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Abstract

Transmit diversity is a powerful technique for enhancing the channel capacity and

reliability of multiple-input and multiple-output (MIMO) wireless systems. This

thesis considers extended orthogonal space-time block coding (EO-STBC) with

beamsteering angles, which have previously been shown to potentially achieve

full diversity and array gain with four transmit and one receive antenna. The

optimum setting of beamsteering angles applied in the transmitter, which has to

be calculated based on channel state information (CSI) at the receiver side, must

be quantised and feed back to the transmitter via a reverse feedback link.

When operating in a fading scenario, channel coefficients vary smoothly with

time. This smooth evolution of channel coefficients motivates the investigation of

differential feedback, which can reduce the number of feedback bits, while poten-

tially maintaining near optimum performance. The hypothesis that the smooth

evolution of channel coefficients translates into smooth evolution of feedback

angles is justified by simulations. The maximum attainable gain under optimum

unquantised beamsteering angles is derived, which allows to experimentally assess

the effect that quantisation in the feedback channel has on the system perform-

ance. In characterising the degradation experienced through time-variation and

limited quantised feedback, we demonstrate that the new differential feedback

approach offers a practical bandwidth-efficient scheme. Simulation results with

Doppler spread conditions confirm that the proposed scheme achieves significant

bandwidth savings over previously proposed systems. With a single feedback

bit per beamsteering angle the proposed differentially encoded EO-STBC ap-

proach can achieve near optimum performance and exceed the performance of

non-differential feedback schemes that employ a higher word length.

We further propose combining differential encoding with channel estimation
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that is practically useful because the EO-STBC receiver requires knowledge of

the channel coefficients for both detecting the transmitted symbols as well as

for computing the optimum angles to be fed back to the transmitter. Channel

estimation accompanied by a decision-directed (DD) tracking scheme by means

of a Kalman filter has been adopted. The Kalman filter exploits the smooth

evolution of the channel coefficients as a motivation for tracking as well as for

differential feedback. Further we propose applying an auto-regressive (AR) pre-

dictor with order greater than one in the Kalman model. This can be shown

to offer advantages in terms of temporal smoothness when addressing channels

whose coefficient trajectories evolve smoothly. Simulation results show that the

overall EO-STBC system achieves longer tracking periods with suitable bit error

(BER) values, and that the performance of the proposed system offers a distinct

advantage for lower Doppler spreads with the inclusion of second order AR model

instead of the standard first order AR model.

The earlier work on EO-STBC systems is for frequency-flat channels. How-

ever, in frequency-selective channel a multi-carrier approach can help to split into

independent subcarriers. Therefore, the EO-STBC scheme is then applied for

a dedicated chirp-based multicarrier based on a fractional Fourier transformer

(FrFT) system over doubly dispersive channels, where FrFT-domain is developed

to further increase robustness against channel time-variations. Applied in near-

stationary channel conditions, the performance of orthogonal frequency division

multiplexing (OFDM) receivers that mitigate crosstalk between individual sub-

carriers are evaluated for open and closed loop schemes. A higher degree of

non-stationarity in mobile scenarios will destroy the orthogonality of subcarriers

and result in intercarrier interference (ICI) and intersymbol interference (ISI). In

this case, minimum mean square error (MMSE) of a reduced system matrix is

considered for open loop EO-STBC. The equaliser complexity can be decreased

even furtherby using least squares minimum residual (LSMR) iterative algorithm,

equalisation are underlined by simulations, demonstrating the overall practical use

if the contributions wihtin this thesis towards EO-STBC diversity schemes over

both time- and frequency-dispersive channels.
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Chapter 1

Introduction

This chapter introduces some basic definitions, presents the motivation, provides

the contributions of this work, and outlines the organisation of this thesis.

1.1 MIMO Systems

Wireless communication systems consisting of a transmitter, a radio channel,

and a receiver, are classified by their input and output ports [4]. The simplest

formation is a single antenna at both sides of the radio channel, denoted as

single input single output (SISO) system. Systems with multiple antennas on

the receive side only are called single input multiple output (SIMO) systems and

systems with multiple antennas at the transmitter side and a single antenna at the

receiver side are called multiple input single output (MISO) systems. The multiple

input multiple output (MIMO) system is the most universal mode of a wireless

communication system, and includes SISO, MISO, SIMO systems as particular

cases. Thus, the acronym MIMO will be used in general for multiple antenna

systems. The equivalent baseband signal model for narrowband stationary MIMO

system shown in Fig. 1.1 is given by

1
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Figure 1.1: MIMO system with NT transmit and NR receive antennas

R = HS+V, (1.1)

assuming channel H is to be constant for the entire T channel uses; therefore, S is

the NT×T transmitted matrix and is often normalized to satisfy a transmit-power

constraint

E
{

tr
(

SSH
)}

= 1, (1.2)

where E {·} denotes statistical expectation, (·)H denotes Hermitian operation,

and tr (·) stands for the trace of a matrix. R is the NR × T received matrix, and

V ∈ C
NR×T is the additive zero mean circular white Gaussian noise (AWGN)

with zero mean and unit variance.

The channel matrix is H ∈ CNR×NT with entry hi,j represents the complex

channel fade coefficient between the i-th transmit antenna and j-th receive an-

tenna given as
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(1.3)

Recently, new products based on MIMO technology have been adopted for a

number of practical applications in IEEE standards such as wireless personal area

networks (WPANs), wireless local area network (WLAN), Wireless Metropolitan

area networks (WMAN), wireless wide area networks (WAN), and other standards

such as third generation partnership project (3GPP), long term evolution (LTE),

and LTE-advanced (LTE-A).

With various configurations of MIMO, the spatial dimension can be exploited

to improve wireless system performances such as capacity, range, and reliabil-

ity [5] [6] [7]. Due to increasing demand for high data rate services, the wireless

infrastructure is required to deliver an increasingly transmission rate at a suit-

able quality of service (QoS). Moreover, mobile devices are required to deal with

excessively high data rate demands, to combat fading through diversity, and to

conserve transmitted power and bandwidth which are scarce resources.

Multipath propagation causes interference, which generally leads to degraded

performance. However, MIMO employs multiple, spatially separated antennas to

take advantage of multipath occurring in wireless channel [8]. MIMO can offer

spatial multiplexing (SM) and spatial diversity (SD) with feasible bandwidth

and adequate power consumption [9] [10]. SM techniques provide high data rate

with multiple data streams transmitted in a MIMO channel at the same time. In

addition, space time transmit diversity (STTD) can provide MIMO diversity gains

[11]. Furthermore, MIMO can trade off between throughput and QoS without

any increase either in the bandwidth or in the transmitted power.
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Figure 1.2: A basic wireless relay structure.

Nowadays, wireless systems aim to deliver simultaneously speed, coverage,

and reliability improvements. The receiving end uses signal processing to collect

signals received over different transmit paths by different antennas to produce one

combined signal that resembles the originally transmitted signal. Such coherent

combining needs to estimate channel state information (CSI) between MIMO

antennas at the receiving end [12]. Moreover, pre-processing at the transmitter

with MIMO precoding is a technique that can be used to maximise capacity

and reliability of the system [13]. Practically, the receiver can send quantised

CSI to the transmitter through a limited feedback link [14], such as in precoded

space-time block coding where the transmitter can use this information to further

improve the system performance [15] [16].

1.1.1 Virtual MIMO

In practice, wireless transceiver systems may be unable to support multiple an-

tennas due to limitations such as size, cost, and hardware. However user devices

can collaboratively operate as a virtual MIMO system [17] [18]. Virtual MIMO
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can be achieved by using antennas of different users acting as relays for each

other, exploiting independent paths between the transmit and receive antennas

to provide MIMO advantages. Fig. 1.2, shows a basic wireless relay structure.

The wireless communication applications and design are mainly related to the

power use and communication range [19] [20]. Accordingly, distributed antennas

on multiple radio devices can be utilised to group multiple devices into virtual

antenna arrays [21] [22]. Such technique enables cooperative diversity, which

can achieve diversity gain with even one antenna per relay node. In cooperative

MIMO, which is a special case of cooperative diversity, it has been found that

wireless relay networks can extend the coverage through using other terminals or

relays and reduce the need to use high power at the transmitter or source terminal

by split the available time slot into two or more phases [23]. Such technique can

achieve MIMO gains in both transmitter and receiver even with one antenna per

relay node such that sending group and receiving group in an ad-hoc networks or

sensor networks.

The transmissions can be performed in broadcasting and relaying phases over

time orthogonal channels through conventional half-duplex relaying, which is

easy for implementation. Generally, relaying strategies can be either decode-

and-forward (DAF) or amplify-and-forward (AAF). In DAF relaying systems,

the relay fully decodes the broadcast signal and retransmits the decoded symbol

to the destination [24]. In contrast, AAF relaying systems simply amplify the

broadcast signal and forward it to the destination, which may therefore include

any noise from the source to relay link. Performance bounds for two-way half-

duplex AAF relaying techniques have been studied in [25]. Distributed STBC

(D-STBC) can achieve significant diversity gain when applied either at end ter-

minals, each equipped with more than one antenna, or at multiple relay nodes so

that a transmit diversity order is achieved [26].



1.1. MIMO Systems 6

STBC

encoder

IFFT
and
CP

FFT
andP/S S/P

channel

estimation

STBC

decoder
CP

remove

Figure 1.3: A basic MIMO OFDM structure.

1.1.2 MIMO OFDM

The benefits of narrowband MIMO techniques can be utilised for wideband or

alternatively broadband communication systems when coupled with multicarrier

transmission. Given the frequency selectivity of the broadband channel, the ba-

sic idea of multi-carrier transmission is to turn the wide-band frequency selective

wireless channel into a set of frequency-flat narrowband channels. As a con-

sequence, the complexity of any equalisation technique for stationary frequency-

selective channel reduces considerably to a single tap channel equaliser [27] [28]

[29].

The combination of MIMO techniques with OFDM is very powerful, a basic

MIMO OFDM structure based on space-time block coding (STBC) is shown in

Fig. 1.3. OFDM forms the basis of wireless local area network (WLAN) standards

IEEE 802.11a, IEEE 802.11g, mobile-WiMAX, IEEE 802.16e, and the downlink

of the 3GPP long term evolution (LTE). The main principle of OFDM is to time-

multiplex data over a channel. The time-multiplexed system is characterised by

system matrix, which through the inclusion of a cyclic prefix (CP) the matrix

becomes circulant. The resulting circulant matrix is then decoupled through

IFFT/FFT operation in the transmitter and receiver respectively. This works as

long as the cyclic prefix is more or equal to the order of the channel and is able
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to suppress both ISI and ICI in the case where OFDM is perfectly synchronised.

In the case of synchronisation errors or transmission over a doubly-dispersive, the

system is no longer orthogonal and the resulting ISI and ICI need to be taken

into account.

1.1.3 Transmit-Diversity

Antenna diversity effectively mitigates the adverse impact of multipath fading in

MIMO channels. The transmission performance over a Rayleigh fading wireless

channel is significantly degraded in a deep fade even at high transmitted power.

Antenna diversity techniques, which make use of an array of spatially separ-

ated antennas, can protect against deep fades [30]. Spatial diversity gain due

to redundancy, is characterised by the number of independently fading branches

between different transmit-receive antenna pairs, known also as diversity order,

and is equal to the product of the number of transmit and receive antennas.

Transmit diversity is applicable to channels with multiple transmit antennas.

This technique has been widely adopted in practice and has become an active

research area [15]. The drawback of receive diversity is that most of computational

burden is on the receiver side, which may incur high power consumption [31].

One of the attractive ways to exploit the multiple transmit antennas is to use

STBC [32] [33]. STBC requires CSI knowledge and their combining at the receiver

gives full diversity gain. Moreover, if transmitter knows the CSI, adaptive STBC

(ASTBC) can further maximis the SNR at the receive antenna by weighting each

transmit antenna’s signal with the conjugate of the respective channel coefficient

and gives maximal ratio combining (MRC) performance [34].

The common combining scheme for STBC is a matched filter (MF). This

maximises SNR of desired signal in additive white Gaussian noise such that the

resultant power of the signal at the receiver is maximised. Therefore, received
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signals are combined coherently in presence of known CSI to the receiver. Which

requires CSI to enhance system performance by given that independent received

signals with different amplitudes and phases as determined by the propagation

conditions [35]. Transmit diversity using STBC can be advantageous to offer a

diversity gain with a simple implementation for MIMO system.

1.1.4 Space-Time Block Coding (STBC)

STBC is a MIMO transmit strategy which exploits transmit diversity. For STBC,

data symbols are encoded in both the time domain and the spatial domain. Ori-

ginally proposed by [32] orthogonal STBC (O-STBC) for two transmit antennas

and one receive antenna, can achieve full diversity gain and code rate one. The

scheme known as Alamouti STBC is easy to implement and use, and as a result

has been included in e.g. the wideband-code division multiple access (W-CDMA)

standard [36]. Generalisations of Alamouti’s STBC in [37] are the case of three

antennas or more with code rate less than one. Such block codes and their max-

imum likelihood (ML) decoding metrics have been presented in [37] [33].

Space time trellis coding (STTC) can achieve both coding and diversity gain,

but this advantage is achieved with higher encoding and decoding complexity

where transmitter and receiver perform in more complicated way. In contrast,

O-STBC is designed such that the transmitter has no knowledge of the CSI and

the receiver has a low complexity decoding. Further, the extended orthogonal

STBC (EO-STBC) for more than two transmit antennas can provide diversity

plus an additional array gain by exploiting CSI at the transmitter side with lower

complexity than STTC.

O-STBC performance can be further improved by incorporating CSI know-

ledge that can be exploited at the transmitter side, such as precoded Alamouti

and EO-STBC with optimum beamsteering angles [38].
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1.1.5 Mobile Wireless Channel

The performance of mobile communication systems depends to a large extent on

the nature of the wireless channel [39], which impairs the signal by a number

of effects, including channel noise, time-selective fading, and frequency-selective

fading.

Channel noise is undesired random disturbance of received signal, which can be

considered here as linear addition of white noise with a constant spectral density

so called additive white Gaussian noise (AWGN). This can be represented by a

random constant complex-valued coefficient, where its real and imaginary parts

are the independent and identically-distributed (i.i.d.) Gaussian random variables

with a zero mean and variance of σ2.

The variation of the signal amplitude over time known as temporal fading

can be broadly classified into two different types; long-term fading and short-

term fading. Long-term fading is caused by path loss due to distance as well as

shadowing by large objects, which results in reflection, diffraction, and scatter-

ing [40]. Short-term fading refers to rapid variation of signal levels caused by

fluctuations of constructive and destructive interference of multiple propagations

paths over short distances. The used channels over mobile transmission model are

time-varying. Depending on the mobile speed, the maximum Doppler spread is

inversely related to the channel coherence time and quantify the time selectivity

of the channel.

The system with high data rates in mobile communications is typically affected

by multi-path with delay spread relative to the symbol duration, which is inversely

related and quantify the frequency selectivity of the broadband channel. The

received signal over individual path is represented by the relative power of each

path with respect to the power of the earliest path, which can be modelled by

the power delay profile (PDP).
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In doubly-dispersive channel, the time-dispersion can be modelled as a tap

delay line (TDL) with power delay profile (PDP) such as in [41]. Moreover, Dop-

pler spectrum determines the frequency-dispersion that can be modelled using

filtering Gaussian white noise (FWGN) or Jake’s models. Jake’s model has been

originally developed for the hardware simulation, where a large number of si-

nusoids have to be added to approximate the Doppler spectrum for a Rayleigh

fading channel. Each complex sinusoid weighted to generate the desired Doppler

spectrum while the FWGN is implemented by appropriately designed filters to

capturing the important first and second order channel statistics. For spatially

uncorrelated channel, the output of independent FWGN generators is multiplied

by each tap power of PDP to produce coefficients of the channel impulse response.

1.2 Motivation of Research

This research is directed at applying closed loop EO-STBC over time-varying

channels for a point to point [42] [38] [43] and for relaying system [44] [45]. In

particular, aim to enhance the diversity gain in the presence of quantised feedback.

Therefore, the investigations, enhancements, and modifications that are required

to achieve low computational complexity will be addressed.

One of the design difficulties of EO-STBC systems with quantised feedback

is to achieve near optimum performance using only one or two bits per feedback

parameter. This topic has received attention in quasi-static fading channel condi-

tions, where [46] achieves enhanced performance compared to open-loop scheme

performance with two feedback bits. Here, the first objective is to investigate the

effect that quantisation in the feedback channel has on the system performance.

Secondly, considering slowly time-varying channel conditions and motivated by

the smooth evolution of channel coefficients over time, we aim to attain max-

imum gain by developing a novel differential feedback. Moreover, due to limited
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feedback bandwidth we are looking to reduce feedback bits to only one bit for

each feedback parameter compared to [46]. This design with near optimum per-

formance and very low feedback overhead is an attractive option to the practical

wireless applications.

Channel state information (CSI) should be available at the receiver in order to

calculate a suitable set of steering angles estimation. Therefore, the investigation

of channel and tracking schemes need to be considered. Based on the smooth

evolve of channel coefficients over time, we have followed channel estimation and

tracking scheme based on the Kalman filter, which performs joint channel track-

ing and EO-STBC data detection. The Kalman filter tracking efforts are aided by

periodically injected pilot symbols for training to prevent divergence. This scheme

is referred to as decision-directed (DD) updating [47] [48] [49]. The smooth chan-

nel variation motivates the use of a higher order auto-regressive model (AR-M )

within the Kalman filter for a priori prediction step within DD estimation method.

Simulation results indicate that using of second order AR can further improve the

performance for a longer tracking period over standard first order AR model used

in [49].

In frequency-selective channel conditions, narrowband EO-STBC can be ap-

plied within a multicarrier system. Cross-talk between subcarriers due to syn-

chronisation errors or time variation of the channel has motivated cross-talk de-

tectors for EO-STBC receiver. We aim to applied these detectors over near-

stationary channel conditions for enhancing the diversity gain of an closed-loop

EO-STBC multicarrier system.

Additionally, for non-stationary channel conditions, we aim to generalise stand-

ard OFDM multicarrier using DFT/FFT operation to one based on the fractional

Fourier transform (FrFT).
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1.3 Research Contribution

The contributions of this thesis are concerned with a simple EO-STBC scheme

with two angles feedback for four transmit antennas and one receive antenna.

We force our contributions for real environment of wireless mobile network when

transmitting is performed over time-varying channel, with realistic Doppler spreads.

Therefore, they are listed as follows:

1. A new feedback scheme applying differential feedback is implemented in

Doppler-fading environments and then compared to the previous uniform

quantisation feedback. In order to evaluate the proposed scheme, diversity

and array gain with various feedback bits for the uniform quantisation feed-

back are conducted through simulation. Moreover, a mathematical formula

for the maximum attainable gain is derived. This maximum attainable

gain is used as benchmark to show the limitations of uniformly quantised

feedback. The design parameters that affect the differential feedback in the

optimum case, the difficulties in implementation and the required processing

are described in details. Near optimum performance and a significant fur-

ther reduction in feedback overhead compared to [46] can be achieved by

our proposed scheme.

2. A Kalman filter tracking technique with an auto-regressive AR-2 model

is proposed for combining differential feedback with channel estimation in

the presence of beam-steering. The main difficulties in reliably tracking

the channel coefficients arises from the fact the channel coefficients are seen

with beamsteering angles applied, and only through the EO-STBC decoding

process. The later, with its processing across two successive symbol periods

introduces a greater degree of time variation than what experienced in a

single symbol period. This leads to adaptations of the Kalman technique
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specific to our EO-STBC problem.

3. The cross-talk detectors for near-stationary channel conditions proposed

in [3] are adopted here for a multicarrier system FrFT-OFDM based on

closed-loop EO-STBC transmission. In conventional O-STBC decoding,

the channel is assumed stationary over two time slot. However, in the

framework of a near-stationary channel, ICI terms can be ignored by using

only the elements on the main diagonal of the channel matrix, and thus

considered as additive noise. Motivated by a related approach for Alamouti

OSTBC in [3] using a receiver based on cross-talk detectors, we adopt this

idea for open-loop and closed-loop EO-STBC schemes in order to maximise

both diversity and array gain.

4. An equalisation scheme for non-stationary doubly-dispersive channel con-

ditions is proposed which aims to mitigate ISI and ICI in fast time-varying

environment. We use a minimum mean square error (MMSE) equaliser.

This equaliser increases the receiver complexity, but removes the need for

feedback of angles to the transmitter. Moreover, near-banded structure

of the resulting equivalent channel matrix of the FrFT-multicarrier system

admits MMSE equalisation with low complexity using a recently proposed

least squares minimum residual (LSMR) implementation with a consider-

ably lower number of iterations compared to alternative state-of-the-art

techniques.

1.4 Thesis Organisation

An introduction and brief summary of MIMO systems, space-time coding, and

mobile wireless channel has been presented in Chapter 1. The remainder of the

thesis is divided into the following additional chapters.
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Chapter 2 provides an overview of precoded Alamouti as well as EO-STBC

schemes [38]. Closed-loop techniques associated with EO-STBC are presented,

and the signal model throughout the forward system structure and reverse feed-

back link is reviewed. In this context, one and two-phase feedback methods are

evaluated with basic uniform quantised feedback for various number of feedback

bits [46]. BER performances of Alamouti, precoded Alamouti, QO-STBC, and

EO-STBC systems are compared.

Chapter 3 proposes a new feedback scheme based on differential encoding

that aims to achieve near optimum performance while reducing feedback bits.

The maximum diversity gain of EO-STBC for a four transmit antenna system

is derived. We investigate how the smoothness of channel coefficients translates

into the smoothness of feedback angle trajectories, and how in turn smoothness of

the feedback angle trajectory in EO-STBC affects the implementing of proposed

differential feedback scheme. Therefore, the impact of Doppler spread and vari-

ation of angles is evaluated. Before investigating the performance of EO-STBC

with the proposed scheme, step size optimisation of coders under Doppler spread

constraints is conducted through simulations. The results show that the proposed

scheme is a powerful tool when compared to non differential feedback scheme.

Chapter 4 addresses linking between differential feedback and channel estim-

ation, and presents approaches to channel estimation and tracking via a Kalman

filter employing a DD estimation method, which can offer symbol by symbol joint

decoding and tracking. To take the time-varying nature of the channel into ac-

count, a Kalman model for the specific characteristics of a pre-steered EO-STBC

encoded channel is presented. The benefits of the proposed scheme are highlighted

in simulations, and discussed.

Chapter 5 proposes the enhancement of the EO-STBC when transmitting over

a doubly-dispersive channel where the frequency selective nature of the channel
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favours the combination with a multicarrier approach such as OFDM. In near-

stationary channel condition scenario, cross-talk receivers in [3] have been used for

an EO-STBC scheme. However, for non-stationary channel conditions, OFDM

loses its orthogonality, resulting in severe ICI. This is addressed firstly by the gen-

eralisation of OFDM to FrFT-based multicarrier approaches, which can provide

better resilience in the non-stationary case. Secondly, an MMSE equalisation

scheme is adopted whos lower complexity in the FrFT due to an approximation

of the channel matrix as banded matrix is complemented by a recently proposed

iterative LSMR algorithm which is suited to solve sparse equalisation problems.

Simulation results are presented, highlighting the potential performance improve-

ments under the consideration of computational complexity.

Chapter 6 includes a summary and conclusions, along with a suggestion of

potential areas for future work.



Chapter 2

Space-Time Block Coding

Exploiting CSI at the

Transmitter Side

This chapter provides an overview of Alamouti orthogonal space-time coding (O-

STBC) schemes that exploit channel state information (CSI) at the transmitter in

order to further improve their performances as compared to non-CSI approaches

in terms of bit error ratio (BER). In particular, we review an extended orthogonal

STBC (EO-STBC) system whos diversity gain can be enhanced by appropriate

beamsteering. Depending on the availability of CSI at the transmitter, the phase

angles used for beamsteering are either calculated locally at the transmitter or

need to be fed back in a closed-loop architecture from the receiver. Such EO-

STBC systems with phase rotation will be used for the remainder of this thesis

with the aim to achieve near optimum performance with a minimum feedback

overhead.

The organisation of this chapter is as follows. Sec. 2.2 introduces Alamouti’s

STBC code. Then, the basics of a precoded Alamouti scheme are presented in

16
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Sec. 2.3. After that, in Sec. 2.4 EO-STBC with single phase and two phase

rotation algorithms are reviewed based on optimum feedback. Sec. 2.5 compares

the various approaches in simulations in terms of BER performances using BPSK

for simplicity and without loss generality, and Sec. 2.6 summarises the chapter.

2.1 Introduction

Space-time block coding (STBC) is a MIMO transmit strategy which exploits

transmit diversity. Amongst various STBC schemes [32] [37] [33], Alamouti or

orthogonal STBC (O-STBC) for two transmit antennas has low decoding com-

plexity, and with a complex constellation, it can achieve full diversity gain at

a code rate equal to one. When extending O-STBC to 3 or more transmit an-

tennas, it is no longer possible to simultaneously achieve both full diversity gain

and full code rate, resulting in codes rate lower than one [37]. However, [38]

have presented a simple design for group-coherent codes based on an extension

method to utilise STBC codes for more than two transmit antennas referred as

extended orthogonal STBC (EO-STBC). In EO-STBC, the rate loss is replaced

by a marginal loss in the form of feedback, which extends the Alamouti scheme

to more than two antennas while preserving full diversity benefits, full data rate,

and low decoding complexity.

Linear precoding with different matrix sizes can be combined with STBC

to efficiently improve the diversity order of the MIMO system [16]. Such lin-

ear precoding matrices based on the full CSI are quite time-consuming and not

straightforward for the general MIMO case [50]. However, an approach based on

the codebook that is shared by the transmitter and receiver, can solve the Grass-

mannian packing problem that allows to condense a set of unitary matrices that

can be used for precoding to only few parameter [51] [52] [53]. Many studies have

been carried out to find low rate feedback methods, one particular design method
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is to use unitary linear precoding matrices such as the Fourier, Vandermonde

or complex Hadamard matrices [54]. Further, [55] has proposed a suboptimal

practical design method derived from a DFT matrix modified by a codebook ap-

proach and is popularly used in e.g. the long term evolution (LTE) standard using

a coarse code book approach [56]. However, a simple phase rotation scheme based

on feedback has been widely used in different STBC approaches such as [42] in

order to obtain full diversity gain. Phase feedback has been suggested as a way

to combine space-time block codes over groups of antennas to ensure the full di-

versity advantage from an arbitrary number of transmit antennas at full rate [38].

Thus, phase rotation can provide a significant improvement in BER performance

of space-time coded systems.

Quasi-orthogonal STBC (QO-STBC) has been introduced as a new family of

STBCs. These codes achieve full rate at the expense of a slightly reduced diversity

gain [33]. The cause of the diversity loss is due to some coupling term between

the estimated symbols, since these codes typically introduce interference require

decoders with high complexity. However, constellation rotation was proposed

for QO-STBC in order to mitigate interference between symbols to attain full

code rate and full diversity [57] at the cost of an increase in system complexity.

Moreover, construction of QO-STBC approach with minimum decoding complex-

ity has been proposed in [58]. Depending on the phase feedback, QO-STBC using

four transmit antennas achieves full diversity gain and full code rate [42].

It is beneficial to achieve better system performance with a lower feedback

rate and fewer computations. Most closed-loop diversity techniques require the

feedback information to be complex-valued matrices or vectors of the quantised

channel state information (CSI) [55]. With the availability of quantised feedback

with finite rate, closed loop transmit diversity schemes for five or six transmit an-

tennas have been proposed in [59]. Adaptive STBC (ASTBC) uses a number of
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feedback bits B to adjust the power of each transmit antenna. This technique in

general requires B = NT log2 (L) bits of feedback where NT is the number of trans-

mit antennas, and L denotes the number of quantisation levels [14]. Therefore

some bandwidth in the reverse link will be consumed by the feedback informa-

tion. To maximise bandwidth efficiency, the feedback rate from the receiver to

the transmitter, should be kept as small as possible. Moreover, the computational

complexity increases with the number of transmit antennas.

In previous work on ASTBC systems over quasi-stationary channels, where the

same symbols are transmitted from all the transmit antennas, phase constraining

feedback is proposed in [60]. In the reverse link, a finite rate feedback can be used

to return an appropriate phase for each antenna. In order to reduce feedback

bits, a quadrant phase constraining feedback method can be computed at the

receiver based on the phases ϑi, i = 1 · · ·NT of the estimated CSI. The angles’

differences, restricted to |∆ϑij | ≤ π
2

i 6= j, can be fed back with only 2NT −2 bits

of feedback information. Systems with NT transmit antenna achieve enhanced

system performance with less feedback information compared to ASTBC in [14].

EO-STBC for an arbitrary number of transmit antennas inherits low decoding

complexity and also can achieve rate one coding, and full diversity gain plus array

gain. EO-STBC replaces the bandwidth rate loss of O-STBC by a marginal loss in

the form of feedback, while still preserving full performance [38]. Closed loop EO-

STBC has been proposed in [46] for 4 transmit antennas and one receive antenna

using a phase beamsteering that provides an improvement in BER performance

with less feedback information over above the ASTBC systems. Moreover, the

bandwidth loss due to feedback is negligible compared to O-STBC are equipped

with four transmit antennas and use code rate 1/2 .

EO-STBC is therefore is a promising technique with one or two phases feed-

back using 4 transmit antennas, which can achieve better system performance
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Figure 2.1: A block diagram of the Alamouti space-time scheme.

with lower a feedback rate and lower computational complexity than other four-

antenna STBC schemes. In this thesis, we will focus on advancing EO-STBC

techniques, firstly in terms of further reducing feedback aiming to minimise per-

formance loss, and secondly by introducing EO-STBC schemes suitable for time-

varying and ultimately doubly-dispersive channels. As a foundation for this work,

the remainder of this chapter will focus on the review of various STBC approaches

that are relevant in the context of our proposed schemes.

2.2 Alamouti Scheme

In this section, we briefly review the well-known Alamouti O-STBC scheme [32]

for two transmit antennas and one receive antenna as shoen in Fig. 2.1, which

is designed for an open loop scheme over quasi-stationary blocks. During the

first time period, symbols s1 and s2 are sent from transmit antenna 1 and 2

respectively. Then,−s∗2 and s∗1 are sent from transmit antenna 1 and 2 respectively
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during the second time period, which can be described by a code matrix, where

the columns of the matrix represent the transmit antennas, and the rows are the

time (symbol) periods as

S =





s1 s2

−s∗2 s∗1



 . (2.1)

Matrix in (2.1) satisfies the following constraint,

SSH =
(

|s1|2 + |s2|2
)

I2, (2.2)

where I2 is a 2 × 2 identity matrix. This property enables the receiver to detect

s1 and s2 separately by a simple operation [32]. When the single receive antenna

case is considered with a quasi-stationary channel over one STBC-block, assuming

hi, i = 1, 2, the receiver collects samples over two successive time slots as

r1 = h1s1 + h2s2 + v1

r2 = −h1s
∗
2 + h2s

∗
1 + v2

(2.3)

which can be stacked into a 2×1 vector as





r1

r2



 = S





h1

h2



+





v1

v2



 , (2.4)

where S is the code matrix in (2.1), and [ v1 v2 ]T is the equivalent noise vector

over two successive time slots. The noise samples are independent, zero-mean

circularly symmetric and Gaussian additive white. Alternately, by conjugating

the second row, this system of equations can be represented equivalently as





r1

r∗2



 = H





s1

s2



+





v1

v∗2



 . (2.5)
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The equivalent channel matrix has an orthogonal structure [32], which is due to

the fact the transmitted symbol block has an orthogonal structure, and can be

written as

H =





h1 h2

h∗
2 −h∗

1



 . (2.6)

Assuming perfect channel knowledge at the receiver, symbols can be decoded

via a matched filter by applying multiplication of r by HH

ŝ = HHr =





|h1|2 + |h2|2 0

0 |h1|2 + |h2|2









s1

s2



+ ṽ, (2.7)

which is equivalent to maximum ratio combining. From (2.7), it can be seen that

the noise samples get combined incoherently as ṽn = HHvn , while symbols can be

detected coherently. Moreover, the decoupled diagonal structure of (2.7) means

that the two symbols can be detected independently, and transmitted symbols

are weighted by an on-diagonal element α = |h1[n]|2 + |h2[n]|2, which represent

the diversity gain. The use of Alamouti can be generalised to cases with more

than one receive antenna [37]. Therefore, Alamouti O-STBC has the benefits of

both a simple decoding structure and a full diversity gain with code rate one.

2.3 Precoded Alamouti

One of the numerous extensions to STBC is the use of precoding matrices at the

transmitter side called precoded Alamouti, which is of interest here for comparing

with EO-STBC with beamsteering angles. A precoder can be combined with

Alamouti codewords to improve the space-time diversity order of the multiple

antenna system, whereby the codeword matrix is multiplied by the precoding

matrix before being passed to the transmit antennas.
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Consider the MISO system with NT antennas, that is, h ∈ C
1×NT . Let S

denote a matrix of STBC codewords with a length of M and M ≤ NT . In

the precoded Alamouti system, let the codeword S∈ C
M×M is multiplied by a

precoding matrix F ∈ CNT×M . This precoding matrix is chosen from a codebook

F =
{

F1 F2 · · · FL

}

. Note that the received signal for a given channel can

be expressed as

r = hFlS+ v, (2.8)

where v ∈ C
1×M is zero mean uncorrelated complex Gaussian noise with variance

σ2
v . The objective is to select an appropriate precoding matrix Fopt that improves

the overall system performance. Using the orthogonal property of the Alamouti

code, a selection criterion can be implemented by computing a matrix multiplic-

ation and Frobenius norm for each of the L codebook matrices. This leads to

choose the precoder according to

Fopt = arg max
Fl∈F

{

‖HFl‖2F
}

. (2.9)

2.3.1 Precoding with DFT Matrices

In practical design cases, a suboptimal method for an arbitrary NT transmit

antennas can be used for a codeword length M code-book and size L with a

number of feedback bits B = log2 (L). The code book F uses unitary linear

precoding matrices constructed with discrete Fourier transform (DFT) matrices

[55]. The code book F can be given by considering codebooks of the form

F =
{

FDFT FDFT · · · ΘL−1FDFT

}

, (2.10)
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whereby the first codeword FDFT is obtained by selecting M columns from the

DFT matrix, and further Θ is a unitary diagonal matrix. This matrix Θ is given

by

Θ = diag
{

ej2πu1/L ej2πu2/L, · · · ej2πuNT
/L

}

, (2.11)

where variables {ui} , i = 1 · · ·NT referred as rotation vector. Given the first

codeword WDFT, the remaining (L − 1) codewords are obtained by multiplying

FDFT by Θi, i = 1, 2, · · · , L − 1. The values of the rotation vector are to be

determined such that the minimum chordal distance is maximised, which is the

distance between two points located on a curve. This is given as

u = arg max
{u1 u2···uNT

}
min

l=1,2,···L−1
d
(

FDFT,Θ
lFDFT

)

. (2.12)

Thus, there are different LNT possibilities for Θ that must be checked. Clearly,

this method requires the feedback bits B = NT log2 (L). Alternatively, reduction

in the feedback overhead can be made through the EO-STBC transmission scheme

designed based on the phase angle feedback.

2.4 ExtendedOrthogonal-Space-Time Block Codes

Among various possible methods that use CSI for the diversity system, we will

focus on an extension method that can be used for systems with an arbitrary

number of transmit antennas proposed in [38]. It is worth pointing out that

EO-STBC can balance between the system performance and the computational

complexity related to the feedback processing as will be shown later. One partic-

ular EO-STBC design extends Alamouti O-STBC to 4 transmit antennas. In this
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case, the Alamouti codeword in (2.1) is repeated twice such that the combined

diversity gain and array gain can be achieved. The EO-STBC code word matrix

can be written as

S2 = ζ





s1 s1 s2 s2

−s∗2 −s∗2 s∗1 s∗1



 , (2.13)

where ζ = 1
2
is a constant normalisation factor. Note that if we assume that the

channel coefficients over two consecutive symbol periods are time-invariant then

the EO-STBC codeword S2 in (2.13) is orthogonal. In this case, symbols can be

detected independently using (2.7). The 4 antennas channel paths hi, i = 1 · · · 4,
are assumed to be independent zero-mean complex Gaussian random variables

with variance σ2
h and considered constant over two time slots.

The received signal collected over two time slots is the sum of the propagation

signals from all 4 transmit antennas weighted by the channel coefficients and

additive white Gaussian noise (AWGN) with variance σ2
v . The received signal

over two time slots is

r1 = 1
2
[h1s1 + h2s1 + h3s2 + h4s2] + v1 ,

r2 = 1
2
[−h1s

∗
2 − h2s

∗
2 + h3s

∗
1 + h4s

∗
1] + v2 .

(2.14)

Similar to (2.4) and (2.5), we can rewrite (2.14) into matrix notation as





r1

r∗2



 = H





s1

s2



+





v1

v∗2



 , (2.15)

where v = [ v1 v∗2 ]T is the equivalent noise vector, and H is the equivalent
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channel matrix which can be implemented as

H =





h1 + h2 h3 + h4

h∗
3 + h∗

4 −h∗
1 − h∗

2



 . (2.16)

Here H contains channel coefficients corresponding to hn, n = 1 · · · 4. Decoding

can be performed through simple matched filtering as in (2.7). In STBC systems,

the channels are normally considered block stationary. Writing the diagonal ele-

ments of HHH in terms of diversity α and array gain β, we obtain

HHH =
1

4
(α + β) I2 (2.17)

α =
4

∑

m=1

|hm|2 +
4

∑

m=3

|hm|2 (2.18)

β = 2ℜ{h1h
∗
2 + h3h

∗
4}, (2.19)

where | · |2 denotes the modulus squared of a complex number and ℜ{·} the

real part. It is clear that interference between channels introduced by β can be

forced to be positive with optimum angles feedback based on phase rotation at

the transmitter in which case a significant array gain can be achieved [46].

2.4.1 Closed-Loop Scheme

2.4.1.1 Single-Phase Rotation

Based on feedback from the receiver, a single rotation angle ϑ is applied to rotate

signals from the first and third antennas. The actual effect of the angle ϑ can be

absorbed into the channel coefficients because the phase rotation on the channel

coefficients is equivalent to rotating the phases of the corresponding transmitted

symbols. Hence, the equivalent channel matrix H with a single absorbed rotation
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angle ϑ becomes

H =





ejϑh1 + h2 ejϑh3 + h4

e−jϑh∗
3 + h∗

4 −e−jϑh∗
1 − h∗

2



 . (2.20)

With HHH being diagonal independent of the rotation angle ϑ, the array gain β

in (2.19) can be driven to a positive value if we select ϑ such that all the summed

elements of β are positive,

β = 2ℜ{(h1h
∗
2 + h3h

∗
4) e

jϑ}. (2.21)

It can be seen that β is to be positive with a real part when the feedback angle

ϑ is determined as

ϑ[n] = −∠{h1h
∗
2 + h3h

∗
4}, (2.22)

where ϑ ∈ [0, 2π) is to be fed back from the receiver to the transmitter. This

guarantees a positive feedback array gain, which however would generally be lower

than maximum attainable gain. This method has been proposed to reduce the

feedback whereby the transmitter needs to provided only one phase angle.

2.4.1.2 Two-Phase Rotation

It is possible to further increase the β compared to Sec. 2.4.1.1 by rotating the

signals transmitted from the first and third antennas independently by ensuring

that the angles ϑ1 and ϑ2. This will provide advantages in terms of diversity and

array gain, but requires to feedback the two angles.

Below we demonstrate how is technique can be applied to 4 transmitter anten-

nas. The equivalent channel matrix H with absorbed ϑ1 and ϑ2 can be expressed

as
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H =





ejϑ1h1 + h2 ejϑ2h3 + h4

e−jϑ2h∗
3 + h∗

4 −e−jϑ1h∗
1 − h∗

2



 . (2.23)

Consequently, factor β can be written as,

β = 2ℜ{h1h
∗
2e

jϑ1}+ 2ℜ{h3h
∗
4e

jϑ2}, (2.24)

where the phase rotations for antenna one and three essentially result in a new

set of channel coefficients. It can be seen that β is maximum when the feedback

angles ϑ1 and ϑ2 are determined as

ϑ1 = −∠{h1h
∗
2} (2.25)

ϑ2 = −∠{h3h
∗
4}. (2.26)

According to [1], the optimum steering parameters can be selected and appropri-

ately fed back to the transmitter, e.g. via a quantised feedback link. Next we are

going to find the combined diversity and array gain attainable with B information

bits per feedback angle.

2.4.1.3 Uniform Quantisation

Due to the bandwidth limitations, generally, feeding back the exact actual value

of the phase angles requires too much a feedback overhead. Therefore, quantised

feedback needs to be practically applied. A quantiser, as defined here, acts as a

function that maps a real valued phase angle onto a set of discrete finite values,

where with B feedback bits we can realise only 2B level.

In this approach, phase angles are computed at the receiver side, and rather

than feeding back the full CSI, only B feedback bits containing the quantised

phase values are returned. The expression to obtain uniform quantisation across
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Figure 2.2: Comparing of combined diversity and array gain for a 4× 1 EO-STBC system for
quantised feedback of the optimum single angles ϑ and and two angles{ϑ1, ϑ2} with variable
word length B.

the entire range ϑi ∈ [−π; π) can be viewed as

{

ϑ̄i

}2B

i=1
=

{

(2b− 1)π

2B

}

∀i ∈ {1, 2}, b = 0, 1, . . . (2B − 1). (2.27)

With the above analysis, the feedback angle ϑi is determined at the receiver

based on the estimated channel. The receiver selects the closest index, and B

information bits are returned, to be used as beamsteering angles at the transmitter

side.

2.4.1.4 Comparing Phase Rotation Beamsteering

This section presents simulation results for quantised feedback of one or two phase

feedback using B bits. Simulation are performed over of an ensemble of 105, 4×1

MISO channels with uncorrelated complex Gaussian coefficients, variance σ2
h = 1.
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Fig. 2.2 shows the effect of increasing the word length B from 0 bit (open loop

scheme) to 8 bits on combined diversity and array gain. For B = 0, the ensemble

averaged results show that the open loop scheme only provides diversity gain.

For higher B, the maximum attainable gain is around 7, which can be reached

by the two phase feedback, while single phase feedback method consistently only

reaches a lower diversity. The gain of around 7 is the maximum value attainable

by two phase feedback, which consists of a maximum diversity gain equal to 4,

and an array gain with maximum value of around 3.

There are two choice of feedback single or two angles, when using single phase

aim for reducing feedback bits B, and two phases can achieve maximum attainable

gain. We concentrate our attention on a new differential feedback can reduce

feedback bits B, for the sake of approaching the maximum attainable gain, two

phase feedback will be considered in Chapter 3.

2.5 Comparison of BER Performances

In this section, we present simulation results for comparing BER performances

with BPSK for systems introduced in this chapter. Channels are considered

to be spatially uncorrelated whose coefficients are independent and identically

distributed (i.i.d.) complex Gaussian random variables with zero mean and unit

variance. Moreover, perfect channel estimation is assumede at the receiver.

2.5.1 BER Performance of Receive and Transmit Diversity

Schemes

Firstly, we compare and contrast transmit and receive diversity. Fig. 2.3 shows the

BER performances of various receive and transmit diversity schemes for BPSK

systems. It can be seen that Alamouti O-STBC achieves the same diversity order
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as 1×2 SIMO with MRC technique. Moreover, we can see that the 2×2 O-STBC

technique achieves the same diversity order as 1×4 SIMO with MRC technique.

However, it should be noted that MRC technique outperforms O-STBC technique

due to a total transmit power split into each antenna by one half in the O-

STBC transmission scheme. Compared to SISO channel performance, receive

and transmit diversity schemes with MIMO channel can be effectively used for

improving the BER performance.

2.5.2 BER Performance of Precoded Alamouti

Fig. 2.4 shows the BER performance of precoded Alamouti O-STBC using the

design method in (2.10) with NT = 4, M = 2, and L = 64 as given in [54]. Fig. 2.4

compares the performance of Alamouti O-STBC in [32] to precoded Alamouti

O-STBC in a Rayleigh fading channel. It has been shown that the precoded

Alamouti O-STBC scheme outperforms the traditional Alamouti O-STBC scheme

without increasing transmit power or increasing spectral bandwidth. However, it

may require complete or partial CSI at the transmitter side, which is not easily

achievable in practice mainly due to the limited bandwidth of the feedback link. It

is desirable to maximise diversity gain while reducing the number of feedback bits.

Therefore, EO-STBC with optimum feedback has nearly the same performance

as will be shown below, but with less feedback overhead.

2.5.3 BER Performance of EO-STBC

The feedback approach presented in Sec. 2.4.1.2 can be also applied with full-rate

QO-STBC in order to orthogonalise its channel matrix [42]. Therefore, in Fig. 2.5

we show the BER performance of QO-STBC with optimum two feedback angles

in addition to EO-STBC. This comparison considers open-loop and closed-loop

EO-STBC schemes. The results show that the EO-STBC closed loop scheme
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significantly outperforms the EO-STBC open-loop scheme. In addition, the EO-

STBC closed loop scheme outperforms the closed-loop QO-STBC, whereby both

systems require the same amount of feedback.

2.6 Conclusion

In this chapter, we have introduced Alamouti’s O-STBC system. In particular,

we have considered systems based on the phase angle feedback such as precoded

O-STBC and EO-STBC with optimum feedback. We have provided basic defin-

itions for EO-STBC system, which offers a good trade-off between performance,

complexity, and feedback overhead, and will form the major system to be invest-

igated and further developed in different scenarios.

We observe that with the aid of feedback the studied systems provide a sig-

nificant performance enhancement in terms of BER over standard open loop O-

STBC approaches at the expense of feedback overhead. Single phase and two

phase feedback have been investigated and compared in terms of combined di-

versity and array gain, and results demonstrate that the two phase method can

provide maximum gain with less feedback overhead compared to other types of

transmit diversity system such as precoded O-STBC system.

The next chapter will present a new feedback scheme based on differential

feedback that will be able to achieve near optimum performance with a reduced

number of feedback bits compared to methods reported in this chapter.
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Chapter 3

Differential Feedback Scheme for

EO-STBC System

This chapter shows how to compute the maximum attainable gain for a two-

phase rotated extended-orthogonal STBC (EO-STBC) system. Moreover, the

effect that uniform quantisation in the feedback channel has on the system per-

formance is evaluated and compared through simulations. In particular, this

chapter introduces a new differential feedback scheme, which quantises the relat-

ive difference between neighbours. This scheme is developed to attain maximum

diversity gain, motivated by the smooth evolution of time-varying channel coeffi-

cients. Assuming such a smooth evolution of channel coefficient trajectories, our

objective is to obtain near optimum performance by differential feedback based

on a finite rate feedback. Depending on Doppler spread conditions, it is shown

that with only one bit feedback the proposed scheme can achieve a near optimum

performance even in situations of high Doppler spread.

After the introduction in Sec. 3.1, EO-STBC transmission over a time-varying

channel is outlined in Sec. 3.2, and the maximum gain is analysed. In Sec. 3.3,

differential feedback is presented. The proposed scheme is introduced by checking

35
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how the smoothness of coefficient trajectories translates into smoothness of the

angle in the EO-STBC scheme. Then the possibility of performing differential

encoding assuming perfect channel estimation is outlined. The performance of the

proposed system is benchmarked against standard quantised feedback in Sec. 3.4,

before conclusions are drawn in Sec. 3.5.

3.1 Introduction

In transmit diversity such as for antenna selection, code selection or beam-

steering, feedback has been applied via a reverse link in frequency division duplex

(FDD) mode when the feedback delay is less than the channel coherence time.

Practically, the feedback link has a limited bandwidth so that only a few feedback

bits B are to be returned to the transmitter. Hence, for such applications finite

rate feedback is to be used to reduce the amount of feedback [61], which can

be achieved by a quantised feedback scheme. Differential multilevel quantisation

have been discussed in [62] to reduce the number of feedback bits required. Dif-

ferential pulse code modulation (DPCM) can be used to encode the feedback for

time varying channel information [63]. Depending on maximum Doppler spread,

we discuss the design of the differential quantiser for beamsteering angles such

that the the diversity gain of the extended O-STBC scheme is maximised.

As given previously in Chaper 2, EO-STBC transmission, enhanced by phase

rotation beam-steering, can offer full diversity gain plus additional array gain [38].

In situations with large coherence time [64], instantaneous values of the two phase

angles for beam-steering, can be finely quantised and sent back to the transmitter

over the feedback channel. In [46], it has been shown that the optimum angle

being quantised to B = 2 bits precision in the feedback channel leads to no signi-

ficant degradation over an unquantised, optimal closed loop operation, aiming to

halve the feedback bandwidth compared to [1] without loss in performance. The
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Figure 3.1: EO-STBC system with perfect channel estimation in the receiver to aid symbol de-
tection and computing of the optimum beam-steering angles ϑ1 and ϑ2, which are differentially
encoded and returned to the transmitter.

BER performance of the proposed EO-STBC system is evaluated through simula-

tions. Simulation results over realistic Doppler spread confirm that the proposed

scheme achieves bandwidth savings and near optimum performance over systems

which uses non differential feedback.

3.2 System Model

In this section we introduce the downlink behaviour for point to point trans-

mission. For simplicity, EO-STBC is to be used over four transmitters and one

receiver, giving a model for a MISO system. The feedback link is required to re-

turn information on the steering angles ϑ1 and ϑ2, with which the first and third

antenna signal are modified as required by EO-STBC. By judiciously selecting

these angles based on knowledge of the channel at the receiver, the combined

diversity and array gain of the system can be maximised. Further we consider

that a limited feedback link is available from the receiver to the transmitter in
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the form of a minimum of B bits per frame/channel coherence period.

Consider the point-to-point EO-STBC structure as shown in Fig. 3.1. For

simplicity, let the equivalent baseband forward received signal r[n] at time slot n

be characterised by

r[n] = hT
nΛnsn + v[n], (3.1)

where sn is the transmit data vector, Λn is a unitary diagonal matrix included

feedback angles, and v[n] is zero mean uncorrelated complex Gaussian noise with

variance σ2
v . Further, the MISO channel hn ∈ C4 contains i.d.d wide-sense sta-

tionary (WSS) Rayleigh fading channel, which will be characterised further below.

The transmitting antennas are assumed to be placed sufficiently far apart from

each other so that symbols transmitted from each antenna follow different uncor-

related paths to the receiver. In practice, the transmitting antennas are spatially

correlated by an amount that depends on the propagation environment as well

as on the polarisation of the antenna elements and the spacing between them.

In mobile communications environment, the channel gains are considered time-

variant. We assume a slow fading process as a consequence of the slow motion

of surrounding objects. The channel coefficients in hn = [h1[n] h2[n] h3[n] h4[n]]
T

are varying smoothly over time. Their maximum variation is determined by the

maximum normalised angular Doppler spread ΩD = 2πfD/fs, measured in ra-

dians, with Doppler frequency fD and sampling rate fs. Here fD = vfc/c [Hz],

where v is the mobile speed in meters per second [m/s], fc is the carrier frequency,

and c is the speed of light (3× 108[m/s]). The well known Doppler spectrum [40]

is given by

Ri(e
jΩ) =

∞
∑

m=−∞

E {hi[n]h
∗
i [n−m]} e−jmΩ (3.2)



3.2. System Model 39

=















2

ΩD

√

1−
(

Ω

ΩD

)

2
, |Ω| < ΩD

0 ΩD ≤ |Ω| ≤ π.

(3.3)

Encoding and decoding is processed over two successive symbol periods so that

we consider a transmit vector per time slot that includes four elements one ele-

ment per each transmit antenna. The selection of the transmit vector sn for two

successive time slots is determined by EO-STBC,

sn =
1

2

















s[n]

s[n]

s[n + 1]

s[n + 1]

















, n even , and sn =
1

2

















−s∗[n]
−s∗[n]
s∗[n− 1]

s∗[n− 1]

















, n odd. (3.4)

At the receiver, two successively received samples are collected in a vector





r[n]

r∗[n+ 1]



 = Hn ·





s[n]

s[n+ 1]



+ vn. (3.5)

In (3.5), Hn is the equivalent channel transfer matrix containing linear combina-

tions of the channels and their conjugates. The noise is assumed to be uncorrel-

ated additive Gaussian with variance E
{

vnv
H
n

}

= σ2
vI2. For deriving the max-

imum attainable gain, it is assumed that the channel remains stationary over one

transmit block. In addition, we assume that the receiver can perfectly estimate

the channels from each transmit antenna hn = [ h1[n] h2[n] h3[n] h4[n] ]
T.
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3.2.1 Open Loop Scheme

For the open loop scheme, when transmitting is without beam-steering, the di-

agonal matrix Λn given in (3.1) is a 4 × 4 identity matrix. We assume that the

receiver has perfect knowledge of Hn. This consideration guides the linear decod-

ing process, which can be performed by multiplying the received vector in (3.5)

by HH
n . The equation for estimating the decision variable ŝn from rn is therefore

given by

ŝn = HH
nrn = HH

nHsn +HH
nvn. (3.6)

Since HH
nHn is diagonal, (3.7) can be verified that the code can be decoded with

a simple receiver [32].

HH
nHn =





α + β 0

0 α + β



 . (3.7)

For the on-diagonal terms of (3.7), the diversity gain α,

α =
4

∑

m=1

|hm[n]|2 , (3.8)

is fixed given the channel gains of the MISO system, while β,

β = (h1[n]h
∗
2[n] + h3[n]h

∗
4[n])

+ (h1[n]h
∗
2[n] + h3[n]h

∗
4[n])

∗ , (3.9)

can make a positive or negative contribution, depending on the specific values of

the channel coefficients. If β is positive, it corresponds to a type of array gain.

With z+ z∗ = 2ℜ{z} where ℜ{·} its real part of a complex valued variable z,



3.2. System Model 41

the term β simplifies to

β = 2ℜ{h1[n]h
∗
2[n] + h3[n]h

∗
4[n]}. (3.10)

In (3.8), α is the conventional diversity gain with

E {α} = 4σ2
h (3.11)

based on σ2
h being the variance of a circularly symmetric, complex Gaussian

distributed random channel coefficient.

The additional term β in (3.9), even though E {β} = 0, cannot be directly con-

trolled and will potentially degrade the diversity gain if e.g. its value is negative

for a specific set of channel coefficients. In order to ensure its value is maximised,

the additive components in (3.10) need to be controlled in the transmitter by e.g.

inclusion of appropriate steering angles, whose valued has to be determined at

and fed back from the receiver.

3.2.2 Closed Loop Scheme with Optimum Two-phase Feed-

back

The EO-STBC system includes the selection of feedback angles {ϑ1, ϑ2}, perform-

ing beam-steering at the transmitter based on a precoding matrix

Λn =

















ejϑ1 0 0 0

0 1 0 0

0 0 ejϑ2 0

0 0 0 1

















, (3.12)
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which applies a phase rotation to the first and third transmit antenna signals as

indicated in Sec. 2.4.1.1.

3.2.3 Maximum Attainable Gain

In this section, we derive the maximum attainable gain of the system shown in

Fig. 3.1. Decoding can be performed through simple matched filtering using HH
n ,

which has been shown to be equivalent to ML decoding [65]. Decoding with HH
n

leads to the detected symbol vector





ŝ[n]

ŝ[n+ 1]



 = HnH
H
n





s[n]

s[n+ 1]



+Hnvn (3.13)

= (α + β)





s[n]

s[n+ 1]



+ ṽn, (3.14)

where the noise covariance yields E
{

vnv
H
n

}

= (α + β)σ2
vI . The term (α + β)

reflects the combined diversity and array gain at the receiver with

α =

4
∑

i=1

|hi[n]|2 (3.15)

β = 2ℜ{h1[n]h
∗
2[n]e

jϑ1}+ 2ℜ{h3[n]h
∗
4[n]e

jϑ2}. (3.16)

Equation (3.16) is derived form of (3.10), where the angles ϑi, i = {1, 2} have

been introduced in [1] due to the observation of increasing the combined array

gain and diversity gain beyond a factor of 4by ensuring that the term β is positive

and maximised. Referred to as enhanced EO-STBC in [1], the optimum steering
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coefficients are selected as

ϑ1 = −∠{h1h
∗
2} (3.17)

ϑ2 = −∠{h3h
∗
4}, (3.18)

which maximises the gain β to

max
ϑ1,ϑ2

β = 2|h1| · |h2|+ 2|h3| · |h4|. (3.19)

In the case of selecting ϑi optimally, the mean for E {β} can be rewritten as

E
{

max
ϑ1,ϑ2

β

}

= 4E {|hi| · |hj|} , (3.20)

where hi and hj are circularly symmetric independent complex Gaussian random

variables with variance σ2
h, i.e. ℜ{hi} ∼ N (0, 1

2
σ2
h) and ℑ{hj} ∼ N (0, 1

2
σ2
h), such

that |hi| and |hj| are Rayleigh distributed with scale parameter
√

1
2
σh. Accord-

ing to [66], if Y is the product of P independent Rayleigh distributed random

variables, then the first moment is

E {Y } = (2Pσ2
Y )

1

2 (
√
π/2)P , (3.21)

where σY =
∏P

i=1 σX with σX the scale parameter of the distribution of X .

Therefore, using (3.21) with P = 2 and σY = 1
2
σ2
h, we can write

E
{

α+max
ϑ1,ϑ2

β

}

= (4 + π)σ2
h = 3.1415 · σ2

h , (3.22)

such that by beam steering with two optimally selected angles ϑ1 and ϑ2, the

combined diversity and array gain is almost doubled with respect to the standard

full diversity EO-STBC scheme according to (3.11). This result has also been
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reached experimentally in [1]. Thus the SNR, assuming the total transmit power

to be 4σ2
s , is given by

SNR = (4 + π)σ2
h

σ2
s

σ2
v

. (3.23)

Note that with the optimum feedback chosen as in (3.16), it is possible to max-

imise SNR by just about twice the value of the open loop scheme.

3.2.4 Combined Diversity and Array Gain with Quantised

Feedback

The standard approach to quantising a value is to resolved into a fixed grid. How-

ever, such a process can be coarse and therefore leads to diversity loss w.r.t. (3.22).

Here we compare gain-based uniform quantised feedback with the maximum gain

in (3.22). The maximum attainable gain is achievable if the transmission system

offers perfect feedback of the optimum angle values ϑ1 and ϑ2 to the transmitter,

which is the ideal case derived in (3.2.3).

Fig.3.2 shows both the gain in dependency of the word length B, as well

as the asymptote for unquantised feedback according to (3.22). Comparing this

feedback method with the maximum attainable gain, a significant loss is incurred

for B = 1 while feedback with angles ϑ1 and ϑ2 quickly approaches the asymptote

as B increases. For values B ≥ 7, the system is seen to approach the optimal

performance.

3.3 Differentially Encoded Feedback

In order to save word length B while sacrificing as little performance as possible,

we propose to use differential quantised feedback. For a slowly time-varying

channel, we first investigate whether the smooth variation of channel coefficients

translates into a smooth variation of ϑ1 and ϑ2. Thereafter we discuss differential
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Figure 3.2: Combined diversity and array gain for a 4× 1 EO-STBC system according to [1]
for quantised feedback of the optimum angles ϑ1 and ϑ2 with variable word length B.

coding approaches for both angles.

3.3.1 Doppler Spread and Variation of Angles

In this subsection we investigate the smoothness of feedback angle in a slowly

time-varying system. The maximum rate of change in a channel coefficient hi[n] is

governed by the maximum Doppler shift ΩD. In the time domain, each coefficient

hi[n] follows a smooth trajectory in the complex plane. The trajectory of angles

ϑ1[n] and ϑ2[n] are not as smooth as the coefficients for two reasons. Firstly, the

angle can be prone to phase jumps by 2π, which can be suppressed by unwrapping

the angle suitably. Secondly, if a coefficient trajectory passes close to the origin,

then a rapid phase change by π will be experienced, which cannot be mitigated.
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Figure 3.3: Time-varying optimum angle ϑ1 as a result of fading of the coefficient h1[n] and
h2[n] with ΩD = 0.003π.

3.3.1.1 Unwrapping Angles

As an example, Fig. 3.3 shows ϑ1[n], which is initially restricted to ϑ1[n] ∈ [−π; π),
and as a consequence demonstrates discontinuities which lead to overloading if

encoded differentially. After unwrapping the phase, such discontinuities are sup-

pressed. However at around time instance n = 1250, a rapid change by π can be

observed, which arises from close proximity of a coefficient trajectory, either h1[n]

or h2[n] in the case of ϑ1[n], to the origin, which therefore unwrapping cannot

resolve it.

3.3.2 Differential Coding

Standard differential coding uses a linear predictor, whose coefficients need to

be transmitted along with the residual prediction error. In order to avoid the

overhead of feeding back coefficients, we use a simple difference between adjacent
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 quantiser ∆ϑi[n]ϑ̂i[n]

Figure 3.4: Differential pulse code modulation of the estimated phase ϑi[n] in the receiver.
The residual ∆ϑi[n] is fed back to the transmitter.

∆ϑi[n] ϑi[n]

Figure 3.5: DPCM decoder to recover the angle ϑi[n] from the fed back residual ∆ϑi[n].

samples. Since the word length after quantisation is very short, the encoding will

be based on the quantised difference, using the encoder shown in Fig. 3.4. We

assume that the encoder uses a fixed quantisation step size µ and a fixed word

length B. The corresponding decoder operated in the transmitter is depicted in

Fig. 3.5.

For a short word length B and a small step size µ, the rapid phase change by π

as discussed in Sec. 3.3.1 will lead to a slope overload. However, since such a rapid

change occurs only for a coefficient passing close to the origin, the contribution

to β will be small, and a slope overload leading to an inaccurate angle applied in

the transmitter is very likely to be of little consequence. The optimum step size

value µopt that maximises the combined diversity and array gain, and will depend

on B and the Doppler frequency ΩD which is responsible for the smoothness of

ϑi[n].
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3.4 Simulations and Results

In simulations, we have used a BPSK signal constellation. The realisations of

(4 × 1) MISO channel is spatially uncorrelated and each path coefficients are

modelled as complex zero mean Gaussian random variables with unit variance

and varying over time with maximum variation is determined by the maximum

angular Doppler spread ΩD. Below we first evaluate the best setting for the

quantisation step size prior to embarking on a BER comparison with the existing

scheme in [1] using non-differential feedback.

3.4.1 Step Size Optimisation

The main difficulty in designing a differential feedback system is to determine

the best setting for the quantisation step size. In the absence of a closed form

solution for the optimum setting of the quantisation step size µopt, we resort to

an approximate optimisation based on simulations. The simulation in Fig. 3.6

shows the impact of the word length on the combined diversity and array gain

for differential feedback with B = 1 and B = 2 coefficients for various Doppler

frequencies ΩD. It is evident that for small step sizes, the slope overload leads

to an inability to sufficiently track the changes in ϑi[n]. This has a more serious

effect when the Doppler frequency ΩD is large.

For larger step sizes µ, there is a consistent drop in diversity and array gain

performance across all variations in Doppler frequencies. This is because the

quantisation becomes too coarse to appropriately represent the optimum angles

ϑi[n] regardless of how fast they are changing. Interestingly, for µ = π/2, the

differential feedback will resemble a non-differential feedback with B = 1 bits

returning the values ±π
2
according to (2.27). As evident from Fig. 3.2, the non-

differential feedback system for B = 1 yields a combined diversity and array gain

of approximately 6, which matches the value for µ = π in Fig. 3.6.
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Figure 3.6: Combined diversity and array gain for differential feedback with B bits per angle
ϑi, B ∈ {1, 2}, dependent on the quantisation step size µ simulated over 218 symbols.

In terms of performance, it can be noted that differential feedback with B = 2

coefficients does not provide a large advantage over the case B = 1. The only

noticeable difference in performance occurs for larger Doppler frequencies and

step sizes µ. According to Fig. 3.2, non-differential feedback with two coefficients

provides a combined diversity and array gain of about 6.8. This can only be

reached in Fig. 3.6 for both B = 1 and B = 2 for a Doppler frequency of less

than ΩD = 0.1π with an appropriately selected step size. Therefore, there is no

performance advantage for differential feedback with B = 2 over the case B = 1.

Thus, only the differential case B = 1 will be further investigated in the following.

Tab. 3.1 shows the optimal values for the step size µopt and corresponding diversity

and array gain (α + β) in dependency of the Doppler frequency ΩD, as extracted

from Fig. 3.6.
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ΩD 0.003π 0.01π 0.03π 0.1π 0.3π
µopt 0.0767 0.1514 0.2986 0.6246 1.3305

(α+ β) 7.1314 7.1214 7.0609 6.7778 5.9455

Table 3.1: Optimum quantisation step size µopt for single bit differential feedback of ϑ̂i[n]
based on Fig. 3.6

3.4.2 BER Performance

In the following simulation, the proposed differential feedback scheme with B = 1

is evaluated in terms of its BER performance. As comparison, Fig. 3.7 also

contains the BER curves for the open loop system with a diversity gain of 4, which

is due to the fact that E {β} = 0 , and the non-differential closed loop systems with

B = 1, B = 2, and B → ∞ (no quantisation), yielding combined diversity and

array gains of approximately 6, 6.8, and 4+ π = 3.1415, respectively as shown in

Fig. (3.2). The proposed scheme performs close to the optimum of unquantised

feedback, and significantly outperforms the non-differentially encoded case for

B = 1, requiring the same feedback bandwidth, and outperforming the case of

non-differential feedback with B = 2. Therefore the proposed system performs

better than a non-differential feedback system that requires twice the bandwidth

in the feedback channel.

3.5 Conclusion

In this chapter we have analysed EO-STBC and proposed a new differential feed-

back scheme for extended EO-STBC, for which we have analytically derived the

maximum attainable combined diversity and array gain, agreeing with earlier re-

ported, heuristically obtained results. The differential encoding scheme has been

shown to work well over a range of realistic Doppler spreads. On the analysis

side, we have analytically derived the asymptotically achievable diversity and
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Figure 3.7: Comparison of the BER performance between the proposed scheme with single
bit differential feedback to the open loop system, and a system with non-differential feedback
for ΩD = 0.003π, utilising word lengths B = 1, 2, and B →∞.

array gain, which has confirmed experiments both in the literature as well as

simulations presented here.

In order to efficiently feedback the required beamstearing angles from the re-

ceiver to the transmitter, the smooth evolution of the channel coefficients over

time has motivated a differential encoding scheme. It has been demonstrated

how the smoothness from channel coefficient’s trajectories translates into smooth

feedback angles, and whereby unwrapping of angles is important to avoid dis-

continuities. In order to implement this differential feedback scheme, differential

pulse code modulation (DPCM) encoders were proposed. To develop the DPCM

scheme, an optimum step size was investigated, where the Doppler spread is con-

trolled according to the variations of the feedback angles. Based on simulations,

we have found that the proposed differential feedback scheme can significantly

improve closed loop EO-STBC scheme by halving the feedback bandwidth com-
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pared to existing non-differential approaches with a BER performance that is

close to optimum.

The near-optimal, low bandwidth feedback scheme for closed-loop EO-STBC

presented in this chapter requires accurate knowledge of the optimum feedback

angles in the receiver. The next chapter will investigate algorithms operating in

the receiver, which can identify these angles and track any required parameters

over time, based on the same idea of smooth channel coefficient trajectories that

has motivated the differential feedback scheme above.



Chapter 4

Combining Differential Feedback

& Channel Tracking

This chapter proposes a channel estimation and tracking scheme based on a Kal-

man filter in decision-directed (DD) mode, which is applied to extended ortho-

gonal STBC (EO-STBC) with differential feedback. Inside the Kalman filter, it

is shown that an employing a first order auto-regressive (AR-1) model for estim-

ating the trajectory of a channel coefficient and can be significantly enhanced by

considering higher order models that enable a smoother prediction. Moreover,

this system needs to be adapted in order to interlink with the EO-STBC symbol

detection in the Kalman filter’s correction step. Practical simulations on the com-

bined estimation of channel coefficients with differential feedback as implemented

in Chapter 3, will be investigated.

The chapter commences with an outline in Sec. 4.1. Sec. 4.2 provides a brief

overview over EO-STBC with differential feedback, recapitulating the main res-

ults of Chapter 3. After that in Sec. 4.3, channel estimation and tracking by means

of a Kalman filter is introduced. Simulation results are presented in Sec. 4.5, and

Sec. 4.6 provides a summary and conclusions.

53
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4.1 Introduction

For conventional coherent detection, EO-STBC requires accurate knowledge of

channel state information (CSI) at the receiver for decoding. This CSI is needed

to determine the beamsteering angles that are to be fed back to the transmitter to

enable exploitation of diversity and array as outlined in earlier chapters. Channel

estimation is therefore crucial, and can only be avoided through the use of STBC

based on differential or double differential modulation [67]. This alleviates the

need for CSI, but requires the channel to remain stationary for at least a few

successive symbol periods, and incurs performance degradation by 3 dB and 6 dB,

respectively, compared to coherent modulation [68]. Thus, channel estimation is

an integral part of the EO-STBC receiver for fading channels.

For the channel estimation based on training symbols [69], the CSI corres-

ponding to training symbols is first estimated. Thereafter, CSI corresponding to

the subsequent data symbols can be tracked and further improved by decision dir-

ected channel estimation [70]. To obtain reliable channel estimates, initial channel

estimation can be performed based on training symbols, which are periodically

inserted prior to EO-STBC tracked symbols. The design of optimal training se-

quences for time-varying channels whose impulse response can be modelled as an

AR process can be found in [69].

In addition, to improve tracking efficiency, sequential filtering algorithms such

as the Kalman filter [71] have been proposed for tracking time-varying fading

channels [48], having the desirable property of being able to approximate channel

variations. Kalman filtering consists of an iterative prediction-correction process

whereby the tracking algorithm exploits the structure of Alamouti space time

codes as adopted in [47] [70]. In order to track the non-stationary channel, in

this chapter we evaluate the performance of Kalman filtering for tracking a slow

fading, EO-STBC encoded channel in Gaussian noise.
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Decision directed channel estimation (DD) has been adopted, following the

approach in [70] for O-STBC. If the channel varies slowly, the estimated CSI

based on previous predicted symbols are generally reliable such that the estimated

channel state of a previous symbol period may be used in the detection of current

data. Therefore in this chapter, we focus our attention on channel estimation

based on an AR-M model for the approximation of the time-varying channel

coefficients. For example, an AR-1 model has been used in [49]. Hence, we have

proposed a general AR-M [72] in order to enable better prediction particularly for

slow-fading scenarios where the smooth evolution of channel coefficients appears

to be better suited for M > 1.

4.2 System Model

Based on the channel model outlined in Chapter 3, we now turn our attention

to combining channel estimation with differential feedback. The system set-up in

Fig. 4.1 has been constructed to address both differential feedback and channel

estimation. For simplicity, we assume below that the feedback channel is error

free with no latency.

For slow fading channels, each channel coefficient evolves smoothly over time.

The received signal r[n] is characterised by (3.1). The channel hn ∈ C4, contains

spatially independent and identically distributed wide-sense stationary (WSS)

Rayleigh fading channel coefficients. With EO-STBC encoding over two success-

ive time slots, the selection of the transmit vector is given by

sn =







1
2
[ s[n] s[n] s[n+ 1] s[n+ 1] ]T , n even

1
2
[ −s∗[n] −s∗[n] s∗[n− 1] s∗[n− 1] ]T , n odd.

(4.1)

The diagonal beam-steering matrix Λn = diag
{

ejϑ̂1[n] 1 ejϑ̂2[n] 1
}

effect-
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Figure 4.1: EO-STBC system with channel estimation and tracking in the receiver to aid
symbol detection and estimation of the optimum beam-steering angles ϑ1 and ϑ2, which are
differentially encoded and returned to the transmitter.

ively rotates the channel taps h1[n] and h3[n]. Since Λn is unitary, it has no effect

on the transmit power. As in a standard STBC system, the receiver gathers two

subsequent samples in a vector rn such that

rn =





r[n]

r∗[n+ 1]



 = Hnsn + vn, (4.2)

based on the equivalent transmit vector sn = [ s[n] s[n + 1] ]T, equivalent noise

vector vn = [ v[n] v∗[n + 1] ]T, and the space-time equivalent transmission chan-

nel matrix Hn. The latter can be formulated as

Hn =





h11[n] h12[n]

h21[n+ 1] h22[n+ 1]



 . (4.3)

The components of Hn are a mixture of channel coefficients and rotations due to

beam-steering Λn
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h11[n] = ejϑ̂1[n]h1[n] + h2[n] (4.4)

h12[n] = ejϑ̂2[n]h3[n] + h4[n] (4.5)

h21[n + 1] = e−jϑ̂2[n+1]h∗
3[n+ 1] + h∗

4[n+ 1] (4.6)

h22[n + 1] = −e−jϑ̂1[n+1]h∗
1[n + 1]− h∗

2[n+ 1]. (4.7)

Detection is performed over a block duration consisting of two successive sym-

bols periods. The decision statistic vector ŝn = [ ŝ[n] ŝ∗[n+ 1] ]T can be ob-

tained via linear combination with the estimated equivalent space-time channel

matrix Ĥn

ŝn = ĤH
nHnsn + ṽn, (4.8)

where ṽn = ĤH
nvn is the noise after decoding. Let the matrix Gn = ĤH

nHn, which

can be decomposed into Gn = HH
nHn+(∆Hn)

HHn. The matrix ∆Hn represents

the error due to both estimation and time variation, which creates inter-symbol

interference (ISI) in the detection process and increases the noise floor. The

derivation of this error term is straightforward but tedious, and presented in

Appendix A. In the absence of estimation errors, i.e. Ĥn = Hn, any errors are

only due to time-variations and Gn becomes

Gn =





g11[n] g12[n]

g21[n] g22[n]



 , (4.9)



4.2. System Model 58

with elements

g11[n] =
2

∑

m=1

|hm[n]|2 +
4

∑

m=3

|hm[n + 1]|2

+2ℜ{ejϑ1[n]h1[n]h
∗
2[n]

+ ejϑ2[n+1]h3[n + 1]h∗
4[n + 1]} (4.10)

g12[n] = ej(ϑ2[n]−ϑ1[n])h∗
1[n]h3[n]

−ej(ϑ2[n+1]−ϑ1[n+1])h∗
1[n + 1]h3[n+ 1]

+e−jϑ1[n]h∗
1[n]h4[n]

−e−jϑ1[n+1]h∗
1[n + 1]h4[n + 1]

+ejϑ2[n]h∗
2[n]h3[n]

−ejϑ2[n+1]h∗
2[n+ 1]h3[n + 1]

+h∗
2[n]h4[n]− h∗

2[n + 1]h4[n + 1] (4.11)

g21[n] = g∗12[n]

g22[n] =
2

∑

m=1

|hm[n+ 1]|2 +
4

∑

m=3

|hm[n]|2

+2ℜ{ejϑ1[n+1]h1[n + 1]h∗
2[n + 1]

+ ejϑ2[n]h3[n]h
∗
4[n]} . (4.12)

The maximisation of the received gain is coupled to the maximisation of the

on-diagonal elements of Gn, which is achieved by setting

ϑ1[n] = −∠{h1[n]h
∗
2[n]} (4.13)

ϑ1[n + 1] = −∠{h1[n + 1]h∗
2[n + 1]} (4.14)

ϑ2[n] = −∠{h3[n]h
∗
4[n]} (4.15)

ϑ2[n + 1] = −∠{h3[n + 1]h∗
4[n + 1]}. (4.16)
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However, unlike in the stationary case [46], the off-diagonal elements g12[n] and

g21[n] are now finite and create inter-symbol interference in the process of detect-

ing s[n] and s[n + 1].

4.2.1 Maximum Likelihood Detector

The impact of a time-varying Rayleigh fading channel on the performance of an

Alamouti code has been analysed, and several optimal and suboptimal receivers

for mitigating the effects of cross-talk between symbols have been proposed in

e.g. [2]. Although the suboptimal receivers such as zero-forcing (ZF), and decision-

feedback (DF) have lower complexity than a receiver based on the joint maximum

likelihood (JML) detector, the JML detector is only able to attain full diversity

order. Therefore, based on the observation of the received symbols, the JML

estimation of the transmitted symbols sn over the EO-STBC channel matrix Hn

can be obtained by maximising likelihood over sn and Hn jointly. Equivalently,

the JML estimation is obtained by minimising

ŝn = argmin
s

{

‖rn −Hns‖22
}

, (4.17)

4.2.2 Degradation due to Time Variation

The channel variation with time will destroy the orthogonality of the channel

matrix Hn. Therefore, the deviation of Gn from a diagonal matrix results in ISI.

This issue will be investigated by simulation of a JML detector [2] in order to

evaluate up to Doppler frequency which the performance remains acceptable.

4.2.2.1 Degraded Performance

Using the JML decoder of [2], BER performance of an EO-STBC system with

perfect channel estimation should show the degradation due only to the non-



4.2. System Model 60

0 5 10 15 20
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR / [dB]

B
E

R

 

 

non−stationary ch., Ω
D

=0.1π

non−stationary ch., Ω
D

=0.01π

non−stationary ch., Ω
D

=0.005π

non−stationary ch., Ω
D

=0.003π

 stationary ch.

Figure 4.2: BER degraded performance of EO-STBC system with optimum beam-steering
angles ϑ1 and ϑ2 and known CSI for various maximum angular Doppler spreads ΩD.

stationary nature of the channel over an EO-STBC transmitted block when ΩD >

0. Fig. 4.2 shows BER vs SNR curves averaged over an ensemble of frequency-

dispersive channels with various normalised Doppler frequencies ΩD. For ΩD <

0.01π, the performance degradation in terms of BER appears only gradual and

somewhat insignificant. Once the normalised angular Doppler frequency ΩD =

0.01π, the BER performance drops more noticeably, because the off-diagonal

elements g12[n] and g21[n] are becoming larger and create sufficiently high inter-

symbol interference to degrade the JML decoder in the process of detecting s[n]

and s[n + 1]. The obtained BER curves with known channels will be used as

benchmark results for channel estimation later.
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4.2.3 Differential Feedback

For many wireless applications, the maximum Doppler shift ΩD can be considered

small. This leads to a smooth evolution of channel coefficients, which enables dif-

ferentially encoding single bit feedback over a realistic range of maximum Doppler

shifts ΩD. Differentially quantised feedback requires optimisation of the quantiser

step size µ, which causes a trade-off between slope overload due to too slow track-

ing for small values of µ, and too coarse quantisation for larger values of µ that

causes poor performance irrespective of the rate of change. Below, we will aim to

construct channel estimation and tracking techniques that can complement the

differential feedback which we had previously explored in Chap. 3 [73]. Based on

the results given later in Tab. 3.1, differential feedback can be performed with

near optimum performance when optimum steps size are used corresponding to

an angular Doppler shift set ΩD = {0.003π, 0.005π, 0.01π}.

4.3 Channel Estimation

Several types of estimation techniques can be exploited. For example, either

a least squares (LS) approach or if the signal-to-noise ratio (SNR) is known a

priori, minimum mean square error (MMSE) approaches represent candidates for

channel estimation. The EO-STBC receiver requires the knowledge of the channel

coefficients both for detecting symbols as well as for computing the optimum

phase angles ϑi,n, i = {1, 2}, to be used for beam-steering. Therefore, below an

approach to track the channel coefficients is presented, which is initialised and

interleaved with channel estimation steps.
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4.3.1 Initial Channel Estimation

An initial channel estimate for the MISO system hn can be obtained by trans-

mitting a training sequence over L symbols. If this transmit data is assembled

in a data matrix S̃ ∈ C2L×4 and transmitted without beam-steering, the MMSE

solution for ĥn for L ≥ 4 can be calculated as

ĥMMSE =
(

S̃H
n S̃n + γnI

)−1

S̃H
n

















rn−2(L+1)

...

r2n

rn

















, (4.18)

where γn is the SNR at the receiver. The formulation in (4.18) includes the ZF

estimate with the case γn →∞.

For L = 4, the data matrix only, S̃H
n = [sn−2 sn−1 sn sn+1] to be inserted

into (4.18). The MMSE solution requires the left pseudo-inverse [74], and due to

orthogonality of Sn simplifies to

ĥMMSE =
(

S̃H
n S̃n + γnI

)−1

S̃H
n





rn−2

rn



 (4.19)

Either (4.18) or (4.19) can be used to initialise the subsequent Kalman tracking,

and can also be employed to re-initialise the tracking system in periodic intervals.

4.3.2 Impact of Estimation Errors

The accuracy of channel estimation will affect the performance of the system.

Generally, a trade-off is expected for the length of the temporal window L over

which coefficients are estimated. Too short a window will result in estimates that

lack confidence and are prone to noise influence. Too long a window will lead to
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situations where the channel can no longer be assumed stationary over the period

of L symbols, and a reliance on outdated samples will lead to incorrect results

from temporal averaging.

4.4 Kalman Tracking with Temporal Smooth-

ness

The Kalman filter approach based on Bayesian estimation by incorporating prior

knowledge and observational evidence has been utilised widely for channel track-

ing. In EO-STBC, detection is performed over two block periods, and the up-

date of coefficients spans two sampling periods rather than one. Therefore, the

difference between subsequent values is going to increase (due to a decrease in

correlation) and selection of the correlation factor is theoretically optimum but

the value has been found to be imprecise. This motivates a simple modified pre-

diction step of the Kalman filter based on a higher order model to approximate

the time-varying nature of a channel with temporal smoothness.

4.4.1 Impact of Beamsteering on Channel Tracking

Some channel coefficients are modified through the application of a time-varying

phase rotations, and the resulting variation in value can be much greater than

expected from the actual Doppler spread. Therefore, to avoid tracking rotated

channel coefficients will improve the performance. It can be noted from equation

(3.1), that the feedback angles ϑ1[n] and ϑ2[n] in the beam-steering diagonal

matrix Λn can be absorbed into either the transmission channel hn , or into the

transmitted vector sn. Let the channel vector with incorporated angles can be

given by hr
n = Λnhn, and in similar way the transmitted vector with incorporated

angles be given by srn = Λnsn. To track the unrotated channel, a simple correction
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can extract the true channel coefficients from the estimate ones by incorporating

the known beamsteering angles as

hn = Λ−1
n hr

n = Λ∗
nh

r
n. (4.20)

4.4.2 Prediction Model Based on AR Process

For Kalman tracking of Alamouti O-STBC in [75], the channel is updated based

on a first order auto-regreesive model (AR-1). However, the smooth channel

variation motivates the use of a higher order auto-regressive model for a priori

prediction. In [64], the system model including temporal correlation of channel

coefficients h[n] is based on

ρτ = rh[τ ] = E{h[n]h∗[n− τ ]}, (4.21)

and a trajectory of channel coefficients can be approximated by M order AR

process (AR-M) with coefficient vector a, which linearly combines the last M

values of the channel coefficient trajectory such that

h[n] = aH

















h[n− 1]

h[n− 2]
...

h[n−M ]

















= aHhn−1 + u[n], (4.22)

where u[n] is the prediction error. Minimisation of this error can be obtained

through the principl of orthogonality E{hn−1u[n]
∗} = 0, which in our context can

be expressed as

E{hn−1h[n]
∗} = E{hn−1h

H
n−1}a. (4.23)
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Including temporal correlation in (4.21) leads to

Rh = E{hn−1h
H
n−1} =

















ρ0 ρ1 . . . ρM−1

ρ∗1 ρ1
...

...
. . .

ρ∗M−1 ρ0

















, (4.24)

with an appropriately defined cross-correlation vector p given in matrix notation

as follows

p = E{hn−1h[n]
∗} =

















ρ1

ρ2
...

ρM

















. (4.25)

Therefore, we can rewrite (4.23) in the form

a = R−1
h p =

















ρ0 ρ1 . . . ρM−1

ρ∗1 ρ1
...

...
. . .

ρ∗M−1 ρ0

















−1 















ρ1

ρ2
...

ρM

















. (4.26)

Similar to [64], a diagonal loading technique with a small positive constant ǫ can

be used to avoid that Rh is singular and therefore invertible, where some noise

variance is added into Rh to make it as

a = (Rh + ǫI)−1 p. (4.27)

The identical process noise variance σ2
u in the Kalman filter is identical to the
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mean squared prediction error,

σ2
u = E{u[n]u[n]∗} = σ2

h − ℜ
{

aHP
}

+ aHRha. (4.28)

An auto-regressive (AR) process is commonly implemented as white noise

u[n] filtered by an all-pole linear time-invariant (LTI) system. Therefore, the M

coefficients of a can now be inserted directly into the transition matrix A as

A =























a1 a2 · · · aM−1 aM

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0























. (4.29)

4.4.3 Kalman Filter Algorithm

The Kalman filter keeps track of the estimated state of time-varying channels h

and observation r[n]. The process noise covariance E
{

unu
H
n

}

and measurement

noise variance σ2
n are assumed to be constant and independent. The Kalman

filter algorithm works in update and correction steps process. In the update step,

an a priori estimate is performed based on the prediction model. Thereafter, in

the correction step, the predicted state is subsequently refined using the current

observation assuming that sn has been suitably detected. The summary of is

given in Tab. 4.1.

4.4.4 Decision-Directed Mode

In this section, we formalise a joint scheme using a decision-directed channel

estimation approach given in [48] [70] for the purpose of our proposed architecture.

The structure of Fig. 4.1 considers tracking a trajectory of a time-varying channel
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Table 4.1: Kalman Filter for MISO systm.

P0 = σ2
hI4

1. Update step

(a) Predict a priori estimates

hn/n−1 = Ahn−1/n−1

(b) Predict a priori error covariance

Pn/n = APn/n−1A
T + E

{

unu
H
n

}

2. Correction step

(a) Obtain Kalman gain

Kn= Pn/nsn[s
T
nPn/nsn + σ2

n]
−1

(b) Obtain a posteriori estimate

hn/n = hn/n−1 +Kn.
[

r[n]− hT
n/n−1sn

]

(c) Obtain a posteriori error covariance

Pn/n = (I−Knsn)Pn/n−1

cofficient, given an observation symbols which training sequence prior to EO-

STBC transmission. Compared to [48] [70], here the Kalman filter is customised

to take the EO-STBC setup into account, as depicted in Fig. 4.1. With Kalman

algorithm in Tab. 4.1, thereby, two a-priori estimates are performed to predict

the time-varying channel vectors during the current EO-STBC block. Thereafter,

both a-priori estimates are updated similar to [76].

When the SNR is low, error propagation occurs and convergence to the op-

timum is not guaranteed. However, in the conventional Kalman filter algorithm

described Tab. 4.1, it is already assumed that sn has been suitably detected, so

that the periodic insertion of pilot symbols can offer an initial channel estimation

for reliable tracking performance in DD mode, as outlined in Tab. 4.2.



4.4. Kalman Tracking with Temporal Smoothness 68

Table 4.2: Kalman-based AR-M for tracking unrotated channel with decision-directed updat-
ing over two successive symbol periods.

initial values

h̄ = 04M×1, s̄ = 01×4M , P0 = σ2
hI4M ,Φ = diag{A,A,A,A}

Q = diag{U,U,U,U}, U =diag
{

σ2
u, 0, · · · , 0

}

.

known
[

r[n]
r∗[n+ 1]

]

, σ2
u, and σ2

v . h0 ∈ C4×1,

h̄0[1 : M : 4M ] = h0

for K symbols do
1. Predict a priori estimates

h̄n/n−1 = Φh̄n−1/n−1

h̄n+1/n−1 = ΦΦh̄n−1/n−1

Pn|n−1 = ΦPn−1|n−1Φ
T +Q

2. Compute a priori beamsteering Λn|n−1and Λn+1|n−1

Obtain a priori rotated channel
hr
n|n−1

= Λn|n−1h̄n/n−1[1 : M : 4M ]

hr
n+1|n−1

= Λn+1|n−1h̄n+1/n−1[1 : M : 4M ]

3. Form a priori space-time matrix Hn|n−1with a priori rotated channel as

described in (4.3).

4. Decode feedback symbols ŝ[n] and ŝ[n+ 1] as shown in (4.8).

5. Feedback symbols
s̄n|n−1[1 : M : 4M ] = 1

2
Λn|n−1[s[n], s[n], [n+ 1], [n+ 1]].

s̄n+1|n−1[1 : M : 4M ] = 1
2
Λn+1|n−1[−s∗[n+ 1],−s∗[n+ 1], s∗[n], s∗[n]].

6. Use the modified feedback symbols for a posteriori estimates

Kn/n−1 = Pn/n−1s̄
T
n|n−1

[̄sn|n−1Pn/n−1s̄
T
n|n−1

+ σ2
v]

−1

h̄n/n = h̄n/n−1 +Kn/n−1

[

r[n]− h̄T
n/n−1

s̄n|n−1

]

Pn/n = (I−Kn|n−1sn|n−1)Pn/n−1

Pn+1|n = ΦPn|nΦ
T +Q

Kn+1/n = Pn+1/ns̄
T
n+1|n−1

[̄sn+1|n−1Pn+1/ns̄
T
n+1|n−1

+ σ2

v
]−1

h̄n+1/n = h̄n+1/n +Kn+1/n

[

r[n+ 1]− h̄T
n+1/n−1

s̄n

]

Pn+1/n+1 = (I−Kn+1|nsn+1|n−1)Pn+1/n

7. Compute a posteriori beamsteering Λn|nand Λn+1|n

8. Differential feedback of most recent beamsteering angles

9. Obtain a posteriori rotated channel
hr
n|n = Λn|nh̄n/n[1 : M : 4M ] and hr

n+1|n = Λn+1|nh̄n+1/n[1 : M : 4M ]

10. Form a posteriori space-time matrix Hn|n as described in (4.3).

11. Decode the transmitted symbol ŝn|n as shown in (4.8).

12. If necessary, iterate from 6 and 9 to improve tracking performance.
K ← K + 2
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Figure 4.3: Coefficient evolution of channel coefficients; channel one with (a) real and (b)
imaginary part, channel two with (c) real and (d) imaginary part, and (e) evolution of the
angle returned to the transmitter via feedback.

4.5 Simulations and Results

Fiestly, tracking unrotated channel coefficients is given in Sec. (4.5.1). In simu-

lations, we have compared mean square error of Channel testimation (MSE) for

Kalman filter tracking with AR-{1, 2, 3} , and compared performances in term of

BER using a BPSK signal constellation.
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M = 1 a = 1 σ2
u = 4.45× 10−5

M = 2 A =

[

1.9993 −0.9993
1 0

]

σ2
u = 6.10× 10−8

M = 3 A =





1.3601 0.2794 −0.6396
1 0 0
0 1 0



 σ2
u = 4.20× 10−8

Table 4.3: Transition matrix A and process noise variance σ2
u for ΩD = 0.003π.

4.5.1 Tracking Unrotated Channel Coefficients

An illustrative simulation of Kalman tracking is presented below, which involves

tracking the unrotated channel coefficients based on the correction by true feed-

back angles. According to Fig. 4.1, the feedback angles ϑ1[n] and ϑ2[n] are ab-

sorbed into the original channels of antennas one and three. Fig. 4.3 shows the

channel variations when ΩD = 0.003π. Fig. 4.3 (a)–(d) shows real and imaginary

parts of the trajectories of the true channel coefficients hi[n], i = {1, 2} and, in
case of h1[n], real and imaginary part of the trajectory of the modified coefficient

(dashed curves) in Figs. 4.3 (a) and (b). The trajectory of the feedback angle

ϑ1[n] is shown in Fig. 4.3 (e). In order to avoid divergence of the Kalman filter,

a re-initialisation with an MMSE estimate driven by pilot symbols is performed

every K symbols, with the default value set to K = 48. This is necessary, since

e.g. a coefficient trajectory passing close to the origin leads to rapidly changing

angles, and therefore a higher degree of non-stationarity. Particularly Fig. 4.3

(a) and (b) clearly show how beamsteering angles affect the rate of change in

terms of the coefficients. Although the problem occurs in channel h1[n] due to

the beam-steering, the impact is felt across all channel coefficients.

4.5.2 AR-{1, 2, 3} Model

For this set of simulations, the channel tracking error is evaluated. It is assumed

that (i) the initial state h0, is previously estimated and known, and (ii) we could
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M = 1 a = 0.9999 σ2
u = 1.23× 10−4

M = 2 A =

[

1.9996 −0.9997
1 0

]

σ2
u = 6.76× 10−8

M = 3 A =





1.5207 −0.0419 −0.4790
1 0 0
0 1 0



 σ2
u = 5.13× 10−8

Table 4.4: Transition matrix A and process noise variance σ2
u for ΩD = 0.005π.

M = 1 a = 0.9998 σ2
u = 4.90× 10−4

M = 2 A =

[

1.9993 −0.9998
1 0

]

σ2
u = 1.82× 10−7

M = 3 A =





2.4491 −1.8992 0.4498
1 0 0
0 1 0



 σ2
u = 1.48× 10−7

Table 4.5: Transition matrix A and process noise variance σ2
u for ΩD = 0.01π.

isolate the error corresponding to the phase angles from the estimation due to

time variation and channel estimation and by in which the compensation for phase

modification is based on true phase angles. Simulations are performed over an

ensemble of 104 randomised channel realisations. We consider that the four links

are in fading with the normalised Doppler spread ΩD = {0.003π, 0.005π, 0.01π}
lead to the state-space models, Transition matrix A and process noise variance

σ2
u, which are incorporated in the Kalman filter given in Tabs. 4.3, 4.4, and 4.5

respectively. The listed matrices are obtained experimentally using (4.27) with

added noise variance ǫ = 1× 10−8.

4.5.3 MSE of Channel Estimation

A frequently used design criterion is the mean square error (MSE). Tabs. 4.6,

4.7, and 4.8 show the linear values of average MSE per channel of EO-STBC

with Kalman tracking based on different AR orders M , with M = 1, 2, 3 form

ΩD = {0.003π, 0.005π, 0.01π} respectively. It can be seen that M = 2, 3 have

a significant advantage over the standard first order model with M = 1. In
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SNR/[dB] 5 10 15 20 25

M = 1 0.1192 0.0981 0.0794 0.0739 0.0718
M = 2 0.01718 0.01152 0.0081 0.0051 0.0042
M = 3 0.0150 0.0101 0.0072 0.0046 0.0036

Table 4.6: Average MSE/channel with ΩD = {0.003π} for use of different AR-{1, 2, 3} models
in the Kalman tracker with 48.

SNR/[dB] 5 10 15 20 25

M = 1 0.2245 0.1869 0.1622 0.1477 0.1404
M = 2 0.0250 0.0201 0.0151 0.0115 0.0095
M = 3 0.0236 0.0181 0.0135 0.0101 0.0085

Table 4.7: Average MSE/channel with ΩD = {0.005π} for use of different AR-{1, 2, 3} models
in the Kalman tracker with K = 48.

addition, it can be noted that M = 3, although it incurs a higher computational

complexity than the case of M = 2, does not offer a significant improvement over

the latter. It is important to notice that increasing ΩD will increase the MSE will

be increased, but M = 2, 3 still offers a significant advantage over the standard

first order model with M = 1, with M = 3 still having a small advantage over

the M = 2 Kalman approach. The performances of both M = 2 and M = 3

are close, with a negligible advantage for M = 3, such that M = 2 provides a

good trade-off between system performance and complexity. Therefore, below

simulations are performed for BER performance with M = {1, 2}.

SNR/[dB] 5 10 15 20 25

M = 1 0.7224 0.5254 0.3882 0.3261 0.2974
M = 2 0.3532 0.2250 0.1472 0.1064 0.0856
M = 3 0.3200 0.2110 0.1380 0.0990 0.0782

Table 4.8: Average MSE/channel with ΩD = {0.01π} for use of different AR-{1, 2, 3} models
in the Kalman tracker K = {48}.
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Figure 4.4: BER performance of EO-STBC system with Kalman-based channel tracking based
on an AR-M with M = 1, 2 for ΩD = 0.003π, compared to perfect CSI.

4.5.4 Performance of AR-{1, 2}

4.5.4.1 BER Performance

In the following, the BER performance of EO-STBC with differential feedback

and Kalman-based channel tracking is explored. We show the BER perform-

ances, whereby AR-M systems of first and second order are compared for ΩD =

{0.003π.0.005π, 0.01π}. The channel tracking is initialised, and interleaved every

K = 48th block by a channel identification. The Kalman filter is either operated

in a prediction mode only (labelled as “no tracking”) or with a correction step

based on DD updating (“tracking”).

It can be seen that the AR-2 performance for ΩD = {0.003π.0.005π} in

Figs. 4.4,and 4.5 are very close to the one where the receiver has perfect knowledge

of the channel state information (CSI).

In Fig. 4.6 with ΩD = {0.01π}, the BER for AR-1 levels out early, but AR-2 is
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still performing well. Simulations show that BERs performance with AR-2 signi-

ficantly outperform BERs performance with AR-1. Moreover, BER performances

with AR-2 for ΩD = {0.003π, 0.005π} are near to the optimum while the BER

performance for ΩD = {0.01π} show a significant degradation from the case of

known CSI . Therefore, significant improvements can be realised via the inclusion

of AR-2 model compared to the standard first order system.

4.5.4.2 Impact of Tracking Period Length

We now study the impact of the pilot insertion period K on the performance of

the AR-2 system. Figs. 4.7, and 4.8 show the MSE and BER performances , re-

spectively, for pilots interleaved after every K = {48, 72, 96, 120} symbol periods.

It can be seen that K significantly affects the performance, but that for the case

of angular Doppler spread ΩD = {0.01π}, K > 72 lead to an acceptable uncoded

BER result.

4.6 Conclusions

EO-STBC requires feedback of the steering angles, which can be calculated from

channel estimates at the receiver. Since the channel requires to be estimated in

order to estimate transmitted symbols and beamsteering angles as well, we have

discussed a channel estimation and a Kalman estimator for channel tracking.

Smooth variation of the channel coefficients’ trajectories has previously motiv-

ated a differentially encoded feedback of feedback angles in Chapter 3, and here

additionally motivates to replace the AR-1 model of the basic Kalman chan-

nel estimator with an AR-{2, 3} model that is capable of imposing additional

smoothness. The improvements of using AR-{2, 3} have been shown by MSE

simulation, with a negligible advantage for the M = 3 system over M = 2. The
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performance comparison of M = {1, 2} clearly shows that the overall EO-STBC

system achieves suitable BER values even for longer tracking periods, and that

the performance of the proposed system offers a distinct advantage over realistic

Doppler spreads.
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Figure 4.5: BER performance of EO-STBC system with Kalman-based channel tracking based
on an AR-M with M = 1, 2 ΩD = 0.005π, compared to perfect CSI.
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Figure 4.6: BER performance of EO-STBC system with Kalman-based channel tracking based
on an AR-M with M = 1, 2 ΩD = 0.01π, compared to perfect CSI.
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Figure 4.7: Average MSE performance at 20 dB SNR for EO-STBC system with Kalman-
based tracking based on different tracking periods K.
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Figure 4.8: Average BER performance at 20 dB SNR for EO-STBC system with Kalman-
based tracking based on different tracking periods K.



Chapter 5

FrFT-Based Multi-Carrier

Approach for EO-STBC over

Doubly-Dispersive Channels

This chapter focuses on the enhancement of extended orthogonal STBC (EO-

STBC) when transmitting over a doubly-dispersive channel. The frequency se-

lective nature of the channel favours the combination with a multi-carrier ap-

proach such as orthogonal frequency division multiplexing (OFDM). However, as

Doppler spread increases, OFDM loses its orthogonality, resulting in severe inter-

symbol (ISI) and inter-carrier interference (ICI). This is addressed firstly by the

generalisation of OFDM to fractional Fourier transform (FrFT) based multicarrier

approaches, which can provide better resilience in the presence of Doppler spread.

In higher mobility scenarios, an equalisation scheme is employed, whose low com-

plexity in an FrFT-based multicarrier setting compared to standard OFDM. Sim-

ulation results highlight the potential performance improvements.

This chapter is organised as follows. Sec. 5.1 motivates the work within this

chapter. In Sec. 5.2, we present a multi-carrier system model based on the FrFT,

78
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into which EO-STBC will be embedded. In Sec. 5.3, the decoding is derived

for a low-Doppler situation and a higher-Doppler scenario, whereby additional

equalisation is introduced. Finally, simulation results are provided in Sec. 5.5

and conclusions are drawn in Sec 5.6.

5.1 Introduction

In the last ten years, orthogonal frequency division multiplexing (OFDM), has

gained considerable attention and has found its way into a large number of wireless

and wireline standards. OFDM is a multi-carrier block transmission scheme which

decouples the broadband system into independent sub-carriers, which are ISI-

free. Therefore, it is particularly popular to apply in time dispersive situations,

where otherwise long equalisers would be required; the creation of decoupled

narrowband subchannels instead requires only single-tap equalisers in order to

adjust the phase and amplitude of individual sub-carriers, which is significantly

cheaper and offers performance robustness against noise amplification compared

to wideband equalisation.

Space-time block coding (STBC) algorithms such as the Alamouti scheme [32]

have been developed in the context of narrowband, stationary channels. In

frequency-selective channel conditions, a popular approach is the combination

with multicarrier methods such as OFDM [77] in order to operate narrowband

STBC schemes in decoupled sub-carriers which are free of inter-symbol (ISI) and

inter-carrier interference (ICI). In the case of narrowband time-varying systems,

the algorithm degradation is barely felt as long as the channel variation over one

STBC symbol can be considered very small. In the context of advanced diversity

schemes such as extended orthogonal STBC (EO-STBC), where rate one and

maximum diversity order are achieved simultaneously despite an operation with

4 transmit antennas due to the use of additional beam-steering based on feedback
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of channel state information (CSI) [42] [78], time variation can be accommodated,

and the smoothness of coefficient trajectories due to Doppler spread can be ex-

ploited for low-cost high-performance differential feedback of information [73].

However, if a time-varying channel exhibits significant delay spread, then the

classical use of multicarrier methods requires considerably longer OFDM sym-

bols. Combined with Doppler spread of the channel, this will compound the

lack of quasi-stationarity over an STBC symbol period, requiring the introduc-

tion of e.g. equalisation approaches. Equalisation in the DFT-domain has been

proposed in the context of OFDM, such as zero-forcing (ZF) and minimum mean-

square error (MMSE) schemes [79]. Other receivers are applied to the individual

sub-carriers, including the zero-forcing (ZF), decision-feedback (DF), and joint

maximum-likelihood (JML) detectors [3], [2]; however, the neglected ICI intro-

duces an error floor into the BER performance as the degree of non-stationarity

increases.

In OFDM systems based on the FFT operating in doubly-dispersive channels,

ICI and ISI increase and significantly degrade the performance of the system.

Expressions for the ICI variance bounds corresponding to Doppler spread have

been obtained by [80] [81]. Recently, multi-carrier schemes based on the frac-

tional Fourier transformer (FrFT) have been developed [82], [83], [84]. The FrFT

uses chirp signals as carriers, and even though its performance does not entirely

decouple the channel in the stationary case, thus leaving an ICI/ISI term, in the

time-varying case, the FrFT has demonstrated advantages in terms of admitting

lower ICI/ISI errors. The FrFT multi-carrier approach is inferior to FFT-based

OFDM in the stationary case because of the FrFT’s inability to diagonalise a

circulant channel matrix in the way the DFT/FFT does. However, in Doppler

scenarios, the FrFT multi-carrier system retains more energy near the main di-

agonal of the channel matrix, compared to a much degraded OFDM system.
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Therefore, we aim to utilise an FrFT multi-carrier system in combination with

EO-STBC, which for moderate Doppler spread can be sufficiently resilient on its

own. In addition, for higher Doppler spreads, we will explore the combination

with equalisation methods [85], [86] based on block minimum mean squared error

equalisation. Due to the FrFT’s ability to retain the channel energy near the main

diagonal of the equivalent channel matrix even for time-varying systems, equal-

isation approaches for FrFT-based multi-carrier systems can operate a reduced

minimum mean square error (MMSE) equaliser when compared to FFT-based

OFDM approaches.

MMSE equalisation in the context of FrFT multicarrier transmission assumes

that the channel matrix is banded, which will be demonstrated to be sufficient in

order to attain good performance with a very low complexity. Such a band struc-

ture has previously been exploited for similar OFDM equalisation schemes using

an LDLH decomposition [87] or an algorithm for sparse linear equations as sparse

least squares residual (LSQR) [88]. Additionally, to further reduce the system

complexity, we compute a regularised solution of a linear system involving the

channel matrix by means of a recently proposed least squares minimum residual

(LSMR) algorithm [89].

5.2 System Model

In order to address the time-dispersive nature of the transmission channel, in

this section we will discuss multi-carrier techniques in combination with EO-

STBC. The proposed system uses a multi-carrier approach for EO-STBC, which

is well-established using OFDM in the stationary case. The idea is that OFDM

decouples the broadband system into independent sub-carriers, which are ISI-free.

Therefore, narrowband space-time coding approaches such as EO-STBC can be

applied to individual sub-carriers. However, in the case of a non-stationary chan-
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nel, OFDM loses its orthogonality, resulting in ISI and a subsequently degraded

performance. Therefore, Sec. 5.2.2 will analyse a generalised multicarrier OFDM-

style system based on the FrFT for the single-input single-output case, which

can provide a higher resilience in non-stationary situations compared to OFDM.

Thereafter, Sec. 5.2.3 will integrate this multicarrier approach with EO-STBC in

a MISO system setting.

5.2.1 Discrete Fractional Fourier Transform

The fraction Fourier transform (FrFT) is a generalisation of the Fourier trans-

form, and performs an analysis with respect to chirp signals rather than complex

exponentials. Without further commenting on the continuous form of the FrFT,

we below focus on the discrete-time FrFT as defined in [90, 91], and for brevity

refer to this discrete version as FrFT.

One way to calculate the FrFT is from an eigenvalue decomposition (EVD)

of the DFT matrix T. We assume that the DFT matrix is normalised,

[T](n,k) =
1√
N
e−j 2π

N
nk , (5.1)

such that T is unitary. For such a normalised N -point DFT matrix T = EΛE−1,

the eigenvalues are contained in the diagonal matrix Λ, with the corresponding

eigenvectors forming the columns of the matrix E. Based on this decomposition,

the N -point FrFT matrix Fa of order a is

Fa = EΛaE−1 . (5.2)

Even though this definition in [91] does not reveal the chirp basis of this transform,

a few characteristics of the FrFT are immediately obvious. Firstly, for a = 1, the

FrFT is identical to the DFT matrix, T = Fa|a=1. Secondly, the inverse FrFT
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Figure 5.1: FrFT basis functions for an N = 210 point FrFT of order a = 0.9, forming the
first two rows of F0.9.

(IFrFT) matrix of order a is given by F−a, since it is easily verified from (5.2)

that

FaF−a = F−aFa = I . (5.3)

Lastly, with F1 = T and (5.3), we can deduce that an FrFT matrix of order

a = −1 is identical to an inverse DFT (IDFT) matrix, F−1 = T−1 = T∗.

To demonstrate that the FrFT analyses w.r.t. chirp bases, Fig. 5.1 shows the

first two rows of the 210-point FrFT matrix F0.9.

Only the real part is shown, but it is evident that-different from the DFT-the

FrFT aim to express an input vector x in terms of a superposition of orthogonal

chirps, whose amplitude and phase will define the FrFT domain coefficients in

the transform domain vector y = Fax.

Efficient implementations of the FrFT have been considered in [90], and are

linked to the way the FFT exploits redundant calculations of the DFT matrix,

such that the computational complexity is of order O(N log2N), with a slight

increase of calculations over an N -point FFT calculation. Therefore, there is no

significant computational penalty in replacing the DFT by an FrFT in applica-

tions where the generalisation offers potential performance advantages.
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Figure 5.2: FrFT-OFDM system using N sub-carriers and a cyclic prefix of length L to
transmit over a doubly-dispersive channel h[m, v], whereby P maps symbols onto Na 6 N
active subcarriers and Fa is the FrFT matrix.

5.2.2 FrFT-Based Multi-Carrier System

A multi-carrier approach based on the FrFT has been proposed in [82], whereby

the discrete FrFT replaces the FFT block in OFDM, and can be used for EO-

STBC in high Doppler spread with the advantages of increasing the output SNR.

This multicarrier transceiver based on the FrFT is shown in Fig. 5.2.

5.2.2.1 FrFT-OFDM Modulation and Demodulation

Letting N denote the number of subcarriers, in order to reduce adjacent channel

interference (ACI) without additional processing, OFDM typically allows Na < N

active sub-carriers.

Following an IFrFT block a cyclic prefix (CP) is included for each OFDM

symbol. To eliminate ICI and ISI caused by the time dispersion of the channel,

the CP length Ng must be chosen longer than or equal to the channel order L, i.e.,

Ng ≥ L. The block xn ∈ CN+L is transmitted in series over the doubly-dispersive

channel. At the receiver side, the signal is serial-to-parallel converted, and, after

discarding of the CP, and FrFT matrix is applied.

5.2.2.2 Transmission Channel Matrix

We assume that the above transmit and receive architecture operates at both

ends of a frequency selective channel with a finite impulse response (FIR) of

length L. Assuming a wide sense stationary uncorrelated scattering (WSSUS)
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channel, it is modelled as a complex Gaussian stochastic process is given by

[ h [n, 0] h [n, 1] · · · h [n, L− 1] ], where h [n, l] holds the lth channel coefficient

at time n. We assume that h [n, l] is a zero mean complex Gaussian random

variable with variance σ2
l . The classical Doppler spectrum based on Jake’s as

applied in [3] has been adopted.

The effect of the channel can be represented by a channel matrix H[n], which

is is derived by trans-multiplexing across the channel h[n, l] in Fig. 5.2, and can

be formulated as

[H[n]]i,j =







h[n− L+ i, i− j] i ≥ j,

h[n− L+ i, L+ i− j − 1] i < j.
. (5.4)

Due to its circulant property, the matrix in (5.4) can be decoupled by the DFT

if the channel impulse response (CIR) remains constant over one OFDM sym-

bol period. If the CIR varies within one OFDM symbol period, H[n] cannot be

decoupled by the DFT. Here, the application of the FrFT matrix Fa as a gen-

eralisation of the DFT can provide benefits in time-varying scenarios, where a

suitable selection of the order a can provide a better concentration of energy near

the main diagonal than for the DFT with a fixed a = 1 [92].

The multi-carrier transceiver system in Fig. 5.2 further includes a reduction

of the total number N of sub-carriers by a masking matrix P,

P =
[

0Na×(N−Na)/2 INa
0Na×(N−Na)/2

]T
, (5.5)

where the 0’s indicate the guard bands to only utilise Na ≤ N active users. The

purpose of P is to ease the burden on the spectral mask requirements typically im-

plemented via transmit and receive filters, as well as to ensure that the equivalent

system matrix
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C[n] = PHFaH[n]F−aP, (5.6)

contains only diagonal and near-diagonal terms, but no longer components in its

lower left and upper right corners. The received signal after multiplication by the

FrFT matrix Fa is

rn = Fayn = C[n]sn + ṽn, (5.7)

while the channel noise ṽn = Favn retains its power after processing by the DFrFT

since Fa is a unitary matrix. With the above defined FrFT-OFDM defined this

multi-carrier scheme, we can now exploit this system to enable EO-STBC trans-

mission over frequency-selective channel and potentially time-varying channels in

the next section.

5.2.3 Closed-Loop EO-STBC

EO-STBC is a diversity scheme based on four transmit and one receive antennas.

Since normally no space-time coder can achieve both full rate and full diversity

gain for such a system dimension, additional phase rotations applied in the trans-

mitter ensure not only full diversity but also an array gain [42], which has been

shown to be γ = 4 + π in Chapter 3.2.3. The rotations are optimised based on

channel state information in the receiver, and need to be fed back to the trans-

mitter, which is here assumed to be delay-less and error-free for simplicity. In

broadband scenarios, EO-STBC can be easily embedded in a multi-carrier trans-

mission scheme [77] such as outlined in Sec. 5.2.2, and as shown in the block

diagram in Fig. 5.3. The dimension of the input vector a[n] and of all remaining

vectors is equivalent to the number of active sub-carriers, Na. The OFDM trans-

mit symbols si[n], i = 1...2, emitted from the four antennas are defined over two
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Figure 5.3: EO-STBC in a multi-carrier configuration with equivalent multi-carrier channel
matrices Ci[n], i = 1 . . . 4, and beam-steering by rotations Φ[n] and Θ[n] which are based on
feedback from the receiver to the transmitter, and can maximise the diversity and array gain
of this system.

consecutive symbol periods as

sj [n] =







a[n], n even,

a∗[n], , n odd,
(5.8)

sj+2[n] =







a[n + 1], n even,

a∗[n− 1], , n odd,
(5.9)

for j ∈ {1, 2} . The first and third antenna signal include a modification according

to Fig. 5.3, whereby the matrices

Φ[n] = diag
{

ejϕ1[n]...ejϕNa[n]
}

(5.10)

Θ[n] = diag
{

ejϑ1[n]...ejϑNa[n]
}

, (5.11)
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apply a rotation to every sub-carrier. Using the equivalent multi-carrier channel

model defined in (5.6) to describe every of the four transmit paths connecting

the transmitter with the receiver, according to Fig. 5.3, the received signal vector

r[n] is given by

rn = C̃1[n]s1[n] +C2s2[n] + C̃3[n]s3[n] +C3s3[n] + ṽn, (5.12)

with C̃1[n] = C1[n]Φ[n] and C̃3[n] = C3[n]Θ[n], and ṽn = PFavn, where vn is

a circularly symmetric zero mean white complex Gaussian random noise vector

with covariance E
{

vnv
H
n

}

= σ2
vINa

, as shown in Fig. 5.3. Gathering data over

two successive OFDM symbol periods, the received signal vector can be written

as





r[n]

r∗[n+ 1]



 = G[n]





a[n]

a[n + 1]



+





v[n]

v∗[n + 1]



 , (5.13)

with

G[n] =





C̃1[n] +C2[n] C̃3[n] +C4[n]

C̃∗
3[n+ 1] +C∗

4[n+ 1] −C̃∗
1[n+ 1]−C∗

2[n + 1]



 . (5.14)

As long as the MISO channel is stationary and the FrFT chirp rate a = ±1,
i.e. the FrFT particularises to the Fourier transform, the equivalent system chan-

nel matrices Ci[n] will be diagonal, ensuring that sub-carriers can be EO-STBC

decoded individually and ICI can be neglected.
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5.3 Proposed Low Doppler Spread Space-Time

Decoding

Below, we discuss proposed solutions for decoding the FrFT-based multi-carrier

EO-STBC transmission scheme introduced in Sec. 5.2. For low Doppler spread,

we will simply ignore the effect of coupling between carriers as well as ISI, while

the impact for higher Doppler spread motivates the introduction of an additional

low complexity equaliser to mitigate the impact of increased ICI and ISI terms.

For low Doppler scenarios with a near-stationary channel, symbols are detec-

ted by ignoring ICI, using only the elements on the main diagonal of the equivalent

channel matrices. Here we discuss individual per-carrier decoding using classical

OFDM with Fa for a = 1 [3]. This implies that any off-diagonal components in

the equivalent channel matrices Ci[n] are ignored, and that EO-STBC decoding

is based on the reduced system matrix

Γn =





I I

I I



⊙G[n], (5.15)

where ⊙ represents element-wise multiplication. Thus decoding is performed as





â[n]

â[n+ 1]



 = ΓH
nG[n]





a[n]

a[n + 1]



+ ΓH[n]ṽn. (5.16)

This is equivalent to the isolation of individual sub-carriers. If cross-talk is con-

sidered, [2], [3] show that the JML detector can achieve full diversity gain at low

Doppler spread. The error in approximating the true system matrix G[n] by the

diagonalised version Γn introduces an error E[n] = G[n]−Γn. For low Doppler

spread, this error can be considered small with an upper bound on ICI provided

in [81], which, together with the noise term ΓH
n ṽn in (5.16), can be treated as

additive channel noise collected in the vector u[n] in



5.3. Proposed Low Doppler Spread Space-Time Decoding 90





â[n]

â[n+ 1]



 = ΓH
nΓn





a[n]

a[n + 1]



+ u[n], (5.17)

for the decoding process. Moreover, the cascade of Γn with its matched filter

ΓH
n yields a matrix whose on-diagonal terms represent the gain while off-diagonal

terms represent crosstalk. The diversity gain obtained from (5.17) can be max-

imised by ensuring that the angles in Φ[n] and Θ[n] maximise the on-diagonal

terms of ΓH
nΓn in (5.17). The explicit calculation of the angles is omitted here,

but leads to the selection

Φ[n] = −∠{I⊙C1[n]C
∗
2[n]} (5.18)

Θ[n] = −∠{I⊙C3[n]C
∗
4[n]} (5.19)

Φ[n+ 1] = −∠{I⊙C3[n + 1]C∗
4[n+ 1]} (5.20)

Θ[n+ 1] = −∠{I⊙C1[n + 1]C∗
2[n+ 1]}. (5.21)

These values need to be calculated in the receiver based on the estimate of Γn,

and appropriately fed back to the transmitter, e.g. via a quantised feedback

channel [42], [38], where with Na, sub-carriers, the total number of feedback bits

will then be NaB. Unfortunately, even with low rate quantisation, the feedback

requirements generally grow in proportion to the number of active sub-carriers.

In an OFDM system, coherence across sub-carriers can be exploited, leading to

a reduced feedback scheme [42], whereby the sub-carriers are divided into groups

that span no further than the channel coherence bandwidth. Thus only the

feedback bits B corresponding to one sub-carrier from each group are fed back,

while the remaining sub-carriers are obtained by interpolation. In slow fading

scenarios, coefficients evolve slowly with time, and a significant further reduction
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on feedback overheads can be achieved by differential feedback of rotation angles

[73].

5.3.1 EO-STBC Detectors for Near-Stationary Channel

In this section, we discuss EO-STBC receivers to combat crosstalk resulting from

low Doppler spread for every subblock of carriers in order to achieve full diversity

gain. In STBC systems, the channels are normally assumed to remain constant

over one STBC block. In this case, the equivalent system channel matrices are

orthogonal and symbols can be decoded by a simple maximum likelihood (SML)

algorithm, which decodes symbols separately with low complexity [3]. However,

in time selective fading channels, the channels are non-stationary over one STBC

block; therefore, the equivalent system channel matrices are no longer orthogonal,

so decoding to decrease the effect of cross-talk can be performed by the joint

maximum likelihood (JML) algorithm, which performs joint detection of several

symbols with a higher complexity than decoders that have been proposed by [2].

The derivation of EO-STBC cross-talk receivers is outlined below; for further

details we refer the reader to [3].

For instance decoding are performed for individual per-carrier using classical

OFDM with Fa for a = 1 discussed in Sec. 5.3, in which the Γ[n] in (5.15)

can be rearranged into permuted banded channel system Γ̄n by multiplication

with a permutation matrix similar to [93]. The permutation matrix PM,Na
is

(MNa ×MNa) given as

[PM,Na
]i,j =







1 , {i+ 1, ⌊i/M⌋ + 1 +Namod (i,M)}MNa−1
i=0

0 elsewhere.
. (5.22)

Therefore, the permutation of rows of rn = P2,Na
rn as well as rows and columns
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of Γn = P2,Na
ΓnP

T
2,Na

, yields

rn =
[

r̄n, r̄n+2, · · · r̄n−2Na+2

]T

(5.23)

Γn = blockdiag
{

Γ̄n, Γ̄n+2, · · · Γ̄n−2Na+2

}

, (5.24)

we view Γn as a 2Na × 2Na of 2 × 2 subblock Γ̄n , which is equivalent to per-

carrier EO-STBC channel matrix. Therefore, we can collect transmitted signals

on sub-carrier basis as





r̄[n]

r̄∗[n+ 1]



 = Γ̄n





ā[n]

ā[n + 1]



+





ū[n]

ū∗[n + 1]



 , (5.25)

where Γ̄n collects the coefficients of system channel in (5.14) over two successive

time slots of four identical subcarriers given as

Γ̄n =





C̃1[n] + C2[n] C̃3[n] + C4[n]

C̃∗
3 [n+ 1] + C∗

4 [n+ 1] −C̃∗
1 [n+ 1]− C∗

2 [n + 1]



 . (5.26)

5.3.1.1 JML Detector

The ML detector chooses the message ā, which yields the smallest distance

between the received vector r̄n, and hypothesised message Γ̄nā, i.e. ˆ̄an is given

by

ˆ̄an = arg min
ā

∥

∥r̄n − Γ̄nā
∥

∥

2
. (5.27)

Alternatively, for EO-STBC matched filtering decoding can be performed by mul-

tiplying by DM on both sides of (5.25),
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r̄M = Γ̄M .ān + ūM , (5.28)

whereDM = AM Γ̄H
n , Γ̄M = DM Γ̄n, and ūM = DM ūn with covariance E

{

ūM ūH
M

}

=

σ2
vΓ̄MAH

M . The real valued diagonal matrix AM is chosen such that the diagonal

elements of E
{

ūM ūH
M

}

are σ2
ū , therefore requiring

AM =





(α1 + β1)
− 1

2 0

0 (α2 + β2)
− 1

2



 , (5.29)

where

α1 =
2

∑

m=1

|Cm[n]|2 +
4

∑

m=3

|Cm[n + 1]|2 (5.30)

β1 = 2ℜ{ejϕ[n]C1[n]C
∗
2 [n] + ejϑ[n+1]C3[n + 1]C∗

4 [n+ 1]} (5.31)

α2 =

2
∑

m=1

|Cm[n + 1]|2 +
4

∑

m=3

|Cm[n]|2 (5.32)

β2 = 2ℜ{ejϕ[n+1]C1[n+ 1]C∗
2 [n+ 1] + ejϑ[n]C3[n]C

∗
4 [n]}. (5.33)

Furthermore, let the cascade of Γ̄n with its matched filter Γ̄H
n be

Ḡn = Γ̄H
n Γ̄n =





(α1 + β1) ξ

ξ∗ (α2 + β2)



 , (5.34)

which is a positive semi-definite matrix with

ξ = ej(ϑ[n]−ϕ[n])C∗
1 [n]C3[n]− ej(ϑ[n+1]−ϕ[n+1])C∗

1 [n + 1]C3[n+ 1] + e−jϕ[n]C∗
1 [n]C4[n]

−e−jϕ[n+1]C∗
1 [n+ 1]C4[n + 1] + ejϑ[n]C∗

2 [n]C3[n]− ejϑ[n+1]C∗
2 [n + 1]C3[n+ 1]

+C∗
2 [n]C4[n]− C∗

2 [n+ 1]C4[n + 1]. (5.35)
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Therefore for matrix Γ̄M of (5.28), we obtain

Γ̄M = AMḠn =





(α1 + β1)
1

2 ξ (α1 + β1)
− 1

2

ξ∗ (α2 + β2)
− 1

2 (α2 + β2)
1

2



 . (5.36)

The JML detection rule in (5.27) is now equivalent to

ˆ̄an = arg min
ā

{

(

r̄M − Γ̄M · ā
)H (

Γ̄MAH
M

)−1 (
r̄M − Γ̄M · ā

)

}

. (5.37)

Hence we conclude that matched filter is equivalent to JML detection, which is

optimal and can achieve full diversity gain but with higher complexity compared

to suboptimal detection with low expected complexity and lower diversity gain.

5.3.1.2 SML Detector

From (5.28), without considering the correlation of the noise vM and the cross-talk

i.e., the off-diagonal terms of Γ̄M , the SML detector simply obtains the decision

about ˆ̄a[n] and ˆ̄a[n + 1] separately

ˆ̄a[n+ i] = argmin
ā

{

∣

∣

∣
r̄M [n+ i]− (αi + βi)

1

2 · ā
∣

∣

∣

2
}

, i = {1, 2} , (5.38)

which has a lower complexity compared to the JML detector defined in (5.37).

5.3.1.3 DF Detector

Because Ḡ in (5.34) is Hermitian, it possesses a unique Cholesky factorization of

the form Ḡ = LHL, where L is lower triangular with real diagonal elements and
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can be expressed as

L =





ζ (α2 + β2)
− 1

2 0

ξ∗ (α2 + β2)
− 1

2 (α2 + β2)
1

2



 , (5.39)

where

ζ2 = (α1 + β1) (α2 + β2)− (ξ∗)2 . (5.40)

Once the above processing is performed, we employ the whitening matched filter

on the received ST codeword, that is, multiplying on both sides of (5.28) yields

r̄W = CW r̄n = L · ān + ūW , (5.41)

where CW = (L−1)
H
Γ̄H

n , and CW r̄n is whitened-matched filter (WMF) for the

matrix channel Γ̄n, with its name derived from the fact that ūW is still white with

the same statistics as ūn. Based on the WMF output, the DF detector makes a

decision on n without crosstalk from s̄[n + 1]. Assuming this decision is correct,

the estimates ŝ[n] is then incorporated into the estimation of ŝ[n+ 1], namely















ˆ̄a[n] = arg min
ā

{

∣

∣

∣
r̄Z [n]− ζ (α1 + β1)

− 1

2 · ā
∣

∣

∣

2
}

ˆ̄a[n + 1] = arg min
ā

{

∣

∣

∣
r̄Z [n+ 1]− ξ∗ζ (α2 + β2)

− 1

2 · ā[n]− ζ (α2 + β2)
1

2 ā
∣

∣

∣

2
} .

(5.42)

5.3.1.4 ZF Detector for Subblock of Sub-carriers

Starting from (5.28), the ZF detector forces the crosstalk to zero. Multiplying by

DZ on both sides of (5.25) gives

r̄Z = AZ · ān + ūZ , (5.43)
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where AZ = DZΓ̄
−1
n , and vZ = DZūM . The real diagonal matrix AZ is chosen

such that the diagonal elements of E
{

ūZū
H
Z

}

are σ2
ū, and is given by

AZ =





ζ (α2 + β2)
− 1

2 0

0 ζ (α1 + β1)
− 1

2



 . (5.44)

Consequently, according to (33), the ZF detector can make decisions about â[n]

and â[n + 1] independently. That is















ˆ̄a[n] = argmin
ā

{

∣

∣

∣
r̄Z [n]− ζ (α2 + β2)

− 1

2 · ā
∣

∣

∣

2
}

ˆ̄a[n + 1] = argmin
ā

{

∣

∣

∣
r̄Z [n+ 1]− ζ (α1 + β1)

− 1

2 · ā
∣

∣

∣

2
} . (5.45)

5.4 Proposed Open Loop Decoding with Equal-

isation

Doppler spread or an FrFT parameter selection a 6= ±1 causes the equivalent

channel matrix (5.6) to loose its diagonal structure such that the system matrix

(5.14) introduces coupling between at least adjacent sub-carriers. Since OFDM

systems are likely to operate at different mobility situations, the coupling due

to non-stationary system characteristics arising from high Doppler spreads can

become very significant. In order to mitigate the impact of high Doppler spread

on the EO-STBC decoding performance, in the following an equaliser is intro-

duced, which is an extension of the work in [92] to EO-STBC. This equaliser

increases the receiver complexity, but removes the need for feedback of angles

to the transmitter, where therefore the beamsteering matrices are simply set as

Φ[n] = Θ[n] = I.



5.4. Proposed Open Loop Decoding with Equalisation 97

5.4.1 Banded Linear Block MMSE Decoding

Assuming perfect channel state information, a linear block MMSE equaliser is

defined based on the system matrix G[n] in (5.14) as

Wn,MMSE = G[n]H
(

G[n]G[n]Hn + γ−1I
)

−1, (5.46)

where γ is the signal to noise ratio (SNR) at the input to the equaliser, assuming

corruption by white Gaussian noise. The matrix inversion in (5.46) requires

requires O
(

(2Na)
3) flops which is impractical for high values of (2Na). The zero-

forcing ZF equaliser Wn,ZF, which applies the inverse of the G[n] in (5.14), can

be calculated from (5.51) for the special case

Wn,ZF = Wn,MMSE|γ→∞. (5.47)

Similar to (5.46), the matrix inversion in (5.47) is of order O
(

(2Na)
3). Therefore,

OFDM equalisation generally schemes use banded equalisers which can offer lower

complexity.

To reduce the computational cost, we assume that ICI induced by widely

separated sub-carriers can be neglected. This is based on the observation in [92]

that most energy of the equivalent channel matrix is concentrated in the vicinity

of the main diagonal such that the channel matrix G[n] can be approximated by

banded sub-matrices incorporating Q off-diagonals neither side. The parameter Q

can be selected to balance between performance and complexity. The restriction

of the equivalent channel matrix to a banded form can be enforced by means of

a binary masking matrix M with elements

[M]ij =







1 0 ≤ |i− j| ≤ Q,

0 Q < |i− j| < Na.
(5.48)
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Obviously, a larger Q leads to a smaller approximation error and hence a perform-

ance improvement. On the other hand, for higher bandwidth of M the complexity

will be increasing. The value of Q can be chosen according to some rules of thumb

in [79]. Usually we take 1 ≤ Q ≤ 5, which is an appropriate choice for Rayleigh

fading channels and which is smaller than the number of sub-carriers Na.

Assuming perfect knowledge of the channel matrix G[n], based on the masked

matrix M in (5.48), G[n] can be transformed into banded sub-matrices Bn,

Bn =





M M

M M



⊙G[n]. (5.49)

Additionally, the banded sub-matrices Bn can be rearranged by multiplication

with a permutation matrix in (5.22) to take the shape of the matrix shown in

Fig. 5.4. The above matrix can permute Bn such that the permuted received and

transmitted signal from the same sub-carriers of different transmit antennas are

grouped together,

P2,Na





r[n]

r∗[n + 1]



 = P2,Na
BnP

T
2,Na

.P2,Na





a[n]

a[n + 1]



+P2,Na





v[n]

v∗[n+ 1]



 .

(5.50)

Therefore, the permutation of rows of r̄n = P2,Na
rn as well as rows and columns of

B̄n = P2,Na
BnP

T
2,Na

can be obtained by re-indexing, yielding the sparse structure

as shown in Fig. 5.4 (right).

Next, we present the MMSE equaliser based on the banded structure of B̄n.

Analogously to [94] the MMSE equaliser can be defined as

W̄n,MMSE = B̄H
n

(

B̄nB̄
H
n + γ−1I

)

−1, (5.51)

where W̄n,MMSE is a new banded matrix, but with width 4 (Q+ 1) .
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Q+1

Q+1

2(Q+1)

2(Q+1)

Figure 5.4: Structure of (left) the banded submatrices in Bn and (right) the permuted banded
channel system B̄n

5.4.2 Low-Complexity LSMR Algorithm

The least squares minimum residual (LSMR) algorithm is a recently proposed

iterative approach, reported in [89], which solves the matrix inversion iteratively

to reduce the MMSE equaliser complexity. Hence, it is solving linear systems

Ax = b, least-squares problems min ‖Ax− b‖2 , and regularized least squares

given as

min

∥

∥

∥

∥

∥

∥





A

λI



x−





b

0





∥

∥

∥

∥

∥

∥

2

. (5.52)

It’s reduced complexity system from known sparsity of the system matrix A.

Given the sparsity of the equivalent channel matrix in Fig. 5.4 (right), the LSMR

appears suited to equalising the above multi-carrier approach.

The equalisation scheme using the sparse least squares (LSQR) algorithm is

equivalent to the conjugate gradient (CG) method applied to

(

ATA+ λ2I
)

x = ATb. (5.53)
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LSQR has the property of reducing the residual ‖b−Ax‖ monotonically. How-

ever, the LSMR algorithm is based on the Golub–Kahan process [95], which is

analytically equivalent to the minimum residuals applied to (5.53), which has

the property of reducing both ‖b−Ax‖ and
∥

∥AT (b−Ax)
∥

∥ monotonically. Al-

though LSQR and LSMR ultimately converge to similar points, LSMR converges

faster, which comes at the price of a slightly increased computational complex-

ity per iteration step, we follow the route of the LSMR algorithm to exploit its

benefit of providing a faster converging solution to the MMSE equaliser in (5.51).

5.4.3 MMSE Equaliser based on LSMR Algorithm

In the case of MMSE decoding with equalisation for EO-STBC, regularised least

squares LSMR offers lower complexity and high numerical stability for solving a

system of sparse linear equations. MMSE equalisation is formulated as

(

B̄nB̄
H
n
+ γ−1I

)





â[n]

â∗[n+ 1]



 = B̄H
n





r̄[n]

r̄∗[n+ 1]



 , (5.54)

which is equivalent to the regularised least squares equation in (5.53), with the

parameter λ related to the noise power γ−1. Note that the optimal number of

LSMR iterations depends on the noise level, and on the maximum Doppler spread

and the maximum delay spread that affect the distribution of the singular values

of the channel matrix.

5.4.4 Complexity Analysis

LSMR is particularly attractive due to its numerical stability, inherent potential

for regularisation, and low computational complexity. We turn our attention

to computational complexity calculations. For simplicity reasons, we consider

B̄n as a 2Na × 2Na approximately banded matrix with bandwidth parameter
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2Q+1. Typically, matrix inversion is extremely process intensive. The inversion

of matrix (5.46) requires a substantial number of O ((2Na)
3) flops , which is

impractical for real systems with a large number of sub-carriers. By applying an

LDLH factorisation in calculating either MMSE or ZF solutions in (5.51) and

(5.47), the number of complex operations compared to standard matrix inversion

methods such as Gaussian elimination [74] can be reduced to (32Q2+76Q+34)2Na

complex operations [94]. Being an iterative algorithm for solving least squares

problem, the most computationally expensive part of each iteration of LSMR are

two matrix-vector products. The LSMR implementation of either MMSE or ZF

solution requires O(4Na(Q + 1)) flops at each iteration. LSMR can achieve the

same accuracy of inversion with a considerably lower number of iterations, hence

leading to an overall saving in complexity [89].

5.5 Simulations and Results

This section details simulations, which use an FrFT-based multicarrier system,

whereby the discrete FrFT matrix Fa with a = 1 implements the standard OFDM

based FFT with N = 128 sub-carriers, of which Na = 96 are active sub-carriers,

and number of guard samples in the cyclic prefix is 32. Simulation parameters

consider a typical cellular system with a carrier frequency fc = 1.8 GHz and

a channel bandwidth BW = 800 kHz, which is equal to the sampling rate fs =

BW.128/(128+32) at which the received signal is acquired prior to serial/parallel

conversion and CP removing.

In the simulation below, the channel impulse response has a length of L = 12,

with Rayleigh fading coefficients, which can be modelled as a tapped delay line [96]

with fixed tap spacing Ts = 1/fs . Assuming time and frequency synchronisation

at the receiver side and considering the channel has an exponential power-delay

profile with a root mean square (RMS) delay spread of 3 sampling periods. The
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Figure 5.5: BER comparison of open and closed loop multi-carrier EO-STBC system for
stationary channel conditions with ΩD = 0.

temporal variation of the channel with Jakes’ Doppler spectrum is governed by

a maximum Doppler spread fD = ΩD/2π, corresponding to a mobile speed v =

cfD (fs/128) /fc m/s, where c = 3× 108m/s is the speed of light. All simulations

below assume that the channel is perfectly known. Results below are averaged

across an ensemble of 104 channel realisation.

5.5.1 Stationary Channel Conditions

In stationary channel conditions, the BER performance against SNR is simu-

lated by transmitting binary phase shift keying (BPSK) encoded symbols over

a multi-carrier based EO-STBC transmission system. Due to the channel being

stationary, we employ FrFT-OFDM as a multi-carrier approach, whereby the dis-

crete FrFT matrix Fa is selected with a = 1, such that the system particularises

to an FFT-OFDM transmission. In this case, the length 32 of the cyclic prefix
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ensures that the equivalent matrix is diagonalised, thus suppressing ISI and ICI.

In Fig. 5.5, simulation results comparing the performance of open-loop and

closed-loop schemes are provided. The closed loop scheme uses optimum phase

rotation feedback and open loop simply implies that no rotation angles are se-

lected, i.e. Φ[n] = Θ[n] = I, as shown in Fig. 5.3. It can be seen that the

closed-loop scheme attains better performance than the open loop scheme, which

demonstrates that closed-loop EO-STBC benefits from additional array gain in

addition to the diversity gain that the open-loop scheme offers.

5.5.2 Near-Stationary Channel Conditions

This section presents simulations for the proposed particular FFT-OFDM multi-

carrier transmission using Fa with a = 1 based EO-STBC transceiver , dis-

tinguishing between results for the near-stationary approach using EO-STBC

decoding with 4 crosstalk receivers have been proposed in [2], [3]. The max-

imum normalised angular Doppler spread ΩD = 2πfD/fs, and is here selected as

ΩD = [0.001, 0.003]△Ω corresponds to mobile speeds v = [3, 9] km/h.

5.5.2.1 Performance of Cross-Talk Detectors

The uncoded BER performance of the EO-STBC multi-carrier system with all 4

cross-talk receivers that have been proposed in [2], [3] are investigated for open-

loop and closed-loop systems.

Fig. 5.6 compares the performance of the detectors in [3] for open loop scheme

and closed loop scheme with a mobile speed v = 3 km/h. In this case, the closed

loop scheme outperforms the open loop scheme for all 4 cross-talk receivers. As

far as low complexity is concerned, the ZF and DF detectors, which have lower

complexity than the JML detector, can offer near JML detector performance

and further can significantly outperform the SML detector. There is a trade-off
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Figure 5.6: BER comparison of the open (solid lines) and closed loop (dashed lines) multicar-
rier EO-STBC system for a mobile speed v = 3km/h, with the crosstalk receivers have been
proposed in [2], [3].

between BER performance and decoding complexity, the complexity of ZF, and

DF detectors in this design is higher than SML and lower than JML. Thus, for

near-stationary channel conditions, the JML detector offers the best performance,

but bearing in mind the computation complexity of the receiver, ZF and DF

detectors represent attractive alternatives.

Fig. 5.7 compares the performance of the ZF and DF detectors to the per-

formance of the JML detectors when the mobile speed increases to v = 9 km/h for

open loop and closed loop schemes. It can be seen that the closed loop scheme

outperforms the open loop scheme, but only the JML detector can reduce the

cross-talk and noise simultaneously, while the ZF and DF detectors fail to reach

satisfactory performance. To judge the JML detector more objectively, below we

detail its performance for open-loop and closed-loop schemes in dependency of

different Doppler spreads.
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Figure 5.7: BER Comparison of the open and closed loop multicarrier EO-STBC system for
a mobile speed v = 9km/h with the crosstalk receivers have been proposed in [2], [3].

5.5.2.2 Performance of JML Detector

In Fig. 5.8, for various ΩD = [0.001, 0.002, 0.003, 0.004, 0.005, 0.01]△Ω or, equi-

valently, for mobile speeds v of 3, 6, 9, 12, 15, and 30 km/h, we examine the effects

on the performance of JML at SNR = 20dB. The simulation shows that the JML

detector can provide a BER ≤ 10−3 when the speed v is less than 9 km/h and less

than 12 km/h for open loop and closed loop schemes respectively. However, the

differences between open loop and closed loop performance curves reduce as ΩD

increases. Therefore, for a maximum Doppler spread ΩD ≥ 0.004△Ω correspond-

ing to speed which is greater than or equal to 12 km/h, the JML detector is unre-

liable. These trends in Fig. 5.8 suggest that the design of the closed-loop scheme

with cross-talk receivers proposed in [2], [3] is not beneficial in non-stationary

channel conditions. Therefore, we propose an equalisation scheme based on a low

complexity MMSE Equaliser for the FrFT-OFDM system in the next section.
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Figure 5.8: BER comparison of open and closed loop multicarrier EO-STBC system per-
formance at SNR = 20dB with the JML detector in dependency of various Doppler spreads
.

5.5.3 Fading Scenario with Equaliser

To mitigate the ICI problem at a maximum Doppler spread ΩD = {0.01, 0.05} △Ω

equivalent to the mobile speeds 30 and 150 km/h, we test the proposed MMSE

equaliser for a multicarrier FrFT-OFDM system based on open loop EO-STBC

transmission. The MMSE equaliser is employed to overcome degradation due

to non-stationary channel conditions, and can offer an appropriate solution to

reduce ICI and achieve diversity gain.

5.5.3.1 Selection of Optimum FrFT Parameter a

For non-stationary channel conditions, the transmitted signals can rather match

the time-varying channel characteristics by selecting the optimal order a such

that the discrete FrFT matrix Fa is selected with optimal order a. Hence, frac-
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Figure 5.9: Optimum FrFT parameter a selection for a mobile speed v = 30 km/h.

tional domain requires optimisation to obtain the best time-frequency resolution,

therefore, we need to find the optimal order a to obtain the optimum BER per-

formance. The optimal orders are a = [0.25, 0.33] obtained by simulations, as

shown in Figs. 5.9 and 5.10. Which are optimised at SNR of 20dB, and further

below their BER performances will be compared to performances of other orders

a that includes a = 1 corresponding to the FFT-OFDM transmission.

5.5.3.2 Performance of MMSE Equaliser in FrFT Domain

Based on results obtained in Sec. 5.5.3.1, we present simulations that show the

BER performances of the multicarrier FrFT-OFDM system based on EO-STBC,

where the BERs of the MMSE equaliser in (5.46) for mobile speeds v = 30 km/h

and v = 150 km/h are plotted in Figs. 5.11 and 5.12. We consider the comparison

of the BER results with optimum and non-optimum values of a, as it can be seen

that the transformer order selection impacts on the performance. Interestingly,
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the selection of the DFT/FFT with a = 1 presents the worst case.

Concentrating on the BER results at SNR = 20 dB in Fig. 5.11 shows that

the BER at optimum order is around 1 × 10−3, which significantly outperforms

the BER corresponding to the ordinary FFT for a = 1, which is around 5 ×
10−3. Moreover in Fig. 5.12, a slight decreasing in BERs at SNR = 20 dB due to

increasing time variations can be observed where the BER at optimum order is

around 2× 10−3, while the BER corresponding to the ordinary FFT for a = 1 is

around 5.2× 10−3.

FrFT-OFDM has distinct advantages when operating in doubly-dispersive

channels over FFT-OFDM with a similar complexity. Simulations indicate that

MMSE Equaliser in FrFT domain outperforms equalisation based on conventional

FFT domain.

5.5.3.3 Performance of Low Complexity MMSE Equaliser in FrFT

Domain

In this section we show the BER performances of the low complexity banded

MMSE equaliser in (5.51) for FrFT-OFDM system with optimum order a with

compared to the ordinary FFT for a = 1. Further, we show the comparison of

the LSMR approach in (5.54).

From Figs. 5.13, 5.14, we observe that when the equivalent matrices are ban-

ded to Q+1 = 6 and Q+1 = 12 for mobile speeds 30 and 150 km/h respectively,

firstly the FrFT-OFDM systems with optimum orders a are still outperform the

systems for a = 1, and secondly the banded equalisers have an error floor due

to the band approximation error of the channel. Note that LSMR approach can

offer a low complexity with enhanced performance due to numerical robustness,

but there is a slight increase in the error floor compared to the banded MMSE

equaliser in (5.51). Thus, FrFT-OFDM with banded equaliser based on LSMR
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algorithm can offer a good trade-off between system performance and computa-

tional complexity.

5.6 Conclusions

In this chapter, we have considered a multicarrier FrFT-OFDM system based

on EO-STBC transmission over doubly-dispersive channels. For enhancing the

diversity gain, we have studied near-stationary and non-stationary channel con-

ditions. For near-stationary case, performance of closed-loop scheme can outper-

form the open loop scheme with the sub-optimal crosstalk receivers used ZF and

DF detectors. These detectors can approach the performance of the optimum

JML detector. Moreover, simulation results have shown that JML detector can

maintain satisfactory performance even at relative high mobile speeds.

For non-stationary systems, neither closed loop nor open loop schemes can per-

form sufficiently well with the JML detector. However, to mitigate performance

degradation we propose a low complexity MMSE equalisation based on banded

system matrix. Moreover, its computational complexity has been further reduced

by using LSMR iterative algorithm.

Simulation results have highlighted that a multi-carrier scheme operating on

the basis of an FrFT can outperform standard OFDM based on DFT/FFT.

OFDM based on FrFT tends to retain more channel energy in and along the main

diagonal than classical OFDM based on FFT, which allows to achieve better sys-

tem performance, making FrFT-OFDM an attractive alternative to FFT-OFDM

in wireless broadband communications. For the banded MMSE equaliser, the

values of Q used in the various band approximations depends on the maximum

Doppler spread; thus, adjusting Q together with the transformer order a provides

parameters to optimise the FrFT multi-carrier system.
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Figure 5.11: BER comparison of a multicarrier FrFT-OFDM system based on EO-STBC
transmission with MMSE equaliser for a mobile speed v = 30 km/h.
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Figure 5.12: BER comparison of a multicarrier FrFT-OFDM system based on EO-STBC
transmission with MMSE equaliser for a mobile speed v = 150 km/h.
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Figure 5.13: BER comparison of a multicarrier FrFT-OFDM system based on EO-STBC
transmission based on low complexity MMSE equaliser with a banded equivalent system
matrices to Q+ 1 = 6, for a mobile speed v = 30 km/h.
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Figure 5.14: comparison of a multicarrier FrFT-OFDM system based on EO-STBC transmis-
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Chapter 6

Conclusions and Future Work

In this chapter, a summary and some concluding remarks are given, and several

directions for future work are discussed.

6.1 Summary

Phase rotated EO-STBC for a system with four transmit and one receive antennas

was adopted in this thesis because it can achieve full diversity plus additional

array gain at code rate one, and low decoding low complexity. The array gain,

admitted through the inclusion to phase rotation at two transmit antennas, can

be maximised in the presence of quantised feedback as presented in Chapter 2.

The performance of EO-STBC was compared with precoded Alamouti as well as

QO-STBC and its advantages were discussed.

The maximum achievable diversity and array gain with EO-STBC was theor-

etically derived in Chapter 3. To attain maximum this gain with low bandwidth

in the feedback channel, a differential encoding approach for the rotation angles

was proposed. We have demonstrated that with a single bit encoding per angle

can lead to near-optimum performance in terms of diversity and array gain.

113
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In order to calculate the optimum feedback angles in the receiver, the chan-

nel must be known. Hence, channel estimation with Kalman filter tracking was

considered, whereby the Kalman filter was adapted to form a decision-directed

scheme based on the detection of EO-STBC symbols, and accommodate the ro-

tation of some of the channel’s cofficients within EO-STBC. Chapter 4 results

have shown the feasibility of longer tracking periods with a reduced MSE by

higher order models for the channel evolution inside the Kalman filter. Although

the complexity of the higher-order model is slightly higher than the conventional

Kalman filter, it has been shown that such a deployment yields significant im-

provements in terms of tracking ability and BER performance.

In Chapter 5 a rotated EO-STBC over near-stationary doubly dispersive chan-

nel was presented. To address the frequency-selectivity of the channel, a multicar-

rier approach was adopted. We have utilised a new fractional Fourier transform

based system which uses chirps as mutli-carriers and generalises the standard

DFT/FFT-OFDM, offering advantages in non-stationary environments. In a sta-

tionary case, we can operate DFT/FFT-OFDM by realising EO-STBC in every

subband. For near-stationary channels, we have adopted a cross-talk detector,

which can address the inter-symbol-interference and inter-carrier interferences

that occurs as a result of the channel’s non-stationarity. For faster time-varying

channels, the benefit of feeding back rotation angles from the receiver disappeared,

and we have proposed an open-loop system, which however incorporates an equal-

iser to address ISI and ICI. The FrFT approach here enables a lower-cost equaliser

than standard OFDM, which was further improved through a fast-converging ap-

proach for the solution of sparse linear equations, as found in the FrFT case.

EO-STBC with beam steering angles is an efficient transmission scheme to

increase the diversity gain of MIMO systems over near-stationary channel condi-

tions. Due to increasing demands for wireless communication systems providing
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higher data rate and high quality of service, the design of EO-STBC schemes

with equalisation presented over stationary channels are beneficial and desirable

in the practical future wireless applications.

6.2 Future Work

There are several possibilities for future work based on the research presented

throughout this thesis. In the following, some further directions are outlined.

The phase rotation beam-steering with proposed differential feedback scheme

in Chapter 3 can be generalised to more than 4 transmit antennas, e.g., five or

six antennas. We can go further in this direction and consider mutual correlation

between the antenna elements that possibly have an effect on the diversity gain.

In Chapter 4, we have proposed an AR-2 model to exploit the smooth evol-

ution of the channel coefficients’ trajectories in slow fading scenarios. In order

to reduce AR-2 complexity, the inclusion of a drift vector in the Kalman model

may also be considered [72]. This scheme can be also considered for distributed

relaying systems [97].

Moreover, in Chapter 4, the coefficients of estimated channel are used to com-

pute the feedback angles. It will be interesting to investigate the estimation

error resulting of estimated feedback angles. When the channel estimation er-

ror increases, the estimated feedback angles for the beamsteering processing will

need to be adjusted to maintain efficient performance. The required form of the

tracking feedback angles should be investigated in future research.

Throughout Chapter 5, it has been assumed that the channel matrix with ICI

terms is perfectly known at the OFDM receiver. In the context of channel es-

timation and symbol detection, the consideration of Kalman filtering for tracking

of coefficients to exploit smoothness in the channel evolution in both time and

frequency could be investigated, possibly extending the use of the proposed AR-2
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model. The influence of the estimation error, in connection with other synchron-

isation errors, on the system performance would also form a worthwhile task for

future research in this area.
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Appendix A

Signal Detection with Error due

to both Estimation and Time

Variation

In this Appendix, derivation of on-diagonal and off-diagonal elements of the term

ĤH
nHn in terms of channel coefficients, which is given in Chap. 4. Note that errors

are due to time-variations plus estimation errors.

A.1 Signal Detection

In Chap. 4, we propose the use of Kalman filter for tracking the channel responses

in EO-STBC coded systems. To generalise the signal detection to both estimation

and time variation errors, it is required to use estimated channel matrix with

absorbed beamsteering angles to detect EO-STBC transmitted symbols. The

received vector can be decoded in the matched filter sense as

130
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



ŝ[n]

ŝ[n+ 1]



 = ĤH
n





r[n]

r∗[n + 1]



 , (A.1)

where in cases with estimation and time variation errors, the system matrix is no

longer orthogonal. During the EO-STBC time intervals, the system matrix can

be written as

Ĥn =





ejϑ1[n]ĥ1[n] + ĥ2[n] ejϑ2[n]ĥ3[n] + ĥ4[n]

e−jϑ2[n+1]ĥ∗
3[n+ 1] + ĥ∗

4[n+ 1] −e−jϑ1[n+1]ĥ∗
1[n+ 1]− ĥ∗

2[n+ 1]





(A.2)

A.2 Deviation from a Diagonal Matrix

In the sense that HH
nHn is diagonal, which indicates that the diagonal matrix

Gn = HH
nHn can be obtained as

HH
nHn =





α + β 0

0 α + β



 . (A.3)

where α + β =
4
∑

m=1

|hm[n]|2 +
4
∑

m=3

|hm[n]|2 + 2ℜ{h1[n]h
∗
2[n] + h3[n]h

∗
4[n]}.

In the presence of errors, the matrix ĤH
nHn is given by

ĤH
nHn =





g11[n] g12[n]

g21[n] g22[n]




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with

g11[n] = (ejϑ1[n]ĥ1[n] + ĥ2[n])
∗ · (ejϑ1[n]h1[n] + h2[n]) +

+(e−jϑ2[n+1]ĥ∗
3[n+ 1] + ĥ∗

4[n + 1])∗ · (e−jϑ2[n+1]h∗
3[n+ 1] + h∗

4[n+ 1])

= ĥ∗
1[n]h1[n] + ĥ∗

2[n]h2[n] + ĥ3[n+ 1]h∗
3[n+ 1] + ĥ4[n+ 1]h∗

4[n+ 1]

+e−jϑ1[n]ĥ∗
1[n]h2[n] + ejϑ1[n]h1[n]ĥ

∗
2[n]

+ejϑ2[n+1]ĥ3[n + 1]h∗
4[n + 1] + e−jϑ2[n+1]h∗

3[n+ 1]ĥ4[n+ 1] (A.4)

g12[n] = (ejϑ1[n]ĥ1[n] + ĥ2[n])
∗ · (ejϑ2[n]h3[n] + h4[n]) +

+(ejϑ2[n+1]ĥ3[n + 1] + ĥ4[n + 1]) · (−e−jϑ1[n+1]h∗
1[n+ 1]− h∗

2[n+ 1])

= ej(ϑ2[n]−ϑ1[n])ĥ∗
1[n]h3[n]− ej(ϑ2[n+1]−ϑ1[n+1])h∗

1[n+ 1]ĥ3[n+ 1]

+e−jϑ1[n]ĥ∗
1[n]h4[n]− e−jϑ1[n+1]h∗

1[n + 1]ĥ4[n+ 1]

+ejϑ2[n]ĥ∗
2[n]h3[n]− ejϑ2[n+1]h∗

2[n + 1]ĥ3[n + 1]

+ĥ∗
2[n]h4[n]− h∗

2[n + 1]ĥ4[n + 1] (A.5)

g21[n] = (ejϑ2[n]ĥ3[n] + ĥ4[n])
∗ · (ejϑ1[n]h1[n] + h2[n])

−(e−jϑ1[n+1]ĥ∗
1[n+ 1] + ĥ∗

2[n+ 1])∗ · (e−jϑ2[n+1]h∗
3[n + 1] + h∗

4[n + 1])

= ej(ϑ1[n]−ϑ2[n])h1[n]ĥ
∗
3[n]− ej(ϑ1[n+1]−ϑ2[n])ĥ1[n+ 1]h∗

3[n+ 1]

+ejϑ1[n]h1[n]ĥ
∗
4[n]− ejϑ1[n+1]ĥ1[n + 1]h∗

4[n + 1]

+e−jϑ2[n]h2[n]ĥ
∗
3[n]− e−jϑ2[n+1]ĥ2[n + 1]h∗

3[n+ 1]

+h2[n]ĥ
∗
4[n]− ĥ2[n + 1]h∗

4[n + 1] (A.6)

g22[n] = (ejϑ2[n]ĥ3[n] + ĥ4[n])
∗ · (ejϑ2[n]h3[n] + h4[n])

+(e−jϑ1[n+1]ĥ∗
1[n+ 1] + ĥ∗

2[n + 1])∗ · (e−jϑ1[n+1]h∗
1[n+ 1] + h∗

2[n+ 1])

= ĥ1[n + 1]h∗
1[n + 1] + ĥ2[n + 1]h∗

2[n + 1] + ĥ∗
3[n]h3[n] + ĥ∗

4[n]h4[n]

+ejϑ1[n+1]ĥ1[n + 1]h∗
2[n + 1] + e−jϑ1[n+1]h∗

1[n+ 1]ĥ2[n+ 1]

+ejϑ2[n]h3[n]ĥ
∗
4[n] + e−jϑ2[n]ĥ∗

3[n]h4[n] (A.7)
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However, unlike in the stationary case, There are no simplified form to represent

the deviationGn−Ĝn. It can be noted that off-diagonal elements g12[n] and g21[n]

are now finite and create inter-symbol interference in the process of decoding while

on-diagonal elements g11[n] and g22[n] are degraded.


