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Abstract

An ocean going vessel, sailing in severe seas, experiences motions and loads that

are largely affected by nonlinear phenomena. These effects deviate the responses

from the linear prediction, modifying their magnitudes, symmetry and frequency

characteristics. The change of the actual wetted geometry due to motions and

large ambient waves elevation and the occurrence of impulsive phenomena, such

as bottom impact, are some of the main sources of nonlinearities.

Current state-of-art in seakeeping, applied to ship design, is based on the as-

sumption of small amplitude motions and linearity between the excitation and

the response. These techniques have been proved, during the years, to be reliable

for small and moderate sea states, but they are not effective in large amplitude

waves. The understanding and prediction of the behaviour of the vessel in rough

seas is of crucial importance for its design, and therefore there is a need for better

methods and practices.

Application of nonlinear seakeeping methods in a every-day design situations

is limited. The complexity and the computational cost of some methodologies,

together with the absence of standardised procedures, are the main causes for the

reduced use of such a methodologies.

The work presented in this thesis aims to develop a practical nonlinear seakeeping

approach that can be used in a design content to model wave induced motions

and loads in large amplitude waves.

The wave-body interaction problem is solved using a time domain nonlinear two

dimensional approach, that considers the actual wetted hull portion and the rel-

ative velocity between the structure and the waves. The vessel is modelled as a

flexible body to allow structural dynamics. The proposed formulation takes into

account impulsive phenomena due to water impact, on both the bottom and the



flare of the hull, using a combination of analytical and empirical techniques.

The proposed methodology is applied to the S-175 and the Wils II 13,000 TEU

container ships. The validation of the proposed method, conducted in both small

and large amplitude regular waves, shows the capability of the technique to cor-

rectly predict the behaviour of the vessel also when linear methodologies fail. The

analysis demonstrates the importance and the reliability of hydroelastic methods

for the prediction of wave induced loads, especially when whipping is relevant.

A procedure, which applies the proposed methodology for the evaluation of maxi-

mum expected values of wave induced motions and loads is presented. Long term

analyses are conducted, using both linear and nonlinear method, to study the

effect of nonlinearities. The comparison between linear and nonlinear approaches

shows an increase of maximum load responses when nonlinear hydroelasticity is

applied. This study highlights also the dependency of the results on the selection

of the return period and operational velocity profile of the vessel.
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Chapter 1

Introduction

1.1 Background

The design and construction of a new class of ultra large container ships has

brought into the spotlight the necessity to improve our understanding of wave

induced motions and loads in severe seas. These vessels are characterised by

large dimensions (L > 300m), significant bow flare, that enhances nonlinear

effects, relatively high Froude number and flexible structures which increases the

amplitude of high frequency vibrations due to periodic and impulsive fluid actions.

Seakeeping methods based on linear assumptions partially model or do not con-

sider all these previously described characteristics, resulting often in an not accu-

rate evaluation of motions and loads in large amplitude waves. Linear method-

ologies are the industry standard for seakeeping analysis, due to their simplicity

and calculation speed. In order to apply nonlinear based methods in a design con-

tent, it is necessary to develop a methodology that is able to take into account

the principal nonlinear effects associated to large amplitude waves and that is

fast enough to be used in everyday ship design.

Nonlinear wave-body interaction techniques have been developed for more than
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twenty years. The research in this topic has been driven by two different objec-

tives: a first one, that aimed to improve the knowledge in the field studying and

applying complex methodologies and a second one, that focuses on the applica-

tions, trying to find an engineering compromise between accuracy and computa-

tional cost.

As previously stated, the principal nonlinearities are related to the change of

wetted geometry due to the motions of the vessel, and to impulsive loads.

In order to properly model the wave-body interaction problem, a time domain

approach is chosen, this allows to remove the assumption of harmonic responses.

The effects associated with the change in time of the wetted hull portion are

calculated at each time step finding the actual geometry of the hull as function

of the motions of the vessel.

Loads induced by slamming phenomena are of crucial importance in the design

of a container ship vessel, due to the significant bow flare, the sailing speed

and the flexibility of the structure. To properly model them, the hull should

be described as flexible body, using an hydroelastic approach. In this thesis the

fluid-structure interaction problem is solved using the Timoshenko beam model

and modal superposition. Impulsive loads are described using both analytical

and empirical methods.

The proposed methodology is validated against experimental results, and other

numerical techniques, in both small and large amplitude waves. The well known

S-175 container ship is used as benchmark. Since the aim of this thesis is to apply

the proposed methodology in a practical design problem, long term analysis of

maximum expected values for wave induced loads is conducted for container ships

of different sizes, with the aim of understanding the importance and feasibility of

using a nonlinear tool to asses wave induced motions and loads.
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1.2 Aims and Objectives of the Thesis

The aim of this thesis is to develop a nonlinear techniques and associated com-

putational tools able to correctly predict wave induced motions and loads for

container ships sailing in rough seas. The proposed methodology should be able

to take into account the principal nonlinear effects associated with large ampli-

tude motions,

The main objectives of the proposed methodology are two:

• Model principal nonlinear effects associated with motion and load responses

in large amplitude waves

• Ensure a relatively low computational cost to allow an utilisation of the

developed tool in design content

1.3 Contents of the Thesis

This thesis begins with a critical review that describes and comments on the

previous works conducted in the subjected area. The development of the pro-

posed method required to review and study publications from different fields,

therefore the literature review is divided in five sections: linear wave-body inter-

action , nonlinear wave-body interaction, wave-structure interaction, water entry

modelling and extreme loads estimation from nonlinear analysis. The first two

sections review seakeeping methodologies and collect them upon their degree of

nonlinearity. The third section describes the hydroelasticity for ships, focusing

on the fluid-structure interaction problem. The water entry section comments on

the state of art in slamming analysis. The last section analyses the methodologies

used to obtain extreme responses from nonlinear approaches.

The proposed methodology to predict the nonlinear motion and load responses in
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regular seas is described in Chapter 3. This chapter describes the formulation of

the equations of motion, along with the numerical techniques used to solve them.

The forces are firstly described for a rigid system and then applied to a flexible

body.

Chapter 4 describes the validation in regular waves. The proposed methodology

is compared against other numerical techniques and experimental results in both

small and large amplitude waves. The S-175 container ship is used as a case study

due to the large number of data in the literature.

Results in irregular waves and analysis of maximum expected responses in long

term are reported in Chapter 5. A methodology to extrapolate extreme values

from the time histories of nonlinear wave induced motions and loads is presented

and applied to two different container ship of different size: the S-175 and the

WILS II 13,000 TEU container ship.

Study of the probability of exceedance for wave induced vertical bending moments

is conducted. Different return periods and velocity profiles are considered, in

order to understand the effect of such parameters over the expected extremes

calculated using a nonlinear method.

Chapter 6 summarises this thesis and draws the conclusions. This section de-

scribes the achievements and points the direction that in the author’s opinion

should be followed to improve and take forward this work.
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Chapter 2

Literature Review

2.1 Introduction

In the current chapter a review of the previous works, related to the topic of

this thesis, is presented. The publications that mostly contribute to the field

of wave-body interaction are described and commented, trying to highlight the

contribution of each work. The literature review is divided into five main subjects

namely:

• Linear wave-rigid body interaction: the most relevant works in the field of

linear seakeeping analysis are reviewed, the different assumptions on which

the methods are based on are described and their limitations analysed.

• Nonlinear wave-rigid body interaction: this section outlines the state of art

of nonlinear seakeeping methods; these are collected upon the nonlinear

effects that they consider.

• Wave-flexible body interaction: here the different approaches to the fluid-

structure interaction problem are discussed.

• Water-entry modelling: here the different methodologies used to assess
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slamming in ship applications are described.

• Extreme loads estimation from nonlinear analysis: the principal procedures

used to evaluate extreme responses from nonlinear methods are reported,

focusing also on the effect of nonlinearities on the extreme loads.

2.2 Linear Wave-Rigid Body Interaction

The study of ship behaviour in rough seas has always been one of the most im-

portant and fascinating aspects of naval architecture. Since the second half of

the nineteenth century, countless papers, discussing the wave-body interaction,

have been published. A series of rigorous analytical theories, empirical formula-

tions and numerical schemes have been presented, all of them sharing the same

intention: to model wave induced motions and loads.

The first attempts to model the dynamics of a vessel in waves can be attributed

to Froude (1861) and Krylov (1896). They formulated the equations of motion

for a floating body considering only the inertial, restoring and exciting forces.

The excitation was associated with the pressure due to the undisturbed ambient

wave field, described using first-order perturbation theory (Froude-Krylov force).

In their work the effects associated with the disturbances due to the ship presence

were not considered.

St Denis and Pierson (1953) described the irregular seas using spectral anal-

ysis. In this approach the sea is defined as a superposition of regular waves.

Their approach opened the way to the modern seakeeping applications in ships

and marine structures design, allowing the introduction of linear methodology in

practical design contents. The work of St Denis and Pierson also clearly showed

the importance of the frequency domain analysis.

Due to the limited computational capabilities of computers, until the end of
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the 70s, researchers tried to solve the wave-body interaction problem following

analytical approaches. From the 40s to the end of 70s several analytical tech-

niques have been introduced; some of these methods imposed restrictions on the

geometry and characteristics of sea-going vessel (L/B ratio or Froude number)

or limitations on the ambient waves. This period of time is probably the most

important for the theoretical understanding of fluid-body interactions.

Some of the first studies on the disturbances in the fluid due to hull presence

and motions can be found in Michell (1898) and Lewis (1929). Lewis studied

added mass of two dimensional bodies oscillating at high frequency (to avoid

any gravitational effects) and applied his results to ship motions considering a

slender ship and a strip theory approach to integrate longitudinally the sectional

contributions. Michell studied the wave resistance problem using the thin-ship

assumption. The thin-ship assumption implies that the breadth is small compared

to the draft and the length of the vessel (B � D,L), this approach is similar to

thin-wing theory. The thin-ship first-order theory leads to an unbounded resonant

ship system since the exciting forces are balanced by restoring and mass inertial

forces, hydrodynamics effects associated with the motions of the vessel are usually

of higher order.

An other interesting paper related to the thin-ship theory was published by

Haskind (1946). Haskind used Green’s theorem to introduce the velocity poten-

tial due to the presence of the ship hull and introduced the thin-ship assumption

to solve the resulting integral equations. One of the most interesting novelties of

Haskind’s work was the subdivision of the velocity potential in diffraction and

radiation potentials, as it is nowadays used.

One of the last attempts to formulate a thin-ship theory that takes correctly

into account effects of hull disturbances was conducted by Newman (1961). The

author reformulated the boundary condition on the moving ship hull and used a
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systematic expansion in multiple small parameters to avoid the trivial formulation

in which the Froude-Krylov forces are the only first-order hydrodynamic actions,

however results did not compare well with experiments.

Typical hull-forms of ocean going vessel are elongated with breadth and draft of

the same order of magnitude compared to the length; this characteristic geomet-

rical shape is the base of the slender-body assumption. Originally developed to

analyse steady-state wave resistance problem by Cummins (1956). Slender-body

theories are based on the assumption that the ship is slender compared to the in-

coming wavelength, therefore the minimum wavelength acceptable to satisfy the

initial assumptions should be of O(L); for this reason the slender body theories

are also called long-wavelength theory (Newman, 1978).

Some of the slender-body theories for the solution of the unsteady problem were

derived by Ursell (1962), Joosen (1964), Newman (1964), Newman and Tuck

(1964) and Maruo (1967). Under the long wavelength assumption the slender-

body theory leads to solution similar to the thin-ship ones. The majority of

hydrodynamic actions are of higher-order in comparison to the Froude-Krylov

and restoring forces resulting in non resonant equations of motion. In the case of

a vessel without forward speed, subjected to long waves (compared to its length),

the dominant terms in the equations of motions are the exciting and the restoring

forces, the excitation frequencies are far from the natural frequency of the body,

thus the slender-body theory gives a reasonable prediction. If the vessel is sailing

with a forward speed, the shift of the excitation frequencies due to the higher

frequency of encounter permits the exciting forces to have frequencies that are

close to the natural frequency of the ship, resulting in a wrong prediction of the

wave induced motions.

In the same period Cummins (1962) formulated the general equations of motion

for a floating body using impulse response functions in terms of convolution inte-
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grals. The velocity potential is decomposed into an impulsive term and a memory

effect part; in the paper, the related boundary value problems for each poten-

tial are formulated. In the conclusion the author highlighted the fact that he

did not consider this model a good analytical tool to investigate hydrodynamic

actions, but he was more interested to formulate a practical computational tech-

nique. This sentence can be justified by noting that using a convolution integral

to model the terms associated with the fluid gravitational effects we lost details

of the single components and preclude an accurate analysis of the effects of each

term, but on the other hand convolution integrals and impulse response functions

are a powerful tool to model the behaviour of a complex system in time domain.

Ogilvie (1964) presented a work similar to the Cummins’. He formulated the

equations of motion in time domain decomposing the radiation and diffraction

problems in impulsive and memory effect terms. He rigorously formulated the

boundary value problems for a sailing vessel and imposed the time continuity be-

tween the two velocity potentials (impulsive potentials and memory potentials)

using the free-surface kinematic boundary condition. Ogilvie also derived a math-

ematical relation between the frequency domain coefficients and the time domain

terms involved in the convolution integral.

Since rigorous three-dimensional theories such as the thin- and slender-ship meth-

ods did not ensure an accurate prediction of wave induced motions and loads,

the interest of some researchers moved to a more simplified two dimensional ap-

proach: the strip theory. The first comprehensive work on strip theory method

was presented by Korvin-Kroukovsky, B.V. (1955). This methodology, based on

the slender-ship assumption and on the negation of mutual interaction between

different transverse hull sections, was capable to give an acceptable prediction for

heave and pitch motions.

One of the most successful refinement of Korvin-Kroukovsky theory was presented
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by Salvesen et al. (1970). This work, based on slender-ship and high encounter

frequency assumptions (to ensure that the length of the waves generated by the

motions of the ship are of O(B)) was formulated to evaluate sway, heave, roll

pitch and yaw motions and associated wave induced loads. Their formulations

resulted in a set of frequency- and speed-dependent two dimensional hydrody-

namic coefficients that were numerically evaluated using the close fit method

proposed by Frank (1967). The results compared very well with the experiments,

especially for vertical motions and loads. The methodology proposed by Salvesen

Tuck and Faltinsen is still one of the most used design tools in the evaluation of

wave induced motions and loads.

Jensen and Pedersen (1979) proposed a second order frequency domain strip the-

ory based on the formulation of relative displacement and expansion of the terms

up to the second order. This simple but efficient methodology allows to model

asymmetrical behaviour of vertical bending moment with a frequency domain

procedure. A comparison for the sectional hydrodynamic forces (radiation plus

diffraction) against experimental results validates the proposed second order for-

mulations. The vessels are firstly modelled as a rigid body and then considered

flexible and described as a Timoshenko beam (see section 2.4). Analysis of the

vertical responses of a 270 meters long container ship shows the capability of the

methodology to predict second harmonic effects on the amidship vertical bending

moment.

The strip theory approach was a successful design tool, but was not fully accepted

by the scientific community because its lack of rigorous mathematical foundation.

The concerns about the theoretical approach behind two dimensional methods

were mainly based on two considerations (Newman, 1978). Firstly, the formu-

lation of the radiation problem was not correct in the low encounter frequency

region and this is clearly visible, for example, in the trend of the sectional added
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mass coefficient in heave (two dimensional solution tends to infinity as the exciting

frequency tends to zero). The second problem was related to the forward speed

formulation: in the strip theory, forward speed effects are included as higher order

corrections proportional to (U/ω) and (U/ω)2. Both those arguments are valid

and define the main theoretical limitations of strip theories: applicable only for

short-wavelength and limited to low Froude numbers. Despite the limits due to

their mathematical formulation strip theories give results in the long-wavelength

region of engineering accuracy. For long-wavelengths the dominant effects are as-

sociated to the restoring and the Froude-Krylov forces that, in a two dimensional

approach, are correctly formulated without any restriction associated with the

geometry of the body. For a linear system, added mass forces are proportional

to the square of the wave frequency and therefore are less important when the

wavelength is long. Strip theory can also be used to study motions for a vessel

with forward speed. The majority of ships sails at Fn ≤ 0.3, which is inside the

range of validity of two dimensional approaches since limit of applicability for

high speed is reached at Fn ' 0.4 (Faltinsen, 1987).

The arrival of fast computers allowed to implement new methodologies that could

avoid the limitations of analytical approaches. The body is treated as a three-

dimensional object preserving its details and geometrical characteristics. The

boundary of the fluid domain (or part of it) is discretised in a set of elements

named panels; special functions that satisfy the governing fluid equations and

boundary conditions are collocated on each panel; the velocity potential at any

point inside the fluid domain is obtained using the Green’s theorem along the

boundary of the fluid domain. This class of method is usually called Boundary

Element Methods (BEM).

Boundary element methods differ from each other for the type of singularity

(Green’s function) that they use, and for the different linearisation of the bound-
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ary conditions. The majority of BEM, used to study the interaction between

vessels with forward speed and waves, can be divided in Neumann-Kelvin and

Double Body methods.

Considering the problem of a ship sailing with forward speed in a sea state defined

by small amplitude waves, it is possible to divide the velocity potential associ-

ated with fluid kinematics into three principal components: a first one associated

with the problem of the ship sailing at a constant forward speed in calm water

(that can be divided into a basis flow of O(1) Φ and a first-order perturbation

ϕ), a second one related to the unsteady motions of the vessels φD and a last one

related to the ambient waves φI , as described in Equation (2.1)

Ψ = (Φ + ϕ) + φI + φD (2.1)

If the small steepness waves assumption is introduced (ka � 1) and the ship

is stable it is possible to state that the unsteady motions are O(A); therefore

the only first order potential is the one that describes the basis flow. Following

this line of thought it is possible to justify the linearisation of the unsteady

velocity potential around the basis flow. The previously described analytical

models (thin- and slender-ship theories ) were formulated to ensure small steady

state disturbances. Neumann-Kelvin and Double body methods differ from each

other by their basis flow formulation.

In the Neumann-Kelvin method the steady flow is formulated as the sum of a free

stream velocity field −Ux and a perturbation due to the presence of the body

Uϕ̃. Equation (2.2) describes the velocity potential associated with the steady

problem.

Φ + ϕ = U(ϕ̃− x) (2.2)
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This simple formulation of the steady potential gives the possibility to apply

Green’s functions that automatically fulfil the free-surface boundary condition

(Wehausen and Laitone, 1960). One of the first researchers to propose this ap-

proach was Chang (1977); the author presented the mathematical statements of

the boundary value problem and the analytical formulation of the singularity

used to solve the velocity potential. The presented results, for the wave mak-

ing resistance of a Wigley hull and for the unsteady motions with and without

forward speed of a Series 60 hull, show good agreement with experiments. The

zero speed versions of these methods are very popular in offshore engineering

since they allow to calculate first- and second-order slow varying drift forces on

a floating body applying free-surface Green’s functions, for example the WAMIT

code (Korsmeyer et al., 1988) is one of the most used seakeeping software in the

offshore sector.

If the subject of the analysis is a vessel with forward speed the Neumann-Kelvin

approach can be used if the vessel is fine, but if the underwater geometry has

a large and rapid longitudinal variation of its forms the disturbance in the fluid

induced by the presence of the hull is too large to justify a linearisation of the un-

steady potential around the free stream flow. A second drawback of the Neumann-

Kelvin method applied to a vessel sailing with forward speed is the formulation of

the forward speed free-surface Green’s function. Zero speed free-surface Green’s

functions are easy to evaluate numerically especially in the case of infinite depth,

the exact forward speed free-surface Green functions (Beck, 2001) are more com-

plicated to evaluate and their calculation increases the computational cost of the

technique.

In the double body approach the steady flow is linearised on the double body flow.

The double body flow is the velocity field obtained by the solution of an equivalent
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infinite fluid problem where the body is composed by the submerged geometry of

the vessel and its symmetric image on the z > 0 half plane; this methodology was

first proposed by Dawson (1977). The author presented the method for two- and

three-dimensional problems and produced results for a Wigley hull and a Series

60 ship.

Free-surface Green’s functions developed for the Neumann-Kelvin approach can-

not be used to solve the boundary value problem that rises from the Dawson’s

method, therefore the Rankine source Green’s function was used to numerically

solve the double body approaches. The Rankine source is a simple singularity

that satisfies the field equations of ideal fluids (Laplace equation), differently from

the free-surface Green’s function it does not automatically fulfil the free-surface

boundary conditions, thus a finite region of the free-surface must be included into

the computational domain.

The introduction of a finite and discretised portion of the free-surface in the

integral formulation of the boundary values problem presents some numerical

challenges related mainly to two issues. The first one is the possibility to properly

model the propagation of the wave disturbances on a discrete free surface; the

second one is connected with the reflection of the radiated waves at the end of

the computational domain, since the truncation of the free-surface is numerically

seen as a wall for the propagated waves.

One of the first complete works on three-dimensional Rankine panel methods was

presented by Nakos (1990). The author formulated the mathematical problem

with the related linearised boundary conditions, defined the numerical scheme

and its challenges. Results for the steady and unsteady problem were presented

for a Wigley and a Series 60 hull. Comparison with experimental points and with

strip theory and Neumann-Kelvin methods proofs the validity of the double body

approach.
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2.3 Nonlinear Wave-Rigid Body Interaction

All the methodologies described in the previous section have something in com-

mon: they are linear methods, based on the assumptions of small amplitude

waves and linearity between the excitation and the response. Since research on

nonlinear seakeeping methods started after the development of linear theories,

some nonlinear methods can be seen as a modification or an extension of the

linear ones.

Nonlinearities in the wave-body interaction problem depend on factors: some

nonlinear effects are, for example, associated with the ambient waves and others

are function of the flare of the vessel. Therefore nonlinear theories differ from

each other based on which type of nonlinearities they model. Numerical solution

of the equations of motion for a nonlinear system is usually conducted in time

domain using a time marching scheme.

In the literature several reviews of nonlinear seakeeping methods exist; for ex-

ample: the seakeeping report of the 26th International Towing Tank Confer-

ence (ITTC, 2011), the 17th International Ship and Offshore Structures Congress

(ISSC, 2009) and Beck (2001). The critical reviews that were more relevant for

this project are from the ISSC (2009) and the seminar paper from professor Beck

(2001). In the first review nonlinear methodologies are classified upon their degree

of nonlinearities in a practical manner; in the second one seakeeping methods are

subdivided considering the different sets of boundary conditions involved. The

second classification follows a more theoretical rigorous approach; unfortunately

the focus of professor Beck’s lecture was the numerical method for seakeeping in

general, therefore, also if non linear methods are a significant part of the review,

differences between the methodologies were often lost in his taxonomy and a large

group of different methodologies were collected under the definition of ”blending

methods”.
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For these reasons the following critical review of nonlinear seakeeping methods is

conducted following the classification given by the ISSC (2009), but the method-

ologies themselves will be described in a theoretical manner. The following anal-

ysis is limited to the approaches that are based on the assumption of ideal fluid.

Methods that model the fluid using the Euler equations or the Navier-Stokes

equations (RANS, LES and DNV methods) are not considered here, since the

numerical solution of the governing equations and the related challenges are not

of interest to the aim of this thesis. The described techniques are divided into

four groups, namely: nonlinear Froude-Krylov, body exact, weak scatterer and

fully-nonlinear ideal fluid methods.

2.3.1 Froude-Krylov Nonlinear Methods

The simplest class of nonlinear methods is called Froude-Krylov nonlinear. For

this type of approaches the nonlinearities are associated with the calculation of

the Froude-Krylov and restoring forces (difference between the hydrostatic and

weight force) on the actual hull portion at each time step. The radiation and

diffraction boundary value problems are defined using linear boundary conditions

and usually solved in the frequency domain and related to the time domain using

the procedure proposed by Ogilvie (1964). The horizontal plane of the mean

wave elevation is used to describe the free-surface and the wetted hull portion

is calculated as the part of the hull below the linearised free-surface. These

methodologies are usually referred as ”blending techniques” because they are

an engineering compromise of linear (radiation and diffraction) and nonlinear

(Froude-Krylov and restoring) assumptions.

In large amplitude motion problem, the effects associated with the calculation

of the Froude-Krylov forces and with the integration of the hydrostatic pressure

components along the actual wetted hull portion (considering the linearised free-
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surface) are some of the most relevant nonlinear contributions, therefore this

simple class of techniques can help to improve the responses prediction. On the

other hand other equally relevant nonlinear effects are neglected; for example

the bow flare slamming effects are not considered because they are associated

with the rate of change in time of the fluid added mass, that in a Froude-Krylov

nonlinear method is zero.

Fonseca and Guedes Soares (1998) presented a Froude-Krylov nonlinear strip

theory. The proposed method solves the radiation and diffraction problems con-

sidering the linear free-surface and body boundary conditions. Sectional hydrody-

namic coefficients are calculated in the frequency domain using multi-parameters

conformal mapping and related to the time domain using inverse Fourier trans-

form and convolution integrals. The complex amplitude of the diffraction forces is

calculated before the simulation and considered harmonic during the time evolu-

tion of the system. Froude-Krylov and restoring forces are evaluated on the actual

wetted hull portion at each time step. Forward speed effects are considered using

the corrections to the zero speed sectional hydrodynamic coefficients proposed by

Salvesen et al. (1970) and by introducing Cm terms that take into account the

interaction between the steady and unsteady flow, following the formulation in-

troduced by Ogilvie (1964). The methodology models vertical motions and wave

induced loads. Results for the S-175 container ship are presented for Fn = 0.25

and for head sea condition; this simple analysis highlights the asymmetry be-

tween positive and negative nonlinear responses, and the reduction of motions

responses when wave elevation rises. The results seems to correctly model the

physical behaviour of the vessel, but the reduction of the nonlinear responses for

the larger waves seems too marked.

In the following paper from the same authors (Fonseca and Guedes Soares, 2002)

the previously described approach is compared against the experimental results
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for the S-175 container ship by O’Dea et al. (1992) and Watanabe et al. (1989),

in head seas for different wave frequencies and heights and for different Froude

numbers (Fn = 0.20 and 0.275). Numerical results for the vertical motions show

a good agreement with the experimental points for the lower forward speed and

satisfactory agreement for the higher speed. This is probably due to the type

of forward speed correction used. The comparison for the vertical bending in

severe irregular seas (HS = 8.33m and T0 = 11.1s) shows a good agreement with

experimental results at Fn = 0.25.

Bruzzone and Grasso (2007) used a three-dimensional Rankine panel method

to solve the radiation and the diffraction problems in the frequency domain.

Froude-Krylov and restoring forces are calculated in the time domain considering

the actual three-dimensional discretised hull, the system of equations of motion

follows the formulation proposed by Fonseca. The implementation of the Rankine

panel method ensures a better prediction of the forward speed effects; fluid actions

are calculated considering the calm water level as free-surface. Simulations were

performed for hulls derived from the NPL series and the analysis was focused

on the prediction of motions at high froude number, therefore only comparisons

with experimental results and linear methods for Fn = 0.65 and Fn = 0.67 are

presented, considering a maximum wave steepness of ka = 0.07 (see Bruzzone

and Grasso, 2007 for details). Results seem to improve the prediction given by

a linear Rankine panel method, also if the presented analysis is too limited to

understand the effectiveness of the proposed methodology.

In the following paper by Bruzzone et al. (2011) a modification of the previously

described approach is used to assess vertical motions and loads for the S175

container ship in head seas at Fn = 0.25. The modified approach follows the

same concept of the previously described one, but introduces two major novelties.

Firstly the nonlinear Froude-Krylov and restoring forces are evaluated in the
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time domain at each time step, but the equations of motions are solved in the

frequency domain and iteratively passed to the time domain until convergence;

this numerical scheme allows to avoid the transitory part of the solution at the

beginning of the simulation. Secondly the Froude-Krylov and restoring forces are

analytically evaluated in time via bi-cubic function that are used to describe the

actual wetted hull portion. Vertical wave induced motions and loads are compared

with experimental results published by Fonseca and Guedes Soares (2004); the

analysis showed a general good agreement with experimental data except around

resonant region where both motions and loads are over-predicted. This could be

due to the calculation of the kernel of the convolution integral, that describes the

damping forces. A good evaluation of the damping forces is crucial around the

resonance region.

During the first half of the 90s a research group leaded by Woei-Min Lin and Nils

Salvesen produced several papers related to the development of a software to pre-

dict large amplitude motions and loads considering different type of modelling.

The so-called LAMP-2 version was a blended method where the linear radiation

and diffraction problems are solved using a time domain three-dimensional free

surface Green function method. Lin et al. (1994) presented a comparison for

the different methodologies in order to assess the importance of nonlinear mod-

elling in large amplitude wave. The vessels chosen for the analysis are a Series

60 hull (CB = 0.70) and the S175 Container ship. The paper collects a vast

set of numerical and experimental results showing the importance of nonlinear

modelling for large amplitude wave problems, especially when the ship presents

a large bow flare. From the comparison of vertical bending moment at midship

in regular waves for the Series 60 hull with λ/L = 1.00 and Fn = 0.20 between

LAMP-1 (linear three-dimensional time domain method), LAMP-2 and LAMP-

4 (nonlinear weak scatterer method) it is possible to notice that both LAMP-2

and LAMP-4 improve the prediction from the linear methodology and the two
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approaches give very similar results. Analysis for the S175 container ship with

λ/L = 1.20 and Fn = 0.275 shows that in this case the relative different between

the predictions given by the LAMP-2 and the LAMP-4 methods is larger respect

the case of the S60 series hull. This could be due to the nonlinear hydrodynamic

effects due to the bow flare which are just partially modelled in the LAMP-2

approach.

2.3.2 Body Exact Nonlinear Methods

Nonlinear body exact methods are an improvement of the Froude-Krylov non-

linear methods. The body exact word describes the fact that all the forces are

calculated on the actual (exact) wetted hull portion in the time domain. The

radiation and diffraction problems are solved considering the calm water level as

free surface and the linearised set of related kinematic and dynamic boundary

conditions and the actual wetted hull geometry up to the still water level as body

surface with related nonuniform Neumann boundary condition. Restoring and

incoming wave forces are calculated in a similar manner to the Froude-Krylov

nonlinear methods.

The rigorous approaches consist in the direct solution of the radiation and diffrac-

tion problems in time domain considering the hull kinematics to identify the exact

hull boundary surface. The most common numerical techniques used to evaluate

the velocity potentials are: time domain free surface Green function methods and

Rankine panel methods. Since the underwater geometry is changing with time,

the numerical boundary needs to be evaluated and discretised at each time step,

the forces acting on the body are then usually found by integrating the Bernoulli

equation along the wetted surface. This procedure results in an elevated compu-

tational cost.

A modified Cummins approach (Cummins, 1962) can be also used to evaluate
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the radiation and diffraction components of the global forces using frequency do-

main results. This approach is based on the linear superposition of effects, since

the potential is divided into impulsive and memory effect components, but it is

widely used to solve body exact methods due to the smaller amount of time re-

quired compared to direct solution of the radiation and diffraction problems in

time domain. This type of methods belong to the group of momentum based

methods, since they calculate fluid action on the body using the rate of change

of momentum in the fluid with time, instead integrating the Bernoulli equation.

That is due to the fact the these methods partially use frequency domain co-

efficient, therefore only the integral of the velocity potential along the hull is a

known quantity instead of its punctual value along the body surface.

Also if the Cummins’ approach is generally used to model linear wave-body inter-

action problems its extension to weakly nonlinear methodologies can be justified

by the fact that the nonlinearities in the radiation and diffraction problems are in

general of small magnitude and they vary relatively slowly with time. This is not

valid for the impulsive phenomena, such as water entry or bow flare slamming.

On the other hand, in these cases the gravitational effects can be neglected (ex-

cept for the water exit case), since the acceleration in the fluid due to hull motions

is higher than the gravitational one. For this reason, memory effects, associated

with the gravitational component of the potential, are of smaller magnitude com-

pared to the impulsive terms. This results in a reduction of the effects of the

simplification introduced by the superposition principle between impulsive and

memory effect velocity potentials.

Singh and Debabrata (2007) presented a comparison between several different

three-dimensional nonlinear techniques. One of the methodologies is a body ex-

act theory (in the paper it is referred to as body nonlinear method); the hydro-

dynamic problem is solved applying transient free-surface Green function. The
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paper describes the formulation of the algebrical system used to solve the discrete

integral radiation problem. The comparison is performed for a Wigley hull and

for the S175 container ship, studying vertical motions of the centre of gravity

and relative vertical motions of the bow. The aim is to understand the effect

of each level of modelling on the prediction of relative velocity at the bow, used

to evaluate slamming forces. The comparison clearly shows the difference of re-

sponse between Froude-Krylov nonlinear and body exact methods, especially for

the relative vertical displacement and velocity. For these quantities the phase

angle of the motion is important and this difference could be due to a different

prediction of the phase angles.

A two-dimensional body exact method was developed at the University of Michi-

gan (Zhang and Beck, 2007; Zhang et al., 2007; Bandyk, 2009). The radiation

and diffraction boundary value problems are solved in two-dimensions in time do-

main using a desingularised source method and two dimensional Rankine source

Green’s function. The wetted hull and a finite portion of the free surface are

considered in the computation. One of the main advantages of this methodol-

ogy is that in a desingularised method, the sources are distributed outside the

fluid domain, therefore the integrals are never singular (Beck, 1994). In order

to avoid any wave reflections at the end of the computational free surface panel

length and desingularised distance increase with the increasing of distance from

the body, this configuration allows to postpone wave reflection by increasing the

length of the computational domain. Bandyk (2009) described accurately the

methodology and the numerical techniques focusing on the use of radial basis

function to approximate the ∂φ/∂x, for the evaluation of forward speed effects.

Particular attention is given also to the application of the acceleration potential

to solve the ∂φ/∂t term in the pressure equation. Bandyk’s Ph.D. thesis (2009)

presented motion analysis for several hull geometries; the proposed methodol-

ogy gives, in small amplitude waves, prediction of motions of the same level of
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accuracy of other two-dimensional techniques. Not sufficient results have been

presented to understand the effectiveness of the proposed methodology in large

amplitude waves, but Zhang and Beck (2007) discussed results of the water entry

and exit problem, obtained with the earlier described method, that showed the

capability of correctly predicting asymmetric forces in the water entry and exit

phase.

Another two-dimensional body exact method was introduced by Xia (2005). This

paper presents a momentum based formulation to evaluate sectional fluid actions

in time domain; velocity potential is decomposed into an impulsive term and a

memory effect component. Sectional hydrodynamic coefficients are evaluated for

each section at each time step considering the actual wetted hull portion and the

linearised free-surface. Relative vertical velocity is used to evaluate hydrodynamic

forces along the body. The formulation of the sectional radiation forces given by

this methodology allows to easily identify each component of the nonlinear forces,

in particular it is possible to asses bow flare and water entry slamming in the

limits of the assumptions of the methodology (a Von Karman type method). The

paper presents few results for the S175 container ship displaying heave, pitch,

bow acceleration and vertical bending moment for different wave heights and

frequencies. The result shows the capability of the methodology to predict motion

reduction and increase in the load response compared to the linear prediction

when wave elevation rises.

2.3.3 Weak Scatterer Nonlinear Methods

The nonlinear weak scatterer methods are techniques based on the assumption

that the radiated waves generated by the vessel movements are of smaller order

compared to the ambient waves. This is the so called weak scatterer hypothesis

firstly introduced by Pawlowski and Bass (1991) using the following formulation:
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”The disturbance induced by the moving ship in the wave flow is considered to be

of a smaller magnitude than the wave flow quantities which are proportional to

the wave height, but at least of the same magnitude as the wave flow quantities

proportional to the square of the wave height.”(Pawlowski and Bass, 1991).

Lets consider the following decompositions for the velocity potential and free-

surface elevation

Φ(~x, t) = Ψ(~x, t) + φI(~x, t) + φ(~x, t) (2.3)

η(x, y, t) = ζI(x, y, t) + ζ(x, y, t) (2.4)

where Ψ is the potential associated with the steady forward motion of the vessel,

φI is the velocity potential due to the incoming wave field and φ describes the

perturbation due to the motions of the vessel and its interaction with the incom-

ing potential; ζI is the free-surface elevation of the undisturbed incoming wave

and ζ is the disturbance wave elevation due to the potentials Ψ and φ. Following

the weak scatterer hypothesis the orders of the terms of equations 2.3 and 2.4 are

defined as follow

Ψ ∼ O(1); φI ∼ O(1); φ ∼ O(ε), (2.5)

ζI ∼ O(1); ζ ∼ O(ε), (2.6)

where ε � 1. The weak scatterer hypothesis, summarised in equations 2.5 and

2.6, modifies the free-surface boundary conditions, that now should be linearised

on the incoming undisturbed wave profile ζI . A second difference from the pre-

vious formulations is given by the terms that compose the free-surface boundary

conditions: φI is O(1) and therefore terms of the incoming wave potential that
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in the previous cases are of O(ε2), under the current assumption are of O(ε) and

must be considered in the linearised problem.

A comparison for the kinematic and dynamic free-surface boundary conditions

between a linear and weak scatterer formulation is well presented by Kim et al.

(2011). The free-surface boundary conditions of the linear problem are also ap-

plied in the nonlinear Forude-Krylov and body exact methods, therefore this

comparison is very useful to understand and appreciate the mathematical and

numerical complexity introduced by the weak scatterer assumption.

The weak scatterer hypothesis was firstly introduced by Pawlowski and Bass

(1991). In this paper the authors discuss the theoretical model related to the

weak scatterer hypothesis and presented a numerical analysis with a comparison

against experimental results for a series 60 hull and a stern trawler. The numer-

ical technique used to solve the radiation and diffraction problem is a boundary

elements method with zero speed free-surface Green’s function. The zero speed

results are corrected to take into account forward speed in a strip theory manner

(Salvesen et al., 1970). The methodology was chosen for its reliability also if the

authors were aware of its limitations. Results show a reasonable good agreement

especially for the series 60 hull. The most important component of this work is

the clear theoretical formulation of the weak scatterer hypothesis and the related

boundary value problem.

Due to the mathematical formulation of the free-surface boundary conditions

the Rankine panel methods seem to be the most suitable technique to numeri-

cally tackle the weak scatterer hypothesis. Huang (1997) presented a numerical

solution for a nonlinear weak scatterer method using higher order Rankine sin-

gularity in the boundary element method. This work follows the thesis of Kring

(1994) where a linear time domain Rankine panel method was firstly introduced.

Huang’s Ph.D. thesis presents the mathematical and numerical scheme of the
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methodology and a comparison against experimental results as well as other nu-

merical procedures for a series 60 hull and the S175 container ship. The nu-

merical methodologies used in the comparison are a linear and a Froude-Krylov

nonlinear Rankine panel methods. The comparison shows an excellent agreement

against experimental results for the weak scatterer method for both vessels. The

comparison against other level of modelling is very useful to understand the im-

provements for the prediction of the motions when the level of complexity of the

model increases. The proposed weak scatterer method almost always gives the

best predictions. It is also very interesting that the drastic decrease of the re-

sponse around the resonant region occurs in the weak scatterer method. The pre-

sented technique improves the motion predictions also for small amplitude waves,

demonstrating that this mathematical formulation is a general improvement from

the linearised one and the weak scatterer assumption, almost mandatory in large

amplitude waves, can be successfully applied also for problems involving small

amplitude waves.

An approach similar to the one of Huang (1997) was presented by Kim et al.

(2011). The proposed methodology follows the Huang’s formulation, but the

novelty in this paper is the coupling of the seakeeing and the maneuvering prob-

lem to highlight the flexibility of time domain methods. Another important fea-

tures of this methodology is the use of a flexible body model to study springing

and whipping (this topic will be described in section 2.4). Comparisons against

experimental results and numerical predictions of a linear and a Froude-Krylov

nonlinear method are presented for a 6500 TEU container ship and for the S175

container ship. The comparison in small amplitude waves reports a good agree-

ment between the weak scatterer method and the experimental points. On the

other hand a brief analysis for large amplitude waves shows that the nonlinear

Froude-Krylov method gives the best prediction for heave and pitch motions.
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A different approach to the weak scatterer hypothesis was proposed by Singh and

Debabrata (2007). The radiation problem is solved numerically using a transient

free-surface Green’s function. Transient free-surface Green’s functions should be

applied using an horizontal plane as free-surface, therefore the wetted hull under

the incoming wave profile is mapped under a flat free-surface. Then, the boundary

value problems are solved in the transformed space using the same formulations of

the body exact methods. This approach considers the weak scatterer hypothesis

only as a change of the wetted hull portion that is included in the calculation; no

interaction between the radiation and the incoming wave potential is considered.

A different interesting formulation of the weak scatterer approach was proposed

by Sclavounos (2012). Sclavounos presented a formulation that expresses hy-

drodynamic forces and moments on the body using the rate of change of fluid

impulse with time instead of the direct pressure integration via Bernoulli equa-

tion. The main advantages of this approach should be the related relative simple

mathematical formulation against the numerical evaluation of the Bernoulli equa-

tion: for large amplitude motions the gradients of the velocity potential must be

considered to find the hydrodynamic pressure, leading to a complex numerical

procedure for the evaluation of the spacial derivatives of the potential. The au-

thor describes in details the mathematics, ending with a formulation analogous

to the one of the previous methodologies but expressed in an integral form. The

free-surface is identified as the undisturbed incoming wave profile and the am-

bient wave potential is considered of O(1). This methodology can be useful to

apply the weak scatterer hypothesis with momentum based methods.

2.3.4 Fully Nonlinear Methods

All the previous methodologies are a combination of linear and nonlinear assump-

tions; also weak scatterer methods are based on the hypothesis of superposition
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of effects, that is a valid for a linear system, but is not acceptable for a nonlinear

one. The present techniques are the most complex among all (if ideal fluid is

considered), they are nonlinear methods without any linear simplification. For

this class of techniques the Laplace equation still governs fluid dynamics, but

the boundary conditions are not linearised; therefore the free-surface boundary

conditions must be satisfied on the unknown free-surface profile and the body

boundary conditions must be imposed on the actually wetted hull portion at

each time step. The principal complexity of these methodologies lies in the fact

that the nonlinear kinematic and dynamic free-surface boundary conditions must

be imposed on a time evolving unknown surface; for this reason a time marching

scheme is used to predict free-surface profile at each time step.

The numerical solution of the boundary value problem can be achieved using dif-

ferent techniques, such as finite-difference or finite-elements methods (see Yeung,

1982, for an accurate review). In the research area of nonlinear wave-body inter-

action the most common numerical techniques are the so called Mixed Eulerian-

Lagrangian methods (MEL). The MEL approach was first introduced by Longuet-

Higgins and Cokelet (1976); this methodology is characterised by two phases,

namely an Eulerian one and a Lagrangian one. In the Eulerian phase the velocity

potential is found by solving the mixed boundary value problem, at this stage all

the fluid kinematics are calculated; in the Lagrangian phase the time evolution of

the water particles on free-surface is calculated using the free-surface boundary

conditions, thus the location of the free-surface and the value of the potential on

it are known and are used as input value for the next time step.

These methodologies have some numerical problems due to their assumptions and

numerical formulations. First of all, the calculation stops when wave breaking

occurs, this is due to the definition of the free-surface and usually wave breaking is

prevented using numerical damping on the free-surface. A second disadvantage is
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given by the motions of the Lagrangian particles on the free-surface that generates

a so-called ”sawtooth” instability. The water particles are free to move and

after several time steps numerical points tend to accumulate in the regions with

higher gradient; therefore in some other region the Courant stability condition is

violated (Dommermuth and Yue, 1987). This inconvenience is avoided applying

a smoothing scheme on the free-surface during time marching.

A MEL application to the wave body interaction problem was proposed by Beck

(1994). In this paper a three-dimensional fully nonlinear method is used to study

ship unsteady motions; the singularity used to determine the velocity potential is

a desingularised Rankine source applied over the underwater body geometry and

the free-surface. The author accurately describes the mathematical formulation of

the methodology focusing on the time marching of the free-surface points and on

the description of the desingularised source method. Numerical results for several

body geometries show the capability of the methodology to model nonlinear forces

and motions. No results or comparisons in large amplitude waves have been

presented.

Instead of modelling full scale wave-ship interactions fully nonlinear methods are

often used to simulate the motion of a vessel in a towing tank creating what is

called a numerical wave tank. This research area is wide and deserves a separate

and accurate review but it is worth to be mentioned because it is a clear example

of how fully nonlinear methods are used to predict ship motions. Numerical wave

tanks are the computational equivalent of a towing tank: the boundary of the

domain is completely included in the computation (free-surface, body surface,

side walls and tank bottom), ambient waves are generated from the oscillation

of a side wall (or equivalent imposed velocity potential) and wave reflection from

other walls is avoided introducing numerical damping or imposing a piston-like

movement on the reflecting side walls (see Clement, 1996 for more details).

29



Koo and Kim (2004) defined a two dimensional numerical wave tank to study the

unsteady motion of a cylindrical body using the previously described fully non-

linear MEL approach. A second order Stoke’s wave is used as incoming wave and

motions are compared against linear and experimental results. The comparison

shows the discrepancies between the linear and the nonlinear modelling highlight-

ing the nonlinear behaviour of motions around resonance region where the second

and third harmonic of the response have a significant magnitude. This paper is

a clear example of how a numerical wave tank can be used to study unsteady

motions of a floating body.

In order to avoid the accumulation of numerical points of the free surface in some

region partial MEL methods can be used. The difference with the previously

described methodology is that in a partial MEL methods water particle are al-

lowed to move only vertically, in this way theoretically no smoothing scheme is

necessary. An example of this approach can be found in Faltinsen (1978) where

a partial two dimensional MEL is used to study sloshing in a rectangular tank.

2.4 Wave-Structure Interaction

All the methodologies described in section 2.2 and 2.3 model the ship as a rigid

body and evaluate wave induced loads considering the equilibrium between ex-

ternal forces and internal loads for a portion of the hull. In the reality the ship is

a flexible body and its interaction with the sea environment produces structural

vibrations and deflections.

In severe seas slamming events due to water entry or bow flare generate high

frequency transient hull vibrations; this phenomenon is called whipping and is

important to assess the strength of the vessel. A different type of hull vibration

is springing; springing is continual hull girder vibration induced by wave excita-
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tions that are in resonance with the hull natural frequencies. Springing is very

important for the analysis of the fatigue life of a ship with low first structural

natural frequencies.

In order to correctly model these dynamic phenomena the hydrodynamic prob-

lem should be coupled with the structural one. This area of fluid mechanic is

generally called fluid structure interaction (FSI) but when the analysis concerns

the responses of a vessel in a seaway it goes under the name of hydroelasticity.

All the described seakeeping methods can, theoretically, be coupled with the

equations of motion of the hull structure and therefore a review similar to the

previous one can be conducted. Since repeating the difference between the several

seakeeping theories is pedantic and does not add any value to this survey the hy-

droelastic methods will be presented and described with the intention to highlight

the differences in term of fluid structure coupling and modelling, with the aim to

understand the effects of the different assumptions on the results obtained.

The structural dynamics can be modelled following two principal methodologies:

modal superposition or direct integration of the equations of motions.

In the modal superposition method structural hull kinematics are subdivided

into a set of orthogonal time independent mode shapes. Under the assumption

of linear structural response the degrees of freedom of the system are composed

by the set of principal co-ordinates that is used to define the amplitude of each

mode shape and characterise the time response of the hull; this methodology is

the most common since it ensures a rapid and accurate solution of the equations

of motions with a relatively small number of mode of shapes, Bishop and Price

(1979) accurately describe this approach and its application to different type of

vessels.

A second approach is the direct solution of the equations of motions of the hull

girder. The structure is discretised with a finite number of points or elements
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(depending on the numerical method applied) and displacements and rotations

of each one of them define the degrees of freedom of the system. This approach is

definitely more time consuming since the number of degrees of freedom is larger

compared to the modal analysis one, but allows the solution of more complex

problems. Direct solution methods differ from each other based on the coupling

with the fluid domain problem, that can be strong if the balance between fluid

and structure is mutually satisfied each time step or weak if fluid and structure

exchange alternatively information from time step to time step. Matthies and

Steindorf (2003) described strong fluid structure interaction algorithms that can

be used in wave-body interaction problems. Strong coupled algorithms are more

robust and accurate, but require more time due to internal iterations at each time

step, while weak coupled methods are more easy to implement and faster, but

due to their explicit formulation they can suffer from numerical instabilities.

Bishop and Price (1979) accurately describe modal superposition hydroelastic

method where the fluid problem is solved using a linear frequency domain strip

theory based on the relative velocity formulation. They define the structural

problem considering both an Euler and Timoshenko beam model in six degrees

of freedom and presented a methodology to study transient loads, based on mo-

mentum based slamming modelling and memory effect functions. This book is

without doubt one of the most important publication in hydroelasticity research

area and it shows how an hydroelastic approach can take the place of the classical

seakeeping methods without losing any accuracy or detail in the analysis.

Hirdaris et al. (2003) presented a comparison between results obtained by linear

two- and three-dimensional hydroelasticity theories for a 280 meters long bulk

carrier. In the two dimensional model the structure is represented by Timo-

shenko beam theory and the fluid actions are calculated using a strip theory

approach (Bishop and Price, 1979). For the three dimensional case finite shell
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elements are used to model the hull and hydrodynamic forces are evaluated using

a pulsating free-surface Green’s function source distribution under the calm water

level. Comparison is conducted for both symmetric (vertical modes) and anti-

symmetric (horizontal and torsional modes) modes. The analysis shows that two-

and three-dimensional modelling give similar results for vertical modes, but the

comparison for horizontal and torsional modes presents differences in the results,

claiming the incapability of the Timoshenko beam model to properly represent

highly non-prismatic hull girders that allow for the effect of warping.

Kim et al. (2009a) and Kim et al. (2009c) developed a fully coupled time domain

hydroelasticity method based on hybrid boundary element method and finite

element method (FEM) scheme. The fluid domain is modelled by a BEM based

on higher-order B-spline Rankine panel method; structural domain is handled

via FEM using different beam theory: Timoshenko beam theory (Kim et al.,

2009a) and Vlasov beam theory (Kim et al., 2009c). The Vlasov method is

more complicated, but allows to capture warping effects of container ships open

sections. Instead of modelling the time evolution of the structural displacements

and rotations via modal superposition the proposed method solves the structural

equations of motions using a direct integration approach: a β-Newmark method

is used to evolve the system with time and nonlinear effects associated with the

fluid coupling and internal iteration to ensure a correct fluid-structure coupling

are conducted following the method proposed by Matthies and Steindorf (2003).

Kim et al. (2009a) presented a comparison against experiment for vertical motions

of a pontoon like body showing a good agreement with experimental results. Kim

et al. (2009c) compared results from the hydroelastic method against rigid body

one, displaying the importance of hull flexibility.

Since hydroelastic effects are important in large amplitude waves several nonlinear

hydrodynamic methods have been applied to a flexible hull, both two- (Jensen
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and Pedersen, 1979; Jensen and Dogliani, 1996; Xia et al., 1998; Park, 2006) and

three-dimensional (Kim et al., 2009b; Tuitman, 2010).

Jensen and Pedersen (1979) applied a second-order frequency domain strip the-

ory to hull modelled using Timoshenko beam theory, this results in a frequency

domain methodology able to model asymmetric response of vertical bending mo-

ment between sagging and hogging condition. In a following paper Jensen and

Dogliani (1996) presented a theoretical study of statistical properties of the non-

linear vertical bending moment of a flexible ship hulls. The proposed methodology

uses Hermite series to approximate the non-Gaussian distribution of the vertical

bending moment response. This approach presents the advantage of frequency

domain analysis and is partially able to model geometrical nonlinearties; one of

the main drawback is that it is not possible to model whipping using a frequency

domain approach.

Xia et al. (1998) presented a hydroelastic method where the fluid actions are eval-

uated using a nonlinear strip theory method coupled with a Timoshenko beam

to represent the flexible hull, sectional hydrodynamic coefficients are evaluated

using a multi-parameters conformal mapping technique. The aim of the research

is to study nonlinear responses of fast vessels and comparison of vertical motions

and loads responses for the S175 container ship shows good agreement with ex-

perimental data from O’Dea et al. (1992). One of the novelties of this approach is

the evaluation of the memory effect terms via state space model instead of mem-

ory effect functions. The state space model seems promising when the radiation

and diffraction problems are treated in a linear manner, but it does not present

any advantages when the hydrodynamic forces are considered nonlinear since a

solution of a system of the higher order differential equation is needed at each

time step.

Park (2006) proposed a two dimensional hydroelastic approach similar to the one
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presented by Xia et al. (1998), in this methodology the governing equations are

divided in a linear and nonlinear part, while the linear components are solved

in frequency domain the nonlinear ones are solved in time domain using a β-

Newmark method. Sectional hydrodynamic coefficients are evaluated at each time

step using Lewis form conformal mapping method. An empirical formulation is

used to calculate impulsive forces due to water entry (Ochi and Motter, 1973).

Comparison for the S175 container ship shows good agreement with experimental

results from O’Dea et al. (1992). This approach seems promising also if no details

are given about the coupling of the empirical formulation for water entry with the

nonlinear strip theory; this details are important since a wrong coupling can lead

to over prediction of the water entry impulsive forces, resulting in an excessive

and prolonged whipping excitation.

Tuitman (2010) presented a hydroelasticity theory based on a nonlinear Froude-

Krylov method that uses zero speed free-surface Green’s function with forward

speed correction to evaluate the radiation and diffraction potential. Both three-

and one-dimensional structural FEM model are considered. Impulsive loads are

represented by using both a generalised Wagner method (see section 2.5) and

an empirical approach. Results show a good agreement against experimental

points except for the highest speed where stresses are over predicted. This can be

related to the range of applicability of a nonlinear Froude-Krylov method based

on corrected zero speed free-surface Green’s function or to the slamming model

used.

Kim et al. (2009b) presented a nonlinear extension of a BEM-FEM coupled

method (Kim et al., 2009c). The Vlasov beam model of the ship hull is cou-

pled with a nonlinear Froude-Krylov method that uses a modified Rankine panel

approach to evaluate hydrodynamic fluid actions, resulting in highly oscillatory

response in the wave frequency regime; this is claimed to be related to the higher
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order frequency components that are implicitly related to the nonlinear model

and that end up exciting the natural frequencies of the hull structure.

2.5 Water Entry Modelling

In section 2.4 the importance of hydroelasticity, and especially of nonlinear hy-

droelasticity, in large amplitude waves has been reported. This is due to the fact

that hydroelastic approaches allow to model girder hull vibrations due to water

impacts; therefore it is straightforward that an equivalent important element for

the evaluation of loads is the mathematical approach used to model the impact

phenomena.

Several methodologies to model hydrodynamic impacts exist, as well as several

type of slamming, thus it is crucial to select the appropriate formulation. The

most relevant types of slamming for monohull vessels are namely: bottom impact,

bow flare and green water on deck. Since the work of this thesis is focused on

modelling bottom and bow flare impact, only those two events are considered in

the following review.

Numerical methods to evaluate forces from water impact can be divided into three

main groups: empirical methods, analytical based and numerical based methods.

Empirical methods are formulated from the analysis of observations and they

are the most widely used methodologies for their reliability and rapid execution.

Analytical methods are more accurate and have theoretical rigour, but they can

be applied only in the restrict range of validity of their assumptions. Numerical

procedures are time consuming, but they can give a better and accurate insight of

the fluid, compared to empirical methods and can stretch the applicability limits

imposed by analytical solutions.

Stavovy and Chuang (1976) proposed a semi-empirical formulation to evaluate
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maximum impact pressure on the hull bottom considering relative velocity be-

tween body and fluid, based on the experimental observations on wedge impacts

and analytical impact theories (Wagner and cone impact theories). In their work

the authors presented also an analytical expression to find the actual impact an-

gle between the moving section and the wave profile. Ochi and Motter (1973)

developed a methodology to assess slamming forces using empirical formulation

proposed by Stavovy and Chuang (1976) (but it can be applied with any empiri-

cal method). In this procedure, the time evolution of the maximum pressure is a

function of the Froude number of the vessel. The methodology provides also an

useful expression to evaluate pressure distribution on the hull bottom, where the

pressure peak is located at the keel and an the pressure distribution varies linearly

with the vertical coordinate (maximum at the bottom and zero on the intersec-

tion between the section and the free-surface). Also if those expressions can be

applied only to bottom impact and the pressure distribution formulated by Ochi

and Motter (1973) is not in agreement with experimental trials this methodol-

ogy gives results within engineering accuracy and it is probably the most reliable

method to evaluate bottom impact forces.

Analytical methods are generally divided into two classes: Von Karman type

and Wagner type methods. Von Karman (1929) methods do not consider the

flow caused by the impact in the calculation of the body free-surface intersection.

Impact forces are function of the rate of change with time of the fluid added

mass and relative normal velocity between the body and the fluid surface, while

Wagner (1932) approaches consider these effects for the evaluation of the wetted

length.

This discrepancy of the assumptions mainly results in the fact that von Karman

approaches can be applied to both water entry and exit phase, but they miss the

prediction of the actual wetted length. Wagner based methods are very effective
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in the water entry phase for bodies with small deadrise but are not suitable for

the water exit phase (Dessi and Mariani, 2008). The different formulations for

the wetted length result in an under-prediction of the impact pressure and force

for von Karman based approaches; an interesting comparison can be found in

Zhao et al. (1997).

Zhang and Beck (2007) presented a numerical method to evaluate water impact

on a two dimensional body in both water entry and exit phase. The procedure is

based on a boundary element method with Rankine source on the body and on

the free-surface, the free-surface discretisation is based on desingularised panel

method. The free-surface and boundary conditions are linearised along the calm

water level and the body boundary condition is satisfied on the actual wetted body

portion. Results for the water entry and exit for wedges with different deadrise

angles show the capability of the method to predict impulsive force asymmetry in

water entry and exit phases when the linearised free-surface is considered instead

of zero potential boundary condition (usually used for body oscillating at high

frequency). Since, like a von Karman method, the pile up of the water is not

considered in the calculation, the pressure and forces are under predicted; but a

stretching technique is used to extend the wetted length, increasing the accuracy

of the results.

A nonlinear boundary method with jet flow approximation was published by

Zhao and Faltinsen (1993) the body and free-surface are discretised using panels

with constant source strength, the problem is solved considering nonlinear free-

surface boundary conditions without including gravity since fluid accelerations

due to the motions of the body are higher then the gravitational acceleration.

Jet flows at the body free-surface interceptions are modelled introducing panels

perpendicular to the body over which the pressure is set equal to the atmospheric

one. Comparison with the numerical similarity solution by Dobrovol’skaya (see
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Zhao et Faltinsen, 1993 for details) show good agreement in both maximum

pressure value and pressure distribution.

Zhao et al. (1997) presented a generalised Wagner approach based on the solu-

tion of the outer flow domain as defined by Wagner. The zero potential kine-

matic free-surface boundary condition is applied to a horizontal plane passing

by the intersection between the free-surface and the body; exact body condition

is applied and free-surface evolution in time is predicted using the free-surface

dynamic condition. Without solving the inner jet region flow the pressure at

the free-surface body interception is negative and is neglected in the presented

methodology. Comparisons for a wedge with 30◦ degrees deadrise and a bow flare

section show a general good agreement for pressure distribution against experi-

mental and numerical results (Zhao and Faltinsen, 1993), pressure values seems

slightly over predicted compared to experimental results.

2.6 Extreme Loads Estimation from Nonlinear

Analysis

Estimation of long- and short-term extremes of motions and hull girder loads in

ship design is usually conducted using linear frequency domain methodologies

and spectral analysis. Since linear methods have been proven to be not accurate

in extreme sea states (see section 2.3), extreme prediction via linear analysis can

lead to incorrect results. The linear approximation can be however accepted for

vessels like tankers that are not significantly affected by nonlinear behaviour, but

cannot be applied to long vessels that have a large bow flare and sail at a relative

high speed, such as container ships.

In their interaction with waves, container ships are largely affected by nonlineari-

ties due to their hull forms and length. The sectional flare (especially at the bow
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and at the stern) leads to a large asymmetrical response of vertical bending mo-

ment and can produce large impact forces resulting in whipping of the hull girder.

Springing is also an issue for large container ships, especially in oblique seas, due

to their U-shape hull girder open sections. A nonlinear method allows to assess

the asymmetric behaviour of loads and if it coupled with a flexible hull structure

model gives the possibility to predict whipping effects; therefore the application

of nonlinear hydroelastic methodologies is crucial for the correct assessment of

extreme responses for large container ships.

The IACS S11 ”Longitudinal strength standard”, which forms the basic struc-

tural requirement for hull strength, represent the current standard for hull girder

design loads for ships and summarised the philosophy behind wave induced loads

assessments. The IACS requirement and technical background is presented by

Nitta et al. (1992). These formulations take into account nonlinearities associated

with the asymmetry of vertical bending moment between sagging and hogging

condition, calculated using a correction factor that is a function of the block co-

efficient of the ship. It does not include vibrational phenomena of the hull girder;

however the authors highlight that these rules should not be applied to vessels

having a large bow flare.

The inclusion of whipping and springing on extreme loading is very important

especially for ultra large container ships. Storhaug et al. (2010) presented the

results of an experimental campaign for a 13000TEU container ship model. The

author’s analysis extreme responses in different type of severe sea states. The

conclusions highlight that the vertical bending moment, considering whipping,

may exceed the IACS rule moment by a factor up to 1.8.

The assessment of wave induced loads via nonlinear methods is definitely more

time consuming compared to the classical approach. Nonlinear methods solve

the equations of motion in the time domain and therefore long and numerous
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simulations in irregular seas are required to calculate the long-term maximum

expected value for a given return period. For this reason several papers are

focused on simplified analysis of extreme responses using nonlinear seakeeping

methods.

Baarholm and Moan (2000) proposed a methodology to evaluate extreme loads

using a nonlinear time domain method and a limited number of sea states. The

use of reduced combinations of significant wave heights and zero crossing periods

within the nonlinear seakeeping method is made by selecting the sea state that

mostly contribute to the extreme responses calculated using a linear approach.

This procedure is found to be very effective in the reduction of the number of sea

states to be used, but it is based on the strong assumption that the sea states that

give the higher contribution to the long-term extreme response in the nonlinear

case are the same as the linear one. The authors concluded the paper stating

that the results obtained by the proposed approach show a reasonable accuracy

compared to the one calculated using the whole wave scatter diagram. In this

work only rigid body hull is considered, the authors do not mention the effect of

hydroelasticity on the procedure presented.

When whipping is considered, an important issue is the approach used to count

the extremes of the time signal, because since the whipping vibration frequency

is higher than the wave frequency the number of extremes (considered as local

maxima and minima of the time history) is higher when whipping is considered

then when are not included in the modelling. Tuitman (2010) compared the

extreme response of a vessel using different methods to count the extremes. The

approaches used were three: mean crossing, rigid body zero crossing and full

count. In the mean crossing approach one maximum and one minimum are taken

into account for each zero crossing period, the rigid body zero crossing approach

takes one extreme (positive and negative) for each zero crossing period of the
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response calculated using a rigid-body model and the full count considers all the

local maxima and minima of the time history. The comparison shows that all the

three methodologies unexpectedly give similar results, showing an independence

of the extreme responses from the way the extremes are counted.

Wu and Hermundstad (2002) presented an analysis for the long term probabil-

ity of exceedance in vertical sagging and hogging moments amidships based on

a time-domain nonlinear hydroelastic simulation. Extreme nonlinear responses

are extrapolated from the time history considering one maximum and minimum

response per zero crossing period; then, they are fitted with a generalised Gamma

function density probability distribution. The analysis presents the nonlinear re-

sults for a return period of twenty hours and compares them against the DNV

rule, showing that the extreme responses calculated considering whipping are

higher than the rule values. Also if a comparison against linear calculation is not

presented, the amplification factor (ratio between the nonlinear extremes and the

linear ones) can reach a value of two for sagging response, when the extremes are

compared to the results of a linear analysis (frequency domain hydroelastic strip

theory).

White et al. (2012) presented guidance notes for the whipping and springing

assessment for large container ships. The paper analyses extreme loads for a

350 metres long container ship (13000TEU) considering nonlinear rigid body and

whipping model. The time domain analysis is conducted using the rigid body

three-dimensional nonlinear Froude-Krylov code PRETTI (CRS hydrodynamics),

whipping responses are found by superimposing slamming induced vibrations over

the ”quasi-static” wave induced loads time history. Whipping loads are calculated

using a nonuniform Timoshenko beam and a slamming momentum based method

(von Karman approach). Results show that the nonlinear correction factors for

hogging and sagging (rigid body) for a return period of three hours are 1.43 for
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sagging and 0.94 for hogging, the values given by the IACS standard rules are 1.25

and 0.94 respectively. This highlights the fact that the sagging correction factor

is underestimated by the IACS standard rules for this type of vessel. When

whipping is considered the ratios between the hydroelastic results against the

linear ones for sagging and hogging are 1.98 and 1.42 respectively. These results

together with the ones obtained by Storhaug et al. (2010) clearly highlight the

importance of whipping for large container ships.
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Chapter 3

Methodology

3.1 Introduction

The characteristics of the proposed methodology are developed following the crit-

ical review presented in Chapter 2. The aim of this thesis is to present a prac-

tical time domain computational tool able to model nonlinear motion and load

responses for a container ship sailing in rough seas.

The principal nonlinear effects, for an ocean going vessel, sailing in large ampli-

tude waves, are associated with nonlinearities in the Froude-Krylov and restoring

forces. This nonlinear effects are related to the actual change in time of the wet-

ted hull portion. For container ships the flexibility of the structure and the shape

of the hull enhance whipping effects and therefore it is essential to proper model

hull girder vibrations associated with water impacts.

In order to model the principal nonlinear effects, all the forces acting on the

vessel are evaluated using the actual wetted body portion, calculated using the

calm water level as free-surface, and the vertical relative displacement between

the hull and the ambient wave. The fluid actions on the vessel are defined using

the classical subdivision into radiation, diffraction, restoring and exciting forces.
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Following the classification proposed in the literature review, this level of mod-

elling corresponds to a so-called ”body exact” method. It is consider a good

compromise between accuracy and computational cost, it allows to model the

change in time of wetted hull portion using well-know and rapid numerical pro-

cedure. The ”body exact” approach permit also to model water impact forces

associated with bottom and flare slamming in a more rigours manner. A novel

approach for the study of impulsive forces, that couples momentum based and

empirical based methods is presented. Hull girder vibrations are studied using an

hydroelastic approach that couples structure and fluid dynamic in time domain.

These characteristics permit to study whipping effects.

In the current chapter the mathematical method used to study the dynamics

of the vessel is described; all the formulations necessary to find fluid actions

on the body are reported and explained along with the numerical procedures

implemented.

3.2 Coordinate System and Equations of Mo-

tions

The motions of the vessel and the forces acting on it are originally described in an

inertial coordinate system translating at constant velocity U along the positive

direction of the x-axis. The coordinate system has its centre on the interception

between the calm water level plane, the symmetry plane of the vessel and a plane

perpendicular to the x-axis where the centre of gravity of the vessel is located;

the details of the reference frame are pictured in Figure 3.1.
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Figure 3.1: Coordinate system.

The focus of this thesis is to model vertical motions and wave induced loads,

therefore the system of equations of motions of the vessel, considered as rigid

body, is composed by two equations for heave and pitch respectively. The equa-

tions of motions for a rigid body, following Newton’s second law, are described

in Equation 3.1. 
mz̈(t) =

∑
i

Fi(t)

IyyΘ̈(t) =
∑
i

Mi(t)
(3.1)

Where m is the mass of the vessel, z is the heave displacement, Fi is the i-th

external force acting on the body and Mi is its moment, Iyy is the mass moment

of inertia and Θ is the pitch displacement.

In large amplitude waves hydroelastic effects are important for load estimations,

therefore in the present study the vessel is considered as a flexible body. The first

effect of this assumption is a drastic change in the formulations of the equations of

motion, the degrees of freedom of a flexible system are defined by the translations

and rotations of each point of the structure. If the system is discretised into a

set of finite number of points the equations of motion can be written in matrix
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form:

MẌ + BẊ + CX = F(t) (3.2)

In the above equation, M, B and C are the matrices of mass, damping and

stiffness respectively; X is the vector of the nodal displacements and rotations

and F is the vector of the external forces. The Timoshenko beam theory is used to

model the hull girder and, under the assumption of small structural displacements,

modal superposition is used to define the dynamics of the system. In modal

superposition methods the displacement of a point of the hull is described as the

sum of displacements in its principal modes, as described in Equation 3.3

W (x; t) =
∞∑
r=0

[
wr(x)pr(t)

]
(3.3)

W is the vertical displacement of a section of the hull, wr and pr are the r − th

principal mode shapes and coordinate respectively. The set of modes of shapes

must be orthogonal, therefore the r − th and s− th mode shapes have to satisfy

the following condition.

∫
L

µ(x)ws(x)wr(x)dx = 0 r 6= s (3.4)

L is the length of the vessel and µ the mass per unit of length. Equation 3.3

provides also the existence of rigid body motions (Bishop and Price, 1979). Under

those hypothesis Equation 3.2 can be written as:

∑
r

[
asrp̈r + bsrṗr + csrpr

]
= Fs(t) s = 0, 1, 2, . . . (3.5)

asr, bsr and csr are the components of the generalised mass, damping and stiffness

matrices respectively; Fs is the generalised external force in the s-th mode of
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shape. The elements of the structural generalised matrices can be found from:


asr = δsr

∫
L

(µws(x)wr(x) + Iyθs(x)θr(x))dx

bsr = δsr2asrωrνr

csr = δsrasrω
2
r

(3.6)

Where ωr is the r-th natural frequency of the dry hull (without considering fluid

added mass), θr is the r-th mode of shape of the sectional rotations and νr is the

r-th damping factor. The generalised external forces Fs that excite the system

in Equation 3.5 are calculated decomposing the external forces into components

along each principal mode of shape. F k(t) is the vertical component of the k− th

force vector acting on the hull defined as follow.

F k(t) =

∫
L

fk(x; t)dx (3.7)

Where fk is the sectional vertical force component; therefore the associated gen-

eralised force F k
s (t) is defined as:

F k
s (t) =

∫
L

fk(x; t)ws(x)dx (3.8)

Equation 3.8 defines the generalised force F k
s that can be interpreted as the

projection of F k on the s-th mode of shape ws.

3.3 Forces Acting on The Vessel

Equation 3.5 is an initial formulation of the equations of motion for a flexible

hull. In order to obtain an expression that can be used to calculate the motions

of the body, the vector of the generalised external forces must be evaluated. This
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requires the forces acting on the vessel to be defined in the physical reference

frame described in Figure 3.1, and then projected onto the principal mode shapes

using Equation 3.3. The forces acting on the body are evaluated using a strip

theory approach, longitudinal effects and forward speed effects are considered in

the calculation and they rise from the mathematical formulation of the external

forces.

In the following sections all the forces that excite the vessel are formulated and

described.

Following Bishop and Price (1979) the generalised force Fs can be written as

follow

F k
s (t) =

∫
L

(Z(x; t)− µ(x)g)ws(x)dx (3.9)

Where Z describes the vertical fluid actions on the body and µg represents the

sectional weight force of the vessel. The fluid is considered to be incompressible,

inviscid, uniform, irrotational, and ideal; therefore it is possible to define the

velocity field using the velocity potential. Considering the first order terms of

the Bernoulli equation for an ideal flow, the sectional fluid actions Z can be

formulated as follow.

Z(x; t) = −ρ
∫

SB(x;t)

(
Dφ(y, z; t)

Dt
+ gz)nz(y, z; t)dx (3.10)

SB represents the actual wetted hull section and φ is the velocity potential, where

D/Dt = (d/dt − U∂/∂x). Following the classical decomposition of the velocity

potential into radiation, diffraction and ambient wave field potentials is it possible

to expand Equation 3.10.

Z(x; t) = −ρ
∫

SB(x;t)

[
D

Dt

(
φhd + φ0

)
+ gz

]
nzdx (3.11)
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The vertical relative velocity is used to define hydrodynamic sectional forces;

therefore the term φhd in Equation 3.11 collects both the radiation and diffraction

potentials, while φ0 describes the velocity potential related to the ambient waves

field. Equation 3.11 can finally be written as:

Z(x; t) = fhd(x; t) + f0(x; t) + fhs(x; t) (3.12)

where

fhd(x; t) = −ρ
∫

SB(x;t)

Dφhd
Dt

nzdx

f0(x; t) = −ρ
∫

SB(x;t)

Dφ0

Dt
nzdx

fhs(x; t) = −ρ
∫

SB(x;t)

gznzdx

(3.13)

Equations 3.12 and 3.13 describe the sectional fluid actions in terms on fhd hy-

drodynamic, f0 exciting andfhs hydrostatic forces.

3.3.1 Hydrodynamic Forces

In this nonlinear time domain approach the velocity potential associated with the

radiation and diffraction problems (hydrodynamic potential) is expressed using

the formulation proposed by Cummins (1962). The velocity potential is divided

into two components: an impulsive part, related to the instantaneous impulse of

displacement, and a memory effect function, that describes the radiated waves

field. The resulting formulation for the hydrodynamic velocity potential is ex-

pressed in Equation 3.14.

φhd(~x; t) = Ψ(y, z; t)
DWrel

Dt
(x; t) +

t∫
−∞

χ(y, z; t− τ)
DWrel

Dt
(x; τ)dτ (3.14)
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In the above equation Ψ represents the impulsive potential and χ defines the mem-

ory effect one. τ is the integration variable in the history of motion; Wrel is the

vertical relative displacement between vessel and waves. Equation 3.14 requires

the solution of two distinct boundary value problems described in Equations 3.15

and 3.16. 
∇2Ψ = 0 In the fluid

∂
∂n

Φ = DWrel

Dt
on SB(x; t)

Φ = 0 on z = 0

(3.15)



∇2χ = 0 In the fluid

∂2

∂t2
χ+ g ∂

∂z
χ = 0 on z = 0

∂
∂n
χ = 0 on SB(x; t)

χ(0) = 0

∂
∂τ
χ(0) = −g ∂

∂z
Ψ on z = 0

(3.16)

These set of boundary conditions are more extensive than the ones for the classi-

cal formulation. This is due to the subdivision of the velocity potential into two

components. New conditions are required to ensure the continuity of the poten-

tials in time; this is stated in the last initial condition of Equation 3.16, where it

is assumed that at the initial instant the amplitude of the radiated waves must

be equal to the z derivative of the impulsive potential at z = 0.

The impulsive boundary value problem is solved in analogy to the problem of a

body oscillating vertically at infinite frequency. The solution leads to the evalu-

ation of the sectional added mass coefficient at infinite frequency a∞z .

a∞z (x; t) = ρ

∫
SB(x;t)

Ψnzds (3.17)

The memory effect part can be solved following the approach presented by Ogilvie

(1964); therefore the integral of the memory effect potential along the sectional
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hull surface is related to the frequency dependent hydrodynamic damping coeffi-

cients via inverse Fourier transform.

ρ

∫
SB(x;t)

[ t∫
0

χ(t− τ)
DWrel

Dt
(τ)dτ

]
nzds =

t∫
0

Kz(x; t− τ)
DWrel

Dt
(τ)dτ (3.18)

Where the kernel of the memory effect function Kz is evaluated as follow

Kz(x; t) =
2

π

∞∫
0

bz(ω)− bz(∞)

ω
sinωtdω (3.19)

Where bz is the sectional frequency domain damping coefficient. Considering

Equations 3.17, 3.18 and 3.19, it is possible to reformulate Equation 3.13 intro-

ducing the sectional added mass and convolution integral.

fhd(x; t) = − D

Dt

[
a∞z (x; t)

DWrel

Dt
(x; t) +

t∫
0

Kz(x; τ)
DWrel

Dt
(x; t− τ)dτ

]
(3.20)

Before analysing Equation 3.20 the vertical relative displacement should be de-

fined.

The sectional relative displacement Wdel is defined as the difference between the

vertical displacement of the vessel due to its motions and the wave displacement

at a given section.

Wrel(x; t) = W (x; t)− ζ(x; t) (3.21)

All the terms of Equation 3.20 are nonlinear and evaluated on the actual wet-

ted hull portion of the vessel. The sectional vertical motion of a strip of hull

follows Equation 3.21. This leads to a nonlinear formulation of the sectional
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hydrodynamic forces that takes into account the exact body geometry.

fhd(x; t) =− a∞z
D2Wrel

Dt2
− da∞z

dt

DWrel

Dt
+ U

∂a∞z
∂x

DWrel

Dt
+

−
(
d

dt
− U ∂

∂x

)[ t∫
0

Kz(τ)
DWrel

Dt
(t− τ)dτ

] (3.22)

Equation 3.22 describes the sectional nonlinear hydrodynamic force; the first

term is an inertial term related to the acceleration of the body, the second one

represents the impulsive momentum slamming (von Karman method) and the

third component is a higher-order forward speed correction proportional to U

and U2 (from the formulation of the material derivative of the sectional relative

displacement). The memory effect terms describe the frequency depended part

of the force related to the free-surface gravitational effects.

fhd collects both radiation and diffraction component, this is possible because

the relative vertical velocity is used to defined fluid momentum and therefore the

components related to the kinetics of Equation 3.22 represent the radiation part

and the terms function of the wave particle velocity are the sectional nonlinear

diffraction forces. The water particle velocity is not uniform along a section,

therefore an average value is taken using the well-known Smith’s correction.

sc(x; t) = 1− k
0∫

−T (x;t)

ekz
y(x, z; t)

y0(x; t)
dz (3.23)

Equation 3.23 describes the Smith’s correction for a section at a given time in-

stant, k is the wavenumber of the ambient wave, T is the sectional instantaneous

immersion and y0 is the half breadth at the free surface interception.

Equation 3.22 can be further modified if the Leibniz rule is used together with the

properties of the time derivative of the convolution integral, therefore, neglecting
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the difference of the extremes of the integral, it is possible to write

fhd(x; t) =− a∞z
D2Wrel

Dt2
− da∞z

dt

DWrel

Dt
+ U

∂a∞z
∂x

DWrel

Dt
+

−
t∫

0

K̇z(τ)
DWrel

Dt
(t− τ)dτ + U

∂

∂x

t∫
0

Kz(τ)
DWrel

Dt
(t− τ)dτ

(3.24)

Where

K̇z(x; t) =
2

π

∞∫
0

(bz(ω)− bz(∞)) cosωtdω (3.25)

A last modification of Equation 3.24 is introduced by reformulating the time

derivative of the sectional added mass in the second term of the right-hand side

as follow

da∞z
dt

= −∂a
∞
z

∂T

dw

dt
(3.26)

The derivative respect T should be considered as the rate of change of sectional

added mass within the sectional immersion. Introducing Equation 3.26 into Equa-

tion 3.24 it is possible to write:

fhd(x; t) =− a∞z
D2Wrel

Dt2
+
∂a∞z
∂T

dw

dt

DWrel

Dt
+ U

∂a∞z
∂x

DWrel

Dt
+

−
t∫

0

K̇z(τ)
DWrel

Dt
(t− τ)dτ + U

∂

∂x

t∫
0

Kz(τ)
DWrel

Dt
(t− τ)dτ

(3.27)

Equation 3.27 is the final formulation of the nonlinear sectional hydrodynamic

force and it is used in section 3.4.1 to develop an expression for the generalised

hydrodynamic force.

3.3.2 Restoring Forces

The term fhs in Equation 3.13 defines a sectional hydrostatic force. In a linear

theory, this term is represented together with the sectional weight force into the

elements of the stiffness matrix. In a nonlinear approach the sectional hydrostatic
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force changes with time as function of the vessel instantaneous immersion; there-

fore the stiffness matrix cannot be used anymore to represent the restoring forces.

They are now formulated as the instantaneous difference between the sectional

hydrostatic and weight forces as shown in Equation 3.28.

fr(x; t) = −
∫

SB(x;t)

(ρgznz + gµ)dx (3.28)

3.3.3 Exciting Forces

The ambient wave field is defined by a first-order sinusoidal wave. The associ-

ated velocity potential is defined using the well-known formulation reported in

Equation 3.29

φ0(x, y, z; t) = <
{
i
awg

ω
ekzeik(x cosβ+y sinβ)−iωet+iε

}
(3.29)

Equation 3.29 describes a linear plane deep water progressive wave, this expres-

sion is used to model the ambient wave field. Finite depth effects can be consid-

ered without introducing any further complexity. The force acting on the body

due to the ambient waves, calculated using the present formulation, is the so

called Froude-Krylov force. In the present work the exciting force is evaluated

from a direct integration of the ambient wave potential on the actual wetted body

portion and stated in Equation 3.30.

f0(x; t) = ρgaw<
{[

ωe
ω
eikx cosµ

∫
SB(x;t)

ekzeiky sinµnzdx

]
eiωet+ε

}
(3.30)

3.3.4 Bottom Impact Forces

In severe seas, slamming induced forces are extremely important for the integrity

and safety of the vessel. As described in section 2.5, different methodologies can
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be used to model forces due to bottom impact and bow flare slamming.

The second term in the right hand side of Equation 3.27 describes the impulsive

component of the sectional hydrodynamic forces. This term can be associated

with a von Karman approach and therefore can lead to an underestimation of

impulsive effects for water entry for sections with small deadrise angle. On the

other hand, this methodology is able to estimate flare slamming and it gives

satisfactory results for water entry of sections with large deadrise angle.

For these reasons the approach described in section 3.3.1 is used in conjunction

with an empirical approach proposed by Ochi and Motter (1973) to model water

entry of sections with small deadrise angle. Since both methods describe the same

force in a different manner it is important to create a numerical procedure that

allows to use one approach or the other without summing their effects (Section

3.5).

The formulation of the maximum impulsive pressure acting on a section, given

by the empirical approach, is function of the deadrise angle of the section and of

the relative velocity as described in Equation 3.31

pmax(x; t) =
1

2
ρK(x)

DWrel

Dt

2

(3.31)

K is a shape factor function of the section deadrise angle formulated by Stavovy

and Chuang (1976). The formulation of the sectional impulsive force based on

Ochi and Motter (1973) is described below.

fbs(x; t) =
1

2
ρK

DWrel

Dt

2

G(x)fT (t) (3.32)

G(x) is a shape factor that takes into account a pressure distribution on the hull

sections. The pressure distribution profile is described in Figure 3.2 and varies

linearly with the z coordinate, from the value of pmax from the lower point to
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zero at a sectional immersion equal to TD/10 where TD is the sectional design

immersion.

Figure 3.2: Distribution of impulsive pressure due to bottom impact on a section
described by G(x).

fT is a time dependent function that describes the time evolution of the maximum

pressure, its formulation is reported in Equation 3.33. Its shape is described in

Figure 3.3 where fT is plotted against the non-dimensional time variable (t/tmax).

fT (t) =
t

tmax
e1−

t
tmax (3.33)

The value tmax, used in Equation 3.33, describes the time instant of the peak of the

impulsive pressure; it is function of the length of the vessel: tmax = 0.00088
√
LBP

(Ochi and Motter, 1973). This function in the current approach is very important

to merge in time the empirical and the momentum based formulation.

3.4 Generalised Forces

In this section the formulations for the generalised forces are described and ex-

plained.

The equations for the sectional forces, derived in the previous sections are used,

in conjunction with Equation 3.7, to calculate their associated generalised forces
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Figure 3.3: Time evolution function of the maximum impulsive pressure.

3.4.1 Generalised Hydrodynamic Forces

Before presenting the formulation for the generalised hydrodynamic forces it is

important to understand the definition of relative displacement between the body

and the wave. The vertical displacement of a strip of hull W (x; t) is expressed

using Equation 3.3; therefore the relative vertical displacement Wrel(x; t) is for-

mulated as follows:

Wrel(x; t) = W (x; t)− ζ(x; t) =
∞∑
r=0

[
wr(x)pr(t)

]
− ζ(x; t) (3.34)

where ζ(x; t) describes the wave elevation due to the undisturbed ambient velocity

potential. Thus the relative velocity and acceleration of a section of the hull is

evaluated applying the material derivative to the right-hand side of Equation 3.34

once and twice respectively.

DWrel

Dt
(x; t) =

∞∑
r=0

[
wr(x)ṗr(t)− Uw′r(x)pr(t)

]
− ζ̇(x; t)− Uζ ′(x; t) (3.35)
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D2Wrel

Dt2
(x; t) =

∞∑
r=0

[
wr(x)p̈r(t)− 2Uw′r(x)ṗr(t) + U2w′′r (x)pr(t)

]
+

− ζ̈(x; t) + 2Uζ̇ ′(x; t)− U2ζ ′′(x; t)

(3.36)

To evaluate the equations for the generalised fluid actions Equations 3.27, 3.35

and 3.36 are applied to Equation 3.8. The formulations are rather complex and

the mathematical process to obtain them is described in Appendix A. In this

section only the main steps are reported.

To obtain the final formulation of the generalised hydrodynamic force, the relative

vertical velocity and displacement in the first and third terms in the right-hand

side of Equation 3.27 must be evaluated using modal superposition.

FHD
s (t) =

∞∑
r=0

[
−
∫
L

a∞z wrwsdxp̈r

]
+

+
∞∑
r=0

{
U

∫
L

[
2a∞z w

′
r + (a∞z )′wr

]
wsdxṗr

}
+

+
∞∑
r=0

{
− U2

∫
L

[
a∞z w

′′
r + (a∞z )′w′r

]
wsdxpr

}
+

+

∫
L

(a∞z
D2ζ

Dt2
− (a∞z )′U

Dζ

Dt
)wsdx+

+

∫
L

∂a∞z
∂T

dw

dt

DWrel

Dt
wsdx+

−
∫
L

˙̃Kwsdx+ U

∫
L

K̃ ′wsdx s = 0, 1, 2, . . .

(3.37)

where the terms ˙̃K and K̃ ′ describe the components of the convolution integrals.

˙̃K =

∫ t

0

K̇(t− τ)
DWrel

Dt
(τ)dτ

K̃ ′ =
∂

∂x

∫ t

0

K(t− τ)
DWrel

Dt
(τ)dτ

(3.38)

Equation 3.37 collects all the components of the hydrodynamic generalised forces.

To simplify the understanding of the effect of each single component, the right-
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hand side of Equation 3.37 can be grouped into four main contributions. The

first three lines form the generalised added mass radiation force FRAD
s , the fourth

row describes the generalised added mass diffraction component FD
s , while the

fifth term defines the momentum slamming generalised force F I
s and in the end

the last line is the memory effect generalised force FM
s .

The generalised added mass radiation force in the s-th mode is formulated as

the sum of the contributions among all the modes of shape, with terms that

are directly proportional to the principal coordinate displacement, velocity and

acceleration.

For this reason it is possible to express the generalised added mass radiation

forces using matrices and coefficients to multiply with the principal coordinate

displacements, velocities and accelerations. These coefficients are called gener-

alised hydrodynamic coefficients.

Asr(t) =

∫
L

a∞z wrwsdx

Bsr(t) =− U
∫
L

a∞z (w′rws − wrw′s)dx− Ua∞z wrws|L0

Csr(t) =− U2

∫
L

a∞z w
′
rw
′
sdx+ U2a∞z w

′
rws|L0

(3.39)

Equation 3.39 is also an improvement of Equation 3.37 since the x derivative

of a∞z and the second x derivative of wr have been removed, via integration

by parts, ensuring a better numerical accuracy. The same modifications can be

implemented into the formulation of the generalised momentum slamming, added

mass diffraction and memory effects forces.

F I
s (t) =

∫
L

∂a∞z
∂T

dw

dt

DWrel

Dt
wsdx (3.40)

FD
s (t) =

∫
L

a∞z
[
(ζ̈ − Uζ̇ ′)ws + U

Dζ

Dt
w′s
]
dx− Ua∞z

Dζ

Dt
ws|L0 (3.41)
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FM
s (t) = −

∫
L

( ˙̃Kws + UK̃w′s
)
dx+ UK̃ws|L0 (3.42)

With the introduction of Equations 3.39 the system of equations of motion de-

scribed in Equation 3.5 needs to be modified. The generalised hydrodynamic

coefficients are introduced and the system of equations of motion becomes as

follows.

∑
r

[(
asr +Asr

)
p̈r +

(
bsr +Bsr

)
ṗr
(
csr +Csr

)
pr

]
= F̃s(t) s = 0, 1, 2, . . . (3.43)

Where Asr, Bsr and Csr represent the elements of the generalised added mass,

damping and stiffness matrix respectively. F̃s is the vector of the generalised

external forces without the added mass radiation forces.

The numerical evaluation of all the components of Equations 3.39, 3.41 and 3.42

is described in section 3.5.

3.4.2 Generalised Restoring and Exciting Forces

The generalised restoring FR
s and exciting FE

s forces are directly formulated from

Equations 3.28 and 3.29 respectively. The equations below represent their final

implementation.

FR
s (t) =

∫
L

fr(x; t)ws(x)dx (3.44)

FE
s (t) =

∫
L

f0(x; t)ws(x)dx (3.45)

3.4.3 Final Formulation of the Equations of Motion

In the section the final formulations of the equation of motions are recovered using

the results from sections 3.4.1 and 3.4.2. The system of second order differential

equations that describes the dynamics of the vessel is formulated using the modal
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superposition method as described in Equation 3.5. Hydrodynamic, restoring and

exciting forces acting on the floating body are formulated using the approaches

described in the previous sections.

In order to obtain the final formulation of the equations of motion Equation 3.43

is further modified introducing the actual formulation for each generalised force.

The result is reported in Equation 3.46.

∑
r

[(
asr + Asr

)
p̈r +

(
bsr +Bsr

)
ṗr
(
csr + Csr

)
pr

]
=

= FD
s + FM

s + FR
s + FE

s + F S
s s = 0, 1, 2, . . .

(3.46)

Where F S
s described the generalised slamming force. The momentum slamming

component, defined in Equation 3.40, is partially used to evaluate slamming forces

on a section; when a strip of hull has a deadrise angle smaller than 30 degrees and

enters into the water with a relative vertical velocity higher than a threshold value

the empirical equations presented in section 3.3.4 are used to evaluate impulsive

forces. The coupling between these two formulations is described in section 3.5.

3.4.4 Linear Formulation of the Equations of Motion

In the previous sections the equations of motion for a nonlinear system have been

formulated, and equation 3.46 summarises their final form. In order to com-

pare and validate results obtained by the proposed nonlinear method a linear

methodology, based on the same mathematical approach, is obtained. In a lin-

ear method, the fluid actions acting on the body are evaluated assuming small

amplitude motions and wave steepness. Therefore the equations of motions, and

related boundary value problems, are linearised considering the calm water level

as free surface and the vessel fixed on its equilibrium position (in calm water).

These assumptions result in a set of equations similar to the ones described from
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section 3.4.1 to section 3.4.3, but in this case the hydrodynamic coefficients are not

time dependent and the excitation and diffraction forces are harmonic functions.

Equation 3.47 describes the equations of motion for a linear system.

∑
r

[(
asr + Asr

)
p̈r +

(
bsr +Bsr

)
ṗr
(
csr + Csr

)
pr

]
=

= FD
s + FM

s + FE
s s = 0, 1, 2, . . .

(3.47)

where the elements of the generalised hydrodynamic stiffness matrix are defined

considering also the hydrostatic components

Csr = ρg

∫
L

B(x)wrwsdx− U2

∫
L

a∞z w
′
rw
′
sdx+ U2a∞z w

′
rws|L0 (3.48)

In equation 3.47 the momentum slamming term F S
s vanishes.

3.5 Numerical Methods

In the present section the numerical methods used to solve equation 3.46 are

described. The principal elements reported here are: the evaluation of modes

shape and structural natural frequencies, the solution of the system of equations

of motion, the calculation of the sectional forces and the coupling between the

momentum and the empirical formulations for slamming.

A finite element method is used to evaluate mode of shapes for the vertical transla-

tions and rotations using a nonuniform free-free Timoshenko beam model (Kwon

and Hyochoong, 1997). The principal input required for the calculations are the

longitudinal distribution of mass µ, flexural rigidity EI, shear rigidity kAG and

rotary inertia Iy.

The system of equations of motion is numerically solved in time domain using a

4-th order Runge-Kutta method. The initial values ṗ and p for the problem of a
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vessel sailing in a seaway are given considering the vessel sailing in calm water at

constant forward speed.

Using this procedure a preliminary calculation is needed, but it allows to reduce

the transient phase during the seakeeping analysis. A linear ramp function is

used to attenuate environmental forces at the beginning of the calculation. The

duration of the ramp function is usually three or four wave encounter periods.

The sectional hydrodynamic coefficients, needed to evaluate the radiation and

diffraction forces, are found using a two dimension boundary element method

obtained modifying the approach proposed by Andersen and Wuzhou (1985) (de-

scribed in Appendix B). This approach discretises all the boundary of the domain

and uses a simple logarithmic Green’s function with potential eigenvalues expan-

sion on the radiation boundaries. The principal advantages respect a free-surface

Green’s function approach and a mapping technique are that this methodology

allows a correct calculation hydrodynamic coefficients for complex geometries

without been affected by the problem of irregular frequencies. On the other hand

the matrix of the coefficients of influence is larger and therefore it requires more

time to be inverted. To reduce computational time, hydrodynamic coefficients

are evaluated before the time domain calculation for several sectional immersions

and their values are stored. During the time analysis the actual values of sectional

hydrodynamic coefficients are evaluated from the stored ones via interpolation.

Exciting and restoring forces are calculated integrating the pressure field over the

body. At each time step the actual wetted hull strips are evaluated and discretised

in a set of linear panels over which the pressures are integrated to compute the

exciting and restoring forces.

Sectional slamming forces are calculated using a momentum based formulation

(Equation 3.27) and an empirical approach (Equation 3.32). Water entry forces

for sections with small deadrise angle are better modelled using the empirical
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based approach, while the momentum theory gives a better prediction for bow

flare slamming and water entry for sections with large deadrise angle. Therefore

the sectional impulsive force fS, used to calculate the generalised force F S
s , is

computed by coupling the two methodologies as described below.

f s(x; t) =

 fbs(x; t) If t̃ ≤ 5tmax

∂a∞z
∂T

dw
dt

DWrel

Dt
If t̃ > 5tmax

(3.49)

where t̃ is the time instant at which the section reenters the water. Equation 3.49

is used for sections that have a deadrise angle larger than 30 degrees, otherwise

the momentum based method is used alone in the water entry phase.
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Figure 3.4: (Left) Example of the time history of sectional impulsive forces.
(Right) Geometry of the section under analysis.

An example of sectional impulsive force, calculated using this procedure, is shown

in Figure 3.4(Left). Here the time history of a single water entry event is reported.

At t̃ = 0 the sections enter the water and the forces are evaluated using the

empirical approach; the first spike results from the water entry pressure peak.

When t̃ > 5tmax the sectional impulsive force is calculated using the momentum

theory and the bow flare event is computed accordingly, this approach gives the

second peak present in the time history, associated with the flare of the hull.
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From Figure 3.4(Left) it is also possible to appreciate the importance of model

the impulsive forces using different methods. The characteristics and time scale

of water entry and bow flare phenomena are different, but both events produces

a high sectional force.

Since the sectional added mass is evaluated considering the boundary value prob-

lem of Equation 3.15, during the water exit phase this momentum based approach

gives results that are symmetrical to the water entry phase, resulting in a wrong

force estimation. Thus, during the water exit phase, the sectional impulsive force

fS is set equal to zero.

The described methodology and numerical techniques have been implemented

in the MATLAB environment. The developed tool is divided into three sub-

program:

• Pre-processor: it calculates the hydrodynamic coefficients for different sec-

tional immersions and the parameters for the empirical slamming calcula-

tion and it saves them into an ”hydrodynamic” database.

• Time marching scheme: this part of the tool solves the equations of motion

in time domain for both regular and irregular seas.

• Post-processor: these subroutines analyse the output of the simulation and

evaluate responses characteristics and statistics.

The time required by the code is 4.5 times the actual simulated time (60 seconds of

simulation require 4.5 minutes). This means that a several short term calculation

(3 hour duration) can be performed within a day. It is important to notice that

at the current stage of development the tool it has not been optimised yet to

reduce the computational cost.

A parallelisation of the calculation can allow to run several simulation at the

same time and to perform operations on different section simultaneously and it
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will sensibly reduce the computational cost, improving the efficiency of the tool.
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Chapter 4

Application of the Methodology

in Regular Seas

4.1 Introduction

The proposed nonlinear time domain hydroelastic strip-theory is applied to the

S-175 container ship in regular waves. Wave induced motions and loads are

compared against experimental points from published papers and results from

other numerical methodologies. Simulations are conducted in both small and

large amplitude waves with the purpose of validating the methodology and assess

the nonlinear effects for large amplitude motions. An analysis to understand the

effect of the different flexural principal coordinates on the wave induced loads is

presented.

4.2 S-175 Container Ship

In this section numerical results for the S-175 container ship are presented. The

vertical responses of the vessels are analysed in both small and large amplitude
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waves.

Computations for small amplitude waves are compared against experimental

points from ITTC (2010) and Fonseca and Guedes Soares (2004) and against

numerical methodologies. The techniques used in the comparison are a linear fre-

quency domain strip theory implemented into the VERES software and a linear

frequency domain seakeeping code based on free-surface Green’s function named

PRECAL. These types of methodologies are the most widely used for wave in-

duced motions and loads assessment and provide a good comparison to under-

stand the effectiveness of the proposed nonlinear hydroelastic method for small

amplitude waves. Simulations for the S-175 container ship in small amplitude

waves are conducted for the following:

• Fn = 0.25 for head seas

• Fn = 0.275 for head and following seas

The two analysed speeds are similar in magnitude, but they have been chosen

because the literature provides a large number of experimental results for both

cases allowing an accurate validation of the proposed method.

Results in large amplitude waves are compared against experimental campaign

published by ITTC (2010), Fonseca and Guedes Soares (2004), O’Dea et al. (1992)

and Watanabe et al. (1989). The analysis is conducted to validate the predicted

motions and loads when the wave steepness increases. This comparison is im-

portant to assess the accuracy of the current nonlinear hydroelastic method for

large amplitude waves. The analysis is conducted for head seas for the following

Froude numbers:

• Fn = 0.20

• Fn = 0.25

• Fn = 0.275
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The experiments used in the validation of the proposed methodology come from

different research projects. They differ from each other by the model used, wave

conditions and response analyses. Also if they are some of the most used refer-

ences, it has not been possible to numerically replicate the same experimental

conditions. Not enough details have been found to exactly model the mass prop-

erties of the vessel and the structural characteristics of the hull girder for each

study setting. The longitudinal distributions of mass and stiffness are funda-

mental parameters for a correct loads evaluation. This lack of a complete set of

informations did not allow the author to assess all the uncertainties associated

with the experimental points. For example in Figures 4.28 and 4.29 the experi-

mental points present a large scatter and it has not been possible for the author

to identify the source of such uncertainty.

The main particulars of the S-175 container ship are summarised in Table 4.1,

while the hull geometry is described in Figure 4.1. Structural properties of the

hull girder are based on the values used by Park (2006). In order to evaluate the

natural frequencies of the structure of the hull and the related mode shapes (for

symmetric modes), the longitudinal distributions of mass, flexural rigidity, shear

rigidity and rotary inertia are required. The distributions used in the present

analysis are described in Figures 4.2, 4.3, 4.4 and 4.5 respectively. The structural

damping is taken as 5% in agreement with previous works (Xia et al., 1998; Park,

2006).
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Parameters Values

Length between the perpendiculars 175.00 m

Beam amidships 25.40 m

Depth amidships 15.40 m

Draught amidships 9.50 m

Displacement 24792 tonnes

LCG from MP -2.40 m

Pitch radius of gyration 43.75 m

Table 4.1: S-175, main particulars.
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Figure 4.1: S-175, lines plan.
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Figure 4.2: S-175, longitudinal mass distribution.
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Figure 4.3: S-175, longitudinal flexural rigidity distribution.
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Figure 4.4: S-175, longitudinal shear rigidity distribution.
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Figure 4.5: S-175, longitudinal rotary inertia distribution.

Natural frequencies and mode of shapes are calculated for the dry hull using 50
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equally separated sections and using the Timoshenko beam theory, numerically

solved using a finite element scheme. The number of sections is enough to properly

characterise the first four flexural modes (from mode 2 to 5). Table 4.2 reports

the calculated natural frequencies of the dry hull;

Modes Values [rad/s]

2 9.268

3 21.362

4 35.815

5 52.130

Table 4.2: S-175, dry hull natural frequencies.

In Figure 4.6. 4.7 and 4.8 the first six mode of shapes for the vertical displacement,

shear force and bending moment are reported. In the figures the mode of shapes

are discretised in 20 points; the calculation was conducted, as previously stated,

for 50 sections; the number of points in the charts has been reduced only for

graphical reasons.
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Figure 4.6: S-175, mode of shapes of the vertical hull displacement.
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Figure 4.7: S-175, mode of shapes of the vertical shear force.
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Figure 4.8: S-175, mode of shapes of the vertical bending moment.

Figure 4.9 shows the non dimensional heave response at Fn = 0.250, 0.275. The

effect of Froude number can be observed by the shifting of the peak towards

smaller wave frequencies when vessel forward speed increases. Similar behaviour,

also if less visible, can be seen in Figure 4.10 where the non dimensional pitch

response, at the same values of Froude number, is reported.

The predicted heave and pitch motions are compared against experimental results

(Fonseca and Guedes Soares, 2004) in Figures 4.11 and 4.12 respectively, for

Froude number Fn = 0.25 and wave steepness Hw/λ = 1/120. Comparisons

show a good agreement with experimental points especially for pitch. Heave

response results over predicted around resonant region; this phenomenon is typical
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of methods based on inviscid flows in small amplitude waves and it is due to a

lack of damping

A similar comparison against experiments (ITTC, 2010) is presented in Figures

4.13 and 4.14. Figure 4.13 shows the results for the non dimensional heave re-

sponse and Figure 4.14 reports the comparison for pitch. The comparison is

conducted at Fn = 0.275, also if wave steepness for the experimental points was

not specified, numerical simulations have been conducted for Hw/λ = 1/120 in

order to satisfy the criteria of small wave steepness. This comparison leads to the

same observations of the previous case.

Figures 4.15 and 4.16 show a comparison between experimental (ITTC, 2010)

and calculated heave and pitch for stern seas (µ = 0 degrees) at Fn = 0.275 in

small amplitude waves. Numerical results are in agreement with experimental

points in the whole frequency range.
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Figure 4.9: S-175, non dimensional heave response in head sea for different Froude
numbers for Hw/λ = 1/120.
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Figure 4.10: S-175, non dimensional pitch response in head sea for different
Froude numbers for Hw/λ = 1/120.
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Figure 4.11: Comparison for the non dimensional heave response for the S-175, in
head sea at Fn = 0.25 and Hw/λ = 1/120, against experimental points (Fonseca
and Guedes Soares, 2004).
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Figure 4.12: Comparison for the non dimensional pitch response for the S-175, in
head sea at Fn = 0.25 and Hw/λ = 1/120, against experimental points (Fonseca
and Guedes Soares, 2004).
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Figure 4.13: Comparison for the non dimensional heave response for the S-175,
in head sea at Fn = 0.275, against experimental points (ITTC, 2010).
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Figure 4.14: Comparison for the non dimensional pitch response for the S-175, in
head sea at Fn = 0.275, against experimental points (ITTC, 2010).
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Figure 4.15: Comparison for the non dimensional heave response for the S-175,
in stern sea at Fn = 0.275, against experimental points (ITTC, 2010).
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Figure 4.16: Comparison for the non dimensional pitch response for the S-175, in
stern sea at Fn = 0.275, against experimental points (ITTC, 2010).
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A comparison between the proposed numerical approach and linear numerical

techniques is presented in Figures 4.17 and 4.18. Simulations are conducted in

head sea at Froude number Fn = 0.275. Responses predicted by the proposed

method show a good comparison against other numerical techniques (frequency

domain strip theory and frequency domain free-surface Green’s function meth-

ods). In small amplitude waves, the motions responses given by the two dimen-

sional nonlinear hydroelastic method tend to the predictions of the frequency

domain strip theory, proving a correct modelling of the proposed method, for

small amplitude waves. Pitch response by the nonlinear hydroelastic method

results larger than the one given by the linear strip-theory for small wave fre-

quencies. This is not due to any nonlinear behaviour, it is only related to the

small differences in the formulation of the forward speed effects.

Figures 4.19 and 4.20 show a comparison between the previously described nu-

merical techniques and experimental points (ITTC, 2010) in head sea at Froude

number Fn = 0.275. In Figure 4.19 heave motion predicted by PRECAL presents

the higher peak around resonant region, while results obtained by the two di-

mensional approaches show a overall good agreement with experimental results.

Similar comment can be formulated for the pitch motion in Figure 4.20 where

the maximum response predicted by PRECAL occurs at smaller frequencies com-

pared to the experimental results.

The studies reported in Figures 4.17, 4.18, 4.19 and 4.20 are useful to under-

stand the effectiveness of the proposed methodology in small amplitude waves.

The motions predicted in small amplitude waves by the proposed nonlinear hy-

droelastic approach are in agreement with the results of linear frequency domain

methods. The comparison against experimental points shows the effectiveness of

the proposed methodology within the limits of its theory (ideal fluid).
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Figure 4.17: Comparison for the non dimensional heave response for the S-175,
in head sea at Fn = 0.275, between the proposed nonlinear hydroelastic method,
a frequency domain strip-theory (VERES) and a three-dimensional free-surface
Green’s function approach (PRECAL).
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Figure 4.18: Comparison for the non dimensional pitch response for the S-175,
in head sea at Fn = 0.275, between the proposed nonlinear hydroelastic method,
a frequency domain strip-theory (VERES) and a three-dimensional free-surface
Green’s function approach (PRECAL) .
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Figure 4.19: Comparison for the non dimensional heave response for the S-175,
in head sea at Fn = 0.275, between different numerical approaches(nonlinear
hydroelastic, VERES and PRECAL) and experimental points (ITTC, 2010).
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Figure 4.20: Comparison for the non dimensional heave response for the S-175,
in pitch sea at Fn = 0.275, between different numerical approaches(nonlinear
hydroelastic, VERES and PRECAL) and experimental points (ITTC, 2010).
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Similar analysis and comparisons are conducted for the vertical shear force at

station 15 (LBP/4 from FP) and the midship vertical bending moment (station

10). The wave induced loads are presented in non dimensional form as follow: the

vertical shear force and bending moment are divided by ρgawLB and ρgawL
2B

respectively.

Figures 4.21 and 4.22 show the vertical shear force and bending moment for the

different Froude numbers Fn = 0.25, 0.275, in regular waves having steepness

Hw/λ = 1/120 in head sea condition.

A comparison between the predicted wave induced loads and experimental points

(Fonseca and Guedes Soares, 2004) is reported in Figures 4.23 and 4.24. The

simulations are conducted at Froude number Fn = 0.25 in head sea condition at

wave steepness Hw/λ = 1/120. Figures 4.25 and 4.26

Figures 4.25 and 4.26 compare the midship vertical bending moment with ex-

perimental trials (ITTC, 2010). The first figure reports the results in head sea,

while the second one collects the comparison for the stern sea case. The Froude

number considered is Fn = 0.275 with wave steepness Hw/λ = 1/120.

The comparisons show good agreement with experimental results, especially for

the case with higher Froude number. Vertical shear force at station 15 (Fn = 0.25)

predicted by the proposed methodology is smaller than experimental points, but

the behaviour of the response is well predicted. Similar observations can be made

for the vertical bending moment, for the same Froude number, but in this case

the response results slightly over predicted around its peak. This shift between

numerical and experimental results for the comparison at Fn = 0.25 could be due

to uncertainties about the actual longitudinal distribution of mass and stiffness

of the model. Numerical results at Fn = 0.275 present good agreement with

experimental points, especially around the peak of the response.
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Figure 4.21: S-175, non dimensional vertical shear force at station 15 in head sea
for different Froude numbers for Hw/λ = 1/120.
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Figure 4.22: S-175, non dimensional vertical bending moment at station 10 in
head sea for different Froude numbers for Hw/λ = 1/120.
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Figure 4.23: Comparison for the non dimensional vertical shear force at station 15
for the S-175, in head sea at Fn = 0.25 and Hw/λ = 1/120, against experimental
points (Fonseca and Guedes Soares, 2004).
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Figure 4.24: Comparison for the non dimensional vertical bending moment at
station 10 for the S-175, in head sea at Fn = 0.25 and Hw/λ = 1/120, against
experimental points (Fonseca and Guedes Soares, 2004).

85



1 2 3 4
0

0.01

0.02

0.03

ω (L/g)
0.5

V
B

M
 /

(ρ
 g

 a
w

 L
2
 B

)

 

 

Nonlinear Hydroelastic

ITTC Workshop (2010)

Figure 4.25: Comparison for the non dimensional vertical bending moment at
station 10 for the S-175, in head sea at Fn = 0.275 and Hw/λ = 1/120, against
experimental points (ITTC workshop, 2010).
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Figure 4.26: Comparison for the non dimensional vertical bending moment at
station 10 for the S-175, in stern sea at Fn = 0.275 and Hw/λ = 1/120, against
experimental points (ITTC workshop, 2010).
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Figures 4.27 and 4.28 show a comparison for the vertical shear force at station

5 (LBP/4 from AP) and the vertical bending moment at station 10 between

the proposed methodology and the linear frequency domain numerical techniques

(VERES and PRECAL) at Froude number Fn = 0.275 in head sea condition. For

small amplitude waves, the load responses predicted by the nonlinear hydroelas-

tic strip-theory are in good agreement with results from the frequency domain

strip theory. Results from the three-dimensional free-surface Green’s function

methods predict the maximum values for vertical shear force and bending mo-

ment at slightly higher frequencies, resulting in a shift of the response in the low

frequencies region (ω(L/g)0.5 ≤ 2.5), while the responses in the high frequencies

region (ω(L/g)0.5 ≥ 2.5) are similar for all three methodologies.

Comparison between the previously described numerical methods and experi-

mental results from ITTC (2010), for the vertical bending moment at midship

(station 10) are presented in Figure 4.29, in head sea condition, for Froude num-

ber Fn = 0.275. The proposed nonlinear technique and the frequency domain

strip-theory gives a good prediction of the maximum of the response in terms

of value and location within the frequency range. All the numerical techniques

are not able to predict properly the second peak in the experimental points and

underestimate the response in the high frequency region. This phenomena could

be due to the uncertainties in the longitudinal distribution of mass and structural

properties for the model used in the experimental campaign.
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Figure 4.27: Comparison for the non dimensional vertical shear force at station
5 for the S-175, in head sea at Fn = 0.275, between the proposed nonlinear
hydroelastic method, a frequency domain strip-theory (VERES) and a three-
dimensional free-surface Green’s function approach (PRECAL).
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Figure 4.28: Comparison for the non dimensional vertical bending moment at
station 10 for the S-175, in head sea at Fn = 0.275, between the proposed non-
linear hydroelastic method, a frequency domain strip-theory (VERES) and a
three-dimensional free-surface Green’s function approach (PRECAL).
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Figure 4.29: Comparison for the non dimensional vertical bending moment at
station 10 for the S-175, in head sea at Fn = 0.275, between the proposed nonlin-
ear hydroelastic method, a frequency domain strip-theory (VERES) and a three-
dimensional free-surface Green’s function approach (PRECAL) and experimental
points (ITTC, 2010).

In the previous analysis the vertical motions and loads predicted by the proposed

nonlinear hydroelastic method have been compared against results from experi-

mental trials and other numerical techniques for small amplitude waves. In the

following pages, the responses of the S-175 container ship are reported for differ-

ent wave steepness with the intention to study the effectiveness of the nonlinear

methodology when wave elevation rises.

Figures 4.30 and 4.31 show the heave and pitch motions as function of the wave

steepness for different wave lengths: (a) λ/L = 1.00, (b) λ/L = 1.20, (c) λ/L =

1.40 in head sea at Froude number Fn = 0.20. Numerical results are compared

against experimental points by O’Dea et al. (1992). Similar analysis for Fn = 0.25

and Fn = 0.275 are presented in Figures 4.32 and 4.33, for Fn = 0.25 and Figures

4.34 and 4.35, for Fn = 0.275. For the case when Fn = 0.25, numerical results

are compared against experimental trial published by Fonseca and Guedes Soares

(2004), while for Fn = 0.275 results by O’Dea et al. (1992) are used.
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For all three forward speed heave motion for the shorter wave length (λ/L = 1.00)

shows excellent agreement with experimental results, while for other cases it is

slightly over predicted. For the cases when λ/L = 1.20, 1.40 numerical response

is significantly larger than experimental points for small wave steepness. This is

due to the resonance effect that are visible in the high peaks of Figure 4.9, where

the numerical non dimensional heave response reaches sometimes the value of

1.5. The magnitude of the damping forces is important around resonance and in

the current model only damping resulting form the wave radiation (ideal fluid) is

considered. This effect is reduced when wave elevation rises due to the nonlinear

formulation of the fluid actions.

Pitch motions predicted by the numerical technique shows excellent agreement

with experimental points, for all the wave steepness, since it is less affected by non-

linear behaviour. For both heave and pitch the reduction of the non dimensional

response when the wave steepness increases is in agreement with the experimen-

tal points. The behaviour of the responses as function of the wave steepness is

important and, it can be used to represent the ratio between the linear and the

nonlinear predictions.
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(c) λ/L = 1.40

Figure 4.30: Comparison between calculated and experimental (O’Dea et al.,
1992) heave amplitude respect wave steepness for the S-175 container ship, in
head sea at Fn = 0.20.
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Figure 4.31: Comparison between calculated and experimental (O’Dea et al.,
1992) pitch amplitude respect wave steepness for the S-175 container ship, in
head sea at Fn = 0.20.
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Fonseca and Guedes Soares (2004)
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Figure 4.32: Comparison between calculated and experimental (Fonseca and
Guedes Soares, 2004) heave amplitude respect wave steepness for the S-175 con-
tainer ship, in head sea at Fn = 0.25.
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Figure 4.33: Comparison between calculated and experimental (Fonseca and
Guedes Soares, 2004) pitch amplitude respect wave steepness for the S-175 con-
tainer ship, in head sea at Fn = 0.25.
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Figure 4.34: Comparison between calculated and experimental (O’Dea et al.
1993) heave amplitude respect wave steepness for the S-175 container ship, in
head sea at Fn = 0.275.
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Figure 4.35: Comparison between calculated and experimental (O’Dea et al.
1993) pitch amplitude respect wave steepness for the S-175 container ship, in
head sea at Fn = 0.275.

96



Figure 4.36 shows a comparison between numerical and experimental points

(Fonseca and Guedes Soares, 2004) for vertical shear force at station 15 in head

sea for Froude number Fn = 0.25. Similar comparison is presented in Figure 4.37

for the vertical bending moment at station 10 also in head sea for Froude number

Fn = 0.25.

The numerical positive, negative amplitudes and mean loads values are compared

against experimental points. Vertical shear force and bending moments are in

good agreement for the shorter waves λ/L = 1.00 for both positive and negative

amplitudes. When wave length increases (λ/L = 1.20, 1.40 ), numerical positive

peaks, of vertical shear force and bending moment, are sensibly larger than the

experimental points for the highest values of wave steepness. For smaller values

of kaw they agree well with experimental points.

The experimental positive peaks show a reduction of non dimensional response

for the larger values of wave steepness, changing the behaviour that they present

at smaller waves. On the other hand numerical results in large amplitude waves

are affected by hydroelasticity that causes vibrations of the hull girder. These

increase the magnitude of the response, especially for positive values of vertical

bending moment (sagging).
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(c) λ/L = 1.40

Figure 4.36: Comparison between calculated and experimental (Fonseca, 2004)
vertical shear force amplitude at station 15 respect wave steepness for the S-
175 container ship, in head sea at Fn = 0.25. Numerical positive peaks ( ),
numerical negative peaks ( ), numerical mean ( ); experimental positive
peaks (M), experimental negative peaks (◦) and experimental mean (+).
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(b) λ/L = 1.20
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Figure 4.37: Comparison between calculated and experimental (Fonseca, 2004)
vertical bending moment amplitude at station 10 respect wave steepness for the
S-175 container ship, in head sea at Fn = 0.25. Numerical positive peaks ( ),
numerical negative peaks ( ), numerical mean ( ); experimental positive
peaks (M), experimental negative peaks (◦) and experimental mean (+).
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Figure 4.38 shows pitch motion in head sea at Froude number Fn = 0.25 for waves

amplitude aw = LBP/60. Predicted motions are compared with experimental

points published by Watanabe et al. (1989), displaying good agreement between

numerical and experimental points.

Figure 4.39 shows the longitudinal distribution of vertical bending moment in

head sea at Fn = 0.25,λ/L = 1.20 and aw = L/60. Numerical results are com-

pared against experimental points by Watanabe et al. (1989). Sagging values

present good agreement with experimental results for both magnitude and longi-

tudinal distribution, while hogging results to be over predicted in terms of mag-

nitude, but displays the same longitudinal location of peak of the experimental

points.

Comparisons for the vertical bending moment at different sections are presented

in Figures 4.40 and 4.41. The stations of the analysis are: (a) 6, (b) 10 and (c)

15. Comparisons are conducted for the same conditions of Figure 4.38. Figure

4.40 shows the results for the 1st harmonic and Figure 4.41 for the 2nd one.

Comparisons show good agreement, also for the 2nd harmonic, except for the

second peak for the 1st harmonic at station 6 (Figure 4.40a), that is not visible

in the numerical results, while it clearly appears in the experimental points.

Watanabe’s experimental trials are conducted at constant wave amplitude (aw =

LBP/60), while O’Dea and Fonseca presented results considering constant wave

steepness (Hw/λ = 1/120, for example). This implies that nonlinear effects are

more relevant for shorter waves than long ones.
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Figure 4.38: Comparison between numerical and experimental (Watanabe et al.,
1989) pitch amplitude for the S-175 container ship, in head sea at F=0.25 and
aw/L = 1/60.
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Figure 4.39: Comparison between numerical and experimental (Watanabe et al.,
1989) longitudinal distribution of the vertical bending moment for the S-175
container ship, in head sea at F=0.25 and λ/L = 1.20 aw/L = 1/60.
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(a) Station 6
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(b) Station 10
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(c) Station 15

Figure 4.40: Comparison between numerical and experimental (Watanabe et al.,
1989) 1st harmonic of vertical bending moment for the S-175 container ship, in
head sea at F=0.25 and aw/L = 1/60.
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(a) Station 6
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(b) Station 10
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(c) Station 15

Figure 4.41: Comparison between numerical and experimental (Watanabe et al.,
1989) 2nd harmonic of vertical bending moment for the S-175 container ship, in
head sea at F=0.25 and aw/L = 1/60.
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Figure 4.42 reports the time history of the heave motion in head sea condition at

Fn = 0.20, λ/L = 1.20 for different wave steepnesses (Hw/L = 1/120, 1/60 and

1/30). The comparison of heave elevation for different wave amplitude (consider-

ing the same wave length) shows that the principal nonlinear effects are associated

with the reduction of response from the linear prediction. This effect can also be

observed in Figure 4.43, that describes the Fourier transform of the time histories

of the heave response of Figure 4.42. From an analysis of the frequency compo-

nents of the heave response it is possible to state that the effect of an increment

of the wave steepness is a reduction of the 1st harmonic of the heave response.

The pitch motion, reported in figures 4.44 and 4.45, presents behaviour similar to

the heave one and in this case the reduction of the 1st harmonic of the response

is less significant.

A similar analysis is conducted for the vertical bending moment at stations 10

and 15 at the same environmental conditions. Figures 4.46 and 4.47 show results

for station 10, while Figures 4.48 and 4.49 describe the analysis at station 15.

Time histories of the wave induced loads show a behaviour that is different from

the one of the motions. In large amplitude waves, load responses are charac-

terised by multi harmonic shape; this is clearly visible from the Fourier analysis

of the loads, displayed in Figures 4.47 and 4.49 for vertical bending moment at

station 10 and 15 respectively. When the wave elevation rises the amplitude of

the ast harmonic of the response increases from the linear prediction and higher

harmonics components appears.

Rigid body motions and wave induced loads have different characteristics in large

amplitude waves. For large wave elevations, the amplitude of the motions is re-

duced compared to the linear prediction, but they preserve an almost simple

harmonic shape (in terms of time history). Loads on the other-hand present an

increase of the 1st harmonic components, compared to linear predictions and they
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are characterised by multi harmonic responses. These difference could be due to

the fact that, in an hydroelastic approach, heave and pitch are associated with

the first two principal coordinates, and wave induced loads are functions and

combinations of all the flexural principal coordinates (Bishop and Price, 1979).
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Figure 4.42: Time history of heave motion for the S-175 container ship, in head
sea at Fn = 0.20, λ/L = 1.20 and for different wave steepnesses.
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Figure 4.43: Amplitude of the Fourier transform for the heave response of the
S-175 container ship in head sea at Fn = 0.20, λ/L = 1.20 and for different wave
steepnesses.
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Figure 4.44: Time history of pitch motion for the S-175 container ship, in head
sea at Fn = 0.20 and λ/L = 1.20 and for different wave steepnesses.
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Figure 4.45: Amplitude of the Fourier transform for the pitch response for the
S-175 container ship in head sea at Fn = 0.20, λ/L = 1.20 and for different wave
steepnesses.
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Figure 4.46: Time history of the vertical bending moment at station 10 for the
S-175 container ship, in head sea at Fn = 0.20 and λ/L = 1.20 and for different
wave steepnesses.
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Figure 4.47: Amplitude of the Fourier transform for the vertical bending moment
at station 10 for the S-175 container ship in head sea at Fn = 0.20, λ/L = 1.20
and for different wave steepnesses.
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Figure 4.48: Time history of the vertical bending moment at station 15 for the
S-175 container ship, in head sea at Fn = 0.20 and λ/L = 1.20 and for different
wave steepnesses.
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Figure 4.49: Amplitude of the Fourier transform for the vertical bending moment
at station 15 for the S-175 container ship in head sea at Fn = 0.20, λ/L = 1.20
and for different wave steepnesses.

The longitudinal distribution of vertical bending moment for different wave steep-

ness is shown in Figure 4.50. The non-dimensional sagging bending moment

(positive) increases for larger wave steepnesses and the peak shifts forward. The

hogging bending moment displays a small increment in term of values, but the

absolute maximum of the response remains at the same longitudinal position for

all the wave conditions.
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Figure 4.50: Longitudinal distribution of the amplitudes of the vertical bending
moment for the S-175 container ship in head sea at Fn = 0.20, λ/L = 1.20 and
for different wave steepnesses.

From a comparison of vertical bending moment at different stations, reported

in Figures 4.46 and 4.48, it is possible to notice that the time histories present

different shapes. The bending moment at station 10 is characterised by a strong

1st harmonic with disturbances associated with both geometrical nonlinearities

(asymmetric response) and with structural dynamic (rapid fluctuation). The

bending moment at station 15 presents a strong multi-harmonic behaviour with

strong vibration due to the hydroelastic modelling.

In order to understand these phenomena it is important to study the effect of the

different mode of shapes on the loads. Figure 4.51 shows the time histories of the

first four flexural principal coordinates (r = 2, . . . , 5) in head sea for Fn = 0.20,

λ/L = 1.20 and Hw/L = 1/30.

Figure 4.52 shows the vertical bending moment as station 10, considering the

contributions of the different principal coordinates. From an observation of the

time history, it is visible that the vertical bending moment at station 10 is mainly

function of the first flexural mode of shape (two nodes, r = 2). This is even more

visible in Figure 4.53, where a detail of a positive peak of the time history of the
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vertical bending moment is reported. Only the first and the third flexural modes

affect the vertical bending moment at station 10, while the second and the fourth

modes do not modify the response.

A similar analysis for the vertical bending moment at station 15 is presented in

Figure 4.54. In this case the first and the second mode of shapes are the larger

contributors. The second mode (three nodes) affects more significantly the hog-

ging response, where it significantly reduces the amplitude of the response.
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Figure 4.51: Time histories of the flexural principal coordinates for the S-175
container ship in head sea at Fn = 0.20, λ/L = 1.20 and Hw/L = 1/30.
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Figure 4.52: Time history of the vertical bending moment at station 10 as com-
bination of its different mode of shapes for the S-175 container ship in head sea
at Fn = 0.20, λ/L = 1.20 and Hw/L = 1/30.
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Figure 4.53: Detail of one positive peak of the time history of the vertical bending
moment at station 10 as combination of its different mode of shapes for the S-175
container ship. In head sea at Fn = 0.20, λ/L = 1.20 and Hw/L = 1/30.
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Figure 4.54: Time history of the vertical bending moment at station 15 as com-
bination of its different mode of shapes for the S-175 container ship in head sea
at Fn = 0.20, λ/L = 1.20 and Hw/L = 1/30.

Figure 4.55 describes the time histories of the sectional impulsive force at station

17 in head sea for a Froude number Fn = 0.20, at λ/L = 1.20 for different

wave amplitudes. For the two smaller waves (Hw = L/60 and Hw = L/30)

the impulsive force is governed by bow flare slamming. For Hw = L/30 water

entry events occur, but the magnitude of the relative vertical velocity is not large

enough to produce any significant bottom impact force. For the larger waves

(Hw = L/20) relative vertical velocity allows significant bottom impact force.
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This is visible in Figure 4.55, where the first steep peak is due to bottom impact.

For Froude number Fn = 0.20 the maximum value of sectional impulsive force

is due to bow flare slamming. Figure 4.56 shows the time history of the section

impulsive force at station 17, in head sea at λ/L = 1.20 and Hw = L/30 for

different Froude numbers (Fn = 0.20 and 0.25). From this comparison it is

possible to assess the effect of forward speed on slamming. A small increment of

forward speed results in a small increment of maximum sectional force due to bow

flare slamming, but corresponds to a large increment of force related to bottom

impact phenomena. For this reason, while for Fn = 0.20 the maximum force is

obtained when the flare enters the water, for Fn = 0.25 the maximum values are

obtained when the bottom of the hull hits the free-surface.
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Figure 4.55: Time history of the sectional impulsive force at station 17 for dif-
ferent wave steepness for the S-175 container ship. In head sea at Fn = 0.20,
λ/L = 1.20.
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Figure 4.56: Time history of the sectional impulsive force at station 17 at Fn =
0.20 and 0.25 for the S-175 container ship. In head sea at Hw = L/30 and
λ/L = 1.20.

Figure 4.57 describes the time history of the vertical bending moment at station

10 for Fn = 0.20 in head sea at Hw = L/30 and λ/L = 1.20. For this simulation

conditions slamming is severe and leads to large rapid vibration of the vertical

bending moment response: whipping. From the amplitude of the Fourier trans-

formation of the time trace, reported in Figure 4.58, it is possible to notice that

these fluctuations occur at ω = 7.1rads. Thus the vibrations are associated with

the two nodes mode of shape (p2).
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Figure 4.57: Time history of the vertical bending moment as station 10 for the
S-175 container ship, in head sea at Fn = 0.20 and λ/L = 1.20 and Hw = L/30.
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Figure 4.58: Amplitude of the Fourier transform for the vertical bending moment
as station 10 for the S-175 container ship in head sea at Fn = 0.20, λ/L = 1.20
and Hw = L/30.

Longitudinal distributions of sectional impulsive force are presented in Figure

4.59. Simulations were conducted for Fn = 0.20 in head sea at λ/L = 1.20 for

different wave amplitudes. The figure shows the effect of wave amplitude over

the sectional impulsive force, and allows to identify the critical regions along the

hull. As expected, slamming is more significant at the bow, where the relative

motions are larger and the flare is significant. Significant contribution to the

global impulsive force comes from the stern region. At the stern values of the

sectional impulsive force are almost half of the one at the bow, but they still can

contribute significantly to the force.
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Figure 4.59: Longitudinal distribution of the maximum sectional impulsive force
for different wave steepness for the S-175 container ship. In head sea at Fn = 0.20,
λ/L = 1.20.

4.3 Concluding Remarks

In this chapter the proposed nonlinear hydroelastic approach is applied to the S-

175 container ship sailing in regular waves. Wave induced motions and loads are

compared against experimental points and the predictions from other numerical

techniques, in both small and large amplitude waves.

In small amplitude waves, the motions and loads predicted by the nonlinear

hydroelastic method show good agreement with experimental results, within the

limits of the theory. Heave responses are usually over predicted around resonance;

this is due to the lack of damping arising from the ideal fluid model. Empirical

coefficients can be used to increase damping; this approach has not been used

in this dissertation, since the effect of heave over prediction do not deteriorate

the quality of the other variables. In fact, prediction for pitch and vertical shear

force and bending moments present good agreement among the whole frequency

range.

The proposed method is compared against a linear frequency domain strip-theory

(VERES) and a linear frequency domain free-surface Green’s function method.
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All the three methodologies give comparable results, in particular results from

the nonlinear strip theory tends to compare better with the prediction of VERES;

since in small amplitude waves the formulation of the nonlinear hydroelastic ap-

proach is similar to the one used in the frequency domain strip-theory.

Comparison against experimental points for large amplitude waves displays the

capability of the methodology to correctly predict the responses of the vessel. The

heave over prediction, around resonance region, reduces when wave elevation rises,

and the numerical values agree better with the experimental points.

The analysis of the loads at Fn = 0.25 is presented in Figures 4.36 and 4.37.

It shows a good agreement for the negative peaks; positive responses compare

generally well up to kaw = 0.05, after that wave steepness the experimental points

change their trend, while the numerical prediction do not show any change of

behaviour. Sagging responses (positive peaks) are influenced by whipping in large

amplitude waves. The experimental setup used by Fonseca and Guedes Soares

(2004) consist of a wooden model in scale 1/40 composed by three segments.

This type of model does not allow for vibrations due to slamming (Fonseca and

Guedes Soares, 2004). Therefore the experimental values in large waves do not

take into account whipping resulting in a smaller values of sagging responses.

The discrepancy between the numerical values and the experiment could be due

to the fact that hull vibrations were not allowed in the experimental trials, while

they are considered into the numerical approach.

Figure 4.42 to 4.45 analyse heave and pitch for different wave amplitude. From

the study of the time histories and their frequency components it is possible to

observe that the nonlinear effects for rigid body motions is principally a reduction

of the responses from their linear counterpart, this decrease is more pronounced

for heave than in pitch.

Similar analysis is conduced for wave induced loads from Figure 4.46 to 4.49. In
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this case the nonlinear responses are characterised by an increment from the linear

prediction for the 1st harmonic component and by a multi harmonic behaviour.

The study reports also a different behaviour of the vertical bending moment at

different sections. The previously described effects are more significant at the

bow (station 15) compared to mid ship (station 10).

Differences between rigid body motions and loads can be justified by looking

into the details of the fluid structure interaction problem. Heave and pitch are

associated with the first two mode of shape (r = 0, 1) while vertical shear force

and bending moments are evaluated as superposition of contribution among all

the flexural mode shapes (Bishop and Price, 1979). From the magnitude of the

forces involved the coupling between the flexural and the rigid modes into the

equations of motion of heave and pitch is of small magnitude. Therefore flexural

modes do not significantly affect rigid body motions.

Figures 4.52 and 4.54 show that the contribution of each mode shape to the

total value of vertical bending moment is different at different sections. Vertical

bending at station 10 is mainly function of the two and the four nodes mode

shapes (r = 2, 4), while at station 15 the two and three nodes mode of shapes

(r = 2, 3) give the larger contribution. This is associated with the shape of the

principal vertical bending moments, visible in Figure 4.8. In fact, at station 10

the two node mode has its maximum, while at station 15 the maximum value

correspond to the three nodes mode.

Analysis of the time histories of the sectional impulsive force at different station

shows the effect of wave amplitude and forward speed. Maximum values of the

momentum slamming (bow flare) force varies almost quadratically with the wave

amplitude and the bottom impact forces are largely affected by forward speed.

The time history of vertical bending moment at station 10 and its Fourier trans-

form of Figures 4.57 and 4.58 displays whipping effect associated with vibration
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in the two nodes mode of shape. The frequency analysis shows that the frequency

of vibration is around 7.1rads. The first dry natural frequency of the structure

is equal to 9.268 (Table 4.2). The actual frequency of vibration is smaller due

to the effect of fluid added mass and stiffness that are not considered in the dry

analysis. For a linear system, natural frequencies for the wetted hull can be eval-

uated in an iterative procedure, but this cannot be done for a nonlinear model

in which hydrodynamic coefficients change at each time step as function of the

under water hull geometry.

118



Chapter 5

Application of the Methodology

in a Seaway and Long Term

Predictions

5.1 Introduction

In this chapter the proposed methodology is applied in irregular seas, focusing on

the prediction of long term maximum expected values of wave induced loads. A

procedure, used to extrapolate extremes from the time histories of the responses

and to conduct the long term analysis, is described and applied to the S-175 and

Wils II container ships.

Long term analyses are performed considering the entire wave scatter diagram

and using the equivalent design sea state method. Maximum expected wave

induced loads are calculated using different combinations of forward speeds and

return periods, with the aim to understand the effect of these parameters over

long term analysis via time domain nonlinear methods.
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5.2 Irregular Sea Model

In a time domain analysis of the behaviour of the vessel in irregular seas, the

ambient wave profile and its kinetics characteristics need to be defined everywhere

in both time and space within the numerical domain. The time history of the

sea elevation η for a long crested irregular sea is described as the superposition

of a finite set of regular plane progressive waves. These are combined utilising a

uniform distributed random phase angle εi as follow.

η(x, y; t) =
∑
i

Ai(ωi)cos
[
ki
(
x cos β + y sin β)− ωit+ εi

]
(5.1)

where Ai, ωi and ki are the amplitude, frequency and the wave number of the

i− th sinusoidal component. εi is the normal distributed phase angle of the i− th

regular wave.

From Equation 5.1 it is possible to define the wave profile and if the same formu-

lation is applied to the definition of the velocity potential in Equation 3.29, it is

possible to calculate excitation forces in irregular sea.

The amplitude Ai in Equation 5.1 is defined via spectral analysis, evaluating the

wave spectrum at ωi.

Ai(ωi) =
√

2S(ωi)∆ωi (5.2)

where S(ω) is the wave spectrum and ∆ω is the frequency step around ω. The

wave spectrum, used in the present analysis, is defined following the ISSC formu-

lation as function of the significant wave height Hs and the mean wave crossing

period T0.

S(ω) =
A

ω5
exp

[
− B

ω4

]
A = 0.11H2

s

(
2π

T0

)4

B = 0.44

(
2π

T0

)4

(5.3)
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5.3 Short Term Analysis From Nonlinear Sea-

keeping Method

Characteristics of the response of a vessel in a short term, when a linear sea-

keeping method is involved, are obtained via spectral analysis. In the case of a

nonlinear time domain approach spectral techniques do not represent an advan-

tage anymore. Statistical properties should be obtain by a direct study of the

time histories of the responses.

One of the principal interests of this thesis is to understand the effect of nonlin-

earties over the prediction of extreme responses in large amplitude waves. For

this reason the focus of this section is the evaluation of maximum and minima

from the time histories of motions and loads.

To properly evaluate the probability density function of the extremes it is impor-

tant to correctly identify the peaks of the signals, both positive and negative. Re-

sponses evaluated using a nonlinear approach usually present more than one local

extreme for positive zero crossing period; a clear example is the vertical bend-

ing moment response when whipping is considered. Tuitman (2010) presented a

comparison between several approaches to count extremes from nonlinear time

domain hydroelastic method. The author compared results by counting one peak

per mean zero crossing period, one peak per rigid body zero crossing period and

by counting all the maximum and minima of the time histories. Tuitman con-

cluded that the approach used to identify the peaks does not significantly affect

the results.

In the current work peaks are extrapolated from the time history by counting

only one positive and negative maximum per zero crossing period of the linear

response. The linear methodology used in this analysis is described in section

3.4.4. This approach has been chosen to ensure consistency with results obtained
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by rigid body methods. Nonlinear analysis are conducted in parallel to linear

ones considering the same set of normal distributed phase angle ε of Equation

5.1. Figure 5.1 shows an example of the used approach to count extremes.
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Figure 5.1: Example of counting method for extremes for the vertical bending
moment time history

Once extremes are found, statistical properties can be evaluated directly from the

histogram, or by fitting the values using a mathematically well-known probability

density function. If the response characteristics in the short term are the only

interest of the analysis, statistics can be evaluated directly from the histogram.

If the short term analysis is incorporated into the evaluation of the maximum

expected values in long term, probability distributions of the counted extremes

should be fitted with a mathematical defined function. In this study, a Weibull

probability density function is used to fit the histogram of the extreme responses.

Positive and negative peaks (especially for loads) must be studied separately to

include asymmetric behaviours. An example of the differences between sagging

and hogging peaks for the vertical bending moment response at station 10 for

the S-175 container ship is reported in Figures 5.2 and 5.3 where the sagging and

hogging extremes are respectively plotted.
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Figure 5.2: Example of short term analysis of the sagging extremes for the S-175
container ship, sailing in irregular sea Hs = 13.5m and Tp = 12.5s for Fn = 0.25
in head sea
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Figure 5.3: Example of short term analysis of the hogging extremes for the S-175
container ship, sailing in irregular sea Hs = 13.5m and Tp = 12.5s for Fn = 0.25
in head sea

Short term is usually defined as a three hours duration in which the characteristics

of the sea state and of the vessel can be considered constant. In the present

analysis the short term is simulated via three hours of time domain computation.

This period is divided into six sets of thirty minutes simulations each. This

subdivision allows to avoid the dependency of the response from the actual set of

normal distributed phase angles ε and it also allows to parallelise the procedure
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and hence reducing the computational time.

5.4 Long Term Analysis From the Nonlinear Sea-

keeping Method

The principal aim of the present analysis is to investigate the effect of whipping

over the prediction of maximum expected wave induced loads. Results from non-

linear seakeeping approaches are often used to evaluate a correction factor that

needs to be applied to the more popular linear methodologies. This correction

factor is quantified as the ratio between the response, positive or negative, ob-

tained by the nonlinear approach and the one calculated using the linear method,

as described in Equation 5.4. Once this is evaluated, calculations are conducted

using linear methods and nonlinearities are taken into account via the nonlinear

correction.

Cnl =
Xnonlinear

Xlinear

(5.4)

A single value for the ratio between the nonlinear and the linear response does

not characterise the whole behaviour of the vessel and it is strongly related to

the parameters chosen for the calculation. For example, wave induced motions

and loads are functions of the heading angles and the forward speed. Due to

limitations in time, only a small number of headings and forward speeds can be

considered for the nonlinear time domain analysis, and the actual set of values

that is used influences the results.

When the wave body interaction problem is modelled using a linear approach

the long term probability of exceedance of a certain value P for the variable p is
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given as follow

QLT (P ) =

∫∫∫∫
Hs,Tz ,β,U

QST (p > P |hs, tz, b, u)fHs,Tz(hs, tz)

f(β, u|hs, tz)T̄zdhsdtzdbdu
(5.5)

where Hs is the significant wave height, Tz is the positive zero crossing period,

fHs,Tz is the probability of occurrence of a combination of Hs and Tz, f(β, u|hs, tz)

is the probability of occurrence of a combination of wave heading angles and for-

ward speed in a given sea state, and T̄z = T avgz /Tz(hs, tz) is the weight parameter

that takes into account the zero crossing period of the response in the short term

defined as the average zero crossing period divided by the zero crossing period in

the current sea state. QST represents the commutative probability of the extremes

in the short term, for a linear system it is defined as a Rayleigh distribution.

In the current analysis only head sea is considered therefore β = 180 degrees

and the relation between forward speed and sea states is completely defined, thus

Equation 5.5 can be simplified.

QLT (P ) =

∫∫
Hs,Tz

Q̃ST (p > P |hs, tz)fHs,Tz(hs, tz)T̄zdhsdtz (5.6)

In Equation 5.6 Q̃ST is the commutative probability of the extremes in the short

term defined using the fitted Weibull functions described in section 5.3. T̄z is

formulated considering the actual number of positive zero crossing in the time

histories.

Using a nonlinear approach, long term analysis can be performed following a

procedure analogous to the linear one or, can be performed using the ”equivalent

design sea state” approach. In the equivalent design sea state method only the

combination of Hs and Tz that gives the larger contribution to the maximum

expected values for a probability of exceedance of 10−8 is considered. This par-
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ticular sea state is usually identified using linear methodologies, considering the

assumption that the combination of significant wave height and zero crossing pe-

riod that mostly contributes to the linear response is the same combination that

gives the maximum contribution for the nonlinear one. The sea state that gives

the higher contribution to the probability of exceedance is identified using the

coefficients of contribution approach described by Baarholm and Moan (2000).

The coefficient of contribution Cr of the si − th sea state to the probability of

exceed P , QLT (P ), is defined as follow.

Cr(si) =
Qsi
ST (p > P |hs, tz, b, u)f siHs,Tz

(hs, tz)T̄z
si

∆hs∆tz

QLT (P )
(5.7)

where ∆hs and ∆tz are the finite step in the wave scatter diagram of significant

wave heights and mean positive zero crossing period respectively.

5.5 Analysis in Irregular Waves for the S-175

Container Ship

In this section results in irregular seas for the S-175 are presented. The analysis is

focused on the study of the long term maximum expected values of wave induced

vertical bending moment. Results from the proposed time domain nonlinear

hydroelastic approach are compared against prediction given by linear frequency

domain methods, that are the current industry standards.

The principal particulars of the S-175 container ship together with its structural

and mass properties are summarised in section 4.2. A single loading condition and

a single wave heading angle (head sea) are considered for the long term analysis,

instead of different configurations associated with the operational profiles and

routes of the vessel. These assumptions are introduced to simplify the analysis
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and to reduce the computational cost.

A different approach is taken for the vessel forward speed. The actual sailing

speed of the vessel is function of the sea state in which the vessel is operating.

Rougher seas requires the master to reduce the speed of the ship in order to avoid

undesired events, such as slamming and green water. To understand the effect

of forward speed on the nonlinear long term prediction, different speed profiles

are used. Firstly the vessel is considered to sail at design speed (20 knots for the

S-175) in all the sea conditions, in a second analysis the forward speed is function

of the significant wave height as described in Figure 5.4
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Figure 5.4: Ship speed in different sea states for the S-175 container ship.

The first approach is unrealistic, especially for large values of significant wave

heights, but it helps to highlight the importance of choosing the correct value of

an important parameters such as the speed of the vessel.

Figures 5.5 show the responses of the vessels sailing at Fn = 0.25 in an irregular

sea with Hs = 8.5m and Tz = 11.5s. Heave, pitch, vertical shear force at station

15 and vertical bending moment amidships are presented together with the time

history of the wave elevation at the bow (Figure 5.5a). From the plots it is possible

to observe the effect of slamming due to bottom and bow flare impact. When

the simulated time reach almost 260 seconds, the bow enters into the water and
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the time histories of the loads present large vibrations due to the impact showing

the effect of whipping in irregular seas. Vibrations rapidly decay in two positive

zero crossing periods due to structural and fluid damping.

Figure 5.6 presents the amplitude of the Fourier transform of the vertical bending

moment amidships for the case in Figure 5.5. The spectral density shows that

the larger amount of response is concentrated in the frequency range of the ocean

waves, but a significant contribution is given at frequencies close to the first (two

nodes) vertical wetted natural frequency of the hull. This contribution describes

high frequency vibrations due to whipping. Springing could be also a cause of

rapid fluctuations, but for a vessel of this size in a sea state with average positive

zero crossing period Tz = 11.5s springing does not affect the loads responses.
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(e) Vertical bending moment amidsips

Figure 5.5: Time histories for the S-175 container ship sailing sea at Fn = 0.25
in irregular, Hs = 8.5m and Tz = 11.5s.
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Figure 5.6: Amplitude of the Fourier transform for the vertical bending moment
amidships for the S-175 container ship sailing sea at Fn = 0.25 in irregular,
Hs = 8.5m and Tz = 11.5s.

The present analysis is focused on the study of the maximum expected vertical

bending moment amidships. The wave scatter diagram used in all the follow-

ing long term calculations is the North Sea scatter diagram (IACS, 2000). Ex-

treme expected values for sagging and hogging are calculated using the proposed

nonlinear hydroelastic approach and compared against values calculated using

a frequency domain strip theory (VERES). Long term analysis is conducted as

described in the previous sections.

Table 5.1 describes the maximum expected values of vertical bending moment for

the return periods of 3, 20 hours and 20 year. Linear and nonlinear results are

compared using the correction factor described in Equation 5.4. This analysis is

conducted considering the entire wave scatter diagram.
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Return period 3 hours 20 hours 20 years

Prob. of exceedance 6.10110−4 9.152 10−5 1.045 10−8

Linear VBM [kNm] 5.275 105 6.457 105 1.246 106

Sagging VBM [kNm] 7.895 105 9.954 105 2.192 106

Hogging VBM [kNm] 6.332 105 8.009 105 1.632 106

Sagging ratio 1.497 1.542 1.759

Hogging ratio 1.200 1.240 1.309

Table 5.1: Maximum expected values for different return periods of vertical bend-
ing moment amidships for the S-175 container ship with velocity profile described
in Figure 5.4 considering the entire wave scatter diagram.

Results in Table 5.1 show a large asymmetry between nonlinear sagging and

hogging response. Sagging amplitudes are usually larger compared to the hogging

ones, due to the impulsive forces at the bow. It is also visible that the nonlinear

correction factor is a function of the return period, especially for the sagging case,

where it increments from 1.497 to 1.759 for return periods varying from 3 hours to

20 years. This behaviour is displayed in Figure 5.7 where the maximum expected

values of Table 5.1 are plotted against the associated probability of exceedance

(in logarithmic scale).
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Figure 5.7: Long term probability of exceedance for vertical bending moment
amidships, for the S-175; the whole scatter diagram is considered and the velocity
varies accordingly to Figure 5.4.
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The sagging vertical bending moment increases more rapidly with the return

period, compared to the hogging one, and this affects the nonlinear correction

factor.

In this calculation the entire wave scatter diagram is used. This approach is

rather time consuming but allows to analyse the contribution of each sea state

to the maximum response. The contribution of each combination of Hs and Tz is

described using the coefficient of contribution reported in Equation 5.7. Figures

5.8 describe the results considering a return period of 20 hours, while in Figures

5.9 a return period of 20 years is applied. For each analysis results are presented

for the linear, nonlinear sagging and hogging response.

For the smaller return period the values of Cr for the linear and the nonlinear

cases are similar. For all three cases the maximum occurs at Hs = 8.5m and

Tz = 9.5s. Differences can be seen in the overall distribution of the coefficient

of contribution. In the linear case the distribution is regular and spreads around

a prevalent wave steepness (Hs/Tz). Distributions for nonlinear sagging present

a steeper surface in which the sea states that give the higher contribution are

more concentrated around the peak (Hs = 8.5m and Tz = 9.5s); Cr for nonlinear

hogging is similar to linear one, but in this case the majority of sea state that give

a relevant contribution have values of Hs that are higher compared to the peak

one; while the linear response present a almost symmetrical distribution (respect

Hs).

For 20 years return period the maximum value of Cr for the linear response occurs

at Hs = 13.5m and Tz = 9.5s, while for the nonlinear sagging and hogging is at

Hs = 15.5m and Tz = 10.5s. The distribution of Cr around its peak is similar

for all three cases. From Figure 5.9b seems that the distribution of Cr for the

nonlinear sagging response presents two local maxima: they are a single peak and

the plot displays separate peaks due to the steps in the wave scatter diagram.
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(b) Nonlinear sagging
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(c) Nonlinear Hogging

Figure 5.8: Coefficients of contribution Cr for the S-175 container ship for the lin-
ear, nonlinear sagging and hogging vertical bending moment amidships. Reduced
speed profile of Figure 5.4, for a return period of 20 hours.
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(a) Linear
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(b) Nonlinear sagging
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(c) Nonlinear hogging

Figure 5.9: Coefficients of contribution Cr for the S-175 container ship for the lin-
ear, nonlinear sagging and hogging vertical bending moment amidships. Reduced
speed profile of Figure 5.4, for a return period of 20 years.
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The analysis of the maximum expected vertical bending moment amidships con-

ducted using the equivalent design sea state approach (EDS) is summarised in

Table 5.2. The sea state used in the analysis has Hs = 13.5m and Tz = 9.5s, since

this is the combination of significant wave height and wave positive zero crossing

period that gives the higher contribution to the probability of exceedance of 10−8.

In the current case, the ratios between the linear and the nonlinear sagging re-

sponse are higher compared to the results in Table 5.1, while for hogging the

ratio is almost invariant. This could be due to the fact that the distribution of

the coefficient of influence for nonlinear sagging is the one that presents larger

differences between the all three distributions (see Figures 5.8 and 5.9).

Return period 3 hours 20 hours 20 years

Prob. of exceedance 8.409 10−4 1.261 10−4 1.440 10−8

Linear VBM [kNm] 1.100 106 1.239 106 1.757 106

Sagging VBM [kNm] 1.871 106 2.149 106 3.231 106

Hogging VBM [kNm] 1.408 106 1.592 106 2.283 106

Sagging ratio 1.701 1.735 1.840

Hogging ratio 1.280 1.285 1.300

Table 5.2: Maximum expected values for different return periods of vertical bend-
ing moment amidships for the S-175 container ship with velocity profile described
in Figure 5.4, using the EDS approach.

The values of maximum expected vertical bending moment in Table 5.2 are pre-

sented in graphical form in Figure 5.10. The figure shows the different behaviour

of nonlinear sagging moment compared to Figure 5.7 in both terms of magnitude

and curvature. Linear and nonlinear hogging response are almost parallel for all

the probability values, while the sagging response is steeper.
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Figure 5.10: Long term probability of exceedance for vertical bending moment
amidships, for the S-175; the EDS approach is considered and the velocity varies
accordingly to Figure 5.4.

The nonlinear hydroelastic correction ratios, calculated using the entire wave

scatter diagram and the EDS approach are compared in Table 5.3. For the

sagging response the nonlinear correction ratio is larger when the EDS approach

is used, for the hogging one the values obtained by the two approaches are similar

for all the return periods. For both methods the ratios increase with the return

period.

Tables 5.2 and 5.3 shows that EDS method over predicts the maximum expected

bending moment for all the return periods. Also if that results in an inaccurate

response, it improves the safety increasing the design loads. It can be seen as a

useful compromise, especially if a nonlinear method is applied, because it reduces

significantly the computational cost of the analysis.

Nonlinear analysis is based on the statistical study of three hours long time his-

tories. Therefore the most accurate ratio should be the one based on the 3 hours

return period, since the others extrapolate the maximum vertical bending mo-

ment from range of values that do not contain any actual simulated points. On

the other hand this is a limitation, because the return period for design interest is

at least 20 years long, and as described in Table 5.3 the nonlinear-linear response

ratio is not constant (as function of the return period).
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Return period 3 hours 20 hours 20 years

Sagging VBM

Whole scatter diagram 1.497 1.542 1.759

Equivalent design sea state 1.701 1.735 1.840

Hogging VBM

Whole scatter diagram 1.200 1.240 1.309

Equivalent design sea state 1.280 1.285 1.300

Table 5.3: Comparison of the nonlinear correction ratios obtained by using the
entire wave scatter diagram and the EDS approach. For the S-175 with velocity
profile described in Figure 5.4.

In the previous study the forward speed of the vessel is function of the significant

wave height. In the current case the forward speed is constant for all the values of

significant wave heights and equal to the design value of 20.15 knots (Fn = 0.25).

Maximum expected vertical bending moment amidships is evaluated considering

the entire wave scatter diagram. Results for different return periods are collected

in Table 5.4 and plotted in Figure 5.11.

Results show large correction factor for nonlinear sagging that is 2.015 and 2.247

for a return period of 3 and 20 hours respectively. Correction for hogging is

similar to previous case. The different behaviour of sagging and hogging response

for different probability of exceedance can be seen in Figure 5.11. The sagging

response increases more rapidly compared to the hogging one.
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Return period 3 hours 20 hours 20 years

Prob. of exceedance 5.892 10−4 8.838 10−5 1.009 10−8

Linear VBM [kNm] 6.268 105 7.820 105 1.537 106

Sagging VBM [kNm] 1.263 106 1.757 106 4.640 106

Hogging VBM [kNm] 7.761 105 9.900 105 2.219 106

Sagging ratio 2.015 2.247 3.019

Hogging ratio 1.238 1.266 1.444

Table 5.4: Maximum expected values for different return periods of vertical bend-
ing moment amidships for the S-175 container ship with constant velocity (20.15
knots), considering the entire wave scatter diagram.
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Figure 5.11: Long term probability of exceedance for vertical bending moment
amidships, for the S-175 container ship with constant velocity (20.15 knots),
considering the entire wave scatter diagram.

A comparison between the long term analysis considering the two different for-

ward speed operational profiles is presented in Table 5.5. Forward speed of the

vessel affects especially the sagging response. For 3 hours return period the non-

linear sagging correction increases from 1.497 to 2.015, as effect of considering

the forward speed constantly equal to 20 knots. The hogging response shows a

small increment due to the forward speed (from 1.2 to 1.238, for 3 hours return

period).

This analysis underlines the problem of the selection of the correct relation be-
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tween the velocity of the vessel and the severity of the sea states.

Return period 3 hours 20 hours 20 years

Sagging VBM

Speed reduction 1.497 1.542 1.759

Constant design speed 2.015 2.247 3.019

Hogging VBM

Speed reduction 1.200 1.240 1.309

Constant design speed 1.238 1.266 1.444

Table 5.5: Comparison of the nonlinear correction ratios obtained by using the
velocity profile described in Figure 5.4 and the constant design speed (20.15
knots), for the S-175 considering the entire wave scatter diagrams.

The numerical method applied in the previous analyses is a nonlinear hydroelastic

method, this approach takes into account nonlinear phenomena associated with

slow varying forces.

In order to understand the nonlinear effects associated with wave frequency forces

(nonlinear restoring forces, for example) a nonlinear rigid body model should be

applied. To reproduce the results of a rigid body nonlinear approach the time

histories of the vertical bending moment are post processed using a low pass filter

that remove the high frequency vibrations associated with whipping.

Table 5.6 summarises the analysis for the maximum vertical bending moment

amidships filtered from the high frequency response. The relationship between the

forward speed of the vessel and the significant wave height is described in Figure

5.4. The EDS approach is used, limiting the analysis to a single combination sea

state (Hs = 13.5m and Tz = 9.5s).

The maximum expected sagging vertical bending moments calculated using the

nonlinear rigid body technique is still larger than the one obtained using the

linear approach. Also the nonlinear hogging response is larger than the linear
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one. In this case the ratio between the nonlinear and the linear response varies

slowly with the return period.

Return period 3 hours 20 hours 20 years

Prob. of exceedance 8.409 10−4 1.261 10−4 1.440 10−8

Linear VBM [kNm] 1.100 106 1.239 106 1.757 106

Sagging VBM [kNm] 1.574 106 1.807 106 2.712 106

Hogging VBM [kNm] 1.239 106 1.404 105 2.032 106

Sagging ratio 1.431 1.458 1.544

Hogging ratio 1.126 1.134 1.157

Table 5.6: Maximum expected VBM amidships considering a nonlinear rigid body
model. Considering different return periods, for the S-175 container ship, with
velocity profile described in Figure 5.4 and using the EDS approach.

A comparison between the nonlinear correction factor obtained using the two

different nonlinear approaches is presented in Table 5.7. Figures 5.12 and 5.13

display the maximum expected vertical bending moment for different levels of

probability of exceedance for the linear, nonlinear rigid body and the nonlinear

hydroelastic methods. Figure 5.12 describes the sagging response and Figure

5.13 the hogging one. Values predicted by the nonlinear hydroelastic approach

are larger compared to the rigid body in both sagging and hogging response. The

increment in response due to hydroelastic effects seems constant for all the return

periods; the difference in sagging is 0.27 for 3 hours and 0.296 for 20 years, and

in hogging varies from 0.154 to 1.43 for the same return periods.
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Return period 3 hours 20 hours 20 years

Sagging VBM

Nonlinear rigid body 1.431 1.458 1.544

Nonlinear hydroelasticity 1.701 1.735 1.840

Hogging VBM

Nonlinear rigid body 1.126 1.134 1.157

Nonlinear hydroelasticity 1.280 1.285 1.300

Table 5.7: Comparison between nonlinear rigid body and nonlinear hydroelastic-
ity correction ratios of the VBM amidships for the S-175 container ship. With
velocity profile described in Figure 5.4 and using the EDS approach.
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Figure 5.12: Long term probability of exceedance for sagging VBM amidships,
for the S-175 container ship velocity profile described in Figure 5.4 and using the
EDS approach. Comparison between linear, nonlinear rigid body and nonlinear
hydroelastic methods.
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Figure 5.13: Long term probability of exceedance for hogging VBM amidships,
for the S-175 container ship velocity profile described in Figure 5.4 and using the
EDS approach. Comparison between linear, nonlinear rigid body and nonlinear
hydroelastic methods.

5.6 Analysis in Irregular Waves for the WILS II

Ultra Large Container Ship

The following section focus on the analysis of maximum expected vertical bending

moment amidships for the WILS II 10,000 TEU container ship. The geometry of

the vessel and its main particulars are described in Figure 5.14 and Table 5.8.
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Figure 5.14: WILS II, lines plan.
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Parameters Values

Length between the perpendiculars 321.00 m

Beam amidships 48.40 m

Depth amidships 27.20 m

Draught amidships 15.00 m

Displacement 145200 tonnes

LCG from MP -8.00 m

Pitch radius of gyration 80.51 m

Table 5.8: WILS II, main particulars.

The mode shapes and the natural frequencies of the structure of the vessel are

evaluated using a finite element scheme as described in section 3.5. The natural

frequencies for symmetric modes, used in the simulations, are summarised in Ta-

ble 5.9. The calculation of structural characteristics of the hull is conducted using

50 longitudinal elements, while the nonlinear time domain seakeeping analysis is

conducted using 40 stations.

Modes Values [rad/s]

2 3.584

3 8.7505

4 15.6129

5 23.392

Table 5.9: WILS II, dry hull natural frequencies.

The analysis of the maximum expected vertical bending moment amidship is

conducted using the EDS approach. The forward speed of the ship is consid-

ered function of the significant wave height as described in Figure 5.4. Analysis

conducted with linear frequency domain strip theory identifies that the sea state
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that gives the maximum contribution to the 10−8 probability of exceedance has

Hs = 15.5m and Tz = 11.5s. Time domain simulations for the selected sea state

and statistical analysis of the time histories are conducted using the methodology

described in section 5.3.

Table 5.10 compares the maximum expected vertical bending moment obtained

using the proposed nonlinear technique against the results of the linear approach,

for different return periods. Figure 5.15 plots the predicted extreme loads against

the associated probability of exceedance.

Return period 3 hours 20 hours 20 years

Prob. of exceedance 1.14910−3 1.724 10−4 1.967 10−8

Linear VBM [kNm] 8.738 106 9.887 106 1.415 107

Sagging VBM [kNm] 1.475 107 1.690 107 2.505 107

Hogging VBM [kNm] 1.393 107 1.579 107 2.267 107

Sagging ratio 1.689 1.709 1.770

Hogging ratio 1.595 1.597 1.602

Table 5.10: Maximum expected values for different return periods of vertical
bending moment amidships for the WILS II container ship with velocity profile
described in Figure 5.4, using the EDS approach.
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Figure 5.15: Maximum expected values for different return periods of vertical
bending moment amidships for the WILS II container ship with velocity profile
described in Figure 5.4, using the EDS approach.
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Sagging and hogging bending moment predicted by the nonlinear hydroelastic

approach are almost 1.7 and 1.6 times the ones obtained by the linear approach,

respectively. The ratio between the nonlinear and the linear responses remains

almost constant for the different return periods. This is clearly visible in Figure

5.15, where the curves that represent the nonlinear responses seem almost parallel

and very close to each other. Hogging correction factor is larger compared to the

S-175. For the S-175 it is 1.280 for 3 hours return period while for the Wils II is

1.595.

Storhaug et al. (2011) present experimental results for extreme and fatigue anal-

ysis of a 13,000 TEU container ship. Simulations where conducted in large sea

states, the trials show that the amplification of vertical bending moment due to

hydroelastic effect in severe seas has values similar to the one obtained via the

proposed methodology. This publication cannot be considered as a validation of

the proposed methodology, since the vessel and the conditions (forward speed and

sea states) are different, but shows that the proposed methodology can improve

the prediction of extreme wave induced loads in large amplitude waves.

5.7 Concluding Remarks

In the previous section the developed time domain nonlinear hydroelastic ap-

proach is used to assess extreme values of vertical bending moment amidships

for the S-175 and the Wils II container ships. The vessels have different lengths,

175 and 320 metres respectively. Calculations are conducted considering different

operational profile for the forward speed and using both the entire wave scatter

diagram and the EDS approach for the long term calculations.

The comparison between the calculations performed using the entire wave scatter

diagram and the EDS approach shows that EDS methods gives a higher prediction
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for both the linear and the nonlinear response: 10% of the linear case 37% for

nonlinear sagging and 22% for the nonlinear hogging (for 3 hours return period).

Limiting the calculation to the sea states that give the maximum contribution

does not allow to consider less severe sea states that tend to reduce the long term

values. Convergency between the long term prediction obtained using the whole

possible sea states and the EDS approach can be obtained using the iterative

approach proposed by Baarholm and Moan (2000).

As described in the previous paragraph, the EDS approach tends to increase the

prediction of the maximum expected loads. The increment is larger for the non-

linear responses than for the linear one. From Figures 5.8 and 5.9 it is noticeable

that the coefficient of contribution Cr has a steeper distribution for the nonlinear

cases, this means that a smaller number of sea states, compared to the linear

case, contributes significantly to the maximum expected values. The only case in

which the distribution of Cr spreads in more sea states than the linear case is for

the hogging with 20 years of return period, and in this case the correction factor

calculated using the entire wave scatter diagram is slightly larger than the one

obtained via EDS approach (1.309 and 1.300, respectively).

The analysis considering the vessel sailing at design speed in all the possible sea

states shows the importance of selecting the correct velocity profile. Impulsive

forces are extremely sensible to any change in forward speed, as described in

Figure 4.56. The principal issue is that it is not possible to obtained a accurate

relation between the forward speed and the significant wave height. The actual

sailing speed of the vessel is function of the loading condition, route, sea state,

economical condition and of master of the ship. An over estimation of the forward

speed can lead to a not realistic correction factor, on the other hand an under

estimation can under predict design loads.

Same consideration can be obtained for the wave heading angle. In this case the
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assumption of limiting the analysis to head seas increase the safety margin, but

if springing is considered for fatigue analysis, bow and quartering seas are critical

due to the small natural periods of asymmetric modes (Hirdaris et al., 2003).

This thesis focuses on extreme loads evaluation considering whipping, therefore

the assumption of limiting the analysis to head seas can be considered reasonable.

All the long term prediction presented in sections 5.5 and 5.6 are conducted for

different return periods. The ratio between the linear and nonlinear predictions

increases with the return period. This is related to the increment of the im-

portance of larger sea states for longer return periods. In these sea conditions

nonlinear responses are higher than linear ones and therefore the maximum ex-

pected values, obtained via nonlinear methods, increase.

The Weibull probability density function that characterised the statistical prop-

erties of short term extreme responses is obtained by fitting up to 3 hours of

numerical simulations. On the other hand the return period of interest for ex-

treme wave induced loads is no less than 20 years. Calculating the maximum

expected values, in 20 years, from the fitted Weibull distributions could lead

to inaccurate results, since the fitting is obtained with values that have a larger

probability of exceedance (compared to 20 years). On the other hand the calcula-

tion of the nonlinear correction ratio, considering 3 hours of return period, could

under predict the correction factor. In this case the EDS approach represents

a good compromise, because the sea state on which the calculations are based

on is found considering a probability of exceedance of 10−8 and the maximum

expected values are obtained, from the fitted Weibull distribution, for 3 hours

return period.

The results for the Wils II container ship show the effect of the length of the

vessel over the nonlinear wave induced loads. Both sagging and hogging response

increases, compared to the S-175. The larger increment occurs to the hogging
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vertical bending moments. Large wave induced hogging response can be critical

for a container ship, since this type of ships usually have a large hogging still

water vertical bending moment.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this thesis a nonlinear time domain hydroelastic approach is presented. The

hull is modelled as a one dimensional Timoshenko beam. Modal superposition

method is used to solve the fluid structure interaction problem. The fluid actions

on the hull are modelled using a nonlinear strip theory that considers the actual

wetted hull portion and the relative velocity between the vessel and the waves.

Impulsive forces are taken into account with a combination of analytical and

empirical formulations.

Applying the methods described the following conclusions can be drawn:

• The validation of the methodology in both small and large amplitude waves

in regular seas shows the capability of the proposed method to correctly

assess the wave induced motions and loads.

• Analyses in large amplitude waves highlight the importance of high fre-

quency vibrations due to water impact, in the calculation of wave induced

loads
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• Wave induced loads at different longitudinal sections depend upon differ-

ent combinations of principal coordinates and mode of shapes, and modal

superposition methods allow to study their relationship in details.

• The analysis of the longitudinal distribution of impulsive forces shows that

impact forces at the stern have a significant magnitude and should therefore

be included in the formulation of the equations of motion.

A procedure to apply the proposed methodology to long term analysis for wave

induced loads is described. Extreme values are selected from the time history

of wave induced motions and loads using the positive zero crossing period of

the linear predictions. A Weibull probability density function is used to fit the

histogram of the extreme. The long term analysis is conducted using both the

entire wave scatter diagram and the Equivalent design sea state approach.

• Analysis of the maximum expected vertical bending moments shows that

nonlinear rigid body motions effect and whipping lead to an increment to

the sagging and hogging moment amplitudes compared to the equivalent

linear case.

• The equivalent design sea state approach can give higher predictions, com-

pared to considering the entire wave scatter diagram.

• A comparison between the nonlinear correction factors between the s-175

and the Wils II container ships, shows that nonlinear effects on wave induced

vertical bending moment are more relevant for bigger vessels.
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6.2 Future Works

Future research and applications of the proposed methodology could be conducted

on several topics as follows:

• Introduction of more accurate methodologies for the evaluation of water

impact that are able to take into account forward speed and asymmetrical

impact.

• Modelling of green water on the deck.

• Implementation of asymmetrical modes to properly model arbitrary wave

headings.

• Intensive parametric study to understand the effect of size of the dimension

of the vessel and its operational profile over the nonlinear wave induced

motions and loads.
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Appendix A

Evaluation of the Generalised

Hydrodynamic Forces

Equations 3.34, 3.35 and 3.36 are applied to Equation 3.27 into the first and third

terms of the right-hand side.

fhd(x; t) =
∞∑
r=0

[
− a∞z

(
wrp̈r − 2Uw′rṗr + U2w′′rpr − ζ̈ + 2Uζ̇ ′ − U2ζ ′′

)
+ (a∞z )′U

(
wrṗr − Uw′rpr − ζ̇ + Uζ ′

)
− ∂a∞z

∂T

dw

dt

DWrel

Dt

−
t∫

0

K̇z(τ)
DWrel

Dt
(t− τ)dτ + U

∂

∂x

t∫
0

Kz(τ)
DWrel

Dt
(t− τ)dτ

(A.1)

Then the sectional hydrodynamic force is defined by collecting the terms pro-

portional to the principal coordinates pr and its time derivatives, as presented
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below.

fhd(x; t) =
∞∑
r=0

[
− a∞z wrp̈r +

(
2a∞z w

′
r + (a∞z )′wr

)
Uṗr −

(
a∞z w

′′
r + (a∞z )′w′r

)
U2pr

]
+ a∞z

D2ζ

Dt2
− (a∞z )′

Dζ

Dt
+

− ∂a∞z
∂T

dw

dt

DWrel

Dt

−
t∫

0

K̇z(τ)
DWrel

Dt
(t− τ)dτ + U

∂

∂x

t∫
0

Kz(τ)
DWrel

Dt
(t− τ)dτ

(A.2)

The first line of Equation A.2 collects the terms of the radiation forces that

are directly proportional to the principal coordinates and their derivatives. The

second line describes the impulsive diffraction force; the third line represents

the impassive hydrodynamic force, while the last one collects the memory effect

terms.

Equation 3.8 is used to formulate the generalised fluid action.

FHD
s (t) =

∞∑
r=0

[
−
∫
L

a∞z wrws dx p̈r

]
+
∞∑
r=0

[
U

∫
L

(
2a∞z w

′
r + (a∞z )′wr

)
ws dx ṗr

]
+
∞∑
r=0

[
− U2

∫
L

(
a∞z w

′′
r + (a∞z )′w′r

)
ws dx ṗr

]
+

∫
L

(
a∞z

D2ζ

Dt2
− (a∞z )′U

Dζ

dt

)
ws dx+

−
∫
L

a∞z
∂a∞z
∂T

dw

dt

DWrel

Dt
ws dx

−
∫
L

˙̃Kwsdx+ U

∫
L

K̃ ′wsdx s = 0, 1, 2, . . .

(A.3)
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where the terms ˙̃K and K̃ ′ describe the components of the convolution integrals.

˙̃K =

∫ t

0

K̇(t− τ)
DWrel

Dt
(τ)dτ

K̃ ′ =
∂

∂x

∫ t

0

K(t− τ)
DWrel

Dt
(τ)dτ

(A.4)
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Appendix B

Calculation of the Sectional

Hydrodynamic Coefficients

The sectional frequency dependent hydrodynamic coefficients are evaluated fol-

lowing a BEM proposed by Andersen and Wuzhou (1985). The fluid is considered

to be ideal, inviscid uniform and irrotational, therefore the velocity field within

the fluid can be described by a velocity potential that has to satisfy the Laplace

equation.

∇2φ = 0 in the fluid F (B.1)

Where φ is the velocity potential. This methodology utilises simple logarithmic

Green functions and thus the entire boundary of the fluid domain has to be

discretised into panels. The fluid boundary is composed by five different surface

types over which different conditions are applied: body boundary S1, free-surface

S2, bottom boundary S5 (infinite water depth case), left and right radiation

boundaries S4L and S4R respectively. Figure B.1 describes the fluid domain and

its boundaries.
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Figure B.1: The fluid Domain (Andersen and Wuzhou,1985)

The linearised set of boundary conditions for the case of a body vertically oscil-

lating at frequency ω with unit amplitude in infinite water depth is described in

Equation B.2 

∂φ
∂n

= iωnz on S1

∂φ
∂n

= ω2

g
φ on S2

∂φ
∂n

= −iω2

g
φ on S4

∂φ
∂n

= −ω2

g
φ on S5

(B.2)

where nz is the z component of the normal vector to the boundary pointing

outward the fluid domain. The condition over S1 imposes that the normal com-

ponent of the fluid velocity over the body section is equal to the normal velocity

of the body. The second row of Equation B.2 describes the linearised free-surface

boundary condition, while the last two lines assume that the potential at S4 and

S5 is the one of a outgoing wave for infinite water depth.

By applying the Green’s theorem the velocity potential of any point P inside the

fluid and along its boundary can be found as follows

− Vpφ(P ) = −
∫
S

(
φ
∂lnr

∂n
− lnr∂φ

∂n

)
ds+

∫
S1

(
iωnzlnr

)
ds (B.3)

where r is the distance between the point P and the integration point Q and Vp
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is the angle between the half tangents in the fluid at point P.

Equation B.3 is solved by the method of discretisation. The boundary of the fluid

is divided into a set of N linear panels. The potential of a point P located on the

middle of i− th panel is found adding the contribution of the integral along each

panel Sj. Thus Equation B.2 can be approximated by the following equation.

−πφi+
N∑
j=1

∫
Sj

φ
(∂lnr
∂n
−Kjlnr

)
ds =

N∑
m=1,Sm∈S1

∫
Sm

(
iωnz,mlnr

)
ds i = 1, 2, ..., N

(B.4)

where Kj is defined in Equation B.5



Kj = 0 if Sj ∈ S1

Kj = ω2

g
if Sj ∈ S2

Kj = −iω2

g
if Sj ∈ S4

Kj = −ω2

g
if Sj ∈ S5

(B.5)

The velocity potential φ is consider constant along a panel, therefore it can be

moved out of the integral over Sj.

−πφi +
N∑
j=1

φj

[ ∫
Sj

(∂lnr
∂n
−Kjlnr

)
ds

]
=

N∑
m=1,Sm∈S1

nz,m

[ ∫
Sm

(
iωlnr

)
ds

]
i = 1, 2, ..., N

(B.6)

The integrals along Sj and Sm are numerical evaluated using a four points Gaus-

sian quadrature method. Equation B.6 is a system of algebraic equations that

can be solved to obtain the values of the velocity potential along the fluid domain

boundary.

Once the values of φ are known everywhere along S the sectional added mass and
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damping coefficients can be evaluated as follows

a33(ω) =
ρ

ω
Im

{∫
S1

(φnz)ds

}
b33(ω) = ρRe

{∫
S1

(φnz)ds

} (B.7)
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