The Development of Natural Products as Phytotoxic Leads for Herbicide Discovery

Mairi M. Littleson

October 2017

The Development of Natural Products as Phytotoxic Leads for Herbicide Discovery

Thesis submitted to the University of Strathclyde in fulfilment of the requirements for the degree of Doctor of Philosophy

## By

Mairi M. Littleson
2017

## Declaration of Copyright

This thesis is a result of the author's original research. It has been composed by the author and has not been previously submitted for examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the United Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. Due acknowledgement must always be made of the use of any material contained in, or derived from, this thesis.

Signed:

Date: October 2017

## Publication List

1. "Synthetic Approaches to Coronafacic Acid, Coronamic Acid, and Coronatine" Mairi M. Littleson, Claire J. Russell, Elizabeth C. Frye, Kenneth B. Ling, Craig Jamieson, and Allan J. B. Watson, Synthesis 2016, 48, A-T
2. "Comprehensive Phytotoxic SAR Analysis of Coronatine Enabled by Scalable Synthesis" Mairi M. Littleson, Elizabeth C. Frye, Claire J. Russell, Matthew M. McLachlan, Kenneth B. Ling, Chris M. Baker, Alan R. Kennedy, Craig Jamieson, and Allan J. B. Watson, manuscript in preparation.


#### Abstract

Effective agrochemicals are essential to maintaining sustainable agriculture to support a growing population. Herbicide resistance is an ever increasing problem, and in order to combat this there is a requirement for the introduction of new herbicidal agents with novel modes of action. Natural products serve as an abundant source of structurally diverse phytotoxins, which typically have novel modes of action in comparison with their synthetic counterparts.


The natural product coronatine (COR), isolated from Pseudomonas syringae, has been a compound of interest to the agrochemical community since its isolation and elucidation of its phytotoxic properties. Through the industry/academia collaboration described in this thesis, coronatine is now a tractable target for a structure-activity relationship (SAR) campaign.

Through the development of a scalable synthesis of the COR polyketide fragment, coronafacic acid (CFA), a diverse array of $N$-coronafacoyl-amino acid analogues were synthesised. The inherent flexibility of the synthesis, imparted by its convergent nature, has enabled the synthesis of several CFA analogues, featuring single point changes to the parent scaffold. In the complementary study, scalable synthesis of the COR amino acid moiety, coronamic acid (CMA), enabled diverse screening of analogues where the core moiety was varied.

Through the biological evaluation of these compounds, an SAR for herbicidal activity around the COR scaffold has been identified. Initial efforts focused on modification of the amino acid component, however work in this area failed to afford any compounds of significant activity. Retention of the COR amino acid moiety, CMA, with modification of the CFA core has generated several COR analogues with good levels of potency. On analysis of this data set and supporting computational docking, we have concluded that the key convenor of potency in COR is the amino acid fragment, CMA. The CFA moiety appears to be comparatively more amenable to structural modification with the retention of potency, and we suggest that further SAR studies of the COR scaffold focus on analogues of this unit.

## Acknowledgements

I'd like to thank my supervisor Dr Allan Watson for all his help and guidance throughout my PhD, but mostly for putting up with me. I would also like to thank my second supervisor Dr Craig Jamieson for his invaluable input in my work, and my examiner Dr Glenn Burley for his help in preparing me for my viva.

I'd like to thank my industrial supervisor Dr Elizabeth Frye for all her help and assistance throughout my PhD , and particularly during my placements to carry out the robot runs. Thanks also to Dr Claire Russell at Syngenta for all her support, and for being proactive in every aspect of the project. Thanks to all the people at Syngenta who have been involved with the robot runs- the setting up of the machine, purification of compounds, and collection of spectral data.

I'd like to thank all members of the Watson/Jamieson groups past and present for their help, support, and friendship over the last three years. Thank you for not giving up on me when times were tough.

Thank you to Eilidh Sood, Matt West, David Cain, and Liam Wilson (Ricecake) for making my last year a bit more bearable.

Particular thanks go to Diana Castagna and Lisa Miller for always being there with advice and friendship. Thanks to my fellow natural product chemist Chao Xu for all her support, and especially for teaching me to interpret 2D NMR, which is now my favourite thing (alongside soft shell crab which I have you to thank for aswell!). Thanks to Kirsty Wilson and Carol Frias for their support and friendship. The lab would have been a much duller place without you.

Thanks to Morag Watson for donating me two of the amino acids used in the coronafacoyl scope. Together we will kill weeds!

Thanks to Julien Vantourout for joining me in my Baran obsession, and reminding me why I love what I do.

Thanks to Peter Campbell and Chris McPherson, who have been there every step of the way. Your friendship has been invaluable to me.

Special thanks go to John Molloy, who has always had my back. Your encouragement and constant reassurance that I could do this helped me no end.

Finally, I would like to thank Ciaran Seath, who has been there every hour of every seven day week we've worked for the last three years. You pushed me to be a better chemist and always told me I was good enough. Thank you for believing in me.

| Abbreviations |  |
| :---: | :---: |
| ABUTH | Abutilon theophrasti |
| Ac | Acyl |
| ACCs | Aminocyclopropane carboxylic acids |
| ALB | Aluminium lithium bis(binaphthoxide) complex |
| AMARE | Amaranthus retroflexus |
| app. | Apparent |
| aq. | Aqueous |
| BIDPI | Bidens pilosa |
| BINOL | 1,1'-Bi-2-naphthol |
| BL | Bleaching |
| Bn | Benzyl |
| Boc | $t$-Butyloxycarbonyl |
| BTAC | Benzyltriethylammonium chloride |
| CA | Conjugate addition |
| CDI | 1,1'-Carbonyldiimidazole |
| CFA | Coronafacic acid |
| Cfl | Coronafacate ligase |
| CHEAL | Chenopodium album |
| CMA | Coronamic acid |
| COI1 | COR-insensitive 1 |
| COR | Coronatine |
| COR-MO | COR methyl oxime |
| DA | Diels-Alder |
| DBU | 1,8-Diazabicyclo[5.4.0]undec-7-ene |
| DCC | $N, N^{\prime}$-Dicyclohexylcarbodiimide |
| DCE | Dichloroethane |
| DEAD | Diethyl azodicarboxylate |
| DIBAL | Diisobutylaluminium hydride |
| DIC | $N, N^{\prime}$-Diisopropylcarbodiimide |
| DMF | Dimethylformamide |
| DMP | Dess-Martin periodinane |


| DIGSA | Digitaria sanguinalis |
| :---: | :---: |
| DIPEA | $N, N$-Diisopropylethylamine |
| DMAP | 4-Dimethylaminopyridine |
| DMSO | Dimethylsulfoxide |
| ECHCG | Echinochloa crus-galli |
| EDC | 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide |
| ELEIN | Eleusine indica |
| Equiv | Equivalents |
| EWG | Electron withdrawing group |
| GH1 | Glasshouse screen one |
| GH2 | Glasshouse screen two |
| GI | Germination inhibition |
| HATU | 1-[Bis(dimethylamino)methylene]-1 H -1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate |
| HB | Haller-Bauer |
| HBTU | 2-( 1 H -benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate |
| HPLC | High performance liquid chromatography |
| HPPD | $p$-Hydroxyphenylpyruvate dioxygenase |
| IC | Intramolecular cyclisation |
| IMDA | Intramolecular Diels-Alder |
| JA | Jasmonic acid |
| JA-Ile | (+)-7-iso-Jasmonoyl-L-isoleucine |
| JAZ | Jasmonate ZIM-domain proteins |
| KCHSC | Kochia scoparia |
| LDA | Lithium diisopropylamide |
| LOLPE | Lolium perenne |
| MOA | Mode of action |
| MR | Morphological effects |
| NC | Necrosis |
| NMR | Nuclear magnetic resonance |
| OC | oxy-Cope |


| PCC | Pyridinium chlorochromate |
| :--- | :--- |
| PDC | Pyridinium dichromate |
| PFP | Pentafluorophenyl |
| $p$-NB | $p$-Nitrobenzene |
| PPTS | Pyridinium $p$-toluenesulfonate |
| PTSA | $p$-Toluenesulfonic acid |
| Py | Pyridine |
| RCM | Ring closing metathesis |
| RT | Room temperature |
| SA | Salicylic acid |
| SAR | Structure-activity relationship |
| SCF ${ }^{\text {CoIl }}$ | Skp/Cullin/F-box complex |
| SETFAL | Setaria faberi |
| SORHA | Sorghum halepense |
| ST | Stunting |
| STEME | Stellaria media |
| TBAF | Tetra- $n$-butylammonium fluoride |
| TBDMS | $t$-Butyldimethylsilyl |
| TCICA | Trichloroisocyanuric acid |
| THF | Tetrahydrofuran |
| THP | Tetrahydropyran |

## Table of Contents

1 Introduction ..... 1
1.1 Agrochemicals ..... 1
1.2 Natural Products in Herbicide Development .....  2
1.3 Coronatine ..... 5
1.4 Synthetic Approaches Towards Coronafacic Acid ..... 14
1.5 Synthetic Approaches Towards Coronamic Acid ..... 33
1.6 Total Synthesis of Coronatine ..... 42
2 Project Aims ..... 44
3 Results and Discussion ..... 47
3.1 Biological Testing ..... 47
3.2 Coronalon ..... 47
3.3 Coronafacic Acid Synthesis ..... 51
3.4 Coronafacoyl-Amino Acid Synthesis ..... 54
3.5 Coronafacoyl-Amino Acid SAR ..... 59
3.6 Coronafacic Acid Analogue Synthesis ..... 61
3.7 CFA Analogue L-Ile-Conjugation and Biological Evaluation ..... 65
3.8 Isoleucine-Analogue Synthesis and Biological Evaluation ..... 67
3.9 Coronamic Acid Synthesis ..... 69
3.10 Coronamic Acid Conjugate Synthesis ..... 71
3.11 Coronamic Acid Conjugates Biological Evaluation ..... 74
3.12 Docking Studies ..... 78
3.13 Summary of SAR Analysis ..... 83
4 Conclusion ..... 85
5 Future Work ..... 87
6 Experimental ..... 89
6.1 General Experimental Procedures ..... 91
6.2 Synthesis of compound 142. ..... 98
6.2.1 Procedures and Characterisation of compound $\mathbf{1 4 2}$ ..... 98
6.3 Coronalon Aromatic Core Amino Acid Analogues (Scheme 38) ..... 103
6.4 Synthesis of ( $\pm$ )-CFA (3) (Scheme 40/41) ..... 124
6.4.1 Procedures and Characterisation of CFA synthesis ..... 124
6.5 N-coronafacoyl Analogue Procedures and Characterisation (Scheme 42/43). 134
6.6 Synthesis of Compound 9b (Scheme 44) ..... 181
6.6.1 Procedures and Characterisation of Compound 9b Synthesis ..... 181
6.7 Synthesis of Compound 9a (Scheme 45) ..... 185
6.7.1 Procedures and Characterisation of Compound 9a Synthesis ..... 185
6.8 Synthesis of Compound 172 (Scheme 47) ..... 189
6.8.1 Procedures and Characterisation of Compound $\mathbf{1 7 2}$ Synthesis ..... 189
6.9 Synthesis of Compound 180 (Scheme 48/49) ..... 199
6.9.1 Synthesis and Characterisation of compound $\mathbf{1 8 0}$ Synthesis ..... 199
6.10 Core Analogue $L$-Ile-Conjugation (Scheme 50) ..... 207
6.12 Synthesis of ( $\pm$ )-CMA (4) (Scheme 53) ..... 239
6.12.1 Procedures and Characterisation of ( $\pm$ )-CMA (4) Synthesis ..... 239

## Introduction

## 1 Introduction

### 1.1 Agrochemicals

Effective agrochemicals are essential to maintaining sustainable agriculture to support a growing population. ${ }^{[1]}$ It has been projected that global food requirements will increase by $70-100 \%$ by $2050,{ }^{[2]}$ and estimated that without crop protection products currently attained crop yields would be reduced by $50 \% .^{[3]}$ Therefore the continued development of new, more effective agrochemicals is vital to meet agricultural demands. ${ }^{[1,4,5]}$

Agrochemicals can be subdivided into three categories depending on their target class; insecticides, fungicides, and herbicides. This thesis will focus on the development of the phytotoxic natural product coronatine and coronatine mimics as herbicidal leads.

Synthetic herbicides are currently used in all major field crops. Herbicides can be defined as crop protection products which act to control undesired vegetation, and are heavily relied upon globally for effective weed control. ${ }^{[6]}$

Following the success of the herbicide industry in the 1970s and 80s, when a number of vital herbicidal agents with novel modes of action (MOA) were discovered and commercialised, the development of new herbicides has slowed significantly. ${ }^{[4,6]}$ This decline has partly been attributed to increasing regulatory pressures, coupled with rising research and development costs in a competitive market saturated with generic products. ${ }^{[6]}$ The emergence of weed resistance to established phytotoxin classes has also been cited as a key factor. ${ }^{[4,5]}$

Herbicide resistance is a significant issue facing the agrochemical industry. Resistance has evolved with the widespread use of commercial herbicides, ${ }^{[7]}$ and resistance towards phytotoxins of all currently targeted MOAs have been reported. ${ }^{[8]}$ In order to combat increasing resistance, new phytotoxic agents with novel MOAs are required. ${ }^{[6]}$ Commercial herbicides currently exploit roughly twenty MOAs, and this figure has not increased in the last thirty years. ${ }^{[9]}$ Furthermore, of these twenty MOAs, six currently dominate $80 \%$ of the market. ${ }^{[3]}$

## Introduction

With respect to these findings, continued research into the development of effective, safe, and cost effective herbicides is essential. A variety of sources can be used to identify new starting points for agrochemical discovery, including the screening of compound libraries against an identified target, competitor patents, and natural phytotoxins (Figure 1). ${ }^{[5]}$


Figure 1: Selected approaches for the identification of leads in agrochemical discovery. ${ }^{[5]}$
Each approach can be associated with perceived benefits and drawbacks. Competitor inspired and natural product-based leads have established biological activity against a given target, which is highly advantageous in an early stage discovery project, however this often comes with the caveat of reduced novelty. Library screening and fragmentbased methods often produce hits accessing novel chemical space, however typically confer low levels of potency and insufficient SAR information to be informative to initial development campaigns. ${ }^{[5]}$

### 1.2 Natural Products in Herbicide Development

The identification of phytotoxic natural products has served as an abundant source of novel compounds for agrochemical development. In comparison with insecticidal and fungicidal examples, there are a limited number of natural product-based herbicides which have been commercialised, totalling only $10 \%$ of the market. ${ }^{[10]}$

Natural products typically provide molecular architecture of greater complexity with respect to synthetic compounds. The high degree of structural variance offered, alongside their established biological activity make natural phytotoxins attractive starting points for development (Figure 2). ${ }^{[11]}$

leptospermone

cantharidin

macrocidin $A$

Figure 2: Selected natural products possessing phytotoxic activity, demonstrating their structural variance.

Compound design deriving from a natural product scaffold can be expected to access biologically relevant chemical space, ${ }^{[12]}$ however the structural complexity offered by natural product motifs comes with the caveat of the requirement for extended, and ultimately costly, synthesis campaigns to obtain the active compound synthetically. ${ }^{[13]}$ Furthermore, the biologically optimised natural product structure may have little scope for structural simplification with the retention or enhancement of potency, or for improvement of physicochemical properties. ${ }^{[5,14]}$ There are several examples in the published literature where attempts to simplify a phytotoxic natural product structure have failed to result in a compound possessing sufficient biological activity. ${ }^{[14]}$ Despite this, there are examples where lead optimisation of a natural product has been successful, producing a marketed herbicide (See leptospermone example).

As mentioned above, resistance to traditionally used herbicides is an ever increasing problem, which highlights the need for the development of novel herbicides with new target sites and MOAs. ${ }^{[15]}$ Marketed natural product-derived herbicides have typically acted at target sites which were not utilised by commercial herbicides prior to their introduction. ${ }^{[13]}$ In this regard, the development of natural phytotoxins as herbicidal leads can be viewed favourably, ${ }^{[14]}$ as they often allow the targeting of novel target sites with respect to synthetic phytotoxins. ${ }^{[16]}$

Furthermore, natural product derived herbicides are generally perceived by thepublic as being more environmentally friendly than their synthetic counterparts, typically possessing shorter half-lives, which may promote greater acceptance and consumer uptake of a new herbicide; ${ }^{[14]}$ however, there is limited evidence to support this viewpoint, ${ }^{[13]}$ and natural products with excessively short half-lives may be challenging to develop into a successful marketable product. ${ }^{[14]}$

## Introduction

## Leptospermone

As a case example, leptospermone can be viewed as a successful development of a phytotoxic natural product lead to marketed herbicide. Isolated from the bottlebrush plant (Callistemon spp.) and acting on what was then a novel herbicide target, the enzyme $p$-hydroxyphenylpyruvate dioxygenase (HPPD), ${ }^{[17]}$ leptospermone was viewed as an attractive hit compound for a herbicide discovery programme. Analogue synthesis and SAR mapping around the triketone scaffold has enabled the production of a family of leptospermone derived herbicides.

Mesotrione is a leptospermone derived herbicide developed by Syngenta (Figure 3).


Figure 3: Optimisation of the leptospermone skeleton to mesotrione, highlighting key areas of SAR development.

Following a campaign of SAR development around the natural product scaffold, a number of structural features were identified as conferring herbicidal activity. Introduction of the substituted benzoyl motif was found serendipitously, and an electron-withdrawing group (EWG) at the ortho-position of the aromatic ring was shown to be essential for herbicidal activity. A second EWG in the para-position was typically beneficial for potency across a series of analogues and the unsubstituted cyclohexanedione moiety gave the desired maize selectivity. ${ }^{[18]}$

In this example, development of a natural product scaffold allowed the discovery of a herbicidal agent which is more potent than the parent compound, and displays selectivity not observed with leptospermone. The identification of HPPD as a novel and valid herbicide target site represented a new MOA, which enabled the development of a family of phytotoxic agents. ${ }^{[19]}$

## Introduction

Overall, phytotoxic natural product leads represent an attractive starting point for agrochemical discovery, offering tuned structural scaffolds known to deliver potency, and often enabling the targeting of a novel herbicidal MOA.

### 1.3 Coronatine

Coronatine (COR) (1) is a natural phytotoxin isolated from several strains of Pseudomonas syringae. ${ }^{[20]}$ Acting as an agonist of the endogenous bioactive plant hormone (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile) (2), ${ }^{[21]} \mathrm{COR}$ is a non-host specific phytotoxin, displaying a range of bioactivity across a variety of plant species (Figure 4). ${ }^{[20]}$


(+)-7-iso-JA-L-IIe

3
jasmonic acid

Figure 4: Coronatine (1) acts as a structural and functional mimic of (+)-7-iso-jasmonoyl-Lisoleucine (2) in the jasmonic acid (3) signalling pathway.

COR interacts with the jasmonate receptor COR-insensitive 1 (COI1), ${ }^{[22]}$ and induces biological effects through activation of the jasmonic acid (JA)-signalling pathway and the resultant suppression of salicyclic acid (SA)-mediated defence mechanisms. ${ }^{[20]}$

COI1 encodes an F-box protein which is part of an Skp/Cullin/F-box complex ( $\mathrm{SCF}^{\mathrm{COII}}$ ), which functions as a ubiquitin ligase. ${ }^{[23]}$ Jasmonate ZIM-domain proteins (JAZ) function as transcriptional regulators to repress jasmonate signalling, and form the COI1-JAZ complex in response to JA-Ile production. ${ }^{[23]}$ The site of JA-Ile perception has been identified as a three-molecule complex, consisting of COI1, JAZ, and the inositol pentakisphosphate cofactor. ${ }^{[24]}$ Binding of the ligand induces ubiquitination and subsequent degradation of JAZ proteins, which results in the activation of JA regulated gene expression. ${ }^{[22]}$

## Introduction

SA is a phytohormone involved in plant defence, and JA-mediated suppression of SAsignalling occurs as the result of hormone crosstalk. Through this crosstalk, CORmediated activation of JA-signalling leads to inhibition of SA-signalling, and subsequent suppression of plant defences. ${ }^{[25]}$

Through interaction with this biological pathway, COR has been reported to exhibit a range of phytotoxic activity across several plant species. COR induces significant chlorosis in leaf tissue ${ }^{[26]}$ and senescence of leaves, ${ }^{[27]}$ inhibits root growth, ${ }^{[22,28]}$ stimulates the production of ethylene ${ }^{[29]}$ and defence related secondary metabolites, ${ }^{[30]}$ and induces hypertrophy ${ }^{[31]}$ and stomatal opening. ${ }^{[32]}$

The jasmonate receptor represents a novel MOA not currently exploited by commercial phytotoxins, and as such the development of a COR-based herbicide is highly attractive. ${ }^{[15]}$

Structurally, COR is composed of two distinct fragments, the bicyclic polyketide coronafacic acid (CFA), and the isoleucine-derived amino acid coronamic acid (CMA) (Figure 5). ${ }^{[33,34]}$



4
coronafacic acid (CFA)


5
coronamic acid (CMA)

Figure 5: Coronatine structural components, coronafacic acid (4) and coronamic acid (5).
CFA and CMA are synthesised through independent biosynthetic pathways, ${ }^{[35,36]}$ and their final conjugation to form the COR amide linkage is carried out by the enzyme coronafacate ligase (Cfl). ${ }^{[37]}$

Despite the substantial interest in COR as a potential herbicidal lead, relatively little is known with respect to an SAR around the natural product scaffold. Published SAR to date is summarised in Figure 6.

## Introduction



Figure 6: Summary of reported COR SAR.
It has been reported that the natural enantiomer, (+)-COR, confers significantly greater biological activity than other COR stereoisomers. ${ }^{[38,39]}$ COR stereoisomers have also been used to probe the natural product MOA. Through the synthesis and biological evaluation of COR isomers it has been shown that COR induces stomatal opening activity through an alternative function in addition to its COI1-JAZ dependant function (Figure 7). ${ }^{[40]}$


COI1-JAZ agonistic Stomatal opening activity


Non-COI1-JAZ agonistic Stomatal opening activity

Figure 7: Use of COR stereoisomer 1b to probe MOA.
COR isomer 1b was found to induce stomatal re-opening through a mechanism distinct from COI1-JAZ agonism. Isomer 1b did not induce COI1-JAZ coreceptor formation, however was active in a stomatal re-opening assay, suggesting an alternative MOA for stomatal opening and that the stereochemistry of the CMA moiety does not affect stomatal opening activity, and that it is the CFA moiety which is key in this assay. ${ }^{[41]}$

Both CFA and CMA moieties confer phytotoxic activity separately, however, this is greatly enhanced when the components are coupled to give the parent structure. ${ }^{[39]}$

## Introduction

With regard to the core moiety (Figure 8), it is known that the cis-stereochemistry of the ring junction is important for biological activity, mimicking the side chain configuration of JA-Ile. ${ }^{[21,42,43]}$


Figure 8: Core modified COR and CFA analogues, highlighting point change from the parent structure.

Substitution at the $\mathrm{C}^{6}$ position has also been shown to be required for activity in potato tuber inducing assays; deletion analogue 9a was found to be inactive, whereas methyl substituted analogue 9b retained potency. Sterically larger, more lipophilic substitution in this position (9c) conferred the highest levels of activity when incorporated in CFA analogues. ${ }^{[44]}$ The relative stereochemistry of this substituent has also been found to be significant, with substitution trans relative to the cis-ring junction found to confer higher levels of tuber inducing activity than the respective $\mathrm{C}^{6}$ epimers ( $\mathbf{4}$ is more active than $\mathbf{9 e}) ;{ }^{[44]}$ however, it has also been reported that the ethyl substituent is not crucial for tendril-coiling inducing activity, with deletion analogues conjugated to $L$-Ile retaining potency. ${ }^{[43]}$

Reduction of the carbonyl moiety (7) has been reported to lead to reduced volatile inducing activity in rice leaves with respect to COR, ${ }^{[30,45]}$ however, there have been reports of retained activity of this compound and of the analogous structure were the carbonyl has been completely reduced to afford the unsubstituted cyclopentane ring (6). ${ }^{[46]}$

COR analogue 8 , where the $\alpha, \beta$-unsaturated amide has been reduced to afford the fully saturated 6,5-bicycle, has been reported and found to be highly active in volatile emission assays, suggesting that this functionality is not important for interaction with the binding site. ${ }^{[45]}$

## Introduction

Typically, the amino acid residue of COR has been the main focus of SAR studies. It has been reported that the enzyme responsible for the linkage of CFA and CMA, Cfl, has a degree of tolerance around the amino acid structure, ${ }^{[46]}$ as evidenced through the isolation of several $N$-coronafacoyl compounds alongside COR (Figure 9). ${ }^{[47-50]}$



Nor-COR


COR-L-Ser


COR-L-Thr

Figure 9: Naturally occurring $N$-coronafacoyl analogues which have been isolated alongside COR, highlighting the varied amino acid residue.

These analogues have been reported to possess COR like bioactivity, however, are less active than the parent compound COR. ${ }^{[48]}$ This perceived tolerance in the amino acid residue suggests that an SAR campaign focusing on amino acid analogues of COR could be fruitful.

SAR studies in this area have reported biological activity arising from analogues with alternative amino acids. $N$-coronafacoyl- $L$-isoleucine (10b) has been found to retain COR levels of activity in assays measuring the induction of alkaloid biosynthesis as an indicator of activation of plant defence mechanisms. ${ }^{[51]}$ This analogue has also been shown to retain COR-like activity in tendril-coiling inducing assays, however was less potent than COR itself. ${ }^{[43]}$ This data suggests $L$-Ile acts as a reasonable mimic of CMA, despite conferring weaker bioactivity. Tolerance for further alternative amino acid

## Introduction

substitution with both natural and non-natural amino acids has been demonstrated, however, an SAR for this portion of the molecule remains unclear (Figure 10). ${ }^{[43]}$


Figure 10: COR analogues with variation in the amino acid residue.
Substitution which retains the $S$-stereochemistry of CMA at the $\alpha$-carbon is important for activity, as has been demonstrated through the synthesis of other COR stereoisomers ( $\mathbf{1}$ is significantly more active than (-)-COR). ${ }^{[39]}$ Analogues using $L$ valine (10c) and the cyclopropyl amino acid 10a have been found to confer weak activity in potato tuber inducing assays, while glycine analogue $\mathbf{1 0 e}$ is inactive. ${ }^{[39]}$ It has been widely reported that the free carboxyl terminus of the amino acid is required for maximal activity ( $\mathbf{1 0 f}$ is less active than COR), ${ }^{[30,39]}$ however, in some examples moderate activity has been observed from esterified compounds, which has been attributed to a pro-cide effect where the free acid parent compound is released in situ through the action of esterases. ${ }^{[52,53]}$ The relative position of this carboxyl terminus has been assessed through the synthesis of analogues 11a-c, which gave inactive or very weakly active compounds, indicating the importance of the $\alpha$-amino acid relationship. ${ }^{[39]}$

COR-analogues with alternative amino acids have also been used to probe the natural phytotoxin MOA with respect to stomatal opening activity. ${ }^{[41]}$ In this study, it was shown through in silico docking that the bulkiness of the amino acid side chain has a significant effect on substrate affinity for the COI1-JAZ co-receptor (Figure 11).


Figure 11: Coronafacoyl-amino acid compounds used to probe MOA for stomatal re-opening.
All analogues synthesised in this study showed stomatal re-opening activity in Arabidopsis thaliana guard cells. In silico docking studies of these compounds showed that analogues with comparatively small substituents at the $\alpha$-position, $\mathbf{1 0 b} / \mathbf{c}$ and $\mathbf{1 2 a} / \mathbf{b}$, had a binding mode very similar to that of natural COR in the COI1-JAZ coreceptor; however, analogues with bulkier substituents, 12c-e, were not accommodated in the binding pocket. This again suggests an alternative MOA for stomatal opening activity, and is also informative about SAR around the amino acid motif with respect to COI1-JAZ agonism, suggesting smaller amino acid side chains are preferred.

There has also been significant interest in a COR analogue featuring an aromatic CFAlike core, and $L$-Ile amino acid residue, which is known as coronalon (13) (Figure 12). ${ }^{[54]}$


Figure 12: Structurally simplified COR mimic coronalon, highlighting the areas of structural modification from the parent compound.

The aromatic core structure represents a structurally simplified CFA mimic, which is attractive with a view to feasibility of expedient synthesis of COR analogues. ${ }^{[55,56]} \mathrm{L}$ -Ile-OMe is used as a CMA surrogate, an approach which has been adopted elsewhere to probe SAR around the CFA core motif. ${ }^{[43]}$ The methyl ester is known to hydrolyse

## Introduction

in situ, and has been preferred for analogue synthesis for practicality. The synthetic accessibility of this structure has enabled significant SAR studies to be carried out.

Coronalon and its analogues featuring alternative amino acid motifs have been reported to possess COR like activity, including the induction of volatile biosynthesis and tendril-coiling (Figure 13). ${ }^{[55]}$


| D-lle | $14 \mathbf{a}$ |
| :--- | :--- |
| allo-lle | $14 \mathbf{b}$ |
| L-Leu | $14 \mathbf{c}$ |
| $D$-Leu | $14 \mathbf{d}$ |
| L-Val | $14 \mathbf{e}$ |
| L-Phe | $14 \mathbf{f}$ |
| CMA (free acid) | 14 g |

Figure 13: Amino acid variation on coronalon analogues, with deletion of the ethyl unit.
The incorporation of an amino acid is essential, as was observed with COR. ${ }^{[39]}$ AlloIle analogue 14b confered weak volatile inducing activity, whilst $L$-leucine ( $\mathbf{1 4 c}$ ) and valine (14e) incorporation retained volatile inducing activity. Conjugation with the free acid of CMA ( $\mathbf{1 4 g}$ ) gave activity comparable to the $L$-leucine conjugate. ${ }^{[55]} L$ phenylalanine analogue $\mathbf{1 4 f}$ and all conjugates with $D$-configured amino acids were inactive.

Functionalisation at the $\mathrm{C}^{6}$ position has been shown to be significant in the potency and activity profile of coronalon analogues, and as such the SAR at this position has been probed (Figure 14).

$=\mathrm{Me}$ (15a), $\mathrm{CHCH}_{2}$ (15b), allyl (15c)
O-alkyl (15d), O-allyl (15e) $\mathrm{OSO}_{2} \mathrm{CF}_{3}$ (15f) $\mathrm{Br}, \mathrm{I}, \mathrm{N}_{3}(15 \mathrm{~g})$ furan (15h) thiophene (15i)

15

Figure 14: Reported coronalon analogues, featuring variation of the $\mathbf{C}^{\mathbf{6}}$ substituent.
The ethyl substituent on the aromatic ring increases the potency of the compound with respect to the unsubstituted analogue, and also aligns its bioactivity more closely with

## Introduction

a COR-like profile. ${ }^{[54]}$ Methyl (15a) and alkoxyl substituted (15d) derivatives are inactive or confer weak activity with the exception of the $O$-allyl substituted analogue (15e), which gave high levels of activity. Vinyl (15b) and allyl (15c) substituted derivatives were weakly active, whereas furan (15h) and thiophene analogues (15i) were inactive, postulated to be due to increased steric effects at the ligand binding site. ${ }^{[56,57]}$

Further aromatic analogues maintaining the $L$-Ile-OMe substituent have also been reported and tested for phytotoxic activity (Figure 15)












Figure 15: Variation of the aromatic core in coronalon analogues.
Mono-cyclic and tri-cyclic aromatic cores ( $\mathbf{1 6 c} / \mathbf{d}$ ), as well as heteroatom incorporation ( $\mathbf{1 6} \mathbf{/} / \mathbf{f}$ ), were not tolerated. Ring-expansion to give 6,6 - or 7,6 -bicycles ( $\mathbf{1 6 g} / \mathbf{h}$ ) gave reduced potency, whilst modification of the cyclopentanone ring delivered

## Introduction

biologically active conjugates ( $\mathbf{1 6 a} / \mathbf{b}$ ), however with lower levels of activity than the parent compound coronalon. ${ }^{[56]}$

The observed activity from coronalon and its analogues is of particular significance as a demonstration of the potential for structural modification and simplification with the retention of a COR-like activity profile.

### 1.4 Synthetic Approaches Towards Coronafacic Acid

Despite efforts to probe the SAR around the COR scaffold, little conclusive findings around the structural tolerance are known. This has been attributed in part to the complexity of the natural product structure, limiting the practicality of an analogue synthesis campaign. ${ }^{[58,59]}$ In particular, SAR development has been limited by the lack of a scalable synthesis towards the polyketide CFA moiety. ${ }^{[55]}$ Although the synthesis of CFA has been well reported in the chemical literature, syntheses have typically been protracted, challenging to execute on a practical scale for analogue generation, and ultimately low yielding. To effectively assess the structural requirements around the natural product scaffold to achieve phytotoxic activity, a robust, scalable synthetic methodology must be developed, allowing access to CFA and ideally enabling synthetic flexibility to allow modifications to the CFA core.

Numerous total syntheses of racemic CFA have been reported, along with several enantiopure preparations. Table 1 shows the reported syntheses of CFA in chronological order and grouped according to their associated key step; Figure 16 shows these key steps in more detail.

Synthetic strategies towards CFA can generally be grouped into five approaches based on the key transformation in the route: Diels-Alder (DA) reaction, both inter and intramolecular (IMDA), conjugate addition, Haller-Bauer reaction, intramolecular cyclisation, and oxy-Cope methodology.

The presence of the cyclohexene-derived core within CFA has rendered the DA reaction a common key disconnection. DA-based approaches have enabled expedient access to the CFA carbon skeleton with control of the requisite stereochemistry, and therefore have been a particularly effective means of CFA synthesis. Each of these

## Introduction

lynchpin strategies will be reviewed in the following sections, with emphasis given to the DA-based approaches.

Table 1: Literature syntheses of coronafacic acid.

| Author (Year) | $\begin{gathered} \text { Key step } \\ \text { (No. steps) } \end{gathered}$ | Racemic/ enantiopure | $\begin{gathered} \text { Overall Yield } \\ (\%) \end{gathered}$ | Ref. |
| :---: | :---: | :---: | :---: | :---: |
| Ichihara (1977) | DA (10 ${ }^{\text {a }}$ ) | Racemic | Unknown | 60 |
| Ichihara (1980) | DA ( $14{ }^{\text {b,c }}$ ) | Racemic | 0.4 | 65 |
| Jung (1981) | DA (8) | Racemic | 7 | 67 |
| Llinas-Brunet (1984) | DA ( $9^{\text {a }}$ ) | Racemic | 4 | 61 |
| Yates (1990) | DA ( $12^{\text {b }}$ ) | Racemic | 24 | 69 |
| Charette (2007) | DA ( $6^{\text {a }}$ ) | Racemic | 29 | 68 |
| Ueda (2009) | DA ( $12^{\text {a }}$ ) | Racemic | 5 | 38 |
| Ueda (2010) | DA ( $8^{\text {a }}$ ) | Racemic | 28 | 63 |
| Ichihara (1996) | $\mathrm{CA}\left(7^{\text {a }}\right.$ ) | Racemic | 25 | 70 |
| Ichihara (1997) | CA ( $9^{\text {b }}$ ) | Enantiopure | 24 | 71 |
| Shibasaki (1998) | CA (6) | Enantiopure | $9^{\text {f }}$ | 72 |
| Mehta (1993) | HB ( $8^{\text {a }}$ ) | Racemic | 11 | 74 |
| Mehta (1999) | HB (12 ${ }^{\text {a }}$ ) | Enantiopure | 5 | 77 |
| Tsuji (1981) | $\mathrm{IC}\left(15^{\text {a }}\right.$ ) | Racemic | Unknown | 79 |
| Nakayama (1981) | IC ( $12^{\text {b }}$ ) | Racemic | 0.9 | 81 |
| Nakayama (1983) | IC ( $12^{\text {a }}$ ) | Enantiopure | 0.1 | 82 |
| Blechert (1996) | IC ( $9^{\text {b }}$ ) | Racemic | 16 | 80 |
| Tori (2000) | IC ( $18{ }^{\text {d }}$ ) | Racemic | 0.9 | 78 |
| Taber (2009) | IC ( $12^{\text {a }}$ ) | Enantiopure | 4 | 86 |
| Kobayashi (2011) | IC ( $12^{\text {a,c }}$ ) | Enantiopure | 15 | 84 |
| Kobayashi (2013) | IC ( $11^{\mathrm{a}, \mathrm{c}}$ ) | Enantiopure | 1.6 | 85 |
| Jung (1980) | OC (14) | Racemic | 1.7 | 87 |

[^0]Diels-Alder


Intramolecular Cyclisation
Haller-Bauer


Figure 16: Summary of literature synthetic approaches towards coronafacic acid, detailing the key step in each.

## Intermolecular Diels-Alder approaches

In 1977, Ichihara reported the first synthesis of ( $\pm$ )-CFA via an intermolecular DA reaction. ${ }^{[60]}$ Despite requiring harsh conditions and proceeding in only moderate yield, the DA reaction provided access to fused bicycle 19, as a 1:1 mixture of diastereomers, containing the desired cis-ring junction (Scheme 1). ${ }^{[60]}$

## Introduction



Scheme 1: Ichihara's intermolecular Diels-Alder strategy.
Despite having accessed the complete carbon framework, a further nine transformations, for which yields were not communicated, were required to deliver $( \pm)-\mathrm{CFA}$.

Reduction of the cyclopentanone 19 from the convex face gave alcohol 20. Subsequent hydrolysis of the enol ether afforded ketone $\mathbf{2 1}$ as a mixture of diastereomers at $\mathbf{C}^{6}$, for which the ratio was not communicated. 21a, bearing the desired relative stereochemistry, was found to be the more stable isomer, and the undesired isomer 21b could be epimerised to 21a upon treatment with base. Tetrahydropyran (THP) protection was followed by formation of the formylated compound 23, which was converted to 24 by alcohol protection, ketone reduction, and subsequent acid-mediated dehydration. Deprotection to aldehyde $\mathbf{2 4}$ and a final Jones oxidation afforded the first example of synthetic $( \pm)$-CFA. Given the lack of yield information, it is difficult to comment further on the utility of this process for rapid analogue generation.

Using an alternative intermolecular Diels-Alder, ( $\pm$ )-CFA was synthesised by LlinasBrunet et al., again allowing the complete carbon framework to be rapidly assembled (Scheme 2). ${ }^{[61]}$


29
28a


$$
\begin{aligned}
& \text { i) Jones ox. } \\
& \text { ii) Etl, } \mathrm{K}_{2} \mathrm{CO}_{3} \\
& \text { iii) } \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}
\end{aligned} \underbrace{(3 \text { steps })}_{(30 \% \text { yield }}
$$





Scheme 2: Llinas-Brunet's Diels-Alder strategy.
Heating cyclopentendione $\mathbf{2 5}$ with diene 26 in PhMe smoothly afforded bicycle 27, which could be advanced to $( \pm)-4$ in four steps. Chlorination using phenyldichlorophosphate gave a mixture of regioisomers 28a and 28b in a ratio of 2:3, respectively. With respect to analogue generation, these intermediates are potentially useful for SAR development around the cyclopentane ring of $\mathbf{4}$ based on the synthetic utility of the chloroenone. 28a was converted to bicycle 29 in one step via chemoselective hydrogenation, as a mixture of diastereomers at $\mathrm{C}^{7 \mathrm{a}}$. Despite this, conversion of $\mathbf{2 8 b}$ to $\mathbf{2 9}$ required a multi-step procedure: treatment with $\mathrm{AgNO}_{3}$ in MeOH afforded 30. $\mathrm{LiAlH}_{4}$ reduction delivered enone 31, which was converted to 29 via Jones oxidation, esterification, and chemoselective hydrogenation of the enone alkene. 29 was treated with NaOEt to bring the $\mathrm{C}^{5}-\mathrm{C}^{6}$ double bond into conjugation with the ester followed by acid-mediated hydrolysis of the ester, which afforded ( $\pm$ )-4 with the desired relative stereochemistry ( $52 \%$ yield over two steps (not shown)). This synthetic route was used to prepare $11 \mathrm{mg}( \pm)-\mathbf{4}$, which is insufficient for further SAR development; however, the route may be amenable to scale up procedures.

A similar Diels-Alder approach was communicated by Ueda et al. (Scheme 3). ${ }^{[38]}$ Functionalised hydroxypyrone 32 was accessed in four steps from commercial materials, ${ }^{[62]}$ which adds to the synthetic complexity of the route. The Diels-Alder

## Introduction

reaction of $\mathbf{2 5}$ and $\mathbf{3 2}$ gave access to bridged tricycle $\mathbf{3 3}$ in high yield and with moderate exo-selectivity, rationalised due to a greater stability of the exo-transition state, resulting from steric clashes incurred in the endo-model. ${ }^{[38]}$


Scheme 3: Ueda's exo-selective DA-based approach.
Intermediate $\mathbf{3 3}$ was then converted to $( \pm)-\mathbf{4}$ in five steps. Removal of the $\mathrm{C}^{3}$ carbonyl was achieved using a two-step procedure similar to the Llinas-Brunet approach: ${ }^{[61]}$ chlorination employing triphosgene provided chloroenone 34, which was hydrogenated to afford ketone $\mathbf{3 5}$. NaOMe-mediated elimination of the carboxylate and subsequent hydrogenation of the resulting enone alkene gave intermediate $\mathbf{3 6}$ in $90 \%$ yield over two steps. Methyl ester formation (37) was followed by dehydration to give 38 , which was then hydrolysed to ( $\pm$ )-4. The authors reported that the last three synthetic steps could be shortened to a single step in which bicycle $\mathbf{3 6}$ was refluxed in $\mathrm{H}_{2} \mathrm{SO}_{4}$. While requiring fewer steps, the overall yield from $\mathbf{3 6}$ using this approach was found to be significantly lower ( $24 \% v s .66 \%$ ). Ueda utilised this synthetic sequence to prepare $65 \mathrm{mg}( \pm)-\mathbf{4}$, suggesting this route could potentially be used to access useful quantities of CFA for analogue development.

## Introduction

Following this initial success, Ueda reported an improvement of their original synthetic sequence, ${ }^{[63]}$ giving access to tri-cyclic intermediate $\mathbf{3 5}$ in an improved step count and associated yield (Scheme 4). ${ }^{[38]}$ Notably, the associated key Diels-Alder using the monoketal derivative of $\mathbf{2 5}(\mathbf{3 9})^{[64]}$ was considerably more selective (> 25:1 exo:endo).


Scheme 4: Ueda's second generation CFA synthesis.
Significantly, the ( $\pm$ )-4 prepared using this route was then used in the synthesis of fluorescein isothiocyanate labelled COR for use as a molecular probe, ${ }^{[63]}$ illustrating the potential of this route to deliver sufficient quantities of $( \pm)$-CFA for further study.

## Intramolecular Diels-Alder approaches

Intramolecular DA reactions have been used frequently as a strategy towards ( $\pm$ )-CFA. The majority of these approaches have focused on the generation of the triene intermediate $\mathbf{4 2}$ and related derivatives (Figure 17). The Diels-Alder reaction of $\mathbf{4 2}$ has been found to be exo-selective, resulting in the pharmacologically undesired trans ring junction. However, the $\mathrm{C}^{7 \mathrm{a}}$ of $\mathbf{4 3}$ is readily epimerised to give the desired cis diastereoisomer. ${ }^{[65]}$


Figure 17: DA reaction of triene intermediate to assemble the CFA core structure.

## Introduction

Ichihara reported the first intramolecular Diels-Alder strategy towards ( $\pm$ )-CFA in 1980, utilising a late stage conrotatory ring opening, followed by a retro-Diels Alder to give access to the desired triene, and, finally, an IMDA reaction in one-pot procedure to afford 5,6-fused bicycle 46 in $92 \%$ yield (Scheme 5). ${ }^{[65]}$


Scheme 5: Ichihara's triene generation and IMDA cyclisation.
While providing 46 very rapidly and in high yield, formation of intermediate 44 required twelve steps, albeit from simple starting materials, ${ }^{[65,66]}$ which limits the utility of the route to access sufficient quantities of ( $\pm$ )-CFA for analogue generation. Acetal intermediate 46 was isolated with the expected trans-ring junction and was isomerised to the $c i s$-isomer using NaOMe . $\pm$ )-CFA was then quickly accessed from 46 by one-pot acetal deprotection/Jones oxidation, proceeding in $22 \%$ yield (not shown).

A similar conrotatory ring opening approach to unmask a reactive diene for an intramolecular Diels-Alder reaction has been described by Jung et al. (Scheme 6). ${ }^{[67]}$

## Introduction



49




51
50


Scheme 6: Jung's intramolecular DA approach.
An intramolecular [2+2] cycloaddition of ynoate 48 generated cyclobutene 49 and established the desired relative stereochemistry. ${ }^{[67]}$ Despite optimisation, this transformation was limited to $16 \%$ yield but with significant recovered starting material. This low yielding step early in the synthetic route limits the utility of the sequence with respect to the preparation of significant quantities of $( \pm)$-CFA. A series of simple, high yielding transformations then gave access to key intermediate 42: acidmediated ester hydrolysis was followed by pyridinium chlorochromate (PCC) oxidation, addition of vinyl Grignard, and a second oxidation. Thermolysis of $\mathbf{5 3}$ generated triene 42 in situ, which, on increasing the temperature, underwent the expected Diels-Alder to deliver $\mathbf{4 3}$ in high yield and in approximately 60:40 ratio in favour of the desired cis-isomer. This mixture was converted to $( \pm)-4$ in a single step by ester hydrolysis with concomitant epimerisation to the cis-ring junction (not shown). The authors also demonstrated that ( $\pm$ )-CFA could be accessed, following the same synthetic route, with an overall yield of $7 \%$ when telescoped without purification of the intermediates.

## Introduction

In 2007, the utility of species related to triene $\mathbf{4 2}$ as a precursor to ( $\pm$ )-4 was again demonstrated by Charette et al. (Scheme 7). ${ }^{[68]}$ In this example, the triene precursor was formed via diastereoselective boron-mediated aldol reaction of ester 54 with aldehyde $\mathbf{5 5}$ to deliver aldol products 56a/56b in a 87:13 anti:syn ratio. Significantly, 56a and 56b were readily separated by flash chromatography and, in a convergent strategy, each could be independently and selective dehydrated to afford the desired triene 57.


Scheme 7: Charette's approach towards ( $\pm$ )-CFA.
The authors demonstrated that 57 could be advanced to 42, via acetate hydrolysis and oxidation, and ultimately to ( $\pm$ )-4 through the known Diels-Alder approach (not shown). However, an alternative Diels-Alder reaction was developed in which both esters were reduced to give the corresponding diol 58, and the primary alcohol was subsequently protected as the $t$-butyldimethyl silyl (TBDMS) ether 59. Oxidation of 59 to enone 60 enabled a thermal Diels-Alder to give 61 in low yield of $24 \%$, proposed

## Introduction

to be the result of decomposition of triene $\mathbf{6 0}$ occurring at a lower temperature than the desired cyclisation. This yield could be improved to $67 \%$ by simply heating $\mathbf{5 9}$ in the presence of pyridinium dichromate (PDC), allowing for oxidation and DA cyclisation in one pot. While the trans-bicycle product would be expected, the authors found that epimerisation of $\mathrm{C}^{7 \mathrm{a}}$ occurred during flash chromatography on silica gel to provide the cis-product 61. Treatment of $\mathbf{6 1}$ with tetra- $n$-butylammonium fluoride (TBAF) and a subsequent Jones oxidation completed a concise synthesis of ( $\pm$ )-CFA. It should be noted, however, that aldehyde 55 is not commercial and required six steps to prepare, ultimately adding to the length of the overall synthesis and limiting the prospect for analogue generation via this route.

An alternative intramolecular Diels-Alder was favoured by Yates et al. who demonstrated the utility of their tandem Wessely oxidation/Diels-Alder methodology towards ( $\pm$ )-CFA. ${ }^{[69]}$ Intermediate phenol 62, which was synthesised in four high yielding steps from commercially available starting materials, underwent oxidation with $\mathrm{Pb}(\mathrm{OAc})_{4}$ to furnish the quinone derivative, followed by a thermal Diels-Alder to give isotwistanone 63 (Scheme 8).


## Scheme 8: Yates' DA-based approach to CFA.

Hydrogenation afforded tricycle 64 as a mixture of diastereomers before acetate hydrolysis to give 65. Oxidative ring opening then gave the key bicyclic structure 66,

## Introduction

as a mixture of diastereomers at $\mathrm{C}^{6} . \mathrm{Pb}(\mathrm{OAc})_{4} / \mathrm{Cu}(\mathrm{OAc})_{2}$-mediated oxidative decarboxylation gave access to 67 with olefinic isomer 68. However, 67 could be converted to $\mathbf{6 8}$ upon treatment with NaOEt. A final hydrolysis of $\mathbf{6 8}$ using aqueous acid afforded $( \pm$ )-CFA (not shown), with the correct cis-ring junction, in $87 \%$ yield following several recrystallisations. Despite this synthetic approach being high yielding overall ( $24 \%$ ), the use of harsh conditions at several steps throughout the route may limit its attractiveness with regard to scale up procedures.

## Conjugate addition approaches

Annulation via conjugate addition as a route to both (+)-CFA and ( $\pm$ )-CFA has also been thoroughly explored. Again, the main objective in this approach is the setting of the cis-ring junction, relative to the trans-ethyl unit. Ichihara et al. applied their conjugate addition-based approach towards hydrindane scaffolds to the synthesis of ( $\pm$ )-CFA (Scheme 9). ${ }^{[70]}$


Scheme 9: Ichihara's conjugate addition-based approach to CFA.
The key cyclisation precursor 69 was obtained in five steps in and $67 \%$ overall yield (not shown). Following optimisation, it was found that judicious choice of reaction conditions allowed 69 to undergo an intramolecular 1,6-addition to afford 43 as the main product, albeit in moderate overall yield.

The authors reasoned that the desired product was formed from kinetic protonation of the cyclopentanone enolate. Under the reaction conditions, the stereochemical integrity of 43 was found to erode over time to deliver increased quantities of diastereoisomers 70 and 67. Finally, ( $\pm$ )-4 was obtained in $70 \%$ yield by acidic hydrolysis of 43 (not shown). This approach provided efficient access to ( $\pm$ )-4, giving an overall yield of $25 \%$ - a significant improvement over previous syntheses. The scalability of this route was not commented on in the text; ${ }^{[70]}$ however, the efficiency

## Introduction

of the route to access $( \pm)-\mathbf{4}$ certainly renders it attractive with respect to potential scaleup and subsequent analogue generation for SAR scanning.

The authors later reported an asymmetric synthesis of (+)-4 by exploiting the same synthetic route using enantioenriched 71 (Scheme 10). ${ }^{[71]}$



Scheme 10: Ichihara's modified route to access enantiopure CFA.
A catalytic asymmetric Michael addition of diethylmalonate to cyclopentenone 18 delivered 71, which was converted to the cyclisation precursor 72 in six steps and in $63 \%$ overall yield (not shown). Total synthesis of (+)-4 followed the previously described strategy, ${ }^{[70]}$ with the key intramolecular conjugate addition proceeding in an improved yield. Optically enriched (+)-4 was prepared in overall yield of $24 \%$ and in only nine steps from 18. The authors comment that the relatively high overall yield of the synthetic route make it possible to gain access to practical quantities of (+)-4, and subsequently (+)-1.

In a later communication, Shibasaki et al. ${ }^{[72]}$ used Ichihara's approach ${ }^{[70]}$ to demonstrate the utility of their chiral aluminium catalyst in a similar asymmetric conjugate addition of triethylphosphonoacetate using an aluminium lithium bis(binaphthoxide) complex (ALB) to access phosphonate 73 (Scheme 11). ${ }^{[73]}$


Scheme 11: Shibasaki synthesis of conjugate addition precursor 72.
The 1,4-addition proceeded in high yield and excellent $e e$; however, desired intermediate $\mathbf{7 2}$ was the minor product formed in the subsequent Horner-WadsworthEmmons reaction, which gave the $Z$-isomer preferentially in $43 \%$ yield. Following Ichihara's procedure, ${ }^{[70]}$ diene $\mathbf{7 2}$ was then converted to (+)-4 (not shown).

## Haller-Bauer approaches

The Haller-Bauer reaction has also featured in CFA synthesis. Mehta et al. applied the Haller-Bauer reaction to access cis-hydrindane scaffolds for the synthesis of ( $\pm$ )-4 (Scheme 12). ${ }^{[74,75]}$


Scheme 12: Haller-Bauer-based approach towards CFA.
Reduction and deprotection of 74, accessed in three steps and in $43 \%$ overall yield from commercial starting materials (not shown), ${ }^{[76]}$ delivered 75, which underwent Haller-Bauer reaction using Amberlyst resin to give bicycle 76. The regioselectivity of the Haller-Bauer reaction was found to be predictable, with cleavage occurring between $\mathrm{C}^{1}$ and $\mathrm{C}^{10}$. The double bond was found to migrate into conjugation with the ester functionality in situ and no $\mathrm{C}^{7 \mathrm{a}}$ epimerisation was observed. A further five steps provided ( $\pm$ )-4 in $20 \%$ yield (not shown). The authors comment that this concise approach offers considerable potential for derivatisation, highlighting that $\mathbf{7 4}$ can be accessed in multi-gram quantities. Mehta has also reported the enzymatic resolution

## Introduction

of 74 using lipase PS, giving access to enantiopure (+)-4 following the same synthetic route (not shown). ${ }^{[75,77]}$

## Intramolecular cyclisation approaches

Intramolecular cyclisation has been a popular strategy for assembly of the carbocyclic scaffold of 4. Tori et al. applied a $\mathrm{SmI}_{2}$-initiated radical cyclisation towards ( $\pm$ )-4 (Scheme 13). ${ }^{[78]}$


Scheme 13: Tori's radical mediated intramolecular cyclisation.
Intramolecular cyclisation precursor, aldehyde 77, was accessed in eleven steps and in $17 \%$ yield (not shown). Exposing 77 to $\mathrm{SmI}_{2}$-initiated a 6-endo-trig cyclisation, which delivered a mixture of four stereoisomers, where $\mathbf{7 8}$ was the major product. Following six further transformations ( $\pm$ )-4 was isolated in $9 \%$ yield (not shown). The low overall yield obtained from this synthetic sequence ( $0.9 \%$ ) reduces the utility of the preparation with respect to generating practically useful quantities of $( \pm)-4$.

Pd-catalysed allylic alkylation has also been used to good effect for ring construction towards ( $\pm$ )-4. Tsuji demonstrated an intramolecular allylic alkylation cyclisation protocol for the construction of the cyclopentanone ring (Scheme 14). ${ }^{[79]}$ It should be noted that precise details for this approach are limited, with many aspects of reaction conditions and outcomes not detailed in the report.



Scheme 14: Tsuji's Pd-catalysed cyclisation-based appraoch to CFA.
The key Pd-catalysed intramolecular allylic alkylation was achieved using $\mathrm{Pd}(\mathrm{OAc})_{2}$ to afford the cyclopentanone product $\mathbf{8 0}$ in excellent yield. A further six steps gave the di-ester intermediate 81 (not shown). Protection of the ketone moiety as an acetal preceded a Dieckmann condensation to form the six-membered ring and a further four steps delivered ( $\pm$ )-4 (not shown). Again, the lack of detail communicated about the synthetic sequence does not allow comment on the synthetic utility of the route regarding yields obtained or scalability of the process.

Ring closing metathesis (RCM) was used to construct the cyclohexene ring in Blechert's approach to $( \pm)-4$ (Scheme 15). ${ }^{[80]}$


Scheme 15: CFA synthesis through RCM.
Ketal 83, synthesised in five steps and in $32 \%$ yield (not shown), underwent efficient RCM using Schrock's Mo catalyst to give access to bicycle 84. This key step was carried out on a 0.04 mmol scale, and required the use of a glovebox, which reduces the practicality of the route and its applicability to scale up procedures. A further three steps which proceeded in $54 \%$ yield afforded ( $\pm$ )-4 (not shown).

## Introduction

Nakayama et al. have reported a synthesis of ( $\pm$ )-4 featuring an intramolecular [2+1] cycloaddition (Scheme 16). ${ }^{[81]}$


## Scheme 16: Nakayama's [2+1] cycloaddition.

The cyclisation precursor $\mathbf{8 5}$ was obtained in three steps and $66 \%$ yield (not shown). Treatment of $\mathbf{8 5}$ with tosyl azide afforded the corresponding diazo compound, which afforded the tricyclic intermediate 86 through a copper-carbenoid intermediate. Following a further six steps which proceeded in low yield of $5 \%( \pm)-4$ was isolated (not shown).

The route was later modified by the Nakayama group to allow access to (+)-4 (Scheme 17). ${ }^{[82,83]}$ The synthetic strategy focused on the chromatographic separation of the $L$ menthyl ester derivatives. $\beta$-keto ester $\mathbf{8 7}$ was accessed in two steps in $6 \%$ yield (not shown), and was cyclised in moderate yield of $56 \%$ using the previously communicated conditions, ${ }^{[81]}$ affording 88a and 88b as a mixture of $\mathrm{C}^{6}$-epimers.


Scheme 17: Nakayama's modified synthesis to afford enantiopure CFA.
$(+)-4$ was then obtained in a further eight steps which proceeded in $0.8 \%$ yield and featured a separation of the menthyl ester derivatives to obtain the enantiomerically pure compound (not shown). The authors also demonstrated that 88b could be converted to (-)-4 (not shown). This approach was the first reported synthesis of both isomers of optically active 4 , which is attractive with respect to developing SAR for each enantioseries. ${ }^{[83]}$

## Introduction

Intramolecular cyclisation has also been used in the synthesis of (+)-4 by Kobayashi et al. (Scheme 18). ${ }^{[84]}$


Scheme 18: Kobayashi's intramolecular cyclisation-based synthesis of CFA.
Cyclisation precursor 89 was synthesised in ten steps and in an excellent $45 \%$ overall yield (not shown). Base-mediated intramolecular $\mathrm{S}_{\mathrm{N}} 2$ gave (+)-43 in moderate yield, allowing late stage formation of the cis-ring juncture. Acidic hydrolysis gave access to (+)-4 in $85 \%$ yield (not shown). Furthermore, the authors then demonstrated the coupling of (+)-4 with CMA isostere $L$-isoleucine, lending strength to the applicability of this strategy for the preparation of COR analogues. In a subsequent publication, Kobayashi et al. reported a slightly more efficient synthesis, albeit with a reduced overall yield, featuring the same key cyclisation step. ${ }^{[85]}$

Intramolecular cyclisation towards 4 has also been reported by Taber et al., who demonstrated the utility of their approach towards enantiopure 5,3- and 6,3carbocyclic scaffolds by applying the methodology to (+)-4 (Scheme 19). ${ }^{[86]}$


## Scheme 19: Taber's cyclocarbonylation-based methodology.

Intermediate 90 was synthesised in five steps and in $51 \%$ yield (not shown). Under buffered reaction conditions to prevent acetal deprotection, a novel Fe -mediated cyclocarbonylation then delivered bicycle 91 in $38 \%$ conversion. On extending the reaction time, the isolated yield began to decrease and, therefore, the reaction was halted at $38 \%$ conversion and the starting material $\mathbf{9 0}$ separated and recycled. The authors reported that the kinetic product of the reaction was the $\beta, \gamma$-unsaturated ketone,

## Introduction

which was isomerised to the desired enone by the addition of $1,8-$ diazabicyclo[5.4.0]undec-7-ene (DBU). While the need to separate and recycle the unreacted starting material adds to the synthetic efforts required, the overall high yield of product obtained makes this an attractive key step in the process. Bicycle 91 was then converted to (+)-4 in five steps and $13 \%$ yield (not shown).

## Oxy-Cope approaches

An anionic oxy-Cope was used in an early synthesis of ( $\pm$ )-4, communicated by Jung and Hudspeth (Scheme 20). ${ }^{[87,88]}$


Scheme 20: Jung's oxy-Cope-based approach to CFA.
Treatment of ketone 92 with lithiated benzofuran delivered alcohol 93, which underwent the oxy-Cope rearrangement to afford tetracycle 94 in $88 \%$ yield. From 94, the authors accessed $( \pm)-4$ in ten steps and in $6.3 \%$ yield (not shown). The lack of atom economy in this preparation, as well as its overall low yield (1.7\%) limits its attractiveness from a scale up perspective; however, it is of synthetic interest as the only example of an oxy-Cope-based methodology towards ( $\pm$ )-4 synthesis.

Overall, a variety of approaches have been utilised in the synthesis of 4. Diels-Alder reactions have proven to be a popular key step in several syntheses; ${ }^{[38,60,61,65,67-69]}$ and these often focus on the generation of the same late stage DA precursor. ${ }^{[65,67,68]}$ Conjugate addition approaches and intramolecular cyclisation have also been used several times, providing access to both racemic ${ }^{[70,78,79]}$ and enantiopure ${ }^{[71,72,84-86]} 4$. Despite the variety in overall synthetic approaches towards this attractive target, syntheses have typically been long, linear processes, which are ultimately low yielding. As previously intimated, the biological activity of 4 makes it an attractive starting point for analogue synthesis; however, few of the published synthetic routes

## Introduction

offer a practical method for potential diversification, particularly with late stage modifications.

### 1.5 Synthetic Approaches Towards Coronamic Acid

Natural coronamic acid (5) is present in COR (1) as the $(+)-(2 S, 3 S)$-isomer. ${ }^{[34]}$ Several groups have communicated the synthesis of (+)-5, as well as its isomers (Figure 18).

(+)-(2S,3S)-coronamic acid (5)

(-)-(2S,3R)-allo-coronamic acid (96)

(+)-(2R,3S)-allo-coronamic acid (95)

(-)-(2R,3R)-coronamic acid (97)

Figure 18: Coronamic acid and its isomers.
Synthetic efforts have also been directed towards ( $\pm$ )-5. There exists a multitude of syntheses towards ( $E$ )-2-alkyl aminocyclopropane carboxylic acids (ACCs) and synthetic pathways can be categorised into seven strategies, grouped according to which ring carbon unit is installed last in the synthesis: ${ }^{[89]}$ final installation of $\mathrm{C}^{1}, \mathrm{C}^{2}$, or $\mathrm{C}^{3}$. Table 2 shows the reported syntheses of $\mathbf{5}$ in chronological order with their associated key step; Figure 19 shows these key steps in more detail.

Table 2: Literature syntheses of coronamic acid.

| Author (Year) | $\begin{gathered} \text { Key step } \\ \text { (No. steps) } \end{gathered}$ | Racemic/ enantiopure | Overall Yield (\%) | Ref. |
| :---: | :---: | :---: | :---: | :---: |
| Ichihara (1977) | $\mathrm{C}^{1}\left(5^{\mathrm{a}}\right.$ ) | Enantiopure | Unknown | 90 |
| Stammer (1983) | $\mathrm{C}^{3}\left(5^{\mathrm{a}}\right)$ | Racemic | 18 | 103 |
| Baldwin $(1985)$ | $\mathrm{C}^{1}\left(8^{\text {b }}\right.$ ) | Racemic | 23 | 97 |
| Williams (1991) | $\mathrm{C}^{2}\left(7^{\text {a }}\right.$ ) | Enantiopure | 51 | 102 |
| Schöllkopf (1992) | $\mathrm{C}^{1}\left(5^{\text {b }}\right.$ ) | Enantiopure | 14 | 94 |
| Salaün (1994) | $\mathrm{C}^{1}\left(9^{\text {b }}\right.$ ) | Enantiopure | 21 | 93 |
| $\begin{aligned} & \text { Charette } \\ & (1995) \end{aligned}$ | $\mathrm{C}^{2}\left(16^{\text {a }}\right.$ ) | Enantiopure | 23 | 99 |
| Ichihara (1995) | $\mathrm{C}^{1}\left(10^{\mathrm{b}}\right)$ | Enantiopure | 30 | 92 |
| Salaün (1995) | $\mathrm{C}^{1}\left(3^{\text {b }}\right.$ ) | Racemic | $52^{\text {c }}$ | 96 |
| Yamazaki (1995) | $\mathrm{C}^{3}\left(13^{\text {a }}\right.$ ) | Racemic | 9 | 79 |
| de Meijere (2000) | $\mathrm{C}^{3}\left(10^{\text {b }}\right.$ ) | Racemic | 30 | 105 |
| Salaün (2000) | $\mathrm{C}^{3}\left(13^{\text {b }}\right.$ ) | Racemic | $32^{\text {c }}$ | 106 |
| Szymoniak (2002) | $\mathrm{C}^{3}\left(4^{\text {b }}\right.$ ) | Racemic | 32 | 107 |
| Cox and Aggarwal (2003) | $\mathrm{C}^{3}\left(4^{\mathrm{b}}\right)$ | Racemic | 17 | 104 |
| $\begin{gathered} \text { Parsons } \\ (2004) \\ \hline \end{gathered}$ | $\mathrm{C}^{1}\left(7^{\text {b }}\right.$ ) | Racemic | 28 | 98 |

$\overline{{ }^{a}}$ From a non-commercial starting material. ${ }^{b}$ From commercial starting materials. ${ }^{c}$ Based on an assumed yield from referenced publication.

## Introduction

Final $\mathrm{C}_{1}$ installation


Final $\mathrm{C}_{2}$ installation


Final $\mathrm{C}_{3}$ installation


Figure 19: Map of the key steps towards CMA.

## Final installation of $\mathbf{C}^{\mathbf{1}}$

Methods for the installation of quaternary $\mathrm{C}^{1}$ to complete the cyclopropane ring typically focus on the di-alkylation of glycine analogues. ${ }^{[89]}$ The first reported synthesis of (+)-5 was communicated by Ichihara et al. in the partial total synthesis of 3 (Scheme 21). ${ }^{[90]}$



Scheme 21: Ichihara's di-alkylation approach to ( $\pm$ )-CMA.
The cyclopropane $\mathbf{9 8}$ was formed in the first step by the known condensation of trans-1,4-dibromo-2-butene and methyl malonate. ${ }^{[91]}$ In a subsequent step, selective amidation of the least sterically hindered ester de-symmetrised this intermediate, allowing the synthesis of $( \pm)-5$ as a single diastereoisomer (not shown). From 98, ( $\pm$ )5 was synthesised in four steps (not shown). It was also communicated that the racemate could be resolved by formation of the quinine salt and, following several

## Introduction

fractional recrystallisations, enantiomerically pure (+)-5 was obtained from this short synthetic sequence.

Ichihara et al. later reported an asymmetric synthesis of (+)-5 (Scheme 22). ${ }^{[92]}$


Scheme 22: Ichihara's approach towards (+)-CMA.
Sulfate ester 99 was synthesised in seven steps from chiral pool starting material $(R)$ malic acid (not shown). Cyclopropanation was achieved through treatment of $\mathbf{9 9}$ with dibenzyl malonate, which proceeded with inversion of stereochemistry at $\mathrm{C}^{3}$. A further three steps in $61 \%$ yield gave access to (+)-5. Notably, this route allowed synthesis of $(+)-5$ on a preparative scale of 11.4 mmol and the authors also demonstrated the utility of the synthetic sequence through the synthesis of all four stereoisomers of $\mathbf{5}$, obtained through use of both $(R)$ - and $(S)$-malic acid. ${ }^{[92]}$

Salaün et al. applied their general method towards E-2-alkyl ACCs to the synthesis of (+)-5 (Scheme 23). ${ }^{[93]}$



Scheme 23: Salaün's synthesis of (+)-CMA.
The key step in this route was the diastereoselective cyclisation to afford $\mathbf{1 0 2}$, with the desired diastereomer 102b as the major product. Cyclisation precursor 101 was synthesised in eight steps and in $37 \%$ yield. Attempted optimisation of the cyclisation to improve the diastereoselectivity was unsuccessful. (+)-5 was then obtained from hydrolysis steps in $97 \%$ yield.

Schöllkopf also reported asymmetric synthetic methodology towards (+)-5. ${ }^{[94]}$ Based on previous work by Quinkert, ${ }^{[95]}$ the publication reports a chiral auxiliary-enabled synthesis (Scheme 24).

## Introduction



Scheme 24: Schöllkopf's chiral-auxillary-based methodology towards (+)-CMA.
Alkylation of imine $\mathbf{1 0 3}$ delivered chloride $\mathbf{1 0 4}$ with good diastereocontrol. An intramolecular alkylation via $\mathrm{S}_{\mathrm{N}} 2$ ' provided $\mathbf{1 0 5}$ as a mixture of four diastereoisomers, which could be separated by chromatography, thereby allowing access to alternative isomers of $\mathbf{5}$ from a common intermediate. Further hydrolysis then afforded the free amino acid (+)-5 in low yield of $20 \%$ and in a moderate $e e$ of $68 \%$ (not shown).

In a follow up to their previous asymmetric synthesis, ${ }^{[93]}$ Salaün et al. reported a racemic, Pd-catalysed allylation strategy for the synthesis of ( $\pm$ )-5 (Scheme 25). ${ }^{[96]}$


Scheme 25: Salaün's sythesis of CMA featuring a Pd-catalysed alkylation.
Di-alkylation of $\mathbf{1 0 6}$ generated cyclopropane $\mathbf{1 0 7}$ in high yield as a single diastereomer via a highly stereoselective cyclisation. 107 was then advanced to ( $\pm$ )-5 using the methodology employed in their previous synthesis (not shown). ${ }^{[94]}$

In a report from Baldwin et al., ${ }^{[97]}( \pm)-5$ was prepared following a short synthetic sequence (Scheme 26).


Scheme 26: Baldwin's double alkylation to assemble the cyclopropyl moiety.

## Introduction

Cyclopropanation of di-tert-butylmalonate 108 using dibromide 109 delivered cyclopropane $\mathbf{1 1 0}$ in good yield. Following a procedure similar to that employed by Ichihara, ${ }^{[90]}( \pm)-5$ was accessed after six further steps in $32 \%$ yield.

Parsons et al. reported a short synthetic sequence towards ( $\pm$ )- $\mathbf{5}$ where the key step was a radical-based 3-exo-trig cyclisation of terminal alkene 111 employing Mnmediated methodology developed within the group (Scheme 27). ${ }^{[98]}$


Scheme 27: Parsons' radical-based methodology for the synthesis of CMA.
The use of the phase transfer catalyst benzyltriethylammonium chloride (BTAC) allowed the pentacarbonylmanganese halide to be washed out of the reaction mixture to improve product isolation. Debromination using $n-\mathrm{Bu}_{3} \mathrm{SnH}$ afforded intermediate 113 which was advanced to $( \pm)-5$ following the route of Baldwin (not shown). ${ }^{[97]}$

## Final installation of $\mathbf{C}_{\mathbf{2}}$

Methods for the final installation of $\mathrm{C}^{2}$ typically feature Simmons-Smith cyclopropanation or the 1,3-dipolar cycloaddition of diazo-species. ${ }^{[89]}$ Charette et al. reported a chiral auxiliary-mediated synthesis of 3-methanoamino acids, focusing on 5 and its isomers, with the key step being a Simmons-Smith cyclopropanation (Scheme 28). ${ }^{[99]}$


Scheme 28: Charette's chiral-auxillary-based approach to CMA.
Both the $E$ - and Z-glucosides were prepared from a common starting alcohol by changing the order of the synthetic sequence, using methodology previously

## Introduction

communicated by the Charette group. ${ }^{[100,101]}$ Following optimisation of the SimmonsSmith reaction, intermediate 115 was obtained in high yield and with good diastereocontrol, setting the absolute stereochemistry of the $\mathrm{C}^{3}$ position. Formation of the triflate facilitated cleavage of the chiral auxillary and gave cyclopropyl 116 in high yield. $t$-Butyloxycarbonyl (Boc)-protected (+)-5 was then obtained in six steps in $53 \%$ yield (not shown). The authors noted that through minor modification the route could also be used to give access to (+)-allo-coronamic acid, 95.

Williams and Fegley have described the asymmetric synthesis of several ACCs through a chiral-auxillary based approach (Scheme 29). ${ }^{[102]}$


Scheme 29: Williams' chiral-auxillary-based methodology towards CMA.
Alkene $\mathbf{1 1 7}$ was synthesised in three steps in a high yield of $79 \%$ (not shown). To achieve a facially selective cyclopropanation, a range of conditions was screened for the formation of intermediate 119. Diastereoselective cyclopropanation using sulfonium ylide 118 gave 119 as a single diastereomer in excellent yield. Here, the authors hypothesised that this facial selectivity was the result of $\pi$-stacking between the aryl ring on the ylide and the phenyl substitution on the lactone. Treatment of intermediate 119 under Birch-like conditions gave the Boc-protected amino acid 120, which was hydrolysed to afford (+)-5 (not shown).

## Final installation of $\mathbf{C}^{3}$

Routes which install $\mathrm{C}^{3}$ last typically feature cyclopropane formation by a Kulinkovich reaction or the addition of di-polar species to dehydroamino acids. ${ }^{[89]}$ Stammer et al. developed a synthesis of $( \pm)-\mathbf{5}$, which featured the addition of a diazonium species to a dehydroalanine derivative (Scheme 30). ${ }^{[103]}$


## Scheme 30: Stammer's amino acid-based synthesis of ( $\pm$ )-CMA.

Dehydration of protected serine gave intermediate 121, which could then be treated with a diazonium species to give cyclisation product $\mathbf{1 2 2}$ with the desired relative stereochemistry. Hydrolysis of the ester moiety of $\mathbf{1 2 2}$ then afforded Boc protected ( $\pm$ ) 5 .

Improved handling of the diazo species was reported by Cox and Aggarwal who applied their methodology for the in situ generation of aryl diazomethanes ${ }^{[104]}$ to a onepot diastereoselective synthesis of cyclopropane amino acids. ${ }^{[89]}$ The reactive diazo species was generated in situ from tosylhydrazone derivative $\mathbf{1 2 3}$ (Scheme 31).


Scheme 31: Cox's diazo-based approach towards ( $\pm$ )-CMA.
Under phase transfer conditions, cyclopropanation of alkene $\mathbf{1 2 1}$ with $\mathbf{1 2 3}$ delivered 124 as a 72:28 mixture in favour of the desired diastereomer, which was converted to $( \pm)-5$ in a further two steps (not shown).

Yamazaki et al. utilised a novel [2+1] cycloaddition, featuring a key selenium-enabled [1,2]-silicon migration to afford highly functionalised ACCs, which can then be converted to $( \pm)-5$ (Scheme 32). ${ }^{[105]}$





Scheme 32: Yamazaki's cycloaddition-based approach to ( $\pm$ )-CMA.

## Introduction

Treatment of alkene $\mathbf{1 2 5}$ with $\mathbf{1 2 6}$ in the presence of $\mathrm{ZnBr}_{2}$ gave [2+2]-adduct $\mathbf{1 2 7}$ and the desired [2+1]-product 128. A further ten steps which proceeded in 19\% yield gave access to $( \pm)-5$ (not shown). While synthetically interesting, this synthesis is lengthier and lower yielding than other preparations of $( \pm)-\mathbf{5}$ (see Table 2).
de Meijere and co-workers reported the synthesis of ( $\pm$ )-5 via Ti-mediated ACC formation (Scheme 33). ${ }^{[106]}$


Scheme 33: de Meijere's Kulinkovich-de Meijere-based approach to ( $\pm$ )-CMA.
Amide 129 was prepared in three high yielding steps and on kilogram scale from inexpensive starting materials. The key cyclopropanation was achieved through a Kulinkovich-de Meijere reaction to deliver 131 in moderate yield and favouring the undesired diastereomer, despite the author's attempts to optimise the reaction. $\mathbf{1 3 1}$ was then advanced to protected $( \pm)-\mathbf{5}$, as a mixture of diastereoisomers, in four steps with an overall yield of $72 \%$ (not shown).

Salaün et al. also approached ACCs using a Kulinkovich reaction (Scheme 34). ${ }^{[107]}$


Scheme 34: Salaün's Kulinkovich-based approach towards ( $\pm$ )-CMA.
In this case, the cyclopropanated product $\mathbf{1 3 3}$ was obtained in high yield of $\mathbf{9 2 \%}$ and with complete diastereoselectivity through reaction of ester $\mathbf{1 3 2}$ with $n-\mathrm{BuMgBr}$. A further eleven steps which proceeded in $35 \%$ yield afforded ( $\pm$ )-5 (not shown).

Szymoniak et al. have demonstrated the synthesis of ( $\pm$ )-CMA using their methodology for Ti-mediated conversion of nitriles to cyclopropylamines (Scheme 35). ${ }^{[108]}$


Scheme 35: Szymoniak's approach towards cyclopropyl amines.
Nitrile 134 was treated with $n-\mathrm{BuMgBr}$ in the presence of $\mathrm{Ti}(\mathrm{O} i \mathrm{Pr})_{4}$, which generated an intermediate azatitanacycle, and then underwent ring contraction to afford separable 135 and 136 (70:30) in $61 \%$ yield. Boc-protected CMA was then obtained in three further steps that proceeded in $74 \%$ yield to complete this concise synthesis of CMA (not shown).

Overall, several well-established methodologies have been leveraged to enable the synthesis of ACCs such as $\mathbf{5}$. These can generally be grouped with regard to overall synthetic strategy, and typically offer short routes to 5 and analogues thereof. The most synthetically useful of these approaches allow derivative synthesis from a late stage, common intermediate, which is attractive with respect to analogue generation.

### 1.6 Total Synthesis of Coronatine

Ueda et al. communicated the synthesis of four stereoisomers of 1, accessed through the condensation of enantiopure (+)-5 and (-)-5 with ( $\pm$ )-4 (Scheme 36). ${ }^{[38]}$
a) Synthesis of (+)-1 and (+)-137.

b) Synthesis of $(-)-1$ and $(-)-137$.


Scheme 36: Total synthesis of coronatine.

## Introduction

Boc deprotection of both enantiomers of $\mathbf{5}$ was followed by 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU)-mediated amidation with $( \pm)-4$. The free acid was then obtained through chemoselective hydrogenation of the benzyl protecting group. In both cases, the mixture of diastereoisomers was separated by high-performance liquid chromatography (HPLC). This coupling has also been reported using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), again in excellent yield. ${ }^{[59,71]}$

Overall, it is clear that both components of COR, particularly 4, pose a synthetic challenge with respect to amenability to agrochemical discovery programmes. In order to use coronatine as a tractable scaffold for herbicide development, a robust, flexible synthetic strategy is required, enabling scalable synthesis of diverse natural product analogues. ${ }^{[4]}$

Significant efforts have been made to develop efficient syntheses towards $\mathbf{4}$, which must take into consideration the stereochemical requirements and ideally be amenable to analogue generation. Varied synthetic routes have been communicated towards the synthesis of $\mathbf{4}$, however there exists a need for a less protracted synthetic sequence, ideally from inexpensive and easily accessed starting materials. Cyclopropane amino acids such as $\mathbf{5}$ have also received considerable attention from a synthetic viewpoint, and several classifications of general methodology amenable to their synthesis are known. ${ }^{[89]}$ Overall, scope exists for the improvement of these approaches, particularly with respect to large scale preparations and the amenability of the route to late stage diversification

## Project Aims

## 2 Project Aims

Despite the significant interest in COR as a herbicidal lead from both academic research groups and the agrochemical industry, the natural product scaffold remains underdeveloped with respect to the development of a marketable crop protection product. An SAR for herbicidal activity around the bespoke organic framework is currently unclear, which has been largely attributed to the lack of synthetic accessibility of the structurally complex natural product scaffold. ${ }^{[55]}$

We aimed to adopt a synthetic strategy to enable a thorough SAR investigation around COR. We hoped to carry out SAR scanning of both the core COR moiety, CFA, and the amino acid residue, CMA (Figure 20).

Cylopentanone modification
$C^{6}$ modification
Carbonyl modification


Figure 20: Approach to COR analogues, showing scalable synthesis of CFA, and points of scaffold diversification.

Through the development of a scalable synthetic route towards CFA giving access to synthetically useful quantities of the bicyclic core, we hoped to synthesise a range of coronafacoyl-amino acid analogues. The known biological tolerance for variation of the amino acid residue was encouraging in this regard, and we aimed to incorporate a wide range of both natural and non-natural amino acids for a thorough SAR scanning.

## Project Aims

The developed synthetic route was also desired to be flexible in nature, giving access to CFA-derived alternative core motifs through single point changes.

We hoped to achieve this through the utilisation of a convergent synthetic route, focusing on the synthesis of a triene $\mathbf{4 2}$-like intermediate (Figure 18). This would allow expedient access to the bicyclic scaffold through a DA cyclisation, which we had identified as a powerful and efficient means of CFA synthesis through review of the literature.

We aimed to carry out a wide reaching SAR scanning of the core motif, with the retention of CMA as the common amino acid. Again, to enable the synthesis of a significant number of analogues a robust, scalable synthesis of CMA was desired.

Throughout the project, our overall strategy was to use readily accessible CFA and CMA mimics to carry out initial SAR screening, and subsequently direct further synthesis of analogues using our synthetic CFA and CMA (Figure 21).


Figure 21: Overall strategy for SAR development: Extensive analogue synthesis using simplified CFA and CMA mimics to enable targeted synthesis of CFA and CMA conjugates.

This was hoped to provide sufficient biological information to allow for a more targeted, informed synthesis of derivatives using our synthetic natural product fragments.

## Project Aims

Following biological evaluation of these analogues we hoped to identify an SAR for phytotoxic activity around the COR scaffold. Through the SAR directed synthesis of further analogues we aimed to develop COR into a potent phytotoxic lead, ideally of greater structural simplicity than the parent natural product to deliver a target of increased synthetic accessibility.

## 3 Results and Discussion

### 3.1 Biological Testing

All compounds tested in this study were evaluated in herbicide glasshouse screen one (GH1) as an initial assessment, and followed up by further glasshouse screening (GH2) tests if interesting activity was observed.

In GH1, compounds are assessed for pre- and post-emergence activity against four weed species, and scored visually for \% phytotoxicity ( $0-100$, where 100 is complete control of the target and 0 is no control). Table 3 shows GH1 screening in more detail.

Table 3: GH1 assessment of phytotoxicity.

| Test species | Treatment timing | Rate (g/ha) |
| :---: | :--- | :---: |
| Amaranthus retroflexus | Pre/post-emergence | 1000 |
| Lolium perenne | Pre/post-emergence | 1000 |
| Stellaria media | Pre/post-emergence | 1000 |
| Digitarua sanguinalis | Pre/post-emergence | 1000 |

Known herbicides Acetochlor, Atrazine, Mesotrione, Pinoxden, and Glyphosate were used as positive controls in the test.

In this thesis, tested compounds are colour coded according to their activities; no colour: inactive compound, yellow: 40-50\% phytotoxicity, pale green: 60-70\% phytotoxicity, dark green: 80-100\% phytotoxicity.

### 3.2 Coronalon

Initially, we aimed to carry out an extensive SAR study using the aromatic coronalon core as a surrogate for CFA with variation of the amino acid residue. We viewed this study as serving two purposes; the assessment of the aromatic core as a substitute for CFA, and therefore as a means of structural simplification, and to potentially identify an SAR for the amino acid portion of the natural product motif. As previously mentioned, we aimed to use this study on the more synthetically accessible aromatic core to direct the synthesis of N -coronafacoyl analogues.

The coronalon core, 142, was synthesised by known synthetic methodology in four steps (Scheme 37). ${ }^{[109]}$


Scheme 37: Synthetic route to aromatic coronalon-core 142, highlighting key elements of the carbon framework.

Regio-selective Friedel-Crafts acylation gave access to bis-ketone intermediate 139, which then underwent oxidative cleavage of the vinyl unit to afford acid $\mathbf{1 4 0}$. The pendant ketone moiety was then reduced to give the required ethyl substituent, followed by an intramolecular Friedel-Crafts acylation to form the 5,6-ring system. Despite the low overall yield of this process, $5.4 \%$ over four steps, the synthetic sequence was greatly simplified in comparison with approaches towards CFA, and therefore the coronalon core represents an attractive CFA-mimic to enable expedient analogue synthesis on a more easily accessible core moiety.

We then carried out an extensive automated amino acid screen using the aromatic core 142 as our common unit. Significant quantities of the core moiety was available inhouse at Syngenta, enabling analogue scanning where amino acids were selected with the intention of covering a broad chemical space.

The analogues were synthesised through coupling with the bench stable pentafluorophenyl (PFP) ester of the core moiety (143). Scheme 38 shows the synthesis and initial biological assessment of the compounds made; table 4 shows the biological activity of active hits in more detail. It is worthy of note that several of the substrates with electron deficient amino acids underwent decarboxylation under the

## Results and Discussion

relatively mild coupling conditions, affording products 144aa-144ae, which were also assessed for phytotoxic activity.


Scheme 38: Coronalon aromatic core amino acid screen, synthesised through coupling of free amino acids with PFP-ester intermediate 177. Activity: $=80-100,=60-70,=40-50$.

## Results and Discussion

Table 4：Detailed phytotoxic activity of active compounds resulting from coronalon－analogue testing．

|  | Post |  |  |  |  | Pre |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound |  | $\begin{aligned} & \text { M1 } \\ & 0 \\ & \hline 1 \end{aligned}$ | $\sum_{i=1}^{M}$ | $\begin{aligned} & \mathbb{2} \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { E } \\ & \text { 苟 } \\ & \text { 而 } \end{aligned}$ | $\sum_{4}^{x}$ | －101 | $\sum_{i=1}^{\omega \mid}$ | $\begin{aligned} & \text { 区 } \\ & 0 \\ & 0 \end{aligned}$ | E On En En |
| 144ad | 60 | 10 | 80 | 10 | NC／ST | 0 | 0 | 0 | 0 | NC／ST |
| 144ae | 20 | 0 | 100 | 20 | NC／MR | 0 | 0 | 0 | 0 | NC／MR |

Test species：Amaranthus retroflexus（AMARE），Lolium perenne（LOLPE），Stellaria media（STEME）， Digitaria sanguinalis（DIGSA）． $\mathrm{ST}=$ stunting， $\mathrm{NC}=$ necrosis， $\mathrm{MR}=$ morphological effects

Disappointingly，limited activity was observed in this screen．All natural amino acids tested and all aliphatic amino acids gave inactive conjugates；however，the two most active compounds，144ad and 144ae featuring decarboxylated aromatic amino acids， showed moderate activity in this initial test（GH1）．The observed activity profile，and structural deviation from coronalon／COR of these two hit compounds led to the conclusion that the observed phytotoxicity was unrelated to the project core structure．

These compounds were promoted to further post－emergence testing（GH2）against additional weed species（Table 5）．

Table 5：GH2 testing of compounds 144ad and 144ae．

|  | Post |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound | $\begin{aligned} & \text { 岂 } \\ & \stackrel{N}{2} \\ & \hline \end{aligned}$ | $\stackrel{\rightharpoonup}{\ominus}$ | $\stackrel{\text { e }}{\stackrel{y}{\|c\|}}$ | $\begin{aligned} & U \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { U} \\ & \text { U } \\ & \text { Un } \end{aligned}$ |  | $\begin{aligned} & \text { 杂 } \\ & \text { 号 } \end{aligned}$ | $\begin{aligned} & \mathbb{4} \\ & \frac{d}{0} \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { E } \\ & \text { 苟 } \\ & \text { 合 } \end{aligned}$ |
| 144ad | 20 | 10 | 20 | 10 | 10 | 10 | 10 | 0 | NC／ST |
| 144ae | 0 | 10 | 10 | 30 | 10 | 10 | 20 | 20 | NC／ST |

Test species：Abutilon theophrasti（ABUTH），Bidens pilosa（BIDPI），Chenopodium album（CHEAL）， Kochia scoparia（KCHSC），Echinochloa crus－galli（ECHCG），Setaria faberi（SETFAL），Eleusine indica（ELEIN），Sorghum halepense（SORHA）．ST＝stunting，NC＝necrosis．

Disappointingly，no interesting biological activity was observed from the second round of testing，and therefore these compounds were no longer considered to be of interest to the herbicide discovery project．

## Results and Discussion

Overall, despite the fact that little activity was observed from these synthesised analogues, learning could still be taken from the results. The wide variety of amino acids chosen and the observed lack of activity across the screen lead us to conclude that the coronalon aromatic core could not generally be considered a substitute for CFA; however, at this point in our investigations, with little information regarding tolerance for modification of the amino acid residue, we could not disregard the possibility that the lack of activity was related to amino acid selection.

### 3.3 Coronafacic Acid Synthesis

From the outset, and in light of the failure of our coronalon-analogues, we aimed to develop a scalable, robust synthetic strategy to enable the synthesis of gram-scale quantities of $( \pm)$-CFA, and ideally to have potential for modification to give synthetic access to CFA analogues. The successful execution of this ideal would then allow a thorough SAR investigation around the amino acid residue and CFA scaffold.

As previously mentioned, it has been reported that the natural enantiomer of COR, (+)COR, is more potent than its isomers. ${ }^{[38]}$ At this early stage of analogue generation and screening, we chose to focus on the synthesis of racemic analogues to allow expedient access to the desired compounds, with a view to gaining access to the single enantiomers through asymmetric synthesis or chiral separation should a compound of interest be identified.

Following a review of literature syntheses of CFA, particularly the DA-based approaches, we selected the Charette preparation from 2007 (Section 1.4, scheme 7) ${ }^{[68]}$ as a basis for our synthetic strategy to CFA. The Charette strategy featured several key elements which we had identified as being attractive with respect to our aims. We hoped that the convergent nature of the synthesis would give opportunities for expedient CFA analogue generation, and IMDA of the commonly used trieneintermediate to give the bicyclic core is known to be a robust means of assembling the carbon framework with control of the required stereocenters (Scheme 39). ${ }^{[65,67,68]}$


Scheme 39: Retrosynthetic analysis of CFA.
To begin our synthetic approach, we required a robust, scalable synthesis of the key aldehyde 55 (Scheme 40).


Scheme 40: Synthesis of aldehyde 55.
1,4-Butanediol (145) was mono-protected with THP, prior to Swern oxidation of the free alcohol to afford unstable aldehyde 147, which was used immediately upon isolation. Addition of vinyl Grignard, followed by quenching of the reactive intermediate with acetic anhydride gave intermediate 148 in a single step from 147, without the need to isolate the intermediate alcohol product. Mild acidic deprotection of the THP group afforded the free alcohol $\mathbf{1 4 9}$. We found control of the reaction timeframe to be crucial in this step, as prolonged heating resulted in the formation of a by-product through transfer of the acetate group to the primary alcohol. A second Swern oxidation then gave access to the desired aldehyde 55. This synthetic procedure proved robust for the synthesis of gram-scale quantities of aldehyde $\mathbf{5 5}$, with each step being carried out on $>4 \mathrm{~g}$ scale. ${ }^{[110]}$

With robust methodology towards aldehyde 55 in hand, we turned our attention to the diastereoselective aldol addition as described by Charette (Scheme 41). Under the cryogenic conditions reported by Charette, the reaction proceeds with selectivity for the anti-aldol isomer (Section 1.4, scheme 7). This is unexpected due to the synfavouring aldol conditions, and Charette attributes this to the Lewis acid-mediated reaction proceeding through an open transition state.

## Results and Discussion

Initially, we found the Charette conditions affording the anti-diastereoisomer preferentially to be robust, and then looked to dehydrate this intermediate to deliver the desired triene 57. Disappointingly, the conditions communicated by Charette to dehydrate the anti-isomer (56a) (diethyl azodicarboxylate (DEAD), $\mathrm{PPh}_{3}$ ) were not reproducible in our hands, affording decomposition products. Attempts to dehydrate this isomer through mesylate formation and subsequent elimination successfully delivered the triene product, however as a mixture of alkene isomers ( $\sim$ 1:1.3 Z:E) slightly in favour of the undesired $E$-isomer. To mitigate this, we considered the temperature dependence of the diastereoselectivity of the aldol addition. Isomerisation of the kinetically favoured $E$-enolate to the $Z$-isomer is known to occur at higher temperatures, affording the syn-product. ${ }^{[111]}$ Gratifyingly, we found that by carrying out the aldol addition reaction at room temperature, the selectivity of the reaction was reversed with the syn-isomer (56b) being formed predominantly (83:17 syn:anti). These conditions came with the slight caveat that at the elevated temperature some isomerisation ( $\sim 30 \%$ ) of the ester alkene occurs affording an inseparable isomer, however this minor impurity does not react in the later IMDA and can be cleanly separated.


Scheme 41: Synthesis of CFA.
CuBr -mediated dehydration of the syn-isomer (56b) with DIC proceeded cleanly to afford the desired triene intermediate 57, and we found that when this reaction was carried out at elevated temperature the triene underwent IMDA cyclisation to afford bicycle $\mathbf{1 5 0}$ as a mixture of isomers at $\mathrm{C}^{1}$. The cyclisation afforded predominantly the

## Results and Discussion

anti-fused product resulting from an exo-selective IMDA transition state. Minor quantities of the cis-isomer could be observed ( $\sim 30 \%$ ) resulting from endo-IMDA, however this was inconsequential as the $\mathrm{C}^{7 \mathrm{a}}$ centre was later epimerised to afford the cis-fused bicycle. The IMDA cyclisation is worthy of note as it was found to proceed without the need for a sealed vessel or greatly elevated temperatures, which have previously been used in the cyclisation of triene-type intermediates towards CFA. ${ }^{[65,67,68]}$ This enabled the scalability of the reaction, allowing the transformation to be easily carried out on gram-scale.

Hydrolysis of the acetate followed by oxidation to the desired ketone gave 43 in 3:1 trans:cis dr at $\mathrm{C}^{7 \mathrm{a}}$. Final acid mediated ester hydrolysis occurred with ring-junction epimerisation to the thermodynamically favoured cis-fused ring, giving ( $\pm$ )-CFA in good yield.

Each step of the synthesis was carried out on at least 1 g scale, and the synthetic sequence was used to prepare $>2.5 \mathrm{~g}$ CFA for analogue generation.

### 3.4 Coronafacoyl-Amino Acid Synthesis

As previously mentioned, we had intended the biological outcome of the coronalon study to direct the design and synthesis of coronafacoyl-analogues. As little direction could be gleaned from these results, we selected the amino acids used for coronafacoyl-analogue synthesis with the intention of covering a wide chemical space.

The compounds were synthesised through 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazole[4,5-b]pyridinium 3-oxid hexafluorophosphate (HATU) coupling of ( $\pm$ )CFA with a methyl ester protected amino acid. The intermediate ester compounds formed were of interest as potential pro-cides, thought to release the parent compound in situ. The free-acid final compounds were then obtained by basic hydrolysis of the ester moiety (Scheme 42).

Several natural amino acids were selected, including serine, threonine, isoleucine, and valine, the coronafacoyl-conjugates of which have all been isolated alongside COR (Introduction, Figure 9). Non-natural amino acids were also incorporated to ensure breadth to our screening, including 151 g which has a $\beta$-amino acid relationship, and 151f, which was isolated as the decarboxylated product following amide bond

## Results and Discussion

formation, presumably due to the highly electron-withdrawing nature of the substituent. In mimicry of CMA, we synthesised a number of quaternary amino acid conjugates. ( $S$ )-configured 151 k was used alongside its enantiomer 151d.

Importantly, racemic COR (( $\mathbf{\pm} \mathbf{) - 1})$ was synthesised. As the varying levels of activity of COR enantiomers is known, and our analogues were made and tested as racemates, we required a racemic sample of COR to act as a standard for biological evaluation.


Scheme 42: Coronafacoyl-amino acid compounds. Activity: $=\mathbf{8 0 - 1 0 0},=60-70,=40-50$. 151d and $\mathbf{1 5 1 k}{ }^{[112]}$ were tested only as the methyl ester pro-cide due to a paucity of available material. Several of these analogues displayed phytotoxic activity; however,

## Results and Discussion

none showed greater activity than COR itself. The activity observed is further detailed in Table 6.

Table 6: Detailed phytotoxic activity of active coronafacoyl-amino acid compounds.

|  | Post |  |  |  |  | Pre |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound | $\frac{10}{x}$ |  | $\sum_{i=1}^{[10}$ | $\begin{aligned} & \mathbb{U} \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { E } \\ & \text { E } \end{aligned}$ | $\frac{10}{c}$ | $\begin{aligned} & \text { m } \\ & \stackrel{1}{0} \\ & \hline \end{aligned}$ | $\sum_{i=1}^{m}$ | $\begin{aligned} & \mathbb{U} \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { E } \\ & \text { E } \end{aligned}$ |
| ( $\pm$-1 | 40 | 0 | 50 | 60 | NC/ST | 70 | 40 | 70 | 80 | NC/ST |
| 10a | 50 | 40 | 0 | 60 | ST | 40 | 30 | 50 | 50 | ST |
| 10b | 0 | 0 | 0 | 0 | ST | 0 | 0 | 50 | 0 | ST |
| 151a | 0 | 0 | 70 | 20 | NC/ST | 0 | 0 | 0 | 0 | NC/ST |
| 151j | 0 | 0 | 0 | 0 | ST | 20 | 0 | 50 | 50 | ST |
| 151k | 0 | 0 | 0 | 0 | ST | 50 | 0 | 80 | 0 | ST |

Test species: Amaranthus retroflexus (AMARE), Lolium perenne (LOLPE), Stellaria media (STEME), Digitaria sanguinalis (DIGSA). ST $=$ stunting, $\mathrm{NC}=$ necrosis.

Figure 22 shows images of weed species treated with three of our tested compounds. Plant species on the left have been treated with inactive coronafacoyl-L-alanine (12a), plant species in the centre have been treated with $( \pm)$-COR and show significant phytotoxic effects, and plant species on the right have been treated with coronafacoyl-$L$-serine (151a), and show moderate phytotoxic effects.


Figure 22: Graphic showing treated plants.
Several pro-cide ester intermediates were also assessed for phytotoxic effects, the results of which are detailed in Scheme 43 and Table 7.


Scheme 43: Biological testing of ester pro-cides. Activity: $\quad=\mathbf{8 0 - 1 0 0},=60-70,=40-50$. *Synthesised from $N$-coronafacoyl- $L$-serine (151a), see experimental for details.

Table 7: Detailed phytotoxic activity of weakly active coronafacoyl amino acid pro-cide compounds.

|  | Post |  |  |  |  | Pre |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound |  |  | $\sum_{i=1}^{y_{i}^{(1)}}$ | $\begin{aligned} & \overleftrightarrow{0} \\ & 0 \\ & 0 \end{aligned}$ |  |  | $\begin{aligned} & \text { 뜰 } \\ & 0 \\ & \hline \end{aligned}$ | $\sum_{i=1}^{m}$ | $\begin{aligned} & \text { ひ } \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { E } \\ & \text { 膏 } \\ & \text { En } \end{aligned}$ |
| 152a | 0 | 0 | 0 | 0 | ST | 0 | 0 | 60 | 0 | ST |
| 152e | 10 | 10 | 30 | 60 | NC/ST | 20 | 0 | 20 | 20 | NC/ST |
| 152h | 0 | 0 | 0 | 0 | ST | 0 | 0 | 0 | 50 | ST |

Test species: Amaranthus retroflexus (AMARE), Lolium perenne (LOLPE), Stellaria media (STEME), Digitaria sanguinalis (DIGSA). $\mathrm{ST}=$ stunting, $\mathrm{NC}=$ necrosis.

### 3.5 Coronafacoyl-Amino Acid SAR

Despite none of our synthetic analogues being as active as COR, the activity profile seen from these conjugates allowed us to tentatively map SAR around the amino acid portion.

## Results and Discussion

Testing of ( $\pm$ )-CFA (4) itself (not shown) showed no phytotoxic activity, which is in agreement with literature reports that both CFA and amino acid portions are required for herbicidal action. ${ }^{[39]}$

The limited activity observed from ester pro-cide compounds 152a and 152e suggest that although a pro-cide effect is potentially observed, the highest levels of potency are achieved through application of the free carboxyl compounds.

With regard to amino acid substitution, there appears to be little tolerance for structural modification away from the CMA motif with the retention of phytotoxicity.

The observed activity from $N$-coronafacoyl- $L$-serine (151a) and -isoleucine (10b) is unsurprising, given previous reports of their isolation and bioactivity. ${ }^{[13]}$ Although the activity seen was weak, the data obtained suggested that $L$-Ile does act as a reasonable mimic of CMA.

Typically, moderate activity was observed from quaternary substituted amino acids, aligning this portion of the molecule closer to the structure of CMA. The phytotoxic effect resulting from cyclopropyl amino acid 10a suggests that although the CMA ethyl moiety enhances activity, it is not essential to achieve herbicidal action. However, we cannot exclude the possibility that the reduced potency of 10a relative to COR may result from the loss of stereochemical information at the $\alpha$-carbon. Through comparison of $\mathbf{1 5 1 d}$ and $\mathbf{1 5 1 k}$, we can derive that an $S$-configuration at the $\alpha$-carbon is important for activity, which, again, agrees with previous literature reports. ${ }^{[39]}$

Overall, SAR study of the amino acid portion led us to conclude that there is limited tolerance for structural modification away from the CMA scaffold with the retention of significant levels of potency. Our initial SAR hypothesis had focused on the CFA moiety being the key convenor of potency, due to its bespoke polyketide skeleton and the observed tolerance for amino acid substitution by the enzyme Cfl. We had anticipated that the CMA moiety would be amenable to structural modifications, however, considering these results, we concluded that the CMA motif is only moderately tolerant to substitution, and that replacement with alternative amino acids

## Results and Discussion

give COR analogues which are inactive or, where phytotoxic activity is observed, are less potent than COR across the board.

### 3.6 Coronafacic Acid Analogue Synthesis

As previously mentioned, an attractive feature of the Charette preparation was the convergent nature of the aldol addition, and we viewed our synthetic approach as being amenable to CFA-analogue synthesis through single point changes to both the ester and aldehyde aldol partner (Figure 23).


Figure 23: CFA-analogues accessible through single point changes to our developed synthetic route.

Through minor modifications to the starting materials, we envisioned that our developed synthetic route could be used to access the CFA-analogues shown in Figure 23. Through shortening the carbon chain of the ester used, the $\mathrm{C}^{6}$ position could be modified to a methyl-substituted, or unsubstituted centre (Figure 23, a). By homologating the aldehyde used, decalin CFA-analogues could be accessed, dependant on which position of the aldehyde chain the additional carbon unit was installed (Figure 23, b). Through late-stage modification of the CFA moiety itself, the reduced carbonyl and oxime analogues could be accessed (Figure 23, c) to further expand the scope of our SAR around the COR motif.

To obtain methyl-substituted analogue $\mathbf{9 b}$, ester $\mathbf{1 5 3}$ was used in place of the standard ester (54) used to synthesise CFA. The synthesis was carried out in accordance with our standard procedure, and allowed efficient access to $\mathbf{9 b}$ (Scheme 44).


Scheme 44: Synthesis of methyl-substituted CFA analogue 9b.
To access the $\mathrm{C}^{6}$ deletion analogue 9a, terminal olefin ester $\mathbf{1 5 8}$ was used in place of 54. Again, the synthetic sequence was carried out as standard. Ketone 162 was isolated predominantly as the cis-ring junction, indicating the greater preference of the $\mathrm{C}^{6}$ unsubstituted system to exist as the thermodynamically favoured cis-fused bicycle in comparison with the equivalent CFA-intermediate 43 (Scheme 45).


Scheme 45: Synthesis of $\mathbf{C}^{6}$-deletion analogue 9a.
To access the decalin-CFA analogue 172, 1,5-diol was used in place of 1,4-diol in our aldehyde synthesis. Our synthetic sequence towards the aldehyde proved robust, and homologated 167 was synthesised in $33 \%$ yield over five steps (Scheme 46).

## Results and Discussion



Scheme 46: Synthesis of homologated aldehyde 167.
The homologated aldehyde was then carried through the synthetic sequence under our standard conditions (Scheme 47). The IMDA cyclisation proceeded with complete exo-selectivity to afford the trans-decalin core (170). On the final acidic ester hydrolysis step, the ring junction was observed to epirimise to the CFA-like cisconfiguration (172), which was strongly supported through its X-ray crystal structure.


Scheme 47: Synthesis of 6,6-decalin core 172.
To access the analogous decalin core 180, the extra methylene unit was installed on the opposite end of the aldehyde carbon backbone with respect to aldehyde 55, though the use of allyl Grignard in place of the previously used vinyl Grignard (Scheme 48).

## Results and Discussion

Using our established synthetic methodology, aldehyde $\mathbf{1 7 5}$ was accessed in gramscale quantities for further synthesis.


Scheme 48: Synthesis of aldehyde 175.
The exo-IMDA transition state was conserved in the bicycle-forming step, giving $\mathbf{1 7 8}$ as the trans-decalin core. In this case, the ring junction was no longer epirimisable due to the homologated position of the carbonyl moiety relative to $\mathrm{C}^{7 \mathrm{a}}$, and therefore decalin $\mathbf{1 8 0}$ was isolated as the trans-ring junction following ester hydrolysis, which was again strongly supported by its X-ray crystal structure (Scheme 49).


Scheme 49: Synthesis of 6,6-decalin core 180.

## Results and Discussion

Ketone modifications were made through reaction of the final CFA-core structure itself, details of which are described in section 3.7.

Overall, our synthetic strategy proved robust and tolerant to these modifications, allowing access to CFA analogues with variation at several points in the core skeleton.

### 3.7 CFA Analogue $L$-Ile-Conjugation and Biological Evaluation

With regard to the testing of our CFA-analogues, we selected $L$-Ile as the common amino acid as a substitute for CMA in COR analogue synthesis. This strategy has previously been used in the literature to assess structural modifications to the CFA motif, ${ }^{[51]}$ and as $L$-Ile acted as a reasonable CMA mimic in our coronafacoyl-analogue testing we viewed this as an appropriate bioisostere. Conjugates were synthesised using our previous strategy of HATU coupling with $L$-Ile-OMe, and subsequent ester hydrolysis to release the final compound (Scheme 50).



Scheme 50: CFA-analogue-L-Ile conjugate synthesis.
Further modifications were also made to the carbonyl unit of $N$-coronafacoyl- L isoleucine (10b) to give increased diversity to our analogue synthesis (Scheme 51).

$R=H \quad 182 b$
OMe, R = H 182

182



183

Scheme 51: Synthesis of carbonyl-modified coronafacoyl-L-isoleucine compounds.
Reduced compound 183 was synthesised through $\mathrm{NaBH}_{4}$ reduction of the cyclopentanone carbonyl, giving 183 , resulting from hydride addition from the convex face of the bicyclic core. ${ }^{[45]}$ Condensation with hydroxyl amine hydrochloride or methoxy amine hydrochloride gave access to $\mathbf{1 8 2 b}$ and 182c respectively, following final hydrolysis of the methyl ester.

Oxime compounds $\mathbf{1 8 2 b}$ and $\mathbf{1 8 2}$ c were of particular interest, as COR methyl oxime (COR-MO) has been reported as the first example of a COR antagonist. ${ }^{[53]}$ It has been proposed that on binding to COI1, the keto-residue of COR remains solvent exposed for interaction with JAZ. The authors hypothesised that the oxime modification could enable the ligand to bind competitively to COI1, whilst preventing complex interaction with JAZ proteins. As such, COR-MO competitively inhibits COR/COI1-JAZ interaction and blocks COI1 function. ${ }^{[53]}$ We were interested to probe this alternative MOA, and the potential herbicidal activity profile resulting from COR antagonism.

These analogues were then submitted for phytotoxic screening, the results of which are detailed in Table 8. Disappointingly, no significant phytotoxic effects were observed from any of these analogues. Reduction of the keto-moiety (183) rendered the compound inactive, in line with previous reports. ${ }^{[45]}$ Free acid-methyl oxime 182c showed no phytotoxic activity, however the unsubstituted oxime 182b had a moderate phytotoxic effect. In further evidence to the requirement for a free carboxyl unit to deliver potency, the methyl ester of 182b, 182a, showed no activity.

Table 8: Phytotoxic screening of core-modified $L$-Ile conjugates.

|  | Post |  |  |  |  | Pre |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound | $\underset{<}{\substack{1 / 2}}$ | $\begin{gathered} \text { N1 } \\ \underset{\sim}{1} \\ \hline 1 \end{gathered}$ | $\sum_{i=1}^{M}$ | $\begin{aligned} & \gtrless \\ & \vdots \\ & 0 \\ & \hline 0 \end{aligned}$ | $\begin{aligned} & \text { E } \\ & \text { on } \\ & \text { 若 } \\ & \text { n } \end{aligned}$ | $\sum_{<}^{\substack{x}}$ | 发 | $\sum_{\text {M }}^{\text {M }}$ | $\begin{aligned} & \mathbb{U} \\ & 0 \\ & 0 \end{aligned}$ |  |
| 181a | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - |
| 181b | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - |
| 181c | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - |
| 181d | NT | NT | NT | NT | - | NT | NT | NT | NT | - |
| 182a | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - |
| 182b | 20 | 0 | 40 | 0 | ST | 30 | 40 | 70 | 0 | ST |
| 182c | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - |
| 183 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - |

Test species: Amaranthus retroflexus (AMARE), Lolium perenne (LOLPE), Stellaria media (STEME), Digitaria sanguinalis (DIGSA). $\mathrm{NT}=$ not tested, $\mathrm{ST}=$ stunting.

Overall, synthesised $L$-Ile conjugates with CFA analogues delivered inactive or very weakly active compounds. At this stage in our SAR development, we were reluctant to draw firm conclusions from this data. While these results hinted towards a highly constrained SAR around the CFA scaffold, we could not exclude the possibility that this inactivity was a function of the relatively weak bio-mimicry of $L$-Ile as a substitute for CMA, and therefore could not derive reliable SAR information from these compounds.

### 3.8 Isoleucine-Analogue Synthesis and Biological Evaluation

In keeping with our previously used strategy, we aimed to map SAR around the CFA core moiety through COR analogue synthesis using readily available $L$-lle as the common amino acid residue. From the biological testing of our coronafacoyl analogues, we had observed that $L$-Ile acts as a moderate mimic of CMA, and the reported activity of analogues deriving from coronalon featuring the $L$-Ile substituent led us to believe this approach could be promising. Like with the coronalon screen, we hoped that active core moieties identified from this study could then be conjugated to CMA, and in this way direct the synthesis of COR analogues.

The conjugates were synthesised through HATU coupling of $L$-Ile to commercially available acids. These acids were selected to cover a broad scope of functionality and

## Results and Discussion

chemical space. Scheme 52 shows the products which were successfully synthesised, isolated, and tested from the automated screen.


Scheme 52: COR analogues with $L$-Ile substitution. Activity: $O=80-100, O=60-70, O=40-50$. Following biological evaluation of these compounds, we were disappointed to find that none of our synthesised analogues displayed significant phytotoxic activity. We attributed this to the relatively weak biomimicry of $L$-Ile for CMA; however, these results did suggest that there may be little tolerance for significant modification around the CFA motif. Two analogues ( $\mathbf{1 8 4 a}$ and $\mathbf{1 8 4 q}$ ) showed low levels of herbicidal activity, however were not significant enough to be considered active hits. Table 9 shows the biological data of these compounds in greater detail.

## Results and Discussion

Table 9：Detailed phytotoxic activity of weakly active compounds from $L$－Ile screen．

|  | Post |  |  |  |  | Pre |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound | $\sum_{4}^{x}$ | $\begin{gathered} 101 \\ 0 \\ \hline 1 \end{gathered}$ | $\sum_{i=1}^{M}$ | $\begin{aligned} & \text { ひ } \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { E } \\ & \text { on } \\ & \text { 合 } \\ & \end{aligned}$ | $\frac{1}{2}$ | $\begin{aligned} & \text { M1 } \\ & 0 \\ & \hline 1 \end{aligned}$ | $\sum_{\substack{m \\ \omega}}^{M}$ | $\begin{aligned} & \text { 《 } \\ & 0 \\ & 0 \end{aligned}$ | E |
| 184a | 0 | 0 | 0 | 0 | ST | 50 | 0 | 0 | 0 | ST |
| 184q | 30 | 30 | 60 | 0 | MR／ST | 20 | 10 | 50 | 20 | MR／ST |

Test species：Amaranthus retroflexus（AMARE），Lolium perenne（LOLPE），Stellaria media（STEME）， Digitaria sanguinalis（DIGSA）． $\mathrm{MR}=$ morphological effects， $\mathrm{ST}=$ stunting．

## 3．9 Coronamic Acid Synthesis

Having carried out an extensive SAR investigation on variation of the amino acid residue of COR analogues，we then turned our attention to the complementary study， focusing on differentiation of the core CFA unit，with the retention of CMA．

In order to investigate chemical space around the polyketide framework，we required a robust，scalable synthesis of CMA to generate sufficient quantities for analogue preparation．Having reviewed the published literature，we selected the commonly used and synthetically tractable key step of cyclopropyl formation on a readily available malonate，acting as a glycine equivalent（Figure 24）．${ }^{[91]}$


Figure 24：Retrosynthetic analysis of CMA．
Retrosynthetically，we envisioned that the amine functionality could be installed through a Hofmann rearrangement of the parent carboxamide，as has previously been reported in CMA synthesis．${ }^{[90]}$ The Hofmann precursor could be assembled from selective hydrolysis and carboxamide formation of the least sterically hindered ester of the intermediate substituted malonate．This selective hydrolysis was critical to the stereospecificity of our synthesis，enabling access to CMA as a single diastereosiomer． This strategy to obtain the natural CMA diastereosiomer has also been used several times in the published literature towards $\mathbf{5}$ ，and as such was known to be

## Results and Discussion

robust. ${ }^{[90,92,97,98]}$ Intermediate $\mathbf{1 8 7}$ could be assembled from the double alkylation of dimethyl malonate with dibromide 186.


Scheme 53: CMA forward synthesis.
Our synthetic route commenced with the known cyclopropanation of dimethyl malonate in excellent yield of $94 \%$ (Scheme 53). ${ }^{[114]}$ We then carried out the key hydrolysis step to obtain the required CMA relative stereochemistry (Figure 25).


Figure 25: Selective hydrolysis of the least sterically hindered ester, giving access to $\mathbf{1 8 8}$ as a single diastereosiomer.

Selective hydrolysis of the least sterically hindered ester gave access to $\mathbf{1 8 8}$ as a single diastereoisomer, with the remaining ester functionality cis to the vinyl unit. Carboxamide formation was then carried out via 1,1'-carbonyldiimidazole (CDI) mediated coupling with ammonium hydroxide, affording 189 in $64 \%$ yield over two

## Results and Discussion

steps. The equivalent reaction where hydrolysis of $\mathbf{1 8 7}$ with methanolic ammonia gave access to $\mathbf{1 8 9}$ directly, however was found to be lower yielding ( $\sim 20 \%$ ) than the twostep process.

189 was then transformed to protected CMA equivalent 190 by a trichloroisocyanuric acid (TCICA) mediated Hofmann rearrangement. Treatment of $\mathbf{1 8 9}$ with DBU followed by TCICA at room temperature gave an intermediate $N$-chloroamide. Rearrangement to the isocyanate was then initiated thermally, affording 190 as the methyl carbonate following trapping of the isocyanate with methanol. ${ }^{[113]}$ Carbodiimide-mediated reduction of the vinyl unit was then carried out in high yield. ${ }^{[94]}$ Previous attempts to reduce the terminal alkene by hydrogenation resulted in significant quantities of cyclopropane ring opening, affording 192 in reduced yields of ca. $59 \%$. Through a series of protecting group manipulations, CMA could then be isolated as either the methyl ester 194 or free acid 5 . Boc-protection of the nitrogen followed by selective cleavage of the methyl carbamate afforded protected CMA 193. $( \pm)-5$ was then obtained through acidic hydrolysis of both the methyl ester and Boc group, or alternatively 194 could be isolated through facile removal of the Boc protecting group.

The synthetic sequence was found to be easily scalable, with each step having been carried out on at least a gram-scale. The route was very high yielding overall ( $48 \%$ over eight steps to $\mathbf{1 9 4}, 31 \%$ over eight steps to $\mathbf{5}$ ), which enabled the synthesis of over 3.5 g CMA for analogue generation.

### 3.10 Coronamic Acid Conjugate Synthesis

Following the lack of phytotoxic activity observed from the $L$-Ile-conjugates, the automated screen was repeated using our synthetic CMA. Scheme 54 shows the compounds which were successfully synthesised, isolated, and tested from the automated screen, and Table 10 shows the phytotoxic effect of the active hits in more detail.


Scheme 54: COR analogues with CMA substitution. Activity: $\bigcirc=80-100,=60-70,=40$ 50.

Table 10: Detailed phytotoxic activity of active compounds from CMA screen.

|  | Post |  |  |  |  | Pre |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound | $\frac{\text { N }}{\substack{\alpha}}$ | $\begin{aligned} & \text { M1 } \\ & 0 \\ & 0 \end{aligned}$ | $\sum_{i=1}^{M}$ | $\begin{aligned} & \mathbb{W} \\ & 0 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { E } \\ & \text { O. } \\ & \text { E. } \\ & \text { O } \end{aligned}$ | $\frac{1}{\infty}$ | $\begin{aligned} & \text { 떡 } \\ & 0 \\ & 0 \end{aligned}$ | $\sum_{i=1}^{M}$ | $\begin{aligned} & \mathbb{6} \\ & 0 \\ & 0 \end{aligned}$ |  |
| 1951 | 0 | 0 | 80 | 0 | BL/ST | 0 | 0 | 0 | 0 | BL/ST |
| 195v | 0 | 0 | 70 | 0 | BL/NC | 0 | 0 | - | 0 | BL/NC |

Test species: Amaranthus retroflexus (AMARE), Lolium perenne (LOLPE), Stellaria media (STEME), Digitaria sanguinalis (DIGSA). BL $=$ Bleach, $\mathrm{ST}=$ stunting, $\mathrm{NC}=$ necrosis.

## Results and Discussion

Again, limited activity was observed from these compounds. Where a phytotoxic effect was observed, 1951 and $\mathbf{1 9 5 v}$, it was difficult to rationalise the origins of the potency, and subsequently challenging to disseminate any SAR analysis of this set; however, when taken together with our previous SAR mapping of the COR motif, this data set did encourage us in our emerging belief that retention of the CMA moiety is key to the retention of potency in the final compound, and that substitution of this residue for $L$-Ile is insufficient to achieve maximal phytotoxicity.

CMA was also coupled to our bespoke CFA-like cores, allowing for direct comparison of these analogues with COR to assess tolerance for core modification (Scheme 55).




196b

196c



196e

$196 f$

Scheme 55: Synthesis of CMA-core modified conjugates.*See experimental for synthesis of core unit.

On hydrolysis of the intermediate methyl ester of 196d, significant epimerisation of the ring-junction was observed, affording the final compound in 3:1 cis/trans ratio, as had previously been encountered in the synthesis of $L$-Ile analogue 181c. To circumvent this, benzyl-protected CMA 199 was synthesised (Scheme 56).


Scheme 56: Synthesis of benzyl-protected CMA 199 and coupling to afford COR analogue 196d with reduced ring-junction epimerisation.

The methyl ester of $\mathbf{1 9 2}$ was selectively cleaved by acidic hydrolysis to afford 197. The free-acid terminus was then benzyl protected through an $N, N^{\prime}$ dicyclohexylcarbodiimide (DCC) coupling with benzyl alcohol, and the methyl carbamate substituted for a Boc-protecting group under the conditions used previously in the synthesis of CMA-OMe (193) to afford 199.

Benzyl-protected CMA has been reported previously in the synthesis of COR isomers, and it is known that the benzyl group can be selectively removed by hydrogenation in the presence of the $\alpha, \beta$-unsaturated amide. ${ }^{[38]}$ Following HATU coupling with cisdecalin core and hydrogenation of the benzyl protecting group, 196d was isolated in improved dr of $18: 1$ cis/trans at $\mathrm{C}^{8 \mathrm{a}}$. It is worthy of note that the minor epimerisation seen here occurred during amide bond formation, rather than the protecting group removal step.

### 3.11 Coronamic Acid Conjugates Biological Evaluation

The CMA-conjugates featuring our bespoke CFA-analogue cores were tested for phytotoxic activity, the results of which are detailed in Table 11.

Table 11: Phytotoxic screening of core-modified CMA conjugates.

|  | Post |  |  |  |  | Pre |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound | $\sum_{\ll}^{\frac{n}{2}}$ | $\begin{gathered} 1 \times 2 \\ 0 \\ \hline 1 \end{gathered}$ | $\sum_{\underset{i n}{M}}^{M}$ | $\begin{aligned} & \mathbb{U} \\ & \vdots \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { E } \\ & \text { 苟 } \\ & \text { 会 } \\ & \hline \end{aligned}$ | $\sum_{<}^{\text {N10 }}$ | $\stackrel{\text { Na }}{1}$ |  | $\begin{aligned} & \mathbb{6} \\ & 0 \\ & 0 \end{aligned}$ |  |
| 196a | 70 | 70 | 70 | 80 | NC/ST | 80 | 60 | 80 | 80 | NC/ST |
| 196b | 30 | 20 | 30 | 60 | GI/ST | 0 | 20 | 80 | 0 | GI/ST |
| 196c | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - |
| 196d | 30 | 10 | 0 | 50 | GI/ST | 30 | 60 | 40 | 80 | GI/ST |
| 196e | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | - |
| $196 f$ | 30 | 20 | 10 | 100 | NC/ST | 20 | 20 | 20 | 40 | NC/ST |

Test species: Amaranthus retroflexus (AMARE), Lolium perenne (LOLPE), Stellaria media (STEME), Digitaria sanguinalis (DIGSA). $\mathrm{ST}=$ stunting, $\mathrm{GI}=$ germination inhibition, $\mathrm{NC}=$ necrosis.

Gratifyingly, several of these compounds showed significant phytotoxic activity. The observed activity of methyl analogue 196b in comparison with inactive deletion analogue 196c implied that substitution at the $\mathrm{C}^{6}$ position is required for activity, which is in accordance with literature reports. ${ }^{[44]}$ The activity observed from the 6,6-bicyclic analogue $\mathbf{1 9 6 d}$ suggests that the cyclopentanone ring is tolerant of modification. The inactivity of the analogous 6,6-bicycle 196e may be attributed to the trans-ring junction, as it is known that the cis-configuration of CFA is important for activity; however, this inactivity may also be due to the change in relative positioning of the carbonyl moiety relative to the ring junction. The reduced carbonyl compound, 196a, showed good levels of activity, suggesting that variation to the ketone moiety is tolerated. To our surprise, the most potent analogue arising from this study was the CMA-substituted aromatic core of coronalon (196f). Having previously disregarded the aromatic core as a viable CFA-bioisostere, this result lead us to the conclusion that our previously synthesised, inactive analogues (Scheme 38) failed to achieve significant levels of potency due to the amino acid substitution, and the key contributor of potency is the CMA residue. This hypothesis is further substantiated in that the respective $L$-Ile conjugates of our CFA derivatives failed to induce any phytotoxic action, whereas significant activity was observed from analogues 196a, d, and $\mathbf{f}$.

Figure 26 shows images of weed species treated with three of our active compounds 196b, 196d, and 196f. Plant species on the left have been treated with methyl-

## Results and Discussion

substituted 196b, plant species in the centre have been treated with cis-decalin 196d and show significant phytotoxic effects, and plant species on the right have been treated with coronalon core-containing 196f and show strong phytotoxic activity, particularly with post-emergence DIGSA.


Figure 26: Graphic showing phytotoxic effects of active compounds from CMA-core modified conjugates.

With respect to reports of differing activities between COR enantiomers, we then obtained the single enantiomers of our compounds of interest 196d and 196 f through separation by chiral HPLC (Figure 27).

## Results and Discussion

a) Chiral separation of $( \pm)$-196d

$( \pm)-196 d$

Chiral HPLC





b) Chiral separation of $( \pm)-196 f$

( $\pm$ )-196f

Figure 27: Chiral separation of active racemic compounds 196 d and 196 f.
Following separation, the single enantiomers were taken for further herbicide testing, the results of which are detailed in Table 12.

Table 12: Biological evaluation of separated enantiomers of ( $\pm$ )-196d and ( $\pm$ )-196f.

|  | Post |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound | $\sum_{0}^{i}$ | $\frac{1 \times 1}{\alpha}$ | $\begin{aligned} & \text { U } \\ & \text { UT } \\ & \text { Un } \end{aligned}$ | $\begin{aligned} & \text { M } \\ & \text { I } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { Nㅣㅇ } \\ & 0 \\ & 0 \end{aligned}$ |  | 乭 | 砍 |
| 196d isomer 1 | - | 0 | 0 | 0 | 0 | - | 0 |  |
| 196d isomer 2 | - | 10 | 0 | 10 | 0 | - | 10 | ST/CL |
| 196d isomer 3 | - | 10 | 20 | 50 | 50 | - | 70 | ST/CL |
| 196d isomer 4 | - | 10 | 50 | 80 | 50 | 70 | 80 | ST/NC |
| 196 f isomer 1 | - | 0 | 0 | 0 | 0 | - | 0 | - |
| 196f isomer 2 | - | 0 | 40 | 30 | 40 | - | 50 | ST |


|  | Pre |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Compound | $\sum_{i}^{i}$ | $\frac{1}{x}$ | U 0 0 U | $\begin{aligned} & \underline{1} \\ & 0 \\ & 0 \\ & \hline 1 \end{aligned}$ | -101 | 荡 | 艺 | $\begin{aligned} & \text { E } \\ & \text { O} \\ & \text { O} \\ & \text { E. } \\ & \sim \end{aligned}$ |
| 196d isomer 1 | - | 0 | 0 | 0 | 0 | 0 | 0 | - |
| 196d isomer 2 | - | 0 | 0 | 0 | 0 | 0 | 0 | - |
| 196d isomer 3 | - | 20 | 10 | 10 | 60 | 50 | 70 | ST |
| 196d isomer 4 | - | 50 | 0 | 80 | 70 | 60 | 80 | GI |
| 196 f isomer 1 | - | 0 | 0 | 0 | 0 | - | 0 | - |
| 196f isomer 2 | - | 20 | 0 | 0 | 40 | 20 | 60 | ST |

Test species: Alopecurus myosuroides (ALOMY), Amaranthus retroflexus (AMARE), Echinochloa crus-galli (ECHCG), Ipomoea hederacea (IPOHE), Lolium perenne (LOLPE), Setaria faberi (SETFA), Solanum nigrum (SOLNI). $\mathrm{ST}=$ stunting, $\mathrm{CL}=$ chlorosis, $\mathrm{NC}=$ necrosis, $\mathrm{GI}=$ germination inhibition.

The results obtained in this screen clearly demonstrate that the phytotoxic activity observed with compound $\mathbf{1 9 6 f}$ is derived from one enantiomer, while the other is inactive. The optical rotation of the separated enantiomers could not be determined at this time due to a paucity of available material; however, this data matched literature precedent for the phytotoxic activity of the natural (+)-enantiomer. Moderate activity levels were observed for two enantiomers of 196d but in both this case and with the active enantiomer of 196f, activity was weaker than (+)-COR. Although the complete inactivity of one enantiomer of 196f may suggest that the aromatic unit is not contributing significantly to the potency of the other enantiomer, we can't exclude the possibility that the assumed (-)-CMA unit precludes substrate binding, and therefore potentially beneficial interactions between the aromatic unit and binding site are not realised.

### 3.12 Docking Studies

In an attempt to validate our hypothesis of the importance of the CMA moiety, docking studies were conducted to better understand the origins of the potency observed in our study. Figure 28 shows the compounds selected for docking.

## Results and Discussion



Figure 28: Compounds evaluated in docking studies.
Docking of the native ligand, COR, showed the key ligand/binding site interactions (Figure 29).


Figure 29: COR binding site, displaying key interactions.
The active site contains three arginine residues which form strong H-bonding interactions. An H-bonding interaction between the ketone of the CFA unit and a tyrosine residue is also favourable. A number of hydrophobic interactions, including the positioning of the CMA ethyl unit into a hydrophobic pocket are also observed.

Comparing the docking of COR and $N$-coronafacoyl- $L$-isoleucine (10b), as well as analogue $\mathbf{1 4 4 d}$ and analogue $\mathbf{1 9 5 r}$, is informative with respect to the significant drop in phytotoxicity observed when CMA is replaced with $L$-Ile (Figure 30).


Figure 30: Docking studies to assess the effect of $L$-Ile substitution of the CMA residue. Showing the hydrophobic pocket made up of residues Val411, Ala442, Arg409 and Ala384. Steric clashes are identified by dashed lines.

As shown in Figure 30, replacement of CMA with $L$-Ile to afford $\mathbf{1 0 b}$ and the aromatic analogue $\mathbf{1 4 4 d}$ incurs significant steric clashes in the binding pocket. Analysis of docked structure 10b shows several steric clashes between the $L$-Ile residue and the hydrophobic residues of the binding pocket. L-Ile substitution has also caused the CFA moiety to move in closer proximity to the Val441 residue, incurring further unfavourable steric interactions. Similar steric clashes are observed in the docking of compound 144d, however in this case the positioning of the aromatic core is significantly altered with respect to compound 196f, incurring several steric clashes with the Val441 residue. It is also expected that binding of the branched alkyl chain of $L$-Ile would have a greater entropic penalty with respect to the structurally constrained cyclopropyl CMA.

The inactivity of compound $\mathbf{1 9 5 r}$, which lacks the $C^{1}$ carbonyl and $C^{6}$ ethyl unit of active compound 196f, can also be rationalised through comparison of the docked structures (Figure 31).


Figure 31: Comparison of binding of COR (a), compound 196 f (b), and compound 195 r (c).
The binding mode of COR and compound $\mathbf{1 9 6 f}$ is well conserved (Figure 31, a and b), however docking of compound $\mathbf{1 9 5} \mathbf{r}$ in the active site showed a different binding conformation (Figure 31, c). The bicyclic moiety has rotated to place the cyclopentanone ring in the hydrophobic cavity normally occupied by the COR ethyl unit. This retains the hydrophobic interactions with the Leu91, Phe89, and Ala86 residues, however the H -bonding interaction and hydrophobic interactions with the Tyr444 residue are lost. Figure 32 shows the overlay of the docked compounds in Figure 31.


Figure 32: Overlay of COR, compound 196f, and compound 195 r (shown in orange).
In each case, the amino acid portion of the structures is positioned almost identically. This suggests that the hydrophobic interactions of the CMA residue are stronger than the interactions surrounding the bicyclic core, and that the inactivity of this compound stems from a loss of interactions around the core unit, rather than an alternative placement of the amino acid residue. This also indicates the importance of the $\mathrm{C}^{6}$ ethyl

## Results and Discussion

moiety to orient the core unit so as to pick up the favourable interactions with the Tyr444 residue.

### 3.13 Summary of SAR Analysis

Through review of the SAR derived from our COR-analogue collection, we have drawn several conclusions regarding the tolerance for structural modifications of the COR motif with the retention of phytotoxic activity.

Initial hypotheses focused on the CFA-moiety as being the key contributor of COR phytotoxic activity, and we expected a significantly more constrained SAR around this core motif than with the amino acid residue.

Coronafacoyl-amino acid compounds showed weak phytotoxic activity across the board, with active compounds typically resulting from coronafacoyl-conjugates which are known to occur naturally e.g. $N$-coronafacoyl-L-serine 10b; however, moderate levels of activity were observed from several compounds resulting from the coupling of CFA to more CMA-like non-natural amino acids e.g. gem-dimethyl substituted $\mathbf{1 5 2 j}$. These results are indicative of the importance of the CMA moiety. This, combined with the lack of phytotoxic activity observed from other analogues with alternative amino acids; coronalon analogues, CFA analogues with $L$-Ile substitution, and compounds made in the $L$-Ile automated screen, led us to conclude that the CMA moiety is critical for good levels of phytotoxic activity. These results also disproved our original hypothesis that $L$-Ile could act as a viable, simplified CMA bioisostere.

Whilst general screening of potential CFA surrogates with CMA substitution failed to deliver any hits of significant potency, the moderate activity seen from compounds 1951 and 195v allowed us to conclude that the structural requirements around the CFA unit are less constrained than initially anticipated.

This was exemplified by the synthesis of CMA-substituted analogues where minor modifications to the CFA core had been made (196a-f). Good levels of activity were observed from several of these compounds, again suggesting a moderate amount of structural flexibility in the CFA unit.

## Results and Discussion

These hypotheses were further substantiated through docking studies, where the binding mode of COR was compared to the binding of both active and inactive analogues. $L$-Ile substituted analogues were shown to incur significant unfavourable steric clashes in the COR binding site, lending further weight to our conclusion that $L$ Ile does not act as a reasonable CMA surrogate. Comparison of the binding mode of active and inactive CMA containing analogues demonstrated that the positioning of the CMA moiety is highly conserved, indicating strong, favourable interactions in the binding site, again suggesting the importance of this residue. The positioning of the $\mathrm{C}^{6}$ ethyl unit in a hydrophobic pocket is in line with the observed loss of activity when this position is unsubstituted, which potentially results in an alternative binding mode as observed through modelling of inactive compound 195r.

Literature reports of the significantly reduced activity of the non-natural, (-)-COR enantiomer were confirmed through the chiral separation and subsequent phytotoxic testing of $\mathbf{1 9 6 d}$ and $\mathbf{1 9 6 f}$. The complete inactivity of the presumed non-natural enantiomers clearly displayed the enantiomeric preference of the substrate binding site in order to induce a phytotoxic response.

## Conclusion

## 4 Conclusion

In conclusion, the natural phytotoxin COR has been a compound of interest in agrochemical development since its structural elucidation and evaluation of herbicidal action. Eliciting its effect through interaction with the JAZ signalling pathway, COR can be considered as having a novel MOA, and this, coupled with its biologically privileged structure, has kept COR at the forefront of agrochemical discovery programmes.

Despite its relevance to agrochemical development, relatively little is known around a COR-SAR for phytotoxic activity. This has been largely attributed to the lack of synthetic accessibility of the complex natural product structure, limiting the practicality of COR-derivative synthesis and the generation of a significant number of analogues.

We aimed to carry out a thorough SAR investigation around the COR motif, with the intention of developing an SAR for phytotoxic activity, and ideally achieving structural simplification with the retention or enhancement of potency. To enable this study, we developed the gram-scale synthesis of the COR core unit, CFA. The successful execution of this synthetic sequence has allowed the generation of several coronafacoyl-amino acid conjugates, as well as enabling the incorporation of structural diversity into the CFA motif.

Disappointingly, attempts to use structurally simplified CFA and CMA mimics were largely unsuccessful, with significant deviations away from the parent structure affording inactive compounds. Compounds where the amino acid residue was varied from the CMA moiety were typically inactive or afforded very low levels of phytotoxic activity. Although these were negative results, we took learning from these failures in that the CMA unit is integral to potency, a finding which was enabled by the gramscale synthesis of CFA and subsequent COR analogue synthesis. Our SAR hypothesis was further substantiated in that COR mimics featuring the CMA moiety typically retain high levels of potency when minor modifications to the CFA unit are made, suggesting that the CFA moiety is more tolerant to modification than CMA.

## Conclusion

Modelling studies backed up the conclusions drawn from the experimental data. Analogues featuring $L$-Ile substitution were shown to incur significant steric clashes in the COR binding site, whereas modelling of the CMA residue suggested strong, favourable binding interactions.

Overall, extensive SAR studies around the COR scaffold has led to the conclusion that the bespoke non-natural amino acid residue CMA is essential for high levels of phytotoxicity. The CFA residue appears to tolerate structural modifications, including the simplification of the largely sp3-carbon bicycle to an aromatic mimic (compound 196f). We suggest that further studies in this area focus on the modification of the CFA residue, with retention of the CMA component.

## 5 Future Work

Due to the importance of substitution at the $\mathrm{C}^{6}$ position of CFA, a second-generation synthesis amenable to facile analogue generation at this position is desirable. Retrosynthetic analysis of the IMDA triene precursor (57) revealed a chemoselective Suzuki-Miyaura disconnection, which would enable efficient access to CFA derivatives with varied $\mathrm{C}^{6}$ functionality (Figure 33).

2nd generation synthesis


Figure 33: Second generation synthesis of CFA, enabling facile analoging of $\mathbf{C}^{6}$.
Di-bromo alkene $\mathbf{2 0 2}$ could be generated from aldehyde 55, and triene $\mathbf{2 0 0}$ assembled through chemoselective cross coupling of the least sterically hindered bromide ${ }^{[115]}$ with vinyl boronic acid 201. Through variation of the vinyl boronic acid used, CFA analogues at the biologically relevant $\mathrm{C}^{6}$ position could be readily accessed.

Cinnacidin, 203, is a non-host specific phytotoxic natural product isolated from the fungus Nectria sp. DA060097. ${ }^{[116]}$ Cinnacidin has been identified as a structural and functional mimic of JA and COR, and has been found to display significant phytotoxic activity across a range of weed species (Figure 34).


1


2


203
cinnacidin

Figure 34: Novel phytotoxin cinnacidin (203), highlighting structural similarities to COR (1), and JA-Ile (2).

## Future Work

An SAR campaign, focused around the cinnacidin core motif, may be promising with respect to the identification of a herbicidal lead acting in the JAZ pathway. A scalable, flexible synthesis of the fused 5,5 -bicyclic core to enable amino acid and core screening would be desirable.

The cinnacidin scaffold has several structural features which are amenable to analogue generation (Figure 35).


Figure 35: Potential points of diversification for cinnacidin analogue synthesis.
Like with coronatine, an SAR study on the amino acid portion could be carried out. Taking the learning from COR that there is little tolerance for modification in the amino acid residue, the synthesis of a CMA substituted cinnacidin analogue should be prioritised. The carbonyl moiety and $\mathrm{C}^{6}$ methoxy residue could be modified, as could the $\mathrm{C}^{5}$ side chain. It is known that the $\mathrm{C}^{5}$ side chain is not essential for phytotoxic activity, ${ }^{[116]}$ and therefore deletion of this unit may be a feasible means of compound simplification.

## 6 Experimental

## General Techniques

All reagents and solvents were obtained from commercial suppliers and were used without further purification unless otherwise stated. Purification was carried out according to standard laboratory methods. ${ }^{[117]}$

## Purification of Solvents

All solvents used for anhydrous reactions (THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{PhH}, \mathrm{MeOH}$ ) were ether obtained from a PureSolv SPS-400-5 solvent purification system or dried over previously activated $3 \AA$ molecular sieves. These solvents were transferred to and stored in a septum-sealed oven-dried flask over previously activated $3 \AA$ molecular sieves and purged with and stored under nitrogen. $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{EtOAc}, \mathrm{MeOH}$, and petroleum ether $40-60{ }^{\circ} \mathrm{C}$ for purification purposes were used as obtained from suppliers without further purification.

## Experimental Details

Air-sensitive reactions were carried out using conventional glassware. The glassware was oven-dried $\left(150{ }^{\circ} \mathrm{C}\right)$ and purged with $\mathrm{N}_{2}$ before use. Purging refers to a vacuum/nitrogen-refilling procedure. Reactions were carried out at $-78^{\circ} \mathrm{C}$ using dry ice/acetone baths. Reactions were carried out at $0{ }^{\circ} \mathrm{C}$ using ice/water baths. Room temperature was generally $c a .18{ }^{\circ} \mathrm{C}$. Reactions were carried out at elevated temperatures using a temperature-regulated hotplate/stirrer. DIPEA for aldol additions was dried by heating to reflux over $\mathrm{CaH}_{2}$ and distilling under vacuum before being purged with, and stored under $\mathrm{N}_{2}$ in a septum-sealed oven-dried flask over previously activated 3 Å molecular sieves.

## Purification of Products

Thin layer chromatography was carried out using Merck silica plates coated with fluorescent indicator UV254. These were analysed under 254 nm UV light and/or

## Experimental

developed using potassium permanganate solution. Flash chromatography was carried out using ZEOprep 60 HYD 40-63 $\mu \mathrm{m}$ silica gel.

## Analysis of Products

Fourier Transformed Infra-Red (FTIR) spectra were obtained on a Shimadzu IRAffinity-1 machine. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker AV 400 spectrometer at 400 MHz and 125 MHz , respectively, or Bruker DRX 500 at 500 MHz and 126 MHz , respectively. ${ }^{19} \mathrm{~F}$ NMR spectra were obtained on a Bruker AV 400 or Bruker DRX 500 spectrometer at 376 MHz and 471 MHz respectively. Chemical shifts are reported in ppm and coupling constants are reported in Hz with $\mathrm{CDCl}_{3}$ referenced at $7.26 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right)$ and $77.16 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$, DMSO-d $\mathrm{d}_{6}$ referenced at $2.50 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right)$ and $39.52 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right)$, acetone- $\mathrm{d}_{6}$ referenced at $2.05 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right)$ and $29.84 \mathrm{ppm}\left({ }^{13} \mathrm{C}\right), \mathrm{D}_{2} \mathrm{O}$ referenced at $4.79 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right)$, and MeOD referenced at $3.31 \mathrm{ppm}\left({ }^{1} \mathrm{H}\right)$ and 49.00 ppm $\left({ }^{13} \mathrm{C}\right)$. High-resolution mass spectra were obtained through analysis at the EPSRC UK National Mass Spectrometry Facility at Swansea University. Robot array compounds were purified by mass directed prep HPLC, using a mixed trigger of UV with ES+ on a Waters Fraction Lynx system comprising of a 2767 injector/collector with a 2545 gradient pump, two 515 isocratic pumps, SFO, 2998 photodiode array, 2424 ELSD, and 3100 mass spectrometers. A Waters XBridge dC18 5micron 19x10 mm guard column was used with an ACT ACE C18- AR, 5 micron $30 \times 100 \mathrm{~mm}$ prep column. The preparative HPLC was conducted using a 11.4 minute run time using a gradient method, eluting with $\mathrm{MeCN}(0.05 \% \mathrm{TFA}) / \mathrm{H}_{2} \mathrm{O}(0.05 \% \mathrm{TFA})$ at a flow rate of 33 $\mathrm{mL} / \mathrm{min}$.

Where compounds were obtained as $1: 1$ mixtures of two diastereoisomers $(( \pm)$ coronafacic acid or coronafacic acid analogue conjugates with enantiopure amino acids or ( $\pm$ )-coronafacic acid or coronafacic acid analogue conjugates with ( $\pm$ )-amino acids eg. ( $\pm$ )-coronamic acid), ${ }^{1} \mathrm{H}$ NMR peaks corresponding to both diastereoisomers were integrated together and integration normalised to one. ${ }^{13} \mathrm{C}$ NMR signals are reported as observed.

## Docking Studies

Docking studies were performed using protein data bank ${ }^{[118]}$ (PDB) crystal structure 3OGK, ${ }^{[24]}$ with the binding site occupied by ligand B selected as the target site for docking. The rotameric states of residues TRP519 and TRP467 in this binding site were reassigned to provide a better fit to the bound ligand before H atoms were added and protonation states assigned using the protein preparation wizard ${ }^{[119]}$ from the 201701 release of the Schrodinger Suite. With a complete protein model in place, docking calculations were performed using the program Glide, ${ }^{[120,121]}$ accessed via Maestro. ${ }^{[122]}$ A Glide grid file was generated centred on the centroid of the bound coronatine molecule, with a cubic box of length $25 \AA$. All other options for grid generation were retained at their default values. The five molecules shown in Figure 28 were built in Maestro, and then docked using the standard precision mode of Glide: all options were assigned their default values, with only the highest scoring docking pose retained for each molecule.

### 6.1 General Experimental Procedures

General Procedure A: General procedure for coronalon core automated screen (Scheme 38).


To a solution of amino acid ( $0.65 \mathrm{mmol}, 1.2$ equiv.) in DMF ( 2 mL ) in a test tube was added $\mathbf{1 4 3}$ ( $200 \mathrm{mg}, 0.54 \mathrm{mmol}, 1$ equiv.) in one portion and the reaction agitated at $80^{\circ} \mathrm{C}$ for 17 hours. The crude reaction was concentrated in vacuo, dissolved in $10 \%$ MeOH in DMSO ( 1 mL ) with heating, filtered, and purified by mass-directed HPLC

## Experimental

to give the title compound.

## General Procedure B: Swern Oxidation.

For example, synthesis of aldehyde 55.


To a three-necked flask under an atmosphere of nitrogen was added oxalyl chloride ( $3.32 \mathrm{~mL}, 39.23 \mathrm{mmol}, 1.5$ equiv.) and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(90 \mathrm{~mL})$. The reaction was cooled to $-78{ }^{\circ} \mathrm{C}$ and DMSO ( $5.60 \mathrm{~mL}, 78.84 \mathrm{mmol}, 3$ equiv.) added dropwise. The reaction was stirred for 15 minutes at $-78^{\circ} \mathrm{C}$ before a solution of alcohol $149(4.15 \mathrm{~g}$, 26.24 mmol , 1 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise. The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for a further 30 minutes before being quenched slowly with triethylamine ( $22 \mathrm{~mL}, 157.84 \mathrm{mmol}, 5$ equiv.). The reaction was allowed to warm to room temperature over 1 h . The pale orange suspension was then diluted with water $(40 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The organics were combined, washed with brine ( 20 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale orange liquid. The crude material was loaded directly in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $10-20 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound as a pale yellow liquid ( $3.26 \mathrm{~g}, 79 \%$ ).

## General Procedure C: Aldol addition.

For example, synthesis of compound $\mathbf{5 6 b}$.


To a three-necked flask at room temperature under an atmosphere of nitrogen was added ester 54 ( $2.72 \mathrm{~mL}, 17.12 \mathrm{mmol}, 1.3$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and DIPEA ( $3.44 \mathrm{~mL}, 19.75 \mathrm{mmol}, 1.5$ equiv.). Dibutylboryltrifluoromethanesulfonate solution ( 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) ( $17.1 \mathrm{~mL}, 17.1 \mathrm{mmol}, 1.3$ equiv.) was added dropwise and the resulting solution stirred at room temperature for 30 minutes. A solution of aldehyde 55 ( $2.06 \mathrm{~g}, 13.16 \mathrm{mmol}, 1$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was then added dropwise and the reaction stirred at room temperature for 1 h . The reaction was quenched with a potassium buffer solution ( $\mathrm{pH} 7.4,26 \mathrm{~mL}$ ), $\mathrm{MeOH}(40 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}_{2}$ ( $30 \%$ solution, 13 mL ) which were added sequentially. A small exotherm was observed on $\mathrm{H}_{2} \mathrm{O}_{2}$ addition. The reaction was stirred vigorously at room temperature for 16 h , diluted with water ( 30 mL ), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 40 \mathrm{~mL})$. The organics were combined, washed with brine ( 30 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale yellow oil. The crude material loaded directly in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $20 \%$ $\mathrm{EtOAc} /$ petroleum ether to afford the title compound as a colourless liquid. $(2.81 \mathrm{~g}$, $57 \%$ ( ${ }^{1} \mathrm{H}$ NMR yield)) (83:17 syn:anti by ${ }^{1} \mathrm{H}$ NMR).

General Procedure D: Tandem dehydration/Diels-Alder followed by ester hydrolysis.

For example, synthesis of compound S1.


To a round bottom flask under an atmosphere of nitrogen was added compound 56b ( $2.00 \mathrm{~g}, 6.71 \mathrm{mmol}, 1$ equiv. ( $79 \%$ purity) ), $\mathrm{CuBr}(96 \mathrm{mg}, 0.67 \mathrm{mmol}, 10 \mathrm{~mol} \%$ ), and anhydrous toluene ( 1.3 mL ). DIC ( $1.56 \mathrm{~mL}, 10.07 \mathrm{mmol}, 1.5$ equiv.) was added in one portion and the resulting solution was brought to $110^{\circ} \mathrm{C}$ for 16 h . The reaction was allowed to cool to room temperature and the crude solution was filtered through celite, eluting with EtOAc ( 30 mL ). The organics were washed with water ( 30 mL ), followed by brine ( 30 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale brown oil. The crude material was directly loaded in a solution of $10 \% \mathrm{EtOAc} /$ petroleum ether and purified by flash silica column chromatography, eluent $10 \%$ EtOAc/petroleum ether to afford a pale yellow oil (150) ( $1.49 \mathrm{~g}, 5.32 \mathrm{mmol})$ which was not characterised.

To the pale yellow oil was added EtOH ( 50 mL ) and PTSA (mono-hydrate) ( 1.52 g , $7.99 \mathrm{mmol}, 1.5$ equiv.) and the resulting solution was brought to $75^{\circ} \mathrm{C}$ for 5 h . The reaction was allowed to cool to room temperature and the solvent evaporated to afford an orange oil. The crude material was directly loaded in a solution of $20 \%$ $\mathrm{EtOAc} /$ petroleum ether and minimal $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $20 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound as a colourless liquid ( $677 \mathrm{mg}, 54 \%$ ( 2 steps)).

## General Procedure E: PDC oxidation.

For examples, synthesis of compound 43.


To a round bottom flask was added compound $\mathbf{S 1}$ ( $1.79 \mathrm{~g}, 7.51 \mathrm{mmol}, 1$ equiv.), anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, and mol. sieves ( $3 \AA, 2.3 \mathrm{~g}$ ). PDC ( $4.24 \mathrm{~g}, 11.26 \mathrm{mmol}$, 1.5 equiv.) was added in one portion and the reaction was stirred at room temperature for 16 h . The crude reaction mixture was concentrated onto silica gel and purified by flash silica column chromatography, eluent $10-30 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound as a colourless oil ( $957 \mathrm{mg}, 54 \%$ ) ( $3: 1 \mathrm{dr} \mathrm{C}^{7 \mathrm{a}}$ ).

## General Procedure F: Acidic ester hydrolysis.

For example, see synthesis of ( $\pm$ )-coronafacic acid, 4.


To a round bottom flask was added compound $43(1.10 \mathrm{~g}, 4.65 \mathrm{mmol})$ and 3 M HCl $(150 \mathrm{~mL})$. The reaction was brought to $100^{\circ} \mathrm{C}$ and maintained at this temperature with stirring for 16 h . The reaction was allowed to cool to room temperature and extracted with EtOAc ( $3 \times 30 \mathrm{~mL}$ ). The organics were combined, washed with brine ( 30 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford an orange oil. The crude material was loaded directly in a solution of $30 \% \mathrm{EtOAc} /$ petroleum ether and purified by flash silica column chromatography, eluent $30-60 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound as a white solid ( $850 \mathrm{mg}, 88 \%$ ).

General Procedure G: Synthesis of ( $\pm$ )-CFA-amino acid methyl ester analogues (Scheme 42).

For example, synthesis of compound $\mathbf{S 1 0 b}$.

## Experimental



To a 2-dram vial was added ( $\pm$ )-CFA (4) ( $30 \mathrm{mg}, 0.14 \mathrm{mmol}, 1$ equiv.) and HATU ( 66 $\mathrm{mg}, 0.17 \mathrm{mmol}, 1.2$ equiv.). DMF ( 0.7 mL ) was added, followed by DIPEA ( $80 \mu \mathrm{~L}$, $0.46 \mathrm{mmol}, 3$ equiv.) and the resulting solution stirred at room temperature for 5 minutes. Methyl $L$-isoleucinate hydrochloride ( $30 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.5$ equiv.) was then added in one portion and the vial capped with a screw top lid. The reaction was stirred for 16 h . The reaction was then diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the organics extracted with EtOAc ( $3 \times 5 \mathrm{~mL}$ ). The organics were combined, washed with brine ( 10 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale yellow oil. The crude material was loaded directly in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the desired product as a colourless oil which solidified to a white solid on standing ( $35 \mathrm{mg}, 76 \%$ ).

## General Procedure H: Pro-cide ester hydrolysis (Scheme 42).

For example, synthesis of compound $\mathbf{1 0 b}$.


To a round bottom flask was added compound $\mathbf{S 1 0 b}$ ( $24 \mathrm{mg}, 0.07 \mathrm{mmol}, 1$ equiv.) and LiOH ( $5 \mathrm{mg}, 0.20 \mathrm{mmol}, 3$ equiv.). The material was suspended in 1:1 MeOH: $\mathrm{H}_{2} \mathrm{O}$ (3 mL ) and the resulting suspension brought to $50^{\circ} \mathrm{C}$ for 16 h . The reaction was allowed to cool to room temperature, and extracted with EtOAc ( $1 \times 5 \mathrm{~mL}$ ), and the organics

## Experimental

discarded. The aqueous phase was acidified with HCl (aq.), and extracted with EtOAc ( $3 \times 10 \mathrm{~mL}$ ). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil. The crude material was taken up in a minimal volume of diethyl ether, and petroleum ether added until a white precipitate formed (where precipitation did not occur spontaneously the solvent was concentrated under a stream of compressed air until precipitation occurred). The solvent was removed using a Pasteur pipette and the precipitate dried under vacuum to afford the desired product as a white solid ( $9 \mathrm{mg}, 39 \%$ ).

General Procedure I: General procedure for isoleucine automated screen (Scheme 52)




184

A test tube was charged with carboxylic acid ( $0.54 \mathrm{mmol}, 1$ equiv.) and a solution of HATU ( $251 \mathrm{mg}, 0.66 \mathrm{mmol}, 1.2$ equiv.) in DMF ( 0.9 mL ) added. The reaction mixture was agitated for 1 h before a solution of DIPEA ( $0.25 \mathrm{~mL}, 1.42 \mathrm{mmol}, 3$ equiv.) and isoleucine ( $108 \mathrm{mg}, 0.82 \mathrm{mmol}, 1.5$ equiv.) in DMF ( 0.9 mL ) was added and the reaction mixture agitated for 20 h . The crude reaction was concentrated in vacuo, dissolved in $10 \%$ MeOH in DMSO ( 1 mL ) with heating, filtered, and purified by massdirected HPLC to give the title compound.

## General Procedure J: General procedure for CMA automated screen (Scheme

 54).

5


DMF, 20 h


195

A test tube was charged with carboxylic acid ( $0.6 \mathrm{mmol}, 1$ equiv.) and a solution of HATU ( $266 \mathrm{mg}, 0.7 \mathrm{mmol}, 1.2$ equiv.) in DMF ( 2 mL ) added. The reaction mixture was agitated for 1 h before a solution of DIPEA ( $0.35 \mathrm{~mL}, 2 \mathrm{mmol}, 3$ equiv.) and compound 5 ( $100 \mathrm{mg}, 0.6 \mathrm{mmol}$, 1 equiv.) in DMF ( 2 mL ) was added and the reaction mixture agitated for 20 h . The crude reaction was concentrated in vacuo, dissolved in $10 \% \mathrm{MeOH}$ in DMSO ( 1 mL ) and purified by mass-directed HPLC to give the title compound.

### 6.2 Synthesis of compound 142.



### 6.2.1 Procedures and Characterisation of compound 142.

## Compound 139.



To a round bottom flask fitted was added $\mathrm{AlCl}_{3}(20 \mathrm{~g}, 0.15$ mol, 4 equiv.) and DCE ( 12.5 mL ). $\mathrm{AcCl}(8.05 \mathrm{~mL}, 0.11 \mathrm{~mol}, 3$ equiv.) was added dropwise to the stirring suspension at room temperature. A small exotherm was observed. A solution of 1,2,3,4-tetrahydronapthalene (138) ( $5.15 \mathrm{~mL}, 0.04 \mathrm{~mol}, 1$ equiv.) in DCE ( 6 mL ) was then added dropwise. A second exotherm was observed. The reaction was stirred for 5 minutes and the solvent removed in vacuo to afford a viscous residue. The residue was then heated to $100^{\circ} \mathrm{C}$ for 5 h . The reaction was cooled to $0^{\circ} \mathrm{C}$ in an ice bath before being quenched slowly with water ( 100 mL ) and $\mathrm{NaHCO}_{3}$ (aq.) ( 100 mL ). On quenching a dark brown precipitate was formed. The precipitate was extracted into EtOAc ( $3 \times 100 \mathrm{~mL}$ ). The organics were combined, washed with brine ( 30 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a viscous dark red/brown oil. The crude material was loaded in a solution of $30 \% \mathrm{EtOAc} /$ petroleum ether and purified by flash silica column chromatography, eluent $30 \% \mathrm{EtOAc} /$ petroleum ether to afford an orange oil which solidified to an orange solid on standing. The solid was triturated with diethyl ether to afford the title compound as a beige solid ( $4.41 \mathrm{~g}, 54 \%$ ).

TLC ( $20 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.32$ stained by $\mathrm{KMnO}_{4}$ and visible by UV (short wave).
$v_{\max }$ (neat): 2939, 2893, 1679, 1656, 1623, 1355, 1281, 1271, $1203 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.87-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.89(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 5 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 198.4,197.4,143.1,139.2,136.3,136.2,133.1,129.9$, 128.3, 128.2, 27.8, 26.7, 25.5, 20.8.

## Experimental

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{2}\right)$ requires $m / z 215.1067$, found m/z 215.1067.

The spectral data were consistent with those previously reported in the literature. ${ }^{[122]}$

## Compound 140.



To a solution of $\mathrm{KMnO}_{4}(4.74 \mathrm{~g}, 29.99 \mathrm{mmol}$, 1 equiv.) in water ( 125 mL ) in a round bottom flask at $0^{\circ} \mathrm{C}$ was added compound $139(2.57 \mathrm{~g}, 11.99 \mathrm{mmol}, 2.5$ equiv.) in a solution of DCE ( 5 mL ) over the course of 5 minutes. The reaction was stirred at $\sim 3$ ${ }^{\circ} \mathrm{C}$ for 3 h . Powdered $\mathrm{NaOH}(\sim 2.3 \mathrm{~g})$ was added and the solution filtered. The solution was brought to pH 1 with HCl (aq.) and the aqueous was extracted with EtOAc (3 x 50 mL ). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a brown solid, which was then triturated with acetone to afford the title compound as an orange solid ( $1.12 \mathrm{~g}, 40 \%$ ).
$V_{\text {max }}$ (neat): 3049 (br.), 2930, 1716, 1693, 1651, $1195 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d ${ }_{6}$ ): $\delta 12.63$ (br. s, 2H), 8.32 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.03 (dd, $J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$, $2.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d $\mathrm{d}_{6}$ ): $\delta$ 197.0, 173.5, 147.0, 134.9, 131.3, 131.1, 129.9, 34.9, 29.0, 26.7. Two signals not observed.

## Experimental

HRMS: exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{5}\right)$ requires $m / z 235.0612$, found $m / z$ 235.0612.

The spectral data were consistent with those previously reported in the literature. ${ }^{[122]}$

## Compound 141.



To a round bottom flask charged with compound $\mathbf{1 4 0}$ ( $444 \mathrm{mg}, 1.88 \mathrm{mmol}, 1$ equiv.) in TFA ( 6.5 mL ) was added triethylsilane ( $0.85 \mathrm{~mL}, 5.32 \mathrm{mmol}, 2.5$ equiv.) dropwise and the resulting orange suspension was stirred at room temperature for 16 h under air. The solvent was removed in vacuo to afford a brown oil. The crude material was dry loaded onto silica gel and purified by flash silica column chromatography, eluent $2 \%$ $\mathrm{AcOH}, 30 \% \mathrm{EtOAc} /$ petroleum ether to afford title compound as a white solid ( 176 mg , $42 \%)$.

TLC ( $2 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{PE}$ ): $\mathrm{R}_{f}=0.22$ stained by $\mathrm{KMnO}_{4}$ and visible by UV (short wave).
$v_{\max }$ (neat): 2963 (br.), 2932, 2872, 2634, 1682, 1403, 1277, 1210, $907 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Acetone-d $\mathrm{d}_{6}$ ): $\delta 10.84$ (br. s, 1H), 7.80 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.37-$ $7.29(\mathrm{~m}, 2 \mathrm{H}), 3.27-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.60(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d $\mathrm{d}_{6}$ ) $\delta$ 173.8, 168.8, 141.7, 139.1, 131.2, 130.8, 130.3, 129.5, 35.4, 28.7, 27.5, 15.4.

## Experimental

HRMS: exact mass calculated for [M-H] $\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{O}_{4}\right)$ requires $m / z 221.0819$, found $m / z$ 221.0819.

The spectral data were consistent with those previously reported in the literature. ${ }^{[122]}$

## Compound 142.



A round bottom flask charged with compound 141 ( $177 \mathrm{mg}, 0.80 \mathrm{mmol}, 1$ equiv.), $\mathrm{AlCl}_{3}$ ( $743 \mathrm{mg}, 5.57 \mathrm{mmol}, 7$ equiv.), $\mathrm{NaCl}(116 \mathrm{mg}, 1.98 \mathrm{mmol}, 2.5$ equiv.) was brought to $160^{\circ} \mathrm{C}$ under air and stirred for 6 h . The reaction was allowed to cool to room temperature and water ( 3 mL ) added, followed by HCl (aq.) $(0.5 \mathrm{~mL})$, and the resulting suspension stirred at room temperature for 20 h . The reaction was diluted with EtOAc ( 10 mL ) and filtered. Water ( 10 mL ) was added and the layers separated. The organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a beige solid. The material was dry loaded onto silica gel and purified by flash silica column chromatography, eluent $2 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound as a white solid ( $101 \mathrm{mg}, 62 \%$ ).

TLC ( $2 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} /$ petroleum ether) $\mathrm{R}_{f}=0.35$ stained by $\mathrm{KMnO}_{4}$ and visible by UV (short wave).
$v_{\max }$ (neat): 2961, 2924, 2868, 2668, 1708, 1673, 1580, 1435, 1299, $1242 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.23(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.54$ $-3.47(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.72(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.9,171.5,155.2,144.5,138.9,137.4,128.2,127.3$, 36.6, 28.4, 27.2, 15.5 .

HRMS: exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{O}_{3}\right)$ requires $m / z$ 203.0714, found $m / z$ 203.0714.

The spectral data were consistent with those previously reported in the literature. ${ }^{[122]}$

### 6.3 Coronalon Aromatic Core Amino Acid Analogues (Scheme 38).

Reactions carried out according to General Procedure A.

## Compound 144a.



144a
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.72(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=6.9$ Hz, 1H), $4.80-4.71$ (m, 1H), $3.38-3.33$ (m, 2H), 2.76 - 2.68 (m, 4H), 1.56 (d, J = 7.1 Hz, 3H), $1.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} H$ not observed.
${ }^{13}{ }^{13}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 207.0,175.2,166.8,151.7,144.4,138.5,133.4,132.7$, 125.4, 48.7, 36.6, 28.5, 25.9, 18.6, 15.5.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 276.1230$, found m/z 276.1228.

## Compound 144b.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.66(\mathrm{~s}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77-3.69(\mathrm{~m}$, $1 \mathrm{H}), 3.54-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.26(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.66(\mathrm{~m}$, 4H), 1.29-1.18(m, 6H). $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 207.0,178.5,167.5,151.5,144.4,138.5,133.2,125.2$, $42.0,39.4,36.6,28.4,25.8,15.5,15.1$. One signal not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 290.1387$, found $m / z 290.1384$.

## Compound 144c.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.74-7.68(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}$, $J=8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.41-2.32(\mathrm{~m}, 1 \mathrm{H})$,

## Experimental

$1.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} H$ not observed.
${ }^{13}{ }^{13}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 206.9,174.3,167.2,151.4,144.5,138.5,133.4,133.1$, $125.4,57.5,36.6,31.5,28.5,25.9,19.3,18.0,15.5$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4}\right)$ requires $m / z$ 304.1543, found m/z 304.1541.

## Compound 144d.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.72(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=8.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.12$ $-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.20(\mathrm{~m}, 4 \mathrm{H}), 1.03-0.91(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 206.9,174.1,167.0,151.4,144.4,138.5,133.4,133.0$, 125.3, 57.0, 38.1, 36.6, 28.4, 25.9, 25.4, 15.7, 15.5, 11.9.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4}\right)$ requires $m / z 318.1700$, found m/z 318.1696.

## Compound 144e.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.75(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 5.44 (br. s, 1H), 4.95 (td, $J=7.3,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ (dd, $J=10.8,4.6 \mathrm{~Hz}$, 2H), $2.80-2.63(\mathrm{~m}, 6 \mathrm{H}), 2.41-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.26$ (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 207.1,175.4,167.5,152.0,144.6,138.6,133.4,132.2$, 125.9, 52.4, 36.6, 31.1, 30.4, 28.5, 26.0, 15.7, 15.5.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4} \mathrm{~S}\right)$ requires $\mathrm{m} / \mathrm{z} 336.1264$, found m/z 336.1261.

## Compound 144f.



144f

## Experimental

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.82$ (br. s, 1 H ), $7.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H})$, $6.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{td}, J=7.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.76-$ $2.67(\mathrm{~m}, 4 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.53-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, \mathrm{J}$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{1} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 207.0,175.0,167.0,151.6,144.4,138.5,133.4,132.8$, 125.4, 52.6, 36.6, 34.6, 28.4, 25.9, 18.7, 15.5, 13.9.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4}\right)$ requires $m / z$ 304.1543, found m/z 304.1540.

## Compound 144g.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.72(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H})$, $3.36-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.63(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{NH}$ and $\mathrm{CO}_{2} H$ not observed.
${ }^{13}{ }^{13}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 207.4,171.7,167.6,152.0,144.4,138.4,133.4,132.4$, 125.4, 41.6, 36.6, 28.4, 25.8, 15.4.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 262.1074$, found m/z 262.1073.

## Compound 144h.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.79(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.90$ (dt, $J=7.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.32$ (m, 2H), $3.06-2.87$ (m, 2H), 2.79 $-2.69(\mathrm{~m}, 4 \mathrm{H}), 2.06(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} H$ not observed.
${ }^{13}{ }^{13}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 206.8,172.3,166.8,151.5,144.5,138.6,133.7,132.5$, 125.7, 79.0, 71.78, 51.2, 36.6, 28.5, 26.0, 22.5, 15.5 .

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{4}\right)$ requires $m / z$ 300.1230, found m/z 300.1228.

## Compound 144i.



## Experimental

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.02$ (br. s, 1 H ), $7.70(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H})$, 6.72 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ (td, $J=8.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.41-3.25$ (m, 2H), $2.75-$ $2.65(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-0.92(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 207.0,175.3,167.2,151.7,144.3,138.4,133.3,132.9$, 125.3, 51.3, 41.7, 36.6, 28.4, 25.82, 25.15, 22.97, 22.13, 15.47.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 318.1700$, found m/z 318.1696.

## Compound 144j.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.75-7.68$ (m, 2H), 7.18 (br. s, 1H), 6.72 (d, $J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.80$ (ddt, $J=17.3,10.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.13$ (m, 2H), 4.87 (dt, $J=7.2$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.69(\mathrm{~m}, 6 \mathrm{H}), 1.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 206.9,174.0,166.9,151.5,144.5,138.6,133.4,132.7$, $132.5,125.5,119.6,52.2,36.6,36.4,28.5,25.9,15.5$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{4}\right)$ requires $m / z$ 302.1387, found $m / z 302.1383$.

## Compound 144k.



144k
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.65(\mathrm{~s}, 2 \mathrm{H}), 7.05(\mathrm{~s}, 1 \mathrm{H}), 6.71$ (br. s, 1H), $3.36-3.30$ (m, 2H), $2.73-2.63(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 207.1,176.0,168.7,152.3,144.2,138.5,133.0,132.7$, 125.3, 36.6, 33.9, 28.4, 25.8, 17.8, 15.5. One signal not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4}\right)$ requires $m / z$ 288.1230, found $m / z 288.1228$.

## Compound 1441.


${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.96$ (br. s, 1 H$), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.67 (dd, $J=8.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.05$ (m, 2H), $2.74-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.36-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.94$ (m, 1H), $1.93-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Experimental
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 206.9,174.0,168.7,150.4,144.2,138.1,134.5,131.9$, 123.8, 58.9, 49.5, 36.6, 29.3, 28.4, 25.0, 24.4, 15.5.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{4}\right)$ requires $m / z 302.1387$, found m/z 302.1384.

## Compound 144m.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.68(\mathrm{~s}, 2 \mathrm{H}), 6.30(\mathrm{~s}, 1 \mathrm{H}), 3.36-3.28(\mathrm{~m}, 2 \mathrm{H}), 2.78-$ $2.66(\mathrm{~m}, 4 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.57-$ $1.44(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 206.7,176.8,167.7,151.4,144.4,138.5,133.3,133.2$, 125.3, 59.7, 36.6, 32.3, 28.5, 25.9, 25.3, 21.8, 15.5. Two signals equivalent.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 330.1700$, found m/z 330.1696.

## Compound 144n.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.77-7.68(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}$, $J=8.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 4 \mathrm{H}), 2.05-1.93(\mathrm{~m}, 1 \mathrm{H})$, $1.89-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.36-1.05(\mathrm{~m}, 8 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 207.0,174.3,167.2,151.5,144.5,138.6,133.5,132.9$, $125.5,57.3,41.2,36.6,29.8,28.5,28.4,26.2,26.2,26.1,26.0,15.5$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NO}_{4}\right)$ requires $m / z 344.1856$, found m/z 344.1853.

## Compound 1440.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.12-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.67(\mathrm{~m}, 4 \mathrm{H}), 2.59-2.50$ $(\mathrm{m}, 1 \mathrm{H}), 2.41-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.14-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.36$ $(\mathrm{m}, 3 \mathrm{H}), 1.31-1.19(\mathrm{~m}, 4 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 206.8,178.7,166.6,151.5,144.2,138.4,133.4,132.7$, $124.9,47.9,41.7,36.5,34.7,32.4,28.4,28.2,25.7,23.8,15.4$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4}\right)$ requires $m / z 330.1700$, found m/z 330.1696.

## Compound 144p.



144p
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.76(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{td}, J=7.5$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 1 \mathrm{H})$, $5.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.29(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.68(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 206.9,172.1,166.4,160.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=247.6 \mathrm{~Hz}\right), 151.7$, $144.5,138.6,133.7,132.3,130.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 130.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.4 \mathrm{~Hz}\right), 125.7$, 124.9 - 124.5 (m), $116.1\left(\mathrm{~d}^{2}{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.2 \mathrm{~Hz}\right), 52.4,36.6,28.5,26.0,15.5$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FNO}_{4}\right)$ requires $m / z 356.1293$, found m/z 356.1291.

## Compound 144q.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.78(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H})$, $7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.28(\mathrm{~m}, 2 \mathrm{H})$, $2.79-2.67(\mathrm{~m}, 4 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 206.9,175.3,166.2,151.5,144.5,140.0,138.6,133.5$, $133.1,128.8,128.1,125.9,125.5,62.8,36.6,28.5,26.1,22.7,15.5$. Two peaks equivalent.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}\right)$ requires $m / z 352.1543$, found m/z 352.1543 .

## Compound 144r.



144r
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.74$ (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.71 (s, 1H), 7.37 (d, $J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.38-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13}{ }^{13}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 207.0,166.5,151.8,144.5,138.8,138.6,133.5,132.3$, $129.9,127.4,125.7,56.8,36.6,28.5,26.0,21.3,15.5$. Four signals not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}\right)$ requires $m / z 352.1543$, found m/z 352.1542 .

## Compound 144s.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.19(\mathrm{~m}$, $5 \mathrm{H}), 6.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.03(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.09(\mathrm{~m}, 4 \mathrm{H}), 2.76-2.63$ (m, 4H), 1.24 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13}{ }^{13}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 206.9,173.6,166.8,151.6,144.4,138.5,136.2,133.4$, 132.6, 129.7, 128.7, 127.3, 125.5, 53.6, 37.4, 36.6, 28.4, 25.7, 15.4. Two signals equivalent.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}\right)$ requires $m / z 352.1543$, found m/z 352.1542 .

## Compound 144t.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.83-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.40$ $(\mathrm{m}, 2 \mathrm{H}), 5.77(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.69(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13}$ C NMR (101 MHz, MeOD): $\delta 209.0,172.8,169.6,153.5,145.7,139.7,139.2,135.0$, 134.3, 132.9, 132.0 (app. d, ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.4 \mathrm{~Hz}$ ), 130.7, $126.1\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 125.8$ (app. d, ${ }^{3} J_{\mathrm{C}-\mathrm{F}}=4.1 \mathrm{~Hz}$ ), 125.7, 58.0, 37.3, 29.3, 26.4, 15.8. F bearing carbon not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 406.1261$, found $m / z 406.1256$.

## Compound 144u.



## Experimental

${ }^{1}{ }^{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.73$ (d, $J=1.5$ Hz, 1H), 7.33 (s, 1H), 3.48 - 3.41 (m, 2H), 2.83 - 2.69 (m, 4H), 2.35 (s, 3H), 2.33 (s, $3 \mathrm{H}), 1.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. One signal not observed.
${ }^{13}{ }^{13}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 207.3,170.6,152.7,144.5,138.7,137.2,135.6,135.6$, 135.1, 133.8, 133.1, 129.7, 125.7, 122.6, 36.7, 28.6, 26.2, 20.9, 19.6, 15.5. One signal not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{NO}_{4}\right)$ requires $m / z 352.1543$, found $m / z 352.1542$.

## Compound 144v.



144v
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.75(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.19$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.04$ (m, 2H), 5.73 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-$ 3.33 (m, 2H), $2.78-2.69(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13}{ }^{13}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 166.4,151.8,144.6,138.7,133.4,129.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=8.4\right.$ $\mathrm{Hz}), 125.8,116.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.8 \mathrm{~Hz}\right), 36.6,28.5,26.1,15.6$. Two signals equivalent, F bearing carbon not observed. Five signals not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{FNO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 356.1293$, found $m / z 356.1290$.

## Compound 144w.



144w
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.74$ (dd, $J=8.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.08 (dd, $J=8.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{ddd}, J=8.7,7.4,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.13-7.06(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.38(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.63(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. NH and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13}{ }^{1} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 207.8,170.6,165.8,152.8,144.5,141.3,138.4,134.5$, 133.6, 133.2, 131.7, 125.5, 123.0, 120.1, 115.9, 36.5, 28.3, 25.8, 15.2.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{4}\right)$ requires $m / z$ 324.1230, found $m / z 324.1228$.

## Compound 144x.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 9.61(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H})$, $3.47-3.39(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.71(\mathrm{~m}, 4 \mathrm{H}), 1.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$. One signal not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 206.9,165.3,164.7,153.1,144.7,138.9,133.9,131.3$, 126.5, 36.6, 28.5, 26.2, 15.5. Six signals not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~F}_{4} \mathrm{NO}_{4}\right)$ requires $m / z$ 396.0853, found $m / z 396.0853$.

## Compound 144y.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.76(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{dd}, J=4.9,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.40-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.68(\mathrm{~m}, 4 \mathrm{H}), 1.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} H$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 206.9,171.8,166.5,151.8,144.5,139.1,138.7,133.5$, $132.2,127.3,126.7,125.9,125.8,52.5,36.6,28.5,26.0,15.5$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{SNO}_{4}\right)$ requires $m / z 344.0951$, found m/z 344.0949.

## Compound 144z.


${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d 6 ): $\delta 12.14$ (s, 1H), 9.17 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.26 (d, $J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H})$, $3.56-3.31$ (br. m, 3H), 2.78 (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.71-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H})$, 1.26 ( $\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}$ ).
${ }^{13}$ C NMR (101 MHz, DMSO-d ${ }_{6}$ ): $\delta 205.9,168.9,165.1,152.7,145.0,144.1,140.9$, 138.4, 132.7, 132.6, 132.4, 125.2, 121.7, 121.3, 118.3, 43.3, 36.1, 27.7, 25.6, 15.6.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{SNO}_{6}\right)$ requires $m / z 402.1006$, found m/z402.1004.

## Compound 144aa.


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}$, 2 H ), $7.08-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.42$ (br. s, 1H), 4.62 (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.39-3.31$ (m, $2 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 206.8,167.2,162.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=246.3 \mathrm{~Hz}\right), 151.9,144.4$, 138.7, $133.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 133.0,132.7,129.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.1 \mathrm{~Hz}\right), 125.3,115.9(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.5 \mathrm{~Hz}\right), 43.4,36.6,28.5,25.9,15.6$. Two signals equivalent.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FNO}_{2}\right)$ requires $m / z 312.1394$, found m/z 312.1391.

## Compound 144ab.



144ab
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.67(\mathrm{~s}, 2 \mathrm{H}), 3.71-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.37-3.28(\mathrm{~m}, 2 \mathrm{H})$, $2.80-2.64(\mathrm{~m}, 6 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{N} H$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 207.1,168.0,152.1,144.4,138.6,133.1,132.3,125.5$, 118.5, 36.6, 36.0, 28.4, 25.8, 18.5, 15.4.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\right)$ requires $m / z 257.1285$, found $m / z 257.1283$.

## Compound 144ac.



144ac
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{td}, J=7.6$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 1 \mathrm{H})$, 6.53 (br. s, 1H), 4.70 (d, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.39-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 4 \mathrm{H})$, $1.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 206.8,167.2,161.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{c}-\mathrm{f}}=246.0 \mathrm{~Hz}\right), 151.8,144.4$, 138.7, 133.0, 132.9, $130.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{c}-\mathrm{f}}=4.2 \mathrm{~Hz}\right), 129.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{c}-\mathrm{f}}=8.2 \mathrm{~Hz}\right), 125.3,125.1(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{c}-\mathrm{f}}=14.7 \mathrm{~Hz}\right), 124.6\left(\mathrm{~d}, J_{\mathrm{c} \text {-f }}=3.6 \mathrm{~Hz}\right), 115.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{c}-\mathrm{f}}=21.2 \mathrm{~Hz}\right), 38.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{c} \text {-f }}=3.6\right.$ Hz), 36.6, 28.5, 25.9, 15.5.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FNO}_{2}\right)$ requires $m / z 312.1394$, found m/z 312.1391.

## Compound 144ad.



144ad
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.38-3.29$ $(\mathrm{m}, 2 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 206.8,167.3,151.9,144.4,138.7,137.2,132.9,132.0$, $129.7,125.3,121.7,43.5,36.6,28.5,25.9,15.5$. Three signals not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrNO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 372.0594$, found $m / z 372.0599$.

## Compound 144ae.



144ae
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.39(\mathrm{~m}$, $1 \mathrm{H}), 6.92-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.44$ (br. s, 1H), $4.66(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.38-3.29(\mathrm{~m}$, 2 H ), $2.77-2.66$ (m, 4H), 1.25 (t, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}^{2}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 206.7,167.2,151.8,144.4,138.7,132.8,132.8,131.7$ $-131.5(\mathrm{~m}), 125.4,121.2\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=15.0 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right), 111.7\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.1\right.$ $\left.\mathrm{Hz}, J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 104.2\left(\mathrm{t},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25.4 \mathrm{~Hz}\right), 37.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right), 36.6,28.5,25.9$, 15.6. F bearing carbons not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~F}_{2} \mathrm{NO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 330.1300$, found $m / z 330.1296$.

## Experimental

### 6.4 Synthesis of ( $\pm$ )-CFA (3) (Scheme 40/41).



### 6.4.1 Procedures and Characterisation of CFA synthesis.

## Compound 146.



To a round bottom flask was added butane-1,4-diol ( $27.3 \mathrm{~g}, 302.93 \mathrm{mmol}, 5$ equiv.) and anhydrous aluminium trichloride ( $79 \mathrm{mg}, 0.59 \mathrm{mmol}, 1 \mathrm{~mol} \%$ ). DHP ( 5.42 mL , $59.41 \mathrm{mmol}, 1$ equiv.) was added slowly and the resulting mixture was warmed to 30 ${ }^{\circ} \mathrm{C}$ for 30 minutes, before being allowed to cool to room temperature. The colourless, crude material was loaded directly in a solution of $40 \% \mathrm{EtOAc} /$ petroleum ether and purified by flash silica column chromatography, eluent 30-60\% EtOAc/petroleum ether to afford the title compound as a colourless liquid ( $9.86 \mathrm{~g}, 95 \%$ ).

TLC ( $40 \% \mathrm{EtOAc} / \mathrm{PE}$ ): $\mathrm{R}_{f}=0.28$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3389 (br.), 2937, 2867, 1442, 1353, 1203, 1121, 1022, 907, 870, $812 \mathrm{~cm}^{-}$ ${ }^{1}$.
${ }^{1}{ }^{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 4.60-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.61$ $(\mathrm{m}, 2 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.32$ (br. s, 1H), $1.86-1.73(\mathrm{~m}$, $1 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 5 \mathrm{H}), 1.61-1.43(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 99.1,98.9,67.7,67.5,62.9,62.9,62.5,62.4,30.9$, $30.8,30.3,30.00,26.7,25.6,25.5,19.7,19.7$. 1:1 mixture of rotamers.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{O}_{4}\right)$ requires $m / z$ 175.1329, found $\mathrm{m} / \mathrm{z} 175.1328$.

The spectral data were consistent with those previously reported in the literature. ${ }^{[124]}$

## Compound 148.



Swern oxidation carried out according to General Procedure B using oxalyl chloride ( $7.91 \mathrm{~mL}, 93.48 \mathrm{mmol}, 1.5$ equiv.), DMSO ( $13.26 \mathrm{~mL}, 186.69 \mathrm{mmol}, 3$ equiv.), compound 146 ( $9.81 \mathrm{~g}, 56.27 \mathrm{mmol}$, 1 equiv.), triethylamine ( $39.6 \mathrm{~mL}, 284.12 \mathrm{mmol}$, 5 equiv.), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(140 \mathrm{~mL})$. The crude material was subjected to purification outlined in General Procedure B (silica gel, $20 \% \mathrm{EtOAc} / \mathrm{PE}$ ) to afford the corresponding aldehyde as a pale yellow liquid ( $7.78 \mathrm{~g}, 45.00 \mathrm{mmol}$ ) which was used immediately.

Vinylmagnesium bromide ( 1 M in THF, $45 \mathrm{~mL}, 45.00 \mathrm{mmol}$, 1 equiv.) was added dropwise to a stirring solution of the isolated material in anhydrous THF ( 100 mL ) at $0^{\circ} \mathrm{C}$ in a three-necked flask under an atmosphere of nitrogen. The resulting solution

## Experimental

was allowed to rise to room temperature and stirred for 1.5 h . The reaction was quenched by dropwise addition of acetic anhydride ( $8.5 \mathrm{~mL}, 90.09 \mathrm{mmol}, 2$ equiv.) at room temperature and stirred for a further 1.5 h . The yellow reaction mixture was diluted with water ( 30 mL ) and extracted with $\mathrm{EtOAc}(3 \times 30 \mathrm{~mL})$. The organics were combined, washed with brine ( 20 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to afford a pale orange oil. The crude material was loaded directly in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $20 \% \mathrm{EtOAc}$ /petroleum ether to afford the title compound as a colourless liquid ( $8.65 \mathrm{~g}, 63 \%$ ).

TLC ( $20 \% \mathrm{EtOAc}$ /petroleum ether): $\mathrm{R}_{f}=0.50$ stained by $\mathrm{KMnO}_{4}$ and faintly visible under UV (short wave).
$v_{\max }$ (neat): 2941, 2870, 1736, 1371, 1233, 1200, 1121, 1076, $1020 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.78$ (ddd, $\left.J=17.0,10.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.31-5.14(\mathrm{~m}$, $3 \mathrm{H}), 4.57(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.46$ $(\mathrm{m}, 1 \mathrm{H}), 3.43-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.46(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 170.5,136.6,116.9,99.0,74.7,74.7,67.2,62.5,31.1$, 30.9, 25.6, 25.6, 25.5, 21.4, 19.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}\right)$ requires $\mathrm{m} / \mathrm{z}$ 265.1410, found $m / z 265.1410$.

The spectral data were consistent with those previously reported in the literature. ${ }^{[110]}$

## Compound 149.



## Experimental

To a round bottom flask was added compound 148 ( $11.51 \mathrm{~g}, 47.51 \mathrm{mmol}, 1$ equiv.) and EtOH ( 170 mL ). PPTS ( $1.15 \mathrm{~g}, 4.58 \mathrm{mmol}, 0.1$ equiv.) was added portionwise and the resulting solution heated to $65^{\circ} \mathrm{C}$ and maintained at this temperature for 3 h . The reaction was allowed to cool to room temperature and was then evaporated onto silica gel and purified by flash silica column chromatography, eluent $40 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound as a colourless liquid ( $5.87 \mathrm{~g}, 78 \%$ ).

TLC ( $40 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.40$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3402 (br.), 2943, 2870, 1732, 1374, 1236, 1020, 968, $927 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.77$ (ddd, $\left.J=17.1,10.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.29-5.14(\mathrm{~m}$, $3 \mathrm{H}), 3.65(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 2 \mathrm{H})$. OH not observed.
${ }^{13}{ }^{13}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 170.6,136.4,117.0,74.6,62.5,30.6,28.3,21.3$.

HRMS: exact mass calculated for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\left(\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}\right)$ requires $\mathrm{m} / \mathrm{z}$ 176.1281, found $m / z$ 176.1281.

The spectral data were consistent with those previously reported in the literature. ${ }^{[110]}$

## Compound 55.



Prepared according to General Procedure B using oxalyl chloride ( $3.32 \mathrm{~mL}, 39.23$ mmol, 1.5 equiv.), DMSO ( $5.60 \mathrm{~mL}, 78.84 \mathrm{mmol}, 3$ equiv.), compound 149 ( 4.15 g , 26.24 mmol , 1 equiv.), triethylamine ( $22 \mathrm{~mL}, 157.84 \mathrm{mmol}$, 5 equiv.), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 100 mL ). The crude material was subjected to purification outlined in General

## Experimental

Procedure B (silica gel, 10-20\% EtOAc/petroleum ether) to afford the corresponding aldehyde as a pale yellow liquid ( $3.26 \mathrm{~g}, 79 \%$ ).

TLC ( $20 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.37$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (neat): 2931, 2830, 1722, 1372, 1231, 1021, $930 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 9.77(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.70(\mathrm{~m}, 1 \mathrm{H}), 5.30-$ $5.18(\mathrm{~m}, 3 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.94(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 201.2,170.3,135.7,117.5,73.7,39.6,26.5,21.2$.

HRMS: exact mass calculated for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\left(\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}\right)$ requires $\mathrm{m} / \mathrm{z}$ 174.1125, found $m / z 174.1125$.

The spectral data were consistent with those previously reported in the literature. ${ }^{[68]}$

## Compound 56b.



Prepared according to General Procedure C using ethyl ( $E$ )-hex-3-enoate (54) (2.72 $\mathrm{mL}, 17.12 \mathrm{mmol}, 1.3$ equiv.), DIPEA ( $3.44 \mathrm{~mL}, 19.75 \mathrm{mmol}, 1.5$ equiv.), dibutylboryltrifilate solution ( 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) ( $17.10 \mathrm{~mL}, 17.10 \mathrm{mmol}, 1.3$ equiv.), compound 55 ( $2.06 \mathrm{~g}, 13.16 \mathrm{mmol}, 1$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$, potassium buffer solution ( $\mathrm{pH} 7.4,26 \mathrm{~mL}$ ), $\mathrm{MeOH}(40 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ solution, 13 mL$)$. After 16 h the reaction was subjected to purification outlined in General Procedure C (silica gel,

## Experimental

$20 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a colourless liquid (2.81 g, $57 \%$ ( ${ }^{1} \mathrm{H}$ NMR yield)). (83:17 syn:anti by ${ }^{1} \mathrm{H}$ NMR).

Product contains $21 \%$ alkene isomerisation impurity. Data reported of products resulting from reaction carried out at $-78{ }^{\circ} \mathrm{C}$ to where isomerisation does not take place. ${ }^{[68]}$

TLC ( $20 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.31$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3496 (br.), 2963, 2934, 2874, 1733, 1374, 1240, 1178, 1024, $975 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.81-5.66(\mathrm{~m}, 2 \mathrm{H}), 5.51(\mathrm{ddt}, J=15.4,9.2,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.29-5.14$ (m, 3H), $4.20-4.12$ (m, 2H), $3.88-3.81$ (m, 1H), 2.96 (dd, $J=9.2$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67$ (br. s, 1H), 2.13 - 2.02 (m, 5H), $1.89-1.78$ (m, 1H), $1.72-1.60(\mathrm{~m}$, $1 \mathrm{H}), 1.55-1.35$ (m, 2H), 1.26 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{td}, J=7.4,0.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 173.9,173.9,170.5,139.0,136.5,136.4,122.1,117.0$, $116.9,74.9,74.5,71.3,71.1,61.0,55.0,54.9,30.4,30.3,29.7,29.5,25.8,21.3,21.3$, 14.3, 13.6.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}\right)$ requires $\mathrm{m} / \mathrm{z}$ 299.1853, found $m / z$ 299.1856. Calculated for a mixture of the syn- and anti-diastereoisomers.

The spectral data were consistent with those previously reported in the literature. ${ }^{[68]}$

Compound 56a.


TLC ( $20 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.22$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3478 (br.), 2963, 2934, 1732, 1371, 1236, 1020, 970, $930 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.82-5.64(\mathrm{~m}, 2 \mathrm{H}), 5.44-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.14$ $(\mathrm{m}, 3 \mathrm{H}), 4.21-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.55$ (br. s, $1 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 5 \mathrm{H}), 1.91-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.30(\mathrm{~m}$, $1 \mathrm{H}), 1.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{td}, J=7.4,0.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 173.8,170.5,170.4,137.7,136.5,136.4,123.4,117.0$, $116.8,74.9,74.5,72.4,72.2,60.9,56.0,55.9,30.3,30.2,30.1,29.9,25.7,21.3,21.3$, 14.3, 13.5.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{5}\right)$ requires $m / z$ 299.1853, found $m / z$ 299.1856. Calculated for a mixture of the syn- and anti-diastereoisomers.

The spectral data were consistent with those previously reported in the literature. ${ }^{[68]}$

## Compound S1.



Compound 150 was prepared according to General Procedure D using compound 56b ( $2.00 \mathrm{~g}, 6.71 \mathrm{mmol}, 1$ equiv. ( $79 \%$ purity)), CuBr ( $96 \mathrm{mg}, 0.67 \mathrm{mmol}, 10 \mathrm{~mol} \%$ ), DIC ( $1.56 \mathrm{~mL}, 10.07 \mathrm{mmol}, 1.5$ equiv.) and toluene ( 1.3 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure D (silica gel, 10\% $\mathrm{EtOAc} /$ petroleum ether) to afford a pale yellow oil (150) ( $1.49 \mathrm{~g}, 5.32 \mathrm{mmol})$.
Compound $\mathbf{S 1}$ was prepared according to General Procedure D using compound 150 ( $1.49 \mathrm{~g}, 5.32 \mathrm{mmol}, 1$ equiv.), PTSA (mono-hydrate) ( $1.52 \mathrm{~g}, 7.99 \mathrm{mmol}, 1.5$ equiv.), and $\mathrm{EtOH}(50 \mathrm{~mL})$. After 5 h the reaction was subjected to purification outlined in

## Experimental

General Procedure D (silica gel, $20 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a colourless liquid ( $677 \mathrm{mg}, 54 \%$ ( 2 steps, based on $79 \%$ purity of starting material)).

TLC ( $20 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.16$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3434 (br.), 2958, 2928, 2870, 1708, 1693, 1266, 1230, 1098, $1024 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.85-6.79(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.07(\mathrm{~m}, 2.5 \mathrm{H}), 3.92-3.84$ $(\mathrm{m}, 0.5 \mathrm{H}), 2.56-1.98(\mathrm{~m}, 4.5 \mathrm{H}), 1.92(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 1.74-1.32(\mathrm{~m}, 6 \mathrm{H})$, $1.32-1.25(\mathrm{~m}, 3 \mathrm{H}), 1.23-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.02-0.95(\mathrm{~m}, 3 \mathrm{H})$. Mixture of isomers.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 167.7,167.4,144.0,143.6,143.0,134.2,133.4,79.4$, $76.1,73.5,60.4,60.3,48.0,47.6,46.0,42.5,40.8,39.4,38.8,38.6,38.2,36.7,35.1$, $33.5,33.3,30.4,29.3,28.7,28.5,28.4,28.3,27.3,26.0,24.0,14.5,12.7,11.4$. Mixture of isomers, peaks reported as observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 239.1642$, found m/z 239.1641.

## Compound 43.



Compound 43 was prepared according to General Procedure E using compound S1 ( $1.79 \mathrm{~g}, 7.51 \mathrm{mmol}, 1$ equiv.), $\operatorname{PDC}\left(4.24 \mathrm{~g}, 11.26 \mathrm{mmol}, 1.5\right.$ equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40$ mL ). After 16 h the reaction was subjected to purification outlined in General Procedure E (silica gel, 10-30\% EtOAc/petroleum ether) to afford the title compound as a colourless oil ( $957 \mathrm{mg}, 54 \% ~\left(3: 1 \mathrm{dr} \mathrm{C}^{7 \mathrm{a}}\right)$ ).

## Experimental

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.72$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): $2960,2928,2872,1742,1705,1258,1232,1216,1095 \mathrm{~cm}^{-1}$.

Major anti-isomer:
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.92-6.87(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.14(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.66$ $(\mathrm{m}, 1 \mathrm{H}), 2.51-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.29-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.44$ (m, 4H), $1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.

Major anti-isomer:
${ }^{13}{ }^{13}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 216.9,166.7,145.4,133.0,60.5,51.1,41.1,38.5,38.4$, 28.3, 26.2, 24.8, 14.5, 12.5.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 237.1485$, found m/z 237.1487.

## Compound 43a.



To a round bottom flask was added compound $43(245 \mathrm{mg}, 1.04 \mathrm{mmol})$ and 3 M HCl $(36 \mathrm{~mL})$ and the resulting suspension brought to $60^{\circ} \mathrm{C}$ for 16 h . The reaction was allowed to cool to room temperature and the organics extracted with EtOAc (3 x 10 $\mathrm{mL})$. The organics were combined, washed with brine ( 10 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil. The crude material was loaded directly in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $10 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound as a colourless oil ( $186 \mathrm{mg}, 76 \%$ ).

## Experimental

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.72$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 2961, 2932, 2876, 2859, 1742, 1706, 1244, 1097, $920,753 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.90(\mathrm{~s}, 1 \mathrm{H}), 4.29-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.02(\mathrm{~m}, 1 \mathrm{H})$, $2.59-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{dt}, J=12.9,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.62-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.36(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.01$ (m, 1H), 0.97 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 166.9,144.0,131.7,60.6,46.8,38.3,37.8,36.4,28.3$, 28.0, 26.0, 14.4, 11.3. Carbonyl CO not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 237.1485$, found $m / z 237.1487$.

The spectral data were consistent with those previously reported in the literature. ${ }^{[68]}$

## ( $\pm$ )-coronafacic acid, 4.



Prepared according to General Procedure F using compound 43 ( $1.10 \mathrm{~g}, 4.65 \mathrm{mmol}$ ) and $3 \mathrm{M} \mathrm{HCl}(150 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure F (silica gel, $30-60 \%$ EtOAc/petroleum ether) to afford a white solid, which was washed with minimal petroleum ether to afford the title compound as a white solid ( $850 \mathrm{mg}, 88 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.21$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 2954 (br.), 2930 (br.), 2855, 2629, 2525, 1732, 1673, 1625, 1428, 1270, $1139,1069,926,727 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.08\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 3.13-3.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3 \mathrm{a}}\right), 2.66-2.56$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 2.47-2.28\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{7 \mathrm{a}}, \mathrm{H}^{2}\right), 2.28-2.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 1.89(\mathrm{dt}, J=12.9$, $\left.4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 1.67-1.39\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{3}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.14-1.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 0.99(\mathrm{t}$, $\left.J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 220.3\left(\mathrm{C}^{1}\right), 171.3\left(\mathrm{CO}_{2} \mathrm{H}\right), 147.0\left(\mathrm{C}^{5}\right), 130.9\left(\mathrm{C}^{4}\right), 46.7$ $\left(\mathrm{C}^{7 \mathrm{a}}\right), 38.3\left(\mathrm{C}^{2 / 6}\right), 38.0\left(\mathrm{C}^{2 / 6}\right), 36.2\left(\mathrm{C}^{3 \mathrm{a}}\right), 28.2\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right), 27.9\left(\mathrm{C}^{3}\right), 25.9\left(\mathrm{C}^{7}\right), 11.3$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

HRMS: exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}\right)$ requires $m / z 207.1027$, found $m / z$ 207.1030.

The spectral data were consistent with those previously reported in the literature. ${ }^{[68]}$

## 6.5 $\quad N$-coronafacoyl Analogue Procedures and Characterisation (Scheme

 42/43).
## Compound 152b.


( $\pm$ )-4



DMF
$76 \%$ yield


152b

Prepared according to General Procedure G using ( $\pm$ )-CFA (4) (30 mg, $0.14 \mathrm{mmol}, 1$ equiv.), HATU ( $66 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2$ equiv.), methyl $L$-isoleucinate hydrochloride ( $30 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $80 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 3$ equiv.), and DMF ( 0.7 $\mathrm{mL})$. After 16 h the reaction was subjected to purification outlined in General

## Experimental

Procedure G (silica gel, $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a colourless oil which solidified to a white solid on standing ( $35 \mathrm{mg}, 76 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.19$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3323 (br.), 2963, 2938, 2877, 1735, 1658, 1621, 1518, 1203, $1147 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 6.42-6.34(\mathrm{~m}, 1 \mathrm{H}), 6.31-6.23(\mathrm{~m}, 1 \mathrm{H}), 4.73-4.65$ $(\mathrm{m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 1 \mathrm{H})$, $1.98-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.13-1.01(\mathrm{~m}, 1 \mathrm{H})$, $1.01-0.91(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.4,220.3,173.0,167.9,167.8,137.1,135.8,135.6$, $56.5,56.5,52.3,46.6,46.6,38.3,38.3,38.2,37.5,37.4,36.4,36.4,28.3,28.2,28.0$, 28.0, 26.2, 26.2, 25.5, 25.4, 15.7, 15.6, 11.7, 11.7, 11.5, 11.4.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{4}\right)$ requires $m / z 336.2169$, found m/z 336.2173.

## Compound 10b.



152b


10b

Prepared according to General Procedure H using compound 152b ( $24 \mathrm{mg}, 0.07 \mathrm{mmol}$, 1 equiv.), LiOH ( $5 \mathrm{mg}, 0.20 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. After 16 h at $50{ }^{\circ} \mathrm{C}$ the reaction mixture was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $9 \mathrm{mg}, 39 \%$ ).

## Experimental

$v_{\max }$ (film): 2967, 2926, 2862, 1728, 1655, 1610, 1516, 1457, $1142 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.43-6.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 6.29-6.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N} H), 4.73$ $-4.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{8}\right), 3.22-3.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3 \mathrm{a}}\right), 2.53-2.25\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{7 \mathrm{a}}, \mathrm{H}^{2}\right), 2.21-$ $2.12\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 2.07-1.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{9}\right), 1.94-1.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 1.67-1.48(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{10}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.44-1.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{\prime}\right), 1.31-1.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{10}\right), 1.13$ $-1.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 1.02-0.92\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}^{12}, \mathrm{H}^{11}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13}{ }^{13}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.5,175.5,168.5,168.4,137.8,137.7,135.5,135.4$, $56.8,56.6,46.6,46.6,38.3,37.9,37.8,37.5,37.4,36.4,36.4,28.2,28.2,28.0,27.9$, 26.1, 26.1, 25.4, 25.3, 15.8, 15.7, 11.7, 11.7, 11.5, 11.4.

HRMS: exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 320.1867$, found m/z 320.1865 .

The spectral data were consistent with those previously reported in the literature. ${ }^{[84]}$

## Compound 152e.



152e

Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $27 \mathrm{mg}, 0.13 \mathrm{mmol}, 1$ equiv.), HATU ( $66 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2$ equiv.), $L$-valine ethyl ester hydrochloride ( 39 $\mathrm{mg}, 0.21 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $80 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 3$ equiv.), and DMF ( 0.7 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $30 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a colourless oil ( $35 \mathrm{mg}, 85 \%$ ).

## Experimental

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.26$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (film): 3341 (br.), 2962, 2930, 2875, 1735, 1659, 1624, 1513, 1192, 1148, 1025 $\mathrm{cm}^{-1}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.43-6.35(\mathrm{~m}, 1 \mathrm{H}), 6.30-6.22(\mathrm{~m}, 1 \mathrm{H}), 4.66-4.59$ (m, 1H), $4.28-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.11$ (m, 1H), $2.53-2.11(\mathrm{~m}, 6 \mathrm{H}), 1.92-1.85$ (m, 1H), $1.66-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.01(\mathrm{~m}, 1 \mathrm{H}), 1.00-0.91$ (m, 9H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 172.5,168.1,168.0,137.0,137.0,135.9,135.8,61.5$, $57.2,57.1,46.7,46.6,38.3,37.5,37.4,36.4,31.7,31.7,28.3,28.3,28.0,28.0,26.2$, 26.2, 19.2, 19.2, 18.1, 18.0, 14.4, 11.5, 11.4 .

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 336.2169$, found m/z 336.2171.

## Compound 10c.



Prepared according to General Procedure H using compound 152e ( $23 \mathrm{mg}, 0.07 \mathrm{mmol}$, 1 equiv.), NaOH ( $8 \mathrm{mg}, 0.20 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. After 16 h a further portion of $\mathrm{NaOH}(4 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.5$ equiv.) was added and the reaction stirred at $50^{\circ} \mathrm{C}$ for a further 1.5 h . The reaction was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $16 \mathrm{mg}, 76 \%$ ).
$v_{\max }$ (film): 3323 (br.), 2961, 2924, 2874, 1730, 1651, 1607, 1518, 1204, $1146 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.44-6.39(\mathrm{~m}, 1 \mathrm{H}), 6.29-6.23(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.62$ $(\mathrm{m}, 1 \mathrm{H}), 3.22-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.36-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.13$ $(\mathrm{m}, 1 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.35(\mathrm{~m}$, $1 \mathrm{H}), 1.12-1.04(\mathrm{~m}, 1 \mathrm{H}), 1.04-0.96(\mathrm{~m}, 9 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.6,168.6,168.5,137.7,137.6,135.6,135.5,57.4$, $57.3,46.6,46.6,38.3,37.5,37.4,36.4,31.3,31.2,28.3,28.2,28.0,27.9,26.2,26.1$, 19.3, 19.2, 18.0, 18.0, 11.5, 11.4 .

HRMS: exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 306.1711$, found m/z 306.1709.

The spectral data were consistent with those previously reported in the literature. ${ }^{[41]}$

## Compound S10e.



Prepared according to General Procedure G using ( $\pm$ )-CFA (4) (30 mg, $0.12 \mathrm{mmol}, 1$ equiv.), HATU ( $66 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2$ equiv.), glycine methyl ester hydrochloride ( $36 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $80 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 3$ equiv.) and DMF ( 0.7 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $70 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a colourless oil ( $18 \mathrm{mg}, 45 \%$ ).

TLC ( $50 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.15$ stained by $\mathrm{KMnO}_{4}$.

## Experimental

$v_{\text {max }}$ (film): 3344 (br.), 2956, 2937, 2875, 2858, 1735, 1655, 1624, 1204, 1181, 1151 $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.30$ (br. s, 1H), 4.12 (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.23(\mathrm{~m}, 3 \mathrm{H}), 2.21-$ $2.12(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.43-$ $1.35(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.5,170.8,168.2,137.4,135.4,52.6,46.5,41.5$, 38.3, 37.4, 36.3, 28.2, 28.0, 26.1, 11.4 .

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4}\right)$ requires $m / z 280.1543$, found m/z 280.1543.

## Compound 10e.



Prepared according to General Procedure H using compound S10e ( $20 \mathrm{mg}, 0.05 \mathrm{mmol}$, 1 equiv.), LiOH ( $5 \mathrm{mg}, 0.21 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. After 16 h the reaction was allowed to cool to room temperature, acidified with AcOH and the organics extracted with EtOAc ( $3 \times 10 \mathrm{~mL}$ ). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale yellow oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $1 \% \mathrm{AcOH}, 30-70 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford a colourless oil. The solid material was washed with petroleum ether to afford the title compound as a colourless oil (13 $\mathrm{mg}, 68 \%)$.

## Experimental

TLC ( $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.09$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3351 (br.), 2962, 2925, 2856, 1735, 1654, 1613, 1523, $1214 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.51$ (s, 1H), 3.88 (br. s, 2H), $3.13-3.04$ (br. s, 1H), $2.47-2.18$ (m, 4H), 2.12 (br. s, 1H), $1.87-1.79$ (m, 1H), $1.61-1.43$ (m, 2H), $1.38-$ $1.30(\mathrm{~m}, 1 \mathrm{H}), 1.09-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} H$ and $\mathrm{N} H$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.0,169.1,156.2,138.7,134.6,46.8,43.0,38.1$, 37.5, 36.1, 28.2, 28.2, 25.9, 11.4.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{4}\right)$ requires $m / z$ 266.1392, found m/z 266.1396.

## Compound 152h.



Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $30 \mathrm{mg}, 0.14 \mathrm{mmol}, 1$ equiv.), HATU ( $66 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2$ equiv.), $L$-alanine methyl ester hydrochloride ( $30 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $80 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 3$ equiv.), and DMF ( 0.7 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, 20-35\% EtOAc/petroleum ether) to afford the desired product as a colourless oil ( $35 \mathrm{mg}, 83 \%$ ).

TLC ( $40 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.17$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (film): 3312 (br.), 2934, 2958, 2878, 2857, 1738, 1658, 1621, 1521, 1455, 1210, $1158,1072 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.43-6.30(\mathrm{~m}, 2 \mathrm{H}), 4.71-4.62(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.21-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H})$, $1.64-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.35(\mathrm{~m}$, $1 \mathrm{H}), 1.11-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 173.9,167.8,167.5,137.4,136.9,135.7,135.3,52.7$, $48.2,48.2,46.6,46.5,38.2,37.4,36.3,36.3,28.2,28.2,28.0,27.9,26.2,26.1,18.6$, 18.6, 11.4, 11.4 .

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 294.1700$, found $m / z 294.1703$.

## Compound 12a.



Prepared according to General Procedure H using compound 152 h ( $18 \mathrm{mg}, 0.06 \mathrm{mmol}$, 1 equiv.), LiOH ( $5 \mathrm{mg}, 0.21 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ ( 2 mL ). After 6 h the reaction was allowed to cool to room temperature, acidified with AcOH and the organics extracted with EtOAc ( $3 \times 10 \mathrm{~mL}$ ). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale yellow oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was purified by flash silica column chromatography, eluent $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the title compound as a colourless oil which solidified to a white solid on standing ( $16 \mathrm{mg}, 94 \%$ ).

## Experimental

TLC ( $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.14$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3323 (br.), 2954, 2924, 2855, 1735, 1654, 1617, 1526, 1453, $1147 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.58$ (br. s, 1H), $6.55(\mathrm{~s}, 1 \mathrm{H}), 6.45-6.39(\mathrm{~m}, 1 \mathrm{H}), 4.60$ - 4.49 (m, 1H), $3.19-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.91-$ $1.83(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.42(\mathrm{~m}, 5 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.01(\mathrm{~m}, 1 \mathrm{H}), 1.00-$ 0.94 (m, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.3,168.6,168.4,138.1,138.0,135.1,135.0,49.2$, $49.1,46.6,46.6,38.2,37.5,37.5,36.2,36.2,28.2,28.0,27.9,26.1,26.0,18.1,18.0$, 11.5, 11.4

HRMS: exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 278.1398$, found m/z 278.1400.

The spectral data were consistent with those previously reported in the literature. ${ }^{[41]}$

## Compound S12b.



S12b

Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $50 \mathrm{mg}, 0.24 \mathrm{mmol}, 1$ equiv.), HATU ( $110 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.2$ equiv.), DIPEA ( $0.13 \mathrm{~mL}, 0.72 \mathrm{mmol}, 3$ equiv.), $L$-leucine methyl ester hydrochloride ( $48 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.1$ equiv.), and DMF ( 1.2 mL ). After 16 h the reaction was subjected to purification outlined in

## Experimental

General Procedure G (silica gel, $30 \%$ EtOAC/petroleum ether) to afford the title compound colourless oil ( $74 \mathrm{mg}, 91 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether) : $\mathrm{R}_{f}=0.31$ stained by $\mathrm{KMnO}_{4}$ and visible under UV (short wave).
$v_{\text {max }}$ (film): 3315 (br.), 2958, 2874, 1744, 1657, 1627, 1524, 1206, $1156 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.39-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.22-6.16(\mathrm{~m}, 1 \mathrm{H}), 4.74-4.64$ $(\mathrm{m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 1 \mathrm{H})$, $1.88-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.44(\mathrm{~m}, 1 \mathrm{H})$, $1.41-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.08-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.98-0.90(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 173.9,168.0,167.8,137.1,137.0,135.7,135.5,52.4$, 50.9, 50.8, 46.5, 46.5, 41.8, 38.2, 37.4, 37.3, 36.3, 36.3, 28.2, 28.2, 27.9, 27.9, 26.1, 26.1, 25.1, 25.1, 22.9, 22.9, 22.1, 11.4, 11.4.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{Na}\right)$ requires $m / z$ 358.1989, found $m / z 358.1989$.

## Compound 12b.



12b

To a round bottom flask was added compound $\mathbf{S 1 2 b}$ ( $63 \mathrm{mg}, 0.19 \mathrm{mmol}$ ). The material was suspended in $3 \mathrm{M} \mathrm{HCl}(1.5 \mathrm{~mL})$ and the resulting suspension brought to $80^{\circ} \mathrm{C}$ for 3 h . The reaction was then allowed to cool to room temperature and diluted with EtOAc

## Experimental

( 5 mL ). The layers were separated and the aqueous phase washed twice more with EtOAc ( $2 \times 5 \mathrm{~mL}$ ). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to afford a white gum. The crude material was loaded in a solution of EtOAc and purified by flash silica column chromatography, eluent $1 \% \mathrm{AcOH} / \mathrm{EtOAc}$ to afford the title compound as a colourless oil ( $32 \mathrm{mg}, 53 \%$ ).

TLC ( $1 \% \mathrm{AcOH} / \mathrm{EtOAc}$ ): $\mathrm{R}_{f}=0.48$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3319 (br.), 2958, 2926, 2874, 1733, 1653, 1615, 1526, 1195, $1150 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 9.22(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 6.42-6.35(\mathrm{~m}, 1 \mathrm{H}), 6.30-6.22(\mathrm{~m}$, $1 \mathrm{H}), 4.74-4.64(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.11(\mathrm{~m}$, $1 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.47(\mathrm{~m}$, $1 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.01(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.94(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 176.9,176.8,168.7,168.5,137.8,137.7,135.4,135.3$, 51.2, 51.1, 46.6, 46.5, 41.4, 41.3, 38.2, 37.5, 37.4, 36.3, 28.2, 28.2, 27.9, 27.8, 26.1, $26.1,25.2,25.2,23.0,23.0,22.1,22.0,11.5,11.4$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 322.2013$, found m/z 322.2016 .

The spectral data were consistent with those previously reported in the literature. ${ }^{[41]}$

## Compound 152f.


$152 f$

Prepared according to General Procedure G using ( $\pm$ )-CFA (4) (30 mg, $0.14 \mathrm{mmol}, 1$ equiv.), HATU ( $66 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2$ equiv.), $L$-phenylalanine methyl ester hydrochloride ( $47 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $80 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 3$ equiv.) and DMF ( 0.7 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $40 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound as a white gum ( $42 \mathrm{mg}, 79 \%$ ).

TLC ( $60 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.48$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (film): 3317 (br.), 2960, 2932, 2876, 2859, 1740, 1658, 1625, 1526, 1215, 705 $\mathrm{cm}^{-1}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.33-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.33-6.23$ (m, 1H), $6.19-6.11(\mathrm{~m}, 1 \mathrm{H}), 4.98-4.92(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.26-3.02$ $(\mathrm{m}, 3 \mathrm{H}), 2.44-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.31$ $(\mathrm{m}, 3 \mathrm{H}), 1.10-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 172.3,167.6,167.5,137.3,137.2,136.0,135.6,135.3$, $129.4,129.4,128.7,128.7,127.4,127.3,53.2,52.5,52.5,46.6,46.5,38.2,37.9,37.8$, $37.4,37.3,36.3,36.2,28.1,28.0,27.7,26.2,26.1,11.4,11.3$.

## Experimental

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 370.2013$, found m/z 370.2013.

## Compound 12c.



Prepared according to General Procedure H using compound 152 f ( $36 \mathrm{mg}, 0.10 \mathrm{mmol}$, 1 equiv.), LiOH ( $8 \mathrm{mg}, 0.33 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the resulting suspension brought to $40^{\circ} \mathrm{C}$ for 16 h . The reaction was allowed to cool to room temperature, acidified with AcOH and the organics extracted with EtOAc (3 x 10 mL ). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale yellow oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was purified by flash silica column chromatography, eluent $1 \% \mathrm{AcOH}, 30 \%$ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the title compound as a colourless oil which solidified to a white solid on standing ( $11 \mathrm{mg}, 32 \%$ ).

TLC ( $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.15$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3312 (br.), 2957, 2924, 2855, 1726, 1719, 1653, 1611, 1522, $1211 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.33-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.34-6.20$ (m, 2H), $5.31-4.45(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.09-2.95$ (m, 1H), $2.39-2.02(\mathrm{~m}, 5 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.07-0.95$ (m, 1H), 0.92 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

## Experimental

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.3,220.2,170.7,168.4,138.5,138.0,136.2,135.0$, $135.0,129.5,128.9,128.8,127.5,127.4,46.6,46.5,38.2,37.5,37.3,36.3,36.1,28.1$, 28.0, 27.6, 26.1, 26.0, 11.4, 11.3.

HRMS: exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 354.1711$, found $m / z 354.1706$.

The spectral data were consistent with those previously reported in the literature. ${ }^{[41]}$

## Compound 152c.



152c

Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $30 \mathrm{mg}, 0.14 \mathrm{mmol}, 1$ equiv.), HATU ( $66 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2$ equiv.), $L$-tyrosine methyl ester ( $42 \mathrm{mg}, 0.22$ mmol, 1.5 equiv.), DIPEA ( $50 \mu \mathrm{~L}, 0.29 \mathrm{mmol}$, 2 equiv.), and DMF ( 0.7 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $60-70 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a pale yellow gum ( $47 \mathrm{mg}, 85 \%$ ).

TLC ( $70 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.43$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3312 (br.), 2959, 2923, 2857, 1732, 1654, 1614, 1515, $1213 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.97-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.71$ (m, 2H), 6.46 (br. s, $1 \mathrm{H}), 6.38-6.27(\mathrm{~m}, 1 \mathrm{H}), 6.27-6.20(\mathrm{~m}, 1 \mathrm{H}), 4.93-4.87(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.74(\mathrm{~m}$,

## Experimental

$3 \mathrm{H}), 3.17-3.02(\mathrm{~m}, 3 \mathrm{H}), 2.41-2.19(\mathrm{~m}, 4 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.82(\mathrm{~m}$, $1 \mathrm{H}), 1.59-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.09-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 172.6,168.0,167.8,155.6,155.6,137.9,137.7,135.4$, $135.1,130.5,127.3,115.7,115.7,53.5,52.7,52.6,46.7,46.5,38.2,37.4,37.4,37.2$, 37.2, 36.3, 36.2, 28.1, 28.0, 27.7, 26.2, 26.0, 11.4, 11.3.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{5}\right)$ requires $\mathrm{m} / \mathrm{z} 386.1962$, found m/z 386.1961.

## Compound 12d.



Prepared according to General Procedure H using compound 152 c ( $30 \mathrm{mg}, 0.07 \mathrm{mmol}$, 1 equiv.), LiOH ( $10 \mathrm{mg}, 0.42 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. After 16 h the reaction was allowed to cool to room temperature, acidified with AcOH and the organics extracted with EtOAc ( $3 \times 10 \mathrm{~mL}$ ). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to afford a pale yellow oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $1 \% \mathrm{AcOH}, 30-50 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the title compound as a colourless oil which solidified to a white solid on standing ( $15 \mathrm{mg}, 52 \%$ ).

TLC ( $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.13$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3289 (br.), 2961, 2924, 2855, 1719, 1653, 1611, $1514 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 7.10-6.99$ (m, 2H), $6.72-6.64$ (m, 2H), $6.41-6.28$ $(\mathrm{m}, 1 \mathrm{H}), 4.74-4.57(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.92$ $(\mathrm{m}, 1 \mathrm{H}), 2.38-2.07(\mathrm{~m}, 5 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.35(\mathrm{~m}, 3 \mathrm{H}), 1.15-1.04$ $(\mathrm{m}, 1 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} H, \mathrm{OH}$, and NH not observed.
${ }^{13}$ C NMR ( $101 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 222.9,222.9,157.3,157.2,138.3,137.9,136.6,131.4$, $129.6,116.1,116.1,47.8,38.7,38.6,38.5,37.7,37.6,37.3,37.3,29.1,28.7,28.5,27.2$, 27.0, 11.6, 11.6.

HRMS: exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{5}\right)$ requires $\mathrm{m} / \mathrm{z} 370.1660$, found m/z 370.1655.

The spectral data were consistent with those previously reported in the literature. ${ }^{[41]}$

## Compound S151a.



To a 2-dram vial was added ( $\pm$ )-CFA (4) ( $30 \mathrm{mg}, 0.13 \mathrm{mmol}, 1$ equiv.) and COMU ( $123 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2$ equiv.). DMF ( 0.7 mL ) was added, followed by DIPEA ( 80 $\mu \mathrm{L}, 0.46 \mathrm{mmol}, 3$ equiv.) and the resulting solution stirred at room temperature under air for 5 minutes. $L$-serine methyl ester hydrochloride ( $34 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.5$ equiv.) was then added portionwise and the reaction stirred for 16 h . The yellow solution was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \mathrm{x} 10 \mathrm{~mL}$ ). The organics were combined, washed with brine ( 10 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to

## Experimental

afford a red oil. The crude material was loaded in a solution of EtOAc and purified by flash silica column chromatography, eluent $1 \% \mathrm{MeOH} / \mathrm{EtOAc}$ to afford a red oil. The material was taken up in $\mathrm{Et}_{2} \mathrm{O}$, and petroleum ether added until a solid precipitated. The solvent was removed by Pasteur pipette and the solid dried under vacuum to afford the title compound as a pale red solid ( $22 \mathrm{mg}, 49 \%$ ).

TLC ( $1 \% \mathrm{MeOH} / \mathrm{EtOAc}$ ): $\mathrm{R}_{f}=0.45$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\max }$ (film): 3387 (br.), 2955, 1736, 1655, 1618, 1522, $1209 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.77-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.52-6.42(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.71$ (m, 1H), $4.06-3.94(\mathrm{~m}, 2 \mathrm{H}), 3.81$ (s, 3H), $3.21-3.12$ (m, 1H), $2.78-2.54(\mathrm{~m}, 1 \mathrm{H})$, $2.54-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 1 \mathrm{H})$, $1.56-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.3,220.2,171.3,168.5,168.3,138.4,137.8,135.3$, $134.9,63.8,63.6,55.0,55.0,53.0,46.7,46.6,38.2,37.5,36.3,28.2,28.0,26.1,26.1$, 11.4 .

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{5}\right)$ requires $\mathrm{m} / \mathrm{z} 310.1649$, found m/z 310.1651 .

## Compound 151a.



## Experimental

Prepared according to General Procedure H using compound S151a ( $26 \mathrm{mg}, 0.08$ mmol, 1 equiv.), LiOH ( $4 \mathrm{mg}, 0.17 \mathrm{mmol}, 2$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. After 16 h at $50^{\circ} \mathrm{C}$ the reaction mixture was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $4 \mathrm{mg}, 18 \%$ ).
$v_{\max }$ (film): 3356 (br.), 2953, 2924, 2855, 1734, 1709, 1228, $1057 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 6.61-6.54(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.52(\mathrm{~m}, 1 \mathrm{H}), 4.00-3.94$ (m, 1H), $3.92-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.30(\mathrm{~m}, 4 \mathrm{H}), 2.24-2.15$ $(\mathrm{m}, 1 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.40$ $(\mathrm{m}, 1 \mathrm{H}), 1.20-1.10(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}, \mathrm{OH}$, and NH not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD): $\delta 222.9,222.8,170.9,170.5,139.0,138.6,136.5,136.2$, 63.0, 63.0, 47.9, 47.9, 38.8, 38.7, 37.4, 37.3, 29.1, 28.8, 28.8, 27.1, 11.6, 11.6.

HRMS: exact mass calculated for [M-H] $\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5}\right)$ requires $\mathrm{m} / \mathrm{z}$ 294.1347, found m/z 294.1343.

## Compound S151b.



S151b

To a round bottom flask was added ( $\pm$ )-CFA (4) ( $30 \mathrm{mg}, 0.14 \mathrm{mmol}, 1$ equiv.) and COMU ( $80 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.2$ equiv.). DMF ( 0.7 mL ) was added, followed by DIPEA ( $80 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 3$ equiv.) and the resulting solution stirred at room temperature under air for 5 minutes. $L$-threonine methyl ester hydrochloride ( 37 mg ,

## Experimental

$0.22 \mathrm{mmol}, 1.5$ equiv.) was then added and the reaction stirred for 16 h . The red solution was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with EtOAc ( $3 \times 10 \mathrm{~mL}$ ). The organics were combined, washed with brine ( 10 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a red oil. The crude material was loaded in a solution of $40 \%$ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $40-50 \%$ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford a pale yellow oil which was taken up in $\mathrm{Et}_{2} \mathrm{O}$ and petroleum ether added until a precipitate formed. The solvent was removed by Pasteur pipette and the residue dried under vacuum to afford the title compound as a white solid (21 $\mathrm{mg}, 64 \%)$.

TLC ( $40 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.17$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (film): 3376 (br.), 2956, 2930, 2872, 2855, 1736, 1654, 1619, 1513, 1210, 1151 $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.56-6.51(\mathrm{~m}, 1 \mathrm{H}), 6.48-6.44(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.65$ $(\mathrm{m}, 1 \mathrm{H}), 4.44-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.76(\mathrm{~m}, 3 \mathrm{H}), 3.23-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.25$ $(\mathrm{m}, 5 \mathrm{H}), 2.20-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.47$ $(\mathrm{m}, 1 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.27-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.12-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=$ 7.4 Hz, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.4,220.3,171.8,171.8,168.7,168.5,137.8,137.7$, $135.4,135.3,68.2,57.3,52.8,46.6,38.2,37.5,37.5,36.4,36.3,28.2,28.0,27.9,26.1$, 20.3, 20.2, 11.5.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{5}\right)$ requires $m / z 324.1805$, found m/z 324.1807.

## Compound 151b.



151b

Prepared according to General Procedure H using compound S151b (20 mg, 0.06 mmol, 1 equiv.), LiOH ( $5 \mathrm{mg}, 0.21 \mathrm{mmol}, 3$ equiv.) and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $12 \mathrm{mg}, 63 \%$ ).
$v_{\text {max }}$ (film): 3374 (br.), 2959, 2920, 2853, 1730, 1651, 1607, $1524 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 5.39-4.32(\mathrm{~m}, 3 \mathrm{H}), 3.23-$ 3.08 (m, 1H), $2.54-2.25(\mathrm{~m}, 4 \mathrm{H}), 2.17$ (br. s, 1H), $1.95-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.47$ (m, 2H), $1.44-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.26$ (br. s, 3H), $1.13-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $3 \mathrm{H})$. OH not observed.
${ }^{13}{ }^{13}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.2,220.1,169.7,169.4,139.4,139.0,134.7,67.5$, 67.2, 46.7, 46.6, 38.2, 37.6, 37.5, 36.3, 36.2, 28.2, 28.1, 27.9, 26.0, 19.5, 11.5, 11.4.

HRMS: exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{5}\right)$ requires $\mathrm{m} / \mathrm{z} 308.1503$, found m/z 308.1496.

## Compound S151c.



S151c

Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $20 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv.), HATU (44 mg, $0.12 \mathrm{mmol}, 1.2$ equiv.), methyl ( $S$ )-2-amino-3cyclohexylpropanoate hydrochloride ( $32 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $50 \mu \mathrm{~L}$, $0.30 \mathrm{mmol}, 3$ equiv), and DMF ( 0.5 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $20 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a colourless oil ( $33 \mathrm{mg}, 91 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.49$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3322 (br.), 2919, 2850, 1738, 1656, 1619, 1524, 1203, $1152 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.41-6.30(\mathrm{~m}, 1 \mathrm{H}), 6.16-6.07(\mathrm{~m}, 1 \mathrm{H}), 4.80-4.68$ (m, 1H), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 1 \mathrm{H})$, $1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.47(\mathrm{~m}, 8 \mathrm{H}), 1.41-1.28(\mathrm{~m}, 2 \mathrm{H})$, $1.23-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.11-1.01(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.89(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.4,220.3,174.1,168.0,167.8,137.0,136.9,135.8$, $135.7,52.5,50.3,50.2,46.6,40.4,40.4,38.3,37.5,37.4,36.4,36.3,34.5,34.4,33.6$, $32.8,32.7,28.3,28.2,27.9,27.9,26.5,26.3,26.3,26.2,11.5,11.4$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NO}_{4}\right)$ requires $m / z 376.2482$, found m/z 376.2476.

## Compound 151c.



Prepared according to General Procedure H using compound S151c ( $27 \mathrm{mg}, 0.07$ mmol, 1 equiv.), NaOH ( $9 \mathrm{mg}, 0.23 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $18 \mathrm{mg}, 69 \%$ ).
$v_{\text {max }}$ (film): 3325 (br.), 2922, 2854, 1733, 1653, 1616, 1526, 1195, $1150 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.97$ (br. s, 1H), $6.43-6.33(\mathrm{~m}, 1 \mathrm{H}), 6.25-6.14(\mathrm{~m}$, $1 \mathrm{H}), 4.78-4.63(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.16(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$, $1.93-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.46(\mathrm{~m}, 7 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 2 \mathrm{H})$, $1.26-1.12(\mathrm{~m}, 3 \mathrm{H}), 1.12-1.02(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.88(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 176.9,176.8,168.7,168.4,137.7,137.6,135.4,135.4$, $50.6,50.5,46.5,39.9,39.8,38.3,37.5,37.4,36.3,36.3,34.5,34.4,33.6,32.7,32.6$, 26.4, 26.3, 26.3, 26.2, 26.1, 11.5, 11.4.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{4}\right)$ requires $m / z 362.2326$, found m/z 362.2327.

## Compound 151d.



Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $15 \mathrm{mg}, 0.07 \mathrm{mmol}, 1$ equiv.), HATU ( $33 \mathrm{mg}, 0.09 \mathrm{mmol}, 1.2$ equiv.), methyl ( $R$ )-2-amino-2-methylhept- 6 enoate hydrochloride ( $25 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.7$ equiv.), DIPEA ( $40 \mu \mathrm{~L}, 0.23 \mathrm{mmol}, 3$ equiv.), and DMF ( 0.5 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a white solid ( $5 \mathrm{mg}, 20 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.66$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}($ film $): 3304,3057,2922,2857,1736,1659,1624,1516,1462,1202,1076 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.37-6.32(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.70(\mathrm{~m}, 1 \mathrm{H})$, $5.02-4.93(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.24(\mathrm{~m}, 5 \mathrm{H}), 2.19-$ $2.11(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.60(\mathrm{~m}$, $1 \mathrm{H}), 1.54-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.11(\mathrm{~m}, 1 \mathrm{H}), 1.10-1.01(\mathrm{~m}$, $1 \mathrm{H}), 0.98$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.5,167.3,167.2,138.3,138.2,136.6,136.4,136.4$, $136.3,115.1,60.7,53.0,46.7,46.6,38.3,37.4,36.4,36.3,36.0,35.8,33.5,28.3,27.9$, 26.2, 23.9, 23.3, 23.3, 11.4.

## Experimental

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 362.2326$, found m/z 362.2328 .

## Compound S151e.



Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $20 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv.), HATU ( $44 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.), methyl 2 -amino-4,4,4trifluorobutanoate hydrochloride ( $30 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $50 \mu \mathrm{~L}, 0.30$ mmol, 3 equiv), and DMF ( 0.5 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $20 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a colourless oil ( $24 \mathrm{mg}, 69 \%$ ).

TLC ( $20 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.61$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (film): 3802 (br.), 2963, 2870, 1705, 1532, 1364, $1165 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.52-6.47(\mathrm{~m}, 1 \mathrm{H}), 6.44-6.37(\mathrm{~m}, 1 \mathrm{H}), 4.93-4.83$ $(\mathrm{m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.23-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.67(\mathrm{~m}, 1 \mathrm{H})$, $2.52-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.46(\mathrm{~m}, 2 \mathrm{H})$, $1.46-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.13-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}^{2}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.1,220.1,170.6,167.8,167.8,138.1,138.0,135.2$, $125.8\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=277.8 \mathrm{~Hz}\right), 53.3,47.6,46.6,46.5,38.2,37.5,37.4,36.3,36.2,35.2(\mathrm{q}$, $\left.{ }^{2} J_{\mathrm{C}-\mathrm{F}}=28.2 \mathrm{~Hz}\right), 28.2,27.9,27.8,26.1,26.1,11.4,11.4$.

## Experimental

${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-62.85(\mathrm{t}, J=10.4 \mathrm{~Hz}),-62.96(\mathrm{t}, J=10.4 \mathrm{~Hz})(1: 1$ diastereosiomers).

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 362.1574$, found $m / z 362.1574$.

## Compound 151e.



151e

Prepared according to General Procedure H using compound S151e ( $24 \mathrm{mg}, 0.07$ mmol, 1 equiv.), NaOH ( $10 \mathrm{mg}, 0.25 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure H to afford the title compound as a pale orange solid ( $18 \mathrm{mg}, 74 \%$ ).
$v_{\text {max }}$ (film): 3339 (br.), 2967, 2930, 2880, 1740, 1718, 1653, 1617, 1523, 1247, 1133 $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.22$ (br. s, 1H), 6.67 (s, 1H), 6.45 (s, 1H), 4.83 (br. s, $1 \mathrm{H}), 3.20-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.78$ (br. s, 1H), $2.49-2.24(\mathrm{~m}, 4 \mathrm{H})$, 2.17 (br. s, 1H), $1.93-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.13-$ $1.01(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.6,173.2$ - 172.6 (m), 168.7, 168.6, 139.2, 138.7, $134.8,134.8,125.9\left(q,{ }^{1} J_{\mathrm{C}-\mathrm{F}}=277.8 \mathrm{~Hz}\right), 48.3-47.7(\mathrm{~m}), 46.6,46.5,38.2,37.5,37.5$, 36.2, 36.1, 35.4 - 34.3 (m), 28.4, 28.1, 27.9, 27.7, 26.0, 26.0, 11.4, 11.3.

## Experimental

${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-62.90(\mathrm{t}, J=10.0 \mathrm{~Hz}),-63.00(\mathrm{t}, J=10.1 \mathrm{~Hz}) .(1: 1$ mixture of diastereoisomers).

HRMS: exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4}\right)$ requires $m / z 346.1272$, found $m / z 346.1264$.

## Compound 151f.


$151 f$

Prepared according to General Procedure G using ( $\pm$ )-CFA (4) (20 mg, $0.1 \mathrm{mmol}, 1$ equiv.), HATU ( $44 \mathrm{mg}, \quad 0.12 \mathrm{mmol}, 1.2$ equiv.), methyl 2 -amino-3,3,3trifluoropropanoate hydrochloride ( $50 \mathrm{mg}, 0.26 \mathrm{mmol}, 2.6$ equiv.), DIPEA ( $50 \mu \mathrm{~L}$, $0.30 \mathrm{mmol}, 3$ equiv), and DMF ( 0.5 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $20 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a colourless oil ( $7 \mathrm{mg}, 25 \%$ ).

TLC ( $20 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.54$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3330 (br.), 2963, 2926, 2880, 2861, 1740, 1662, 1632, 1532, $1256 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.36(\mathrm{~s}, 1 \mathrm{H}), 6.00$ (br. $\left.\mathrm{s}, 1 \mathrm{H}\right), 4.12-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.24$ - $3.14(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{dt}, J=13.0,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.64-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.13-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{t}, J=7.4$ Hz, 3H).

[^1]${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-72.45(\mathrm{t}, J=9.1 \mathrm{~Hz})$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z}$ 290.1362, found $m / z 290.1365$.

## Compound S151g.


s151g

Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $20 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv.), HATU ( $44 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.), methyl piperidine-3-carboxylate hydrochloride ( $26 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $50 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 3$ equiv), and DMF ( 0.5 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $30-50 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a colourless oil ( $17 \mathrm{mg}, 53 \%$ ).

TLC ( $20 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.12$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (film): 3445 (br.), 2956, 2939, 2922, 2902, 2872, 2855, 1738, 1619, 1435, 1245 $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.74-5.67(\mathrm{~m}, 1 \mathrm{H}), 4.36$ (br. s, 2H), $3.71-3.66(\mathrm{~m}$, $3 \mathrm{H}), 3.24-2.77(\mathrm{~m}, 3 \mathrm{H}), 2.53-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.31-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.07(\mathrm{~m}$, $2 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.19-1.09(\mathrm{~m}$, $1 \mathrm{H}), 0.94$ (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 220.2,173.5,170.8,170.7,134.6,133.0,52.0,52.0$, 46.3, 46.3, 42.0 (br.), 38.4, 38.3, 37.6, 37.4, 36.7, 36.6, 28.3, 27.6, 27.3, 27.2, 26.2, 26.1, 25.0 (br.), 11.2.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}\right)$ requires $m / z 334.2013$, found m/z 334.2014.

## Compound 151g.



Prepared according to General Procedure H using compound $\mathbf{S 1 5 1 g}$ ( $15 \mathrm{mg}, 0.04$ mmol, 1 equiv.), NaOH ( $5 \mathrm{mg}, 0.13 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $9 \mathrm{mg}, 63 \%$ ).
$v_{\text {max }}$ (film): 2934 (br.), 2861 (br.), 1733, 1584, 1444, 1266, 1186, $917 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.75-5.68(\mathrm{~m}, 1 \mathrm{H}), 4.51-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.41-3.01$ (m, 3H), $2.59-2.31(\mathrm{~m}, 3 \mathrm{H}), 2.30-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.12$ (br. s, 2H), $1.92-1.84$ (m, $1 \mathrm{H}), 1.84-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.20-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.3,177.3,171.2,171.0,134.4,133.3,133.0,46.3$, $46.3,38.4,37.6,37.4,36.7,36.7,28.3,27.4,27.3,27.2,26.2,26.1,11.3$.

HRMS: exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 318.1711$, found $m / z 318.1706$.

## Experimental

## Compound S151h.



Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $20 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv.), HATU ( $44 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.), methyl ( $S$ )-2-amino-3,3dimethylbutanoate hydrochloride ( $26 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $50 \mu \mathrm{~L}, 0.30$ mmol, 3 equiv), and DMF ( 0.5 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a pale orange oil ( $29 \mathrm{mg}, 90 \%$ ).

TLC ( $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.14$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (film): 3359 (br.), 2960, 2874, 1738, 1662, 1627, 1509, 1216, $1165 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.36(\mathrm{~s}, 1 \mathrm{H}), 6.32-6.22(\mathrm{~m}, 1 \mathrm{H}), 4.59-4.52(\mathrm{~m}, 1 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.92-$ $1.84(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.01(\mathrm{~m}, 1 \mathrm{H}), 1.01-$ 0.93 (m, 12H).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.2,172.6,172.5,167.9,167.8,137.1,136.9,135.9$, $135.8,60.0,59.9,52.0,46.6,38.2,37.5,37.4,36.4,35.3,35.1,28.3,28.2,28.0,27.9$, 26.8, 26.8, 26.2, 26.1, 11.5, 11.4.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 336.2169$, found $m / z 336.2169$.

## Compound 151h.



Prepared according to General Procedure H using compound S151h ( $24 \mathrm{mg}, 0.07$ mmol, 1 equiv.), NaOH ( $9 \mathrm{mg}, 0.23 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure H to afford the title compound as a pale orange solid ( $18 \mathrm{mg}, 78 \%$ ).
$v_{\text {max }}$ (film): 3343 (br.), 2963, 2876, 1733, 1658, 1616, 1515, $1213 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.43-6.37(\mathrm{~m}, 1 \mathrm{H}), 6.37-6.29(\mathrm{~m}, 1 \mathrm{H}), 4.59-4.50$ (m, 1H), $3.22-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.24(\mathrm{~m}, 4 \mathrm{H}), 2.15$ (br. s, 1H), $1.93-1.85$ (m, $1 \mathrm{H}), 1.67-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.02(\mathrm{~m}, 10 \mathrm{H}), 1.01-0.94(\mathrm{~m}$, $3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.5,175.3,168.4,168.3,137.7,137.4,135.6,60.4$, $46.6,38.2,37.5,37.4,36.4,35.0,34.9,28.2,28.2,28.0,27.9,26.9,26.8,26.1,26.1$, 11.5, 11.4 .

HRMS: exact mass calculated for [M-H] $\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 320.1867$, found m/z 320.1860.

## Compound S151i.


s151i

Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $20 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.), HATU ( $44 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.2$ equiv.), methyl 1 -aminocyclopropane-1carboxylate ( $26 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $50 \mu \mathrm{~L}, 0.29 \mathrm{mmol}, 3$ equiv.), and DMF $(0.2 \mathrm{~mL})$. After 16 h the reaction mixture was subjected to the purification outlined in General Procedure G (silica gel, $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a white solid ( $26 \mathrm{mg}, 81 \%$ ).

TLC $\left(30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{R}_{f}=0.62$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3329 (br.), 2957, 2874, 1736, 1655, 1618, 1516, 1449, 1267, $1194 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.12(\mathrm{~m}$, $1 \mathrm{H}), 2.47-2.20(\mathrm{~m}, 6 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{dt}, J=12.9$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.10-$ $1.00(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.4,175.1,168.2,136.4,136.2,66.1,52.7,46.5$, $38.3,37.8,37.4,37.3,36.4,28.3,27.9,26.2,25.1,11.5$. One signal equivalent.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}\right)$ requires $m / z 334.2013$, found m/z 334.2015.

## Compound 151i.



151i

Prepared according to General Procedure H using compound S151i ( $26 \mathrm{mg}, 0.08$ mmol, 1 equiv.), LiOH ( $6 \mathrm{mg}, 0.25 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. After 16 h the reaction was allowed to cool to room temperature, acidified with AcOH , and the organics extracted with EtOAc ( $3 \times 10 \mathrm{~mL}$ ). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale yellow oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the title compound as a colourless oil ( $18 \mathrm{mg}, 72 \%$ ).

TLC ( $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.59$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (film): $3281,2959,2934,2862,1734,1719,1695,1612,1528 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.91$ (br. s, 1 H ), $6.34(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 3.18-3.11$ (m, 1H), $2.47-2.23(\mathrm{~m}, 6 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{dt}, J=$ $12.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.63-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.10$ $-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.4,178.0,169.4,137.6,135.7,66.7,46.5,38.3$, $37.6,37.5,37.1,36.3,28.2,27.9,26.1,24.8,24.8,11.5$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4}\right)$ requires $m / z 320.1862$, found m/z 320.1864.

## Compound S151j.



Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $20 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv.), HATU ( $44 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.), methyl 2-amino-2-methylpropanoate hydrochloride ( $17 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $50 \mu \mathrm{~L}, 0.29 \mathrm{mmol}, 3$ equiv.), and DMF ( 0.2 mL ). After 16 h the reaction mixture was subjected to the purification outlined in General Procedure G (silica gel, $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a colourless oil ( $24 \mathrm{mg}, 81 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.32$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }($ film $): 3304,2938,1734,1649,1607,1522,1267,1148 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.35$ (br. s, 1H), 6.31 (s, 1H), 3.75 (s, 3H), 3.18 - 3.11 $(\mathrm{m}, 1 \mathrm{H}), 2.47-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{dt}, J=12.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.64$ $-1.55(\mathrm{~m}, 7 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.09-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.4,167.7,136.4,136.2,56.7,52.8,46.6,38.3,37.4$, 36.4, 28.3, 27.9, 26.2, 25.0, 24.8, 11.5. Carbonyl CO not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{4}\right)$ requires $m / z$ 308.1856, found m/z 308.1858.

## Experimental

## Compound 151j.



Prepared according to General Procedure H using compound $\mathbf{S 1 5 1 j}$ ( $24 \mathrm{mg}, 0.08$ mmol, 1 equiv.), LiOH ( $6 \mathrm{mg}, 0.25 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. After 16 h the reaction was purified by flash silica column chromatography, eluent $1 \%$ $\mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the title compound as a colourless oil ( 9 mg , 39\%).

TLC ( $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.40$ stained by $\mathrm{KMnO}_{4}$ and visible under UV (short wave).
$v_{\max }$ (film): 3271, 2922, 2862, 1734, 1719, 1701, 1616, $1528 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.34(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 3.18-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.48-$ $2.24(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{dt}, J=12.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 7 \mathrm{H})$, $1.54-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 1 \mathrm{H}), 1.10-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.4,178.3,168.6,137.4,135.8,57.0,46.5,38.3$, 37.5, 36.3, 28.2, 27.9, 26.1, 25.1, 24.9, 11.5.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4}\right)$ requires $m / z 294.1705$, found $m / z 294.1704$.

## Compound S10a.



Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $30 \mathrm{mg}, 0.14 \mathrm{mmol}, 1$ equiv.), HATU ( $66 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.2$ equiv.), ethyl 1 -aminocyclopropane-1carboxylate hydrochloride ( $36 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $80 \mu \mathrm{~L}, 0.46 \mathrm{mmol}$, 3 equiv.), and DMF ( 0.8 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a pale orange oil ( $30 \mathrm{mg}, 65 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.24$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\text {max }}$ (film): 3320 (br.), 2958, 2930, 2872, 2854, 1729, 1658, 1625, 1513, 1333, 1180, $1156 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.31(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.20-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.23-$ $3.15(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.18-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{dt}$, $J=11.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.31(\mathrm{~m}, 1 \mathrm{H})$, $1.29-1.16(\mathrm{~m}, 5 \mathrm{H}), 1.11-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.4,172.4,169.5,136.5,136.2,61.6,46.5,38.3$, $37.3,36.4,34.0,28.3,27.9,26.2,17.5,14.3,11.4$. One signal equivalent.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 320.1856$, found m/z 320.1855.

## Experimental

## Compound 10a.



Prepared according to General Procedure H using compound S10a ( $30 \mathrm{mg}, 0.09 \mathrm{mmol}$, 1 equiv.), LiOH ( $8 \mathrm{mg}, 0.33 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $4 \mathrm{mg}, 15 \%$ ).
$v_{\text {max }}$ (film): 3327 (br.), 2965, 2934, 2874, 1736, 1655, 1624, 1508, 1273, 1196, 1146 $\mathrm{cm}^{-1}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.72$ (s, 1H), 6.36 (s, 1H), 5.43 (br. s, 1H), $3.20-3.09$ $(\mathrm{m}, 1 \mathrm{H}), 2.51-2.21(\mathrm{~m}, 4 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.57$ (br. s, $3 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.16$ (br. s, 2H), $1.10-1.00(\mathrm{~m}, 1 \mathrm{H})$, $0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.5,170.0,137.5,135.6,46.6,38.3,37.4,36.3,28.3$, $28.0,26.1,17.9,17.8,11.5$. One signal not observed, one signal equivalent.

HRMS: exact mass calculated for [M-H] $\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 290.1398$, found m/z 290.1393.

## Compound 151k.



Prepared according to General Procedure G using ( $\pm$ )-CFA (4) (7 mg, $0.03 \mathrm{mmol}, 1$ equiv.), HATU ( $15 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.2$ equiv.), methyl ( $S$ )-2-amino-2-methylhept-6enoate hydrochloride ( $10 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $20 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 3$ equiv.), and DMF ( 0.15 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a white solid ( $4 \mathrm{mg}, 29 \%$ ). Compound tested as the methyl ester due to paucity of available material.

TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.68$ stained by $\mathrm{KMnO}_{4}$ and visible under UV (short wave).
$v_{\max }$ (film): 3341 (br.), 2926, 2857, 1736, 1659, 1624, 1514, 1204, 1146, $1123 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.63(\mathrm{~s}, 1 \mathrm{H}), 6.38-6.32(\mathrm{~m}, 1 \mathrm{H}), 5.81-5.70(\mathrm{~m}, 1 \mathrm{H})$, $5.02-4.93(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.19-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.25(\mathrm{~m}, 5 \mathrm{H}), 2.20-$ $2.11(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.60(\mathrm{~m}$, $1 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.10-1.02(\mathrm{~m}$, $1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.5,138.3,138.2,136.6,136.5,136.4,136.3,115.1$, $115.1,60.7,53.0,46.7,46.6,38.3,37.4,36.4,36.4,36.0,35.8,33.5,28.3,27.9,26.2$, 23.9, 23.3, 23.3, 11.5.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NO}_{4}\right)$ requires $m / z 362.2326$, found m/z 362.2328.

## Compound 10f.



10f

Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $22 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.), HATU ( $44 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.), compound 194 ( $38 \mathrm{mg}, 0.2 \mathrm{mmol}, 2$ equiv.), DIPEA ( $50 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 3$ equiv), and DMF ( 0.5 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, 30\% $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a colourless oil ( $7 \mathrm{mg}, 20 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.33$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}\left(\right.$ film): 3312 (br.), 2961, 2928, 2874, 1734, 1655, 1624, 1510, $1337 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.30-6.25(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 3 \mathrm{H}), 3.23-3.14$ $(\mathrm{m}, 1 \mathrm{H}), 2.52-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.55$ $(\mathrm{m}, 4 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.02$ $(m, 1 H), 1.02-0.95(m, 6 H)$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.4,171.8,169.4,169.2,136.6,136.6,136.2,136.1$, $52.5,52.5,46.5,46.5,38.4,38.4,38.3,37.4,36.4,36.4,33.3,33.1,28.3,27.9,27.8$, 26.2, 26.2, 23.3, 23.1, 20.6, 13.6, 11.5.

## Experimental

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}\right)$ requires $m / z 334.2013$, found m/z 334.2016.
( $\pm$ )-coronatine (1).


Prepared according to General Procedure H compound $\mathbf{1 0 f}(20 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv.), LiOH ( $8 \mathrm{mg}, 0.33 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. After 16 h the reaction was allowed to cool to room temperature, acidified with AcOH , and the organics extracted with EtOAc ( $3 \times 5 \mathrm{~mL}$ ). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford a colourless oil. The crude material was dissolved in a minimal volume of diethyl ether and petroleum ether added until a white precipitate formed. The solvent was removed by Pasteur pipette and the residue dried under vacuum to afford the desired product as a white solid ( $9 \mathrm{mg}, 47 \%$ ).

TLC ( $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.38$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3314 (br.), 2961, 2928, 2872, 1719, 1655, 1618, 1508, $1167 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.52-6.40(\mathrm{~m}, 1 \mathrm{H}), 6.39-6.32(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.12$ (m, 1H), $2.51-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.21-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.53$ (m, 4H), 1.53 - 1.44 (m, 2H), $1.44-1.34$ (m, 1H), $1.31-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.00$ (m, 4H), 0.98 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.

## Experimental

${ }^{13}{ }^{13}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.2,220.1,174.9,174.2,170.9,170.5,138.7,137.9$, $135.4,135.3,46.5,46.4,39.3,38.9,38.3,37.6,37.5,36.4,36.3,33.9,33.8,28.2,28.2$, 28.0, 27.9, 26.1, 26.0, 22.6, 22.1, 21.0, 20.9, 13.6, 13.5, 11.5.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4}\right)$ requires $m / z 320.1862$, found $m / z 320.1865$.

The spectral data were consistent with those previously reported in the literature. ${ }^{[38]}$

## Compound S1511.



S151I

Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $20 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv.), HATU ( $44 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.), methyl 1 -aminocyclohexane-1carboxylate hydrochloride ( $28 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $50 \mu \mathrm{~L}, 0.30 \mathrm{mmol}$, 3 equiv.), and DMF ( 0.5 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $20 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a colourless oil ( $26 \mathrm{mg}, 78 \%$ ).

TLC ( $20 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.34$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (film): 3357 (br.), 2932, 2855, 1738, 1660, 1625, 1517, 1277, $1238 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.86(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{br} . \mathrm{s}, 1 \mathrm{H})$, $2.46-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.82(\mathrm{~m}, 3 \mathrm{H})$, $1.75-1.48(\mathrm{~m}, 5 \mathrm{H}), 1.47-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.12-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

## Experimental

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.3,174.7,168.0,136.4,136.3,58.9,52.4,46.5$, $38.3,37.3,36.4,33.1,32.0,28.3,27.8,26.2,25.3,21.8,21.8,11.5$

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 348.2169$, found $m / z 348.2167$.

## Compound 1511.



Prepared according to General Procedure H using compound S1511 ( $24 \mathrm{mg}, 0.07$ mmol, 1 equiv.), NaOH ( $8 \mathrm{mg}, 0.20 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $22 \mathrm{mg}, 96 \%$ ).
$v_{\max }$ (film): 3323 (br.), 2928, 2859, 1733, 1617, 1526, $1146 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.38(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 3.19-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.48-$ 2.24 (m, 4H), $2.24-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.78-$ $1.48(\mathrm{~m}, 5 \mathrm{H}), 1.47-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.11-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 177.1,169.4,137.8,135.9,59.6,46.5,38.3,37.5,36.3$, 32.7, 31.7, 28.2, 27.9, 26.1, 25.2, 21.7, 21.6, 11.5. Carbonyl CO not observed.

HRMS: exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 332.1867$, found m/z 332.1860.

## Experimental

## Compound S151m.



Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $20 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv.), HATU ( $44 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.), methyl ( $S$ )-2-amino-2,3dimethylbutanoate hydrochloride ( $26 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $50 \mu \mathrm{~L}, 0.30$ mmol, 3 equiv.), and DMF ( 0.5 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a colourless oil ( $26 \mathrm{mg}, 81 \%$ ).

TLC ( $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.15$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3460 (br.), 2960, 2874, 2855, 1736, 1660, 1513, 1463, 1260, $1147 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.42-6.29(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.74(\mathrm{~m}, 3 \mathrm{H}), 3.20-3.10$ (m, 1H), $2.52-2.23(\mathrm{~m}, 5 \mathrm{H}), 2.20-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.56$ (m, 4H), $1.56-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.12-0.95(\mathrm{~m}, 7 \mathrm{H}), 0.94-0.90$ (m, 3H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.4,174.5,174.4,167.7,167.6,136.5,136.5,136.3$, $136.3,63.5,63.4,52.5,52.5,46.6,46.6,38.3,37.4,36.5,36.4,34.9,28.3,28.0,27.9$, $26.2,18.9,18.4,17.8,17.7,17.7,17.6,11.4$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 336.2169$, found m/z 336.2170 .

## Compound 151m.



Prepared according to General Procedure H using compound S151m ( $26 \mathrm{mg}, 0.08$ mmol, 1 equiv.), NaOH ( $9 \mathrm{mg}, 0.23 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL})$. After 20 h the reaction was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $17 \mathrm{mg}, 68 \%$ ).
$v_{\max }$ (film): 3414 (br.), 2965, 2939, 2878, 1733, 1662, 1623, 1513, 1448, $1150 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.38-6.33(\mathrm{~m}, 1 \mathrm{H}), 6.22-6.16(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.09$ $(\mathrm{m}, 1 \mathrm{H}), 2.65-2.24(\mathrm{~m}, 5 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.47$ $(\mathrm{m}, 5 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.12-0.92(\mathrm{~m}, 10 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.2,220.1,176.4,175.9,169.4,169.1,138.1,137.5$, 136.0, 135.9, 64.7, 64.2, 46.6, 46.5, 38.2, 37.5, 37.4, 36.4, 36.3, 33.3, 32.6, 28.2, 28.0, $27.9,26.1,26.1,18.5,18.3,17.5,17.2,17.1,11.4$.

HRMS: exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 320.1867$, found m/z 320.1858 .

## Compound 152a.



Prepared according to General Procedure G using ( $\pm$ )-CFA (4) (30 mg, $0.14 \mathrm{mmol}, 1$ equiv.), HATU ( $66 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.2$ equiv.), glycine $t$-butyl ester hydrochloride ( 36 $\mathrm{mg}, 0.21 \mathrm{mmol}$, 1.5 equiv.), DIPEA ( $80 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 3$ equiv.), and DMF ( 0.7 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, 30-40\% EtOAc/petroleum ether) to afford the title compound as a colourless oil ( $45 \mathrm{mg}, 98 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.18$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3337 (br.), 2930, 2857, 1738, 1655, 1611, 1528, 1368, 1225, $1152 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.29$ (br. s, 1H), $4.00(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.22-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.22(\mathrm{~m}, 3 \mathrm{H}), 2.19-2.10(\mathrm{~m}, 1 \mathrm{H})$, 1.86 (dt, $J=12.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.53$ (m, 1H), $1.53-1.42$ (m, 10H), $1.43-1.32$ $(\mathrm{m}, 1 \mathrm{H}), 1.05(\mathrm{dd}, J=24.2,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.4,169.5,168.0,137.2,135.5,82.6,46.6,42.3$, $38.3,37.4,36.3,28.2,28.2,28.0,26.1,11.4$. Two signals equivalent.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{4}\right)$ requires $m / z 322.2013$, found $m / z 322.2014$.

## Compound 152d.



To a round bottom flask charged with compound $\mathbf{S 1 5 1 a}$ ( $73 \mathrm{mg}, 0.24 \mathrm{mmol}, 1$ equiv.) was added $\mathrm{CuBr}\left(3 \mathrm{mg}, 0.02 \mathrm{mmol}, 10 \mathrm{~mol} \%\right.$ ), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 2.5 mL ), and DIC ( $70 \mu \mathrm{l}, 0.45$ mmol, 2 equiv.) sequentially. The reaction was brought to $40^{\circ} \mathrm{C}$ for 16 h . The reaction was cooled to room temperature, filtered through celite, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and concentrated in vacuo to afford a pale orange oil. The crude material was loaded in a solution of $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the title compound as a colourless oil which solidified to a white solid on standing ( $30 \mathrm{mg}, 44 \%$ ).

TLC $\left(10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{R}_{f}=0.52$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3414, 2958, 2941, 2876, 1733, 1711, 1670, 1515, 1318, $1202 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.16$ (br. s, 1H), $6.64(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.24-$ $2.15(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{dt}, J=12.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.37(\mathrm{~m}, 1 \mathrm{H})$, $1.12-1.03(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.0,166.4,165.1,138.1,136.1,131.0,108.8,53.2$, 46.6, 38.2, 37.5, 36.2, 28.1, 28.0, 26.0, 11.3.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{4}\right)$ requires $m / z 292.1543$, found m/z 292.1543.

## Compound 152g.



To a round bottom flask was added ( $\pm$ )-CFA (4) ( $30 \mathrm{mg}, 0.14 \mathrm{mmol}, 1$ equiv.) and COMU ( $123 \mathrm{mg}, 0.29 \mathrm{mmol}, 2$ equiv.). DMF ( 0.7 mL ) was added, followed by DIPEA ( $80 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 3$ equiv.) and the resulting solution stirred at room temperature under air for 5 minutes. $L$-proline methyl ester hydrochloride ( $36 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.5$ equiv.) was then added and the reaction stirred for 22 h . The red solution was diluted with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and extracted with EtOAc ( 3 x 10 mL ). The organics were combined, washed with brine ( 10 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a red oil. The crude material was loaded in a solution of $60 \% \mathrm{EtOAc} /$ petroleum ether and purified by flash silica column chromatography, eluent $60 \%$ EtOAc/petroleum ether to afford the title compound as a pale yellow solid ( 34 mg , $74 \%)$.

TLC ( $60 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.18$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (film): 3350 (br.), 2959, 1738, 1609, 1433, 1196, 1175, $843 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.09-5.82(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.44(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.52$ (m, 5H), $3.29-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.18(\mathrm{~m}, 4 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.78$ $(\mathrm{m}, 5 \mathrm{H}), 1.77-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

## Experimental

${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.6,173.0,172.8,170.1,169.8,135.6,135.6,134.1$, 59.0, 58.8, 52.4, 52.3, 49.7, 49.6, 46.2, 38.5, 38.3, 37.3, 36.9, 36.7, 36.6, 29.4, 29.3, 28.3, 28.3, 27.4, 27.3, 26.1, 25.7, 24.8, 11.3.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 320.1856$, found m/z 320.1860 .

## Compound 152i.



152i

Prepared according to General Procedure G using ( $\pm$ )-CFA (4) ( $20 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv.), HATU ( $44 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.), methyl 2 -amino-3-fluoro-3methylbutanoate hydrochloride ( $27 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $50 \mu \mathrm{~L}, 0.29$ mmol, 3 equiv.), and DMF ( 0.5 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a colourless oil ( $18 \mathrm{mg}, 55 \%$ ).

TLC ( $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.34$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (film): 3332 (br.), 2960, 2878, 2861, 1740, 1662, 1630, 1508, 1223, $1146 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.58-6.48(\mathrm{~m}, 1 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 4.86-4.71(\mathrm{~m}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.95-$ $1.83(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.33(\mathrm{~m}, 9 \mathrm{H}), 1.13-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.

## Experimental

${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.2,220.1,170.1,170.0,168.0,167.9,138.0,137.9$, 135.4, 135.3, 96.6-94.6 (m), 58.9-58.6(m), 52.67, 46.58, 38.25, 37.57, 37.49, 36.35, 28.23, 27.98, 27.96, 26.15, 25.2-24.7 (m), 11.48.
${ }^{19}$ F NMR (471 MHz, $\mathrm{CDCl}_{3}$ ): $\delta-148.82--149.18(\mathrm{~m})$.

HRMS: exact mass calculated for [M+H] ${ }^{+}\left(\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{FNO}_{4}\right)$ requires $m / z 340.1919$, found m/z 340.1921 .

### 6.6 Synthesis of Compound 9b (Scheme 44).


6.6.1 Procedures and Characterisation of Compound 9b Synthesis.

Compound 154.


## Experimental

Prepared according to General Procedure C using ethyl ( $E$ )-pent-3-enoate (153) (265 $\mathrm{mg}, 2.07 \mathrm{mmol}, 1.3$ equiv.), DIPEA ( $0.4 \mathrm{~mL}, 2.30 \mathrm{mmol}, 1.5$ equiv.), dibutylboryltrifilate solution ( 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) ( $2.10 \mathrm{~mL}, 2.10 \mathrm{mmol}$, 1.3 equiv.), compound 55 ( $250 \mathrm{mg}, 1.60 \mathrm{mmol}$, 1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 7 mL ), potassium buffer solution ( $\mathrm{pH} 7.4,3 \mathrm{~mL}$ ), $\mathrm{MeOH}(5 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ solution, 1.5 mL$)$. After 16 h the reaction was subjected to purification outlined in General Procedure C (silica gel, $15-20 \%$ EtOAc/petroleum ether) to afford the title compound as a colourless oil (101 $\mathrm{mg}, 22 \%\left({ }^{1} \mathrm{H}\right.$ NMR yield) ). (syn:anti $=84: 16$, isolated $)$.

Product contains 35\% alkene isomerisation impurity. Data reported of products resulting from reaction carried out at $-78{ }^{\circ} \mathrm{C}$ to where isomerisation does not take place. ${ }^{[68]}$

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.64$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3522 (br.), 2954, 1730, 1370, 1235, 1176, 1021, $969 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.81-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.72-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.58-5.50$ (m, 1H), $5.29-5.14(\mathrm{~m}, 3 \mathrm{H}), 4.21-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=$ $9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.67 (br. s, 1H), 2.05 (s, 3H), $1.89-1.79$ (m, 1H), 1.74 (d, $J=6.4$ Hz, 3H), 1.71 - 1.61 (m, 1H), $1.54-1.37$ (m, 2H), $1.30-1.22(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 173.8,170.5,136.5,136.4,132.0,124.3,117.0,116.9$, $74.9,74.5,71.4,71.1,61.0,55.0,55.0,30.5,30.3,29.7,29.5,21.4,21.3,18.3,14.3$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{5} \mathrm{Na}\right)$ requires $\mathrm{m} / \mathrm{z} 307.1516$, found $m / z 307.1513$.

## Compound 157.



Intermediate $\mathbf{S 2}$ prepared according to General Procedure D using compound 154 (880 $\mathrm{mg}, 3.09 \mathrm{mmol}, 1$ equiv. ( $65 \%$ purity)), $\mathrm{CuBr}(44 \mathrm{mg}, 0.31 \mathrm{mmol}, 0.1$ equiv.), DIC ( $0.73 \mathrm{~mL}, 4.66 \mathrm{mmol}, 1.5$ equiv.), and toluene ( 25 mL ). After 20 h the reaction was subjected to purification outlined in General Procedure D (silica gel, 10\% EtOAc/petroleum ether) to afford a colourless oil (156) ( $838 \mathrm{mg}, 3.15 \mathrm{mmol}$ ) which was further reacted according to General Procedure D using $\mathrm{AlCl}_{3}$ ( $420 \mathrm{mg}, 3.15$ mmol, 1 equiv.) and $\mathrm{EtOH}(60 \mathrm{ml})$. After 16 h the reaction was subjected to purification outlined in General Procedure D (silica gel, 20\% EtOAc/petroleum ether) to afford compound $\mathbf{S 2}$ as a colourless oil and a mixture of diastereoisomers which was not characterised. ( $199 \mathrm{mg}, 44 \%$ based on $65 \%$ purity of starting material).

Compound $\mathbf{1 5 7}$ was prepared according to General Procedure E using compound S2 ( $171 \mathrm{mg}, 0.76 \mathrm{mmol}, 1$ equiv.), $\mathrm{PDC}\left(430 \mathrm{mg}, 1.14 \mathrm{mmol}, 1.5\right.$ equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 5 $\mathrm{ml})$. After 16 h the reaction was subjected to purification outlined in General Procedure E (silica gel, $10 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a colourless oil ( $95 \mathrm{mg}, 56 \%\left(5: 1 \mathrm{dr} \mathrm{C}^{7 \mathrm{a}}\right)$ ).

TLC ( $10 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.26$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): $3375,2957,2874,1736,1707,1240,1211,1091,754 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.13(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.63$ (m, 2H), $2.51-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.51$ $(\mathrm{m}, 2 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

## Experimental

Major trans-isomer:
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 217.0,166.7,146.3,132.6,60.5,50.6,40.9,38.4,31.5$, 27.5, 26.2, 21.0, 14.5

Minor cis-isomer:
${ }^{13}{ }^{1}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 145.2,60.6,47.0,38.3,36.1,31.3,28.6,28.3,20.6$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 223.1334$ found $m / z 223.1345$.

## Compound 9b.



Prepared according to General Procedure F using compound $157(83 \mathrm{mg}, 0.37 \mathrm{mmol}$, 1 equiv.) and $3 \mathrm{M} \mathrm{HCl}(12 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure F (silica gel, 40-70\% EtOAc/petroleum ether) to afford the tile compound as a white solid ( $57 \mathrm{mg}, 79 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.15$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 2947 (br.), 2641 (br.), 2521 (br.), 1730, 1674, 1626, 1269, 1136, $1057 \mathrm{~cm}^{-}$ ${ }^{1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.02\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 3.12-3.03\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3 \mathrm{a}}\right), 2.61(\mathrm{dt}, J$ $\left.=12.9,7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 2.47-2.24\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{6}, \mathrm{H}^{7 \mathrm{a}}\right), 1.87(\mathrm{dt}, J=12.9,4.8 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}^{7}\right), 1.68-1.54\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 1.14\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.12-1.02(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}^{7}$ ). $\mathrm{CO}_{2} \mathrm{H}$ not observed.

## Experimental

${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 220.2\left(\mathrm{C}^{1}\right), 172.0\left(\mathrm{CO}_{2} \mathrm{H}\right), 148.2\left(\mathrm{C}^{5}\right), 130.7\left(\mathrm{C}^{4}\right), 46.9$ $(\mathrm{CH}), 38.3\left(\mathrm{C}^{2}\right), 35.8(\mathrm{CH}), 31.5\left(\mathrm{C}^{6}\right), 28.4\left(\mathrm{C}^{3 / 7}\right), 28.2\left(\mathrm{C}^{3 / 7}\right), 20.5\left(\mathrm{CH}_{3}\right)$.

HRMS: exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{3}\right)$ requires $m / z 193.0870$ found $m / z$ 193.0872.

The spectral data were consistent with those previously reported in the literature. ${ }^{[44]}$

### 6.7 Synthesis of Compound 9a (Scheme 45).



### 6.7.1 Procedures and Characterisation of Compound 9a Synthesis.

## Compound 159.





Prepared according to General Procedure C using ethyl but-3-enoate ( $1.50 \mathrm{~g}, 13.14$ mmol, 1.3 equiv.), DIPEA ( $2.3 \mathrm{~mL}, 13.20 \mathrm{mmol}, 1.5$ equiv.), dibutylboryltrifilate solution ( 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) ( $13.14 \mathrm{~mL}, 13.14 \mathrm{mmol}$, 1.3 equiv.), compound $55(1.37 \mathrm{~g}$,

## Experimental

$8.77 \mathrm{mmol}, 1$ equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 50 mL ), potassium buffer solution ( $\mathrm{pH} 7.4,17 \mathrm{~mL}$ ), $\mathrm{MeOH}(25 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ solution, 9 mL$)$. After 16 h the reaction was subjected to purification outlined in General Procedure C (silica gel, $15-40 \% \mathrm{EtOAc}$ petroleum ether) to afford the title compound as a colourless oil ( $1.46 \mathrm{~g}, 51 \%$ ( ${ }^{1} \mathrm{H}$ NMR yield), 83:17 syn/anti as inseparable syn/anti diastereoisomers).

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.44$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (neat): 3525 (br.), 2978, 2935, 2867, 1729, $1238 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.98-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.81-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.14$ $(\mathrm{m}, 5 \mathrm{H}), 4.22-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=9.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ $(\mathrm{s}, 3 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 173.4,173.3,170.5,136.4,136.4,131.7,120.8,117.1$, $117.0,74.8,74.4,71.2,70.9,61.2,56.0,55.9,30.5,30.3,29.7,29.5,21.3,14.3$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{5}\right)$ requires $m / z$ 271.1540, found m/z 271.1541.

## Compound 162.



Intermediate S3 prepared according to General Procedure D using compound 159 ( $1.45 \mathrm{~g}, 5.42 \mathrm{mmol}, 1$ equiv.), CuBr ( $78 \mathrm{mg}, 0.54 \mathrm{mmol}, 0.1$ equiv.), DIC ( 1.27 mL , $8.11 \mathrm{mmol}, 1.5$ equiv.) and toluene ( 40 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure D (silica gel, $10 \% \mathrm{EtOAc} /$ petroleum ether)

## Experimental

to afford a colourless oil (161) (1.11 g, 4.16 mmol$)$ which was further reacted according to General Procedure D using $\mathrm{AlCl}_{3}$ ( $555 \mathrm{mg}, 4.16 \mathrm{mmol}, 1$ equiv.) and EtOH ( 65 ml ). After 16 h the reaction was subjected to purification outlined in General Procedure D (silica gel, 30\% EtOAc/petroleum ether) to afford a colourless oil (S3) as two separable diastereoisomers ( $163 \mathrm{~g}, 0.78 \mathrm{mmol}$ ) which were not characterised.

Compound 162 was prepared according to General Procedure E using S3 (163 mg, 0.78 mmol , 1 equiv.), $\mathrm{PDC}\left(437 \mathrm{mg}, 1.16 \mathrm{mmol}, 1.5\right.$ equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. After 16 h the reaction was subjected to purification outlined in General Procedure E (silica gel, $10 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a colourless oil (83 mg, $7 \%$ (3 steps) 7:1 dr $\mathrm{C}^{7 \mathrm{a}}$ )

TLC ( $10 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.16$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3362 (br.), 2978, 2938, 1736, 1705, 1248, 1092, $1057 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.02(\mathrm{dd}, J=3.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.10(\mathrm{~m}, 2 \mathrm{H})$, $3.20-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.05(\mathrm{~m}, 4 \mathrm{H}), 1.83-1.74(\mathrm{~m}, 1 \mathrm{H})$, $1.70-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

Major cis-isomer:
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 216.0,166.8,140.23,131.9,60.4,46.7,37.2,35.8$, 27.5, 24.0, 19.6, 14.3.

Minor trans-isomer:
${ }^{13}{ }^{13}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 166.4,141.2,133.4,60.4,53.9,40.3,37.9,27.1,26.2$, 20.5 .

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{3}\right)$ requires $m / z$ 209.1178, found m/z 209.1176.

## Experimental

## Compound 9a.



Prepared according to General Procedure F using compound 162 ( $159 \mathrm{mg}, 0.88 \mathrm{mmol}$ ) and $3 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure F (silica gel, 30-70\% EtOAc/petroleum ether) to afford a white solid, which was washed with minimal petroleum ether to afford the title compound as a white solid ( $102 \mathrm{mg}, 74 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.20$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): $2938,2895,2627,2532,1736,1661,1632,1427,1283,930 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 11.75$ (br. s, $1 \mathrm{H}, \mathrm{CO}_{2} H$ ), $7.24(\mathrm{td}, J=4.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{5}\right), 3.25-3.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3 \mathrm{a}}\right), 2.50-2.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{7 \mathrm{a}}\right), 2.34-2.19\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{2}\right.$, $\left.\mathrm{H}^{6}\right), 1.92-1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 1.78-1.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.6\left(\mathrm{C}^{1}\right), 172.3\left(\mathrm{CO}_{2} \mathrm{H}\right), 143.6\left(\mathrm{C}^{5}\right), 131.3\left(\mathrm{C}^{4}\right), 46.7$ $\left(\mathrm{C}^{7 \mathrm{a}}\right), 37.3\left(\mathrm{CH}_{2}\right), 35.7\left(\mathrm{C}^{3 \mathrm{a}}\right), 27.5\left(\mathrm{C}^{3}\right), 24.4\left(\mathrm{CH}_{2}\right), 19.6\left(\mathrm{C}^{7}\right)$.

HRMS: exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{3}\right)$ requires $m / z$ 179.0714, found $m / z$ 179.0716.

The spectral data were consistent with those previously reported in the literature. ${ }^{[44]}$

## Experimental

### 6.8 Synthesis of Compound 172 (Scheme 47).






### 6.8.1 Procedures and Characterisation of Compound 172 Synthesis.

Compound 164.


## Experimental

To a round bottom flask charged with 1,5-pentane diol ( $31 \mathrm{~g}, 295.86 \mathrm{mmol}, 5$ equiv.) was added anhydrous aluminium trichloride ( $79 \mathrm{mg}, 0.59 \mathrm{mmol}, 1 \mathrm{~mol} \%$ ) followed by dropwise addition of DHP ( $5.42 \mathrm{~mL}, 59.41 \mathrm{mmol}, 1$ equiv.). The resulting mixture was warmed to $30^{\circ} \mathrm{C}$ and maintained at this temperature for 1 h , before being allowed to cool to room temperature. The colourless, crude material was loaded directly in a solution of $30 \%$ EtOAc/petroleum ether and purified by flash silica column chromatography, eluent $30-60 \%$ EtOAc/petroleum ether to afford the title compound as a colourless liquid $(9.90 \mathrm{~g}, 88 \%)$.

TLC ( $40 \%$ EtOAc/petroleum ether): $\mathrm{R}_{f}=0.57$ stained by $\mathrm{KMnO}_{4}$
$v_{\max }$ (neat): 3404 (br.), 2936, 2865, 1137, 1120, 1076, $1021 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 4.55-4.52(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{dt}, J=$ 9.6, $6.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.59 (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.49 - 3.43 (m, 1H), 3.36 (dt, $J=9.6,6.5$ Hz, 1H), 2.05 (br. s, 1H), $1.83-1.74$ (m, 1H), $1.71-1.63$ (m, 1H), $1.63-1.45$ (m, $8 \mathrm{H}), 1.44-1.37(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 99.0,67.6,62.7,62.4,32.6,30.8,29.5,25.5,22.5$, 19.7.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{Na}\right)$ requires $\mathrm{m} / \mathrm{z}$ 211.1305, found $m / z 211.1302$.

The spectral data were consistent with those previously reported in the literature. ${ }^{[125]}$

## Compound 165.


164 then 79\% yield
(2 steps)

Compound 165 was prepared according to General Procedure B using oxalyl chloride ( $6.68 \mathrm{~mL}, 78.95 \mathrm{mmol}, 1.5$ equiv.), DMSO ( $11.21 \mathrm{~mL}, 157.83 \mathrm{mmol}, 3$ equiv.), compound 164 ( $9.90 \mathrm{~g}, 52.58 \mathrm{mmol}$, 1 equiv.), triethylamine ( $29 \mathrm{~mL}, 208.06 \mathrm{mmol}, 4$ equiv.), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(140 \mathrm{~mL})$. After 2 h the reaction was subjected to purification outlined in General Procedure B (silica gel, $20 \% \mathrm{EtOAc} /$ petroleum ether) to afford the corresponding aldehyde as a pale yellow liquid $(9.55 \mathrm{~g}, 51.28 \mathrm{mmol})$ which was used immediately.

Vinylmagnesium bromide ( 1 M in THF, $56.4 \mathrm{~mL}, 56.40 \mathrm{mmol}$, 1.1 equiv.) was added dropwise to a stirring solution of the aldehyde ( $9.55 \mathrm{~g}, 51.28 \mathrm{mmol}$ ) in THF ( 100 mL ) at $0^{\circ} \mathrm{C}$ in a three-necked flask under an atmosphere of nitrogen. The resulting solution was allowed to warm to room temperature and stirred for 2 h . The reaction was quenched by dropwise addition of acetic anhydride ( $9.7 \mathrm{~mL}, 102.62 \mathrm{mmol}, 2$ equiv.) at room temperature and stirred for a further 16 h . The yellow reaction was diluted with water ( 30 mL ) and extracted with EtOAc ( 3 x 30 mL ). The organics were combined, washed with brine ( 20 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale orange oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and purified by flash silica column chromatography, eluent $10 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound ( $10.66 \mathrm{~g}, 79 \%$ ( 2 steps)) as a colourless liquid.

TLC ( $20 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.74$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 2940, 2870, 1736, 1370, 1236, $1120 \mathrm{~cm}^{-1}$.

## Experimental

${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.77$ (ddd, $J=17.1,10.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $5.26-5.14(\mathrm{~m}$, $3 \mathrm{H}), 4.58-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{dtd}, J=9.4,6.7,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{dt}, J=9.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.74-1.48(\mathrm{~m}, 9 \mathrm{H}), 1.46-1.35(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}^{2}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 170.5,136.6,116.8,99.0,74.9,67.4,62.5,34.1,30.9$, 29.6, 25.6, 22.0, 21.4, 19.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{Na}\right)$ requires $\mathrm{m} / \mathrm{z}$ 279.1567, found $m / z 279.1563$.

## Compound 166.






To a round bottom flask was added compound $165(10.66 \mathrm{~g}, 41.59 \mathrm{mmol}, 1$ equiv.) and EtOH ( 160 mL ). PPTS ( $1.05 \mathrm{~g}, 4.18 \mathrm{mmol}, 0.1$ equiv.) was added portionwise and the resulting solution was brought to $60^{\circ} \mathrm{C}$ for 4 h . The reaction was allowed to cool to room temperature and was then evaporated to afford a pale orange oil. The crude material was loaded directly in a solution of $30 \% \mathrm{EtOAc} /$ petroleum ether and purified by flash silica column chromatography, eluent $30-50 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound $(4.02 \mathrm{~g}, 56 \%)$ as a colourless liquid.

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.18$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3407 (br.), 2936, 2865, 1735, 1371, 1236, $1019 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 5.77$ (ddd, $\left.J=17.2,10.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.26-5.15(\mathrm{~m}$, $3 \mathrm{H}), 3.64(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.47-1.34(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 170.6,136.5,116.9,74.8,62.9,34.1,32.5,21.5,21.4$.

## Experimental

HRMS: exact mass calculated for [M+Na] $\left(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}\right)$ requires $\mathrm{m} / \mathrm{z}$ 195.0992, found m/z 195.0989.

## Compound 167.



166

$86 \%$ yield


167

Prepared according to General Procedure B using oxalyl chloride ( $2.96 \mathrm{~mL}, 34.98$ mmol, 1.5 equiv.), DMSO ( $4.97 \mathrm{~mL}, 69.97 \mathrm{~mol}, 3$ equiv.), compound 166 ( 4.02 g , 23.34 mmol, 1 equiv.), triethylamine ( $13 \mathrm{~mL}, 93.27 \mathrm{mmol}, 4$ equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 55 mL ). After 2 h the reaction was subjected to purification outlined in General Procedure B (silica gel, $20 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a pale yellow liquid ( $3.40 \mathrm{~g}, 86 \%$ ).

TLC ( $20 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.41$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 2935 (br.), 1734, 1372, 1238, $1022 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 9.76(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.27-$ $5.16(\mathrm{~m}, 3 \mathrm{H}), 2.50-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 202.0,170.4,136.2,117.2,74.3,43.6,33.6,21.3,17.7$.

HRMS: exact mass calculated for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}\right)$ requires $\mathrm{m} / \mathrm{z}$ 188.1281, found $m / z 188.1277$

## Compound 168.



Prepared according to General Procedure C using ethyl $(E)$-hex-3-enoate $(1.38 \mathrm{ml}$, $8.70 \mathrm{mmol}, 1.3$ equiv.), DIPEA ( $1.73 \mathrm{~mL}, 9.93 \mathrm{mmol}, 1.5$ equiv.), Dibutylboryltrifluoromethanesulfonate solution ( 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) ( $8.74 \mathrm{~mL}, 8.74$ mmol, 1.3 equiv.), compound 167 ( $1.15 \mathrm{~g}, 6.76 \mathrm{mmol}$, 1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 35 mL ), potassium buffer solution ( $\mathrm{pH} 7.4,15 \mathrm{~mL}$ ), $\mathrm{MeOH}(25 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}_{2}$ ( $30 \%$ solution, 8 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure C (silica gel, $20 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a colourless oil ( $1.49 \mathrm{~g}, 56 \%$ (yield by ${ }^{1} \mathrm{H}$ NMR analysis)). (syn:anti $=88: 12$ isolated).

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.65$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }\left(\right.$ neat): 3517 (br.), 2937, 2873, 1730, 1370, 1237, 1174, $1020 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.82-5.65(\mathrm{~m}, 2 \mathrm{H}), 5.55-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.13$ (m, 3H), $4.20-4.11$ (m, 2H), $3.92-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.35$ (dd, $J=10.3,4.3 \mathrm{~Hz}, 0.2 \mathrm{H}$ (minor)), 2.96 (dd, $J=9.2,4.8 \mathrm{~Hz}, 0.8 \mathrm{H}$ (major)), $2.77-2.71$ (m, 0.2 H (minor)), 2.67 - 2.60 (m, 0.8H (major)), $2.15-2.02(\mathrm{~m}, 5 \mathrm{H}), 1.71-1.31$ (m, 6H), 1.29 - 1.23 (m, $3 \mathrm{H}), 1.02-0.97(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 174.0,174.0,170.5,138.9,136.6,122.2,116.9,116.8$, $74.8,71.4,61.0,55.1,55.0,34.2,33.9,25.8,21.4,14.3,13.6$. Major signals reported. One signal coincident.

## Experimental

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{Na}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Na}\right)$ requires $\mathrm{m} / \mathrm{z}$ 335.1829, found $m / z 335.1827$.

## Compound S4.



Compound $\mathbf{1 7 0}$ was prepared according to General Procedure D using compound 168 ( $1.49 \mathrm{~g}, 4.76 \mathrm{mmol}, 1$ equiv. ( $79 \%$ purity)), CuBr ( $74 \mathrm{mg}, 0.52 \mathrm{mmol}, 10 \mathrm{~mol} \%$ ), DIC $(1.19 \mathrm{~mL}, 7.60 \mathrm{mmol}, 1.5$ equiv.) and toluene $(0.9 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure D (silica gel, 5\% EtOAc/petroleum ether) to afford a pale yellow oil (170) ( $1.11 \mathrm{~g}, 3.77 \mathrm{mmol}$ ).

Compound S4 was prepared according to General Procedure D using compound 170 ( $1.11 \mathrm{~g}, 3.77 \mathrm{mmol}, 1$ equiv.), PTSA (mono-hydrate) ( $1.07 \mathrm{~g}, 5.63 \mathrm{mmol}, 1.5$ equiv.), and $\mathrm{EtOH}(35 \mathrm{~mL})$. After 6 h the reaction was subjected to purification outlined in General Procedure D (silica gel, $20 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a colourless liquid ( $511 \mathrm{mg}, 54 \%$ based on $79 \%$ purity of starting material ( 2 steps)). Isolated as a single diastereoisomer at $\mathrm{C}^{1}$, the stereochemistry of which was not determined.

TLC ( $20 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.19$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3377 (br.), 2972, 2932, 2662, 1711, 1447, 1245, $1045 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.72-6.67(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.28$ (m, 1H), $2.25-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.11$ $(\mathrm{m}, 10 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88-0.76(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 168.3,142.0,134.3,73.6,60.3,43.7,40.2,36.7,36.2$, 29.6, 27.5, 27.4, 24.3, 14.4, 12.6.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 253.1798$, found $m / z 253.1799$.

## Compound 171.



To a round bottom flask charged with compound $\mathbf{1 7 0}(511 \mathrm{mg}, 2.02 \mathrm{mmol}, 1$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added DMP ( $1.29 \mathrm{~g}, 3.04 \mathrm{mmol}$, 1.5 equiv.) in one portion under an atmosphere of nitrogen. The reaction was stirred at room temperature for 16 h before $2 \mathrm{M} \mathrm{NaOH}(10 \mathrm{~mL})$ was added and the layers stirred vigorously for 10 minutes. The layers were separated and the aqueous further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 $\mathrm{x} 20 \mathrm{ml})$. The organics were combined, washed with brine ( 20 ml ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil. The crude material was loaded in a solution of $10 \% \mathrm{EtOAc} /$ petroleum ether and purified by flash silica column chromatography, eluent $10 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound as a colourless oil ( $350 \mathrm{mg}, 69 \%$ ).

TLC ( $10 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.36$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 2958, 2928, 2863, 1706, 1260, 1234, $1082 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.81\left(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{6}\right), 4.26-4.14(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ ), $2.53\left(\mathrm{dd}, J=13.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 2.48-2.32\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{4 \mathrm{a}}\right), 2.30$ $-2.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{7}, \mathrm{H}^{8 \mathrm{a}}\right), 2.16-2.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 1.95\left(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{8}\right), 1.84-$
$1.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 1.55-1.43\left(\mathrm{~m}, 2 \mathrm{H}^{\prime} \mathrm{H}^{8}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.37-1.25\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H} 4^{\prime}\right.$, $\mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{\prime}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ ), $0.99\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$ ).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 211.9\left(\mathrm{C}^{1}\right), 167.5\left(\mathrm{CO}_{2} \mathrm{Et}\right), 142.9\left(\mathrm{C}^{6}\right), 133.7\left(\mathrm{C}^{5}\right)$, $60.5\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 48.4\left(\mathrm{C}^{7 / 8 \mathrm{a}}\right), 42.8\left(\mathrm{C}^{4 \mathrm{a}}\right), 41.6\left(\mathrm{C}^{2}\right), 36.4\left(\mathrm{C}^{7 / 8 \mathrm{a}}\right), 29.7\left(\mathrm{C}^{4}\right), 27.6$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 26.1\left(\mathrm{C}^{3}\right), 24.3\left(\mathrm{C}^{8}\right), 14.4\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $12.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 251.1642$, found m/z 251.1647.

## Compound 172.



Prepared according to General Procedure F using compound 171 ( $350 \mathrm{mg}, 1.57 \mathrm{mmol}$ ) and $3 \mathrm{M} \mathrm{HCl}(44 \mathrm{~mL})$. After 20 h the reaction was subjected to purification outlined in General Procedure F (silica gel, 30-50\% EtOAc/petroleum ether) to afford the title compound as a pale orange solid ( $288 \mathrm{mg}, 93 \%$ ).

TLC (30\% EtOAc/petroleum ether): $\mathrm{R}_{f}=0.08$ stained by $\mathrm{KMnO}_{4}$.
m.p.: $114-116^{\circ} \mathrm{C}$. Crystallised by vapour diffusion (EtOAc/petroleum ether).
$v_{\max }\left(\right.$ neat): $2936,2872,2635,2524,1701,1676,1634,1281 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 11.51$ (br. s, 1H), $7.05(\mathrm{~s}, 1 \mathrm{H}), 2.91-2.80(\mathrm{~m}, 1 \mathrm{H})$, $2.57-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.24(\mathrm{~m}, 3 \mathrm{H}), 2.20-2.08(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.94(\mathrm{~m}, 1 \mathrm{H})$, $1.81-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.36(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 214.4,172.2,146.6,132.2,50.1,38.6,38.5,36.6,27.9$, 27.6, 27.5, 24.9, 11.3.

HRMS: exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{3}\right)$ requires $m / z 221.1183$, found $m / z$ 211.1185.


Table 1. Crystal data and structure refinement for watson_ml66.

### 6.9 Synthesis of Compound 180 (Scheme 48/49).



### 6.9.1 Synthesis and Characterisation of compound 180 Synthesis.

## Compound 174.



## Experimental

Compound 174 was prepared according to General Procedure B using DMSO (5.82 $\mathrm{mL}, 81.94 \mathrm{mmol}, 3$ equiv.), oxalyl chloride ( $3.51 \mathrm{~mL}, 40.93 \mathrm{mmol}, 1.5$ equiv.), compound 146 ( $4.76 \mathrm{~g}, 27.32 \mathrm{mmol}$, 1 equiv.), triethylamine ( $15.24 \mathrm{~mL}, 109.34 \mathrm{mmol}$, 4 equiv.), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(55 \mathrm{~mL})$. After 2 h the reaction was subjected to purification outlined in General Procedure B (silica gel, 10-30\% EtOAc/petroleum ether) to afford a pale yellow oil which was dissolved in THF ( 50 mL ) under an atmosphere of nitrogen and allylmagnesium bromide ( $1 \mathrm{M} \mathrm{in}_{\mathrm{Et}}^{2}$ O ) ( $30.0 \mathrm{~mL}, 30.00 \mathrm{mmol}, 1.1$ equiv.) added dropwise at $0^{\circ} \mathrm{C}$ over 5 minutes. The resulting solution was allowed to rise to room temperature and stirred for 16 h . The reaction was slowly quenched with water (70 mL ) and stirred vigorously for 10 minutes. The organics were extracted with EtOAc ( 3 x 30 mL ), washed with brine ( 30 mL ) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a yellow oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $40 \%$ EtOAc/petroleum ether to afford compound $\mathbf{1 7 3}$ as a colourless oil ( $3.86 \mathrm{~g}, 15.06$ $\mathrm{mmol})$ which was used without further purification.

To a round bottom flask was added compound 173 ( $3.86 \mathrm{~g}, 15.06 \mathrm{mmol}, 1$ equiv.) and EtOH ( 30 mL ). PPTS ( $379 \mathrm{mg}, 1.51 \mathrm{mmol}, 0.1$ equiv.) was added portionwise and the resulting solution was brought to $60^{\circ} \mathrm{C}$ for 4 h . The reaction was allowed to cool to room temperature and was then evaporated to afford a pale orange oil. The crude material was loaded directly in a solution of $30 \% \mathrm{EtOAc} /$ petroleum ether and purified by flash silica column chromatography, eluent $30-50 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound ( $1.13 \mathrm{~g}, 24 \%$ ( 3 steps)) as a colourless liquid.

TLC ( $60 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.12$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3434 (br.), 2945, 2870, 1732, 1716, 1376, 1238, $1024 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.75$ (ddt, $J=17.2,10.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $5.11-5.03(\mathrm{~m}$, $2 \mathrm{H}), 4.98-4.90(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$, $1.71-1.53(\mathrm{~m}, 4 \mathrm{H})$. OH not observed.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.0,133.7,117.9,73.2,62.7,38.8,30.1,28.6,21.3$.

## Experimental

HRMS: exact mass calculated for [M+Na] ${ }^{+}\left(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}\right)$ requires $\mathrm{m} / \mathrm{z}$ 195.0992, found m/z 195.0991.

## Compound 175.



Prepared according to General Procedure B using oxalyl chloride ( $0.24 \mathrm{~mL}, 2.84$ mmol, 1.5 equiv.), DMSO ( $0.40 \mathrm{~mL}, 5.63 \mathrm{mmol}, 3$ equiv.), compound 174 ( 324 mg , 1.88 mmol , 1 equiv.), triethylamine ( $1.05 \mathrm{~mL}, 7.53 \mathrm{mmol}, 4$ equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 5 mL ). After 2 h the reaction was subjected to purification outlined in General Procedure B (silica gel, $40 \% \mathrm{EtOAc} /$ petroleum ether) to afford the title compound as a pale yellow oil ( $275 \mathrm{mg}, 86 \%$ ).

TLC ( $40 \% \mathrm{Et}_{2} \mathrm{O} /$ petroleum ether): $\mathrm{R}_{f}=0.50$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (neat): $3366,2963,1727,1374,1234,1020,916 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 9.75(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{ddt}, J=17.3,10.3,7.1$ Hz, 1H), $5.13-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.96-4.88(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.35$ - 2.29 (m, 2H), $2.03(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.79(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 201.5,170.8,133.2,118.4,72.5,40.1,38.8,26.0,21.2$.

HRMS: exact mass calculated for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\left(\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}\right)$ requires $m / z$ 188.1281, found $m / z$ 188.1281.

## Compound 176.



Prepared according to General Procedure B using ethyl $(E)$-hex-3-enoate ( 1.21 mL , $7.62 \mathrm{mmol}, 1.3$ equiv.), DIPEA ( $1.53 \mathrm{~mL}, 8.78 \mathrm{mmol}, 1.5$ equiv.), dibutylboryltrifilate solution ( 1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) ( $7.64 \mathrm{~mL}, 7.64 \mathrm{mmol}, 1.3$ equiv.), and compound 175 ( 1.00 g , 5.88 mmol , 1 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 30 mL ), potassium buffer solution ( $\mathrm{pH} 7.4,13 \mathrm{~mL}$ ), $\mathrm{MeOH}(20 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}_{2}(30 \%$ solution, 6.9 mL$)$. After 16 h the reaction was subjected to purification outlined in General Procedure B (silica gel, 15-20\% EtOAc/petroleum ether) to afford the title compound as a colourless oil ( $1.21 \mathrm{~g}, 51 \%$ ( ${ }^{1} \mathrm{H}$ NMR yield). $>95: 5$ syn:anti ${ }^{1} \mathrm{H}$ NMR.

TLC ( $20 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.42$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (neat): $3502,2958,2930,2870,1727,1372,1236,1022 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.77-5.64(\mathrm{~m}, 2 \mathrm{H}), 5.53-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.02$ $(\mathrm{m}, 2 \mathrm{H}), 4.95-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.31$ (m, 0.2H (minor)), $2.98-2.91$ (m, 0.8 H (major)), 2.83 (br. s, 0.2 H (minor)), 2.74 (br. $\mathrm{s}, 0.8 \mathrm{H}$ (major)), $2.34-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.83$ $-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.30-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.01-0.95(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 173.91,170.88,138.93,137.66$ (minor), 133.70, 133.66, 122.03, 122.00, 121.63 (minor), 117.88, 73.46, 72.95, 71.64 (minor), 71.52, 71.15 (minor), $71.03,61.03$ (minor), 60.99, 54.89, 54.86, 49.5 (minor), 49.39 (minor), 38.83 (minor), $38.78,38.74,30.06$ (minor), 30.02 (minor), 29.93, 29.76 (minor), 29.70 (minor), 29.66, 29.62, 25.79, 21.29, 14.25, 14.12 (minor), 13.61.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{5}\right)$ requires $\mathrm{m} / \mathrm{z} 313.2010$, found m/z 313.2009.

## Compound S5.



S5 was prepared according to General Procedure D using compound 176 (103 mg, $0.33 \mathrm{mmol}, 1$ equiv. $78 \%$ purity), $\mathrm{CuBr}(5 \mathrm{mg}, 0.03 \mathrm{mmol}, 10 \mathrm{~mol} \%$ ), DIC ( $80 \mu \mathrm{~L}$, $0.51 \mathrm{mmol}, 1.5$ equiv.) and toluene ( 0.1 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure D (silica gel, $10 \% \mathrm{EtOAc} /$ petroleum ether) to afford compound $\mathbf{1 7 8}$ as a colourless oil which was not characterised.

S5 was prepared according to General Procedure D using PTSA (mono-hydrate) (43 $\mathrm{mg}, 0.23 \mathrm{mmol}, 1.2$ equiv.), and $\mathrm{EtOH}(2 \mathrm{~mL})$. After 5 h the reaction was subjected to purification outlined in General Procedure D (silica gel, 30\% EtOAc/petroleum ether) to afford the title compound as a colourless oil and as two separable diastereoisomers at $\mathrm{C}^{1}$ ( $17 \mathrm{mg}, 26 \%$ (combined yield)), the relative stereochemistry of which were not confirmed.

## Isomer 1:

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.28$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3456 (br.), 2960, 2922, 2871, 1708, 1447, 1371, 1262, 1234, 1079, 1026 $\mathrm{cm}^{-1}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.74-6.68(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.12(\mathrm{~m}, 3 \mathrm{H}), 2.17-2.09$ $(\mathrm{m}, 2 \mathrm{H}), 2.00-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.59-1.49$ $(\mathrm{m}, 1 \mathrm{H}), 1.45-1.32(\mathrm{~m}, 5 \mathrm{H}), 1.32-1.25(\mathrm{~m}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 168.2,142.2,134.4,66.8,60.2,42.5,40.3,37.1,33.7$, 32.8, 29.6, 27.8, 24.1, 14.5, 12.7.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 253.1798$, found m/z 253.1801.

Calculated for a mixture of isomer 1 and 2.

## Isomer 2:

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.17$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3359 (br.), 2968, 2929, 2865, 1708, 1449, 1370, 1247, 1075, $1024 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.70(\mathrm{dd}, J=4.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.09(\mathrm{~m}, 2 \mathrm{H})$, $3.73-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H})$, $1.97-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.43-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.24(\mathrm{~m}, 3 \mathrm{H})$, $1.23-1.11(\mathrm{~m}, 1 \mathrm{H}), 0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.85(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 168.2,142.3,134.1,70.9,60.3,42.6,41.7,37.1,36.1$, 34.5, 33.0, 28.1, 27.8, 14.5, 12.6.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 253.1798$, found m/z 253.1801.
Calculated for a mixture of isomer 1 and 2.

Compound 179.

## Experimental



To a round bottom flask charged with compound $\mathbf{S 5}$ ( $17 \mathrm{mg}, 0.07 \mathrm{mmol}, 1$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was added DMP ( $43 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.5$ equiv.) in one portion under an atmosphere of nitrogen. The reaction was stirred at room temperature for 16 h before being diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL}), 2 \mathrm{M} \mathrm{NaOH}(2 \mathrm{~mL})$ added and the layers stirred vigorously for 10 minutes. The layers were separated and the aqueous further extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{ml})$. The organics were combined, washed with brine ( 10 ml ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil. The crude material was loaded in a solution of $10 \% \mathrm{EtOAc} /$ petroleum ether and purified by flash silica column chromatography, eluent $10 \% \mathrm{EtOAc}$ /petroleum ether to afford the title compound as a colourless oil ( $13 \mathrm{mg}, 77 \%$ ).

TLC ( $10 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.20$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (neat): 3385 (br.), 2972, 2931, 2874, 1707, 1460, 1446, $1265 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.84\left(\mathrm{dd}, J=5.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{5}\right.$ ), $4.26-4.14(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ ), $2.69-2.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 2.50-2.33\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{3 \mathrm{a}}, \mathrm{H}^{7}\right), 2.27-2.18$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{6}, \mathrm{H}^{7}\right), 1.75-2.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7 \mathrm{a}}\right), 1.57-1.48\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{8}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.38-$ $1.21\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}^{3}, \mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{\prime}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.98\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 210.8(\mathrm{CO}), 167.5\left(\mathrm{CO}_{2} \mathrm{Et}\right), 143.0\left(\mathrm{C}^{5}\right), 132.8\left(\mathrm{C}^{4}\right)$, $60.4\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 48.2\left(\mathrm{C}^{7}\right), 41.5\left(\mathrm{C}^{2}\right), 40.9\left(\mathrm{C}^{3 \mathrm{a}}\right), 36.9\left(\mathrm{C}^{6 / 7 \mathrm{a}}\right), 36.6\left(\mathrm{C}^{6 / 7 \mathrm{a}}\right), 32.9\left(\mathrm{C}^{8}\right)$, $29.5\left(\mathrm{C}^{3}\right), 27.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 14.3\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 12.4\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 251.1642$, found $m / z 251.1645$.

## Experimental

## Compound 180.



Prepared according to General Procedure F using compound 179 ( $103 \mathrm{mg}, 0.41 \mathrm{mmol}$ ) and $3 \mathrm{M} \mathrm{HCl}(12 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure F (silica gel, 30\% EtOAc/petroleum ether) to afford the desired product as a colourless oil which solidified to a white solid on standing ( $54 \mathrm{mg}, 59 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.19$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (neat): 2916 (br.), 2871, 1706, 1676, 1429, $1278 \mathrm{~cm}^{-1}$.
m.p.: $114-116{ }^{\circ} \mathrm{C}$. Crystallised by vapour diffusion (EtOAc/petroleum ether).
${ }^{1}{ }^{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 11.44$ (br. s, $1 \mathrm{H}, \mathrm{CO}_{2} H$ ), 7.07 (dd, $J=5.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}^{5}\right), 2.81-2.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3}\right), 2.52-2.35\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{3 \mathrm{a}}, \mathrm{H}^{7}\right), 2.31-2.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right.$, $\left.\mathrm{H}^{7^{7}}\right), 1.78-1.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7 \mathrm{a}}\right), 1.59-1.49\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{8}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 1.41-1.24(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}^{3^{\prime}}, \mathrm{CH}_{3} \mathrm{CH}_{2}{ }^{\prime}\right), 0.99\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 210.8\left(\mathrm{C}^{1}\right), 172.5\left(\mathrm{CO}_{2} \mathrm{H}\right), 146.6\left(\mathrm{C}^{5}\right), 131.8\left(\mathrm{C}^{4}\right), 48.3$ $\left(\mathrm{C}^{7}\right), 41.6\left(\mathrm{C}^{2}\right), 40.7\left(\mathrm{C}^{3 \mathrm{a}}\right), 37.2\left(\mathrm{C}^{6}\right), 36.7\left(\mathrm{C}^{7 \mathrm{a}}\right), 32.9\left(\mathrm{C}^{8}\right), 29.6\left(\mathrm{C}^{3}\right), 27.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $12.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{3}\right)$ requires $\mathrm{m} / \mathrm{z}$ 223.1334, found $m / z 223.1336$.

## Experimental



Table 1. Crystal data and structure refinement for watson_mllb04s401monop.

### 6.10 Core Analogue L-Ile-Conjugation (Scheme 50).

## Compound S181a.



Prepared according to General Procedure G using compound 9b ( $20 \mathrm{mg}, 0.10 \mathrm{mmol}$, 1 equiv.), HATU ( $51 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.), $L$-isoleucine methyl ester hydrochloride ( $28 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $60 \mu \mathrm{~L}, 0.34 \mathrm{mmol}, 3$ equiv.), and DMF $(0.5 \mathrm{~mL})$. After 16 h the reaction was subjected to the purification outlined in General Procedure G (silica gel, $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a pale yellow oil ( $23 \mathrm{mg}, 69 \%$ ).

## Experimental

TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.56$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\max }$ (film): 3346 (br.), 2961, 2933, 2874, 1735, 1659, 1622, 1513, 1199, $1147 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.34-6.23(\mathrm{~m}, 2 \mathrm{H}), 4.71-4.66(\mathrm{~m}, 1 \mathrm{H}), 3.77-3.73$ $(\mathrm{m}, 3 \mathrm{H}), 3.22-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.22(\mathrm{~m}, 5 \mathrm{H}), 1.98-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.81(\mathrm{~m}$, $1 \mathrm{H}), 1.65-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.13-1.00(\mathrm{~m}$, 4H), $0.97-0.89(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.1,220.1,172.9,167.9,167.8,138.1,138.0,135.7$, 135.6, 56.5, 56.5, 52.3, 46.7, 38.3, 38.3, 38.2, 36.0, 36.0, 30.9, 30.8, 28.7, 28.0, 27.9, 25.5, 25.4, 20.9, 15.7, 15.6, 11.7, 11.7.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 322.2013$, found m/z 322.2012.

## Compound 181a.



Prepared according to General Procedure H using compound S181a ( $20 \mathrm{mg}, 0.06$ mmol, 1 equiv.), LiOH ( $5 \mathrm{mg}, 0.21 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the resulting suspension brought to $50^{\circ} \mathrm{C}$ for 16 h . The reaction was allowed to cool to room temperature, acidified with AcOH and the organics extracted with EtOAc (3 x 5 mL ). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was

## Experimental

purified by flash silica column chromatography, eluent $1 \%$ AcOH, 30\% $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford a colourless oil. The material was washed with petroleum ether to afford the title compound as a colourless oil ( $12 \mathrm{mg}, 63 \%$ ).

TLC ( $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.27$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\text {max }}$ (film): 3337 (br.), 2958, 2921, 2870, 2850, 1731, 1654, 1613, 1519, 1195, 1149 $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.35-6.30(\mathrm{~m}, 1 \mathrm{H}), 6.29-6.23(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.67$ $(\mathrm{m}, 1 \mathrm{H}), 3.22-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.25(\mathrm{~m}, 5 \mathrm{H}), 2.07-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.83$ $(\mathrm{m}, 1 \mathrm{H}), 1.67-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.15-1.03(\mathrm{~m}, 4 \mathrm{H}), 1.02-0.94$ (m, 6H). $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}^{\mathrm{N}}$ MR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.2,220.1,175.3,175.3,168.4,168.3,138.6,138.5$, $135.5,135.4,56.6,46.7,38.3,37.9,37.8,36.0,30.9,30.9,28.7,28.0,27.9,25.4,25.3$, 20.9, 15.8, 15.7, 11.7, 11.7.

HRMS: exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 306.1711$, found m/z 306.1706.

## Compound S181b.



9a


64\% yield


S181b

Prepared according to General Procedure G using compound 9a ( $20 \mathrm{mg}, 0.09 \mathrm{mmol}$, 1 equiv.), HATU ( $51 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.), $L$-isoleucine methyl ester

## Experimental

hydrochloride ( $30 \mathrm{mg}, 0.17 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $60 \mu \mathrm{~L}, 0.34 \mathrm{mmol}, 3$ equiv.), and DMF ( 0.5 mL ). After 16 h the reaction was subjected to the purification outlined in General Procedure G (silica gel, $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a pale yellow oil ( $22 \mathrm{mg}, 64 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.50$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\max }$ (film): 3319 (br.), 2963, 2933, 2877, 1735, 1660, 1624, 1513, 1202, $1148 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.57-6.50(\mathrm{~m}, 1 \mathrm{H}), 6.26-6.17(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.19(\mathrm{~m}, 3 \mathrm{H})$, $2.17-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.39(\mathrm{~m}, 1 \mathrm{H})$, $1.29-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.90(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 220.4,220.3,172.9,172.8,168.3,168.1,136.4,136.1$, $133.2,133.1,56.5,56.4,52.3,46.8,38.2,38.2,37.0,35.9,27.0,27.0,25.5,25.4,23.3$, 23.3, 19.8, 19.7, 15.7, 15.7, 11.7 .

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 308.1856$, found m/z 308.1857.

## Compound 181b.



## Experimental

Prepared according to General Procedure H using compound S181b ( $21 \mathrm{mg}, 0.07$ mmol, 1 equiv.), LiOH ( $5 \mathrm{mg}, 0.21 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ ( 5 mL ). The reaction was brought to $50{ }^{\circ} \mathrm{C}$ for 16 h . The reaction was allowed to cool to room temperature, acidified with AcOH and the organics extracted with EtOAc (3x5mL). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford a colourless oil. The material was washed with petroleum ether to afford the title compound as a colourless oil ( $18 \mathrm{mg}, 90 \%$ ).

TLC ( $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.51$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\text {max }}$ (film): 3327 (br.), 2961, 2924, 2876, 1730, 1655, 1618, 1518, 1202, $1144 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.38-6.30(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.56(\mathrm{~m}, 1 \mathrm{H})$, $3.36-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.20(\mathrm{~m}, 3 \mathrm{H}), 2.13$ (br. s, 2H), 1.99 (br. s, 1H), $1.87-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.02-0.90$ $(\mathrm{m}, 6 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.6,220.5,175.9,168.9,168.7,136.1,136.0,133.9$, $133.6,57.1,46.8,37.7,37.7,37.0,35.9,27.0,26.9,25.4,25.3,23.3,23.3,19.7,15.8$, 15.7, 11.7.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4}\right)$ requires $m / z$ 294.1705, found m/z 294.1707.

## Compound S181c.



Prepared according to General Procedure G using compound 172 ( $20 \mathrm{mg}, 0.09 \mathrm{mmol}$, 1 equiv.), HATU ( $41 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.), $L$-isoleucine methyl ester hydrochloride ( $25 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $50 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 3$ equiv.) and DMF ( 0.4 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a pale yellow oil ( $19 \mathrm{mg}, 61 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.63$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\text {max }}$ (film): 3321 (br.), 2959, 2930, 2874, 1740, 1703, 1657, 1624, 1518, 1200, 1150 $\mathrm{cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.34-6.25(\mathrm{~m}, 1 \mathrm{H}), 6.25-6.20(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.61$ (m, 1H), $3.78-3.73(\mathrm{~m}, 3 \mathrm{H}), 3.01-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.31$ $(\mathrm{m}, 2 \mathrm{H}), 2.27-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.87(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.35$ $(\mathrm{m}, 5 \mathrm{H}), 1.27-1.13(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.89(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 213.7,213.6,172.3,172.3,167.6,167.3,136.9,136.7$, $135.5,135.4,56.0,55.9,51.7,49.3,49.3,38.0,37.6,37.5,37.4,36.3,27.8,27.8,27.5$, 27.4, 26.9, 26.8, 24.9, 24.8, 24.2, 24.2, 15.1, 15.0, 11.1, 10.8, 10.8.

## Experimental

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 350.2326$, found m/z 350.2326 .

## Compound S181c.



Prepared according to General Procedure H using compound S181c (19 mg, 0.06 mmol, 1 equiv.), LiOH ( $5 \mathrm{mg}, 0.21 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and the resulting suspension brought to $50^{\circ} \mathrm{C}$ for 16 h . The reaction was allowed to cool to room temperature, acidified with AcOH and the organics extracted with EtOAc (3 x 5 mL ). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was purified by flash silica column chromatography, eluent $1 \% \mathrm{AcOH}, 30 \%$ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford a colourless oil. The material was washed with petroleum ether to afford the title compound as a colourless oil ( $13 \mathrm{mg}, 71 \%$ ). dr 5:1 $\mathrm{C}^{8 \mathrm{a}}$.

TLC ( $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.63$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\max }$ (film): 3325 (br.), 2959, 2924, 2872, 1701, 1655, 1616, 1522, 1231, $1152 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.35-6.28(\mathrm{~m}, 1 \mathrm{H}), 6.26-6.20(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.63$ (m, 1H), $3.01-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.19$ $(\mathrm{m}, 1 \mathrm{H}), 2.06-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.36$ $(\mathrm{m}, 4 \mathrm{H}), 1.35-1.27(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.94(\mathrm{~m}, 9 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed. Minor isomerisation to trans-ring junction observed.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 214.4,214.4,175.4,168.6,168.4,137.3,137.1,136.6$, 56.8, 56.7, 49.9, 38.6, 38.2, 38.1, 37.8, 37.7, 36.9, 28.4, 28.4, 28.1, 28.0, 27.5, 27.4, $25.4,25.3,24.8,24.8,15.8,15.7,11.7,11.5,11.4$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 336.2175$, found $m / z 336.2177$.

## Compound S181d.



Prepared according to General Procedure G using compound 180 ( $20 \mathrm{mg}, 0.09 \mathrm{mmol}$, 1 equiv.), HATU ( $41 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv.), $L$-isoleucine methyl ester hydrochloride ( $25 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.5$ equiv.), DIPEA ( $50 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 3$ equiv.), and DMF ( 0.4 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a pale yellow oil ( $21 \mathrm{mg}, 67 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.42$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\max }$ (film): 3314 (br.), 2959, 2924, 2874, 1742, 1713, 1657, 1624, $1518 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.25-6.19(\mathrm{~m}, 1 \mathrm{H}), 6.13-6.08(\mathrm{~m}, 1 \mathrm{H}), 4.68-4.61$ (m, 1H), $3.76-3.73(\mathrm{~m}, 3 \mathrm{H}), 2.55-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.33(\mathrm{~m}, 4 \mathrm{H}), 2.25-2.15$ $(\mathrm{m}, 2 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.39$ $(\mathrm{m}, 2 \mathrm{H}), 1.37-1.12(\mathrm{~m}, 3 \mathrm{H}), 1.00-0.89(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 210.8,172.8,172.8,169.7,169.4,138.1,138.1,135.2$, $134.9,56.4,56.2,52.3,48.3,41.6,40.9,40.8,38.2,38.0,36.4,36.3,36.3,33.0,33.0$, 29.2, 29.1, 28.0, 25.4, 25.2, 15.8, 15.7, 12.5, 11.7, 11.6.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 350.2326$, found $m / z 350.2326$.

## Compound 181d.



Prepared according to General Procedure H using compound S181d ( $20 \mathrm{mg}, 0.06$ mmol, 1 equiv.), LiOH ( $5 \mathrm{mg}, 0.21 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$. After 16 h the reaction was allowed to cool to room temperature, acidified with AcOH , and the organics extracted with EtOAc ( $3 \times 5 \mathrm{~mL}$ ). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to afford a colourless oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and was purified by flash silica column chromatography, eluent $1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford a colourless oil. The material was washed with petroleum ether to afford the title compound as a colourless oil ( $16 \mathrm{mg}, 83 \%$ ).

TLC $\left(1 \% \mathrm{AcOH}, 30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{R}_{f}=0.76$ and 0.66 stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave). Separation of isomers observed.
$v_{\text {max }}$ (film): 3310 (br.), 2961, 2922, 2872, 1711, 1655, 1611, 1522, $1202 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.29-6.17(\mathrm{~m}, 2 \mathrm{H}), 4.68-4.55(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.46$ (m, 1H), $2.47-2.32$ (m, 4H), $2.26-2.15$ (m, 2H), 1.99 (br. s, 1H), $1.72-1.61$ (m, $1 \mathrm{H}), 1.60-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.15(\mathrm{~m}, 3 \mathrm{H}), 1.02-0.90(\mathrm{~m}, 9 \mathrm{H}) . \mathrm{CO}_{2} H$ not observed.
${ }^{13}{ }^{1} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 211.3,211.1,175.6,170.5,170.0,137.8,135.7,135.4$, $56.8,56.7,48.2,41.5,40.8,40.7,37.7,37.6,36.4,36.4,36.3,32.9,29.1,28.0,25.4$, $25.2,15.8,15.7,12.5,11.7,11.7$.

HRMS: exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 334.2024$, found m/z 334.2018.

## Compound 182a.



To a round bottom flask charged with hydroxylamine hydrochloride ( $10 \mathrm{mg}, 0.14$ mmol, 1.5 equiv.) and NaOAc ( $10 \mathrm{mg}, 0.12 \mathrm{mmol}$, 1.2 equiv.) in a solution of $\mathrm{H}_{2} \mathrm{O}$ $(0.5 \mathrm{~mL})$ was added compound $\mathbf{1 0 b}(32 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv.) in $\mathrm{EtOH}(0.2 \mathrm{~mL})$ at room temperature. The reaction was stirred for 16 h before being diluted with $\mathrm{H}_{2} \mathrm{O}$ ( 5 mL ) and extracted with EtOAc ( $3 \times 5 \mathrm{~mL}$ ). The organics were combined, washed with brine ( 5 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil. The crude material was taken up in diethyl ether and petroleum ether added until a precipitate formed. The solvent was removed with a Pasteur pipette and the residue dried under vacuum to afford the title compound as a colourless oil (19 mg, 57\%). 7:3 oxime isomers.

## Experimental

TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.29$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\text {max }}$ (film): 3316 (br.), 2957, 2922, 2876, 2855, 1744, 1649, 1612, $1518 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.83$ (br. s, 1H), $6.46-6.38(\mathrm{~m}, 1 \mathrm{H}), 6.31-6.25(\mathrm{~m}$, $1 \mathrm{H}), 4.72-4.65(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.14$ (m, 0.3H (minor)), $3.00-2.68$ (m, 2.7 H ), $2.59-2.14(\mathrm{~m}, 4 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1.3 \mathrm{H}), 1.86-1.80$ (m, 0.7H (major)), 1.56 - $1.33(\mathrm{~m}, 3 \mathrm{H}), 1.27-1.09(\mathrm{~m}, 2 \mathrm{H}), 1.02-0.89(\mathrm{~m}, 9 \mathrm{H})$. Major/minor isomers reported where separation of signals observed.
${ }^{13}{ }^{13}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 173.1,173.0,168.0,167.9,137.7,137.7,137.5,135.6$, 135.4, 56.5, 56.5, 52.3, 41.3, 41.2, 38.3, 38.3, 38.1, 37.7, 37.6, 37.5, 29.9, 29.9, 29.6, 29.5, 29.4, 29.3, 28.3, 26.4, 25.5, 25.4, 15.7, 15.6, 11.7, 11.7, 11.5, 11.4.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ requires $m / z 351.2278$, found $m / z 351.2281$.

## Compound 182b.



To a round bottom flask was added compound 182a ( $10 \mathrm{mg}, 0.03 \mathrm{mmol}, 1$ equiv.) and LiOH ( $3 \mathrm{mg}, 0.13 \mathrm{mmol}, 4$ equiv.). The material was suspended in 1:1 THF: $\mathrm{H}_{2} \mathrm{O}$ (1 mL ) and the resulting suspension brought to $40^{\circ} \mathrm{C}$ for 16 h . The reaction was allowed to cool to room temperature, extracted once with $\operatorname{EtOAc}(10 \mathrm{~mL})$, the aqueous acidified with AcOH and the organics extracted with EtOAc ( $3 \times 5 \mathrm{~mL}$ ). The organics

## Experimental

were combined, washed with brine ( 5 mL ) dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil. The crude material was dissolved in a minimal volume of diethyl ether and petroleum ether added until a white precipitate formed. The solvent was removed by Pasteur pipette and the residue dried under vacuum to afford the title compound as a white solid ( $8 \mathrm{mg}, 83 \%$ ). 7:3 oxime isomers.
$v_{\max }$ (film): 3323 (br.), 2963, 2928, 2874, 1719, 1655, 1612, 1508, $1202 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.47$ - 6.41 (m, 1H), $6.34-6.28$ (m, 1H), 5.81 (br. s, $1 \mathrm{H}), 4.72-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 0.3 \mathrm{H}$ (minor)), $3.03-2.71(\mathrm{~m}, 2.7 \mathrm{H}), 2.62$ - $2.27(\mathrm{~m}, 3 \mathrm{H}), 2.21$ (br. s, 1H), $2.06-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.75$ (m, 0.7H (major)), $1.61-1.35(\mathrm{~m}, 4.3 \mathrm{H}), 1.33-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.90(\mathrm{~m}, 9 \mathrm{H})$. One signal not observed. Major/minor isomers reported where separation of signals observed.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 176.0,168.2,168.1,137.7,137.5,135.3,56.8,56.7$, $56.7,41.2,41.2,38.2,38.2,38.2,38.0,38.0,37.6,37.5,29.8,29.8,29.6,29.5,29.3$, 29.2, 28.2, 28.2, 26.8, 25.4, 25.4, 15.7, 15.7, 11.8, 11.8, 11.5, 11.4, 11.4.

HRMS: exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 335.1976$, found m/z 335.1973.

## Compound S182c.



To a 2-dram vial was added ( $\pm$ )-CFA (4) ( $20 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv.) and HATU (44 $\mathrm{mg}, 0.12 \mathrm{mmol}$, 1.2 equiv.). DMF ( 0.5 mL ) was added, followed by DIPEA ( $50 \mu \mathrm{~L}$,

## Experimental

$0.29 \mathrm{mmol}, 3$ equiv.) and the resulting solution stirred at room temperature for 5 minutes. Methyl $L$-isoleucinate hydrochloride ( $26 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.5$ equiv.) was then added in one portion and the vial capped with a screw top lid. The reaction was stirred for 16 h under air. The reaction was then diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the organics extracted with EtOAc ( $3 \times 5 \mathrm{~mL}$ ). The organics were combined, washed with brine ( 10 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale yellow oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford compound $\mathbf{1 0 b}$ as a colourless oil. The residue which was taken up in $\mathrm{EtOH}(0.18 \mathrm{~mL})$ and added to a stirring solution of $O$-methylhydroxylamine hydrochloride ( $13 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.5$ equiv.) and NaOAc ( $11 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.25$ equiv.) in $\mathrm{H}_{2} \mathrm{O}(0.55 \mathrm{~mL})$. The reaction was stirred for 16 h before being diluted with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and extracted with $\mathrm{EtOAc}(3 \times 5 \mathrm{~mL})$. The organics were combined, washed with brine ( 5 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $10-20 \%$ $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the title compound as a colourless oil ( $23 \mathrm{mg}, 59 \%$ (2 steps)). 7:3 oxime isomers.

TLC ( $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.14$ and 0.08 stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave). Separation of isomers visible.
$v_{\max }$ (film): 3315 (br.), 2958, 2934, 2874, 2857, 1742, 1656, 1619, 1519, $1050 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.43-6.35(\mathrm{~m}, 1 \mathrm{H}), 6.27-6.20(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.87-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.02(\mathrm{~m}, 0.3 \mathrm{H}($ minor $)$ ), $2.98-2.79$ $(\mathrm{m}, 1 \mathrm{H}), 2.76-2.60(\mathrm{~m}, 1.3 \mathrm{H}$ (minor)), $2.59-2.10(\mathrm{~m}, 3.7 \mathrm{H}$ (major)), $1.97-1.87(\mathrm{~m}$, 1 H ), $1.87-1.80$ (m, 0.7H (major)), $1.56-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.22-1.07(\mathrm{~m}, 2 \mathrm{H}), 1.01-$ $0.88(\mathrm{~m}, 9 \mathrm{H})$. Major/minor isomers reported where separation of signals observed.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 173.0,172.9,168.0,168.0,168.0,167.9,167.5,167.5$, $167.0,137.6,137.5,135.6,135.6,135.5,135.4,61.6,56.5,56.4,52.3,41.4,41.3,39.4$, $39.4,38.3,38.2,38.1,37.7,37.6,37.5,37.4,30.1,30.1,29.8,29.7,29.5,29.4,28.3$, $28.2,26.8,25.8,25.7,25.5,25.4,15.7,15.6,11.7,11.7,11.5,11.4,11.4$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 365.2435$, found $m / z 365.2431$.

## Compound 182c.



Prepared according to General Procedure H using compound S182c ( $20 \mathrm{mg}, 0.05$ mmol, 1 equiv.) NaOH ( $5 \mathrm{mg}, 0.13 \mathrm{mmol}, 2$ equiv.), and $1: 1 \mathrm{MeOH}: \mathrm{H}_{2} \mathrm{O}$ ( 4 mL ). After 5 h the reaction was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $5 \mathrm{mg}, 26 \%$ ). 7:3 oxime isomers.
$v_{\text {max }}$ (film): 3323 (br.), 2963, 2937, 2878, 1727, 1659, 1616, 1521, $1052 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.49-6.38(\mathrm{~m}, 1 \mathrm{H}), 6.31-6.25(\mathrm{~m}, 1 \mathrm{H}), 4.69-4.63$ (m, 1H), $3.93-3.76(m, 3 H), 3.15-3.03(m, 0.3 H$ (minor)), $2.97-2.79(m, 1 H), 2.77$ - 2.62 (m, 1.3H), $2.59-2.13$ (m, 3.7H), 2.00 (br. s, 1H), $1.89-1.81$ (m, 0.7H (major)), $1.58-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.05(\mathrm{~m}, 2 \mathrm{H}), 1.01-0.91(\mathrm{~m}, 9 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed. Major/minor isomers reported where separation of signals observed.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 175.5,168.5,168.5,168.4,167.7,167.7,167.6,167.1$, 138.2, 138.1, 138.1, 138.0, 135.4, 135.3, 135.2, 61.6, 56.8, 56.8, 45.7, 41.4, 41.3, 39.5, $39.4,38.3,38.1,37.9,37.8,37.8,37.7,37.6,37.5,30.1,30.0,29.6,29.5,29.4,28.3$, 26.9, 25.7, 25.7, 25.4, 25.4, 15.8, 15.7, 11.7, 11.7, 11.5, 11.4, 11.4.

## Experimental

HRMS: exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ requires $m / z 349.2133$, found m/z 349.2123.

## Compound 183.



To a round bottom flask charged with compound $\mathbf{1 0 b}$ ( $34 \mathrm{mg}, 0.10 \mathrm{mmol}, 1$ equiv.) in a solution of $\mathrm{EtOH}(3 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(6 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.5$ equiv.) in one portion under an atmosphere of nitrogen. The reaction was stirred at room temperature for 16 h , before being quenched with water ( 5 mL ). The organics were extracted with EtOAc ( $3 \times 10 \mathrm{~mL}$ ) and the layers combined, washed with brine ( 10 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil. The residue was suspended in 1:1 MeOH: $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and $\mathrm{LiOH}(7 \mathrm{mg}, 0.29 \mathrm{mmol}, 3$ equiv.) added. The resulting suspension was brought to $50^{\circ} \mathrm{C}$ and maintained at this temperature for 16 h . The reaction was allowed to cool to room temperature, acidified with AcOH , and the organics extracted with EtOAc ( $3 \times 10 \mathrm{~mL}$ ). The organics were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale yellow oil. The crude material was taken up in diethyl ether and petroleum ether added until a white precipitate formed. The solvent was removed with a Pasteur pipette, and the residue dried under vacuum to afford the title compound as a white solid ( $8 \mathrm{mg}, 24 \%$ ).
$v_{\max }$ (film): 3412 (br.), 3174, (br.) 1709, 1679, 1400, 1331, 1136, $1108 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.54-6.46(\mathrm{~m}, 1 \mathrm{H}), 6.39-6.26(\mathrm{~m}, 1 \mathrm{H}), 4.52$ (br. s, 1H), $4.42-4.34$ (m, 1H), 4.19 (br. s, 1H), $2.77-2.66$ (m, 1H), $2.21-2.12(\mathrm{~m}, 1 \mathrm{H})$,

## Experimental

$2.11-1.91(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.36(\mathrm{~m}, 4 \mathrm{H})$, $1.23-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.02-0.81(\mathrm{~m}, 10 \mathrm{H})$. One signal not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 168.6,168.5,139.2,138.5,136.1,135.8,75.0,75.0$, $42.6,42.5,37.7,37.6,37.6,36.3,36.1,31.1,31.0,28.6,28.2,28.2,25.4,25.3,24.1$, $15.8,15.7,11.7,11.6,11.5$.

HRMS: exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 322.2024$, found m/z 322.2024.

### 6.11 L-Ile Automated Screen (Scheme 52).

Reactions carried out according to General Procedure I.

## Compound 184a.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.18$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.14 (br. s, 1H), 4.46 (app. dd, $J=8.5,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.48(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.59(\mathrm{~m}, 7 \mathrm{H}), 1.53-1.35(\mathrm{~m}$, $3 \mathrm{H}), 1.15-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.86-0.81(\mathrm{~m}, 6 \mathrm{H})$. Rotameric peaks observed but not reported.
${ }^{13}{ }^{13}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 176.2,173.9,56.2,45.6,37.7,30.6,30.0,25.9,25.8$, 25.0, 15.4, 11.6. Rotameric peaks observed but not reported.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{3}\right)$ requires $m / z 228.1600$, found $m / z 228.1588$.

## Experimental

## Compound 184b.



184b
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.61-6.55(\mathrm{~m}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 0.6 \mathrm{H})$ major rotamer, 6.16 (d, $J=8.7 \mathrm{~Hz}, 0.4 \mathrm{H}$ ) minor rotamer, 5.97 (br. s, 1H), 4.75 (dd, $J=8.8$, $3.8 \mathrm{~Hz}, 0.4 \mathrm{H}$ ) minor rotamer, $4.63(\mathrm{dd}, J=8.4,4.7 \mathrm{~Hz}, 0.6 \mathrm{H}$ ) major rotamer, $2.61-$ $2.52(\mathrm{~m}, 2 \mathrm{H}), 2.51-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.26-$ $1.13(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.87(\mathrm{~m}, 6 \mathrm{H})$.

Major rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 174.3,165.6,139.3,138.9,56.5,38.0,33.3,31.5,25.3$, 23.4, 15.5, 11.8 .

Peaks observed for minor rotamer:
${ }^{13}{ }^{13}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 174.8,165.8,139.3,138.9,55.3,38.0,31.5,26.4,14.7$, 11.9.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 226.1443$, found m/z 226.1431.

## Compound 184c.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.54($ br. s, 1 H$), 6.64-6.59(\mathrm{~m}, 1 \mathrm{H}), 6.33(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 0.7 \mathrm{H}$ ) major rotamer, $6.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 0.3 \mathrm{H})$ minor rotamer, $4.68(\mathrm{dd}, J=8.8$, $3.8 \mathrm{~Hz}, 0.3 \mathrm{H})$ minor rotamer, $4.56(\mathrm{dd}, J=8.3,4.6 \mathrm{~Hz}, 0.7 \mathrm{H})$ major rotamer, $2.28-$ $2.13(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.59-$ $1.50(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.91-0.82(\mathrm{~m}, 6 \mathrm{H})$.

Major rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 174.1,168.6,134.5,132.8,56.4,37.9,26.3,25.4,24.1$, 22.0, 21.5, 15.4, 11.7.

Peaks observed for minor rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 174.5,168.8,134.4,132.9,55.2,25.2,24.2,14.6,11.8$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 240.1600$, found m/z 240.1589 .

## Compound 184d.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.01$ (app. d, $J=8.3 \mathrm{~Hz}, 0.2 \mathrm{H}$ ) minor rotamer, 5.93 (app. d, $J=8.7 \mathrm{~Hz}, 0.8 \mathrm{H}$ ) major rotamer, 4.70 (app. dd, $J=8.8,4.0 \mathrm{~Hz}, 0.8 \mathrm{H}$ ) major rotamer, 4.59 (app. dd, $J=8.4,4.8 \mathrm{~Hz}, 0.2 \mathrm{H}$ ) minor rotamer, $2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.05$ $-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.53-$ $1.37(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.14(\mathrm{~m}, 4 \mathrm{H}), 0.98-0.88(\mathrm{~m}, 6 \mathrm{H})$. One signal not observed.

## Experimental

${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 176.8,175.4,55.1,45.6,37.6,30.0,29.5,26.5,25.8$, 25.7, 14.7, 11.9. Rotameric peaks observed but not reported.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{3}\right)$ requires $m / z$ 242.1756, found $m / z 242.1745$.

## Compound 184e.


$184 e$
${ }^{1}{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 9.45$ (br. s, 1 H ), $8.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=$ $7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=7.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{dd}, J=$ 8.3, 4.4 Hz, 1H), 3.80 (s, 3H), 2.32 (s, 3H), $2.10-1.99$ (m, 1H), $1.63-1.54$ (m, 1H), $1.32-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 175.2,165.9,157.0,135.0,131.7,129.6,125.7,124.6$, 61.8, 57.1, 37.9, 25.3, 16.0, 15.8, 11.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 280.1549$, found m/z 280.1537.

## Compound 184f.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.82($ br. s, 1H), $7.39-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}$, 2 H ), 7.04 (app. dt, $J=6.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 0.7 \mathrm{H})$ major rotamer, 6.66 (d, $J=8.7 \mathrm{~Hz}, 0.3 \mathrm{H}$ ) minor rotamer, 4.92 (dd, $J=8.8,3.8 \mathrm{~Hz}, 0.3 \mathrm{H}$ ) minor rotamer, $4.81(\mathrm{dd}, J=8.3,4.7 \mathrm{~Hz}, 0.7 \mathrm{H})$ major rotamer, $3.84(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.62$ $-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.92(\mathrm{~m}, 6 \mathrm{H})$.

Major rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.4,167.6,160.0,135.6,129.8,119.0,118.1,112.7$, 57.1, 55.6, 38.1, 25.4, 15.6, 11.8.

Peaks observed for minor rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.9,167.8,135.6,112.7,55.9,38.1,26.5,14.8,12.0$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{4}\right)$ requires $m / z$ 266.1392, found $m / z 266.1383$.

## Compound 184g.


${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.54(\mathrm{brs}, 1 \mathrm{H}), 8.35-8.29(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{dd}, J=7.6$, $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{dd}, J=8.6,3.4 \mathrm{~Hz}, 0.3 \mathrm{H})$ minor rotamer, $4.81(\mathrm{dd}, J=8.2,4.3 \mathrm{~Hz}, 0.7 \mathrm{H})$ major rotamer, 4.15 (app. d, $J=3.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.17-$ $2.02(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 0.7 \mathrm{H})$ major rotamer, $1.52-1.41(\mathrm{~m}, 0.3 \mathrm{H})$ minor rotamer, $1.33-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.04-0.93(\mathrm{~m}, 6 \mathrm{H})$.

Major rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.0,163.4,160.7,137.3,136.8,126.9,125.1,115.9$, 107.4, 63.8, 57.2, 37.8, 25.3, 15.8, 11.8.

Peaks observed for minor rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.5,163.7,136.9,107.4,63.9,56.0,37.6,26.7,14.8$, 11.9.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{4}\right)$ requires $m / z$ 291.1345, found m/z 291.1334.

## Compound 184h.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.99$ (br. s, 1H), 8.69 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.71 (d, $J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{dd}, J=9.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=8.0$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.32$ $-1.20(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 175.1,165.2,153.9,152.2,121.5,119.9,115.5,113.4$, 57.3, 56.9, 55.9, 37.7, 25.3, 15.7, 11.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{5}\right)$ requires $\mathrm{m} / \mathrm{z} 296.1498$, found $m / z 296.1482$.

## Compound 184i.



184i
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.61$ (br. s, 1 H ), 8.51 (d, $J=7.8 \mathrm{~Hz}, 0.6 \mathrm{H}$ ) major rotamer, $8.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 0.4 \mathrm{H})$ minor rotamer, $8.20-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.40$ (m, 1H), 7.07 (appt. t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{dd}, J=8.2,3.8$ $\mathrm{Hz}, 0.4 \mathrm{H}$ ) minor rotamer, 4.79 (dd, $J=7.9,4.8 \mathrm{~Hz}, 0.6 \mathrm{H}$ ) major rotamer, 3.98 (app. d, $J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.17-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 0.6 \mathrm{H}), 1.57-1.47(\mathrm{~m}, 0.4 \mathrm{H})$, $1.34-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.93(\mathrm{~m}, 6 \mathrm{H})$.

Major rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.7,165.6,157.9,133.3,132.4,121.5,121.0,111.6$, 57.4, 56.3, 37.6, 25.4, 15.8, 11.8.

Peaks observed for minor rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 176.2,165.8,133.3,132.5,121.5,111.6,56.3,56.1$, 37.4, 26.7, 14.9, 11.9.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 266.1392$ found $m / z$ 266.1383.

## Compound 184j.



184j
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.09(\mathrm{dd}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 1 \mathrm{H})$, $7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{dd}, J=8.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~s}$, $3 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. One signal not observed.
${ }^{13}{ }^{13}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 174.2,168.0,138.5,137.0,133.9,130.6,129.8,128.8$, 57.4, 45.4, 37.8, 25.3, 15.6, 11.9.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{5} \mathrm{~S}\right)$ requires $m / z 314.1062$, found m/z 314.1049.

## Compound 184k.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.82$ (app. dd, $J=7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.32-7.15$ (m, 2 H ), $7.02-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.79$ (br. s, 1H), 4.90 (ddd, $J=8.5,3.5,2.4 \mathrm{~Hz}, 0.2 \mathrm{H}$ ) minor rotamer, 4.79 (ddd, $J=8.0,4.5,2.2 \mathrm{~Hz}, 0.8 \mathrm{H}$ ) major rotamer, $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.99$ (m, 1H), $1.62-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.90(\mathrm{~m}, 6 \mathrm{H})$.

Major rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 174.2,163.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 159.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=245.4\right.$ $\mathrm{Hz}), 134.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 134.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.1 \mathrm{~Hz}\right), 132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.8 \mathrm{~Hz}\right), 120.3$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=11.4 \mathrm{~Hz}\right), 115.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.8 \mathrm{~Hz}\right), 57.1,37.9,25.3,20.6,15.6,11.8$.

Peaks observed for minor rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 174.7$, $163.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right.$ ), $132.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.9\right.$ Hz), 55.9, 37.8, 26.5, 14.7, 11.9 .

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{FNO}_{3}\right)$ requires $m / z$ 268.1349, found $m / z 268.1341$.

## Compound 1841.


${ }^{1}{ }^{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.43$ (br. s, 1H), $7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.29(\mathrm{~m}$, $3 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.7 \mathrm{H})$ major rotamer, $6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.3 \mathrm{H})$ minor rotamer, 4.94 (dd, $J=8.8,3.7 \mathrm{~Hz}, 0.3 \mathrm{H}$ ) minor rotamer, 4.83 (dd, $J=8.4,4.5 \mathrm{~Hz}, 0.7 \mathrm{H}$ ) major rotamer, $2.15-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.07-0.92$ (m, 6H).

Major rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.0,166.5,134.6,131.7,130.9,130.4,130.4,127.2$, 57.2, 38.0, 25.3, 15.7, 11.8.

Peaks observed for minor rotamer:
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.5,166.7,134.6,130.9,130.5,56.0,38.0,26.5$, 14.9, 12.0.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{ClNO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z}$ 270.0897, found $m / z 270.0887$.

## Compound 184m.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.52$ (br. s, 1H), 7.66 (app. d, $J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.48 (app. t, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 0.7 \mathrm{H})$ major rotamer, $6.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 0.3 H ) minor rotamer, $4.88(\mathrm{dd}, J=8.7,3.8 \mathrm{~Hz}, 0.3 \mathrm{H})$ minor rotamer, 4.76 (dd, $J=8.3$, $4.7 \mathrm{~Hz}, 0.7 \mathrm{H})$ major rotamer, $2.13-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.17$ (m, 1H), 1.01-0.91 (m, 6H).

Major rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 174.7,165.0,137.1,135.6,131.7,125.9,57.2,38.1$, 25.4, 15.6, 11.8. Two signals equivalent.

Peaks observed for minor rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.2,165.3,137.2,125.9,56.1,26.5,14.8,11.9$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z}$ 304.1507, found $m / z 304.0498$.

## Compound 184n.



184n
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 9.33$ (br. s, 1 H ), 8.59 (d, $J=8.0 \mathrm{~Hz}, 0.9 \mathrm{H}$ ) major rotamer, $8.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 0.1 \mathrm{H})$ minor rotamer, 7.86 (app. dd, $J=9.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.15-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=8.4,3.6 \mathrm{~Hz}, 0.1 \mathrm{H})$ minor rotamer, 4.78 (dd, $J=8.0,4.5 \mathrm{~Hz}, 0.9 \mathrm{H}$ ) major rotamer, 3.96 (app. d, $J=4.7 \mathrm{~Hz}, 3 \mathrm{H}$ ), $2.15-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 0.9 \mathrm{H})$ major rotamer, $1.53-1.43(\mathrm{~m}, 0.1 \mathrm{H})$ minor rotamer, $1.32-1.20(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.92(\mathrm{~m}, 6 \mathrm{H})$.

## Major rotamer:

${ }^{13}{ }^{13}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.3,164.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right), 157.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=240.0\right.$ $\mathrm{Hz}), 154.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=2.1 \mathrm{~Hz}\right), 122.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6.8 \mathrm{~Hz}\right), 119.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=23.5 \mathrm{~Hz}\right), 118.6$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25.1 \mathrm{~Hz}\right), 113.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.6 \mathrm{~Hz}\right), 57.3,56.9,37.8,25.4,15.7,11.8$.

Peaks observed for minor rotamer:
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 175.9,164.4\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.8 \mathrm{~Hz}\right), 57.0,56.1,37.6,26.6$, 14.9, 11.9.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{FNO}_{4}\right)$ requires $m / z 284.1298$, found m/z 284.1288.

## Compound 1840.



1840
${ }^{1}{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 9.23$ (br. s, 1H), 8.72 (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.66 (dd, $J=$ $8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=$ $8.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.51(\mathrm{~m}, 1 \mathrm{H})$, $1.30-1.19(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.2,165.3,152.7,147.9,126.0,124.5,122.9,115.7$, 61.8, 57.1, 56.1, 37.7, 25.2, 15.8, 11.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{5}\right)$ requires $\mathrm{m} / \mathrm{z} 296.1498$, found $m / z 296.1486$.

## Compound 184p.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.12$ (br. s, 1H), $7.79-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}$, $1 \mathrm{H}), 7.22-7.07(\mathrm{~m}, 2 \mathrm{H}), 4.95-4.89(\mathrm{~m}, 0.3 \mathrm{H})$ minor rotamer, $4.84-4.78(\mathrm{~m}, 0.7 \mathrm{H})$ major rotamer, $2.16-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 0.7 \mathrm{H})$ major rotamer, $1.53-1.45$ $(\mathrm{m}, 0.3 \mathrm{H})$ minor rotamer, $1.34-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.91(\mathrm{~m}, 6 \mathrm{H})$.

## Major rotamer:

${ }^{13} \mathrm{C}^{2}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.4,162.1\left(\mathrm{dd},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.4 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=1.4 \mathrm{~Hz}\right.$ ), 159.0 $\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=244.5 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=1.8 \mathrm{~Hz}\right), 156.8\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=243.7 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=2.3 \mathrm{~Hz}\right), 122.2$ $\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=14.0 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.4 \mathrm{~Hz}\right), 120.4\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.8 \mathrm{~Hz}\right), 118.3$ $\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right), 117.7\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=28.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.1 \mathrm{~Hz}\right), 57.3$, 37.8, 25.3, 15.7, 11.8.

Peaks observed for minor rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.9,162.4\left(\mathrm{dd},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=1.6 \mathrm{~Hz}\right.$ ), 56.1 , 37.7, 26.5, 14.8, 11.9.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{NO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z}$ 272.1098, found $m / z 272.1084$.

## Compound 184q.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.85$ (br. s, 1 H ), 7.53 (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.47 (dd, $J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.7 \mathrm{H})$ major rotamer, $6.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 0.3 \mathrm{H})$ minor rotamer, $4.92(\mathrm{dd}, J=8.9,3.6 \mathrm{~Hz}, 0.3 \mathrm{H})$ minor rotamer, $4.81(\mathrm{dd}, J=8.5,4.4 \mathrm{~Hz}, 0.7 \mathrm{H})$ major rotamer, $2.15-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.60-$ $1.51(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.06-0.93(\mathrm{~m}, 6 \mathrm{H})$.

Major rotamer:
${ }^{13} \mathrm{C}^{2}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 174.8,166.2,137.4,134.1,132.1,129.5,127.8,57.2$, $38.0,25.3,15.7,11.8$. One signal not observed.

Peaks observed for minor rotamer:
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 175.3,166.4,137.5,133.6,129.5,56.0,38.0,26.5$, 14.8, 12.0.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{NO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z}$ 304.0507, found $m / z 304.0498$.

## Compound 184r.


${ }^{1}{ }^{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.64$ (br. s, 1H), $8.01-7.97(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}$, $1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 0.8 \mathrm{H})$ major rotamer, $7.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 0.2 \mathrm{H})$ minor rotamer, $4.94(\mathrm{dd}, J=8.6,3.6 \mathrm{~Hz}, 0.2 \mathrm{H})$ minor rotamer, $4.83(\mathrm{dd}, J=8.2,4.5 \mathrm{~Hz}, 0.8 \mathrm{H})$ major rotamer, $2.16-2.01(\mathrm{~m}, 1 \mathrm{H})$, $1.61-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.93(\mathrm{~m}, 6 \mathrm{H})$.

Major rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.8,164.4,146.3\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.4 \mathrm{~Hz}\right), 132.7,132.0$, $127.5,127.4,121.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=1.3 \mathrm{~Hz}\right), 120.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=260.0 \mathrm{~Hz}\right), 57.3,38.0,25.2$, 15.5, 11.8 .

Peaks observed for minor rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 176.4,164.6,56.1,37.7,26.4,14.6,11.9$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 320.1110$, found $m / z 320.1097$.

## Compound 184s.



184s
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=7.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}$, $J=7.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 0.7 \mathrm{H})$ major rotamer, 7.02 (d, $J=8.4 \mathrm{~Hz}, 0.3 \mathrm{H}$ ) minor rotamer, $5.00(\mathrm{dd}, J=8.5,3.8 \mathrm{~Hz}, 0.3 \mathrm{H})$ minor rotamer, $4.90(\mathrm{dd}, J=8.0,4.6 \mathrm{~Hz}, 0.7 \mathrm{H})$ major rotamer, $2.21-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.70-$ $1.54(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. One signal not observed.

## Major rotamer:

${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 174.5,165.2,153.6,151.1,137.1,127.9,125.8,125.0$, 124.8, 57.3, 38.2, 25.5, 15.6, 11.9.

Peaks observed for minor rotamer:
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 175.0,165.5,151.1,127.9,125.9,124.9,56.3,38.1$, 26.4, 14.9, 12.0.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right)$ requires $\mathrm{m} / \mathrm{z}$ 293.0960, found $m / z 293.0946$.

## Compound 184t.



184t
${ }^{1}{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.23$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.00 (br. s, 1H), 7.66 (dd, $J=$ $7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.76$ (dd, $J=$ $8.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.24(\mathrm{~m}, 2 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.62$ $-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.00-0.92(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13}{ }^{3}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 174.5,164.9,143.7,142.4,124.1,121.6,121.3,121.0$, 65.1, 63.6, 57.2, 37.7, 25.4, 15.7, 11.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5}\right)$ requires $m / z$ 294.1341, found $m / z 294.1328$.

## Compound 184u.



184u
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 11.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.94(\mathrm{dd}, J=4.2,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.84-8.78$ (m, 1H), 8.45 (br. s, 1H), 8.30 (dd, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.00-7.94$ $(\mathrm{m}, 1 \mathrm{H}), 7.70-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=7.7,3.8 \mathrm{~Hz}$, 0.2 H ) minor rotamer, $4.82(\mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, 0.8 \mathrm{H})$ major rotamer, $2.29-2.18(\mathrm{~m}$,

## Experimental

$1 \mathrm{H}), 1.78-1.68(\mathrm{~m}, 0.8 \mathrm{H})$ major rotamer, $1.63-1.51(\mathrm{td}, J=14.1,7.2 \mathrm{~Hz}, 0.2 \mathrm{H})$ minor rotamer, $1.47-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.05(\mathrm{~m}, 3 \mathrm{H}), 1.04-0.93(\mathrm{~m}, 3 \mathrm{H})$.

Major rotamer:
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ \delta 175.2,166.9,149.5,145.4,138.3,134.3,132.6,128.6$, 127.6, 126.8, 121.3, 58.4, 37.1, 25.5, 16.2, 11.8

Peaks observed for minor rotamer:
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 175.8,167.0,149.5,145.5,138.3,128.7,127.7,57.0$, 37.0, 27.0, 15.3, 12.0.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ requires $m / z$ 287.1396, found m/z 287.1396.

## Compound 184v.



184v
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 11.06-10.97(\mathrm{~m}, 1 \mathrm{H}), 8.94(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.89$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.84 (dd, $J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ (brs, 1H), $7.90-7.84(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{dd}, J=8.3,3.6 \mathrm{~Hz}, 0.1 \mathrm{H})$ minor rotamer, 4.89 (dd, $J=8.1,4.6 \mathrm{~Hz}, 0.9 \mathrm{H}$ ) major rotamer, $2.23-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 0.9 \mathrm{H})$ major rotamer, $1.57-1.48(\mathrm{~m}, 0.1 \mathrm{H})$ minor rotamer, $1.41-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.02$ (m, 3H), $1.00-0.93(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 174.6,164.8,144.7,143.7,142.9,140.5,134.6,133.6$, 130.2, 128.9, 57.7, 37.7, 25.5, 16.0, 11.8 .

## Experimental

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$ requires $m / z$ 288.1348, found m/z 288.1336.

### 6.12 Synthesis of ( $\pm$ )-CMA (4) (Scheme 53).


( $\pm$ ) -5

### 6.12.1 Procedures and Characterisation of ( $\pm$ )-CMA (4) Synthesis.

## Compound 187.





187

To a round bottom flask was added anhydrous MeOH ( 15 mL ) followed by portionwise addition of Na metal $(1.18 \mathrm{~g}, 51.30 \mathrm{mmol}, 2.2$ equiv.) at room temperature. The resulting solution was then added dropwise under nitrogen to a stirring solution of ( $E$ )-1,4-dibromobut-2-ene ( $5.00 \mathrm{~g}, 23.38 \mathrm{mmol}, 1$ equiv.) and dimethyl malonate ( $2.94 \mathrm{~mL}, 25.73 \mathrm{mmol}, 1.1$ equiv.) in anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$ at room temperature.

## Experimental

The resulting beige suspension was stirred at room temperature for 16 h . The reaction was diluted with water ( 20 mL ) and extracted with EtOAc (3 x 20 mL ). The organics were combined, washed with brine ( 20 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil. The crude material was loaded in a solution of $10 \% \mathrm{EtOAc} /$ petroleum ether and purified by flash silica column chromatography, eluent $10 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound as a colourless oil ( $4.07 \mathrm{~g}, 94 \%$ ).

TLC ( $10 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.18$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }($ neat $): 2951,1722,1437,1329,1272,1209,1127 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.47-5.38(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.12$ (m, 1H), $3.74(\mathrm{~s}, 6 \mathrm{H}), 2.61-2.55(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{dd}, J=7.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.55$ (m, 1H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 170.2,167.9,133.1,118.8,52.9,52.7,35.9,31.6,20.8$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{4}\right)$ requires $m / z$ 185.0814, found m/z 185.0450.

The spectral data were consistent with those previously reported in the literature. ${ }^{[114]}$

## Compound 189.



To a round bottom flask was added compound 187 ( $11.36 \mathrm{~g}, 61.68 \mathrm{mmol}, 1$ equiv.) and $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1: 1,90 \mathrm{~mL}) . \mathrm{NaOH}(2.71 \mathrm{~g}, 67.75 \mathrm{mmol}, 1.1$ equiv.) was added in

## Experimental

one portion and the resulting solution stirred at room temperature for 16 h . The reaction brought to pH 1 with HCl and extracted with $\mathrm{EtOAc}(3 \times 50 \mathrm{ml}$ ). The organics were combined, washed with brine ( 50 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil (188) ( $10.04 \mathrm{~g}, 59.00 \mathrm{mmol}$ ).
To the colourless oil in a round bottom flask was added THF ( 240 mL ), followed by CDI ( $10.53 \mathrm{~g}, 64.92 \mathrm{mmol}, 1.1$ equiv.) at room temperature. The reaction was stirred for 3 h , and $\mathrm{NH}_{4} \mathrm{OH}$ (aq.) ( 200 mL ) added slowly. The reaction was stirred for a further 16 h . The reaction was diluted with water ( 100 mL ) and extracted with EtOAc (3 x 100 mL ). The organics were combined, washed with brine ( 100 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil which solidified to a white solid on standing. The crude material was dry loaded onto silica gel and purified by flash silica column chromatography, eluent 30-50\% EtOAc/petroleum ether to afford the title compound as a white solid $(6.67 \mathrm{~g}, 64 \%)$.

TLC ( $40 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.26$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3411,3169 (br.), 1709, 1679, 1400, 1329, 1134, $1108 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.20$ (br. s, 1H), $5.68-5.57$ (m, 2H), 5.35 (dd, $J=$ $17.0,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=10.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{q}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.07(\mathrm{dd}, J=9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=8.0,4.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 171.6,170.4,133.2,120.0,52.3,37.6,34.6,21.9$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z}$ 170.0812, found $m / z 170.0812$.

The spectral data were consistent with those previously reported in the literature. ${ }^{[114]}$

## Compound 190.



To a round bottom flask was added compound 189 ( $1.49 \mathrm{~g}, 8.81 \mathrm{mmol}, 1$ equiv.) and $\mathrm{MeOH}(15 \mathrm{~mL})$ under an atmosphere of nitrogen. DBU ( $2.96 \mathrm{~mL}, 19.79 \mathrm{mmol}, 2.25$ equiv.) was added, followed by portionwise addition of TCICA ( $778 \mathrm{mg}, 3.35 \mathrm{mmol}$, 0.38 equiv.) and the resulting solution brought to $65^{\circ} \mathrm{C}$ for 16 h . The solvent was removed in vacuo to afford an orange oil which solidified to an orange solid on standing. The material was dry loaded and purified by flash silica column chromatography, eluent $30 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound colourless oil ( $1.65 \mathrm{~g}, 94 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.37$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}$ (neat): 3321 (br.), 2951, 1705, 1514, 1324, 1248, $1164 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.73$ (ddd, $J=17.2,10.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{3}$ ), 5.41 (br. s, $1 \mathrm{H}, \mathrm{N} H), 5.28\left(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 5.11\left(\mathrm{dd}, J=10.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{4}\right), 3.70(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$ ), $3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} \mathrm{C}_{3}\right), 2.16\left(\mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 1.85-1.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right)$, 1.53 (br. s, 1H, H").
${ }^{13} \mathrm{C}$ NMR ( $\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 171.2(\mathrm{CO}), 133.6\left(\mathrm{C}^{3}\right), 118.1\left(\mathrm{C}^{4}\right), 52.6\left(\mathrm{CH}_{3} \mathrm{x} 2\right)$, $41.0\left(\mathrm{C}^{1}\right), 34.7\left(\mathrm{C}^{2}\right), 23.5\left(\mathrm{C}^{5}\right)$. One carbonyl CO not observed, one peak equivalent.

HRMS: exact mass calculated for [M+H] ${ }^{+}\left(\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{4}\right)$ requires $m / z$ 200.0917, found m/z 200.0915.

## Experimental

The spectral data were consistent with those previously reported in the literature. ${ }^{[14]}$

## Compound 192.



To a round bottom flask was added compound 190 ( $6.28 \mathrm{~g}, 34.24 \mathrm{mmol}, 1$ equiv.), dipotassium azo-1,2-dicarboxylate ${ }^{[126]}$ (191) ( $33.00 \mathrm{~g}, 169.90 \mathrm{mmol}, 5$ equiv.), and $\mathrm{MeOH}(55 \mathrm{~mL}) . \mathrm{AcOH}$ was added dropwise at $0{ }^{\circ} \mathrm{C}$ and the resulting suspension allowed to rise to room temperature and stir for 16 h . The reaction concentrated in vacuo, diluted with water ( 30 mL ) and extracted with EtOAc ( $3 \times 40 \mathrm{~mL}$ ). The organics were combined, washed with brine ( 40 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless oil. The crude material was loaded in a solution of $30 \% \mathrm{EtOAc} /$ petroleum ether and purified by flash silica column chromatography, eluent $30 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound as a colourless oil ( $6.36 \mathrm{~g}, 92 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.37$ stained by $\mathrm{KMnO}_{4}$.
$\mathrm{V}_{\text {max }}$ (neat): 2921 (br.), 2572 (br.), 1666, 1588, 1311, 1283, $1216 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.33$ (br. s, 1H), 3.70 (s, 3H), 3.67 (s, 3H), $1.65-1.42$ (m, 4H), $1.33-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 172.2,52.5,38.9,33.9,23.4,20.5,13.5$. One carbonyl CO not observed, one peak coincident.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z}$ 202.1074, found $m / z 202.1070$.

## Compound 193.



To a round bottom flask charged with compound $192(6.36 \mathrm{~g}, 31.61 \mathrm{mmol}, 1$ equiv.) and $\mathrm{Boc}_{2} \mathrm{O}(8.97 \mathrm{~g}, 41.10 \mathrm{mmol}, 1.3$ equiv.) in a solution of THF ( 50 mL ) was added DMAP ( $777 \mathrm{mg}, 6.33 \mathrm{mmol}, 0.2$ equiv.) at room temperature under an atmosphere of nitrogen. The reaction was brought to $70^{\circ} \mathrm{C}$ for 3 h . The reaction was then allowed to cool to room temperature and diluted with anhydrous $\mathrm{MeOH}(30 \mathrm{~mL})$. To a separate round bottom flask charged with anhydrous $\mathrm{MeOH}(35 \mathrm{~mL}$ ) was added Na metal ( 223 $\mathrm{mg}, 9.70 \mathrm{mmol}, 0.3$ equiv.) portionwise under an atmosphere of nitrogen. The resulting solution was then added dropwise to the reaction flask at $0{ }^{\circ} \mathrm{C}$ in an ice bath. The reaction was allowed to rise to room temperature and stirred for 1.5 h . The reaction was diluted with water ( 100 mL ) and extracted with EtOAc ( $3 \times 100 \mathrm{~mL}$ ). The organics were combined, washed with brine ( 150 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale orange oil. The crude material was loaded in a solution of $20 \% \mathrm{EtOAc} /$ petroleum ether and purified by flash silica column chromatography, eluent $20 \% \mathrm{EtOAc}$ /petroleum ether to afford the title compound as a pale yellow oil ( $7.18 \mathrm{~g}, 93 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.60$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3261 (br.), 3131, 2961, 2926, 2868, 1705, 1377, 1364, 1335, 1165, 1022 $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 5.13$ (br. s, $1 \mathrm{H}, \mathrm{NH}$ ), 3.74 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ), $1.63-1.54$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 1.49-1.43\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{5}, 3 \mathrm{CH}_{3}\right), 1.29$ (br. s, $1 \mathrm{H}, \mathrm{H}^{5}$ ), $0.97(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}, \mathrm{H}^{4}$ ).

## Experimental

${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 172.5(\mathrm{CO}), 156.1(\mathrm{CO}), 80.0\left(\mathrm{br} ., \mathrm{C}^{6}\right), 52.3\left(\mathrm{CH}_{3}\right)$, 39.0 (br., $\mathrm{C}^{1}$ ), 33.5 (br., $\mathrm{C}^{2}$ ), $28.5\left(\mathrm{CH}_{3}\right.$ ), $28.5\left(\mathrm{CH}_{3}\right), 28.4\left(\mathrm{CH}_{3}\right), 23.3$ (br., $\mathrm{C}^{5}$ ), 20.5 $\left(C^{3}\right), 13.6\left(C^{4}\right)$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}_{4}\right)$ requires $m / z 244.1543$, found $m / z 244.1544$.

## Compound 194.



To a round bottomed flask charged with compound $\mathbf{1 9 3}(150 \mathrm{mg}, 0.62 \mathrm{mmol}, 1$ equiv.) and dioxane ( 1.2 mL ) was added $6 \mathrm{M} \mathrm{HCl}(1.5 \mathrm{~mL})$ dropwise at room temperature and the resulting solution stirred for 5 h . The solvent was removed in vacuo to afford a colourless oil, which was dissolved in acetone ( 2 mL ) and the solvent removed in vacuo to afford the title compound as a colourless oil which solidified to a white solid on standing ( $113 \mathrm{mg},>99 \%$ ).
$v_{\max }$ (neat): 2872 (br.), 1745, 1526, 1444, 1370, 1201, $1167 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ): $\delta 9.01$ (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$ ), 3.84 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ), $2.05-1.94$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 1.90-1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 1.72-1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 1.51-1.44(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}^{5^{\prime}}$ ), $0.99\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}^{4}\right)$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right)$ : $\delta 168.6(\mathrm{CO}), 53.3\left(\mathrm{OCH}_{3}\right), 38.5\left(\mathrm{C}^{1}\right), 30.5\left(\mathrm{C}^{2}\right), 20.1$ $\left(C^{3 / 5}\right), 20.0\left(C^{3 / 5}\right), 13.5\left(C^{4}\right)$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z}$ 144.1019, found m/z 144.1016.

## Experimental

The spectral data were consistent with those previously reported in the literature. ${ }^{[127]}$
( $\pm$ )-CMA (4).


To a round bottomed flask was added compound $193(1.35 \mathrm{~g}, 4.11 \mathrm{mmol})$ and 3 M $\mathrm{HCl}(60 \mathrm{~mL})$. The reaction was brought to $100^{\circ} \mathrm{C}$ for 16 h . The reaction was allowed to cool to room temperature and concentrated in vacuo to afford a pale orange solid. The solid material was washed sparingly with acetone to afford the title compound as a beige solid ( $596 \mathrm{mg}, 65 \%$ ).
$v_{\text {max }}$ (neat): 2956 (br.), 1714, 1500, 1253, $1165 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$ ): $\delta 1.80-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.51(\mathrm{~m}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) . \mathrm{NH}_{2}$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d 6 ): $\delta 170.1,37.2,28.2,19.4,18.2,13.3$.

HRMS: exact mass calculated for [M-H] $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{NO}_{2}\right)$ requires $m / z$ 128.0717, found $m / z 128.0721$.

The spectral data were consistent with those previously reported in the literature. ${ }^{[92]}$

### 6.13 Coronamic Acid Automated Screen (Scheme 54).

Reactions carried out according to General Procedure J.

## Compound 195a.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 2.64-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.67(\mathrm{~m}, 6 \mathrm{H}), 1.67-1.53$ $(\mathrm{m}, 4 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.06(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{N} H$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD): $\delta 180.2,174.9,46.0,39.0,33.2,31.2,31.1,27.1,27.0$, 23.3, 21.6, 13.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 226.1443$, found m/z 226.1441.

## Compound 195b.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 6.58-6.56$ (m, 1H), $2.58-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.46$ (m, 2H), $2.00-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.12(\mathrm{~m}$, $1 \mathrm{H}), 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. NH and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 175.0,169.2,140.5,139.8,39.1,34.1,33.2,32.4$, 24.3, 23.3, 21.7, 13.7.

## Experimental

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z} 224.1282$, found $m / z 224.1287$.

## Compound 195c.



195c
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 2.18-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.53(\mathrm{~m}, 8 \mathrm{H}), 1.48-1.36$ $(\mathrm{m}, 2 \mathrm{H}), 1.35-1.18(\mathrm{~m}, 4 \mathrm{H}), 1.12-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{NH}$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD): $\delta 180.2,174.9,46.0,44.3,38.8,33.2,30.4,26.9,26.8$, 26.8, 23.3, 21.6, 13.7.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NO}_{3}\right)$ requires $m / z 240.1600$, found $\mathrm{m} / \mathrm{z} 240.1595$.

## Compound 195d.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 3.05-2.97(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.31$ (m, 1H), 1.87 (t, $J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.22$ $(\mathrm{m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{NH}$ and $\mathrm{CO}_{2} H$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 214.3,174.2,169.9,160.9,141.0,40.7,38.8,36.8$, 33.4, 23.4, 21.6, 16.3, 13.7, 9.3.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{4}\right)$ requires $m / z$ 266.1392, found m/z 266.1389.

## Compound 195e.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.22-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.36(\mathrm{~m}, 2 \mathrm{H})$, $2.19-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.69-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 2 \mathrm{H})$, $1.14-1.07(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .1: 1$ mixture of oxime isomers. $\mathrm{N} H$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 178.6,174.8,160.2,61.3,44.4,38.9,33.2,31.4,31.3$, $30.5,30.4,29.2,29.1,24.5,24.4,23.3,21.6,13.8$. Oxime isomer peaks observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2}\right)$ requires $m / z 283.1658$, found $m / z 283.1653$.

## Compound 195f.


$195 f$
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 4.58$ (br. s, 1H), 3.65 (s, 3H), $2.35-2.27$ (m, 1H), 2.18 - $2.10(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.96-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.66-$ $1.54(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.36(\mathrm{~m}, 5 \mathrm{H}), 1.10-1.05(\mathrm{~m}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{NH}$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD): $\delta 179.4,177.8,52.1,45.2,43.8,33.0,29.4,29.3,29.3$, 23.2, 21.6, 13.8. Three signals not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}_{5}\right)$ requires $m / z$ 298.1654, found m/z 298.1649.

## Compound 195g.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 8.18(\mathrm{t}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.14-8.10(\mathrm{~m}, 1 \mathrm{H}), 7.91-$ $7.88(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.31$ - $1.25(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{NH}$ and $\mathrm{CO}_{2} H$ not observed.

## Experimental

${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 174.6,168.8,136.8,136.0,133.0,132.2,130.8,119.1$, 113.8, 39.4, 33.4, 23.4, 21.6, 13.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ requires $m / z 259.1083$, found $m / z 259.1077$.

## Compound 195h.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 7.42-7.38$ (m, 2H), $7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.06$ $(\mathrm{m}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 1 \mathrm{H})$, $1.26-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{NH}$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13}$ C NMR (126 MHz, MeOD): $\delta 175.0,171.0,161.2,136.9,130.5,120.6,118.7,113.6$, 55.9, 39.6, 33.2, 23.3, 21.7, 13.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z}$ 264.1236, found m/z 264.1232.

## Compound 195i.


$195 i$
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 8.05-8.01(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.66$ $(\mathrm{m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 3 \mathrm{H}), 1.54-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H})$. NH and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD): $\delta 174.7,171.1,139.1,138.6,135.0,131.3,130.5,129.9$, 45.6, 39.0, 33.5, 23.1, 21.6, 13.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{~S}\right)$ requires $m / z$ 312.0906, found m/z 312.0901.

## Compound 195j.



195j
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 7.65$ (dd, $J=7.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.56 (td, $J=7.9,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44$ (td, $J=7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 2 \mathrm{H})$, $1.57-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{NH}$ and $\mathrm{CO}_{2} H$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 174.8,168.8,146.9,132.9,131.9,130.9,128.6,122.9$, $39.4,33.3,23.1,21.6,13.8$. One signal not observed, F splitting not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NF}_{3} \mathrm{O}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 318.0953$, found $m / z 318.0944$.

## Compound 195k.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 7.00(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ $(\mathrm{s}, 6 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) . \mathrm{NH}$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 174.9,170.9,162.3,137.4,106.3,104.8,56.0,39.5$, 33.3, 23.4, 21.7, 13.8. Three signals not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5}\right)$ requires $m / z$ 294.1341, found $m / z 294.1337$.

## Compound 1951.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 7.60$ (dd, $\left.J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.42$ (dd, $J=7.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{NH}$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.

## Experimental

${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD): $\delta 174.5,170.0,139.8,134.4,132.6,130.4,129.1,128.2$, 39.1, 33.4, 23.3, 21.6, 13.7.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{Cl}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 302.0351$, found $m / z 302.0347$.

## Compound 195m.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 7.79(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ $-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{NH}$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD): $\delta$ 174.8, 168.0, 138.8, 136.4, 132.3, 127.3, 39.6, 33.2, 23.2, 21.7, 13.8. Two signals equivalent.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{Cl}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 302.0351$, found $m / z 302.0344$

## Compound 195n.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 8.46$ (t, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $8.16-8.13(\mathrm{~m}, 1 \mathrm{H}), 8.08-$ $8.05(\mathrm{~m}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.58$ $(\mathrm{m}, 1 \mathrm{H}), 1.58-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{N} H$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD): $\delta 199.6,175.1,170.1,138.5,136.2,133.1,132.2,130.0$, 128.5, 39.8, 33.1, 26.8, 23.2, 21.7, 13.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{4}\right)$ requires $m / z$ 276.1236, found $m / z 276.1234$.

## Compound 1950.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 7.42-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.29(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.52$ (m, 4H), $1.34-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{NH}$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 174.4,169.5$ (d, $J_{\mathrm{C}-\mathrm{F}}=2.7 \mathrm{~Hz}$ ), 159.5 (d, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=248.5$ $\mathrm{Hz}), 139.6,129.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.8 \mathrm{~Hz}\right), 125.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 119.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=19.1\right.$ $\mathrm{Hz}), 118.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.7 \mathrm{~Hz}\right), 39.1,33.5,23.3,21.6,13.7$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{ClF}\right)$ requires $\mathrm{m} / \mathrm{z}$ 286.0646, found $m / z 286.0645$.

## Compound 195p.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 7.30$ (dd, $\left.J=7.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.19-7.11(\mathrm{~m}, 2 \mathrm{H})$, $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.28(\mathrm{~m}$, $1 \mathrm{H}), 1.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{NH}$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13}$ C NMR (126 MHz, MeOD): $\delta 174.6,169.6,154.3,148.8,129.4,125.5,122.3,116.6$, 62.0, 56.6, 39.3, 33.7, 23.5, 21.6, 13.7.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{5}\right)$ requires $m / z 294.1341$, found m/z 294.1339.

## Compound 195q.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 7.43-7.38$ (m, 1H), $7.30-7.19$ (m, 2H), $1.71-1.56$ $(\mathrm{m}, 3 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{NH}$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.

## Experimental

${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 174.4,166.6,159.9$ (dd, ${ }^{1} J_{\mathrm{C}-\mathrm{F}}=242.6 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=2.0$
Hz ), $157.4\left(\mathrm{dd},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=246.3 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=2.2 \mathrm{~Hz}\right), 125.8\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=16.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.3\right.$
Hz ), 120.4 (dd, ${ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=9.1 \mathrm{~Hz}$ ), $119.0\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=26.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.4\right.$ $\mathrm{Hz}), 117.5\left(\mathrm{dd},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=25.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.1 \mathrm{~Hz}\right), 39.4,33.6,23.5,21.6,13.7$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{~F}_{2}\right)$ requires $\mathrm{m} / \mathrm{z}$ 270.0942, found $m / z 270.0938$.

## Compound 195r.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.17$ (t, $\left.J=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.10$ (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 2 \mathrm{H})$, $1.63-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. NH and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13}$ C NMR (126 MHz, MeOD): $\delta 174.8,173.1,146.7,144.3,133.1,127.7,127.3,125.9$, 39.3, 33.6, 33.3, 33.3, 26.4, 23.5, 21.6, 13.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{3}\right)$ requires $m / z 274.1443$, found $m / z 274.1437$.

## Compound 195s.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 7.72$ (dd, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.65 (dd, $J=7.7,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{app} . \mathrm{d}, J=0.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.77-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.39-1.35(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) . \mathrm{N} H$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 174.7,168.1,157.8,153.1,131.7,125.1,125.0,123.7$, 118.6, 103.9, 39.5, 33.9, 23.7, 21.7, 13.8, 13.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{4}\right)$ requires $m / z$ 288.1236, found $m / z$ 288.1233.

## Compound 195t.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.62(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.28$ $(\mathrm{m}, 1 \mathrm{H}), 1.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. N $H$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13}$ C NMR (126 MHz, MeOD): $\delta 174.7,168.6,155.2,151.8,138.2,129.2,127.3,127.2$, 126.4, 39.5, 33.4, 23.5, 21.7, 13.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}\right)$ requires $\mathrm{m} / \mathrm{z}$ 291.0803, found $m / z 291.0797$.

## Compound 195u.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 7.38$ (dd, $\left.J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.99$ (dd, $J=8.0,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89$ (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.37(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.27(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.63$ $(\mathrm{m}, 2 \mathrm{H}), 1.63-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H})$. NH and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (126 MHz, MeOD): $\delta 174.7,168.9,145.4,143.7,123.8,123.7,121.9,121.6$, 66.2, 65.1, 39.4, 33.7, 23.6, 21.6, 13.7.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NO}_{5}\right)$ requires $m / z 292.1185$, found $m / z 292.1183$.

## Compound 195v.


${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{MeOD}\right): \delta 9.11(\mathrm{dd}, J=4.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 8.65 (dd, $J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.81(\mathrm{~m}, 2 \mathrm{H}), 1.78-$ $1.68(\mathrm{~m}, 3 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{NH}$ and $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta$ 174.7, 169.1, 149.7, 143.1 (br), 134.8, 134.3, 130.5, $128.6,123.1,39.5,33.6,23.5,21.7,13.8$. Two signals not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ requires $\mathrm{m} / \mathrm{z}$ 285.1239, found $m / z 285.1235$.

## Compound 195w.


${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 9.02-8.98(\mathrm{~m}, 2 \mathrm{H}), 8.64(\mathrm{dd}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 8.28 (dd, $J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.94(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.64-1.60$ $(\mathrm{m}, 1 \mathrm{H}), 1.43-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{NH}$ and $\mathrm{CO}_{2} H$ not observed.

## Experimental

${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{MeOD}$ ): $\delta 174.6,168.1,146.8,145.9,144.0,141.5,134.6,134.3$, 131.1, 131.0, 39.5, 33.8, 23.6, 21.7, 13.8.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}\right)$ requires $m / z$ 286.1192, found $m / z$ 286.1187.

### 6.14 CMA Conjugate Synthesis (Scheme 55).

## Compound S6.



S6

To a round bottom flask charged with compound $\mathbf{4 3 a}$ ( $50 \mathrm{mg}, 0.21 \mathrm{mmol}, 1$ equiv.) in a solution was $\mathrm{EtOH}(1 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(9 \mathrm{mg}, 0.24 \mathrm{mmol}$, 1.2 equiv.) in one portion at room temperature under an atmosphere of nitrogen. The reaction was stirred for 30 minutes, quenched with water ( 5 mL ) and extracted with EtOAc ( $3 \times 10 \mathrm{~mL}$ ). The organics were combined, washed with brine ( 10 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford the title compound as a colourless oil ( $50 \mathrm{mg},>99 \%$ ). $>20: 1$ dr C ${ }^{1}$.

TLC ( $20 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.21$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3406 (br.), 2956, 2919, 2870, 2855, 1708, 1640, 1463, 1242, $1100 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 4.37\left(\mathrm{td}, J=8.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{1}\right)$, $4.24-4.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.76-2.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{3 \mathrm{a}}\right), 2.16-1.97\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{2}\right.$, $\left.\mathrm{H}^{3}, \mathrm{H}^{7 \mathrm{a}}, \mathrm{H}^{6}\right), 1.87-1.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{7}\right), 1.68-1.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{2}, \mathrm{H}^{3}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.27(\mathrm{t}$,
$\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.98\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.95-0.85(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}^{7}{ }^{7}\right)$. OH not observed.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 167.6\left(\mathrm{CO}_{2} \mathrm{Et}\right), 143.5\left(\mathrm{C}^{5}\right), 133.5\left(\mathrm{C}^{4}\right), 75.2\left(\mathrm{C}^{1}\right), 60.3$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 42.5(\mathrm{CH}), 38.0(\mathrm{CH}), 36.4\left(\mathrm{C}^{3 \mathrm{a}}\right), 31.1\left(\mathrm{CH}_{2}\right), 28.5\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right)$, $23.9\left(\mathrm{C}^{7}\right), 14.4\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 11.5\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$.

HRMS: exact mass calculated for $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\left(\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{NO}_{3}\right)$ requires $\mathrm{m} / \mathrm{z}$ 256.1909, found $m / z 256.1884$.

## Compound S6.



To a round bottom flask charged with compound $\mathbf{S 6}$ ( $31 \mathrm{mg}, 0.13 \mathrm{mmol}, 1$ equiv.) in a solution of $1: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(9 \mathrm{~mL})$ was added $\mathrm{NaOH}(22 \mathrm{mg}, 0.55 \mathrm{mmol}, 4.4$ equiv.) in one portion. The resulting solution was brought to $50^{\circ} \mathrm{C}$ for 21 h . The reaction was allowed to cool to room temperature, extracted with EtOAc ( 5 mL ) and the aqueous brought to pH 1 with HCl (aq.). The aqueous was extracted with EtOAc ( 3 x 10 mL ), and the organics combined, washed with brine ( 10 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to afford compound $\mathbf{S 7}$ as a colourless oil ( $11 \mathrm{mg}, 0.05 \mathrm{mmol}$ ).

The oil was transferred to a 2-dram vial and HATU ( $26 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.2$ equiv.) added, followed by DMF ( 0.3 mL ) and DIPEA ( $30 \mu \mathrm{~L}, 0.17 \mathrm{mmol}, 3$ equiv.). The reaction was stirred at room temperature for 5 minutes before compound 194 ( 14 mg , $0.08 \mathrm{mmol}, 1.5$ equiv.) was added. The resulting solution was stirred at room temperature for 6 h . The reaction was diluted with water ( 10 mL ) and extracted with EtOAc (3 x 5 mL ). The organics were combined, washed with brine ( 10 mL ), dried

## Experimental

over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale orange oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $40-50 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the title compound as a white solid ( $6 \mathrm{mg}, 19 \% ~(2$ steps)).

TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.16$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\max }$ (film): 3359 (br.), 2956, 2926, 2894, 1734, 1508, 1459, 1253, $1193 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.37-6.32(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.42-4.36(\mathrm{~m}, 1 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 2.80-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.89-$ $1.83(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.36(\mathrm{~m}, 8 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.02-0.95(\mathrm{~m}, 6 \mathrm{H}), 0.94-$ 0.84 (m, 1H). OH not observed.
${ }^{13} \mathrm{C}^{\mathrm{N}}$ NR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 171.8,169.5,169.4,137.3,137.2,137.0,75.1,52.5$, $52.4,42.4,38.4,38.3,37.6,37.6,36.4,33.3,33.2,31.4,28.7,28.1,28.0,24.3,24.2$, 23.3, 23.2, 20.6, 13.6, 11.6.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 336.2169$, found m/z 336.2173.

## Compound 196a.



S196a


196a

## Experimental

Prepared according to General Procedure H using compound S196a ( $5 \mathrm{mg}, 0.01 \mathrm{mmol}$, 1 equiv.), NaOH ( $2 \mathrm{mg}, 0.05 \mathrm{mmol}, 5$ equiv.), and $1: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$. After 7 h the reaction was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $4 \mathrm{mg}, 83 \%$ ).
$v_{\max }$ (film): 3317 (br.), 2956, 2921, 2870, 1697, 1654, 1619, 1509, 1275, $1182 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.49(\mathrm{~s}, 1 \mathrm{H}), 6.38-6.28(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.35(\mathrm{~m}, 1 \mathrm{H})$, $2.77-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H})$, $1.73-1.32(\mathrm{~m}, 8 \mathrm{H}), 1.22-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.06-0.97(\mathrm{~m}, 6 \mathrm{H}), 0.94-0.86(\mathrm{~m}, 1 \mathrm{H})$. $\mathrm{CO}_{2} \mathrm{H}$ and OH not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 172.8,172.3,172.0,171.6,140.5,139.9,135.6,74.9$, $42.5,42.4,40.1,39.8,37.8,37.8,36.3,36.2,33.6,33.5,31.3,28.5,28.5,28.3,28.0$, 24.0, 21.3, 21.3, 21.2, 20.8, 13.5, 13.4, 11.5.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NO}_{4}\right)$ requires $m / z 322.2013$, found $m / z 322.2015$.

## Compound S196b.



9b


79\% yield


S196b

Prepared according to General Procedure G using compound 9b (10 mg, 0.05 mmol , 1 equiv.), HATU ( $23 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.2$ equiv.), compound 194 ( $14 \mathrm{mg}, 0.08 \mathrm{mmol}$, 1.5 equiv.), DIPEA ( $30 \mu \mathrm{~L}, 0.17 \mathrm{mmol}, 3$ equiv.), and DMF ( 0.3 mL ). After 16 h the

## Experimental

reaction was subjected to purification outlined in General Procedure G (silica gel, 30\% $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) afford the title compound as a colourless oil ( $13 \mathrm{mg}, 79 \%$ ).

TLC $\left(30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathrm{R}_{f}=0.34$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\text {max }}$ (film): 3320 (br.), 2956, 2922, 2870, 2852, 1732, 1658, 1625, 1515, $1162 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.30(\mathrm{~s}, 1 \mathrm{H}), 6.24-6.18(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 3 \mathrm{H})$, $3.23-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.21(\mathrm{~m}, 5 \mathrm{H}), 1.88-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 4 \mathrm{H})$, $1.53-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.12-0.96(\mathrm{~m}, 7 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.2,220.2,171.7,169.3,169.2,137.7,137.7,136.0$, $135.9,52.5,52.5,46.6,46.6,38.4,38.3,36.0,36.0,33.3,33.1,30.8,30.8,28.7,27.9$, 27.8, 23.3, 23.1, 20.9, 20.6, 13.6.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4}\right)$ requires $m / z 320.1856$, found m/z 320.1857.

## Compound 196b.



Prepared according to General Procedure H using compound S196b (13 mg, 0.04 mmol, 1 equiv.), NaOH ( $5 \mathrm{mg}, 0.13 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $12 \mathrm{mg}, 97 \%$ ).
$v_{\max }$ (film): 3339 (br.), 2950, 2935, 2870, 1731, 1656, 1625, 1519, $1178 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.60-6.48(\mathrm{~m}, 1 \mathrm{H}), 6.33-6.24(\mathrm{~m}, 1 \mathrm{H}), 4.68$ (br. s, $1 \mathrm{H}), 3.22-3.09(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.23(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.80(\mathrm{~m}$, $1 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.13-0.96(\mathrm{~m}$, 7H).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.3,220.1,175.1,174.5,170.7,170.3,139.6,138.9$, $135.3,135.1,46.6,46.6,39.0,38.7,38.3,36.0,35.9,33.9,33.8,30.9,30.9,28.6,28.6$, $27.9,27.8,22.7,22.3,20.9,20.8,20.8,13.6,13.5$.

HRMS: exact mass calculated for $[\mathrm{M}-\mathrm{H}]^{-}\left(\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{NO}_{4}\right)$ requires $m / z 304.1554$, found $m / z 304.1551$.

## Compound S196c.



9a


75\% yield


S196c

Prepared according to General Procedure G using compound $9 \mathbf{9}$ ( $15 \mathrm{mg}, 0.08 \mathrm{mmol}$, 1 equiv.), HATU ( $38 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.2$ equiv.), compound 194 ( $22 \mathrm{mg}, 0.12 \mathrm{mmol}$, 1.5 equiv.), DIPEA ( $40 \mu \mathrm{~L}, 0.23 \mathrm{mmol}, 3$ equiv.), and DMF ( 0.4 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, 30\% $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a colourless oil ( $19 \mathrm{mg}, 75 \%$ ).
(TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.32$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\text {max }}$ (film): 3318 (br.), 2956, 2928, 2874, 1731, 1660, 1628, 1515, $1164 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.48-6.40(\mathrm{~m}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.35-$ $3.28(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.15(\mathrm{~m}, 3 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.89-$ $1.81(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.30-$ $1.25(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.94(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 171.7,171.7,169.7,169.5,136.6,136.5,132.9,132.8$, $52.5,52.4,46.8,38.3,38.2,37.0,36.9,36.0,36.0,33.4,33.0,26.8,26.8,23.3,23.1$, 23.1, 20.6, 20.6, 19.7, 13.6.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 306.1700$, found m/z 306.1698.

## Compound 196c.



Prepared according to General Procedure H using compound S196c (18 mg, 0.05 mmol, 1 equiv.), $\mathrm{NaOH}\left(7 \mathrm{mg}, 0.18 \mathrm{mmol}, 3\right.$ equiv.), and $1: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $14 \mathrm{mg}, 82 \%$ ).
$v_{\text {max }}$ (film): 3305 (br.), 2960, 2928, 2872, 1725, 1656, 1621, 1513, $1169 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.56-6.52(\mathrm{~m}, 1 \mathrm{H}), 6.51-6.46(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.26$ (m, 1H), $2.46-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.16(\mathrm{~m}, 3 \mathrm{H}), 2.15-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.66$ $(\mathrm{m}, 3 \mathrm{H}), 1.66-1.52(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.31-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.99$ $(\mathrm{m}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}^{\mathrm{CNMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 220.5,220.4,175.4,174.6,171.1,170.6,135.9,135.7$, $134.9,134.0,46.8,39.1,38.6,37.0,36.9,35.9,35.9,33.9,26.9,26.8,23.3,23.2,22.8$, $22.2,20.9,20.7,19.6,19.6,13.6,13.5$.

HRMS: exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{4}\right)$ requires $m / z 290.1398$, found $\mathrm{m} / \mathrm{z} 290.1395$.

## Compound S196d.



172
 38\% yield


Prepared according to General Procedure G using compound 172 ( $10 \mathrm{mg}, 0.04 \mathrm{mmol}$, 1 equiv.), HATU ( $21 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.2$ equiv.), compound 194 ( $12 \mathrm{mg}, 0.07 \mathrm{mmol}$, 1.5 equiv.), DIPEA ( $20 \mu \mathrm{~L}, 0.11 \mathrm{mmol}, 3$ equiv.), and DMF ( 0.2 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, 30\% $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a colourless oil ( $6 \mathrm{mg}, 38 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.36$ stained by $\mathrm{KMnO}_{4}$.
$v_{\text {max }}($ film): 3313 (br.), 2956, 2924, 2870, 2854, 1731, 1708, 1660, 1627, 1515, 1165 $\mathrm{cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.28-6.18(\mathrm{~m}, 2 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 3 \mathrm{H}), 3.01-2.93$ $(\mathrm{m}, 1 \mathrm{H}), 2.55-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.94$ $(\mathrm{m}, 2 \mathrm{H}), 1.81-1.33(\mathrm{~m}, 10 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.93(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 214.4,214.3,171.8,169.5,169.4,137.7,137.7,135.8$, 52.5, 52.5, 49.9, 38.7, 38.5, 38.4, 38.1, 36.9, 33.4, 33.1, 28.4, 28.1, 28.1, 27.4, 27.3, 24.8, 23.3, 23.1, 20.6, 13.6, 11.4.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{NO}_{4}\right)$ requires $m / z 348.2169$, found $m / z 348.2172$.

## Compound 196d.



Prepared according to General Procedure H using compound 27c ( $26 \mathrm{mg}, 0.07 \mathrm{mmol}$, 1 equiv.), NaOH ( $9 \mathrm{mg}, 0.23 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. After 16 h the reaction was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $23 \mathrm{mg}, 92 \%$ ). Isomerisation to the trans-isomer observed ( $\mathrm{dr} 3: 1 \mathrm{C}^{8 \mathrm{a}}$ ).
$v_{\max }$ (film): 3296 (br.), 2958, 2924, 2870, 1693, 1656, 1625, 1513, $1169 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.62-6.49(\mathrm{~m}, 1 \mathrm{H}), 6.32-6.25(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.90$ (m, 1H), 2.53-2.47(m, 1H), 2.39-2.27(m, 2H), 2.24-2.15 (m, 1H), 2.03-1.93(m, $2 \mathrm{H}), 1.80-1.31(\mathrm{~m}, 10 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.05-0.98(\mathrm{~m}, 3 \mathrm{H}), 0.98-0.91(\mathrm{~m}$, $3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 214.5,214.4,175.4,174.8,170.8,170.4,137.7,137.0$, $136.8,49.9,49.8,39.1,38.7,38.6,38.2,38.2,36.8,36.7,33.9,33.8,28.3,28.3,28.0$, 27.9, 27.4, 27.4, 24.8, 24.8, 22.7, 22.2, 20.9, 20.8, 13.6, 13.5, 11.4.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NO}_{4}\right)$ requires $m / z 334.2013$, found m/z 334.2013.

## Compound 196e.



To a 2-dram vial was added compound $\mathbf{1 8 0}(10 \mathrm{mg}, 0.04 \mathrm{mmol}$, 1 equiv.) and HATU ( $21 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.2$ equiv.). DMF ( 0.2 mL ) was added, followed by DIPEA ( 20 $\mu \mathrm{L}, 0.11 \mathrm{mmol}, 3$ equiv.) and the resulting solution stirred at room temperature for 5 minutes. Compound 194 ( $12 \mathrm{mg}, 0.07 \mathrm{mmol}, 1.5$ equiv.) was then added in one portion and the vial capped with a screw top lid. The reaction was stirred for 16 h under air. The reaction was then diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the organics extracted with EtOAc ( $3 \times 5 \mathrm{~mL}$ ). The organics were combined, washed with brine ( 10 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale yellow oil. The crude material was loaded in a solution of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and purified by flash silica column chromatography, eluent $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford a pale yellow oil which was taken up in $1: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{~mL})$ and $\mathrm{NaOH}(5 \mathrm{mg}, 0.13 \mathrm{mmol}, 3$ equiv.) added. The reaction was brought to $50{ }^{\circ} \mathrm{C}$ for 16 h . The reaction was then subjected to purification outlined in General Procedure H to afford the title compound as an orange solid (7 mg, 43\% (2 steps)).
$v_{\text {max }}$ (film): 3289 (br.), 2958, 2930, 1697, 1625, 1509, 1400, $1307 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 6.38-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.27-6.17(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.47$ $(\mathrm{m}, 1 \mathrm{H}), 2.47-2.38(\mathrm{~m}, 3 \mathrm{H}), 2.38-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.51$ $(\mathrm{m}, 6 \mathrm{H}), 1.51-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.06-1.00(\mathrm{~m}, 3 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 211.1,210.8,174.8,173.8,172.6,172.0,137.5,137.2$, $137.2,135.9,48.2,48.2,41.6,41.5,40.9,40.9,39.1,38.5,36.5,36.4,36.3,34.0,33.9$, 33.0, 32.9, 29.1, 28.1, 28.0, 22.7, 22.1, 21.0, 20.8, 13.6, 13.5, 12.5.

HRMS: exact mass calculated for [M-H] $\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{4}\right)$ requires $m / z 332.1867$, found $m / z 332.1863$.

## Compound S196f.



142


HATU, DIPE
$94 \%$ yield


Prepared according to General Procedure G using compound 142 ( $10 \mathrm{mg}, 0.05 \mathrm{mmol}$, 1 equiv.), HATU ( $22 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.2$ equiv.), compound 194 ( $10 \mathrm{mg}, 0.06 \mathrm{mmol}$, 1.1 equiv.), DIPEA ( $30 \mu \mathrm{~L}, 0.17 \mathrm{mmol}, 3$ equiv.), and DMF ( 0.3 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, 30\% $\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as a colourless oil ( $15 \mathrm{mg}, 94 \%$ ).

TLC ( $30 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) $\mathrm{R}_{f}=0.55$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\text {max }}$ (film): 3305 (br.), 2960, 2922, 2872, 2852, 1714, 1651, 1519, 1336, $1162 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H})$, $3.37-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.65(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.54(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.38(\mathrm{~m}, 1 \mathrm{H})$, $1.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.8,171.5,168.2,152.1,144.4,138.7,132.8,132.8$, $125.4,52.6,38.7,36.6,33.3,28.5,25.9,23.3,20.6,15.6,13.6$.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4}\right)$ requires $m / z 330.1700$, found m/z 330.1702.

## Compound 196f.



Prepared according to General Procedure H using compound S196f ( $15 \mathrm{mg}, 0.05$ mmol, 1 equiv.), NaOH ( $7 \mathrm{mg}, 0.18 \mathrm{mmol}, 3$ equiv.), and $1: 1 \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}(2.5 \mathrm{~mL})$. After 6 h the reaction was subjected to purification outlined in General Procedure H to afford the title compound as a white solid ( $12 \mathrm{mg}, 84 \%$ ).
$v_{\max }$ (film): 3272 (br.), 2963, 2934, 2872, 1654, 1586, 1396, $1305 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.69\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5 / 7}\right), 7.63\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5 / 7}\right), 6.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $3.40-3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76-2.63\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{8}, \mathrm{CH}_{2}\right), 1.74-1.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{13}, \mathrm{H}^{12}\right.$, $\left.\mathrm{H}^{11}\right), 1.46-1.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{11}\right), 1.25\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}^{9}\right), 1.04(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{H}^{14}$ ).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 206.8$ (CO), 175.6 (CO), 169.1 (CO), 152.2 ( Ar ), $144.4(\mathrm{Ar}), 138.7(\mathrm{Ar}), 133.0\left(\mathrm{C}^{5 / 7}\right), 132.2(\mathrm{Ar}), 125.7\left(\mathrm{C}^{5 / 7}\right), 38.8\left(\mathrm{C}^{10}\right), 36.6\left(\mathrm{CH}_{2}\right)$, $34.1\left(\mathrm{C}^{12}\right), 28.5\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{C}^{11}\right), 20.7\left(\mathrm{C}^{13}\right), 15.5\left(\mathrm{C}^{9}\right), 13.6\left(\mathrm{C}^{14}\right)$.

HRMS: exact mass calculated for [M-H] ${ }^{-}\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 314.1398$, found m/z 314.1394.

### 6.15 Synthesis of Compound 199 (Scheme 56).



### 6.15.1 Procedures and Characterisation of Compound 199.

## Compound 197.



To a round bottomed flask was added compound 192 ( $894 \mathrm{mg}, 4.44 \mathrm{mmol}$ ) and 3 M $\mathrm{HCl}(16 \mathrm{~mL})$. The reaction was brought to $100^{\circ} \mathrm{C}$ for 16 h . The reaction was allowed to cool to room temperature and extracted with EtOAc ( $3 \times 20 \mathrm{~mL}$ ). The organics were combined, washed with brine ( 20 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale yellow oil. The crude material was loaded in a solution of $50 \%$

## Experimental

EtOAc/petroleum ether and purified by flash silica column chromatography, eluent $50-60 \% \mathrm{EtOAc} /$ petroleum ether to afford the title compound as a colourless oil which solidified to a white solid on standing ( $508 \mathrm{mg}, 61 \%$ ).

TLC ( $50 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.14$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3331, 2958 (br.), 2874, 1703, 1686, 1526, 1268, $1191 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d $\mathrm{d}_{6}$ ): $\delta 12.33$ (s, 1H, NH/OH), 7.73 (s, 1H, NH/OH), 3.50 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.59-1.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 1.40-1.30\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 1.26-1.18(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}^{5}\right), 1.08-0.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 0.91\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}^{4}\right)$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d $\left.\mathrm{d}_{6}\right): \delta 173.2(\mathrm{CO}), 156.7(\mathrm{CO}), 51.1\left(\mathrm{OCH}_{3}\right), 37.9\left(\mathrm{C}^{1}\right)$, $31.4\left(\mathrm{C}^{2}\right), 22.1\left(\mathrm{C}^{5}\right), 20.0\left(\mathrm{C}^{3}\right), 13.4\left(\mathrm{C}^{4}\right)$.

HRMS: exact mass calculated for [M-H] $\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z}$ 186.0772, found m/z 186.0776.

## Compound 198.



To a round bottom flask charged with 197 ( $300 \mathrm{mg}, 1.60 \mathrm{mmol}, 1$ equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ DMF ( $3: 1,8 \mathrm{~mL}$ ) was added DMAP ( $20 \mathrm{mg}, 0.16 \mathrm{mmol}$, 0.1 equiv.), DCC ( $364 \mathrm{mg}, 1.76 \mathrm{mmol}, 1.1$ equiv.), and benzyl alcohol ( $0.18 \mathrm{~mL}, 1.76 \mathrm{mmol}, 1.1$ equiv.). The reaction was stirred at room temperature for 16 h before being diluted with $\mathrm{H}_{2} \mathrm{O}$ $(20 \mathrm{~mL})$ and extracted with EtOAc ( $3 \times 20 \mathrm{~mL}$ ). The organics were combined, washed with brine ( 20 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a colourless residue. The crude material was loaded in a solution of $20 \% \mathrm{EtOAc} /$ petroleum ether

## Experimental

and purified by flash silica column chromatography, eluent $20 \% \mathrm{EtOAc} /$ petroleum ether to afford a colourless oil which was not characterised. The colourless oil was dissolved in THF ( 3 mL ) in a round bottom flask. $\mathrm{Boc}_{2} \mathrm{O}$ ( $454 \mathrm{mg}, 2.08 \mathrm{mmol}, 1.3$ equiv.) and DMAP ( $39 \mathrm{mg}, 0.32 \mathrm{mmol}, 0.2$ equiv.) were added and the reaction was brought to $70{ }^{\circ} \mathrm{C}$ for 16 h under an atmosphere of nitrogen. The reaction was then allowed to cool to room temperature and diluted with anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$. To a separate round bottom flask charged with anhydrous $\mathrm{MeOH}(2 \mathrm{~mL})$ was added Na metal ( $11 \mathrm{mg}, 0.48 \mathrm{mmol}, 0.3$ equiv.) under an atmosphere of nitrogen. The resulting solution was then added dropwise to the reaction flask at $0{ }^{\circ} \mathrm{C}$. The reaction was allowed to rise to room temperature and stirred for 1.5 h . The reaction was diluted with water ( 20 mL ) and extracted with EtOAc ( $3 \times 20 \mathrm{~mL}$ ). The organics were combined, washed with brine ( 20 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to afford a pale orange oil. The crude material was loaded in a solution of $15 \% \mathrm{EtOAc} /$ petroleum ether and purified by flash silica column chromatography, eluent 15-20\% $\mathrm{EtOAc} /$ petroleum ether to afford the title compound as a pale yellow oil ( $177 \mathrm{mg}, 35 \%$ over three steps).

TLC ( $20 \% \mathrm{EtOAc} /$ petroleum ether): $\mathrm{R}_{f}=0.46$ stained by $\mathrm{KMnO}_{4}$.
$v_{\max }$ (neat): 3398 (br.), 3363 (br.), 2974, 1734, 1560, 1498, 1389, 1366, $1164 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar} H), 5.22-5.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{6}\right)$, $1.62-1.49\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}^{3}, \mathrm{H}^{5}\right), 1.48-1.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 1.39(\mathrm{~s}, 9 \mathrm{H}, t \mathrm{Bu}), 1.32-1.24$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 0.91\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}^{4}\right)$. $\mathrm{N} H$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 171.7$ (CO), 155.9 (CO), 136.0 (Ar), 128.5 (Ar), 128.1 (Ar), 79.8 (br., $\mathrm{C}^{7}$ ), $66.9\left(\mathrm{C}^{6}\right), 38.8$ (br., $\mathrm{C}^{1}$ ), 33.6 (br., $\mathrm{C}^{2}$ ), $28.3\left(\mathrm{CH}_{3}\right), 23.4$ (br., $\mathrm{C}^{5}$ ), $20.4\left(C^{3}\right), 13.6\left(C^{4}\right)$. Five signals not observed.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{4}\right)$ requires $\mathrm{m} / \mathrm{z} 320.1856$, found m/z 320.1859.

## Experimental

## Compound 199.



To a round bottom flask charged with compound $\mathbf{1 9 8}(167 \mathrm{mg}, 0.52 \mathrm{mmol})$ was added dioxane ( 1 mL ), followed by dropwise addition of $6 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$. The reaction was stirred at room temperature for 3 h , before the addition of further $6 \mathrm{M} \mathrm{HCl}(1 \mathrm{~mL})$. The reaction was stirred at room temperature for a further 1 h , before being concentrated in vacuo to afford the title compound as a pale brown solid ( $132 \mathrm{mg}, 99 \%$ ).
$v_{\max }$ (neat): 3411 (br.), 2961 (br.), 2874 (br.), 2683 (br.), 1727, 1455, 1355, 1262, 1190, $1169 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 9.03$ (br. s, 2H), $7.41-7.36$ (m, 2H, ArH ), $7.36-7.27$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}), 5.22\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}^{6}\right), 2.02-1.92\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{2}\right), 1.85-1.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 1.64$ $-1.44\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{3}\right), 1.44-1.36\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{5}\right), 0.87\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}^{4}\right)$.
${ }^{13}{ }^{13}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 168.2$ (CO), 134.8 (Ar), 128.7 (Ar), 128.7 (Ar), 128.6 (Ar), $68.2\left(\mathrm{C}^{6}\right), 38.5\left(\mathrm{C}^{1}\right), 30.5\left(\mathrm{C}^{2}\right), 20.0\left(\mathrm{C}^{5}, \mathrm{C}^{3}\right), 13.3\left(\mathrm{C}^{4}\right)$. Two signals equivalent, one signal coincident.

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}\right)$ requires $\mathrm{m} / \mathrm{z} 220.1332$, found $m / z 220.1331$.

## Experimental

## Compound S196g.



Prepared according to General Procedure G using compound 172 ( $50 \mathrm{mg}, 0.22 \mathrm{mmol}$, 1 equiv.), HATU ( $111 \mathrm{mg}, 0.29 \mathrm{mmol}, 1.3$ equiv.), compound 199 ( $86 \mathrm{mg}, 0.34 \mathrm{mmol}$, 1.5 equiv.), DIPEA ( $0.12 \mathrm{~mL}, 0.69 \mathrm{mmol}, 3$ equiv.), and DMF ( 1.7 mL ). After 16 h the reaction was subjected to purification outlined in General Procedure G (silica gel, $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) to afford the title compound as an orange oil ( $71 \mathrm{mg}, 75 \%$ ), (dr $12: 1 \mathrm{C}^{8 \mathrm{a}}$ ).

TLC ( $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ): $\mathrm{R}_{f}=0.28$ stained by $\mathrm{KMnO}_{4}$ and faintly visible by UV (short wave).
$v_{\max }$ (film): 3307 (br.), 2958, 2928, 2870, 1723, 1703, 1658, 1627, 1500, 1455, 1327, $1264,1158 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 6.36-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.17-6.10$ $(\mathrm{m}, 1 \mathrm{H}), 5.22-5.03(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.24$ $(\mathrm{m}, 2 \mathrm{H}), 2.18-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.53$ $(\mathrm{m}, 4 \mathrm{H}), 1.53-1.19(\mathrm{~m}, 6 \mathrm{H}), 1.00-0.83(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 214.3,214.3,171.1,171.1,169.5,169.4,137.7,137.6$, $135.8,135.7,128.5,128.4,128.4,128.3,67.3,67.2,49.9,49.8,38.6,38.4,38.3,38.0$, $36.8,36.7,33.5,33.2,28.3,28.0,28.0,27.2,27.2,24.8,23.4,23.2,20.6,20.5,13.6$, 11.4, 11.3.

## Experimental

HRMS: exact mass calculated for $[\mathrm{M}+\mathrm{H}]^{+}\left(\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{4}\right)$ requires $m / z 424.2482$, found m/z 424.2481.

## Compound 196d.



To a round bottom flask charged with compound $\mathbf{S 1 9 6 g}(66 \mathrm{mg}, 0.16 \mathrm{mmol}, 1$ equiv.) was added $10 \% \mathrm{Pd} / \mathrm{C}(30 \mathrm{mg}, 0.03 \mathrm{mmol}, 20 \mathrm{~mol} \%)$ and $\mathrm{EtOAc}(3 \mathrm{~mL})$. The reaction was sparged with $\mathrm{H}_{2}$ (balloon) for 1 minute, and stirred under an atmosphere of $\mathrm{H}_{2}$ (balloon) for 3 h . The reaction was filtered through celite, eluting with EtOAc. The organics were concentrated in vacuo to afford a colourless oil, which was taken up in a minimal volume of diethyl ether, and petroleum ether added until a white precipitate formed. The solvent was removed using a Pasteur pipette and the precipitate dried under vacuum to afford the desired product as a white solid ( $52 \mathrm{mg}, 100 \%$ ), (dr 18:1 $\mathrm{C}^{8 \mathrm{a}}$ ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Acetone-d $\mathrm{d}_{6}$ ): $\delta 8.04-7.90(\mathrm{~m}, 1 \mathrm{H}), 6.47-6.34(\mathrm{~m}, 1 \mathrm{H}), 3.00-$ $2.91(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.69-$ $1.24(\mathrm{~m}, 10 \mathrm{H}), 1.21-1.06(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.91(\mathrm{~m}, 6 \mathrm{H})$. One signal not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Acetone- $\mathrm{d}_{6}$ ): $\delta 213.1,213.0,172.9,172.7,170.2,169.9,138.1$, $137.9,136.6,136.1,50.9,38.9,38.9,38.8,37.5,37.5,32.7,32.5,28.9,28.9,28.6,28.5$, 28.0, 25.6, 22.6, 22.4, 21.4, 21.3, 13.7, 11.4.

## Experimental

### 6.16 Single enantiomer data.

## Compound 196f



## Isomer 1.

${ }^{u m a x}$ (film): 3348 (br.), 2969, 2928, 2874, 1701, 1654, 1522, $1273 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5 / 7}\right), 7.63\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5 / 7}\right), 6.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $3.40-3.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.79-2.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{8}, \mathrm{CH}_{2}\right), 1.74-1.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{11}, \mathrm{H}^{12}\right.$, $\mathrm{H}^{13}$ ), $1.45-1.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{11}\right), 1.27\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}^{9}\right), 1.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{H}^{14}$ ). $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 206.7$ ( $\mathrm{C}^{1}$ ), 152.3 ( Ar ), 144.5 ( Ar ), 138.8 ( Ar ), 132.9 $\left(\mathrm{C}^{5 / 7}\right), 125.9\left(\mathrm{C}^{5 / 7}\right), 39.0\left(\mathrm{C}^{10}\right), 36.6\left(\mathrm{CH}_{2}\right), 34.2\left(\mathrm{C}^{12}\right), 28.5\left(\mathrm{CH}_{2}\right), 26.0\left(\mathrm{CH}_{2}\right), 22.9$ $\left(\mathrm{C}^{11}\right)$, $20.8\left(\mathrm{C}^{13}\right), 15.6\left(\mathrm{C}^{9}\right), 13.6\left(\mathrm{C}^{14}\right)$. Three signals not observed.

## Isomer 2.

$v_{\text {max }}$ (film): 3279 (br.), 2963, 2928, 2872, 1697, 1651, 1524, 1270, $1184 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.69\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5 / 7}\right), 7.63\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}^{5 / 7}\right), 6.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, 3.42 - 3.29 (m, 2H, CH2 $), 2.78$ - $2.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{8}, \mathrm{CH}_{2}\right), 1.77-1.48\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}^{11}, \mathrm{H}^{12}\right.$, $\left.\mathrm{H}^{13}\right), 1.46-1.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{1{ }^{\prime}}\right), 1.25\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}^{9}\right), 1.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{H}^{14}$ ). $\mathrm{CO}_{2} \mathrm{H}$ not observed.

## Experimental

${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 206.9\left(\mathrm{C}^{1}\right), 175.4(\mathrm{CO}), 169.1(\mathrm{CO}), 152.3$ ( Ar ), 144.4 (Ar), 138.7 ( Ar ), $133.0\left(\mathrm{C}^{5 / 7}\right), 132.2(\mathrm{Ar}), 125.8\left(\mathrm{C}^{5 / 7}\right), 38.8\left(\mathrm{C}^{10}\right), 36.6\left(\mathrm{CH}_{2}\right), 34.1$ $\left(\mathrm{C}^{12}\right), 28.5\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{C}^{11}\right), 20.7\left(\mathrm{C}^{13}\right), 15.5\left(\mathrm{C}^{9}\right), 13.6\left(\mathrm{C}^{14}\right)$.

## Compound 196d



## Isomer 1.

$v_{\text {max }}$ (film): 3302 (br.), 2963, 2924, 2867, 1703, 1654, 1625, 1509, $1459 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, Acetone-d 6 ): $\delta 7.97$ (s, 1H), 6.43 (s, 1H), $2.99-2.90(\mathrm{~m}, 1 \mathrm{H})$, $2.52-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.32(\mathrm{~m}, 10 \mathrm{H})$, $1.20-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.92(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR (101 MHz, Acetone-d $\mathrm{d}_{6}$ : $\delta 211.5,136.6,135.1,49.5,37.5,36.1,31.2,27.5$, 27.1, 26.6, 24.2, 20.8, 20.0, 12.3, 10.0. Four signals not observed.

## Isomer 2.

$v_{\text {max }}$ (film): 3320 (br), 2961, 2934, 2876, 1703, 1656, 1630, 1519, 1459, $1190 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( 500 MHz, Acetone $-\mathrm{d}_{6}$ ): $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 3.00-2.92(\mathrm{~m}, 1 \mathrm{H})$, $2.51-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.35(\mathrm{~m}, 10 \mathrm{H})$, $1.13-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}) . \mathrm{CO}_{2} H$ not observed.

## Experimental

${ }^{13}$ C NMR (101 MHz, Acetone-d 6 ): $\delta 213.0,172.8,138.1,136.0,51.0,38.9,38.9,37.6$, $32.5,29.0,28.6,28.0,25.6,22.6,21.3,13.7,11.4$. Two signals not observed.

## Isomer 3.

$v_{\text {max }}$ (film): 3302 (br), 2960, 2934, 2870, 1697, 1656, 1625, 1519, $1191 \mathrm{~cm}^{-1}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ( 600 MHz, Acetone- $\mathrm{d}_{6}$ ): $\delta 7.96$ (s, 1H), 6.43 (s, 1H), 2.98 - 2.93 (m, 1H), 2.46 (td, $J=14.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.92$ $(\mathrm{m}, 2 \mathrm{H}), 1.67-1.34(\mathrm{~m}, 10 \mathrm{H}), 1.17(\mathrm{dd}, J=9.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.01-0.93(\mathrm{~m}, 6 \mathrm{H})$. $\mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13} \mathrm{C}$ NMR ( 101 MHz , Acetone- $\mathrm{d}_{6}$ ): $\delta 213.0,138.0,136.5,51.0,38.9,37.5,32.6,28.9$, $28.5,28.0,25.6,22.3,21.4,13.7,11.4$. Four signals not observed.

## Isomer 4.

$v_{\text {max }}$ (film): 3307 (br), 2961, 2935, 2870, 1701, 1654, 1638, 1522, 1459, $1186 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz , Acetone- $\mathrm{d}_{6}$ ): $\delta 7.94(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 3.00-2.90(\mathrm{~m}, 1 \mathrm{H})$, $2.51-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.34(\mathrm{~m}, 10 \mathrm{H})$, $1.11-1.06(\mathrm{~m}, 1 \mathrm{H}), 0.99-0.91(\mathrm{~m}, 6 \mathrm{H}) . \mathrm{CO}_{2} \mathrm{H}$ not observed.
${ }^{13}$ C NMR (101 MHz, Acetone-d 6 ): $\delta 213.0,169.8,138.2,135.9,51.0,38.9,38.9,37.6$, $32.3,29.0,28.6,28.0,25.6,22.3,21.3,13.8,11.5$. Two signals not observed.

## References

[1] D. A. Mortensen, J. F. Egan, B. D. Maxwell, M. R. Ryan, R. G. Smith, Bioscience 2012, 62, 75-84.
[2] H. C. J. Godfray, J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas, C. Toulmin, Science 2010, 327, 812-818.
[3] P. Jeschke, Pest Manag. Sci. 2016, 72, 433-455.
[4] C. Lamberth, S. Jeanmart, T. Luksch, A. Plant, Science 2013, 341, 742-746.
[5] M. R. Loso, N. Garizi, V. B. Hegde, J. E. Hunter, T. C. Sparks, Pest Manag. Sci. 2017, 73, 678-685.
[6] J. M. Green, Pest Manag. Sci. 2014, 70, 1351-1357.
[7] J. Gressel, Pest Manag. Sci. 2009, 65, 1164-1173.
[8] H. Kraehmer, Outlooks Pest Manag. 2012, 23, 115-118.
[9] S. O. Duke, F. E. Dayan, in Discov. Synth. Crop Prot. Prod., 2015, pp. 79-92.
[10] T. C. Sparks, D. R. Hahn, N. V. Garizi, Pest Manag. Sci. 2017, 73, 700-715.
[11] T. Henkel, M. R. Brunne, H. Müller, F. Reichel, Angew. Chem. Int. Ed. 1999, 38, 643-647.
[12] A. L. Harvey, Curr. Opin. Chem. Biol. 2007, 11, 480-484.
[13] S. O. Duke, F. E. Dayan, J. G. Romagni, A. M. Rimando, Weed Res. 2000, 40, 99-111.
[14] F. E. Dayan, D. K. Owens, S. O. Duke, Pest Manag. Sci. 2012, 68, 519-528.
[15] F. E. Dayan, S. O. Duke, Plant Physiol. 2014, 166, 1090-1105.
[16] F. E. Dayan, J. G. Romagni, S. O. Duke, J. Chem. Ecol. 2000, 26, 2079-2094.
[17] F. E. Dayan, S. O. Duke, A. Sauldubois, N. Singh, C. McCurdy, C. Cantrell, Phytochemistry 2007, 68, 2004-2014.
[18] G. Mitchell, D. W. Bartlett, T. E. M. Fraser, T. R. Hawkes, D. C. Holt, J. K. Townson, R. A. Wichert, Pest Manag. Sci. 2001, 57, 120-128.
[19] D. L. Lee, C. G. Knudsen, W. J. Michaely, H.-L. Chin, N. H. Nguyen, C. G. Carter, T. H. Cromartie, B. H. Lake, J. M. Shribbs, T. Fraser, Pestic. Sci. 1998, 54, 377-384.
[20] X. Geng, L. Jin, M. Shimada, M. G. Kim, D. Mackey, Planta 2014, 240, 1149-1165.
[21] S. Fonseca, A. Chini, M. Hamberg, B. Adie, A. Porzel, R. Kramell, O. Miersch, C. Wasternack, R. Solano, Nat. Chem. Biol. 2009, 5, 344-350.
[22] B. J. F. Feys, C. E. Benedetti, C. N. Penfold, J. G. Turner, Plant Cell 1994, 6, 751-759.
[23] B. Thines, L. Katsir, M. Melotto, Y. Niu, A. Mandaokar, G. Liu, K. Nomura, S. Y. He, G. A. Howe, J. Browse, Nature 2007, 448, 661-665.
[24] L. B. Sheard, X. Tan, H. Mao, J. Withers, G. Ben-Nissan, T. R. Hinds, Y. Kobayashi, F.-F. Hsu, M. Sharon, J. Browse, S. Yang He, J. Riso, G. A. Howe, N. Zheng, Nature 2010, 468, 400-405.
[25] X. Geng, L. Jin, M. Shimada, M. Gab, K. David, Planta 2014, 1149-1165.
[26] K. Nishiyama, R. Sakai, A. Ezuka, A. Ichihara, K. Shiraishi, M. Ogasawara, H. Sato, S. Sakamura, Ann. Phytopathol. Soc. Japan 1976, 42, 613-614.
[27] T. Tsuchiya, H. Ohta, K. Okawa, A. Iwamatsu, H. Shimada, T. Masuda, K. Takamiya, Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 15362-15367.
[28] R. Sakai, Ann. Phytopathol. Soc. Japan 1980, 46, 499-503.
[29] J. S. Kenyon, J. G. Turner, Plant Physiol. 1992, 100, 219-224.
[30] E. W. Weiler, T. M. Kutchan, T. Gorba, W. Brodschelm, U. Niesel, F. Bublitz, FEBS Lett. 1994, 345, 9-13.
[31] C. L. Bender, F. Alarcón-Chaidez, D. C. Gross, Micronbiology Mol. Biol. Rev. 1999, 63, 266-292.
[32] M. Melotto, W. Underwood, J. Koczan, K. Nomura, S. Y. He, Cell 2006, 126, 969-980.
[33] A. Ichihara, K. Shiraishi, H. Sato, S. Sakamura, K. Nishiyama, R. Sakai, A. Furusaki, T. Matsumoto, J. Am. Chem. Soc. 1977, 99, 636-637.
[34] A. Ichihara, K. Shiraishi, S. Sakamura, A. Furusaki, N. Hashiba, T. Matsumoto, Tetrahedron Lett. 1979, 4, 365-368.
[35] J. N. Worley, A. B. Russell, A. G. Wexler, P. A. Bronstein, B. H. Kvitko, S. B. Krasnoff, K. R. Munkvold, B. Swingle, D. M. Gibson, A. Collmer, J. Bacteriol. 2013, 195, 287-296.
[36] E. R. Strieter, A. Koglin, Z. D. Aron, C. T. Walsh, J. Am. Chem. Soc. 2009, 131, 2113-2115.
[37] H. Liyanage, D. A. Palmer, M. Ullrich, C. L. Bender, Appl. Environ. Microbiol. 1995, 61, 3845-3848.
[38] M. Okada, S. Ito, A. Matsubara, I. Iwakura, S. Egoshi, M. Ueda, Org. Biomol. Chem. 2009, 7, 3065-3073.
[39] K. Shiraishi, K. Konoma, H. Sato, A. Ichihara, S. Sakamura, K. Nishiyama, R. Sakai, Agric. Biol. Chem. 1979, 43, 1753-1757.
[40] M. Ueda, S. Egoshi, K. Dodo, Y. Ishimaru, H. Yamakoshi, T. Nakano, Y. Takaoka, S. Tsukiji, M. Sodeoka, ACS Cent. Sci. 2017, 3, 462-472.
[41] S. Egoshi, Y. Takaoka, H. Saito, Y. Nukadzuka, K. Hayashi, Y. Ishimaru, H. Yamakoshi, K. Dodo, M. Sodeoka, M. Ueda, RSC Adv. 2016, 6, 1940419412.
[42] Y. Koda, K. Takahashi, Y. Kikuta, F. Greulichi, H. Toshima, A. Ichihara, Phytochemistry 1996, 41, 93-96.
[43] S. Blechert, C. Bockelmann, M. Füßlein, T. von Schrader, B. Stelmach, U. Niesel, E. W. Weiler, Planta 1999, 207, 470-479.
[44] H. Toshima, S. Nara, A. Ichihara, Y. Koda, Y. Kikuta, Biosci. Biotechnol.

## References

Biochem. 1998, 62, 681-688.
[45] M. Suzuki, M. Hasegawa, O. Kodama, H. Toshima, Biosci. Biotechnol. Biochem. 2004, 68, 1617-1620.
[46] R. E. Mitchell, Chem. New Zeal. 2004, 24-27.
[47] R. E. Mitchell, K. L. Ford, Phytochemistry 1998, 49, 1579-1583.
[48] J. K. Fyans, M. S. Altowairish, Y. Li, D. R. D. Bignell, Mol. Plant-Microbe Interact. J. 2015, 28, 443-454.
[49] R. E. Mitchell, Phytochemistry 1984, 23, 791-793.
[50] R. E. Mitchell, Phytochemistry 1985, 24, 1485-1487.
[51] G. Haider, T. von Schrader, M. Füsslein, S. Blechert, T. M. Kutchan, Biol. Chem. 2000, 381, 741-748.
[52] T. Krumm, K. Bandemer, W. Boland, FEBS Lett. 1995, 377, 523-529.
[53] I. Monte, M. Hamberg, A. Chini, S. Gimenez-Ibanez, G. García-Casado, A. Porzel, F. Pazos, M. Boter, R. Solano, Nat. Chem. Biol. 2014, 10, 671-676.
[54] G. Schüler, H. Görls, W. Boland, Eur. J. Org. Chem. 2001, 1663-1668.
[55] R. Lauchli, W. Boland, Chem. Rec. 2003, 3, 12-21.
[56] J. Svoboda, W. Boland, Phytochemistry 2010, 71, 1445-1449.
[57] R. Lauchli, G. Schüler, W. Boland, Phytochemistry 2002, 61, 807-817.
[58] A. Mithöfer, M. Maitrejean, W. Boland, J. Plant Growth Regul. 2004, 23, 170-178.
[59] H. Toshima, S. Nara, A. Ichihara, Biosci. Biotechnol. Biochem. 1997, 61, 752753.
[60] A. Ichihara, R. Kimura, K. Moriyasu, S. Sakamura, Tetrahedron Lett. 1977, 49, 4331-4334.
[61] H.-J. Liu, M. Llinas-Brunet, Can. J. Chem. 1984, 62, 1747-1750.
[62] K. J. Hale, J. Cai, Tetrahedron Lett. 1996, 37, 4233-4236.
[63] M. Okada, S. Egoshi, M. Ueda, Biosci. Biotechnol. Biochem. 2010, 74, 20922095.
[64] L. a. Arnold, R. Naasz, A. J. Minnaard, B. L. Feringa, J. Org. Chem. 2002, 67, 7244-7254.
[65] A. Ichihara, R. Kimura, S. Yamada, S. Sakamura, J. Am. Chem. Soc. 1980, 102, 6353-6355.
[66] K. C. Brannock, A. Bell, R. D. Burpitt, C. A. Kelly, J. Org. Chem. 1964, 29, 801-812.
[67] M. E. Jung, K. M. Halweg, Tetrahedron Lett. 1981, 22, 2735-2738.
[68] B. Moreau, M. Ginisty, D. Alberico, A. B. Charette, J. Org. Chem. 2007, 72, 1235-1240.
[69] P. Yates, N. K. Bhamare, T. Granger, T. S. Macas, Can. J. Chem. 1993, 71, 995-1001.

## References

[70] S. Nara, H. Toshima, A. Ichihara, Tetrahedron Lett. 1996, 37, 6745-6748.
[71] S. Nara, H. Toshima, A. Ichihara, Tetrahedron 1997, 53, 9509-9524.
[72] T. Arai, H. Sasai, K. Yamaguchi, M. Shibasaki, J. Am. Chem. Soc. 1998, 120, 441-442.
[73] T. Arai, Y. M. A. Yamada, N. Yamamoto, H. Sasai, M. Shibasaki, Chem. Eur. J. 1996, 2, 1368-1372.
[74] G. Mehta, M. Praveen, J. Chem. Soc. Chem. Commun. 1993, 1573-1575.
[75] G. Mehta, D. S. Reddy, Tetrahedron Lett. 1999, 40, 991-994.
[76] N. B. Chapman, J. M. Key, K. J. Toyne, J. Org. Chem. 1970, 35, 3860-3867.
[77] G. Mehta, D. S. Reddy, J. Chem. Soc. Perkin Trans. 1 2001, 4, 1153-1161.
[78] M. Sono, A. Hashimoto, K. Nakashima, M. Tori, Tetrahedron Lett. 2000, 41, 5115-5118.
[79] J. Tsuji, Pure Appl. Chem. 1981, 53, 2371-2378.
[80] S. Holder, S. Blechert, Synlett 1996, 505-506.
[81] M. Nakayama, S. Ohira, Y. Okamura, S. Soga, Chem. Lett. 1981, 731-732.
[82] S. Ohira, Bull. Chem. Soc. Jpn. 1984, 57, 1902-1907.
[83] M. Nakayamaand, S. Ohira, Agric. Biol. Chem. 1983, 47, 1689-1690.
[84] Y. Kosaki, N. Ogawa, Q. Wang, Y. Kobayashi, Org. Lett. 2011, 13, 42324235.
[85] W. Kinouchi, Y. Kosaki, Y. Kobayashi, Tetrahedron Lett. 2013, 54, 70177020.
[86] D. F. Taber, R. B. Sheth, W. Tian, J. Org. Chem. 2009, 74, 2433-2437.
[87] M. E. Jung, J. P. Hudspeth, J. Am. Chem. Soc. 1977, 99, 5508-5510.
[88] J. P. Hudspeth, M. E. Jung, J. Am. Chem. Soc. 1980, 102, 2463-2464.
[89] L. a. Adams, V. K. Aggarwal, R. V. Bonnert, B. Bressel, R. J. Cox, J. Shepherd, J. De Vicente, M. Walter, W. G. Whittingham, C. L. Winn, J. Org. Chem. 2003, 68, 9433-9440.
[90] A. Ichihara, K. Shiraishi, S. Sakamura, K. Nishiyama, R. Sakai, Tetrahedron Lett. 1977, 269-272.
[91] K. C. Murdock, R. B. Angier, J. Org. Chem. 1962, 27, 2395-2398.
[92] H. Toshima, A. Ichihara, Biosci. Biotechnol. Biochem. 1995, 59, 497-500.
[93] A. Gaucher, J. Ollivier, J. Marguerite, R. Paugam, J. Salaün, Can. J. Chem. 1994, 72, 1312-27.
[94] U. Groth, U. Schollkopf, W. Halfbrodt, Liebigs Ann. Chem. 1992, 351-355.
[95] G. Quinkert, U. Schwartz, H. Stark, W. D. Weber, H. Baier, F. Adam, G. Duerner, Angew. Chem. 1980, 92, 1062-1063.
[96] A. Gaucher, P. Dorizon, J. Ollivier, J. Salaün, Tetrahedron Lett. 1995, 36, 2979-2982.
[97] R. M. Adlington, B. J. Rawlings, J. E. Baldwin, Tetrahedron Lett. 1985, 26, 481-484.
[98] N. Huther, P. T. McGrail, A. F. Parsons, Eur. J. Org. Chem. 2004, 1740-1749.
[99] A. B. Charette, B. Cöté, J. Am. Chem. Soc. 1995, 117, 12721-12732.
[100] A. B. Charette, B. Cöté, J. Org. Chem. 1993, 58, 933-936.
[101] A. B. Charette, B. Côté, Tetrahedron Lett. 1993, 34, 6833-6836.
[102] R. M. Williams, G. J. Fegley, J. Am. Chem. Soc. 1991, 113, 8796-8806.
[103] M. Suzuki, E. E. Gooch, C. H. Stammer, Tetrahedron Lett. 1983, 24, 38393840.
[104] V. K. Aggarwal, J. de Vicente, R. V Bonnert, Org. Lett. 2001, 3, 2785-2788.
[105] S. Yamazaki, T. Inoue, T. Hamada, T. Takada, J. Org. Chem. 1999, 64, $282-$ 286.
[106] M. Kordes, H. Winsel, A. De Meijere, Eur. J. Org. Chem. 2000, 3235-3245.
[107] Y. Y. Kozyrkov, A. Pukin, O. G. Kulinkovich, J. Ollivier, J. Salaün, Tetrahedron Lett. 2000, 41, 6399-6402.
[108] P. Bertus, J. Szymoniak, J. Org. Chem. 2002, 67, 3965-3968.
[109] G. Schueler, W. Boland, R. Lauchli, Preparation of 6-Substituted Indanoyl Amino Acid Conjugates as Mimics to the Biological Activity of Coronatine, 2002, WO 2002055480.
[110] C. Crevisy, M. Couturier, C. Dugave, Y. L. Dory, P. Deslongchamps, Bull. Soc. Chim. Fr. 1995, 132, 360-370.
[111] T. Inoue, J.-F. Liu, D. C. Buske, A. Abiko, J. Org. Chem. 2002, 67, 52505256.
[112] M. E. Watson, PhD Thesis, University of Strathclyde 2016.
[113] R. E. Mitchell, H. Young, Phytochemistry 1985, 24, 2716-2717.
[114] Z. D. Crane, P. J. Nichols, T. Sammakia, P. J. Stengel, J. Org. Chem. 2011, 76, 277-280.
[115] W. Shen, Synlett 2000, 737-739.
[116] N. M. Irvine, C. N. Yerkes, P. R. Graupner, R. E. Roberts, D. R. Hahn, C. Pearce, B. C. Gerwick, Pest Manag. Sci. 2008, 64, 891-899.
[117] W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, Elsevier Inc., Oxford, 2009.
[118] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyzlov, P. E. Bourne, Nucl. Acids Res. 2000, 28, 235-242.
[119] G. M. Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, W. Sherman, J. Comput. Aid. Mol. Des. 2013, 27, 221-234.
[120] R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Talgren, J. J. Klicic, D. T. Mainz, M. P. Repasky, E. H. Knoll, D. E. Shaw, M. Shelley, J. K. Perry, P. Francis, P. S. Shenkin, J. Med. Chem. 2004, 47, 1739-1749.

## References

[121] T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye, W. T. Polaard, J. L. Banks, J. Med. Chem. 2004, 47, 1750-1759.
[122] Schrödinger Release 2017-1: Maestro, Schrödinger, LLC, New York, NY, 2017.
[123] G. Schüler, W. Boland, R. Lauchli, 6-Substituted Indanoyl Amino Acid Conjugates as Mimics to the Biological Activity of Coronatine, 2002, WO2002055480 A3.
[124] G. V. Reddy, T. V. Kumar, B. Siva, K. S. Babu, P. V. Srinivas, I. Sehar, A. K. Saxena, J. M. Rao, Med. Chem. Res. 2013, 22, 4581-4591.
[125] G. D. K. Kumar, S. Baskaran, J. Org. Chem. 2005, 70, 4520-4523.
[126] C. W. Wullschleger, J. Gertsch, K.-H. Altmann, Org. Lett. 2010, 12, 11201123.
[127] A. Cho, C. U. Kim, X. C. Sheng, Antiviral Compounds, 2007, WO2007009109 A2.


[^0]:    ${ }^{a}$ From a non-commercial starting material. ${ }^{b}$ From commercial starting materials. ${ }^{c}$ Based on longest linear sequence. ${ }^{d}$ Starting material commercial but not readily accessible. ${ }^{e}$ A required catalyst is not commercial. ${ }^{f}$ Based on an assumed yield from referenced publication. Diels-Alder (DA), conjugate addition (CA), Haller-Bauer (HB), intramolecular cyclisation (IC), oxy-Cope (OC).

[^1]:    ${ }^{13}{ }^{13}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 220.0,168.1,137.8,135.6,124.3\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=278.6 \mathrm{~Hz}\right)$, $46.44,40.9\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=34.5 \mathrm{~Hz}\right), 38.3,37.5,36.4,28.2,27.9,26.1,11.4$.

