

D 1
exp(D)

E 1
D∗exp(D)

.

where D(s, ri) = (Σq
m=1(sm − ri,m)2)

1
2 . Table 4.2 represent the variation in mean, 50th,
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75th and 90th of the error distances with 5 different weight function used in evaluating

the WKNN model. From the result in Table 4.2, the type A weight function which is the

simplest function among the ones considered outperforms the other ones and will be used

in the rest of the thesis for analysis.

Table 4.2: WKNN performance using different weight function.

Weight function mean(m) 50th percentile(m) 75th percentile(m) 90th percentile(m)
1
D

1.74 1.15 2.56 3.91

1
D2 1.76 1.19 2.86 3.89

1
D3 1.83 1.26 2.91 4.24

1
exp(D)

1.77 1.52 2.66 3.90

1
D∗exp(D)

1.80 1.23 2.82 3.97.

4.7.5 Impact of distance metric on performance of KNN mod-

els

It is important to consider the issue of correlation between signal strength; a common

phenomenal in a real environment which can affect the PD localisation accuracy. For

KNN, it is believed that using the Mahalanobis distance metric to compute the similarity

between locations in RSS signal space can correct the high correlation between signal

strength from different sources taking into account the covariances between the RSS. Ta-

ble 4.3 compares the statistics of the error distance for KNN methods using Mahalanobis

and Euclidean distance functions. It can be observed that KNN/WKNN-Euclidean out-

performs the models based on Mahalanobis. More specifically, the mean of the distance

error for KNN-Euclidean is 1.83m, whereas for that based on Mahalanobis is 2.07m. This

result indicates that the Euclidean distance is preferable here and will be used in the

rest of the thesis for KNN PD location determination. This may be as a result of low

correlation in our data.
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Table 4.3: Performance of different distance metric.

KNN WKNN

Euclidean Mahalanobis Euclidean Mahalanobis
mean(m) 1.83 2.07 1.74 1.93

50th percentile(m) 1.36 1.86 1.15 1.54

75th percentile(m) 2.39 2.63 2.56 2.76

90th percentile(m) 4.03 3.49 3.92 3.86

4.7.6 Effect of grid spacing

Two scenarios were created to investigate the effect of grid spacing on the performance

of PD localisation models considered in this work. It is worth noting that for the PD

location models considered, only the training grid is of concern. The grid spacing for the

test set do not affect the performance of the models. In the first scenario, the grid describe

in chapter 3 for PD measurement, a 1×1 grid spacing with 144 training locations is used

for training our models and the test data (from 32 test locations) is used to benchmark

the models. The second scenario is created by taking the test locations on a 2.5 × 2.5

grid spacing as our training locations. In this scenario, the initial training data set from

144 training locations is used as test set to evaluate the performance of the models. For

the purpose of clarity, the training grid in the first scenario is tagged Grid B (denser)

and the training grid in the second scenario is tagged Grid A (sparse). The result shows

that, as the grid spacing increases, the accuracy decreases for each model. Figures 4.7

and 4.8 show the result for KNN model and GRNN model. As expected, the denser the

training grid, the better the results for the models considered. However, the improvement

between the sparse and denser grid for the KNN model is larger than the improvement

for the GRNN model. The mean distance error increase by 33.3% for KNN and 21.8%

for GRNN. The KNN models benefit the most from refinement of the grid spacing.
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Figure 4.7: KNN performance for different grid spacing.

 

Figure 4.8: GRNN performance for different grid spacing.
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4.7.7 Impact of localisation algorithm

The result of PD localisation using the four models (KNN, WKNN, MLP and GRNN) is

given in Figure 4.9. The results show that the performance of the models are comparable

with KNN models performing better in terms of RMSE. MLP and GRNN however, have

higher location precision. The localisation error is less than 3.5m with probability of 90%

for MLP and less than 3.75m for GRNN. This shows the robustness of the ANN models.

A more detail analysis of the performance of the models with respect to the number of

sensors is presented in the next subsection.

 

Figure 4.9: Performance of PD localisation models (KNN, WKNN, MLP and GRNN).

4.7.8 Impact of number of sensors

Radio fingerprinting technique relies on the unique RF signature created at each location

in the propagation space. The number of possible unique signatures in turn depends on

the number of receiving antennas. In order to evaluate the impact of number of antennas

on the localisation accuracy, the data collected as describe in chapter 3 is used. First, RSS

values from one antenna are used to infer PD locations using each model developed. We
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then used RSS values from two antennas and finally RSS values from the three antennas.

Figures 4.10 (a), (b), (c) and (d) show the impact of the number of receiving antennas on

PD localisation accuracy for each of the PD localisation models. The results indicate that

there is a steady improvement in localisation accuracy as the number of antennas increases

from 1 through 3. In GRNN model the median and the 75th percentile localisation error

were reduced by 42% and 34% respectively when 3 antennas were used instead of 2. This

indicates that in practical reality where a concentration of sensors would be deployed

in electrical substations for PD localisation there would be a corresponding increase in

localisation accuracy.

 

(a) KNN
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(b) WKNN

 

(c) MLP
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(d) GRNN

Figure 4.10: CDF of localisation error with varying number of antennas for each model.

4.8 Summary

PD source localisation is an important aspect of continuous monitoring of entire sub-

station to facilitate maintenance. This chapter introduces a substation-wide RSS-based

PD localisation system. Four different algorithms have been used to model the RSS-

location relation for PD localisation. Two variants of artificial neural network; MLP and

GRNN are presented in this work along with two variant of nearest neighbour algorithm;

KNN and WKNN. RSS values of PD signal collected during the measurement campaign

described in chapter 3 are used as PD fingerprint and input to the developed models. Per-

formance evaluation of the four models is carried out. The results indicate that RSS-based

substation-wide PD localisation is feasible.

The PD events in this work were generated with a pulse generator to ensure that the

emulated PD traces are identical for each location and repetitive. Though we obtained

good results with our models using RSS, in practical reality where different sources of
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PD generate signals with different shapes and amplitude, the absolute values of RSS

will differ significantly across PD types, which will affect the performance of our models.

The nature of the inverse problem of PD localisation presented in this work, the impact

of propagation on received signals and sparseness of PD data motivate an investigation

into sophisticated machine learning technique. In the next chapter, we will explore kernel

based machine learning techniques for PD localisation. Furthermore, robust PD location

features can be reconstructed based on power ratios of received signals on each sensor

pair to counterbalance the variation in received signals from different PDs.

94



CHAPTER 5

Support Vector Regression Approach for Partial Discharge

Localisation using Signal Strength Ratios

5.1 Introduction

In the previous chapter, the absolute received signal strength (RSS) patterns of partial

discharge (PD) radio measurements were used as PD fingerprints to infer PD location.

Although we obtained good results, the complexity of PD occurrence, RSS patterns and

the inverse problem posed by PD localisation motivate an investigation into the use of

more robust PD features and sophisticated kernelised methods. This method combines

radio-location fingerprinting and kernel based machine learning technique for PD locali-

sation. Kernel-based algorithms effectively model the complex relationship between PD

features and location, along with correlation in the PD features at proximate locations,

in a kernel. They take the measured PD features such as RSS as inputs and give a mea-
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sure of location as output. Specifically, two kernelised models based on Support Vector

Machines (SVMs) are developed: Support Vector Regression (SVR) and Least-Squares

Support Vector Regression (LSSVR). The performance of the approaches in terms of

location accuracy is examined. Furthermore, instead of absolute RSS measurements, a

derivative of RSS patterns otherwise known as received signal strength ratio (SSR) is

used as PD features. We assert that the relative RSS derived in this chapter is robust

and can provide improved performance in terms of PD localisation accuracy.

5.2 Inverse Problem Formulation

The measured PD RSS r at every observation point are closely related to the location of

discharge. This relation can be expressed mathematically as shown in Equation 5.1;

r = f(l) (5.1)

where l is the location of PD and f represent the relationship between l and r. The aim

of this formulation is to find the unknown location of a PD source from PD features such

as RSS or its derivative. This reduces to determination of the following relation as shown

in Equation 5.2;

l = f−1(r) (5.2)

This problem can be reformulated as a regression problem, where the unknown function

f−1 must be approximated from the knowledge of a number of known pairs of vector

(ri, li) with i = 1, 2, ..., N . The known pairs of vectors (ri, li) serve as inputs into any

regression model. Once f−1 is known, the unknown location of PD can be immediately

inferred from measured PD features such as RSS, and r. In this chapter, Support Vector

Regression (SVR) and its least square version are used to approximate f−1 and hence

locate PD.
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5.3 PD location fingerprint

The absolute RSS measurements used in chapter 4 are often used as fingerprints for radio

beacons that are characterized by constant transmission powers [126]. Given that the

energy emitted by each PD event may be different due to the progressive nature of PD

severity as deterioration continues, absolute RSS is not well suited to the PD location

problem under investigation. A more robust fingerprint is the ratio of RSS components

received by multiple receivers. In this chapter, instead of the absolute RSS values, the

Signal Strength Ratios (SSR) between pairs of sensor nodes are used as the location

fingerprint. Lets Assume P = p1, p2, ...pm is a set of receiving nodes deployed in the

compound for monitoring PD and L = l1, l2, ...ln represents the finite location space. For

each location space, li, an observation can then be represented by a pair of nodes pεP

and a measured signal strength value rεR where R = r1, r2, ...rp. Here, the signal strength

ratio is defined at each location for a unique node pair pi× pjεP ×P with the constraint

i < j for uniqueness. Therefore, the signal strength ratio for the receiving nodes pi and

pj can be computed for PD measurement taken at location l = [(pi, ri), (pj, rj)] as in

Equation 5.3;

SSR(pi, pj) =
ri
rj

(5.3)

By way of demonstration, Figures 5.1 (a), (b) and (c) show the spatial variation of the

computed SSR in the experimentation laboratory. Here, each of the signal strength maps

is not exclusive to one receiving sensor but a ratio of a pair of receiving sensors. For clarity,

the ratio of signal strength between sensor 1 and 2 is called Ratio 1 (Figure 5.1 (a)), the

SSR between sensor 1 and 3 is Ratio 2 (Figure 5.1 (b)), and SSR between sensor 2 and 3

is Ratio 3 (Figure 5.1 (c)). These represent the radio map of the laboratory with respect

to PD SSR features. The colour changes indicate the variation in signal strength ratio

with locations. This shows the complexity of the radio environment that is characterise

by multipath propagation phenomenon. The yellow colour indicate high reception of
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emulate PD pulse from locations close to a particular receiver. As the PD source moves

away from a particular receiver, there is more complexity in propagation as signals from

relatively distant sources seem to be captured better compared to sources that are nearest

the receiver. The blue colour is indicative of low reception of PD signals from locations

quite far away from that particular receiver. These spatially correlated measurements

(regions with similar wireless propagation characteristics) will be exploited to create a

database which will be used to infer PD location using machine learning technique. We

will demonstrate the viability of SSRs for PD localisation in the next section using two

of the models developed in chapter 4.
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(a) Ratio of antennas 1 and 2

 

 

(b) Ratio of antennas 1 and 3
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(c) Ratio of antennas 2 and 3

Figure 5.1: PD signal strength ratio spatial pattern.

5.4 Verification of RSS ratio performance

In order to demonstrate the viability of using signal strength ratios for PD localisation,

two of the machine learning algorithms used in chapter 4; KNN and GRNN are used

to model the SSR-location relation and then estimate PD location. These algorithms

are chosen for their simplicity and ease of implementation. The relative PD RSS (ratios)

constructed from PD training data collected during the measurement campaign described

in chapter 3 and their reference locations are used as input to the models. The training of

the models is done as explained in chapter 4. The models are then tested using SSR from

the 32 distinct test locations as inputs. The outputs of the models are the estimated x

and y coordinates of the 32 test locations. Because we are using signal strength ratios as

PD input features in this chapter, there is need to optimise again both KNN and GRNN

for values of k and σ respectively. An exhaustive search is used to find the optimal values

of the parameters. The results of the exhaustive search for KNN and GRNN are shown in

Figures 5.2 and 5.3. For KNN, Figure 5.2 shows that the optimal value of k is 4, which is
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different from k = 5 that was used in the previous chapter where absolute values of RSS

were used. Figure 5.3 shows that the optimal σ is 0.13. This differs from 0.31 that was the

optimal value of σ in chapter 4 analysis where absolute values of RSS were used.

 

Figure 5.2: Effect of K on performance of KNN.

 

 

Figure 5.3: Effect of spread factor on performance of GRNN.

With these optimal parameters, KNN and GRNN PD localisation models are developed
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using signal strength ratios. The performance of KNN and GRNN models based on signal

strength ratios (SSR)is quite encouraging with both models having mean location error

of 1.81m. It is interesting to note here that with SSR, KNN is able to locate PD with a

minimum location error of 0 (exact location of PD), while GRNN has a minimum location

error of 0.31. In comparison, the localisation result of both models has improved using

SSR compare to using RSS as PD fingerprints. The summary of the result is shown in

Table 5.1. This result does not only demonstrate that signal strength ratios are robust

features for PD localisation but can also improve localisation accuracy.

Table 5.1: KNN and GRNN performance using signal strength ratio.

Parameter(m) KNN GRNN
Mean 1.81 1.81

75% 2.60 2.38

Max 5.00 4.41

Min 0.00 0.31

5.5 Support Vector Machine Models

Support Vector Machines (SVM) [127][128][129] are kernel-based learning techniques ap-

plicable to both classification and regression problems. SVMs are based on the idea of

mapping the original input vectors into a higher dimensional feature space through a

kernel function where a separating hyper-plane can be found. Without the need to com-

pute the non-linear mapping explicitly, dot-products can be computed efficiently in higher

dimensional space. The dominant feature which makes SVM very attractive is that prob-

lems which are non-linearly separable in the original space can be linearly separated in

the higher dimensional feature space. SVMs have shown tremendous success in applica-

tions such as data classification, time series prediction, identification systems and data

clustering [129][130][131][132][133]. In the context of PD localisation, we formulate SVM

as a regression task, which consist of training a model that defines the non-linear mapping
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function between the PD features and their spatial location in high dimensional feature

space, leading to Support Vector Regression (SVR) [134][135][136][137].

5.5.1 Support Vector Regression

5.5.1.1 Theory of SVR

The support vector regression technique is a learning procedure based on statistical learn-

ing theory which employs structural risk minimisation principles [134]. SVR uses training

data to build its prediction model. This method can be applied to both linear and nonlin-

ear regression problems. In the case where the relation between a multidimensional input

vector and the output is unknown and very likely to be non-linear, SVR maps the input

vectors into a high-dimensional feature space by a nonlinear mapping function, where

samples become linearly separable and an optimal regression surface is constructed [138].

SVR aims at finding a linear hyperplane, which fits the multidimensional input vectors

to output values. The constructed model is then used to predict output values for data

that is not previously seen during training. Given our training dataset of signal strength

ratios (SSR) values and locations Td = (ri, li), (ri ∈ R, li ∈ L) where i = 1, ...n with ri

the input vector of data point i, li the actual locations and n the number of data points,

the goal of SVR is to find the mapping f : R → L and make f(ri) ≈ li. For a nonlinear

problem, the training patterns are pre-processed by a map into some feature space before

SVR is applied. SVR finds the best or optimal regression surface f(r) within a deviation

ε as the prediction model, leading to ε-SVR [139]. For theoretical purposes, lets begin

with the linear case, suppose we have a set of training data where rn is a multivariate set

of N observations with corresponding locations ln, the linear function to be determine

can be expressed as in Equation 5.4;

f(r) = ωT r + b (5.4)
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where ω is the weight vector and b is the bias. The training of the SVR is to find f(r) that

minimises the norm value (ωTω). This is formulated as a convex optimisation problem to

minimise Equation 5.5;

minωJ =
1

2
||ω||2

s.t. li− < ω, ri > −b ≤ ε

< ω, ri > +b− li ≤ ε

(5.5)

The problem in Equation 5.5 might be restrictive by bounding the range of errors of

the training data within ε. Thus, to deal with the otherwise infeasible constraints, we

introduce slack variables ξi, ξ
∗
i for each point. This approach is similar to the ”soft margin”

concept in SVM classification. The slack variables allow regression errors to exist up to

the value of ξi and ξ∗i without degrading performance. With these slack variables the

minimisation problem in Equation 5.5 becomes Equation 5.6 [140];

minω,b,ξJ =
1

2
||ω||2 + C

N∑
i=1

(ξi + ξ∗i )

s.t. li− < ω, ri > −b ≤ ε+ ξi

< ω, ri > +b− li ≤ ε+ ξ∗i

ξi, ξ
∗
i ≥ 0

(5.6)

Where C is the box constraint, a positive numeric value that controls the penalty im-

posed on data points that lie outside the ε margin and helps to prevent overfitting (reg-

ularisation). To solve the problem in Equation 5.6, a standard dualisation method with

Lagrange multipliers αi, α
∗
i can be used [139]. To obtain the dual formula, we construct a

Langrangian function from the primal function by introducing the nonnegative multipliers
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αi, and α∗i . This leads to the dual formula in Equation 5.7:

minL(α) =
1

2

N∑
i=1

N∑
j=1

(αi − α∗i )(αj − α∗j )rTi rj+

ε

N∑
i=1

(αi + α∗i ) +
N∑
i=1

li(α
∗
i )− αi

s.t.
N∑
i=1

(αi − α∗i ) = 0

0 ≤i≤ C

0 ≤∗i≤ C

(5.7)

By solving the dual problem, ω can be described as a linear combination of the training

points using Equation 5.8;

ω =
N∑
i=1

(αi − α∗i )ri (5.8)

Where αi ≥ 0 and α∗i ≥ 0. The function used to estimate locations depends only on the

support vectors and can be expressed as Equation 5.9.

f(r) =
SV∑
i=1

(αi − α∗i )(rTi , r) + b (5.9)

To obtain a nonlinear SVR model, we replace the dot product rT1 r2 with a nonlinear

kernel function K(r1, r2) =< φ(r1), φ(r2) >, where φ(r) is a transformation that maps

r to a high-dimensional space. With this, the linear model in Equation 5.9 becomes a

nonlinear SVR model expressed as in Equation 5.10;

f(r) =
SV∑
i=1

(αi − α∗i )k(rTi , r) + b (5.10)

where αi are the Lagrange multipliers which satisfy 0 < α∗i < C, ri are the support

vectors whose αi is not zero, and SV is the number of support vectors. Equation 5.10

shows that the decision function depends on support vectors. This means an optimal
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regression surface is constructed by these support vectors. The idea of support vectors

form a sparse subset of the training data that can be used and is particularly useful for

resource constraint applications such as the one under investigation.

5.5.1.2 PD Localisation based on SVR

In our approach, we propose to deploy a number of sensors at arbitrary but known loca-

tions in a two-dimensional substation compound; these sensors record radio emission from

PD sources in real-time and estimate the location of the PD. During the PD measure-

ment campaign described in chapter 3, the compound was divided into a 1 × 1 squared

grid. Each grid point represented by an x, y coordinate was considered a PD location

(source). Therefore, to compute PD location, two SVR models are required; one for each

x and y coordinates. The PD feature used to develop the SVR models is the received

signal strength ratio (SSR). Firstly, RSS from known locations are gathered by the three

sensors deployed in the compound. The ratios of these RSS are calculated as described in

section 5.3. These SSR values and their corresponding location coordinates form a train-

ing database for the models. Suppose the true coordinates of PD location li are (xi, yi) and

the corresponding values of SSR for the PD from this locations are (r1i , r
2
i , r

3
i ). The vector

Ri = [r1i , r
2
i , r

3
i ] with their correct locations are taken as the SVR input feature vector for

training and the resulting model is used to infer the PD location li(xi, yi) of new observed

PD measurement. All the feature vectors from known locations and their corresponding

location coordinates constitute the SVR training sample set. Using this training set, the

SVR is trained to build a PD localisation model that would subsequently be used to

predict or estimate PD location given an SSR vector that is not previously seen. During

training, the input fingerprints (SSR/location) from known locations are transformed to

a new feature space with N features, one for each support vector. That is to say that,

they are represented only in terms of their dot products with support vectors (special

data points chosen by the SVR optimisation algorithm). A Kernel function [141] is em-
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ployed in the transformation to provide a nonlinear mapping from the input space to the

new feature space. The kernel functions that were used in this thesis are listed in Table

5.2. In the localisation phase, for a given SSR vector the kernel finds the similarity or a

distance measure between the vector and the support vectors stored after training. The

corresponding coordinates of the support vectors closest to the SSR vector are used to

compute the PD location for the given SSR vector. The SVR PD location model is as

shown in Figure 5.4.

Table 5.2: Kernel functions.

Kernel Name Kernel Function
Linear K(ri, r) = rTi r

Polynomial K(ri, r) = (1 + rTi r)
q, q = 2, 3, ...

Gaussian (RBF) K(ri, r) = exp(−γ||ri − r||2)

R	=	SSR1,	SSR2,	SSR3

Real-time	SSR	
measurement

Support	Vectors Mapped	Vectors Dot	Products

Output

Kernel	Process

SV2=R2	

SV1=R1	

SVn=Rn	

x,	y

Wn

W2

W1

(R1)Ψ

(R2)Ψ

(R)Ψ

Ψ (Rn) (R)			(Rn)Ψ Ψ

(R)			(R2)Ψ Ψ

(R)			(R1)Ψ Ψ

Figure 5.4: SVR PD Localisation Model.
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5.5.2 Least Squared Support Vector Regression

The Least Squares Support Vector Regression (LSSVR) algorithm [133][142] is a refor-

mulation of the standard SVR algorithm described in Section 5.5.1.1 by adding a least

squares term in the cost function, which leads to solving a system of linear equations.

The idea of linear equations makes LSSVR more appealing and computationally more

economical compare to solving the convex Quadratic Programming (QP) for standard

SVR. LSSVR for PD localisation consists of two phases: training and localisation. Dur-

ing the training phase, the optimal parameters of LSSVR algorithm are tuned using

PD signal strength ratios (SSR) at known locations (training points) and PD localisation

model developed. In the localisation phase, PD measurements taken at unknown locations

are analysed, and their locations obtained using the developed model. Given a training

data set (r1, l1), (r2, l2), ..., (rn, ln) of n points, with PD input (SSR) data ri ∈ Rm, with

m-dimension (in this case number of receiving sensors), and output (PD location coor-

dinate) data li(xi, yi) ∈ R2 in 2-dimension, the reformulated PD regression problem can

be expressed as the following optimisation problem in Equation 5.11

minω,b,eJ =
1

2
||ω||2 +

1

2
γ

N∑
i=1

(e2i )

s.t. li =< ω,ψ(ri) > +b+ ei, i = 1, ..., N

(5.11)

with ψ(.) : Rn → Rnh being a non-linear function which maps the input data into the

so-called higher dimensional feature space, weight vector ω ∈ Rnh in primal weight space,

bias term b and error variable ei. The error term here represents the true deviation between

actual values and estimated values, rather than a slack variable which is needed to ensure

feasibility (as in SVR case). γ ≥ 0 is a regularisation constant. The standard SVR is

modified in two ways; equality constraints are used instead of inequality constraints, and

a squared loss function is taken to represent the error variable. These modifications are

expected to simplify the problem. To solve the optimisation problem in the dual space,
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one defines the Lagrangian in Equation 5.12;

L(ω, b, e, α) = J(ω, b, e)−
N∑
i=1

αiω
TΨ(ri) + b+ ei − li (5.12)

with Lagrange multipliers αi → R. Differentiating Equation 5.12 with respect to ω, b, e

and α gives us the conditions for optimality as shown in Equation 5.13;



∂LLSSV R

∂ω
= 0→ ω =

∑n
i = 1αiΨ(ri)

∂LLSSV R

∂b
= 0→

∑n
i = 1αi = 0

∂LLSSV R

∂ei
= 0→ αi = γei

∂LLSSV R

∂αi
= 0→< ω,Ψ(ri) > +b+ ei − li = 0.

(5.13)

After eliminating ω and e, the solution yields the following linear equations as shown in

Equation 5.14;  0 1Tv

1v Ω + 1
γ
I


 b

α

 =

 0

L

 (5.14)

Here, γ is a constant value which balances the generalisation capability and the accuracy

of LSSVR; 1v = (1, ..., 1)T is an N-dimensional column vector, and I is a N ×N identity

matrix; l = (l1, ..., ln)T , and α = (α1, ..., αn)T the Lagrange multipliers. Ωik = k(ri, rk) is

the kernel function. Both the kernel parameters and γ are determined during the training

process.

The resulting LSSVR model for PD location estimation is as shown in Equation 5.15;

l̂(ri) =
SV∑
i=1

αik(ri, r) + b (5.15)

where α, b are obtained during the training phase by solving Equation 5.14.
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5.6 Performance Analysis

5.6.1 Performance Evaluation Metrics

The following performance metrics; cumulative Distribution Function (CDF), accuracy,

percentile, precision, and Root Mean Square Error (RMSE) as defined in chapter 4 are

used to evaluate and compare the partial discharge localisation models described in Sec-

tion 5.5.

5.6.2 Impact of kernel function on SVR performance

Kernel functions are used in Support Vector Machines to map the non-linear inseparable

data into a higher dimensional feature space where the computational power of the linear

learning machine is increased [10], [16]. In this thesis, we investigate the effect of three

commonly used kernel functions namely; linear, polynomial and Gaussian RBF on the

performance of SVR algorithm for PD localisation. For the polynomial kernel, an order

of 2 is chosen for analysis. Result obtained with different kernel functions is as shown

in Table 5.3. It can be seen that the Gaussian RBF kernel function has the highest

Table 5.3: Performance of SVR model using different kernels.

Kernel Function mean (m) 25% 50% 75%
Linear 2.73 2.02 2.65 3.38

Polynomial 2.34 1.49 2.49 3.15

Gaussian RBF 1.97 0.89 1.54 2.73

localisation accuracy with median location error of 1.54m. This implies that 50% of the

time SVR-RBF locates PD with error less than 1.54m. Meanwhile, the kernel that has the

lowest localisation accuracy is the linear kernel function. With linear kernel, our model

has a median location error of 2.65m. Therefore, Gaussian RBF kernel is adopted for use

in subsequent analysis in this thesis.
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5.6.3 Impact of localisation algorithm

In order to evaluate the performance of the PD localisation models developed, the data

collected from the measurement campaign described in Chapter 3 was used. The received

signal strength ratios (SSR) derived as described in section 5.3 were used as PD location

features. To train the PD location models, features generated from the radio signals

collected as training data set (144 × 3 = 432, a combination of locations and sensors)

and their corresponding ground truth locations were used as training inputs into each

model. Each (feature, location) pair constitutes training data point. The PD SSR from

the test data at 32 distinct locations without their true locations were then presented

to the models to estimate the PD source locations. The corresponding point accuracy is

visualised in the form of heat-maps for each of the models in Figures 5.5, and 5.6.

 

 

Figure 5.5: SVR location error distribution.
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Figure 5.6: LSSVR location error distribution.

Blue areas refer to good accuracy results (point accuracy of 2m or less), whereas the

accuracy worsens when the colour changes to green, orange and finally yellow. A yellow

zone corresponds to a distance error around 5m. Based on Figure 5.6, it is clear that

LSSVR model achieves the most accurate result in general. The SVR method is less

accurate, achieving an average point accuracy around 1.97m. In addition, results show

that the accuracy on one part of the environment is significantly higher than the accuracy

in the other part. This may be as a result of uniqueness of the signatures created by

multipath effect. It is observed that the corresponding point accuracy near the walls is

significantly lower. This can be explain by the fact that a uniform surface like a wall will

produce some kind of similarity in signature at different locations. A more detail overview

of location errors is given in Figure 5.7.
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Figure 5.7: Model location error.

This shows the location error in terms of Euclidean distance for each test location. The

maximum location error for SVR and LSSVR models is found to be 5.24m, and 4.00m

respectively. At four different locations LSSVR is able to provide PD location estimation

with location errors less than 0.5m. It is rather interesting to see SVR model producing

location estimate with the lowest location error of 0.17m. Figures 5.8 and 5.9 further show

the errors in each coordinate (x and y) of the test locations for the three models.
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Figure 5.8: Errors in X-component.

 

Figure 5.9: Errors in Y-component.

This result shows that the errors in x and y vary from −3.26m to 1.45m and −5.23m

to 3.79m respectively for the SVR model. For LSSVR model, the errors in x and y vary
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from −3.34m to 1.59m and −3.95m to 3.26m respectively. It is observed that the overall

accuracy of each of the models is mostly affected by the y-coordinate predictions which

may be due to the nature of NLOS (soft-uniform) in this direction. Regarding precision

metric, Figure 5.10 shows the cumulative density function (CDF) of localisation error

for the models. Given that the spacing between test locations is 2.5m, the proportion of

test data with localisation error below this value is also evaluated. The SVR model has a

precision of 68.75% within 2.5m. This means that 68.75% of test locations are estimated

with localisation error below 2.5m. Whereas, the LSSVR model has a precision of 71.90%

within 2.5m. Which imply that in the case of LSSVR, 71.90% of test points are estimated

with error less than 2.5m.

 

Figure 5.10: Probability of location error for each model.

In terms of RMSE metric, the LSSVR model outperforms the SVR model with overall

RMSE of 2.30m which shows that 95% of the estimates are within two RMSE. Again,

for both models, the Y component of the RMSE is the predominant source of error in

the overall RMSE. This increase in the RMSE of the Y component can be explained by

the soft-NLOS (uniform) scenarios created in this dimension, which are predominant in

the Y axis. The complete result of the performance of SVM-based models using SSR in
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terms of RMSE metric is summarised in Table 5.4.

Table 5.4: Performance of SVM-based models in terms of RMSE.

Model RMSEx(m) RMSEy(m) RMSEoverall(m) Minerror(m) Maxerror(m)
SVR 1.18 2.00 2.33 0.17 5.24

LSSVR 1.29 1.91 2.30 0.22 4.00

5.7 Summary

A robust PD localisation system based on signal strength ratios (SSR) have been con-

sidered. The principle and computational realisation of the methods based on support

vector machine have been described. Specifically, two variants of support vector machine:

support vector regression and least squares support vector regression have been used to

model the relationship between SSR and PD source location. In this chapter, SSR and

reference locations are used as location fingerprints and inputs to the developed models.

The performance of the developed models have been evaluated in terms of statistical

operators of localisation error. The results indicate that PD localisation based on SSR

and LSSVR are robust and represent practical alternatives for PD source location.

In the next chapter, we additionally exploit the knowledge that multipath effects will

influence the delay spread of a signal, and this in turn can provide information on the

location of the source. Multipath is highly frequency-selective and so specific frequency

components will yield useful localise information. Furthermore, due to the high dimen-

sionality of the features that may be extracted in this work, feature reduction technique

is employed to select the best possible set of features that will be used in the localisation

process to reduce computational cost whilst maintaining accuracy.
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CHAPTER 6

Improving PD Source Localisation

6.1 Introduction

This chapter investigates techniques to improve the proposed PD localisation method.

The improvement is targeted towards accuracy and robustness. To this end, instead of

using the RSS or relative RSS of the RF signals to construct a database of fingerprints,

other signal parameters in both the time and frequency domain have been investigated

and used for PD localisation. We propose that a combination of multiple PD features may

enhance performance. This chapter is divided into two parts. The first part is based on

extracting time domain statistical features from the received RF signals to improve PD

localisation. With high dimensional features space created, a feature selection algorithm

is employed to select the best possible features which are then used in the localisation

process to reduce computational cost whilst maintaining a reasonable level of accuracy.

In the second part, wavelet packet transform technique have been investigated for PD
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localisation. Extracting PD location features is the essential criterion for this analysis.

The received RF signals are first transformed into the time-frequency domain using a

time-invariant version of wavelet packet transform; Maximal Overlap Discrete Wavelet

Packet Transform (MODWPT). PD features are extracted from the transformed signals.

The wavelet based PD features are then used to infer PD localisation. Finally, ensemble

learning methods are employed to model the feature-location relation and used to improve

accuracy and precision of PD localisation algorithms.

6.2 PD Statistical Feature Characterisation

In any complex radio environment, such as an electricity substation, multipath propaga-

tion will occur as a result of reflection and diffraction; this gives rise to many delayed and

attenuated versions of the transmitted radio pulse. The superposition of these received

pulses produces a temporal signature (energy versus time). Multipath effects are also

known to be frequency-selective in that the shape of the signature will change based on

the frequency band of the pulse. In order to obtain additional dimensions from which to

produce a set of unique fingerprints, we exploit the frequency-selective nature of multi-

path. It has been found that specific frequency components will yield useful information

for PD localisation. The use of relative frequency measures will account for the different

frequency components inherent in different types of PD [143]. Signatures extracted from

the frequency components represent PD features. The features generated in this section

for PD location are as shown in Table 6.1. These features are computed from PD pulse

waveforms. Intuitively, the derivation and use of these features for PD location is based on

the fact that a discharge event produces an RF signal that will propagate as a travelling

wave through the environment. As a result, the radiated signal amplitude and shape are

modified by the propagation path between the PD source and the receiving sensor due to

path loss attenuation, signal shadowing and multipath effects as mention earlier. These

effects may vary quite markedly within an electricity substation leading to the uniqueness
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of the received signal to the location of discharge. This suggests that the signatures of

the received pulses can be exploited to provide a rich database for inferring PD location.

The nature of the received PD pulse is not only a function of the location but also of the

measuring device. With the response of the measuring device known, more characteristics

of the signals at defined intervals may be explored and used for localisation.

Table 6.1: PD time-domain features.

S/No Features
1 Variance (VAR)

2 Root Mean Squared (RMS)

3 Peak to Peak Value (PPV)

4 Impulse Factor (IF)

5 Area under the waveform (A)

 

 

Figure 6.1: Antenna frequency response
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Figure 6.2: PD broadband and sub-band signals

The frequency response of the antennas used during the measurement campaign reported

in chapter 3 produce two peaks at 151 MHz and 200.7MHz respectively as shown in Figure

6.1. We believe that these peaks indicate the regions where most of the information about

the discharge are captured. Based on the information from the frequency response, two

bandpass filters are used to filter the PD signals in these regions for more information. In

this work, we take the centre frequencies of the filters to be the peaks observed from the

frequency response. The upper and the lower cut-off frequencies are 145.5 MHz and 155.5

MHz for band 1 and 195.35 MHz and 205.35MHz for band 2; these correspond with the

3dB point of each peak. This provides us with two distinct PD sub-signals in addition

to the PD broadband signal (main PD signal) as shown in Figure 6.2 for analysis. PD

features in Table 6.1 are then extracted from the main PD signal and the two sub-band

signals. These features are used as input into PD localisation models. This work is based

on the premise that the derived PD features provide meaningful information that can

be used to infer PD location. To demonstrate that this is a reasonable premise, Figure

6.3(a-e) shows the maps of how the PD features (variance, root mean square, peak to
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(a) variance

 

(b) peak to peak values
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(c) RMS

 

(d) impulse factor
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(e) area under waveform

Figure 6.3: Spatial map of PD statistical features

peak value, impulse factor, and area under waveform) measured at each of the 3 receiving

sensors vary with location. Unsurprisingly, the values measured closer to a PD source are

stronger than the ones received from a distance farther away. The effect of multipath

and signal distortions add to the unique signatures created at different locations. The

spatial map shows a clear correlation between the features and distinctive PD locations.

This unique spatial pattern is an indication that the derived features are informative

and can be used to infer PD location by matching the patterns. Figure 6.4 represent the

architecture of the pattern matching technique described for PD localisation.
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Figure 6.4: Block diagram of PD localisation.

6.3 Correlation based feature selection

Following the method introduced in this chapter for generating PD features using dif-

ferent frequency components, each of the observed PD radio signal captured by a sensor

produces 15 features (that is 5 features for each of 3 bands) making it a total of 45 features

for the three sensors used in the measurement campaign described in chapter 3. There is a

trade-off between the number of features used as inputs to a machine learning algorithm

and performance. A delicate balance must be achieved between too few features (insuf-

ficient information leading to under fitting) and too many features (curse of dimension-

ality). Moreover, different features may correlate: two features may be highly correlated

with the output, but also with each other, hence providing little or negligible informa-

tion. Accordingly, we seek to transform our original feature set to a potentially smaller

set of decorrelated features using the Correlation based Feature Selection (CFS) algo-

rithm [144][145] [146]. CFS is based on correlation which is a similarity/interdependence

measure between two random variables. Two variables are said to be linearly dependent

when their correlation coefficient is 1, and uncorrelated when the correlation coefficient

is 0. Generally, in CFS, the mutual correlations of all feature pairs are evaluated and the
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feature with the highest average absolute mutual correlation is removed at each iteration

step of the algorithm [145]. However, in this thesis, we develop a new feature selection

criterion for the CFS algorithm. Instead of removing features with highest average corre-

lation, at each iteration step of the selection algorithm, we first pick features with higher

correlation and then among them discard the feature with the highest average mutual

correlation. For example, if two features have correlation of 1 between them, we discard

the feature with the highest average correlation and keep the other. When a feature is

removed from the feature set, it is also discarded from the remaining average correlation.

This continue until average absolute mutual correlation of all remaining feature is less

than 0.4. The resulting feature matrix from the CFS algorithm is the optimal lower di-

mensional subset from the original feature set. This method is applied to the PD feature

data for feature selection. The result brings the total number of features from the three

antennas used for localisation from 45 to 9. The 9 best features selected by the algorithm

are the area under curve of sub-band 1, sub-band 2 and the broadband signal on each

of three antennas (i.e, each antenna produces 3 features in the 2 sub-band and the main

signal for a particular signal).

6.4 Performance Evaluation

In order to verify the use of time domain statistical features to infer PD location and

the effectiveness of CFS in reducing PD feature dimensionality whilst maintaining an

acceptable level of accuracy, all the PD features extracted from each of the 144*3 =432

combinations of PD location and sensors as described in chapter 3 are used to train a

machine learning algorithm in order to build PD localisation model. During the training

phase, PD data from reference locations (known locations) are used and the algorithm is

fed two inputs; the mean values of the PD features and their corresponding location. Each

(feature, location) pair constitutes a training data point. After applying the CFS tech-

nique, the selected features are used in the input. PD data collected from the 32 distinct
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locations otherwise known as test locations is used for validation. In this section, we revisit

two of the developed PD localisation models discussed in the chapter 4 namely; weighted

k-nearest neighbour (WKNN) and generalised regression neural network (GRNN) for

evaluation. Any other pattern matching algorithm could be used; however, WKNN and

GRNN are chosen for their performance and ease of implementation. These algorithms

(WKNN and GRNN) can be optimised before applying the generated features. This is

achieved by tuning the hyper-parameters.

6.4.1 Parameter tuning

6.4.1.1 The effect and choice of WKNN model parameters

The performance of WKNN algorithm is usually affected by the value of the parameter

k and the weight function used. The choice of k is very critical. It indicates how many

neighbors influence the localisation process. However, it is known that a small value

of k places limit to the area covered in a given prediction and provides a model with

low bias and high variance. On the other hand, a large value of k covers more area in

each prediction thereby producing a model with lower variance but increased bias. In

some instances larger k increases the computational cost without corresponding increase

in accuracy. There is a trade-off between bias and variance of any given KNN model.

Therefore, for optimal performance, we need to choose the best value of k. In this work,

an exhaustive search method is employed. Figures 6.5 (a) and (b) represent the variations

in the mean error distances with 20 different values of k for PD data before and after CFS

respectively. It can be observed that as k increases, the mean error distances decrease to

an absolute minima and then increase again. When the value of k increases initially, the

underlying variations of signal parameters at a single neighbouring point is averaged out

with increasing k, resulting in decrease of error distance. The errors in signal parameter

vectors at different neighbours are assumed to follow different patterns. Hence averaging
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over more neighbours may yield more accurate results. However, for larger values of k, the

errors again increase as many grid points which are closer in signal space but much farther

in physical space are at this point included in the computation of the final result thereby

leading to greater deviations from the actual location. Optimal values of k (the value of

k with the lowest average error) are given as 5 and 15 before and after CFS respectively.

These values are used in subsequent analysis. The weight function has discussed in chapter

4 is used here (that is inverse of the euclidean distance in signal space).

 

(a) WKNN-before CFS

 

(b) WKNN-after CFS

Figure 6.5: The effect of k on WKNN performance before and after CfS.
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6.4.1.2 The effect of spread constant on GRNN performance

In GRNN model, the choice of an appropriate spread factors σ to be applied to each

of the input data sets before and after the application of CFS is critical. The spread

factor affects the degree of generalisation of the network and hence the performance of

GRNN model. In this study, an exhaustive search method is used on a range of spread

factors to determine the optimum spread factors in the GRNN models. For each input

combination, the optimum spread for the GRNN model was determined according to

the mean squared error (mse) criterion. Figures 6.6 (a) and (b) show the variation of

mse statistic vs spread factor for the input before CFS and after CFS respectively. This

implies that GRNN before CFS where we have 45 features has a minimum mse with

the spread value of approximately 0.77 and GRNN after CFS has a minimum mse with

spread factor of approximately 0.69 . Therefore, the optimum spread factors determined

for PD input data before and after CFS are 0.77 and 0.69 respectively. These values are

used to evaluate the performance of the GRNN models for each data set (before and after

CFS).
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(a) GRNN-before CFS

 

 

(b) GRNN-after CFS

Figure 6.6: The effect of spread factor on GRNN performance before and after CFS.

6.4.2 Impact of the PD features on accuracy

The performance of each algorithm is evaluated before and after the application of CFS

to the PD features. We have 45 PD features before the application of CFS and 9 features

after applying CFS. To train the PD location algorithms, PD features from training data
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set and their corresponding ground truth locations are given as inputs to each algorithm.

For validation, the PD data (i.e PD features) from the 32 test locations is presented to the

developed models (GRNN and WKNN) to predict each test location. The performance

is evaluated in terms of distance error defined as the Euclidean distance between the

estimated location and the true PD location.

 

(a) GRNN-before CFS

 

(b) GRNN-after CFS
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(c) WKNN-before CFS

 

(d) WKNN-after CFS

Figure 6.7: Location error map for GRNN and WKNN models before and after CFS

Figure 6.7 shows the heat-maps of point accuracy for each of the models. Here, the

areas covered in blue refer to areas where PD is located with good accuracy (location

errors of 2m or less), whereas areas covered in green, orange and finally yellow show

corresponding decrease in accuracy. A yellow zone corresponds to location error of 4m

and above. Based on Figure 6.7, it is clear that the localisation results before CFS (45

131



features) and after CFS (9 features) are comparable irrespective of the localisation model

used. Again, results show that the accuracy on one part of the laboratory is significantly

higher than the accuracy in other parts, and is consistent regardless of the technique

used.

6.4.3 Evaluating localisation accuracy

Figure 6.8 shows the localisation performance of the algorithm before and after CFS. The

first thing to note is that there is an overall improvement in the location accuracy of each

algorithm compared to the results obtained in chapters 4 and 5 where only received signal

strength was used as input features to the algorithms. More specifically, the mean error for

WKNN and GRNN before CFS is 1.80m and 1.70m respectively. Also the application of

CFS for dimensionality reduction brings about a reduction in computational cost whilst

maintaining reasonable level of accuracy with the mean error of 1.82m and 1.86m for

WKNN and GRNN after CFS respectively.

 

Figure 6.8: Model localisation accuracy.

The summary of results in terms of 0.25, 0.50, 0.75, and 0.90 overall cumulative error

probabilities (CEP) before and after CFS is given in Table 6.2. This clearly shows that
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Table 6.2: The performance statistics of the models before and after CFS.

Model CEP=0.25(m) CEP=0.50(m) CEP=0.75(m) CEP=0.90(m)
WKNN-Before CFS 1.02 1.49 2.48 3.18

GRNN-Before CFS 0.87 1.59 2.43 2.69

WKNN-After CFS 0.98 1.74 2.17 3.43

GRNN-After CFS 0.89 1.64 2.47 3.13

half of the time PD sources were located with error less than 1.75m for each algorithm

before and after CFS. When WKNN is used after CFS, 75% of the PD sources were

located with distance error of 2.17m or less. And 90% of the sources were located with

distance error of 2.69m or less when GRNN is used before CFS. The results indicate that

the use of numerous PD statistical features (leveraging on the frequency selective nature

of PD received signals) other than RSS improves the localisation accuracy of our models.

However, features extracted directly from measured time domain PD signals may not be

sufficient in situations where PDs of different type occur. In the next section, we will

explore time-frequency domain technique for feature extraction.

6.5 Wavelet Analysis of Partial discharge signals

Another method considered in engineering PD features for source localisation is to anal-

yse these signals in the frequency domain. In the frequency domain, PDs of different types

can be effectively characterised for localization. Most of the frequency domain methods

used in PD signal analysis and localization are based on the well-known Fast Fourier

transform (FFT) techniques [147][148]. However, PD signals are stochastic and often

demonstrate a non-stationary and transient nature, carrying small yet informative com-

ponents embedded in larger repetitive signals [149]. This limits the application of FFT

based techniques for PD localization. To this end, we propose to use Wavelet Transform

[84] to decompose RF PD signals into different frequency bands and extract localised PD

location dependent parameters for robust PD radio-location.
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The application of wavelet transformation in PD signal analysis is a well-known technique

which overcomes the problems of other signal processing techniques such as the classi-

cal Fourier Transform which can describe the frequency components contained within

a complex signal, but cannot indicate where in time those frequencies reside. Although

the Short-Time Fourier Transform (STFT) [150][151] which divides a signal into short

segments of equal length and computes the FT on each segment gives an indication of

time of impact from a signal, it has a fixed resolution. This implies that for a wide win-

dow, STFT gives better frequency resolution but poor time resolution and for a narrow

window, it gives good time resolution but poor frequency resolution. A multiresolution

wavelet-based approach which gives good time resolution for high-frequency and good fre-

quency resolution for low-frequency permits efficient isolation and extraction of localised

signal features.

6.5.1 Wavelet transform theory

Wavelets are mathematical functions that are used to transform data into time-frequency

components. Wavelets break up data and analyse them in different scales or resolutions.

With a wide-window, a wavelet examines prominent features and with a small window, a

wavelet brings out the small local features. In wavelet analysis, a wavelet function known

as mother wavelet is usually adopted. A contracted, high frequency mother wavelet is used

for temporal analysis, while a dilated, low-frequency mother wavelet is used for frequency

analysis. In other words, the wavelet transform splits a signal into shifted (translated)

and scaled versions of a mother wavelet function. The wavelet function ψa,b(t) is a family

of long-duration low-frequency and short-duration high frequency functions defined in

Equation 6.1;

ψa,b(t) =
1√
a
ψ(
t− b
a

), a > 0, b ∈ Re (6.1)

where a is the scale or dilation parameter, and b the shift or translation operator. The

scale parameter is related to the reciprocal of frequency and the translation parame-

134



ter stands for time. Consequently, there is usually a non-uniform contraction/expansion

over the time-frequency plane. The value of the scale parameter controls this contrac-

tion/expansion process. Depending on its value, the wavelet function expands or contracts

in the time domain triggering a corresponding expansion or contraction in the frequency

domain. When a is large (a > 1), the basis function becomes a stretched version of the

mother wavelet (a = 1) and demonstrates a low-frequency characteristic. When a is small

(a < 1), this basis function is a contracted version of the mother wavelet function and

demonstrates a high-frequency characteristic. The continuous wavelet transform (CWT)

of a time domain signal s(t) is given in Equation 6.2;

CWTa, b =
1√
a

∫ + inf

− inf

ψ(
t− b
a

).s(t).dt (6.2)

The result of this integral is called wavelet coefficients. Each coefficient represents the

similarity between the portion of the signal examined and the scaled and translated

mother wavelet.

The wavelet transform described, takes care of the deficiencies inherent in Fourier

analysis. The low-frequency component of the signal is analysed using a long-duration

function while the high frequency component is analysed with a short-duration function.

Thus, through the wavelet transform, any finite-energy signal can be mapped from the

time-domain to the wavelet-domain, which in this case is a two-dimensional distribution

over time and frequency. The wavelet coefficients CWT (a, b) are calculated over a range

of a and b, that is the wavelet transform breaking the signal down into component parts in

the wavelet-domain. However, in practice, the choice of continuous a and b for calculating

wavelet coefficients in CWT causes computational complexity and generates a lot of

redundant data. In order to overcome this drawback, an efficient solution is to discretise

the parameters a and b, leading to discrete wavelet transform.
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6.5.2 Discrete Wavelet Transform

Discrete Wavelet transform (DWT), which is one of the popular methods in the wavelet

transformation family has been widely used in PD signal processing, classification and

de-noising [84] [152] [153][154][155]. The DWT is derived from the CWT by using the

discrete forms of the scale parameter a and the translation parameter b, which gives only

a subset of the scale and time shifts. Generally, a is replaced by 2j and b is replaced by k2j,

where k and j are integer values, which means that a and b are based on powers of two,

consequently reducing computational cost and eliminating redundancy with sufficient

accuracy. Therefore, the modified wavelet function is as given in Equation 6.3;

ψj,k(n) = 2
j
2φ(2jn− k), j, k ∈ Z (6.3)

which is an orthonormal basis. Z is a set of integers. Although it is called discrete wavelet,

it normally is a (piecewise) continuous function. The effect of discretising the wavelet

is that the time-scale space is now sampled at discrete intervals. In addition to the

wavelet function, DWT introduces a new function, known as the scaling function. The

wavelet function determines the detail coefficients while the scaling function determines

the approximation coefficients. The scaling function φ(t) is used to construct orthogonal

wavelets ψ(t) using the dilation equations as shown in Equations 6.4 and 6.5;

φ(
n

2
) =
√

2
∑
k

h(k)φ(n− k) (6.4)

ψ(
n

2
) =
√

2
∑
k

g(k)φ(n− k) (6.5)

These orthogonal wavelets could be thought of as a system of cascaded filters that de-

compose the signal. In general, a signal is passed through a filter bank consisting of a

high (the wavelet function) and a low-pass filter (scaling function). The h(k) and the g(k)

represent the coefficient of the low-pass filter and the high-pass filter respectively [156].
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This filtering procedure is equivalent to the two-channel subband coding that uses Quadra-

ture Mirror Filters (QMFs) [157]. This implies that by multiresolution, all we need to

do to transform a signal into wavelets, is to pass the signal through cascaded system of

filters. Rather than taking the scalar product of the scaling function or the wavelet with

the signal, we convolve the signal with these filters. Figure 6.9 shows the filtering process,

which demonstrates the discrete wavelet decomposition procedure.
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Figure 6.9: DWT filter decomposition.

DWT is therefore a linear operator that decomposes the PD signal via a cascaded system

of low and high pass filters into two components: approximation coefficients (As), which

are the low frequency, high scale information of the PD signal and detail coefficients

(Ds), which capture the high frequency, low scale information in the signal. While the

Ds remain unchanged, the As are further decomposed into new Ds and As. This process

continues until the final decomposition level. Owing to its time and frequency localization

ability, DWT can reveal the local characteristics of the input PD signals. In addition, the
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multi-level decomposition of PD signal into different scales by DWT generates multi-scale

features, each of which represents particular characteristics of PD signal. However, since

DWT decomposes only As in each level, it is difficult to extract distinctive information

from Ds. The DWT is also time-variant and often divides the frequency spectrum into

non-uniform bands. In the next section, wavelet technique that overcome these drawbacks

is considered.

6.5.3 Wavelet Packet Transform

One possible drawback of DWT is that it often fails to sufficiently capture high frequency

information in signals and this can be a challenge in PD analysis where important in-

formation is located in high frequency component. This leads us to the wavelet packet

transform [158] [159] [160] [161], a generalisation of the DWT form by linear combination

of wavelet functions providing more possibilities for signal processing. WPT can be said

to be a tree of subspaces, providing level by level transformation of a signal from the time

domain to the frequency domain, with the root node (top or first level) of the tree ω0,0 rep-

resenting of the original time domain PD signal. The tree is typically a binary tree, where

node ωj,k, with j representing the scale and k representing the subband index within the

scale, is decomposed into an approximation (left sub-node) space ωj,k → ωj+1,2k [162]

and a detail (right sub-node) ωj,k → ωj+1,2k+1. This is done by splitting the orthogonal

basis φj(n− 2jk)k∈Z of ωj,k into two new orthogonal bases φj(n− 2j+1k)k∈Z of ωj+1,2k

and ψj(n− 2j+1k)k∈Z of ωj+1,2k+1 [163], where φj,k(n) and ψj,k(n) are the scaling and

wavelet functions respectively that are given in Equations 6.6 and 6.7 [163];

φj,k(n) =
1√
2j
φ(
n− 2jk

2j
) (6.6)

ψj,k(n) =
1√
2j
ψ(
n− 2jk

2j
) (6.7)
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where 2j, the dilation or scaling parameter determines the level of contraction or scaling

and 2jk, the position or translation parameter determines the time location of the wavelet.

It is important to note that at every subsequent level of decomposition, there is a decrease

in temporal resolution and a corresponding increase in frequency resolution. In other

words, unlike DWT, WPT decomposes both the ACs and the DCs simultaneously at every

level. WPT represents high frequency information in a better manner as compared to

DWT. WPT has the same frequency bandwidths in each resolution. This property enables

WPT to preserve the information in the ’original’ PD signals, resulting in robust features.

For n levels of decomposition the wavelet packet decomposition produces 2n different sets

of coefficients (or nodes). For example, a three level WPT decomposition tree shown in

Figure 6.10 produces a total of 8 sub bands with each sub band covering one-eighth of the

signal frequency spectrum. The top or first level of the wavelet packet transform is the

time representation of the signal where as bottom level has better frequency resolution

which also provides more features about a signal as compared to DWT. WPT has been

used in [164] to decompose PD signals into multiple scales, and extracted PD features

used for PD classification. Though, the WPT decomposes both the ACs and DCs at

specific decomposition level dividing the frequency spectrum into uniform bands, it is still

time-variant. To overcome this problem of time-variant, a new version of WPT otherwise

known as maximal overlap discrete wavelet packet transform (MODWPT)[165][166][167]

is introduced. Here, a signal is decomposed into both ACs and DCs at all levels considered

through filter banks, presenting uniform frequency bands without down-sampling making

it a time-invariant transform. That is to say that at each level of decomposition, the output

has the same number of samples of the input signal. As with the WPT, the MODWPT is

also an energy preserving transform. It partitions the energy among the wavelet packets

at each level such that the sum of energy over all the packets equals the total energy of the

input signal. MODWPT is therefore adopted in this thesis and will be use in subsequent

analysis to extract localised PD features for locating PD sources.
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Figure 6.10: WPT decomposition Tree.

6.6 PD features extraction using MODWPT

The non-decimated version of WPT known as Maximal Overlap Discrete Wavelet Packet

Transform (MODWPT) is introduced as an alternative method of extracting the de-

sired location dependent features from PD signals. First, the PD data is decomposed via

the MODWPT to extract the time-frequency-dependent information. Thus sequenced-

ordered MODWPT coefficients for the MODWPT nodes at each level of decomposition

are obtained. These MODWPT coefficients are used to construct features that best rep-

resent the PD signal locations. The standard choice for depth of decomposition level j

is specified as a positive integer: 4 or floor (log2 (length (signal))), whichever is smaller

[168]. In our case, the transform level is set to 4 since the signal is long. The 4-level WPT

decomposition generates a tree with 16 terminal nodes, corresponding to the frequency

sub-bands. For analysis, it is also important to select the mother wavelet appropriate for

the type of signal to be transformed since the type of wavelet chosen is crucial to the
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characterisation of the signals. Since we are interested in preserving the signal energy af-

ter transformation, our choice of wavelet is limited to orthogonal wavelets that are known

for preserving energy. The orthogonal wavelets considered are shown in Table6.3.

Table 6.3: Energy preserving wavelets.

Orthogonal Wavelet Features
Haar Symmetric; special case of Daubechies; useful for edge

detection
Coiflet Scaling function and wavelets have the same number of

vanishing moments
Symlet Least asymmetric; nearly linear phase.
Daubechies Nonlinear phase; energy concentrated near the start of

their support
Fejer-Korovkin Filters constructed to minimise the difference between a

valid scaling filter and the ideal sinc lowpass filter; are
especially useful in discrete wavelet packet transforms.
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(a) Haar

 

(b) Coiflets
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(c) Symlets

 

(d) Daubechies
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(e) Fejer-Korovin

Figure 6.11: Different orthogonal wavelets and their scaling functions

PD signals are characterised as decaying, oscillatory and of relatively short duration.

Moreover, the wavelet analysis is a measure of similarity between the basis functions

(wavelets) and the signal itself. Consequently, both a similar shape in the time-domain

and similarity in the sense of frequency content are required. Figure 6.11 shows the

different shapes of the orthogonal mother wavelets. Among these, frequency-localised

filter; Fejer-Korovkin wavelet has been shown to be a good approximation of a decaying,

oscillatory and short duration signal. In [169], the energy parameters extracted from

impulsive signals using Fejer-Korovin filter outperformed other wavelet filters such as

Daubechies, Symlet and Coiflet in terms of classsification accuracy even though they all

are Finite Impulse Response (FIR) filters with nonlinear phase and a frequency response

tending to be ideal as the support increases. The salient point is that the Fejer-Korovin

wavelet is more symmetric than comparable wavelet filters [170]. Therefore, the Fejer-

Korovin wavelet is adopted for use in this thesis.

The filtering operations in MODWPT, are applied to both the approximation and detail

coefficients. The result is that wavelet packets provide a sub-band filtering of the input
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signal into progressively finer equal-width intervals. At each level j, the frequency axis is

divided into 2j sub-bands. The sub-bands in Hertz at level j are approximated as given

in Equation 6.8;

SBn = [
nfs
2j+1

,
(n+ 1)fs

2j+1
) (6.8)

where SBn is sub-band, n = 0, 1, 2, ..., 2j − 1 and fs is the sampling frequency. The

wavelet packets have the added benefit of being an orthogonal transform, which means

the energy in the signal is preserved and partitioned among the sub-bands as mentioned

earlier. Therefore, the wavelet packet node energy which is the sum of square of wavelet

packet transform coefficients, can represent the characteristics of PD signals. The wavelet

energy of coefficients can be defined as in Equation 6.9;

ej,n = Σkω
2
j,k (6.9)

This measures the PD signal energy contained in each sub-band indexed by parameters

j and n. Here, we refer to each (j, n) as a MODWPT node. The sum of the energy over

all the packets nodes equals the total energy of the signal. Our interest is in the sub-

band energy. As an illustration, Figure 6.12 depicts the energy profile computed based

on all coefficients in each wavelet packet node for 8 PD signals captured from 8 different

locations. Specifically, Figure 6.12a depicts the energy profile of PD pulse transmitted

from location 1 (x = 1, y = 1) and Figure 6.12b shows the energy profile of PD pulse

transmitted from another location 2 (x = 1, y = 2). The remaining figures are also

energy profiles of PD pulses from different locations. By examining the packet nodes 1

to 3 (first three bars) in the energy profiles, it is evident that these are distinct signals

from different locations. Thus, the wavelet packet node energy distribution represents

an excellent set of features for PD localization because it is (i) time invariant, and (ii)

location dependent. It is important to identify the frequency bands that contain most of

the PD pulse energy.
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(a) PD signal energy profile from Location 1

 

(b) PD signal energy profile from Location 2

 

(c) PD signal energy profile from Location 3

 

(d) PD signal energy profile from Location 4
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(e) PD signal energy profile from Location 5

 

(f) PD signal energy profile from Location 6

 

(g) PD signal energy profile from Location 7

 

(h) PD signal energy profile from Location 8

Figure 6.12: PD signals Energy distribution from different locations

147



PD signals are known to have a very short duration (nanosecond), which implies a high

frequency content. However, there are always dominant frequency bands that contain

greater pulse energy in the entire spectrum. The energy profile by node shown in Figure

6.12 reveals the nodes (first 3 nodes) with higher percentage of pulse energy, indicating 3

frequency passbands of interest. The resulting passbands emphasize frequencies between

62.5 and 250 MHz, which contains large portions of the PD signal energy. The lower

and upper frequencies of each wavelet packet frequency band are presented in Table 6.4.

This demonstrates the robustness of the proposed technique. In this work, each node

energy equivalent to energy in a frequency passband, represents an individual PD feature

component and is used in the localization of PD.

Table 6.4: WPT-based extracted PD frequency bands

Frequency band Lower frequency (MHz) Upper frequency (MHz)
Band 1 62.5 125

Band 2 125 187.5

Band 3 187.5 250

This work is based on the assumption that all PD features extracted using the MODWPT

provide meaningful information for inferring the PD location. To demonstrate that this

is a reasonable assumption, each of the MODWPT-based PD energy maps for the three

antennas in Figure 6.13(a-c) shows a distinctive variation in the energy content of the

signals with respect to location in the measurement environment. They also reveal the

complexity of the radio environment, which does not fit any well-known propagation

model. The colour variation indicate the unpredictable decrease in energy as the source of

PD moves away from the receiver in a cluttered environment. This helps in the creation of

a training database for machine learning based PD localisation. The effect of multipath

and signal distortions add to the unique signature created at different locations. This

unique spatial pattern is an indication that the derived features are informative and can
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be used to infer PD location.

 

(a)

 

(b)

 

(c)

Figure 6.13: Spatial pattern of WPT-based PD energy
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6.7 Machine Learning-Based PD Localisation Meth-

ods

6.7.1 Regression Tree-Based PD Localisation Method

The Regression Tree is one of the most simple and efficient machine learning algorithms

used for predictions [171][172][173]. It is considered a variant of a binary decision tree

model composed of linear regression functions at the leaf nodes. In this work, it is de-

signed to learn and approximate the nonlinear function (PD locations/wavelet-based PD

features) by piecewise linear functions at the leaf nodes. In other words, the nonlinear

mapping of PD features to PD location coordinates is handled by splitting the problem

into a set of smaller problems addressed with simple linear predictors. Figure 6.14 shows

the architecture of a regression tree. Each node in the tree is designed to split the data so

as to form clusters where accurate predictions can be performed with simple models. Dur-

ing training, a PD regression tree model is built top-down from the root node through

binary recursive partitioning, which is an iterative process that splits the PD training

data (PD features/location) into subsets that contain features with similar values. The

parameters of the tree such as number of splits are optimised during training. A sum

of squares reduction criterion is used in partitioning the data. The algorithm selects the

split at each node that minimises the function shown in Equation 6.10;

SS = ΣR((x, y)i − (x, y)R) + ΣL((x, y)i − (x, y)L)2 (6.10)

Where (x, y)R and (x, y)L are the estimated values of PD location coordinates for the right

and left nodes respectively. This process continues until each node reaches the terminal

(leaf) node. The terminal nodes of the tree which represents a cell of the partition, store

the models that approximate the best desired output. Suppose the training points at the
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terminal node are (ri, (x, y)i), (r2, (x, y)2), ...(rn, (x, y)n) where ri represent PD features

then the local model for terminal node is given as in Equation 6.11;

(x̂, ŷ) =
1

n
Σn

(i=1)(x, y)i (6.11)

In the localization phase, the location coordinate of any PD sample (features) can be

estimated by following through the branches of the obtained tree model.

Despite the simplicity that comes with the implementation of regression trees, the issue

of overfitting affects its performance. Models developed using decision trees require very

simple heuristics. They are composed of a set of if-else statements done in a specific

order. When fully grown, it may lose some generalisation capability (with new data set

that might have some bias or difference in spread of underlying features compared to

training set). This leads us to explore ensemble methods that create variance amongst

the data by sampling and replacing data while it test multiple models.

Root	node

Split	node

Leaf	node
(output)

Input

Figure 6.14: Regression tree procedure.
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6.7.2 Bagging

Bagging [174][175][176], also known as boostrap aggregator is a machine learning ensemble

method that combines a multitude of decision trees in order to improve performance. For

PD localisation, bagging is used to model the non-linear relationship between WPT-PD

features and PD location [177]. Instead of growing a single tree from the complete data set

during training, bagging grows many trees using bootstrap (equiprobable sampling with

replacement) samples of the PD data. Each sample is different from the original data set,

yet resembles it in distribution and variability as a result of random sampling. Bootstrap-

ping is particularly useful for small size data sets that have tendency to overfit. Different

tree models are grown for each bootstrap sample. Mathematically, given a training input

set R = r1, ..., rn and corresponding training output set (X, Y ) = (x, y)i, ..., (x, y)n, bag-

ging repeatedly (M times) selects subsets (randomly sample with replacement) of these

training set and builds trees with each subset. For m = 1, ...,M : bagging builds Tm mod-

els. After training, the location estimate for unseen sample r′ can be taken as the average

estimates of all the predictions by individual trees on r′ given in Equation 6.12;

T̂ =
1

M
ΣM
m=1Tm(r′) (6.12)

The performance of bagging is affected by the particular bootstrap sample size used.

Therefore, Bayesian optimisation is used to tune the model parameters. PD location is

then determined by taking the average of the outputs from all the trees. Random sampling

helps overcome the problem of overfitting in regression trees and improves predictions.

However, there exist high correlations in prediction among some of the PD localisation

subtrees, limiting the performance of the bagging regression trees. This motivates an

investigation into the use of random forest for PD localisation.
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6.7.3 Random Regression Forest PD Localisation Method

Random Regression Forest (RRF) is an ensemble of different regression trees widely used

in prediction [178][179]. The main idea of RRF is to grow many regression trees based

on some randomly selected features (subspacing) from randomly selected samples with a

bootstrap strategy. Figure 6.15 shows the general procedure followed by random forest

technique.

tree	tT

Leaf	node	(output)

D

DTD1

Split	node

tree	t1

Bagging:	Bootstrap
sampling	of	data

Randomised	feature
selection

Root	node

Figure 6.15: Random forest procedure.

In the context of PD localization, each tree is regarded as a function approximation prob-

lem consisting of a non-linear mapping of the PD input features onto the (x, y) coordinates

representing PD location. The nonlinearity is achieved by dividing up the original PD

localisation problem into smaller ones, solvable with simple models. A multivariate RRF

model is developed to locate PD source to its x and y coordinate. Instead of building two

models each for x and y output, multivariate RRF builds a single model which is more

efficient. The RRF-PD localisation technique consists of two phases: a training phase and
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a location estimation phase. In the training phase, RF grows multiple regression trees

from bootstrap samples of the training data. Each sample subset comprises PD features

and associated ground-truth locations. At each split or node, only a random subset of

the PD features is considered. The size of the forest is fixed and all the trees are trained

in parallel. During training, the parameters of the model are optimised. In the location

estimation phase, each previously unseen PD features sample is given as an input to each

tree in the forest starting at the root and the corresponding sequence of tests applied.

Each tree gives an estimate of the location coordinate and the final prediction is taken

as the average of the trees predictions. The flowchart of the RF framework is as shown

in Figure 6.16. The selection of random samples of features at each split produces uncor-

related subtree predictions. Combining multiple decorrelated PD-tree models increases

robustness to variance and reduces overall sensitivity to noise. This is demonstrated by

the results obtained.
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YX

Random	Forest
Algorithm

PD	Location	Model	

PD	Training	Data	

PD	Database

Preprocessing

Feature	Extraction
WPD

PD	Test	Data	

Figure 6.16: Flow chart for Random Forest PD localisation.

6.8 Performance Analysis

6.8.1 Performance Evaluation Metrics

The performance metrics defined in chapter 4; cumulative distribution function, accuracy,

percentile, precision, and Root Mean Square Error provide the basis for evaluating and

comparing the partial discharge localisation models described in Section 6.7. In addition,
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confidence ellipse is used to further analyse the performance of the models.

6.8.1.1 Confidence Ellipse

A confidence ellipse for location estimation model represent a confidence region where a

predicted location is likely to lie given a new observation in the environment considered.

In other words, it approximates a region with specified percentage of probability, contains

the center of the estimates. Therefore, the 95% confidence ellipse used in this thesis is

the smallest region that covers the center of estimates for a given location with 95%

probability.

6.8.2 Evaluating model accuracy

In order to evaluate the performance of the different machine learning algorithms used to

estimate the PD location, the data collected from the measurement campaign described

in section 3 is used. The MODWPT technique is applied to the PD data to extract the

wavelet PD location features. PD features generated from the radio signals collected as

training data set (2880×3×4 = 1296 combination of locations, sensors and features) and

their corresponding ground truth locations are used to train the algorithms, as a results

PD localisation models (Regression tree, bagging and regression random forest models)

are built. Each (feature, location) pair constitutes training data point. The wavelet PD

features from the test data at 32 distinct locations without their true locations were then

presented to the models to estimate the source locations.

Localisation errors for each PD location model developed are shown in Table 6.5. The x

and y coordinate error columns represent the errors in the x and y direction respectively,

however, these columns may not correspond to errors in the same physical location.

For example, for Reg. Tree-best the x-error is 0 for one location but has a non-zero y

value. Similarly, for a different location y is 0 but has a non-zero error in the x-direction.
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Table 6.5: Performance statistics of the wavelet-based developed models.

Model X-error (m) Y-error (m) Overall error (m)
Reg. Tree (best) 0 0 0.167

Reg. Tree (worst) 11.50 6.50 11.51

Reg. Tree (mean) 1.18 1.65 2.29

Reg. Tree (75 percentile) 1.5 2.5 2.92

Bagging (best) 0.0007 0.0014 0.05

Bagging (worst) 6.68 6.19 6.92

Bagging (mean) 0.76 1.43 1.79

Bagging (75 percentile) 1.06 2.04 2.51

Random Forest (best) 0.0033 0.0059 0.04

Random Forest (worst) 6.15 6.08 6.26

Random Forest (mean) 0.77 1.52 1.87

Random Forest (75 percentile) 1.05 2.12 2.49

Errors in x and y coordinates are defined as absolute differences between predicted and

true locations. Column 3 represents the overall localisation error. The mean and the best

localisation errors are highlighted in Table 6.5. With data variability and the area covered,

a mean error of 1.79m obtained is sufficient for PD location. The maximum number of

PD features used at each split is 1/3 of the total number of features. In this work, 500

trees are grown for the ensemble methods.
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Figure 6.17: CDF of location error in x-coordinate.

 

Figure 6.18: CDF of location error in y-coordinate.
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Figure 6.19: CDF of overall distance location error.

Figures 6.17, 6.18 and 6.19 further illustrate the difference in accuracy among the three

models by comparing the cumulative density functions (CDFs) of location errors. It can be

observed that the ensemble methods increased the overall confidence probability of errors

within 3m to 83% which is significantly larger than the probability of 76.4% achieved

by regression tree. This is however unsurprising as the regression tree is a weak learner.

Bagging and random Forest ensemble methods have reduced the mean location error by

34% and 30.6% respectively compared to regression tree. Given that the spacing between

test locations is 2.5m, the proportion of test data with a localisation error below this

value is also evaluated. For the regression tree method, 60% of test points were below

2.5m. For the bagging algorithm, 74.8% are below, and for the random forest 75.4% are

below.
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(a) Position 1

 

(b) Position 2

 

(c) Position 3

 

(d) Position 4

 

(e) Position 5

 

(f) Position 6

 

(g) Position 7

 

(h) Position 8

Figure 6.20: Regression Tree PD location estimates
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(a) Position 1

 

(b) Position 2

 

(c) Position 3

 

(d) Position 4

 

(e) Position 5

 

(f) Position 6

 

(g) Position 7

 

(h) Position 8

Figure 6.21: Random Forest PD location estimates

161



 

(a) Position 1

 

(b) Position 2

 

(c) Position 3

 

(d) Position 4

 

(e) Position 5

 

(f) Position 6

 

(g) Position 7

 

(h) Position 8

Figure 6.22: Bagging PD location estimates
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The point accuracy for each test location used in the validation of this technique is of

significant important. As a way of illustration, Figures 6.20, 6.21 and 6.22 shows the

estimated PD source locations (red diamond) of 8 randomly selected locations for each

model using wavelet-based features. The blue circle represents the actual PD source

position. The black squares represent emulated sensor node positions. The results show

that location error is minimal when ensemble methods are applied on the wavelet-based

features. Regression tree can locate the exact x or y coordinates with zero error in some

instances as shown in Table 6.5 but fails to provide a robust model, with worst location

error as high as 11.5m.

6.8.3 Evaluating Model Robustness

Another key aspect of the proposed PD location scheme is its robustness. By comparing

the location accuracy in x and y coordinates and the overall precision, the ensemble

methods provide more robust models for PD localisation.

 

Figure 6.23: Variance of location error.

Furthermore, Figure 6.23 shows the variance in location error of the models using training
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and testing datasets. Random forest, in particular, showed a much lower variance between

training and testing predictions, making it more robust compared to regression tree and

bagging models. Figure 6.24 shows PD localisation results from 3 random locations. Each

discrete point corresponds to a single location estimate of a radio measurement. Also

shown for the three PD localisation models is the confidence ellipse that contains 95% of

the estimates for each location. For point (2.5m, 1.5m) the regression tree estimates fall

on a straight line. This means that the covariance in the y-direction is zero. Therefore,

the width of the ellipse is zero in that direction. The size of the ellipse is an indication

of the precision of the estimate. Our ensemble methods show more precise estimate with

a smaller confidence ellipse. The large ellipses of Regression Tree indicates a less precise

location estimate. This further demonstrates the robustness of the proposed wavelet-based

ensemble PD localisation scheme in the presence of noise.

 

Figure 6.24: 95 confidence ellipse of three random locations for each model.

164



6.9 Summary

An investigation into technique that can improve the performance of the PD localisation

system proposed in this thesis has been carried out. Specifically, we focus on the gener-

ation of location dependent features from PD signals and the performance of machine

learning algorithms to improve the performance of the PD localisation system.

First, by examining the frequency response of the antennas used for capturing PD

pulses, 2 distinct frequency bands which hold different PD information (based on the

knowledge that multipath propagation is frequency selective) were exploited for PD fea-

tures and integrated for fingerprinting. This provides a rich database for PD localization

via pattern matching algorithm. The proposed Correlation Based Feature Selection (CFS)

technique finds an effective way to select the most informative and decorrelated features

from generated PD features based on correlation theory such that the dimensionality of

the feature space is reduced. The GRNN and WKNN models developed using the statis-

tical features before and after the application of CFS demonstrate high accuracy.

Secondly, a robust technique based on wavelet packet transform and ensemble learning

method has been evaluated. In this method, the measured PD signals are first decom-

posed using MODWPT decomposition to extract PD location dependent features. The

MODWPT selects the frequency bands with equal bandwidth where the energy of the

PD signal is concentrated through a transformation such that the retained signal infor-

mation is maximized in order to ensure high accuracy. The wavelet-based PD features are

then used to build the ensemble models. PD location is obtained via ensemble machine

learning technique; bagging and random forest algorithm which provides a more robust

and accurate approach compared to a single regression tree model in terms of the mean

localisation error. Bagging and random forest methods provide mean localisation accu-

racy of 1.79m and 1.87m, which enhances the precision of PD localisation by 34% and
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30.6% over regression tree respectively.
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CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

A review of partial discharge detection and localisation systems applicable for determin-

ing the location of PD was conducted. The results of the review indicate potential for

developing an enhanced PD localisation system that can be permanently deployed to

monitor an entire substation.

The principle of using Received Signal Strength (RSS) as PD features in fingerprinting

technique to infer PD location was successfully demonstrated. It has been found that RSS

is an important parameter to consider in PD localisation as it decreases with distance from

the source of discharge, creating unique signature for each location. Moreover, variations

in signal strength as PD progress with passage of time and differences in PD types

motivated the use of RSS derivatives (ratios) as PD features to infer PD location. It has
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been shown that the use of RSS ratios increases the performance of the developed PD

localisation system.

Machine learning algorithms underpin the localisation process in the developed PD

location fingerprinting method. The use of machine learning algorithm obviates the need

for estimating radio channel parameters or a propagation model which always falls short

of capturing the underlying characteristics of any environment, degrading localisation

performance when used with RSS. It has been found that this approach also uses multi-

path to its advantage to provide robust PD localisation. The developed machine learning

models learn the unique spatial signatures created by PD signal strength to estimate PD

locations. The examples used for learning are measurements taken within the environ-

ment. In this way, the underlying characteristics of the environment are well captured

and this increases the performance of our method.

The combination of relative RSS and machine learning presents a novelty in the field

of PD condition monitoring; an enhanced continuous solution for PD localisation. Our

results dispel the impression than RSS is not a good location parameter for PD localisa-

tion. It has been established that the developed PD localisation system can monitor and

locate discharges from several items of plant concurrently making it suitable for future

smart grid.

A number of improvements to the developed substation-wide PD localisation system

have been considered. Additional PD features beside RSS in the form of statistical charac-

terisation of received signals were exploited and used to infer PD location. The frequency-

selective nature of multipath provided useful information about PD signal in specific

frequency components. The use of relative frequency measures account for the differ-

ent frequency components inherent in different types of PD. Moreover, due to the high

dimension of data generated, Correlation based Feature Selection (CFS) algorithm was

168



employed to select a set of decorrelated features hence reducing the dimensionality of the

data. It has been found that the use of CFS reduces the computational complexity with

no significant impact on overall precision performance. Empirical results demonstrate

improvement in PD location accuracy compared to using RSS.

Another method considered for improving PD localisation was the use of wavelet trans-

form in conjunction with machine learning ensemble technique. The time-invariant Max-

imal Overlap Discrete Wavelet Packet Transform (MODWPT) was used to generate

features from PD signals in different frequency bands. These features were then used

as input to ensemble models: bagging and random forest. It has been shown that the

ensemble-based approaches achieved higher location accuracy and robustness to noise

by aggregating results from different sub-models compared with a single regression tree

model.

The principles of the technique described in this thesis are flexible and can be adapted

to any system that detects PD by measuring radiated radio waves. The measurement

band does not need to be VHF or UHF and can be applied to any kind of high voltage

installation.

7.2 Limitations

One of the limitations of the work reported in this thesis is that it addresses only a single

type of PD event. In a real-world scenario, measurement of signals from more than one

type of discharge can be common. Another limitation is that the developed system was

not deployed in real substations. The experiment was conducted in a laboratory. However,

it is expected that the localisation system will exploit the rich multipath phenomenon

in real substations to achieve higher accuracy. Finally, the work did not investigate the

impact of the distance between receivers.
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7.3 Future Work

Most studies in PD monitoring and localisation are based on expensive and energy hungry

technique; TDoA/AoA of the received RF signals and are often contact based, dedicated

to a specific item of plant. The outcome of the work reported in this thesis provides a

base for future study of low-cost wireless substation-wide PD monitoring and localisation

systems.

Representative sensors used in the measurement campaign are off-the-shelf commercial

antennas. Further work should include desire to develop customise or bespoke PD sensors

that will produce all the needed data and result in one go.

Many sensors could be deployed in order to increase accuracy because the signal pa-

rameters or signatures from more sensors translate to more quality information for PD

localisation. However, this comes at an additional cost of increased dimensionality and

computational complexity. Further work should focus on how to select an optimal min-

imum number of sensors (taking into consideration possible failures of sensors) for each

estimation without significant impact on the localisation accuracy.

Our low cost/complexity solution deploys a WSN based on off-the-shelf commercial

radio nodes to monitor PD radio emissions. The PD events were generated with a pulse

generator to ensure that the emulated PD traces are identical for each location and

repetitive. A possible PD monitoring and localisation research topic based on generation

of different PD emulated traces at defined locations to imitate the variability of PD in

real substation should be explored in the future.

In the application of the developed PD localisation method in real substation where

the area to be covered is larger than the laboratory used in this thesis, a clustering
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technique would be needed to reduced computation burden in relation to the search

space and database used for location estimation and also increase localisation accuracy.

Thus, future research should explore and implement such technique.

The use of different antennas could be explored in the future to ascertain the effect of

the type of antenna used for radio location of PD sources.

It would also be interesting to employ other signal processing techniques such as a

combination of wavelet and Empirical Mode Decomposition (EMD) to extract more ro-

bust characteristics feature for enhanced PD localisation. This should be investigated

further.
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