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Abstract 

Severe rainfall events can concurrently affect components of public transport modes 

operating on discrete infrastructure networks which are co-located within the spatial extent 

of these events, thereby revealing geographic interdependencies between them. These 

interdependencies may in turn disrupt the functionality of public transport services, 

consequently reducing the available travel options or, in more extreme cases, causing 

complete loss of connectivity between locations. Despite the growing risk of these events, 

existing research has largely overlooked the potential of concurrent disruptions across 

interdependent networks. This thesis presents a novel framework for the assessment of 

resilience and vulnerability of geographically interdependent public transport networks using 

the Scottish long-distance public transport networks as a case study. 

The framework initially evaluates the potential impacts of area-wide events of varying spatial 

scales on the accessibility provided by two discrete public transport networks. Indicators are 

developed which quantify the contributions of alternative travel options to the accessibility 

of locations while also considering the geographic interdependencies between them arising 

from their close spatial proximity. Building on this, an empirical method is proposed to 

estimate the geographic interdependencies between public transport networks for a given 

hazard (in this case, rainfall) and integrate them into the vulnerability assessment of public 

transport links. The estimation of geographic interdependencies is based on historical 

disruption records which are analysed to determine the proximity of past concurrent flooding 

incidents due to rainfall. The research is then further extended by modelling the rainfall-

related geographic interdependencies in probabilistic terms and incorporating them into the 

resilience assessment of interdependent networks, therefore providing a more realistic 

estimation of concurrent failures compared to deterministic approaches. 

Results reveal that the potential losses in accessibility can be substantial even for localised 

hazards and that these are positively correlated with the spatial scale of event. This suggests 

that the contribution of alternative travel options to accessibility of locations may be 

significantly reduced due to the occurrence of area-wide events and that ignoring the 

potential for concurrent disruptions, significantly underestimates the true consequences. 

When analysing rainfall as the hazard of interest, the empirical analysis confirms the existence 

of geographic interdependencies between rail and bus networks and reveals that the 
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vulnerability of public transport links is significantly affected when geographic 

interdependencies are considered, especially within and around urban centres where many 

public transport services operate in close spatial proximity. This observation is further 

validated through probabilistic modelling, reinforcing the need to incorporate 

interdependencies into impact assessments. Although the findings focus on Scotland’s long-

distance public transport networks, they are applicable to other regions and countries 

exposed to heavy rainfall. 

This research provides infrastructure managers and public transport operators with practical 

and easily implementable methods for the evaluation of resilience of geographically 

interdependent networks that can be implemented using readily available data and tools to 

identify locations and parts of their networks that require further scrutiny.  

 

Keywords: Resilience, Vulnerability, Public transport, Geographic interdependency, 

Accessibility, Connectivity, Redundancy, Substitutability, Flooding, Rainfall. 
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𝒏 The number of weeks over a year. 

𝑬(𝒇𝒎) Expected annual network-wide frequency of flooding on mode 

𝑚. 

𝑬(𝒇𝒎,𝒘) Expected network-wide frequency of flood events on week 𝑤. 

𝑬(𝒇𝒂
𝒎) Expected frequency of flood events on link 𝑎 of mode 𝑚. 

𝒍𝒂 Length of link 𝑎. 

𝑳𝒎 Total length of all links of mode 𝑚. 

𝒇𝒂
𝒎 Average annual frequency of flood events on link 𝑎. 

𝑾𝒎(𝒂) Weakness of link 𝑎 of mode 𝑚. 

𝑪𝒎(𝒂) Criticality of link 𝑎 of mode 𝑚. 

𝑪𝒎𝟏,𝒎𝟐(𝒂) Criticality link 𝑎 of mode 𝑚1 when considering its geographic 

interdependency to links of mode 𝑚2. 

𝑬(𝒇𝑫𝒂

𝒎𝟐) Expected number of incidents on links of mode 𝑚2 within the 

buffer of link 𝑎. 

𝑬𝒄𝒓(𝒎) Critical rainfall event for mode 𝑚. 

𝑽𝒄𝒓 Total depth of a critical rainfall event. 

𝑫𝒄𝒓 Duration of a critical rainfall event. 

𝑷(𝑬𝒄𝒓(𝒎𝟏)|𝑬𝒄𝒓(𝒎𝟐)) Conditional probability of a critical rainfall event for 𝑚1 

occurring given the occurrence of a critical rainfall event for 𝑚2. 

𝑬𝑨 =

{𝑬𝑨𝟏, 𝑬𝑨𝟐, 𝑬𝑨𝟑, … }  

Set of rainfall events recorded by rain station A. 

𝑫𝒓 Standardised conditional probability. 

𝒅𝟎 Decorrelation distance of rainfall. 

𝑷(𝑬𝒄𝒓(𝒎𝟏)) Unconditional probability of critical rainfall event for 𝑚1. 
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𝒅𝒊𝒋 The demand for travel between the OD pair. 

𝒗𝒊𝒋(𝒂) The consequences for the OD pair between 𝑖 and 𝑗 due to the 

closure of link 𝑎. 

𝒂𝒄𝒄𝒊𝒋(𝟎) The accessibility from i to j under normal conditions. 

𝒂𝒄𝒄𝒊𝒋(𝒂) The accessibility from i to j when link 𝑎 has failed. 

𝑫𝒋 The attractiveness of destination zone 𝑗, which captures the 

number of opportunities available at 𝑗. 

𝑷(𝒑𝒎𝟐

𝒇𝒍𝒐𝒐𝒅
| 𝒑𝒎𝟏

𝒇𝒍𝒐𝒐𝒅
) Conditional probability of substitute route experiencing 

flooding-induced closure given the flooding-induced closure of 

primary route. 

𝑨 A flood event that is considered to have occurred at the 

preferred route 𝑝𝑚1
. 

𝑩

=  {𝑩𝟏,  𝑩𝟐,   … ,  𝑩𝒎} 

The set of flood events that may occur in the alternative route 

𝑝𝑚2
 according to the flood map. 

𝑩′

= {𝑩𝟏,  𝑩𝟐,   … ,  𝑩𝒏} 

The set of flood events in the alternative route 𝑝𝑚2
 that is 

considered to have occurred concurrently with A. Note that 𝐵′ is 

a subset of 𝐵, i.e. 𝐵′ ⊆ 𝐵 and 𝑛 ≤ 𝑚. 

𝑷(∪ 𝑩𝒊| 𝑨) Conditional probability of at least one 𝐵𝑖 event occurring given 

the occurrence of event 𝐴. 

𝑹𝑷 Return period of flooding. 
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List of Abbreviations 
 

Abbreviation Description 

CVA Coefficient of Variation Analysis 

GIS Geographic Information System 

GTFS General Transit Feed Specification 

IDW Inverse Distance Weighted 

IETD Inter-Event Time Interval 

IRIS Integrated Road Information System 

MIT Minimum Inter-event Time 

OD Origin-Destination (pair) 

OTP OpenTripPlanner 

SEPA Scottish Environment Protection Agency 
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Glossary of Key Definitions 
 

Term Definition 

Accessibility The extent to which land use and transport systems enable 

(groups of) individuals to reach activities or destinations. 

Exposure The network elements located within the area that a given 

hazard may occur. 

Critical rainfall event A rainfall event with characteristics (e.g., depth, duration, 

intensity) that can result in the full closure of a transport link 

due to flooding. 

Criticality The criticality of a network element represents its likelihood (or 

frequency) of closures due to a certain type of disruption as 

well as the consequences to the network because of its closure. 

Geographic 

interdependency 

The concurrent change of state of two or more spatially 

proximate infrastructure networks due to an event affecting 

them at the same time. 

Minimum inter-event 

time 

The minimum dry period that needs to elapse between two rain 

events for them to be considered as independent. 

Importance The importance of a network element reflects the severity of 

impact on the functionality of the network if that element is 

failed. 

Interdependency The bidirectional interaction between two or more 

infrastructure networks, where the state of one affects the 

state and/or operation of the others. 

Rapidity The capacity of the system to timely restore its operation back 

to normal. 

Redundancy The availability of multiple elements within a system that can 

be used in the event of disruptions to maintain performance. 

Resilience The ability of a system to absorb the effects of hazards and 

quickly recover from hazard impacts. 
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Resourcefulness The ability of a system to identify and utilise resources to tackle 

disruptions. 

Risk Potential for adverse consequences. 

Robustness The ability of the system to withstand disruptions. 

Substitutability The extent to which the preferred travel alternative can be 

substituted by other initially less preferred alternatives. 

Vulnerability The susceptibility of the transport network to loss of 

performance. 

Weakness The weakness of a network element represents its likelihood 

(or frequency) of closure due to a certain type of disruptive 

event occurring. 
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1. Introduction 

1.1. Identification of the problem and context of research 

Public transport networks are essential for the functioning of societies as they ensure the 

seamless mobility of people between locations. However, they are exposed to various types 

of disruptive incidents that can damage their assets and degrade their operation thus 

resulting in socioeconomic losses, such as longer travel times and business interruption 

(Pregnolato et al., 2020). Hazardous events stemming from hydrometeorological phenomena, 

such as heavy rainfall, are one of the costliest hazards globally (Westra, 2014) and pose 

significant threats for transportation infrastructure networks (Steen et al., 2022). These 

events may span wide areas and, as such, have the potential to concurrently inflict damages 

to assets of all transport networks located within their spatial footprint, consequently 

disrupting all public transport modes and leaving travellers with no option to complete their 

trips.  

Indicatively, in July 2021, a heavy precipitation event led to widespread flooding, which 

affected multiple countries in western Europe, including Belgium, Germany and the 

Netherlands, and inflicted major damages of both roads and railways (Koks et al., 2021). More 

recently, a storm event that was characterised by heavy, persistent and widespread rainfall, 

affected most of England, Wales and eastern Scotland, and resulted in extensive damages to 

bridges, flooding-induced closures of roads and cancellation of rail services (Met Office, 

2023). Projected changes of future climate patterns indicate that precipitation and, by 

extension, the potential for flood events will exacerbate in both frequency and intensity in 

many parts of the world (Seneviratne et al., 2021), including the UK (Slingo, 2021). 

Considering this increasing trend, growing efforts have been devoted to understanding 

current and future impacts of extreme rainfall on transportation to ultimately identify 

measures to reduce them (Chen et al., 2015; Pregnolato et al., 2017; Pyatkova et al., 2019; 

Evans et al., 2020; Zhu et al., 2022). 

The aforementioned examples demonstrate that multiple flood events may occur within the 

spatial footprint of heavy rainfall. These events, often referred to as pluvial (or surface water) 

flooding, occur when the amount of water reaching the surface exceeds the capacity of the 

natural or engineered drainage of the area, consequently leading to water flowing and 
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concentrating onto the surface, rather than infiltrating into it (Rosenzweig et al., 2018). When 

pluvial flooding occurs due to convective rainfall, i.e., events of high intensity and short 

duration, it is characterised by a sudden and rapid onset and high intensity and, in this case, 

is commonly referred to as flash flooding (Mishra et al., 2022).  

The impacts of pluvial flooding on infrastructure networks can be classified as direct or 

indirect (Rogelis et al., 2015). Direct impacts are those that occur on infrastructure assets and 

vehicles due to their physical contact with floodwater, such as flooding-induced closure of 

roads or rail sections, embankments failures and vehicles being swept away by floodwaters. 

A well-developed body of research exists on the susceptibility of infrastructure and vehicle 

assets directly affected by flooding, which seeks to model the extent of infrastructure damage 

as a function of the flooding intensity (e.g., Vanneuville et al., 2003; Huizinga et al., 2017; van 

Ginkel et al., 2021). Indirect impacts are knock-on effects to the users of infrastructure 

systems located outside of the area directly affected by flooding, such as cancellation of public 

transport services and increased travel times due to detours (Rogelis et al., 2015). Although 

the indirect impacts can potentially be much larger than direct costs (Hackl et al., 2018), this 

body of research is much more limited compared to that assessing direct impacts of flooding 

(Rebally et al., 2021).  

The scope of this thesis is on heavy rainfall and its impact on transport networks and, 

therefore, only pluvial flood events are considered, with a focus on their indirect impacts on 

public transport networks. Although riverine flooding may also occur when heavy rainfall 

exceeds the capacity of rivers and watercourses, causing the excess water to overflow onto 

adjacent areas (Forbes et al., 2015), it falls outside the scope of this research, as it may occur 

beyond the immediate footprint of rainfall and requires separate analysis. Similarly, coastal 

flooding is not considered, as it is primarily driven by high winds, tides, and storm surges 

rather than predominantly by rainfall (Hunt, 2005) and may impact transport networks 

differently than pluvial flooding. 

The transport system consists of various modes that may operate either on the same 

infrastructure networks (e.g., bus and taxis) or different ones (e.g., bus and rail), which makes 

it particularly difficult to assess the indirect impacts of rainfall events on the entire transport 

system comprehensively. This is because these modes that make up the transport network 

do not operate independently and, even when they are not physically connected, they may 
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interact with and influence the state of each other in a complex way. As such, disruptions 

induced by flooding may affect all transport modes concurrently. 

The concept of this bidirectional interconnectedness between infrastructure networks that 

can emerge in normal or disruption conditions, known as interdependency, was described by 

Rinaldi et al. (2001). The authors classified interdependencies between infrastructure 

networks into four types, namely physical, cyber, geographic and logical. Physical 

interdependency occurs when the state or operation of one network depends on its physical 

connections with the other network. In other words, the operation of one network is 

dependent on the material output of the other network. Cyber interdependency occurs when 

the operation of an infrastructure network is dependent on the functioning of information 

systems. Geographic interdependency occurs when an environmental event concurrently 

affects the state of all networks co-located within its spatial footprint, and therefore is driven 

by the proximity of assets of these networks, rather than the interaction between them. 

Lastly, logical interdependency refers to interconnectedness between networks that cannot 

be classified into one of the three abovementioned types of interdependencies, and it often 

relates to human decisions.  

The occurrence of rainfall may reveal any of these interdependencies that exist within the 

transport system, which may or may not be apparent under normal conditions. Table 1-1 

provides examples for each type of interdependency that may arise in transport networks in 

the event of flooding.  

 

Table 1-1 Examples of interdependencies in the transport network in relation to pluvial flooding 

Interdependency Example 

Physical Cancellation of rail and bus services due to train and bus drivers’ 

inability to arrive at termini of routes, because of flooding on the road 

network. 

Cyber Cancellation of rail services due to flooding-induced failures on the 

electricity, signalling and/or telecommunication systems. 

Geographic Concurrent surface water flooding on road and rail infrastructure that 

is co-located in the spatial footprint of an intense rainfall event. 
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Logical Limited allocation of resources leading to sub-optimal measures for the 

adaptation of transport infrastructure to climate change, which in turns 

results in more frequent and/or extensive flooding-induced damages 

of transport assets. 

 

From Table 1-1 and as previously mentioned, it becomes clear that since rainfall events 

directly affect areas rather than a single point in space, their direct impacts may include 

concurrent flood events on separate transport infrastructure networks (e.g., road and rail) 

and may, therefore, reveal geographic interdependencies that exist between them. In terms 

of indirect impacts, these concurrent flood events may cause simultaneous disruptions on all 

public transport modes that operate on these interdependent infrastructure networks. This 

in turn may result in some of the available public transport options within the affected area 

becoming unavailable and, in more extreme cases, no options may remain functional, thereby 

leaving travellers without any alternative to undertake their trips. Although research has been 

done to understand how various disruptions directly affecting one transport mode may cause 

knock-on effects to other modes (negative physical interdependency) (e.g., Ma et al., 2019; 

Ferrari and Santagata, 2023) or how undisrupted modes can be used to help manage incidents 

of the disrupted mode (positive physical interdependency) (e.g., Ouyang et al., 2015; Hong et 

al., 2017; Fang et al., 2022), limited work has been undertaken so far to understand the 

impact of geographic interdependencies on discrete transport networks. 

Therefore, this thesis will focus on the geographic interdependency between discrete 

transport infrastructure networks and concurrent disruptions of the public transport modes 

operating on these networks, due to the same rainfall event. Since the nature and extent of 

geographic interdependencies between networks depend on the spatial scale and intensity 

of the hazardous event, this study defines 'rainfall-related geographic interdependency' as 

the simultaneous disruption of transport networks due to their co-location within the spatial 

footprint of a heavy rainfall event, which can trigger multiple flooding incidents within its 

spatial scale. 

The expected impacts of pluvial flooding are commonly analysed through risk assessment 

methods. Risk is defined as the “potential for adverse consequences” (IPCC, 2022) and 
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encompasses the probability of the hazardous event occurring and resulting consequences to 

the system of concern (Liu et al., 2018). The consequences of a pluvial flood event to the 

transport network reflect its vulnerability, which, in indirect terms, is defined as the 

susceptibility of the network to loss of performance (Berdica, 2002). The framework of flood 

risk assessment includes estimating the expected consequences of flooding to the transport 

system for a range of possible event magnitudes, ultimately resulting in a risk curve that 

captures the expected annual economic costs of flooding-induced disruptions as a function of 

the hazard intensity (Nicholson and Dalziell, 2003).  

The vulnerability of transport networks can also be explored through the resilience 

assessment framework. Resilience is broadly defined as the ability to “absorb and recover 

from hazard impacts” (White et al., 2005). Bruneau et al. (2013) further defined four 

components of resilience, namely robustness (the ability of the system to withstand 

disruptions); redundancy (the availability of multiple elements or options within the system 

that fulfil the same function); resourcefulness (the ability of the system to identify and utilise 

existing resources to tackle disruptions); and rapidity (the capacity of the system to timely 

restore its operation back to normal). The elements of robustness and redundancy relate to 

the preparedness of the system to reduce the impacts of anticipated disruptions (ex-ante 

mitigation), while resourcefulness and rapidity refer to the ability of the system to adapt in 

order to ultimately manage and timely resolve disruptions when these occur (ex-post 

adaptation). Figure 1-1 shows the relationship between resilience, its individual components 

and vulnerability. In this case, vulnerability is considered as the opposite of resilience and it 

corresponds to the area between the horizontal dotted line and the curve that represents the 

performance of the system during the disruption conditions (Mattsson and Jenelius, 2015).  
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Figure 1-1 The relationship between vulnerability and components of resilience (adapted from 
Mattsson and Jenelius, 2015) 

 

From the above, it is clear that there is not a universally accepted definition of vulnerability. 

Specifically, in the resilience assessment framework, vulnerability explicitly considers both the 

loss of network performance and duration of disruption given the occurrence of a hazardous 

event. On the other hand, the risk assessment framework places more emphasis on the 

reduction in network performance and does not explicitly consider the duration of disruptions 

as part of the vulnerability, although examples also exist which incorporate the duration of 

disruptions in the risk assessment process (Dalziell and Nicholson, 2001).  

The focus of this thesis is on the components of resilience related to the ex-ante mitigation 

capacity of the system. The time required for the system to restore its functionality is not 

considered and, thus, vulnerability is here used to describe the susceptibility of public 

transport networks to loss of performance given the occurrence of flood events. Furthermore, 

the research on this thesis is specifically concerned with the redundancy of public transport 

networks rather than their robustness. This is because robustness is a more general concept 

which reflects the capacity of the system to “maintain its basic functionality under the failure 

of some of its components” (Klau and Weiskircher, 2004) and, in some cases, it may 

encompass redundancy as well (e.g., Laporte et al. 2011; Liao and van Wee, 2017). 
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Since the extent of impacts of disruptions on transport networks varies depending on where 

these occur, considerable work has been undertaken seeking to identify network elements, 

of which the failure results in the highest losses of network performance (Jenelius et al., 

2005). These network elements are defined as important. Elements that have a higher 

probability of failure due to the occurrence of event of concern are considered weak, while 

those that are both weak and important are considered as critical (Cats et al., 2016). 

The concept of importance has been further defined for areas, which represent the spatial 

scale of the hazard. Therefore, areas where the occurrence of the hazard inflicts the most 

significant impacts on the performance of network, are considered as important (Johansson 

and Hassel, 2010). Based on the abovementioned definitions, it can be argued that identifying 

important and critical elements is appropriate when exploring impacts of events that may 

directly affect only one element of the network at a time (e.g., one link or station), while it is 

more pertinent to identify important areas when assessing area-wide events, which typically 

relate to severe weather.  

Although much work has been done to identify important elements of transport networks 

(Jenelius et al., 2006; Taylor et al., 2006; Rodriguez-Nunez and Garcia-Palomares, 2014; Cats 

and Jenelius, 2014), studies on the assessment of their weakness or criticality are much 

scarcer, mostly because of the limited availability of historical data that may allow estimating 

them (Cats et al., 2016). Furthermore, for area-wide events, only a few studies have been 

proposed for transport networks (Jenelius and Mattsson, 2012; Schintler et al., 2007; Thacker 

et al., 2017). Therefore, the importance of areas that contain multiple transport infrastructure 

networks and where geographic interdependencies between them may occur, has not been 

appropriately assessed. Finally, as the spatial scale of an event depends on the nature and 

severity of the hazard of concern, the assessment of importance should make sensible 

selection of the size of areas that represent the event footprint. However, most works to date 

have developed general frameworks for the vulnerability assessment of networks to area-

wide events and, as such, arbitrarily select their potential scale (e.g., Mattson and Jenelius, 

2012; Ouyang et al., 2019; Du et al., 2023; Kays et al., 2023). 

The exposure of heavy rainfall on infrastructure networks is estimated using flood maps that 

show the spatial extent, location and depth of floodwater across the area of interest. 

However, these maps cannot be used to estimate the impacts of flooding-related geographic 
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interdependencies between infrastructure networks, as they do not capture the temporal 

propagation of rainfall and, thus, they do not indicate which locations may experience 

flooding at the same time. A commonly used approach to estimate the impact of concurrent 

rainfall-induced flood events to transport networks on the urban or sub-urban scale involves 

modelling the occurrence and propagation of a design rainfall event at a hydrological 

catchment, which is produced using a stochastic rainfall generator, and subsequently using a 

hydrological model to estimate the resulting flood flows over the area of interest at various 

time steps (e.g., Pregnolato et al., 2015; Pyatkova et al., 2019). According to Brunner et al. 

(2020), an alternative approach to model concurrent pluvial flood events over an area 

requires the use of spatial extreme value models predicting the intensity and duration of 

rainfall events of certain frequencies, which also account for the conditional probability of 

extreme values being observed in spatially separated locations (e.g., Hefferman and Tawn, 

2004; Renard and Lang, 2007; Le et al., 2018). However, it is not always possible to use these 

sophisticated approaches either because of the unavailability of appropriate rainfall and/or 

hydrological models for the area of interest, or because of the significant computational 

requirements to perform these processes for larger areas. 

The aim of this thesis is to assess the vulnerability of geographically interdependent public 

transport modes that operate on discrete transport infrastructure networks to area-wide 

events, with a particular focus on heavy rainfall. 

For the purposes of this thesis, a literature review was conducted on research works seeking 

to estimate the current and future spatial scales of rainfall (Section 1.2.1). In addition, a 

literature review on the vulnerability of transport networks to disruptions (Sections 1.2.2), 

including to area-wide events (Section 1.2.3) has been carried out in order to identify 

important gaps that will be addressed as part of this research. 

 

1.2. Background 

1.2.1. Spatial extent of rainfall events and estimated impacts of climate change 

In the past years, the adverse impacts of precipitation and flooding on societies have resulted 

in growing efforts to estimate the spatial scale of rainfall events in various areas globally, and 

how this may change as temperatures increase due to human-caused climate change. Notable 
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works have been undertaken on this area of research, which are further summarised in Table 

1-2.  

Lochbihler et al. (2017) investigated the spatial properties of convective precipitation, which 

typically relates to high-intensity and short-duration rainfall events, and showed that most 

events span up to 4 km and only a few of them may extend up to 12 km. Touma et al. (2018) 

investigated the spatial extent of daily extreme rainfall over the United States and how it 

varies seasonally and regionally. The results of this work revealed significant variations across 

the regions and seasons, with the longest length scales of rainfall and greatest regional 

variations being observed in winter. Gvozdikova et al. (2019) explored rainfall patterns for a 

wider geographical area, as their work focused on 1-day to 10-day rainfall totals in central 

Europe. The authors found that heavy rainfall can simultaneously affect river sub-catchments 

located in distant regions with similar topography and showed that the maximum size of areas 

affected can potentially be up to 100,000 km2. Lengfeld et al. (2019) analysed the spatial 

extent of daily and hourly rainfall events in Germany and revealed that the footprint of the 

former is significantly larger compared to the latter. 

These works assess the spatial scale of historical rainfall events and do not consider the effects 

of climate change to the spatial properties of precipitation. Several studies have been 

undertaken to fill this gap, which, however, have provided conflicting results. Guinard et al. 

(2015) explored various characteristics of rainfall events in North America, including spatial 

area, and their potential changes due to climate change. They found that spatial areas did not 

exhibit any statistically significant changes in the future. Chang et al. (2016) assessed the 

change in spatial extent of rainfall in the United States and found that the extent of 

precipitation events becomes smaller in both winter and summer. Similarly, Wasko et al. 

(2016) found that in a warming climate, the rainfall events in Australia are anticipated to 

increase in magnitude and shrink spatially, and thus, are expected to be more intense and 

concentrated. Lochbihler et al. (2019) performed climate simulations to understand the effect 

of increased temperatures to the spatial scale of summer convective rainfall in the 

Netherlands and, as opposed to the previous studies, revealed that future conditions 

associated with higher temperatures and moisture will lead to both higher intensities and 

spatial extents of events.  
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Matte et al. (2021) analysed the change in spatial extent of the most extreme precipitation 

events in Europe for different levels of global warming, namely 1°C, 2°C and 3°C. The authors 

concluded that temperatures and spatial extents of events are positively correlated and that 

20-year rainfall events will become more frequent and widespread at the expense of smaller 

events. In a similar direction, Bevacqua et al. (2021) found that the rainfall events in the 

Northern Hemisphere extratropics, including parts of North America, Europe and east-central 

Asia, will exhibit significant increases in their spatial extents and highlighted that increased 

global temperatures at 2°C may lead to disproportionately higher increases in the spatial 

scales of rainfall events compared to those at 1.5°C. Considering these contradictory results, 

with a view to obtain more comprehensive insights of the anticipated changes of scale of 

rainfall events, Ghanghas et al. (2023) performed a global assessment which revealed that 

the impact of climate change on the spatial extent of rainfall significantly varies across the 

globe, with reduced extents being anticipated only in tropical regions and significant increases 

in arid regions and in central Europe. 

The above literature reviewed shows that, although there is no consensus on the expected 

changes of spatial footprint of rainfall due to climate change, the range of spatial extents in 

current conditions is well-documented, as shown in Table 1-2. However, to the author’s 

knowledge, this evidence has not been used in the context of resilience assessments of 

infrastructure networks. 
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Table 1-2 Studies assessing the spatial scale of rainfall events and potential changes due to climate change 

Reference Scale of analysis Location Study period Rainfall event Spatial scale of rainfall* 

Current conditions Future changes 

Lochgbihler et 

al. (2017) 

National Netherlands 2008 to 2016 Convective, summer 

rainfall. 

Up to 12 km.  

Touma et al. 

(2018) 

National United States 1965 to 2014 Extreme daily 

rainfall (above 90th 

percentile) (winter 

and summer). 

eastern US: up to 400 

km in winter and 200 

km in summer. 

northern US: up to 

150 km throughout 

the year. 

 

Gvodzikova et 

al. (2019) 

International Central 

Europe 

1961 to 2013 Extreme 1-day to 10-

day rainfall (winter 

and summer). 

Up to 100,000 km2.  

Lengfeld et al. 

(2019) 

National Germany 2001 to 2017 Daily and hourly 

rainfall. 

On average 68 km for 

daily events, and 17 

km for hourly. 

 

Guinard et al. 

(2015) 

Continental North America 1961 to 1990, 

1992 to 2011 

& 

2071 to 2100 

Rainfall events with 

intensity greater 

than 0.2 mm/hr. 

2104 to 7104 km2. No change. 

Wasko et al. 

(2016) 

National Australia  Extreme 1hr and 3hr 

rainfall at higher 

temperatures 

Up to 50 km below 

18°C and 30 km 

above 35°C. 

Reduced extent 

(degree of 

reduction 
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(above 90th 

percentile). 

depends on 

location). 

Chang et al. 

(2016) 

National United States 1995 to 2004 

& 2085 to 

2094 

Rainfall with 

intensity greater 

than 1mm/3h 

(summer and 

winter). 

2104 to 8104 km2 in 

summer, and 5104 to 

50104 km2 in winter. 

Reduced extent 

(up to 80% in 

summer and 40% 

in winter). 

Lochbihler et 

al. (2019) 

National Netherlands  Convective rainfall 

with intensity 

greater than 0.6 

mm/hr (summer). 

Up to 12 km. Increased extent 

(estimated value 

up to 20 km). 

Matte et al. 

(2021) 

Continental Europe  Daily extreme 

rainfall events 

(above 90th and 99th 

percentiles). 

Up to 512 km. Increased extent 

of large events. 

Bevacqua et 

al. (2021) 

Intercontinental Northern 

Hemisphere 

extratropics  

 Wintertime extreme 

rainfall events 

(return period 

greater than 10 

years). 

Varies based on 

location (e.g., a 100-

year event in UK, may 

span between 900 

and 1300 km, while 

100 to 300 km in 

France). 

Increased extent 

in most areas. 

E.g., up to 190% 

in Northern 

Europe and 250% 

in central-east 

Asia. 

Ghanghas et 

al. (2023) 

Global  2014 to 2021 Short duration, 

extreme rainfall. 

 Reduced extent 

in tropics. 
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Increased extent 

in arid regions 

and parts of 

central Europe. 

*Spatial extent of rainfall is reported in terms of area (km2) or length scale of event (km). The latter is equal to the squared root of the former. 
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1.2.2. Vulnerability assessment of public transport networks to disruptions 

The vulnerability assessment of transportation networks aims to identify parts of the 

network, of which the failure leads to the most significant consequences to the 

network performance and, thus, are considered the most important to the 

functionality of the network. The approaches to test the vulnerability of transport 

networks, including public transport, can be classified into two distinct categories, 

namely topological and system-based (Mattsson and Jenelius, 2015). In both these 

approaches, the public transport system is represented by a graph consisting of 

nodes and links, where the former typically correspond to public transport stops (or 

stations), and the latter refer to linear infrastructure (e.g., roads, rail tracks) 

connecting nodes served by a public transport route.  

The topological vulnerability assessment seeks to identify important elements of the 

network (links or nodes), which, if failed, result in the greatest degradation of its 

topology. For instance, an indicator used to measure network topology is global 

efficiency, which is the average value of reciprocals of the path distances between all 

node pairs of the network (Latora and Marchiori, 2001). On the other hand, the 

system-based approach incorporates functional properties of the system in the 

network representation and adopted methods can be further classified into 

accessibility-based and serviceability-based.  

Accessibility-based methods analyse the vulnerability in terms of the changes in the 

level of accessibility of locations, which reflects the “the extent to which land use and 

transport systems enable (groups of) individuals to reach activities or destinations” 

(Geurs and van Wee, 2004). In this case, the vulnerability assessment seeks to 

identify the network elements, of which the failure inflicts the highest losses of 

accessibility, such as in terms of travel time or distance (D’Este and Taylor, 2003). 

While the serviceability-based approach may partly assess vulnerability in terms of 

change in travel time, it places more emphasis on the demand-side of transport 

system. For example, this is done by considering the passenger flows across the 

various routes of the network and using sophisticated tools to capture congestion 

effects of disruption on parts of the network (Taylor, 2017). In this case, vulnerability 
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may also be perceived in terms of number of passengers that experience delays or 

those that cannot complete their trips due to disruptions (unsatisfied demand). 

 

Topological vulnerability assessment 

Topological vulnerability is assessed in terms of network connectedness and is 

typically measured by successively removing a node or link of the network, at random 

or based on a certain attack strategy, until the network becomes completely 

disintegrated. Topological importance metrics of elements are used to identify these 

attack strategies, examples being the degree of node, which is equal to the number 

of links directly connected to the node; betweenness centrality of node, which is the 

number of shortest paths between each two pair of nodes traversing the node of 

concern; and betweenness centrality of link, i.e. the number of shortest paths 

traversing the link of concern.  

Extensive research has been devoted to analysing the vulnerability of public 

transport networks to disruptions from a topological standpoint. Han and Liu (2009) 

assessed the vulnerability of ten Chinese subway systems to random or intentional 

attacks. Separate scenarios were developed where nodes representing subway 

stations were successively removed based on their degree or betweenness centrality. 

For some of these scenarios, at each removal step, the degree or betweenness 

centrality value of the nodes remained the same (static approach), while, for others, 

it was recalculated (dynamic approach). Across all these scenarios, nodes were 

removed until the relative size of the largest component of the network that 

remained connected fell below a predefined threshold. Using the same approach, 

Wang et al. (2015) studied the vulnerability of 33 metro networks by removing nodes 

at random or based on their degree values. Cats and Krishnakumari (2020) assessed 

and compared the vulnerability of three metropolitan networks by removing both 

nodes and links at random or based on their dynamic degree and betweenness 

centrality values. The effects to all lines traversing the disrupted nodes or links were 

assessed by removing them to account for cascading impacts to the operation of 
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services, and then the impact of disruptions was assessed in terms of the relative size 

of the largest component of network remaining connected (proxy for passengers’ 

ability to travel), but also in terms of the normalised average shortest path between 

each pair of nodes (proxy for detours incurred). A similar study was conducted by 

Cao and Cao (2020), albeit for the urban bus network.  

The aforementioned studies explore the topological vulnerability of networks 

consisting of only one mode and thus provide partial insights on the topology of the 

multimodal public transport network. Several notable studies have focused on the 

analysis of multiple public transport modes. Berche et al. (2009) studied the 

vulnerability of fourteen multimodal public transport networks subject to random 

disruptions and intentional attacks to nodes and assessed the impacts in terms of 

global efficiency and the relative size of largest component of network remaining 

connected. The modes considered included bus, tramway, trolleybus, subway and 

urban train. This work was further extended to assess the vulnerability based on the 

removal of both links and nodes (Berche et al., 2012). Aparicio et al. (2022) adopted 

a similar approach for the vulnerability of the network consisting of tram, metro, bus, 

rail and riverway, and further considered consequences to the public transport lines 

traversing the removed elements in a similar way to that of Cats and Krishnakumari 

(2020). The impacts of disruptions were assessed in terms of several metrics, namely 

average path length between nodes, number of isolated network components and 

size of largest connected component.  

Although these works considered the vulnerability of multiple public transport 

modes, they overlooked interdependencies between them. Very limited research has 

been carried out to incorporate the interdependencies between modes into the 

topological assessment of vulnerability. Ferrari and Santagata (2023) incorporated 

the geographical and functional interdependency between the regional rail and road 

networks within the vulnerability assessment. The former interdependency was 

captured by nodes that represent overpasses between networks, e.g. motorway 

bridges overpassing the rail network, while the latter as inter-links between 

motorway exits and rail stations where modal shifts can take place. The vulnerability 



 

17 
 

of the multimodal network was then assessed by measuring the number of nodes 

required to be removed until the network collapses. By repeating the process for 

each single network and comparing it to that of the interdependent networks, the 

impact of interdependencies on the vulnerability was estimated, and important 

nodes and links of the interdependent networks were identified according to the 

severity of impacts of their removal.  

Xu et al. (2024) assessed the vulnerability of the urban multimodal network 

consisting of bus and rail, while also considering both positive and negative 

functional interdependencies, where the former pertain to neighbouring stops that 

can be accessed by walking or bicycle, while the latter correspond to failures that 

progressively cascade to neighbouring stops. These studies showed that it is 

imperative to consider interdependencies between disrupted networks as this allows 

identifying nodes and links of the network, of which the failure results in greater 

consequences than it was previously thought because of concurrent and propagating 

disruptions. 

 

System-based vulnerability assessment 

Similarly with the topological assessment, the system-based approach of 

vulnerability assessment involves removing nodes or links of the network and 

estimating the consequences of their failure to the performance of the network. Two 

system-based approaches exist for the identification of important nodes or links. In 

the first method, known as full-scan approach, each network element is separately 

failed, and the resulting vulnerability is estimated in terms of reductions in network 

performance. Because this process is resource-intensive, the second approach is 

particularly favourable for large-scale networks.  

The second approach a priori characterises the importance of network elements 

based on performance-based metrics and then filters only the most important ones 

for the next step of the process where the vulnerability of the network to their failure 

is computed. The most common metrics of system-based importance are the 
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passengers betweenness centrality of links, which reflects the percentage of the total 

passengers that use a public transport link, and operators betweenness centrality, 

which denotes the percentage of total public transport trips that traverse the link 

(Cats and Jenelius, 2014).  

In the past decade, the literature on the system-based vulnerability assessment of 

public transport networks has increased considerably. Using real-world data on 

public transport trips and adopting a full-scan approach, Rodríguez-Núñez and 

García-Palomares (2014) measured the vulnerability of the metro network of Madrid 

by removing one metro link at a time and measuring the disruption consequences in 

terms of number of cancelled trips and increase in travel times, thus revealing the 

most important links of the network. Shelat and Cats (2017) assessed the 

vulnerability of the urban rail network to link failures in terms of the potential for 

propagation of disruption resulting from passengers choosing alternative routes. 

These knock-on effects were captured in terms of congestion on trains and denied 

boarding of travellers at stations. By adopting a full-scan approach, the rail links were 

ranked based on the extent of knock-on effects that their failure may induce to the 

network.  

Adjetey-Bajun et al. (2016) assessed the system-based vulnerability of the urban rail 

network by further considering its physical interdependencies with other systems, 

namely power, telecommunication and organisation. To achieve this, a detailed 

representation of each network was constructed as well as the interrelationships 

between them. Disruptions on power network were then considered that cascaded 

to rail by causing either speed reductions of trains or complete closure of links. Pant 

et al. (2016) performed a national vulnerability assessment of the rail network while 

considering both its physical and geographic interdependencies with the electricity 

and telecommunication networks. The former interdependencies reflect 

dependencies of rail assets with assets of other infrastructure networks, such as 

signalling, lighting, and monitoring systems, and were captured using inter-links 

between them. The latter interdependencies were identified for a specific flood 

scenario by identifying the flooded assets of the three networks and then assessing 
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the vulnerability of rail to these failures. By considering the physical and geographic 

interdependencies of rail with other networks, more realistic insights into the 

susceptible parts of former were provided. 

Although some of the above works go beyond exploring the effects of a single 

disruption to the public transport network, e.g. by assessing cascading or concurrent 

failures of network elements, they focus on one individual public transport mode. 

Notable studies have been carried out to test the system-based vulnerability of 

multimodal public transport networks as well. Cats and Jenelius (2014) proposed a 

novel dynamic and stochastic representation of the multimodal public transport 

network that captures the interaction between system supply and passenger 

demand and assessed its vulnerability to disruptions of links. Rather than performing 

a full-scan analysis, potentially important links were initially identified based on the 

passenger and operators’ betweenness centrality value of links, and the impacts of 

their disruptions were estimated in terms of a composite index that encompasses 

passengers’ travel time and transfers between services. Using the same dynamic and 

stochastic approach, Cats and Jenelius (2015) explored strategies to reduce 

vulnerability of the multimodal network by increasing the capacity on lines that can 

serve as alternatives when important links are disrupted.  

In both of these studies, the approach adopted allowed modelling in more realistic 

terms the progression and impacts of disruptions, thus revealing useful insights into 

their cascading effects to modes. However, the interdependencies between the 

individual modes that make up the network were not explicitly explored. Hong et al. 

(2019) proposed a method to study the vulnerability of the integrated bus and 

subway network from the perspective of accessibility to critical services, such as 

commercial and education services. The positive interdependencies between the 

modes were represented by inter-links between geographically proximate stations 

to account for passengers’ potential modal shift in the event of disruptions. Various 

types of disruption were considered to the bus network, namely random, degree-

based and betweenness-based failures, as well as flood events according to the flood 

map of a historical event. Similar works that considered these interdependencies 
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were those of Ouyang et al. (2015) and Wang et al. (2023). Apart from positive 

interdependencies, Zhang et al. (2023) further assessed the geographic 

interdependency between individual modes of the national transport network by 

estimating the impacts on travel time of concurrent disruptions to all elements within 

the province that a historical storm event occurred. 

 

Gaps in the literature of vulnerability assessment of public transport networks 

The above literature on the vulnerability assessment of public transport networks 

reveals several important gaps. Firstly, in both topological and system-based 

approaches, most works to date have focused on the vulnerability of a single public 

transport mode, typically railway, while bus remains largely under-explored. 

Secondly, studies on the multimodal public transport networks have mostly assessed 

the physical interdependencies between various modes, either from a positive 

perspective (modal shift of passenger demand) or negative (cascading disruptions); 

however, the disruptions considered directly affect only one mode, while the other 

either remains completely unaffected or suffers disruptions due to cascading effects. 

Therefore, the geographic interdependency between public transport modes that 

operate on discrete networks has not been analysed so far. Lastly, most works on 

vulnerability assessment to date have analysed urban public transport networks, 

while research on inter-city and national networks that are used for long-distance 

travel is much scarcer. Consequently, the implications of disruptions, and particularly 

those relating to the geographic interdependency between modes, to the operation 

of transport systems at the national scale is still lacking.   

 

1.2.3. Vulnerability assessment of transport networks to area-wide events 

Since the geographic interdependencies between networks occur as a result of man-

made or natural hazards that may affect geographical areas, it is important to 

understand the degree to which the vulnerability of transportation networks to area-

wide disruptions has been explored and how these disruptions are captured. 
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Similarly with the network vulnerability of single-link and single-node failures, the 

aim of the vulnerability assessment to area-wide events is to identify areas, where, 

if the event occurs (and consequently all network links and nodes located within are 

failed), the degradation of the network performance is the most severe (Johansson 

and Hassel, 2010).  

Several works on the vulnerability analysis to spatial events have been identified in 

the literature. Jenelius and Mattsson (2012) assessed the vulnerability of the Swedish 

regional road network to area-covering disruptions using an impact-based approach, 

commonly referred to as the cell space method (Johansson and Hassel, 2010; 

Ouyang, 2015). The spatial events were captured by cells of a square grid, which was 

superimposed on the network. By failing one grid cell at a time and assuming that all 

road links located in or traversing the cell are closed, the consequences of the cell-

wide failures to the network performance were estimated. Similarly with the full-

scan approach, by repeating the process for all cells, the most important areas (cells) 

were identified. The analysis was performed for various grid sizes, namely 12.5x12.5 

km2, 25x25 km2 and 50x50 km2 and revealed that the cell size has a significant effect 

on the results. Du et al. (2023) adopted the same approach to test the vulnerability 

of urban road networks in China, but for significantly smaller sizes of square cells, 

namely 1x1 km2, 2x2 km2 and 4x4 km2, therefore focusing on considerably more 

localised events.  

Another approach was developed by Ouyang et al. (2019), who proposed three types 

of spatially localised disruptions, namely node-centred, district-based and circle-

based, and applied them to the Chinese rail network. In the node-centred event, a 

certain node is assumed to be disrupted and a specified fraction of nodes that have 

the nearest distance from this disrupted node are further considered to have 

concurrently failed. The district-based event is defined by administrative boundaries 

(e.g., province, county), while the circle-based event pertains to a disruption 

occurring in a circular area of a certain radius, anywhere on the network. According 

to the authors, the node-centred and circle-based events are applicable to 

intentional attacks, whilst the district-based event pertains to localised natural 
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hazards. Similarly with the cell-space method, the process involved assuming the 

occurrence of an event of a certain extent at a given part of the network and thus all 

nodes and links within the footprint of event are closed, and subsequently computing 

the consequences of these failures to the network performance.  

Li et al. (2019) adopted the circle-based model proposed by Ouyang et al. (2019) to 

assess the vulnerability of the coupled high-speed rail and air transport system of 

China in order to ultimately determine the most important circle-based areas. Areas 

of various circular sizes were applied, with the considered radius ranging from 10 km 

to 500 km. Fang et al. (2020) analysed the vulnerability of the high-speed rail to 

province-based disruptions due to geological and hydrological events. The authors 

extended the work of Ouyang et al. (2019) by exploring the possibility of discrete 

area-wide events occurring simultaneously, which was achieved by initially 

establishing the natural disaster probability of each province based on historic data 

and subsequently developing multiple scenarios of concurrent province-based 

disruptions using Monte-Carlo simulations. 

The aforementioned works explored the vulnerability of transport networks to 

spatial events using impact-based approaches, which require carrying out multiple 

disruption scenarios in order to identify important areas. This may prove to be a very 

resource-intensive task for large-scale networks. In the absence of non-impact-based 

approaches focusing on transport only, several works were identified that explored 

the impact of spatial events on the geographic interdependency between transport 

and other critical infrastructure networks. Schintler et al. (2007) identified important 

areas in the multimodal transportation network consisting of roads and railway by 

estimating the importance of links based on the number of shortest paths traversing 

them and performing spatial density analysis to create a continuous raster surface, 

which captures the importance of co-located railway and road links. Thacker et al. 

(2017) assessed the vulnerability of multiple national infrastructure networks, 

including road and rail, while considering the proximity between their assets. The 

importance of nodes of each network was estimated based on a disruption metric 

that reflects the number of direct and indirect users of the node, and areas containing 
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clusters of highly important nodes (hotspots) were identified. This was achieved 

using kernel density estimation, which provided a map showing the density of assets 

weighted by their importance value over the study area. Kays et al. (2023) assessed 

the vulnerability stemming from the geographic interdependency between the road 

and stormwater networks by computing the importance of each link and 

subsequently identifying areas with co-located important road and stormwater links 

using autocorrelation metrics. With a primary focus on the road network, Hughes et 

al. (2020) analysed the geographic interdependency between road links and links of 

the power, water and wastewater networks, by delineating buffer-based 

neighbourhoods around each road. By comparing the importance of the road to that 

of its corresponding buffer, which includes the road itself and neighbouring assets, 

the effect of geographic interdependencies to vulnerability was explored. The same 

buffer-based approach was also used by Islam and Moselhi (2012) to estimate the 

extent to which assets of the road and water network are geographically 

interdependent. 

 

Gaps in the literature of vulnerability assessment of transport networks to area-wide 

events 

This review of studies developing general models and frameworks to assess the 

vulnerability of transport networks to area-wide events revealed several gaps. Firstly, 

while the impact of area-wide disruptions on transportation networks has been 

explored, in most cases, only one transport mode has been considered at a time, 

namely road or rail. No study was identified that explores the concurrent impact of 

spatial events on multiple public transport modes, such as rail and bus. Secondly, 

while a range of approaches has been proposed to test the area-wide vulnerability 

of transport networks, consideration was given only to the shape of area affected, 

such as square and circular areas, while the spatial footprint of events was arbitrarily 

set without considering the nature of hazards that it corresponds to. While these 

approaches are accompanied by sensitivity analysis of the vulnerability for various 

sizes of areas, no effort has been made so far to relate area size to a specific hazard, 
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and, therefore, it is not clear how these approaches can be made hazard-specific. 

This could be achieved by performing empirical research to link general vulnerability 

assessments with historical evidence on spatial scale of events.  

Furthermore, with the exception of the work of Fang et al. (2020), none of these 

studies considered the probability of concurrent events occurring and thus only 

important areas can be derived from the approaches proposed to date. Specifically, 

in the case of pluvial flooding, this limitation could be systematically overcome with 

the aid of pluvial flood maps that show the water depth and extent and extent for a 

certain return period on the network (or networks). However, as previously 

mentioned in Section 1.1, these maps may capture concurrent flood events only 

when they have been produced using a stochastic rainfall generator and flood model 

or using intensity-duration-frequency curves for rainfall events whilst accounting for 

the conditional probabilities of rainfall co-occurrences across the area.  

 

1.3. Research aim and objectives 

As previously stated in Section 1.1, this thesis aims to assess the resilience of 

geographically interdependent public transport modes that operate on discrete 

transport infrastructure networks to area-wide events, with a particular focus on 

flooding. 

The literature review carried out in the previous sections identified several significant 

gaps. These include: 

1. The potential impact of geographic interdependencies that may arise from 

area-wide events (including rainfall) on the resilience of public transport 

modes operating on discrete infrastructure networks and how this may vary 

depending on the spatial extent of events. 

2. The empirical assessment of geographic interdependencies that may occur 

between discrete infrastructure networks due to a weather-related 

hazardous event and exploring their impact on the importance and criticality 

assessment of public transport modes operating on these networks. 
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3. Modelling the extent of weather-related geographic interdependencies 

between transport networks and incorporating it to the importance 

assessment of interdependent public transport modes, for a certain hazard of 

interest – in this case, rainfall. 

Therefore, the research aim is further divided into a number of research objectives, 

which will enable to answer key research questions and ultimately address the three 

aforementioned gaps, as shown in Table 1-3. 

  



 

26 
 

Table 1-3 Identification of research questions and objectives 

Research question Research objective Chapter 

RQ1. How can redundancy be quantified 

for geographically interdependent public 

transport networks? 

OBJ1.1. Review metrics proposed in the existing literature that quantify 

the redundancy of travel options between locations.  

2 

RQ2. How can the geographic 

interdependency between transport 

networks be quantified for various 

hazards? 

OBJ2.1. Review how geographic interdependencies have been 

previously quantified. 

OBJ2.2. Propose a metric that captures the geographic 

interdependency between networks. 

2 

RQ3. What are the implications of 

geographic interdependencies between 

public transport modes on the redundancy, 

and how do they vary based on the spatial 

extent of area-wide events?  

OBJ3.1. Incorporate metric of geographic interdependencies between 

networks into selected metrics of redundancy. 

OBJ3.2. Develop a general framework to analyse the impact of 

geographic interdependencies on the redundancy due to area-wide 

hazardous events.  

OBJ3.3. Perform sensitivity analysis to assess how the loss of 

redundancy changes for varying spatial scales of hazardous events. 

2 
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RQ4. How can the importance and 

criticality of public transport links be 

quantified?  

OBJ4.1. Review metrics that capture the importance and criticality of 

transport links. 

3 

RQ5. How can the rainfall-related 

geographic interdependencies between 

transport infrastructure networks be 

empirically characterised? 

OBJ5.1. Review and select method to quantify the likelihood of 

simultaneous events occurring based on the separation distance of 

locations. 

OBJ5.2. Identify the data requirements for the empirical estimation of 

flooding-related geographic interdependencies and construct datasets 

for the public transport networks of concern. 

3 

RQ6. What is the impact of the geographic 

interdependency between networks on the 

importance and criticality of public 

transport links?  

OBJ6.1. Incorporate the empirical extent of geographic 

interdependencies into the selected metrics of importance and 

criticality of public transport links. 

OBJ6.2. Compute link importance and criticality with and without 

considering geographic interdependencies and compare ranking of 

links in these two cases. 

3 
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RQ7. What is the current state-of-the-art 

on assessing the risk of transport networks 

to concurrent rainfall-related flood events? 

OBJ7.1. Review the literature that seeks to quantify and assess the risk 

of transport networks to flood events.  

4 

RQ8. How can the rainfall-related 

geographic interdependencies between 

transport modes be modelled? 

OBJ8.1. Select a method to model the likelihood of concurrent rainfall-

induced flood events occurring at spatially proximate locations. 

4 

RQ9. How can the model of rainfall-related 

geographic interdependency be 

incorporated into the pluvial flood impact 

assessment of discrete public transport 

networks? 

OBJ9.1. Propose a framework for the development of scenarios of 

concurrent pluvial flood events and incorporate them into the impact 

assessment. 

OBJ9.2. Compute losses in redundancy for pluvial flood scenarios with 

and without considering concurrency of events in geographically 

interdependent public transport networks. 

4 
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1.4. Structure of Thesis 

With a view to produce and submit three separate papers for publication in academic 

journals, three discrete studies were carried out, which are reported in Chapters 2, 3 

and 4 of this PhD thesis. 

Therefore, this thesis is divided into five chapters. Chapter 1 includes the 

introduction and review of key literature that informed the identification of gaps in 

research. 

Chapter 2 presents a general framework for the assessment of the impact of 

geographic interdependencies between public transport modes operating on 

separate infrastructure networks on components of resilience, namely redundancy 

and substitutability of travel options. The method adopts an accessibility-based 

concept of resilience and is applied to the Scottish long-distance bus and railway 

networks. 

In Chapter 3, an empirical method to assess the impact of geographic 

interdependencies between public transport modes on the importance and criticality 

of links is reported. Historical data of flood incidents are used in order to derive 

information on the characteristics of the hazard of concern – in this case, rainfall –  

that are typically ignored in the vulnerability assessment of transport networks to 

area-wide disruptions. The method uses a topological approach and is again applied 

to the Scottish long-distance bus and railway networks. 

Chapter 4 presents a method to systematically assess the concurrent impacts of 

extreme rainfall events on the accessibility of locations offered by interdependent 

public transport networks by considering the spatial dependence structure of 

flooding-producing rainfall co-occurrences. The method identified important links 

from an impact-based perspective and takes a similar accessibility-based approach 

as that of Chapter 2. The analysis is applied to the Scottish rail network which may 

be substituted by long-distance bus services. 
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Finally, Chapter 5 includes the general conclusions drawn from this thesis, 

contributions of research to the academic theory as well as practice, along with 

directions of future research. 
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2. Incorporating geographic interdependencies into the 

resilience assessment of multimodal public transport 

networks 
 

This chapter addresses the first objective of the thesis, which is to explore the 

potential consequences of geographic interdependencies due to weather-related 

events on the resilience of public transport modes operating on discrete 

infrastructure networks and how these consequences may vary depending on the 

spatial extent of events. As such, this chapter introduces a general framework for the 

evaluation of potential concurrent impacts of area-wide events on travel options 

offered by two discrete public transport modes and the implications of these impacts 

to the connectivity of locations. This chapter lays the foundation for the subsequent 

analyses in Chapters 3 and 4 by providing an approach to quantify geographic 

interdependencies between public transport modes and to incorporate these into 

metrics of network vulnerability. 

Note that this chapter has been published in the Journal of Transport Geography as 

follows: Boura, G. and Ferguson, N. S. (2024) “Incorporating geographic 

interdependencies into the resilience assessment of multimodal public transport 

networks”. Journal of Transport Geography, 118, 12 p., 103934. 

 

2.1.  Introduction 

The effective functioning of the public transport system is placed at risk by naturally-

occurring, spatially-defined events such as earthquakes, rainfall, flooding and 

landslides. These events have the capacity to disrupt transport infrastructure and, in 

areas affected by such events, discrete transport networks carrying separate public 

transport modes (e.g. railway and bus) are at risk of concurrent disruption. For 

example, heavy snowfall in March 2018 caused widespread railway and road closures 

in Scotland affecting train and bus services (Network Rail, 2020). More recently, in 

July 2021, heavy and prolonged rainfall caused extensive flooding in central Germany 

and Belgium, leading to damage of railway lines, roads and bridges (Fathom Global, 
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2021). Human-caused climate change is expected to intensify and alter patterns of 

extreme weather around the world in the coming decades, including increases in 

heavy precipitation, flooding and heat, thereby increasing the risk of transport 

disruption (Lee et al., 2023). 

As mentioned in Section 1.1, infrastructure networks which are located in close 

proximity to each other are said to be geographically (or spatially) interdependent if 

a hazardous event can disrupt both networks at the same time (Rinaldi et al., 2001; 

Zimmerman, 2004; Dudenhoeffer et al., 2006). As such, discrete public transport 

networks located in corridors defined by the natural landscape or built environment 

are particularly susceptible to concurrent disruption. From the public transport users' 

perspective, geographical interdependency reduces the added benefit of flexibility 

which exists when more than one transport mode is available. 

Redundancy is a key component of transport system resilience (Bruneau et al., 2003) 

and in its simplest form is equal to the total number of (feasible) options, such as 

paths and transport modes, which exist between locations (Berdica, 2002). By 

weighting each option by a function of travel deterrence, a generalised measure of 

redundancy is obtained which is equivalent to established measures of accessibility 

(Ben-Akiva and Lerman, 1985; Anas, 1983; Xi et al., 2018). High levels of redundancy 

help maintain connectivity between locations in the event of disruption. However, it 

is also evident that spatially-defined events may reduce redundancy in 

geographically interdependent systems. Although a number of studies have 

considered the redundancy of single and multimodal networks with shared 

infrastructure (e.g. Frappier et al., 2018; Liao and van Wee, 2017), and whilst there 

is a growing body of research addressing geographical interdependencies between 

civil infrastructure systems (Patterson and Apostolakis, 2007; Johansson and Hassel, 

2010; Pant et al., 2016; Thacker et al., 2017; Kays et al., 2023), to the authors’ 

knowledge there has been no attention paid to the effect of geographical 

interdependencies on the redundancy of discrete transport networks carrying 

separate public transport modes. 
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Recently the concept of substitutability was introduced into the literature (van Wee 

et al., 2019). Substitutability is defined as the level of accessibility which is preserved 

in the event of the unavailability of a preferred option and reflects the capacity of 

the transport system to absorb the impact of disruptive events. As with redundancy, 

the level of substitutability will be reduced as a result of geographical 

interdependencies between public transport modes. A comparison of the concepts 

of redundancy and substitutability, with and without consideration of geographical 

interdependency, is given in Figure 2-1. Whilst the attractiveness of preferred option 

(A) relative to the attractiveness of other options (B, C and D) does not affect the 

level of redundancy (or accessibility) offered by the set of options, it does affect the 

level of substitutability. Consequently, it is argued that both redundancy and 

substitutability can give important and complementary insights into public transport 

system resilience when considered within an accessibility framework. 

 

Figure 2-1 Comparison of redundancy and substitutability, with and without geographical 
interdependency. All figures show a choice set containing a total of four options (A-D) 
which is equal to the unweighted redundancy of options. The size of options indicates the 
attractiveness of each option; thus, Option A is the preferred option. The intersection of 
options 𝑨⋂𝑩 plus 𝑪⋂𝑫 is the degree of geographical interdependency in each choice set. 
In Figures 1(a) and 1(c), the sum of weighted options (𝑨⋃𝑩⋃𝑪⋃𝑫) is the weighted 
redundancy which is equivalent to the accessibility presented by the options. In Figures 
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1(b) and 1(d), Option A is unavailable, thus the remaining accessibility is equal to (((𝑨′ ∩
𝑩)⋃(𝑪⋃𝑫)) which is the substitutability of each choice set. 

 

Redundancy and substitutability are closely related to but distinct from the 

robustness of a transport system which reflects its capacity to withstand an adverse 

event without disproportionate consequences (Bruneau et al., 2003). Thus, they 

contribute to robustness (Agarwal, 2015; van Wee et al., 2019) and are, by extension, 

negatively correlated to vulnerability. As presented in Section 1.2.2, previous studies 

have assessed the vulnerability of single and multimodal transport systems in terms 

of loss in network performance (from a topological or system-based perspective) 

resulting from infrastructure failures, typically by removing one network component 

at a time to identify the most important components (Rodriguez-Nunez and Garcia-

Palomarez, 2014; Cats and Jenelius, 2014; Mattsson and Jenelius, 2015). Building on 

this concept, the cell-space method assesses the vulnerability of geographically 

interdependent networks to spatially-defined events by overlaying them with a grid 

and computing the impact of infrastructure failures within each cell (Johansson and 

Hassel, 2010; Ouyang, 2014).  

Whilst transport vulnerability has been comprehensively researched in recent years, 

these studies often reveal issues stemming from a lack of system redundancy. 

Therefore, gaining insight into the redundancy (and substitutability) of a system has 

the potential to shed light on the root cause of these issues and to identify key areas 

for improvement. Methodologically, vulnerability studies require the development 

of disruption scenarios with which to test the network whereas redundancy analyses 

do not require any prior assumption of disruption. Moreover, these scenarios are 

predominately based on the failure of single links (or adjacent links within defined 

cells) whereas redundancy focusses on the quality of route options between Origin-

Destination (O-D) pairs. This route-based approach is particularly pertinent when 

considering geographical interdependency since higher levels of interdependency 

reduces the level of redundancy between O-D pairs which is not something that 

would be evident from vulnerability analysis. 



 

35 
 

This study aims to assess the impact of geographic interdependencies on the 

redundancy and substitutability of discrete public transport infrastructure networks. 

This aim is achieved by developing two resilience measures which consider the 

contributions of each network to accessibility whilst accounting for the spatial 

proximity between network components. The measures are then applied to the 

Scottish public transport network consisting of long-distance bus and railway 

services. 

The rest of the chapter is organised as follows. Section 2.2 provides a review of 

relevant literature and Section 2.3 includes the research methods. In Section 2.4 the 

case study is presented, followed by the results in Section 2.5. Finally, Section 2.6 

includes conclusions and discussion. 

 

2.2. Background 

In the past decade, the redundancy of transport networks has received growing 

attention. Xu et al. (2018) proposed two measures capturing the number of 

connections with realistic travel times between locations and applied these to an 

urban road network. Similar approaches were developed by Jing et al. (2019) who 

measured redundancy between each pair of stations in a metro network, and by Yang 

et al. (2016) who proposed a network-level redundancy index reflecting the average 

number of routes between all stations of an urban rail network. The metrics 

discussed above assess redundancy from a topological perspective. Taking a different 

approach, Liao and van Wee (2017) developed an indicator for the diversity of travel 

options considering each option’s travel time and the extent of overlap between 

options, and subsequently applied it to a regional multimodal network. Mamun et al. 

(2013) measured the redundancy of bus travel options between census zones by 

developing and applying an index that considered the number of available routes and 

their associated travel times. Li et al. (2024) proposed route diversity measures 

reflecting the number of routes between origin-destination pairs, their 

corresponding travel costs and the level of overlap between them, and subsequently 
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used these to evaluate the redundancy offered by urban multimodal bus and metro 

networks. 

In contrast, limited work has been undertaken on substitutability within the context 

of resilience. Van Wee et al. (2019) defined substitutability as the reduction in 

accessibility occurring when the preferred option becomes unavailable. Building on 

this idea, Bondemark et al. (2021) measured substitutability between transport 

modes as the reduction in accessibility of locations, when a mode becomes 

unavailable. Chan et al. (2023) developed a metric that captures available options 

based on their travel time and monetary cost, and further examined how 

unappealing alternatives could be adjusted to improve spatial equity of options, thus 

providing insights into how substitutability of options can be enhanced. Another 

body of research has explored substitutability between travel modes from an impact-

based perspective. For example, Ouyang et al. (2015) measured the extent to which 

rail can substitute the airline network of China when the latter experiences 

disruptions, by comparing the accessibilities of locations offered by the airline 

network with and without considering the substitute rail services. Taking a similar 

approach, Hong et al. (2017) examined how well the urban bus and subway networks 

can substitute for each other, when one of them is disrupted. Although still in its 

infancy, current research shows that, by focusing on the attractiveness of options, 

substitutability provides further insights into the characteristics of resilience of 

networks, and how well alternative options can replace a preferred one. 

These substitutability measures pertain to events affecting only one option at a time 

and cannot be applied directly to the situation when area-wide events concurrently 

disrupt more than one modal option. As argued in Section 1.3, while geographic 

interdependencies have been explored between transport and other networks (e.g., 

Dong et al., 2020; Li et al. (2019); Pant et al., 2016; Patterson and Apostolakis, 2007; 

Zorn et al., 2020), no study has assessed this interdependency between transport 

modes which use discrete infrastructure networks. 
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2.3. Methods 

2.3.1. Network representation 

Each public transport network is represented by a graph 𝐺 consisting of a set of 

nodes 𝑁 = {𝑛1, 𝑛2, … , 𝑛𝐾} and a set of segments 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑀}, where 𝐾 is the 

number of nodes and 𝑀 is the number of segments. Each node corresponds to a 

public transport stop and each segment represents the transport infrastructure 

connecting two nodes (e.g., railway tracks, roads) consecutively serviced by a public 

transport trip. The segment is characterised by a shape, which is dictated by the 

travel paths that public transport vehicles take along the infrastructure. A set of trips, 

denoted by 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑆} operates on each segment, where 𝑆 is the total 

number of trips. Each trip is associated with a schedule defined by a sequence of 

nodes. Thus, a trip 𝑡 is expressed as 𝑡 = {𝑛𝑙𝑂, 𝑛𝑙1, 𝑛𝑙2, … , 𝑛𝑙𝑇}, where 𝑛𝑙𝑂 is the origin 

station and 𝑛𝑙𝑇 is the terminal station of the trip. 

In the following sections indicators of redundancy and substitutability are proposed 

which reflect the potential for concurrent disruption to alternative routes from 

spatially-defined events. These indicators are extensions of previous work which 

adjusted redundancy or substitutability on the basis of the shared use of 

infrastructure as discussed above. Here, the adjustment reflects the extent to which 

alternative routes fall within a specified distance of each other and thus would be 

exposed to the impact of the same event. 

Redundancy can be viewed as the total accessibility offered by alternative routes 

minus the contribution to accessibility from spatially proximate infrastructure. 

Similarly, substitutability can be viewed as the total accessibility minus the 

accessibility offered by the preferred route and the contribution to the remaining 

accessibility from spatially proximate infrastructure. 
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2.3.2. Redundancy indicator 

The following redundancy indicator is based on an indicator of “robustness”1 

proposed by Liao and van Wee (2017) which is adapted in this paper to consider the 

degree of geographic interdependency between two networks by introducing a term 

based on spatial proximity. 

When considering a single mode 𝑚1, let 𝑝𝑚1
 denote the least-cost route connecting 

an origin-destination pair, 𝑂𝐷. The accessibility offered by 𝑚1 is expressed in 

Equation 2-1 (Liao and van Wee, 2017). The negative exponential form is derived 

from the widely used gravity-based measure, based on which higher costs of options 

result in lower accessibility values (Geurs and van Wee, 2004). 

𝑎𝑐𝑐𝑂𝐷
𝑚1 = 𝑒𝑥𝑝 (− 

𝐶(𝑝𝑚1
)

𝛽𝑚1

) 2-1 

 

Where 𝐶(𝑝𝑚1
) represents the cost of travel along 𝑝𝑚1

 and  𝛽𝑚1
 indicates the 

maximum travel cost acceptable to travellers. If the indicator refers to the same 

region and the same types of destinations, then 𝛽𝑚1
 can be set arbitrarily as all 

indicator values are corrected equally (Liao and van Wee, 2017).  

Now consider that mode 𝑚2 is an alternative to  𝑚1. Following Liao and van Wee 

(2017), the measure in Equation 2-1 can be extended by adding the accessibility 

offered by 𝑚2, 𝑎𝑐𝑐𝑂𝐷
𝑚2. When routes 𝑝𝑚1

 and 𝑝𝑚2
 are not spatially proximate to each 

other, and, thus, not subject to geographic independencies, the contribution of 𝑚2 

to the overall level of accessibility is 𝑎𝑐𝑐𝑂𝐷
𝑚2 and hence the redundancy between 𝑂𝐷 

is the sum of 𝑎𝑐𝑐𝑂𝐷
𝑚1 and 𝑎𝑐𝑐𝑂𝐷

𝑚2, as shown in Equation 2-2 below. This extended 

measure reflects the degree of redundancy offered by the two modes. 

𝑎𝑐𝑐𝑂𝐷
𝑚1←𝑚2 = 𝑎𝑐𝑐𝑂𝐷

𝑚1 + 𝑎𝑐𝑐𝑂𝐷
𝑚2 2-2 

                                                       
1 Because in their work, robustness was perceived as the number of travel options available between 
an origin-destination pair, we argue that redundancy is a more pertinent term; hence, the adapted 
indicator will be referred to as redundancy indicator. 
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However, in case that 𝑝𝑚2
 is in the vicinity of 𝑝𝑚1

, a correction factor is introduced 

to account for the geographic interdependency between 𝑚1 and 𝑚2. This factor is 

referred to as the neighbourhood coefficient and denotes the share of length of 𝑝𝑚2
 

which lies within a specified distance of 𝑝𝑚1
. This formulation is presented in 

Equation 2-3. The reduced contribution of 𝑚2 to the accessibility of 𝑂𝐷 via 𝑚1, due 

to the proximity between the routes is included in Equation 2-4. 

𝑅𝐶(𝑝𝑚2
, 𝑝𝑚1

) =  𝑙(𝑝𝑚2
, 𝑝𝑚1

) 𝑙(𝑝𝑚2
)⁄   2-3 

𝑎𝑐𝑐𝑂𝐷
𝑚1←𝑚2 = 𝑒𝑥𝑝 (− 

𝐶(𝑝𝑚1
)

𝛽𝑚1

)

+  𝑒𝑥𝑝 (− 
𝐶(𝑝𝑚2

)

𝛽𝑚2

) [1 − 𝑅𝐶(𝑝𝑚2
, 𝑝𝑚1

)] 

2-4 

 

 

Where 𝑅𝐶(𝑝𝑚2
, 𝑝𝑚1

) is the neighbourhood coefficient, 𝑙(𝑝𝑚2
) is the length of 

𝑝𝑚2
, and 𝑙(𝑝𝑚2

, 𝑝𝑚1
) is the length of 𝑝𝑚2

 in the neighbourhood of 𝑝𝑚1
.  

The neighbourhood of routes was represented by buffer zones constructed around 

them. Figure 2-2 illustrates an example of 𝑝𝑚2
 lying partially in the neighbourhood of 

𝑝𝑚1
.  

 

Figure 2-2 Example of a route of the substitute transport mode (purple line) located in 
the neighbourhood (grey area) of the primary route (red line) 
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Equation 2-4 includes the positive effects of the alternative mode 𝑚2 to the primary 

mode 𝑚1 in connecting a pair of locations, whilst considering geographic 

interdependencies. 

Similarly, 𝑎𝑐𝑐𝑂𝐷
𝑚2←𝑚1 reflects the redundancy offered by 𝑚2 and 𝑚1, when taking into 

account the spatial proximity of the two routes. These two indicators are not 

necessarily equal, because the share of length of 𝑝𝑚2
 in the neighbourhood of 𝑝𝑚1

 is 

not equal to the share of length of 𝑝𝑚1
 in the neighbourhood of 𝑝𝑚2

, and therefore 

both indicators were computed. For example, for a pair of locations where 

accessibilities 𝑎𝑐𝑐𝑚1and 𝑎𝑐𝑐𝑚2 are approximately equal,  if the share of 𝑝𝑚2
 in the 

neighbourhood of 𝑝𝑚1
 is lower than the share of 𝑝𝑚1

 in the neighbourhood of 𝑝𝑚2
, 

i.e., 𝑅𝑐(𝑝𝑚2
, 𝑝𝑚1

) is lower than 𝑅𝑐(𝑝𝑚1
, 𝑝𝑚2

), then the redundancy 𝑎𝑐𝑐𝑚1← 𝑚2 will 

be higher than 𝑎𝑐𝑐𝑚2← 𝑚1. This in turn indicates that using 𝑚1 as the primary mode 

of travel and 𝑚2 as alternative provides more resilient connectivity between the pair 

of locations than when 𝑚2 is the primary mode. 

If 𝑝𝑚2
 is entirely within the neighbourhood of 𝑝𝑚1

,  then 𝑅𝑐(𝑝𝑚2
, 𝑝𝑚1

) takes the 

value of 1, and therefore 𝑎𝑐𝑐𝑂𝐷
𝑚1← 𝑚2,𝑦=1

 takes its minimum value given by Equation 

2-1, while if 𝑝𝑚2
 is entirely outside of the neighbourhood of 𝑝𝑚1

, then 𝑅𝑐(𝑝𝑚2
, 𝑝𝑚1

) 

is zero and, as such, 𝑎𝑐𝑐𝑂𝐷
𝑚1← 𝑚2,𝑦=1

 takes its maximum value (Equation 2-2). 

The redundancy indicator can be aggregated by origin 𝑖 or destination 𝑗, as shown in 

Equations 2-5 and 2-6 respectively, to assess the redundancy of travel options from 

each origin to all zones (Equation 2-5) or from all zones to each destination (Equation 

2-6).  

𝐴𝑐𝑐𝑖
(𝑚1← 𝑚2)

=  ∑(𝑎𝑐𝑐𝑖𝑗
𝑚1← 𝑚2)

𝑁

𝑗=1

 
2-5 

𝐴𝑐𝑐𝑗
(𝑚1← 𝑚2)

=  ∑(𝑎𝑐𝑐𝑖𝑗
𝑚1← 𝑚2)

𝑀

𝑖=1

 
2-6 
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Where 𝑗 = {1, 2, . . . 𝑁} is the set of destinations and 𝑖 = {1, 2, . . . 𝑀} is the set of 

origins. 

For this study, the redundancy indicator was used to determine the loss in 

redundancy because of area-wide events concurrently affecting two modes 𝑚1 and 

𝑚2.  

The opportunities available at the destination zones were not considered, as the 

scope of this work focuses on the impacts of geographic interdependency on the 

connectivity offered by two discrete networks, rather than the wider implications on 

the activity system. 

In the absence of empirical data, it was assumed that both 𝛽𝑚1
 and 𝛽𝑚2

 were equal 

to 12 hours which was considered as the maximum travel time that users of both 𝑚1 

and 𝑚2 are willing to travel. In reality these coefficients may not be equal because 

users may place different limits on the maximum time they would be willing to spend 

on different modes, for example due to variations in the levels of comfort provided.  

The redundancy indicator was computed as follows: 

Case I: The positive effects of 𝑚2 were added to the level of accessibility, without 

accounting for geographic interdependencies between 𝑚1 and 𝑚2.  

For each O-D pair, the neighbourhood coefficient was zero, and therefore 

𝑎𝑐𝑐𝑖𝑗
(𝑚1←𝑚2)𝑰

 was estimated from Equation 2-2. The redundancy indicator was 

computed for each origin zone, 𝐴𝑐𝑐𝑖
(𝑚1← 𝑚2)𝑰

 using Equation 2-5.  

Case II: The positive effects of 𝑚2 were added to the level of accessibility, accounting 

for geographic interdependencies between 𝑚1 and 𝑚2.  

For each OD pair, the redundancy 𝑎𝑐𝑐𝑖𝑗
(𝑚1←𝑚2)𝑰𝑰

 was quantified using Equation 2-4. 

The value of neighbourhood coefficient was computed using Equation 2-3. The 

redundancy indicator was again computed for each origin zone, 𝐴𝑐𝑐𝑖
(𝑚1← 𝑚2)𝐼𝐼

 from 

Equation 2-5.  



 

42 
 

The losses in redundancy for each origin because of geographic interdependencies 

were computed using Equations 2-7 and 2-8 below. 

𝛥𝐴𝑐𝑐𝑖,𝑚1

(𝑎𝑏)
=  𝐴𝑐𝑐𝑖

(𝑚1← 𝑚2)𝑰𝑰
−  𝐴𝑐𝑐𝑖

(𝑚1)𝑰
 2-7 

𝛥𝐴𝑐𝑐𝑖,𝑚1

(𝑟𝑒𝑙)
=  (𝐴𝑐𝑐𝑖

(𝑚1← 𝑚2)𝑰𝑰
− 𝐴𝑐𝑐𝑖

(𝑚1)𝑰
) 𝐴𝑐𝑐𝑖

(𝑚1)𝑰
⁄  2-8 

 

2.3.3. Substitutability indicator 

The model of substitutability developed by van Wee et al., (2019) was adapted to 

incorporate geographic interdependencies between two modes. Van Wee et al. 

(2019) defined substitutability as the change in accessibility when the least-cost 

option is unavailable (Equation 2-9). The normalised substitutability, which ranges 

between 0 and 1, is shown in Equation 2-10. When the normalised measure is close 

to 0, the substitutability between the O-D pair is very poor, whilst when the value is 

1, the preferred option can be fully substituted by alternatives without any 

accessibility loss. 

𝑆𝑂𝐷 =  
1

𝐿𝑆𝑂𝐷 − 𝐿𝑆𝑂𝐷
𝑌=𝑖

 
2-9 

�̂�𝑂𝐷 = 1 − 
1

1 +  𝑆𝑂𝐷
 

2-10 

 

Where 𝑆𝑂𝐷 is the degree of substitutability for an O-D pair and �̂�𝑂𝐷 is the normalised 

substitutability measure. 𝐿𝑆𝑂𝐷 is the total accessibility (i.e. the maximum expected 

utility) of all options between 𝑂𝐷 under normal conditions and 𝐿𝑆𝑂𝐷
𝑌=𝑖 is the 

accessibility of remaining options when the preferred choice 𝑖 is unavailable.  

Although Equations 2-9 and 2-10 remain unchanged, the remaining utility was 

adapted to incorporate the geographic interdependency between 𝑚1 and 𝑚2. When 

both 𝑝𝑚1
 and 𝑝𝑚2

 are available, where the former is the preferred option and the 

latter is the alternative, their maximum utility, 𝐿𝑆𝑂𝐷
𝑚1← 𝑚2 , is as shown in Equation 

2-11. When  𝑝𝑚1
 becomes unavailable and the two routes are distant from each 
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other, and thus there are no geographic interdependencies, the remaining utility 

𝐿𝑆𝑂𝐷
𝑚1← 𝑚2,𝑦=1

 is given in Equation 2-12. 

𝐿𝑆𝑂𝐷
𝑚1← 𝑚2 =  𝑙𝑛(𝑎𝑐𝑐𝑂𝐷

𝑚1 + 𝑎𝑐𝑐𝑂𝐷
𝑚2  )   2-11 

𝐿𝑆𝑂𝐷
𝑚1← 𝑚2,𝑦=1

=  𝑙𝑛(𝑎𝑐𝑐𝑂𝐷
𝑚2)   2-12 

 

Where 𝑎𝑐𝑐𝑂𝐷
𝑚1 and 𝑎𝑐𝑐𝑂𝐷

𝑚2 can be computed using Equation 2-1. 

However, when 𝑝𝑚2
 is in the vicinity of 𝑝𝑚1

, the neighbourhood coefficient of 

Equation 2-3 is introduced to reflect the potential for that part of 𝑝𝑚2
 which lies in 

the neighbourhood of 𝑝𝑚1
, to be concurrently disrupted. The remaining utility in this 

case is shown in Equation 2-13. 

𝐿𝑆𝑂𝐷
𝑚1← 𝑚2,𝑦=1

= ln(𝑎𝑐𝑐𝑂𝐷
𝑚2  [1 −  𝑅𝑐(𝑝𝑚2

, 𝑝𝑚1
)]) 2-13 

 

In case that 𝑝𝑚2
 is entirely within the neighbourhood of 𝑝𝑚1

, and thus 𝑅𝑐(𝑝𝑚2
, 𝑝𝑚1

) 

is one, the remaining utility of Equation 2-13 approaches negative infinity and, 

therefore, substitutability is zero. 

Similarly with redundancy, the normalised substitutability indicator was obtained for 

origins, without accounting for geographic interdependencies between the two 

modes (Case I) and when accounting for them (Case II). In the former case, the 

neighbourhood coefficient of substitute routes was set to zero, while in the latter 

case it was computed using Equation 2-3. Consequently, the absolute and relative 

losses in substitutability for the origins were computed in a similar way to the 

indicator of redundancy. 

 

2.4. Application to rail and long-distance bus networks in mainland Scotland 

The services provided by the public transport system range from local, operating 

mainly in urban areas (e.g., local bus, subway), to regional and long-distance services, 

which provide connectivity between cities and regions (e.g., certain railway, long-
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distance bus/coach services). Because the focus of this work is on services that can 

act as alternatives to each other, modes operating on the same functional scale were 

selected. Thus, discrete public transport networks for long-distance travel consisting 

of railway and coach/bus services in mainland Scotland were used to illustrate the 

application of measures described in Section 3. 

The main data sources for the networks were the publicly-available General Transit 

Feed Specification (GTFS) data for railway (Association of Train Operating Companies, 

2020) and bus (Traveline, 2019). For each mode, the data contains information on 

the stops, routes, trips and timetable of services of the relevant operating 

companies. The GTFS datasets were initially filtered based on the rail stations and 

bus stops located within the mainland of Scotland. Contrary to the rail dataset that 

relates to regional and long-distance routes exclusively, the available dataset for bus 

made no distinction between urban and long-distance services (i.e. all bus routes 

were recorded as belonging to the same route type) and, therefore, it was not 

possible to directly extract data associated exclusively with long-distance bus travel. 

While most long-distance services in Scotland are operated by certain companies, 

such as National Express, Stagecoach and Megabus, there are multiple operators for 

urban travel that also provide longer-distance services. Therefore, with a view to 

retaining only long-distance bus routes, the length of bus routes was used to 

characterise long-distance travel. Because there is no consensus on how long-

distance travel is defined (Aultman-Hall, 2018), with thresholds ranging between 24 

km in the UK (van de Velde, 2013) and over 80 km in the United States (Outwater et 

al., 2015), a 30 km threshold was selected in this study which removed bus routes 

within urban areas and also between adjacent urban areas from the final dataset. 

OpenTripPlanner (OTP) (OpenTripPlanner, 2022) was used to obtain travel distances 

between the termini, and only those routes longer than 30 km long were retained. 

The GTFS data was then related to spatially accurate models of the railway and bus 

infrastructure networks. For bus, the OS MasterMap Highways Network (Ordnance 

Survey, 2021) was used and, for railway, a model was created using spatial data on 

railway lines and junctions provided by Network Rail (Network Rail, personal 
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communication, 7 June 2021). In each case, routes were constructed by finding the 

shortest path between consecutive stops/stations for each unique service contained 

in the GTFS data. The final representation of these two discrete public transport 

networks is shown in Figure 2-3. 
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Figure 2-3 Travel paths of the long-distance public transport network in mainland 
Scotland, along with selected Scottish cities and towns and their respective population 
(Scottish Government, 2023). 
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To measure accessibility between locations, a grid was formed dividing the study area 

into cells representing travel zones. A hexagonal grid was selected because it is 

preferred when exploring connectivity (Birch et al., 2007). Using the same reasoning 

as that for the identification of long-distance bus routes, the cell size was selected to 

have a 30km long diagonal to exclude short trips. Proximity analysis between 

localities (cities and towns in Scotland with population of more than 500) revealed 

that only 8% of locality pairs were related to separation distances of less than 30km. 

These are adjacent localities (e.g., Prestwick to Ayr) forming parts of the same 

continuous urban area and thus travel between them was not considered long-

distance. Therefore, it was concluded that the selected cell size was appropriate for 

this work. For zones partly located outside of Scotland, only the part lying within the 

country was considered in the analysis. Furthermore, zones separated by un-spanned 

stretches of coastal water were subdivided to avoid problems in connectivity with 

the rest of the zoning system. As the focus is on locations serviced by both modes, 

only zones containing at least one stop of each mode were considered. 

OTP was used to estimate the least-cost routes between zones. Two joint public 

transport-walk networks were constructed, one for each mode, using the street 

network provided by OpenStreetMap (OpenStreetMap, 2022) and relevant GTFS 

dataset. Owing to the nature of the GTFS data, the models were schedule-based, 

rather than frequency-based, as they use the actual timetable of services. 

Subsequently, route analysis was performed between all OD pairs. The day of 

journeys was set to Monday and potential times of departure were set for a time 

window between 7:30am and 9:30am, the former time being the earliest possible 

time of departure and the latter being the latest. This time window was selected to 

be relatively long to avoid excluding from the analysis infrequent rail and bus services 

that connect rural and remote areas.  

Since access to long-distance services can be achieved via various modes, e.g. 

walking, bus and taxi, the start and end point of travel were taken to be the stops 

closest to the centroid of origin and destination zones. The maximum walking 

distance when transferring between services was restricted to 5km to prohibit 
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excessive walking, and the maximum number of transfers was set to 2 on the 

assumption that travellers making longer-distance journeys have a higher willingness 

to transfer between routes than those on shorter journeys. 

Then, route analysis was performed between all combinations of candidate stops in 

the origin and destination zones, and the least-cost route identified across all 

possible departure times within the two-hour time window was selected on the basis 

of travel time.  

The output itineraries derived from OTP included the start and end journey times, 

number of transfers, duration of journey, service (or services) used, boarding and 

alighting stops, and boarding and alighting times for each service. Owing to the 

travellers’ flexibility to start their journey within the defined time window, there was 

no waiting time at the start of each journey, however the waiting time arising from 

transfers between services was included. A spatial representation of these itineraries 

was then constructed by identifying the routes of services used by the traveller and 

linking them to the spatially accurate travel paths of networks (Figure 2-3), to enable 

geographical proximity between alternative bus and railway routes to be estimated.  

 

2.5. Results 

Based on the travel times of least-cost routes between O-D pairs, the accessibility 

offered by bus and rail routes were calculated using Equation 2-1. For simplicity, 

routes connecting O-D pairs served by both modes will be henceforth referred to as 

alternative routes. Figure 2-4 shows the distribution of accessibility values 

characterising the alternative routes. 
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Figure 2-4 Histograms of accessibility for the (A) railway and (B) bus routes for OD pairs 
served by both modes on Monday between 07:30am and 09:30am. Accessibility values 
for a particular mode range from approximately 0 to 1. Low values of accessibility 
indicate long travel times close to 12 hours, while high accessibility values indicate short 
travel times. 

 

Figure 2-4 shows that high accessibility values, especially those higher than 0.8, are 

more prevalent to each mode than low values. Furthermore, the distributions show 

that travel by rail is associated with slightly higher accessibility than bus which was 

expected as travel times by train are generally lower than travel times by bus. 

 

To assess the geographic distribution of accessibility offered by rail and bus jointly, 

accessibility values of routes were aggregated for origins and destinations (Equations 

2-5 and 2-6), as shown in Figure 2-5. 
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Figure 2-5 Maps showing accessibility-based redundancy values of zones connected by 
both modes for (a) travel from origins (b) travel to destinations, when ignoring 
geographic interdependencies between the two networks. Non-shaded zones are those 
not served by both modes. Zones in lighter colours are characterised by lower 
accessibility than those in darker colours. 

 

Figure 2-5 reveals significant similarities in the accessibility for travel from origins and 

to destinations. In both cases, a cluster of high accessibility is observed in the central 

part of Scotland (“Central Belt”), where the largest and most populated cities are 

located, such as Glasgow and Edinburgh. Zones containing less populated localities 

in North Scotland (e.g., Oban, Mallaig, Inverness) and South Scotland (e.g., Ayr, 

Stranraer, Dumfries), but also in the area above the Central Belt are associated with 

lower accessibility values. Finally, other zones where smaller settlements are located 

(e.g., Elgin, Thurso, Wick) are related to the lowest accessibility values. 

 

2.5.1. Redundancy of options and geographic interdependencies between modes 

To assess how the positive effects of redundancy diminish due to potential 

geographic interdependencies, the redundancy indicator (Equation 2-4) was 

computed for various buffer widths and the losses in redundancy due to geographic 

interdependencies were obtained (Figure 2-6).  
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Figure 2-6 Relative losses in redundancy of O-D Pairs when considering geographic 

interdependencies related to various neighbourhood sizes. Larger values indicate higher 

susceptibility of travel options between an O-D pair to accessibility loss due to geographic 

interdependencies, while lower values indicate lower susceptibility. 

 

Figure 2-6 reveals that, as expected, for hazards related to a 100 m buffer width, the 

redundancy of O-D pairs exhibits slight losses, and as the buffer widths increase, the 

losses continue to increase gradually. For the most localised hazard, the relative 

losses for most O-D pairs are less than 15%, which indicates that only a small part of 

the alternative route is within the 100 m-wide buffer of the primary route and, thus, 

the contribution of former to the redundancy is reduced only by a small percentage. 

On the other hand, for the most large-scale hazard, losses can be as much as 60%, 

revealing that a significant part of the substitute route is in the 10 km-wide buffer of 

the primary, consequently reducing markedly the contribution of substitute mode to 

the redundancy. Post-hoc comparisons of redundancy values were performed 

between the case where proximity is ignored and all other cases using Dunn’s test 

(Table S1) which revealed that the losses are statistically significant in all cases, 

indicating that, regardless of their spatial extent, hazards markedly influence 

redundancy of travel options.  
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For small buffer widths, the outliers of Figure 2-6 represent location pairs related to 

particularly high redundancy losses and thus particularly susceptible to geographic 

interdependencies. The O-D pairs related to outliers for 100 m-wide buffers, along 

with the sections of routes that contribute to this susceptibility, are shown in Figure 

2-7. 

 

 

Figure 2-7 O-D Pairs associated with particularly high redundancy losses where primary 
mode is (a) rail and (b) bus in the case of 100 m-wide buffers, along with sections of (c) rail 
and (d) bus (road) networks (in red) used by routes connecting these O-D pairs.  

 

The results reveal that the most susceptible O-D pairs are similar for rail and bus 

(Figure 2-7(a) and Figure 2-7(b)). It is observed that these pairs of locations share the 
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same region, particularly the northern part of the country, while a few O-D pairs are 

also scattered in the rest of the country. Sections of routes that contribute to these 

high losses are identified in Figure 2-7(c) and Figure 2-7(d). Most of these sections 

are located in North Scotland and are located in very close proximity to each other, 

thus revealing that even the most localised events may concurrently disrupt these 

alternative rail and bus routes and result in high accessibility losses.  

Finally, the redundancy indicator was aggregated by origin to ascertain the 

geographic distribution of potential redundancy loss due to geographic 

interdependencies, shown in Figure 2-8. Based on the mean relative losses in 

redundancy between O-D pairs due to geographic interdependencies (Table S1), the 

buffer widths of 100 m, 1.5 km and 10 km were selected for the zone-level 

aggregation. 

 

 

Figure 2-8 Losses in redundancy for origins (a) in absolute terms due to hazards of 100 m 

footprint (b) in absolute terms due to hazards of 1.5 km footprint (c) in absolute terms 
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due to hazards of 10 km footprint (d) in relative terms due to hazards of 100m footprint 

in relative terms due to hazards of 1.5 km footprint, and (f) in relative terms due to 

hazards of 10 km footprint, when rail is considered as primary travel mode and bus as 

alternative. Non-shaded zones are those origins not served by both modes. Zones in 

lighter colours are less susceptible to losses due to geographic interdependencies. 

 

Figure 2-8 reveals that, for the 100 m hazard footprint, all zones experience low 

absolute losses in redundancy (Figure 2-8(a)), and only two origins suffer slightly 

higher relative losses (Figure 2-8(d)). For the 1.5 km footprint, absolute losses in 

redundancy increase for densely populated zones in Central Belt (Figure 2-8(b)). For 

the rest of Scotland, while absolute losses remain low, they are high in relative terms 

(Figure 2-8(e)), ranging for most zones between 13% and 26%, but also 26% to 39% 

in some cases. This indicates that as the hazard footprint increases, zones may lose a 

relatively large percentage of their initial redundancy due to alternative routes 

connecting them being concurrently disrupted. Finally, for the 10 km footprint, 

absolute losses are very high in Central Belt, and considerably lower in the rest of the 

country (Figure 2-8(c)). However, when considering these in relative terms (Figure 

2-8(f)), less populated zones outside of Central Belt are the most susceptible to losses 

arising from geographic interdependencies. Generally, it is observed that relative 

losses due to large-scale hazards result in significantly high losses across the entire 

country and especially in less populated zones, revealing that in many cases those 

zones may lose larger percentage of their initial accessibility than urban zones, when 

the correlated risk of alternative routes being concurrently disrupted is considered. 

Figure S1 shows the loss in redundancy for origins due to geographic 

interdependencies when bus is the primary mode and rail is substitute, and the 

results are very similar to those of Figure 2-8. 
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2.5.2. Substitutability of options accounting for geographic interdependencies 

between modes 

Figure 2-9  shows the distributions of normalised substitutability losses for 

alternative routes for various buffer widths. 

 

 

 

Figure 2-9 Losses in normalised substitutability values of alternative routes of each mode 
for buffers of varying widths. The box plots for bus (orange colour) show substitutability 
losses when bus is the primary mode and railway is substitute and express the reduction 
in the extent to which railway routes replace the corresponding bus routes when the 
latter become unavailable. Likewise, box plots for railway (green colour) reflect the drop 
in extent to which bus routes replace the accessibility provided by railway routes. 

 

As with redundancy, the box plots of Figure 2-9 reveal that losses in substitutability 

of O-D pairs exhibit an upward trend as the buffer widths around primary routes 

increase. Post-hoc comparisons using Dunn’s test (Table S2) showed that geographic 

interdependencies result in significantly different substitutability values, even for the 

smallest-scale hazards considered.  

As with the redundancy indicator, the routes associated with the high outliers of 

substitutability losses in the case of 100 m-wide buffers were identified, as shown in 

Figure 2-11, along with the section of public transport routes that contribute to these 
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losses. The results reveal that the O-D pairs related to these outliers are in similar 

locations to those of redundancy (Figure 2-7), however they appear to be significantly 

more, when considering either mode as primary. This shows that while significant 

discrepancies in the redundancy and substitutability losses do not exist, it further 

reinforces the observation that it is possible for an O-D pair to experience very high 

losses in substitutability but not in redundancy. Thus, for an O-D pair where the 

primary route is characterised as high accessibility and the alternative route is 

entirely within the neighbourhood of the former, the redundancy indicator will still 

be high, while substitutability will be zero. 

 

Figure 2-10 O-D Pairs associated with high outliers of substitutability losses for travel by 
(a) rail and (b) bus, in the case of 100 m-wide buffers, along with sections of (c) rail and 
(d) bus (road) networks that the routes connecting these O-D Pairs use. 
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Regarding the sections of the rail and bus networks that contribute to these high 

losses in substitutability, Figure 2-10(c) and Figure 2-10(d) show that these are the 

same as those for redundancy (Figure 2-7), thus revealing that regardless an O-D pair 

is characterised by extremely high losses in redundancy, substitutability (or both), its 

corresponding routes use specific parts of the network that contribute to its 

susceptibility to geographic interdependencies. 

The normalised substitutability of routes was aggregated for origins for the 100 m, 

1.5km and 10km footprints, as shown in Figure 2-11.  

 

 

Figure 2-11 Losses in normalised substitutability for origins (a) in absolute terms due to 
hazards of 100m footprint (b) in absolute terms due to hazards of 1.5 km footprint (c) in 
absolute terms due to hazards of 10 km footprint (d) in relative terms due to hazards of 
100m footprint (e) in relative terms due to hazards of 1.5 km footprint, and (f) in relative 
terms due to hazards of 10 km footprint, when rail is considered as primary travel mode 
and bus as substitute. Non-shaded zones are those origins not served by both modes. 
Zones in lighter colours are less susceptible to losses due to geographic 
interdependencies. 
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The results for localised hazards (Figure 2-11(a) and Figure 2-11(d)) suggest that all 

zones exhibit very low losses in substitutability, which is consistent with those of 

redundancy (Figure 2-8(a) and Figure 2-8(d)). However, as the scale of hazard 

increases, differences between the two indicator values are revealed. While the 

geographic distribution of absolute losses in redundancy for the 1.5 km-wide buffers 

(Figure 2-8(b)) shares significant similarities with that of normalised substitutability 

(Figure 2-11(b)), the distributions of relative losses exhibit differences as Figure 

2-11(e) indicates that fewer zones are related to high substitutability losses due to 

geographic interdependencies than Figure 2-8(e). These differences are even more 

significant for the 10km-wide buffers (Figure 2-11(f)) and Figure 2-8(f)). This indicates 

that while a zone may experience very high losses in terms of redundancy, its losses 

in terms of substitutability may be lower. It is further worth noting that zones that 

rank high in substitutability losses but low in redundancy are not observed, indicating 

that using the redundancy indicator to assess losses in accessibility of locations 

provides more conservative results than the substitutability indicator. 

The origin-level losses in substitutability were also computed (Figure S2) when 

considering bus as primary mode and reveal very similar results to those of Figure 

2-11.  

 

2.6. Conclusions and Discussion 

In this chapter, an approach is presented to assess the role of geographic 

interdependencies between two discrete public transport networks for two 

components of resilience, namely redundancy and substitutability of travel options. 

Measures were developed to represent each of these components using an 

accessibility-based approach. The degree of geographic interdependencies was 

introduced by reducing the contributions of total accessibility of alternative routes 

based on the proximity between them. The results reveal that while an alternative 

mode provides significant resilience benefits, its contributions are potentially 
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reduced when geographic interdependency is considered. The extent of this 

reduction depends on the spatial footprint of hazards and the degree of proximity of 

alternative routes, highlighting the importance of careful selection of buffer size. A 

very small value will result in narrow buffers that underestimate the risk of routes 

being concurrently disrupted by large-scale events, while wide buffers could 

overestimate the risk of concurrent disruptions caused by localised events. In the 

example presented, the redundancy and substitutability of most routes between OD 

pairs were not significantly affected by small-scale events, however losses became 

significantly more noticeable for larger-scale hazards. 

Furthermore, the results of the example show that, although urban, densely 

populated areas are associated with the highest redundancy and substitutability 

losses in absolute terms, rural areas that are less densely populated lose a higher 

percentage of their initial values as a result of area-wide events. This is because, 

although absolute losses in zones located in less populated areas due to geographic 

interdependency were low, their initial values in redundancy and substitutability (i.e., 

when ignoring geographic interdependency) were also low. In contrast, absolute 

losses due to geographic interdependency in urban zones were high, but their initial 

values in redundancy and substitutability were also high; therefore, these high 

absolute losses were only a small proportion of their initial indicator values. An 

important observation of the results highlighted differences in the ranking of OD 

pairs and locations in terms of redundancy and substitutability, which is attributed 

to the fact that the former metric places more emphasis on the contribution of the 

primary option to the accessibility, while the latter focuses more on the remaining 

accessibility when the primary option is unavailable. These indicators therefore 

complement each other when assessing the accessibility of locations, with or without 

accounting for geographic interdependency. 

The work presented comes with several limitations. Firstly, the redundancy and 

substitutability measures were assessed in terms of travel time, however other 

elements of travel deterrence could be considered, such as distance and economic 

cost of travel. Secondly, for the proposed indicators, rail and bus operating on the 
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same functional level were identified based on the travel distance of their services. 

However, although the modes selected were largely interchangeable, each has 

different capacities and flexibilities. For example, typically a bus service may more 

easily detour in the event of a road closure, while rail can put on replacement buses 

when trains are disrupted. Thirdly, due to the fact that the available GTFS data for 

bus services in Scotland made no distinction between local and long-distance routes, 

the latter were selected based solely on the length of each bus route. This selection 

could be further refined by retaining bus services with termini in different localities 

which exceed a given route distance threshold. Another limitation is that the impact 

of geographic interdependencies on components of resilience was assessed for a 

certain time-window on a weekday. Choosing a different day or time-of-day may 

have resulted in different itineraries and, as such, different redundancy and 

substitutability values. Repeating the analysis for various time-windows (e.g., peak 

and off-peak times) would allow ascertaining hours-of-day and days-of-week, where 

resilience of networks is mostly affected by geographic interdependencies. 

Furthermore, the geographic interdependencies were estimated using a buffer-

based approach where only those parts of alternative routes which lie within the 

buffer of preferred route were considered, while those parts lying outside of that 

buffer were ignored. The method could be extended to avoid this “cliff-edge” effect 

by allowing the degree of geographic interdependency to decay with separation 

distance between routes. However, capturing the distance-decay effect would be 

challenging and computationally intensive, as proximity between alternative routes 

varies along their length. Another limitation of this work is that the potential of two 

travel options being concurrently disrupted arises purely from their proximity. Whilst 

horizontal distance is an important determinant for concurrent failures, other factors 

may influence this, depending on the hazard of concern, such as vertical separation 

of routes and slope. To better account for these factors, risk maps showing the spatial 

footprint and intensity of hazards of interest could be used instead of buffers. 

Finally, because the focus of this work was to assess the effects of the geographic 

interdependency between two discrete public transport modes, only the shortest 
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path route of each mode was considered. The method could also include other 

feasible routes of these modes following the approach of Liao and van Wee (2017), 

in which the accessibility offered by each additional route is reduced by the extent 

to which it falls within the buffers of routes which have already been included in the 

calculation. Likewise, this approach could be extended to include more than two 

transport modes, as well as the attractiveness of destinations. A general model of 

redundancy that considers both the value of destination opportunities and the 

connectivity provided by multiple options is presented in the Supplementary 

Material (Equation S1 of Appendix A). 

Despite these limitations, the findings provide novel indications on the impacts of 

geographic interdependencies related to area-wide events on components of 

resilience of transport networks. The approach presented enables policy makers and 

network managers to explore the potential severity of consequences of area-wide 

events on multimodal transportation networks and identify areas of the network 

which, if impacted, would lead to the highest losses in accessibility. 
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This chapter developed a general framework for assessing the impact of geographic 

interdependencies on the resilience of public transport modes which operate on 

spatially proximate infrastructure networks. However, this framework was applied 

for events of varying spatial extent and, therefore, did not assess specifically the 

geographic interdependencies that arise due to extreme rainfall. The next chapter 

builds upon this foundation by empirically assessing the impact of rainfall-related 

geographic interdependencies using historical flood incident data for the two 

networks of concern.  
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3. Empirical assessment of the impact of rainfall-related 

geographic interdependencies on multimodal public 

transport networks 

 

The general framework developed in Chapter 2 can be used to examine the impact 

of weather-related area-wide events on the accessibility of geographically 

interdependent public transport networks and the connectivity of locations, however 

it does not explicitly pertain to extreme rainfall. This chapter addresses this gap by 

empirically characterising the geographic interdependencies between modes 

specifically due to rainfall, and by further considering the potential for the same 

rainfall event to inundate neighbouring links of the two public transport networks of 

concern. Chapter 3 address the second objective of this thesis which is concerned 

with the empirical assessment of geographic interdependencies due to a weather-

related hazardous event – in this case, rainfall – and their impact on the importance 

and criticality of public transport links using historical rainfall-related flood disruption 

records for the rail and bus networks. 

 

3.1. Introduction 

Hydrometeorological hazards, such as precipitation and flooding, can cause severe 

damage to transport infrastructure, thus inflicting disruption to road and railway 

networks, and resulting in adverse socio-economic impacts (Bowyer et al., 2020; 

Palko et al., 2017; Pyatkova et al., 2019; van Ginkel et al., 2022). For example, in the 

west of England in 2007, the flood event caused by extreme rainfall inflicted 

extensive closures in both the railway and road networks, consequently leaving 

people stranded and affecting others, even outside flooded areas (Pitt, 2007). More 

recently, in September 2023 a heavy rainfall event, known as storm Daniel, resulted 

in extensive flooding of Thessaly region in Greece, consequently closing both the 

main motorway and train route between the two biggest cities of the country 

(Chatzigeorgiadis et al., 2023). Future climate projections consistently show that 
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rainfall and flooding are expected to increase in both magnitude and frequency in 

many countries (IPCC, 2022), including the UK (Betts and Brown, 2021). In light of this 

increasing trend, it is imperative that vulnerabilities of the transportation system to 

extreme weather events are assessed in order to improve resilience (Bowyer et al., 

2020; National Infrastructure Commission, 2020). 

Since the location of a disruptive incident in a network influences the extent of 

network-wide consequences, particular emphasis has been placed on characterising 

which network elements would result in the greatest adverse consequences, when 

failed (Cats et al., 2016). As previously mentioned in Section 1.1, the importance of a 

network element reflects the severity of impacts on the network if that element were 

to fail, while weakness expresses the probability of an element failing when exposed 

to the hazardous event (Cats et al., 2016). The concept of criticality encompasses 

both the weakness and importance of elements (Jenelius et al., 2006).  

Although the concept of importance has been extended to apply to spatial areas 

when assessing the vulnerability of networks to area-wide events (Johansson and 

Hassel, 2010), no similar extensions to the definition of weakness and, by extension, 

criticality have been proposed to date. In the context of geographic 

interdependencies, it is here argued that weakness of the area indicates the 

probability of it being directly affected by the event of concern, while criticality of 

the area would reflect the resulting risk associated with the event that occurs and 

directly affects the area of concern. Therefore, criticality encompasses both the 

importance and weakness of the area to the hazardous event of concern. 

The study in this chapter aims to assess the extent to which geographic 

interdependencies exist between discrete transport infrastructure networks in the 

event of heavy rainfall, and to use the estimated characteristics of this 

interdependency to assess its impact on the importance and criticality of public 

transport links.  

The Scottish public transport network that consists of long-distance bus and railway 

services is used for the application of the proposed method. To explore the spatial 
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patterns of rainfall-related geographic interdependencies and estimate the 

weakness of network elements from an empirical standpoint, datasets were used 

containing the date, location and impact of historical flooding incidents that 

disrupted each mode due to heavy rainfall. Since a readily available single dataset for 

bus and rail networks was not available, data from various sources were processed 

and combined. 

The rest of the chapter is organised as follows. Section 3.2 presents key literature on 

the importance and criticality of elements and areas. Section 3.3 includes the 

methods of analysis, followed by Section 3.4, where the representation of the 

Scottish public transport network and the steps to construct datasets of historical 

flood events that disrupted it are presented. In Section 3.5, the results of the analysis 

are shown, and Section 3.6 includes the conclusions arising from this work. 

 

3.2. Key literature on importance, weakness and criticality of network elements 

3.2.1. Importance 

The assessment of importance has received considerable attention within the 

existing literature. As previously mentioned in Section 1.2.2, methods developed so 

far to assess the vulnerability of networks can be classified into two distinct 

approaches. These methods can be equally used to measure the importance of 

elements. As previously discussed, the first one, known as full-scan approach, 

involves sequentially failing each network element and estimating the resulting 

consequences for the network performance and, therefore, estimates the 

importance of elements through an impact-based approach. Indicatively, Taylor et 

al. (2006) developed a measure of importance that expresses the increase in 

population-weighted travel times between locations, when a link of the road network 

is closed, and based on this, performed a full-scan of the Australian strategic road 

network. Similarly, Jenelius et al. (2006) performed a full-scan of the Swedish road 

network by computing several measures of importance of links, namely increase in 

travel time between locations, demand-weighted increase in travel time, and 
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number of missed trips, referred to as unsatisfied demand. Similarly, for the public 

transport network, While the impact-based full-scan approach thoroughly studies 

the consequences of element failures to the network, it is computationally intensive, 

and therefore challenging to implement for large-scale transport networks (Cats et 

al., 2016). 

In the second approach, the importance of network elements reflects the extent to 

which each element is central to the topology or function of the network under 

normal conditions. The most common measure is a topological measure, known as 

betweenness centrality, which expresses the number of shortest paths between 

locations traversing the elements of concern (Freeman et al., 1991; Crucitti et al., 

2006). In several works, this measure has been augmented to include functional 

network characteristics. Lowry (2014) extended the betweenness centrality of road 

links to include the trip production and attraction rates in the origins and destinations 

of paths traversing the links. Similarly, Sarlas et al. (2020) proposed a set of 

accessibility-based indicators, which augmented the betweenness centrality of links 

by incorporating the population and employment opportunities in the origins and 

destinations of paths using the links, but also the cost of interaction between them 

in the form of travel times. Because centrality-based metrics of importance do not 

require the implementation of multiple disruption scenarios, their estimation is less 

computationally intensive compared to the full-scan approaches. 

 

3.2.2. Weakness and criticality 

Works assessing the criticality of network elements are much scarcer compared to 

importance. Cats et al. (2016) computed the criticality of public transport links by 

combining their importance and weakness, which was represented by the expected 

duration of disruptions on each link per year. The computation of weakness was 

facilitated by a dataset containing historical incidents that had disrupted the 

network. Using the same dataset, Yap et al. (2018) estimated the criticality of public 

transport links, in which weakness included both the expected annual duration of a 
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link being disrupted due to events directly occurring on it (first-order effects) as well 

as the knock-on effects from disruptions occurring on other links of the network 

(second-order effects). Yap and Cats (2021) proposed a supervised learning approach 

to predict the weakness of stations, represented by the expected frequency of 

station disruptions, thus reducing the requirements for large datasets of disruptive 

incidents. This approach involved establishing a model to predict the probability of 

stations experiencing a certain type of disruption based on location and station-

specific variables. This probability was then translated to frequency over a time 

period of interest and, based on this, the most critical stations were identified. 

 

3.2.3. Research gaps 

Previous works that assessed the importance and criticality of elements of the 

transport network were concerned with events affecting only one element at a time 

and therefore did not consider the correlated exposure of multiple elements to the 

same event. However, area-wide events, such as those stemming from adverse 

weather, may result in concurrent disruptions on all infrastructure networks located 

within the hazard footprint.  

In the case of area-wide disruptive events, where geographic interdependencies 

between infrastructure networks occur, a similar impact-based approach is applied 

to assess the importance of areas (Johansson and Hassel, 2010). Centrality measures 

for such events are much scarcer and have been only applied to capture the 

geographic interdependency between transport and other civil infrastructure 

systems (Schintler et al., 2007; Islam and Moselhi, 2012; Thacker et al., 2017; Hughes 

et al.; 2020). Previous works assessing the importance of areas did not pertain to 

specific hazards, hence ignoring the probability of infrastructure elements 

experiencing disruption as a result of a particular hazardous event occurring. 

Therefore, the weakness and, by extension, criticality were not assessed. 

Furthermore, they did not consider the size of cells and corridor neighbourhoods 

capturing the spatial footprint of the hazard as these were arbitrarily selected. In 
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contrast, the approach proposed in this study explicitly considers the characteristics 

of the hazard into the assessment of importance and criticality, by initially evaluating 

the geographic interdependencies between infrastructure networks and 

subsequently incorporating its spatial footprint and probability of occurrence in the 

metrics of importance and criticality. 

 

3.3. Methods 

3.3.1. Network representation 

As previously described in Section 2.3.1 of Chapter 2, the bus network is represented 

as a graph 𝐺𝐵 = (𝑁𝐵 , 𝐸𝐵, 𝑇𝐵) consisting of nodes, segments and bus trips operating 

according to a certain timetable. Nodes correspond to bus stops, and segments to 

paths between stops consecutively serviced by a trip. The bus operates on the road 

infrastructure network, which is also represented by a graph 𝐺𝑅 =

(𝑁𝑅 , 𝐿𝑅) consisting of a set of nodes 𝑁𝑅 = {𝑛𝑅1, 𝑛𝑅2, … } and a set of links 𝐿𝑅 =

{𝑙𝑅1, 𝑙𝑅2, … }. Road nodes correspond to road ends or intersections between roads. 

Links represent the physical infrastructure connecting two nodes that are 

geographically consecutive, and thus do not overlap with each other. Each road link 

can be traversed by one or more bus segments. For example, for road link 𝑙𝑅1, this 

can be expressed as 𝑙𝑅1 = {𝑒𝐵𝑖 , 𝑒𝐵𝑗 , 𝑒𝐵𝑘 … }. Because each segment can be used by 

one or more bus trips, then it can be stated that each road link is traversed by all bus 

trips that use its corresponding segments. Thus, for road link 𝑙𝑅1, this can be 

expressed as, 𝑙𝑅1 = {𝑡𝐵1, 𝑡𝐵2, 𝑡𝐵𝑘 … }.  

Figure 3-1 below shows a schematic example of the bus trips traversing distinct bus 

segments, which in turn use certain road links. Figure 3-1(b) shows three consecutive 

non-overlapping road links which connect four road nodes, namely nodes with ID’s 

“706670”, “706607”, “706596” and “706525”. These road links are traversed by two 

overlapping bus segments of which the first is used by two bus trips denoted as t1 

and t2 (Figure 3-1(a)) and the second is used by three trips denoted as t3, t4 and t5 
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(Figure 3-1(c)). Therefore, by mapping the bus network onto the road network, it is 

shown that trips of both bus segments traverse the four road links of concern. 

 

Figure 3-1 The identification of public transport trips traversing the road links connecting 
road nodes with ID’s “706670”, “706607”, “706596” and “706525”based on the mapping 
of bus segments 1 and 2 on which the sets of trips {t1, t2} and {t3, t4, t5} run, 
respectively. 

 

Similar to the bus network, the railway network, represented by the graph 𝐺𝑅 =

(𝑁𝑅 , 𝐸𝑅 , 𝑇𝑅),  operates on the physical rail infrastructure network, which is also a 

graph 𝐺𝑅𝐼 = (𝑁𝑅𝐼 , 𝐿𝑅𝐼) consisting of a set of nodes 𝑁𝑅𝐼 = {𝑛𝑅𝐼1, 𝑛𝑅𝐼2, … }, and a set 

of non-overlapping links 𝐿𝑅𝐼 = {𝑒𝑅𝐼1, 𝑒𝑅𝐼2, … } that span between geographically 

consecutive nodes. Therefore, a rail link may be used by one or more rail segments, 

i.e. 𝑙𝑅𝐼1 = {𝑒𝑅𝑖 , 𝑒𝑅𝑗 , 𝑒𝑅𝑘 … }, and thus by one or more rail trips, i.e. 𝑙𝑅𝐼1 =

{𝑡𝑅1, 𝑡𝑅2, 𝑡𝑅𝑘 … }.  

 

3.3.2. Assessing the geographic interdependency between discrete public transport 

networks due to heavy rainfall 

In order to explore the extent to which distinct modes of public transport are subject 

to geographic interdependencies due to rainfall, the spatial patterns between 

concurrent rainfall-induced flood events on the railway and bus networks were 

assessed. 
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The approach adopted builds on established methods for the detection of spatial 

patterns in plant ecology (Galiano, 1982) and estimation of spatial dependence in 

hydro-meteorological phenomena (Israelsson et al., 2020; Ricciardulli and 

Sardeshmukh, 2002). Specifically, to detect spatial patterns in plant populations, 

Galiano (1982) developed a method, known as “plant-to-all-plant” analysis, which 

involved computing the conditional probability of finding a plant at a certain distance 

from another plant. By computing the conditional probabilities for all plants and for 

a wide range of distances, the “conditioned probability spectrum” showing the 

conditional probabilities against separation distance is derived. The shape of this 

spectrum indicates patterns in the plant population deviating from spatial 

randomness. This method was applied to cross-sectional data, thus capturing 

patterns at a given time. Similarly, Ricciardulli and Sardeshmukh (2002) and 

Israelsson et al. (2020) used this method of conditional probabilities to detect the 

spatial dependence structure of rainfall based on time series data, thus capturing the 

average spatial patterns over long time periods. 

The empirical method of conditional probabilities (Israelsson et al. 2020; Ricciardulli 

and Sardeshmukh, 2002) was adapted to detect spatial patterns in concurrent 

disruptions of discrete public transport modes. This enabled the estimation of the 

extent to which geographic interdependencies occur between the two modes 

operating on separate infrastructure networks due to rainfall events. Because the 

method required the date and location of historic rainfall-induced flood events that 

disrupted bus and railway networks, the historic datasets described in Section 3.4 

were used. Each dataset contained the date of each flood event, location of flooded 

link as well as the disruption caused, i.e. whether the link fully closed or remained 

partially open due to lane closures or speed restrictions imposed.  

For a given public transport mode, the conditional probability of a disruptive flood 

event occurring on a link given the occurrence of flooding on a link of the other mode 

at a certain distance interval was computed for each day in the resulting time series. 

Since the flood events for both railway and bus were recorded at link-level, rather 

than spatial points, the distance intervals used for the computation of conditional 
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probabilities from the link of concern were defined on the basis of non-overlapping 

buffer rings of equal width around the link. The smallest buffer ring of width 𝑑 covers 

the link plus its buffer-shaped neighbourhood. A second buffer ring (of the same 

width 𝑑) was formed around the smallest buffer, while the third buffer was formed 

around the second, etc (see Figure 3-2 below).  

For a public transport network consisting of two modes 𝑚1 and 𝑚2, the former being 

the primary mode of interest and the latter being the alternative, let 𝑎𝑖 be a link of 

𝑚1 that has been disrupted at least once throughout the study period. The 

conditional probabilities were estimated using the following algorithm. 

1. Form buffer rings of equal width 𝑑 around link 𝑎𝑖. In this case, 2km-wide bins 

were formed spanning up to 100 km from the link of concern. 

2. Identify all links 𝑏𝑗 of 𝑚2 located within each buffer ring from 𝑎𝑖.  

3. For each day that 𝑎𝑖 was disrupted, identify the number of links 𝑏𝑗 within each 

buffer ring that were concurrently disrupted and compute the corresponding 

proportion with respect to the total number of links 𝑏𝑗 located in the 

respective buffer ring.  

4. Repeat step 3, for each day of disruption of railway link 𝑎𝑖. 

5. Repeat steps 2-4, for each link 𝑎𝑖 of 𝑚1. 

6. Compute the average value of proportions of step 5 for each buffer ring. This 

represents the conditional probability of a link of 𝑚2 experiencing disruption 

given that a link of 𝑚1 at a certain distance is disrupted; denoted as 

𝑃(𝑚2|𝑚1). 

Figure 3-2 illustrates the process to calculate the conditional probability of links of 

𝑚2 experiencing disruption given that a link of 𝑚1 which is located at a certain 

distance from these links is already disrupted. Note that in case that a link 𝑏𝑗 spatially 

extended across two or more buffer rings of 𝑎𝑖, then it was considered that 𝑏𝑗 fell 

into the buffer ring closer to 𝑎𝑖 . In other words, the minimum distance between 𝑎𝑖 

and 𝑏𝑗 was taken. 
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Figure 3-2 Schematic figure on the method used to compute the conditional probability 

of a link of mode m2 experiencing disruption given that a link of mode m1 is already 

disrupted. The blue link is that of m1 that is already disrupted, the grey links are links of 

m2 and the red links are those of m2 concurrently disrupted. 

 

Where geographic interdependencies exist, it was expected that links of the two 

modes closer to one another, were more likely to be concurrently disrupted 

compared to those farther apart. By plotting the conditional probability 𝑃(𝑚2|𝑚1) 

against the separation distance, 𝑑, between links of 𝑚1 and 𝑚2, the spatial pattern 

of concurrent flooding-induced disruptions on the two networks was derived.  

To determine whether spatial association exists between concurrent disruptions on 

modes 𝑚1 and 𝑚2, the shape of the plot was assessed. Generally, in case that the 

plot does not exhibit any shape, the concurrent disruptions between links of 𝑚1 and 

𝑚2 were considered as spatially random. Otherwise, the existence of a shape 

indicates the existence of relationship between the conditional probability and 

separation distance. Specifically in the case of geographic interdependencies, it was 

expected that the shape would follow a distance-decay form, where low values of 
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𝑑 exhibit higher probabilities compared to large values of 𝑑. The degree of fit to the 

data of various functions was explored, and the relationship between 𝑃(𝑚2|𝑚1) and 

𝑑 was obtained, and thus the statistical significance of the role of 𝑑 on the conditional 

probabilities was tested. The existence of a statistically significant relationship in 

which 𝑃(𝑚2|𝑚1) is higher for lower values of distance separation between elements 

of 𝑚1 and 𝑚2 provided evidence that the two modes were subject to geographic 

interdependencies as a result of the hazard.  

This process was undertaken by taking in turn each public transport mode as primary 

mode of concern and, thus, plots for both 𝑃(𝐵𝑢𝑠|𝑅𝑎𝑖𝑙) and 𝑃(𝑅𝑎𝑖𝑙|𝐵𝑢𝑠) were 

constructed. 

 

3.3.3. Assessment of importance in the public transport networks 

Similar to the operators-based centrality measure proposed by Cats and Jenelius 

(2014), important links were here considered as those traversed by the largest 

number of public transport trips. To incorporate the geographic interdependency 

between two networks, the approach proposed by Islam and Mosehli (2012) and 

Hughes et al. (2020) was used. This involved delineating buffers around the links of 

the mode of concern to identify the links of the other mode that are at risk of 

concurrent disruption and adding their importance values to the importance of that 

link.  

Recalling that for a mode 𝑚1, each link 𝑎 is associated with a number of public 

transport trips (Section 3.3.1), the importance of the link was here defined as the 

number of trips of 𝑚1 that traverse it on a typical weekday, as shown in Equation 3-1. 

 

𝐼𝑚1(𝑎) =  𝑡𝑚1(𝑎)  3-1 

 

Where 𝑡𝑚1(𝑎) is the number of public transport trips of 𝑚1 traversing link 𝑎 on a 

typical weekday. 
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Consider now two modes 𝑚1 and 𝑚2 operating on two separate infrastructure 

networks, where the former is the primary and the latter is the alternative. When 

link 𝑎 of 𝑚1 is affected by an area-wide hazardous event, links of mode 𝑚2 located 

close to 𝑎 and within the spatial footprint of the event can be also concurrently 

disrupted. In this case, the importance of link 𝑎 is extended to account for the 

geographic interdependency between 𝑚1 and 𝑚2. Because the assessment of 

importance here pertains to transport corridors, buffers around the links are 

preferred over grid cells to identify co-located infrastructure elements subject to 

geographic interdependencies (Hughes et al., 2020). Therefore, the importance of a 

buffer of link 𝑎, includes the importance of the link itself, as well as the importance 

of neighbouring links of 𝑚2 lying within the buffer zone of 𝑎. The importance of 

buffer of 𝑎 is expressed in Equation 3-2. 

 

𝐼𝑚1,𝑚2(𝑎) =  𝑡𝑚1(𝑎) + 𝑡𝑚2(𝐷𝑎)  3-2 

 

Where  𝐷𝑎 is the neighbourhood (buffer) of link 𝑎, which is mathematically defined 

as 𝐷𝑎 = {𝑥|𝑑𝑚𝑖𝑛(𝑥, 𝑎) ≤ 𝑑}, i.e. each point in space 𝑥 with a minimum Euclidean 

distance from 𝑎, denoted as 𝑑𝑚𝑖𝑛(𝑥, 𝑎), that is less than or equal to the selected 

buffer width 𝑑. Finally,  𝑡𝑙
𝑚2(𝐷𝑎)  is the number of unique public transport trips of 

𝑚2 traversing the buffer zone 𝐷𝑎. The identification of public transport trips of 𝑚2 

traversing the buffer zone 𝐷𝑎 allows considering only each neighbouring public 

transport trip in the importance of the buffer zone only once.  

To assess the impact of rainfall-related geographic interdependencies between link 

𝑎 of 𝑚1 and neighbouring links of  𝑚2 on the importance of 𝑎, the importance value 

of Equation 3-2 was compared to that of Equation 3-1. In case that a significant 

number of trips of 𝑚2 traverse the neighbouring links lying within the buffer zone of 

𝑎, then the additional importance of 𝑚2 significantly increases the importance of 

𝐼𝑚1(𝑎) (Equation 3-1) and thus a large number of trips of 𝑚2 can be potentially 

disrupted concurrently with the trips of 𝑚1 traversing link 𝑎. Conversely, if only a few 

trips of 𝑚2 traverse the buffer of 𝑎, the increase in 𝐼𝑚1(𝑎) is not considerable. 



 

75 
 

 

An important consideration is the selection of buffer width for the primary links of 

concern. Contrary to previous works on the assessment of importance, where the 

size of buffers or cells was arbitrarily selected, the spatial footprint of the hazard of 

concern was here explicitly considered. Specifically, because the importance was 

computed for flooding, the evidence from the spatial association between 

concurrent flood events, as presented in Section 3.3.2, was used to inform the size 

of buffers. This was done by identifying in the plots of conditional probabilities, the 

separation distances between railway and bus links that were associated with the 

highest probability values. 

 

3.3.4. Assessment of criticality in the public transport networks 

The criticality of a link encompasses both the probability of failure (weakness) and 

the consequences of failure (importance). The computation of weakness was here 

performed specifically for flooding, based on the historical datasets which are 

presented in Section 3.4. Similarly with the measure of importance in Section 3.3.3, 

acknowledging that concurrent flood events may occur within an area, the criticality 

of links was extended to account for the geographic interdependency between the 

two networks based on the results of the analysis in Section 3.3.2. 

There are two methods in the literature for the empirical estimation of weakness of 

public transport links; the first method involves computing the frequency of incidents 

at the network level and then using it to estimate the incident frequency on links 

(Cats et al., 2016; Hong et al., 2015; Yap et al., 2018), while the second method 

develops link-level fragility models (Yap and Cats, 2021). The former approach 

initially fits a probability distribution function to historical frequencies of incidents, 

which determines the expected incident frequency on the whole network. The 

expected number of incidents on a link is then derived from the network-wide 

frequency using explanatory variables (predictors). This is done by multiplying the 

network-wide frequency of events by the ratio of the value of variable for the link to 

the total value of the variable for all network links (Yap et al., 2018). The advantage 
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of the method is that the estimation of incident frequency at the link-level is 

straightforward and does not require long datasets of historic events containing 

sufficient observations for each network link. However, because the predictor 

variables used typically refer to general network characteristics, such as link length, 

characteristics relevant to the hazard of concern may not be considered, potentially 

leading to less accurate predictions of link weakness (Yap and Cats, 2021).  

The second method directly develops a model that predicts the probability of 

incidents occurring on a link based on explanatory variables relevant to both the 

hazard and link. The probability estimated is then translated to incident frequency 

for a time period of interest (e.g., one year). While this method may lead to more 

accurate estimates of link weakness, it requires identifying hazard-specific 

information that can be used to predict the probability of incidents, which can be a 

data-intensive task. 

Specifically for flooding incidents caused by rainfall, the development of models that 

predict the probability of flood events occurring on links requires detailed data on 

the hazard (e.g., flood depth, rainfall intensity) and surrounding environment (e.g., 

slope, elevation, type and condition of drainage of the link) (Hong et al., 2015; Lyu et 

al., 2018; Liu et al., 2018). However, detailed information on these variables was not 

available. Therefore, the estimation of weakness was based on the first method that 

was previously presented.   

The expected network-wide frequency of rainfall-induced flooding incidents per 

week for each public transport mode 𝑚 was computed. From a theoretical 

perspective, the Poisson and negative binomial distributions were regarded as 

suitable candidates to model frequency of events. For each mode 𝑚, both 

distributions were fitted to the observed frequency of flood events for each week of 

the study period and the best-fit function was selected on the basis of visual 

inspection and goodness-of-fit criteria. Then, from the weekly frequencies, the 

expected annual flooding frequency for each mode on the network level were 

obtained, as shown in Equation  3-3. 
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𝐸(𝑓𝑚) =  𝑛 ∙ 𝐸(𝑓𝑚,𝑤)   3-3 

 

Where 𝐸(𝑓𝑚) is the expected annual network-wide frequency of flooding on mode 

𝑚, 𝑛 is the number of weeks over a year, and 𝐸(𝑓𝑚,𝑤) is the expected network-wide 

frequency of flood events on a week 𝑤. 

Link length has been used in the literature to estimate the link-level frequency of 

various types of non-weather-related disturbances from the network-wide frequency 

(Cats et al., 2016; Yap et al., 2018), but also flooding (Hong et al., 2015). Therefore, 

the expected frequency of flooding incidents on link 𝑎 of mode 𝑚 per year is as 

shown in Equation 3-4. 

𝐸(𝑓𝑎
𝑚) =  𝐸(𝑓𝑚) ∙  

𝑙𝑎

𝐿𝑚
 

3-4 

 

Where 𝐸(𝑓𝑎
𝑚) is the expected frequency of flood events on link 𝑎, 𝑙𝑎 is the length of 

link 𝑎 and 𝐿𝑚 is the total length of all links of mode 𝑚. 

Using link lengths to estimate the flooding frequency is based on the assumption that 

longer links are more likely to experience flooding than shorter links, all things being 

equal. To take into account the potential effect of unobserved factors, the historical 

frequency of flooding on each link was introduced such that link weakness was 

defined as the difference between the average annual frequency and the expected 

annual frequency of flood events on a link, as shown in Equation 3-5.   

 𝑊𝑚1(𝑎) =  𝑓𝑎
𝑚1 −  𝐸(𝑓𝑎

𝑚1) 3-5 

  

Where 𝑓𝑎
𝑚1 is the average annual frequency of flood events on link 𝑎, and 𝑊𝑚1(𝑎) 

is the weakness of the link. 

The metric 𝑊𝑚(𝑎) reflects the extent to which link 𝑎 experienced a greater (or 

fewer) number of days of disruption than expected based on its length. When 𝑓𝑎
𝑚1 is 

higher than 𝐸(𝑓𝑎
𝑚1), then it means that link 𝑎 was disrupted more times than 
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expected, and therefore it is susceptible to flooding and requires further assessment. 

On the other hand, if 𝑓𝑎
𝑚1  is lower than or equal to 𝐸(𝑓𝑎

𝑚1), then the link is much 

more robust to flooding than expected.  

As previously stated, the criticality of a network element is the product of its 

weakness and importance and is expressed as in Equation 3-6. 

 

𝐶𝑚1(𝑎) =  𝑊𝑚1(𝑎) ∙  𝐼𝑚1(𝑎)   

 

3-6 

 

Following the same process with the measure of importance, when considering two 

modes 𝑚1 and 𝑚2, and bearing in mind the joint exposure of them to flooding, 

criticality encompasses both the criticality of link 𝑎 of 𝑚1 as well as the criticality of 

neighbouring links of 𝑚2. The latter term is introduced to reflect the fact that links 

of 𝑚2 located in close spatial proximity to link 𝑎 may experience concurrent flooding-

induced disruptions. Thus, the criticality is expressed as in Equation 3-7. 

 

𝐶𝑚1,𝑚2(𝑎) =  𝐶𝑚1(𝑎) +  𝐶𝑚2(𝐷𝑎) 3-7 

Where,  

𝐶𝑚2(𝐷𝑎) = (𝑓𝐷𝑎

𝑚2 −  𝐸(𝑓𝐷𝑎

𝑚2)) ∙  𝐼𝑚2(𝐷𝑎)   3-8 

 

Where 𝑓𝐷𝑎

𝑚2 is the historic average of number of incidents on 𝑚2 within buffer 𝐷𝑎 and 

𝐸(𝑓𝐷𝑎

𝑚2) is the expected number of incidents on 𝑚2 in 𝐷𝑎, which is given from 

Equation 3-4 based on the total length of links of 𝑚2 located within the buffer. 

Similarly with the importance of the buffer, the historic average and expected 

number of incidents was considered as a whole for the part of the network of 𝑚2 

within the buffer 𝐷𝑎, rather than for each link of 𝑚2 separately. 
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3.4.  Application of importance and criticality models 

3.4.1. Network representation 

Similarly with Chapter 2, discrete public transport networks consisting of rail and bus 

services in mainland Scotland were used to apply the models of importance and 

criticality; however, based on the availability of historical incident data, a subset of 

the bus network was used. As will be further explained in Section 3.4.2, while an 

incident dataset for the entire rail network was available, this was not the case for 

bus. Owing to the difficulty in acquiring and fusing these records, only several 

operating companies were selected to represent the bus network, namely 

Stagecoach, Scottish Citylink, National Express and Megabus. Although Stagecoach 

runs also shorter-distance services on the regional level, it was selected to keep these 

in the bus network, because incident data were retrieved for the entire network of 

Stagecoach (see Section 3.4.2) and, thus, valuable information would be discarded if 

these routes were removed from the analysis.  Therefore, the subset of GTFS data 

for these four operators was extracted from the GTFS dataset of UK bus services. 

For each public transport mode, the computation of importance and criticality 

requires the location of rail and bus links to be known, along with the public transport 

trips traversing each link. The location of links was derived from the rail and bus 

segments that were previously estimated, as described in Section 2.4. For bus, the 

route analysis that was performed to estimate the shape of bus segments in GIS 

provided also the road links of the OS MasterMap Highways Network (Ordnance 

Survey, 2021) that each segment uses, consequently providing the location and 

shape of each bus link and a lookup table between the links used by each segment. 

Furthermore, the trips that traverse each bus link were identified by determining 

from the GTFS dataset the trips that traverse each bus segment, and, by extension, 

the corresponding bus links based on the lookup table acquired from the previous 

step.  

The process to derive rail links was similar to that of bus; however, it was selected to 

define infrastructure links in the corresponding infrastructure model for rail as those 

spanning between geographically consecutive rail stations or junctions, as defined in 
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the Scotland Route Specification (Network Rail, 2017). This was done because the 

incident records that were obtained by Network Rail, were used as the main source 

of data for rail incidents (Section 3.4.3) and were reported to occur on links between 

stations or junctions. The representation of the public transport network is shown in 

Figure 3-3. 
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Figure 3-3 The geographical representation of the Scottish public transport network 
consisting of long-distance bus and rail services, along with selected main localities that 
these services connect and their corresponding population (Scottish Government, 2023). 
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3.4.2. Historical incident dataset for the bus network 

For each mode, datasets were constructed containing historical flood events that 

disrupted each network between May 2017 and May 2020. Each dataset contained 

the date and location of the flood event, along with its impact on the flooded link, 

i.e. whether the link fully closed or remained partially open due to speed restrictions 

imposed or lane closures. 

As can be seen in Figure 3-3, bus services included in this analysis use both trunk and 

local roads. Communication with the bus operating companies of interest revealed 

the absence of readily available records of flooding incidents which disrupted their 

services. Therefore, data from various sources were fused. These included official 

records of flood events for trunk roads used by the bus services, data retrieved from 

the operators’ social media accounts and data from requests submitted to local 

authorities. 

The main source of information was the dataset of flood events for the Scottish trunk 

road network acquired from Transport Scotland. These records are included in the 

agency’s Integrated Road Information System (IRIS). This dataset spanned the period 

between 2013 and 2020 and included the start and end dates, duration, location, 

description of event and impact of the flooding on the availability of road (e.g., full 

closure, lane closure). Further information is included in Table S3 of Appendix B. 

Incidents that occurred from May 2017 to May 2020 were extracted and, based on 

the description of events, those that did not occur due to adverse weather, such as 

those caused by burst water mains, were excluded. Moreover, incidents that did not 

cause any disruption to the trunk road section, according to the relevant variable 

(“disruption caused”), were filtered out from the dataset, as it was assumed that the 

severity of flooding was not acute enough to cause disruption to the vehicular traffic 

traversing the road. For the events of interest, the types of flooding impacts on road 

infrastructure availability were re-classified to full capacity reduction, partial capacity 

reduction and unknown. Further information on this process is available in Table S4 

of Appendix B. 
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In GIS, the flood events reported in the IRIS dataset were mapped onto the spatial 

layer of the road links used by bus services. For each incident, the coordinates of the 

location of flooding were available, along with the identification number of the 

respective trunk road section that was flooded. However, mapping of the 

coordinates onto the spatial layer of trunk road network revealed that these referred 

to the start node of each section, rather than the actual location of flooding. 

Therefore, it was selected to assume that the flooded location is the point at the mid-

span of each trunk section. These points were subsequently snapped to the nearest 

trunk road link used by bus, which was considered as the link directly impacted by 

flooding. Points of IRIS incidents that were not snapped to any road link used by bus 

services were incidents that occurred outside of the bus network and were therefore 

excluded. 

Although the IRIS dataset provided the flood events that occurred on the trunk road 

links used by bus, there were parts of the bus network that these do not cover. As 

such, relevant information was extracted from the Twitter accounts of all bus 

operators of concern. The data retrieval was carried out in two distinct stages. In the 

first stage, the latest posts (tweets) were pulled from each account to determine 

whether the operator makes regular announcements of service disruptions, to 

extract information on historical floods that affected the operator’s services, and to 

identify relevant keywords used in the posts announcing flooding incidents. The 

tweets extracted in this first stage covered only a short time period, and therefore in 

the second stage, queries were submitted to Twitter to obtain data for a longer time 

period. For these queries, the keywords identified in the first stage were used, 

namely flood, flooding, flooded, floods, surface water, floodwater, rain, rainfall. The 

period covered by these queries spans between May 2017 to May 2020.  

From the first stage, it was observed that only Stagecoach provided consistent 

updates via Twitter, and it was therefore selected to retrieve further data from the 

account of this operator only. The information extracted from the tweets included 

the date and time of the post announcing the incident, which was assumed to be the 

start date and time of the incident; location of flooding; the impact to services (e.g., 
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cancellation, diversion, delay); and date and time of the post announcing the end of 

incident, which was assumed to be the end date and time of the incident. From the 

reported types of impacts on services, the impact of flooding on infrastructure 

availability of the flooded road was derived using the assumptions shown in Table 

3-1.  

 

Table 3-1 Types of flood impacts on Stagecoach services and re-classified impacts on the 
road infrastructure availability. 

Information announced by Stagecoach Type of impact for the bus dataset 

Diversion of bus services to avoid 

specific location due to flooding 

Full capacity reduction 

Cancellation of bus services due to 

flooding at a specific location 

Termination of bus services at a location 

before the final stop of the trip to avoid 

specific location due to flooding 

Road passable with care Partial capacity reduction 

No information provided on the impact 

of flooding on a certain road or bus 

service 

Unknown 

Delay of bus service 

 

In GIS, the flood events reported by Stagecoach were mapped onto the road 

infrastructure layer containing the road links used by the bus services. The road 

infrastructure links that were directly impacted by each flood event were thus 

identified by mapping the reported incidents and then performing intersection 

between the spatial layer of incidents and road links. The mapping process presented 

challenges because the nature of reported location of flooding varied, and thus it was 

performed in a semi-automatic way. Further information on the mapping of events 

is included in Table S5 of Appendix B.  
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The mapping of incidents onto the road layer revealed that in several cases, the 

flooded locations reported were vague (e.g., long road stretch between two 

localities), therefore resulting in a significant number of road links being assumed to 

be flooded. To overcome this issue, it was assumed that flooding occurred at the 

point in the mid-span of this stretch, and the road link containing that point was the 

link directly impacted by flooding. 

Because some of the local roads used by the services of Scottish Citylink, Megabus 

and National Express did not lie on the Stagecoach network, requests for flood 

incident data were submitted to local authorities responsible for these roads 

between May 2017 and May 2020. However, the responses from all local authorities, 

with the exception of Perth and Kinross council, did not provide any additional data, 

because the requested information was either refused or not available (Aberdeen 

City Council; Aberdeenshire Council; Angus Council; Argyll and Bute Council; 

Clackmannanshire Council; Dundee City Council; East Dunbartonshire Council; Falkirk 

Council; Fife Council; Perth and Kinross Council, personal communication, 16 

November 2021). The information for the incidents provided for the local roads in 

Perth and Kinross included the start date and time of the event, name of the flooded 

road, type of flood impact on the road (e.g., road closed or passable with care), and, 

in some cases, the end date and time of event. These incidents were mapped and the 

impact types on the road infrastructure availability were re-classified using the 

processes previously described for the mapping of Stagecoach incidents. 

Finally, to construct the dataset of historical flood events for the bus network, the 

various datasets were cross-referenced to identify duplicate events, which resulted 

in the removal of 9 duplicated incidents. Figure 3-4 summarises the process and steps 

that were carried out for the construction of the incident dataset of the bus network. 

The variables included within the final dataset are shown in Table 3-2. 
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Figure 3-4 Steps of process (blue rectangles) and data sources (yellow rectangles) for the 
formation of the historical incident dataset for the long-distance bus network in Scotland 

 

Table 3-2 Variables of the historical dataset of flood events for the long-distance bus 

network 

Variable Description 

Incident ID Unique identification number for the incident. 

Start date Date that the incident reportedly occurred. 

Location Textual description of the location of flood event as it appears 

in the original data source, such as Auchmill Road, Aberdeen. 

Impact The impact of the flood event on the infrastructure availability 

of the road that was directly impacted by the event. The 

possible values of this variable are: 

 Full capacity reduction:  

This denotes the full closure of the road, i.e. no traffic was 

allowed to traverse it. 

 Partial capacity reduction: 
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This refers to cases where the road can be used by traffic 

but less than normal, and corresponds to the cases of speed 

reduction, individual lane closures or where it was 

announced by the relevant authority or operator that the 

road is passable with care. 

 Unknown. 

Reasoning for 

impact value 

In case that the event impact on the infrastructure availability 

of the road has been formed based on assumptions (see Table 

S4 of Appendix B), the relevant information used to make these 

assumptions is included.  

For example, in case that a full road closure was assumed for 

an incident due to a bus service having to divert to avoid a 

certain location, the value of this variable would be noted as 

“Diversion”. 

gml_id Unique identification code of the flooded road link, as it 

appears in the road links used by the long-distance bus services, 

which is a subset of the OS Mastermap Highways Network 

spatial layer (Ordnance Survey, 2021). 

Duration The duration of flooding incident, expressed in hours. 

Source The dataset in which the incident was originally recorded. For 

example, IRIS Dataset, Stagecoach Twitter, Perth and Kinross 

Council. 

 

Several limitations were observed in the dataset pertaining to the uncertainty 

associated with the duration and location of events, but also the spatial coverage of 

the network due to the unavailability of incident data for several local roads. Firstly, 

regarding the duration of events, in the case of the 194 incidents provided by the IRIS 

dataset, although the start and end dates of events were provided, the exact times 

of day that the incidents occurred and ended were not known; hence, this did not 

allow to validate the duration of events. Because it was observed in the wider IRIS 
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dataset spanning from 2013 that negative or unrealistically high duration values were 

present, it was concluded that the recorded durations cannot be considered as 

accurate. Furthermore, for 60 out of the 98 incidents in the final dataset reported by 

Stagecoach, the end date and time of events was not known, and therefore the 

duration could not be computed. For 5 incidents provided by the local authorities, 

the duration of the incident was also unknown. Thus, for 65 out of the 345 incidents, 

the duration was unavailable and, for 194 events, confirming the accuracy of their 

duration was not possible. Due to this missing information, the incident duration was 

not considered in the calculation of weakness of links. 

Another important limitation of the final bus dataset relates to the accuracy of 

incident locations. Specifically in the IRIS dataset, flood events were reported to 

occur on trunk road sections, which, however, span in length from a few metres to 

several kilometres and thus resulted in more than one bus link being assumed to be 

flooded. This was also the case for the incidents reported by Stagecoach and local 

authorities, where, in several instances, long roads containing multiple bus links were 

reported to be directly affected by flooding. For only 39 out of 345 incidents in the 

final dataset, the location of flooding was originally reported as one link. In the 

Stagecoach dataset, the location of flooding was not given in all cases. For incidents 

where the location of flooding was not stated, internet searches were carried out 

using related keywords and requests were made to the relevant local authorities2 to 

obtain further information. In cases that no road incidents were identified in the 

internet search or by the local transport authorities, then the incident was omitted 

from the dataset due to insufficient information, and, as such, 8 incidents were 

excluded. 

A final limitation was that, because 9 local authorities did not provide data on past 

flood events that occurred within their network, the incident dataset did not cover 

                                                       
2 The local authorities to which requests were made were the West Lothian Council, Moray Council, 
Fife Council, Dumfries and Galloway Council, Ayrshire Roads Alliance, Highway Council, Perth and 
Kinross Council, and City of Edinburgh Council. However, the Dumfries and Galloway Council, City of 
Edinburgh Council and Ayrshire Roads Alliance did not provide the requested data. 
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5,714 local road links used by Scottish Citylink, Megabus and National Express, which 

amounts to less than 10% of all bus links. These links were located mainly in central 

Scotland and connect Glasgow, Edinburgh and Stirling, but also a few links in South-

East and North-East Scotland. Because most of the road links without associated 

incident data were located in central Scotland, where the density of the railway 

network is high and proximity between bus and rail links is also high, it is possible 

that a number of concurrent flooding events were not included in the data set (due 

to the unavailability of bus incident data) and that the extent of geographic 

interdependencies between the networks was underestimated in the subsequent 

analysis. 

 

3.4.3. Historical incident dataset for the railway network 

Two main sources of information contributed to the incident dataset for the railway 

network, namely official records of flooding incidents acquired from Network Rail, 

the railway infrastructure manager of the UK, and data retrieved from the Twitter 

accounts of Network Rail as well as ScotRail which is the main operator of railway 

services in Scotland. The official incident dataset of Network Rail was the main source 

of information, whilst the latter was used to augment the former. 

To maintain consistency with the bus network incident dataset, data was obtained 

from Network Rail for the period from May 2017 to May 2020. For each flooding 

incident, the dataset included the start and end dates and times, brief description 

and location of incident. Further information on the variables included is presented 

in Table S6 of Appendix B. Incidents that occurred outside of Scotland were excluded 

from the dataset. Moreover, a variable was created that captured the impact of 

flooding on the railway infrastructure. This was based on the description of incidents, 

which in several cases included whether the directly impacted railway line was closed 

or subjected to speed restrictions. However, the impact was documented for only 22 

out of the 279 incidents.  
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The incidents were mapped on the layer of rail infrastructure network in GIS based 

on their reported locations. Specifically, these were reported to occur either on 

nodes (stations, junctions) or rail sections between two stations. In the former case, 

the flooded links were considered as those starting from or ending at the flooded 

node and in the latter case, flooded links were those spanning between the two 

stations. Further information on the mapping of events is included in Table S7 of 

Appendix B. The mapping process revealed that, in most cases, the railway sections 

that were originally assumed to be flooded, contained multiple railway links, unlikely 

to be simultaneously inundated. 

Due to the limitations of the acquired dataset on the accuracy of incident location 

and impact, further data were retrieved from Twitter. The same process for data 

extraction was followed as with the bus incident dataset (Section 3.4.2). The latest 

tweets from the official Twitter accounts of Network Rail and ScotRail were extracted 

to identify flooding incidents that disrupted the network, and to identify relevant 

keywords used to announce flooding-induced disruptions to the public. Based on the 

identified keywords, which were the same as those for bus, relevant posts from May 

2017 to May 2020 were retrieved from the two accounts of interest. These provided 

the date and time of the post announcing the incident, which was assumed to be the 

start date and time of the incident, the flooded location, type of flood impact on the 

infrastructure availability (e.g., line closed, speed restriction of rail vehicles), and date 

and time of the post announcing the end of event, which was considered as the end 

date and time of the incident. Finally, the incidents were mapped using the same 

process as for the dataset acquired from Network Rail.  

After constructing the dataset from posts of the Twitter accounts, it was cross-

referenced to the Network Rail’s dataset to identify duplicate events. In the case that 

an event was reported in both datasets, then, the additional information included in 

the Twitter dataset was used to augment the official record from Network Rail. This 

process resulted in the final incident dataset for rail. Table 3-3 includes the variables 

of the dataset and a summary for each one of them. Note that although the time of 
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day was available for both the start and end days of incidents, it was decided not to 

include it for the sake of consistency with the incident dataset of the bus network.  

 

Table 3-3 Variables in the historical incident dataset of flood events on the railway 
network. 

Variable Description 

Incident ID Unique identification number for the incident. 

Start date Date that the incident reportedly occurred. 

Location Textual description of the location of flood event as it appears 

in the original data source, such as Glasgow Central to 

Pollokshields East. 

Impact The impact of the flood event on the infrastructure availability 

of the road that was directly impacted by the event. The 

possible values of this variable are: 

 Full capacity reduction:  

This denotes the full closure of the railway link, i.e. no 

railway trips were allowed to traverse it. 

 Partial capacity reduction: 

This refers to cases where the link was passable but could 

be used less than normal and corresponds to the cases of 

speed restrictions, reduced frequency of railway trips, and 

prohibition of electric vehicles traversing the link. 

 Unknown. 

Link ID The unique identification code of the flooded railway link. 

Duration The duration of flooding incident, expressed in hours. 

Information 

from tweets 

The variable includes a brief description of the Twitter 

information (if any) used to augment the records, such as 

impact category on infrastructure availability, location of 

event. 
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Similarly with the incident dataset for bus, there are several limitations associated 

with the dataset of the railway network. The main limitation was that for 61 out of 

279 incidents, the reporting of flooded location was not specific enough which 

resulted in multiple infrastructure links of the network being assumed as flooded. 

Further communication with Network Rail revealed that more accurate information 

on the location of inundation was not available (Network Rail, personal 

communication, 30 September 2021). Therefore, for incidents that more than one 

infrastructure link was reported to be flooded, the same strategy as with the bus 

network was adopted, which involved assuming the point at the mid-span of the 

series of presumably flooded links was the location of inundation, and the rail 

infrastructure link coinciding to that point was assumed to be the flooded link. 

Exceptions to this process were incidents that occurred on nodes, as in this case all 

links starting from or ending to the node were considered as flooded.  

Another limitation of the dataset is the lack of reporting of the type of flooding 

impact on the link infrastructure availability. Although the data retrieved from social 

media provided this information for some incidents, for most events (approximately 

62%), the type of impact was still unknown. This created challenges in estimating the 

weakness of railway links in terms of the distinct impact categories of flooding on 

infrastructure availability, and therefore, the weakness of links and buffers was 

estimated without making distinction between the various types of impact that 

flooding can have on the links. 
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3.5. Results 

In the study period, 343 rainfall-related flooding incidents disrupted the bus network 

based on the dataset for bus (Section 3.4.2), consequently leading to either speed 

restrictions on bus links or their full closure. As a result, 265 bus links were directly 

affected by flooding at least once, which corresponds to approximately 0.45% of the 

total bus links (after excluding the links for which no incident data could be obtained). 

Table 3-4 shows the distribution of the average annual frequency of flood incidents 

across the bus network which reveals that most links were not disrupted in the study 

period, and that for those links which were disrupted, the average annual frequency 

of flooding did not exceed one.  

 

Table 3-4 Average annual number of flooding incidents on bus links from May 2017 to 
May 2020. 

Average annual frequency 
of flood event 

Number of road links  Percentage of road links 

No events 57,029 99.54 % 
0 < events ≤ 1  259 0.45 % 
1 < events ≤ 2 4 0.007 % 
More than 2 events 2 0.003 % 

 

On the railway network there were 279 flooding incidents, and 162 railway links were 

directly affected by flood events at least once, which amounts to 42.41% of the 

railway links in total. Table 3-5 shows the distribution of the average annual 

frequency of flood incidents across the railway network.  

 

Table 3-5 Average annual number of flooding incidents on railway links from May 2017 to 
May 2020. 

Average annual frequency 
of flood event 

Number of rail links  Percentage of rail links 

No events 220 57.59 % 
0 < events ≤ 1  130 34.03 % 
1 < events ≤ 2 26 6.81 % 
More than 2 events 6 1.57 % 
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On 68 out of the 1,096 days within the study period, concurrent flooding incidents 

on the bus and railway networks occurred. To confirm if concurrent disruptions on 

the two networks are correlated, Cramer’s V association test was performed for two 

categorical variables indicating the existence of at least one flood event on each 

network, for each day of study period. Cramer’s V test hypothesises that the variables 

are independent of each other and thus no correlation exists between them. The 

computed statistic of the test takes values between 0 and 1, with the former 

indicating very weak association, while the latter strong association. In this case, the 

Cramer’s V results (𝐸𝑆 = 0.43, 𝑝 = 0) indicated a statistically significant, moderate 

association between events on the two networks. This means that flooding incidents 

tend to co-occur on both networks to a moderate degree. Although Cramer’s V 

association test revealed association between flood events on the system-level, it 

does not provide indications on geographic interdependencies between the two 

networks. 

 

3.5.1. Geographic interdependencies between the public transport modes due to 

rainfall 

The method of conditional probabilities (Section 3.3.2) was applied to detect spatial 

patterns between concurrent flooding incidents caused by a rainfall event and assess 

the existence of geographic interdependency between modes. It should be noted 

that bus links for which no incident data could be obtained were excluded from the 

analysis. 

Figure 3-5 shows the conditional probability plots for each public transport mode and 

corresponding fitted exponential regression lines. 
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Figure 3-5 Plots of probability of (A) bus links being disrupted given that a railway link at 
a certain distance is disrupted (B) railway links being disrupted given that a bus link at a 
certain distance is disrupted. The red lines are the exponential regression lines fitted to 
the data. Note the different scales of the y-axis of the plots. 

 

Both probability plots are characterised by a distance decay function, which shows 

that links of the two modes lying in close proximity are more likely to be concurrently 

flooded than links separated by larger distances. This confirms that geographic 

interdependencies between railway and road infrastructure links used for long-

distance travel in Scotland indeed exist as a result of rainfall. For 𝑃(𝐵𝑢𝑠|𝑅𝑎𝑖𝑙) in Plot 

A of Figure 3-5, the highest probability values are observed for the first 4 km of 

separation distances. Furthermore, it is generally observed that the first 20 km are 

associated with higher values of conditional probabilities compared to larger values 

of separation distance between railway and bus links probabilities. Similarly with Plot 

A, for 𝑃(𝑅𝑎𝑖𝑙|𝐵𝑢𝑠) (Plot B of Figure 3-5) the highest probability values are also 

observed for the first 4 km of separation distances.  

Furthermore, it is worth noting that the conditional probability values of 

𝑃(𝐵𝑢𝑠|𝑅𝑎𝑖𝑙) are significantly lower than those of 𝑃(𝑅𝑎𝑖𝑙|𝐵𝑢𝑠). This may be 

attributed to the structure of the two networks. Specifically, the bus network consists 

of a significantly high number of road links which are of short length, while the rail 

network comprises fewer and longer links. Thus, there are typically more bus links 
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within the buffer ring of a given rail link compared to the number of rail links in a 

given bus buffer ring. Therefore, when a flood event is recorded on one bus link 

within the rail buffer ring of concern, the resulting proportion of bus links being 

flooded, which reflects the conditional probability of flood co-occurrences, is 

typically low due to the high number of bus links located in the buffer ring. 

Conversely, when there is a flood event recorded on a rail link within a specific bus 

buffer ring, the resulting proportion of rail links being concurrently flooded with the 

bus link of concern is typically high because only a few longer rail links are within the 

bus buffer ring. This, in conjunction with the fact that the average frequency of 

flooding on bus being just slightly higher than that of rail (see Section 3.5.3), resulted 

in lower conditional probabilities for the former compared to the latter mode. 

The parameters of the fitted exponential model for 𝑃(𝐵𝑢𝑠|𝑅𝑎𝑖𝑙) and diagnostics are 

included in Table 3-6. The results suggest that the distance of bus links to disrupted 

railway links plays a statistically significant role in concurrent disruptions for the 

network of the case study. Similarly, Table 3-7 includes the parameters and 

diagnostics of the exponential model for 𝑃(𝑅𝑎𝑖𝑙|𝐵𝑢𝑠), which also confirms that the 

separation distance from flooded bus links is a statistically significant predictor of the 

likelihood of railway links being flooded. The residual standard error of the fitted 

model (8.5  10-3) indicates high goodness of fit.  

Based on the plots of Figure 3-5 and the statistically significant role of separation 

distances to the conditional probabilities, it can be concluded that geographic 

interdependencies exist between the modes of the Scottish public transport 

network, specifically for rainfall. This means that railway and bus links in close 

proximity may be concurrently flooded in the event of heavy rainfall. Since in both 

plots of Figure 3-5 separation distances of up to 4 km are associated with the highest 

conditional probability values, a 4 km buffer width was selected to assess the impact 

of geographic interdependencies on the importance and criticality of links within the 

public transport network. This 4km-wide buffer represents the typical spatial scale of 

rainfall events that may result in the concurrent flooding of rail and bus links.  
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Table 3-6 Parameters and diagnostics of the fitted exponential model predicting the conditional probability of a bus link being disrupted given 
that a railway link is disrupted due to pluvial flooding. 

 Value Standard error t value p-value 2.5% confidence interval 

value 

97.5% confidence interval 

value 

alpha (α) 2.80 10-4 2.43 10-5 11.54 < 0.001 2.31 10-4 3.29 10-4 

beta (β) -9.19 10-2 1.32 10-2 -6.95 < 0.001 -1.19 10-1 -6.53 10-2 

theta (θ) 4.74 10-5 5.28 10-6 8.99 < 0.001 3.68 10-5 5.81 10-5 

 

Table 3-7 Parameters and diagnostics of the fitted exponential model predicting the conditional probability of a railway link being disrupted 
given that a bus link is disrupted due to pluvial flooding. 

 Value Standard error t value p-value 2.5% confidence interval value 97.5% confidence interval 

value 

alpha (α) 0.067 0.010 6.73 <0.001 0.04 0.08 

beta (β) -0.19 0.042 -4.53 < 0.001 -0.28 -0.11 

theta (θ) 0.013 0.001 11.29 < 0.001 0.011 0.016 
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3.5.2. Impact of rainfall-related geographic interdependencies on the importance of 

public transport links 

The analysis on spatial patterns of concurrent disruptions between railway and bus 

links revealed the existence of geographic interdependencies between the two 

modes due to rainfall. To incorporate this interdependency into the analysis of 

importance, buffers were formed around each public transport link and the trips 

traversing the links of the other mode located within these buffers were considered 

in the measure of importance. Based on the evidence revealed from the spatial 

association between concurrent events, the width of buffers was set to 4 km. 

To assess whether the ranking of importance of links is significantly different from 

that of their corresponding 4 km buffers, Spearman’s correlation test was performed, 

which measures the strength and direction of relationship between two variables. 

The test hypothesises that there is no significant relationship between the two 

variables and its statistic ρ takes values between -1 and 1. Values of ρ close to -1 

indicate strong negative relationship between the ranks of the variable, and those 

close to 1 reflect strong positive relationship. In this case, the test revealed a 

statistically significant, moderate (positive) relationship between importance of links 

and buffers, for both rail (𝜌 =  0.57, 𝑝 < 0.001) and bus (𝜌 =  0.49, 𝑝 < 0.001). This 

suggests that public transport links and their respective buffers are characterised by 

similar importance values, however exceptions to this also exist which is further 

confirmed by the scatterplot of Figure S3 of Appendix B.  

It is observed that for both modes, there are links of low importance which however 

have very high importance values when considering the neighbouring links of the 

other mode within their 4km buffer. To ascertain where these links are located, maps 

were produced showing the geographic distribution of relative differences in 

importance of links for rail and bus, when considering their geographic 

interdependencies due to flooding, as shown in Figure 3-6 below. 

The results reveal that significant increases in importance of links are observed within 

and around urban centres of Scotland, such as Glasgow and Edinburgh, for both rail 
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(Figure 3-6(a)) and bus (Figure 3-6(b)), while low increases are noted for the rest of 

the country, particularly in North-East Scotland. This could be attributed to the high 

density of both rail and bus networks, coupled with the high number of trips that 

operate in these areas. The significant scale of increases in importance for rail and 

bus links indicate that are traversed by only a few trips of the same mode, while a 

substantial number of trips of the alternative mode operate within 4 km from those 

links.  
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Figure 3-6 Relative increases in importance of (a) rail and (b) bus links as a result of their geographic interdependencies due to rainfall. Note the 

different classification scales in the two maps. The classification of values was done using the Jenks natural breaks classification method.
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To further understand how the geographic distribution of importance values changes 

for each mode, maps of importance of links and 4km-wide buffers were produced for 

each mode. 

The results of the geographical distribution of importance values for railway are 

shown in Figure 3-7 below. Note that the importance values were classified using the 

Jenks natural breaks classification algorithm, because it reveals clusters of values that 

exist in the data (De Smith et al., 2007). Although the scales of two maps are different 

and, therefore, direct comparison is not possible, the results can be interpreted 

qualitatively. In this case, this is sufficient because the focus is on the ranking of links 

and buffers according to their importance, rather than their absolute values. 

In the case of railway links (Figure 3-7(a)), the most important links are clustered in 

the central part of Scotland (within the inset map), where the two largest and most 

populated cities of the country are located, and thus generate a significant number 

of public transport trips. Links of high importance are also observed close to other 

urban centres, particularly in North-East and South-West Scotland, while rural and 

remote locations are associated with low importance values. When considering the 

4km buffers of the links (Figure 3-7(b)), the results reveal that, while buffers in central 

Scotland are still characterised of the highest importance, significant increases are 

also observed in other parts of the country as well, especially in North-East Scotland 

but also South-West.  

It is further apparent that the buffers in North-West and North Scotland, which are 

in rural and remote areas, remain of low importance. These observations show that 

important bus links that are traversed by many bus trips on a typical weekday are 

located in close proximity (less than 4 km) to railway links of high importance, 

particularly close to large cities and towns of the country. This suggests that if flood 

events occur within these areas, significant adverse consequences are expected to 

the public transport network. The lack of increase in importance of railway buffers in 

rural locations could be attributed to the fact that the bus links within the buffers are 

of low importance, as shown in Figure 3-8 below.  
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Figure 3-7 Importance of (a) railway links and (b) 4 km railway buffers. Note the different classification scales in the two maps. High values suggest 
that a significant number of public transport trips traverse the link or buffer. It should be also noted that in the map referring to 4 km buffers of 

links, the widths of the buffers are not included in order for the results to be clearly shown. 
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Similarly, Figure 3-8 shows the geographic distribution of importance of links and 

buffers for the bus network. 

The results for the bus links (Figure 3-8(a)) show that most links are characterised of 

very low importance, meaning that only up to 40 bus trips traverse them on a typical 

weekday. Unsurprisingly, links of higher importance are observed close to cities and 

towns of the country, particularly in central, North-East and South-West Scotland; 

thus, indicating that the geographic distribution of link importance for bus is similar 

with that of the railway. Regarding the 4 km bus buffers (Figure 3-8(b)), it is observed 

that the areas in central Scotland are still classified as high importance and that the 

number of highly important buffers in this area is also increased. This is because 

railway links of high importance values are located in close proximity (less than 4 km) 

from these bus links. Furthermore, it is noteworthy that there are bus buffers in 

smaller towns of the country, specifically in North-West Scotland, of which the 

importance is higher compared to the corresponding links in Figure 3-8(a), thus 

indicating that highly important railway links are located within these bus buffers. 

Again, for the case study, the geographic distribution of bus buffers is very similar to 

that of rail, with high importance being observed in large urban centres and low 

importance in rural and remote locations. 
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Figure 3-8 Importance of (a) bus links and (b) 4 km bus buffers. Note the different classification scales in the two maps. High values suggest that a 
significant number of public transport trips traverse the link or buffer. It should be also noted that in the map referring to 4 km buffers of links, the 

widths of the buffers are not included in order for the results to be clearly shown.
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3.5.3. Impact of rainfall-related geographic interdependencies on the criticality of 

public transport links 

Whilst the assessment of importance considered the spatial footprint of rainfall 

events resulting in the concurrent flooding of links, it did not account for the 

probability of each link experiencing flooding-induced disruptions in the event of 

heavy rainfall. This limitation can be overcome by computing and assessing the 

criticality of links and buffers.  

Weakness 

The average weekly frequency of flooding incidents that occurred on the railway 

network was equal to 1.76, whilst for bus was 2.18. The Poisson and Negative 

Binomial distributions were therefore trialled to model the weekly frequency of 

pluvial flooding for each mode. The distribution fitting process revealed that the 

Negative Binomial distribution better fitted the frequency values in both cases. This 

is expected because, as opposed to the Negative Binomial distribution, the Poisson 

distribution assumes that the mean and variance of the variable of concern are 

roughly the same, which is not the case for bus (𝜇 = 2.17, 𝜎2 = 13.80) or rail (𝜇 =

1.75, 𝜎2 = 18.35). The parameters of the fitted distributions for rail and bus are 

provided in Table 3-8 and Table 3-9, respectively.   

 

Table 3-8 Parameters of the fitted Negative Binomial distribution function to the weekly 
frequency of flooding incidents on the railway network due to rainfall. 

 Estimate Standard error 

Size 0.203 0.036 
mu 1.766 0.329 

 

Table 3-9 Parameters of the fitted Negative Binomial distribution function to the weekly 
frequency of flooding incidents on the bus network due to rainfall. 

 Estimate Standard error 

Size 0.432 0.0713 
mu 2.171 0.288 
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The selection of this function was concluded based on visual inspection of the fitted 

functions to the empirical values, as shown in Figure 3-9, and from comparison 

between goodness-of-fit statistics included in Table 3-10 for rail and Table 3-11 for 

bus. For both networks, the results reveal that all goodness-of-fit criteria of the 

Negative Binomial distribution are related to lower values than those of Poisson, as 

such indicating a higher goodness-of-fit. The high goodness of fit of the former 

function is further confirmed in Figure 3-9.  

 

 

Figure 3-9 Empirical and fitted probability distribution functions for the weekly frequency 
of flooding incidents on the (a) railway network and (b) bus network. 

 

Table 3-10 Goodness-of-fit criteria for the fitted probability functions to the weekly 
frequency of flooding incidents on the railway network. 

Probability 
function 

Log-likelihood AIC BIC 

Poisson -516.695 1035.39 1038.453 
Negative binomial -242.621 489.241 495.366 

 

Table 3-11 Goodness-of-fit criteria for the fitted probability functions to the weekly 
frequency of flooding incidents on the bus network. 

Probability 
function 

Log-likelihood AIC BIC 
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Poisson -474.571 951.144 954.201 
Negative binomial -299.660 603.319 609.444 

 

Based on the fitted Negative Binomial distributions and using Equation 3-4, the 

resulting annual frequency of pluvial flooding was computed to be approximately 85 

events for railway and 105 events for bus. The expected frequencies of flood events 

per year were computed for the bus and rail links using Equation 3-5 and the results 

are included in Table 3-12 and Table 3-13, respectively. Note that these frequencies 

were not computed for the bus links for which no incident data was available. 

 

Table 3-12 Expected annual number of flood events on bus links due to rainfall. 

Expected annual 
frequency of flood events 

Number of bus links  Percentage of bus links 

0 < events ≤ 1  57,294 100% 
1 < events ≤ 2 0 0% 
More than 2 events 0 0% 

 

 

The results for bus (Table 3-12) reveal that all bus links are expected to experience 

less than one pluvial flooding incident per year. This is because the expected 

network-wide frequency of flooding is multiplied by the ratio of each link’s length 

and the total length of all bus links, the latter being significantly higher than the 

former. Due to the multiplicative form of the equation to estimate the expected 

frequency of flooding on links from the network-wide frequency (Equation 3-4), no 

bus links had an expected frequency of zero, which may lead to overestimation of 

flooding frequency of links in some cases. Comparing these expected frequencies to 

the observed ones in Table 3-4 shows that a few links experienced more events than 

expected. 

 

Table 3-13 Expected annual number of pluvial flood events on rail links due to rainfall. 

Expected annual 
frequency of flood events 

Number of rail links  Percentage of rail links 

0 < events ≤ 1  413 98.57% 
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1 < events ≤ 2 5 1.19% 
More than 2 events 1 0.24% 

 

Similarly for rail, most links were expected to experience less than one flood event 

per year and only one link was expected to experience more than two events due to 

rainfall. The comparison of expected frequencies (Table 3-13) with the observed ones 

in Table 3-5 shows that within the three-year study period, more links experienced 

at least one flood event per year than expected. 

Using Equation 3-5, the weakness of bus and rail links to pluvial flooding was 

computed and the results are as shown in Table 3-14 below.   

 

Table 3-14 Weakness of bus and rail links to rainfall. 

 Bus Rail 

Link 

weakness 

Number of 

links 

Percentage of 

links 

Number of 

links 

Percentage of 

links 

Below 0 5028 7.99% 278 66.36% 

0 to 0.99 57874 91.99% 118 28.16% 

1 to 1.99 9 0.01% 15 3.58% 

2 to 2.99 2 < 0.01% 5 1.19% 

Higher than 3 0 0 3 0.72% 

 

The results of Table 3-14 show that most railway links were associated with negative 

values of weakness, indicating that most links experienced fewer incidents than 

expected over the study period. Specifically, only 23 links were identified as weak, 

which amounts to roughly 5.5% of the total rail links. Furthermore, most bus links 

had a weakness of approximately zero and only 11 were identified as weak, which 

corresponds to less than 0.1% of the total links of the bus network. This is because 

both the average (Table 3-4) and expected (Table 3-12) frequencies of flood events 

were very close to zero. 
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Criticality 

Spearman’s correlation test was performed on the computed criticality values, which 

measures the strength of relationship between two variables and hypothesizes that 

no relationship exists between them. The results revealed a statistically significant, 

moderate association for rail (𝜌 =  0.41, 𝑝 < 0.001), but very weak for bus (𝜌 =

 0.07, 𝑝 < 0.001). The latter could be attributed to the fact that, when ignoring the 

geographic interdependencies between bus and rail links, the criticality of bus links 

is approximately zero due to their weakness being very close to zero. However, when 

accounting for the railway links located within the 4 km buffers of bus links, the 

criticality of the buffer of the bus links is significantly higher, due to the criticality of 

the railway links.  

The correlation results are confirmed in Figure 3-10 and further show the absence of 

strong correlations in both cases, which indicates that even if a link is not critical, in 

some cases the criticality of the corresponding buffer is markedly higher due to highly 

critical links located in close proximity. 

 

 

Figure 3-10 Scatterplots of criticality of (A) railway and (B) bus links against the respective 
values of their corresponding 4 km buffers. Note the difference in the x-axis and y-axis 
values between plots A and B. 

 



 

110 
 

Figure 3-11 shows the geographic distribution of criticality values for the links and 

buffers of the railway network. As before, the Jenks natural breaks classification of 

the data was used to reveal groupings inherent to the criticality values of each 

network. 

The results for the railway links (Figure 3-11(a)) reveal that links with the highest 

criticality are located in central Scotland, particularly on routes connecting Edinburgh 

and Glasgow. This is because at least three flooding incidents occurred on average 

per year in this part of the network and this, coupled with the increased importance 

of these links (Figure 3-7) resulted in significantly high criticality values. The five most 

critical rail links were identified (Table 3-15) and the results confirm that all are 

located in these two cities. Links that are relatively critical are observed across the 

whole of the railway network. 
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Figure 3-11 Criticality of (a) railway links and (b) 4 km railway buffers. Note the different classification scales in the two maps. High values suggest 
that a significant number of public transport trips traverse the link or buffer.
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Table 3-15 Five most critical rail links 

Link Name Criticality 

Winchburgh Junction - Newbridge Junction 4508.55 

Linlithgow - Winchburgh Junction 4499.20 

Dalmarnock - Bridgeton 2441.34 

Edinburgh - Haymarket 1514.97 

Glasgow Central - Muirhouse North Junction 1267.07 

 

In the case of railway buffers (Figure 3-11(b)), clusters of buffers of very high 

criticality values exist in central, North-East and South-West Scotland, where urban 

centres exist, particularly in Glasgow, Inverness and Ayr. This can be attributed to the 

fact that these railway buffers include bus links of high importance. However, most 

buffers are associated with relatively low criticality, particularly in rural areas of the 

country. Finally, it is worth noting that criticality of several rail buffers located close 

to bus links for which no incident data were available (e.g., in central and South-East 

Scotland as shown in Figure 3-12(a)), may be misrepresented.  

 

Table 3-16 Five most critical rail links, when considering their rainfall-related geographic 
interdependency to bus links. 

Link Name Criticality 

Dalmarnock - Bridgeton 19231.36 

Glasgow Central - Muirhouse North Junction 15381.26 

Glasgow Queen Street - Cowlairs South Junction 13080.45 

Charing Cross (Glasgow) - Partick 12692.22 

Muirhouse North Junction - Muirhouse West Junction 12628.16 

 

The links, of which the corresponding buffers are related to the five highest criticality 

values (Table 3-16) were identified and the results show that all buffers are located 
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in Glasgow. It is further observed that although a few of those buffers are related to 

the highest criticality links (Table 3-15), exceptions also exist.  

To assess whether differences exist in the criticality of links located in rural areas of 

the country when considering the geographic interdependency with bus, the five 

most critical rail links and buffers in rural areas were identified and are included in 

Table S8 and Table S9 of Appendix B. This was done by intersecting the layer of rail 

links by the spatial dataset for urban - rural classification of areas in Scotland (Scottish 

Government, 2020). The results again suggest that the most critical rail links are 

different from the most critical rail buffers. As such, the ranking of rail links in both 

urban and rural areas of Scotland is significantly affected when considering the flood-

related geographic interdependency between rail and bus. 

By comparing the maps of importance and criticality for railway (Figure 3-7 and 

Figure 3-11, respectively), it is observed that across the network, some buffers are 

characterised by high values of importance, but rank lower in criticality. This can be 

attributed to the fact that the railway links and neighbouring bus links experienced 

no or only a few flooding incidents, which resulted in their weakness and criticality 

being low. 

Figure 3-12 shows the geographic distribution of criticality of the links and 4 km 

buffers of the bus network. 
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Figure 3-12 Criticality of (a) bus links and (b) 4 km bus buffers. Note the different classification scales in the two maps. High values suggest that a 
significant number of public transport trips traverse the link or buffer. 
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Regarding the bus links (Figure 3-12(a)), unsurprisingly, most of them have very low 

criticality values because, as previously mentioned, both the historic average and 

expected flooding frequencies per year were very close to zero and thus their 

weakness was negligible. Only 262 links were associated with a positive criticality 

value. The five most critical road links, along with the name of road they are located 

in, are included in Table 3-17. Contrary to the most critical rail links, these are 

scattered across Scotland and are not concentrated in any particular location of the 

country. It is further observed that 4 of these links are part of the local road network 

and only one is trunk road. This suggests that local roads used by long-distance bus 

services are more susceptible to flooding-related incidents compared to trunk roads 

in Scotland. 

 

Table 3-17 Five most critical bus links. 

Link ID* Road name** Criticality 

osgb4000000006892263 A781, Whitesands 456.57 

osgb4000000004482004 A92, Tay Bridge Roundabout 143.38 

osgb4000000005080393 B7038, Campbell Street 137.61 

osgb4000000005074778 B780, South Crescent Road 136.95 

osgb4000000005158204 M8 125.96 

* Identification code for road links specified in OS MasterMap Highways Network (Ordnance 

Survey, 2021). 

** The name of the road that the link is located. Note that the link may not coincide with the 

full extent of the road but may be only a part of it. 

 

In the case of bus buffers (Figure 3-12(b)), while again most of the buffers are 

associated with very low criticality values, two clusters of high values are observed in 

the central part of the country, and especially within Glasgow. These could be 

attributed to neighbouring railway links that are highly critical, and thus significantly 

increase the criticality of these buffers. The results of the five most critical buffers 

are included in Table 3-18 and confirm this observation. By comparing them with the 

most critical links (Table 3-17), it is revealed that none of the links of highest criticality 
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are related to buffers of the highest criticality as well. It is also worth noting that all 

links are part of the local road network within the city of Glasgow. Although the most 

critical buffers for both rail and bus are located in the same area, this has different 

implications for each mode. Specifically, the high density of the road network in 

Glasgow may provide opportunities for bus services to re-route; however, this is not 

the case for rail.  

 

Table 3-18 Five most critical bus links, when considering their rainfall-related geographic 
interdependency to rail links. 

Link ID* Road name Criticality 

osgb5000005130717125 Finnieston Street, Glasgow 26880 

osgb5000005230823377 Cathedral Street, Glasgow 25742.40 

osgb4000000005391044 Cathedral Street, Glasgow 25742.40 

osgb5000005130716787 Govan Road, Glasgow 25068.68 

osgb5000005130716793 Golspie Street, Glasgow 25068.68 

* Unique identification code for road links as specified in OS MasterMap Highways Network 

(Ordnance Survey, 2021). 

** The name of the road that the link is located. Note that the link may not coincide with the 

full extent of the road but may be only a part of it. 

 

By comparing the criticality of buffers with their importance for bus, it is apparent 

that a considerable number of buffers is associated with very high importance but 

low criticality, particularly in and around cities of the country, which could be 

attributed to very low values of weakness. Similarly with rail, the five most critical 

bus links and buffers in rural areas of the country were identified, as shown in Table 

S10 and Table S11 of Appendix B, respectively. The results revealed that the top 5 

critical links are different from the top 5 critical buffers, highlighting that the ranking 

of bus links in both urban and rural areas of Scotland is substantially different when 

considering the rainfall-related geographic interdependency with rail.  
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3.6. Conclusions and Discussion 

In this chapter, a method was developed to assess the extent to which discrete 

transport networks are geographically interdependent as a result of area-wide 

events and the impact of this interdependency on the importance and criticality of 

links. The Scottish public transport network consisting of long-distance bus and 

railway services was used as a case study, and rainfall was selected as the hazard of 

concern. An empirical probabilistic method was used to determine whether 

geographic interdependencies exist between the two modes, which were expressed 

as the potential for links to flood concurrently in the event of heavy rainfall. The 

proposed criticality measure combines the criticality of public transport link of 

concern with that of the neighbouring links that are subject to geographic 

interdependencies.  

The results of the application of the method proposed to the case study show that 

considering the flood-related geographic interdependency did not result in 

significant differences in the importance of public transport links; however, 

exceptions to this were identified, as well. On the other hand, in terms of criticality, 

the results revealed clusters of particularly high values, especially in and around 

urban centres of the study area, where both the importance of locations and density 

of networks are high. The ranking of links in terms of criticality was different from 

that of buffers in both urban and rural areas, indicating that accounting for 

geographic interdependencies should play an important role in the criticality values.  

The findings revealed from the implementation of the method are not confined to 

the Scottish context but can be generalised to regional or national public transport 

networks in other geographical areas which are exposed to extreme rainfall events. 

For instance, in urban areas, where both the density of transport infrastructure 

networks and the number of public transport services are typically high, the impact 

of rainfall-related geographic interdependencies on link criticality is more 

pronounced. This is because urban links are heavily used throughout the day; if these 

links are more susceptible to rainfall, they become significantly more critical than 

those in rural areas. Furthermore, the close proximity of links from other transport 
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networks further increases the criticality of the associated buffers. In contrast, in 

rural areas, where network density and service frequency are typically low, the 

criticality of both links and buffers is expected to be low as well. Overall, considering 

regional variations in both the vulnerability of links to rainfall and network density is 

likely to result in different criticality rankings of links among public transport 

networks of similar size. 

The novelty of this study lies in the method proposed for the criticality assessment 

along with the findings derived from its implementation. Various metrics have been 

proposed to characterise the importance and criticality of transport links using both 

impact-based (e.g., Jenelius et al. 2006; Taylor et al. 2006; Rodriguez-Nunez and 

Garcia-Palomares, 2014) and centrality-based methods (e.g., Lowry, 2014; Cats and 

Jenelius, 2014; Sarlas et al., 2020). However, these are not appropriate for spatially 

defined weather events as they consider incidents affecting only one link at a time 

and do not consider the probability of the disruptive event occurring on the link (i.e., 

link weakness). Although Cats et al. (2016) and Yap and Cats (2021) partially 

addressed this limitation by estimating the weakness and criticality of links, the 

disruptions considered were, again, confined to a single link or station. In contrast, 

the method proposed in this study fills this gap by developing a metric that 

incorporates both the likelihood of weather events disrupting links and the spatial 

scale of these events as a proxy for potential concurrent disruptions. Furthermore, 

this work extends previous studies on the vulnerability assessment of a single 

transport infrastructure network to area-wide incidents (Jenelius and Mattsson, 

2012) and research on the geographic interdependencies between transport 

networks (Ferrari and Santagata, 2024), by assessing, for the first time, the 

implications of geographic interdependencies on discrete public transport networks. 

While this earlier research showed that area-wide events reduce the network 

redundancy, particularly in densely connected urban areas, this study further 

demonstrates that, although the ranking of link importance may remain stable for 

area-wide events, the criticality of links varies markedly when these 

interdependencies are considered. There are several limitations associated with this 
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work. Regarding the incident datasets for the railway and bus networks, the original 

data sources obtained did not provide the exact location of flooding, and this, 

coupled with the unavailability of incident data for various parts of the bus network, 

led to high uncertainty associated with the computed empirical probabilities. Ideally, 

if the coordinates of each incident location were available for the entire rail and bus 

networks, then the conditional probabilities would be estimated on the basis of 

buffers around points, thus allowing more accurate characterisation of geographic 

interdependencies.  

Furthermore, the time of day that the incidents occurred was not considered in the 

estimation of geographic interdependencies, as it was not available for most events. 

As such, concurrent events were considered as those that occurred on the same day. 

Likewise, the duration of incidents and their impacts on the infrastructure availability 

of links (e.g., full or partial closures) were not included in the estimation of weakness, 

as they were either unavailable or could not be confirmed for most events. 

Additionally, in the absence of an incident dataset for the entire long-distance bus 

network, various data were collected and merged from a number of data sources, 

which, however, did not cover all the bus network. This resulted in some parts of the 

long-distance bus network being excluded from the assessment of geographic 

interdependencies or the evaluation of importance and criticality of links. Another 

limitation associated with the data is the unavailability of information on hazard-

specific predictors that would allow the construction of models that predict the 

frequency of flooding on each link; thus,  a semi-descriptive metric of weakness was 

developed.  

A final limitation associated with the available incident data is that because the 

analysis to estimate geographic interdependencies was not supported by extensive 

data, the resulting conditional probabilities were very low, and thus a buffer-based 

approach was adopted to identify links subject to geographic interdependencies. This 

approach assumes that flooding-related interdependencies are related only to a 

specific spatial extent and thus links outside this area are ignored. A useful extension 

to this work could be to directly use the conditional probability of links of the 
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alternative mode being flooded given the flooding-induced disruption on the link of 

concern, in conjunction with their importance, to measure criticality when 

accounting for geographic interdependencies. Moreover, the spatial extent of 

concurrent flood events is further expected to vary based on the intensity and spatial 

scale of rainfall events that these are related to. Therefore, the extent of geographic 

interdependencies could be modelled according to the characteristics of the hazard, 

consequently resulting in different importance and criticality values of links. 

Regarding the measure of importance, a static approach was adopted that does not 

consider the variability of trips traversing a link over the course of a day. In reality, 

the adverse impacts of flooding could be expected to be more severe for events 

occurring at peak times, where the frequency of trips is the highest. Additionally, 

importance was here perceived in terms of public transport trips, which heavily 

influenced the ranking of links and buffers; however, other approaches exist that may 

lead to different conclusions. For example, for rural areas that are serviced by fewer 

trips, the disruption of links may result in low impacts on the trips of the network but 

significant consequences in terms of the individuals affected. Exploring how 

alternative metrics influence these results could complement this work and provide 

comprehensive conclusions. Finally, the neighbouring links of the same mode were 

not considered in the importance and criticality of buffers, because this work aimed 

at analysing the impacts of geographic interdependencies to the ranking of links, 

rather than comprehensively assess the ranking of areas. A useful extension of this 

work would therefore be the integration of all links of multiple co-located networks 

of interest in a single metric. 

Despite these limitations, this study offers valuable insights into the vulnerability of 

public transport networks to extreme weather events and provides a novel 

framework for identifying areas of public transport networks that require prioritised 

interventions. Network managers and public transport operators can use readily 

available information, namely spatial transport network data, public transport 

timetable and historical records of weather-related disruptions, to estimate the 

spatial scale of weather events and compute the proposed metrics. By integrating 
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these datasets and implementing the proposed methods, practitioners can make 

more targeted and informed decisions on the locations that require prioritisation and 

develop proactive measures to enhance network resilience.  
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In this chapter, the second objective of the thesis was addressed by analysing the 

characteristics of geographic interdependencies between public transport modes for 

a specific weather-related hazard.  Using rainfall as the hazard of concern, the 

rainfall-related interdependencies between rail and bus were evaluated empirically 

using historical flood incident records. However, due to the limited availability of 

data, the geographic interdependencies were captured using a buffer-based 

approach. In Chapter 4, a model is developed using rainfall data to characterise the 

geographic interdependencies from a probabilistic standpoint, therefore overcoming 

the limitation of the “cliff-edge” effect of buffers. The model for geographic 

interdependencies is subsequently integrated into the model of redundancy 

proposed in Chapter 2. 
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4. Assessment of the impact of extreme rainfall on 

interdependent public transport networks 

 

The empirical assessment presented in Chapter 3 confirmed that geographic 

interdependencies between discrete public transport networks may occur due to 

heavy rainfall. However, these were captured using a buffer-based approach and 

thus did not account for the likelihood of concurrent flood closures of spatially 

proximate network links due to the same rainfall event. This chapter addresses this 

by modelling the spatial dependence of rainfall events that can result in the closure 

of public transport links. This model therefore captures rainfall-related geographic 

interdependencies in probabilistic terms and is incorporated in the model of 

redundancy developed in Chapter 2 to assess the impact of concurrent rainfall-

induced closures of links on the accessibility of locations. Thus, Chapter 4 addresses 

the third objective of this thesis, which is to develop a model for the extent of 

weather-related geographic interdependencies between transport networks and 

incorporating it to the importance assessment of interdependent public transport 

modes, for a certain hazard of interest – in this case, rainfall. 

 

4.1. Introduction 

Pluvial flooding can damage transportation assets, resulting in disruption to the 

transport system and substantial economic losses (Jaroszweski et al., 2014). The 

spatial scale of flood events is closely related to the extent of rainfall (Breugem et al., 

2020) and can range from local (Pregnolato et al., 2015) to regional (van Ginkel et al., 

2021), and, in some cases, international areas (Ulbrich et al., 2003; Fathom Global, 

2021). Multimodal transport systems that operate within the spatial footprint of 

heavy precipitation events may experience disruptions concurrently, thus leaving 

travellers without options to complete their trips by alternative routes or modes. In 

the light of climate change, future weather projections indicate increasing trends in 

both the frequency, severity and, in some cases, spatial extent of rainfall and flooding 
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in many parts of the world (Seneviratne et al., 2021; Lochbihler et al., 2019; Ghanghas 

et al., 2023). Hence, the assessment of pluvial flood risk to transport networks has 

received growing attention in the last few years (Watson and Ahn, 2022). However, 

research efforts to date have predominantly focused on one transport mode at a 

time and have overlooked the concurrent impacts of flooding on multiple modes that 

operate on discrete infrastructure networks. Therefore, the implications of pluvial 

flood events for the accessibility provided by multimodal public transport networks 

and, in extreme cases, the loss of connectivity between locations have not been 

explored.  

The potential impacts of weather-related events on transportation networks can be 

explored through a risk assessment framework. As previously mentioned in Section 

1.1, risk is the product of the hazard, exposure and vulnerability of the system of 

concern. The risk assessment framework encompasses modelling the characteristics 

of a hazard of a certain return period (e.g., spatial scale, severity, duration) and the 

exposed system (or systems) of concern, and ultimately estimating the consequences 

of the event for the functionality of system (Dalziell, 1998). Therefore, the risk 

assessment framework estimates the conditional vulnerability of the transport 

system given the occurrence of a hazardous event. In contrast, in the general 

framework of vulnerability assessment, vulnerability of the transport system is 

assessed through disruption scenarios which are not associated with a certain hazard 

or likelihood of occurrence. 

Despite efforts to assess impacts of pluvial flooding on transportation networks, most 

works to date have focused on either road or rail individually (Chen et al., 2015; 

Pyatkova et al., 2019; He et al., 2020; Hong et al., 2015; Pant et al., 2016), thus 

overlooking the concurrent effect of rainfall on both networks. Therefore, the 

geographic interdependency between discrete transport infrastructure networks 

resulting from rainfall has not been adequately explored.  

Furthermore, as mentioned in Section 1.1, the pluvial flood maps used for the 

assessment of rainfall impacts do not provide information on which locations may 
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experience flooding at the same time, and, as such, do not realistically capture the 

potential for concurrent impacts on the networks. Thus, although they may be useful 

to identify particularly susceptible areas that require more detailed assessment, they 

cannot be used to analyse the geographic interdependencies between discrete 

modes of the transport system by the occurrence of flood hazard. Although there 

have been efforts to develop scenarios of concurrent flood events based on these 

maps (e.g., van Ginkel et al., 2022; Zhu et al., 2022), these are derived from the 

random sampling of flood locations from the map and, therefore, do not account for 

the higher likelihood of flooding co-occurrences on spatially proximate locations. 

This study aims to assess the impact of extreme rainfall on interdependent public 

transport modes that operate on discrete infrastructure networks. The assessment 

explicitly considers the characteristics of rainfall in terms of frequency and intensity 

and further accounts for the likelihood of flooding affecting two networks 

concurrently as a result of the same rainfall event. This is achieved by estimating the 

spatial dependence between historic rainfall-related flood events which have caused 

the concurrent failure of road and rail links. The model of importance proposed by 

Taylor et al. (2006) is adapted to rank links based on the extent of redundancy loss 

caused by their failure, as well as to consider the likelihood for geographic 

interdependencies to occur between discrete public transport networks. The method 

is applied to the Scottish public transport network consisting of rail and long-distance 

bus services, where the latter is considered an alternative mode when the former is 

disrupted due to flooding. 

The rest of the chapter is structured as follows. Section 4.2 provides a review of key 

literature on the risk assessment of transportation networks to flooding. In Section 

0, the methods are presented, followed by Section 4.4 which describes the 

application of methods to the case study network. Section 4.5 includes the results 

and Section 0 summarises the conclusions of this work. 
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4.2. Key literature 

In light of the climate emergency, assessing the risk of road networks to rainfall-

related flooding has received growing attention. Using a flood model, Coles et al. 

(2017) simulated historical pluvial and riverine flood events and estimated their 

impacts on the accessibility of emergency services to care homes and sheltered 

accommodations. Pregnolato et al. (2015) developed a model that represents the 

impact of water depth on safe speed of road vehicles and subsequently estimated 

the risk of the urban road network to pluvial flooding based on a flood map and the 

resulting speed reductions of vehicles. The flood map included events that 

simultaneously occurred as a result of a statistically possible rainfall event, thus 

indicating the links of the network that were simultaneously closed. Evans et al. 

(2020) assessed the monetary impacts of flooding due to changes in the traffic flows 

of two urban road networks, based on synthetic rainfall events that represent current 

and future climate conditions for the urban areas of concern. The speed of vehicles 

was adjusted according to the water depth on the road. Pyatkova et al. (2019) 

adopted a dynamic approach where flood and transport models were integrated into 

a tool to capture the impact of flooding on the road system as the 1-in-100 years’ 

synthetic rainfall event progressed. The impacts estimated included the number of 

vehicles rerouted, changes in travel distance and time, as well as effects on local air 

quality due to congestion on roads that remained open.  

Van Ginkel et al. (2022) assessed the risk of European road networks to concurrent 

fluvial flood events in terms of number of disrupted routes between regions in each 

country, number of detours and isolated trips. A large number of flood scenarios 

were developed by initially randomly sampling a certain number of events from the 

100-year flood map of Europe, and then by further sampling flood events in Germany 

based on a copula-based spatial dependence model for streamflow extremes. The 

authors interestingly showed that while the randomly sampled flood events 

disrupted more routes, the spatially correlated floods resulted in a higher number of 

isolated trips, which was attributed to their more severe impacts on the local scale.  
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Compared to the road network, less work has been done to assess the risk of public 

transport networks to flooding. Hong et al. (2015) assessed the flood risk of the 

Chinese railway network by estimating failure probabilities of railway links from past 

events and by using these to develop disruption scenarios through random sampling 

to measure adverse impacts in terms of duration of link closures and number of train 

services affected. Forero-Ortiz et al. (2020) assessed the flood risk of the 

underground metro system in Barcelona in terms of ridership flows by developing 

pluvial flooding scenarios of certain return periods and using them as input to a 

hydrodynamic model to estimate the extent and depth of flooding. Then, by 

overlaying them onto a map showing the number of metro passengers along the 

network, risk maps were obtained showing the expected impacts.  

Similarly, Zhu et al. (2022) analysed the risk of the Chinese railway network to riverine 

flooding in terms of the daily number of train services and passengers affected, as 

well as travel time increases due to train detours. Flood depth-exceedance 

probability functions were constructed for each grid cell of the country based on 

riverine flood maps of various return periods and then multiple national-scale flood 

scenarios of concurrent flood events were produced through a Monte Carlo sampling 

process, where depth-exceedance probabilities were randomly assigned to the cells, 

thus resulting in varying flood depths across the country. 

The aforementioned works on public transport networks focus on only one mode, 

typically railway. The literature on flood risk assessment of multiple transport modes 

is rare. Indicatively, Hong et al. (2019) measured the vulnerability of a multimodal 

public transport network consisting of bus and subway services to a historical 

rainstorm event, which however directly affected only the former mode, while the 

latter remained intact. Ma et al. (2019) explored the effects of cascading failures 

incurred by flooding to the bus and metro networks, by considering the failure 

probabilities of network elements and the corresponding consequences to passenger 

volumes. However, only bus services were directly affected, while the metro lines 

suffered disruptions due to the redistribution of disrupted passenger volumes. He et 

al. (2020) examined the flood risk of the urban multimodal transport network 
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comprising bus and taxi services and, as such, only modes operating on the road 

network were considered, whilst railway modes were ignored. It therefore becomes 

clear that even in cases where multiple modes are assessed, no work to date has 

considered the concurrent risk of public transport modes that operate on distinct 

infrastructure networks to flooding; thus, flood-related geographic 

interdependencies between transportation networks have been overlooked so far.  

Because the assessment of geographic interdependencies requires exploring the 

consequences that arise from concurrent events on multiple infrastructure networks, 

the most commonly used static approach of flood risk assessment may misrepresent 

the consequences of pluvial flooding, as it does not account for the temporal 

progression of extreme rainfall across an area and can be thus only used to estimate 

the worst potential damages to infrastructure (Pyatkova et al., 2019). With a view to 

test the vulnerability of transport networks, efforts have been made to develop 

scenarios of concurrent pluvial and fluvial flood events which typically involve 

producing multiple simulations through a Monte Carlo process based on static maps 

(e.g. van Ginkel et al., 2022; Zhu et al., 2022) or require integration of flood and 

transport models to simulate the progression of consequences as the event 

propagates across an area (e.g., Pyatkova et al., 2019). However, it is not always 

possible in practice to employ these approaches, either because of the unavailability 

of the required modelling tools or due to the limited availability of computational 

resources that prohibits conducting multiple disruption scenarios. 
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4.3. Methods 

4.3.1. Characteristics of critical rainfall events resulting in the closure of public 

transport links 

To determine the characteristics of rainfall events (e.g., depth, duration) that may 

cause flooding-induced closure of links on the public transport network, historical 

disruption records of links due to rainfall and rainfall data were analysed. The former 

was provided from the incident datasets for bus and rail (Sections 3.4.2 and 3.4.3 

respectively), and for the latter, rainfall time series recorded by rain stations were 

used. 

The first step included separating the continuous time series of rainfall of each rain 

station into statistically independent rainfall events using the minimum inter-event 

time (MIT), which is the minimum dry period that needs to elapse between two rain 

events for them to be considered as independent (Joo et al., 2013; Baek et al., 2015; 

Zeiger and Hubbart, 2021). Events that are temporally separated by a larger time 

window than the MIT were considered independent, while those separated by a 

smaller time window than MIT were part of the same event.  

Various methods exist for the identification of distinct rainfall events, namely method 

of autocorrelation, coefficient of variation, average number of rainfall events (Baek 

et al., 2015; Joo et al., 2013). Here, the method of the coefficient of variation (CVA) 

was undertaken (Restrepo-Posada and Eagleson, 1982) due to its ease of 

applicability. This approach assumes that the MIT value for a rain station yields an 

exponential distribution of the time intervals between rainfall events, which can be 

thus assumed as Poisson (independent) events. The method involved identifying the 

dry periods in the rainfall time series of each rain station and progressively testing 

different MIT values to establish a model between MIT and CVA. The MIT value 

corresponding to a CVA of one was selected for each rain station. If the computed 

MIT exceeded 24 hours or the variation coefficient was not close to one, a MIT of 24 

hours was applied, assuming that rainfall events separated by at least a day were 

independent. Once independent rainfall events were established for all rain stations, 

their total depth, duration, and start and end times were extracted.  



 

130 
 

To identify those rainfall events that caused closures of public transport links, the 

rain stations and their respective Thiessen polygons were mapped in GIS, the latter 

reflecting their area of influence (Brassel and Reif, 1979). Intersection of the polygons 

with the spatial layers of the public transport network (Figure 3-3) was performed to 

identify rail and bus links located within each polygon. For each full closure, the 

corresponding rain station of the closed link was identified, and the rainfall event 

recorded on the date of closure by that station was derived. In cases where the 

rainfall event extended beyond the date of closure, only the rainfall depth and 

duration up to the end of closure date were considered. If a link traversed multiple 

Thiessen polygons, the average values of rainfall characteristics of the rain stations 

were derived. 

To establish rainfall thresholds for flooding-induced closures of links, the rainfall 

event-duration method was applied which has been commonly used to identify 

depth (or intensity) and duration of rainfall events that may result in debris flows, 

flooding and landslides (e.g., Caracciolo et al., 2017; Zhuang et al., 2015; He et al., 

2020; Georganta et al., 2022). For each mode, regression models that best fitted the 

duration D and depth V of rainfall events previously identified were developed. 

Rainfall events occurring on a public transport link that are equal to or greater than 

the modelled characteristics of events have the potential to induce the closure of the 

link, while for events with a lower intensity than the modelled characteristics, the 

link is assumed to remain open.  

The critical rainfall events obtained through this process are denoted as  

𝐸𝑐𝑟(𝑟𝑎𝑖𝑙) = (𝑉𝑐𝑟
𝑟𝑎𝑖𝑙 , 𝐷𝑐𝑟

𝑟𝑎𝑖𝑙) and  𝐸𝑐𝑟(𝑏𝑢𝑠) = (𝑉𝑐𝑟
𝑏𝑢𝑠, 𝐷𝑐𝑟

𝑏𝑢𝑠) for railway and bus, 

respectively. 

 

4.3.2. Assessing the geographic interdependencies between public transport modes 

due to extreme rainfall 

To model the geographic interdependencies that may occur between links of two 

discrete networks co-located within the spatial footprint of extreme rainfall, the 
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conditional probabilities of links of one mode experiencing a flooding-induced 

closure due to a rainfall event given the closure of a link of the other mode by the 

same event were determined. This was achieved by modelling the spatial 

dependence of critical rainfall events, following the method of conditional 

probabilities proposed by Ricciardulli and Sardeshmukh (2002) and Israelsson et al. 

(2020). Unlike these works where the critical rainfall conditions were estimated for 

daily rainfall, the spatial dependence of critical rainfall was estimated here for events 

of varying durations.  

Using the available datasets of rainfall events, a spatial dependence model was 

developed to establish the conditional probability of a critical rainfall event for mode 

𝑚1 occurring given that a critical rainfall event for mode 𝑚2 has been observed at a 

certain distance, 𝑃(𝐸𝑐𝑟(𝑚1)|𝐸𝑐𝑟(𝑚2)). This was achieved through the following 

process. 

1. Select one rain station of the study area as the origin station, denoted by 𝐴, 

and identify its historical critical rainfall events, 𝐸𝐴 = {𝐸𝐴1, 𝐸𝐴2, 𝐸𝐴3, … }, 

characterised by start date, rainfall depth and duration. 

2. For each event at 𝐴, assign 1 to all other rain stations if: 

i. Their recorded rainfall event starts on the same date as at 𝐴; 

ii. Their event is critical for mode 𝑚2, as defined in Section 4.3.1; 

otherwise, assign zero. 

3. Within each equal-width distance bin of 𝐴, compute the proportion of 

stations assigned 1 (observed conditional probabilities).  

4. Perform steps 2 and 3 for each critical rainfall event recorded by 𝐴, and then 

repeat for all rain stations. 

By plotting the conditional probabilities against the separation distance, 𝑑, the spatial 

dependence patterns between critical rainfall events of modes 𝑚1 and 𝑚2 were 

derived and modelled using an exponential decay function. 

Since the focus is on geographic interdependencies which occur due to the same 

rainfall event, the spatial scale of a rainfall event 𝑑0 that might result in the 
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concurrent closure of public transport links was estimated by computing the 

decorrelation distance, which is the separation distance at which the correlation of 

rainfall values between spatially separate locations falls to 1/𝑒 (Moron et al., 2007; 

Ricciardulli and Sardeshmukh, 2002). The standardised conditional probability, 𝐷𝑟, 

(Equation 4-1) was used as a proxy of statistical dependence. A separation distance 

at which 𝐷𝑟 falls below 1/𝑒 indicates the statistical independence of rainfall and, 

therefore, the spatial scale of the rainfall event. 

𝐷𝑟 =

 (𝑃(𝐸𝑐𝑟(𝑚2)|𝐸𝑐𝑟(𝑚1)) −  𝑃(𝐸𝑐𝑟(𝑚1))) (1 − 𝑃(𝐸𝑐𝑟(𝑚1))) ≈ exp (−
𝑑

𝑑0
)⁄   

4-1 

 

Where 𝑃(𝐸𝑐𝑟(𝑚1)) is the unconditional probability of the critical rainfall event. 

The conditional probability plot 𝑃(𝐸𝑐𝑟(𝑚2)|𝐸𝑐𝑟(𝑚1)) represents the probability of a 

critical rainfall event of 𝑚2 occurring at a certain distance from one affecting 𝑚1. 

Since such events can cause the closure of a public transport link, the model can be 

used to express the probability of a network link of 𝑚2 closing given the closure of a 

link of 𝑚1 at a certain distance from it. Therefore, the model serves as a proxy to 

assess the geographic interdependencies occurring between modes 𝑚1 and 𝑚2. 

Estimating the spatial scale of the critical rainfall event that results in geographic 

interdependencies between modes 𝑚1 and 𝑚2 (Equation 4-1) allows identify links 

that may be concurrently affected by the same event. 

 

4.3.3. Assessing the impact of extreme rainfall on the redundancy of interdependent 

public transport networks 

Taylor and D’Este (2007) define a network link as important, if “loss (or substantial 

degradation) of the link significantly diminishes the accessibility of the network”. 

Based on this concept, Taylor et al. (2006) defined the importance of link 𝑎 as the 

accessibility loss between O-D pairs resulting from the closure of link, as shown in 

Equation 4-2. 
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𝐼(𝑎) = ∑ ∑ 𝑑𝑖𝑗 ∙ 𝑣𝑖𝑗(𝑎)

𝑗𝑖

=  ∑ ∑ 𝑑𝑖𝑗 ∙ (𝑎𝑐𝑐𝑖𝑗(0)  −  𝑎𝑐𝑐𝑖𝑗(𝑎))

𝑗𝑖

 4-2 

 

Where 𝑖 and 𝑗 denote origins and destinations of travel, respectively; 

𝑑𝑖𝑗  rerepresents the demand for travel between the O-D pair; 𝑣𝑖𝑗(𝑎) represents the 

consequences for the O-D pair between 𝑖 and 𝑗 due to the closure of 𝑎; and 

𝑎𝑐𝑐𝑖𝑗(0) and 𝑎𝑐𝑐𝑖𝑗(𝑎) are the accessibilities from 𝑖 to 𝑗 under normal conditions and 

when link 𝑎 has failed, respectively. 

Equation 4-2 was adapted to consider the impact of the closure of a given public 

transport link on accessibility as well as the likelihood of links of an alternative mode 

concurrently closing due to the same rainfall event.  

The consequences of the loss of link 𝑎 were estimated using the normalised Hansen 

accessibility index, as shown in Equation 4-3 for origin zone 𝐴𝑐𝑐𝑖.  

𝐴𝑐𝑐𝑖 =  
∑ 𝐷𝑗𝑗 𝑓(𝑐𝑖𝑗)

∑ 𝐷𝑗𝑗
  

4-3 

 

Where 𝑓(𝑐𝑖𝑗) is the cost of travel between 𝑖 and 𝑗 and 𝐷𝑗 represents the 

attractiveness of destination zone 𝑗, i.e., number of opportunities at 𝑗.  

Based on Equations 4-2 and 4-3 and taking the destination zones as equally 

attractive, i.e. 𝐷𝑗 = 1, the importance of link 𝑎 can be expressed as shown in 

Equation 4-4 below. 

𝐼(𝑎) =   
1

𝑁
∑(𝐴𝑐𝑐𝑖

(0)
− 𝐴𝑐𝑐𝑖

(𝑎)
)

𝑖

 =  
1

𝑁
 ∑ ∑(𝑎𝑐𝑐𝑖𝑗

(0)
−  𝑎𝑐𝑐𝑖𝑗

(𝑎)
)

𝑗𝑖

 
4-4 

Where 𝑁 is the number of destinations, and 𝑎𝑐𝑐𝑖𝑗
(0)

 and 𝑎𝑐𝑐𝑖𝑗
(𝑎)

 represent the 

accessibility between 𝑖 and 𝑗 under normal conditions and when link 𝑎 is closed, 

respectively. 
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Let 𝑚1 and 𝑚2 be the preferred and substitute public transport modes and 𝑝𝑚1 and 

𝑝𝑚2 the least-cost routes of 𝑚1 and 𝑚2 respectively, which connect a pair of 

locations. Under normal conditions, the total accessibility between 𝑖 and 𝑗 is provided 

by both modes 𝑚1 and 𝑚2 as shown in Equation 4-5. This is equivalent to the 

indicator of redundancy that was proposed in Section 2.3.2. 

𝑎𝑐𝑐𝑖𝑗
(0)

=  𝑎𝑐𝑐𝑖𝑗
𝑚1 +  𝑎𝑐𝑐𝑖𝑗

𝑚2 =  𝑒𝑥𝑝 (− 
𝐶(𝑝𝑚1

)

𝛽𝑚1

) +  𝑒𝑥𝑝 (− 
𝐶(𝑝𝑚2

)

𝛽𝑚2

) 
4-5 

 

Where 𝑎𝑐𝑐𝑖𝑗
𝑚1 and 𝑎𝑐𝑐𝑖𝑗

𝑚2  is the accessibility for travel from 𝑖 to 𝑗 by 𝑚1 and 𝑚2 

respectively, 𝐶(𝑝𝑚1
) and 𝐶(𝑝𝑚2

) are the times of travel by the least-cost routes of 

𝑚1 and 𝑚2 respectively, and 𝛽𝑚1
 and 𝛽𝑚2

 represent the maximum cost that 

travellers are willing to accept between 𝑖 and 𝑗 by 𝑚1 and 𝑚2 respectively, which was 

set to 12 hours for both modes. 

When link 𝑎 of 𝑚1 closes, then all routes that traverse it become unavailable and the 

accessibility is provided only by the alternative routes, 𝑝𝑚2
. Depending on the nature 

and spatial scale of the hazard, neighbouring links of 𝑚2 may fail as well, leading to 

the concurrent closure of 𝑝𝑚2
. Unlike Chapter 2, where this likelihood was 

represented by the neighbourhood coefficient (Equation 2-3), here the probability of 

rainfall-induced geographic interdependencies occurring was considered. Thus, the 

remaining redundancy is equal to the accessibility offered by 𝑝𝑚2
, corrected by its 

likelihood to close concurrently with 𝑝𝑚1
,  as shown Equation 4-6. 

𝑎𝑐𝑐𝑖𝑗
(𝑎)

=  (1 −  𝑃(𝑝𝑚2

𝑓𝑙𝑜𝑜𝑑
| 𝑝𝑚1

𝑓𝑙𝑜𝑜𝑑
)) ∙ 𝑎𝑐𝑐𝑖𝑗

𝑚2 4-6 

 

Where 𝑃(𝑝𝑚2

𝑓𝑙𝑜𝑜𝑑
| 𝑝𝑚1

𝑓𝑙𝑜𝑜𝑑
) is the probability that 𝑝𝑚2

closes due to flooding given the 

closure of 𝑝𝑚1
due to the failure of 𝑎. 

Aggregating the redundancy losses for all O-D pairs and replacing the accessibilities 

in Equation 4-4 with those of Equations 4-5 and 4-6, the importance of link 𝑎 of mode 

𝑚1 is then represented by Equation 4-7 below. 
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𝐼(𝑎) =   
1

𝑁
 ∑ ∑(𝑎𝑐𝑐𝑖𝑗

𝑚1 +  𝑃(𝑝𝑚2

𝑓𝑙𝑜𝑜𝑑
| 𝑝𝑚1

𝑓𝑙𝑜𝑜𝑑
) ∙ 𝑎𝑐𝑐𝑖𝑗

𝑚2)

𝑗𝑖

 
4-7 

 

The model of importance was calculated for each link exposed to flooding due to 

extreme rainfall, for three different scenarios. 

 

Case I: Complete independence of flooding-induced closures (“Best case” scenario) 

It is assumed that only one of the locations exposed to rainfall experiences flooding 

at a time. This corresponds to vulnerability assessments of single-link failures (Taylor 

et al., 2006; Jenelius et al., 2006; Sohn, 2006). The likelihood of alternative options 

closing concurrently, and, by extension, the geographic interdependency between 

𝑚1 and 𝑚2 is ignored. As such, in the case of closure of link 𝑎, 𝑃(𝑝𝑚2

𝑓𝑙𝑜𝑜𝑑
| 𝑝𝑚1

𝑓𝑙𝑜𝑜𝑑
) is 

considered as equal to zero and the importance of the link (Equation 4-6) takes its 

minimum value. 

 

Case II: Complete dependence of  flooding-induced closures (“Worst case” scenario) 

It is assumed that all locations exposed to rainfall fail concurrently. Because the 

closure of alternative routes is considered, it can be stated that geographic 

interdependencies are also considered, but from a “worst case” scenario standpoint.  

If there is at least one location of the alternative route exposed to rainfall, its 

probability of closing concurrently with 𝑝𝑚1
 is 1 (Equation 4-8); otherwise it is zero. 

In the former case, the link importance takes its maximum value, while, in the latter 

case, it takes its minimum value. 

𝑃(𝑝𝑚2

𝑓𝑙𝑜𝑜𝑑
| 𝑝𝑚1

𝑓𝑙𝑜𝑜𝑑
) =  {

1, 𝑖𝑓 𝑓𝑙𝑜𝑜𝑑𝑖𝑛𝑔 𝑜𝑛 𝑟𝑜𝑢𝑡𝑒 𝑝𝑚2
 𝑒𝑥𝑖𝑠𝑡𝑠

0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                   
 

4-8 

 

Case III: Spatial dependence of flooding-induced closures  



 

136 
 

It is assumed that the locations exposed to extreme rainfall may not necessarily close 

simultaneously and this depends on the separation distance between exposed links. 

Let 𝐴 be a location in 𝑝𝑚1
 which is closed due to flooding caused by a critical rainfall 

event (Section 4.3.1), and 𝐵 =  {𝐵1,  𝐵2,   … ,  𝐵𝑚} be the set of 𝑚 locations on 𝑝𝑚2
 

that may concurrently flood. The conditional probability of each location of  𝐵 closing 

given the flooding-induced closure at 𝐴 can be estimated from the spatial 

dependence model (Section 4.3.2). Since only those locations of 𝐵 that lie within the 

spatial extent of the critical rainfall event at A can close simultaneously, the subset 

of these with a standardised probability of at least 1/𝑒 (Equation 4-1) are retained. 

This subset is denoted as 𝐵′ = {𝐵1,  𝐵2,   … ,  𝐵𝑛} ⊆ 𝐵, where 𝑛 ≤ 𝑚.  

However, since the Poincaré formula becomes very complex as the number of non-

independent 𝐵𝑖 events increases, Boole’s inequality was employed (Equation 4-9), 

which can be used to identify the upper bound of the probability of 𝑝𝑚2 closing given 

the closure of 𝑝𝑚1 due to the critical rainfall event at 𝐴. 

𝑃(∪ 𝐵𝑖| 𝐴)  ≤  𝑚𝑖𝑛 { ∑ 𝑃(𝐵𝑖|𝐴)

𝑛

𝑖=1

, 1 } 
4-9 

 

For the closure of link 𝑎, the model of link importance in this case takes a value 

between those of Case I and Case II.  

 

To assess how the importance of links changes depending on each of the above cases, 

the model of importance was computed according to Cases I, II and III for each link 𝑎 

of the infrastructure network on which 𝑚1 operates, and for all its locations that are 

exposed to critical rainfall events. The algorithm that was performed to compute the 

importance is presented in Appendix C. 

For the most important links, the losses in redundancy of origin zones were also 

computed . For link 𝑎, the origin-level losses in accessibility in absolute and relative 

terms are as shown in Equations 4- and 4-, respectively. 
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𝛥𝐴𝑐𝑐(𝑎)𝑖 
(𝑎𝑏)

=  𝐴𝑐𝑐𝑖
(𝑚1← 𝑚2)(𝒂)

−  𝐴𝑐𝑐𝑖
(𝟎)

 4-9 

𝛥𝐴𝑐𝑐(𝑎)𝑖
(𝑟𝑒𝑙)

=  (𝐴𝑐𝑐𝑖
(𝑚1← 𝑚2)(𝒂)

− 𝐴𝑐𝑐𝑖
(𝟎)

) 𝐴𝑐𝑐𝑖
(𝒂)

⁄  4-10 

 

Where 𝛥𝐴𝑐𝑐(𝑎)𝑖
(𝑎𝑏)

 and 𝛥𝐴𝑐𝑐(𝑎)𝑖
(𝑟𝑒𝑙)

 are the absolute and relative losses in 

accessibility of zone 𝑖 due to the closure of link 𝑎, 𝐴𝑐𝑐𝑖
(𝑚1← 𝑚2)(𝒂)

 is the origin-level 

accessibility of 𝑖 when 𝑎 is closed, and 𝐴𝑐𝑐𝑖
(𝟎)

 is the accessibility of 𝑖 under normal 

conditions. These origin-level accessibility values are obtained by aggregating the 

accessibility values of location pairs, as shown in Equation 4-3. 
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4.4. Application of the impact assessment of flooding to the long-distance 

public transport network in mainland Scotland 

The public transport network consisting of long-distance bus and railway services in 

mainland Scotland as presented in Section 2.4 and the least-cost routes between 

hexagonal zones were used to illustrate the application of models proposed in 

Section 0. Considering that rail is significantly less flexible in managing disruptive 

events due to the limited options of diversions to avoid a closed section, in this study, 

rail was considered as the primary travel mode, while bus was considered as the 

alternative.  

To identify critical rainfall events (Section 4.3.1), rainfall datasets were obtained from 

the Scottish Environmental Protection Agency (SEPA), which contain timeseries of 

rainfall depth recorded at 15-minute intervals for 336 rain stations across Scotland 

(SEPA, personal communication, May 2020). The datasets acquired, which had 

previously undergone quality checks by SEPA, span the period between January 2000 

and May 2020, with all the time series containing some missing values. Datasets of 

stations located outside of the mainland Scotland and those containing more than 

20% missing values were excluded, resulting in a subset of datasets for 150 stations. 

These were then aggregated to hourly intervals to reduce their processing time. 

Figure S5 of Appendix C shows the retained and discarded rain stations. The missing 

values of the remaining time series were estimated using the Inverse Distance 

Weighted (IDW) interpolation method as this approach considers the known rainfall 

depths recorded by neighbouring stations. For each rain station, the independent 

rainfall events were retrieved as described in Section 4.3.1, which allowed obtaining 

the total depth, duration as well as start and end dates of events. 

The incident datasets containing flooding incidents for rail and bus, as described in 

Section 3.4, were employed to associate rainfall characteristics to historical closures. 

Only incidents that resulted in the full closure of links were retained. Then, the 

characteristics of rainfall events that led to each closure were extracted and, based 

on these, rainfall thresholds were established for the closure of rail and bus links 

(Section 4.3.1). Using the constructed rainfall threshold models, the critical rainfall 
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events recorded by each rain station were identified and their spatial dependence 

was modelled based on the method presented in Section 4.3.2. Although there are 

rain stations separated by distances up to 420 km, it was selected to carry out the 

analysis for distance values up to 300 km to reduce the computational requirements 

of this task. 

The models of importance were applied only to public transport links exposed to 

pluvial flooding. As such, locations exposed to pluvial flooding were identified by 

performing a spatial intersection of the rail and bus links with a 1-in-20 years’ pluvial 

flood hazard map for Scotland, which was obtained from Fathom UK (SSBN UK 

Limited, 2021). To consider links that may fully close, only those bus and rail links 

submerged by more than 30 cm and 15.5 cm of water were considered, respectively 

(Pregnolato et al., 2015; Pregnolato et al., 2020). The spatial layer of floods 

intersecting these links were used to calculate the proximity between them, as 

required by the model of redundancy. For further information on the flood map and 

the processing steps, the reader is referred to Appendix C. 

To test the effect of spatial dependence to the importance of rail links, the model of 

importance proposed in Section 4.3.3 was applied for each link and for the three 

cases described.  

 

4.5. Results 

4.5.1. Characteristics of critical rainfall events causing the closure of public transport 

links 

The MIT value was computed for each rain station using the method described in 

Section 4.3.1. Figure 4-1 shows the distribution of MIT values for the rain stations of 

the study area. Based on these estimates, for each rain station, rainfall depths of non-

zero value temporally separated by longer periods than the MIT of the station were 

considered as separate events; otherwise, they were grouped into the same event.  
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Figure 4-1 Histogram of computed minimum inter-event time (MIT) of rain stations in 
mainland Scotland. 

 

The results of Figure 4-2 show that the minimum MIT value is 6 hours, while the 

maximum is 24 hours. The latter corresponds to rain stations for which the coefficient 

of variation was approximately equal to unity for an MIT value of more than a day. In 

these cases, the MIT was set to 24 hours on the assumption that non-zero rainfall 

records separated by a day or more belong to separate rainfall events. 

To identify the characteristics of critical rainfall events that led to closures in the 

public transport network, 62 full closures for rail and 135 closures for bus were 

extracted from the incident datasets. Based on the estimated rainfall events and the 

Thiessen polygons of rain stations, the depth and duration of rainfall events that led 

to closures were identified and regression models were then fitted to them.  

As shown in the bagplots (bivariate box plots) of Figure S6 in Appendix C, outliers 

were observed in the rainfall depth-duration data for both modes and, in this case, 

linear regression would require their removal. However, these outliers provide 

valuable information on more extreme rainfall events that disrupted the public 

transport network. As an alternative, the quantile regression model was fitted to the 

data of each mode as it allows keeping these outlying observations, while also 
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resisting their influence. The median line (50% quantile) was selected to establish 

thresholds for a typical rainfall event that can cause closures. Depending on the scope 

of analysis, other quantile lines could be used as shown in Figure S7 in Appendix C.   

Figure 4-2 shows the data of rainfall characteristics for bus and rail that led to 

closures between May 2017 and May 2020, along with the fitted median regression 

lines and fitted model parameters. The results reveal that for both networks, several 

closures were induced by events of relatively short duration and low depth. 

Indicatively, for 36 out of 62 closures of rail links were caused by rainfall events that 

lasted less than 2 days and with corresponding depth of less than 100 mm, while for 

bus this was the case for 59 incidents out of 135. However, a few exceptions to this 

also exist, as incidents were observed to be a result of very short rainfall events of 

less than 4 hours with a corresponding depth between 25 and 30 mm. This was the 

case for 2 incidents for rail and 1 incident for bus. For 3 bus incidents, no rainfall 

events were identified on the date that they were reported and were thus excluded 

from the analysis. 

 

Figure 4-2 Total depth and duration of rainfall events that caused full closure of (a) rail and 
(b) bus links, along with the fitted median regression lines. 
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Because it was observed that the median regression lines for railway and bus (Figure 

4-3) exhibit very similar intercept and slope values, it was checked whether the 

difference between them is statistically significant. As such, the dummy variable 

method was used, where both datasets of rainfall characteristics that caused closures 

of railway and bus links were joined, and a dummy variable was introduced; in case 

that the rainfall record came from the rail dataset, the value of the variable was set 

to 1 and if the record came from the bus dataset, it was set to zero. Fitting a 

regression line to the merged dataset revealed that the influence of the dummy 

variable was not statistically significant (p > 0.05) and, therefore, the difference 

between rainfall thresholds for bus and railway was not significant. Thus, a median 

regression model fitted to the merged dataset was used to establish critical rainfall 

thresholds for both modes, which is shown in Figure 4-4. 

 
Figure 4-3 Depth and duration of rainfall events that led to full closures of bus and 
railway links, along with the fitted median regression line. 

 

Table 4-1 shows the parameters of the median regression model. The pseudo-R2 

metric (Koenker and Machado, 1999) was found to be equal to 0.40 which reveals a 

moderate goodness of fit. Note that this metric refers only to the median regression 

line and that fitting regression models to other quantiles of the data would result in 
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different pseudo-R2 values, as shown in Figure S6 as well as Tables S12 and S13 of 

Appendix C.  

 
Table 4-1 Fitted parameters of the median regression model that represents the critical 
rainfall thresholds for rail and bus. 

Parameter Estimated value Lower bound Upper bound 

Intercept 11.38 6.76 17.19 

Duration 0.5 0.38 0.59 

 

Based on the fitted line, critical rainfall events that can induce the closure of a bus or 

rail link due to flooding are those in which the depth and duration fall on or above 

the regression line of Figure 4-4. Conversely, rainfall events characterised of lower 

depth and duration that the critical thresholds fall within the area under the fitted 

line. 

 

4.5.2. Spatial dependence of critical rainfall events  

Based on the characteristics of critical rainfall events for rail and bus and according 

to the method presented in Section 4.3.1, a model was developed to estimate the 

probability of co-occurrences of critical rainfall events at spatially separated 

locations. This model reflects the geographic interdependencies between bus and 

rail in the event of pluvial flooding, from a probabilistic standpoint. 

For each critical rainfall event of each rain station (origin station), the proportion of 

stations that recorded a critical rainfall event on the same date (target stations) was 

calculated for each equal-width distance bin from the origin station and an 

exponential-decay model was fitted to the computed proportions. This process was 

carried out separately for bins with widths equal to 10 km, 20 km, 40 km, 60 km and 

80 km in order to understand how the conditional probabilities may be affected by 

the size of distance intervals. As shown in Figure S7 of Appendix C, it was observed 

that the 10 km and 20 km-wide bins lead to significantly higher conditional 

probabilities compared to the other bins, while for the other bins, the fitted models 
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appear to be similar. Therefore, the model of the 40 km-wide distance bins was 

selected. 

The box plots for computed proportions of rain stations for each 40 km-wide distance 

intervals are shown in Figure 4-4. 

 

Figure 4-4 Box plots of proportion of rain stations that recorded a critical rainfall event on 
the same day of occurrence of a critical event at the origin station, along with the mean 
value of proportions for each distance bin (denoted by diamond symbols). 

 

The results of Figure 4-4 reveal that the mean and median proportions of target 

stations that recorded a critical rainfall event concurrently with each origin station 

are higher for proximity values of up to 120 km than those for rain stations located 

farther from the origin stations. For proximity values higher than 120 km, the mean 

and median proportions of stations remain roughly the same. This suggests that, as 

expected, spatially proximate locations are associated with higher likelihood of 

experiencing critical rainfall events at the same time compared to locations farther 

apart from each other. 

Assuming that the probabilities were observed at the mid-value of each distance bin 

(e.g., 20 km for the 0 to 40 km bin, 60 km for the 40 km to 80 km bin) and that the 

conditional probability at zero separation distance is equal to 1 for each event 
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recorded by the origin station, the exponential regression function was fitted to the 

values of computed proportions.  

Figure 4-5 shows the fitted function and Table 4-2 shows the parameters of the 

model. The pseudo-R2 was calculated to be equal to 0.63, revealing a moderate 

goodness of fit of the model to the data.  

 

 
Figure 4-5 Fitted exponential regression model to the estimated conditional probabilities 
of rainfall. 

 

Table 4-2 Parameters of the fitted exponential decay model to the estimated conditional 
probabilities of co-occurrences of critical rainfall events. 

Model 

parameter 

Estimated value Standard 

error 

t value p-value 

alpha (α) 0.72 0.002 409.6 < 0.001 

beta (β) -0.04 < 0.001 -170.4 < 0.001 

theta (θ) 0.27 < 0.001 371.9 < 0.001 

 

Recalling that the rainfall events that caused the full closure of public transport links 

were estimated based on the records of their nearest rain station, the spatial 
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dependence model was used to estimate the likelihood of these events occurring at 

each link given their occurrence at the corresponding rain stations based on their 

separation distance. This was done to understand the potential error of the 

estimated rainfall characteristics that were assumed to occur on the closed public 

transport links based on the Thiessen polygon method. The results (Figure S9 of 

Appendix C) show that while, in many cases, the probability of these estimated 

rainfall depth-duration values being true is more than 75%, there are instances where 

the probability is as low as 30%. 

 

4.5.3. Impact of pluvial flooding on the redundancy of travel options between 

locations 

The importance was calculated for rail links exposed to critical rainfall events based 

on the 1-in-20 years’ pluvial flood map (Section 4.3.3). Multiple flood locations were 

observed on some rail links, which resulted in different values of conditional 

probabilities and importance values for the same link. However, because these 

differences were small, their average was taken as the importance of the link. 

Figure 4-6 shows scatterplots of the importance values of rail links for the spatial 

dependence of floods (Case III) against the complete independence (Case I) and 

complete dependence (Case II) of flood events on the bus network.  
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Figure 4-6 Scatterplots of (a) importance of rail links, when considering the spatial 
dependence of flood events that may occur on the bus network concurrently with those 
on rail (Case III), against the importance of rail links when assuming that floods on the 
bus network are independent (Case I), and (b) importance of rail links, when considering 
the spatial dependence of flood events that may occur on the bus network concurrently 
with those on rail (Case III), against the importance of rail links when assuming complete 
dependence of floods on the bus network to them (Case II). In both plots, data points 
below (above) the 45-degree reference line (in red colour) indicate increase (decrease) in 
importance of the link compared to Case III, while those falling onto the reference line 
indicate no change. 

 

Unsurprisingly, the results of Figure 4-6(a) show that when comparing between cases 

I and III, the importance of all rail links is lower in the former case compared to the 

latter. This indicates that the losses in redundancy of O-D pairs that traverse each rail 

link are lower when the geographic interdependency between rail and bus is not 

considered in the event of rainfall. When comparing the results of case II to case III 

(Figure 4-6(b)), the importance values of links in the former case are higher than the 

latter, showing that, as expected, the losses in redundancy of O-D pairs are higher 

when assuming that all exposed locations of alternative routes are simultaneously 

inundated, rather than when considering the likelihood of them closing concurrently 

based on their proximity to each other.  

An important observation in both plots of Figure 4-6 is that the importance values of 

case III against both cases I and II are characterised by a relatively positive linear 
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relationship, revealing that, in many cases, links related to high importance under 

case III are also important under the other two cases. As such, the ranking of rail links 

is expected to be relatively similar regardless of the assumption adopted on the 

dependence of flood events. 

These observations in the ranking of rail links according to their importance in the 

three cases are further confirmed by the 20 most important links identified in Table 

4-3. Specifically, it is observed that for most of the top 10 links with the highest 

importance when considering the spatial dependence of floods are also within the 

top 10 links according to the cases of complete independence and complete 

dependence of floods. However, for links with a corresponding rank that is greater 

than 10, more differences exist in their ranking between these two assumptions of 

dependence of floods. This indicates that, despite the similarities mentioned 

previously, the prioritisation of rail links should be different when considering 

disruptive events that may directly affect only one link at a time than those that may 

concurrently affect multiple links in both networks.  
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Table 4-3 Top 20 rail links identified using the importance measure for Case III, along with their ranking according to their importance under Cases I 
and II. 

Rank Link Name Importance Rank (Case I) Rank (Case II) 

1 Croy - Greenhill Upper Junction 0.3076 1 1 

2 Pitlochry - Dunkeld & Birnam 0.3066 5 5 

3 Dunkeld & Birnam - Perth 0.3064 6 6 

4 Arrochar & Tarbet - Ardlui 0.2951 4 4 

5 Ardlui - Crianlarich 0.2628 8 7 

6 Greenhill Lower Junction - Carmuirs West Junction 0.2449 7 8 

7 Balmossie - Broughty Ferry 0.2169 10 11 

8 Garelochhead - Arrochar & Tarbet 0.2001 3 3 

9 Helensburgh Upper - Garelochhead 0.1997 2 2 

10 Arbroath - Carnoustie 0.1775 9 10 

11 Crianlarich - Upper Tyndrum 0.1531 12 12 

12 Upper Tyndrum - Bridge of Orchy 0.1531 13 13 

13 Welsh's Bridge Junction - Carrbridge 0.1399 15 16 

14 Bridge of Orchy - Rannoch 0.132 16 14 

15 Rannoch - Corrour 0.132 17 15 

16 Dalwhinnie - Blair Atholl 0.124 11 9 

17 Laurencekirk - Montrose 0.1195 14 17 

18 Crianlarich - Tyndrum Lower 0.0967 21 18 

19 Dalmally - Loch Awe 0.0953 27 26 

20 Tyndrum Lower - Dalmally 0.0947 26 25 
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To understand the extent to which redundancy losses vary for origin zones, the five 

most important links identified in Table 4-3 were selected for further assessment. 

Figure 4-7 shows the absolute and relative losses in redundancy due to the failure of 

link “Croy - Greenhill Upper Junction” for each case. The classification method of 

natural breaks (Jenks) was used to classify the redundancy losses as it groups similar 

values together and accurately identifies trends in the data (Jenks and Caspall, 1971).  

 

 

Figure 4-7 Losses in redundancy of origins due to the failure of link spanning from Croy to 
Greenhill Upper Junction (a) when assuming complete independence of flooding-induced 
closures on bus routes, in absolute terms (b) when assuming complete dependence of 
flooding-induced closures, in absolute terms (c) when assuming spatial dependence of 
flooding-induced closures on bus routes, in absolute terms (d) when assuming complete 
independence of flooding-induced closures on bus routes, in relative terms (e) when 
assuming complete dependence of flooding-induced closures on bus routes, in relative 
terms (f) when assuming spatial dependence of flooding-induced closures on bus routes, 
in relative terms. Non-shaded zones correspond to origins either not served by both 
modes or not directly affected by closure of the link. 
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The results of Figure 4-7 reveal that, in absolute terms, the origin-level losses of case 

II (Figure 4-7(c)) are much more similar to those of case III (Figure 4-7(b)), than those 

of case I (Figure 4-7(a)). This can be attributed to the fact that the assumption of case 

I always assumes that the alternative bus route is available, thus overlooking their 

likelihood of concurrent closure and consequently resulting in the minimum 

potential losses of redundancy. On the other hand, cases II and III incorporate this 

likelihood within the assessment of accessibility losses, which may take the same 

value when multiple exposed locations to extreme rainfall exist on the alternative 

route. Generally, in cases II and III, the results show that the absolute losses vary 

geographically with the highest absolute losses being concentrated in West Scotland, 

while North-East Scotland is related to the lowest losses.  

In relative terms, the maps of Figure 4-7 show that, according to case I (Figure 4-7(d)), 

all origins are related to the lowest relative losses of accessibility. This shows that if 

the bus routes stay open, they are an acceptable alternative when the primary rail 

routes become unavailable. On the other hand, the results according to case II (Figure 

4-7(e)) reveal that all origins experience extremely high losses in accessibility, which 

range between 85% and 100%. Contrary to these two extreme cases, Figure 4-7(f) 

reveals that there exists variability in the geographic distribution of the changes in 

accessibility of origins. Specifically, small parts of North and North-East Scotland are 

characterised by high relative losses which aligns with the results of Figure 4-7(e). 

This indicates that the alternative routes connecting these zones to the rest of the 

study area are indeed exposed to extreme rainfall at multiple locations and 

consequently their probability of closure is unity. 

Further, although zones in North-West Scotland are associated with high losses of 

accessibility under case II (Figure 4-7(e)) they experience lower accessibility losses 

according to case III (Figure 4-7(f)). This is because the exposed locations on the 

alternative bus routes originating from these zones are outside of the spatial scale of 

rainfall event that directly impacted the corresponding primary rail routes, therefore, 

leading to a zero probability of closure of these bus routes. Finally, for some zones in 
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the Central Belt, the relative losses in accessibility are slightly lower than those of 

Figure 4-7(e), indicating that there is a likelihood of the alternative routes 

experiencing flooding but to a lesser extent than that assumed under case II. 

Similarly with above, Figure 4-8 shows the absolute and relative losses in redundancy 

of origins in the event of closure of the link “Pitlochry - Dunkeld & Birnam” due to 

pluvial flooding. The observations on the comparison of the results of case III with 

those case I and case II are equally true for this link as well. This suggests that the 

geographic distribution of losses in accessibility is more realistic when adopting the 

assumption of spatial dependence of flooding-induced closures on the alternative 

routes (Case III), rather than the complete dependence (Case II) or independence 

(Case I) of them with those on the closed rail route.  

 

Figure 4-8 Losses in redundancy of origins due to the failure of link spanning from 
Pitlochry to Dunkeld & Birnam, (a) when assuming complete independence of flooding-
induced closures on bus routes, in absolute terms (b) when assuming complete 
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dependence of flooding-induced closures, in absolute terms (c) when assuming spatial 
dependence of flooding-induced closures on bus routes, in absolute terms (d) when 
assuming complete independence of flooding-induced closures on bus routes, in relative 
terms (e) when assuming complete dependence of flooding-induced closures on bus 
routes, in relative terms (f) when assuming spatial dependence of flooding-induced 
closures on bus routes, in relative terms. Non-shaded zones correspond to origins either 
not served by both modes or not directly affected by closure of the link. 

 

Similar maps were produced for the links “Dunkeld & Birnam - Perth”, “Arrochar & 

Tarbet - Ardlui” and “Ardlui - Crianlarich” (Figure S10 to Figure S12 of Appendix C), 

and reveal observations on the comparison of results between the three cases that 

are very similar to those of Figure 4-7 and Figure 4-8. However, the zones directly 

impacted by the closure of each link and the geographic distributions of zone-level 

changes in accessibility significantly depend on which rail link closes, highlighting that 

the spatial patterns of consequences of rainfall events heavily depend on the location 

that they occur. 

 

4.6. Conclusions and Discussion 

In this study, an approach was proposed to assess the indirect impacts of adverse 

rainfall events on geographically interdependent public transport networks. The 

approach extends current impact assessment methods by incorporating the 

likelihood of flooding closures occurring simultaneously all public transport modes 

operating in an area due to the same rainfall event and considers the geographic 

interdependencies between transport networks which carry these modes. This was 

achieved by estimating the spatial dependence structure of rainfall events that may 

result in flooding of public transport links using historical data. A new metric of link 

importance was proposed which considers both the impact of their flooding-induced 

failure on accessibility, and the probability of concurrent closure of alternative 

options. 

The results of the application of the method to the Scottish public transport network 

reveal that the ranking of links based on their importance shares some similarities 
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across the three assumptions on concurrency of flooding-induced closures, although 

differences were also observed. When ignoring the potential for alternative routes 

being impacted by pluvial flooding and, by extension, the geographic 

interdependencies between rail and bus, the ranking of rail links is different than 

when considering them. This indicates that spatially confined disruptions affecting 

only one link at a time lead to different prioritisation of links than for flood-related 

area-covering events. The results also show that the origin-level losses in accessibility 

are markedly different across the three cases. The “best-case” scenario, which 

ignores geographic interdependencies, underestimates impacts, with all zones 

experiencing minimal losses. Conversely, the “worst-case” scenario assumes 

complete dependence of route closures, leading to widespread high losses. The 

spatial dependence model offers a more realistic middle ground capturing spatial 

variability in redundancy losses, which might range from very low to high. 

Although the application of the method was undertaken for public transport modes 

operating on infrastructure networks of a specific geographical area, the conclusions 

of the results are relevant to other areas that share similarities with the case study. 

Regional rail and road networks which are located near each other are more 

susceptible to concurrent disruptions due to rainfall and their alternative routes are 

more likely to be closed at the same time, therefore leading to higher losses in 

redundancy. Since the construction of rail and road assets in close proximity is a 

common practice due to geographical constraints (Thacker et al., 2017), it is expected 

that the redundancy offered by multiple modes will play a limited role in maintaining 

connectivity between locations. 

A key novel finding of the present study is that scenarios of single-link failures that 

are commonly used in the vulnerability assessment of geographically interdependent 

public transport networks (e.g., Cats et al., 2016; Cats and Jenelius, 2014; Taylor et 

al., 2006) are not appropriate for the assessment of weather-related area-wide 

events, such as rainfall. Indeed, previous research works have shown that the 

geographic distribution of impacts of rainfall-related floods on the performance of 

road and rail networks significantly differ from those arising from spatially confined 
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events (Hong et al., 2015; van Ginkel et al., 2022). This difference occurs because the 

redundancy of network, which helps maintain connectivity during single-link failures, 

is greatly reduced when multiple co-located links fail simultaneously within the 

event's spatial footprint. To the author’s knowledge, no studies have yet assessed 

the combined effects of rainfall on both road and rail networks. Thus, the rainfall-

related geographic interdependency and its implications for the redundancy offered 

by discrete public transport modes has not been analysed. The novelty of the present 

study is that it develops a framework that addresses this gap. The application to the 

case study demonstrates, for the first time, that the contributions of redundancy 

offered by multiple public transport modes to the connectivity of locations are 

significantly diminished when rainfall causes multiple flooding-induced closures of 

links. Furthermore, the novelty of this work is that it shows that common 

assumptions of ignoring the potential for concurrent link closures during pluvial flood 

events (e.g., Hong et al., 2019; Ma et al., 2019) leads to markedly different estimates 

of location losses and link rankings and, therefore, the effect of rainfall on all exposed 

modes of a study area should be equally considered. 

Furthermore, the limited availability of data on historical flooding incidents 

prevented distinguishing between fluvial and pluvial events or determining return 

periods of critical rainfall that led to closures. Consequently, only one spatial 

dependence model was established. In reality, the spatial patterns and dependence 

structures are expected to vary across events of different frequencies. However, it 

was not within the scope of this work to develop these more detailed models of 

rainfall dependencies, but rather to characterise the geographic interdependencies 

to rainfall-induced flooding as a result of the proximity of transport links and, based 

on these, identify the most susceptible locations and parts of the networks, which 

would require more in-depth scrutiny. Future work could focus on integrating spatial 

dependence and other rainfall characteristics (e.g., seasonality, anisotropy and 

regional variation) into intensity-duration-frequency curves (e.g., Hefferman and 

Tawn, 2004; Renard and Lang, 2007; Le et al., 2018) to undertake a comprehensive 

flood risk analysis for different return periods. 
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Finally, only one route offered by each mode for travel between locations was 

considered in the assessment of impacts of extreme rainfall, while multiple routes 

may exist. Therefore, the method could be extended to consider the k-shortest paths 

for each mode, and the analysis could be performed using the least-cost routes 

across the entire set of available options as the preferred choice of travellers, rather 

than assuming that a specific travel mode is preferred over others. 

Despite the abovementioned limitations, the method proposed provides a valuable 

tool for the assessment of rainfall impacts on transport networks that can be applied 

to different transport and geographical contexts. From the practitioners’ perspective, 

it is important for network managers to identify those parts of the transport network 

which if they fail during adverse weather events, including rainfall, would have the 

most severe consequences on connectivity.  

Existing sophisticated methods for the analysis of extreme rainfall on infrastructure 

systems require the use of flood models which are seldom available to network 

managers and of which the development requires significant data and computational 

resources. In contrast, the approach proposed here provides a straightforward 

method that allows identifying locations subject to concurrent closures and 

understand the impacts of these simultaneous closures using software tools and data 

that are readily available to transport practitioners (e.g., spatial data of transport 

networks and historical closures) or can be easily obtained from other sources (e.g., 

rainfall data, pluvial flood maps). Furthermore, by accounting for the likelihood of 

concurrent flooding-induced closures of links, this approach allows practitioners to 

obtain more realistic estimates of accessibility losses and to better prepare for the 

potential future indirect costs by taking appropriate engineering measures to adapt 

susceptible parts of the network to pluvial flooding. 
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This chapter extended the general and empirical methods for the evaluation of 

geographic interdependencies presented in Chapters 2 and 3 respectively, by 

modelling their characteristics of geographic interdependencies in probabilistic 

terms using records of rainfall timeseries. By incorporating rainfall spatial 

dependence into the analysis, this study presents a more realistic representation of 

rainfall impacts on the vulnerability of geographically interdependent public 

transport networks. The next and final chapter synthesises the key findings of this 

thesis, discusses broader implications of this research for researchers and 

practitioners, and outlines future research directions. 
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5. Discussion 

5.1. Completion of the research aim and objectives 

The aim of this research was to assess the resilience of public transport modes 

operating on geographically interdependent transport infrastructure networks to 

area-wide events, with a particular focus on extreme rainfall. The first study reported 

in Chapter 2 developed a general framework to characterise the geographic 

interdependency between two discrete public transport infrastructure networks 

independent of the nature or intensity of hazardous events. The second study 

presented in Chapter 3 developed an empirical method to incorporate the 

characteristics of rainfall-related geographic interdependencies into the assessment 

of the importance and criticality of public transport links. Finally, Chapter 4 extended 

this empirical analysis by developing a model of the spatial dependence of flooding-

producing rainfall co-occurrences at spatially separate locations, which reflects the 

likelihood of rainfall-related geographic interdependencies occurring and 

subsequently incorporating these into the vulnerability assessment. Therefore, as 

shown in Table 5-1, the research objectives that were previously set out in Table 1-3 

were achieved. 
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Table 5-1 Research objectives achieved in this thesis. 

Reference Research objective Chapter Section 

OBJ1.1 A review of existing metrics that quantify the redundancy of travel options 

between locations was carried out. 

2 2.2 

OBJ2.1 A review of the methods proposed in the literature that quantify the geographic 

interdependency between infrastructure networks was carried out.  

2 2.2 

OBJ2.2 A metric was developed that captures the degree of geographic 

interdependencies between transport infrastructure networks. 

2 2.3.2 

OBJ3.1 The proposed metric that captures the geographic interdependency was 

incorporated into selected metrics of redundancy. 

2 2.3.2, 2.3.3 

OBJ3.2 A general framework was developed to assess the impact of geographic 

interdependencies between discrete public transport networks on redundancy. 

2 2.3 

OBJ3.3 Sensitivity analysis on the extent of area-wide events was conducted to assess 

how the loss of redundancy is affected by the size of footprint of hazardous 

events. 

2 2.5 

OBJ4.1 A review of metrics that capture the importance and criticality of transport links 

was undertaken. 

3 3.2 
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OBJ5.1 Methods that model the likelihood of simultaneous events occurring at spatially 

distant locations were reviewed, and a method was selected for the purposes of 

this research. 

3 3.3.2 

OBJ5.2

  

The data requirements for the empirical estimation of rainfall-related geographic 

interdependencies between public transport networks were identified, and 

datasets were constructed for the purposes of this research. 

3 3.4.2, 3.4.3 

OBJ6.1 The empirical extent of rainfall-related geographic interdependencies was 

incorporated into selected metrics of importance and criticality of public transport 

links.  

3 3.3.3, 3.3.4 

OBJ6.2 The importance and criticality of public transport links were computed with and 

without considering the rainfall-related geographic interdependencies, thus 

allowing to compare the ranking of links for each metric between these two cases. 

3 3.5 

OBJ7.1 The literature on rainfall-related flood risk assessment of transport networks was 

reviewed.   

4 4.2 

OBJ8.1 A method was selected to model the likelihood of concurrent rainfall-induced 

flood events occurring at spatially proximate locations. 

4 4.3.2 
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OBJ9.1 A framework was proposed for the development of scenarios of concurrent pluvial 

flood events due to the same rainfall event, which were then incorporated into 

the vulnerability assessment. 

4 4.3.3 

OBJ9.2 The losses of redundancy were computed, with and without considering the 

potential for flooding-producing rainfall co-occurrences in geographically 

interdependent public transport networks. 

4 4.5.3 
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5.2. Conclusions and Discussion 

The methods developed in this thesis were applied to the Scottish public transport 

network consisting of long-distance bus and rail services. There are several novel 

findings which were revealed from this research.  

In Chapter 2, applying the framework to the case study revealed that losses in 

network resilience as measured by accessibility indicators are positively correlated 

to the spatial scale of hazardous events. Specifically, the accessibility losses increase 

with the scale of area-wide events, suggesting that the contribution of redundancy 

of travel options to accessibility of locations may be significantly reduced due to the 

occurrence of these events. As such, ignoring the potential for alternative travel 

options suffering concurrent disruptions when area-wide events occur, significantly 

underestimates the true consequences of these events to the accessibility of public 

transport networks and connectivity of locations. Notably, travel options in close 

proximity were found to be particularly vulnerable. Furthermore, urban zones 

experienced higher absolute losses, while rural zones were more vulnerable in 

relative terms. 

Building on this understanding of worst-case accessibility losses, Chapter 3 focused 

on a specific hazard – in this case, rainfall – by empirically analysing geographic 

interdependencies using historical disruption records. Importantly, the analysis not 

only confirmed that geographic interdependencies between rail and bus networks 

may occur during heavy rainfall events but also informed the selection of an 

appropriate spatial scale for the assessment of vulnerability of public transport links. 

Although the ranking of link importance remained relatively unchanged when 

geographic interdependencies between rail and bus were considered, the criticality 

of links was significantly affected, particularly in urban centres where clusters of 

closely spaced links exhibited both high importance and weakness. In practical terms, 

this means that clusters of spatially proximate rail and bus links, which close 

frequently due to rainfall and the failure of which will disrupt a significant number of 

public transport trips, require further scrutiny by infrastructure managers and public 

transport operators. This is because, in cases of extensive inundation following heavy 
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rainfall, it is likely that the trips traversing these link clusters will be cancelled 

simultaneously, thus leaving public transport users with no travel alternative. 

Interestingly, the most critical clusters of public transport links identified in Chapter 

3 did not overlap the most vulnerable sections of routes shown in Chapter 2. This 

difference arises from the distinct focuses of each chapter. Chapter 2 assessed 

geographic interdependencies in terms of accessibility losses, whereas Chapter 3 

examined the functionality loss of public transport services. Therefore, these works 

complement each other and can be used together for a more comprehensive 

assessment of geographic interdependencies. Furthermore, the empirical findings of 

Chapter 3 on the geographic interdependencies can inform the buffer-shaped 

modelling approach used in Chapter 2 for rainfall-specific applications. 

Chapter 4 extended the framework of Chapter 2 by incorporating a probabilistic 

model of rainfall-related geographic interdependencies into the model of 

redundancy, enabling a more accurate evaluation of concurrent disruptions on the 

accessibility of locations because of extreme rainfall. The analysis compared the 

differences in the vulnerability of public transport links and accessibility losses of 

locations between three separate cases: when ignoring geographic 

interdependencies (“best case” scenario); when assuming that all exposed links to 

rainfall will be closed at the same time (“worst case” scenario); and, when assuming 

that the likelihood of exposed links closing concurrently depends on their separation 

distance (statistically plausible scenario). Results revealed that, while the overall 

ranking of rail link importance shared similarities across the scenarios of complete 

independence, complete dependence, and probabilistic spatial dependence of 

closures, differences emerged for lower-ranked links, highlighting the need to 

carefully consider the assumptions adopted on the existence and likelihood of 

geographic interdependencies. The important links identified in this study are 

different from the vulnerable route sections of Chapter 2 and critical links of Chapter 

3. This can be attributed to the fact that only those links exposed to a rainfall event 

of a specific frequency were considered, thus targeting the assessment of geographic 

interdependencies to a subset of the network components as opposed to the two 
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previous chapters where the links of the entire networks were assessed. 

Furthermore, in terms of accessibility losses of locations due to the flooding-induced 

closure of links, the assumption of no interdependency was found to underestimate 

accessibility losses, whereas adopting the “worst-case” scenario of concurrent 

closures overestimated them. In contrast, the probabilistic approach produced 

geographically variable estimates, suggesting it offers a more realistic appraisal of 

resilience. 

Although this findings pertain to the Scotland, they are relevant to areas of similar 

size and network structure. Specifically, in urban areas, the proximity of transport 

networks is often constrained by geography. While a significant number of 

alternative public transport options exist due to high frequency and diversity of 

services, it is expected that extreme weather-related events have the capacity to 

concurrently disrupt all these spatially proximate options, thus markedly reducing 

the available network redundancy and inducing considerable accessibility losses. As 

such, the worst potential impacts of geographic interdependencies in urban areas 

will be very high in absolute terms. In contrast, rural areas may have alternative 

transport options that are more widely spaced, reducing the likelihood of concurrent 

failures during localised events. However, if large-scale weather events affect these 

dispersed alternatives simultaneously, redundancy will be significantly reduced, 

albeit in relative terms.  

Findings from the empirical analysis and the impact assessment of rainfall in Chapters 

3 and 4 are also relevant to regional and national public transport networks exposed 

to severe rainfall events, such as those in central Europe and North America. The 

literature review on the spatial scale of rainfall (Section 1.2.1) highlights that such 

events can range from localised to regional and even international in extent under 

both current and future climate conditions. Therefore, considering the extent and 

likelihood of geographic interdependencies between discrete public transport 

networks is essential for accurately evaluating the impact of rainfall on 

transportation systems.  
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Beyond extreme rainfall, the methods presented in this thesis can be adapted to 

assess the impact of other weather-related hazards, such as snowfall, hurricanes and 

windstorms. For example, the framework of Chapter 2 can serve as a preliminary 

assessment to identify particularly vulnerable sections of routes by selecting an 

appropriate buffer width for the hazard of concern. The empirical method of Chapter 

3 can be applied to characterise the geographic interdependencies that may occur 

due to the event using historical disruption records for the public transport networks 

of study. The systematic impact assessment of Chapter 4 can be employed to obtain 

more accurate estimates of accessibility losses considering both the location and 

spatial scale of the weather event. 

Within the context of vulnerability assessment, previous studies have primarily 

examined the impacts of isolated link failures on single- or multi-modal networks 

without considering the spatial correlation of disruptions (e.g., Jenelius et al., 2006; 

Taylor et al., 2006; Rodriguez-Núñez and García-Palomares, 2014; Cats and Jenelius, 

2014). Furthermore, studies to date that have developed general methods for the 

evaluation of impacts of area-wide events on transport vulnerability, have been 

limited to individual transport infrastructure networks, namely road or rail (Mattson 

and Jenelius, 2012; Du et al., 2023; Ouyang et al., 2019). In contrast, this thesis 

captures the joint exposure of discrete public transport networks to area-wide 

weather events by integrating resilience indicators with geographic interdependency 

metrics based on the separation distances of network components. This is achieved 

through the development of the general framework for the evaluation of geographic 

interdependencies in Chapter 2 as well as the empirical analysis of their 

characteristics for a certain hazard in Chapters 3 and 4. To the author’s knowledge, 

no work to date has attempted to analyse historical disruption records for transport 

networks to characterise the weather-induced geographic interdependency between 

them and integrate them into the vulnerability assessment to area-wide events.  

Using rainfall as the hazard of concern, the research in this work is the first to 

systematically analyse the consequences of concurrent flood-producing rainfall 

events on both the functionality of discrete public transport modes and accessibility 
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of locations. Although extensive research exists on the impacts of pluvial flooding on 

transportation, most works to date have focused solely on road (e.g., Pregnolato et 

al., 2017; Pyatkova et al., 2019) or rail (e.g., Hong et al., 2015; Forero-Ortiz et al., 

2020; Zhu et al., 2022), therefore underestimating the accessibility losses of rainfall 

across the broader transport system. Even studies that consider multimodal 

transport networks, ignore the potential for concurrent disruptions across all the 

modes analysed and, therefore, misrepresent the impacts on the functionality of 

networks (Hong et al. 2019; Ma et al., 2019; He et al., 2020). In contrast, the research 

presented in this thesis, takes a thorough approach by first empirically examining 

geographic interdependencies resulting from historical rainfall events (Chapter 3), 

confirming that concurrent closures across discrete public transport modes should 

be incorporated into the impact assessments. This empirical assessment provided 

the foundation for developing a probabilistic model of interdependencies, which was 

then used to systematically evaluate the impact of flood-producing rainfall events on 

interdependent public transport networks (Chapter 4). 

 

5.3. Limitations and recommendations for future research directions 

The research presented in this thesis comes with several limitations. Limitations that 

specifically pertain to each study are reported at the end of Chapters 2, 3 and 4.  

Regarding the limitations on methods developed for the purposes of this research, 

the geographic interdependency between rail and bus was initially defined using a 

buffer-based approach in the general framework proposed in Chapter 2. This 

approach assumes that alternative routes lying within the buffer-shaped 

neighbourhood of the primary routes are concurrently exposed to the same 

hazardous event, while those parts of the alternative routes lying outside of the 

buffer are considered to be unaffected. While this approach may be appropriate 

when exploring the geographic interdependencies for various hazards without 

necessarily considering their nature, the “cliff edge” effect that results from the 

delineation of buffers may not provide realistic results when analysing 
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interdependencies stemming from a given weather-related hazard. Indeed, for 

flooding, the empirical analysis of concurrent disruptions between rail and bus links 

(Chapter 3) as well as the spatial dependence structure of rainfall co-occurrences 

(Chapter 4) revealed that the likelihood of flooding-related geographic 

interdependencies decays as the separation distance between network components 

increase.  

Therefore, although the general framework of Chapter 2 may provide useful 

preliminary insights into the susceptibility of geographically interdependent 

transport networks, efforts should be made to understand how the extent of 

geographic interdependencies varies with separation distance due to the occurrence 

of a certain hazard. Similarly, in the empirical analysis of Chapter 3, owing to the 

limitations of the available data, a buffer-based approach was employed to assess 

the importance and criticality of public transport links. Although the extent of the 

buffer-shaped neighbourhood was informed by analysis of the historical datasets of 

flood events on the two networks considered, the approach did not account for the 

effect of separation distance between components or the intensity of rainfall to the 

likelihood of geographic interdependencies occurring. A useful extension of this work 

would be to incorporate the conditional probability of links being concurrently 

flooded in the metrics of importance and criticality (e.g. using the spatial dependence 

model of Chapter 4) based on the separation distance of the links.  

In Chapter 4, the limitations of the buffer-shaped neighbourhood were addressed by 

modelling the conditional probability of critical (flood-producing) rainfall co-

occurrences at spatially proximate locations. However, the characteristics of the 

critical rainfall events were estimated based on the Thiessen polygon method, which 

assumes that rainfall on a link is the same as that recorded by the nearest rain station, 

and, as such, this may not provide accurate estimates. By extension, the accuracy of 

the spatial dependence model used to characterise the geographic 

interdependencies could be improved by identifying critical rainfall events using 

radar data or more sophisticated techniques of rainfall interpolation. Additionally, 

the spatial dependence model for critical rainfall co-occurrences was established 
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without considering the differences in the spatial dependence structure between 

intense and milder critical rainfall events or their return periods. It is expected that 

the spatial extent of rainfall varies according to its frequency and severity and, 

therefore, a useful extension to this work would be to develop a suite of spatial 

dependence models that consider the intensity and frequency of critical rainfall 

events.   

Furthermore, in Chapters 2 and 4 only the least-cost rail and bus routes that connect 

the O-D pairs of concern were considered in the assessment of geographic 

interdependencies. The methods proposed in these chapters could be extended to 

incorporate less preferred rail and bus routes for a given OD pair as well as routes 

offered by other transport modes that may provide feasible alternative options. For 

the general framework presented in Chapter 2, this would require considering in the 

neighbourhood coefficient (Section 2.3.2) the extent to which each alternative route 

lies within the buffers of the already selected options, as shown in Equation S1 of 

Appendix A. Regarding the flood impact assessment, additional spatial dependence 

models would need to be established that predict the likelihood of critical rainfall co-

occurrences on links of the same infrastructure network (e.g., 

𝑃(𝑟𝑎𝑖𝑙𝑓𝑙𝑜𝑜𝑑|𝑟𝑎𝑖𝑙𝑓𝑙𝑜𝑜𝑑), 𝑃(𝑏𝑢𝑠𝑓𝑙𝑜𝑜𝑑|𝑏𝑢𝑠𝑓𝑙𝑜𝑜𝑑)). In a similar vein, the measures of 

importance and criticality proposed in Chapter 3 could be extended to consider the 

neighbouring links of the same mode which are located within the buffer of the link 

of concern. This would provide more comprehensive results on the importance and 

criticality of buffers. 

Moreover, in this research, the assessment of geographic interdependencies was 

carried out using a static approach, which, for Chapters 2 and 4, involved identifying 

rail and bus routes that may be concurrently exposed to hazards for a certain time 

window of a weekday and, for Chapter 3, it involved considering the public transport 

trips traversing each link on a typical weekday. Repeating these analyses for various 

time windows would allow identifying the times of day and days of week, where the 

impact of geographic interdependencies on the resilience of networks is the most 

significant. 
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Another limitation in relation to the methods of this research is that the accessibility 

in Chapters 2 and 4 was estimated on the basis of travel time. However, other 

components of travel deterrence could be also considered in this work, such as travel 

distance and economic cost of travel. In addition, the population in the origin zones 

of travel as well as attractiveness of destinations (e.g., employment, education) could 

be incorporated into the method to analyse the impact of geographic 

interdependencies on social components of resilience and the activity system. These 

additions would provide further insights into the locations most affected by weather-

related area-wide events, which require priotirisation for interventions. Regarding 

Chapter 3, the importance of public transport links was defined on the basis of rail 

and bus trips that traverse each link. Other metrics could be used to measure the 

importance, such as the number of shortest paths, number of passengers on the 

services using the links, or, in a similar direction with Chapter 4, the importance of a 

link could be defined based on the accessibility loss caused by its failure. 

A final limitation on the methods of this work is that the flexibilities and restrictions 

associated with each public transport mode were not considered in the analysis. For 

instance, it was not considered whether bus services may divert to avoid the location 

of the hazardous event or if rail operators could employ replacement bus services to 

accommodate rail passengers in the event of disruption. As such, this work could be 

extended to incorporate these characteristics, as well as the ability of travellers to 

transfer to another mode in order to reach their destination. This would require 

considering the physical interdependencies between rail and bus in the event of 

disruptions, e.g. by connecting the bus stops and rail stations that travellers can use 

to transfer between services using interlinks. An important characteristic that could 

also be included in the analysis is the capacity of each mode, which could be used to 

model congestion effects inflicted by the concurrent disruptions on rail and bus. This 

however would require the use of more sophisticated transport models that 

realistically capture the travellers’ movement and travel behaviour.  

Regarding the datasets used for the purposes of this research, there are several 

limitations associated with them. Specifically, the available GTFS data for bus services 
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in Scotland, which were used to construct the representation of the long-distance 

bus network, did not make any distinction between local, regional and long-distance 

routes. Therefore, with a view to retain only longer-distance services, travel distance 

was used to exclude routes of local and regional services. However, since no 

consensus exists on the minimum distance required for routes to be considered as 

long-distance, an arbitrary distance threshold was selected. Sensitivity analysis 

would need to be carried out to understand how the results of the analyses vary 

based on the threshold that defines bus services as long-distance. Furthermore, the 

selection of bus routes could be further refined by retaining bus services with termini 

in different localities which exceed a given route distance threshold. 

Moreover, several limitations exist in the incident data which were used in Chapters 

3 and 4. In the absence of a readily available incident dataset for the entire long-

distance bus network, several datasets were obtained and combined. Due to the 

difficulty in acquiring and fusing these records, only a subset of the long-distance bus 

network was used, which consisted of services provided by selected coach operating 

companies. In addition, the incident data did not provide complete coverage even 

for the selected subset of the long-distance bus network, which increased the 

uncertainty of results from both the empirical assessment of geographic 

interdependencies and criticality of public transport links. Another limitation that 

adversely affected the assessment of geographic interdependencies and criticality of 

links was that the records provided by the relevant transport authorities did not 

provide the exact location of flooding for each incident. This resulted in high 

uncertainty of the estimated level of flooding-related geographic interdependencies 

between bus and rail as well as the weakness and criticality of links.  

Furthermore, since the incident data were available for only a short time period, the 

conditional probabilities that were used to characterise the flooding-related 

geographic interdependency between bus and rail links were very low and, 

therefore, a buffer-based approach was adopted, as previously stated. The 

availability of records for a longer time period would allow the development of a 

more robust model of geographic interdependencies which could be incorporated in 
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the measure of criticality. Although this model was constructed in Chapter 4 using 

the available rainfall data, the large separation distances between rain stations of the 

study area did not allow to compute the conditional probabilities of critical rainfall 

co-occurrences for small distance bins. Thus, the spatial resolution of a model 

constructed using rainfall data of rain stations would be coarser compared to a 

similar model developed using incident data between spatially proximate transport 

links.  

The existence of only limited records, coupled with the unavailability of the incident 

durations, also affected the measure of weakness (and criticality). As such, the 

measure of weakness was developed to reflect the frequency of flood events on links 

irrespective of the event duration or severity of flooding impacts on the links (i.e., 

partial or full closure). In case that long incidents records existed, a metric of 

weakness could be established for each severity of flooding impact.  

A final limitation in relation to the available data is that, in the absence of hazard-

specific explanatory variables that could enable the construction of a link-level model 

of weakness to flooding, only link length was used as an explanatory variable, which 

is considered as a general property of links, rather than a characteristic which 

pertains specifically to flooding. To establish hazard-specific link-level models of 

weakness, further research is needed to identify predictors that affect the frequency 

of flooding of public transport links, such as average intensity of rainfall on links, 

topography, surrounding environment etc. 

 

5.4. Contributions of research to theory and practice 

This research contributes to the current state of knowledge on the resilience of 

transport networks to weather-related disruptions in the following ways: 

• The development of a general method for the assessment of the impact of 

geographic interdependencies between transport infrastructure networks on 

the resilience of discrete public transport modes, from an accessibility 

perspective. This work provided a robust understanding of the parts of 
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separate infrastructure networks on which discrete public transport modes 

operate and which are jointly exposed to spatially defined events stemming 

from adverse weather conditions. The sensitivity analysis conducted for this 

work on the impact of the size of area affected on the severity of 

consequences to the networks allows the implications of the spatial extent of 

events to the resilience of public transport networks as well as accessibility of 

areas to be understood. 

 

• The development of an empirical method to characterise the extent of 

geographic interdependencies between links of discrete public transport 

networks for a given hazard of concern, which, in this case, was flooding. 

Incorporating the degree of this interdependency to the criticality assessment 

enabled the identification of spatially proximate rail and bus links that are 

both weak (i.e., more frequently closed due to flooding than expected) and 

important (i.e., used by many public transport trips), The concurrent closure 

of these links would therefore result in significantly adverse consequences to 

the functionality of both networks, but also to the potential for public 

transport users to undertake their trips using either of these modes. The work 

further demonstrated that the criticality of links is significantly different when 

accounting for the geographic interdependency between modes than when 

ignoring it, thereby highlighting that the prioritisation of links to weather-

related area-covering events should be different from that for point-based 

incidents. 

 

• The development of a model that estimates the probability of concurrent 

rainfall-related flooding incidents occurring based on the degree of spatial 

proximity between locations. Incorporating this model to the impact 

assessment of pluvial flooding to discrete public transport modes allows 

identifying the most important links of a given mode, which have a higher 

probability of experiencing concurrent closures with nearby links of an 

alternative mode, as such leading to the most significant losses in 
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accessibility. Further, the inclusion of geographic interdependencies through 

this model to the impact assessment provided better estimates of the indirect 

consequences of flooding to the accessibility of locations. 

 

The work conducted for the purposes of this thesis makes several academic 

contributions within the context of resilience of public transport networks to 

weather-related disruptions. Specifically, this research systematically assessed the 

resilience of public transport modes operating on distinct transport infrastructure 

networks, while accounting for their likelihood of being concurrently disrupted due 

to a weather-related area-wide event occurring. The assumption that 

hydrometeorological events, such as rainfall and flooding, affect only one type of 

transport infrastructure, while other transport networks remain intact (e.g. Hong et 

al., 2019; Ma et al., 2019) is not realistic. This is because weather events cover areas, 

rather than a single spatial point at a time, and, therefore, all infrastructure networks 

located within their spatial footprint may suffer damage, consequently leading to 

concurrent disruptions across multiple transport modes. In other words, adverse 

weather conditions may reveal geographic interdependencies between separate 

infrastructure networks that are not apparent under normal conditions. While 

extensive research has been conducted on the implications of geographic 

interdependencies between other infrastructure networks, very limited work has 

been done for public transport modes operating on separate transport networks. 

Furthermore, in assessing the impacts of weather-related events on the resilience of 

networks, it cannot be assumed that the redundancy of the transport network helps 

to maintain the connectivity between locations in the same way as when spatially 

confined incidents occur. However, research on the losses in redundancy when area-

wide events occur is still in its infancy. Therefore, this research work addressed this 

important gap by analysing the potential losses in redundancy arising from area-

covering events, while exploring how impacts in redundancy change based on the 

size of spatial footprint of events.  
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Moreover, due to the scarcity of empirical analyses of geographic interdependencies 

between transport networks to specific weather-related hazards, a part of this 

research was devoted to empirically assessing the characteristics of flooding-related 

geographic interdependencies between rail and bus based on historical incident 

datasets and estimating their impacts on the importance and criticality of public 

transport links.  

A final contribution of this thesis to the current body of research is the construction 

of a model showing the probability of flooding-related geographic interdependencies 

occurring at distant locations based on long records of rainfall data and using this 

model to estimate losses in accessibility as a result of concurrent closures in two 

discrete public transport networks. Although significant research has been previously 

carried out to understand the impacts of flooding on the operation of public 

transport networks, to the author’s knowledge, no work has assessed to date the 

concurrent effects of flooding to the functionality of multiple modes that operate on 

separate infrastructure networks. 

From the practitioners’ perspective, current transport policies particularly emphasise 

the need to transition away from the use of private vehicles and prioritise public 

transport modes for both short and longer-distance trips. However, in the past 

decades, public transport networks have been increasingly disrupted to adverse 

weather, including rainfall-induced flooding, and this vulnerability may deter 

travellers from using public transport for their trips. This research helps both 

transport infrastructure owners and public transport operators identify network 

components, of which the failure has the greatest impact on the performance of 

networks and connectivity of locations, while also taking into account the potential 

for the concurrent failure of alternative options. This in turn enables practitioners to 

identify which sections of their network needs to be prioritised for further 

assessment and adaptation measures. 

Specifically, the general method of impact assessment of geographic 

interdependencies in Chapter 2 enables practitioners to identify areas where the 
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potential losses in resilience due to spatially defined events are substantial, thus 

allowing them to prioritise those areas requiring further scrutiny. Network managers 

can apply this method using data and tools which are readily available to them. 

Specifically, they can use spatial data to identify key alternative public transport 

routes within a region or country, along with the associated travel costs. By 

delineating buffers around these routes in openly available GIS tools, they can 

determine which sections of the alternative routes may be exposed to the same area-

wide event. The travel costs of the alternative routes can be then adjusted 

proportionately based on the share of routes that are jointly exposed, allowing for 

the calculation of redundancy and substitutability indicators for O-D pairs and origin 

(or destination) zones in the study area.  By applying this process with varying buffer 

widths, the approach can be easily adapted to explore the effects of events at 

different spatial scales. Therefore, this enables practitioners to identify areas 

requiring further attention for localised events, as well as those that are only affected 

by large-scale hazards.  

The research conducted in Chapter 3 provides infrastructure managers and public 

transport operators with an empirical method to identify the areas where susceptible 

links of separate transport infrastructure networks are co-located. If these links close 

due to the same weather event, their failure can have severe consequences for the 

operation of public transport modes that rely on them. To apply this method, 

timetable data can be used to determine which public transport links carry the 

highest number of services and are therefore the most important. Historical 

disruption records can then be analysed to estimate link weakness. When combined 

with the importance indicator, this allows for the identification of the most critical 

links within a public transport network. Importantly, these records can also be 

mapped in GIS and analysed to assess whether links of alternative public transport 

modes have historically been affected by the same weather-related event, thereby 

determining the extent of geographic interdependencies between them. By 

delineating buffers, clusters of links which are highly important and/or critical, can 

be then identified and prioritised for intervention. 
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Finally, the work undertaken in Chapter 4 provides transport authorities with a 

method to identify transport infrastructure links used by alternative public transport 

modes that are likely to flood simultaneously due to the same rainfall event, 

consequently leading to high accessibility losses. The method developed is easily 

applicable using openly available data. Specifically, infrastructure managers can 

analyse historical disruption records alongside readily available rainfall datasets to 

estimate the characteristics of rainfall events that have previously caused full link 

closures. The rainfall datasets can then be used to model the spatial dependence of 

these rainfall co-occurrences, providing a probabilistic representation of rainfall-

related geographic interdependencies between networks. To identify links exposed 

to the hazard, transport networks can be mapped in GIS and spatially intersected 

with pluvial flood maps. By considering the closure of these exposed links along with 

the likelihood of nearby links failing concurrently, redundancy losses can be 

estimated, allowing for the identification of the most critical links. Accounting for the 

probability of concurrent closures results in more realistic accessibility loss estimates 

and enables practitioners to better prepare for the indirect costs associated with 

rainfall or other weather-related hazards, such as storm surges or heavy snowfall. 
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6. Conclusions 

This thesis presents a novel framework for the assessment of resilience and 

vulnerability of geographically interdependent public transport networks based on 

three separate studies. 

 The first study presents a framework that assesses accessibility losses due to hazards 

at various spatial scales. Building on this, the second study draws on flood incident 

data to estimate rainfall-related geographic interdependencies between two discrete 

public transport networks, which is then used to assess the importance and criticality 

of links in both networks. The third study captures geographic interdependencies by 

developing a probabilistic spatial dependence model of flood-producing rainfall 

events and applies this model to a pluvial flood hazard map in order to estimate the 

accessibility impacts of heavy rainfall events on public transport networks. The 

research is applied to the Scottish long-distance bus and rail networks.  

Results reveal that losses in accessibility are often substantial even for localised 

hazards and that these are positively correlated with the spatial scale of event. For 

rainfall, the empirical analysis confirms the existence of geographic 

interdependencies between rail and bus and reveals that the criticality of links of 

both modes is significantly affected when geographic interdependencies due to 

rainfall are considered. Results of the pluvial flooding impact assessment show that 

accessibility losses are potentially hi 

 gher than when geographical interdependencies are ignored. This research provides 

novel insights into the role of geographic interdependencies to the resilience of 

public transport networks and enables infrastructure managers to identify locations 

that require further scrutiny.  

Although the findings focus on Scotland’s long-distance public transport networks, 

they are applicable to other regions and countries exposed to heavy rainfall. 
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Appendices 

Appendix A: Supplementary Material for Chapter 2 

 

Table S1 Results of post-hoc comparisons of redundancy values for rail and bus routes 
using Dunn’s test with Bonferroni correction to p-values.  

Comparison 
groups 

Railway Bus 

Z Mean redundancy 
losses due to 
geographic 
interdependencies 
(%) ** 

Z Mean redundancy 
losses due to 
geographic 
interdependencies 
(%) ** 

proximity 
ignored and 
0.10km-
wide buffer -4.79*** -4.03 -4.87*** -3.89 
proximity 
ignored and 
0.25km-
wide buffer -10.13*** -8 -10.08*** -7.57 
proximity 
ignored and 
0.50km-
wide buffer -15.52*** -12 -15.12*** -11.23 
proximity 
ignored and 
0.75km-
wide buffer -19.63*** -14.95 -18.88*** -13.86 
proximity 
ignored and 
1km-wide 
buffer -22.84*** -17.17 -21.77*** -15.82 
proximity 
ignored and 
1.25 km-
wide buffer -25.56*** -19.05 -24.18*** -17.46 
proximity 
ignored and 
1.50km-
wide buffer  -27.73*** -20.55 -26.16*** -18.82 
proximity 
ignored and 
1.75km-
wide buffer -29.26*** -21.62 -27.64*** -19.85 
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proximity 
ignored and 
2km-wide 
buffer -30.68*** -22.6 -28.99*** -20.8 
proximity 
ignored and 
4km-wide 
buffer -39.57*** -28.91 -37.86*** -27.2 
proximity 
ignored and 
6km-wide 
buffer -45.19*** -32.93 -43.15*** -31.14 
proximity 
ignored and 
8km-wide 
buffer -48.76*** -35.57 -46.75*** -33.95 
proximity 
ignored and 
10km-wide 
buffer 

-52*** -38 

-49.91*** -36.49 

** Mean relative losses in redundancy of travel between OD pairs when comparing 

the redundancy where proximity between routes is ignored with the redundancy 

when buffer zones are applied around the primary routes. 

*** adjusted p-value < .05 
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Figure S1 Losses in redundancy for origins (a) in absolute terms due to hazards of 100m 
footprint (b) in absolute terms due to hazards of 1.5km footprint (c) in absolute terms 
due to hazards of 10km footprint (d) in relative terms due to hazards of 100m footprint 
(e) in relative terms due to hazards of 1.5km footprint, and (f) in relative terms due to 
hazards of 10km footprint, when bus is the primary travel mode and rail is alternative. 
Non-shaded zones are those origins not served by both modes. Zones in lighter colours 
are less susceptible to losses due to geographic interdependencies. 
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Table S2 Results of post-hoc comparisons of normalised substitutability values for rail 
and bus routes using Dunn’s test with Bonferroni correction to p-values. 

Comparison 
groups 

Railway Bus 

Z Mean 
substitutability 
losses due to 
geographic 
interdependencies 
(%) ** 

Z Mean 
substitutability 
losses due to 
geographic 
interdependencies 
(%) ** 

proximity 
ignored and 
0.10km-
wide buffer -10.06*** -4.79 

- 
10.96*** - 4.54 

proximity 
ignored and 
0.25km-
wide buffer -17.97*** -9.48 

- 
19.25*** - 8.83 

proximity 
ignored and 
0.50km-
wide buffer -24.94*** -14.14 

- 
26.28*** - 13.10 

proximity 
ignored and 
0.75km-
wide buffer -29.78*** -17.62 

- 
31.05*** - 16.23 

proximity 
ignored and 
1km-wide 
buffer -33.21*** -20.39 

- 
34.35*** -18.64 

proximity 
ignored and 
1.25 km-
wide buffer -36.05*** -22.82 

- 
37.04*** -20.66 

proximity 
ignored and 
1.50km-
wide buffer  -38.33*** -24.89 

- 
39.23*** -22.41 

proximity 
ignored and 
1.75km-
wide buffer -39.88*** -26.25 

- 
40.84*** -23.78 

proximity 
ignored and 
2km-wide 
buffer -41.28*** -27.54 

- 
42.28*** -25.00 
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proximity 
ignored and 
4km-wide 
buffer -49.83*** -38.20 

- 
50.87*** -34.89 

proximity 
ignored and 
6km-wide 
buffer -54.98*** -45.01 

- 
55.76*** -41.23 

proximity 
ignored and 
8km-wide 
buffer -58.43*** -50.80 

- 
59.08*** -46.24 

proximity 
ignored and 
10km-wide 
buffer -61.48*** -55.98 

- 
62.04*** -51.98 

** Mean relative losses in normalised substitutability of travel between OD pairs 

when comparing the normalised substitutability where proximity between routes is 

ignored with normalised substitutability when buffer zones are applied around the 

primary routes. 

*** adjusted p-value < .05 
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Figure S2 Losses in normalised substitutability for origins (a) in absolute terms due to 
hazards of 100 m footprint (b) in absolute terms due to hazards of 1.5 km footprint (c) in 
absolute terms due to hazards of 10 km footprint (d) in relative terms due to hazards of 
100m footprint (e) in relative terms due to hazards of 1.5 km footprint, and (f) in relative 
terms due to hazards of 10 km footprint, when bus is the primary travel mode and rail is 
substitute. Non-shaded zones are those origins not served by both modes. Zones in 
lighter colours are less susceptible to losses due to geographic interdependencies. 
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Equation S1 below shows the proposed general model of redundancy that accounts 

for the number of opportunities at the destination, along with the feasible routes 

offered by all available modes for travel between the O-D pair. 

 

𝑎𝑐𝑐𝑂𝐷
𝑚1←𝑀

=  𝐷 (𝑒𝑥𝑝 (− 
𝐶(𝑝𝑚1

∗ )

𝛽𝑚1

)

+  ∑ 𝑒𝑥𝑝 (− 
𝐶(𝑝𝑚

(𝑛)
)

𝛽𝑚
) [1 − max {𝑅𝐶(𝑝𝑚

(𝑛)
, 𝑝𝑙), ∀𝑛 < 𝑙}]

𝑘

𝑛=1

) 

S1 

 

Where 𝐷 represents the number of opportunities at the destination, 𝑀 =

{𝑚1, 𝑚2, 𝑚3, … } is the set of travel modes which include alternative routes that may 

substitute the preferred one, 𝑝𝑚1
∗ is the preferred route of primary mode 𝑚1, 𝑘 is the 

number of feasible paths between 𝑂𝐷 (apart from 𝑝𝑚1
∗ ). 

The first term of the right-hand side of Equation S1 represents the preferred choice 

of 𝑚1 for travel between 𝑂𝐷. The second term includes the contributions to 

redundancy offered by the shortest paths of each mode included in the set 𝑀 that 

may substitute the preferred option 𝑝𝑚1
∗ , while also considering the risk of them 

being concurrently disrupted due to their proximity to already selected routes. This 

is achieved by introducing the term “max {𝑅𝐶(𝑝𝑚
(𝑛)

, 𝑝𝑙), ∀𝑛 < 𝑙}” in Equation S1, 

which represents the maximum proximity between any additional alternative route 

of 𝑀 and the ones that are already selected.  
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Appendix B: Supplementary Material for Chapter 3 

 

Table S3 Information on flooding incidents on trunk roads included in the IRIS dataset.  

 Variable Description 

Location of 

incident 

Road Name The name of the trunk road that the flood 

incident occurred, e.g. A78. 

Section Code The ID of the section of the trunk road 

where the incident occurred, e.g., 

14010/05. 

Trunk roads are divided into several 

sections; hence, this variable provides 

more specific information on the exact 

location of flooding, compared to “Road 

Name”. 

Time 

progression 

of incident 

Start Time The start date of the incident. Note that 

the time of incident occurrence is not 

provided. 

Incident End Date The date that the incident ended. Note 

that time of day is not provided.  

Duration of incident The duration of incident, e.g., 2 days 3 

hours 45 mins. 

Details of 

event 

Description These variables provide further 

information about each incident in free-

text format.  

For example, for some incidents the 

location is provided in alternative terms 

(e.g., M8 – Junction 14/15 W/B). It was 

observed that for some incidents the 

cause of flooding was provided, allowing 

events that did not occur due to extreme 

Comments 
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weather, such as flooding from burst 

water mains, to be excluded. Additionally, 

for other events, no flooding was found, 

and these incidents were excluded as well. 

Hazard 

impact 

Road condition Indicates the condition of the location of 

incident. It takes the following values: 

 Dry 

 Wet of Damp 

 Flood over 3cm deep 

 Frost or ice 

 Snow 

 Other 

 Unknown 

Disruption caused Denotes whether the flood event caused 

disruption on the trunk road section. It 

takes the following values: 

 TRUE 

 FALSE 

Disruption type Indicates the impact of the hazard on the 

road and is a proxy of type of road closure. 

Values: 

 1 – Full Road closure (Both directions 

of dual) 

 2 – Carriageway closed 

 3 – Lane or lanes closed 

 4 – Reduced Lane width 

 5 – Other  

 Unknown 
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The types of impacts included in the IRIS dataset were re-classified as shown in Table 

S4 below. Specifically, for incidents where the road experienced full road closure and 

carriageway closure, the impact was reclassified to full capacity reduction, whilst 

when only certain lane(s) were closed or experienced reduced width, the impact was 

reclassified to partial capacity reduction. For the events that the type of impact was 

originally reported as unknown, the variable of road conditions was employed to 

determine whether the event caused road closures, or speed restrictions.  

 

Table S4 Types of impacts in the IRIS dataset and reclassified impacts for the bus incident 

dataset. 

Type of impact and road conditions 

(where applicable) in IRIS dataset 

Re-classified and/or assumed type of 

impact for the bus dataset 

Disruption type: Full road closure (both 

ways of dual) 

Full capacity reduction 

Disruption type: Carriageway closed 

Disruption type: Reduced lane width Partial capacity reduction 

Disruption type: Lane or lanes closed 

Disruption type: Unknown, and 

Road conditions: Flood over 3cm deep 

Disruption type: Unknown, and  

Road conditions: Wet or damp 

Partial capacity reduction 

Disruption type: Other, and  

Road conditions: Wet or damp 

Disruption type: Unknown, and 

Road conditions: Snow 

Unknown 

Disruption type: Unknown, and 

Road conditions: Frost or ice 

Disruption type: Unknown, and 

Road conditions: Other 
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Disruption type: Unknown, and 

Road conditions: Unknown 

 

Table S5 below shows how each incident was mapped based on the type of location 

reported to be flooded. The flood events were selected to be mapped onto the road 

infrastructure layer that contains the road links used by the long-distance services, 

rather than the layer of GTFS segments. This is because the GTFS segments span 

between bus stops that are consecutively serviced by bus trips, and since some 

express trips may skip intermediate stops along a route, segments may overlap with 

one another. The identification of road links where each incident occurred was 

implemented in a semi-automatic way. Based on the information provided, the 

reported location of flooding was either a road segment stretching between two 

junctions or bus stops, a locality/village that could not be serviced due to flooding, or 

a specific spatial point, such as a bridge. 

 

Table S5 Types of flooding locations reported by Stagecoach and local authorities, and 

corresponding process undertaken to map them in GIS. 

Type of location Example Process for mapping 

location 

Data used 

Road stretch 

between two 

junctions 

A823 

Queensferry 

Road 

northbound 

between 

Laburnum 

Road & 

Carnegie 

Avenue 

 The relevant junctions 

were identified road 

nodes layer. 

 Route analysis was 

performed in ArcGIS 

between the selected 

points using the road 

network dataset of 

Ordnance Survey 

(Ordnance Survey, 

Vector point 

layer of road 

junctions in OS 

Mastermap 

Highways – 

Roads layer 

(Ordnance 

Survey, 2021). 

Road network 

dataset 
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2021) to identify the 

flooded road links. 

(Ordnance 

Survey, 2021). 

Road stretch 

between two 

localities/villages 

B9027 

between 

Cuminestown 

and New Byth 

 The first junctions on 

the boundaries of the 

localities/villages were 

selected. In some 

cases, it was not clear 

which junctions should 

be chosen, and their 

selection was arbitrary. 

 Route analysis was 

performed in ArcGIS 

between the selected 

points to identify the 

flooded road links. 

Vector point 

layer of road 

junctions in OS 

Mastermap 

Highways – 

Roads layer 

(Ordnance 

Survey, 2021). 

Road network 

dataset 

(Ordnance 

Survey, 2021). 

Road stretch 

without any start 

and end points 

specified 

Station Road, 

Elgin 

 The junctions 

corresponding to the 

start and end nodes of 

the road were 

selected. 

 The subsequent 

process was similar as 

in the previous cases. 

Vector point 

layer of road 

junctions in OS 

Mastermap 

Highways – 

Roads layer 

(Ordnance 

Survey, 2021). 

Road network 

dataset 

(Ordnance 

Survey, 2021). 

Specific point 

along a road 

A709 at 

Shillahill Bridge 

 The point was 

identified by 

overlaying the bus 

– 
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spatial layer over the 

OpenStreetMap 

basemap in GIS, and it 

was manually mapped. 

 The mapped point was 

intersected with the 

road network layer to 

identify the flooded 

road links.  

One or more bus 

stops that cannot 

be serviced 

Harbour and 

Ravenscraig 

flats stops 

 The relevant bus stops 

were selected from the 

layer of GTFS bus 

stops. 

 Intersection were 

performed with the 

road layer to identify 

the flooded road links. 

GTFS stops 

layer 

Locality that 

cannot be 

serviced 

Dundonald  Intersection was 

performed between 

the layer containing 

the boundaries of 

locality and the road 

network layer to 

identify the flooded 

road links. 

Settlements 

and Localities 

Digital 

Boundaries 

layer (National 

Records of 

Scotland, 

2011) 
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Table S6 Information on flooding-induced incidents included in the incident dataset 
obtained from Network Rail. 

Variable Description 

Incident start date & time The date and time of day that the incident occurred.  

Incident end date & time The date and time of day that the incident ended. 

Incident description Brief description of the incident. This largely varies 

between the records, for example it can contain in 

some cases further information on the location of the 

event in abbreviated terms, whether the line where 

the incident occurred closed or was subject to speed 

restrictions, or it simply confirms that flooding was 

the cause of disruption. 

Incident section name The location of the flooding-induced incident. The 

section name in the dataset could either be a railway 

station, or a railway segment between two (not 

necessarily consecutive) stations. 

Reason code According to the FOI response received, this variable 

takes the following values:  

 X2: This code refers to events resulting from 

severe flooding beyond that which could be 

mitigated on Network Rail infrastructure and 

is used for incidents that are related to 

specific severe weather criteria that Network 

Rail uses.  

 JK: This code refers to flooding-induced 

incidents that occurred not due to 

exceptional weather and typically correspond 

to events that are associated with failure in 

the infrastructure maintenance. 

  



 

207 
 

Table S7 Types of locations of flooding incidents reported on the railway network and 
corresponding process undertaken to map them in GIS. 

Type of 

location 

Example Process for mapping 

location 

Data used 

Railway station Shotts railway 

station 

 The infrastructure links 

having the station as 

their start or end node 

were identified. 

 The links were then 

intersected with the 

layer of the GTFS links 

to obtain the affected 

links of the GTFS 

network 

representation. 

 Infrastructure 

links layer 

 GTFS links 

layer 

Railway 

segment 

between two 

stations 

Section 

between 

Aviemore and 

Inverness 

 The relevant railway 

stations were identified 

and selected as origin 

and destination. 

 Routing was performed 

between the selected 

points. 

 The resulting railway 

segment was 

intersected with the 

GTFS links layer. 

 Infrastructure 

links layer 

 GTFS links 

layer 
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Figure S3 Scatterplots of trip-based importance of (A) railway and (B) bus links against the 

respective values of their corresponding 4km buffers. Note the difference in the x-axis and 

y-axis values between plots A and B. 

 

Table S8 Most critical rail links in rural areas. 

Link Name Criticality 

Winchburgh Junction - Newbridge Junction 4508.55 

Linlithgow - Winchburgh Junction 4499.20 

Stirling - Larbert 1036.95 

Cardross - Craigendoran 592.91 

Greenhill Lower Junction - Carmuirs West Junction 502.48 

 

 

Table S9 Most critical rail buffers in rural areas. 

Link Name Criticality 

Sighthill East Junction - Robroyston 9656.32 

Barassie - Kilmarnock 8573.18 

Kilmarnock - Auchinleck 13080.45 

Kilmaurs - Kilmarnock 12692.22 

Winchburgh Junction - Newbridge Junction 6701.76 
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Table S10 Most critical bus links in rural areas. 

Link ID* Road name** Criticality 

osgb4000000004482004 A92, Tay Bridge Roundabout 143.38 

osgb4000000006279318 A955 122.76 

osgb4000000005368529 A71 106.92 

osgb4000000006373730 A90, Queensferry Road 105.60 

osgb4000000005104093 B7073, Main Road 93.06 

* Unique identification code for road links as specified in OS MasterMap Highways Network 

(Ordnance Survey, 2021) 

** The name of the road that the link is located. Note that the link may not coincide with the 

full extent of the road but may be only a part of it. 

 

Table S11 Most critical bus buffers in rural areas. 

Link ID* Road name** Criticality 

osgb4000000006241096 M9 6499.50 

osgb4000000006241095 M9 6499.50 

osgb4000000006242179 A904, Builyeon Road 6385.50 

osgb4000000005165320 B765, Gartloch Road 5413.84 

osgb4000000005165291 A80, Cumbernauld Road 5305.28 

* Unique identification code for road links as specified in OS MasterMap Highways Network 

(Ordnance Survey, 2021) 

** The name of the road that the link is located. Note that the link may not coincide with the 

full extent of the road but may be only a part of it. 
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Appendix C: Supplementary Material for Chapter 4 
 

Poincare formula 

The Poincare formula which can be used to estimate the probability of at least one 

event 𝐵𝑖 given the occurrence of the event at 𝐴 is given in the Equation S2 below. 

𝑃(∪ 𝐵𝑖| 𝐴) =  

= ∑ 𝑃(𝐵𝑖|𝐴)

𝑛

𝑖=1

− ∑ 𝑃(𝐵𝑖|𝐴, 𝐵𝑗|𝐴)

𝑖<𝑗

+ ⋯ +   (−1)𝑛−1 ∙ 𝑃(𝐵1|𝐴, 𝐵2|𝐴, … , 𝐵𝑛|𝐴)) 

S2 

 

Where 𝑃(𝐵𝑖|𝐴) is the conditional probability of 𝐵𝑖 occurring, 𝑃(𝐵𝑖|𝐴, 𝐵𝑗|𝐴) is the 

joint probability of 𝐵𝑖 and 𝐵𝑗 occurring simultaneously given the event at A, 

𝑃(𝐵1|𝐴, 𝐵2|𝐴, … , 𝐵𝑛|𝐴) is the joint probability of all 𝑛 events of set B occurring given 

the event at A. 

Figure S4 illustrates an example of a flooding-induced closure at A observed on a part 

of 𝑝𝑚1
 and three floods that may result in the concurrent closure of 𝑝𝑚2

. 

 

Figure S4 Example of a flood A on a part of the primary route of m1 and three floods {B1, 
B2, B3) that may occur on a part of the alternative route of m2, along with their respective 
distances from A, i.e. {d1, d2, d3}.  
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Computation of importance according to the three assumptions on geographic 

interdependencies 

The algorithm for the computation of link importance according to each of the three 

assumptions on geographic interdependency is as follows. For simplicity, the value in 

the right-hand side of Equation 4-9 is hereafter denoted as 𝑃(𝑝𝑚2

𝑓𝑙𝑜𝑜𝑑
| 𝑝𝑚1

𝑓𝑙𝑜𝑜𝑑
)𝑢𝑝𝑝𝑒𝑟. 

1. Select link 𝑎, on which at least one flood event may occur according to the 

flood map. Select a flood location 𝐴𝑗 of set 𝐴 on the link and consider it as an 

observed flood event. Identify the routes of 𝑚1 that traverse link 𝑎 and thus 

are directly affected by 𝐴𝑗 and the corresponding O-D pairs. 

2. Calculate the importance of link, 𝐼(𝑎) (Equation 4-5), according to Case I. 

3. Identify whether the alternative routes for the impacted O-D pairs are 

exposed to flooding (i.e., at least one flood hazard location intersects them) 

and calculate the importance of link, according to Case II. 

4. For the set of flood locations 𝐵  =  {𝐵1,  𝐵2,   … ,  𝐵𝑛} on the alternative routes, 

compute the Euclidean distances between the observed event, 𝐴𝑗 ,  and each 

flood location of set 𝐵, along with the corresponding conditional probability 

of each event of 𝐵 occurring given the occurrence of 𝐴𝑗. This results in a set 

of conditional probabilities denoted by 𝑃 =

 {𝑃(𝐵1|𝐴𝑗),  𝑃(𝐵2|𝐴𝑗), … , 𝑃(𝐵𝑛|𝐴𝑗)}. 

5. Compute the standardised conditional probabilities of events of 𝐵 (Equation 

4-1), where 𝑃(𝐸𝑐𝑟) = 1/𝑅𝑃, and retain only the flood events 𝐵𝑖 that are 

statistically dependent on the occurrence of 𝐴𝑗 , i.e. 𝐷𝑟 ≥  1 𝑒⁄ . This results in 

the subset of floods 𝐵′ ⊆ 𝐵. 

6. For each 𝑂𝐷 pair directly affected by 𝐴𝑗 , calculate the overall probability 

𝑃(𝑝𝑚2

𝑓𝑙𝑜𝑜𝑑
| 𝑝𝑚1

𝑓𝑙𝑜𝑜𝑑
)𝑢𝑝𝑝𝑒𝑟 (Equation 4-9) based on the conditional probabilities 

of events of 𝐵′ occurring and, by extension, compute the importance of link 

𝐼(𝑎) according to Case III. 

7. Repeat steps 4 to 6 for each event of set 𝐴. 

8. Repeat steps 1 to 7 for each link of 𝑚1. 
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Application of the method to the study area 

 

Figure S5 Rainfall stations in mainland Scotland. 

 



 

213 
 

Locations exposed to the pluvial flood, for which the conditional probabilities of 

route closures were estimated, were retrieved from a pluvial flood hazard map for 

Scotland which was obtained from Fathom (SSBN UK Limited, 2021). Based on CEH 

GEAR1h, which is a 1-km hourly gridded rainfall dataset for UK, maps were produced 

by constructing Intensity-Duration-Frequency curves that show 1-hour, 6-hour and 

12-hour gridded rainfall intensities for certain return periods, and by subsequently 

using them as input onto the 2D base LISFLOOD-DP model, coupled with a 1D model 

solver for small channels to obtain surface water flows (Ponti et al., 2022). The 

LISFLOOD-DP numerical scheme is a hydraulic modelling framework that provides a 

simplification of shallow water equations (Bates et al., 2010).  

The pluvial flood maps derived from this process were provided in GeoTIFF raster 

format at 10 m spatial resolution. Each raster cell contains the floodwater depth 

measured in centimetres, and its values range from zero to 9999, the latter indicating 

permanent water. Although maps of various return periods were available, for the 

purposes of this work, it was selected to use only the map of the 20-year return 

period, as the incident datasets, from which critical rainfall events were extracted, as 

well as the rainfall time series, for which the spatial dependence model was 

established, span for short time periods (namely from 2017 to 2020, and from 2000 

to 2020, respectively). The cells of the map containing permanent water were 

removed to avoid considering links traversing water bodies (e.g., bridges) as flooded. 

In many cases, floods on a route were adjacent or in very close proximity to each 

other and accounting for each of these as a separate event would inflate the upper 

bound of conditional probability (Equation 4-9). Thus, it was selected to group floods 

spanning up to 50 m from each other into a single event and calculate the conditional 

probability for the cluster of floods occurring concurrently with the observed event, 

rather than the conditional probability for each of these floods separately. 
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Further information on characteristics of critical rainfall events and spatial dependence 

model 

 

Figure S6 Bagplots of volume and duration of rainfall events that led to full closure of (a) 
rail and (b) bus links between May 2017 and May 2020. 

 

The bagplots shown in Figure S6 for (a) rail and (b) bus are an extension to the 

commonly used box plots and show distributions of values for bivariate data 

(Rousseeuw et al., 1999). For each bagplot, the median rainfall event is represented 

by the cross at the center of the plot. The inner polygon is the bag, which corresponds 

to the box of the univariate box plot and the outer polygon is the fence, which 

corresponds to the whiskers of the univariate box plot. Data points that fall outside 

of the fence are considered as outliers.   
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Figure S7 Fitted regression lines for various quantiles to the rainfall event characteristics 
that led to closures of (a) railway links and (b) bus links. 

 

Table S12 Model parameters and goodness-of-fit values of fitted regression lines to 
various quantiles of rainfall depth-duration data that led to the closures of railway links. 

Model Intercept Slope Pseudo R2 

10% 5.92 0.24 0.18 

25% 9.01 0.3 0.25 

75% 18.47 0.56 0.32 

90% 30.59 0.6 0.41 
 

Table S13 Model parameters and goodness-of-fit values of fitted regression lines to 
various quantiles of rainfall depth-duration data that led to the closures of bus links. 

Model Intercept Slope Pseudo R2 

10% 2.66 0.32 0.28 

25% 7.74 0.4 0.34 

75% 18.57 0.6 0.5 

90% 28.62 0.69 0.58 
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Figure S8 Fitted exponential-decay models to the computed observed conditional 

probabilities of critical rainfall co-occurrences when measuring proportions of target 

stations in 10 km, 20 km, 40 km, 60 km and 80 km-wide distance bins from the origin 

station. 

 

 

Figure S9 Characteristics of critical rainfall events that led to closures of (a) railway links 
and (b) bus links, weighted by their conditional probability of occurrence at the flooded 
locations given their occurrence at the rain station corresponding to the closed links. 
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Figure S10 Losses in redundancy of origins due to the failure of link spanning from 

Dunkeld & Birnam to Perth, (a) when assuming complete independence of floods on bus 

routes, in absolute terms (b) when assuming complete dependence of floods, in absolute 

terms (c) when assuming spatial dependence of floods on bus routes, in absolute terms 

(d) when assuming complete independence of floods on bus routes, in relative terms (e) 

when assuming complete dependence of floods on bus routes, in relative terms (f) when 

assuming spatial dependence of floods on bus routes, in relative terms. Non-shaded 

zones correspond to origins either not served by both modes or not directly affected by 

closure of the link. 
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Figure S11 Losses in redundancy of origins due to the failure of link spanning from 

Arrochar & Tarbet to Ardlui, (a) when assuming complete independence of floods on bus 

routes, in absolute terms (b) when assuming complete dependence of floods, in absolute 

terms (c) when assuming spatial dependence of floods on bus routes, in absolute terms 

(d) when assuming complete independence of floods on bus routes, in relative terms (e) 

when assuming complete dependence of floods on bus routes, in relative terms (f) when 

assuming spatial dependence of floods on bus routes, in relative terms. Non-shaded 

zones correspond to origins either not served by both modes or not directly affected by 

closure of the link. 
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Figure S12 Losses in redundancy of origins due to the failure of link spanning from Ardlui 

to Crianlarich, (a) when assuming complete independence of floods on bus routes, in 

absolute terms (b) when assuming complete dependence of floods, in absolute terms (c) 

when assuming spatial dependence of floods on bus routes, in absolute terms (d) when 

assuming complete independence of floods on bus routes, in relative terms (e) when 

assuming complete dependence of floods on bus routes, in relative terms (f) when 

assuming spatial dependence of floods on bus routes, in relative terms. Non-shaded 

zones correspond to origins either not served by both modes or not directly affected by 

closure of the link. 
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