
Algebraic Methods for Incremental

Maintenance and Updates of Views

within XML Databases

By

Martin Hugh Goodfellow

A thesis submitted to the University of Strathclyde

for the degree of Doctor of Philosophy

Department of Computer and Information Sciences

October 2014

Examiner’s Copy

ii

c© Martin Hugh Goodfellow, 2014.

Typeset in LATEX 2ε.

iii

Except where acknowledged in the customary manner,

the material presented in this thesis is, to the best of my

knowledge, original and has not been submitted in whole

or part for a degree in any university.

Martin Hugh Goodfellow

iv

Acknowledgements

Firstly, I am very grateful for the continuous support I have received from my supervisor

Dr. John Wilson. Without his help and patience this thesis would not have been possible.

I am also grateful for my EPSRC stipend which funded me throughout my PhD, along with

other financial support from the department and other sources which allowed me to attend

conferences and summer schools.

I would also like to thank Prof. Angela Bonifati and Dr. Ioana Manolescu who super-

vised me throughout my view maintenance work, during my internship at Inria Saclay in

Paris. I would also like to thank Angela for continuing to help supervise me with my view

maintenance work and some of my view update work up to the end of my PhD.

I would also like to acknowledge Dr. Ela Pustulka who was my initial PhD supervisor

before moving to Switzerland. I would like to thank Ela for getting me started on the PhD

process and continuing to offer support throughout.

Finally, I would like to thank all my family and friends who supported me throughout

the highs and lows of my PhD.

v

vi Acknowledgements

List of Publications

• A. Bonifati, M. H. Goodfellow, I. Manolescu, D. Sileo Algebraic Incremental Mainte-

nance of XML Views. ACM Transactions on Database Systems (TODS), Volume 38

Issue 3, August 2013

• A. Bonifati, M. H. Goodfellow, I. Manolescu, D. Sileo Algebraic Incremental Mainte-

nance of XML Views. (Proceedings of the 14th International Conference on Extending

Database Technology (EDBT/ICDT 2011))

• M. H. Goodfellow, J. Wilson, E. Hunt Composition of Biochemical Networks using

Domain Knowledge Poster. Nature Precedings 2010

• M. H. Goodfellow, J. Wilson, E. Hunt Biochemical Network Matching and Composition.

(Proceedings of the 2010 EDBT/ICDT Workshops)

• M. H. Goodfellow, E. Hunt, D. McCafferty reSearch: Enhancing Information Retrieval

with Images. Technical Report, University of Strathclyde, 2009

vii

viii List of Publications

Abstract

Within XML data management the performance of queries has been improved by using ma-

terialised views. However, modifications to XML documents must be reflected to these views.

This is known as the view maintenance problem. Conversely updates to the view must be re-

flected on the XML source documents. This is the view update problem. Fully recalculating

these views or documents to reflect these changes is inefficient. To address this, a number of

distinct methods are reported in the literature that address either incremental view mainte-

nance or update. This thesis develops a consistent incremental algebraic approach to view

maintenance and view update using generic operators. This approach further differs from

related work in that it supports views with multiple returned nodes. Generally the data

sets to be incrementally maintained are smaller for the view update case. Therefore, it was

necessary to investigate the circumstances in which converting view maintenance into view

update gave better performance. Finally, dynamic reasoning on updates was considered to

determine whether it improved the performance of the proposed view maintenance and view

update methods. The system was implemented using features of XML stores and XML query

evaluation engines including structural identifiers for XML and structural join algorithms.

Methods for incrementally handling the view maintenance and view update problem are pre-

sented and the benefits of these methods over existing algorithms are established by means

of experiments. These experiments also depict the benefit of translating view maintenance

updates into view updates, where applicable, and the benefits of dynamic reasoning. The

main contribution of this thesis is the development of similar incremental algebraic methods

which provide a consistent solution to the view maintenance and view update problems. The

ix

x Abstract

originality of these methods is their ability to handle statement-level updates using generic

operators and views returning data from multiple nodes.

Contents

Acknowledgements v

List of Publications vii

Abstract ix

List of Figures xvii

List of Tables xxv

1 Introduction 1

1.1 Motivation . 2

1.2 XML . 3

1.3 XML Databases . 3

1.3.1 Views . 4

1.4 View Maintenance . 4

1.5 View Update . 5

1.6 Hypothesis and Research Questions . 5

1.7 Thesis Structure . 6

2 Literature Review 7

2.1 XML . 8

2.2 XPath and XQuery Evaluation (non-incremental) 8

xi

xii Contents

2.3 Indexing XML Documents . 11

2.4 Incremental Evaluation . 15

2.4.1 Incremental Parsing . 16

2.4.2 Incremental Evaluation of XML Schemas 16

2.4.3 XPath Evaluation on XML Streams 18

2.5 Views . 19

2.5.1 View Maintenance . 19

2.5.2 View Maintenance for XML Databases 26

2.5.3 Incremental View Maintenance for ActiveXML 29

2.5.4 View Update . 30

2.5.5 View Updates for Relational Databases 31

2.6 Conclusions . 36

3 Preliminaries 37

3.1 EXtensible Markup Language (XML) . 37

3.1.1 IDs . 38

3.2 XML Query Languages . 40

3.2.1 XPath . 40

3.2.2 XQuery . 40

3.3 Views . 42

3.3.1 XML Access Modules (XAMs) . 43

3.3.2 Algebraic Tree Pattern Semantics . 45

3.3.3 Views in Peer-to-Peer (ViP2P) . 46

3.4 Helper functions and operators . 47

3.5 Term evaluation based on lattice . 49

4 Methods 57

4.1 View Maintenance . 57

4.1.1 Insertions . 58

4.1.2 Deletions . 65

4.1.3 Modifications . 71

Contents xiii

4.2 View Update . 77

4.2.1 View Maintenance applied to View Update 78

4.2.2 IDs . 79

4.2.3 Insertions . 79

4.2.4 Deletions . 85

4.2.5 Modifications . 87

4.3 Optimisation using Lazy Evaluation and Dynamic Reasoning on XML Updates 87

4.3.1 Sequencing Updates . 89

4.3.2 Update Operations . 90

4.3.3 Rules . 90

4.3.4 Examples . 93

5 Results 97

5.1 Technical Details . 98

5.2 View Maintenance . 98

5.2.1 Insertions . 100

5.2.2 Deletions . 110

5.3 View Update . 119

5.3.1 Insertions . 119

5.3.2 Deletions . 127

5.4 View Maintenance vs View Update . 134

5.5 Optimisations . 134

5.6 Additional Tests . 143

5.6.1 Lattice Snowcaps vs Leaves . 143

6 Discussion 151

6.1 View Maintenance . 151

6.1.1 Insertions . 152

6.1.2 Scalability . 155

6.1.3 Varying Path . 155

6.1.4 Varying Annotations . 156

xiv Contents

6.1.5 Deletions . 156

6.1.6 Scalability . 157

6.1.7 Varying Path . 157

6.1.8 Varying Annotations . 158

6.1.9 Comparison of Insertions and Deletions 158

6.2 View Update . 161

6.2.1 Insertions . 161

6.2.2 Scalability . 162

6.2.3 Varying Annotations . 162

6.2.4 Deletions . 162

6.2.5 Scalability . 163

6.2.6 Varying Annotations . 163

6.2.7 Comparison of Insertions and Deletions 163

6.3 View Maintenance vs View Update . 164

6.4 Optimisations . 166

6.5 Additional Tests . 166

6.5.1 Impact of Snowcaps versus Leaves . 166

6.5.2 Comparison with previous work . 167

6.6 Limitations . 169

6.6.1 General Limitations . 169

6.6.2 View Update Limitations . 169

6.6.3 Experimental Limitations . 169

6.7 Future Work . 170

7 Conclusion 173

References 175

A Exploiting Schema Information for Pruning 195

A.1 Examples . 196

Contents xv

B Test Set 199

B.1 Linear Path Expression Updates . 200

B.2 Linear with Boolean Filter Updates . 201

B.3 AND Predicate Updates . 203

B.4 OR Predicate Updates . 204

B.5 AND + OR Predicate Updates . 206

C Experiments 209

C.1 View Maintenance . 209

C.1.1 Insert . 209

C.1.2 Delete . 238

C.2 View Update . 266

C.2.1 Insert . 266

C.2.2 Delete . 294

xvi Contents

List of Figures

3.1 Students XML Document . 38

3.2 XML document using DDE . 39

3.3 XML document using extended DDE . 39

3.4 XML document . 40

3.5 XAM Grammar [1] . 44

3.6 XAM . 45

3.7 Sample tree pattern. 45

3.8 Algebraic semantics of the tree pattern in Figure 3.7. 45

3.9 ViP2P Peer Architecture . 47

3.10 Subpattern lattice and snowcaps for the view v1. 50

3.11 Subpattern lattice and snowcaps for the view v2. 50

3.12 Subpattern lattice and snowcaps for the view v3. 51

4.1 View Maintenance. 58

4.2 Sample XML Document. 58

4.3 Sample XML Document . 65

4.4 Sample XML document for Example 4.1.14, and view content on this document. 69

4.5 Insert propagation outline. 73

4.6 Delete propagation outline. 73

4.7 Acronyms used in Figures 4.5 and 4.6. 75

4.8 View Update. 78

xvii

xviii List of Figures

4.9 XML Document . 80

4.10 Interleaving PINT/PDDT with Optimisation Rules (OR). 89

4.11 Sample XML document. 94

5.1 Q1 Insert Times Detail (upper) and Summary (lower) 101

5.2 Q2 Insert Times Detail (upper) and Summary (lower) 102

5.3 Q13 Insert Times Detail (upper) and Summary (lower) 103

5.4 Total Running Time for all Views and Queries 105

5.5 Scalability Q1 Insert Update X6 A . 107

5.6 Varying Path for XMark View Q1 and Update X1 L for 1MB Document . . 108

5.7 Varying Annotations for XMark View Q1 and Update X1 L for 100KB Doc-

ument . 109

5.8 Q1 Delete Times Detail (upper) and Summary (lower) 111

5.9 Q2 Delete Times Detail (upper) and Summary (lower) 112

5.10 Q13 Delete Times Detail (upper) and Summary (lower) 113

5.11 Total Running Time for all Views and Queries 115

5.12 Scalability Q1 Delete Update X6 A . 116

5.13 Varying Path for XMark View Q1 and Update X1 L for 1MB Document . . 117

5.14 Varying Annotations for XMark View Q1 and Update X1 L for 100KB document118

5.15 Q1 View Insert Times Detail (upper) and Summary (lower) 120

5.16 Q2 View Insert Times Detail (upper) and Summary (lower) 121

5.17 Q13 View Insert Times Detail (upper) and Summary (lower) 122

5.18 Total Running Time for all Views and Queries 124

5.19 Scalability Q1 View Insert Update X1 L 3 125

5.20 Varying Annotations for XMark View Q1 and Update X1 L 3 for 100KB

Document . 126

5.21 Q1 View Delete Times Detail (upper) and Summary (lower) 128

5.22 Q2 View Delete Times Detail (upper) and Summary (lower) 129

5.23 Q13 View Delete Times Detail (upper) and Summary (lower) 130

5.24 Total Running Time for all Views and Queries 131

List of Figures xix

5.25 Scalability Q1 View Delete Update X1 L 3 132

5.26 Varying Annotations for XMark View Q1 and Update X1 L 3 for 100KB

document . 133

5.27 View Maintenance vs View Update X1 L 3 134

5.28 Performance for Reduction Rule O1 . 135

5.29 Scalability for Reduction Rule O1 . 136

5.30 Performance for Reduction Rule O3 . 137

5.31 Scalability for Reduction Rule O3 . 138

5.32 Performance for Reduction Rule I5 . 139

5.33 Scalability for Reduction Rule I5 . 140

5.34 Scalability for Reduction Rule O1 . 141

5.35 Scalability for Reduction Rule O3 . 142

5.36 Scalability for Reduction Rule I5 . 143

5.37 Snowcaps vs Leaves Lattice for Insertions . 145

5.38 Snowcaps vs Leaves Lattice for Deletions . 146

5.39 Snowcaps vs Leaves Lattice for Insertions . 147

5.40 Snowcaps vs Leaves Lattice for Deletions . 148

6.1 Lattice for Q1 . 154

6.2 Lattice for Q2 . 154

A.1 Sample DTDs, expressed as CFGs. 196

C.1 Q1 Insert Graph 100KB . 210

C.2 Q1 Insert Graph 500KB . 211

C.3 Q1 Insert Graph 1MB . 212

C.4 Q1 Insert Graph 10MB . 213

C.5 Q2 Insert Graph 100KB . 214

C.6 Q2 Insert Graph 500KB . 215

C.7 Q2 Insert Graph 1MB . 216

C.8 Q2 Insert Graph 10MB . 217

xx List of Figures

C.9 Q3 Insert Graph 100KB . 218

C.10 Q3 Insert Graph 500KB . 219

C.11 Q3 Insert Graph 1MB . 220

C.12 Q3 Insert Graph 10MB . 221

C.13 Q4 Insert Graph 100KB . 222

C.14 Q4 Insert Graph 500KB . 223

C.15 Q4 Insert Graph 1MB . 224

C.16 Q4 Insert Graph 10MB . 225

C.17 Q6 Insert Graph 100KB . 226

C.18 Q6 Insert Graph 500KB . 227

C.19 Q6 Insert Graph 1MB . 228

C.20 Q6 Insert Graph 10MB . 229

C.21 Q13 Insert Graph 100KB . 230

C.22 Q13 Insert Graph 500KB . 231

C.23 Q13 Insert Graph 1MB . 232

C.24 Q13 Insert Graph 10MB . 233

C.25 Q17 Insert Graph 100KB . 234

C.26 Q17 Insert Graph 500KB . 235

C.27 Q17 Insert Graph 1MB . 236

C.28 Q17 Insert Graph 10MB . 237

C.29 Q1 Delete Graph 100KB . 238

C.30 Q1 Delete Graph 500KB . 239

C.31 Q1 Delete Graph 1MB . 240

C.32 Q1 Delete Graph 10MB . 241

C.33 Q2 Delete Graph 100KB . 242

C.34 Q2 Delete Graph 500KB . 243

C.35 Q2 Delete Graph 1MB . 244

C.36 Q2 Delete Graph 10MB . 245

C.37 Q3 Delete Graph 100KB . 246

C.38 Q3 Delete Graph 500KB . 247

List of Figures xxi

C.39 Q3 Delete Graph 1MB . 248

C.40 Q3 Delete Graph 10MB . 249

C.41 Q4 Delete Graph 100KB . 250

C.42 Q4 Delete Graph 500KB . 251

C.43 Q4 Delete Graph 1MB . 252

C.44 Q4 Delete Graph 10MB . 253

C.45 Q6 Delete Graph 100KB . 254

C.46 Q6 Delete Graph 500KB . 255

C.47 Q6 Delete Graph 1MB . 256

C.48 Q6 Delete Graph 10MB . 257

C.49 Q13 Delete Graph 100KB . 258

C.50 Q13 Delete Graph 500KB . 259

C.51 Q13 Delete Graph 1MB . 260

C.52 Q13 Delete Graph 10MB . 261

C.53 Q17 Delete Graph 100KB . 262

C.54 Q17 Delete Graph 500KB . 263

C.55 Q17 Delete Graph 1MB . 264

C.56 Q17 Delete Graph 10MB . 265

C.57 Q1 Insert Graph 100KB . 267

C.58 Q1 Insert Graph 500KB . 268

C.59 Q1 Insert Graph 1MB . 269

C.60 Q1 Insert Graph 10MB . 270

C.61 Q2 Insert Graph 100KB . 271

C.62 Q2 Insert Graph 500KB . 272

C.63 Q2 Insert Graph 1MB . 273

C.64 Q2 Insert Graph 10MB . 274

C.65 Q3 Insert Graph 100KB . 275

C.66 Q3 Insert Graph 500KB . 276

C.67 Q3 Insert Graph 1MB . 277

C.68 Q3 Insert Graph 10MB . 278

xxii List of Figures

C.69 Q4 Insert Graph 100KB . 279

C.70 Q4 Insert Graph 500KB . 280

C.71 Q4 Insert Graph 1MB . 281

C.72 Q4 Insert Graph 10MB . 282

C.73 Q6 Insert Graph 100KB . 283

C.74 Q6 Insert Graph 500KB . 284

C.75 Q6 Insert Graph 1MB . 285

C.76 Q6 Insert Graph 10MB . 286

C.77 Q13 Insert Graph 100KB . 287

C.78 Q13 Insert Graph 500KB . 288

C.79 Q13 Insert Graph 1MB . 289

C.80 Q13 Insert Graph 10MB . 290

C.81 Q17 Insert Graph 100KB . 291

C.82 Q17 Insert Graph 500KB . 292

C.83 Q17 Insert Graph 1MB . 293

C.84 Q17 Insert Graph 10MB . 294

C.85 Q1 Delete Graph 100KB . 295

C.86 Q1 Delete Graph 500KB . 296

C.87 Q1 Delete Graph 1MB . 297

C.88 Q1 Delete Graph 10MB . 298

C.89 Q2 Delete Graph 100KB . 299

C.90 Q2 Delete Graph 500KB . 300

C.91 Q2 Delete Graph 1MB . 301

C.92 Q2 Delete Graph 10MB . 302

C.93 Q3 Delete Graph 100KB . 303

C.94 Q3 Delete Graph 500KB . 304

C.95 Q3 Delete Graph 1MB . 305

C.96 Q3 Delete Graph 10MB . 306

C.97 Q4 Delete Graph 100KB . 307

C.98 Q4 Delete Graph 500KB . 308

List of Figures xxiii

C.99 Q4 Delete Graph 1MB . 309

C.100Q4 Delete Graph 10MB . 310

C.101Q6 Delete Graph 100KB . 311

C.102Q6 Delete Graph 500KB . 312

C.103Q6 Delete Graph 1MB . 313

C.104Q6 Delete Graph 10MB . 314

C.105Q13 Delete Graph 100KB . 315

C.106Q13 Delete Graph 500KB . 316

C.107Q13 Delete Graph 1MB . 317

C.108Q13 Delete Graph 10MB . 318

C.109Q17 Delete Graph 100KB . 319

C.110Q17 Delete Graph 500KB . 320

C.111Q17 Delete Graph 1MB . 321

C.112Q17 Delete Graph 10MB . 322

xxiv List of Figures

List of Tables

3.1 Grammar for XML materialised views . 43

5.1 Key for Results Tables . 100

5.2 Q1 Insert Time for 1MB Document (ms) . 101

5.3 Q2 Insert Time for 1MB Document (ms) . 102

5.4 Q13 Insert Time for 1MB Document (ms) 103

5.5 Total Running Time (ms) for all Views and Queries 104

5.6 Scalability Q1 Insert Update X6 A (ms) . 107

5.7 Varying Path for XMark View Q1 and Update X1 L for 1MB Document . . 108

5.8 Varying Annotations for XMark View Q1 and Update X1 L for 100KB Doc-

ument . 109

5.9 Q1 Delete Time for 1MB Document (ms) . 111

5.10 Q2 Delete Time for 1MB Document (ms) . 112

5.11 Q13 Delete Time for 1MB Document (ms) 113

5.12 Total Running Time (ms) for all Views and Queries 114

5.13 Scalability Q1 Delete Update X6 A (ms) . 116

5.14 Varying Path for XMark View Q1 and Update X1 L for 1MB Document . . 117

5.15 Varying Annotations for XMark View Q1 and Update X1 L for 100KB document118

5.16 Q1 View Insert Time for 1MB Document (ms) 120

5.17 Q2 View Insert Time for 1MB Document (ms) 121

5.18 Q13 View Insert Time for 1MB Document (ms) 122

xxv

xxvi List of Tables

5.19 Total Running Time (ms) for all Views and Queries 124

5.20 Scalability Q1 View Insert Update X1 L 3 (ms) 125

5.21 Varying Annotations for XMark View Q1 and Update X1 L 3 for 100KB

Document . 126

5.22 Q1 View Delete Time for 1MB Document (ms) 128

5.23 Q2 View Delete Time for 1MB Document (ms) 129

5.24 Q13 View Delete Time for 1MB Document (ms) 130

5.25 Total Running Time (ms) for all Views and Queries 131

5.26 Scalability Q1 View Delete Update X1 L 3 (ms) 132

5.27 Varying Annotations for XMark View Q1 and Update X1 L 3 for 100KB

document . 133

5.28 View Maintenance vs View Update X1 L 3 (ms) 134

5.29 Performance for Reduction Rule O1 (ms) . 135

5.30 Scalability for Reduction Rule O1 (ms) . 136

5.31 Performance for Reduction Rule O3 (ms) . 137

5.32 Scalability for Reduction Rule O3 (ms) . 138

5.33 Performance for Reduction Rule I5 (ms) . 139

5.34 Scalability for Reduction Rule I5 (ms) . 140

5.35 Scalability for Reduction Rule O1 (ms) . 141

5.36 Scalability for Reduction Rule O3 (ms) . 142

5.37 Scalability for Reduction Rule I5 (ms) . 143

5.38 Snowcaps vs Leaves Lattice for Insertions for View Q 4, Update X2 L (upper)

and View Q 6, Update E6 L (lower) (ms) . 145

5.39 Snowcaps vs Leaves Lattice for Deletions for View Q 4, Update X2 L (upper)

and View Q 6, Update E6 L (lower) (ms) . 146

5.40 Snowcaps vs Leaves Lattice for Insertions for View Q 4, Update X1 L 3 (up-

per) and View Q 6, Update X1 L 3 (lower) (ms) 147

5.41 Snowcaps vs Leaves Lattice for Deletions for View Q 4, Update X1 L 3 (up-

per) and View Q 6, Update X1 L 3 (lower) (ms) 148

List of Tables xxvii

C.1 Q1 Insert 100Kb . 209

C.2 Q1 Insert 500Kb . 210

C.3 Q1 Insert 1Mb . 211

C.4 Q1 Insert 10Mb . 212

C.5 Q2 Insert 100Kb . 213

C.6 Q2 Insert 500Kb . 214

C.7 Q2 Insert 1Mb . 215

C.8 Q2 Insert 10Mb . 216

C.9 Q3 Insert 100Kb . 217

C.10 Q3 Insert 500Kb . 218

C.11 Q3 Insert 1Mb . 219

C.12 Q3 Insert 10Mb . 220

C.13 Q4 Insert 100Kb . 221

C.14 Q4 Insert 500Kb . 222

C.15 Q4 Insert 1Mb . 223

C.16 Q4 Insert 10Mb . 224

C.17 Q6 Insert 100Kb . 225

C.18 Q6 Insert 500Kb . 226

C.19 Q6 Insert 1Mb . 227

C.20 Q6 Insert 10Mb . 228

C.21 Q13 Insert 100Kb . 229

C.22 Q13 Insert 500Kb . 230

C.23 Q13 Insert 1Mb . 231

C.24 Q13 Insert 10Mb . 232

C.25 Q17 Insert 100Kb . 233

C.26 Q17 Insert 500Kb . 234

C.27 Q17 Insert 1Mb . 235

C.28 Q17 Insert 10Mb . 236

C.29 Q1 Delete 100Kb . 238

C.30 Q1 Delete 500Kb . 239

xxviii List of Tables

C.31 Q1 Delete 1Mb . 240

C.32 Q1 Delete 10Mb . 241

C.33 Q2 Delete 100Kb . 242

C.34 Q2 Delete 500Kb . 243

C.35 Q2 Delete 1Mb . 244

C.36 Q2 Delete 10Mb . 245

C.37 Q3 Delete 100Kb . 246

C.38 Q3 Delete 500Kb . 247

C.39 Q3 Delete 1Mb . 248

C.40 Q3 Delete 10Mb . 249

C.41 Q4 Delete 100Kb . 250

C.42 Q4 Delete 500Kb . 251

C.43 Q4 Delete 1Mb . 252

C.44 Q4 Delete 10Mb . 253

C.45 Q6 Delete 100Kb . 254

C.46 Q6 Delete 500Kb . 255

C.47 Q6 Delete 1Mb . 256

C.48 Q6 Delete 10Mb . 257

C.49 Q13 Delete 100Kb . 258

C.50 Q13 Delete 500Kb . 259

C.51 Q13 Delete 1Mb . 260

C.52 Q13 Delete 10Mb . 261

C.53 Q17 Delete 100Kb . 262

C.54 Q17 Delete 500Kb . 263

C.55 Q17 Delete 1Mb . 264

C.56 Q17 Delete 10Mb . 265

C.57 Q1 View Insert 100Kb . 266

C.58 Q1 View Insert 500Kb . 267

C.59 Q1 View Insert 1Mb . 268

C.60 Q1 View Insert 10Mb . 269

List of Tables xxix

C.61 Q2 View Insert 100Kb . 270

C.62 Q2 View Insert 500Kb . 271

C.63 Q2 View Insert 1Mb . 272

C.64 Q2 View Insert 10Mb . 273

C.65 Q3 View Insert 100Kb . 274

C.66 Q3 View Insert 500Kb . 275

C.67 Q3 View Insert 1Mb . 276

C.68 Q3 View Insert 10Mb . 277

C.69 Q4 View Insert 100Kb . 278

C.70 Q4 View Insert 500Kb . 279

C.71 Q4 View Insert 1Mb . 280

C.72 Q4 View Insert 10Mb . 281

C.73 Q6 View Insert 100Kb . 282

C.74 Q6 View Insert 500Kb . 283

C.75 Q6 View Insert 1Mb . 284

C.76 Q6 View Insert 10Mb . 285

C.77 Q13 View Insert 100Kb . 286

C.78 Q13 View Insert 500Kb . 287

C.79 Q13 View Insert 1Mb . 288

C.80 Q13 View Insert 10Mb . 289

C.81 Q17 View Insert 100Kb . 290

C.82 Q17 View Insert 500Kb . 291

C.83 Q17 View Insert 1Mb . 292

C.84 Q17 View Insert 10Mb . 293

C.85 Q1 View Delete 100Kb . 294

C.86 Q1 View Delete 500Kb . 295

C.87 Q1 View Delete 1Mb . 296

C.88 Q1 View Delete 10Mb . 297

C.89 Q2 View Delete 100Kb . 298

C.90 Q2 View Delete 500Kb . 299

xxx List of Tables

C.91 Q2 View Delete 1Mb . 300

C.92 Q2 View Delete 10Mb . 301

C.93 Q3 View Delete 100Kb . 302

C.94 Q3 View Delete 500Kb . 303

C.95 Q3 View Delete 1Mb . 304

C.96 Q3 View Delete 10Mb . 305

C.97 Q4 View Delete 100Kb . 306

C.98 Q4 View Delete 500Kb . 307

C.99 Q4 View Delete 1Mb . 308

C.100Q4 View Delete 10Mb . 309

C.101Q6 View Delete 100Kb . 310

C.102Q6 View Delete 500Kb . 311

C.103Q6 View Delete 1Mb . 312

C.104Q6 View Delete 10Mb . 313

C.105Q13 View Delete 100Kb . 314

C.106Q13 View Delete 500Kb . 315

C.107Q13 View Delete 1Mb . 316

C.108Q13 View Delete 10Mb . 317

C.109Q17 View Delete 100Kb . 318

C.110Q17 View Delete 500Kb . 319

C.111Q17 View Delete 1Mb . 320

C.112Q17 View Delete 10Mb . 321

1
Introduction

EXtensible Markup Language (XML) data management has developed into an important

research area [2] [3] [4] [5] [6] [7] as many systems now support XML along with the standards

for querying it, XPath [8] and XQuery [9]. As the amount and size of XML data increased,

the need for improving query evaluation arose as it did in structured data management.

Auxiliary data structures, such as materialised views, which store the result of frequently

asked queries, provide a basis for this improvement. The problem with these data structures

is that they must be kept consistent with changes made to the database. For large data sets

it is detrimental to the performance improvements a structure provides to fully recompute

it. Therefore, incremental maintenance methods are of interest. The challenge of providing

these is known as the view maintenance problem. Conversely, directly updating views is

also a problem as it requires the translation of the update to the source document. This is

known as the view update problem.

1

2 Introduction

The following example puts these problems in context. For an XML database containing

Systems Biology Markup Language (SBML) (http://sbml.org/) models (XML based markup

language for representing biological processes), materialised views are defined in the database

to improve query performance time. Users have full access to models for which they are the

author. However, they have restricted access to other users’ models. This is due to the

models containing private details, i.e., contact details or unfinished model parts. Should a

user wish to update a model for which they are the author then this will be an instance

of the view maintenance problem. However, should they update a model, i.e., to make a

correction, for a model for which they are not the author, then this will be an instance of

the view update problem. The thesis to be explored in this dissertation is that incremental

methods can be used for efficiently maintaining views and conversely, similar methods can

be used to solve the view update problem. The ideas are conceptualised using consistent

algebraic approaches.

1.1 Motivation

XML data management is now well established. The W3C’s XPath [9] and XQuery [8]

standards for querying XML documents are now supported by many commercial and open-

source systems. Performance challenges have been raised by the complexity of XPath and

XQuery and of the XML data itself. One performance improvement is materialised views (or

caches), which store precomputed query results, generally of frequently asked queries. These

can then improve query efficiency by being used to rewrite queries [10] [11] [12] [13] [14].

Query evaluation performance has been improved by up to several orders of magnitude using

such techniques.

More recently, XQuery Update [15] has been proposed by the W3C, an update extension

to the XQuery language. Data management platforms are gradually providing support for

XQuery Update. When using materialised views, updates to the database could potentially

require updates to the view(s).

Work in this area has led to the inverse problem known as the view update problem.

The view update problem involves updates on the views themselves which then requires the

1.2 XML 3

translation of updates to the source document(s).

1.2 XML

XML is a metalanguage used to define markup languages. It was developed to allow a

general representation to store and transport data. XML can be seen as a tree structure. A

tree is a hierarchical data structure consisting of nodes. A node contains data along with

relationships to other nodes, i.e., in the context of XML, an XML element, attribute or some

text, along with references to its parent or child nodes, if they exist. Each node can have

any number of children but only one parent. The only exception to this is the root node

which has no parent. Fragments of the tree are referred to as subtrees. A subtree consists of

any node in a tree, with the exception of the root node, and all its descendants. This thesis

treats XML documents as ordered labelled trees. An ordered labelled tree is a rooted tree

that assigns a label to each node and defines an ordering for each node’s children.

1.3 XML Databases

An XML database is a database that stores XML documents. Two types of XML databases

exist, XML-enabled databases and native XML databases. XML-enabled databases are

relational or object-oriented databases that have been extended to store XML data. These

databases require translation methods between the XML documents and the structure used

by the underlying database, i.e., rows and columns for the relational model. Native XML

databases store and index native XML documents without any modifications. XML-enabled

databases may only store part of some or all documents, whereas native XML databases

store the entire documents.

XML databases encounter similar problems to relational databases, i.e., how to query

the data. As a result of XML databases being relatively new, in comparison to relational

databases, a lot of the problems that have been successfully solved for relational databases

are still challenges for XML databases. The problems this thesis is concerned with have

been solved for the relational scenario [16] but remain unsolved in the context of XML data

4 Introduction

storage.

1.3.1 Views

A relational database view is a virtual table that maps to the result of a query. Views are

generally used as caches that store the results of frequently asked queries. For example, they

could simplify queries by factoring out a common subexpression. However, views also serve

many other purposes:

• to implement access control for the purpose of security

• where there is a large amount of data, users may only want to deal with a small part

of it

• where structure is decided by a database administrator, rather than the user, the latter

may want to restructure it to better suit their needs

• hiding the conceptual complexities of the entire database from the user

• enhancing logical data independence

• allowing a user to hide data which is of no interest to them, thus simplifying the user

interface

A materialised view is the same as a view, with the only difference being that it is stored in

a real table.

1.4 View Maintenance

The use of materialised views introduces the view maintenance problem. When an update

occurs on the database it may affect the contents of the view. This introduces two problems.

First, determining if the result of a view should change due to the update. Second, if the

view is affected, how to efficiently update the view to reflect the update. This can be handled

either incrementally or by recalculating the entire materialised view. The second problem is

the view maintenance problem which is explored in this thesis.

1.5 View Update 5

1.5 View Update

The inverse problem, which this thesis also addresses, is the view update problem. Database

users may only have access to the materialised views. If updates are allowed on the views

then it will be necessary to propagate these to the underlying document(s), therefore, the

view update problem will be encountered. This differs from view maintenance in that all

view updates will affect a document(s). The problem lies in how to update the view, in cases

of missing information, and how to efficiently update the document(s) affected.

1.6 Hypothesis and Research Questions

The hypothesis that is proposed in this work is that algebraic incremental methods can be

used to provide a single consistent solution for the problems of view maintenance and view

update.

Alternative strategies are possible for handling practical view maintenance and view

update problems. Updates1 can be handled at the node-level, i.e., inserting a node at a

time. However, despite this being conceptually simple, updates in real scenarios often in-

volve multiple nodes. These statement-level updates allow the insertion/deletion of subtrees.

Algorithms that only support node-level updates require multiple runs of the algorithm to

support a subtree. Previous work presents an algebraic approach to this problem [6]. How-

ever, the approach described by these authors is not a general solution but is tied to the

internals of the system in which it is implemented. In other works [17] [18] [19], multiple

returned nodes could not be handled within views. However, views with multiple return

nodes could result in efficient multiple-view rewritings [20]. Therefore, an algebraic solution,

for views supporting multiple returned nodes, using generic operators is of interest.

Typically, views are smaller in size than documents. Therefore, where possible, it is

expected that translating view maintenance updates into view updates (see Section 6.3) will

give better performance times.

Finally, performing dynamic reasoning on XML updates, by implementing pruning rules

1Refers to both view maintenance and view update, unless otherwise stated.

6 Introduction

to minimise the number of updates to be performed, it is expected that the performance of

the methods can be further improved.

The aim of this research is to explore algebraic incremental methods to solve the view

maintenance and view update problems using statement-level updates and dynamic rea-

soning by means of pruning rules. The research questions that this thesis aims to answer

are:

• RQ1: Can a similar incremental algebraic approach to view maintenance and view

update be developed with generic operators?

• RQ2: Does converting view maintenance into view update, where possible, give better

performance times?

• RQ3: Does dynamic reasoning improve the performance time for view maintenance

and view update2?

The main contribution of this work is to provide consistent solutions to the view mainte-

nance and view update problems using mutually similar incremental algebraic methods. The

originality of these methods is their ability to handle statement-level updates using generic

operators and views returning data from multiple nodes.

1.7 Thesis Structure

The rest of this thesis is structured as follows: Chapter 2 provides an introduction to the area

and discusses related work. Background technologies and implementation details required

to understand the work in this thesis are presented in Chapter 3. The view maintenance

and view update methods are described in Chapter 4. Chapter 5 presents the experimental

evaluation results, which are then discussed in Chapter 6. Finally, Chapter 7 concludes.

2Each target node has to be handled separately to perform dynamic reasoning

2
Literature Review

This chapter introduces XML and as a result of its extensive use, the need for XML query

languages. With the introduction of XQuery and XPath (explained in Section 3.2) the non-

incremental evaluation of queries written in these languages is discussed. For frequently

queried XML documents, indexing is explored. For frequently asked queries the idea of

incremental evaluation is considered. Incremental evaluation has been used in other areas,

such as parsing and XML schema validation. Incremental XPath evaluation can also be

viewed as a generalisation of XPath evaluation on XML streams. This leads on to the

concept of views and materialised views. These concepts have been used to improve query

efficiency, based on query rewritings, by acting as a cache for frequently asked queries.

The problem of how to effectively maintain materialised views within a dynamic database

is then introduced. This problem has been extensively explored in the relational setting

and is discussed along with XML publishing and commercial DBMS support. This leads

7

8 Literature Review

on to a review of current view maintenance research for XML databases. The problem of

materialised view update is then explored for both the relational and XML settings. Finally,

the capabilities of commercial DBMSs with respect to view update is discussed.

2.1 XML

The EXtensible Markup Language (XML) [21] was developed in the late 90s to solve “the

problem of universal data interchange between dissimilar systems” (Charles F. GoldFarb) [22].

It was developed to allow structured documents to be used over the Internet. Its main pur-

pose with respect to databases was to allow a general representation to store and transport

data. A general representation was required so that the structure was not lost when the data

was exported/passed between databases. XML provides a specification for defining markup

languages, based on Standard Generalised Markup Language (SGML). Since its introduction,

many languages have been developed which are based on it. Some common examples are

EXtensible HyperText Markup Language (XHTML) and Really Simple Syndication (RSS).

XHTML is an XML redesign of HyperText Markup Language (HTML), which is used for

describing web pages. This language can be used to force the documents to be well formed

and marked up correctly, whereas RSS is used to display, in a standardised format, data

from frequently updated data sources, for example, headlines from a news website.

As the amount of XML data increased, the need for XML based databases emerged.

There are two approaches for XML based databases: XML-enabled and Native XML (NXD).

XML-enabled databases map XML to a traditional database with all input and output

being expressed in XML. For example, MS SQL Server [23]. Alternatively, NXD uses XML

documents as the fundamental unit of storage. For example, EMC xDB [24] and Mark Logic

Server [25].

2.2 XPath and XQuery Evaluation (non-incremental)

With the increasing amount of XML data and the emergence of XML databases, a need

for the ability to query this data became apparent. XPath [9] expresses the query as a

2.2 XPath and XQuery Evaluation (non-incremental) 9

path and allows the selection of nodes or attributes. XQuery [8] is a superset of XPath to

support powerful querying similar to SQL with the biggest difference being the ability to

handle FLWOR - For, Let, Where, Order by, Return - expressions. FLWOR expressions can

be seen as similar to SQL Select-From-Where expressions for joining multiple tables. The

main difference being that XML data is hierarchical, not tabular. XPath query evaluation

is a fundamental algorithmic problem regarding XPath. This has been a widely researched

topic [26]. The two main approaches to solving this problem are to make use of dynamic

programming or finite state automata [27].

Gottlob et al. [28] were the first to handle full XPath 1.0 or even relatively large frag-

ments of it. This method uses dynamic programming due to XPath evaluation consisting

of overlapping subproblems. By splitting evaluation into smaller subproblems this overlap

is exploited by ensuring each subproblem is computed only once. The algorithm presented

for full XPath runs in low-degree polynomial time, in the worst case, with respect to the

size of the query and the data. Additional algorithms were defined for handling the frag-

ment of XPath that the authors defined as Core XPath, i.e., simple manipulation of sets

of nodes (does not consider string or arithmetic operations), and XPatterns, which is an

extended version of EXtensible Stylesheet Language Transformations (XSLT) that handles

all XPath axes. An axis defines the tree relationship between nodes, e.g., the child axis.

These algorithms run in linear time with respect to the size of the query and the data.

A linear time algorithm, with respect to document size, was presented by Bojanczyk

et al. [29], which can handle XPath with tests on attribute values using equality. This

work is a generalisation of the automata-theoretic framework1 for node tests using attribute

values but only supports equality. This was an improvement on the linear-time algorithm

for Core XPath in [28] as the latter could not handle attribute values. However, the linear

time data complexity comes at a cost of a multiplicative constant that is exponential in the

query. The complexity is O(2|ϕ|.|t|), where ϕ is a node selecting XPath query and t is an

XML document on which the query is evaluated. Therefore, the complexity is linear when

ϕ is fixed. This algorithm was improved in [30] to be polynomial in the size of the query.

1using finite-state tree automata to represent queries

10 Literature Review

However, the updated algorithm cannot handle the Kleene star2 in path expressions. This

was an addition the original offered which is an extension of XPath. A third algorithm was

introduced in [2] with O(|t|log|t|) time complexity for a document size |t|. This maintained

the polynomial combined complexity as well as being able to handle the fragment of XPath

in the original algorithm. All the algorithms can handle boolean, unary and binary queries.

The algorithms work for the restricted set of XPath 1.0 used in the paper. However, outside

of this they are likely to fail.

The tree homeomorphism problem (determining if a match exists between a tree pat-

tern/query and a data tree) was handled by Götz et al. [31]. The presented algorithm solves

this problem as well as being general enough to handle the tree homeomorphism matching

problem (finding the matches from the tree homeomorphism problem) while retaining the

same complexity. At the time of development it was the only algorithm that could guarantee

a space bound that was not reliant on the size of the data tree, the only affecting factors

were the depth and branching factor. Tree pattern matching was shown to be LOGSPACE-

complete when only descendant axes were used.

Evaluating XQuery would require many nested iterations if a naive implementation of

the semantics was used, due to its structure (see Example 2.2.1). An implementation like

this would be inefficient for complex nested queries with multiway joins [32]. Therefore,

generally queries are compiled into algebraic plans which are similar to those used in the

relational setting. As a result of this, standard optimisations such as unnestings can be used.

These optimisations can increase query efficiency by up to several orders of magnitude [33].

Example 2.2.1.

for $a in doc(“auction.xml”)/site/people/person/@id

$b in doc(“auction.xml”)/site/open auctions/open auction/bidder/personref/@person

where $a=$b

return 〈personID〉 $a 〈/personID〉

This query returns the IDs of all people who have a bid on an open auction. Several

2In the context of path expressions meaning “zero or more”.

2.3 Indexing XML Documents 11

iterations are required to evaluate this result. First the document must be searched for a and

b. Next they must be compared to identify those that are equal. Finally, a new element is

created and returned for each match.

2.3 Indexing XML Documents

A related research area is the indexing of XML for frequently queried documents. Without

an index these queries could be inefficient due to the requirement for frequent scans of a

document to locate the required node(s). The key to fast query processing is an ability to

directly identify nodes. The indexing of XML documents typically relies on labelling schemes.

Documents can be defined as static, i.e, unchanging over time, or dynamic, i.e., changing

with time. A problem with dynamic documents is how to correctly and efficiently update the

label set as a result of situations such as the addition of a new XML subtree as a child of an

existing leaf in the document. Various dynamic labelling schemes exist [3, 34, 35], however,

some of them sacrifice the query performance and increase the labelling costs in order to

achieve dynamic labelling. This is a reasonable cost to bear in databases of frequently

changing documents. However, update patterns can vary. In some cases only a subset of

documents change frequently, with this subset changing over time.

The Dewey method of node labelling [36] works well in the static case and is known

to be compact and efficient. Dewey labels store the path from the document root to the

current node, as well as support parent-child, ancestor-descendant, document order, and

sibling relationships. It has been widely used in XML query processing [37] [38] [36]. It is

particularly helpful in XML keyword query processing [39] [40] which requires calculating

the Lowest Common Ancestor (LCA) for a set of nodes. Each Dewey ID stores path in-

formation making it suitable for this scenario. Examples showing the Dewey method can

be seen in Section 3.1.1. An alternative method of labelling is the containment labelling

scheme [41] [42]3. Despite being popular it does not have the same capabilities of Dewey

IDs, i.e., checking sibling relationships. An example of the containment labelling scheme is

3These two works are similar but developed independently of one another. Therefore, they are both

credited for this work.

12 Literature Review

shown in example 2.3.1.

Example 2.3.1. 4 The containment labelling scheme makes use of an extension of preorder

traversal that includes a range of descendants, i.e., all nodes are labelled with an order and

a size - <order, size>. The rules for this scheme are as follows:

• order(x) < order(y) where x is a parent of y.

• order(x) + size(x) ≥ order(y) + size(y) where x is a parent of y.

• order(x) + size(x) < order(y) where x is the predecessor to its sibling y5.

An example of a document labelled using the containment labelling scheme can be seen

below:

(1, 14)

(2, 3)

(3, 1)

(6, 7)

(7, 5)

With this scheme it is not possible to determine sibling relationships, i.e., according to

the second rule (2, 3) could be a sibling of (7, 5).

The Dewey labelling scheme was developed for static XML documents. It does not

offer the same effectiveness for dynamic documents, as a result of the potentially high cost

of relabelling after a document has been updated. Dynamic labelling schemes have been

developed based on Dewey, such as ORDPATHs [34]. However, this scheme only utilises

odd numbers at initial labelling. The reason for this is that insertions between nodes are

handled using a ‘careting in’ method which inserts an even component that lies between the

final components of the left and right siblings, followed by a new odd component. This new

odd component is to keep the labelling scheme consistent, as well as to be able to handle

the insertion of whole subtrees using only one even component. This works as the method

ignores even numbers with respect to increasing the level of a node. Inserting as a first or

4based on [42]
5In other words, x and y are on the same level but x comes before y.

2.3 Indexing XML Documents 13

last child is the simple scenario which involves subtracting two from the last component of

the first child/adding two to the last component of the last child, respectively, with negative

numbers being permitted. Despite supporting insertions without relabelling it comes at a

cost. Ignoring even numbers results in less compact labels and the complexity of ORDPATH

label processing is increased due to the ‘careting in’ method. XML documents labelled using

ORDPATHs can be seen in Example 2.3.2. Dynamic DEwey IDs (DDEs) [3] efficiently

handle the labelling problem for both static and dynamic documents. For static documents

the original Dewey labelling system [36] is used. Alternatively, for dynamic documents,

DDEs can handle updates without the need for relabelling. Insertions as first and last

child are handled similarly to ORDPATHs, except one is added/subtracted. For insertions

between nodes the labels of the two siblings are added together. The same work introduces

Compact DDEs (CDDEs) which are optimised for frequent insertions. The authors have

shown that both schemes can efficiently handle insertions repeatedly occurring at the same

place (skewed insertions) which was a problem for previous labelling schemes.

Example 2.3.2. ORDPATHs are similar to Dewey except they only use odd numbers within

the labels. This can be seen below:

1

1.1

1.1.1

1.3

1.3.1

Labels for insertion of a rightmost child are simple to determine and just require adding

the next available odd number on to the parent node’s label. Leftmost insertions are handled

using negative odd numbers. Examples of these types of insertions can be seen below.

1

1.-1 1.1

1.1.1

1.3

1.3.1

1.5

14 Literature Review

The ‘careting in’ method is used to insert nodes between two siblings. An even component

between the final components of the sibling labels is inserted followed by an odd number,

starting with 1. An example of the ‘careting in’ method can be seen below.

1

1.1

1.1.1

1.2.1

1.2.1.1 1.2.1.3

1.3

1.3.1

Above a node is inserted between 1.1 and 1.3. Therefore, the available even component

is taken between these values, 1.2, followed by the first available odd number, i.e., 1, to keep

the labelling consistent. Other nodes are labelled as normal.

Prime labelling scheme [43] was developed to handle insertions without the need for

relabelling. Each node is identified by a unique prime number and labelled using the product

of this number and its parent’s label. Paths can then be identified by factorising these labels.

The performance impact derives from determining document order. The document order is

derived using a Simultaneous Congruence (SC) value. This value is calculated by solving

the set of simultaneous equations which represent the tree. This order number can then be

determined using the expression: SC V alue mod node label. However, these SC values can

become large for big XML documents. A list of SC values is used to counter this where

each value handles the document order of five nodes. However, this has a knock on effect

on storage and maintenance for large XML documents which require large lists. Typically

an average insertion or deletion requires approximately half of the values to be recalculated.

This has to be performed by the computationally expensive Euler’s quotient function [44].

These encoding schemes are an alternative approach for handling dynamic XML docu-

ments [44] [45] [46]. They allow the handling of dynamic updates without relabelling by

transforming the labels into another format. Encoding approaches have shown better per-

formance for frequently updated XML documents [47]. Several problems do however exist

for the approach. Additional labelling cost is incurred as a result of translating labels into

2.4 Incremental Evaluation 15

dynamic formats. The performance is also affected by the frequency of each document’s up-

dates. Generally each database will have a combination of documents with varying levels of

update frequency (with some possibly being static) which can potentially change over time.

Static labelling schemes are more efficient for static documents in comparison to dynamic

approaches. The problem is how to decide which documents are static and which are dy-

namic. Simply applying a single encoding scheme for all documents would be inefficient due

to the extra encoding cost, except for the situation where all the documents were consistently

dynamic. The final problem is when there is a mix of label formats in the database due to

different labelling schemes being used for static and dynamic documents. This makes up-

dating and querying complex as different query and storage methods are required. The ideal

labelling scheme should be able to minimise the growth rate and the update cost, regardless

of the updates.

The majority of previously mentioned works do not support the reuse of deleted labels.

Without the reuse of deleted labels the growth rate of the labels increases. EBSL [48] and

other schemes [49] [50] [47] [51] provide the ability to reuse deleted labels.

The indexing of XML for frequently queried documents improves query efficiency. Within

these documents there generally exists a set of frequently asked queries. Efficiency can be

further improved by storing these queries. However, this also introduces the requirement to

maintain them, ideally incrementally.

2.4 Incremental Evaluation

In many databases there is a collection of frequently asked queries. For example, an em-

ployee’s monthly pay cheque may be generated by a database query. Assuming the employees

pay is calculated by the number of hours they work multiplied by their hourly pay and noth-

ing else on the cheque changes each month then it would be beneficial to only calculate the

modified part of the cheque. This introduces the idea of incremental evaluation, i.e., only

evaluating the parts which have changed. This idea has been explored in other areas which

will be detailed in this section.

16 Literature Review

2.4.1 Incremental Parsing

Incremental parsing is required for incremental program compilation. Research has fo-

cussed on LR parsing (bottom up parsing which builds a rightmost derivation of the input)

[52] [53] [54] [55] [56] and LL parsing (top down parsing which builds a leftmost derivation)

[57] [58]. This is a consequence of popular grammars used to define programming languages

requiring to be parsed in one of these ways, e.g., LR(0), LR(1), LL(1), LALR(1), and LL(1).

The techniques operate by producing a parse tree from parsing the input text, which is

updated when updating the input text. Incremental parsing tries to discover the smallest

fragments of the parse tree that are affected by updates to the input text.

2.4.2 Incremental Evaluation of XML Schemas

In addition to incremental parsing, incremental evaluation is applicable in other areas, such

as the validation of XML schemas. It is utilised by some XML editors, e.g., XMLMind [59]

and XMLSpy [60]. Validation of static XML documents is the simplest instance of XML

validation.

Barbosa et al. [61] consider the incremental validation of XML documents under XML

Schema and DTD definitions. Statement-level updates are considered as well as ID and

IDREF attributes. Typically XML documents are considered as trees, however, due to the

inclusion of node identifiers (ID attributes) and references to identifiers (IDREF attributes)

the trees become graphs. This entailed the authors splitting the method into two parts:

checking the structural constraints as defined by the DTD and also checking the attribute

constraints. Checking the structural constraints entails parsing, whereas checking the at-

tribute constraints requires checking the ID attributes are unique, as specified in the DTD,

within the document and also that the IDREF references actually point to something. Both

these stages can be evaluated in O(nlogn) time and linear space. A large fragment of

XMLSchema [62] can also be evaluated using this algorithm.

Balmin et al. [4] presents algorithms closely related to [61] which show the problem

can be solved in logarithmic time for fixed DTDs and an abstraction of XML schemas

2.4 Incremental Evaluation 17

called specialised DTDs6 [63] can be solved in O(mlog2n). A notable difference is that [61]

assumes database access is O(logn) as opposed to constant time assumed in [4]. This allows

consideration of the complexity of the algorithms with respect to the number of database

accesses rather than time. In contrast [61] handles restricted DTDS and XML schema

specifications in constant time and arbitrary DTDs in linear worst case time. It also handles

statement-level updates whereas [4] can only handle node-level, but both handle similar

update operations (with [4] not having the capability of allowing attribute constraints).

However, [4] can perform renaming operations. In [61] this is only possible by expressing

them as deletions followed by insertions.

To solve the problem of checking XML validation with respect to a DTD, a place to

begin is how to verify that a regular expression is satisfied by a word. The work in [4]

is based upon the algorithm for the incremental validation of strings. Algorithms, which

support multiple update transactions, are presented to handle the incremental validation of

DTDs, XML Schemas and specialised DTDs. Specialised DTDs are more complex as an

update to a single node can result in global effects for the typing of the tree. Conversely,

for DTDs an updated node only needs to be validated locally as it is only dependent on its

parent and children, and XML Schemas can only affect descendant types. The algorithm

for XML schema can not handle the validation incrementally for the renaming of internal

nodes. However, this can be handled by the specialised DTDs algorithm. A constant time

incremental validation algorithm for ‘local’ DTDs is also presented. These are DTDs that

use regular expressions. This allows membership to be checked locally after an update. This

is performed by checking the substrings within a bounded distance from the update position.

By disallowing the renaming of internal nodes the need for an auxiliary structure is avoided

and incremental validation can be achieved by maintaining a list of counters. The results

show that DTDs are the simplest to handle followed by XML schemas and finally specialised

DTDs.

6Element type can depend on all the node labels of the XML tree.

18 Literature Review

2.4.3 XPath Evaluation on XML Streams

XPath evaluation on XML streams can be perceived as a generalisation of incremental XPath

evaluation. An XML stream is a flow of XML elements. Such evaluation algorithms are a

popular choice where XML documents are transferred between systems. They can also

perform efficiently over stored XML data as a result of maintaining a predictable access

pattern.

There has been a lot of work performed in the area of XPath evaluation over XML

streams [64] [65] [66] [67] [68] [69] [5] [70] [71]. These operate by performing a one-pass

sequential scan of the XML document and keeping small important fragments in memory

for later use. However, despite improvements in space and time complexity and on the

fragment of XPath handled, these works required a prohibitively large amount of memory

for some query types. These methods make use of finite-state automata. In this context, the

majority of memory used is for the storing of large transition tables (definitions of the next

state based on the current state and its inputs) and for buffering document fragments. This is

due to the limitation of the data stream model. Bar-Yossef et al. [72] presented a theoretical

study of memory requirement lower bounds (instance data complexity) and explored whether

previous memory limitations were unavoidable or just a result of the proposed algorithms.

Their algorithm from [5], which avoids the use of finite-state automata, is modified to use

a more sophisticated method for handling the global data structures. This method reduces

the space complexity to close to the optimum, as defined by this paper. By avoiding the use

of transducers7 or automata, the requirement for storing large transition tables is avoided.

Instead an alternative approach is used which is based on finite-state automata theory but

overcomes its problems.

A side-effect of using finite-state automata is the exponential complexity caused by de-

terministic automata being used to represent non-deterministic automata. This is because

for the worst case, the number of states is exponential in the query size [72]. The cited paper

shows this is avoidable for a large fragment of XPath defined as “Redundancy-free XPath”,

which disallows queries with redundant data where inclusion or removal does not affect the

7similar to an automaton except it has an input and output tape as opposed to just a single tape

2.5 Views 19

meaning of the query.

Related work [73] has studied the memory lower bounds for evaluating XPath queries over

streams of indexed XML data. Algorithms are available that can perform multiple sequential

scans of the XML documents [74] as opposed to a single scan as used in previously mentioned

works. This approach shows that there are tradeoffs between the number of scans needed

and the space for some XPath queries.

2.5 Views

Query evaluation efficiency can be improved by making use of materialised views. These

views act as a cache and can store the query results of frequently asked queries. Efficiency is

then improved by query rewriting (where applicable) using these views, which is faster than

using the base relations or documents only.

2.5.1 View Maintenance

Materialised views introduced the problem of how to effectively maintain them within a

dynamic database. The naive approach of full recomputation is undesirable as the benefit

the views provided for query efficiency would be affected significantly if they had to be

recomputed everytime the database was modified. Therefore, incremental methods are of

considerable interest.

Relational and Object-Oriented Incremental View Maintenance

Incremental view maintenance is a well established research topic within the relational and

object-relational settings. Such work [75] has included determining whether views expressed

in a language L1 can be maintained by an algorithm represented by a query in language L2.

The goal of this research was to discover a language L2 such that it was well supported by

the database system and could be quickly evaluated.

Early work in this area focussed on detecting updates that would not affect the view and

developing algorithms for propagating “deltas” to the view based on the source updates. A

20 Literature Review

“delta” can be described as a simple transaction which contains insertions and/or deletions

of tuples. Most of these algorithms treated the view definition as a mathematical formula

and determined an expression to represent the required changes to the view.

View maintenance techniques for relational databases can be split into two categories,

those that use full information and those that use partial information. Full information refers

to methods where the materialised view and all the base relations are available. Partial

information defines the case where the materialised view and only a subset of the relations

involved in the view are available.

In the context of full information methods, algebraic differencing is an approach that

has been explored as a basis for view maintenance [76] [77]. This involves determining the

difference between two algebraic expressions, one representing the original view and another

the updated view. From this a relational expression can be defined which expresses the

required change to a Select Project Join (SPJ) view while avoiding redundant computation.

A correction to the minimality result (the minimal relational expressions that need to be re-

computed) [77] is presented in [78], which also extends the method to multiset difference and

supports multiset algebra with aggregations. For each view, two expressions are computed,

one to handle insertions and one to handle deletions.

Another approach taken is that of counting algorithms. The general idea behind these

is that for each tuple in the view the number of its derivations is stored as additional

information. BGDEN [79] handles recursive views and makes use of counts for a subset of

derivations to give even finite counts to every tuple, even if tuple derivations are infinite.

The counting algorithm [80] handles outer join views and views defined with union, negation

and aggregation that can have duplicates. Each view tuple stores its number of derivations

(derivation count). This count can be calculated with negligible effect on the view evaluation

time for SQL views. When the base relations are modified a set of changes for the view

relations is produced. This represents insertions as positive counts to be added and deletions

as negative counts to be subtracted. If a tuple’s count reaches 0 it is removed. It is optimal

as it only computes the view tuples that are inserted or deleted. This algorithm can only

handle non-recursive views unless the number of derivations for each tuple is finite [81] [82].

However, despite this condition, the cost of computation can be significantly increased by

2.5 Views 21

the computation of counts.

Datalog [83] views are used in all view maintenance work that can support recursive

views. Datalog is a declarative logic programming language that is more expressive than

SQL as it allows recursion. The paper [80] also presents the Delete and Rederive (DRed)

algorithm which can also support SQL views. These views can support recursion, union,

and stratified negation and aggregation, i.e., negation and aggregation outside recursion.

However, they are restricted in their inability to handle duplicates. The algorithm operates

by overestimating the derived tuples to be deleted. This is an overestimate because a tuple

is included if a base relation update affects any of its derivations. Then tuples with other

derivations in the new database are removed from the overestimate. The partially updated

view is used along with the base relation insertions to find the new tuples to be inserted.

Despite some other methods being more efficient, at the time of development, none of them

supported as large a class of views. The DRed algorithm is extended in [84] to handle non-

traditional views, in this case views that can contain non-ground tuples, i.e., tuples that can

contain variables.

Propagation/Filtration (PF) [85] algorithms provide an approach that is similar to DRed

except that base relation changes are performed on a relation by relation basis using a

similar algorithm to DRed, i.e., one base relation change results in computing one derived

relation8 change, performed in a loop to handle all the relations. However, the overestimate

and pruning stages are performed after each iteration. This avoids propagating tuples in

earlier overestimates that do not change. However, it also results in some tuples being

rederived multiple times and fragmenting computation. Rederivations are reduced in [80]

using memoing (saving intermediate results) and by exploiting the stratification to reduce

rederivations. Between DRed and PF there is no single best solution to relational view

maintenance. They outperform each other for specific view definitions. DRed is always

better for non-recursive views [16].

Other counting algorithms exist for non-recursive views. [86] is similar to the counting

algorithm [80] but only maintains SPJ views and handles insertions and deletions separately.

Derivation counts are used for select, project and equijoin views in [87] by means of a data

8Materialised views are derived relations which consist of other derived relations and stored relations.

22 Literature Review

structure with pointers from a tuple to other tuples derived from it. Finally, [88] makes use

of materialised views which support selections and one join which they name “View Caches”.

These views only store tuple identifiers which have to be joined to get the view tuples.

Methods using production rules have also been developed. The Ceri-Widom algorithm [89]

maintains non-recursive SQL views without duplicates, aggregation and negation and can

not handle view attributes that identify base relation keys through functional dependencies.

SQL queries to perform view maintenance are calculated by the algorithm and called from

within production rules.

An alternative approach is taken by the Kuchenhoff algorithm [90] which can support

recursive views. A set of rules are presented to be applied to consecutive database states to

determine the difference for a stratified recursive program - only contains operations within

recursion that can be sensibly defined, i.e., not negation or aggregation. Only stratified

recursion is considered as it is safe. This is the same restriction the SQL-99 [91] stan-

dard makes. These rules are similar to those of [80] with the exception of the use of the

delete/prune/insert technique (also used in [85]). In comparison with the DRed algorithm

the duplicate derivations, guaranteed not to affect the view, are discarded for positive rules

later on in the method compared to DRed.

The Urpi-Olive algorithm [92], which can support recursive views, makes use of a set of

transition rules using existentially quantified subexpressions (subexpressions that are known

to exist). The rules define how a modification to a relation translates into a modification for

a derived relation. They are defined on stratified Datalog views and expressed in Datalog

rules. Pruning can be performed as the quantified subexpressions can be removed in certain

circumstances as they may go through negation. However, the update model is more useful

for non-recursive views because keys are derived as updates are modelled directly.

Other methods, for handling non-recursive and recursive views, make use of transitive

closures - a graph’s reachability matrix between all its nodes, i.e., what nodes have a path

between them. [93] handles recursive views by means of defined non-recursive programs to

perform the update after insertions into the base relation. [94] handles the transitive closure

of certain graph types using a non-recursive program to perform the update after insertions

and deletions.

2.5 Views 23

Work has also been performed on the view maintenance of non-recursive full outer join

views [95]. From the view definition, a right and left outer join with the updates, is defined

to perform the view maintenance for insertions and deletions. These, however, can not

compute all view changes, like SPJ views, as insertion side-effects of a successful join can

not be handled.

Another area of view maintenance within relational databases is methods which use

partial information. In this scenario the view may not always be able to be maintained due

to lack of information. For example, only the materialised view may be available. In this

case updates would only be able to reason based on the data in the view. Methods within

this area first check whether a view can be maintained before performing view maintenance.

An initial topic of work in this area was for the “irrelevant update” or “query independent

of update” problem. This entailed detecting if an update would affect a view. If the view

is affected an additional algorithm is required to perform the view maintenance, if it is

possible. [86] [96] present a method for the former problem for SPJ views, whereas [97]

handles Datalog views. [98] extends on methods for Datalog views by handling arithmetic

inequalities and negated base relations.

If a materialised view can be maintained with only the view and key constraints, it is

called self-maintainable [95]. [95] presents results for insertions, deletions and modifications

for the self-maintainability of SPJ and outer-join views. This work shows that for insertions,

most SPJ views can not be self maintained. However, they are generally self-maintainable for

deletions and modifications. In [99] a self-maintenance algorithm for SPJ views is described.

However, this is database instance specific and can only handle insertions and deletions.

It was subsequently corrected and extended [100]. [96] presented autonomously computable

views which can be maintained for a set modification for all database instances using only

the materialised view. These SPJ views do not contain self-joins or outer-joins and can

handle insertions, deletions and modifications.

The partial-reference maintenance problem occurs when access is only available to the

materialised view and a subset of the base relations. Chronicle views [101] are views over

a relation that permits insertions and consists of an ordered sequence of tuples. A method

is presented to handle the chronicle view maintenance problem. This involves maintaining

24 Literature Review

the view when insertions are performed on the chronicle. The complete chronicle may be

inaccessible because it is so large that only a fragment may be stored in the database.

In [102] [100] partial-reference maintenance algorithms for specific database and modifica-

tion instances are presented. The given materialised view and/or base relations are checked

against conditions to determine if the data is capable of maintaining the view.

Publishing Relational Data to XML

Using a relational DBMS to publish relational data to XML documents is known as XML

publishing. This is an important problem as many applications use XML as an exchange

format where their data is stored in relational databases. Therefore, XML can be used

for a materialised view of non-XML data. XML publishing can be achieved by the use of

middleware [103] [104] or provided directly by DBMS support [105]. Scenarios where this

could occur include mediation, archiving and website management.

XPERANTO [104] is a middleware system which produces XML documents from object-

relational databases. It can support both object-relational and flat-relational structures. The

XML can be queried and (re)structured with the XML query language XML-QL [106]. Much

like other publishing systems XPERANTO translates the XML queries into SQL, converts

the results into XML and returns the XML documents. This differs from other similar

systems such as SilkRoute [107] and [108] as it uses “pure XML”, meaning users/developers

need no knowledge of SQL. The middleware provides efficient query evaluation by passing

as much work as possible to the DBMS [108]. Finally, a notable property is that it allows

seamless querying over relational data and metadata.

Fernandez et al. [103] present a different method of connecting relational data to XML

views. XML views are defined in the declarative query language, RXL, of the SilkRoute [107]

relational to middleware system. The middleware handles a view query by translating it to

several smaller SQL queries on the relational database. It then integrates the results and

adds the appropriate XML tags. This work focuses on the materialisation of large RXL

views - to support warehousing or data export applications - and the best way to select the

SQL queries when there is no control over the DBMS. This lack of control is due to the

algorithm operating in middleware, therefore, DBMS-specific heuristics cannot be utilised.

2.5 Views 25

An algorithm is presented which determines an optimal set of SQL queries from an RXL

view. This applies greedy optimisation to the view generation process. This greedy algorithm

can produce SQL queries which are near optimal by communicating with the target query

optimiser to get query cost estimates. This method can also work with other relational-

to-XML systems, i.e., Oracle XML SQL Utility, IBM DB2 XML Extender, Microsoft SQL

Server 2000, as the view tree representation can represent their view definition languages.

The view maintenance problem of published XML documents with focus on XML pro-

duced by schema-directed XML publishing middleware is explored in [109]. Schema-directed

publishing is XML publishing where the output XML view must adhere to a schema. In

schema-directed publishing, a mapping between the XML and the database may not be de-

finable by a simple query. Attribute Translation Grammars (ATGs) [110] can be used for

schema-directed XML publishing. An ATG consists of a DTD and a set of semantic rules

used to produce an XML document. These semantic rules are represented as SQL queries and

define what is required from the database to generate a specific view. Two approaches for

incremental evaluation of ATGs are explored in this work. These are the reduction approach

and the bud-cut approach. The reduction approach passes as much work as possible to the

DBMS. It relies on translating ATGs to SQL 99 queries and a relational encoding of XML

trees. A disadvantage of this approach is that high-end DBMS features (such as incremental

SQL 99 view maintenance) are required which at the time of development were not available

within commercial databases. This differs from other XML publishing work [103] [104] which

aims to pass to the DBMS the XML publishing work as opposed to incremental work, i.e.,

view update. The XML publishing work is handled within the middleware. The bud-cut

approach uses the DBMS for simple queries (similar to distributed relational database query

processing [111]) and uses the middleware to perform the majority of the work. It improves

on previous work by using a caching strategy to minimise unnecessary computations, i.e., it

only computes each new subtree in the view once regardless of how many times it appears

in the view. The old XML subtrees are also maximally reused which works best when only

a fragment of the XML is contained in the view. Effective optimisation techniques not sup-

ported by the DBMS are used, e.g., query merging [103]. Partial results can be returned

26 Literature Review

during computation and the remaining computation can even be performed lazily [105]. Fi-

nally, for the bud-cut approach, the DBMS is not required to materialise the view or support

incremental view updates.

Experiments show that this approach can effectively maintain XML views. XML inte-

gration [112] - generalisation of ATGs - could be handled by an extension to the bud-cut

approach to handle multiple data sources. XML views from other systems, e.g., [103] [104]

can also be handled.

XML Publishing and View Maintenance Techniques in Commercial DBMSs

Some query standards and languages, e.g, SQL [91], and commercial DBMSs, e.g., IBM

DB2 [113], allow users to specify XML views of relations (XML publishing). However, XML

view maintenance is very restricted or not yet supported.

SQL [91] provides functionality for XML views. However, it does not allow XPath queries

on the views to be recursive or any update operations on the views. XML views are rep-

resented by using SQL to encapsulate the relational tables. IBM DB2 [113] supports view

maintenance, i.e., it can propagate updates on the relations to simple XML views.

2.5.2 View Maintenance for XML Databases

Following the success of materialised views within relational databases they were also in-

troduced within XML databases. Due to the different structure of these databases the

previously developed methods for view maintenance were not suitable. This was due to

XML data being hierarchical in contrast to relational data which is flat. Therefore, this

reintroduced the problem of view maintenance.

A method to handle both hierarchical semi-structured and relational databases with view

constraints is introduced in [114]. This work utilises an unordered data model and supports

a restricted query language, which maintains the distributivity of queries over updates, in

order to simplify update translation but at the expense of the expressiveness. One such

limitation is that queries must be monotonic with respect to updates.

2.5 Views 27

Algebraic methods have also been developed for XML view maintenance [115]. Updates

are translated into operators in a tree algebra, XAT, making use of auxiliary data as re-

quired. An initial algorithm, for view maintenance, did not handle ordering and stored all

intermediate data in a cache. Ordering was included in later work [116] by means of node

identity being encoded by a labelling scheme.

Another algebraic method to maintain non-recursive XQuery views is presented in [6].

The main part of this work is an update translator for translating source updates into view

updates. This operates by making use of the source update, query, and annotation hints9

generated from the source. Other parts are an update compiler and a query instrumen-

tor. The update compiler translates update expressions to Galax10 query plans. The query

instrumentor rewrites a source query to compute the required annotation hints for update

translation. This method makes use of statement-level updates. An interesting feature that

was added is the ability to control the quantity of annotation hints as an external system

parameter. These annotation hints are intermediate data in the translation process, as some

operators may compute and discard this data which is required in later stages. The greater

the amount of annotation hints, the greater the possibility of incremental view maintenance.

However, this has the disadvantage of a growing annotation file. If less annotation hints are

available, most cases result in recomputation but annotation files are small. This param-

eter gives programmers the ability to balance these tradeoffs as in some cases keeping no

annotations for specific operators might be a reasonable approach for certain queries. The

translation of XQuery into algebraic plans is described in [117] [118].

The update method makes use of the tree algebra of Galax despite the view syntax being

XQuery. This is due to XQuery being complex and monolithic as a result of being stored in

monolithic FLWOR blocks and supporting complex features such as conditionals, iteration,

navigation, variable binding, selection, grouping, and reordering. Conversely, Galax is sim-

ple as it breaks down these complicated features into a more primitive representation; it is

9These hints vary depending on the operator which they are being stored for. For example, for the

conditional operator it could store its encoded boolean value.
10open-source XQuery implementation

28 Literature Review

orthogonal, as a consequence allowing easy identification of the operators that are easy to

maintain and those that are not; and composable, which simplifies the process of extending

the system to handle additional built in functions and algebraic operators. Compositionality

also allows simple proofs of correctness. The benefits of working with a primitive represen-

tation are: the update translation algorithm is more efficient (i.e., it can be performed as a

recursive function on algebraic queries) and since it includes relational algebra operators it

is easy to see the relationship to previous work in the relational setting. These benefits have

been noticed by other view maintenance works [78] [16]. Despite the language being simple

it can still represent the effect of an update on any data model value. These simple updates

are only manipulated internally but it can handle source updates in any formalism, e.g.,

XQuery! [119] (an extension to XQuery that handles update operations with side-effects) or

the W3C’s XQuery Update Facility [15]. More expressive update languages could be used.

However, this would require modifying the system. The update would have to be performed

on the source to find fixed path “atomic” updates that would have to be encoded in the

described update language.

This Galax method is similar to the Rainbow method presented in [115] [116]. However,

the Rainbow method’s labelling scheme simplifies some operator’s translation rules due to

the ability to discover the value an update has affected. Additional annotations are required

for order changing operators. Therefore, a lot of the same positional data that is contained

within the Galax method’s annotation scheme is recorded in the Rainbow method’s labelling

scheme. The Galax method uses a functional data model without the requirement for ad-

ditional metadata. Conversely, the Rainbow method uses node IDs stored in the source

data. Despite working well, IDs may not always be available. For example, if the source

and view were on different hosts, the IDs would need to be sent across the network. The

Galax method can tune and selectively omit annotations, whereas the Rainbow method can

not do this without affecting the semantics of the method. Finally, the Galax method car-

ries algebraic plans for replacements and insertions as opposed to data model values in the

Rainbow method. Therefore, when propagating an update, a source query is required after

each replacement to keep it correct. The Galax method only requires the algebraic plan to

be rewritten.

2.5 Views 29

Other non-algebraic methods have also been developed, including an approach to solve

the boolean version of XPath incremental view maintenance [17]. This involves determining

whether an XPath expression is still satisfied following an update. The incremental updates

are performed by making use of an auxiliary data structure. This data structure consists of

a record for each node in the document. Each record contains the set of query nodes which

match the node; the number of children that satisfy a query node; the set of query nodes

that are satisfied in a descendant; and the number of children with descendants that satisfy

a query node. The method can handle insertion (next sibling or first child), relabelling of

single nodes and deletions of subtrees. This was the first work to consider incremental XPath

evaluation worst case complexity bounds. A method to support next and following sibling

axes is presented which structures the XML as a string. However, this has the side-effect of

not being able to support disjunction and negation.

Maintenance of XPath queries over a richer dialect than just boolean is studied in [120].

This method handles node-level updates and uses a two stage approach. First identifying the

directly affected nodes, then calculating the indirectly affected nodes. This is extended [121]

to handle the scenario of when the database and the view store are decoupled and the up-

date has to be propagated using less information. The information used is that which can be

expressed using standard XPath interfaces [122], i.e., the update, view definition and view

contents. Using less information, incremental maintenance is not always possible. Therefore,

the work aims to reduce full recomputation by identifying cases where updates do not affect

the view and where views can be maintained using only the update. The XPath dialect and

node-at-a-time approach stay the same.

2.5.3 Incremental View Maintenance for ActiveXML

A related area of work is the incremental view maintenance of Active XML (AXML) [123].

Such XML documents may be populated by information from various web components. This

is a common scenario in many web applications, i.e., monitoring distributed autonomous

30 Literature Review

systems [124] and mashup systems [125]. This work [126] [127] looks at the complexity of

determining whether there is an update sequence for an active XML document that satisfies

a query. An efficient model is introduced to represent these interactions. The main part

of this model is a complex stream processor, referred to as the axlog widget which uses

AXML and Datalog [83]. This is a view over an AXML document which contains an AXML

document which uses streams of updates that are used to communicate with the rest of

the model. Input streams define document updates. Whereas output streams specify the

updates required to maintain the view for a query defined on the document. The authors

mostly deal with insertions but deletions are also addressed. The queries used are tree-

pattern queries with value joins. The complete axlog system consists of a set of widgets

distributed on multiple peers which communicate via streams of updates.

An algorithm is presented to efficiently compute the output streams for the widgets which

is a view maintenance problem. The actual process of incremental maintenance can be

handled directly using existing techniques for Datalog, Differential [128] and MagicSet [129]

(similarly, QSQ [130]), for incremental computation and query optimisation, respectively.

Other known techniques provide a benefit, including constraint databases [131], incremental

Datalog evaluation [132] and XML filtering - using YFilter [67]. The algorithm uses a notion

of relevance which is more suitable to the dynamic setting than MagicSet. This is based on

satisfiability of a fact and provenance of data. This notion can be used to prune data at the

Datalog program and at the stream source which saves on processing and communication

respectively. By using this notion the algorithm is more optimistic than MagicSet. Pruning

is not performed on data just because it is not currently relevant. Satisfiability determines

the data which might be relevant in the future. MagicSet is only interested in data which is

currently relevant.

2.5.4 View Update

The majority of database systems have the functionality to limit the fragment of the database

that is visible to the user. This is useful for security reasons as well as simplifying the users

viewing and interaction with the data by removing data which is uninteresting or irrelevant

2.5 Views 31

to them. A problem arises when users attempt to update this data as the updates have

to be propagated to the source document(s). This is known as the view update problem,

and represents the inverse of the view maintenance problem where the source document is

updated and the updates propagated to the view.

2.5.5 View Updates for Relational Databases

The main concept behind view update is the translation of view updates to base table up-

dates. This translation is formalised in [133]. However, translation procedures will not always

produce correct translations. If a translation exists, it may not be unique. This could result

in equivalent translations resulting in different modifications to the database. Therefore,

conditions were also derived for which these translations will be correct. These conditions

were first derived in relation to schema and view extensions. Subsequently they were derived

syntactically using functional dependencies, keys and subset constraints. The authors show

that only under tight conditions, unique and correct translations could be produced. This

work is extended from relational view theory to a general network model [134].

An important concept in relation to view update is a view complement. A view compli-

ment is the data required to reconstruct the base relations using itself and the view - this

may include some overlap with data in the view. There can be multiple view compliments,

with each one representing a different update policy. In [135] if a constant compliment ex-

ists (one that is unaffected by the view update) then a view update can be translated into

base relation updates. The smaller the view complement the bigger the set of updates that

are translatable [136]. However, [135] discovered that finding a minimal view compliment

is NP-complete and the construction of an update translator given a complement view was

a mainly undetermined problem at the time. The translation was based on the method

proposed in [137]. However, it was only tested in a simple scenario. Only database schemas

containing a single relation were considered where integrity constraints were mostly func-

tional dependencies [138] [139]. The views were then simply projections of the relation.

32 Literature Review

A restricted class of SPJ views is handled in [140]. These views can only support Boyce-

Codd Normal Form relations. Additionally, attribute comparisons can not be included in

selection conditions; a join view must be a single tree with each node a relation; and the

joining of base tables can only be performed on keys and have to satisfy foreign keys. Five

criteria are presented that must be adhered to for translations to be acceptable. These

criteria are:

“No database side-effects”

“Only ‘one step’ changes”

“Minimal change: no unnecessary changes”

“Minimal change: replacements cannot be simplified”

“Minimal change: no delete-insert pairs” [140]

Translators that meet these criteria for the set of SPJ views are detailed. Additionally,

a collection of all templates for translations which satisfy these criteria are presented. Some

updates on views containing joins can not avoid side-effects from translation and only these

views are permitted to have update translators with side-effects.

View Update for XML Views

The majority of work on view update for XML deals with the case of the base data being

stored in a relational database. This is a difficult problem as it involves handling two different

query paradigms and data models. The Round-trip XML View Update Problem (RXU), a

subcase of XQuery view update, is handled by Rainfall [141], a decomposition based update

translator for virtual views. RXU refers to the combination of loading XML data into

a relational database and using XML publishing to obtain the XML views. By splitting

XML into relations, Rainfall shows that view update operations can always be translated

into relational updates for RXU. The Rainbow XML data management system [142] [143]

was used to implement the presented methods for update decomposition, translation and

propagation. However, the algorithms and concepts are general and can therefore be used

by other systems.

2.5 Views 33

As previously discussed, many methods have been developed for relational view update.

Methods for XML view update generally developed alternative approaches. The possibility

of mapping XML view updates onto existing relational view update methods when XML

is stored in a relational database has been explored [144]. This reduces the problem to

an application of relational view update. XML views and updates are mapped to a set of

relational views and updates. This mapping allows any method for view update for relational

databases to be used to complete the view update process. It focuses on XML views which

allow nesting, composed attributes, heterogeneous sets, grouping, repeated elements and text

elements with attributes and represents them as query trees. A method for nested relational

algebra (NRA) views [145] is similar but far less general.

UFilter [146] is a framework for solving the XML view update translatability problem for

arbitrary XML views - translating updates on the view to updates on the base data with-

out side-effects on the view. Constraints are used for schema-level and data-level checking.

The schema-level checks are update validation and schema-driven translatability reasoning.

Update validation checks if the update is valid with respect to the schema. Schema-driven

translatability reasoning checks for possible side-effects. Data-level checking is only per-

formed when necessary due to it being expensive, in comparison to schema-level checks, as it

requires checking the base data. This validation is the data-level translatability check which

locates conflicts with the base data. Only updates which pass all these checks are translated

into SQL queries.

The view update problem for arbitrary virtual XML views over relational databases is

tackled in [147]. This entails translating an update into SQL queries without side-effects,

if possible. Clean source11 [133] was used to define the schema conditions in which a re-

lational view is updatable when it is over a single table. This work extends this concept

for XML, which is used to determine the correctness of a translation mapping. Updates

are classified as untranslatable, conditionally translatable and unconditionally translatable.

These classifications depend on the view and the update’s features: update granularity for

the view, view construction properties and duplication types contained within the view. The

algorithm handles the updates depending on their classification: untranslatable updates will

11source data of a view that can be updated without resulting in view side-effects

34 Literature Review

be discarded; more conditions will be requested for conditionally translated updates; and

unconditional translatable updates are translated. The main concern for the translatability

algorithm is conflict between the relational foreign key constraints and the view hierarchy.

The algorithm is efficient as it does not require the database contents, only the view and

database schema and runs in polynomial time. The algorithm is extended [148] to support

views with duplication. These works differ from [146] in that conflicts can still arise with

the base data as only schema reasoning is used.

The view update problem for potentially recursive XML views populated from relational

data is also studied in [7]. XML views are represented as mappings defined by DTDs which

are stored in relations as directed acyclic graphs (DAGs). XML is a tree structure, however,

DAGs are used in the representation as a recursive view could result in infinitely many

relational views for a tree structure (e.g., [144]). Another encoding scheme which handles

recursion is presented in [149]. This method can handle recursive views - defined in terms

of itself, directly or indirectly - and recursive XPath queries. Algorithms are presented for

relational view insertions and deletions.

The method presented can handle XML views obtained via schema-directed XML pub-

lishing. XML publishing is defined as translating relational data into XML. The work mainly

deals with Attribute Translation Grammars (ATGs) [109] however it can support any system

that uses Select Project Join (SPJ) queries to define XML views (such as SilkRoute [107],

XPERANTO [104]).

Relational views are defined for the Directed Acyclic Graph (DAG) representation of the

XML view in such a way that the size of the XML view limits the number of relational

views. This holds even in the case of recursive XML views. This is in contrast to other

encoding schemes, e.g., [144], which could result in an infinite number of relational views

for recursive XML views. Updates to an XML view are handled as follows: updates which

are single path expressions at the XML level are translated to group updates (multiple SQL

queries each representing a single path) on the relational view level and then translated to

updates on the published relational database.

Algorithms are presented to translate XML view updates to updates on the relational

representation with the ability to handle recursive updates and recursively defined XML

2.5 Views 35

views. Another algorithm is presented to evaluate XPath queries on DAGs with the potential

to contain complex filters. This makes use of index structures: reachability matrix for

handling ancestor-descendant relationships and a topological order for handling filters and

computing and maintaing the reachability matrix. This algorithm also has the ability to

detect side-effects. An algorithm is also presented to incrementally maintain these indexes.

This takes place in the background in parallel with relational updates. This is so the XML

view updates are not affected. To implement these, the update semantics of XML views

represented by relations were enhanced in order to take account of XML update side-effects.

On the relational side, algorithms are presented for processing group deletions and processing

group insertions on SPJ views.

The presented methods were the first that offered support for recursive XML updates

and complex filters on XML views which are compressed and potentially recursive, without

passing responsibility to the relational DBMS. The problem with previous methods relying

on the DBMS was that the required functionality was mostly unavailable. The presented

methods can support XML view updates within the immediate reach of the majority of XML

publishing systems. Side-effects are handled by the user. Should one be detected the user

can decide to quit or continue in accordance with semantics they have defined.

The presented method works in three stages. The update is validated with respect to the

DTD, this update is then translated into an update on the DAG (stored in relational views)

to maintain it and finally the update on the views is translated into updates to be applied

to the relational database. Detected side-effects are handled as defined.

The presented algorithm for evaluating an XPath query on a DAG assumes it is stored

in edge relations. Previous work focussed on trees rather than DAGs. Existing algorithms

for the evaluation of path queries on DAGs [150] [151] could not be used as they do not

support complex filters or maintenance of the indexes. There is also work present in the

area of path evaluation for semi-structured data - general graphs - but they treat DAGs the

same as cyclic graphs which might not be efficient. Additionally they do not consider XML

view updates using XPath queries.

The algorithms scale linearly with the relational database size. XPath evaluation dom-

inates the insertion and deletion time. This performance time increases for deletions with

36 Literature Review

the number of edges generated by the XPath queries as they all have to be examined by the

delete algorithm. The benefit of incremental maintenance increases with the data size.

View Update Techniques in Commercial DBMSs

Similarly to view maintenance support in commercial DBMSs, view update support is also

very restricted or not yet available. SQL server [152] provides XML publishing and view

update functionality. However, for view update, it only supports a restricted set of views.

The only joins allowed are key-foreign key and recursive views and updates (recursive XPath)

are not supported. An updategram is used to support view updates, this stores the changes

to the XML after the update. The updategram is then used to convert the update into SQL

statements to update the base tables.

2.6 Conclusions

This chapter focussed on previous work covering XML indexing, query evaluation, incremen-

tal methods and views, all of which technologies contribute to the work in the remainder

of this thesis. It finished by describing the most closely related work to this thesis, view

maintenance for relational and XML databases and view update for relational databases.

The main contribution of this thesis is similar incremental algebraic methods which provide

a consistent solution to the view maintenance and view update problems. The originality of

these methods lies in their ability to handle statement-level updates using generic operators

and views returning data from multiple nodes. The next chapter describes the background

technologies and implementation details required to understand the view maintenance and

view update methods presented in Chapter 4.

3
Preliminaries

This chapter discusses the background technologies and implementation details required to

explain the methods presented in Chapter 4 and the associated experimental work. EX-

tensible Markup Language (XML) and related technologies: XPath, XQuery and XQuery

Update are discussed. Following this, views and their specifications are explained. Finally,

Views in Peer-to-Peer (ViP2P), helper data structures, functions and operators are detailed.

3.1 EXtensible Markup Language (XML)

This work deals with EXtensible Markup Language (XML) documents. XML is used to

describe semi-structured data and was developed to allow the transfer of information between

different systems/applications. In this work XML documents are seen as ordered labelled

trees consisting of the following nodes (the labels are taken from a finite set of XML node

37

38 Preliminaries

<?xml version=“1.0” encoding=“ISO-8859-1”?>

<university>

<department name = “CIS”>

<student>

<name>Martin Goodfellow</name>

<age>28</age>

<email>martin.goodfellow@strath.ac.uk</email>

<course>PhD</course>

</student>

...

</department>

...

</university>

Figure 3.1: Students XML Document

labels, L):

• element - represents an object and consists of a label

• attribute - provides additional information about an element and consists of a label

• text - consists of a string representing a value

An XML document can be seen in Figure 3.1. This shows a fragment of a document

which stores the students for each department in a university.

3.1.1 IDs

For the purpose of this work, each node must have a unique identifier (ID). This is given

based on an encoding scheme and is represented by a compact, unique string. The encoding

3.1 EXtensible Markup Language (XML) 39

scheme used was Dynamic DEwey (DDE) [3]. The selection was based on the following

properties:

• The structural relationship, if one exists, between two nodes can be determined. This

is a requirement for the developed view maintenance and view update methods.

• From a node ID, the IDs of all the node’s ancestors can be determined.

• Relabelling is not required when an update occurs.

• A compact method can be used for encoding.

An XML document using the encoding scheme can be seen in Figure 3.2. Each ID is a

sequence of steps, where each step holds the relative position of each ancestor of the node,

labelled from the root. In order to improve the developed view maintenance and view update

methods (see Sections 4.1.1 and 4.2.3) DDE was extended to include the label path. This

allowed the use of more powerful pruning methods at the expense of making the ID scheme

less compact. An XML document using the extended scheme can be seen in Figure 3.3.

a1

b1.1

d1.1.1

f1.2

g1.2.1

Figure 3.2: XML document using DDE

aa1

ba1.b1

da1.b1.d1

fa1.f2

ga1.f2.g1

Figure 3.3: XML document using extended DDE

40 Preliminaries

3.2 XML Query Languages

As the volume of XML data increased the need to query the data emerged. The World Wide

Web Consortium (W3C) first introduced XPath [9] for path queries, followed by the more

expressive XQuery [8].

3.2.1 XPath

XPath allows the selection of nodes or attributes in an XML document that match a given

query, where the query is expressed as a path. It supports parent-child and ancestor de-

scendant relationships; predicates; selecting unknown nodes; selecting several paths (using

an OR operator); several axes; and numerous operators. For example, in the document in

Figure 3.4, the g node could be selected using the XPath query /a/f/g. XPath is used in

the view maintenance and update methods to identify the target nodes for the updates.

a

b

d

f

g

Figure 3.4: XML document

3.2.2 XQuery

XQuery is a superset of XPath and was developed to allow powerful querying of XML, similar

to SQL for relational databases. The biggest difference is the ability to handle FLWOR (For,

Let, Where, Order by, Return) expressions. Example 3.2.1 shows an XQuery query using

FLWOR.

Example 3.2.1. Let the XML document “students.xml” be as seen in Figure 3.1. The fol-

lowing query returns the names of all students over 21 in alphabetical order.

3.2 XML Query Languages 41

for $x in doc (“students.xml”)/university//student

where $x/age > 21

order by $x/name

return $x/name

XQuery Update

XQuery Update [15] is an extension of the XQuery language which can be used to update

XML documents or data. It supports five basic operations:

• insert

• delete

• replace node

• replace contents/value of a node

• rename

The following example shows the insertion of a new student into a document.

Example 3.2.2. Let the XML document “students.xml” be as seen in Figure 3.1. The fol-

lowing query inserts a new student, John Smith, into the CIS department.

insert nodes

<student>

<name>John Smith</name>

<age>19</age>

<email>john.smith@strath.ac.uk</email>

<course>BSc (Hons) Software Engineering</course>

</student>

into doc(“students.xml”)/university/department[@name=“CIS”]

42 Preliminaries

The developed methods for view maintenance and view update make use of XML for the

documents, XPath to identify the target nodes for the update and XQuery for the views.

The methods handle a subset of XQuery Update statements.

3.3 Views

A database view is a virtual table containing the result of a query. Conversely, a materialised

view stores the result in a persistent table. The work described in this thesis is focussed on

manipulation of materialised views.

The views considered in this work are expressed using a subset of XQuery. This conjunc-

tive dialect is presented in Table 3.1.

• XP represents the XPath{/,//,∗,[]} language.

• absV ar is an absolute variable declaration. The variable xi is bound to the path

expression p ∈ XP evaluated on the document at URI uri starting from the root.

• relV ar is a relative variable declaration. It is non-terminal. The variable xi is bound

to the path expression p ∈ XP evaluated starting from the bindings of a previously

introduced variable xj. Where is optional and is a conjunction over predicates. Each

predicate compares the string value of a variable xi with a constant c.

• return builds a new element labelled l with some children labelled li (l, li ∈ L), for

each tuple of bindings of the for variables. Each child element can contain one of the

following pieces of information related to the current binding of a variable xk, declared

in the for clause:

– xk denotes the full subtree rooted at the binding of xk.

– id(xk) denotes the ID of the node to which xk is bound (see Section 3.1.1).

– string(xk) is the string value of the binding.

The full subtree, or content, of a node contains all its descendants - element, attribute,

and text - whereas the string value only contains the text descendants. For example, for the

3.3 Views 43

1 q := (let absV ar return)?

for (absV ar,)? relV ar (relV ar ,)*

(where pred (and pred)*)? return ret

2 absV ar := xi in doc(uri) /p where p ∈ XP

3 relV ar := xi in xj /p where xj introduced before xi

4 pred := string(xi) = c

5 ret := 〈l〉 elem* 〈/l〉

6 elem := 〈li〉{ (xk/p | id(xk) | string(xk)) }〈/li〉 where p ∈ XP

Table 3.1: Grammar for XML materialised views

XML document in Figure 3.4, the content of b is <d/>, whereas the string value

is null, as b has no text descendants. Therefore, the string value is generally smaller but

holds less information. By storing these extra pieces of information the number of queries

that can be rewritten using a view increases. The IDs do not hold any of the content but

enable joins to combine tree patterns (XML queries). The view dialect allows significant

flexibility by allowing any subset of ID, value and content to be returned for any of the

variables.

3.3.1 XML Access Modules (XAMs)

XML Access Modules (XAMs) [1] can represent an XML storage, index or materialised view.

In general terms, XAMs are persistent data structures storing parts of an XML document.

For the purpose of this work they are used to model views.

The subset of XAM specifications used can be defined using the grammar in Figure 3.5,

where bold font represents constants. Each node can carry the label of an XML element or

attribute and can be annotated with the following specifications:

• ID - A Dynamic DEwey (DDE) ID [3] is stored. The u states that it is an updatable

44 Preliminaries

NS ::= N+

N ::= name IDSpec? TagSpec? V alSpec? ContSpec?

IDSpec ::= ID u

TagSpec ::= (Tag) | [Tag=c]

V alSpec ::= (Val) | [Val=c]

ContSpec ::= Cont

ES ::= E∗

E ::= name1(/ | //) j name2

Figure 3.5: XAM Grammar [1]

ID1, other ID types are supported by XAMs but are not used in this work. This can

be stored for all view elements and attributes.

• Tag - Tag denotes that the element tag or attribute name is stored for that node.

Alternatively, [Tag=c] declares that only elements matching this predicate are stored.

• Cont - The XML of the subtree rooted at this element or attribute is stored. Formally,

this is the full (serialised) representation of the element or attribute.

• Val - This is defined similarly to Tag with the exception that it refers to an element or

attribute’s value. It is obtained by concatenating all its text descendants in document

order, i.e, the cont of the element or attribute with the XML tags removed.

ES is the edge specification. The relationships supported are parent-child (/) and

ancestor-descendant (//). The j states that it is a join edge. Other XAM edges are available

but are not used in this work.

An example XAM can be seen in Figure 3.6. The tuples in this view store data from all a

elements with an f child, where the f child has a g child, i.e, all subtrees matching //a/f/g.

The IDs are stored for all elements and for g elements the val and cont is also stored.

1This work extended XAMs to support updatable IDs, expressed as DDEs.

3.3 Views 45

1: ID u [Tag=a]

2: ID u [Tag=f]

3: ID u [Tag=g] Val Cont

;

1,2 / j

2,3 / j

Figure 3.6: XAM

confsID

paperID

affiliationID,cont

Figure 3.7: Sample tree pattern.

sconfs.ID,paper.ID,affiliation.ID

δ
πconfs.ID,paper.ID,affiliation.ID,affiliation.cont

σconfs.ID≺≺paper.ID∧ paper.ID≺≺affiliation.ID

Rd
confs ×R

d
paper ×Rd

affiliation

Figure 3.8: Algebraic semantics of the tree pattern in Figure 3.7.

3.3.2 Algebraic Tree Pattern Semantics

View semantics are defined using tree embeddings [153]. Equivalent semantics are used

which are presented by an algebra [154].

Given a document d and label a, the list of tuples of the form (ID, val, cont) obtained

from all the a-labelled nodes in d is denoted by Rd
a. This is referred to as the virtual canonical

relation of a in d. Rd
a’s tuples are stored in the order of appearance of the corresponding

nodes in d. A parent comparison operator, ≺, and ancestor comparison operator, ≺≺ , are

also introduced. These return true if the left-hand ID is the parent or ancestor, respectively,

of the right-hand ID. The algebra discussed is only logical and no assumptions are made on

46 Preliminaries

the physical implementation of ≺ and ≺≺ .

LetA be the algebra consisting of the following operators: (1) the n-ary cartesian product

×; (2) selection, denoted σpred, where pred is a conjunction of predicates of the form a � c

or a� b, a and b are attribute names, c is some constant, and � is a binary operator among

{=,≺,≺≺}; (3) projection, denoted πcols; (4) duplicate elimination, denoted δ; (5) sort,

denoted scols. Joins are also used, defined, as usual, as selections over ×.

The algebraic semantics of the tree pattern in Figure 3.7 is the algebraic expression in

Figure 3.8. From the bottom up, there is an Ra atom per query node labelled a, connected

through × operators. The selection σ enforces (i) all value constraints on the nodes, and

(ii) all structural ≺ or ≺≺ relationships between query nodes. The projection retains the

attributes projected by query nodes, e.g., confs.ID, paper.ID, affiliation.ID and affiliation.-

cont. After duplicate elimination (δ), the tuples are sorted in the order dictated by the IDs

of the bindings of all nodes.

3.3.3 Views in Peer-to-Peer (ViP2P)

The view maintenance and view update methods described in this thesis were implemented

within ViP2P2. This is an open source system that offers good view management support so

was suitable for this research. It is a peer-to-peer XML database based on distributed hash

table (DHT) indices and exploits materialised views independently published by the peers

in the P2P network, to answer an interesting dialect of tree pattern queries. When a query

arrives at a peer it uses the views available in the network to rewrite the query in order to

evaluate it. The main architecture of a peer can be seen in Figure 3.9. It consists of data

storage which stores the tuples contained in the views located on this peer. It also stores

modules to manage each of the files that can arrive at a peer. The work presented in this

thesis added the update management module to the ViP2P system which handles both view

maintenance and view update.

2http://vip2p.saclay.inria.fr/

3.4 Helper functions and operators 47

Data Storage

View Management Document Management Query Management Update Management

Figure 3.9: ViP2P Peer Architecture

3.4 Helper functions and operators

The view maintenance and view update methods, presented in Chapter 4, assume the avail-

ability of a number of helper functions and operators. These have been incorporated into

the produced methods.

Let u be an update (insertion or deletion), and pul(u) be the pending update list [15]

resulting from u on a document d. The pending update list represents the updates to be

performed on the document. Thus:

• if u is an insertion, pul(u) = {(n1, t1), (n2, t2), . . . , (nk, tk)}, is a list of pairs consisting

of an XML element, ni, the target of the update, which also contains the ID of the last

child of the XML element (if it has children) and a subtree ti to be copied as a child

of ni.

• if u is a deletion, pul(u) = {n1, n2, . . . , nk} is the list of the nodes to be removed.

Let vu be a view update (insertion or deletion), and pul(vu) be the pending view update

list resulting from vu on a view v. The pending update list represents the updates to be

performed on the view. Thus:

• if vu is a view insert, pul(vu) = {(vn1, t1), (vn2, t2), . . . , (vnk, tk)}, is a list of pairs

consisting of view node ID information vni (this includes the ID of the document to

which the node belongs, as well as the node’s ID within the document and the ID of

its last child, if it has children), and a subtree ti to be copied as a child of vni.

• if vu is a deletion, pul(vu) = {vn1, vn2, . . . , vnk} is the list of the tuples to be removed.

48 Preliminaries

The following functions are used in the view maintenance and view update methods:

• compute-pul(u, d) is a function which from an update u and a document d, computes

its pending update list pul(u).

• compute-pul(vu, v, d) is a function which from a view update vu, a view v and

documents d3, computes vu′s pending view update list pul(vu) for insertions.

• compute-pul(vu, v) is a function which from a view update vu and a view v computes

vu′s pending view update list pul(vu) for deletions. This is different from insertions

as deletions do not need to assign new IDs, so the ID of the last child of target nodes

is irrelevant. All the required information is contained in the view.

• apply-insert(n, t) is a function which, given a node n and a tree t, copies t into a

new tree t′, inserts t′ as a new child of n and returns t′. Importantly, the tree t′ also

includes the IDs assigned to the copied t nodes in their new context (in d).

• apply-insert(vt, t) is a function which, given a view tuple vt and a tree t, copies t

into a new tree t′, inserts t′ as a new child of vt (viewing vt in tree form) and returns

t′. Importantly, the tree t′ also includes the IDs assigned to the copied t nodes in their

new context (in v).

• extr-pattern(nID, p, t) is a function which, given a target node ID and the ID of

its last child nID, a tree pattern p and an XML tree t, evaluates p on t and returns

the corresponding set of tuples. The IDs for the tuples are assigned as children of the

target node ID. The ID of its last child (if it has children) is used to ensure the new

IDs are unique.

• extr-pattern(IDs, vd) is a function which, given IDs of nodes to be deleted from

the source IDs and a view definition vd returns the corresponding set of tuples to be

deleted from the view. This operates by only returning tuples which are contained in

vd.

3These are required if the ID of the last child is not available from a cont attribute. See Section 4.2.3.

3.5 Term evaluation based on lattice 49

• extr-pattern(vnID, p, t) is a function which, given a document ID, target node ID

and the ID of its last child vnID, a tree pattern p and an XML tree t, evaluates p on

t and returns the corresponding set of tuples. The IDs for the tuples are assigned as

children of the target node ID. The ID of its last child (if it has children) is used to

ensure the new IDs are unique. The document ID is required as tuples can exist from

multiple documents.

• operators assumed to be available include physical structural joins [155]. Structural

joins are joins which are defined on structural relationships as opposed to primary

key-foreign key relationships. These operators implement the Stack Tree Ancestor and

Stack Tree Descendant algorithms. Based on Dynamic Dewey IDs [3], Path Filter is

used to determine if a node ID is on a path and Path Navigate for discovering parent

IDs of nodes based on their IDs.

3.5 Term evaluation based on lattice

Views can be seen as a join expression and new tuples as well as tuples to be deleted as ∆s,

see Sections 4.1.1 and 4.1.2 for more information. To maintain the view v, auxiliary data

structures, organised as a view lattice, are utilised. This lattice is an AND-OR graph. Fig-

ures 3.10, 3.11 and 3.12 depict the lattices corresponding to the views //aID//bID//cID//dID,

//aID[//bID][//cID]//dID and //aID[//bID//cID]//dID. The boxed nodes are explained in

Definition 3.5.1. This section explains the lattice in the context of insertions, however,

deletion lattices are handled similarly.

The lattice of v is a directed acyclic graph (DAG) which can contain three different kinds

of nodes:

• (i) pattern-labelled nodes - The root node of the lattice is labelled by the pattern v.

Every other pattern-labelled node is labelled by a distinct subtree pattern of v. For

readability, in Figures 3.10, 3.11 and 3.12, the joins are removed from all pattern

labelled nodes.

• (ii) OR-nodes labelled ∨

50 Preliminaries

abcd

∨
./ ./ ./ ./

abc abd acd bcd

∨ ∨ ∨ ∨
./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./ ./

a b c d

ab ac ad bc bd cd

./ ./ ./ ./ ./ ./

v1 aID

bID

cID

dID

./ ./ ./

Figure 3.10: Subpattern lattice and snowcaps for the view v1.

abcd

∨
./ ./ ./

abc abd acd

∨ ∨ ∨
./ ./ ./ ./ ./ ./

a b c d

ab ac ad

./ ./ ./

v2 aID

bID cID dID

Figure 3.11: Subpattern lattice and snowcaps for the view v2.

• (iii) Join nodes labelled ./.

A DAG is used for this structure as a child can have multiple parents.

The computation of a pattern-labelled node can be determined by its child. Each pattern-

labelled node has one child which is either a join (./) or an OR (∨) node. A join defines

how to compute the pattern-labelled node. For example, the pattern-labelled node ab in

Figure 3.10 can be computed by the join of children a and b. An OR states that there are

several ways to compute a pattern-labelled node. Its children are a set of join nodes that

define these alternatives. For example, in Figure 3.11 abc can be computed by either the

3.5 Term evaluation based on lattice 51

abcd

∨
./ ./ ./

abc abd acd

∨ ∨ ∨
./ ./ ./ ./ ./ ./ ./

a b c d

ab ac ad bc

./ ./ ./ ./

v3 aID

bID

cID

dID

./

Figure 3.12: Subpattern lattice and snowcaps for the view v3.

join of ab and c or the join of ac and b. When faced with a choice of how to compute the

tuples for a node, the first join node was selected. The chosen approach to maintain a node

is represented in the Figures by the bold arrows.

Materialising (and maintaining) all pattern-labelled lattice nodes is enough to maintain

v after an insertion or deletion. For each union term t to be added to v:

• Let tR be the ./ subexpression(s) of t containing only Ra occurrences. Then, tR corre-

sponds exactly to some materialised lattice node(s).

• Let t∆+ be the ./ subexpression(s) of t containing only ∆+ occurrences. Then, t∆+ can

be computed using the new tuples to be inserted, i.e., the ∆s.

By making use of a lattice, the problem of maintaining a view can be reduced to main-

taining the subpatterns of a view. This is a potential solution as maintaining the lattice

leaves is trivial (e.g., replace Ra by Ra ∪∆+
a) along with the propagation of the updates to

the lattice root. However, a lot of space and time is required to materialise and maintain all

these lattice nodes. Fortunately, only a subset of these nodes have to be handled:

Definition 3.5.1 (Snowcap). Let v be a tree pattern. The snowcap of v is any non-empty

subtree t of v such that: for each node n ∈ v that also appears in t, the parent of n in v also

52 Preliminaries

appears in t.4

Snowcaps are displayed as boxed nodes in Figure 3.10. For example abc is a snowcap

as the parent of each node is included in the tree pattern, the b parent of c, the a parent

of b and since a is the root it does not a have a parent and the tree pattern is therefore a

snowcap. Conversely, bcd is not a snowcap as both d and c′s parent are included in the tree

pattern but b′s is not and it is not the root. A snowcap copies the root of the pattern and

then goes down to some length on all paths, only including a node n if it includes its parent.

This name comes from the way snow covers mountains, from the top down.

After the update expression has been computed using the view definition and the new

tuples/tuples to be deleted, the expression can be pruned. This pruning is performed based

on what subexpressions can be determined to be empty. The pruning methods developed

are detailed in Chapter 4. The first pruning method (Proposition 4.1.4) takes XML update

semantics into account which state that new children can be added to a document but not

new parents. Therefore, expressions which attempt this can be ignored. It can now be

stated:

Proposition 3.5.2. Let v be a view, u an insertion and t a term resulting from u. The

term t survives the first pruning (Proposition 4.1.4) if and only if tR (the subexpression of t

which does not contain ∆+ symbols) is the algebraic semantics of a pattern vtR, which is a

snowcap in v’s lattice.

Proof. “If” direction: if tR corresponds to a snowcap in v’s lattice, then t is not eliminated

by Proposition 4.1.4. Since vtR is a node in v’s lattice, it corresponds to a subset NtR of v’s

nodes. The term t can be written as a join between tR and the ∆+ tables for all the v nodes

that are not in NtR , where the join predicates are derived from the structure of v. Let n1 be

a v node and n2 a / or //-child of n1. Since vtR is a snowcap, exactly one of the following

must hold:

• n1 and n2 are both in vtR , therefore Rn1 and Rn2 are both in tR and t. In this case, n1

and n2 do not lead to t being pruned by Proposition 4.1.4.

4This can also be viewed as an upwards closed set of the tree.

3.5 Term evaluation based on lattice 53

• n1 is in vtR , thus Rn1 is in tR (and t), while n2 is not in vtR and thus ∆+
n2

appears in t.

The t subexpression Rn1∆+
n2

does not trigger the pruning of Proposition 4.1.4 either.

• neither n1 nor n2 are in vtR , thus they do not appear in tR and t features ∆+
n1

∆+
n2

as a

subexpression, which again cannot trigger the condition of Proposition 4.1.4.

“Only if” direction: If t survives the pruning of Proposition 4.1.4, then tR corresponds to

a snowcap in v’s lattice. If t includes no ∆+ table, then tR = t coincides with the lattice’s

topmost node, which is a snowcap. Now assume that t includes at least one ∆+ table,

corresponding to the view node n. Moreover, since t was not pruned by Proposition 4.1.4,

it follows that for any node n′ immediately under n in v, t also contains the ∆+ table

corresponding to n′; repeating this reasoning shows that for t′ contains ∆+
n′ for any descendant

n′ of n, one of the two cases below must hold:

1. For any ancestor m of n in v, t includes ∆+
m. Thus, t includes the ∆+ corresponding

to v’s root, therefore t includes ∆+ tables for all v nodes, thus tR = ∅, which verifies

the conclusion.

2. There exists a lowermost ancestor m of n such that t does not contain ∆+
m (equivalently,

such that Rm appears in tR). Then it is easy to see that for any ancestor m′ of m, Rm′

appears in tR; in other words, all nodes from m upward to v’s root must appear in tR.

Generalising the above reasoning to all v nodes n such that ∆+
n appears in t, it is de-

termined that for any node m in vtR , all ancestors of m are in vtR . In other words, vtR is a

snowcap.

To give an example of this proposition, consider the view v3 in Figure 3.12. For an

insertion u to add tuples to v3, one or several of the following cases must hold:

• (i) u adds a d child to element(s) matching the path //a//b//c. View maintenance is

performed by joining the snowcap abc with ∆+
d .

• (ii) u adds a c child to element(s) matching //a//b, and this c child has at least one

d descendant (join the snowcap ab with ∆+
c ∆+

d).

54 Preliminaries

• (iii) u adds a b child to element(s) matching //a, and this b child has at least one

//c//d descendant (join the snowcap a with ∆+
b ∆+

c ∆+
d).

• (iv) u adds matches to the full //a[//b//c]//d view path. The lattice is not required

for this case.

By showing all the scenarios that can occur when adding new tuples to a view, in this

example, it can be seen that the snowcaps are necessary and sufficient to maintain the view.

This can be generalised into the following proposition:

Proposition 3.5.3. Each snowcap can be maintained based only on other snowcaps, the

lattice leaves and the ∆+ relations extracted during an update.

Proof. The proof is by induction on the number of nodes, k, of the snowcap tree pattern. If

k = 1, the snowcap is a leaf, and it can be maintained by adding to it the corresponding ∆+

tuples. If k > 1, by the induction hypothesis, any snowcap of k− 1 nodes can be maintained

based on other (smaller) snowcaps. Moreover, there exists a snowcap sk−1 such that (i) sk−1

has all the view nodes appearing in sk but one, (ii) there is a ./ node in the lattice pointing

to the ∨ node which points to sk, and such that the sk−1 node points to the ./. This means

that sk can be incrementally maintained by joining the tuples added to sk−1 (as part of its

own incremental maintenance) with those from the leaf node that is in sk but not in sk−1.

Observe that since v is a snowcap itself, it trivially follows that maintaining the snowcaps

is sufficient to maintain v.

Snowcaps are sufficient to maintain a view. However, it is not always necessary to store

every snowcap. For example, in Figure 3.11, abcd can be maintained by abc, ab and a along

with the leaves b, c, and d. The snowcaps abd, acd, ab, and ad are not required.

The proof of proposition 3.5.3 actually shows that each snowcap can be maintained by

joining one smaller snowcap with a leaf. The most efficient implementation depends on the

data set statistics: the number of tuples for each subpattern in the lattice; the size and

number of the ∆+ tables corresponding to the various view nodes (which can be seen as

reflecting the nature of the update, since some elements may be added in greater numbers

than others); the join order; join processing costs; etc. Experiments were performed to

3.5 Term evaluation based on lattice 55

compare two alternative implementations: maintaining a minimal set of snowcaps and leaves,

versus maintaining only the lattice leaves with internal joins being recomputed on the fly.

The results are presented in Chapter 5.

Having established the preliminaries necessary to explain the methods, Chapter 4 presents

this material and examines its application in view maintenance and view update.

56 Preliminaries

4
Methods

This chapter details the methods created to handle the view maintenance and view update

problems in the context of the XML data model. Initially, the methods for view maintenance

and view update are discussed, followed by an optimisation using dynamic reasoning.

4.1 View Maintenance

This section describes the developed solution to the view maintenance problem. View main-

tenance is the problem of maintaining materialised views as a consequence of changes to the

underlying database. In more formal terms view maintenance can be described as follows:

Let v be a view and u an update on a document d. View maintenance involves transforming

v into v′ so as to reflect the effect of u on d. This can be seen in Figure 4.1. The remainder

of this section will describe algorithms for transforming v into v′ so as to reflect the effect of

57

58 Methods

v(d) v(d′)

d d′
document update

update propagation

view
evaluation

view
evaluation

Figure 4.1: View Maintenance.

u on d.

4.1.1 Insertions

This section will discuss the propagation of insertions. The following example illustrates a

simple insertion scenario.

Example 4.1.1. Consider the view //aID//dID and the XML document d shown in Fig-

ure 4.2, where the ID of each node is shown as a subscript. Consider an update u1 adding

the XML fragment 〈d/〉 into //a. When evaluated on the document, this results in entering

a new d child of a, d3. Therefore, this produces a new tuple (a1, a1.d3) which must be added

to the view.

The developed method for insertions, which is discussed in the remainder of this section,

can be explained in simple terms as follows: first the new tuples to be inserted in the view

are computed from the source document and the XML fragment to be inserted. Then the

algebraic expression is obtained from the view to be maintained, based on its definition.

This expression can then be modified, using the new tuples to be inserted, to represent the

update expression required to maintain the affected view. To improve efficiency, a number

aa1

ba1.b1 ba1.b2

ca1.b1.c1 da1.b2.d1

da1.b1.c1.d1

Figure 4.2: Sample XML Document.

4.1 View Maintenance 59

of pruning rules are utilised to remove unnecessary terms from this update expression. This

expression can then be evaluated to maintain the view and finally the source document is

updated.

The rest of this section is structured as follows: First the general method is outlined,

then a set of pruning methods are introduced, which reduces the computations required for

view maintenance. Finally, the algorithms are introduced for handling insertions.

Method

The approach developed, relies on the algebraic view semantics, as follows: Assume that the

nodes of the view v carry the node names a1, a2, . . . , ak ∈ Al, where k ∈ N and Al is a tag

alphabet (set of tags), Al = {a, b, c, . . .}. Then, v can be written as:

v = ev(σa1(Ra1) ./ σa2(Ra2) .// σak−1
(Rak−1

) ./ σak(Rak))

where Rai defines the virtual canonical relation scan of ai (as defined in Section 3.3.2) and

for each ai, σai is a selection operator. If the view node ai has a value predicate then this

is its logical condition, otherwise it is true as the predicate is on the tag which we know to

be true by the definition (only labels with the specified tag are stored within the canonical

relation scan). The algebraic expression, ev, includes the projections, sorts, and duplicate

eliminations in the algebraic semantics of v. The joins ./ correspond to the specific structural

relationship predicates connecting the ai nodes in the view v.

The nodes added by u to d are referred to as new nodes. For any node label l, ∆+
l is

defined as the ordered collection of tuples of the form (n.ID, n.val, n.cont) (assuming all the

attributes are stored for the node) for all n nodes the update adds to the document. The

IDs of the new nodes are computed as a side-effect of querying the document for the target

node(s), whereas their values and contents can be extracted directly from the XML fragment

to be inserted. The effect of u on d can be expressed, in the context of ∆+ relations, as

follows: for each node label l occurring in v, replace Rd
l by Rd′

l = Rl ∪∆+
l .

After the update, if there are delta relations for all the view node labels, the tuples of

the view v will become:

60 Methods

v′ = v(d′) = ev(σa1(Ra1 ∪∆+
a1

) ./ σa2(Ra2 ∪∆+
a2

) .//

σak−1
(Rak−1

∪∆+
ak−1

) ./ σak(Rak ∪∆+
ak

))

Thus, v′ can be determined by evaluating the expression ev over the result of the join

expression. The developed method to compute v′ is:

• (i) compute ev’s input, i.e., the join expression

• (ii) apply the unchanged algebraic expression ev on the result

Since (ii) is relatively simple after computing the join expression, ev is ignored in the

remaining examples and task (i) becomes the focus with the aim of efficiently and incremen-

tally maintaining the join expression.

Distributing the joins over unions in the expression above produces a single union of

2∆ terms - where ∆ is the number of deltas - each of which is a join expression. The join

expressions containing no ∆+ relations corresponds to the original view v. Therefore, the

remaining 2∆ − 1 union terms must be evaluated to propagate u.

Example 4.1.2. Let d be a document and u1 be an update that inserts in d the following

XML fragment:

xml1 = 〈a〉〈b/〉〈b〉〈c/〉〈/b〉〈/a〉

Let a1, b1, b2 and c1 be the XML elements inserted in d by u1 and consider the view

v1 = //aid//bid//cid. The ∆+ relations, i.e., the set of tuples corresponding to u1, are:

∆+
a ∆+

b ∆+
c

(a1.id)
(b1.id)

(b2.id)
(c1.id)

After u1 is applied, v1 should become:

v1 ∪ (Ra ./a≺≺b Rb ./b≺≺c ∆+
c)∪

(Ra ./a≺≺b ∆+
b ./b≺≺c Rc) ∪ (Ra ./a≺≺b ∆+

b ./b≺≺c ∆+
c)∪

(∆+
a ./a≺≺b Rb ./b≺≺c Rc) ∪ (∆+

a ./a≺≺b Rb ./b≺≺c ∆+
c)∪

(∆+
a ./a≺≺b ∆+

b ./b≺≺c Rc)∪ (∆+
a ./a≺≺b ∆+

b ./b≺≺c ∆+
c)

4.1 View Maintenance 61

In the remaining examples the join predicates will be omitted from the union terms for

conciseness and to improve readability. Therefore, the expression to compute the new tuples

of v1, after the insertion in Example 4.1.2, can be written as:

v1 ∪RaRb∆
+
c ∪Ra∆

+
b Rc ∪Ra∆

+
b ∆+

c ∪∆+
aRbRc ∪∆+

aRb∆
+
c ∪∆+

a ∆+
b Rc ∪∆+

a ∆+
b ∆+

c

Term pruning

Several observations lead to identifying when union terms are guaranteed to have empty

results. These union terms are pruned as their evaluation is not necessary in order to prop-

agate the insertion to the view. The evaluation workload can be reduced significantly by

making use of pruning which can be generalised by the following propositions.

Pruning by the update semantics It can be defined that some terms will always have

empty results from the semantics of XQuery Update [15]. This is because XQuery Up-

date allows the addition of new children to existing nodes, but not new parents. This is

demonstrated by the following example.

Example 4.1.3. Consider the insertion u1 from Example 4.1.2. A newly added a node

cannot have as a child a b node which belonged to document d before u1 was applied. Thus,

∆+
aRb is empty, therefore the terms ∆+

aRbRc and ∆+
aRb∆

+
c to be added to v1 in order to

maintain it are guaranteed to produce an empty result. Similarly, no b element in ∆+
b can

have descendants in Rc, therefore ∆+
b c is also empty, and so are RaRb∆

+
c and ∆+

aRb∆
+
c .

Thus, to compute v′1, it suffices to add to v the results of evaluating the terms:

RaRb∆
+
c ∪Ra∆

+
b ∆+

c ∪∆+
a ∆+

b ∆+
c

This is generalised by the following proposition.

Proposition 4.1.4. Let v be a view of k nodes, and n1, n2 be v nodes such that n2 is a (/ or

//) child of n1
1. Let Rn1, respectively, Rn2 be the tuples corresponding to n1, respectively, n2

in the algebraic semantics of v, i.e., Rn1 ./ Rn2 is a subexpression of v. Let u be an arbitrary

1e.g, n1/n2 or n1//n2 is a subexpression of the view expression.

62 Methods

insertion, and t be one of the 2∆ − 1 terms to be added to v in order to propagate the effect

of u. If t contains as a subexpression ∆+
n1
Rn2, then t produces an empty result.

Observe that Proposition 4.1.4 does not depend on the the contents of the ∆ relations.

It only relies on the view syntax, allowing it to be performed very quickly. Therefore, the

following, focuses only on the terms that survive this pruning.

Inserted data-driven pruning Further pruning may be possible from inspecting the XML

fragment, as demonstrated by the following example.

Example 4.1.5. Consider the view v1 from Example 4.1.2 and the insertion u2 which adds

the following XML fragment:

xml2 = 〈a〉〈b/〉〈b/〉〈/a〉

The difference with respect to Example 4.1.2 is that xml2 does not include a c element,

i.e., ∆+
c = ∅. This means that all the terms of the expression are empty and thus, v1 is not

affected by u2.

Value predicates may also impact update propagation, as the following example shows.

Example 4.1.6. Consider the view v2 = //a[val=5]//bid and the insertion u3 adding the

following XML fragment:

xml3 = 〈a〉3〈b/〉〈b/〉〈/a〉

In this case, ∆+
a 6= ∅ and ∆+

b 6= ∅, however, σb(∆
+
b) = ∅ because the new a element does

not satisfy the view predicate [val = 5]. Thus, Ra∆
+
b and ∆+

a ∆+
b , which both involve σb(∆

+
b),

are empty. Since by Proposition 4.1.4 term ∆+
a b is also empty, v2 is unaffected by u3.

This generalises to the following observation.

Proposition 4.1.7. Let u be an insertion adding the trees t1, t2, . . . , tk to d, and v be a view.

If a node n of v is not matched in any of the trees t1, t2, . . . , tk, all union terms involving

∆+
n are empty.

4.1 View Maintenance 63

Inserted ID-driven pruning The final pruning criteria reasons on the label paths leading

to the insertion points, which are stored in the extended Dynamic Dewey IDs of the nodes.

Example 4.1.8. Consider the view v1 from Example 4.1.2 and the insertion u4, adding the

following XML fragment:

xml4 = 〈b〉〈c/〉〈/b〉

as a child of a node a, whose ID is a.id. This ID encodes the labels of all the nodes on

the path from the root to a. Assume that a.id is inspected and no ancestor labelled b is

found above the a node. Then, the new (inserted) c node has only one b ancestor, namely

the inserted (new) b node. Thus, the term RaRb∆
+
c is empty. Therefore, the only term to

compute to update v1 after inserting xml4 is Ra∆
+
b ∆+

c .

This generalises as follows:

Proposition 4.1.9. Let u be an insertion adding children to the nodes p1, p2, . . . , pk in d.

Let v be a view, and n1, n2 be v nodes such that n1 is an ancestor of n2 in v. If for each

i = 1, 2, . . . , k, pi is not labelled n1 and has no ancestor labelled n1, then all union terms

containing Rn1∆+
n2

are empty.

Another pruning method was developed for when schemas are available. However, since

they were not present in this work it was never implemented. It is detailed in Appendix A.

Algorithms

The first update propagation algorithm considers the scenario when an insertion to the XML

document either leads to new tuples being added to the view, or does not affect the view.

When the view is affected, insertions result in entering new tuples in the view or increasing

the derivation count of tuples in the view.

The insertion propagation method is outlined in Algorithm 1, Propagate Insert by New

Tuples (PINT). The computation of the ∆+ relations is performed first and the algorithm

for this will be detailed shortly. However, the core of the complexity in Algorithm 1 lies in

line 6: the computation of the remaining union terms.

64 Methods

ALGORITHM 1: Propagate Insert by New Tuples (PINT)

Input: insert update u, view v, lattice l, document d

Output: updated view v′ to reflect u; updated lattice l′ to reflect u; updated document d′

to reflect u

Compute the ∆+ relations corresponding to u (call Algorithm CD+(u, d))1

Develop the 2∆ − 1 union terms to be added to v in case of insertions, and prune them2

based on XQuery Update semantics (Proposition 4.1.4)

Further prune terms based on the ∆+ relations (Propositions 4.1.7 and 4.1.9)3

Evaluate the remaining terms and add their results to v (call Algorithm ET-INS(u, v, ∆+,4

l)

Update the snowcaps from the bottom up in the lattice5

Update document6

ALGORITHM 2: Compute ∆+ relations (CD+)

Input: insert update u, document d

Output: ∆+ relations

(n1, t1), . . . , (nk, tk)← compute-pul(u, d)1

for n ∈ nk labelled l do2

let pl be the pattern //lattributes3

∆+
l ←

⋃
1≤i≤k(extr-pattern(nid, pl, ti))4

Computing ∆+ relations Given an insertion u on the document d and the view v, Al-

gorithm 2 (CD+) computes the ∆+ relations. It relies on the function compute-pul to

compute the update list and extr-pattern to extract the ∆+ relations from the pending

updates. These functions are described in Section 3.4.

Evaluate Insertion Algorithm 3 (ET-INS) outlines the evaluation of the terms, that

survived pruning, resulting from an insertion. Efficient evaluation techniques within the

XML query engine are utilised by means of structural joins within the first for loop.

4.1 View Maintenance 65

ALGORITHM 3: Evaluate terms resulting from insert (ET-INS)

Input: insert update u, view v, delta relations ∆+, lattice l

Output: updated view v′ to reflect u; updated lattice l′ to reflect u

∆+
v ← ∅ (tuples to be possibly added to v)1

foreach term t surviving pruning do2

Evaluate t∆+ by structural joins over the ∆+ relations3

Add to ∆+
v the result of joining tR (snowcap materialised in the lattice) and t∆+4

foreach tuple t∆ ∈ ∆+
v do5

if t∆ ∈ v then6

increase the derivation count of t∆7

else8

add t∆ to v with a derivation count of 19

aa1

ca1.c1 fa1.f2

ba1.c1.b1 ba1.f2.b1

Figure 4.3: Sample XML Document

4.1.2 Deletions

This section will discuss the propagation of deletions. The following example illustrates a

simple deletion scenario.

Example 4.1.10. Consider the view //aID//bID and the XML document d shown in Fig-

ure 4.3, where the ID of each node is shown as a subscript. Consider an update u1 deleting

//c//b. When evaluated on the document, this targets the node whose ID is a1.c1.b1. There-

fore, this node must be deleted from the document and the tuple (a1, a1.c1.b1) must be deleted

from the view.

The remainder of this section is structured as follows: first the basis of the algebraic delete

approach is outlined, namely algebraic deletion expressions. Then term pruning criteria are

66 Methods

presented to simplify the deletion expression based on the semantics of XML and XML

updates, and the tuples to be removed from the view by the deletion. Finally, the deletion

propagation algorithms are provided.

Deletion propagation expression

In the context of deletions, for a view node label a, ∆−a is defined as the ordered collection of

tuples of the form (n.id) for all nodes n to be deleted from the document, which are labelled

a. As a result of a deletion, a view of the form

Ra1 ./ Ra2 ./ . . . Rak

needs to be transformed, after the deletion of the elements in ∆−a1
, ∆−a2

, . . ., ∆−ak , into:

(Ra1 \∆−a1
) ./ (Ra2 \∆−a2

) .// (Rak \∆−ak)

This can be expanded based on the known properties of the relational ./ (join) and \

(set difference) operators. By eliminating the parentheses the following expression can be

reached.

Ra1Ra2 . . . Rak \ ∆−a1
Ra2Ra3 . . . Rak \ Ra1∆−a2

R3 . . . Rk \ . . . \ Ra1Ra2Ra3 . . .∆
−
ak

∪ ∆−a1
∆−a2

R3 . . . Rak ∪ Ra1∆−a2
∆−a3

. . . Rak . . . ∆−a1
∆−a2

∆−a3
. . .∆−ak

The expanded expression above has 2∆ terms. The first term is the view definition v,

whereas all the others contain delta relations. In this work the expression is defined as the

(expanded) deletion expression of v. Propagating a deletion update u to the view v requires

evaluating this expression (minus the view definition) and removing the returned tuples from

the view.

Term Pruning

Similarly to the insertion case, to simplify the processing of updates, criteria for term prun-

ing are identified. The first pruning methods rely on the update semantics of XQuery Up-

date [15], whereas the final method relies on the Dynamic Dewey IDs [3]. The first pruning

method is presented in the following proposition.

4.1 View Maintenance 67

Proposition 4.1.11. Let v be a view and n1, n2 be two nodes in v, such that node n2 is a

/ or // child of n1 in v. Let t be a term in a deletion expression, such that ∆−n1
Rn2 is a

subexpression of t. Then, t has no results (see Proposition 4.1.4).

This Proposition follows from the semantics of XQuery Update for deletions, as if a node

is removed then so are all its descendants. So, if n1 is deleted then so are its descendants,

including n2. This is a counterpart to Proposition 4.1.4 for insertions.

The second pruning method also relies on XQuery Update semantics and is presented

below. This pruning method is specific to deletions.

Proposition 4.1.12. Let v be a view and t be a term in its deletion expression, including

k > 0 relations of the form ∆−: (i) If k is odd, the operand before t is \, that is, the tuples

of t must be removed from v, whereas if k is even, the operand before t is ∪, that is, the

deletion expression requires adding these tuples to reflect the deletion; (ii) if k is even, t can

be ignored in the deletion expression.

Proof. Claim (i) follows directly from when joins are distributed over the set difference in

the deletion expression. For what concerns claim (ii), an even and positive k must be at

least 2. This ensures that in the deletion expression there exists k terms t1, t2, . . . , tk such

that for each 1 ≤ i ≤ k, ti is identical to t except that ti contains a symbol of the form Ra,

where t contains ∆−a , for some a. Observe that each of the terms t1, t2, . . . , tk have k− 1 ∆−

relations, and k − 1 is odd, therefore, by claim (i), they all represent tuples to remove from

v. Thus, each tuple which t would attempt to add as a result of the deletion u, is deleted

at least k times with k ≥ 2, whereas t would attempt to add it only once. In other words

the positive (∪) terms do not actually need to be calculated in the deletion expression at all,

since that data will be removed “more times than t can add it”. Thus, such positive terms

can simply be ignored.

Example 4.1.13. Consider a view v2 defined as //aID[//cID]//bID. Elementary develop-

ment of the deletion expression shows that the delete expression of v (prior to any term

pruning) is:

RaRbRc \∆−aRbRc \Ra∆
−
b Rc \RaRb∆

−
c ∪ ∆−a ∆−b Rc ∪ ∆−aRb∆

−
c ∪ Ra∆

−
b ∆−c \∆−a ∆−b ∆−c

68 Methods

where the underlined terms are those prefixed with ∪, whose tuples should be “added” to

reflect a deletion. Let these terms be considered one by one:

• ∆−a ∆−b Rc tuples are deleted first, by the term ∆−aRbRc, and second, by the term Ra∆
−
b Rc;

• ∆−aRb∆
−
c tuples are deleted first, by the term ∆−aRbRc, and second, by the term RaRb∆

−
c ;

• Ra∆
−
b ∆−c tuples are deleted first, by the term RaRb∆

−
c and second, by the term Ra∆

−
b Rc.

Proposition 4.1.12 allows reducing this expression to:

RaRbRc \∆−a ∆−b ∆−c \∆−aRbRc \Ra∆
−
b Rc \RaRb∆

−
c

In this expression, data is only removed from RaRbRc, which rejoins the intuition that

deletes should not add tuples to the (conjunctive, monotone) views.

The following example illustrates the cumulated impact of the Propositions 4.1.11 and 4.1.12.

Example 4.1.14. Consider the view v2 from Example 4.1.13 and the XML document d

shown on the left in Figure 4.4. The tuples of the view v2 evaluated on d appear in the

same figure on the right. Consider the update u2 deleting //a/f/c from d. This amounts to

deleting the d subtree rooted in the node identified by a1.f2.c1. The full deletion expression

of v2 under the update u2 (as in Example 4.1.13) is:

RaRbRc \∆−aRbRc \RaRb∆
−
c \Ra∆

−
b Rc ∪Ra∆

−
b ∆−c ∪∆−aRb∆

−
c ∪∆−a ∆−b Rc \∆−a ∆−c ∆−b

Proposition 4.1.11 eliminates the second, sixth and seventh join terms from this expres-

sion, since they are guaranteed to be empty. Thus, the deletion expression is reduced to:

RaRbRc \RaRb∆
−
c \Ra∆

−
b Rc ∪Ra∆

−
b ∆−c \∆−a ∆−c ∆−b

Proposition 4.1.12 eliminates the positive term, and the deletion expression becomes:

RaRbRc \RaRb∆
−
c \Ra∆

−
b Rc \∆−a ∆−c ∆−b

The computation of the pending update list leads to discovering that ∆−a = ∅, which

further simplifies the deletion expression to:

4.1 View Maintenance 69

aa1

ca1.c1

ba1.c1.b1 ba1.c1.b2

fa1.f2

ca1.f2.c1

ba1.f2.c1.b1

ba1.f2.b2

num. aID cID bID

1

2

3

4

5

6

7

8

a1

a1

a1

a1

a1

a1

a1

a1

a1.c1

a1.c1

a1.c1

a1.c1

a1.f2.c1

a1.f2.c1

a1.f2.c1

a1.f2.c1

a1.c1.b1

a1.c1.b2

a1.f2.c1.b1

a1.f2.b2

a1.c1.b1

a1.c1.b2

a1.f2.c1.b1

a1.f2.b2

Figure 4.4: Sample XML document for Example 4.1.14, and view content on this document.

RaRbRc \RaRb∆
−
c \Ra∆

−
b Rc

The pending update list also defines that ∆−b = {(a1.f2.c1.b1)} and ∆−c = {(a1.f2.c1)}.

Thus, RaRb∆
−
c contains the tuples 5, 6, 7 and 8 from the view, while Ra∆

−
b Rc consists of the

tuples 3 and 7 from the view. The update u2 thus reduces v to its tuples 1, 2 and 4.

ID-driven pruning can also be performed for the deletion case. Consider the following

example:

Example 4.1.15. Let v be the view //cID//bID and d be the XML document shown in

Figure 4.3. Consider an update u2 deleting //f , which in d targets the node identified by

a1.f2. As a side-effect of the deletion, the node identified by a1.f2.b1 is also removed, thus

∆−b = {(a1.f2.b1)}. From the identifier of the single ∆−b node, it can be seen that this node

does not have a c ancestor. Therefore, the deletion expression term Rc∆
−
b is empty.

This example generalises into:

Proposition 4.1.16. Let v be a view and n1, n2 be two nodes in v, such that n2 is a / or

// child of n1 in v. Consider an update u and let ∆−n2
be the delta relations corresponding

to the label of n2. If for every node m ∈ ∆−n2
, the ID shows that m has no ancestor labelled

n1, then all terms in the v deletion expression containing Rn1∆−n2
are empty.

This is a counterpart to Proposition 4.1.9.

70 Methods

Deletion propagation algorithms

The general algorithm Propagate Delete by Deleting Tuples (PDDT), which propagates

a deletion on the XML source document to the view, is outlined in Algorithm 4. These

deletions result in removing tuples from the view, if the view is affected. Algorithm CD-

is not included as it is similar to CD+. The only difference is that val and cont are not

calculated as only the IDs are required for deletions.

ALGORITHM 4: Propagate Delete by Deleting Tuples (PDDT)

Input: deletion update u, view v, lattice l, document d

Output: updated view v′ to reflect u, updated lattice l′ to reflect u, updated document d′

to reflect u

Compute the ∆− relations corresponding to u (call Algorithm CD-(u, d))1

Expand the deletion expression to 2∆ − 1 terms and prune them based on the data2

(Propositions 4.1.11 and 4.1.12) and then based on the ∆− relations (Proposition 4.1.16)

∆−v ← ∅ (tuples to be possibly deleted from v)3

foreach term t surviving pruning do4

Evaluate t∆− by structural joins over the ∆− relations5

Add to ∆−v the result of joining tR (snowcap materialised in the lattice) and t∆−6

foreach tuple tv ∈ view v do7

if tv ∈ ∆−v then8

remove tv from v9

else10

if tv stores ID, val or cont for a node n (i) appearing in some ∆− relation or (ii)11

having an ancestor in some ∆− relation then

decrease tv derivation count12

if tv’s derivation count becomes 0 then13

remove tv from v14

Update the snowcaps from the bottom up in the lattice15

Update document16

4.1 View Maintenance 71

Algorithm PDDT handles tuple deletions and decreasing the derivation count of a tuple

which might result in removing it from the view. Both cases are illustrated by the following

example.

Example 4.1.17. To illustrate the first case, consider the view //aID//b, the document d

in Figure 4.3, and an update deleting //c//b. The view contains two tuples corresponding

to node b. The deletion removes the b node identified by a1.c1.b1, which belongs to ∆−v .

This case is the same as the one illustrated by Example 4.1.10. Therefore, no check of the

derivation count is necessary as tv matches exactly the node in ∆−v .

To illustrate the second case, consider the view //aID[//b], the document d in Figure 4.3,

and an update deleting //c//b. The view contains a single tuple corresponding to node a. The

tuple has a derivation count of 2 due to the two b nodes matching the existential view branch.

The deletion removes the b node identified by a1.c1.b1, but this still leaves a b descendant to

the a node. Therefore, the update decreases the derivation count of the view tuple (a1) by

one unit, setting it to 1.

Now consider a second update, deleting //f//b. This will lead to removing the node

(a1.f2.b1), reducing the derivation count of the corresponding v tuple to 0 and thus removing

the tuple from the view.

4.1.3 Modifications

A case not considered yet is when updates result in the modification of existing tuples. This

section will discuss the propagation of modifications for insertions and deletions.

Modifications Resulting from Insertions

Existing tuples of a view v may have to be modified as a result of an insertion. This is a

consequence of an insertion modifying the value or content of an XML node n, whose value

(respectively, content) is stored in v. This modification can be the result of an insertion on

n or one of its descendants.

Example 4.1.18. Consider the view /aID/bID//cID,Cont and an insertion u adding the XML

fragment:

72 Methods

〈extra〉 some value 〈/extra〉

into //d//c. In this case, no ∆+ relation affects the view, thus no new tuples need to be

added. However, the insertion u may lead to modifying some of the c.cont values stored by

the view, if the intersection of /a/b//c and //d//c is not empty. Assuming this intersection

is not empty the XML fragment can be inserted after the last child of the c in c.cont.

If the cont was associated with the a or the b elements then the update would be handled

in the exact same way. Additionally, if the same scenario as shown here occurs with a val it

will be handled similarly. IDs don’t need to be handled in the modification case as they are

immutable.

Propagate Insert by Modifying Tuples (PIMT), shown in Algorithm 5, handles the

problem of modifications. It considers all XML nodes for which the view stores content

and/or value. These nodes are then checked to determine if they are affected by the update.

If they are, then their value and/or content must be updated to reflect this.

ALGORITHM 5: Propagate Insert by Modifying Tuples (PIMT)

Input: insert update u, view v, document d

Output: updated view v′ to reflect u

ut = [(n1, t1), . . . , (nk, tk)]← compute-pul(u, d);1

cvn← {n ∈ v, n annotated with cont or val};2

foreach tuple t ∈ v do3

foreach tuple (ni, ti) ∈ ut and t.n ∈ cvn do4

if t.n = ni or t.n≺≺ni then5

Update t.n.cont (respectively, t.n.val) to reflect the insertion of ti6

PIMT first determines the pending update list. It then searches for all the content or

value annotated view nodes and stores them in the node set cvn. The algorithm then checks,

for each view tuple t, whether and how each of the t attributes corresponding to the content

or value of a cvn node must change. It can be checked that the cont and/or val attribute

in tuple t is the same as, or an ancestor of the node ni, by inspecting its ID. If any of these

4.1 View Maintenance 73

d v u

PINTPIMT ET-INS

CD+v′

Figure 4.5: Insert propagation outline.

d v u

PDDT/PDMTPDMT CD-

v′

Figure 4.6: Delete propagation outline.

cases are true, then the insertion of ti has to be propagated to the t attribute corresponding

to n.cont (respectively, n.val).

If cvn is empty, insertions cannot modify view tuples (but only add to the view). If cvn is

of size 1 (val or cont is only stored by one node of v) , PIMT can be implemented by a single

efficient structural join (extended to check ancestor-descendant or equality relationships)

between v and the pending update list. The cont and/or val attributes must be changed for

the view tuples that join with the pending update list. If cvn contains multiple nodes, then

a nested loops join is required as PIMT must compare several IDs from each view tuple t

with the pending update list.

In practice it is not known in advance whether an insertion adds and/or modifies tuples,

therefore both Algorithms PINT and PIMT have to be run. To improve efficiency a

combined algorithm PINT/MT is used to avoid repeated computation, i.e., generating

the pending update list. PINT/MT can be seen in Algorithm 6. The insert propagation

method’s main steps are shown in Figure 4.5. A description of the symbols used in the figure

are shown in Figure 4.7.

Proposition 4.1.19 (Complexity of Algorithms 1 and 5). Let v be a view of k nodes and

u be an insertion resulting in a pending update list PUL. Let R be the largest relations

among the leaf nodes in v’s lattice. The worst case complexity of Algorithm 1 (PINT)

is O(2k × k × max(|PUL|, |R|)). Moreover, the complexity of Algorithm 5 (PIMT) is

O(|v| × |PUL| × |cvn|), where cvn is the set of content-returning nodes of v.

Algorithm 3’s (ET-INS) (called by Algorithm 1) term evaluation dominates the com-

plexity of Algorithm 1 (PINT). The upper bound is obtained by assuming, pessimistically,

that no term is pruned; also, it is assumed, pessimistically, that no intermediary lattice

74 Methods

ALGORITHM 6: Propagate Insert by New/Modifying Tuples (PINT/MT)

Input: insertion update u, view v, lattice l, document d

Output: updated view v′ to reflect u, updated lattice l′ to reflect u, updated document d′

to reflect u

Compute the ∆+ relations corresponding to u (call Algorithm CD+(u, d))1

Develop the 2∆ − 1 union terms to be added to v in case of insertions, and prune them2

based on XQuery Update semantics (Proposition 4.1.4)

Further prune terms based on the ∆+ relations (Propositions 4.1.7 and 4.1.9)3

∆+
v ← ∅ (tuples to be possibly added to v)4

cvn← {n ∈ v, n annotated with cont or val};5

Evaluate the remaining terms and add their results to v (call Algorithm ET-INS(u, v, ∆+,6

l)

if ∆+
v 6= ∅ then7

foreach tuple t∆ ∈ ∆+
v do8

if t∆ ∈ v then9

increase the derivation count of tv10

else11

add t∆ to v with a derivation count of 112

if cvn 6= ∅ then13

call Algorithm PIMT(u, v, d)14

If needed, update lattice15

Update document16

node is materialised, thus joins have to be recomputed from the lattice leaves and the ∆+

relations. The computation of the ∆+ relations is assumed to be part of the update process

and is thus not considered in the complexity of PINT. Additonally, the size of a ∆+ relation

is bound by |PUL|. The inputs to the k-way join of each term is either a ∆+ relation or

a leaf in the lattice (whose size is bound by |R|). Finally, it is assumed that evaluating a

term in time proportional to the cumulated size of its inputs is possible using efficient join

algorithms such as holistic twig join.

4.1 View Maintenance 75

Symbol Description

d Document

v View

v′ Updated View

u Update

PINT Propagate Insert by New Tuples

ET-INS Evaluate Terms Resulting from Insert

CD+ Compute ∆+ Relations

CD- Compute ∆− Relations

PIMT Propagate Insert by Modifying Tuples

PDDT Propagate Delete by Deleting Tuples

PDMT Propagate Delete by Modifying Tuples

Figure 4.7: Acronyms used in Figures 4.5 and 4.6.

Modifications Resulting from Deletions

Similarly to insertions, deletions can also result in updates that modify view tuples, by

altering some val or cont attribute that the view stores. Such modifications may occur

regardless of whether the update deletes tuples and/or modifies derivation counts. However,

unlike insertions, this algorithm only has to be run if the query is not linear (i.e, it contains

predicates). This is because a linear query will delete all nodes on its path which will empty

the view. Therefore, performing any modifications is unnecessary in this case.

An algorithm has been designed, Propagate Delete by Modifying Tuples (PDMT), which

can be seen as symmetric to Algorithm 5 (focusing on tuple modifications due to insertions).

This can be seen in Algorithm 7. Modifications, deletions and derivation count updates can

all be a consequence of the same update. Therefore, a general algorithm for handling all

these possibilities is provided and used. Propagate Delete by Deleting/Modifying Tuples

(PDD/MT) is outlined in Algorithm 8. This combines the main steps of PDDT and

PDMT to avoid repeated computation, i.e, the computation of the pending update list.

Figure 4.6 outlines the main steps of the delete propagation method - Figure 4.7 defines the

76 Methods

acronyms.

ALGORITHM 7: Propagate Delete by Modifying Tuples (PDMT)

Input: deletion update u, view v, document d

Output: updated view v′ to reflect u

ut = [n1, . . . , nk]← compute-pul(u, d);1

cvn← {n ∈ v, n annotated with cont or val};2

foreach tuple t ∈ v do3

foreach tuple (ni, ti) ∈ ut and t.n ∈ cvn do4

if t.n≺≺ni then5

Update t.n.cont (respectively, t.n.val) to reflect the deletion of ti6

Proposition 4.1.20 (Complexity of Algorithms 4 and 8). Let v be a view of k nodes, |v|

denote the number of tuples in v, and u be a deletion resulting in the pending update list PUL.

Let R be the largest relation among the leaf nodes in v’s lattice. The complexity of Algorithm 4

(PDDT) is O(2k × k ×max(|PUL|, |R|) + |v| × s(∆−)), where s(∆−) is the cost to search

for a tuple in one of the ∆− relations, containing the ID of a node appearing in the view, or

of an ancestor of such a node (check performed in Algorithm 4). As for PINT and PIMT,

2k×k×max(|PUL|, |R|) is a bound for the cost of evaluating all the deletion terms which have

survived pruning. The second term |v|× s(∆−) corresponds to the PDDT loop over v tuples.

The complexity of Algorithm 8 (PDDT/MT) is O(2k×k×max(|PUL|, |R|)+|v|2×s(∆−)).

The overall purpose of the work described in this thesis is to develop incremental methods

for solving the view maintenance and view update problems using statement-level updates

and dynamic reasoning by means of pruning rules. Section 4.1 has explained the methods

involved in incremental view maintenance. In the next section (4.2), attention is turned to

the view update problem.

4.2 View Update 77

ALGORITHM 8: Propagate Delete by Deleting/Modifying Tuples (PDDT/MT)

Input: deletion update u, view v, lattice l, document d

Output: updated view v′ to reflect u, updated lattice l′ to reflect u, updated document d′

to reflect u

Compute the ∆− relations corresponding to u (call Algorithm CD-(u, d))1

Develop the 2∆ − 1 set difference terms to be deleted from v in case of deletions and prune2

terms based on the data and ∆− relations (Propositions 4.1.11, 4.1.12 and 4.1.16)

∆−v ← ∅ (tuples to be possibly deleted from v)3

cvn← {n ∈ v, n annotated with cont or val};4

foreach term t surviving pruning do5

Evaluate t∆− by structural joins over the ∆− relations6

Add to ∆−v the result of joining tR (snowcap materialised in the lattice) and t∆−7

if ∆−v 6= ∅ then8

foreach tuple tv ∈ view v do9

if tv ∈ ∆−v then10

decrease tv derivation count11

if tv’s derivation count becomes 0 then12

remove tv from v13

if tv.n ∈ cvn then14

remove tv.n from cvn15

if cvn 6= ∅ then16

call Algorithm PDMT(u, v, d)17

If needed, update lattice18

Update document19

4.2 View Update

This section will describe the view update problem in the context of the XML data model

and the method developed to handle it. View update can be described as follows: Let d be a

document and vu an insert on a view v. View update involves transforming d into d′ so as to

78 Methods

reflect the effect of vu on v. This can be seen in Figure 4.8. A generalisation of this problem

is translating update programs: given a view definition v and a view update program fv,

provide a source update program f , s.t., for all documents d, v(f, (d)) = fv(v(d)). That is,

applying f on the source document d and then computing the view gives the same result

as applying fv on the view of d. The remainder of this section will describe algorithms for

performing vu on v and transforming d into d′ to reflect this.

v(d) v(d′)

d d′
update propagation

view update

view
evaluation

view
evaluation

Figure 4.8: View Update.

4.2.1 View Maintenance applied to View Update

A subset of updates can be handled by the view maintenance method explained in Sec-

tion 4.1. The only modification required is where the ∆s originate from. The problem lies in

performing the source update. An update can be handled if the view contains no predicates.

Example 4.2.1. Consider the view v1 = //a//bid[cid]//did//eid and the update vu1 that

inserts in v1 at //a//b the following XML fragment:

xml1 = 〈d〉〈e/〉〈/d〉

Then if the same source insertion method from view maintenance is used, it will target all a

nodes with a b descendant.

However, if the view was v1 = //a//bid//did//eid, then the source insertion method for view

maintenance would work as there are no predicates.

The same problem would arise if the update was a deletion. This is generalised by the

following proposition.

4.2 View Update 79

Proposition 4.2.2. If the view definition contains no predicates, then the source update is

supported by the view maintenance method. Therefore, updates can be handled if there are

no predicates contained in the view.

The handling of source updates is discussed in Section 4.2.3.

4.2.2 IDs

Assigning IDs to tuples to be added to a view is more complex within the view update

problem. An ID has to be assigned to each new tuple which is unique and correct for the

insertion position. The ID of the target node is required for this purpose.

Due to the developed extension of Dynamic Dewey IDs [3], which store the label paths

as well as the ID paths, the ID can be determined. Therefore, the view can be queried to

discover the ID of the target node(s). The ID of the new tuple is assigned by adding the

child number at the end of the target node’s ID. The IDs of other nodes, should a tree be

inserted, are assigned similarly, e.g., for the node 1.1 with no children an inserted node would

have the ID 1.1.1. In order to determine the child number, the current number of children

the target node has must be queried.

For deletions the handling of IDs is a lot simpler. Only the IDs of the tuples to be deleted

are required which can be taken directly from the view.

4.2.3 Insertions

The rest of this section is structured as follows: first the general approach is outlined by

means of examples, then a set of pruning methods is introduced which reduces the com-

putations required for view update. Finally, the algorithms are introduced for handling

insertions.

Method

The approach is similar to the view maintenance method. The difference lies in the im-

plementation. For clarity between view maintenance (Section 4.1) and view update, delta

80 Methods

relations will be represented by v∆ in the view update case, as v∆s come from the view and

not the document. For further details on the view maintenance approach, see Section 4.1.1.

rr1

ar1.a1

xr1.a1.x1 fr1.a1.f2

br1.a1.x1.b1 br1.a1.f2.b1

yr1.a1.x1.b1.y1 cr1.a1.f2.b1.c1

cr1.a1.x1.b1.y1.c1

Figure 4.9: XML Document

The following example shows how view update is handled where the insertion point in

the view is an intermediate node.

Example 4.2.3. Consider the view v2 = //aid//bid//cid and the view update vu2 which

inserts in v2 at //a the following XML fragment:

xml2 = 〈b〉〈c/〉〈/b〉

The source document d can be seen in Figure 4.9. As there is only one a in the source there

will only be one b and one c v∆ tuple. Let b1 and c1 be the XML elements inserted in v2 by

vu2. The v∆+ relations corresponding to vu2 are:

v∆+
b v∆+

c

(b1.id) (c1.id)

The IDs are assigned based on the approach in Section 4.2.2. From a source query it can

be seen that a already has two existing children. Therefore, the ID will be calculated based

on a′s ID and the number of children, 2. Alternatively, should cont be stored for the a this

could be queried to determine the number of existing children. The val and cont attributes

are derived directly from the XML fragment, should they be stored. However, they are not

required for v2.

4.2 View Update 81

After vu2 is applied, v2 should become:

v2 ∪ (Ra ./a≺≺b Rb ./b≺≺c v∆+
c)∪

(Ra ./a≺≺b v∆+
b ./b≺≺c Rc) ∪ (Ra ./a≺≺b v∆+

b ./b≺≺c v∆+
c)∪

(v∆+
a ./a≺≺b Rb ./b≺≺c Rc) ∪ (v∆+

a ./a≺≺b Rb ./b≺≺c v∆+
c)∪

(v∆+
a ./a≺≺b v∆+

b ./b≺≺c Rc)∪ (v∆+
a ./a≺≺b v∆+

b ./b≺≺c v∆+
c)

vu2 must then be translated to a source update and performed on d.

As the label path is stored within each ID, the insertion point of the new XML fragment

within the document can be determined. For this XML fragment the IDs will be:

b1: r1.a1.b3

c1: r1.a1.b3.c1

The IDs of all the tuples are not required to insert in the source, only the root of the subtree

that is being inserted. In the case of ID r1.a1.b3, the target node where the insertion has to

occur, r1.a1, is known. Therefore, the subtree is inserted as descendants of this node.

Therefore, d will become:

rr1

ar1.a1

xr1.a1.x1 fr1.a1.f2 br1.a1.b3

br1.a1.x1.b1 br1.a1.f2.b1 cr1.a1.b3.c1

yr1.a1.x1.b1.y1 cr1.a1.f2.b1.c1

cr1.a1.x1.b1.y1.c1

The following is another example which shows a similar update to Example 4.2.3, where

the insertion point in the view has changed to a leaf.

Example 4.2.4. Consider the view v2 as defined in Example 4.2.3, and the view update vu3

that inserts in v2 at //a//b the following XML fragment:

82 Methods

xml3 = 〈c/〉

The source document d can be seen in Figure 4.9. As two b nodes have a ancestors this will

mean there are two c tuples. Let c1 and c2 be the XML elements inserted in v2 by vu3. The

v∆+ relations corresponding to vu3 are:

v∆+
c

(c1.id)

(c2.id)

The IDs are assigned based on the approach in Section 4.2.2. There are two bs in the view,

as can be seen from d. Therefore, the XML fragment will be inserted as children of both

these nodes. From a source query it can be seen that they both have one existing child each.

Therefore, the IDs for each XML fragment will be calculated based on the respective ID of b

and the number of children, 1.

After vu3 is applied, v2 should become:

v2 ∪ (Ra ./a≺≺b Rb ./b≺≺c ∆+
c)∪

(Ra ./a≺≺b ∆+
b ./b≺≺c Rc) ∪ (Ra ./a≺≺b ∆+

b ./b≺≺c ∆+
c)∪

(∆+
a ./a≺≺b Rb ./b≺≺c Rc) ∪ (∆+

a ./a≺≺b Rb ./b≺≺c ∆+
c)∪

(∆+
a ./a≺≺b ∆+

b ./b≺≺c Rc)∪ (∆+
a ./a≺≺b ∆+

b ./b≺≺c ∆+
c)

vu3 must then be translated to a source update and performed on d.

As the label path is stored within each ID, the insertion points of the new XML fragment

within the document can be determined. For this XML fragment the IDs will be:

c1: r1.a1.x1.b1.c2

c2: r1.a1.f2.b1.c2

The IDs of all the tuples are not required to insert in the source, only the root of the subtree

that is being inserted. In the case of IDs r1.a1.x1.b1.c2 and r1.a1.f2.b1.c2, the target nodes

where the insertion has to occur, r1.a1.x1.b1 and r1.a1.f2.b1, is known. Therefore, the

subtree is inserted as descendants of these nodes.

4.2 View Update 83

Therefore, d will become:

rr1

ar1.a1

xr1.a1.x1 fr1.a1.f2

br1.a1.x1.b1 br1.a1.f2.b1

yr1.a1.x1.b1.y1 cr1.a1.f2.b1.c1cr1.a1.x1.b1.c2 cr1.a1.f2.b1.c2

cr1.a1.x1.b1.y1.c1

Term Pruning

The pruning techniques that are used for insertions in view maintenance can be applied to

view update insertion expressions. These can be used directly as the only difference with the

update expression is the origin of the v∆ relations. Proposition 4.1.4 can be used directly

to prune by the update semantics; Proposition 4.1.7 can be used for inserted data-driven

pruning and Proposition 4.1.9 can be used for inserted ID-driven pruning.

Propagating view insert by view nodes

This first view update algorithm considers the case when an insertion on a view leads to

new tuples being added to the view, and/or increasing the derivation count of existing view

tuples. The insertion will then have to be reflected on the source document.

Algorithm 9 outlines the propagation procedure and is symmetric to Algorithm 1 for

view maintenance. The computation of the v∆+ relations will be detailed shortly. Again,

as in Section 4.1.1, the core of the complexity lies in line 4.

Computing v∆+ relations Given a view insertion vu on the view v, Algorithm 10 com-

putes the v∆+ relations.

Evaluate insertion Algorithm 11 (ET-VINS) outlines the evaluation of non-pruned terms

resulting from insertions. This is symmetric to Algorithm 3 for view maintenance.

84 Methods

ALGORITHM 9: Propagate View Insert by New Nodes (PVINN)

Input: insert view update vu, view v, lattice l, documents d

Output: updated view v′ to reflect vu; updated lattice l′ to reflect vu; updated documents

d′ to reflect vu

Compute the v∆+ relations corresponding to vu(call Algorithm CVD+(vu, v, d))1

Develop the 2v∆ − 1 union terms to be added to v in case of insertions, and prune them2

based on XQuery Update semantics (Proposition 4.1.4)

Further prune terms based on the v∆+ relations (Propositions 4.1.9)3

Evaluate the remaining terms and add their results to v (call Algorithm ET-VINS(vu, v,4

v∆+, l))

Update the snowcaps from the bottom up in the lattice5

Update documents (call Algorithm US(vu, v, d))6

ALGORITHM 10: Compute v∆+ relations (CVD+)

Input: view update vu, view v, documents d

Output: v∆+ relations

(vn1, t1), . . . , (vnk, tk)← compute-pul(vu, v, d)1

for vn ∈ vnk labelled l do2

let pl be the pattern //lattributes3

v∆+
l ←

⋃
1≤i≤k(extr-pattern(vnid, pl, ti))4

Updating the source Algorithm 12 handles the source update. It works by adding the

predicates from the view, if any exist, to the XPath query which defines the location of the

target node(s) for the update. The purpose of this is so that only the target nodes from the

view are updated in the source. Without including the predicates extra fragments of XML

may be inserted. To update the source, this new query is used by the update and performed

on each affected document.

Example of source update

Example 4.2.5. Consider the view v3 = //a/b/c[d][e] and the view update vu4 that inserts

in v3 at //a/b/c. If the predicates are not added to the update query for the source update

4.2 View Update 85

ALGORITHM 11: Evaluate terms resulting from view insert (ET-VINS)

Input: view update vu, view v, delta relations v∆+, lattice l

Output: updated view v′ to reflect vu; updated lattice l′ to reflect vu

v∆+
v ← ∅ (tuples to be added to v)1

foreach term t surviving pruning do2

Evaluate tv∆+ by structural joins over the v∆+ relations3

Add to v∆+
v the result of joining tR (snowcap materialised in the lattice) and tv∆+4

foreach tuple tv∆ ∈ v∆+
v do5

if tv∆ ∈ v then6

increase the derivation count of tv∆7

else8

add tv∆ to v with a derivation count of 19

ALGORITHM 12: Update Source (US)

Input : update vu, view v, documents docs

Output: updated documents docs′ to reflect vu

Add predicates from view into update query path1

foreach document d ∈ docs do2

Perform the update using the new update query path3

then c nodes may be modified which don’t contain d and e branches. Therefore, the update

query must become //a/b/c[d][e]. Alternatively, if the update was applied to //a/b then

subsequently it would have to become //a/b[c[d][e]] for the source update.

4.2.4 Deletions

This section will discuss the propagation of deletions for view update. The following example

is symmetric to Example 4.1.10 and illustrates a simple deletion scenario.

Example 4.2.6. Consider the view //aID//bID and the XML document d shown in Fig-

ure 4.3, where the ID of each node is shown as a subscript to the node. Each ID is a

sequence of steps, each step holding the label and the relative position of one ancestor of the

86 Methods

node2.

Consider a view update vu1 deleting the tuple (a1, a1.c1.b1), which targets the node whose

ID is a1.c1.b1. Since the view tuple (a1, a1.c1.b1) had a derivation count of 1, the update

leads to removing the tuple from the view. Then the corresponding element from the source

document needs to be removed. This extends to the case where there are multiple target nodes.

The approach is similar to the view maintenance method for deletions. The difference

again lies in the implementation. For further details see Section 4.1.2. The remainder of

this section is structured as follows: first the set of pruning methods that can be used are

discussed, and then the algorithm for handling deletions is introduced.

Term Pruning

The pruning techniques that are used for deletions in view maintenance can be applied to

view update deletion expressions. These can be used directly as the only difference with

the update expression is the origin of the v∆ relations. Propositions 4.1.11 and 4.1.12 can

be used directly to prune by the update semantics and Proposition 4.1.16 can be used for

inserted ID-driven pruning.

Propagate view delete by deleting nodes

The general algorithm Propagate View Delete by Deleting Nodes (PVDDN), which prop-

agates a deletion on the view to the XML source document(s), is outlined in Algorithm 13.

This algorithm covers both tuple deletions, and decreasing the derivation count of a tuple

while not necessarily removing it from the view. Both these cases require computing and

performing deletions on the XML source document(s). The algorithm CVD- is not detailed

as it is similar to CVD+. The only difference is that the documents are not needed as

all the required information is available within the view. The following example illustrates

the scenario when a deletion results in modifying the derivation count of a tuple but not

removing it from the view.

2Internally ID representation is much more compact.

4.3 Optimisation using Lazy Evaluation and Dynamic Reasoning on XML
Updates 87

Example 4.2.7. Consider the view //aID[//b] and the document d in Figure 4.3, and an

update deleting the tuple (a1, a1.c1.b1).

The view contains a single tuple corresponding to node a. The tuple has a derivation count

of 2 due to the two b nodes which satisfy the predicate in the view. Therefore, the deletion

does not affect the view, since by deleting only the b node identified by a1.c1.b1, the a element

still has a b descendant. The only effect of the update is to decrease the derivation count by

1. Then similarly to the previous example we just have to delete the element corresponding

to the tuple from the source document.

4.2.5 Modifications

In a similar manner to view maintenance, modification of existing tuples is a possible side-

effect of insertions and deletions. As modifications only affect the views, not the documents,

they are handled as in the view maintenance method. For further information see Sec-

tion 4.1.3.

Section 4.2 has explained the methods involved in incremental view update. In the next

section (4.3), attention is turned to dynamic reasoning on updates by means of pruning rules,

which has relevance both to view maintenance and view update.

4.3 Optimisation using Lazy Evaluation and Dynamic

Reasoning on XML Updates

The previous methods address the problem of incrementally updating materialised views in

the presence of statement-level XML updates. These methods can be applied after each

update. However, when a sequence of updates is applied to a document, their propagation

to the views may be deferred and applied lazily. Updating the views as updates arrive (i.e.,

immediate evaluation) may be inefficient for incrementally updating views compared with

performing bulk updates when they are required (i.e., lazy evaluation).

Recent work [156] has studied how to apply dynamic reasoning on sequences of XML

updates - expressed as a PUL (See Section 3.4) - without needing to access the source

88 Methods

ALGORITHM 13: Propagate View Delete by Deleting Nodes (PVDDN)

Input: view deletion update vu, view v, lattice l, documents d

Output: updated view v′ to reflect vu, updated lattice l′ to reflect vu, updated documents

d′ to reflect vu

Compute the v∆− relations corresponding to vu (call Algorithm CVD-(vu, v))1

Expand the deletion expression to 2v∆ − 1 terms and prune them based on the data2

(Propositions 4.1.11 and 4.1.12) and then based on the v∆− relations (Proposition 4.1.16)

v∆−v ← ∅ (tuples to be deleted from v)3

foreach term t surviving pruning do4

Evaluate tv∆− by structural joins over the v∆− relations5

Add to v∆−v the result of joining tR (snowcap materialised in the lattice) and tv∆−6

foreach tuple tv ∈ view v do7

if tv ∈ v∆−v then8

remove tv from v9

else10

if tv stores ID, val or cont for a node n (i) appearing in some v∆− relation or (ii)11

having an ancestor in some v∆− relation then

decrease tv derivation count12

if tv’s derivation count becomes 0 then13

remove tv from v14

Update the snowcaps from the bottom up in the lattice15

Update the documents (call Algorithm Update Source(vu, v, d))16

documents. As the methods for view maintenance and view update relied on PULs it seemed

natural to utilise these optimisation methods. Additionally, since the methods do not need

to access the source documents, optimisations can be performed remotely from their storage.

This allows simple integration with the presented methods as the optimised PULs can be

used instead of the originals.

Several techniques can be used for dynamic reasoning. On sequences of updates one

can perform a method known as reduction, which collapses similar operations and removes

4.3 Optimisation using Lazy Evaluation and Dynamic Reasoning on XML
Updates 89

v d u

CP

OR

PINT/PDDT ET-INS/DEL

CD+/-v′

Figure 4.10: Interleaving PINT/PDDT with Optimisation Rules (OR).

useless operations (i.e., operations whose effects are overridden by others). Additionally,

depending on whether sequences of updates are to be executed in parallel or sequentially,

further methods such as integration of parallel sequences of updates and aggregation of

sequential update sequences, can also be applied. This can improve the efficiency of the

presented incremental view maintenance and view update methods. In this section, how to

handle sequences of updates within this work is discussed, by applying some of the methods

envisioned in [156].

4.3.1 Sequencing Updates

The rules presented in [156] are defined for PULs. The interaction between the view mainte-

nance method and the optimisation rules can be seen in Figure 4.10. The PUL is computed

from the updates and the document. The optimisation rules are then applied to the PUL.

The optimised PUL is then propagated to the view instead of the original. Figure 4.10 shows

that the optimised sequences of atomic updates are used in the algorithm PINT/PIMT

(PDDT/PDMT, respectively) and the algorithms which they call. Precisely, each in-

sert/delete in a set of statement-level updates for multiple return nodes is transformed into

atomic updates by CP (compute-pul) and the optimisation rules OR applied to them. The

remaining updates are then evaluated as in the view maintenance method. Optimisations

for the view update method are handled similarly.

90 Methods

4.3.2 Update Operations

Eleven elementary update operations are handled in [156]. Two fundamental update opera-

tions are considered here.

• insert a forest3 P after the last child of a node v, denoted ins↘(v, P)

• delete a node v, denoted del(v)

4.3.3 Rules

The rules that are applicable to this algebraic incremental view maintenance work are de-

tailed below. Reduction rules allow useless operations to be removed from the update se-

quence. When multiple PULs have to be evaluated on the same document it would be

beneficial to integrate these into a single PUL. However, as conflicts can occur a set of con-

flict rules are presented. Finally, if a collection of PULs are to be executed sequentially then

the aggregation rules can be used.

Reduction Rules

These rules allow a more compact PUL that has the same effect as the original one. In [156]

there are 20 reduction rules split over nine stages. Each stage contains a subset of the

reduction rules where the order of their execution is irrelevant/undefined. The next stage

can not be evaluated until all the rules from the current stage have been performed. However,

as currently only a subset of update operations are handled in this work, only some rules from

the first two stages are applicable. These stages are O - for removing overridden operations

- and I - for collapsing insertions, where possible, i.e., same target node. The rules show how

operations can be converted into a single operation. The applicable rules are detailed below.

O1) op1=op(v,) op2=op′(v,)
op1, op2∇1op2

op ε {del,ins↘}
op′ ε {del} O3) op1=op(v,) op2=op′(v′,)

op1, op2∇1op2

op ε {ins↘,del}
op′ ε {del} v//dv

′

I5) op1=op(v,L1) op2=op(v,L2)
op1, op2∇1op(v,[L1,L2])

c(op) = i

3a collection of XML trees

4.3 Optimisation using Lazy Evaluation and Dynamic Reasoning on XML
Updates 91

O1: If there is an insertion or deletion, followed by a deletion on the same target node, then

just perform the second deletion.

O3: If there is an insertion or a deletion, followed by a deletion on an ancestor of the first

operation, then just perform the second operation.

I5: If there is an insertion, followed by another insertion on the same target node, then

combine the insertions into one.

In the above operations, the ∇ operator reduces a sequence of input operations, e.g.,

op1, op2∇1op2 denotes the reduction of the operations op1 and op2 into just op2. The

numerical subscript indicates the stage which the rules belongs to, i.e., ∇1 belongs to stage

one. n//dn
′, in rule O3, declares that n is a descendant of n′. Finally, c(op) = i declares

the class of operations which the rules apply to. For the instance in I5 this is applicable to

insertions, more specifically, for this work c(op) = ins↘.

Conflict Rules

For update sequences to be executed in parallel a method for integrating them has been

created. However, conflicts can arise. Therefore, conflict rules have been specified. The rules

can pick up the following conflicts: repeated modifications; repeated attribute insertion; local

override; and non-local override. However, the only ones that are applicable to this work,

based on currently available operations, are detailed below.

IO) t(op1)=t(op2) o(op1)=o(op2) ε {ins↘}
op1

3
↔op2

LO) t(op1)=t(op2) o(op1) ε {del} o(op2) ε {ins↘}
op1

4
→op2

NLO) t(op2)//dt(op1) o(op1) ε {del} o(op2) ε {ins↘}
op1

5
→op2

In these rules t(op) represents an operation’s target and o(op) represents its name.

IO: This operation (Insertion Order) identifies the case where operations are different de-

pending on execution order.

LO: This operation (Local Overriding) identifies the case when an operation is overridden

by another with the same target node. This causes the first operation to not affect the

document due to the presence of the second one.

92 Methods

NLO: This operation (Non-Local Overriding) identifies the case when an operation is over-

ridden by another with a different target node. This case arises when the deletion’s target

node is an ancestor of the insertion’s target node.

The conflicts are defined as symmetric or asymmetric. IO is symmetric, as both oper-

ations have the same type and target node, as defined by the substitutability symbol 3
↔ .

The 3 is the rule order [156] which has been kept the same for compatibility. LO and NLO

are both asymmetric as the first operation overrides the second, defined by op1
4
→op2, where

again the numerical subscript represents the rule number.

After applying the conflict rules to the update sequence a list of non-conflicting operations

are returned along with the identified conflicts. The work allows PUL producers to define

conflict resolution policies in order to solve conflicts during PUL integration.

Aggregation Rules

For updates to be executed sequentially a method for aggregating them has been created.

Aggregation involves merging multiple sequences. Precisely, given two sequences ∆1 and ∆2,

their aggregation into a single sequence ∆ corresponds to the sequential execution of ∆1; ∆2,

where ∆1 is applied to the original document and ∆2 is applied to the document updated

through ∆1. Dependencies must be removed before this occurs using the defined aggregation

rules. Again, not all these rules apply to this work, the ones that do are detailed below.

A1) op1=op(v,L1) op2=op(v,L2)

∆′1∪{op1,op2}, ∆′2
A

(1
∆′1∪{op(v,[L1,L2])}, ∆′2

c(op) = i

A2) op1=op(v,L1) op2=op(v,L2)

∆′1, ∆′2∪{op1,op2} A
(1

∆′1, ∆′2∪{op(v,[L1,L2])}
c(op) = i

D6)
op1=op(v,T1···Ti···Tn) ∆vi={o ε∆2 | t(o)=v′}

∆′i∪{op1}, ∆2
A

(4
∆′1∪{op(v,P)}, ∆2\∆v′

v′ ε V (Ti),
Ti|=∆v′ leads to T ′

i
P=T1···T ′i ···Tn

Rules A1 and A2 handle the aggregation of operations with the same target node and

type, while D6 operates on a different node and type.

A1: If both the insertions are on the same node then aggregate the PULs by adding the

second insert to the first PUL, after the first insert.

A2: This is A1 in reverse. Add the insert from the first PUL into the second PUL before

4.3 Optimisation using Lazy Evaluation and Dynamic Reasoning on XML
Updates 93

the second insert.

D6: This handles the case where operations in the second PUL reference node(s) of a tree

which is a parameter of an operation in the first PUL. In this case the operations in the

second PUL, referencing the tree, are performed and removed from the second PUL.

The aggregation operator is denoted as A
(. Again, the numerical subscript declares the

stage which the rule belongs to.

4.3.4 Examples

The following examples show how the reduction, integration and aggregation of PULs are

handled. These PULs are represented in the syntax presented in the view update and

view maintenance methods, i.e., encoding the IDs using DDE and making them explicit.

Example 4.3.1 shows how a PUL can be reduced. Example 4.3.2 shows how two parallel

PULs can be integrated. Finally Example 4.3.3 shows how two sequential PULs can be

aggregated.

Example 4.3.1. Let ∆ be the PUL specified on the document doc in Figure 4.11 containing

the following operations:

op1 = ins↘ (a1.c1.b1.d1.b1, 〈b〉〈d/〉〈/b〉),

op2 = del(a1.c1.b1.d1.b1),

op3 = ins↘ (a1.c1.b1.d2.b1, 〈b/〉),

op4 = del(a1.c1.b1.d2),

op5 = ins↘ (a1.c1.b1.d3, 〈b/〉),

op6 = ins↘ (a1.c1.b1.d3, 〈d〉〈b/〉〈/d〉)

Let v be the view //b//d//b over doc. The reduced PUL is {del(a1.c1.b1.d1.b1), del(a1.c1.b1.d2),

ins↘ (a1.c1.b1.d3, 〈b/〉, 〈d〉〈b/〉〈/d〉)}. This is because op1 is ignored due to rule O1; op3 is

ignored due to rule O3; and op5 and op6 are combined due to rule I5.

Example 4.3.2. Let ∆1 = {op1
1 = ins↘ (a1.c1.b1.d1, 〈d〉〈b/〉〈/d〉), op2

1 = del(a1.c1.b1.d2), op3
1 =

del(a1.c1.b1.d3)}, ∆2 = {op1
2 = ins↘ (a1.c1.b1.d1, 〈b/〉), op2

2 = ins↘ (a1.c1.b1.d2, 〈b/〉), op3
2 =

94 Methods

aa1

ca1.c1 fa1.f2 ca1.c3

ba1.c1.b1
ca1.f2.c1 ca1.c3.b1

da1.c1.b1.d1 da1.c1.b1.d2 da1.c1.b1.d3 ba1.f2.c1.b1

ba1.c1.b1.d1.b1 ba1.c1.b1.d2.b1 ba1.c1.b1.d3.b1

ea1.c1.b1.d3.b1.e1

Figure 4.11: Sample XML document.

ins ↘ (a1.c1.b1.d3.b1, 〈b/〉)} be the PULs over document doc in Figure 4.11. Let v be the

view //b//d//b over doc.

This example can’t be aggregated as every operation causes a conflict. op1
1 and op1

2 are

in conflict due to the insertion order (IO) rule; op2
1 and op2

2 are in conflict due to the local

overriding (LO) rule; and op3
1 and op3

2 are in conflict due to the non-local overriding (NLO)

rule. How these conflicts are solved depends on the conflict resolution policies the PUL

producers specify. The algorithm will fail if it cannot identify a valid reconciliation, which is

a PUL with no conflicts which satisfies the policies of all the PUL producers involved.

Example 4.3.3. Let ∆1 = {op1
1 = ins↘ (a1.c1.b1.d1.b1, 〈c〉〈b/〉〈/c〉),

op2
1 = ins↘ (a1.c1.b1.d2, 〈b/〉), op3

1 = ins↘ (a1.c1.b1.d3, 〈d〉〈b/〉〈/d〉)},

∆2 = {op1
2 = ins↘ (a1.c1.b1.d1.b1, 〈b/〉), op2

2 = ins↘ (a1.c1.b1.d2, 〈d〉〈b/〉〈/d〉),

op3
2 = ins↘ (a1.c1.b1.d3.b1, 〈b/〉)}. Let v be the view //b//d//b over doc.

Aggregation ∆1 7→ ∆2 is {op1
1 = ins↘ (a1.c1.b1.d1.b1, 〈c〉〈b/〉〈/c〉, 〈b/〉),

op2
2 = (a1.c1.b1.d2, 〈b/〉, 〈d〉〈b/〉〈/d〉), op3

1 = ins ↘ (a1.c1.b1.d3, 〈d〉〈b/〉〈b/〉〈/d〉)}. This is

because op1
1 and op1

2 have the same target node, so the XML insertion fragments are combined

into the one operation due to rule A1; op2
1 and op2

2 are combined due to rule A2 (A1 in

reverse); and op3
1 and op3

2 are combined due to rule D6. The XML fragment for the final

insertion operations are combined due to the second fragment being an insertion on a node

4.3 Optimisation using Lazy Evaluation and Dynamic Reasoning on XML
Updates 95

of the first XML fragment to be inserted.

This chapter has described the view maintenance and view update methods. It also

detailed the dynamic reasoning rules utilised for PULs. Chapter 5 goes on to describe the

approach taken to evaluate these ideas before Chapter 6 discusses the results.

96 Methods

5
Results

Chapter 4 presented the algebraic approach to specification of view maintenance and view

update operations and the fundamental ideas behind the implementation of these approaches

was presented in Chapter 3. To show the effectiveness of the methods for XML incremental

view maintenance and update, a set of performance experiments and their associated results

are presented in this chapter. To help with the explanation, a summary of results are pre-

sented here. The full set of results can be found in Appendix C. The results are discussed

in Chapter 6.

97

98 Results

5.1 Technical Details

The algorithms were implemented in Java 6, within the Views in Peer-to-Peer (ViP2P)

(http://vip2p.saclay.inria.fr/) platform. ViP2P handles XML documents in peer-to-peer

networks using a scalable method based upon materialised views and distributed hash table

(DHT) indices. ViP2P provides the implementations of various components used within

the algorithms: tree patterns from the P dialect; DDE implementation1; execution en-

gine providing the required operators (projections, selections, joins, etc.); and XML-specific

structural joins. Data is stored within BerkeleyDB v4.0.71. For operations on the source

document Saxon XQuery processor v9.2.1.1j is used. All experiments were run on a PC with

Linux Ubuntu v10.04, with a Pentium 4 3.40GHz CPU and 2GB memory.

5.2 View Maintenance

Testing was based on the approach taken in [157]. The XMark [158] data generator (xmlgen)

was used to create benchmark XML documents of various sizes for the experiments. These

sizes were: 100KB, 500KB, 1MB and 10MB. Views were defined by selected queries from the

(read-only) XMark benchmark queries: Q 1, Q 2, Q 3, Q 4, Q 6, Q 13, Q 17. These queries

were selected because they could be supported by XAMs, in some cases with slight modifi-

cations. The XPathMark benchmark [159] queries were used to derive a set of updates that

inserted dummy elements or deleted the node(s) returned. Where possible the same views

and updates as in [157] were used. This was because no benchmark for view maintenance

existed when the experiments were performed, so a defined data set, consisting of views and

updates from related works was used instead. However, as this work focussed on the inde-

pendence of the views and updates, the views were not always affected, so view maintenance

was not always required, which is the matter of interest in the current work. Therefore,

where possible the updates were enhanced to affect the view, otherwise structurally related

updates were added. The updates can be seen in Appendix B.

Each update name consists of a letter, a number, and ends with a letter(s). The initial

1added by this work

5.2 View Maintenance 99

letter defines the subset of XPathMark queries it belongs to. The subsets are labelled A-F .

The queries used have been taken from subsets A - unary tree pattern queries, B - core or

navigational XPath queries, and E - XPath 1.0 queries. Queries denoted X are those that

have been added. These were selected to give a set of queries that were representative of

those supported by the system. The added ones were required where a type of query for a

specific view was not defined within XPathMark. The number defines the query position

within the subset. Finally, the end letter(s) describe the query type. Five query types have

been used: (L) Linear path expressions; (A) path expression with an And predicate; (O)

path expression with an Or predicate; (AO) path expression with an And Or predicate; and

(LB) Linear path expression with a Boolean filter.

For the experiments, the following times were measured:

• Find Target Nodes - time taken to find the target node(s) of an insertion/deletion.

• Compute Delta Tables - time taken to build the ∆+/∆− tables using the target nodes

and XML fragment.

• Get Update Expression - time taken to build the algebraic expression corresponding to

the view; generate the update expression; unfold (distribute the joins over the unions)

and prune it.

Note: Inserted data-driven pruning is performed when computing the delta tables.

Tuples which don’t match the view definition are discarded.

• Build Lattice - time taken to build the snowcap and leaves lattice, and populate it,

based on the algebraic expression for the view.

• Execute Update - time taken to evaluate the algebraic update expression and modify

the database accordingly. The time to perform modifications is also included, if they

are required.

• Update Lattice - time taken to update the lattice. This is performed, for insertions, by

adding the new tuples to the leaves and propagating them up the lattice, using joins to

calculate the new tuples for insertions. Conversely, for deletions, removing the deleted

tuples.

100 Results

• Update Source - time taken to insert/delete XML, defined by the update, from the

source document.

When these stages are mentioned in the results tables, the key shown in Table 5.1 is

used.

Symbol Stage

TN Find Target Nodes

DT Compute Delta Tables

UE Get Update Expression

BL Build Lattice

EU Execute Update

UL Update Lattice

US Update Source

Table 5.1: Key for Results Tables

Comparable experiments were performed for insertions and deletions. Results presented

in this chapter for updates on 1MB documents show the component times, the total times, the

scalability, the impact of varying the path length and the impact of varying the annotations.

5.2.1 Insertions

The performance results for insertions on the views Q1, Q2 and Q13 for document size 1MB

are shown in Tables 5.2, 5.3, 5.4 and Figures 5.1, 5.2 and 5.3 respectively. Each result set is

presented as a detail table, a graphical representation of the detail, and a summary graph.

These views were selected because they contained the most tuples and the definitions were

the most varied. This was due to Q1 being similar to Q17 and Q2 being similar to Q3 and

Q4. The difference being alternate or extra filters that reduced the size of the view. The

results for the other views can be seen in Appendix C.1.1.

5.2 View Maintenance 101

Query TN DT UE BL EU UL US

X1 L 1264 733 8 2227 328 231 1727

X6 A 982 194 6 2264 184 99 1694

A7 O 2095 634 8 2246 568 280 2536

A8 AO 3404 332 9 2291 620 324 4024

B7 LB 952 386 6 2208 352 157 1565

Table 5.2: Q1 Insert Time for 1MB Document (ms)

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 1MB	

Figure 5.1: Q1 Insert Times Detail (upper) and Summary (lower)

102 Results

Query TN DT UE BL EU UL US

X2 L 1706 1993 9 1985 909 0 1741

X3 A 1492 884 8 1943 563 0 1678

X4 O 3911 2703 10 1887 1335 0 2839

X5 AO 4009 2793 10 1974 1478 1 2816

B3 LB 1545 1003 10 1940 552 0 1614

Table 5.3: Q2 Insert Time for 1MB Document (ms)

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 1MB	

Figure 5.2: Q2 Insert Times Detail (upper) and Summary (lower)

5.2 View Maintenance 103

Query TN DT UE BL EU UL US

X17 L 1771 380 10 2458 396 494 1567

X20 A 1850 381 10 2443 402 512 1587

B1 O 2192 176 8 2485 557 779 2445

X8 AO 3686 624 12 2488 734 1087 2501

B5 LB 2099 373 10 2535 407 509 1586

Table 5.4: Q13 Insert Time for 1MB Document (ms)

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 1MB	

Figure 5.3: Q13 Insert Times Detail (upper) and Summary (lower)

104 Results

Total Times

The total times for all the views and queries used for insertions testing, for the 1MB docu-

ment, are shown in Table 5.5 and Figure 5.4.

Update Q1 Q2 Q3 Q4 Q6 Q13 Q17

X1 L 6518 6326

X6 A 5423 5223

A7 O 8367 8255

A8 AO 11004 10929

B7 LB 5626 5636

X2 L 8343 6523 6994

X3 A 6568 5815 6585

X4 O 12685 9902 9994

X5 AO 13081 10058 10171

B3 LB 6664 5787 6682

E6 L 5151

B1 A 6170

X7 O 9892

X8 AO 9992 11132

B5 LB 5167 7519

X17 L 7076

E5 A 7185

B1 O 8642

Table 5.5: Total Running Time (ms) for all Views and Queries

5.2 View Maintenance 105

0	

20
00
	

40
00
	

60
00
	

80
00
	

10
00
0	

12
00
0	

14
00
0	

Q1_X1_L	

Q1_X6_A	

Q1_A7_O	

Q1_A8_AO	

Q1_B7_LB	

Q2_X2_L	

Q2_X3_A	

Q2_X4_O	

Q2_X5_AO	

Q2_B3_LB	

Q3_X2_L	

Q3_X3_A	

Q3_X4_O	

Q3_X5_AO	

Q3_B3_LB	

Q4_X2_L	

Q4_X3_A	

Q4_X4_O	

Q4_X5_AO	

Q4_B3_LB	

Q6_E6_L	

Q6_B1_A	

Q6_X7_O	

Q6_X8_AO	

Q6_B5_LB	

Q13_X17_L	

Q13_E5_A	

Q13_B1_O	

Q13_X8_AO	

Q13_B5_LB	

Q17_X1_L	

Q17_X6_A	

Q17_A7_O	

Q17_A8_AO	

Q17_B7_LB	

Time	
 (ms)	

U
pd

at
e	

V
ie
w
	
 M

ai
nt
en

an
ce
	
 P
er
fo
rm

an
ce
	
 (A

ll	

V
ie
w
s,
	
 1
M
B	

D
oc
um

en
t)
	

F
ig
u
r
e
5
.4

:
T

ot
al

R
u

n
n

in
g

T
im

e
fo

r
al

l
V

ie
w

s
an

d
Q

u
er

ie
s

106 Results

Scalability

A scalability test was carried out to check the performance of the algorithms on larger source

documents. This was to confirm that the method scaled up and was not only beneficial for

smaller document sizes. The document sizes ranged from 100KB to 10MB. The results are

shown in Table 5.6 and Figure 5.5.

Varying Path

Experiments were performed to show the effect of varying the path length - the number

of steps - of the XPath expression identifying the target node(s) of an update. For this

experiment, view Q1 was used. The paths used were: (1) /site; (2) /site/people; and (3)

/site/people/person. The results can be seen in Table 5.7 and Figure 5.6.

Varying Annotations

Experiments were performed to determine how different combinations of stored attributes

on the view nodes affect the performance. For this experiment, update X1 L and view Q1

along with variations were used. For each node, the ID is always stored. The different

combinations used were: (1) only IDs stored; (2) val and cont only stored for the leaves; (3)

val and cont only stored for the root; and (4) val and cont stored for every node. The results

can be seen in Table 5.8 and Figure 5.7.

5.2 View Maintenance 107

Document Size (KB)

Stage 100 500 1000 10000

Find Target Nodes 192 604 982 11244

Compute Delta Tables 60 104 194 1592

Get Update Expression 6 9 6 9

Build Lattice 705 1425 2264 19007

Execute Update 140 188 184 1222

Update Lattice 83 121 99 853

Update Source 659 1034 1694 72600

Table 5.6: Scalability Q1 Insert Update X6 A (ms)

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Scalability	
 of	
 View	
 Maintenance	

(View	
 Q1,	
 Update	
 X6_A)	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

0	

20000	

40000	

60000	

80000	

100000	

120000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Scalability	
 of	
 View	
 Maintenance	

(View	
 Q1,	
 Update	
 X6_A)	

Figure 5.5: Scalability Q1 Insert Update X6 A

108 Results

Query TN DT UE BL EU UL US

/site 818 28 6 2328 224 666 1582

/site/people 845 29 6 2308 186 489 1544

/site/people/person 1264 733 8 2227 328 231 1727

Table 5.7: Varying Path for XMark View Q1 and Update X1 L for 1MB Document

0	

500	

1000	

1500	

2000	

2500	

/s
ite

	

/s
ite

/p
eo

pl
e	

/s
ite

/p
eo

pl
e/

pe
rs
on

	

Ti
m
e	

(m

s)
	

Update	

Update	
 X1_L	
 of	
 Varying	
 Depth,	
 View	

Q1	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaAce	

Execute	
 Update	

Update	
 LaAce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

/site	
 /site/people	
 /site/people/person	

Ti
m
e	

(m

s)
	

Update	

Update	
 X1_L	
 of	
 Varying	
 Depth,	
 View	

Q1	

Figure 5.6: Varying Path for XMark View Q1 and Update X1 L for 1MB Document

5.2 View Maintenance 109

Query TN DT UE BL EU UL US

IDs 226 124 8 665 182 97 787

Leaves 230 124 6 679 179 103 775

Root 223 101 8 1247 1820 366 70

All 233 101 6 1313 2188 274 80

Table 5.8: Varying Annotations for XMark View Q1 and Update X1 L for 100KB Document

0	

500	

1000	

1500	

2000	

2500	

IDs	
 Leaves	
 Root	
 All	

Ti
m
e	

(m

s)
	

View	

Varying	
 Annota3ons	
 (View	
 Q1,	

Update	
 X1_L)	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaDce	

Execute	
 Update	

Update	
 LaDce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

IDs	
 Leaves	
 Root	
 All	

Ti
m
e	

(m

s)
	

View	

Varying	
 Annota3ons	
 (View	
 Q1,	

Update	
 X1_L)	

Figure 5.7: Varying Annotations for XMark View Q1 and Update X1 L for 100KB Document

110 Results

5.2.2 Deletions

The performance results for deletions on the views Q1, Q2 and Q13 (used for the same

reasons as the insertion tests) for document size 1MB are shown in Tables 5.9, 5.10, 5.11 and

Figures 5.8, 5.9 and 5.10 respectively. The graphs show the results for the individual times

as well as the total times. The results for the other views can be seen in Appendix C.1.2.

Total Times

The total times for all the views and queries used for testing are shown in Table 5.12 and

Figure 5.11.

Scalability

A scalability test was carried out to check the performance of the algorithms on larger

source documents. The document sizes ranged from 100KB to 10MB. The results are shown

in Table 5.13 and Figure 5.12.

Varying Path

Experiments were performed to show the effect of varying the path length - the number

of steps - of the XPath expression identifying the target node(s) of an update. For this

experiment, view Q1 was used. The paths used were: (1) /site; (2) /site/people; (3)

/site/people/person; (4) /site/people/person/name. The results can be seen in Table 5.14

and Figure 5.13.

Varying Annotations

Experiments were performed to determine how different combinations of stored attributes

on the view nodes affect the performance. For this experiment, update X1 L and view Q1

along with variations were used. For each node, the ID is always stored. The different

combinations used were: (1) only IDs stored; (2) val and cont only stored for the leaves; (3)

val and cont only stored for the root; and (4) val and cont stored for every node. The results

can be seen in Table 5.15 and Figure 5.14.

5.2 View Maintenance 111

Query TN DT UE BL EU UL US

X1 L 2647 178 14 2265 874 114 1370

X6 A 1172 54 9 2243 337 50 1525

A7 O 2560 136 14 2217 905 92 2012

A8 AO 3527 74 14 2307 771 46 3719

B7 LB 1395 130 12 2271 756 82 1389

Table 5.9: Q1 Delete Time for 1MB Document (ms)

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 1MB	

Figure 5.8: Q1 Delete Times Detail (upper) and Summary (lower)

112 Results

Query TN DT UE BL EU UL US

X2 L 2167 182 14 2087 2177 148 1404

X3 A 1671 103 11 2022 1011 88 1448

X4 O 3003 196 14 2047 2176 147 1429

X5 AO 2970 198 13 1987 2165 153 1427

B3 LB 1748 104 11 1990 1089 93 1455

Table 5.10: Q2 Delete Time for 1MB Document (ms)

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 1MB	

Figure 5.9: Q2 Delete Times Detail (upper) and Summary (lower)

5.2 View Maintenance 113

Query TN DT UE BL EU UL US

X17 L 5424 297 14 2617 567 64 1275

X20 A 5578 300 13 2545 913 67 1331

B1 O 3397 168 14 2568 634 45 2035

X8 AO 6025 294 15 2468 912 63 1850

B5 LB 6280 295 14 2472 1039 62 1284

Table 5.11: Q13 Delete Time for 1MB Document (ms)

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 1MB	

Figure 5.10: Q13 Delete Times Detail (upper) and Summary (lower)

114 Results

Update Q1 Q2 Q3 Q4 Q6 Q13 Q17

X1 L 4475 7045

X6 A 3450 5291

A7 O 4851 7731

A8 AO 5994 10820

B7 LB 3833 5748

X2 L 8179 6778 10552

X3 A 6354 5805 8379

X4 O 9012 7498 12108

X5 AO 8913 7541 13680

B3 LB 6490 6041 8842

E6 L 9425

B1 A 8477

X7 O 9979

X8 AO 9993 11627

B5 LB 9418 11446

X17 L 10258

E5 A 10747

B1 O 8861

Table 5.12: Total Running Time (ms) for all Views and Queries

5.2 View Maintenance 115

0	

20
00
	

40
00
	

60
00
	

80
00
	

10
00
0	

12
00
0	

14
00
0	

16
00
0	

Q1_X1_L	

Q1_X6_A	

Q1_A7_O	

Q1_A8_AO	

Q1_B7_LB	

Q2_X2_L	

Q2_X3_A	

Q2_X4_O	

Q2_X5_AO	

Q2_B3_LB	

Q3_X2_L	

Q3_X3_A	

Q3_X4_O	

Q3_X5_AO	

Q3_B3_LB	

Q4_X2_L	

Q4_X3_A	

Q4_X4_O	

Q4_X5_AO	

Q4_B3_LB	

Q6_E6_L	

Q6_B1_A	

Q6_X7_O	

Q6_X8_AO	

Q6_B5_LB	

Q13_X17_L	

Q13_E5_A	

Q13_B1_O	

Q13_X8_AO	

Q13_B5_LB	

Q17_X1_L	

Q17_X6_A	

Q17_A7_O	

Q17_A8_AO	

Q17_B7_LB	

Time	
 (ms)	

U
pd

at
e	

V
ie
w
	
 M

ai
nt
en

an
ce
	
 P
er
fo
rm

an
ce
	
 (A

ll	

V
ie
w
s,
	
 1
M
B	

D
oc
um

en
t)
	

F
ig
u
r
e
5
.1
1
:

T
ot

al
R

u
n

n
in

g
T

im
e

fo
r

al
l

V
ie

w
s

an
d

Q
u

er
ie

s

116 Results

Document Size (KB)

Stage 100 500 1000 10000

Find Target Nodes 260 754 1172 23086

Compute Delta Tables 11 31 54 398

Get Update Expression 7 10 9 17

Build Lattice 676 1407 2243 17360

Execute Update 209 257 337 14236

Update Lattice 6 18 50 6148

Update Source 767 973 1525 54872

Table 5.13: Scalability Q1 Delete Update X6 A (ms)

0	

10000	

20000	

30000	

40000	

50000	

60000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Scalability	
 of	
 View	
 Maintenance	

(View	
 Q1,	
 Update	
 X6_A)	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaDce	

Execute	
 Update	

Update	
 LaDce	

Update	
 Source	

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Scalability	
 of	
 View	
 Maintenance	

(View	
 Q1,	
 Update	
 X6_A)	

Figure 5.12: Scalability Q1 Delete Update X6 A

5.2 View Maintenance 117

Query TN DT UE BL EU UL US

/site 38590 774 10 2349 2337 221 674

/site/people 2173 177 11 2288 2011 125 1334

/site/people/person 2647 178 14 2265 874 114 1370

/site/people/person/name 921 24 8 2329 672 42 1528

Table 5.14: Varying Path for XMark View Q1 and Update X1 L for 1MB Document

0	

10000	

20000	

30000	

40000	

50000	

/s
ite

	

/s
ite

/p
eo

pl
e	

/s
ite

/p
eo

pl
e/

pe
rs
on

	

/s
ite

/p
eo

pl
e/

pe
rs
on

/n
am

e	

Ti
m
e	

(m

s)
	

Update	

Update	
 X1_L	
 of	
 Varying	
 Depth,	
 View	

Q1	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaCce	

Execute	
 Update	

Update	
 LaCce	

Update	
 Source	

0	

10000	

20000	

30000	

40000	

50000	

/s
ite

	

/s
ite

/p
eo

pl
e	

/s
ite

/p
eo

pl
e/

pe
rs
on

	

/s
ite

/p
eo

pl
e/

pe
rs
on

/n
am

e	

Ti
m
e	

(m

s)
	

Update	

Update	
 X1_L	
 of	
 Varying	
 Depth,	
 View	

Q1	

Figure 5.13: Varying Path for XMark View Q1 and Update X1 L for 1MB Document

118 Results

View TN DT UE BL EU UL US

IDs 381 30 7 681 286 7 771

Leaves 384 31 7 672 285 8 769

Root 351 27 10 1255 413 37 627

All 355 28 7 1300 422 39 726

Table 5.15: Varying Annotations for XMark View Q1 and Update X1 L for 100KB document

0	

200	

400	

600	

800	

1000	

1200	

1400	

IDs	
 Leaves	
 Root	
 All	

Ti
m
e	

(m

s)
	

View	

Varying	
 Annota3ons	
 (View	
 Q1,	

Update	
 X1_L)	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

IDs	
 Leaves	
 Root	
 All	

Ti
m
e	

(m

s)
	

View	

Varying	
 Annota3ons	
 (View	
 Q1,	

Update	
 X1_L)	

Figure 5.14: Varying Annotations for XMark View Q1 and Update X1 L for 100KB document

5.3 View Update 119

5.3 View Update

For view update, the testing approach had to be modified. The reason for this being that

queries are expressed and evaluated based on the data contained within the views. Whereas

with view maintenance, the update propagates from the document to the view. There-

fore, if filters were used on branches, they would be irrelevant, as from the view definition

it is known that all tuples stored contain all view branches. For example, for the view

/site/people/person[@id][name] and the query /site/people/person, the results are the same

as the view definition. The alternative, to express filters on values (vals), generally only

returned one tuple. This was due to the majority of vals generated by [158] being IDs, and

therefore, unique. A single affected tuple was not enough to produce meaningful results.

Therefore, the approach to the varying path experiments for view maintenance was taken

for testing insertions and deletions, respectively, using the same XML source documents and

views as described in Section 5.2. The times measured remained the same.

Comparable experiments to view maintenance are performed. The only exception is that

there is no varying path experiment. This is because it would be the same as the component

times experiment due to the same data set being used.

5.3.1 Insertions

The performance results for insertions on the views Q1, Q2 and Q13 for document size 1MB

are shown in Tables 5.16, 5.17, 5.18 and Figures 5.15, 5.16 and 5.17 respectively. The graphs

show the results for the individual times as well as the total times. The results for the other

views can be seen in Appendix C.2.1.

120 Results

Query TN DT UE BL EU UL US

X1 L 944 9 15 880 349 422 1707

X1 L 2 975 9 12 824 328 277 1659

X1 L 3 1420 665 13 849 472 229 1703

Table 5.16: Q1 View Insert Time for 1MB Document (ms)

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 1MB	

Figure 5.15: Q1 View Insert Times Detail (upper) and Summary (lower)

5.3 View Update 121

Query TN DT UE BL EU UL US

X1 L 981 9 13 879 238 235 1677

X1 L 2 984 9 13 873 210 187 1636

X1 L 3 1538 342 11 813 383 65 1607

X1 L 4 2602 1960 14 830 893 0 1826

Table 5.17: Q2 View Insert Time for 1MB Document (ms)

0	

500	

1000	

1500	

2000	

2500	

3000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaDce	

Execute	
 Update	

Update	
 LaDce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 1MB	

Figure 5.16: Q2 View Insert Times Detail (upper) and Summary (lower)

122 Results

Query TN DT UE BL EU UL US

X1 L 901 9 15 634 404 481 1793

X1 L 2 901 7 14 635 407 398 1693

X1 L 3 933 7 13 641 324 282 1644

X1 L 4 1489 143 13 674 363 524 1615

Table 5.18: Q13 View Insert Time for 1MB Document (ms)

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 1MB	

Figure 5.17: Q13 View Insert Times Detail (upper) and Summary (lower)

5.3 View Update 123

Total Times

The total times for all the views and queries used for testing are shown in Table 5.19 and

Figure 5.18.

Scalability

A scalability test was performed to check the performance of the algorithms on larger num-

bers of view tuples. The number of view tuples ranged from 25 to 2550. The results are

shown in Table 5.20 and Figure 5.19.

Varying Annotations

Experiments were performed to determine how different combinations of stored attributes

on the view nodes affect the performance. For this experiment, update X1 L and view

Q1 along with variations were used. For each node the ID is always stored. The different

combinations used were: (1) only IDs stored; (2) val and cont only stored for the leaves; (3)

val and cont only stored for the root; and (4) val and cont stored for every node. The results

can be seen in Table 5.21 and Figure 5.20.

124 Results

Update Q1 Q2 Q3 Q4 Q6 Q13 Q17

X1 L 4326 4032 3535 3902 2884 4237 4011

X1 L 2 4084 3912 3513 3780 2749 4055 3791

X1 L 3 5351 4759 3754 3652 4295 3844 4341

X1 L 4 8125 3550 4821

Table 5.19: Total Running Time (ms) for all Views and Queries

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

Q
1_
X1

_L
	

Q
1_
X1

_L
_2
	

Q
1_
X1

_L
_3
	

Q
2_
X1

_L
	

Q
2_
X1

_L
_2
	

Q
2_
X1

_L
_3
	

Q
2_
X1

_L
_4
	

Q
3_
X1

_L
	

Q
3_
X1

_L
_2
	

Q
3_
X1

_L
_3
	

Q
3_
X1

_L
_4
	

Q
4_
X1

_L
	

Q
4_
X1

_L
_2
	

Q
4_
X1

_L
_3
	

Q
4_
X1

_L
_4
	

Q
6_
X1

_L
	

Q
6_
X1

_L
_2
	

Q
6_
X1

_L
_3
	

Q
13
_X

1_
L	

Q
13
_X

1_
L_
2	

Q
13
_X

1_
L_
3	

Q
13
_X

1_
L_
4	

Q
17
_X

1_
L	

Q
17
_X

1_
L_
2	

Q
17
_X

1_
L_
3	

Ti
m
e	

(m

s)
	

Update	

View	
 Update	
 Performance	
 (All	
 Views,	
 1MB	

Document)	

Figure 5.18: Total Running Time for all Views and Queries

5.3 View Update 125

Document Size (KB)

Stage 100 500 1000 10000

Find Target Nodes 299 901 1420 19428

Compute Delta Tables 100 346 665 5588

Get Update Expression 20 14 13 15

Build Lattice 494 630 849 6670

Execute Update 196 351 472 3172

Update Lattice 107 274 229 2366

Update Source 685 1078 1703 70111

Table 5.20: Scalability Q1 View Insert Update X1 L 3 (ms)

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Scalability	
 of	
 View	
 Update	
 (View	
 Q1,	

Update	
 X1_L_3)	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

0	

20000	

40000	

60000	

80000	

100000	

120000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Scalability	
 of	
 View	
 Update	
 (View	
 Q1,	

Update	
 X1_L_3)	

Figure 5.19: Scalability Q1 View Insert Update X1 L 3

126 Results

View TN DT UE BL EU UL US

IDs 308 102 16 498 194 109 676

Leaves 302 103 13 494 193 110 676

Root 391 81 24 1141 1920 363 159

All 389 82 12 1151 2157 284 151

Table 5.21: Varying Annotations for XMark View Q1 and Update X1 L 3 for 100KB Document

0	

500	

1000	

1500	

2000	

2500	

IDs	
 Leaves	
 Root	
 All	

Ti
m
e	

(m

s)
	

View	

Varying	
 Annota3ons	
 (View	
 Q1,	

Update	
 X1_L_3)	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaDce	

Execute	
 Update	

Update	
 LaDce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

IDs	
 Leaves	
 Root	
 All	

Ti
m
e	

(m

s)
	

View	

Varying	
 Annota3ons	
 (View	
 Q1,	

Update	
 X1_L_3)	

Figure 5.20: Varying Annotations for XMark View Q1 and Update X1 L 3 for 100KB Docu-
ment

5.3 View Update 127

5.3.2 Deletions

The performance results for deletions on the views Q1, Q2 and Q13 for document size 1MB

are shown in Tables 5.22, 5.23, 5.24 and Figures 5.21, 5.22 and 5.23 respectively. The graphs

show the results for the individual times as well as the total times. The other results can be

seen in Appendix C.2.2.

Total Times

The total times for all the views and queries used for testing are shown in Table 5.25 and

Figure 5.24.

Scalability

A scalability test was performed to check the performance of the algorithms on larger num-

bers of view tuples. The number of view tuples ranged from 25 to 2550. The results are

shown in Table 5.26 and Figure 5.25.

Varying Annotations

Experiments were performed to determine how different combinations of stored attributes

on the view nodes affect the performance. For this experiment, update X1 L and view

Q1 along with variations were used. For each node the ID is always stored. The different

combinations used were: (1) only IDs stored; (2) val and cont only stored for the leaves; (3)

val and cont only stored for the root; and (4) val and cont stored for every node. The results

can be seen in Table 5.27 and Figure 5.26.

128 Results

Query TN DT UE BL EU UL US

DeleteX1 L 150 31 14 831 1671 6831 691

DeleteX1 L 2 248 56 24 1235 2445 5499 1904

DeleteX1 L 3 140 24 15 836 1008 94 1360

Table 5.22: Q1 View Delete Time for 1MB Document (ms)

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 1MB	

Figure 5.21: Q1 View Delete Times Detail (upper) and Summary (lower)

5.3 View Update 129

Query TN DT UE BL EU UL US

DeleteX1 L 246 74 14 893 3065 44873 688

DeleteX1 L 2 241 72 15 890 3259 22621 1286

DeleteX1 L 3 239 61 15 881 2587 629 1313

DeleteX1 L 4 228 43 16 885 1979 149 1397

Table 5.23: Q2 View Delete Time for 1MB Document (ms)

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

50000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaDce	

Execute	
 Update	

Update	
 LaDce	

Update	
 Source	

0	

10000	

20000	

30000	

40000	

50000	

60000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 1MB	

Figure 5.22: Q2 View Delete Times Detail (upper) and Summary (lower)

130 Results

Query TN DT UE BL EU UL US

DeleteX1 L 102 23 16 650 1570 832 699

DeleteX1 L 2 101 20 16 646 1643 563 1377

DeleteX1 L 3 99 16 15 646 1345 296 1394

DeleteX1 L 4 95 13 16 666 687 24 1460

Table 5.24: Q13 View Delete Time for 1MB Document (ms)

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 1MB	

Figure 5.23: Q13 View Delete Times Detail (upper) and Summary (lower)

5.3 View Update 131

Update Q1 Q2 Q3 Q4 Q6 Q13 Q17

DeleteX1 L 10219 49853 2072 1987 1838 3892 3245

DeleteX1 L 2 11411 28384 2764 2762 2629 4366 3783

DeleteX1 L 3 3477 5725 2533 2702 2368 3811 2904

DeleteX1 L 4 4697 2413 2961

Table 5.25: Total Running Time (ms) for all Views and Queries

0	

10000	

20000	

30000	

40000	

50000	

60000	

Q
1_
X1

_L
	

Q
1_
X1

_L
_2
	

Q
1_
X1

_L
_3
	

Q
2_
X1

_L
	

Q
2_
X1

_L
_2
	

Q
2_
X1

_L
_3
	

Q
2_
X1

_L
_4
	

Q
3_
X1

_L
	

Q
3_
X1

_L
_2
	

Q
3_
X1

_L
_3
	

Q
3_
X1

_L
_4
	

Q
4_
X1

_L
	

Q
4_
X1

_L
_2
	

Q
4_
X1

_L
_3
	

Q
6_
X1

_L
	

Q
6_
X1

_L
_2
	

Q
6_
X1

_L
_3
	

Q
13
_X

1_
L	

Q
13
_X

1_
L_
2	

Q
13
_X

1_
L_
3	

Q
13
_X

1_
L_
4	

Q
17
_X

1_
L	

Q
17
_X

1_
L_
2	

Q
17
_X

1_
L_
3	

Ti
m
e	

(m

s)
	

Update	

View	
 Update	
 Performance	
 (All	
 Views,	
 1MB	

Document)	

Figure 5.24: Total Running Time for all Views and Queries

132 Results

Document Size (KB)

Stage 100 500 1000 10000

Find Target Nodes 53 101 140 639

Compute Delta Tables 4 17 24 186

Get Update Expression 13 17 15 45

Build Lattice 565 711 836 6264

Execute Update 293 620 1008 7423

Update Lattice 4 43 94 16031

Update Source 672 1042 1360 44349

Table 5.26: Scalability Q1 View Delete Update X1 L 3 (ms)

0	

10000	

20000	

30000	

40000	

50000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Scalability	
 of	
 View	
 Update	
 (View	
 Q1,	

Update	
 X1_L_3)	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaDce	

Execute	
 Update	

Update	
 LaDce	

Update	
 Source	

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Scalability	
 of	
 View	
 Update	
 (View	
 Q1,	

Update	
 X1_L_3)	

Figure 5.25: Scalability Q1 View Delete Update X1 L 3

5.3 View Update 133

View TN DT UE BL EU UL US

IDs 53 5 13 551 289 4 667

Leaves 54 4 14 552 301 4 662

Root 205 4 15 1038 305 36 721

All 205 4 13 1058 434 38 642

Table 5.27: Varying Annotations for XMark View Q1 and Update X1 L 3 for 100KB document

0	

200	

400	

600	

800	

1000	

1200	

IDs	
 Leaves	
 Root	
 All	

Ti
m
e	

(m

s)
	

View	

Varying	
 Annota3ons	
 (View	
 Q1,	

Update	
 X1_L_3)	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

0	

500	

1000	

1500	

2000	

2500	

3000	

IDs	
 Leaves	
 Root	
 All	

Ti
m
e	

(m

s)
	

View	

Varying	
 Annota3ons	
 (View	
 Q1,	

Update	
 X1_L_3)	

Figure 5.26: Varying Annotations for XMark View Q1 and Update X1 L 3 for 100KB document

134 Results

5.4 View Maintenance vs View Update

The performance of the view maintenance vs the view update method was explored. These

tests were on view Q1 using query X1 L. The results can be seen in Table 5.28 and Fig-

ure 5.27.

Document Size (KB)

Stage 100 500 1000 10000

VMIns 2112 4120 6518 120700

VMDel 2126 4475 7462 273427

VUIns 1901 3594 5351 107350

VUDel 1604 2551 3477 74937

Table 5.28: View Maintenance vs View Update X1 L 3 (ms)

0	

50000	

100000	

150000	

200000	

250000	

300000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	
 12000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

View	
 Maintenance	
 vs	
 View	
 Update	

VMIns	

VMDel	

VUIns	

VUDel	

Figure 5.27: View Maintenance vs View Update X1 L 3

5.5 Optimisations

The utilisation of optimisation rules for dynamic reasoning on sequences of updates was

tested with regards to how they affected performance. Testing was performed for the optimi-

sation rules O1, O3 and I5. These were performed using view Q1 and update X1 L alongside

5.5 Optimisations 135

another query which would allow pruning. This query was changed between tests to increase

the amount of pruning performed. The results for these tests, compared with the same

tests using no optimisation can be seen in Tables 5.29, 5.31 and 5.33 and Figures 5.28, 5.30

and 5.32. The tests that allow 100% pruning are also performed for document sizes 500KB

- 10MB for view maintenance and view update and compared with the same tests without

optimisation. These results can be seen in Tables 5.30, 5.32, 5.34, 5.35, 5.36 and 5.37 and

Figures 5.29, 5.31, 5.33, 5.34, 5.35 and 5.36.

Pruning Percentage

20% 40% 60% 80% 100%

Optimise 2423 2436 2558 2504 2297

No Optimise 2749 2795 3004 3139 2905

Table 5.29: Performance for Reduction Rule O1 (ms)

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

20%	
 40%	
 60%	
 80%	
 100%	

Ti
m
e	

(m

s)
	

Update	

Op/misa/on	
 O1	

Op-mise	

No	
 Op-mise	

Figure 5.28: Performance for Reduction Rule O1

136 Results

Document Size (KB)

100 500 1000 10000

Optimise 2297 5210 9358 359007

No Optimise 2905 7104 13370 628898

Table 5.30: Scalability for Reduction Rule O1 (ms)

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Op5misa5on	
 O1	
 Scalability	

Op-mise	

No	
 Op-mise	

Figure 5.29: Scalability for Reduction Rule O1

5.5 Optimisations 137

Pruning Percentage

20% 40% 60% 80% 100%

Optimise 2620 2654 2958 2992 2687

No Optimise 2598 2673 2717 2757 2857

Table 5.31: Performance for Reduction Rule O3 (ms)

2400	

2500	

2600	

2700	

2800	

2900	

3000	

3100	

20%	
 40%	
 60%	
 80%	
 100%	

Ti
m
e	

(m

s)
	

Update	

Op/misa/on	
 O3	

Op/mise	

No	
 Op/mise	

Figure 5.30: Performance for Reduction Rule O3

138 Results

Document Size (KB)

100 500 1000 10000

Optimise 2687 4973 8551 317257

No Optimise 2857 5368 9113 346458

Table 5.32: Scalability for Reduction Rule O3 (ms)

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

400000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Op5misa5on	
 O3	
 Scalability	

Op,mise	

No	
 Op,mise	

Figure 5.31: Scalability for Reduction Rule O3

5.5 Optimisations 139

Pruning Percentage

20% 40% 60% 80% 100%

Optimise 2453 2518 2593 2557 2370

No Optimise 2493 2511 2561 2713 2620

Table 5.33: Performance for Reduction Rule I5 (ms)

2100	

2200	

2300	

2400	

2500	

2600	

2700	

2800	

20%	
 40%	
 60%	
 80%	
 100%	

Ti
m
e	

(m

s)
	

Update	

Op/misa/on	
 I5	

Op.mise	

No	
 Op.mise	

Figure 5.32: Performance for Reduction Rule I5

140 Results

Document Size (KB)

100 500 1000 10000

Optimise 2370 5370 9023 160284

No Optimise 2620 5812 9924 232481

Table 5.34: Scalability for Reduction Rule I5 (ms)

0	

50000	

100000	

150000	

200000	

250000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Op5misa5on	
 I5	
 Scalability	

Op+mise	

No	
 Op+mise	

Figure 5.33: Scalability for Reduction Rule I5

5.5 Optimisations 141

Document Size (KB)

100 500 1000 10000

Optimise 1885 3387 5086 114412

No Optimise 2519 5066 8866 326646

Table 5.35: Scalability for Reduction Rule O1 (ms)

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Op5misa5on	
 O1	
 Scalability	

Op,mise	

No	
 Op,mise	

Figure 5.34: Scalability for Reduction Rule O1

142 Results

Document Size (KB)

100 500 1000 10000

Optimise 1855 2723 3794 119720

No Optimise 2137 2674 3700 113217

Table 5.36: Scalability for Reduction Rule O3 (ms)

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Op5misa5on	
 O3	
 Scalability	

Op*mise	

No	
 Op*mise	

Figure 5.35: Scalability for Reduction Rule O3

5.6 Additional Tests 143

Document Size (KB)

100 500 1000 10000

Optimise 2403 4859 7880 145100

No Optimise 2602 5358 9133 215304

Table 5.37: Scalability for Reduction Rule I5 (ms)

0	

50000	

100000	

150000	

200000	

250000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Op5misa5on	
 I5	
 Scalability	

Op+mise	

No	
 Op+mise	

Figure 5.36: Scalability for Reduction Rule I5

5.6 Additional Tests

Additional tests were performed to evaluate design decisions. These tested the performance

of lattice structures with varying amounts of information.

5.6.1 Lattice Snowcaps vs Leaves

In this experiment, the trade-offs between two simple alternatives of storing the lattice nodes

was studied. The first alternative, which is termed snowcaps (S), stores a minimal set of

snowcaps. More precisely, given a view lattice, the minimum number of snowcaps required

to maintain the view along with the leaf nodes is maintained. The minimum number is

144 Results

defined as one snowcap from each level of the lattice. When several options exist at a level,

the first one is always selected. It should be noted that the root node snowcap in the lattice

is empty and is never maintained, as it is the view definition. In the second alternative,

leaves (L), only the lattice leaves are stored and the required snowcaps are computed on

the fly. There are several alternatives in between - these represent two extreme cases. In

this experiment, two different times were measured: (R) the time to evaluate the terms in

the view expression by using the snowcaps or leaves lattice and (U) the time to update the

snowcaps or leaves lattice. Table 5.38 and Figure 5.37 show the view maintenance results for

snowcaps vs leaves for an insertion, whereas Table 5.39 and Figure 5.38 show the results for

a deletion. Table 5.40 and Figure 5.39 show the view update results for snowcaps vs leaves

for an insertion, whereas Table 5.41 and Figure 5.40 show the results for a deletion.

5.6 Additional Tests 145

Document Size BL (S) EU (S) UL (S) BL (L) EU (L) UL (L)

100KB 816 241 449 337 472 0

500KB 1726 301 488 890 678 0

1MB 3051 270 684 1650 856 0

10MB 22343 48141 41412 17159 2843 0

Document Size BL (S) EU (S) UL (S) BL (L) EU (L) UL (L)

100KB 304 136 0 212 244 0

500KB 555 194 0 502 331 0

1MB 944 244 0 876 446 0

10MB 8525 1097 0 8398 1302 0

Table 5.38: Snowcaps vs Leaves Lattice for Insertions for View Q 4, Update X2 L (upper) and
View Q 6, Update E6 L (lower) (ms)

0	

20000	

40000	

60000	

80000	

100000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Snowcaps	
 vs	
 Leaves	
 (View	
 Q4,	

Update	
 X2_L)	

Total	
 Snowcaps	

Total	
 Leaves	

0	

200	

400	

600	

800	

1000	

1200	

1400	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Snowcaps	
 vs	
 Leaves	
 (View	
 Q6,	

Update	
 E6_L)	

Total	
 Snowcaps	

Total	
 Leaves	

Figure 5.37: Snowcaps vs Leaves Lattice for Insertions

146 Results

Document Size BL (S) EU (S) UL (S) BL (L) EU (L) UL (L)

100KB 775 880 14 325 1893 7

500KB 1703 1439 95 863 2865 36

1MB 2841 2377 385 1653 4272 101

10MB 22206 20548 54874 17009 27069 20657

Document Size BL (S) EU (S) UL (S) BL (L) EU (L) UL (L)

100KB 286 150 3 202 263 4

500KB 534 404 8 438 572 9

1MB 896 696 17 823 919 18

10MB 8457 5336 1055 8798 5782 1060

Table 5.39: Snowcaps vs Leaves Lattice for Deletions for View Q 4, Update X2 L (upper) and
View Q 6, Update E6 L (lower) (ms)

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Snowcaps	
 vs	
 Leaves	
 (View	
 Q4,	

Update	
 X2_L)	

Total	
 Snowcaps	

Total	
 Leaves	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Snowcaps	
 vs	
 Leaves	
 (View	
 Q6,	

Update	
 E6_L)	

Total	
 Snowcaps	

Total	
 Leaves	

Figure 5.38: Snowcaps vs Leaves Lattice for Deletions

5.6 Additional Tests 147

Document Size BL (S) EU (S) UL (S) BL (L) EU (L) UL (L)

100KB 479 234 202 23 534 0

500KB 420 216 191 24 456 0

1MB 395 418 189 25 427 1

10MB 405 420 194 26 421 0

Document Size BL (S) EU (S) UL (S) BL (L) EU (L) UL (L)

100KB 157 216 0 18 374 0

500KB 156 182 0 31 368 0

1MB 227 231 0 102 486 0

10MB 1156 650 0 1019 1111 0

Table 5.40: Snowcaps vs Leaves Lattice for Insertions for View Q 4, Update X1 L 3 (upper)
and View Q 6, Update X1 L 3 (lower) (ms)

0	

100	

200	

300	

400	

500	

600	

700	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Snowcaps	
 vs	
 Leaves	
 (View	
 Q4,	

Update	
 X1_L_3)	

Total	
 Snowcaps	

Total	
 Leaves	

0	

200	

400	

600	

800	

1000	

1200	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Snowcaps	
 vs	
 Leaves	
 (View	
 Q6,	

Update	
 X1_L_3)	

Total	
 Snowcaps	

Total	
 Leaves	

Figure 5.39: Snowcaps vs Leaves Lattice for Insertions

148 Results

Document Size BL (S) EU (S) UL (S) BL (L) EU (L) UL (L)

100KB 545 529 0 23 534 0

500KB 471 706 1 24 456 0

1MB 413 648 0 25 427 1

10MB 545 762 1 26 421 0

Document Size BL (S) EU (S) UL (S) BL (L) EU (L) UL (L)

100KB 163 170 2 18 374 0

500KB 213 400 17 31 368 0

1MB 175 711 27 102 486 0

10MB 1080 5305 1362 1019 1111 0

Table 5.41: Snowcaps vs Leaves Lattice for Deletions for View Q 4, Update X1 L 3 (upper)
and View Q 6, Update X1 L 3 (lower) (ms)

0	

200	

400	

600	

800	

1000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Snowcaps	
 vs	
 Leaves	
 (View	
 Q4,	

Update	
 X1_L_3)	

Total	
 Snowcaps	

Total	
 Leaves	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

0	
 2000	
 4000	
 6000	
 8000	
 10000	

Ti
m
e	

(m

s)
	

Document	
 Size	
 (KB)	

Snowcaps	
 vs	
 Leaves	
 (View	
 Q6,	

Update	
 X1_L_3)	

Total	
 Snowcaps	

Total	
 Leaves	

Figure 5.40: Snowcaps vs Leaves Lattice for Deletions

5.6 Additional Tests 149

In this chapter the results for each set of experiments is presented in a consistent pat-

tern. The detail of insertion and deletion times for view maintenance and view update are

presented along with the overall time for these operations. In each case scalability is inves-

tigated as well as the impact of enhancing the view with different annotations. Comparable

results for view maintenance and view update are presented as well as an investigation of the

impact of dynamic reasoning and the impact of varying strategies for employing snowcaps.

The next chapter discusses the meaning of these results.

150 Results

6
Discussion

In Chapter 4, consistent algebraic approaches to view maintenance and view update were

presented. In Chapter 5, a set of experiments that evaluated these approaches were pre-

sented, along with a selection of their results. In this chapter the significance of the results

for both view maintenance and view update are discussed. In addition, the relationship

between the results and related work in Chapter 2 is assessed, and the recommendations for

future work are presented.

6.1 View Maintenance

This section discusses the behaviour observed from the view maintenance experiments. Some

of these observations were similar for both update types, insertions and deletions, e.g., the

time to build the lattice, as the lattice is the same for both insertions and deletions. However,

151

152 Discussion

others varied depending on the update types, e.g., the time to update the view was greater

for deletions due to a greater number of delta tuples1.

The view maintenance method was split into several stages. These stages are discussed

in Section 5.2. The insertion results are discussed in Section 6.1.1 and the deletion results

in Section 6.1.5.

6.1.1 Insertions

The performance of each stage was affected by different factors. These ranged from the

update query types to the view structure. For insertions the time to Find Target Nodes was

dependant on the update query type. Generally the Linear, Linear with Boolean Filter and

AND queries were most efficient. The OR and AND/OR queries were more computationally

expensive (see Figures 5.1, 5.2, and 5.3). This was due to queries being expressed in XAMs

which are unable to express OR expressions. Therefore, to handle OR and AND/OR queries,

separate XAMs were required specifying each side of the OR.

The time to Compute Delta Tables is not affected by the query type. The number of

target nodes determines the performance time. For example, in Q1 the fastest query to

compute the delta tables is the AND, which takes 194ms, and the slowest was the Linear

query taking 733ms (see Table 5.2 and Figure 5.1). The difference in times was due to the

AND query having 56 target tuples, whereas the Linear query had 255.

Get Update Expression is affected by the view definition and the pruning methods. The

query type is not a contributing factor. As the number of delta tables increase, the number

of terms in the update expression increases. Therefore, the time to run the pruning methods

increases with the number of delta tables. The number of delta tuples has an effect on the

ID-driven pruning (see Proposition 4.1.16). More delta tuples results in greater evaluation

time for this pruning method.

To build the lattice only the view definition and the document is required. Therefore,

the Build Lattice time is similar for each query type (see, for example, Build Lattice (BL) in

Table 5.2 and Figure 5.1).

1the tuples stored within the ∆ tables.

6.1 View Maintenance 153

There are several factors which contribute to the Execute Update time. These are:

• the total number of target nodes: the higher the number of target nodes, the greater

the size of the delta tables (size is number of tuples).

• the number of val and cont attributes on the ancestors of the target nodes in the view.

This is because PIMT execution is required which is expensive.

• the number of terms in the update expression surviving pruning. This is because term

computation is expensive and was the reason for introducing pruning methods.

The query type doesn’t affect the Execute Update time (see Figures 5.1, 5.2, and 5.3).

However, the OR and AND/OR queries always take the longest to run. This is related

to the time to Find Target Nodes and the problem of XAMs not being able to represent

OR expressions. Therefore, these queries require multiple runs of the algorithm (one for

each branch of the OR) to execute the update. This also affects the Update Lattice time

resulting in OR and AND/OR queries having the longest update time. Aside from this

the Update Lattice time is determined by the view definition, the number of snowcaps,

the number of delta tuples and the proximity of the insertion node(s) to the view root.

This can be seen by the slight differences between query types for each view but large

differences between certain views. For example, for query X1 L on view Q1, document

size 1MB, the time to update the lattice is 231ms (see Table 5.2 and Figure 5.1) but the

time for query X2 L on view Q2, document size 1MB is less than 1ms (see Table 5.3 and

Figure 5.2). X1 L adds 255 new tuples, whereas X2 L adds 708 new tuples. In both

scenarios deltas are leaves. However, Q1 is structured /site/people/person[id]/name and

Q 2 /site/open auctions/open auction/bidder/increase. The lattices for Q1 and Q2 can be

seen in Figures 6.1 and 6.2 respectively. From Figure 6.2, it can be seen that Q2 only requires

adding the new tuples to the increase leaf, whereas, Q 1 requires adding the tuples to the

name leaf as well as performing the join to update the snowcap /site/people/person/name,

which requires performing a join of 255 new tuples with 1275 existing tuples.

154 Discussion

site ./ people ./ person ./ id ./ name

./

site ./ people ./ person ./ name

./

site ./ people ./ person

./

site ./ people

./

site people person

name

id

Figure 6.1: Lattice for Q1

site ./ open auctions ./ open auction ./ bidder ./ increase

./

site ./ open auctions ./ open auction ./ bidder

./

site ./ open auctions ./ open auction

./

site ./ open auctions

./

site open auctions open auction

bidder

increase

Figure 6.2: Lattice for Q2

The more delta tuples there are, the more computationally expensive it is to perform the

joins to update the lattice. Additionally, the closer the insertion node(s) are to the root of

the view, the more snowcaps in the lattice will require updating. This is a consequence of

more lattice nodes being affected.

Finally, the time to Update Source is another stage affected by the inability to express the

OR operator, resulting in OR and AND/OR queries again having the greatest performance

6.1 View Maintenance 155

time. It was expected that the number of nodes to be added to the document would also

be a factor. However, it appears this time is negligible compared to reading the file into

memory and writing back to the file.

6.1.2 Scalability

View maintenance for insertions scales linearly for all the document sizes up to 10MB. This

is clear from the results shown in Figure 5.5. All the results increased with the document

size2. The increase for Execute Update and Update Lattice was not as visible until reaching

larger document sizes. The exception to this pattern was Get Update Expression. This was

due to Get Update Expression not relying on the document size but the view definition and

the delta tables. The figure shows that all results (affected by the document size) grow

gracefully with the size of the document.

6.1.3 Varying Path

View maintenance time increases as the update query path lengthens, or more accurately, as

the number of target nodes increases. Find Target Nodes, Compute Delta Tables and Update

Source times all increased with the update query path length. This was a result of there

generally being more target nodes as the leaves were approached. Get Update Expression

and Build Lattice were uniform as the update query path varied. This was due to both these

operations relying on the view definition and the document size. Execute Update increased

with increasing path length, as generally this increases the number of target nodes. This

is not always the case, i.e., /site/people has the same number of target nodes as /site.

The insertion /site/people is actually faster (see Table 5.7 and Figure 5.6). The factors

contributing to this performance are the number of delta tuples, existing tuples and number

of terms in the update expression. The number of delta tuples typically increases with update

path length. However, delta tables decrease improving the amount of the expression that can

2In this chapter when saying “increased with the document size” it means increased with the number

of relevant tuples for the view. However, the assumption is made that the number of relevant tuples will

increase with the document size

156 Discussion

be replaced by the precalculated lattice nodes. The results show that the main contributing

factor to this time is the number of delta tuples. Finally Update Lattice decreases with the

increase of path length. This is due to the fact that the closer the target node(s) are to the

root, the more lattice nodes are affected, increasing the number of joins required.

6.1.4 Varying Annotations

The greater the number of val and conts and the closer they are to the root, the greater the

performance time due to the increased cost of PIMT. These results can be seen in Figure 5.7.

Find Target Nodes is uniform as a result of it only being affected by the query type and

the number of target nodes. These factors remain the same for each view as the val and

conts do not affect them. Get Update Expression also remains similar as it is only affected

by the view definition and document size. Build Lattice, Execute Update and Update Lattice

increase with the number of val and conts and also the proximity of val and conts to the root.

Val and conts closer to the root take longer to process due to them using more memory. A

single val and cont at the root takes longer than multiple val and conts near the leaves (see

Table 5.8 and Figure 5.7). Update Source is uniform when val and cont is not stored for the

root as it will only be affected by the query type and the number of target nodes. However,

it is more efficient in the cases where val and cont is stored for the root. This is due to

the cont for the root being the same as the document, therefore, when PIMT queries it for

target nodes it is the same as querying the document for target nodes when updating the

source. Saxon caches previously evaluated queries, so in these cases Execute Update takes

the performance hit for the query, resulting in faster Update Source times. Compute Delta

Tables is affected when the val and conts are on the target or descendant nodes. When the

val and conts are ancestors of the target node in the lattice they do not affect the time as

they are not included in the delta tuples.

6.1.5 Deletions

The factors affecting each stage for the deletion case were the same as for insertions. The

only exception was the time to Update Lattice. The general behaviour was the same, the

6.1 View Maintenance 157

greater the number of delta tuples, the longer the time to update. However, in this case the

OR and AND/OR queries did not always take the longest to run. For example, compare

Table 5.9 and Figure 5.8 with Table 5.10 and Figure 5.9. This is because the lattice is

searched for the relevant tuples and they are removed. Whereas, for insertions, joins are

performed for each new set of tuples. Since there are no joins, whether the deletions are

performed all at once or separately doesn’t affect the time.

6.1.6 Scalability

The scalability (see Table 5.13 and Figure 5.12) shows that view maintenance for deletions

scales linearly for documents up to 10MB. The behaviour was similar to insertions in most

cases. The only difference was that as document size grew, the time to Find Target Nodes

exceeded the time to Build Lattice. However, despite the differences the results still grow

gracefully with the document size.

6.1.7 Varying Path

View maintenance time decreases as the update path lengthens. This is because the longer

the update paths, the fewer nodes there are to be deleted. Find Target Nodes and Compute

Delta Tables decrease as the update path increases. This can be seen in Table 5.14 and

Figure 5.13 and is due to there being fewer tuples to delete as the target nodes approach

the leaves. Similarly Execute Update and Update Lattice decrease for the same reason.

Additionally, the fragment of each term in the update expression that is available from the

lattice increases and the number of snowcaps affected decreases due to there being less delta

tables and delta tuples. This results in an overall improvement in performance. Get Update

Expression is uniform due to only being affected by the view and the document size. Finally,

Update Source increases. The more target nodes, the longer the deletion takes. Additionally,

fewer target nodes typically mean it is closer to the root resulting in a larger fragment of

the XML document being removed. This results in less write time back to the file.

158 Discussion

6.1.8 Varying Annotations

The greater the number of val and conts and the closer they are to the root, the greater

the performance times due to the increased cost of PDMT. These results can be seen in

Figure 5.7. Find Target Nodes and Update Source are uniform as a result of them only

being affected by the query type and the number of target nodes for Find Target Nodes and

the number of target nodes and the inserted XML fragment for Update Source. All these

factors remain the same for each view as the val and conts don’t affect them. This is also

true for Compute Delta Tables as val and conts are not stored in delta tables for deletions.

Get Update Expression also remains similar as it is only affected by the view definition and

document size/number of view tuples. Build Lattice and Execute Update increase with the

number of val and conts and also the proximity of val and conts to the root. Val and conts

closer to the root take longer to process due to them using more memory. A single val and

cont at the root takes longer than multiple val and conts near the leaves.

6.1.9 Comparison of Insertions and Deletions

For all the experiments performed, the time to Find Target Nodes was the most domi-

nant. This can be seen from the insertion and deletion experiments shown in Sections 5.2.1

and 5.2.2 respectively. It can also be observed that there are two other times, Build Lattice

and Update Source, which are equivalent or greater than the time to Find Target Nodes.

Build Lattice is a one off cost which is only required the first time view maintenance is per-

formed on the view. Its practical contribution to degrading query performance is therefore

limited. Update Source is not actually part of the view maintenance process. It is a side-

effect required to keep the database consistent. This required cost is unavoidable regardless

of whether the view is maintained incrementally or fully recomputed following each change

that affects it.

Some of the times were comparable for insertions and deletions due to the same or similar

methods being utilised. However, the biggest difference came as a result of the generally

increased number of delta tables for deletions. Since the delta tables for deletions included

the target node(s) and all their descendants, there were generally more delta tuples for these

6.1 View Maintenance 159

cases. As a result of this the time to Execute Update was generally faster for insertions.

However, this improved the Update Source time. This was due to the process for updating

the source documents. The source document is brought into an in-memory representation.

This is then updated and output back to a file. In the deletion case the write to file time

will be quicker due to there being less to write. Additionally, the update time may be faster

as the removal of one node (it’s descendants are deleted as a side-effect of this) is faster than

the addition of multiple nodes.

The time to Compute Delta Tables is generally less in the case of deletions. For example,

compare Table 5.3 and Figure 5.2 with Table 5.10 and Figure 5.9. This was because the

deletions only had to store the URI and ID for each delta tuple. The extra time required to

calculate the val and conts for the insertion delta tuples, where required, resulted in longer

times to compute the delta tables despite the number of delta tuples being generally smaller.

Update Lattice time is not consistently better for insertions or deletions, it depends on

the scenario. This is because of the different approaches taken to update the lattice in

the insertion and deletion case. Insertions require adding the new tuples to the relevant

leaves and propagating the new tuples up towards the root of the lattice, joining the new

tuples with the existing tuples. The amount of work required is dependent on the number of

existing tuples in each required join and the number of new (delta) tuples. Conversely, for

the deletion case the tuples are removed from the relevant leaves and propagated up towards

the root of the lattice, removing any tuples which contains a tuple that has been deleted.

This requires searching through all the tuples at each affected lattice node for each tuple to

be removed. Therefore, depending on the scenario the relevant method for either insertions

or deletions may perform better. This will be further explored in Section 6.5.1.

Scalability

View maintenance scales linearly for insertions and deletions on document sizes up to 10MB.

There are slight variations in behaviour but both scale gracefully.

160 Discussion

Varying Path

View maintenance time decreases for deletions as the update path lengthens, whereas inser-

tion times increase. The overall performance for insertions, by comparison with deletions

at the same path length, is significantly better. The main difference was the time to Find

Target Nodes. The closer the target node(s) were to the root, for deletions, the more nodes

there were to be deleted. However, the number of target nodes increased with the update

path length making Find Target Nodes more expensive, for insertions, when near the leaves

as a result of the tree structure of XML. Compute Delta Tables and Execute Update both

increased with path length for insertions and decreased with path length for deletions. This

was due to the number of descendants/∆− decreasing with path length but the number of

target nodes/∆+ increasing. Update Lattice decreased for both with path length due to the

decreasing fragment of the lattice affected as the query approached the leaves. Update Source

increases for deletions as the update path lengthens. This is due to the behaviour described

in Section 6.1.7. However, for insertions it remains uniform (see Section 6.1.1).

Varying Annotations

For both insertions and deletions, the greater the number of val and conts and the closer they

are to the root, the greater the performance times due to the increased cost of PIMT/PDMT.

This has more effect on insertions since val and cont have a bigger effect, especially for

Execute Update and Update Lattice. All the differences are already visible in the comparison

of insertions and deletions. The main difference between these results is the increased time

for Compute Delta Tables. The val and conts are not stored for deletions and consequently

do not affect the performance of this operation but their increasing number and proximity

to the root has an impact on insertions. Update Source differs due to the same reasons as

insert and delete comparisons and caching in Saxon.

6.2 View Update 161

6.2 View Update

This section discusses the behaviour observed from the view update experiments. Some of

these observations were similar for both update types: insertions and deletions. However,

others varied depending on the update. The view update method was split into several

stages. These stages are discussed in Section 5.2. The insertion results are discussed in

Section 6.2.1 and the deletion results in Section 6.2.4.

6.2.1 Insertions

The performance of each stage was affected by different factors. These revolved around

the view definition; the number of tuples in the view; the number of delta tables; and the

proximity of the target node(s) to the view’s root or leaves.

Find Target Nodes increased with the path length. This was due to the tree structure

of XML which results in the number of target nodes generally increasing with proximity to

the leaves. The number of tuples in the view also contributes to the performance.

As an XML document is a tree, the number of nodes increases with each level. Therefore,

the Compute Delta Tables time increases with the proximity of the target node(s) to the

view leaves due to the larger number of delta tuples. This can be seen in Tables 5.16, 5.17,

and 5.18 and Figures 5.15, 5.16, and 5.17.

The query doesn’t affect the time to Get Update Expression. This is affected by the view

definition and the pruning methods. Despite queries near the root having more delta tables

but fewer tuples, the time difference is negligible.

The Build Lattice time only relies on the view definition. The performance is also affected

by the number of view tuples and not the number of applicable tuples returned from the

document. Execute Update behaves similarly to view maintenance as it is only affected

by the number of delta tuples and the number of expressions left after pruning. It is not

dependent on the query type. The target node(s) position in relation to the root is also of

importance with the number of target nodes decreasing as the root is approached. However,

the effect is negligible for the insertion tests as they were inserting small XML fragments.

This behaviour is more noticeable in the deletion tests, as the delta tables were larger, this

162 Discussion

is discussed further in Section 6.2.4.

Update Lattice time increases with the target node(s) proximity to the view root. The

closer to the root, the more snowcaps are affected, resulting in more joins being performed.

The number of delta tuples is also a contributing factor as it was for view maintenance.

Similarly to view maintenance Update Source is uniform regardless of the number of delta

tables and their size, as it is dominated by input/output of files rather than number of target

nodes/size of the XML fragment.

6.2.2 Scalability

View update scales linearly for insertions on document sizes up to 10MB. This is clear from

the results shown in Figure 5.19. All results grow gracefully with view size except Get Update

Expression which is uniform as it is not affected by the document size only the view.

6.2.3 Varying Annotations

Similarly to view maintenance, the greater the number of val and conts and the closer they

are to the root, the greater the performance times due to the increased cost of PIMT - the

same algorithms as for view maintenance are used for modifications as they only affect the

view, not the documents. These results can be seen in Figure 5.20. These results follow the

same trends as view maintenance insertions (see Figure 5.7) as the val and conts affect the

views and not the documents.

6.2.4 Deletions

The deletion results are only discussed briefly as they generally perform in a similar way to

insertions (see Tables 5.22, 5.23, and 5.24 and Figures 5.21, 5.22 and 5.23). All the queries

for view update are linear, resulting in similar Find Target Nodes times. Performance time

is also affected by the number of tuples in the view and the target node position relative

to the root in the view. The target nodes are taken directly from the tuples. Therefore,

performance is better when closer to the root because the whole tuple doesn’t need to be

checked, only up to the target node. Compute Delta Tables decreases with path length as

6.2 View Update 163

the number of delta tables decreases. This results in a slight difference in the results for

Execute Update due to the semantics of delta tables for deletions. The performance time

decreases as the target node(s) approach the view leaves. This is due to there being fewer

delta tables and more of the update expression is precalculated by the lattice, resulting in

less work having to be performed to evaluate the update expression.

6.2.5 Scalability

View update scales linearly for deletions on document sizes up to 10MB. This is clear from

the results shown in Figure 5.25. Update Source was the most dominant time but not

the most important. The behaviour was similar to insertions in most cases. As document

size grew, the time to Update Lattice exceeded the time to Build Lattice. This was due to

Update Lattice having to search all the tuples in each affected lattice node after each update.

This eventually became more expensive than the time to perform the joins to Build Lattice.

These results suggest that for larger document sizes the lattice is inefficient for view update

deletions and should therefore not be used.

6.2.6 Varying Annotations

Varying val and conts only affects the operations involving the view. Therefore, it follows

the same trends as view maintenance deletions.

6.2.7 Comparison of Insertions and Deletions

As in view maintenance less significance is placed on the Build Lattice and Update Source

times for the same reasons. The most dominant time for view update insertions is Find

Target Nodes. Compute Delta Tables can also dominate in cases of large numbers of target

nodes, i.e., Q2. Conversely, deletions are almost always dominated by Execute Update and

Update Lattice. When there are large number of delta tuples Update Lattice dominates, e.g.,

Table 5.23 and Figure 5.22.

Some of the times were comparable for insertions and deletions due to the same or similar

methods being utilised. The Find Target Nodes time was greater for insertions. This is due

164 Discussion

to requiring source queries to ensure the new IDs in the delta tuples are correct and do not

reuse the ID of another element outside the view but present in the source document.

Compute Delta Tables took significantly longer for insertions but this is only noticeable

when the documents get larger. This was due to the delta tuples having to be calculated for

insertions. However, for deletions they could just be taken straight from the view.

Similarly to view maintenance the Execute Update time was greater for deletions. This

was again the result of deletions generally having more tuples to remove than the insertions

having to insert, with the number increasing closer to the root. For example, for view Q1

and update X1 L for the 1MB document there is only one new tuple. However, for update

DeleteX1 L there are 708 tuples to be removed. Other similarities to view maintenance exist

with Update Lattice which is faster for insertions but may not always be, for the same reasons

as view maintenance - see Section 6.1.9.

Get Update Expression is similar and uniform for both. Despite the deletions generally

having more delta tuples the effect appears to be negligible in the case of view updates.

This is due to the difference between numbers of tuples being less significant than in view

maintenance, as generally speaking the number of deletion delta tuples in view maintenance

is much larger.

Varying Annotations

In the same way as with view maintenance, for insertions and deletions, the greater the

number of val and conts and the closer they are to the root, the greater the performance

times due to the increased cost of PIMT/PDMT.

6.3 View Maintenance vs View Update

View maintenance and view update are two inverse problems, however, both can be used to

achieve the same result. This is limited to the extent that view update can only handle the

view maintenance updates where all the nodes in the query specifying the target node(s)

are contained within the view. For example, for view Q1 = /site/people/person[id][name]

and update A6A = /site/people/person[phone][homepage], processing via view update is

6.3 View Maintenance vs View Update 165

not feasible. This is due to there being hidden information, i.e., it is not possible to tell

whether the nodes in the view have a phone and homepage child. Additionally, there may

be more person nodes in the source document but the view only knows about those with

id and name children. Generally, view update time is less than view maintenance time for

similar operations, e.g, see Table 5.28 and Figure 5.27. This is more evident for deletions.

This behaviour is a result of smaller lattices and the faster access time of the view as opposed

to the document for deletion target nodes. Therefore, where applicable, the view update

method can be used to improve the performance time of the view maintenance method.

There are various reasons for the view update method being more efficient. Find Target

Nodes involves querying the view rather than the document for deletions. Due to the view

generally being significantly smaller and having a faster access time, the performance is

improved. Compute Delta Tables is the same for insertions due to the same method being

used. This is affected by the number of target nodes, which is the same in these experiments.

However, deletions store all the target nodes and their descendants. This can result in a

much larger set of nodes for view maintenance as there are generally fewer nodes in a view,

therefore, fewer descendants. Build Lattice is improved by storing only the tuples which are

relevant to the view. Therefore, the lattice is smaller and takes less time to build. The view

maintenance lattice contains irrelevant tuples as the nodes are evaluated on the document

when it is built. For example, the leaf with pattern //name returns all name nodes in the

document. However, not all of these belong to person nodes. These are discarded by the

joins but the extra tuples result in extra work. Execute Update has better performance

times for view update. This is related again to the irrelevant tuples. However, a lot of the

results are close due to the lattice replacement, which is usually a join expression which has

removed the irrelevant tuples. The number of delta tuples can play a big role in this. The

number of tuples to be deleted is smaller for view update because there can be many hidden

from the view, i.e., descendants of a node in the document may not be present in the view.

This isn’t always a factor though as they still have to join with the view tuples so the view

maintenance would flush out the others - when replaced with a join from the lattice, which

is the common occurrence, replacement by just a leaf is rare which could potentially contain

irrelevant tuples in the lattice leaf, unlike view update. Update Lattice is generally quicker

166 Discussion

for view update due to similar reasons for the build time. There are usually more nodes than

those which belong to the view in the view maintenance lattice, and consequently there are

more tuples to join. Performance still relies on the number of tuples in the lattice and the

number of delta tuples. Finally, Update Source for the majority of the results is similar. The

same factors apply. However, view update can take longer if view tuples come from multiple

documents requiring update source to perform updates on multiple documents.

Overall view update performs better than view maintenance in the same scenario. This

is more evident for deletions but still holds true for the case of insertions.

6.4 Optimisations

In general, using optimisations for view maintenance improves the performance. This im-

provement is more significant as the percentage of the update pruned increases and as the

document sizes increase. For some of the smaller documents with lower pruning percentage,

the use of pruning is not always an improvement: for example, see Table 5.31 before 100% -

with the exception of 40% - and Table 5.33 for 40% and 60%. However, for pruning rule O1

it is always an improvement. Therefore, pruning rule O1 is always beneficial, whereas rules

O3 and I5 are only beneficial when the percentage pruned is large.

Optimisations for view update are beneficial for all rules with the exception of rule O3.

O3 only appears to be useful for smaller document/view sizes, see for example Table 5.36.

However, the other rules benefit view update with this benefit increasing with size, similarly

to view maintenance. Therefore, pruning rule O1 and I5 are always beneficial, but O3 is

only useful for smaller document/view sizes.

6.5 Additional Tests

6.5.1 Impact of Snowcaps versus Leaves

View Maintenance:

6.5 Additional Tests 167

In the snowcaps vs leaves experiments, the total times to evaluate the terms and update the

lattice for snowcap lattices and leaf lattices are presented for views Q4 and Q6 respectively.

Results are shown for view maintenance insertions and deletions and view update insertions

and deletions. These can be seen in Tables 5.38, 5.39, 5.40 and 5.41 and Figures 5.37,

5.38, 5.39 and 5.40, respectively. These results show that for view maintenance insertions

the snowcaps lattice is better than the leaves lattice for views of significant size but the

leaves lattice is better for smaller views. This can be seen by the difference in performance

between views Q4 (3 tuples) and Q6 (217 tuples).

For view maintenance deletions the snowcaps lattice is beneficial for both large and

small views. However, a more significant difference is shown for the smaller view for smaller

documents, there appears to be a crossover for the smaller view where the snowcaps lattice

becomes inefficient somewhere between a document size of 1 and 10MB.

View update shows the same behaviour for insertions. An exception is that for smaller

view sizes the snowcaps lattice is still better until the document size increases. In the

case of Q4, when the document size is 1MB and over. Deletions are only more efficient

using snowcaps for small document sizes. In these cases, the larger the view the better

the efficiency. These results suggest that efficiency can be improved by altering the lattice

structure based on the document/view size.

6.5.2 Comparison with previous work

The most closely related work to this thesis is in [6]. This is also an algebraic view main-

tenance method which can handle statement-level updates - expressed in a Galax algebraic

expression. However, views are represented as XQuery in contrast to this thesis which uses

XAMs. Both methods can support non-recursive views. Source queries in the Galax-based

system are rewritten to gather auxiliary information in a manner similar to the gathering

of auxiliary information to assign IDs for new tuples that is described in this thesis. The

quantity of this auxiliary data collected can be controlled by means of an external parameter.

However, if it is set too low then full recomputation may be required. The only comparable

control in the work of this thesis is the volume of data stored in the lattice - snowcaps vs

168 Discussion

leaves. However, the work described here will always result in incremental view mainte-

nance and not have to resort to full recomputation. The main difference is that the method

presented in this thesis is a general solution, whereas [6] is tied to the Galax algebra.

The boolean XPath incremental view maintenance problem is solved in [17]. This is a

subset of the view maintenance problem, solved in this thesis, which involves determining

if an XPath expression is still satisfied following an update. The views are represented as

XPath queries, in contrast to XAMs. However, they are not materialised. Additionally,

they do not support multiple returning nodes. An auxiliary data structure is used for

handling incremental updates. This data structure consists of a set of records for each

node in the document. The data contained in these records varies depending on the XPath

fragment being handled. Each record contains all the children of the node that satisfy

the query. This is in contrast to the lattice used in this thesis. Despite mostly focussing

on the boolean problem, view maintenance is considered for XPath. This method handles

node-level updates for insertions and relabelling, statement-level updates for deletions. The

system described in this thesis can support statement-level updates for all these situations

although relabelling must be modelled as a deletion followed by an insertion. A theoretical

approach is presented by these authors and evaluated by means of complexity results, in

contrast to being implemented and presented as performance results in this thesis.

The work presented in [120] is the closest non-algebraic method to this thesis. The main

difference is that it can only handle node-level updates, as opposed to statement-level.

The current work on view updates focuses on publishing relational data to XML and

maintaining these views. The Round-trip XML View Update Problem (RXU), a subcase of

XQuery view update, is handled in [141]. This involves loading the XML into a relational

database and then publishing XML views. The view update problem, therefore, involves

updating the view and translating the updates to relational updates, instead of updates on

the XML document. A similar problem - without the XML loading - is handled in [109]

where the XML view must adhere to a schema. A framework, UFilter [146] again handles

the view update translatability problem for arbitrary XML views using schema and data

checking. Virtual views are handled in [147] by translating updates into XML queries without

side-effects, if possible. It is extended to produce STAR [148] which can handle views with

6.6 Limitations 169

duplication. Finally, the idea of using existing relational view update methods was considered

in [144]. This involves reducing the XML view update problem to the relational view update

problem.

The work in this thesis does not handle recursion. However, [7] supports recursive XML

views populated from relational data. Recursive XPath queries can be handled by [149], in

addition to recursive views.

6.6 Limitations

This section will discuss the limitations of the view maintenance and view update methods.

6.6.1 General Limitations

Some general limitations apply to both the view maintenance and view update methods.

These methods can only handle positive XQuery and non-recursive views and updates. A

further limitation is a consequence of using XAMs. XAMs lack support for OR operators,

joins, or less than/greater than operators. The only comparison operation supported is

equality.

6.6.2 View Update Limitations

The only limitation specific to the view update problem is that branch and value predicates

can only be checked if they are contained in the view. Other applicable limitations are

covered by the general limitations.

6.6.3 Experimental Limitations

This section discusses limitations with the experiments. There was only one document in

the database for each test. This does not have much of an effect on the view maintenance

method as tuples from the wrong document would simply be discarded during the joins.

However, this could significantly modify the view update times if multiple documents were

affected by an update. Another limitation is that Get Update Expression didn’t have a huge

170 Discussion

variation in the number of delta tables contained in the update expression. This meant it

can not be said for sure that the number results in much of an effect. Further testing would

be required with larger numbers of view nodes to verify this claim. A final limitation is that

IDs suffer from the overflow problem, defined in [44]3.

6.7 Future Work

Based on the limitations, the following areas are proposed as future work. Expand the

number of update types handled. This is to allow the methods to support a larger part

of XQuery Update. Currently insert as last child and delete are handled. Other types to

include would be: insert the trees in P as first children of node v (ins↙(v, P)) and insert

the trees in P as children of node v at child position i (ins↓(v, P, i)). However, this is just

an implementation issue and would fit easily into the framework. Further work will be on

improving the overall efficiency of the method by, e.g, making use of additional information

to improve pruning. This could be achieved by making use of schemas when available. In

situations where schemas are available term pruning can be improved, based on Appendix A.

Finally, some focus will be on providing support for negative XQuery and recursive views

and updates. This will allow a larger fragment of XQuery to be supported by the methods.

This work has presented a similar incremental algebraic approach to view maintenance

and view update using generic operators. It has also shown that converting view maintenance

into view update, where possible, gives better performance times, as discussed in Section 6.3.

Finally, determining the question of whether dynamic reasoning improved the performance

time for view maintenance and view update was explored. It was found that for O1 that this

was always the case. However, for rule O3 and I5 it was only beneficial when the percentage

pruned was high. For all the rules, the bigger the document, the larger the performance

benefit (when percentage pruned is high).

The main contribution of this thesis is methods which take a similar approach to solve

the view maintenance and view update problem. These methods are original as they can

handle statement-level updates which use generic operators and views returning data from

3When the ID size exceeds the number of bits assigned for storage.

6.7 Future Work 171

multiple nodes.

172 Discussion

7
Conclusion

This thesis has focussed on developing algebraic incremental methods to develop a single

consistent solution for the problems of view maintenance and view update (RQ1). Similar

incremental algebraic methods were developed for solving the problems of view maintenance

and view update, using generic operators and supporting statement-level updates and multi-

ple returned nodes. Both these methods followed the same process to support updates with

differences occurring in the implementation of certain stages.

Views are typically smaller in size than documents. Based on this, a question this thesis

aimed to answer was if view maintenance could be expressed as view update would it improve

the performance time (RQ2). The smaller data set used in view update might suggest better

performance but the necessary differences in implementation of certain stages may be slower

in certain cases resulting in similar, if not worse times for view update rather than view

maintenance. It was found that, in general, view update was faster than view maintenance

173

174 Conclusion

for identical updates that guaranteed the same results. This was due to the smaller lattices

and the faster access time to the view. The improved performance was more prominent for

deletions. This is because a deleted node also deletes all of it’s descendants. In most cases

there are more descendants within a source document than are contained in a view, i.e, more

delta tables. Therefore, where applicable, the view update method can be used to improve

the performance time of the view maintenance method.

The developed methods initially only performed pruning on the algebraic expression.

However, this is extended to include dynamic reasoning on the target nodes, based on [156].

This extension was included as another question this thesis aimed to answer was if dynamic

reasoning improved the performance time for view maintenance and view update (RQ3). For

view maintenance the most effective pruning rule was O11. The other pruning rules, O32 and

O53, were only beneficial when the percentage pruned was large. The results were similar

for view update. Rules O1 and I5 were always beneficial with increasing effectiveness with

document/view size. The results for O3 differed in that it was only beneficial for smaller

document/view sizes. Therefore, most dynamic reasoning reduction rules are effective for

view maintenance and view update, with this benefit increasing with the size of the data

set/percentage pruned.

The main contribution of this thesis is the development of similar incremental algebraic

methods which provide a consistent solution to the view maintenance and view update

problems. The originality of these methods is their ability to handle statement-level updates

using generic operators and views returning data from multiple nodes. It has also shown that,

where possible, expressing view maintenance as view update improves the performance time,

with the difference being more significant for deletions. Finally, it has shown that dynamic

reasoning rules can be used to improve the performance time for the view maintenance and

view update methods.

1Deletion following an insertion or deletion on the same node.
2An insertion or deletion on a node, followed by the deletion of an ancestor of this node.
3Combine two insertions on the same node into one.

References

[1] A. Arion. Xml access modules: Towards physical data independence in xml databases.

In In XIME-P (2005).

[2] M. Bojanczyk and P. Parys. XPath Evaluation in Linear Time. J. ACM 58(4), 17:1

(2011). URL http://doi.acm.org/10.1145/1989727.1989731.

[3] L. Xu, T. W. Ling, H. Wu, and Z. Bao. DDE: from Dewey to a fully dynamic XML

labeling scheme. In SIGMOD (2009).

[4] A. Balmin, Y. Papakonstantinou, and V. Vianu. Incremental Validation of

XML Documents. ACM Trans. Database Syst 29(4), 710 (2004). URL

http://doi.acm.org/10.1145/1042046.1042050.

[5] V. Josifovski, M. Fontoura, and A. Barta. Querying XML Streams. VLDB J 14(2),

197 (2005). URL http://dx.doi.org/10.1007/s00778-004-0123-7.

[6] J. N. Foster, R. Konuru, J. Simeon, and L. Villard. An algebraic approach to view

maintenance for XQuery. In PLAN-X workshop (2008).

[7] B. Choi, G. Cong, W. Fan, and S. Viglas. Updating Recursive XML Views of Relations.

J. Comput. Sci. Technol. 23(4) (2008).

[8] The XML Query Language (2009). http://www.w3.org/XML/Query.

[9] XML Path Language (1999). http://www.w3.org/TR/xpath/.

175

176 References

[10] A. Balmin, F. Ozcan, K. Beyer, R. Cochrane, and H. Pirahesh. A framework for using

materialized XPath views in XML query processing. In VLDB (2004).

[11] M. El-Sayed, E. A. Rundensteiner, and M. Mani. Incremental maintenance of mate-

rialized XQuery views. In ICDE (2006).

[12] B. Mandhani and D. Suciu. Query caching and view selection for XML databases. In

VLDB (2005).

[13] N. Onose, A. Deutsch, Y. Papakonstantinou, and E. Curtmola. Rewriting nested XML

queries using nested views. In SIGMOD (2006).

[14] W. Xu and M. Ozsoyoglu. Rewriting XPath queries using materialized views. In VLDB

(2005).

[15] The XQuery Update Facility 1.0 (2009). http://www.w3.org/TR/2009/CR-xquery-update-

10-20090609/.

[16] A. Gupta and I. S. Mumick. Maintenance of Materialized Views: Problems, Techniques

and Applications. IEEE Quarterly Bulletin on Data Engineering; Special Issue on

Materialized Views and Data Warehousing 18(2), 3 (1995).

[17] H. Björklund, W. Gelade, M. Marquardt, and W. Martens. Incremental XPath Eval-

uation. In ICDT (2009).

[18] A. Sawires, J. Tatemura, O. Po, D. Agrawal, and K. S. Candan. Incremental mainte-

nance of path-expression views. In SIGMOD (2005).

[19] A. Sawires, J. Tatemura, O. Po, D. Agrawal, A. E. Abbadi, and K. S. Candan. Main-

taining XPath views in loosely coupled systems. In VLDB (2006).

[20] I. Manolescu, K. Karanasos, V. Vassalos, and S. Zoupanos. Efficient XQuery rewriting

using multiple views. In ICDE (2011).

[21] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible

markup language (xml) 1.0 (fifth edition). World Wide Web Consortium, Recommen-

dation REC-xml-20081126 (2008).

References 177

[22] C. F. Goldfarb and P. Prescod. Charles F. Goldfarb’s XML Handbook (Prentice-Hall,

Upper Saddle River, New Jersey, 2003), 5th ed.

[23] Microsoft SQL Server. http://www.microsoft.com/sqlserver/en/us/default.aspx.

[24] EMC Documentum xDB. http://uk.emc.com/products/detail/software2/documentum-xdb.htm.

[25] Mark Logic Server. http://www.marklogic.com/.

[26] M. Benedikt and C. Koch. XPath Leashed. ACM Comput. Surv 41(1) (2008). URL

http://doi.acm.org/10.1145/1456650.1456653.

[27] F. Neven. Automata Theory for XML Researchers. ACM SIGMOD Record 31(3), 39

(2002).

[28] G. Gottlob, C. Koch, and R. Pichler. Efficient Algorithms for Process-

ing XPath Queries. ACM Trans. Database Syst 30(2), 444 (2005). URL

http://doi.acm.org/10.1145/1071610.1071614.

[29] M. Bojanczyk and P. Parys. XPath Evaluation in Linear Time. In M. Lenz-

erini and D. Lembo, eds., Proceedings of the Twenty-Seventh ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2008,

June 9-11, 2008, Vancouver, BC, Canada, pp. 241–250 (ACM, 2008). URL

http://dl.acm.org/citation.cfm?id=1376916.

[30] P. Parys. XPath Evaluation in Linear Time with Polynomial combined complexity.

In J. Paredaens and J. Su, eds., Proceedings of the twenty-eighth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems, PODS’09, Provi-

dence, Rhode Island, June 29–July 1, 2009, pp. 55–64 (ACM Press, pub-ACM:adr,

2009).

[31] M. Götz, C. Koch, and W. Martens. Efficient Algorithms for Descendant-

only Tree Pattern queries. Inf. Syst 34(7), 602 (2009). URL

http://dx.doi.org/10.1016/j.is.2009.03.010.

178 References

[32] C. R, J. Simon, and M. Fernndez. A Complete and Efficient Algebraic Compiler for

Xquery. In In ICDE (2006).

[33] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J. Teubner. Mon-

etDB/XQuery: a Fast XQuery Processor powered by a Relational Engine. In S. Chaud-

huri, V. Hristidis, and N. Polyzotis, eds., Proceedings of the ACM SIGMOD Interna-

tional Conference on Management of Data, Chicago, Illinois, USA, June 27-29, 2006,

pp. 479–490 (ACM, 2006). URL http://doi.acm.org/10.1145/1142473.1142527.

[34] P. E. O’Neil, E. J. O’Neil, S. Pal, I. Cseri, G. Schaller, and N. Westbury. ORDPATHs:

Insert-Friendly XML Node Labels. In SIGMOD (2004).

[35] X. Wu, M. L. Lee, and W. Hsu. A Prime Number Labeling Scheme for Dynamic

Ordered XML Trees. Data Engineering, International Conference on 0, 66 (2004).

[36] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and

C. Zhang. Storing and Querying Ordered XML using a Relational Database System. In

M. Franklin, B. Moon, and A. Ailamaki, eds., Proceedings of the ACM SIGMOD In-

ternational Conference on Management of Data, June 3–6, 2002, Madison, WI, USA,

pp. 204–215 (ACM Press, pub-ACM:adr, 2002).

[37] Abiteboul, Alstrup, Kaplan, Milo, and Rauhe. Compact Labeling Scheme for Ancestor

Queries. SICOMP: SIAM Journal on Computing 35 (2006).

[38] E. Cohen, H. Kaplan, and T. Milo. Labeling dynamic XML trees. In Proceedings of the

twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems (PODS-02), pp. 271–281 (ACM Press, New York, 2002).

[39] Y. Xu and Y. Papakonstantinou. Efficient Keyword Search for Smallest LCAs in

XML Databases. In F. Özcan, ed., Proceedings of the ACM SIGMOD International

Conference on Management of Data, Baltimore, Maryland, USA, June 14-16, 2005,

pp. 537–538 (ACM, 2005). URL http://doi.acm.org/10.1145/1066157.1066217.

[40] C. Sun, C. Y. Chan, and A. K. Goenka. Multiway SLCA-based keyword search in

XML data. In C. L. Williamson, M. E. Zurko, P. F. Patel-Schneider, and P. J. Shenoy,

References 179

eds., Proceedings of the 16th International Conference on World Wide Web, WWW

2007, Banff, Alberta, Canada, May 8-12, 2007, pp. 1043–1052 (ACM, 2007). URL

http://doi.acm.org/10.1145/1242572.1242713.

[41] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman. On Supporting Contain-

ment Queries in Relational Database Management Systems. In T. Sellis and S. Mehro-

tra, eds., Proceedings of the 2001 ACM SIGMOD International Conference on Man-

agement of Data 2001, Santa Barbara, California, United States, May 21–24, 2001,

pp. 425–436 (ACM Press, pub-ACM:adr, 2001).

[42] Q. Li and B. Moon. Indexing and Querying XML Data for Regular Path Expres-

sions. In P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao,

and R. T. Snodgrass, eds., Proceedings of the Twenty-seventh International Confer-

ence on Very Large Data Bases: Roma, Italy, 11–14th September, 2001, pp. 361–

370 (Morgan Kaufmann Publishers, pub-MORGAN-KAUFMANN:adr, 2001). URL

http://www.vldb.org/conf/2001/P361.pdf.

[43] X. Wu, M. L. Lee, and W. Hsu. A prime number labeling scheme for dynamic ordered

xml trees. In ICDE (2004).

[44] C. Li and T. W. Ling. QED: a Novel Quaternary Encoding to completely

avoid Re-Labeling in XML Updates. In O. Herzog, H.-J. Schek, N. Fuhr,

A. Chowdhury, and W. Teiken, eds., Proceedings of the 2005 ACM CIKM Inter-

national Conference on Information and Knowledge Management, Bremen, Ger-

many, October 31 - November 5, 2005, pp. 501–508 (ACM, 2005). URL

http://doi.acm.org/10.1145/1099554.1099692.

[45] C. Li, T. W. Ling, and M. Hu. Efficient Processing of Updates in Dynamic

XML Data. In L. Liu, A. Reuter, K.-Y. Whang, and J. Zhang, eds., Proceed-

ings of the 22nd International Conference on Data Engineering, ICDE 2006, 3-

8 April 2006, Atlanta, GA, USA, p. 13 (IEEE Computer Society, 2006). URL

http://doi.ieeecomputersociety.org/10.1109/ICDE.2006.58.

180 References

[46] L. Xu, Z. Bao, and T. W. Ling. A Dynamic Labeling Scheme Using Vectors. In R. Wag-

ner, N. Revell, and G. Pernul, eds., Database and Expert Systems Applications, 18th

International Conference, DEXA 2007, Regensburg, Germany, September 3-7, 2007,

Proceedings, vol. 4653 of Lecture Notes in Computer Science, pp. 130–140 (Springer,

2007). URL http://dx.doi.org/10.1007/978-3-540-74469-6 14.

[47] C. Li, T. W. Ling, and M. Hu. Efficient Updates in Dynamic XML Data:

from Binary String to Quaternary String. VLDB J 17(3), 573 (2008). URL

http://dx.doi.org/10.1007/s00778-006-0021-2.

[48] M. F. O’Connor and M. Roantree. EBSL: Supporting Deleted Node Label Reuse in

XML. In M.-L. Lee, J. X. Yu, Z. Bellahsene, and R. Unland, eds., Database and XML

Technologies - 7th International XML Database Symposium, XSym 2010, Singapore,

September 17, 2010. Proceedings, vol. 6309 of Lecture Notes in Computer Science, pp.

73–87 (Springer, 2010). URL http://dx.doi.org/10.1007/978-3-642-15684-7.

[49] C. Li, T. W. Ling, and M. Hu. Reuse or Never Reuse the Deleted Labels in

XML Query Processing Based on Labeling Schemes. In M.-L. Lee, K.-L. Tan,

and V. Wuwongse, eds., Database Systems for Advanced Applications, 11th Interna-

tional Conference, DASFAA 2006, Singapore, April 12-15, 2006, Proceedings, vol.

3882 of Lecture Notes in Computer Science, pp. 659–673 (Springer, 2006). URL

http://dx.doi.org/10.1007/11733836 46.

[50] H.-K. Ko and S. Lee. A Binary String Approach for Updates in Dynamic Or-

dered XML Data. IEEE Trans. Knowl. Data Eng 22(4), 602 (2010). URL

http://dx.doi.org/10.1109/TKDE.2009.87.

[51] M. F. O’Connor and M. Roantree. SCOOTER: A Compact and Scalable Dynamic

Labeling Scheme for XML Updates. In S. W. Liddle, K.-D. Schewe, A. M. Tjoa,

and X. Zhou, eds., Database and Expert Systems Applications - 23rd International

Conference, DEXA 2012, Vienna, Austria, September 3-6, 2012. Proceedings, Part I,

vol. 7446 of Lecture Notes in Computer Science, pp. 26–40 (Springer, 2012). URL

http://dx.doi.org/10.1007/978-3-642-32600-4.

References 181

[52] C. Ghezzi and D. Mandrioli. Augmenting Parsers to Support Incrementality. J. of the

ACM 27(3), 564 (1980).

[53] Wagner and Graham. Efficient and Flexible Incremental Parsing. ACMTOPLAS:

ACM Transactions on Programming Languages and Systems 20 (1998).

[54] F. Jalili and J. H. Gallier. Building Friendly Parsers. In Conference Record of the

Ninth Annual ACM Symposium on Principles of Programming Languages, pp. 196–206

(ACM SIGACT-SIGPLAN, Albuquerque, New Mexico, 1982).

[55] J.-M. Larchevêque. Optimal Incremental Parsing. ACM Transactions on Programming

Languages and Systems 17(1), 1 (1995).

[56] L. Petrone. Reusing Batch Parsers as Incremental Parsers. Lecture Notes in Computer

Science 1026, 111 (1995).

[57] A. M. Murching, Y. V. Prasad, and Y. N. Srikant. Incremental Re-

cursive Descent Parsing. Comput. Lang 15(4), 193 (1990). URL

http://dx.doi.org/10.1016/0096-0551(90)90020-P.

[58] W. X. Li. A Simple and Efficient Incremental LL(1) Parsing. In M. Bartosek,

J. Staudek, and J. Wiedermann, eds., SOFSEM ’95, 22nd Seminar on Current Trends

in Theory and Practice of Informatics, Milovy, Czech Republic, November 23 - Decem-

ber 1, 1995, Proceedings, vol. 1012 of Lecture Notes in Computer Science, pp. 399–404

(Springer, 1995). URL http://dx.doi.org/10.1007/3-540-60609-2 24.

[59] XMLmind XML Editor. Available online at http://www.xmlmind.com/.

[60] XMLSpy XML Editor. Available online at http://www.altova.com/xml-editor/.

[61] D. Barbosa, A. O. Mendelzon, L. Libkin, L. Mignet, and M. Arenas. Efficient Incre-

mental Validation of XML Documents. In Z. M. Özsoyoglu and S. B. Zdonik, eds.,

Proceedings of the 20th International Conference on Data Engineering, ICDE 2004,

30 March - 2 April 2004, Boston, MA, USA, pp. 671–682 (IEEE Computer Society,

2004). URL http://doi.ieeecomputersociety.org/10.1109/ICDE.2004.1320036.

182 References

[62] XML Schema part 1: Structures (2001). http://www.w3.org/TR/xmlschema-1/.

[63] Y. Papakonstantinou and V. Vianu. DTD Inference for Views of XML Data. In

Proceedings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Prin-

ciples of Database Systems, pp. 35–46 (Dallas, Texas, 2000).

[64] M. Altinel and M. J. Franklin. Efficient Filtering of XML Documents for Selective Dis-

semination of Information. In A. El Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal,

N. Kamel, G. Schlageter, and K.-Y. Whang, eds., VLDB 2000, Proceedings of 26th

International Conference on Very Large Data Bases, September 10–14, 2000, Cairo,

Egypt, pp. 53–64 (Morgan Kaufmann Publishers, pub-MORGAN-KAUFMANN:adr,

2000). URL http://www.vldb.org/dblp/db/conf/vldb/AltinelF00.html.

[65] I. Avila-campillo, T. J. Green, A. Gupta, M. Onizuka, D. Raven, and D. Suciu.

XMLTK: An XML Toolkit for Scalable XML Stream Processing. In In Proceedings

of PLANX (2002).

[66] C. Y. Chan, P. Felber, M. N. Garofalakis, and R. Rastogi. Efficient Filtering of

XML Documents with XPath Expressions. In R. Agrawal and K. R. Dittrich, eds.,

Proceedings of the 18th International Conference on Data Engineering, San Jose, CA,

USA, February 26 - March 1, 2002, pp. 235–244 (IEEE Computer Society, 2002). URL

http://doi.ieeecomputersociety.org/10.1109/ICDE.2002.994713.

[67] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To. YFilter: Efficient and Scal-

able Filtering of XML Documents. In R. Agrawal and K. R. Dittrich, eds., Proceed-

ings of the 18th International Conference on Data Engineering, San Jose, CA, USA,

February 26 - March 1, 2002, pp. 341–342 (IEEE Computer Society, 2002). URL

http://doi.ieeecomputersociety.org/10.1109/ICDE.2002.994748.

[68] T. J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML Streams with

Deterministic Automata. In D. Calvanese, M. Lenzerini, and R. Motwani, eds., ICDT,

vol. 2572 of Lecture Notes in Computer Science, pp. 173–189 (Springer, 2003). URL

http://dx.doi.org/10.1007/3-540-36285-1 12.

References 183

[69] A. K. Gupta and D. Suciu. Stream Processing of XPath Queries with Predicates.

In ACM, ed., Proceedings of the 2003 ACM SIGMOD International Conference on

Management of Data 2003, San Diego, California, June 09–12, 2003, pp. 419–430

(ACM Press, pub-ACM:adr, 2003).

[70] D. Olteanu, T. Kiesling, and F. Bry. An Evaluation of Regular Path Expressions with

Qualifiers against XML Streams. In U. Dayal, K. Ramamritham, and T. M. Vija-

yaraman, eds., Proceedings of the 19th International Conference on Data Engineering,

March 5-8, 2003, Bangalore, India, pp. 702–704 (IEEE Computer Society, 2003). URL

http://doi.ieeecomputersociety.org/10.1109/ICDE.2003.1260841.

[71] F. Peng and S. S. Chawathe. XPath Queries on Streaming Data. In ACM, ed.,

Proceedings of the 2003 ACM SIGMOD International Conference on Management of

Data 2003, San Diego, California, June 09–12, 2003, pp. 431–442 (ACM Press, pub-

ACM:adr, 2003).

[72] Bar-Yossef, Fontoura, and Josifovski. On the Memory Requirements of XPath Evalua-

tion over XML Streams. JCSS: Journal of Computer and System Sciences 73 (2007).

[73] B. Choi, M. Mahoui, and D. Wood. On the Optimality of Holistic Algo-

rithms for Twig Queries. In V. Maŕık, W. Retschitzegger, and O. Stepánková,

eds., Database and Expert Systems Applications, 14th International Conference,

DEXA 2003, Prague, Czech Republic, September 1-5, 2003, Proceedings, vol.

2736 of Lecture Notes in Computer Science, pp. 28–37 (Springer, 2003). URL

http://dx.doi.org/10.1007/978-3-540-45227-0 4.

[74] Grohe, Koch, and Schweikardt. Tight Lower Bounds for Query Processing on Stream-

ing and External Memory Data. TCS: Theoretical Computer Science 380 (2007).

[75] G. Dong and J. Su. Incremental maintenance of recursive views us-

ing relational calculus/SQL. SIGMOD Record 29(1), 44 (2000). URL

http://doi.acm.org/10.1145/344788.344808.

184 References

[76] R. Paige. Applications of Finite Differencing to Database Integrity Control and

Query/Transaction Optimization. In Advances in Data Base Theory, pp. 171–209

(1982).

[77] X. Qian and G. Widerhold. Incremental Recomputation of Active Relational Expres-

sions. tkde 3(3), 337 (1991).

[78] T. Griffin, L. Libkin, and H. Trickey. An Improved Algorithm for the Incremental

Recomputation of Active Relational Expressions. IEEE Transactions on Knowledge

and Data Engineering 9(3), 508 (1997).

[79] J.-M. Nicolas and K. Yazdanian. An Outline of BDGEN: A Deductive DBMS. In

Information Processing, pp. 711–717 (1983).

[80] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining Views Incrementally.

SIGMOD Record (ACM Special Interest Group on Management of Data) 22(2), 157

(1993).

[81] I. S. Mumick and O. Shmueli. Finiteness Properties of Database Queries. In Australian

Database Conference, pp. 274–288 (1993).

[82] I. S. Mumick and O. Shmueli. Universal Finiteness and Satisfiability. In ACM, ed.,

PODS ’94. Proceedings of the Thirteenth ACM SIGACT-SIGMOD-SIGART Sympo-

sium on Principles of Database Systems, May 24–26, 1994, Minneapolis, MN, vol. 13,

pp. 190–200 (ACM Press, pub-ACM:adr, 1994).

[83] J. D. Ullman. Principles of Database and Knowledge-Base Systems, vol. 2 (Computer

Science Press, 1989).

[84] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivastava. Answering Queries using

Views. In 14th ACM Symposium on Principles of Database Systems, pp. 95–104 (San

Jose, CA, 1995).

References 185

[85] J. Harrison and S. Dietrich. Maintenance of Materialized Views in Deductive

Databases: An Update Propagation Approach. In Workshop on Deductive Databases,

Washington DC (1992).

[86] J. A. Blakeley, P.-A. Larson, and F. W. Tompa. Efficiently Updating Materialized

Views. In ACM SIGMOD (1986).

[87] O. Shmueli and A. Itai. Maintenance of Views. In B. Yormark, ed., SIGMOD’84,

Proceedings of Annual Meeting, pp. 240–255 (Boston, Massachusetts, 1984).

[88] N. Roussopoulos. An Incremental Access Method for ViewCache: Concept, Algorithms,

and Cost Analysis. ACM Trans. on Database Sys. 16(3), 535 (1991).

[89] S. Ceri and J. Widom. Deriving Production Rules for Incremental View Maintenance.

In Proc. 17th Intl. Conf. on Very Large Data Bases (VLDB), pp. 577–589 (ACM

SIGMOD, Barcelona, Spain, 1991).

[90] V. Kuechenhoff. On the Efficient Computation of the Difference between Consecutive

Database States. In Proc. Conf. on Deductive and Object-oriented Databases (Munich,

Germany, 1991).

[91] Oracle. SQL Reference. www.oracle.com/technology/documentation/.

[92] T. Urpi and A. Olive. A Method for Change Computation in Deductive Databases. In

Proc. Int’l. Conf. on Very Large Data Bases, p. 225 (Vancouver, BC, Canada, 1992).

[93] G. Dong and R. Topor. Incremental Evaluation of Datalog Queries. In 1992 Internat.

Conference on Database Theory, Berlin (1992).

[94] G. Dong and J. Su. Incremental and Decremental Evaluation of Transitive Closure

Queries by First-Order Queries. In Proc. 16th Australian Computer Science Conference

(1993).

[95] A. Gupta, H. V. Jagadish, and I. S. Mumick. Data Integration Using Self-Maintainable

Views. Lecture Notes in Computer Science 1057, 140 (1996).

186 References

[96] J. A. Blakeley, N. Coburn, and P. Larson. Updating Derived Relations: Detecting

Irrelevant and Autonomously Computable Updates. ACM Transactions on Database

Systems 14(3), 369 (1989).

[97] C. Elkan. Independence of Logic Database Queries and Updates. In ACM SIGACT-

SIGMOD Symp. on Principles of Database Systems, Nashville (1990).

[98] A. Y. Levy and Y. Sagiv. Queries Independent of Updates. In 19th Conference on

Very Large Databases, pp. 171–181 (Dublin, Ireland, 1993).

[99] F. W. Tompa and J. A. Blakeley. Maintaining Materialized Views without Accessing

Base Data. Inform.Systems 13(4) (1988).

[100] A. Gupta and J. A. Blakeley. Maintaining Views using Materialized Views. Unpub-

lished document (1995).

[101] H. V. Jagadish, I. S. Mumick, and A. Silberschatz. View Maintenance Issues for

the Chronicle Data Model. In Proceedings of the ACM SIGACT-SIGMOD-SIGART

PODS, pp. 113–124 (San Jose, CA, 1995).

[102] A. Gupta. Partial Information based Integrity Constraint Checking. Ph.D. thesis,

Stanford University (1994).

[103] M. Fernandez, A. Morishima, and D. Suciu. Efficient Evaluation of XML Middle-

Ware Queries. In Proceedings of the 2001 ACM SIGMOD international conference on

Management of data, SIGMOD ’01, pp. 103–114 (ACM, New York, NY, USA, 2001).

URL http://doi.acm.org/10.1145/375663.375674.

[104] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita, and S. N. Subramanian.

XPERANTO: Middleware for Publishing Object-Relational Data as XML Documents.

In A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter,

and K.-Y. Whang, eds., VLDB 2000, Proceedings of 26th International Conference on

Very Large Data Bases, September 10-14, 2000, Cairo, Egypt, pp. 646–648 (Morgan

Kaufmann, 2000). URL http://www.vldb.org/conf/2000/P646.pdf.

References 187

[105] P. Bohannon, S. Ganguly, H. F. Korth, P. P. S. Narayan, and P. Shenoy. Optimizing

View Queries in ROLEX to Support Navigable Result Trees. In VLDB, pp. 119–130

(Morgan Kaufmann, 2002). URL http://www.vldb.org/conf/2002/S04P04.pdf.

[106] A. Deutsch, M. F. Fernandez, D. Florescu, A. Y. Levy, and D. Suciu. XML-QL: A

Query Language for XML. In WWW The Query Language Workshop (QL) (Cam-

bridge, MA, 1998). http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/.

[107] M. F. Fernandez, W.-C. Tan, and D. Suciu. SilkRoute: Trading between Relations and

XML. In Int’l World Wide Web Conf. (WWW) (Amsterdam, Netherlands, 2000).

[108] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey, B. G. Lindsay, H. Pirahesh,

and B. Reinwald. Efficiently Publishing Relational Data as XML documents. In VLDB

(Cairo, Egypt, 2000).

[109] P. Bohannon, B. Choi, and W. Fan. Incremental Evaluation of Schema-Directed XML

Publishing. In ACM, ed., Proceedings of the 2004 ACM SIGMOD International Con-

ference on Management of Data 2004, Paris, France, June 13–18, 2004, pp. 503–514

(ACM Press, pub-ACM:adr, 2004).

[110] M. Benedikt, C. Y. Chan, W. Fan, R. Rastogi, S. Zheng, and A. Zhou. DTD-Directed

Publishing with Attribute Translation Grammars. In VLDB, pp. 838–849 (Morgan

Kaufmann, 2002). URL http://www.vldb.org/conf/2002/S23P03.pdf.

[111] P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr. Query

Processing in a System for Distributed Databases (SDD-1). ACM Transactions on

Database Systems 6(4), 602 (1981).

[112] M. Benedikt, C.-Y. Chan, W. Fan, J. Freire, and R. Rastogi. Capturing both Types and

Constraints in Data Integration. In ACM, ed., Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data 2003, San Diego, California, June

09–12, 2003, pp. 277–288 (ACM Press, pub-ACM:adr, 2003).

[113] IBM. IBM DB2 Universal Database SQL Reference. www-

306.ibm.com/software/data/db2/.

188 References

[114] H. Liefke and S. B. Davidson. View Maintenance for Hierarchical Semistructured Data.

In Y. Kambayashi, M. K. Mohania, and A. M. Tjoa, eds., Data Warehousing and

Knowledge Discovery, Second International Conference, DaWaK 2000, London, UK,

September 4-6, 2000, Proceedings, vol. 1874 of Lecture Notes in Computer Science, pp.

114–125 (Springer, 2000). URL http://dx.doi.org/10.1007/3-540-44466-1 12.

[115] M. EL-Sayed, L. Wang, L. Ding, and E. A. Rundensteiner. An Algebraic Approach

for Incremental Maintenance of Materialized XQuery Views. In R. Chiang and E.-P.

Lim, eds., Proceedings of the Fourth International Workshop on Web Information and

Data Management (WIDM-02), pp. 88–91 (ACM Press, New York, 2002).

[116] K. Dimitrova, M. El-Sayed, and E. A. Rundensteiner. Order-Sensitive View Mainte-

nance of Materialized XQuery Views. In I.-Y. Song, S. W. Liddle, T. W. Ling, and

P. Scheuermann, eds., Conceptual Modeling - ER 2003, 22nd International Confer-

ence on Conceptual Modeling, Chicago, IL, USA, October 13-16, 2003, Proceedings,

vol. 2813 of Lecture Notes in Computer Science, pp. 144–157 (Springer, 2003). URL

http://dx.doi.org/10.1007/978-3-540-39648-2 14.

[117] C. Re, J. Siméon, and M. F. Fernández. A Complete and Efficient Algebraic Com-

piler for XQuery. In L. Liu, A. Reuter, K.-Y. Whang, and J. Zhang, eds., Pro-

ceedings of the 22nd International Conference on Data Engineering, ICDE 2006,

3-8 April 2006, Atlanta, GA, USA, p. 14 (IEEE Computer Society, 2006). URL

http://doi.ieeecomputersociety.org/10.1109/ICDE.2006.6.

[118] G. Ghelli, N. Onose, K. H. Rose, and J. Siméon. A Better Semantics for XQuery with

Side-Effects. In M. Arenas and M. I. Schwartzbach, eds., Database Programming Lan-

guages, 11th International Symposium, DBPL 2007, Vienna, Austria, September 23-

24, 2007, Revised Selected Papers, vol. 4797 of Lecture Notes in Computer Science, pp.

81–96 (Springer, 2007). URL http://dx.doi.org/10.1007/978-3-540-75987-4 6.

[119] G. Ghelli, C. Re, and J. Siméon. XQuery!: An XML Query Language with Side

Effects. In T. Grust, H. Höpfner, A. Illarramendi, S. Jablonski, M. Mesiti, S. Müller,

P.-L. Patranjan, K.-U. Sattler, M. Spiliopoulou, and J. Wijsen, eds., Current Trends in

References 189

Database Technology - EDBT 2006, EDBT 2006 Workshops PhD, DataX, IIDB, IIHA,

ICSNW, QLQP, PIM, PaRMA, and Reactivity on the Web, Munich, Germany, March

26-31, 2006, Revised Selected Papers, vol. 4254 of Lecture Notes in Computer Science,

pp. 178–191 (Springer, 2006). URL http://dx.doi.org/10.1007/11896548 17.

[120] A. Sawires, J. Tatemura, O. Po, D. Agrawal, and K. S. Candan. Incre-

mental Maintenance of Path Expression Views. In F. Özcan, ed., Proceedings

of the ACM SIGMOD International Conference on Management of Data, Bal-

timore, Maryland, USA, June 14-16, 2005, pp. 443–454 (ACM, 2005). URL

http://doi.acm.org/10.1145/1066157.1066208.

[121] A. Sawires, J. Tatemura, O. Po, D. Agrawal, A. E. Abbadi, and K. S. Candan.

Maintaining XPath views in loosely coupled systems. In U. Dayal, K.-Y. Whang,

D. B. Lomet, G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, and Y.-K.

Kim, eds., Proceedings of the 32nd International Conference on Very Large Data

Bases, Seoul, Korea, September 12-15, 2006, pp. 583–594 (ACM, 2006). URL

http://www.vldb.org/conf/2006/p583-sawires.pdf.

[122] World Wide Web Consortium (W3C). http://www.w3.org/.

[123] S. Abiteboul, O. Benjelloun, and T. Milo. The Active XML

Project: an overview. VLDB J 17(5), 1019 (2008). URL

http://dx.doi.org/10.1007/s00778-007-0049-y.

[124] S. Abiteboul and B. Marinoiu. Distributed Monitoring of Peer to Peer Systems. In

I. Fundulaki and N. Polyzotis, eds., 9th ACM International Workshop on Web Infor-

mation and Data Management (WIDM 2007), Lisbon, Portugal, November 9, 2007,

pp. 41–48 (ACM, 2007). URL http://doi.acm.org/10.1145/1316902.1316910.

[125] R. Ennals and D. Gay. User-Friendly Functional Programming for Web

Mashups. In R. Hinze and N. Ramsey, eds., Proceedings of the 12th ACM

SIGPLAN International Conference on Functional Programming, ICFP 2007,

190 References

Freiburg, Germany, October 1-3, 2007, pp. 223–234 (ACM, 2007). URL

http://doi.acm.org/10.1145/1291151.1291187.

[126] S. Abiteboul, P. Bourhis, and B. Marinoiu. Incremental view maintenance for active

documents. In O. Boucelma, M.-S. Hacid, T. Libourel, and J.-M. Petit, eds., 23èmes

Journées Bases de Données Avancées, BDA 2007, Marseille, 23-26 Octobre 2007,

Actes (Informal Proceedings) (2007).

[127] S. Abiteboul, P. Bourhis, and B. Marinoiu. Efficient maintenance techniques for views

over active documents. In EDBT (2009).

[128] Balbin and K. Ramamohanarao. A Generalization of the Differential Approach to

Recursive Query Evaluation. The Journal of Logic Programming 4(3), 259 (1987).

[129] C. Beeri and R. Ramakrishnan. On the Power of Magic. In Proc. ACM SIGACT-

SIGMOD Symp. on Principles of Database Sys., p. 269 (San Diego, CA, 1987).

[130] L. Vieille. Recursive Query Processing: The Power of Logic. Theoretical Computer

Science 69(2) (1989).

[131] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Constraint Query Languages. In Proc.

ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Sys. (Nashville,

TN, 1990).

[132] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases (Addison-Wesley,

Reading, Massachusetts, 1995).

[133] U. Dayal and P. Bernstein. On the Correct Translation of Update Operations on

Relational Views. ACM Transactions on Database Systems 7(3) (1982).

[134] U. Dayal and P. A. Bernstein. On the Updatability of Network Views - Extending

Relational View Theory to the Network Model. Inf. Sys. 7(1), 29 (1982).

[135] Cosmadakis and Papadimitriou. Updates of Relational Views. JACM: Journal of the

ACM 31 (1984).

References 191

[136] F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Trans.

Database Syst. 6(4) (1981).

[137] F. Bancilhon and N. Spyratos. Update Semantics of Relational Views. ACM Trans.

on Database Sys. 6(4), 557 (1981).

[138] W. W. Armstrong. Dependency Structures of Database Relationships. In Proc. IFIP

’74, pp. 580–583 (North Holland, 1974).

[139] E. F. Codd. A Relational Model of Data for Large Shared Data Banks. Comm. ACM

13(6), pages 377 (1970).

[140] A. M. Keller. Algorithms for Translating View Updates to Database Updates for Views

Involving Selections, Projections, and Joins. ACM SIGACT-SIGMOD Symp. on Prin-

ciples of Database Systems, Portland OR, ACM SIGACT and SIGMOD (1985).

[141] L. Wang, M. Mulchandani, and E. A. Rundensteiner. Updating XQuery Views Pub-

lished over Relational Data: A Roundtrip Case Study. In Z. Bellahsene, A. B.

Chaudhri, E. Rahm, M. Rys, and R. Unland, eds., Database and XML Technologies,

First International XML Database Symposium, XSym 2003, Berlin, Germany, Septem-

ber 8, 2003, Proceedings, vol. 2824 of Lecture Notes in Computer Science, pp. 223–237

(Springer, 2003). URL http://dx.doi.org/10.1007/978-3-540-39429-7 15.

[142] X. Zhang, M. Mulchandani, S. Christ, B. Murphy, and E. A. Rundensteiner. Rain-

bow: Mapping-Driven XQuery Processing System. In M. Franklin, B. Moon, and

A. Ailamaki, eds., Proceedings of the ACM SIGMOD International Conference on

Management of Data, June 3–6, 2002, Madison, WI, USA, pp. 614–614 (ACM Press,

pub-ACM:adr, 2002).

[143] X. Zhang, K. Dimitrova, L. Wang, M. E. Sayed, B. Murphy, B. Pielech, M. Mulchan-

dani, L. Ding, and E. A. Rundensteiner. Rainbow: Multi-XQuery Optimization using

Materialized XML Views. In ACM, ed., Proceedings of the 2003 ACM SIGMOD In-

ternational Conference on Management of Data 2003, San Diego, California, June

09–12, 2003, pp. 671–671 (ACM Press, pub-ACM:adr, 2003).

192 References

[144] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. From XML View Updates to

Relational View Updates: Old Solutions to a New Problem. In M. A. Nascimento,

M. T. Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, eds.,

(e)Proceedings of the Thirtieth International Conference on Very Large Data Bases,

Toronto, Canada, August 31 - September 3 2004, pp. 276–287 (Morgan Kaufmann,

2004). URL http://www.vldb.org/conf/2004/RS7P3.PDF.

[145] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. On the Updatability of XML

Views over Relational Databases. In V. Christophides and J. Freire, eds., International

Workshop on Web and Databases, San Diego, California, June 12-13, 2003, pp. 31–36

(2003). URL http://www.cse.ogi.edu/webdb03/papers/06.pdf.

[146] L. Wang, E. A. Rundensteiner, and M. Mani. U-Filter: A Lightweight XML View

Update Checker. In L. Liu, A. Reuter, K.-Y. Whang, and J. Zhang, eds., Pro-

ceedings of the 22nd International Conference on Data Engineering, ICDE 2006,

3-8 April 2006, Atlanta, GA, USA, p. 126 (IEEE Computer Society, 2006). URL

http://doi.ieeecomputersociety.org/10.1109/ICDE.2006.163.

[147] L. Wang and E. A. Rundensteiner. On the Updatability of XML Views Pub-

lished over Relational Data. In P. Atzeni, W. W. Chu, H. Lu, S. Zhou, and

T. W. Ling, eds., Conceptual Modeling - ER 2004, 23rd International Confer-

ence on Conceptual Modeling, Shanghai, China, November 2004, Proceedings, vol.

3288 of Lecture Notes in Computer Science, pp. 795–809 (Springer, 2004). URL

http://dx.doi.org/10.1007/978-3-540-30464-7 59.

[148] L. Wang, E. A. Rundensteiner, and M. Mani. Updating XML Views Published over Re-

lational Databases: Towards the Existence of a Correct Update Mapping. Data Knowl.

Eng 58(3), 263 (2006). URL http://dx.doi.org/10.1016/j.datak.2005.07.003.

[149] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton.

Relational Databases for Querying XML Documents: Limitations and Opportunities.

In Proceedings of VLDB (Edinburgh, UK, 1999).

References 193

[150] L. Chen, A. Gupta, and M. E. Kurul. Stack-Based Algorithms for Pattern Matching

on DAGs. In K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten, P.-Å. Larson, and

B. C. Ooi, eds., Proceedings of the 31st International Conference on Very Large Data

Bases, Trondheim, Norway, August 30 - September 2, 2005, pp. 493–504 (ACM, 2005).

URL http://www.vldb2005.org/program/paper/wed/p493-chen.pdf.

[151] R. Schenkel, A. Theobald, and G. Weikum. Efficient Creation and Incre-

mental Maintenance of the HOPI Index for Complex XML Document Collec-

tions. In K. Aberer, M. J. Franklin, and S. Nishio, eds., Proceedings of

the 21st International Conference on Data Engineering, ICDE 2005, 5-8 April

2005, Tokyo, Japan, pp. 360–371 (IEEE Computer Society, 2005). URL

http://doi.ieeecomputersociety.org/10.1109/ICDE.2005.57.

[152] Microsoft. SQL Server. MSDN Library. msdn.microsoft.com/en-us/sqlserver/.

[153] S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Tree pattern query

minimization. VLDB J. 11(4) (2002).

[154] A. Arion, V. Benzaken, and I. Manolescu. XML access modules: Towards physical data

independence in XML databases. In XIME-P (2005).

[155] S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D. Srivastava.

Structural joins: A primitive for efficient XML query pattern matching. In ICDE

(2002).

[156] F. Cavalieri, G. Guerrini, and M. Mesiti. Dynamic reasoning on xml updates. In

Proceedings of the 14th International Conference on Extending Database Technol-

ogy, EDBT/ICDT ’11, pp. 165–176 (ACM, New York, NY, USA, 2011). URL

http://doi.acm.org/10.1145/1951365.1951387.

[157] M. Benedikt and J. Cheney. Destabilizers and independence of XML updates. In VLDB

(2010).

[158] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse. XMark:

A benchmark for XML data management. In VLDB (2002).

194 References

[159] M. Franceschet. XPathMark: An XPath benchmark for the XMark generated data. In

XSym (2005).

A
Exploiting Schema Information for Pruning

In some situations XML schemas may be available. In these cases it can’t be expected that

all updates adhere to the schema. Therefore, if a schema is present it can be used to reject

view maintenance updates which violate the schema or optimise the propagation of violation

free updates.

DTDs are represented as extended context-free grammars (CFGs). Each rule’s right-

hand side consists of a regular expression from an alphabet of terminal and non-terminal

symbols. For example, Figure A.1 describes two DTDs. In this Figure, a, b, c, d1, d2 and

x are terminal symbols and AS and BS are non-terminal symbols. DTD d1 (a) contains

mandatory edges, whereas DTD d2 (b) contains concatenation, disjunction and recursion.

195

196 Exploiting Schema Information for Pruning

d1 → AS d2 → AS

AS → a+ AS → (a, b, c)+

a → BS a → BS

BS → b+ BS → x |ε

b → c x → x |ε

c → ε b → ε

c → ε

(a) DTD d1 (b) DTD d2

Figure A.1: Sample DTDs, expressed as CFGs.

A.1 Examples

Example A.1.1. Consider the view v1 from Example 4.1.2 and an insertion u5, adding the

following XML fragment:

xml5 = 〈a〉〈b〉〈/b〉〈/a〉

Applying the update would make the document invalid with respect to the DTD in Fig-

ure A.1(a), since a c element is missing under b. More generally, from the DTD d1, one can

derive that the following statement must hold for any newly inserted XML tree:

∆+
c = ∅ ⇒ ∆+

b = ∅

Since this does not hold on the update u5, it is rejected due to its attempted schema

violation.

The same consideration applies to Figure A.1(b), in which a d2 element must have as

children the concatenation of a, b and c. Therefore, any insertion of an a element under the

root d2 must occur with b and c elements.

A.1 Examples 197

Example A.1.2. The DTD in Figure A.1(b) implies that the following statement must hold

on any XML forest inserted under a given node:

∆+
a 6= ∅ ⇒ (∆+

b 6= ∅ ∧∆+
c 6= ∅)

More generally, from the DTD rules, one can infer a set of constraints on the ∆+ tables,

and check them before applying the update. If any constraint is violated, the update is

rejected.

198 Exploiting Schema Information for Pruning

B
Test Set

These updates have been used to test the different kinds of XPath expressions that could

be present in identifying the target node(s) for deletions or insertions. These updates were

largely inspired by the XPathMark benchmark [159] and the views were created such that

they would be affected by these updates. These updates are the expressions that can be

represented within XML access modules [154], which are used to represent views. The

following kinds of XPath expressions are supported:

• L: Linear path expression

• LB: Linear with Boolean filter

• A: AND predicate (pipeline the filters)

• O: OR predicate (union the paths)

199

200 Test Set

• AO: AND + OR predicate (combination of the two former cases)

B.1 Linear Path Expression Updates

X1 L: insert name

– For each person add a new name

let $c:= doc (“auction.xml”)

for $person in $c/site/people/person

insert 〈name〉 Martin

〈name〉 and 〈/name〉

〈name〉 some 〈/name〉

〈name〉 test 〈/name〉

〈name〉 nodes 〈/name〉

〈/name〉

X2 L: insert increase

– For each bidder add a new increase

let $c:= doc (“auction.xml”)

for $bidder in $c//open auction/bidder

insert 〈increase〉 inserted 100.00

〈increase〉 and 〈/increase〉

〈increase〉 some 〈/increase〉

〈increase〉 test 〈/increase〉

〈increase〉 nodes 〈/increase〉

〈/increase〉

E6 L: insert item

– For each item insert a new item inside it

B.2 Linear with Boolean Filter Updates 201

let $c:= doc (“auction.xml”)

for $item in $c/site/regions/*/item

insert 〈item〉

〈location〉 Unknown 〈/location〉

〈quantity〉 1 〈/quantity〉

〈name〉 E6 L Item 〈/name〉

〈payment〉 Creditcard, Personal Check, Cash 〈/payment〉

〈/item〉

X17 L: insert item

– For each item insert a new item inside it

let $c:= doc (“auction.xml”)

for $item in $c/site/regions//item

insert 〈item〉

〈location〉 Unknown 〈/location〉

〈quantity〉 1 〈/quantity〉

〈name〉 X17 L Item 〈/name〉

〈payment〉 Creditcard, Personal Check, Cash 〈/payment〉

〈description〉 Test description 〈/description〉

〈/item〉

B.2 Linear with Boolean Filter Updates

B7 LB: insert name

– For each person with a profile with a salary attribute add a new name

let $c:= doc (“auction.xml”)

202 Test Set

for $name in $c//person[profile/@income]

insert 〈name〉 Jim

〈name〉 and 〈/name〉

〈name〉 some 〈/name〉

〈name〉 test 〈/name〉

〈name〉 nodes 〈/name〉

〈/name〉

B3 LB: insert name

– For each open auction with a reserve add a new name

let $c:= doc (“auction.xml”)

for $increase in $c/site/open auctions/open auction[reserve]/bidder

insert 〈increase〉 inserted 4.50

〈increase〉 and 〈/increase〉

〈increase〉 some 〈/increase〉

〈increase〉 test 〈/increase〉

〈increase〉 nodes 〈/increase〉

〈/increase〉

B5 LB: insert item

– For each item insert a new item inside it

let $c:= doc (“auction.xml”)

for $item in $c/site/regions/*/item[name]

insert 〈item〉

〈location〉 Unknown 〈/location〉

〈quantity〉 1 〈/quantity〉

〈name〉 B5 LB Item 〈/name〉

〈payment〉 Creditcard, Personal Check, Cash 〈/payment〉

B.3 AND Predicate Updates 203

〈/item〉

B.3 AND Predicate Updates

– For each person with a profile with a gender and a profile with an age add a new name

X6 A: insert name

let $c:= doc (“auction.xml”)

for $name in $c/site/people/person[phone and homepage]

insert 〈name〉 Mimma

〈name〉 and 〈/name〉

〈name〉 some 〈/name〉

〈name〉 test 〈/name〉

〈name〉 nodes 〈/name〉

〈/name〉

X3 A: insert increase

– For each open auction with privacy and a bidder add an increase

let $c:= doc (“auction.xml”)

for $increase in $c/site/open auctions/open auction[privacy and bidder]/bidder

insert 〈increase〉 inserted 150.00

〈increase〉 and 〈/increase〉

〈increase〉 some 〈/increase〉

〈increase〉 test 〈/increase〉

〈increase〉 nodes 〈/increase〉

〈/increase〉

B1 A: insert item

204 Test Set

– For each item from North America and South America insert a new item inside it.

let $c:= doc (“auction.xml”)

for $item in $c/site/regions[namerica and samerica]//item

insert 〈item〉

〈location〉 Canada 〈/location〉

〈quantity〉 1 〈/quantity〉

〈name〉 B1 A Item 〈/name〉

〈payment〉 Creditcard, Personal Check, Cash 〈/payment〉

〈/item〉

X20 A: insert item

– For each item with a description and a name insert a new item inside it

let $c:= doc (“auction.xml”)

for $item in $c/site/regions//item[description and name]

insert 〈item〉

〈location〉 Japan 〈/location〉

〈quantity〉 1 〈/quantity〉

〈name〉 X20 A Item 〈/name〉

〈payment〉 Creditcard, Personal Check, Cash 〈/payment〉

〈description〉 Test description 〈/description〉

〈/item〉

B.4 OR Predicate Updates

A7 O: insert name

– For each person with a phone or homepage add a new name

let $c:= doc (“auction.xml”)

B.4 OR Predicate Updates 205

for $name in $c/site/people/person[phone or homepage]

insert 〈name〉 Ioana

〈name〉 and 〈/name〉

〈name〉 some 〈/name〉

〈name〉 test 〈/name〉

〈name〉 nodes 〈/name〉

〈/name〉

X4 O: insert increase

– For each open auction with a bidder or privacy add a new increase

let $c:= doc (“auction.xml”)

for $increase in $c/site/open auctions/open auction[bidder or privacy]/bidder

insert 〈increase〉 inserted 200.00

〈increase〉 and 〈/increase〉

〈increase〉 some 〈/increase〉

〈increase〉 test 〈/increase〉

〈increase〉 nodes 〈/increase〉

〈/increase〉

X7 O: insert item

– For each item with a description or a name insert a new item inside it

let $c:= doc (“auction.xml”)

for $item in $c/site/regions//item[description or name]

insert 〈item〉

〈location〉 Unknown 〈/location〉

〈quantity〉 1 〈/quantity〉

〈name〉 X7 O Item 〈/name〉

〈payment〉 Creditcard, Personal Check, Cash 〈/payment〉

206 Test Set

〈/item〉

B1 O: insert item

– For each item with a description or a name insert a new item inside it

let $c:= doc (“auction.xml”)

for $item in $c/site/regions[namerica or samerica]//item

insert 〈item〉

〈location〉 Canada 〈/location〉

〈quantity〉 1 〈/quantity〉

〈name〉 B1 O Item 〈/name〉

〈payment〉 Creditcard, Personal Check, Cash 〈/payment〉

〈description〉 Test description 〈/description〉

〈/item〉

B.5 AND + OR Predicate Updates

A8 AO: insert name

– For each person with an address AND (phone OR homepage) AND (creditcard OR profile)

let $c:= doc (“auction.xml”)

for $name in $c/site/people/person[address and (phone or homepage) and (creditcard or

profile)]

insert 〈name〉 Angela

〈name〉 and 〈/name〉

〈name〉 some 〈/name〉

〈name〉 test 〈/name〉

〈name〉 nodes 〈/name〉

〈/name〉

B.5 AND + OR Predicate Updates 207

X5 AO: insert increase

– For each open auction with a current AND (bidder OR reserve) add a new increase

let $c:= doc (“auction.xml”)

for $increase in $c/site/open auctions/open auction[current and (bidder or reserve)]/bidder

insert 〈increase〉 inserted 250.00

〈increase〉 and 〈/increase〉

〈increase〉 some 〈/increase〉

〈increase〉 test 〈/increase〉

〈increase〉 nodes 〈/increase〉

〈/increase〉

X8 AO: insert item

– For each item with a description AND (name OR mailbox) insert a new item inside it

let $c:= doc (“auction.xml”)

for $item in $c/site/regions//item[description and (name or mailbox)]

insert 〈item〉

〈location〉 New Zealand 〈/location〉

〈quantity〉 1 〈/quantity〉

〈name〉 X8 AO Item 〈/name〉

〈payment〉 Creditcard, Personal Check, Cash 〈/payment〉

〈/item〉

208 Test Set

C
Experiments

C.1 View Maintenance

C.1.1 Insert

Query TN DT UE BL EU UL US

X1 L 228 123 8 679 177 100 797

X6 A 192 60 6 705 140 83 659

A7 O 347 133 7 684 291 166 867

A8 AO 623 85 9 686 472 356 808

B7 LB 175 73 5 666 152 82 659

Table C.1: Q1 Insert 100Kb

209

210 Experiments

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaJce	

Execute	
 Update	

Update	
 LaJce	

Update	
 Source	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 100KB	

Figure C.1: Q1 Insert Graph 100KB

Query TN DT UE BL EU UL US

X1 L 789 363 6 1360 338 160 1104

X6 A 604 104 9 1425 188 121 1034

A7 O 1173 371 10 1388 399 224 1416

A8 AO 1832 199 6 1446 621 293 1899

B7 LB 606 260 11 1378 270 127 1079

Table C.2: Q1 Insert 500Kb

C.1 View Maintenance 211

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 500KB	

Figure C.2: Q1 Insert Graph 500KB

Query TN DT UE BL EU UL US

X1 L 1264 733 8 2227 328 231 1727

X6 A 982 194 6 2264 184 99 1694

A7 O 2095 634 8 2246 568 280 2536

A8 AO 3404 332 9 2291 620 324 4024

B7 LB 952 386 6 2208 352 157 1565

Table C.3: Q1 Insert 1Mb

212 Experiments

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 1MB	

Figure C.3: Q1 Insert Graph 1MB

Query TN DT UE BL EU UL US

X1 L 22231 5696 10 17241 3539 2431 69552

X6 A 11244 1592 9 19007 1222 853 72600

A7 O 25274 5673 13 17261 4132 2694 137199

A8 AO 37412 3028 9 17156 3542 2898 258804

B7 LB 10663 2996 11 17223 1818 1332 66565

Table C.4: Q1 Insert 10Mb

C.1 View Maintenance 213

0	

50000	

100000	

150000	

200000	

250000	

300000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 10MB	

Figure C.4: Q1 Insert Graph 10MB

Query TN DT UE BL EU UL US

X2 L 262 331 13 483 281 0 791

X3 A 266 160 6 546 218 0 664

X4 O 552 404 5 472 519 0 841

X5 AO 538 407 7 477 458 0 852

B3 LB 252 156 6 538 215 0 659

Table C.5: Q2 Insert 100Kb

214 Experiments

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaJce	

Execute	
 Update	

Update	
 LaJce	

Update	
 Source	

0	

500	

1000	

1500	

2000	

2500	

3000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 100KB	

Figure C.5: Q2 Insert Graph 100KB

Query TN DT UE BL EU UL US

X2 L 808 960 10 1136 608 0 1099

X3 A 768 457 6 1166 452 0 1088

X4 O 1907 1320 10 1113 891 0 1512

X5 AO 1830 1250 10 1119 890 0 1501

B3 LB 708 382 6 1137 410 1 1070

Table C.6: Q2 Insert 500Kb

C.1 View Maintenance 215

0	

500	

1000	

1500	

2000	

2500	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 500KB	

Figure C.6: Q2 Insert Graph 500KB

Query TN DT UE BL EU UL US

X2 L 1706 1993 9 1985 909 0 1741

X3 A 1492 884 8 1943 563 0 1678

X4 O 3911 2703 10 1887 1335 0 2839

X5 AO 4009 2793 10 1974 1478 1 2816

B3 LB 1545 1003 10 1940 552 0 1614

Table C.7: Q2 Insert 1Mb

216 Experiments

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 1MB	

Figure C.7: Q2 Insert Graph 1MB

Query TN DT UE BL EU UL US

X2 L 41096 16463 11 15969 12797 0 73958

X3 A 22918 7418 10 16126 5776 0 68689

X4 O 87674 23972 13 15546 30654 0 151364

X5 AO 85894 23378 15 16107 33810 0 156075

B3 LB 23211 8108 10 15980 6069 0 68845

Table C.8: Q2 Insert 10Mb

C.1 View Maintenance 217

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

160000	

180000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 10MB	

Figure C.8: Q2 Insert Graph 10MB

Query TN DT UE BL EU UL US

X2 L 268 97 6 553 178 0 683

X3 A 267 66 6 561 167 0 667

X4 O 638 123 7 558 318 0 752

X5 AO 637 123 7 562 371 0 761

B3 LB 261 62 6 552 166 0 661

Table C.9: Q3 Insert 100Kb

218 Experiments

0	

100	

200	

300	

400	

500	

600	

700	

800	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

0	

500	

1000	

1500	

2000	

2500	

3000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 100KB	

Figure C.9: Q3 Insert Graph 100KB

Query TN DT UE BL EU UL US

X2 L 933 326 10 1129 324 0 1182

X3 A 869 149 6 1158 274 0 1072

X4 O 1985 424 14 1122 571 0 1481

X5 AO 1956 402 10 1186 570 0 1499

B3 LB 815 125 6 1177 268 0 1050

Table C.10: Q3 Insert 500Kb

C.1 View Maintenance 219

0	

500	

1000	

1500	

2000	

2500	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 500KB	

Figure C.10: Q3 Insert Graph 500KB

Query TN DT UE BL EU UL US

X2 L 1737 672 9 1883 482 0 1740

X3 A 1525 338 9 1964 458 0 1521

X4 O 3855 861 10 1942 741 0 2493

X5 AO 4008 879 10 1946 724 1 2490

B3 LB 1537 361 10 1872 463 0 1544

Table C.11: Q3 Insert 1Mb

220 Experiments

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 1MB	

Figure C.11: Q3 Insert Graph 1MB

Query TN DT UE BL EU UL US

X2 L 42158 5341 12 16185 2577 0 66155

X3 A 23332 2191 11 16174 1806 0 64843

X4 O 85310 6576 13 16284 6987 0 131294

X5 AO 88670 7331 14 15863 6761 0 131892

B3 LB 25284 2409 10 15958 1804 0 64983

Table C.12: Q3 Insert 10Mb

C.1 View Maintenance 221

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

50000	

100000	

150000	

200000	

250000	

300000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 10MB	

Figure C.12: Q3 Insert Graph 10MB

Query TN DT UE BL EU UL US

X2 L 198 47 7 816 241 449 665

X3 A 222 39 7 809 225 416 673

X4 O 396 55 9 806 568 648 725

X5 AO 397 53 10 805 538 650 727

B3 LB 216 39 7 816 227 430 670

Table C.13: Q4 Insert 100Kb

222 Experiments

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaJce	

Execute	
 Update	

Update	
 LaJce	

Update	
 Source	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 100KB	

Figure C.13: Q4 Insert Graph 100KB

Query TN DT UE BL EU UL US

X2 L 660 120 9 1726 301 488 1101

X3 A 685 77 9 1730 262 507 1074

X4 O 1360 119 8 1694 608 725 1443

X5 AO 1371 122 8 1695 604 718 1457

B3 LB 686 85 9 1726 264 464 1064

Table C.14: Q4 Insert 500Kb

C.1 View Maintenance 223

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 500KB	

Figure C.14: Q4 Insert Graph 500KB

Query TN DT UE BL EU UL US

X2 L 1149 171 16 3051 270 684 1653

X3 A 1098 78 7 2907 236 636 1623

X4 O 2397 200 18 2861 606 1335 2577

X5 AO 2563 219 12 2848 589 1344 2596

B3 LB 1146 101 7 2911 236 651 1630

Table C.15: Q4 Insert 1Mb

224 Experiments

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 1MB	

Figure C.15: Q4 Insert Graph 1MB

Query TN DT UE BL EU UL US

X2 L 100413 1301 21 22343 48141 41412 49651

X3 A 106368 1335 20 22099 49558 42508 54950

X4 O 100565 1372 20 23512 47977 42489 49548

X5 AO 106817 1291 21 22431 49582 42057 49632

B3 LB 107402 1292 21 21950 49314 42944 49578

Table C.16: Q4 Insert 10Mb

C.1 View Maintenance 225

0	

20000	

40000	

60000	

80000	

100000	

120000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

255000	

260000	

265000	

270000	

275000	

280000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 10MB	

Figure C.16: Q4 Insert Graph 10MB

Query TN DT UE BL EU UL US

E6 L 321 67 5 304 136 0 660

B1 A 324 63 5 304 139 0 664

X7 O 581 130 11 618 276 0 1370

X8 AO 610 128 10 620 280 0 1374

B5 LB 327 67 5 301 133 0 674

Table C.17: Q6 Insert 100Kb

226 Experiments

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 100KB	

Figure C.17: Q6 Insert Graph 100KB

Query TN DT UE BL EU UL US

E6 L 1157 153 6 555 194 0 1039

B1 A 998 157 5 559 198 0 1072

X7 O 2052 321 11 1141 384 0 2142

X8 AO 2234 455 15 1289 381 1 2149

B5 LB 1184 155 6 555 192 0 1061

Table C.18: Q6 Insert 500Kb

C.1 View Maintenance 227

0	

500	

1000	

1500	

2000	

2500	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 500KB	

Figure C.18: Q6 Insert Graph 500KB

Query TN DT UE BL EU UL US

E6 L 2069 302 8 944 244 0 1584

B1 A 1973 353 11 1991 247 0 1595

X7 O 3640 611 21 1800 530 0 3290

X8 AO 3711 612 17 1853 492 0 3307

B5 LB 2087 299 10 931 241 0 1599

Table C.19: Q6 Insert 1Mb

228 Experiments

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 1MB	

Figure C.19: Q6 Insert Graph 1MB

Query TN DT UE BL EU UL US

E6 L 33374 1947 10 8525 1097 0 65813

B1 A 30235 2010 9 8392 1014 0 66032

X7 O 66709 4272 19 17612 1778 0 141274

X8 AO 64022 3989 18 17222 1678 1 141283

B5 LB 42555 1963 9 8390 1077 0 66143

Table C.20: Q6 Insert 10Mb

C.1 View Maintenance 229

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

160000	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

50000	

100000	

150000	

200000	

250000	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 10MB	

Figure C.20: Q6 Insert Graph 10MB

Query TN DT UE BL EU UL US

X17 L 284 69 7 719 259 373 652

X20 A 296 72 7 728 255 379 669

B1 O 336 49 8 729 496 593 691

X8 AO 506 100 9 727 611 611 730

B5 LB 332 70 7 718 406 229 663

Table C.21: Q13 Insert 100Kb

230 Experiments

0	

100	

200	

300	

400	

500	

600	

700	

800	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 100KB	

Figure C.21: Q13 Insert Graph 100KB

Query TN DT UE BL EU UL US

X17 L 1007 177 7 1453 456 351 1125

X20 A 1046 181 7 1484 456 347 1124

B1 O 1226 108 7 1481 538 600 1479

X8 AO 1960 352 9 1498 686 730 1462

B5 LB 1167 177 7 1553 368 353 1120

Table C.22: Q13 Insert 500Kb

C.1 View Maintenance 231

0	

500	

1000	

1500	

2000	

2500	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 500KB	

Figure C.22: Q13 Insert Graph 500KB

Query TN DT UE BL EU UL US

X17 L 1771 380 10 2458 396 494 1567

X20 A 1850 381 10 2443 402 512 1587

B1 O 2192 176 8 2485 557 779 2445

X8 AO 3686 624 12 2488 734 1087 2501

B5 LB 2099 373 10 2535 407 509 1586

Table C.23: Q13 Insert 1Mb

232 Experiments

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 1MB	

Figure C.23: Q13 Insert Graph 1MB

Query TN DT UE BL EU UL US

X17 L 34034 2694 12 20306 5575 3499 66372

X20 A 30763 2541 13 19729 3436 3407 66182

B1 O 24310 1471 11 19821 1899 5079 130518

X8 AO 65430 4542 17 19993 8897 7521 134060

B5 LB 33256 2576 13 20291 3751 3486 66349

Table C.24: Q13 Insert 10Mb

C.1 View Maintenance 233

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

160000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

50000	

100000	

150000	

200000	

250000	

300000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 10MB	

Figure C.24: Q13 Insert Graph 10MB

Query TN DT UE BL EU UL US

X1 L 231 121 8 638 165 108 760

X6 A 194 60 5 638 139 77 648

A7 O 345 126 6 660 325 165 821

A8 AO 690 99 11 979 510 273 1297

B7 LB 175 71 5 649 145 79 655

Table C.25: Q17 Insert 100Kb

234 Experiments

0	

200	

400	

600	

800	

1000	

1200	

1400	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 100KB	

Figure C.25: Q17 Insert Graph 100KB

Query TN DT UE BL EU UL US

X1 L 875 431 6 1288 322 193 1071

X6 A 625 103 6 1368 161 118 1017

A7 O 1221 366 10 1316 366 261 1363

A8 AO 1868 204 8 1360 529 335 1939

B7 LB 625 264 8 1313 231 181 1059

Table C.26: Q17 Insert 500Kb

C.1 View Maintenance 235

0	

500	

1000	

1500	

2000	

2500	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 500KB	

Figure C.26: Q17 Insert Graph 500KB

Query TN DT UE BL EU UL US

X1 L 1292 715 9 2136 359 229 1586

X6 A 998 197 6 2139 201 116 1566

A7 O 2145 658 6 2135 446 403 2462

A8 AO 3472 334 9 2181 584 361 3988

B7 LB 1000 383 5 2125 261 276 1586

Table C.27: Q17 Insert 1Mb

236 Experiments

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 1MB	

Figure C.27: Q17 Insert Graph 1MB

Query TN DT UE BL EU UL US

X1 L 22616 5740 11 16364 3607 2372 69329

X6 A 10352 1514 9 16542 947 829 65298

A7 O 26928 5639 10 16622 3874 2605 134678

A8 AO 40571 2928 12 18035 2732 2617 261230

B7 LB 10769 2973 10 16575 1663 1345 66468

Table C.28: Q17 Insert 10Mb

C.1 View Maintenance 237

0	

50000	

100000	

150000	

200000	

250000	

300000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 10MB	

Figure C.28: Q17 Insert Graph 10MB

238 Experiments

C.1.2 Delete

Query TN DT UE BL EU UL US

X1 L 378 33 9 655 284 8 759

X6 A 260 11 7 676 209 6 767

A7 O 435 24 9 661 394 7 813

A8 AO 584 12 9 677 340 6 1002

B7 LB 240 19 9 670 215 6 775

Table C.29: Q1 Delete 100Kb

0	

200	

400	

600	

800	

1000	

1200	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

0	

500	

1000	

1500	

2000	

2500	

3000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 100KB	

C.1 View Maintenance 239

Figure C.29: Q1 Delete Graph 100KB

Query TN DT UE BL EU UL US

X1 L 1313 110 12 1354 633 49 1004

X6 A 754 31 10 1407 257 18 973

A7 O 1458 89 13 1393 648 35 1215

A8 AO 1952 44 12 1442 715 17 1812

B7 LB 857 94 11 1404 452 39 976

Table C.30: Q1 Delete 500Kb

0	

500	

1000	

1500	

2000	

2500	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 500KB	

240 Experiments

Figure C.30: Q1 Delete Graph 500KB

Query TN DT UE BL EU UL US

X1 L 2647 178 14 2265 874 114 1370

X6 A 1172 54 9 2243 337 50 1525

A7 O 2560 136 14 2217 905 92 2012

A8 AO 3527 74 14 2307 771 46 3719

B7 LB 1395 130 12 2271 756 82 1389

Table C.31: Q1 Delete 1Mb

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 1MB	

C.1 View Maintenance 241

Figure C.31: Q1 Delete Graph 1MB

Query TN DT UE BL EU UL US

X1 L 179125 1486 40 17109 7472 23622 44573

X6 A 23086 398 17 17360 14236 6148 54872

A7 O 73319 1053 30 17593 35379 14160 93070

A8 AO 46492 580 21 18739 16678 4831 216428

B7 LB 56135 931 23 18553 23433 14273 48020

Table C.32: Q1 Delete 10Mb

0	

50000	

100000	

150000	

200000	

250000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 10MB	

242 Experiments

Figure C.32: Q1 Delete Graph 10MB

Query TN DT UE BL EU UL US

X2 L 321 29 7 550 359 7 634

X3 A 319 15 8 560 248 6 633

X4 O 417 29 7 541 360 8 738

X5 AO 420 30 7 539 354 8 743

B3 LB 313 15 7 546 247 6 639

Table C.33: Q2 Delete 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

1600	

1700	

1800	

1900	

2000	

2100	

2200	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 100KB	

C.1 View Maintenance 243

Figure C.33: Q2 Delete Graph 100KB

Query TN DT UE BL EU UL US

X2 L 943 104 10 1129 1136 50 1015

X3 A 893 55 10 1193 648 41 1014

X4 O 1304 102 7 1156 1264 48 903

X5 AO 1296 106 7 1134 1246 51 903

B3 LB 794 47 10 1132 521 39 998

Table C.34: Q2 Delete 500Kb

0	

200	

400	

600	

800	

1000	

1200	

1400	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 500KB	

244 Experiments

Figure C.34: Q2 Delete Graph 500KB

Query TN DT UE BL EU UL US

X2 L 2167 182 14 2087 2177 148 1404

X3 A 1671 103 11 2022 1011 88 1448

X4 O 3003 196 14 2047 2176 147 1429

X5 AO 2970 198 13 1987 2165 153 1427

B3 LB 1748 104 11 1990 1089 93 1455

Table C.35: Q2 Delete 1Mb

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

10000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 1MB	

C.1 View Maintenance 245

Figure C.35: Q2 Delete Graph 1MB

Query TN DT UE BL EU UL US

X2 L 85242 1385 28 16119 15660 25916 56364

X3 A 37022 707 20 15726 28790 15270 60053

X4 O 119892 1327 31 15824 54624 29570 56256

X5 AO 120504 1321 30 15967 54702 30244 56214

B3 LB 43574 738 21 16094 33968 17413 60012

Table C.36: Q2 Delete 10Mb

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

50000	

100000	

150000	

200000	

250000	

300000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 10MB	

246 Experiments

Figure C.36: Q2 Delete Graph 10MB

Query TN DT UE BL EU UL US

X2 L 323 30 7 560 241 6 627

X3 A 328 16 8 560 179 5 629

X4 O 427 30 7 551 217 6 632

X5 AO 427 30 7 555 222 7 633

B3 LB 311 15 6 566 179 4 629

Table C.37: Q3 Delete 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

1600	

1650	

1700	

1750	

1800	

1850	

1900	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 100KB	

C.1 View Maintenance 247

Figure C.37: Q3 Delete Graph 100KB

Query TN DT UE BL EU UL US

X2 L 1056 104 10 1135 521 43 1001

X3 A 978 56 10 1181 326 39 974

X4 O 1415 102 8 1155 515 43 1019

X5 AO 1423 104 7 1166 509 64 1280

B3 LB 909 48 9 1201 267 35 963

Table C.38: Q3 Delete 500Kb

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 500KB	

248 Experiments

Figure C.38: Q3 Delete Graph 500KB

Query TN DT UE BL EU UL US

X2 L 2250 186 14 2046 762 110 1410

X3 A 1698 100 8 1947 521 69 1462

X4 O 2988 198 14 1967 787 109 1435

X5 AO 3015 194 14 2023 772 112 1411

B3 LB 1815 131 10 2047 543 75 1420

Table C.39: Q3 Delete 1Mb

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 1MB	

C.1 View Maintenance 249

Figure C.39: Q3 Delete Graph 1MB

Query TN DT UE BL EU UL US

X2 L 86574 1411 30 15983 5492 17999 56214

X3 A 40830 626 20 15691 5710 10454 59975

X4 O 118784 1761 30 16335 8574 17938 56237

X5 AO 117323 1359 30 16004 8675 18554 56328

B3 LB 44454 666 21 15909 4959 10452 59941

Table C.40: Q3 Delete 10Mb

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

50000	

100000	

150000	

200000	

250000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 10MB	

250 Experiments

Figure C.40: Q3 Delete Graph 10MB

Query TN DT UE BL EU UL US

X2 L 372 61 11 775 880 14 620

X3 A 421 35 8 782 779 11 638

X4 O 596 62 11 776 896 14 646

X5 AO 595 62 11 767 906 14 650

B3 LB 432 36 8 768 787 11 639

Table C.41: Q4 Delete 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaJce	

Execute	
 Update	

Update	
 LaJce	

Update	
 Source	

2500	

2600	

2700	

2800	

2900	

3000	

3100	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 100KB	

C.1 View Maintenance 251

Figure C.41: Q4 Delete Graph 100KB

Query TN DT UE BL EU UL US

X2 L 1351 166 12 1703 1439 95 976

X3 A 1161 99 11 1689 1159 71 966

X4 O 1846 163 12 1716 1460 91 906

X5 AO 1854 164 12 1723 1483 95 904

B3 LB 1160 93 11 1782 1144 65 982

Table C.42: Q4 Delete 500Kb

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 500KB	

252 Experiments

Figure C.42: Q4 Delete Graph 500KB

Query TN DT UE BL EU UL US

X2 L 3270 332 16 2841 2377 385 1331

X3 A 2020 144 12 2910 1611 248 1434

X4 O 4595 303 15 2913 2567 382 1333

X5 AO 4572 309 15 2851 3366 747 1820

B3 LB 2326 167 12 2889 1768 275 1405

Table C.43: Q4 Delete 1Mb

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 1MB	

C.1 View Maintenance 253

Figure C.43: Q4 Delete Graph 1MB

Query TN DT UE BL EU UL US

X2 L 232638 2660 28 22206 20548 54874 45512

X3 A 91149 1233 21 22402 46486 40961 50739

X4 O 373899 2524 29 23235 95202 59881 46393

X5 AO 325167 2594 30 24149 84947 60618 46640

B3 LB 105372 1293 21 21957 48908 43071 49689

Table C.44: Q4 Delete 10Mb

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

400000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

X2_L	
 X3_A	
 X4_O	
 X5_AO	
 B3_LB	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 10MB	

254 Experiments

Figure C.44: Q4 Delete Graph 10MB

Query TN DT UE BL EU UL US

E6 L 587 42 5 286 150 3 618

B1 A 507 41 5 297 153 3 628

X7 O 588 42 5 306 154 4 668

X8 AO 593 42 6 294 161 4 669

B5 LB 598 41 6 292 153 4 630

Table C.45: Q6 Delete 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

1550	

1600	

1650	

1700	

1750	

1800	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 100KB	

C.1 View Maintenance 255

Figure C.45: Q6 Delete Graph 100KB

Query TN DT UE BL EU UL US

E6 L 2389 162 8 534 404 8 827

B1 A 1974 157 5 542 433 9 847

X7 O 2297 162 6 535 432 8 1010

X8 AO 2277 158 6 540 442 9 1015

B5 LB 2406 163 8 535 409 9 841

Table C.46: Q6 Delete 500Kb

0	

500	

1000	

1500	

2000	

2500	

3000	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

3700	

3800	

3900	

4000	

4100	

4200	

4300	

4400	

4500	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 500KB	

256 Experiments

Figure C.46: Q6 Delete Graph 500KB

Query TN DT UE BL EU UL US

E6 L 6264 288 8 896 696 17 1256

B1 A 5283 290 8 886 714 17 1279

X7 O 6221 288 9 899 752 17 1793

X8 AO 6215 285 8 914 750 16 1805

B5 LB 6180 299 8 896 740 17 1278

Table C.47: Q6 Delete 1Mb

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

7500	

8000	

8500	

9000	

9500	

10000	

10500	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 1MB	

C.1 View Maintenance 257

Figure C.47: Q6 Delete Graph 1MB

Query TN DT UE BL EU UL US

E6 L 367381 2687 8 8457 5336 1055 46556

B1 A 326898 2694 8 8315 15289 1030 47302

X7 O 334017 2679 9 8580 15096 1089 92474

X8 AO 329727 2634 9 8442 15039 1103 92372

B5 LB 370086 2704 8 8365 17229 1059 47219

Table C.48: Q6 Delete 10Mb

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

400000	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

370000	

380000	

390000	

400000	

410000	

420000	

430000	

440000	

450000	

460000	

E6_L	
 B1_A	
 X7_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 10MB	

258 Experiments

Figure C.48: Q6 Delete Graph 10MB

Query TN DT UE BL EU UL US

X17 L 502 43 8 717 367 6 627

X20 A 513 42 7 704 426 5 643

B1 O 435 20 10 723 341 6 806

X8 AO 599 43 9 706 460 5 666

B5 LB 594 44 8 977 711 8 1045

Table C.49: Q13 Delete 100Kb

0	

200	

400	

600	

800	

1000	

1200	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 100KB	

C.1 View Maintenance 259

Figure C.49: Q13 Delete Graph 100KB

Query TN DT UE BL EU UL US

X17 L 1971 167 10 1493 429 29 940

X20 A 2006 164 10 1484 629 29 1035

B1 O 1771 103 11 1540 492 19 1182

X8 AO 1801 103 11 1592 480 20 1179

B5 LB 2500 166 12 1499 767 30 904

Table C.50: Q13 Delete 500Kb

0	

500	

1000	

1500	

2000	

2500	

3000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

4600	

4800	

5000	

5200	

5400	

5600	

5800	

6000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 500KB	

260 Experiments

Figure C.50: Q13 Delete Graph 500KB

Query TN DT UE BL EU UL US

X17 L 5424 297 14 2617 567 64 1275

X20 A 5578 300 13 2545 913 67 1331

B1 O 3397 168 14 2568 634 45 2035

X8 AO 6025 294 15 2468 912 63 1850

B5 LB 6280 295 14 2472 1039 62 1284

Table C.51: Q13 Delete 1Mb

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 1MB	

C.1 View Maintenance 261

Figure C.51: Q13 Delete Graph 1MB

Query TN DT UE BL EU UL US

X17 L 324750 2669 37 20588 4449 10168 46380

X20 A 322643 2645 38 19617 92023 10504 46337

B1 O 104507 1407 25 20006 3231 5650 105754

X8 AO 330026 2711 39 20766 94088 10398 91680

B5 LB 369605 2647 38 20496 103162 10425 46672

Table C.52: Q13 Delete 10Mb

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

400000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

100000	

200000	

300000	

400000	

500000	

600000	

X17_L	
 X20_A	
 B1_O	
 X8_AO	
 B5_LB	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 10MB	

262 Experiments

Figure C.52: Q13 Delete Graph 10MB

Query TN DT UE BL EU UL US

X1 L 379 30 7 647 217 7 760

X6 A 272 11 6 650 204 5 776

A7 O 437 25 9 642 348 8 807

A8 AO 600 11 10 641 208 3 756

B7 LB 242 19 8 637 194 5 652

Table C.53: Q17 Delete 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaJce	

Execute	
 Update	

Update	
 LaJce	

Update	
 Source	

0	

500	

1000	

1500	

2000	

2500	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 100KB	

C.1 View Maintenance 263

Figure C.53: Q17 Delete Graph 100KB

Query TN DT UE BL EU UL US

X1 L 1342 108 12 1287 402 37 994

X6 A 740 29 34 1348 255 16 969

A7 O 1484 91 12 1314 480 22 1214

A8 AO 1972 45 13 1340 606 16 1792

B7 LB 872 93 10 1307 319 22 978

Table C.54: Q17 Delete 500Kb

0	

500	

1000	

1500	

2000	

2500	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 500KB	

264 Experiments

Figure C.54: Q17 Delete Graph 500KB

Query TN DT UE BL EU UL US

X1 L 2738 182 13 2175 534 80 1323

X6 A 1208 55 11 2126 357 40 1494

A7 O 2584 138 13 2123 616 67 2190

A8 AO 3719 74 17 2263 728 48 3971

B7 LB 1410 130 11 2155 443 65 1534

Table C.55: Q17 Delete 1Mb

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaIce	

Execute	
 Update	

Update	
 LaIce	

Update	
 Source	

0	

2000	

4000	

6000	

8000	

10000	

12000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 1MB	

C.1 View Maintenance 265

Figure C.55: Q17 Delete Graph 1MB

Query TN DT UE BL EU UL US

X1 L 175030 1402 36 16799 4189 13989 49674

X6 A 30348 412 17 18037 12948 4175 60856

A7 O 71940 1093 28 16862 32331 8237 103564

A8 AO 46167 516 21 18051 14986 2959 241084

B7 LB 53798 993 23 16269 20649 7397 48073

Table C.56: Q17 Delete 10Mb

0	

50000	

100000	

150000	

200000	

250000	

300000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

0	

50000	

100000	

150000	

200000	

250000	

300000	

350000	

X1_L	
 X6_A	
 A7_O	
 A8_AO	
 B7_LB	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 10MB	

266 Experiments

Figure C.56: Q17 Delete Graph 10MB

C.2 View Update

C.2.1 Insert

Query TN DT UE BL EU UL US

X1 L 221 10 15 544 284 394 913

X1 L 2 227 10 14 524 225 236 873

X1 L 3 299 100 20 494 196 107 685

Table C.57: Q1 View Insert 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

C.2 View Update 267

0	

500	

1000	

1500	

2000	

2500	

3000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 100KB	

Figure C.57: Q1 Insert Graph 100KB

Query TN DT UE BL EU UL US

X1 L 617 7 11 712 267 629 1042

X1 L 2 640 7 11 658 201 303 1149

X1 L 3 901 346 14 630 351 274 1078

Table C.58: Q1 View Insert 500Kb

0	

200	

400	

600	

800	

1000	

1200	

1400	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

268 Experiments

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 500KB	

Figure C.58: Q1 Insert Graph 500KB

Query TN DT UE BL EU UL US

X1 L 944 9 15 880 349 422 1707

X1 L 2 975 9 12 824 328 277 1659

X1 L 3 1420 665 13 849 472 229 1703

Table C.59: Q1 View Insert 1Mb

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

C.2 View Update 269

0	

1000	

2000	

3000	

4000	

5000	

6000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 1MB	

Figure C.59: Q1 Insert Graph 1MB

Query TN DT UE BL EU UL US

X1 L 9554 9 10 6838 225 2505 71817

X1 L 2 9181 9 10 6916 315 1626 71672

X1 L 3 19428 5588 15 6670 3172 2366 70111

Table C.60: Q1 View Insert 10Mb

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

270 Experiments

80000	

85000	

90000	

95000	

100000	

105000	

110000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Insert	
 10MB	

Figure C.60: Q1 Insert Graph 10MB

Query TN DT UE BL EU UL US

X1 L 233 10 14 443 275 184 686

X1 L 2 236 11 14 438 238 135 682

X1 L 3 315 60 15 417 225 63 677

X1 L 4 417 302 11 346 282 0 708

Table C.61: Q2 View Insert 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

C.2 View Update 271

1550	

1600	

1650	

1700	

1750	

1800	

1850	

1900	

1950	

2000	

2050	

2100	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 100KB	

Figure C.61: Q2 Insert Graph 100KB

Query TN DT UE BL EU UL US

X1 L 599 7 13 561 238 245 1168

X1 L 2 607 6 37 529 204 197 1136

X1 L 3 877 195 11 522 348 184 1024

X1 L 4 1297 931 14 525 686 0 1106

Table C.62: Q2 View Insert 500Kb

0	

200	

400	

600	

800	

1000	

1200	

1400	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

272 Experiments

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 500KB	

Figure C.62: Q2 Insert Graph 500KB

Query TN DT UE BL EU UL US

X1 L 981 9 13 879 238 235 1677

X1 L 2 984 9 13 873 210 187 1636

X1 L 3 1538 342 11 813 383 65 1607

X1 L 4 2602 1960 14 830 893 0 1826

Table C.63: Q2 View Insert 1Mb

0	

500	

1000	

1500	

2000	

2500	

3000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaDce	

Execute	
 Update	

Update	
 LaDce	

Update	
 Source	

C.2 View Update 273

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

9000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 1MB	

Figure C.63: Q2 Insert Graph 1MB

Query TN DT UE BL EU UL US

X1 L 9244 9 10 21399 227 1406 64817

X1 L 2 9645 8 11 19696 192 1201 64609

X1 L 3 16538 2985 16 20454 1879 311 66583

X1 L 4 45347 15770 16 20035 13958 0 74767

Table C.64: Q2 View Insert 10Mb

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

274 Experiments

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

160000	

180000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Insert	
 10MB	

Figure C.64: Q2 Insert Graph 10MB

Query TN DT UE BL EU UL US

X1 L 217 7 14 386 292 174 726

X1 L 2 221 7 14 392 224 122 711

X1 L 3 260 13 14 393 190 63 717

X1 L 4 334 16 19 558 179 0 1008

Table C.65: Q3 View Insert 100Kb

0	

200	

400	

600	

800	

1000	

1200	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

C.2 View Update 275

0	

500	

1000	

1500	

2000	

2500	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 100KB	

Figure C.65: Q3 Insert Graph 100KB

Query TN DT UE BL EU UL US

X1 L 617 4 13 356 258 163 1192

X1 L 2 617 4 11 349 213 120 1148

X1 L 3 741 21 37 308 199 62 1161

X1 L 4 696 25 10 340 143 0 1135

Table C.66: Q3 View Insert 500Kb

0	

200	

400	

600	

800	

1000	

1200	

1400	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

276 Experiments

2200	

2250	

2300	

2350	

2400	

2450	

2500	

2550	

2600	

2650	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 500KB	

Figure C.66: Q3 Insert Graph 500KB

Query TN DT UE BL EU UL US

X1 L 959 6 11 365 259 324 1611

X1 L 2 984 7 14 372 214 276 1646

X1 L 3 1234 45 11 367 325 78 1694

X1 L 4 1178 52 10 364 169 0 1777

Table C.67: Q3 View Insert 1Mb

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

C.2 View Update 277

3350	

3400	

3450	

3500	

3550	

3600	

3650	

3700	

3750	

3800	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 1MB	

Figure C.67: Q3 Insert Graph 1MB

Query TN DT UE BL EU UL US

X1 L 9100 7 11 959 406 287 64651

X1 L 2 9694 6 10 979 202 197 64602

X1 L 3 11734 350 10 976 386 123 64883

X1 L 4 10445 513 13 840 429 0 64739

Table C.68: Q3 View Insert 10Mb

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

278 Experiments

73500	

74000	

74500	

75000	

75500	

76000	

76500	

77000	

77500	

78000	

78500	

79000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Insert	
 10MB	

Figure C.68: Q3 Insert Graph 10MB

Query TN DT UE BL EU UL US

X1 L 218 7 18 488 334 582 737

X1 L 2 218 8 17 491 281 505 712

X1 L 3 233 8 17 479 234 202 929

Table C.69: Q4 View Insert 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

C.2 View Update 279

1950	

2000	

2050	

2100	

2150	

2200	

2250	

2300	

2350	

2400	

2450	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 100KB	

Figure C.69: Q4 Insert Graph 100KB

Query TN DT UE BL EU UL US

X1 L 599 4 16 417 296 570 1084

X1 L 2 619 4 15 422 265 502 1033

X1 L 3 621 6 14 420 216 191 1231

Table C.70: Q4 View Insert 500Kb

0	

200	

400	

600	

800	

1000	

1200	

1400	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

280 Experiments

2550	

2600	

2650	

2700	

2750	

2800	

2850	

2900	

2950	

3000	

3050	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 500KB	

Figure C.70: Q4 Insert Graph 500KB

Query TN DT UE BL EU UL US

X1 L 932 6 15 379 441 372 1757

X1 L 2 952 7 14 400 395 284 1728

X1 L 3 948 9 14 395 418 189 1679

Table C.71: Q4 View Insert 1Mb

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

C.2 View Update 281

3500	

3550	

3600	

3650	

3700	

3750	

3800	

3850	

3900	

3950	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 1MB	

Figure C.71: Q4 Insert Graph 1MB

Query TN DT UE BL EU UL US

X1 L 9769 7 14 410 501 363 64797

X1 L 2 9635 6 14 401 439 279 64549

X1 L 3 9632 10 12 405 420 194 64732

Table C.72: Q4 View Insert 10Mb

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

282 Experiments

75000	

75100	

75200	

75300	

75400	

75500	

75600	

75700	

75800	

75900	

76000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Insert	
 10MB	

Figure C.72: Q4 Insert Graph 10MB

Query TN DT UE BL EU UL US

X1 L 202 7 10 153 259 54 698

X1 L 2 200 7 11 157 121 0 743

X1 L 3 332 40 10 157 216 0 678

Table C.73: Q6 View Insert 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

C.2 View Update 283

1100	

1150	

1200	

1250	

1300	

1350	

1400	

1450	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 100KB	

Figure C.73: Q6 Insert Graph 100KB

Query TN DT UE BL EU UL US

X1 L 561 5 7 197 157 54 1036

X1 L 2 562 5 8 202 113 0 972

X1 L 3 1090 136 7 156 182 0 1069

Table C.74: Q6 View Insert 500Kb

0	

200	

400	

600	

800	

1000	

1200	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

284 Experiments

0	

500	

1000	

1500	

2000	

2500	

3000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 500KB	

Figure C.74: Q6 Insert Graph 500KB

Query TN DT UE BL EU UL US

X1 L 908 9 6 174 162 51 1574

X1 L 2 911 8 7 181 120 0 1522

X1 L 3 1900 257 10 227 231 0 1670

Table C.75: Q6 View Insert 1Mb

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

C.2 View Update 285

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 1MB	

Figure C.75: Q6 Insert Graph 1MB

Query TN DT UE BL EU UL US

X1 L 8346 7 7 1235 144 38 65242

X1 L 2 8319 7 7 1297 111 0 64630

X1 L 3 26266 1901 11 1156 650 0 66692

Table C.76: Q6 View Insert 10Mb

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

286 Experiments

0	

20000	

40000	

60000	

80000	

100000	

120000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Insert	
 10MB	

Figure C.76: Q6 Insert Graph 10MB

Query TN DT UE BL EU UL US

X1 L 203 8 17 522 312 594 689

X1 L 2 202 8 16 527 269 507 682

X1 L 3 204 7 14 529 281 210 866

X1 L 4 277 24 15 518 252 202 885

Table C.77: Q13 View Insert 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

C.2 View Update 287

1950	

2000	

2050	

2100	

2150	

2200	

2250	

2300	

2350	

2400	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 100KB	

Figure C.77: Q13 Insert Graph 100KB

Query TN DT UE BL EU UL US

X1 L 577 7 16 568 284 665 1108

X1 L 2 587 8 15 574 255 593 1005

X1 L 3 596 6 14 572 202 241 1191

X1 L 4 907 80 15 518 299 434 1067

Table C.78: Q13 View Insert 500Kb

0	

200	

400	

600	

800	

1000	

1200	

1400	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

288 Experiments

2500	

2600	

2700	

2800	

2900	

3000	

3100	

3200	

3300	

3400	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 500KB	

Figure C.78: Q13 Insert Graph 500KB

Query TN DT UE BL EU UL US

X1 L 901 9 15 634 404 481 1793

X1 L 2 901 7 14 635 407 398 1693

X1 L 3 933 7 13 641 324 282 1644

X1 L 4 1489 143 13 674 363 524 1615

Table C.79: Q13 View Insert 1Mb

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

C.2 View Update 289

0	

1000	

2000	

3000	

4000	

5000	

6000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 1MB	

Figure C.79: Q13 Insert Graph 1MB

Query TN DT UE BL EU UL US

X1 L 8576 7 13 2064 261 1427 64602

X1 L 2 8423 6 13 2075 226 1305 64513

X1 L 3 8606 7 12 2052 185 1002 64502

X1 L 4 16072 1293 17 1974 1149 1312 66344

Table C.80: Q13 View Insert 10Mb

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

290 Experiments

70000	

72000	

74000	

76000	

78000	

80000	

82000	

84000	

86000	

88000	

90000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Insert	
 10MB	

Figure C.80: Q13 Insert Graph 10MB

Query TN DT UE BL EU UL US

X1 L 204 10 13 464 271 311 876

X1 L 2 213 10 14 470 230 213 840

X1 L 3 243 42 14 478 150 80 670

Table C.81: Q17 View Insert 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

C.2 View Update 291

0	

500	

1000	

1500	

2000	

2500	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 100KB	

Figure C.81: Q17 Insert Graph 100KB

Query TN DT UE BL EU UL US

X1 L 612 8 17 549 247 599 1013

X1 L 2 630 7 10 530 212 271 1168

X1 L 3 762 206 13 476 256 159 1113

Table C.82: Q17 View Insert 500Kb

0	

200	

400	

600	

800	

1000	

1200	

1400	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

292 Experiments

2700	

2750	

2800	

2850	

2900	

2950	

3000	

3050	

3100	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 500KB	

Figure C.82: Q17 Insert Graph 500KB

Query TN DT UE BL EU UL US

X1 L 919 12 12 600 238 572 1658

X1 L 2 948 9 11 594 204 434 1591

X1 L 3 1168 311 10 666 328 203 1655

Table C.83: Q17 View Insert 1Mb

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

C.2 View Update 293

3500	

3600	

3700	

3800	

3900	

4000	

4100	

4200	

4300	

4400	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 1MB	

Figure C.83: Q17 Insert Graph 1MB

Query TN DT UE BL EU UL US

X1 L 8503 9 11 2228 212 1339 64672

X1 L 2 8845 9 9 2203 181 992 68017

X1 L 3 12655 2888 16 2137 1417 1153 67193

Table C.84: Q17 View Insert 10Mb

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

294 Experiments

70000	

72000	

74000	

76000	

78000	

80000	

82000	

84000	

86000	

88000	

90000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Insert	
 10MB	

Figure C.84: Q17 Insert Graph 10MB

C.2.2 Delete

Query TN DT UE BL EU UL US

DeleteX1 L 55 6 15 567 638 13 617

DeleteX1 L 2 53 6 12 569 721 10 848

DeleteX1 L 3 53 4 13 565 293 4 672

Table C.85: Q1 View Delete 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

C.2 View Update 295

0	

500	

1000	

1500	

2000	

2500	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 100KB	

Figure C.85: Q1 Delete Graph 100KB

Query TN DT UE BL EU UL US

DeleteX1 L 108 24 18 732 1169 843 651

DeleteX1 L 2 104 22 16 714 1262 446 929

DeleteX1 L 3 101 17 17 711 620 43 1042

Table C.86: Q1 View Delete 500Kb

0	

200	

400	

600	

800	

1000	

1200	

1400	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

296 Experiments

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 500KB	

Figure C.86: Q1 Delete Graph 500KB

Query TN DT UE BL EU UL US

DeleteX1 L 150 31 14 831 1671 6831 691

DeleteX1 L 2 248 56 24 1235 2445 5499 1904

DeleteX1 L 3 140 24 15 836 1008 94 1360

Table C.87: Q1 View Delete 1Mb

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

C.2 View Update 297

0	

2000	

4000	

6000	

8000	

10000	

12000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 1MB	

Figure C.87: Q1 Delete Graph 1MB

Query TN DT UE BL EU UL US

DeleteX1 L 677 240 23 6504 10784 0 0

DeleteX1 L 2 652 220 25 6506 11591 0 0

DeleteX1 L 3 639 186 45 6264 7423 16031 44349

Table C.88: Q1 View Delete 10Mb

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

50000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaDce	

Execute	
 Update	

Update	
 LaDce	

Update	
 Source	

298 Experiments

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q1	
 Delete	
 10MB	

Figure C.88: Q1 Delete Graph 10MB

Query TN DT UE BL EU UL US

DeleteX1 L 81 14 15 366 855 44 609

DeleteX1 L 2 81 12 14 362 924 28 649

DeleteX1 L 3 77 9 13 365 669 10 651

DeleteX1 L 4 73 7 13 364 459 6 658

Table C.89: Q2 View Delete 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

C.2 View Update 299

0	

500	

1000	

1500	

2000	

2500	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 100KB	

Figure C.89: Q2 Delete Graph 100KB

Query TN DT UE BL EU UL US

DeleteX1 L 221 38 12 542 1767 4024 643

DeleteX1 L 2 219 36 13 537 1844 2032 928

DeleteX1 L 3 217 30 12 542 1539 128 888

DeleteX1 L 4 207 21 12 546 1120 55 1036

Table C.90: Q2 View Delete 500Kb

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaDce	

Execute	
 Update	

Update	
 LaDce	

Update	
 Source	

300 Experiments

0	

1000	

2000	

3000	

4000	

5000	

6000	

7000	

8000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 500KB	

Figure C.90: Q2 Delete Graph 500KB

Query TN DT UE BL EU UL US

DeleteX1 L 246 74 14 893 3065 44873 688

DeleteX1 L 2 241 72 15 890 3259 22621 1286

DeleteX1 L 3 239 61 15 881 2587 629 1313

DeleteX1 L 4 228 43 16 885 1979 149 1397

Table C.91: Q2 View Delete 1Mb

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

50000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaDce	

Execute	
 Update	

Update	
 LaDce	

Update	
 Source	

C.2 View Update 301

0	

10000	

20000	

30000	

40000	

50000	

60000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 1MB	

Figure C.91: Q2 Delete Graph 1MB

Query TN DT UE BL EU UL US

DeleteX1 L 1203 809 29 17836 22687 0 0

DeleteX1 L 2 1151 744 31 17263 24061 0 0

DeleteX1 L 3 1110 517 173 17129 19973 68457 45637

DeleteX1 L 4 1068 364 34 14208 15406 16320 56952

Table C.92: Q2 View Delete 10Mb

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

302 Experiments

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

160000	

180000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q2	
 Delete	
 10MB	

Figure C.92: Q2 Delete Graph 10MB

Query TN DT UE BL EU UL US

DeleteX1 L 39 1 13 307 506 3 635

DeleteX1 L 2 39 1 13 322 556 3 690

DeleteX1 L 3 38 2 12 317 386 1 680

DeleteX1 L 4 37 0 12 318 264 0 682

Table C.93: Q3 View Delete 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

C.2 View Update 303

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 100KB	

Figure C.93: Q3 Delete Graph 100KB

Query TN DT UE BL EU UL US

DeleteX1 L 56 6 14 393 523 11 682

DeleteX1 L 2 56 5 15 394 573 7 1039

DeleteX1 L 3 54 5 12 392 389 3 1067

DeleteX1 L 4 52 4 14 393 246 2 1067

Table C.94: Q3 View Delete 500Kb

0	

200	

400	

600	

800	

1000	

1200	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

304 Experiments

0	

500	

1000	

1500	

2000	

2500	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 500KB	

Figure C.94: Q3 Delete Graph 500KB

Query TN DT UE BL EU UL US

DeleteX1 L 80 11 13 366 834 42 726

DeleteX1 L 2 74 11 17 366 906 25 1365

DeleteX1 L 3 73 11 12 359 523 9 1546

DeleteX1 L 4 71 7 12 370 347 6 1600

Table C.95: Q3 View Delete 1Mb

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

C.2 View Update 305

0	

500	

1000	

1500	

2000	

2500	

3000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 1MB	

Figure C.95: Q3 Delete Graph 1MB

Query TN DT UE BL EU UL US

DeleteX1 L 205 57 14 963 2259 24254 1372

DeleteX1 L 2 202 52 14 972 2352 12302 45164

DeleteX1 L 3 194 44 18 969 1923 189 52878

DeleteX1 L 4 191 33 15 977 1413 87 63405

Table C.96: Q3 View Delete 10Mb

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

306 Experiments

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q3	
 Delete	
 10MB	

Figure C.96: Q3 Delete Graph 10MB

Query TN DT UE BL EU UL US

DeleteX1 L 34 1 17 541 886 0 658

DeleteX1 L 2 34 1 17 538 935 0 692

DeleteX1 L 3 35 1 16 545 529 0 893

Table C.97: Q4 View Delete 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

C.2 View Update 307

1900	

1950	

2000	

2050	

2100	

2150	

2200	

2250	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 100KB	

Figure C.97: Q4 Delete Graph 100KB

Query TN DT UE BL EU UL US

DeleteX1 L 34 1 17 474 831 1 688

DeleteX1 L 2 34 1 17 472 881 0 966

DeleteX1 L 3 34 0 16 471 706 1 981

Table C.98: Q4 View Delete 500Kb

0	

200	

400	

600	

800	

1000	

1200	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

308 Experiments

1800	

1900	

2000	

2100	

2200	

2300	

2400	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 500KB	

Figure C.98: Q4 Delete Graph 500KB

Query TN DT UE BL EU UL US

DeleteX1 L 36 1 16 409 788 1 736

DeleteX1 L 2 33 1 16 410 831 1 1470

DeleteX1 L 3 32 1 16 413 648 0 1592

Table C.99: Q4 View Delete 1Mb

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

C.2 View Update 309

0	

500	

1000	

1500	

2000	

2500	

3000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 1MB	

Figure C.99: Q4 Delete Graph 1MB

Query TN DT UE BL EU UL US

DeleteX1 L 33 2 15 539 906 3 1403

DeleteX1 L 2 35 1 15 548 942 2 45083

DeleteX1 L 3 33 1 15 545 762 1 63897

Table C.100: Q4 View Delete 10Mb

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaFce	

Execute	
 Update	

Update	
 LaFce	

Update	
 Source	

310 Experiments

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q4	
 Delete	
 10MB	

Figure C.100: Q4 Delete Graph 10MB

Query TN DT UE BL EU UL US

DeleteX1 L 44 4 8 163 170 2 607

DeleteX1 L 2 43 2 7 151 257 1 740

DeleteX1 L 3 43 1 7 157 158 1 649

Table C.101: Q6 View Delete 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

C.2 View Update 311

0	

200	

400	

600	

800	

1000	

1200	

1400	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 100KB	

Figure C.101: Q6 Delete Graph 100KB

Query TN DT UE BL EU UL US

DeleteX1 L 88 13 7 213 400 17 639

DeleteX1 L 2 85 10 9 210 586 6 894

DeleteX1 L 3 80 7 7 214 411 12 887

Table C.102: Q6 View Delete 500Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

1000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaHce	

Execute	
 Update	

Update	
 LaHce	

Update	
 Source	

312 Experiments

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 500KB	

Figure C.102: Q6 Delete Graph 500KB

Query TN DT UE BL EU UL US

DeleteX1 L 118 18 8 175 711 27 781

DeleteX1 L 2 114 14 8 173 1024 18 1278

DeleteX1 L 3 110 10 7 181 709 18 1333

Table C.103: Q6 View Delete 1Mb

0	

200	

400	

600	

800	

1000	

1200	

1400	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

C.2 View Update 313

0	

500	

1000	

1500	

2000	

2500	

3000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 1MB	

Figure C.103: Q6 Delete Graph 1MB

Query TN DT UE BL EU UL US

DeleteX1 L 452 114 16 1080 5305 1362 1343

DeleteX1 L 2 435 99 17 1051 6092 863 46800

DeleteX1 L 3 432 62 6 973 5291 762 46745

Table C.104: Q6 View Delete 10Mb

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

50000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaDce	

Execute	
 Update	

Update	
 LaDce	

Update	
 Source	

314 Experiments

0	

10000	

20000	

30000	

40000	

50000	

60000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q6	
 Delete	
 10MB	

Figure C.104: Q6 Delete Graph 10MB

Query TN DT UE BL EU UL US

DeleteX1 L 43 3 19 571 996 3 614

DeleteX1 L 2 42 4 16 586 1049 3 660

DeleteX1 L 3 43 3 15 574 589 2 857

DeleteX1 L 4 42 3 31 599 235 3 662

Table C.105: Q13 View Delete 100Kb

0	

200	

400	

600	

800	

1000	

1200	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

C.2 View Update 315

0	

500	

1000	

1500	

2000	

2500	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 100KB	

Figure C.105: Q13 Delete Graph 100KB

Query TN DT UE BL EU UL US

DeleteX1 L 84 12 16 631 1247 110 655

DeleteX1 L 2 82 12 17 628 1292 76 966

DeleteX1 L 3 79 10 14 614 1006 42 920

DeleteX1 L 4 77 8 15 632 389 10 1080

Table C.106: Q13 View Delete 500Kb

0	

200	

400	

600	

800	

1000	

1200	

1400	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

316 Experiments

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 500KB	

Figure C.106: Q13 Delete Graph 500KB

Query TN DT UE BL EU UL US

DeleteX1 L 102 23 16 650 1570 832 699

DeleteX1 L 2 101 20 16 646 1643 563 1377

DeleteX1 L 3 99 16 15 646 1345 296 1394

DeleteX1 L 4 95 13 16 666 687 24 1460

Table C.107: Q13 View Delete 1Mb

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

C.2 View Update 317

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

4500	

5000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 1MB	

Figure C.107: Q13 Delete Graph 1MB

Query TN DT UE BL EU UL US

DeleteX1 L 372 145 18 2046 6280 1112427 0

DeleteX1 L 2 361 130 21 2065 6769 751974 65854

DeleteX1 L 3 356 113 19 2067 5382 342064 61806

DeleteX1 L 4 347 93 32 2046 3222 1746 57349

Table C.108: Q13 View Delete 10Mb

0	

200000	

400000	

600000	

800000	

1000000	

1200000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

318 Experiments

0	

200000	

400000	

600000	

800000	

1000000	

1200000	

X1_L	
 X1_L_2	
 X1_L_3	
 X1_L_4	

Ti
m
e	

(m

s)
	

Update	

Q13	
 Delete	
 10MB	

Figure C.108: Q13 Delete Graph 10MB

Query TN DT UE BL EU UL US

DeleteX1 L 43 3 13 406 622 6 611

DeleteX1 L 2 42 3 13 394 696 5 653

DeleteX1 L 3 38 2 15 409 332 5 669

Table C.109: Q17 View Delete 100Kb

0	

100	

200	

300	

400	

500	

600	

700	

800	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 100KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaGce	

Execute	
 Update	

Update	
 LaGce	

Update	
 Source	

C.2 View Update 319

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 100KB	

Figure C.109: Q17 Delete Graph 100KB

Query TN DT UE BL EU UL US

DeleteX1 L 83 12 14 581 987 101 643

DeleteX1 L 2 78 13 16 574 1062 55 910

DeleteX1 L 3 78 8 14 585 429 13 1055

Table C.110: Q17 View Delete 500Kb

0	

200	

400	

600	

800	

1000	

1200	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 500KB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

320 Experiments

0	

500	

1000	

1500	

2000	

2500	

3000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 500KB	

Figure C.110: Q17 Delete Graph 500KB

Query TN DT UE BL EU UL US

DeleteX1 L 103 21 17 609 1135 670 690

DeleteX1 L 2 104 18 13 625 1211 354 1458

DeleteX1 L 3 99 14 14 611 718 27 1421

Table C.111: Q17 View Delete 1Mb

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 1MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

C.2 View Update 321

0	

500	

1000	

1500	

2000	

2500	

3000	

3500	

4000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 1MB	

Figure C.111: Q17 Delete Graph 1MB

Query TN DT UE BL EU UL US

DeleteX1 L 349 125 18 2095 5498 0 0

DeleteX1 L 2 332 116 22 2064 5820 549155 48164

DeleteX1 L 3 329 93 29 2075 3711 2434 48718

Table C.112: Q17 View Delete 10Mb

0	

100000	

200000	

300000	

400000	

500000	

600000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 10MB	

Find	
 Target	
 Nodes	

Compute	
 Delta	
 Tables	

Get	
 Update	
 Expression	

Build	
 LaEce	

Execute	
 Update	

Update	
 LaEce	

Update	
 Source	

322 Experiments

0	

100000	

200000	

300000	

400000	

500000	

600000	

700000	

X1_L	
 X1_L_2	
 X1_L_3	

Ti
m
e	

(m

s)
	

Update	

Q17	
 Delete	
 10MB	

Figure C.112: Q17 Delete Graph 10MB

