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Abstract

This thesis is a multi-country study and takes the literature on the country-specific

unobserved components (UC) model as its starting point. In three increasingly flexible

essays, we gradually extend the country-specific UC model to consider the affects of

globalisation. Additionally, we propose to incorporate heterogeneities across countries

in a data based fashion. The contribution is provided in three essays.

In the first essay (Chapter 2) we estimate a country-specific unobserved components

model with time-varying parameters and stochastic volatility. We consider 34 countries

(23 advanced economies and 11 emerging market economies) and independent assump-

tions across countries are imposed. To consider the affects of globalisation, the model

incorporates two observed global factors (oil price and global output) which account

for global determinants of inflation. We find that inflation dynamics are explained by

the combination of domestic factors (lagged domestic inflation and domestic output)

and observed global factors (global output and oil price). Effects of these variables are

constant over time. The Phillips curves are generally flat for the period under consid-

eration (1995-2018), and different from zero. The global demand seems to matter more

in emerging market economies than in advanced economies. Our results also point to

the dominant role played by oil price as a key factor behind inflation dynamics over time.

In the second essay (Chapter 3) we relax the assumption that errors across countries

are independent, and allow for cross-country linkages in the error covariance matrix.

First, we use the factor stochastic volatility specification to allow for cross-country
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linkages in the error covariance matrix. This method assumes that all countries’ errors

are driven by latent factors. However, one practical problem is that heterogeneities are

very likely to exist in errors, since we include both advanced economies and emerging

market economies. For that reason, we allow for stochastic volatility in all errors and

propose a method to remove stochastic volatility in a data based fashion. We rewrite

the process of log-volatility using the non-centered parameterization and impose the

Horseshoe prior on the coefficient that controls time-variation in the log-volatility. We

apply these methods to the data in Chapter 2. We find evidence that there are global

factors driving all countries’ inflation (output). The estimates under this model are in

line with previous studies and, for certain countries, the estimates indicate that they

are influenced by both domestic factors and global factors. Allowing for cross-country

linkages in the error covariance matrix will decrease the persistence and flatten the

Phillips curve. We also find that this model provides a superior in-sample fit and ac-

curate density forecasts compared to existing models in the literature, especially if the

period of uncertainty is the period being forecasted.

Finally, in the third essay (Chapter 4) we further relax the assumption that the con-

ditional mean depends on domestic factors, and allow for cross-country linkages both

in the error covariance matrix and in the conditional mean. We name this model a

panel unobserved components model. It extends Chapter 3 in three ways. First, it

takes dynamic interdependencies into account by allowing for cross-country linkages in

the conditional mean, more specifically, in coefficient matrices associated with lagged

variables. Second, it takes static interdependencies into account. This is done through

two blocks. One block is allowing for cross-country linkages in the error covariance ma-

trix. Another block is allowing for cross-country linkages in the conditional mean, more

specifically, in the coefficient matrix associated with the Phillips curve. Therefore, the

panel unobserved components model adds a new measure of static interdependencies,

by extending the traditional (own country) Phillips curve to a global Phillips curve.

Third, we work with the unrestricted panel unobserved components model. One issue is

that parameters can be enormous. To deal with over-parameterization concerns, we rely
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on the Horseshoe prior. We apply these methods to the data in Chapter 2. Estimates

of coefficients and generalised impulse response functions provide evidence of interde-

pendencies. Generalised impulse response functions also show the “fragile inflation”in

emerging market economies, which means that inflation needs a longer time to settle

down. We find that allowing for cross-country linkages in the error covariance matrix

can provide more precise estimates of trends, while omitting cross-country linkages in

the conditional mean will overestimate trend output. Additionally, our proposed model

provides a superior in-sample fit and accurate density forecasts compared to existing

models in the literature.
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Chapter 1

Introduction

1.1 General background

Understanding macroeconomic development has long been a subject of prolific eco-

nomic research. One subject that provides a conceptual reference point is the concept

of trends. For instance, trend inflation can be thought of as the rate of inflation that

we would expect after temporary factors subside (Clark and Garciga, 2016). One of

monetary policy aims is to maintain low and stable inflation. Hence, many central

banks have set their official inflation targets (point target or target bands). For exam-

ple, the Federal Reserve’s Federal Open Market Committee (FOMC) has set a long-run

objective for consumer price inflation of 2.0 percent. The official inflation targets in

34 countries (regions) are provided in the last column in Figure 2.2. To make the

expressions easier, this thesis uses the term “country”to represent both “country”and

“region”.

Another subject is deviations of a variable from its trend. These deviations reflect

cyclical fluctuations and are important in driving correct decisions. Families can de-

cide which asset to invest. Employees can negotiate wage with employers. Factories can

decide how many products to produce. Firms can set their prices of products. Thus,

the understanding of dynamics of cyclical changes and the pace of their adjustment

towards the trend is influential and is of interest to macroeconomists. We can often
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hear something like “The Committee does not intend to tighten monetary policy at least

until there is clear evidence that significant progress is being made in eliminating spare

capacity and achieving the 2% inflation target sustainably.”

What is clear evidence? One possible way is looking at both inflation and its fundamen-

tal drivers, such as output growth rate, unemployment rate, oil prices, and exchange

rate. This suggests that it is important to jointly model variables. Multivariate model

is preferred.

The preceding discussion suggests that researchers should be interested in a model

with two characteristics. First, it should be written in terms of latent state vectors

that can be given an economic interpretation, like trends. Second, it is a multivari-

ate model. Such a model is the multivariate unobserved components (UC) model. A

UC model decomposes a variable into two unobserved processes: a random walk trend

component, and a stationary cyclical component. The random walk trend component

is also called trend. The stationary cyclical component is also called the deviations

of a variable from its trend. The three essays in this thesis extend the existing UC

literature in different ways. However, one common aspect of all extensions is that they

are introduced in the face of globalisation. The reason for this is discussed in the next

section.

1.2 Why does globalisation matter?

Since antiquity, globalisation has been developed. The Silk Road once connected China,

Central Asia, Persia, and Europe, and facilitated commercial and cultural exchange.

However, the globalisation we are experiencing nowadays is the biggest and fastest in

human history. Think about the products you have. Last time you went shopping,

maybe you bought fruits from South America, tea from Southeast Asia, and fish from

Europe. Your computer might have local components and Asian parts. Perhaps the

clothes you’re wearing were made in India, your car came from Japan, and you just
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video called a friend halfway around the world.

We live in a connected world and countries’ economies are linked together. Terms like

“global economies”, “global interdependencies”have become part of every day articles.

Countries, regions or sectors can no longer be treated in isolation and spillovers can

generate influence on countries’ economies. Theoretically, Canova and Ciccarelli (2013)

point out that market clearing implies the excess demand in a country is compensated

by excess supply in other countries. These spillovers, together with adjustments in the

relative prices of goods and/or assets, imply generalized feedbacks from one country to

all the others and influence the steady states (also called trends in this thesis). There

are subtle differences between steady state and trend, but they can be interpreted as

the same for the purpose of this thesis, so these two terms will be used interchangeably

as equivalent through this thesis.

An evidence is from a bird’s eye view of inflation globally after the Global Finan-

cial Crisis hit the economy. Both advanced economies and emerging market economies

have experienced apparent decline in inflation. Credit booms can help to explain what

the advanced economies have experienced. However, many of the emerging market

economies did not experience similar credit booms, nor did they experience the rapid

loss in employment (Jordà and Nechio, 2018). Such disconnect between inflation and

its fundamental drivers is also observed in advanced economies after the Global Fi-

nancial Crisis. For instance, US personal consumption expenditures inflation declined

in 2017 in the midst of a low and falling unemployment rate, stable oil prices, and a

depreciating dollar (Knotek II and Zaman, 2017).

This disconnect between inflation and its fundamental drivers leads to a nascent lit-

erature on inflation dynamics. In the 1970s and ’80s, much research in this area was

dedicated to understanding the causes and costs of high inflation and how to disinflate

effectively. After the Global Financial Crisis, the focus has shifted to understanding the

determinants of inflation. Many papers indicate that inflation is determined globally.
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There are two issues that need to be taken care of when considering globalisation.

The first issue is that every country, no matter whether there is or not theory be-

hind it, carries some information that might be useful for explaining the dynamics of a

variable. The second issue is that substantial heterogeneities remain in this globalised

world (like differences in the pace of the recovery from the Global Financial Crisis).

This thesis deals with both these issues. The first issue is solved by dropping the as-

sumptions that the errors across countries are independent (see Chapter 3) and that

the conditional mean is driven by domestic factors (see Chapter 4). The second issue is

also taken into account in this thesis by developing a method to shrink the parameters

in a data based fashion (see Chapter 3 and Chapter 4).

1.3 The contribution of this thesis

In light of the motivation outlined above, this thesis extends the existing unobserved

components literature in the face of globalisation. In Chapter 2, we extend the bivari-

ate unobserved components model to the variable-domain. Except domestic factors,

we add two observed global factors as additional explanatory variables. The two global

factors are global output and oil price. We allow the model to have both time-varying

parameters and stochastic volatility. This leads to a high dimensional model. To ensure

stationarity, we add a bound on coefficients. We apply these methods to 34 countries

covering the period 1995-2018. The results show that there is stochastic volatility

in inflation, and it has declined across all countries, but remained relatively high in

emerging market economies and few advanced economies. One important result is that

inflation dynamics are explained by the combination of domestic factors and global

factors. What strikes us is that the effects of these factors are constant over time and

across countries. We think the reason is that our sample is from 1995 to 2018. Oil price

plays a key factor behind inflation dynamics across countries and over time. Phillips

curves are generally flat, but different from zero.
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Chapter 2 finds that the effects of factors are constant over time. Together with the

Bayes Factor (see Chapter 3), we start from the constant coefficient unobserved compo-

nents model (we allow for stochastic volatility) in Chapter 3 and Chapter 4. We relax

the independent assumption in Chapter 2. The precise name of the model in Chapter 2

is multi-country unobserved components models, which means there are 34 independent

models, not a multi-country unobserved components model, which is one model and

has many equations (hence the term “Multivariate”). The desirable model is a multi-

variate unobserved components model, which allows for cross-country linkages in the

error covariance matrix, or in the conditional mean, or both. As I argue in Chapter 3

and Chapter 4, I propose methods to allow for cross-country linkages in these chapters.

A common feature of these methods is that we can work with the unrestricted model.

There is no need to impose zero restrictions; any cross-country linkages can take place

in the error covariance matrix, or in the conditional mean, or both; there is no need to

develop new methods to estimate the model; all that is needed is to estimate the whole

model using standard Markov Chain Monte Carlo (MCMC) algorithm; there is no need

to worry whether such standard MCMC algorithm is at the expense of slower compu-

tation time; equation-by-equation estimation can be implemented to most parameters.

We first allow for cross-country linkages in the error covariance matrix in Chapter 3.

The reasons are that the globalisation we are experiencing nowadays is the fastest in

human history and that the data we use is quarterly data. Since cross-country linkages

in the error covariance matrix occur contemporaneously, we think that they are more

likely to take place. Then in Chapter 4, we further allow for cross-country linkages in

the conditional mean.

In Chapter 3 we use the factor stochastic volatility specification in order to allow

for cross-country linkages in the error covariance matrix. Factor stochastic volatil-

ity specification is computationally efficient. Conditionally on the latent factors and

their loadings, equation-by-equation estimation becomes possible within each MCMC

iteration. Additionally, we allow for stochastic volatility in all equations and factors.

This leads to a more flexible model. A practical problem that occurs in this case is
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over-parameterization. Heterogeneities across countries exist, subsequently this is a

problem where data based selection is very relevant. We propose a method to remove

stochastic volatility in a data based fashion. More specifically, we rewrite the process of

log-volatility using the non-centered parameterization and use the Horseshoe prior to

select time-variation. We apply these methods to the data in Chapter 2. The existence

of global factors provides evidence of cross-country linkages in the error covariance ma-

trix. The estimates under our model are in line with previous studies and, for certain

countries, the estimates indicate that they are influenced by both domestic factors and

global factors. We find that our proposed model provides a superior in-sample fit and

accurate density forecasts compared to existing models in the literature, especially if

period of uncertainty is the period being forecasted.

In Chapter 4 we further relax the assumption that the conditional means are driven by

domestic factors in Chapter 3, and allow for cross-country linkages both in the error

covariance matrix and in the conditional mean. This is done through dropping the as-

sumption that coefficient matrices are diagonal in Chapter 3, and allowing them to be

full matrices. This leads to the number of total parameters being in the order of thou-

sands, and over-parametrization is a major concern. Such issue is further compounded

when no zero restrictions are imposed. These reasons call for Bayesian shrinkage prior.

We use an empirically successful prior (the Horseshoe prior), which automatically im-

poses the zero restriction for most elements but dropping the restriction if necessary.

We apply these methods to the data in Chapter 2. The estimates of coefficients and

generalised impulse response functions provide evidence of cross-country linkages. We

find that allowing for cross-country linkages in the error covariance matrix can provide

more precise estimates of trends, while omitting cross-country linkages in the condi-

tional mean will overestimate trend output. Our proposed model provides a superior

in-sample fit and accurate density forecasts compared to existing models in the litera-

ture.

Each chapter is self contained, so I provide specific motivation for each method used in

6



Chapter 1. Introduction

each individual chapter. Additionally, each chapter contains the necessary information

for the reader to understand the intuition behind the methods proposed in this thesis.

Chapter 2 is co-authored work with Alain Kabundi, Ayhan Kose and Aubrey Poon.

All empirical work in this joint research was undertaken by myself as well as the second

draft of the paper.
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Chapter 2

Multi-country Time-Varying

Phillips Curves with Observed

Global Factors

2.1 Introduction

Recent development in inflation dynamics has raised questions as to whether the rela-

tionship between real economy and inflation has been altered and whether the Phillips

curve is still valid. In the aftermath of the Global Financial Crisis (GFC), many coun-

tries experienced a sharp decline in output with mild effects on inflation (see, Simon

et al., 2013). The fear of deflation shared by many policymakers and central banks did

not materialize. And the post-crisis recovery, especially in advanced economies (AEs)

which recorded low unemployment, was not accompanied with rising in inflation. A

view widely accepted is that the slope of the Phillips curve has flattened since the

early 1990s, possibly owing to both improved conduct of monetary policy with a better

anchoring of inflation expectations (see, Simon et al., 2013; Kiley et al., 2015; Coibion

and Gorodnichenko, 2015; Jordà et al., 2019), and a decline in inflation volatility.1

1See for example Carlstrom and Fuerst, 2008; Ball and Mazumder, 2011; Simon et al., 2013; Blan-
chard et al., 2015; Gillitzer and Simon, 2018; Blanchard, 2016; Chan et al., 2016; Kabundi et al., 2019
on flattening the Phillips curve.
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This observation of flattening of the Phillips curve has interesting policy implications.

It suggests the sacrifice ratio has increased, which means that monetary policy needs

to be more aggressive to bring about a small change in inflation. This has rekindled

interest about key drivers of national inflation. Two views emerge from the literature

based on empirical evidence when attempting to explain this conundrum.

The first camp supports the notion that inflation is still largely explained by domestic

factors. Proponents consider the credibility, achieved by many central banks in an-

choring inflation expectations around the set target, as the main cause of flattening of

the Phillips curve. In this environment, inflation expectations are well anchored at the

central bank explicit target, which in turn stabilizes realized inflation in a way that

renders it less responsive to demand pressure.

Theoretically, King and Wolman (1996) demonstrates how credible monetary policy

authority is capable of stabilizing inflation, by anchoring expectations of agents around

its objective. As agents form their expectations through learning, a gradual disinflation

process results in slow learning, which in turn leads to adaptive inflation expectations.

However, if the central bank shows a strong commitment disinflate quickly, agents will

react accordingly as they believe that the central bank will achieve its objective. Hence

expectations become anchored. This suggests a mild reaction of inflation to demand

pressures, implying a flat Phillips curve. There is increasing empirical evidence linking

the flattening of the Phillips curve to credible monetary policy especially for AEs, but

also for some EMEs with inflation targeting (IT) policy framework.2 This hypothesis

is widely shared in policy circles as well as in academia. Many papers find no evidence

that global factors explain largely inflation dynamics in recent two to three decades

(see, Ihrig et al., 2010; Mart́ınez-Garćıa and Wynne, 2013; Mikolajun and Lodge, 2016

and Bems et al., 2018). They think the flattening of the Phillips curve reflects policy

synchronicity in AEs and EMEs, embodied wide spread use of nominal anchor. Other

2See for example Ball (2006), Williams et al. (2006), Simon et al. (2013), Kiley et al. (2015), Jordà
et al. (2019).
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factors include nonlinearity of the Phillips curve (see, Gagnon and Collins, 2019 and

Hooper et al., 2020) and the composition of consumer price indices which comprises

predominantly of noncyclical items (see, Stock and Watson, 2019).

The second camp highlights the role played by global factors in explaining the muted

response of domestic inflation. The literature identifies several channels through which

globalisation affects inflation dynamics in the last two decades. First, researchers point

to the adoption of IT framework in many countries.3 Second, rising trade integration

affects domestic inflation via increase in exports and imports to GDP ratio which in

turn drives up, on the one hand national income, and on the other hand, imports prices.

Moreover, Gilchrist and Zakrajsek (2019) demonstrate how increased trade exposure

significantly reduces the response of the US inflation to fluctuations in economic activ-

ity over time starting in the 1990s. Third, the expansion of EMEs, particularly China,

contribute in various ways to recent development in countries’ inflation. For example,

Eickmeier and Kühnlenz (2018) show that China’s demand and supply shocks affect

significantly inflation in other countries. Direct channels operate via export and im-

port prices, while indirect channels work through exposure to foreign competition and

commodity prices. Furthermore, growing significance of EMEs in the world economy,

coupled with rising in technology, lead to expansion of value chains to locations across

borders with low cost of production. In this regard, Albuquerque and Baumann (2017)

point to the essential role played by the global value chains in raising importance of the

global output gap in determining domestic inflation. At the same time, there has been

an increase supply of cheap labor from EMEs, which has exerted downward pressure

on global wages. Fourth, one cannot undermine the role played by common shocks

affecting economies simultaneously (e.g. oil or commodity prices) or spilling over from

one or subset of countries to others (e.g. during the pandemic). For example, inflation

volatility rose sharply among Latin American and Asian countries respectively during

the Tequila and Asian crisis, which then spread globally especially in countries with

3See for example Gamber and Hung, 2001; Bean, 2006; Borio and Filardo, 2007; Albuquerque and
Baumann, 2017; Eickmeier and Kühnlenz, 2018; Forbes, 2019; Gilchrist and Zakrajsek, 2019.
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weak economic fundamentals.

Forbes (2019) demonstrate empirically, using a Phillips curve with a set of global

variables, that globalisation plays an increasingly more important role in explaining

inflation dynamics. While domestic forces are still relevant in driving inflation, their

roles have changed over time. For example, domestic slack remains important, but it

has become less so over time, whereas the role played by global slack has increased.

Interestingly, she concurs with the first camp regarding the essential role played by

inflation expectations and lagged inflation, which reflect strong impact of policy.

Unlike Forbes (2019) who estimates panel regressions for a dataset comprising of 43

countries, this paper estimates the Phillips curve for individual countries from a dataset

with a total of 34 countries (23 AEs and 11 EMEs). Estimating the Phillips curve in this

way enhances the understanding of inflation dynamics specific to each country as well

as common features shared globally. Besides the time-variation in coefficients, some

parameters are restricted in line with expectations. Specifically, the model constrains

the inflation persistence (coefficient on lagged inflation) to be positive and less than

one. This restriction allows inflation to follow a mean-reverting process in line with the

data generating process. Like Kabundi et al. (2019), inflation persistence in this model

is interpreted as a measure of the degree of central bank credibility. It implies that

0 means the central bank is fully credible and agents are forward looking, whereas 1

suggests complete lack of credibility and agents are backward looking. Coefficients on

domestic output gap, global output gap, and oil price gap are restricted to be positive

and less than one. Without this constraint, the estimation sometimes yields negative

slope of the Phillips curve which is implausible. It is worth mentioning that the oil

price and global out gap are estimated outside of the model. The intuition here is that

each country is expected to face the same oil and global shocks. Estimating them in

the model will yield different measures for each country, which is counter-intuitive.

The current paper contributes to the existing literature by attempting to answer the
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following questions. Are the coefficients changing over time? Does the global output

gap, in addition to the domestic output and oil price gap, explain inflation dynamics?

Of the four variables included in the model, which one matters the most for domestic

inflation? The results can be summarized as follows.

There is evidence of changing nature of inflation volatility, which has declined across

all countries but remained relatively high in EMEs and several AEs. Inflation volatility

tends to rise in crisis periods compared with tranquil times. The implicit target is

relatively constant in many countries at levels consistent with the set objectives, but

closer to the upper bound of the target band for most of EMEs. Consistent with the

literature, the results show that Phillips curves are generally flat for the period under

consideration, but different from zero. They seem to be more flat in AEs than in EMEs.

The global demand seems to matter more than the domestic demand in all countries,

except for South Africa. The impact is constant throughout the sample and across

countries. And the global demand seems to matter more in EMEs than in AEs. Fi-

nally, the results point to the dominant role played by oil prices as a key factor behind

inflation dynamics across countries and over time. The coefficient on oil price gap is

on average 6 times more than that of domestic output gap and 4 times more than the

global output gap.

The remainder of the paper is organized as follows. Section 2.2 describes the spec-

ification of a time-varying Phillips curve with a bounded random walk process. Section

2.3 discusses the data, their transformation and empirical results. Section 2.4 concludes.
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2.2 Model Specification

We start from the bivariate unobserved components model in Chan et al. (2016):

πi,t − τπi,t = ρi,t(πi,t−1 − τπi,t−1) + αi,t(yi,t − τyi,t) + επi,t (2.1)

yi,t − τyi,t = ϕi,1(yi,t−1 − τyi,t−1) + ϕi,2(yi,t−2 − τyi,t−2) + εyi,t (2.2)

τπi,t = τπi,t−1 + ετπi,t , ετπi,t ∼ N (0, σ2τπ) (2.3)

τyi,t = τyi,t−1 + ετyi,t , ετyi,t ∼ N (0, σ2τy) (2.4)

where i denotes country i, i = 1, . . . , N . At time t, πi,t is the inflation of country i and

yi,t is the output of country i, τπi,t and τyi,t are their trends. These trends are unobserved

latent states which can be interpreted as long-run equilibrium level of inflation and

output, also known as trend inflation and trend output. πi,t − τπi,t is the inflation gap,

yi,t − τyi,t is the domestic output gap. επi,t is the error term with a stochastic volatility

defined as:

hi,t = hi,t−1 + εhi,t, εht ∼ N (0, σ2i,h) (2.5)

ρi,t is the inflation persistence. When expectations are well anchored, inflation is less

persistent. Conversely, when expectations are adaptive, inflation tends to exhibit high

persistence. αi,t is the slope of the Phillips curve. ρi,t and αi,t are allowed to vary over

time expressed by:

ρi,t = ρi,t−1 + ερi,t, ερi,t ∼ N (0, σ2i,ρ) (2.6)

αi,t = αi,t−1 + εαi,t, εαi,t ∼ N (0, σ2i,α) (2.7)

The current model specification departs from Chan et al. (2016) and Kabundi et al.

(2019), in that, it includes explicitly supply factor like Blanchard et al. (2015). And

it includes the global output gap in addition to oil price. With these two additional
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variables, the first equation in (2.1) becomes:

πi,t − τπi,t = ρi,t(πi,t − τπi,t) + αi,t(yi,t − τyi,t) + βi,tg̃t + γi,td̃t + επi,t (2.8)

where g̃t is the global output gap, d̃t is the oil price gap, βi,t and γi,t are time-varying

parameters:

βi,t = βi,t−1 + εβi,t, εβi,t ∼ N (0, σ2i,β) (2.9)

γi,t = γi,t−1 + εγi,t, εγi,t ∼ N (0, σ2i,γ) (2.10)

Note that each country faces the same global demand and oil price shock. It therefore

makes sense to estimate them outside of the model, otherwise these shocks will be spe-

cific to each country, which is counter-intuitive. Thus, g̃t and d̃t are estimated using

different filtering techniques. The baseline model uses the filtering approach developed

by Grant and Chan (2017).

Matheson and Stavrev (2013), Blanchard et al. (2015), and Chan et al. (2016) con-

strain some parameters in line with theory. Failing to do that yields coefficients that

can hardly be interpreted. For example, the inflation persistent, ρi,t, is restricted to be

positive and strictly less than one to ensure stationarity. Similarly, inflation reacts pos-

itively to domestic and global demand pressures, and positive oil price shock. Thus, the

slope of the Phillips and coefficients on global output and oil price gap are constrained

to be positive and less than one. These restrictions are imposed following Chan et al.

(2016), who employ a bounded random walk process. More specifically, the error terms

ερt , ε
α
t , εβt , and εγt are assumed to follow a truncated normal distribution:

ερi,t ∼ T N (−ρi,t, 1− ρi,t, 0, σ2i,ρ) (2.11)

εαi,t ∼ T N (−αi,t, 1− αi,t, 0, σ2α) (2.12)

εβi,t ∼ T N (−βi,t, 1− βi,t, 0, σ2i,β) (2.13)

εγi,t ∼ T N (−γi,t, 1− γi,t, 0, σ2i,γ) (2.14)
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where T N denotes the truncated normal distribution. All coefficients, bounded and un-

bounded, are estimated by Bayesian method using Markov chain Monte Carlo (MCMC)

algorithm. The priors are in Appendix A.1 and for further details of estimation, we

refer our readers to Chan et al. (2016).

2.3 Empirical Results

2.3.1 Data

The dataset comprises of quarterly series from 34 countries, 23 advanced economies

(AEs)4 and 11 emerging market economies (EMEs)5, observed from 1995Q1 to 2018Q1.

The choice of countries and the sample size are based on data availability. The series

included are the consumer price index (CPI) representing domestic inflation, the real

gross domestic product (GDP) which reflects domestic demand, oil price is which used

as proxy of supply shock, and global GDP as a proxy of global demand.6 Oil price

is taken from the World Bank Commodity Price Data, domestic GDPs are obtained

from Haver Analytics, and the global GDP is from the St. Louis Federal Reserve

Bank’s database, FRED. The series are transformed into quarter-on-quarter difference

of natural logarithms times 400. Note that the global output gap, obtained using the

global GDP, and the detrended oil price inflation are constructed outside of the model

using the filtering technique developed by Grant and Chan (2017).7 As mentioned

above, it is appropriate to estimate the global output trend and oil price trend outsied

4Australia, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Hong Kong, Ireland,
Israel, Italy, Latvia, Lithuania, Netherlands, Portugal, Slovakia, South Korea, Spain, Sweden, Switzer-
land, UK, USA.

5Bolivia, Brazil, China, Hungary, Indonesia, Mexico, Philippines, Russia, South Africa, Thailand,
Turkey.

6Alternatively, import prices could be used to represent supply shocks, unfortunately this series is
not available for many countries. Importantly, substituting oil price with import price yields similar
results.

7Importantly, the results remain unchanged when using other filtering techniques such as the un-
observed component with stochastic volatility (UCSV) of Beveridge and Nelson, 1981; Watson, 1986;
the Hodrick and Prescott, 1997; Hodrick and Prescott, 1997 (henceforth HP), and the AR(4) filter of
Hamilton (2018). Note that the Grant and Chan (2017) is flexible enough that it does not impose a
constant smoothing parameter of 1600 like the HP filter and it does not suffer from end-point issue
which is common in many filters. See Grant and Chan, 2017); Hamilton, 2018 for more details on the
weaknesses of the HP filter.
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the model, given that each country faces the same global demand and supply shock.

Conversely, deriving them from the model will yield different global output trend and

oil price trend for each country, which is counter-intuitive.

2.3.2 Global output gap and oil price gap

Figure 2.1 presents the estimated global output trend and oil price trend, their gaps,

and corresponding 84% credible intervals. The global output gap captures economic

cycle in the global economy. In particular, it illustrates recessionary episodes, namely,

the East Asian crisis of 1997-1998, the 2000-2001 dotcom crisis, the global financial

crisis of 2007-2008, and the sovereign crisis in Europe in 2012. It then stabilizes around

zero. The global output trend depicts a growth rate of 3 percent before the GFC, then

drifted down to 2.3 percent before reverting back to its pre-crisis growth of 3 percent in

2018. The oil price gap captures relatively well instances where the oil price deviates

from its long-term trend. Specifically, the upward movement in oil price before the

GFC was driven by high global demand, particularly in emerging market economies.

This demand pressure is exemplified by a steep rise in its trend starting in the late

1990s, then plateaus during and after the GFC. The cyclical component of oil price

turned negative, then recovered gradually before dropping again in 2014, as a response

to positive supply shock in oil market. This pushed down the trend in oil price.

2.3.3 Full Sample Results

The full sample results indicate that inflation dynamics are explained by lagged infla-

tion, domestic output gap, global output gap, and oil price gap. Unlike Forbes (2019)

who combines all countries together in a panel, interesting dynamics emerge when the

Phillips curve is estimated for each country. In general, global output gap and oil price

gap have larger coefficients than the domestic output gap. It is interesting to note that

of the two external factors, oil price matters more. These results support the finding

in the literature of a flat Phillips curve globally (see, Carlstrom and Fuerst, 2008; Ball

and Mazumder, 2011; Matheson and Stavrev, 2013; Blanchard et al., 2015; Blanchard,

2016; Chan et al., 2016 and Kaihatsu and Nakajima, 2018). The coefficients on do-
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Figure 2.1: Global Output Gap and Oil Price Gap: The solid blue line is the
posterior mean, while the dotted red lines are 16% and 84% quantiles.

mestic output gap and global output gap are consistent with the full-sample results of

Forbes (2019), whereas we have low inflation persistence and high coefficient on the oil

price gap.

Next, we provide the details of the results. They are grouped into 5 broad categories,

notably, the implicit inflation target, inflation volatility, inflation persistence, estimated

coefficients on other explanatory variables, and inflation gap decomposition.

Implicit inflation target

The implicit inflation target, which is agents’ beliefs about the central bank target, is

represented by the mean of long-term trend inflation, i.e. 1
T

∑T
t=1 τ

π
t . Consistent with
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central banks objectives, on average, implicit targets are around 2 percent for AEs and

above 4 percent for most of EMEs (see Table A.1). Specifically, 20 percent of countries

have their average implicit targets above the official target band or point target. Figure

2.2 shows implicit inflation target of all countries. Notice a marginal decline in the

trends especially for European countries following GFC, the European sovereign crisis,

and the marked drop in commodity prices of 2014. In particular, the constructed target

portrays a gradual decline in Belgium, Ireland, Netherlands, Denmark, Italy, Finland,

France, and Germany. These countries seem to have reached a new regime of inflation

below the target, hovering about one percent. Other AEs such as Australia and Canada

exhibit a similar pattern with a stable trend inflation around the official target of 2

percent. Sweden and Switzerland registered extremely low implicit target, below one

percent, dropping even further into negative for Switzerland amid deflationary pressure

as a response to the appreciation of the currency. It is interesting to note a low implicit

target for Switzerland even though it does not follow an IT regime. South Korea

exhibits persistent decline in trend inflation from 3 percent to 2 percent. Conversely,

inflation in the UK trended upward for prolonged periods with many instances where

inflation bridges the official target. Consequently, the implicit target moves from one

percent in the beginning of the sample to 2 percent and settled there until the end of

the sample. Similarly, Hong Kong, which is not an inflation-targeter, has experienced

an uptick in its implicit target from 1.1 percent to 2.4 percent. Finally, China and

Thailand are the only EMEs with low implicit target at levels that are comparable

with AEs. While the implicit target is trending up in China, it has been relatively

stable in Thailand with a marginal decline from 2.2 to 1.3 percent.

Inflation volatility

Figure 2.3 presents stochastic volatility. Notice that changing nature inflation volatil-

ity over time and across countries. Interesting patterns emerge from these figures.

First, there is a substantial decline in inflation volatility across countries. This can be

attributed to a good policy, reflecting stable inflation dynamics which in most cases

coincide with the adoption of IT policy. Besides, the literature also explains this drop
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Figure 2.2: Posterior estimates for trend inflation τπ. The title of each sub-figure
is the country name, followed by the official inflation targets (point target or target
bands). For Hong Kong and Bolivia, we do not find the official inflation targets, so
we use “-”. The solid blue lines are the means, the dotted red lines are 16% and 84%
quantiles.

by a “good luck” induced by a global common shock affecting simultaneously inflation

volatility in all countries. This global decline in inflation volatility also reflects the great

moderation periods associated with a decrease in shock affecting the global economy.

It is evident from Figure 2.3 that volatility has declined in both AEs and EMs albeit

with different magnitudes. In general, volatility in AEs, which has recently been closer

to zero, is lower than the levels attained in EMEs. Notice that Hong Kong is the only

AE with considerably high inflation volatility, resulting from its fixed exchange rate

regime. Starting initially at extremely low levels, volatility in Switzerland picks up in

2001 and remained elevated until 2011, then reverts to its pre-2001 levels. Like Hong

Kong, Switzerland follows a fixed-exchange rate policy.

Even though most EMEs have witnessed a downward trend in volatility, it remains

high especially in Turkey and Bolivia. Importantly, expect for Bolivia, most EMEs

adopted the IT framework in the early 2000s. Even though Turkey follows an IT

regime with a free-floating currency, the country has intervened several times to sup-

port its currency from depreciating, thus introducing volatility in inflation. As a result
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of active monetary policy, inflation trended downward from double digit (see Figure

A.1, 50% in 1995 in Turkey and 20% in 1996 in Mexico) to a single digit. Since the

adoption of IT, these countries managed to stabilize inflation which hovering at the

upper bound of the official target band. For example, Mexico achieved price stability

around four percent in 2003 while inflation has been stable around eight percent in

Turkey since 2004.

With few exceptions, volatility in general tends to rise in crisis periods. Specifically, it

increased during the Asian crisis, in EMEs and especially Asian countries, the dotcom

crisis of 2001 in few AEs (Australia, Canada, France, Germany, Italy, Sweden, Switzer-

land, UK, US), the GFC shared globally, and the European sovereign crisis in Europe.

In addition, idiosyncratic events generate remarkable spark in volatility in countries af-

fected, notably currency crises in Mexico in 1995, depreciation of domestic currency in

2001 in South African and 2005 in Indonesia. Similarly, volatility in Italy has been on a

rise since the GFC trigged by political and financial turmoil. Most countries exhibit ini-

tial high inflation volatility prior to the change in monetary policy (Australia, Bolivia,

Canada, Italy, South Africa, Sweden, Switzerland, and UK). Interestingly, Blanchard

et al. (2015) and Kaihatsu and Nakajima (2018) obtained the same results respectively

for the AEs, the US and Japan.

Inflation persistence

Table A.2 presents the average inflation persistence together with its credible intervals.

A noticeable difference is observed in the inflation persistence between AEs and EMEs.

Most advanced economies exhibit a small persistence which literature attributes to a

better anchoring of inflation expectations, suggesting that agents in these countries

have become more forward looking. In other words, inflation process is no longer adap-

tive (see Cogley and Sargent, 2005; Stock and Watson, 2007; Carlstrom and Fuerst,

2008; Ball and Mazumder, 2011; Matheson and Stavrev, 2013; Blanchard et al., 2015;

Gillitzer and Simon, 2018; Chan et al., 2016; Kabundi et al., 2019). The lowest persis-

tence is found in Canada, followed by Germany, Switzerland, USA, Australia, France,
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Figure 2.3: Stochastic volatility ht. The solid blue line is the posterior mean, while
the dotted red lines are 16% and 84% quantiles.

Denmark, the Netherlands, and South Korea. Note that these countries have implic-

itly or explicitly adopted the inflation targeting regime in the mid-1990s. Even though

Switzerland has not explicitly adopted the IT policy, it does have a nominal anchor of

maintaining inflation below 2 percent. AEs with high persistent include Italy, Ireland,

Slovakia, Lithuania, and Latvia. Agents are somewhat backward looking in Sweden,

Hong Kong, and Finland. It is not surprising that Hong Kong, which has a fixed ex-

change rate monetary policy, is the only AE with extremely high persistence.

In stark contrast, EMEs portray high persistence which suggests that expectation for-

mation is more adaptive in these countries. Brazil, Philippines, Russia, and South

Africa have the highest persistence of above 0.5, whereas it lies between 0.4 and 0.5 for

the rest of EMEs.

Average values mask interesting dynamics on the evolution of inflation persistence.

Next, we show the details of time variation in AEs, followed by EMEs.

The time variation in AEs shows different pictures. One group experienced a down-

ward in inflation persistence, while another group experienced an upward. The group
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experiencing a downward in inflation persistence includes Hong Kong, Israel, Latvia,

and Lithuania. In particular, inflation persistence in Hong Kong moves from 0.73 in

1995 to 0.27 in 2018 (see Figure 2.4). The adaptive behavior of agents in the 1990s

was mainly due to the persistently high inflation between 1995 and 1997, averaging

6 percent followed by a prolonged period of negative inflation which lasted about 5

years. Since 2005, monetary policy authority has managed to stabilize inflation around

2 percent (see Figure A.1). Similar pattern in persistence is observed in Israel, however,

the decline is less steep, moving from 0.78 to 0.39. High persistence at the beginning

of the sample can be associated with high inflation that prevailed before the adoption

of the IT regime in 1997. Latvia and Lithuania exhibit the similar pattern of inflation

persistent which is consistent with the dynamics in inflation in these countries. Infla-

tion persistence is high and constant until the GFC, then decreases slowly reaching 0.5

in 2018, suggesting that inflation is still somewhat adaptive. They started with high

inflation of 20 and 29 percent, respectively. This period was followed by a rapid dis-

inflation process, which brought inflation down to 1.49 percent in Latvia and around

zero in Lithuania. However, inflation surged again after a temporary period of low

inflation, attaining 19 percent in 2003 for Latvia and 13 percent in 2007 for Lithuania.

Thereafter inflation plummeted and stabilized in both countries around the implicit

target until the end of the sample.

The group experiencing an upward in inflation persistence includes Belgium, Finland,

and the UK. The marginal increase in Belgium is associated with the deflationary

process in the Europe in 2012, whereas high level attained in Finland and the UK is at-

tributed to prolonged periods of tolerance of inflation above the target by central banks.

With regard to EMEs, Figure 2.4 divide 11 EMEs into three groups. The first group

experienced a marked drop in inflation persistence. It includes China, Hungary, Mex-

ico, Thailand, and Turkey, moving from 0.9 to 0.22, which suggests a drastic change

in agents’ beliefs from backward looking to forward looking. Bolivia and South Africa

depict inflation persistent respectively at 0.5 and 0.6 which remains relatively constant,
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Figure 2.4: Inflation persistence ρt. The solid blue line is the posterior mean, while
the dotted red lines are 16% and 84% quantiles.

then decreases after the GFC to 0.27 and 0.37, respectively. These results reflect lengthy

episodes, where inflation has stayed above its long-term trend. More specifically, they

support the finding of Kabundi et al. (2019), who point out that the change observed in

inflation persistence in South Africa can be attributed to a combination of good policy

and good luck. With regard to good policy, they argue that the central bank becomes

more active in combating inflation. With regard to good luck, they argue that negative

oil price shock brings inflation down.

The second group experienced a noticeable upward in inflation persistence. It includes

Brazil and Russia, from 0.57 to 0.77 and 0.50 to 0.74, respectively. It is worth noting

that in contrast to Brazil, inflation persistence for Russia has been trending down after

reaching its peak (0.83) in 2008Q3. The two countries have tolerated prolonged periods

of deviation of inflation from its long-term trend. The third group is Philippines, who

has a stable inflation persistence of 0.6.

Estimates of coefficients on explanatory variables

This section contains the results of parameters of explanatory variables, namely, the

domestic output gap, the global output gap, and the oil price gap. As discussed in the
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model, these parameters are restricted be positive in line with expectations.

With regard to the coefficients on the domestic output gap (that is, αt), Table A.3

reports the average value over time and Figure A.3 reports the time variation aspect.

On average, Table A.3 reports the mean of αt over time. The slope of the Phillips

curve varies from 0.031 (Thailand) to 0.212 (Indonesia). The small value shows that

inflation is muted to domestic output gap. A pattern which emerges from the results

is that inflation tend to react more to domestic demand in EMEs than in AEs. Figure

A.3 plots the time varying slope of Phillips curve. We do not observe evident time

variation in it. It is quite flat from 1995 to 2018. This is consistent with Blanchard

et al. (2015) and Chan et al. (2016), Kabundi et al.. They use longer sample and find

evidence of changing slope of the Phillips curve in the 1970s and the 1980s. But the

slope has remained unchanged since early 1990s. Actually, if there is any recent change,

the results point to a marginal steepness of the slope recently in most AEs like Belgium,

Slovakia, South Korea, Switzerland, and the US. The recent marginal rise in the slope

of the Phillips observed in the US is also documented by Gilchrist and Zakrajsek (2019).

With regard to the coefficients on the global output gap (that is, βt), Table A.4 reports

the average value over time and Figure A.4 reports the time variation aspect. Similar

to the domestic demand, on average inflation in EMEs is more responsive to global

demand than in AEs (Table A.4). The coefficient varies from 0.337 (China) to 0.066

(Netherlands). Figure A.3 plots the time varying βt. Notice the general picture por-

trayed is that this coefficient decreases slightly until the GFC, then increases marginally

until the end of the sample.8 For example, the coefficient increases respectively from

0.19 to 0.24 for the US. This finding is comparable with Forbes (2019), who shows

that the response of inflation to global demand factors increased recently. It reflects

the effects of globalisation associated with increasing trade integration which started in

early 1990s have intensified lately. Thus, synchronization in inflation across countries

is partly a global demand phenomenon. In addition, positive credibility intervals imply

8In general, there is 0.5 rise in slope of global output gap from 2008 to 2018.
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that the effects are not negligible, which rules out the notion that domestic inflation is

only explained by domestic impact as proposed by Ihrig et al. (2010), Mart́ınez-Garćıa

and Wynne (2013), Eickmeier and Pijnenburg (2013), Mikolajun and Lodge (2016),

Bems et al. (2018), and Hooper et al. (2020). Consistent with Borio and Filardo

(2007) and Forbes (2019), the results indicate that global demand matters more than

domestic demand in explaining dynamics in inflation in both AEs and EMEs.9 This

finding has important monetary policy implications. It suggests that monetary policy

authority should monitor closely the global economy when they make decisions. In-

terestingly some central banks have already started incorporating the global economic

outlook in their decision-making process. In its statement of October 30, 2019, the Fed-

eral Reserve Bank clearly stated that its decision to lower the federal funds rate was

informed by the combination of weak global economic and muted inflationary pressure.

With regard to the coefficients on the oil price gap (that is, γt), Table A.5 reports

the average value over time and Figure A.5 reports the time variation aspect. On av-

erage, Table A.5 reports the role played by supply shock over time. A few interesting

observations can be highlighted. First, oil price gap seems to explain more dynamics in

inflation than demand factors. The coefficients vary between 0.393 (Brazil) and 0.739

(Germany), compared with the maximum of 0.212 and 0.337 for domestic and global

demand, respectively. Simon et al. (2013) find similar magnitudes using import prices.

Second and consistent with Jordà and Nechio (2018), the impact of oil price seems to

prevail more in AEs than in EMEs. This is consistent with the observation of downturn

in inflation in 2014 in most AEs, which is in line with the oil price shock during the

same period. Recall that implicit targets for the same countries fell as a result. Third,

in line with the literature, the coefficient is constant over time during this period (see

Forbes, 2019).

9Except for South Africa where the domestic demand exhibits a higher coefficient and Switzerland
where the two demand factors yield coefficients of the same magnitude. Notice that Thailand depicts
a constant coefficient on global demand, whereas South Africa is the only country with a decreasing
slope of global demand.
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Results in Table A.6 show coefficients of AR(2) process for each country’s output gap.

Notice that most AEs show high persistence in output gap, with the sum of coefficient

ranging between 0.5 and 0.7. Spain depicts the highest persistence of the output gap of

0.926, which is closer to a random walk process. These results indicate that expansion-

ary and contractionary periods are longer in AEs compared with EMEs. South Africa

is the only EME country with high persistence (0.617).

Inflation Gap Decomposition

In Table A.7, we briefly show the result of inflation gap decomposition. In our model, we

have five components: lagged inflation
(
ρt(πt−1−τπt−1)

)
, domestic output

(
αt(yt−τyt )

)
,

global output (βtg̃t), oil price (γtd̃t) and the error. The number represents the contri-

bution of a component to the inflation gap (πt − τπt ).

The contribution of lagged inflation has increased in 17 out of 34 countries after the

GFC. An interesting finding is that in the 17 countries, 16 countries are AEs. Even

if most advanced economies exhibit a small inflation persistence, the lagged inflation

is still important to explain the dynamics of inflation. The contribution of domestic

output has increased in 13 countries out of 34 countries after the GFC. And out of

23 AEs, only in 6 countries, the contribution of domestic output has increased after

GFC. Compared with 7 countries out of 11 EMEs, this supports the finding in 2.3.3

that inflation tend to react more to domestic demand in EMEs than in AEs. The

contribution of global output has increased in 9 countries. And out of 23 AEs, only in

2 countries, the contribution of domestic output has increased after GFC. Compared

with 7 countries out of 11 EMEs, this supports the finding in 2.3.3 that inflation tend

to react more to global demand in EMEs than in AEs. And the contribution of oil

price has increased in 20 out of 34 countries after the GFC, supporting an important

role played by oil prices. By comparing the magnitude of contribution, we find further

evidence that the impact of oil price prevails more in AEs than in EMEs.
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2.4 Conclusion

This paper estimates the Phillips for individual countries from a dataset with a total

of 34 countries (23 AEs and 11 EMEs). Besides the domestic output gap, the model

incorporates global output gap and oil price gap which account for global determinants

of inflation. We allow for time-variation in coefficients and parameters are restricted in

line with expectations. The results can be summarized as follows.

There is evidence of changing nature of inflation volatility, which has declined across

all countries but remained relatively high in EMEs and several AEs. Inflation volatility

tends to rise in crisis periods compared with tranquil times. Inflation persistence has

declined in most AEs countries. The estimates of trend inflation are relatively constant

in many countries. The levels are consistent with the official targets, but closer to the

upper bound of the target band for most of EMEs. Consistent with the literature,

the results show that Phillips curves are generally flat for the period under considera-

tion, but different from zero. They seem to be more flat in AEs than in EMEs with a

marginal uptick towards the end of the sample. The global demand seems to matter

more in EMEs than in AEs. Finally, the results point to the dominant role played by

oil prices as a key factor behind inflation dynamics across countries and over time. The

coefficient on oil price gap is on average 6 times more than that of domestic output gap

and 4 times more than the global output gap.
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Chapter 3

A Multi-country Unobserved

Components Model with Sparse

Factor Stochastic Volatility

3.1 Introduction

Since the seminal work by Stock and Watson (2007), unobserved components (UC)

models with stochastic volatility (SV) have been commonly used for modeling latent

state vectors that can be interpreted as long-run equilibrium levels and have enjoyed

great popularity. A large body of research has emerged on extending UC model. One

strand of extensions has focused on introducing more indicators into the conditional

mean of UC model (e.g., Stella and Stock, 2013; Chan et al., 2018; Zaman, 2021 and

Kabundi et al., 2021). Another strand of extensions of UC model has focused on

adding bounds on parameters (e.g., Chan et al., 2013; Chan et al., 2016; Zaman, 2021

and Kabundi et al., 2021).

Despite these popular extensions, the errors in UC model are assumed to be inde-

pendent with each other. This assumption is also used in multi-country studies (e.g.,

Chan et al., 2018 and Kabundi et al., 2021). A priori, one would expect there exist
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linkages in the covariance matrix. And the linkages are more evident in multi-country

studies due to globalization, omitting these linkages may affect the estimate of latent

states. Inspired by these concerns, this paper proposes an approach to allow for cross-

country linkages in multi-country UC models. It models all countries jointly. At the

same time, this new approach allows for SV in each country, which is found to be

important in the existing UC literature. This new approach also combines the two

strands of extensions of UC models. Specifically, this new approach introduces the

Phillips curve and constrains parameters to lie in reasonable intervals. Additionally, all

of these extensions in this new approach are not at the expense of slower computation

time (see below).

Coincided with the political and economic events (such as 9/11, Global Financial Cri-

sis (GFC) of 2008, and the euro area sovereign debt crisis), an extensive empirical

literature has studied the cross-country linkages in the error covariance matrix and

has found evidence of commonality in international macroeconomic uncertainty. In

the theoretical aspect, Cesa-Bianchi et al. (2020) assume that country-specific output

growth is determined by a common persistent component with time-varying volatility,

and by country-specific business-cycle components. Recent macroeconomic modelling

contributions include, among others, building up a dynamic stochastic general equilib-

rium (DSGE) model (e.g., Mumtaz and Theodoridis, 2017 and Cross et al., 2018) and

using large Bayesian vector autoregressions (BVARs) to measure international macroe-

conomic uncertainty. The latter includes the prominent work by Carriero et al. (2020).

They assume that the error volatilities evolve over time according to a factor structure,

thus successfully allowing for cross-country linkages in the error covariance matrix and

estimating the linkages and its effects in one step. By studying GDP growth for 19

industrialized economies and 67 variables in quarterly data (for the U.S., euro area

(E.A.), and U.K.), they obtain that there is one common factor driving strong co-

movement across economies.

Inspired by the finding of commonality in international macroeconomic uncertainty, the
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cross-country linkages in the error covariance matrix are allowed through co-movement

in volatilities. Specifically, we introduce factor stochastic volatility (FSV) specifica-

tions (e.g., Pitt and Shephard, 1999; Chib et al., 2006; Kastner, 2019 and Chan, 2021).

The FSV specification assumes that correlations among the elements of innovation are

induced by the latent factors. These latent factors capture the time-varying covariance

structure and naturally express the commonality in uncertainty that we want to study

in this paper. In addition, even small models can have a large number of parameters,

estimating all countries (in our empirical application, we consider 34 countries) jointly

is a high-dimensional setting and calls for techniques to avoid over-fitting problems.

FSV is such a technique, because there is empirical evidence that a small number of

factors would be sufficient to capture the time-varying covariance structure even when

the number of dependent variables is large (see Chan, 2021). Another advantage of

FSV specification is that it is computationally efficient. Conditionally on the latent

factors and their loadings, equation-by-equation estimation becomes possible within

each MCMC iteration (e.g., Kastner and Huber, 2020 and Chan, 2021), which substan-

tially speeds up computations.

The second advantage of this new approach is that it is flexible enough to allow every

country to have its own SV features. For example, the error for country i may support

SV, while the error for country j may be homoscedastic. Then the new approach allows

the data to determine whether each country variance is time-varying or time-invariant.

We solve this issue by adopting the method developed for shrinking time-varying co-

efficients in VARs (e.g., Belmonte et al., 2014; Huber and Pfarrhofer, 2021). More

specifically, we first rewrite the evolution of the log-volatility using non-centered pa-

rameterization, developed in Frühwirth-Schnatter and Wagner (2010). Non-centered

parameterization enables us to decompose the time-varying parameter into a time-

invariant part and a time-varying part, where the time-varying part has a constant

coefficient matrix. Then, we use a Horseshoe prior specification on the constant coeffi-

cient matrix of the time-varying part. The Horseshoe prior is a global-local shrinkage

prior. And it is found that if a matrix is characterized by a relatively low number of
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non-zero elements, a possible solution is a global-local shrinkage prior (e.g., Polson and

Scott, 2010; Kastner and Huber,2020). Such advantage of global-local shrinkage prior

shrinks strongly the parameter space but at the same time provides enough flexibility

to allow for non-zero elements if necessary, thus removing SV for most elements but

retaining SV if necessary. We refer to this specification of the log-volatility as NCP-

HS-SV (Non-centered parameterization Horseshoe Stochastic Volatility).

This new approach also incorporates the two strands of extensions of UC model, that is,

it introduces more indicators and constrains parameters to lie in reasonable intervals.

There has been a lot of recent research devoted to introducing suitable indicators into

UC model. These indicators are guided by economic theory and empirical research. For

example, inspired by the Phillips curve, Stella and Stock (2013) extend the univariate

UC model in Stock and Watson (2007) to bivariate UC model, and assume that it is

inflation gap and unemployment gap1 that drive the Phillips curve. Based on public

commentary that central bankers pay considerable attention to measures of long-run

inflation expectations, Chan et al. (2018) develop a bivariate model by introducing

survey-based long-run forecasts of inflation into the UC model. To directly address

critiques of omitted variable and omitted equation bias pointed out by Taylor and

Wieland (2016), Zaman (2021) further extends the bivariate UC model of Stella and

Stock (2013) to a large-scale UC model. In particular, they jointly estimate trends of

several macroeconomic variables (they call them “stars”) and build up a rich structure

for each star. The observed flattening of Phillips curve has generated various expla-

nations of this conundrum and one camp highlights the role played by global factors.

Therefore, Kabundi et al. (2021) introduce global factors (global output and oil price)

into the bivariate UC model of Stella and Stock (2013) to estimate trends of inflation

and output. In this paper, we follow Stella and Stock (2013) to incorporate Phillips

curve into UC model. One may question the existence of Phillips curve, but McLeay

and Tenreyro (2020) emphasize that the Phillips curve exists and policymakers are

1Inflation gap is deviation of inflation from its trend, and similar interpretation of unemployment
gap, deviation of unemployment rate from its trend.
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completely aware of its existence. Stock and Watson (2008) also raised the point that

the Phillips curve is useful for conditional forecasting. So we expect that the Phillips

curve still exists, even though we are observing that it has flattened (e.g., Ball and

Mazumder, 2011; Hall et al., 2013 and Blanchard et al., 2015).

To constrain parameters to lie in reasonable intervals, we follow Chan et al. (2013).

They first develop a method to constrain parameters to lie in intervals to avoid them

move into undesirable regions. They find the model yields more sensible measures

of trends than popular alternatives. Since their seminal work, there have been many

applications that have employed the use of adding bounds on parameters (e.g., Chan

et al., 2016; Zaman, 2021 and Kabundi et al., 2021).

In a careful empirical analysis, involving 34 countries and two variables in each coun-

try (quarterly CPI inflation and output), we show to what extent our new approach

improves upon a set of popular UC models with sensible properties.

First, we provide evidence that there is global factors driving strong co-movement

across economies and spikes in the volatility associated with these global factors coin-

cide with major economic events, which further enhances the merits of our NCP-HS-SV

specification. Second, we show that allowing for contemporaneous cross-country link-

ages will provide higher model fit and the estimates, in certain countries, indicate that

they are influenced by both domestic factors and global factors. Finally, we under-

take an out-of-sample forecasting exercise where we compare our new proposed flexible

model against restricted version of the model. We find allowing for contemporaneous

cross-country linkages leads to improved forecast performance, both at short and long

horizons. In addition, investigating the time profile of the cumulative log predictive

likelihood reveals that allowing for contemporaneous cross-country linkages especially

pays off when the aim is to forecast variables in times of uncertainty. And such good

forecast performance is for most countries and not driven by particular countries.
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This paper is organized as follows. In Section 2, we first discuss the unobserved com-

ponent models for output and inflation within a single country, then introduce our new

model, which models all countries jointly and allows for contemporaneous cross-country

linkages through factor stochastic volatility, thus providing direct estimate of common-

ality in international macroeconomic uncertainty. The details of our new model also

includes an elaborated account of the non-centered parameterization and the Horse-

shoe prior for stochastic volatility. Section 3 illustrates our modeling approach by

fitting our model to 34 countries (two variables, CPI inflation and output, within each

country). We divide them into three parts. In the first part, we present the estimates

of commonality in international macroeconomic uncertainty (we call them global infla-

tion uncertainty and global output uncertainty). The second part is Bayesian model

comparison, where we show that allowing for contemporaneous cross-country linkages

will improve in-sample fit. After justifying the importance of cross-country linkages,

we present, in the third part, the estimates of country-specific parameters with the

effects of cross-country linkages on them. Section 4 is the out-of-sample forecasting

performance. Finally, Section 5 concludes.

3.2 Sparse Factor Stochastic Volatility for A Multi-country

UC Model

3.2.1 MC-UC-FSV Model Specification

Unobserved component (UC) model is commonly used for a single economy, so we begin

with the country-specific UC model for output and inflation, using the model developed

in Stella and Stock (2013) and Chan et al. (2016). In particular, we start from constant
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coefficient UC model for output, yi,t, and inflation, πi,t of the form:

πi,t − τπi,t = ρi(πi,t−1 − τπi,t−1) + αi(yi,t − τyi,t) + επi,t (3.1)

yi,t − τyi,t = ϕi,1(yi,t−1 − τyi,t−1) + ϕi,2(yi,t−2 − τyi,t−2) + εyi,t (3.2)

τπi,t = τπi,t−1 + ετπi,t , ετπi,t ∼ N (0, σ2τπ) (3.3)

τyi,t = τyi,t−1 + ετyi,t , ετyi,t ∼ N (0, σ2τy) (3.4)

where i denotes country i, i = 1, . . . , N . At time t, πi,t is the inflation of country i

and yi,t is the output of country i, τπi,t and τyi,t are their trends. These trends are unob-

served latent states which can be interpreted as long-run equilibrium level of inflation

and output, also known as trend inflation and trend output.

This model is inspired by the Phillips curve and incorporates the properties that it

is inflation gap and unemployment gap that drive the Phillips curve. These features

are in common with the model of Stella and Stock (2013), Chan et al. (2013) and Chan

et al. (2016).

Thus, the first equation embodies a Phillips curve, but we are assuming constant coef-

ficients in the inflation gap equation. Many papers have emphasized that the Phillips

curve has flattened post 2007 (see, Simon et al., 2013) and proposed to allow for time-

variation in the coefficients to capture this behavior (see, Zaman, 2021). It seems to be

more sensible to start from UC model with time-varying coefficients. However, using

the data in our empirical work (observed from 1995Q1 to 2018Q1), we have considered

a model where ρi and αi vary over time, but find the Bayes Factor supports constant

coefficients (see Appendix B.1). We think one reason is that our sample is from 1995 to

2018. This period has been associated with stable and weak Phillips curve relationship.

For instance, Zaman (2021) find that post 1995, the time-varying estimate of inflation

gap persistence (for the US) is stable, and the time-varying Phillips curve (for the US)

is stable. Accordingly, the main model we focus on does not have time-variation in the

coefficients in inflation gap equation, but it does have stochastic volatility.
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To ensure stationarity, we bound ρi and αi to be positive and less than one, that

is 0 < ρi < 1 and 0 < αi < 1, which also ensures that the Phillips curve has a positive

slope. We also impose stationary condition on the output gap equation and assume

ϕi,1 + ϕi,2 < 1, ϕi,2 − ϕi,1 < 1 and |ϕi,2| < 1. Chan et al. (2016) and Zaman (2021)

also bound the coefficients and emphasize the importance of bounding.

The second equation implies AR(2) behavior for the output. The AR(2) assumption

is empirically sensible and commonly-used. Note that we are assuming constant coeffi-

cients in the output gap equation. In existing UC literature, the assumption of constant

coefficients has also been used in Chan et al. (2016), Zaman (2021) and Kabundi et al.

(2021). In the broader output literature, Koop et al. (2020) and Carriero et al. (2020)

also assume constant coefficients.

Thus far, we have specified a country-specific UC model for output and inflation. In

particular, it is a bivariate UC models used in Kabundi et al. (2021) and Chan et al.

(2016), and incorporates the features from empirical findings (constant coefficients).

However, conventional literature would next assume that the errors are independent

across countries. It is with this assumption that we part with the existing literature.

As discussed earlier, the independent assumption across countries is not plausible when

there is significant commonality across economies. To capture such cross-country link-

ages in uncertainty, we assume that, for all countries, their errors in the inflation gap

equation are driven by several common factors and their errors in the output gap equa-

tion are also driven by common factors. This can be done through the factor stochastic

volatility (FSV) specification.

To facilitate the FSV specification, at time t, we store the errors in inflation gap equa-

tion for all countries in an N -dimensional vector επt , that is, επt = (επ1,t, . . . , ε
π
N,t)

′. Sim-

ilarly, we store the errors in output gap equation for all countries in an N -dimensional
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vector εyt , that is, εyt = (εy1,t, . . . , ε
y
N,t)

′. Through factor stochastic volatility specifica-

tion, επt can be decomposed as:

επt = Lπft + uπt (3.5) uπt

ft

∼ N
  0N

0rπ

 ,

 Σπ
t 0rπ

0N Ωπ
t

  (3.6)

and εyt can be decomposed as:

εyt = Lygt + uyt (3.7) uyt

gt

∼ N
  0N

0ry

 ,

 Σy
t 0ry

0N Ωy
t

  (3.8)

where ft = (f1,t, . . . , frπ ,t)
′ is a rπ-dimensional vector of latent factors and Lπ is the

associated N × rπ loading matrix. Similarly, gt = (g1,t, . . . , gry ,t)
′ is a ry-dimensional

vector of latent factors and Ly is the associated N × ry loading matrix. Following

Chan (2021), we assume that the factor loading matrices Lπ and Ly are both a lower

triangular matrix with ones on the main diagonal and rπ ≤ (N − 1)/2, ry ≤ (N − 1)/2.

Let nl,π denote the number of free elements in Lπ, then nl,π = N × rπ − (1+rπ)rπ
2 . Let

nl,y denote the number of free elements in Ly, then nl,y = N × ry − (1+ry)ry
2 .

We assume that inflation gap equations across countries and output gap equations

across countries are driven by different factors ft and gt.
2 Based on preliminary em-

pirical work that the errors in inflation gap equation exhibit stochastic volatility, we

assume that the disturbances uπt exhibit stochastic volatility. This is why the error vari-

ance of uπt is Σπ
t . While the previous literature would assume the errors in output gap

equation remain homoscedastic, that is, uyt are homoscedastic, we assume the distur-

bances uyt exhibit stochastic volatility. This is why the error variance of uyt is Σy
t . Such

2Such relations between the errors in country i and j are typically referred to as static interdependen-
cies in the panel VAR literature. We do not incorporate, in the errors, contemporaneous relations across
variables within a country, because the conditional mean has been explicitly modelled this relation in
the inflation gap equation.
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specification will capture time variation in a country’s GDP volatility unique to that

country, and is used in Carriero et al. (2020). In the theoretical part of Cesa-Bianchi

et al. (2020), they also assume that country-specific business-cycle components have a

conditionally heteroscedastic variance-covariance matrix. If the error is homoscedastic,

our specification of the log-volatility can (nearly) remove SV (see below).

For the latent factors ft and gt, we assume that they exhibit stochastic volatility.

This is why the error variance of ft is Ωπ
t , and the error variance of gt is Ωy

t .

Note that the time-varying variance matrix Σπ
t = diag(eh1,t , . . . , ehN,t),

Σy
t = diag(ehN+1,t , . . . , eh2N,t), Ωπ

t = diag(eh2N+1,t , . . . , eh2N+rπ,t), and

Ωy
t = diag(eh2N+rπ+1,t , . . . , eh2N+rπ+ry,t).

To allow the data to decide whether there is time-variation in their log-volatility, we

model the evolution of the log-volatility according to a random walk in non-centered

parameterization and then use global-local shrinkage prior (Horseshoe prior) to control

time-variation. More specifically, for each j = 1, . . . , 2N + rπ + ry, the evolution of the

log-volatility is modeled as:

hj,t = hj,0 + ωhj h̃j,t (3.9)

h̃j,t = h̃j,t−1 + εhj,t, εhj,t ∼ N (0, 1)

The non-centered parameterization decomposes a time-varying parameter hj,t into two

parts: a time-invariant part hj,0 and a time-varying part ωhj h̃j,t, which has a constant

coefficient ωhj that controls the time-variation. Then we expect that some elements

in ωhj may be (close to) zero, which means the error is homoscedastic, but at the

same time several elements in ωhj may be different from zero, which means the error

is heteroscedastic. This case is exactly the advantage of global-local shrinkage prior.

Many papers have documented that global-local shrinkage prior can cope with the case

where a matrix is characterized by a small number of non-zero elements (e.g., Polson
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and Scott, 2010; Kastner and Huber, 2020). We use the empirically successful global-

local shrinkage prior, Horseshoe prior, and consider the inverse-Gamma representation

of Horseshoe prior as in Cross et al. (2020):

ωhj | λω
h

j , τω
h ∼ N (0, λω

h

j τω
h
), j = 1, . . . , 2N + rπ + ry

λω
h

j ∼ IG(
1

2
,

1

νω
h

j

), τω
h ∼ IG(

1

2
,

1

ξωh
) (3.10)

νω
h

j ∼ IG(
1

2
, 1), ξω

h ∼ IG(
1

2
, 1)

If the error (or factor) really is homoscedastic, the Horseshoe prior will shrink ωhj to

(nearly) zero and automatically remove (or nearly so) the SV from the error (or factor).

τω
h

is the global shrinkage parameter that pushes all elements (ωhj ) towards zero. We

have assumed that all ωhj are forced to zero through a single global shrinkage parameter

τω
h

for different factors, different countries and different equations within a given coun-

try. This is a restricted version of the Horseshoe prior in Feldkircher et al. (2021). They

specify the global shrinkage parameter to differ across countries and equations within

a given country. However, we notice that such a flexible prior is for the coefficients

in panel VARs, and our Horseshoe prior is for the time-varying part of log-volatility.

They all represent the uncertainty, so we expect that they have a single global shrink-

age parameter. Our specification in Equation (10) does allow for the differences across

factors, countries and equations within a given country and this is realized through the

local shrinkage parameter λω
h

j .
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To summarize the model including all countries:

πt − τπt = P (πt−1 − τπt−1) +A(yt − τyt ) + Lπft + uπt , ft ∼ N (0, Ωπ
t ), uπt ∼ N (0, Σπ

t )

yt − τyt = Φ1(yt−1 − τyt−1) + Φ2(yt−2 − τyt−2) + Lygt + uyt , gt ∼ N (0, Ωy
t ), u

y
t ∼ N (0, Σy

t )

τπi,t = τπi,t−1 + ετπi,t , ετπi,t ∼ N (0, σ2τπ), i = 1, . . . , N

τyi,t = τyi,t−1 + ετyi,t , ετyi,t ∼ N (0, σ2τy) (3.11)

hj,t = hj,0 + ωhj h̃j,t

h̃j,t = h̃j,t−1 + εhj,t, εhj,t ∼ N (0, 1), j = 1, . . . , 2N + rπ + ry

where πt = (π1,t, . . . , πN,t)
′ is an N × 1 vector, τπt = (τπ1,t, . . . , τ

π
N,t)

′ is an N × 1 vector,

P = diag(ρ1, . . . , ρN ) is an N ×N matrix, A = diag(α1, . . . , αN ) is an N ×N matrix,

yt = (y1,t, . . . , yN,t)
′ is an N × 1 vector, τyt = (τy1,t, . . . , τ

y
N,t)

′ is an N × 1 vector, Lπ is

an N × rπ matrix, ft is a rπ×1 vector, uπt is an N ×1 vector, Φ1 = diag(φ1,1, . . . , φN,1)

is an N ×N matrix, Φ2 = diag(φ1,2, . . . , φN,2) is an N ×N matrix, Ly is an N × ry ma-

trix, gt is a ry×1 vector, uyt is an N×1 vector. Σπ
t , Σy

t , Ωπ
t and Ωπ

t are defined previously.

We will use MC-UC-FSV as an acronym for this model defined through equation

(11). We use exp(hj,t/2), j = 1, . . . , N to measure the idiosyncratic inflation un-

certainty. For simplicity, we also use exp(hπt /2). We use exp(hj,t/2), j = N +

1, . . . , 2N (also exp(hyt /2)) to measure the idiosyncratic output uncertainty. We

use exp(hj,t/2), j = 2N + 1, . . . , 2N + rπ (also exp(hft /2)) to measure the global in-

flation uncertainty. And we use exp(hj,t/2), j = 2N + rπ + 1, . . . , 2N + rπ + ry (also

exp(hgt /2)) to measure the global output uncertainty. We summarize the definitions

and descriptions of uncertainty in Table 3.1.

Many models can be written as restricted version of the MC-UC-FSV model and can

help to investigate some aspects of our specification. These models, along with their

acronyms, are as follows:

1. MC-UC-FSV-ry = 0: this is the restricted version of the MC-UC-FSV where there

is no common factors in the output gap equation, that is, ry = 0. And the error in
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Table 3.1: Definitions and descriptions of uncertainty exp(hj,t/2)

Definitions descriptions of uncertainty exp(hj,t/2)

idiosyncratic inflation uncertainty exp(hπt /2), the standard deviation of uπt
idiosyncratic output uncertainty exp(hyt /2), the standard deviation of uyt
global inflation uncertainty exp(hft /2), the standard deviation of ft
global output uncertainty exp(hgt /2), the standard deviation of gt
global inflation factor ft
global output factor gt

output gap equation is allowed to exhibit stochastic volatility.

2. MC-UC-FSV-ry, rπ = 0: this is the restricted version of MC-UC-FSV where there

is no common factors in inflation and output gap equations, that is, rπ = 0, ry = 0.

The error in inflation and output gap equation is allowed to exhibit stochastic volatility.

3. MC-UC-FSV-ry, rπ = 0, ωhy = 0: this is the restricted version of MC-UC-FSV where

there is no common factors in inflation and output gap equations, that is, rπ = 0,

ry = 0, and the disturbances uyt are homoscedastic, while the disturbances uπt exhibit

stochastic volatility. This is similar to the bivariate UC model that is used in Stella

and Stock (2013), and Chan et al. (2016). They allow inflation persistence and the

slope of Phillips curve to be time varying. However, we do not allow them to be time

varying, that is, inflation persistence and the slope of Phillips curve are constant. Chan

et al. (2016) has added a bound on them, so we also bound inflation persistence and

the slope of Phillips to ensure stationarity.

We summarize the definitions and descriptions of uncertainty in Table 3.2:
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Table 3.2: Models which are restricted version of MC-UC-FSV and the corresponding
restrictions

Models corresponding restrictions

MC-UC-FSV-ry = 0 ry = 0, no common factors in the output gap equation
MC-UC-FSV-ry, rπ = 0 ry = 0, rπ = 0,

no common factors in inflation and output gap equations
MC-UC-FSV-ry, rπ = 0, ωhy = 0 ry = 0, rπ = 0, ωhj = 0, j = N + 1, . . . , 2N

3.2.2 Prior

For the time-invariant part of log-volatility, hj,0, we consider the inverse-Gamma rep-

resentation of Horseshoe prior:

hj,0 | λh0j , τ
h0 ∼ N (0, λh0j τ

h0), j = 1, . . . , 2N + rπ + ry

λh0j ∼ IG(
1

2
,

1

νh0j
), τh0 ∼ IG(

1

2
,

1

ξh0
) (3.12)

νh0j ∼ IG(
1

2
, 1), ξh0 ∼ IG(

1

2
, 1)

For ωhj , we also consider the inverse-Gamma representation of Horseshoe prior:

ωhj | λω
h

j , τω
h ∼ N (0, λω

h

j τω
h
), j = 1, . . . , 2N + rπ + ry

λω
h

j ∼ IG(
1

2
,

1

νω
h

j

), τω
h ∼ IG(

1

2
,

1

ξωh
) (3.13)

νω
h

j ∼ IG(
1

2
, 1), ξω

h ∼ IG(
1

2
, 1)

The initial states are assumed to follow normal distribution with zero mean and variance

ten. This is a relatively non-informative choice:

τπi,1 ∼ N (0, 10), i = 1, . . . , N (3.14)

τyi,1 ∼ N (0, 10), i = 1, . . . , N (3.15)

h̃j,1 ∼ N (0, 10), j = 1, . . . , 2N + rπ + ry (3.16)
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We use a relatively non-informative prior for the constant coefficients. We assume them

to follow normal distribution with zero mean and variance ten.

ρi ∼ N (0, 10), i = 1, . . . , N (3.17)

αi ∼ N (0, 10), i = 1, . . . , N (3.18)

ϕi,j ∼ N (0, 10), i = 1, . . . , N, j = 1, 2 (3.19)

lm ∼ N (0, 10), m = 1, . . . , nl,π + nl,y (3.20)

To ensure stationarity, we bound ρi and αi to be positive and less than one, that is

0 < ρi < 1 and 0 < αi < 1. We also impose the stationary condition on the output

gap equation and assume ϕi,1 + ϕi,2 < 1, ϕi,2 − ϕi,1 < 1 and |ϕi,2| < 1. No bounds on

elements in factor loading matrix L.

The error variances are assumed to follow inverse gamma distribution. We choose

relatively small values (ten) for the degrees of freedom parameters, which imply large

prior variances. We then choose values for the scale parameters so that the parameters

have the desired prior means. Setting it to 0.18 implies the prior mean is 0.02, while

setting it to 0.09 implies the prior mean is 0.01. This choice is similar to that made in

Chan et al. (2016).

σ2τπ ∼ IG(10, 0.18), i = 1, . . . , N (3.21)

σ2τy ∼ IG(10, 0.09), i = 1, . . . , N (3.22)
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3.3 In-sample Results on the Existence of Global Uncer-

tainty and Model Fit

3.3.1 Data

The data are the quarterly consumer price index (CPI) and the quarterly real gross do-

mestic product (GDP) for 34 countries, 23 advanced economies (AEs)3 and 11 emerging

market economies (EMEs)4. They span the period from 1995Q1 to 2018Q1. We trans-

form the data to annualized growth rates as: 400log(zt/zt−1). And because the output

gap equation follows an AR(2) process, our estimation start from 1995Q4. Posterior

results are based on 100000 draws after a burn-in period of 20000.

3.3.2 Overview of In-sample Results

We divide our in-sample Results into three sub-sections. The first sub-section, section

3.3.3, is the MC-UC-FSV estimate of global inflation uncertainty exp(hft /2) and global

output uncertainty exp(hgt /2). With regard to the number of factors in the inflation

gap equation and in the output gap equation. Identifying the optimal number is a

challenging problem. In this paper, we set rπ = 5 and ry = 2, that is, we include five

factors in the inflation gap equation and two factors in the output gap equation. The

reason for including more factors in the inflation gap equation is that we think inflation

dynamics are difficult to explain 5.

The second sub-section, section 3.3.4, is about Bayesian model comparison. We com-

pare the MC-UC-FSV to alternative models (MC-UC-FSV-ry = 0, MC-UC-FSV-

ry, rπ = 0, MC-UC-FSV-ry, rπ = 0, ωhy = 0) described in Table 3.2.

3Australia, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Hong Kong, Ireland,
Israel, Italy, Latvia, Lithuania, Netherlands, Portugal, Slovakia, South Korea, Spain, Sweden, Switzer-
land, UK, USA.

4Bolivia, Brazil, China, Hungary, Indonesia, Mexico, Philippines, Russia, South Africa, Thailand,
Turkey.

5We first estimated a model with rπ = 10 and ry = 10 but reduced the number of factors in the
output gap equation upon examination of the factor loadings. This choice is discussed in more detail
in the text and footnotes on the subsequent page.
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After justifying that our MC-UC-FSV model provides higher model fit, we show, in the

third sub-section (section 3.3.5), that persistence and the slope of the Phillips curve

will decrease under the MC-UC-FSV, compared with the commonly-used MC-UC-FSV-

ry, rπ = 0, ωhy = 0. And the estimates of trend inflation, trend output, idiosyncratic

inflation uncertainty and idiosyncratic output uncertainty are found to be sensible.

3.3.3 MC-UC-FSV Estimates of global uncertainty

Although the MC-UC-FSV estimates of global uncertainty reflect contemporaneous ef-

fect of global factors on (the volatility of) macroeconomic data, the effect is also directly

related to the loadings on the global factors. These loadings are reported in Appendix

B.2. Table B.2 is the loadings on global inflation factor. We report the posterior mean

of the five factors’ loadings (recall that we set rπ = 5), but only the 16% and 84%

quantiles of first factor’s loadings for brevity. Most of the countries have sizable load-

ings on the first global inflation factor, and the quantiles (except Russia and Brazil)

do not include zero. Table B.3 is the loadings on global output factor. We report the

posterior mean and quantiles of the two factors’ loadings (recall that we set ry = 2).

The quantiles of the first global output factor for all countries do not include zero.

This provides strong evidence of significant commonality of output in the 34 countries.

Carriero et al. (2020) obtain similar result in their case of the 19-country GDP dataset.

Figure 3.1 displays the posterior estimates of global uncertainty obtained from the

MC-UC-FSV using the full sample. The left panel, Figure 3.1a, is the estimate of

global inflation uncertainty, and the right panel, Figure 3.1b, is the estimate of global

output uncertainty. In both figures, the solid lines represent the posterior means of

the first uncertainty, while the dotted lines are the associated 16% and 84% quantiles.

The dashed lines represent the posterior means of the remaining uncertainties. For

example, with regard to global inflation uncertainty, we set rπ = 5, so we obtain the

posterior estimates of the five global inflation uncertainties from MCMC, including

their posterior means and quantiles. Then, in Figure 3.1a, we plot the posterior means

and quantiles of the first global inflation uncertainty (see solid lines and dotted lines),
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but for brevity, we only plot the posterior means of the remaining uncertainties (the

second, third, fourth and fifth uncertainty) using dashed lines.

As indicated in Figure 3.1a, we only observe evident and meaningful time-variation

in the first global inflation uncertainty. The estimated global inflation uncertainty

show significant increases around some of the political and economic events that Bloom

(2009) highlights as periods of uncertainty, including 9/11, the Enron scandal, the sec-

ond Gulf war, and the global financial crisis period. These spikes in the volatility

associated with the global factor are documented in Kastner and Huber (2020) using

US macroeconomic data. Since our data comes from 34 countries, the consistency be-

tween the estimate in Kastner and Huber (2020) and our study indicates that global

macroeconomic uncertainty is closely related to uncertainty in the US, which might not

seem surprising given the tie of the international economy to the US economy. One

spike that is not documented in Kastner and Huber (2020) is that volatility increases

from 2013 onward. This may indicate that such increase is driven countries other than

US. In addition, at the end of our sample (2018Q1), the global inflation uncertainty still

exists and continues to influence all countries under consideration. This is supported

by a related study, Forbes (2019). They add commodity price volatility to explain

inflation and find that commodity price volatility plays a large role for CPI inflation.

However, we find a different story with regard to the time-variation in the global out-

put uncertainty from Figure 3.1b. First, the two global output uncertainties both

increase during the GFC of 2008, but except this, we do not observe other meaningful

time-variation from the second global output uncertainty.6 Before the Global Financial

Crisis (GFC) of 2008, there exists global output uncertainty but it does not show much

time-variation. Then during the GFC, such uncertainty increases substantially. In the

aftermath of the GFC, it decreases sharply. In early 2015, there is spike in inflation

uncertainty,due to global oil price shock, and then towards the end of 2015 it subsides.7

6This is the first reason of including only two factors in the output gap equation.
7This is the second reason of including only two factors in the output gap equation

45



Chapter 3. A Multi-country Unobserved Components Model with Sparse Factor
Stochastic Volatility

These features are documented in Carriero et al. (2020) in their 19-country GDP data

set.
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Figure 3.1: Posterior estimates for global inflation uncertainty exp(hft /2) and
global output uncertainty exp(hgt /2) under MC-UC-FSV. The solid lines repre-
sent the posterior means of the first global uncertainty, while the dotted lines are the
associated 16% and 84% percentiles. The dashed lines represent the posterior means
of the remaining uncertainties.

3.3.4 Bayesian Model Comparison

Before we jump into the model comparison, we assess whether the Horseshoe prior can

successfully shrink strongly the parameter space (ωh) but at the same time provides

enough flexibility to allow for non-zero elements if necessary.

Evidence of NCP-HS-SV

We first investigate for time-variation in the volatility of inflation and output, then plot

the estimated time-varying standard deviation (exp(hj,t/2)) to see whether it coincides

with the test result. Of course, to test for time-variation in the volatility, a gold standard

is using marginal likelihood (Bayes Factor is the ratio of two marginal likelihoods).

However, in our settings where we allow for time-variation in volatility, the computation

of marginal likelihood requires integrating out all the states, making it a nontrivial task.

Therefore, we follow the method developed in Chan (2018). More specifically, since we

notice that the model without SV is a restricted version of the model with SV, the
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Bayes Factor can be calculated using the Savage-Dickey density ratio, thus avoiding

the computation of marginal likelihood. The Bayes Factor in favor of the unrestricted

model (model with SV) can be obtained using the Savage-Dickey density ratio as

BFhj =
p(ωhj = 0)

p(ωhj = 0| y)

So if BFhj is larger than 1, then the Bayes Factor is in favor of the unrestricted model.

In this part, the unrestricted model is time-varying hj . For simplicity, we compare the

log Bayes Factor. So a positive log Bayes Factor supports a time-varying hj .

On the computation of posterior density (p(ωhj = 0| y)), we can obtain the posterior dis-

tribution given output from MCMC algorithm, then it is direct to compute the posterior

density. On the computation of prior density (p(ωhj = 0)), since we use the Horseshoe

prior on ωhj , p(ωhj = 0) does not have a convenient analytical form. But, given the hy-

perparameters (λω
h

j , τω
h
, νω

h

j , ξω
h
) in Horseshoe prior, p(ωhj = 0| λωhj , τω

h
, νω

h

j , ξω
h
) is

Normal. Thus, if we have output from a prior simulator, we can approximate p(ωhj = 0)

by

p̂(ωhj = 0) =
1

S

S∑
s=1

p(ωhj = 0| λωh,sj , τω
h,s
, νω

h,s

j , ξω
h,s

)

This approximation applies for any prior which has a hierarchical form. The estimated

log Bayes Factor is reported in Appendix B.4. For time-variation in the volatility of

inflation in 34 countries, 12 countries are in favor of time-variation in the volatility

(their log Bayes Factor are positive). For time-variation in the volatility of output in

34 countries, 14 countries are in favor of time-variation in the volatility.

To see whether the estimated time-varying standard deviation coincides with the es-

timated log Bayes Factor, we report the two in Figure 3.2 and Figure 3.3. Figure 3.2

depicts the estimated time-varying standard deviation for inflation. The title of each

sub-figure is the country name, followed by the estimated log Bayes Factor. For ex-
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ample, the title of the first sub-figure is “Belgium (-6.16) ”, then the first sub-figure

depicts the estimated time-varying standard deviation for Belgium inflation and the the

estimated log Bayes Factor is -6.16, which is negative and implies that the log Bayes

Factor does not supports time-variation in the volatility of Belgium inflation. Figure 3.3

depicts the estimated time-varying standard deviation for output. The title is named

in the same way as inflation. The first sub-figure depicts the estimated time-varying

standard deviation for Belgium output and the the estimated log Bayes Factor is -5.17,

which is negative and implies that the log Bayes Factor does not support time-variation

in the volatility of Belgium output.

We find that the estimates of both the log Bayes Factor and the time-varying stan-

dard deviation are sensible and coincide with past research. For USA, the log Bayes

Factor supports time-varying volatility of inflation, while does not support time-varying

volatility of output. This is consistent with what we observe from the estimated time-

varying standard deviation for inflation and output. We observe marked spike in Figure

3.2, while it remains quite flat in Figure 3.3. Zaman (2021), Kabundi et al. (2021),

among many others, assume that the error in the output gap equation remains ho-

moscedastic. The consistency among the log Bayes Factor, the time-varying standard

deviation and past literature implies that the Horseshoe prior can successfully remove

unimportant small SV and at the same time provides enough flexibility to allow for SV

if necessary.

In addition, we find that, for several countries, the log Bayes Factor supports time-

varying volatility of output and we also observe marked spikes from the time-varying

standard deviation. This result points towards a big advantage of our proposed model,

which allows for SV in output gap equation. While past research assume the error

in output gap equation is homoscedastic, such assumption displays a tendency to be

over-restricted in multi-country study and ignores patterns observed under the model

allowing for SV in output gap equation. Omitting the SV can severely affect the relia-

bility of the estimates of the trend output.
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Figure 3.2: The estimated log Bayes Factor and time-varying standard devi-
ation in inflation gap equation. The solid blue lines are the means, 16% and 84%
quantiles of time-varying standard deviation.

In-sample fit

As discussed previously, the computation of marginal likelihood can be a challenge

when there are a large number of states. Therefore, we use an approximation to the

marginal likelihood (e.g., Geweke, 2001; Cross et al., 2020). They propose that con-

ditioning on the estimation period, the sums of one-step-ahead joint log predictive

likelihoods of 34 countries can be viewed as an approximation to the marginal likeli-

hood, therefore provides a direct measure of in-sample fit. We compare four competing

models: MC-UC-FSV, MC-UC-FSV-ry = 0, MC-UC-FSV-ry, rπ = 0 and MC-UC-FSV-

ry, rπ = 0, ωhy = 0. Before computing the the sums of one-step-ahead joint log predictive

likelihoods, we need to define some basics. Let ŷ
(i,j)
t+k denote, at time t, the k-step-ahead

forecast of the j-th variable in the i-th country, and y
(i,j)
t+k denote the actual value. In

our empirical work, i = 1, . . . , N with n = 34, j = 1, 2 where j = 1 denote inflation and

j = 2 denote output. Y
(i,j)
1:t stores the data up to time t, so ŷ

(i,j)
t+k = E (y

(i,j)
t+k | Y

(i,j)
1:t ).

Then we compute the k-step-ahead log predictive likelihoods (LPL) of the j-th variable

in the i-th country at time t:

LPLt,i,j,k = log p(ŷ
(i,j)
t+k = y

(i,j)
t+k |Y

(i,j)
1:t ), t = T0, . . . , T − k
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Figure 3.3: The estimated log Bayes Factor and time-varying standard devi-
ation in output gap equation. The solid blue lines are the means, 16% and 84%
quantiles of time-varying standard deviation.

Then the sums of one-step-ahead joint log predictive likelihoods is computed using:

LPL·,·,·,1 =
T−1∑
t=T0

n∑
i=1

2∑
j=1

log p(ŷ
(i,j)
t+1 = y

(i,j)
t+1 |Y

(i,j)
1:t )

Our estimation period starts from 1995Q4 (to 2018Q1), and the forecasting evaluation

period starts from 2003Q1. We provide the sums of one-step-ahead joint log predictive

likelihoods of 34 countries in Table 3.3.

In Table 3.3, results are presented relative to the forecast performance of the UC-

SV: we take differences, so that a positive number indicates a model is forecasting

better than the MC-UC-FSV-ry, rπ = 0, ωhy = 0. (Please note that we only take the

sum, and no average. That may be why the number seems so large. For example,

the sums of LPL under MC-UC-FSV is 895.02. If we take average over time, then

it is 14.67. If we take further average across country, then it is 0.43). The results

show that the MC-UC-FSV provides the best fit compared to all other models. In

addition, since we find MC-UC-FSV-ry, rπ = 0 provides higher model fit than MC-UC-

FSV-ry, rπ = 0, ωhy = 0, we view this as another evidence in support of allowing for
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idiosyncratic stochastic volatility in output gap equation.

Table 3.3: Sum of one-step-ahead log predictive likelihood

Model against MC-UC-FSV-ry, rπ = 0, ωhy = 0

MC-UC-FSV-ry, rπ = 0, ωhy = 0 0

MC-UC-FSV-ry, rπ = 0 520.37
MC-UC-FSV-ry = 0 658.57
MC-UC-FSV 883.34

3.3.5 Estimates under MC-UC-FSV

In the preceding sub-section, we provide evidence of successful shrinkage and flexibil-

ity realized by our NCP-HS-SV specification, and find that our MC-UC-FSV provides

higher model fit, justifying the importance of international macroeconomic uncertainty.

In this subsection, we compare the estimates of parameters produced from the MC-

UC-FSV and MC-UC-FSV-ry, rπ = 0, ωhy = 0. Specifically:

1. Decrease of persistence and Flattening of the Phillips Curve

Different from Kabundi et al. (2021), which focus on the time-variation of coefficients,

we focus on the effects of international macroeconomic uncertainty on the constant

coefficients. This can be done through comparing the relative change of constant co-

efficients under MC-UC-FSV against MC-UC-FSV-ry, rπ = 0, ωhy = 0. We find that

considering contemporaneous cross-country linkages will decrease the persistence and

flatten the Phillips Curve.

2. Estimates of country-specific latent states

We present the posterior estimates of country-specific latent states: Trend inflation τπ,

Trend output τy, Idiosyncratic inflation uncertainty exp(hπt /2) (In fact, exp(hπt /2) is

the standard deviation, so what we compare is the standard deviation). Idiosyncratic

output uncertainty exp(hyt /2).
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Decrease of persistence and Flattening of the Phillips Curve

We provide the posterior estimates of the coefficients in the Appendix B.3. Before

describing the detailed characteristics of each constant coefficient (ρ, α, ϕ1, ϕ2), we

first summarize the relative change of constant coefficients under MC-UC-FSV-ry = 0

against MC-UC-FSV-ry, rπ = 0, ωhy = 0, to assess the effects of contemporaneous cross-

country linkages on them.

In Table 3.4, the number is number of countries. For example, the “decrease” row

“ρ” column is 24, then out of 34 countries, there are 24 countries whose ρ is smaller

under MC-UC-FSV than the ρ under MC-UC-FSV-ry, rπ = 0, ωhy = 0. ρ is the infla-

tion gap persistence, α is the slope of the Phillips Curve. We find, for most countries,

considering global inflation uncertainty will decrease the inflation gap persistence and

the slope of the Phillips Curve. Also, we find output gap persistence ϕ1 decreases, so

allowing for idiosyncratic stochastic volatility in output and global output uncertainty

will decrease the output gap persistence.

Table 3.4: Relative change under MC-UC-FSV against MC-UC-FSV-ry, rπ = 0, ωhy = 0

ρ α ϕ1 ϕ2 ϕ1 + ϕ2

decrease 24 25 29 9 29
no change 3 8 0 0 0
increase 7 1 5 25 5

Inflation gap persistence

Table B.4 reports the inflation gap persistence. A noticeable difference between AEs

and EMEs is observed. Most AEs exhibit a smaller gap persistence, which literature

attributes to a better anchoring of inflation expectations, suggesting that agents in

AEs countries have become more forward looking than agents in EMEs. In other word,

inflation process in AEs is no longer adaptive (see Cogley and Sargent, 2005, Stock and

Watson, 2007 and Chan et al., 2016). While, expectation formation in EMEs is more

adaptive. Such difference between AEs and EMEs is also documented in Kabundi et
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al. (2021). The new finding (compared with Kabundi et al., 2021) is that consider-

ing global inflation uncertainty will decrease inflation gap persistence in both AEs and

(most) EMEs.

Output gap persistence

Table B.6 reports the output gap persistence. A similar pattern to inflation gap persis-

tence is found for output gap persistence. We find considering global output uncertainty

will decrease the AR(1) coefficient ϕ1. Although the AR(2) coefficient ϕ2 increases in

most countries (25 out of 34 countries), the sum of the AR(1) and AR(2) coefficient

decreases in most countries (29 out of 34 countries).

Phillips curve

The coefficient controlling the slope of the Phillips curve, α, has decreased in most

countries (25 out of 34 countries) after taking into account global uncertainty. This

provide further evidence that global uncertainty will flatten the Phillips Curve. As

done in Forbes (2019), they include comprehensive controls for globalization because

globalization is often cited as causing the flattening of the Phillips Curve.

Then, we report the posterior estimates of four country-specific latent states: trend

inflation τπt , trend output τyt , idiosyncratic inflation uncertainty exp(hπt ) and idiosyn-

cratic output uncertainty exp(hyj,t). For each country, we compare their country-specific

latent states under four competing models: MC-UC-FSV, MC-UC-FSV-ry = 0, MC-

UC-FSV-ry, rπ = 0 and MC-UC-FSV-ry, rπ = 0, ωhy = 0.

Estimates of Trend inflation

In Figure 3.4, we report the posterior estimates of trend inflation under the four com-

peting models. The title of each sub-figure is the country name, followed by the official

inflation targets (point target or target bands). For example, the title of the first sub-

figure is “Belgium (2) ”, then the first sub-figure depicts the estimate of trend inflation

for Belgium and the official inflation target set by Belgium central bank is 2%. Each
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sub-figure plots the posterior estimates (mean, 16% and 84% quantiles) of trend infla-

tion under MC-UC-FSV along with the posterior mean of trend inflation under three

competing models. The solid blue lines are the means, 16% and 84% quantiles under

MC-UC-FSV, the dotted red lines are posterior means under MC-UC-FSV-ry = 0, the

dashed black lines are posterior means under MC-UC-FSV-ry, rπ = 0, while the dashed

green lines are posterior means under MC-UC-FSV-ry, rπ = 0, ωhy = 0.

The solid blue lines and the dotted red lines represent the estimate under the mod-

els considering global inflation uncertainty in inflation gap equation, while the dashed

black lines and the dashed green lines represent the estimate under the models without

global inflation uncertainty in inflation gap equation. The first 23 countries are AEs

(from Belgium to Canada), followed by 11 EMEs. A pattern which emerges from the

results is that considering global inflation uncertainty tend to influence the estimated

trend inflation more in AEs than in EMEs. The posterior means under the four com-

peting models are almost coincident in EMEs. However, global inflation uncertainty

does generate some differences in AEs, such as Netherlands, USA, Switzerland, Den-

mark, Italy, France, Germany, Canada. And we observe that such differences indicate

that trend inflation is driven by both domestic factors and global factors. For exam-

ple, many papers without global inflation uncertainty document that trend inflation

for USA has been below 2% since 2012, and this is also observed under our competing

models MC-UC-FSV-ry, rπ = 0 and MC-UC-FSV-ry, rπ = 0, ωhy = 0, in contrast, the

mean estimate under model with global inflation uncertainty decreases to a higher level

in 2010. Then it begins to increase, rather than decreasing until 2015.

Estimates of Trend output

In Figure 3.5, we report the posterior estimates of trend output under the four com-

peting models. The title of each sub-figure is the country name. Each sub-figure plots

the posterior estimates (mean, 16% and 84% quantiles) of trend output under MC-UC-

FSV along with the posterior mean of trend output under three competing models.

The meaning of each line is the same as that in Figure 3.4. The solid blue lines are the
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Figure 3.4: Posterior estimates for trend inflation τπ. The title of each sub-figure
is the country name, followed by the official inflation targets (point target or target
bands). For Hong Kong and Bolivia, we do not find the official inflation targets, so we
use “-”. The solid blue lines are the means, 16% and 84% quantiles under MC-UC-FSV,
the dotted red lines are posterior means under MC-UC-FSV-ry = 0, the dashed black
lines are posterior means under MC-UC-FSV-ry, rπ = 0, while the dashed green lines
are posterior means under MC-UC-FSV-ry, rπ = 0, ωhy = 0.

means, 16% and 84% quantiles under MC-UC-FSV, the dotted red lines are posterior

means under MC-UC-FSV-ry = 0, the dashed black lines are posterior means under

MC-UC-FSV-ry, rπ = 0, while the dashed green lines are posterior means under MC-

UC-FSV-ry, rπ = 0, ωhy = 0.

We have two modifications in the output gap equation: allowing for idiosyncratic out-

put uncertainty (MC-UC-FSV-ry, rπ = 0 and MC-UC-FSV-ry = 0) and considering

global output uncertainty (MC-UC-FSV).

We first analyze the effect of idiosyncratic output uncertainty on the estimate of trend

output. This is done through comparing the estimates under MC-UC-FSV-ry, rπ = 0

(dashed black lines) with the estimate under MC-UC-FSV-ry, rπ = 0, ωhy = 0 (dashed

greed lines), where the error in output gap equation remains homoscedastic. We find

allowing for idiosyncratic output uncertainty will provide higher estimate of trend out-

55



Chapter 3. A Multi-country Unobserved Components Model with Sparse Factor
Stochastic Volatility

put in many countries (roughly 20 out of 34 countries).

Then, we analyze the effect of global output uncertainty on the estimate of trend

output. This is done through comparing the estimates under MC-UC-FSV (solid blue

lines) with the estimate under MC-UC-FSV-ry = 0 (dotted red lines). Similar to the

finding in the effect of global inflation uncertainty, we find that considering global out-

put uncertainty tend to influence the estimated trend inflation more in AEs than in

EMEs.
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Figure 3.5: Posterior estimates for trend output τy. The solid blue lines are the
means, 16% and 84% quantiles under MC-UC-FSV, the dotted red lines are posterior
means under MC-UC-FSV-ry = 0, the dashed black lines are posterior means under
MC-UC-FSV-ry, rπ = 0, while the dashed green lines are posterior means under MC-
UC-FSV-ry, rπ = 0, ωhy = 0.

Estimates of idiosyncratic inflation uncertainty

In Figure 3.6, we report the idiosyncratic inflation uncertainty estimates (i.e., the stan-

dard deviation of the shocks to the inflation gap, exp(hπt /2)) under the four competing

models. The title of each sub-figure is the country name. Each sub-figure plots the

posterior estimates (mean, 16% and 84% quantiles) under MC-UC-FSV along with the

posterior mean under three competing models. The meaning of each line is the same
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as that in Figure 3.4. The solid blue lines are the means, 16% and 84% quantiles under

MC-UC-FSV, the dotted red lines are posterior means under MC-UC-FSV-ry = 0, the

dashed black lines are posterior means under MC-UC-FSV-ry, rπ = 0, while the dashed

green lines are posterior means under MC-UC-FSV-ry, rπ = 0, ωhy = 0.

The solid blue lines and the dotted red lines represent the estimate under the models

allowing for cross-country linkages in inflation gap equation, while the dashed black

lines and the dashed green lines represent the estimate under the models without cross-

country linkages in inflation gap equation. A quick visual inspection shows that allow-

ing for cross-country linkages reduces the spike of idiosyncratic inflation uncertainty.

This can be regarded as an evidence supporting that there exist factors driving strong

co-movement of inflation across economies. In addition, the idiosyncratic inflation

uncertainty in several countries becomes quite flat after allowing for cross-country link-

ages, suggesting that the uncertainty in their inflation gap equation is driven by global

inflation uncertainty, rather than idiosyncratic inflation uncertainty.
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Figure 3.6: Posterior estimates for idiosyncratic inflation uncertainty
exp(hπt /2). The solid blue lines are the means, 16% and 84% quantiles under MC-
UC-FSV, the dotted red lines are posterior means under MC-UC-FSV-ry = 0, the
dashed black lines are posterior means under MC-UC-FSV-ry, rπ = 0, while the dashed
green lines are posterior means under MC-UC-FSV-ry, rπ = 0, ωhy = 0.
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Estimates of idiosyncratic output uncertainty

In Figure 3.7, we report the idiosyncratic output uncertainty estimates (i.e., the stan-

dard deviation of the shocks to the output gap, exp(hyt /2)) under the four competing

models. The title and the meaning of each line is the same as that in Figure 3.6.

The solid blue lines and the dotted red lines represent the estimate under the mod-

els allowing for cross-country linkages in output gap equation, while the dashed black

lines and the dashed green lines represent the estimate under the models without cross-

country linkages in output gap equation. The pattern found for idiosyncratic inflation

uncertainty can also be found for idiosyncratic output uncertainty. We again observe

that allowing for cross-country linkages reduces the spike of idiosyncratic output un-

certainty. This indicates that there exist factors driving strong co-movement of output

across economies. The idiosyncratic output uncertainty in many countries becomes

quite flat after allowing for cross-country linkages, suggesting that the uncertainty in

their output gap equation is driven by global output uncertainty, rather than idiosyn-

cratic output uncertainty. This number of idiosyncratic output uncertainty becoming

flat is higher than the number of idiosyncratic inflation uncertainty becoming flat,

which provides evidence for papers assuming that the error in output gap equation

is homoscedastic, but at the same time supports the need to allow for cross-country

linkages.

3.4 Out-of-sample Forecasting Results

Since our modifications are about uncertainty, we focus on the density forecast. We use

the data from 1995Q4 to 2002Q4 as an initial estimation period, and use data through

2002Q4 to produce k-step-ahead forecast distributions. We consider forecast horizons

of k = 1, 4, 8, 12, 16 quarters. So our forecast evaluation period begins in 2003Q1.
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Figure 3.7: Posterior estimates for idiosyncratic output uncertainty exp(hyt /2).
The solid blue lines are the means, 16% and 84% quantiles under MC-UC-FSV, the
dotted red lines are posterior means under MC-UC-FSV-ry = 0, the dashed black lines
are posterior means under MC-UC-FSV-ry, rπ = 0.

3.4.1 Overview of Forecasting Results

We divide our out-of-sample forecasting results into three parts: forecasting inflation,

forecasting output and jointly forecasting inflation and output. For each part, we

discuss the results in three dimensions. The first dimension is aggregate forecasting

performance over time and over countries (the aggregate LPL, by summing all countries

and all time periods). Since we observe international macroeconomic uncertainty, it is

natural to expect that considering such uncertainty will provide more accurate forecast

in economic recession. Thus, the second dimension is about forecasting performance

over time (we can study how the sums of LPL changes over time, by summing all

countries at time t). After providing evidence that our MC-UC-FSV can produce

more accurate forecast in economic recession, we further study whether such good

forecast performance is driven by particular countries, so the third dimension is about

the forecasting performance at country level. All results are presented relative to the

forecast under MC-UC-FSV-ry, rπ = 0, ωhy = 0: we take differences, so a positive

number indicates a model is forecasting better than the MC-UC-FSV-ry, rπ = 0, ωhy = 0.
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3.4.2 Forecasting inflation

We first report the aggregate forecasting performance for inflation over time and over

countries in Table 3.5. It is calculated by summing the LPL for the N countries over

T0 to T − k (and recall that j = 1 denote inflation):

LPL·,·,1,k =
t=T−k∑
t=T0

n∑
i=1

log p(ŷ
(i,1)
t+k = y

(i,1)
t+k |Y

(i,1)
1:t )

The results show that the model with cross-country linkages in inflation (MC-UC-

FSV-ry = 0 and MC-UC-FSV) provides more accurate forecast for inflation than

the model without cross-country linkages (MC-UC-FSV-ry, rπ = 0 and MC-UC-FSV-

ry, rπ = 0, ωhy = 0) at all horizons.

Table 3.5: Sum of k-step-ahead log predictive likelihood for 34-country inflation

Model k=1 k=4 k=8 k=12 k=16

MC-UC-FSV-ry, rπ = 0, ωhy = 0 0 0 0 0 0

MC-UC-FSV-ry, rπ = 0 -4.27 71.83 127.82 138.85 185.26
MC-UC-FSV-ry = 0 98.92 265.09 286.02 350.53 333.11
MC-UC-FSV 101.63 257.39 294.76 379.19 356.89

The forecasting result of inflation in Table 3.5 suggests the benefits of allowing for cross-

country linkages, which is done through considering the global inflation uncertainty in

our paper. It is natural to expect that the good forecasting result may largely arise

from periods of uncertainty. To investigate this point, we calculate the sums of LPL

over time. A common method is, as done in Feldkircher et al. (2021), to sum the LPL

for the N countries at time t:

LPLt,·,1,k =

n∑
i=1

log p(ŷ
(i,1)
t+k = y

(i,1)
t+k |Y

(i,1)
1:t )

For example, suppose we are at the time point of 2007Q4, then k = 1 means we are

forecasting the data in 2008Q1, and k = 4 means we are forecasting the data in 2008Q4.

So this method helps to answer at time t, which model can provide the most accurate

forecast in the future.
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However, recall that global inflation uncertainty shows significant increases around

2008 and 2015 (see Figure 3.1a, and because our forecast starts from 2003Q1, so we

omit the increase in 2001). Such global inflation uncertainty drives strong co-movement

across countries. So a more interesting study is to investigate whether this global infla-

tion uncertainty can improve the forecast performance during periods of uncertainty.

For example, suppose that we want to know which model can provide the most ac-

curate forecast of 2008Q1? Different forecast horizons will provide the forecast made

at different time t. If k = 1, then this means the forecast is made at 2007Q4 (one-

step-ago). If k = 4, then this means the forecast is made at 2007Q1 (four-step-ago).

Overall, the difference is the X axis. Suppose that we are at time t, in Feldkircher et al.

(2021), the X axis is t and represents when we make the forecast, but in our paper,

the X axis is t+ k and represents the period being forecasted. That is how we produce

Figure 3.8. About the starting time, since we make the first forecast at 2002Q4, if

k = 1, the period being forecasted is 2003Q1, so in Figure 3.8, the X axis (the period

being forecasted) starts from 2003Q1 when k = 1. If k = 4, the period being fore-

casted is 2003Q4, so in Figure 3.8, the X axis (the period being forecasted) starts from

2003Q4 when k = 4. Similarly, if k = 16, the period being forecasted is 2006Q4, so

in Figure 3.8, the X axis (the period being forecasted) starts from 2006Q4 when k = 16.

We plot the results (against MC-UC-FSV-ry, rπ = 0, ωhy = 0) in Figure 3.8 (for brevity,

we only plot the results of MC-UC-FSV). If the period to be forecasted is the period

of uncertainty (like 2008), the MC-UC-FSV provides overall good forecast performance

at all horizons, particularly at long horizons. This indicates the importance of taking

into account cross-country linkages for improving forecasts of inflation, especially to

forecast periods of uncertainty. To forecast more stable periods, it does not harm to

take into account cross-country linkages.

The sums of LPL over time in Figure 3.8 is for the 34 countries. Someone may question

whether the good forecasting result is driven by particular countries? To investigate this

point, we present the forecasting result for individual countries. The LPL of inflation
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Figure 3.8: Sums of k-step ahead LPL of inflation for MC-UC-FSV relative
to MC-UC-FSV-ry, rπ = 0, ωhy = 0 over time. The X axis is t + k and represents
the period being forecasted.

for country i at time t, which can be calculated by:

LPLt,i,1,k = log p(ŷ
(i,1)
t+k = y

(i,1)
t+k |Y

(i,1)
1:t )

We plot the results (against MC-UC-FSV-ry, rπ = 0, ωhy = 0) in Figure 3.9. Here the

period of uncertainty that we plot is 2008Q4, so the period being forecasted is 2008Q4

(t+k = 2008Q4). If k = 1, then the time we make forecast is 2008Q3, and we find overall

good forecast performance for most countries with more pronounced gains in advanced

economies (The first 23 countries are AEs, and the following 11 countries are EMEs).

A similar pattern is found if k = 16. The time we make forecast is 2004Q4, and we

also find overall good forecast performance for most countries. We also find significant

gains in Spain and USA. The gain is not so significant if k = 1 as the gain if k = 16. In

Figure 3.9, we only plot the shortest horizon k = 1 and the longest horizon k = 16, for

middle horizons (k = 4, 8, 12), we find good forecasting result across most countries and

did not find particular country which is important in driving good forecasting results.

Overall, We find good forecast performance for MC-UC-FSV for most countries and

such good forecast performance is not driven by particular countries.
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Figure 3.9: Sums of k-step ahead LPL of inflation for country i under MC-
UC-FSV relative to MC-UC-FSV-ry, rπ = 0, ωhy = 0.

3.4.3 Forecasting output

With regard to output, we report the sums of LPL of output over time and over

countries in Table 3.6. It is calculated by summing the LPL for the N countries over

T0 to T − k (and recall that j = 2 denote output):

LPL·,·,2,k =
t=T−k∑
t=T0

n∑
i=1

log p(ŷ
(i,2)
t+k = y

(i,2)
t+k |Y

(i,2)
1:t )

The results show that the model, which allows for both idiosyncratic stochastic volatil-

ity in output and cross-country linkages in output (MC-UC-FSV), provides the most

accurate forecast for output at all horizons.

Table 3.6: Sum of k-step-ahead log predictive likelihood for 34-country output

Model k=1 k=4 k=8 k=12 k=16

MC-UC-FSV-ry, rπ = 0, ωhy = 0 0 0 0 0 0

MC-UC-FSV-ry, rπ = 0 577.02 694.98 811.01 797.25 684.98
MC-UC-FSV-ry = 0 566.81 668.04 852.04 772.90 680.99
MC-UC-FSV 762.93 1194.99 1211.17 1208.10 1052.36
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Similar to the analysis of inflation, the second dimension of discussion for output is

sums of LPL over time (by summing all countries at time t), which can be calculated

by:

LPLt,·,2,k =
n∑
i=1

log p(ŷ
(i,2)
t+k = y

(i,2)
t+k |Y

(i,2)
1:t )

We plot the results (against MC-UC-FSV-ry, rπ = 0, ωhy = 0) in Figure 3.10. If the

period to be forecasted is the period of uncertainty (like 2008), the MC-UC-FSV pro-

vides overall good forecast performance. This indicates the importance of taking into

account cross-country linkages for improving forecasts of output, especially to forecast

periods of uncertainty. To forecast more stable periods, it does not harm to take into

account cross-country linkages.
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Figure 3.10: Sums of k-step ahead LPL of output for MC-UC-FSV relative
to MC-UC-FSV-ry, rπ = 0, ωhy = 0 over time. The X axis is t + k and represents
the period being forecasted.

To investigate whether the good forecast performance is driven by particular coun-

tries, we calculate the sums of LPL of output for country i at time t by:

LPLt,i,2,k = log p(ŷ
(i,2)
t+k = y

(i,2)
t+k |Y

(i,2)
1:t )
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We plot the results (against MC-UC-FSV-ry, rπ = 0, ωhy = 0) in Figure 3.11. We choose

2008Q4 to represent the period of uncertainty. For k = 1 and k = 16, we both find

overall good forecast performance for MC-UC-FSV for all countries. The highest gain

is found for Hungary, followed by Sweden. However, different from the conclusion in

the case of forecasting inflation that more pronounced gains are found in AEs, we find

significant gains in both AEs and EMEs. This implies that allowing for idiosyncratic

stochastic volatility in output and cross-country linkages in output is important for

both AEs and EMEs.
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Figure 3.11: Sums of k-step ahead LPL of output in country i for MC-UC-FSV
relative to MC-UC-FSV-ry, rπ = 0, ωhy = 0.

3.4.4 Jointly Forecasting inflation and output

With regard to the joint predictive density for inflation and output, we first report

the sums of joint LPL over time and over countries in Table 3.7. It is calculated by

summing the LPL for the N countries over T0 to T − k (and for all j, recall that j = 1

denote inflation, j = 2 denote output):

LPL·,·,·,k =

t=T−k∑
t=T0

n∑
i=1

2∑
j=1

log p(ŷ
(i,j)
t+k = y

(i,j)
t+k |Y

(i,j)
1:t )
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The results show that the model, which allows for idiosyncratic stochastic volatility in

output and cross-country linkages in both inflation and output (MC-UC-FSV), provides

the most accurate joint forecast for inflation and output at all horizons. Next, we study

Table 3.7: Sum of k-step-ahead joint log predictive likelihood for 34-country inflation
and output

Model k=1 k=4 k=8 k=12 k=16

MC-UC-FSV-ry, rπ = 0, ωhy = 0 0 0 0 0 0

MC-UC-FSV-ry, rπ = 0 520.37 679.42 751.62 794.16 615.81
MC-UC-FSV-ry = 0 658.57 898.62 1084.28 1084.13 1148.35
MC-UC-FSV 883.34 1513.05 1545.20 1824.70 1672.17

the time-variation in forecast performance to see whether the benefits arise from the

forecast during periods of uncertainty. So the second dimension of discussion for joint

predictive density for inflation and output is sums of joint LPL over time (by summing

all j and all countries at time t), which can be calculated by:

LPLt,·,·,k =
n∑
i=1

2∑
j=1

log p(ŷ
(i,j)
t+k = y

(i,j)
t+k |Y

(i,j)
1:t )

We plot the results (against MC-UC-FSV-ry, rπ = 0, ωhy = 0) in Figure 3.12. A similar

pattern to inflation and output was found. If the period to be forecasted is the period

of uncertainty (like 2008), the MC-UC-FSV provides overall good joint forecast perfor-

mance. This indicates the importance of taking into account cross-country linkages (in

inflation and output) for improving forecasts of inflation and output, especially during

periods of uncertainty.

Finally, we investigate whether the good forecast performance of periods of uncer-

tainty is driven by particular countries, so the third dimension of discussion for joint

predictive density for inflation and output is sums of joint LPL at the country level (by
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Figure 3.12: Sums of k-step ahead joint LPL for MC-UC-FSV relative to
MC-UC-FSV-ry, rπ = 0, ωhy = 0 over time. The X axis is t + k and represents the
period being forecasted.

summing all j for country i), which can be calculated by:

LPLt,i,·,k =

t=T−k∑
t=T0

2∑
j=1

log p(ŷ
(i,j)
t+k = y

(i,j)
t+k |Y

(i,j)
1:t )

We plot the results (against MC-UC-FSV-ry, rπ = 0, ωhy = 0) in Figure 3.13. A similar

pattern to output is found. (This is sensible since the gains in output are much larger

than gains in inflation, see Figure 3.9 and Figure 3.11). We find overall good forecast

performance for MC-UC-FSV for all countries.

3.5 Conclusion

This paper develops a multi-country unobserved components model that allows for

contemporaneous cross-country linkages. The model includes 23 Advanced Economies

and 11 Emerging Market Economies, with two variables (output and inflation) within

each country and their relationship being inspired by the Phillips curve. An important

feature of our model is that we model all countries jointly and allow for contempora-

neous cross-country linkages, through factor stochastic volatility specification. Factor

stochastic volatility specification enables us to study the commonality in international
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Figure 3.13: Sums of k-step ahead joint LPL in country i for MC-UC-FSV
relative to MC-UC-FSV-ry, rπ = 0, ωhy = 0.

macroeconomic uncertainty (global uncertainty). Past research has highlighted impor-

tance of allowing for stochastic volatility. Accordingly, we allow for stochastic volatility

in all equations and factors. To cope with over-fitting concerns, we rewrite the process

of log-volatility using non-centered parameterization and use the Horseshoe prior on

the coefficient that controls the time-variation in log-volatility. The Horseshoe prior

is a global-local shrinkage prior, which is found to strongly shrink the parameter but

at the same time provide flexibility if necessary. Since the prior density of Horseshoe

prior does not have an analytical form, which makes it difficult to compute the Bayes

Factor for nested models, we propose to use prior simulation to solve this problem.

This method applies for any prior which has a hierarchical form. Recent research has

devoted to speeding up computation and and one prominent progress is performing

equation-by-equation estimation. Factor stochastic volatility specification also enables

us to estimate this high dimensional model equation-by-equation.

In an empirical application we first present evidence of global uncertainty and it co-

incides with major economic events. Then, the Bayesian model comparison results

provide strong support to our stochastic volatility specification and our model which

takes into account global uncertainty. Specifically, we show that our stochastic volatility
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specification, written in non-centered parameterization and imposed Horseshoe prior,

can successfully remove unimportant small SV and at the same time provides enough

flexibility to allow for SV if necessary. Our model is supported by providing higher

model fit. After justifying that our model is sensible and supported, we present an

expansive set of posterior estimates that we hope would be helpful. The posterior es-

timates of coefficients show that considering contemporaneous cross-country linkages

will decrease the persistence and flatten the Phillips curve. The posterior estimates of

trends are found to be sensible and indicate that they are driven by both domestic fac-

tors and global factors. A by-product is that our model allows us to tell the uncertainty

in a equation is driven by common international components, or components operating

at a country level, or both. Finally, we provide a detailed forecasting exercise to eval-

uate the merits of our model. We find our model can provide more accurate forecasts,

especially if the period being forecasted is the period of uncertainty. And such good

forecast performance is for most countries and not driven by particular countries.

69



Chapter 4

A Panel Unobserved Components

Model for Estimating

Macroeconomic Trends

4.1 Introduction

The concept of trend is central to macroeconomics. Multivariate unobserved com-

ponents (UC) models have been shown to provide reasonable estimates of the trend.

Existing UC models in the literature either focus on one country or impose independent

assumption between economies in multi-country study. But in the modern globalized

economy, countries are linked together and events in one country can spill over into

others. The UC model without interdependencies across countries is counter-intuitive.

In order to bridge the gap between modelling strategy and the process of globaliza-

tion, this paper develops a new multi-country UC model: panel unobserved compo-

nents model with factor stochastic volatility (PUC-FSV). PUC-FSV model allows for

cross-country linkages both in the error covariance matrix and in conditional mean.

This is inspired by large and growing panel vector autoregressive (PVAR) literature.

PVAR has the same structure as VAR model, but a cross sectional dimension is added
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to the VAR representation (see, Canova and Ciccarelli, 2013). PUC-FSV has the same

intuition as PVAR models, in the sense that PUC-FSV has the same structure as UC

model, but a cross-country dimension is added to the UC representation.

Three key features characterize our PUC-FSV model. First, the PUC-FSV takes dy-

namic interdependencies into account by allowing for cross-country linkages in the con-

ditional mean, more specifically, in the coefficient matrices associated with the lagged

variables. Dynamic interdependencies may influence the estimates of trend through

spillovers in modern globalized economies. Second, the PUC-FSV takes static inter-

dependencies into account. This is done through two blocks. One block is allowing

for cross-country linkages in the error covariance matrix. Another block is allowing

for cross-country linkages in the conditional mean, more specifically, in the coefficient

matrices associated with the Phillips curve. By extending the traditional (own coun-

try) Phillips curve to global Phillips curve, the PUC-FSV adds a new measure of static

interdependencies. Third, we do not impose any zero restriction. This reduces the

associated mis-specification risk and means that we work with unrestricted PUC-FSV

model. To deal with over-parameterization concerns, we rely on a global-local shrinkage

prior. Although this approach is silent as to the reasons behind the dependencies, it

allows the data to tell us what the dependencies are. This is particularly important in

the absence of strong a priori beliefs on dependencies of variables.

The first key feature of the PUC-FSV is that it takes dynamic interdependencies (DIs)

into account, by allowing for cross-country linkages in the coefficient matrices associ-

ated with the lagged variables.1 DIs are popular in PVARs (see, Canova and Ciccarelli,

2013; Koop and Korobilis, 2016 and Davidson et al., 2019). However, DIs have not

been allowed for in the existing UC literature. This is the first feature that we part with

them. Canova (2011) point out that the model without DIs is suitable for estimates

1We do not consider the dependencies (that take place with a lag) across variables within a country.
The reason is from the structure of popular UC literature (see, Stella and Stock, 2013; Chan et al.,
2016; Kabundi et al., 2021 and Wu, 2021). What links variables within a country together is the
Phillips curve. Except the Phillips curve, one variable is driven by its own lags. The lags of other
variables within a country are not included. We follow their strategy in this paper.
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of trend2 in a small open economy. But this paper includes 34 countries (23 advanced

economies and 11 emerging market economies). The small open economy assumption

is no longer satisfied and spillovers may influence the estimates of trend (see Canova

and Ciccarelli, 2013). Taylor and Wieland (2016) also emphasize that omitting vari-

ables can affect the reliability of the estimates of trend. Therefore, in this paper, we

take on the challenge of allowing for dynamic interdependencies, which drops the small

open economy assumption and directly addresses critiques (pointed out by Taylor and

Wieland, 2016) that are likely to appear in multi-country studies.

The second key feature of PUC-FSV is that it takes static interdependencies (SIs)

into account. Generally, SIs are allowed for through the error covariance matrix. In

PVARs, the off-diagonal elements of error covariance matrix determine SIs (see Koop

and Korobilis, 2016; Davidson et al., 2019 and Feldkircher et al., 2021). In UC mod-

els, SIs are introduced through factor stochastic volatility (FSV), which assumes that

the error covariance matrix is driven by latent factors (see Wu, 2021). The PUC-FSV

follows the FSV specification, but adds a new measure of SIs. This new measure is

important, because one assumption of FSV specification is that all countries’ inflation

are driven by common factors, while all countries’ output are driven by other different

factors. What links inflation and output together is their own country Phillips curve

(see Stella and Stock, 2013; Chan et al., 2016; Kabundi et al., 2021 and Wu, 2021).

This implies that the model does not allow for the case where one country output has

a contemporaneous affect on other countries’ inflation. For instance, US output has a

contemporaneous affect on US inflation through own country Phillips curve, but US

output does not have a contemporaneous affect on UK inflation. Such SIs are ignored,

but it seems necessary to add them back. This is because that the data we have is quar-

terly data, while the transmission between some countries may be quick enough such

that a shock originating from one country has produced an affect on another country

in one quarter. To directly address this issue, we extend own country Phillips curve

2Precisely, Canova (2011) use the term “steady state ”. We use the term “trend ”. There are subtle
differences between them, but they can be interpreted as the same for the purpose of this paper.
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to global Phillips curve, which allows one country output to have a contemporaneous

affect on other country inflation. This is the new measure of static interdependencies

added in PUC-FSV.

The third key feature of PUC-FSV is that we do not impose any zero restriction on

parameters, which means that we work with the unrestricted PUC-FSV. The estima-

tion problem of panel model is related to the curse of dimensionality. One common

solution is to selectively model the dynamic links across countries while imposing zero-

restrictions on others (see Canova and Ciccarelli, 2009 and Canova and Ciccarelli,

2013). However, Feldkircher et al. (2021) point out that these restrictions, if wrongly

chosen, potentially lead to mis-specification problems. It is clearly desirable to intro-

duce restrictions in a data based fashion. One data-based approach is the stochastic

search specification selection approach, developed by Koop and Korobilis (2016). Their

approach produces posterior inclusion probabilities for every possible restrictions and

these probabilities can be used to sort through restrictions in a data based fashion.

Davidson et al. (2019) further extend the method of Koop and Korobilis (2016) to

allow for a more detailed investigation of cross-country linkages. Another data-based

approach is to rely on global-local shrinkage priors. Zero-restriction implies that the

matrix is sparse. It is found that if a matrix is characterized by a relatively low number

of non-zero elements, a possible solution is a global-local shrinkage prior (e.g., Polson

and Scott, 2010; Kastner and Huber, 2020). Such advantage of global-local shrink-

age prior shrinks strongly the parameter space but at the same time provides enough

flexibility to allow for non-zero elements if necessary, thus imposing zero restriction

for most elements but dropping the restriction if necessary. The global-local shrinkage

prior has been applied to PVAR literature in Feldkircher et al. (2021).3 In this paper,

we follow their method, working with unrestricted PUC-FSV model and relying on the

global-local shrinkage prior to deal with over-parameterization concerns.

3Leaving the model unrestricted will also make the computation cumbersome. Their prominent
method, integrated rotated Gaussian approximation (IRGA), is powerful at computation aspect. We
have not applied this new method, because our model is not so huge, compared to their model.
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The only condition in this paper is the stability condition. Since we work with un-

restricted PUC-FSV, the involved parameters can be enormous. To avoid them moving

into undesirable regions, we first rewrite the PUC-FSV model as a VAR(1) process,

conditional on the latent states. Then we impose the stability condition on the coef-

ficient matrix. The approach of bounding the parameters has been proposed in Chan

et al. (2016). They argue to bound the parameters (e.g., slope of the Phillips curve)

so as ensure stationarity and find empirical importance of bounding. This bounding

approach has been applied in many papers (see Zaman, 2021; Kabundi et al., 2021 and

Wu, 2021). This paper takes a similar strategy to impose stability condition on the

coefficient matrix.

This paper is organized as follows. In Section 2, we start from the multi-country

unobserved components model that allows for cross-country linkages in the error co-

variance matrix, then introduce the panel unobserved components model with factor

stochastic volatility (PUC-FSV), which allows for cross-country linkages both in the

error covariance matrix and in the conditional mean. After introducing the PUC-FSV

model, we describe the Horseshoe shrinkage priors on parameters. In Section 3, we

describe the 34-country data and provide evidence of interdependencies. After showing

the existence of interdependencies, we show the importance of interdependencies in the

following two sections. In Section 4, we present the estimates of trend. We find that

allowing for cross-country linkages in the error covariance matrix can provide more

precise estimates of trend, while omitting cross-country interdependencies in the condi-

tional mean will overestimate trend output. In Section 5, we show that the PUC-FSV

model can provide higher in-sample fit and more accurate density forecasts compared

to existing models in the literature. Finally, Section 6 concludes.
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4.2 A Panel Unobserved Components model with Factor

Stochastic Volatility

In this section, we develop the panel unobserved components model with factor stochas-

tic volatility. We do not impose any zero restrictions. To deal with the over-parameterization

concerns, we rely on a global-local shrinkage prior (the Horseshoe prior). The priors

are described after introducing the PUC-FSV model.

4.2.1 PUC-FSV Model Specification

We begin with the multi-country unobserved component (MC-UC-FSV) model de-

veloped in Wu (2021). They allow for cross-country linkages in the error covariance

matrix, through factor stochastic volatility specification. In particular, for country i,

i = 1, . . . , N , πi,t is the inflation of country i at time t and yi,t is the output of country

i, τπi,t and τyi,t are their trends. The MC-UC-FSV model for N -country inflation and

output is defined as:

πt − τπt = P (πt−1 − τπt−1) +A(yt − τyt ) + Lπft + uπt , ft ∼ N (0, Ωπ
t ), uπt ∼ N (0, Σπ

t )

yt − τyt = Φ(yt−1 − τyt−1) + Θ(yt−2 − τyt−2) + Lygt + uyt , gt ∼ N (0, Ωy
t ), u

y
t ∼ N (0, Σy

t )

τπi,t = τπi,t−1 + ετπi,t , ετπi,t ∼ N (0, σ2τπ), i = 1, . . . , N

τyi,t = τyi,t−1 + ετyi,t , ετyi,t ∼ N (0, σ2τy) (4.1)

hj,t = hj,0 + ωhj h̃j,t

h̃j,t = h̃j,t−1 + εhj,t, εhj,t ∼ N (0, 1), j = 1, . . . , 2N + rπ + ry

where πt = (π1,t, . . . , πN,t)
′ is an N × 1 vector, τπt = (τπ1,t, . . . , τ

π
N,t)

′ is an N × 1 vector,

P = diag(ρ1, . . . , ρN ) is an N ×N matrix, A = diag(α1, . . . , αN ) is an N ×N matrix,

yt = (y1,t, . . . , yN,t)
′ is an N × 1 vector, τyt = (τy1,t, . . . , τ

y
N,t)

′ is an N × 1 vector, Lπ is

an N × rπ matrix, ft is a rπ × 1 vector, uπt is an N × 1 vector, Φ = diag(φ1, . . . , φN )

is an N × N matrix, Θ = diag(θ1, . . . , θN ) is an N × N matrix, Ly is an N × ry

matrix, gt is a ry × 1 vector, uyt is an N × 1 vector. Σπ
t = diag(eh1,t , . . . , ehN,t),

Σy
t = diag(ehN+1,t , . . . , eh2N,t), Ωπ

t = diag(eh2N+1,t , . . . , eh2N+rπ,t), and
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Ωy
t = diag(eh2N+rπ+1,t , . . . , eh2N+rπ+ry,t).

The assumption that the errors are driven by latent factors (ft and gt) allows for

cross-country linkages in the error covariance matrix. However, Wu (2021) assume the

coefficient matrices P , A, Φ and Θ are diagonal. It is with this assumption that we

part with them. One would expect that country i variables depend on other countries’

variables, either contemporaneously or with a lag. Therefore, we relax this diago-

nal assumption to allow for a more comprehensive investigation of interdependencies.

Specifically, we assume that the coefficient matrices P , A, Φ and Θ are full matrices:

πi,t − τπi,t =ρi,1(π1,t−1 − τπ1,t−1) + ρi,2(π2,t−1 − τπ2,t−1) + · · ·+ ρi,N (πN,t−1 − τπN,t−1)

+ αi,1(y1,t − τy1,t) + αi,2(y2,t − τy2,t) + · · ·+ αi,N (yN,t − τyN,t) (4.2)

+ Li,πft + uπi,t

yi,t − τyi,t =φi,1(y1,t−1 − τy1,t−1) + φi,2(y2,t−1 − τy2,t−1) + · · ·+ φi,N (yN,t−1 − τyN,t−1)

+ θi,1(y1,t−2 − τy1,t−2) + θi,2(y2,t−2 − τy2,t−2) + · · ·+ θi,N (yN,t−2 − τyN,t−2)

(4.3)

+ Li,ygt + uyi,t

where ρi,j for i, j = 1, . . . , N represents the affect of country j inflation gap on country

i inflation. Similarly, αi,j for i, j = 1, . . . , N represents the affect of country j output

gap on country i inflation. φi,j and θi,j represent the affect of country j output gap on

country i output. Equation (4.2)-(4.3) specify the model for country i.
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Written in matrix, we can obtain the multi-country PUC-FSV model specification:

πt − τπt = P (πt−1 − τπt−1) +A(yt − τyt ) + Lπft + uπt , ft ∼ N (0, Ωπ
t ), uπt ∼ N (0, Σπ

t )

yt − τyt = Φ(yt−1 − τyt−1) + Θ(yt−2 − τyt−2) + Lygt + uyt , gt ∼ N (0, Ωy
t ), u

y
t ∼ N (0, Σy

t )

τπi,t = τπi,t−1 + ετπi,t , ετπi,t ∼ N (0, σ2τπ), i = 1, . . . , N

τyi,t = τyi,t−1 + ετyi,t , ετyi,t ∼ N (0, σ2τy) (4.4)

hj,t = hj,0 + ωhj h̃j,t

h̃j,t = h̃j,t−1 + εhj,t, εhj,t ∼ N (0, 1), j = 1, . . . , 2N + rπ + ry

We refer to this specification as Panel Unobserved Components model with Factor

Stochastic Volatility (PUC-FSV). Our PUC-FSV model has three important features.

First, full matrices (P , Φ and Θ) allow for dynamic interdependencies (DIs) (see,

Canova and Ciccarelli, 2013 and Davidson et al., 2019). More specifically, a full matrix

P allows that country i inflation depends on the first lag of other countries’ inflation

gap. For instance, if US inflation gap last quarter has an affect on UK this quarter,

then we say there is an inflation DI from the US to UK. The magnitude of inflation DI

is measured by the off-diagonal elements of matrix P . If the corresponding coefficient

is (or close to) zero, then there is no inflation DI from the US to UK. Full matrices

Φ and Θ allow that country i output depends on the first and second lag of other

countries’ output gap. For instance, if US output gap last two quarters have an affect

on UK output this quarter, then we say there is an output DI from the US to UK.

The magnitude of output DI is measured by the off-diagonal elements of matrices Φ

and Θ. The magnitude measured by matrix Φ represents a faster transmission between

two countries and we call this as output DI1st. The magnitude measured by matrix

Θ represents a slower transmission between two countries and we call this as output

DI2nd. If the corresponding coefficients are (or close to) zero, then there is no output

DI from the US to UK.

Second, full matrix A and factor stochastic volatility allow for static interdependen-
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cies (SIs). More specifically, full matrix A allows that country i inflation depends on

contemporaneous output gap, including own country output gaps and other countries’

output gap. This is the second new feature of PUC-FSV. For instance, if US output gap

this quarter has an affect on UK inflation this quarter, then we say there is a Phillips SI

from the US to UK. The magnitude of Phillips SI is measured by the off-diagonal ele-

ments of matrix A. If the corresponding coefficient is (or close to) zero, then there is no

Phillips SI from the US to UK. Factor stochastic volatility assumes that all countries’

errors in the inflation gap equation are driven by common factors ft and all countries’

errors in the output gap equation are driven by gt. And we call such SIs as inflation

error SIs and output error SIs. The magnitude of two error SIs is measured by factor

loading matrices Lπ and Ly.

Third, we do not impose any zero restriction on the coefficient matrices, which means

that we work with the unrestricted PUC-FSV. Leaving panel model unrestricted can

lead to enormous parameters to estimate. And to deal with over-parameterization con-

cerns, we rely on a global-local shrinkage prior. The Horseshoe prior is a global-local

shrinkage prior and empirically successful. Next, we describe the Horseshoe prior and

the priors for all other parameters.

4.2.2 Priors

We first introduce the prior for full matrices P , A, Φ and Θ. Then we introduce the

prior for other parameters.

The prior for full matrices is the Horseshoe prior. The Horseshoe prior was proposed by

Carvalho et al. (2010). It involves a global shrinkage parameter (τ) and a local shrink-

age parameter (λ). Carvalho et al. (2010) have shown that the induced distributions

over the global and local shrinkage parameters allow for optimal rates of shrinkage near

zero, while having sufficiently thick tails (see Cross et al. (2020), 2020).

More specifically, we use the inverse-Gamma representation of Horseshoe prior for ele-
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ments in the full matrix P , A, Φ and Θ. We assume that the global shrinkage parameter

(τ) is specified to differ across types of parameters, that is, each full matrix has two

global shrinkage parameters: one for own country coefficients and one for other country

coefficients. For instance, suppose that ρi,m is an element in P , if i = m, then ρi,i is

own country coefficient, and if i 6= m, then ρi,m is other country coefficient, then the

Horseshoe prior for own country coefficient ρi,i is:

ρi,i | λρi,i, τ
ρ,d ∼ N (0, λρi,iτ

ρ,d), i = 1, . . . , N

λρi,i ∼ IG(
1

2
,

1

νρi,i
), τρ,d ∼ IG(

1

2
,

1

ξρ,d
) (4.5)

νρi,i ∼ IG(
1

2
, 1), ξρ,d ∼ IG(

1

2
, 1)

the Horseshoe prior for other country coefficient ρi,m is:

ρi,m | λρi,m, τ
ρ,nd ∼ N (0, λρi,mτ

ρ,nd), i = 1, . . . , N, m = 1, . . . , N, i 6= m

λρi,m ∼ IG(
1

2
,

1

νρi,m
), τρ,nd ∼ IG(

1

2
,

1

ξρ,nd
) (4.6)

νρi,m ∼ IG(
1

2
, 1), ξρ,nd ∼ IG(

1

2
, 1)

To ensure stationarity, we impose condition on P , A, Φ and Θ. Specifically, we first

rewrite the first two equations in Equation (4) as a VAR(1):


πt − τπt

yt+1 − τyt+1

yt − τyt
yt−1 − τyt−1

 =


P A 0 0

0 Φ Θ 0

0 IN 0 0

0 0 IN 0




πt−1 − τπt−1
yt − τyt

yt−1 − τyt−1
yt−2 − τyt−2

+


Lπft + uπt

Lygt+1 + uyt+1

0

0


(4.7)

Then we obtain the VAR(1) representation. The stability condition requires that all

the eigenvalues of coefficient matrix are smaller than one in modulus. And we use the

command “eig” in Matlab to compute eigenvalues. The diagonal elements in A is the

slope of Phillips curve, so we also constrain them to be positive.
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The priors on other parameters are the same as that in Wu (2021). More specifically,

we model the evolution of the log-volatility according to a random walk in non-centered

parameterization and then use the Horseshoe prior to control time-variation. For each

j = 1, . . . , 2N + rπ + ry, the evolution of the log-volatility is modeled as:

hj,t = hj,0 + ωhj h̃j,t (4.8)

h̃j,t = h̃j,t−1 + +εhj,t, εhj,t ∼ N (0, 1)

The non-centered parameterization decomposes a time-varying parameter hj,t into two

parts: a time-invariant part hj,0 and a time-varying part ωhj h̃j,t, which has a constant

coefficient ωhj that controls the time-variation. For constant parameters ωhj and hj,0,

we use the Horseshoe prior:

ωhj | λω
h

j , τω
h ∼ N (0, λω

h

j τω
h
), j = 1, . . . , 2N + rπ + ry

λω
h

j ∼ IG(
1

2
,

1

νω
h

j

), τω
h ∼ IG(

1

2
,

1

ξωh
) (4.9)

νω
h

j ∼ IG(
1

2
, 1), ξω

h ∼ IG(
1

2
, 1)

hj,0 | λh0j , τ
h0 ∼ N (0, λh0j τ

h0), j = 1, . . . , 2N + rπ + ry

λh0j ∼ IG(
1

2
,

1

νh0j
), τh0 ∼ IG(

1

2
,

1

ξh0
) (4.10)

νh0j ∼ IG(
1

2
, 1), ξh0 ∼ IG(

1

2
, 1)

The initial states are assumed to follow normal distribution with zero mean and variance

ten. This is a relatively non-informative choice:

τπi,1 ∼ N (0, 10), i = 1, . . . , N (4.11)

τyi,1 ∼ N (0, 10), i = 1, . . . , N (4.12)

h̃j,1 ∼ N (0, 10), j = 1, . . . , 2N + rπ + ry (4.13)
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The elements in factor loading matrices are assumed to follow a normal distribution

with zero mean and variance ten, that is:

lm ∼ N (0, 10), m = 1, . . . , nl,π + nl,y (4.14)

where nl,π denotes the number of free elements in matrix Lπ, and nl,y denotes the

number of free elements in matrix Ly.

The error variances are assumed to follow inverse gamma distribution. We choose

relatively small values (ten) for the degrees of freedom parameters, which imply large

prior variances. We then choose values for the scale parameters so that the parameters

have the desired prior means. Setting it to 0.18 implies the prior mean is 0.02, while

setting it to 0.09 implies the prior mean is 0.01. This choice is similar to that made in

Chan et al. (2016).

σ2τπ ∼ IG(10, 0.18), i = 1, . . . , N (4.15)

σ2τy ∼ IG(10, 0.09), i = 1, . . . , N (4.16)

We use the Markov Chain Monte Carlo (MCMC) algorithm to sample all parameters.

More specifically, to sample τπi,t, the prior still follows a random walk process, but the

likelihood will come from N equations and each equation is defined through Equation

(2). To sample τyi,t, the prior still follows a random walk process, but the likelihood will

come from two parts: the first part is N equations in Equation (2), the second part is

N equations in Equation (3). It is standard to sample other parameters and we refer

readers to Chan et al. (2016) and Chan (2021) for details.

4.3 Data and Evidence of Interdependencies

In this section, we first introduce the data, then we provide evidence of interdepen-

dencies in two ways. The first way is through analyzing the matrices that measure

interdependencies. The second way is through impulse response analysis.
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4.3.1 Data

The data are the quarterly consumer price index (CPI) and the quarterly real gross

domestic product (GDP) for 34 countries, 23 advanced economies (AEs)4 and 11 emerg-

ing market economies (EMEs)5. They span the period from 1995Q1 to 2018Q1. We

transform the data to annualized growth rates as: 400log(zt/zt−1). And because the

output gap equation follows an AR(2) process, our estimation start from 1995Q4. We

assume that there is one common factor driving 34-country inflation, that is rπ = 1.

We assume that there is one common factor driving 34-country output, that is ry = 1.

This assumption comes from the empirical results in Wu (2021). Having estimated a

model with rπ = 10 and rπ = 10, they find there is one global factor driving 34-country

inflation and one global factor driving 34-country output. Posterior results are based

on 100000 draws after a burn-in period of 20000.

4.3.2 Evidence of Interdependencies

In this section, we present evidence of interdependencies across countries in two differ-

ent ways. The first way analyzes matrices that measure interdependencies, discussing

estimates of coefficients, which countries support interdependencies and whether these

interdependencies occur contemporaneously or with a lag. The estimates show that

the Horseshoe prior can achieve sensible shrinkage. Events in both AEs and EMEs can

spill over into AEs, contemporaneously and with a lag. By contrast, there are only

several spillovers into EMEs. We find more evidence of static interdependencies (SIs)

than dynamic interdependencies (DIs). The reason may be that we are using quarterly

data.

Then we move to impulse response analysis, discussing how a shock affects the 34

countries analyzed. We do so by computing the generalised impulse response functions

4Australia, Belgium, Canada, Denmark, Finland, France, Germany, Greece, Hong Kong, Ireland,
Israel, Italy, Latvia, Lithuania, Netherlands, Portugal, Slovakia, South Korea, Spain, Sweden, Switzer-
land, UK, USA.

5Bolivia, Brazil, China, Hungary, Indonesia, Mexico, Philippines, Russia, South Africa, Thailand,
Turkey.
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(GIRFs) for each shock. We find the GIRFs are much larger when a global shock hits

the system than when a US shock hits the system. The GIRFs also show that whatever

the shock is, the GIRFs of EMEs inflation go back to zero more slowly than AEs. We

call this “fragile inflation”in EMEs.

We want to emphasize that the above features are supported by data, and it is im-

possible to know all of them before estimating the model. They show the power of

working with unrestricted model and selecting the appropriate restrictions in a data

based manner.

Estimates of coefficients

For each of 34 countries, we have two blocks of interdependencies: one takes place

contemporaneously (Static Interdependency, SI), the other takes place with a lag (Dy-

namic Interdependency, DI). Within each block, we have three matrices measuring the

corresponding affect. Matrices A, Lπ and Ly measure SIs, while matrice P , Θ, Φ

measure DIs. We thus have six matrices summarizing the affects corresponding to the

SIs (Figure 4.1 and Table C.1) and the DIs (Figure 4.2-4.4). The table presents the

estimates of factor loading matrices Lπ and Ly. The figures plot the four full matrices

A, P , Θ and Φ. The Y axis in each figure is the left hand in the equation (see Equa-

tion (4.4)). The X axis is the corresponding right hand in the equation. For instance,

matrix P is the coefficient matrix for lag of inflation gap in the inflation gap equations.

We plot the estimates of matrix P in Figure 4.2. Then, the Y axis in Figure 4.2 is

the 34-country inflation gap this quarter (πt − τπt ), and the X axis in Figure 4.2 is the

34-country inflation gap last quarter (πt−1 − τπt−1).

The general pattern is that our modelling strategy induces a high degree of sparsity,

since most elements in full matrices (A, P , Θ and Φ) are close to zero. More impor-

tantly, the induced shrinkage is sensible, as evidenced by that own country information

are treated more important than other countries’ information. For instance, the diag-

onal elements of P are larger than the off-diagonal elements (see Figure 4.2), which
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means that our model believes own country inflation lag is more important than other

countries’ inflation lag. Similar pattern is observed from Phillips SIs (matrix A in Figure

4.1), output DI1st (matrix Φ in Figure 4.3) and output DI2nd (matrix Θ in Figure 4.4).

We observe evidence of interdependencies. First, we consider 23 AEs and 11 EMEs. We

find events in both AEs and EMEs can spill over into AEs, contemporaneously and with

a lag. By contrast, there are only several spillovers into EMEs. Second, we allow for

both static interdependencies and dynamic interdependencies. We find more evidence

of SIs than DIs. We observe considerable evidence of SIs from Figure 4.1 and Table C.1.

They provide evidence that some countries’ information is treated as important as own

country information, and there is a common factor that drives all countries’ inflation

(output). However, most off-diagonal elements, in DI figures (Figure 4.2-4.4), are close

to zero. Several non-zero off-diagonal elements seem to support that DIs occur within

AEs and within EMEs. We describe the details of SIs and DIs below.

The first evidence of SIs comes from matrix A in Figure 4.1. Matrix A is the co-

efficient matrix of output gap in the inflation gap equations. It links all countries’

inflation gap and output gap together and measures the Phillips SIs. The diagonal

element is the slope of own country Phillips curve. Except the diagonal elements, we

find some off-diagonal elements have a value that is quite comparable to the diagonal

elements. This implies that our model deems these information (from other countries)

as important as own country information. “Belgium” row to “Canada” row show the

spillovers into AEs. We find events in both AEs and EMEs can spill over into AEs.

However, in terms of spillovers into EMEs (see “South Africa” row to “Thailand” row),

events in EMEs can spill over into EMEs. There is only one small degree of positive

spillover from AEs into EMEs, from USA into China. Except this, we do not see other

evident spillovers from AEs into EMEs. The second evidence of SIs comes from factor

loading matrices Lπ and Ly (see Table C.1). We find the posterior means of factor

loading matrices are quite large and 84% credible intervals do not include zero, sup-

porting that 34-country inflation are driven by a common factor ft and that 34-country
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output are driven by a common factor gt.

With respect to DIs, we have three matrices (P , Θ and Φ) measuring DIs and we

find the three matrices have different characteristics. Figure 4.2 plots the estimates of

matrix P . Matrix P is associated with the lag of inflation gap and measures inflation

DIs. First, we find the diagonal cells for EMEs are darker green than the diagonal cells

for AEs, which implies that EMEs exhibit a higher inflation gap persistence, while AEs

exhibit a lower inflation gap persistence. In other words, inflation process in AEs is

no longer adaptive (see, Cogley and Sargent, 2005; Stock and Watson, 2007 and Chan

et al., 2016). While expectation formation in EMEs is more adaptive. Second, several

non-diagonal elements are green, describing inflation DIs. Most spillovers are positive

(green cells) except that events in France have a small negative effect on inflation in

Turkey (red cell).

Figure 4.3-4.4 plot the output DIs, which are measured by matrices Φ and Θ. The

two matrices are the coefficients in output gap equation. Figure 4.3 the estimates of

matrix Φ, which is associated with the first lag of output gap and measures output

DI1st. We notice that the output DI1st occurs within AEs and within EMEs, while we

do not observe evident output DI1st between AEs and EMEs.

Figure 4.4 plots Θ, which is associated with the second lag of output gap and measures

output DI2nd. Non-diagonal elements also describe spillovers, but it has a different

pattern from Φ. “Belgium” row to “Canada” row show the spillovers into AEs. We

find events in both AEs and EMEs can spill over into AEs. However, in terms of

spillovers into EMEs (see “South Africa” row to “Thailand” row), there is only one

small degree of negative spillover into EMEs, from Switzerland into Thailand. Except

this, we do not see other evident spillovers into EMEs.
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Figure 4.1: Heatmap of posterior means for the coefficients of output gap in
inflation equations. The Y axis is the left hand in the equation. The X axis is the
right hand in the equation. Then the Y axis denotes the 34-country inflation equations
(this quarter), that is, πt − τπt . The X axis denotes the 34-country output gap (this
quarter), that is, yt − τyt .

Impulse Response Analysis

The preceding discussion suggests the existence of interdependencies. An excellent

aspect of panel model is that, after allowing for interdependencies, it can model the

manner in which shocks are transmitted across countries (see Dees et al., 2007 and

Canova and Ciccarelli, 2009). We will show that PUC-FSV can consider the effects

of both variable-specific shocks and, more importantly, global shocks. With regard to

global shocks, as pointed out by Dees et al. (2007), it is possible to view US shock as

global shock in the case of a US equity market shock, but it might be less defensible for

other types of shocks. Therefore, it might be desirable to consider the effects of global

shocks which might not necessarily originate from a particular country, but could be

common to the world economy as a whole. Examples of such shocks include major de-

velopments in technology. By using the factor stochastic volatility (FSV) specification,

the proposed PUC-FSV directly allows us to consider the effects of global shocks.

Since PUC-FSV allows for dynamic dependencies, static dependencies and time varia-
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Figure 4.2: Heatmap of posterior means for the coefficients of inflation gap
lag. The Y axis is the left hand in the equation. The X axis is the right hand in the
equation. Then the Y axis denotes the 34-country inflation equations (this quarter),
that is, πt − τπt . The X axis denotes the 34-country inflation gap (last quarter), that
is, πt−1 − τπt−1.

tion in the parameters (e.g., stochastic volatility), we are interested in computing the

responses of the endogenous variables to shocks in the variables/global factors and in

describing their evolution over time. In this situation, we use the Generalized Impulse

Response Functions (GIRFs), proposed in Koop et al. (1996).

With 68 endogenous variables (34 countries and 2 variables of each country) and time-

varying parameters, there will be a different set of generalised impulse response func-

tions (GIRFs) at each time in the sample period. However, for our study, we focus on

the GIRFs for the end of sample period (2018Q1). we investigate the implications of

four different shocks: (a) a 1-standard-deviation positive shock to US inflation; (b) a

1-standard-deviation positive shock to US output; (c) a 1-standard-deviation positive

shock to global inflation; and (d) a 1-standard-deviation positive shock to global output.

More specifically, the computation of generalised impulse response function in Koop

et al. (1996) is: given the posterior draws, the GIRF is obtained from the difference

between two alternative paths: in one a shock hits the system, and in the other this
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Figure 4.3: Heatmap of posterior means for the coefficients of output gap
lag. The Y axis is the left hand in the equation. The X axis is the right hand in
the equation. Then the Y axis denotes the 34 output equations (this quarter), that is,
yt − τyt . The X axis denotes the first lag of 34-country output gap (last quarter), that
is, yt−1 − τyt−1.

shock is absent:

GIRFt+k = E[zt+k|ut, It]− E[zt+k|It] (4.17)

where zt+k is the forecast of the endogenous variables at the horizon k, It represent

the current information set and ut is the current structural disturbance terms. The

computation of the generalised impulse response functions for a horizon k can be sum-

marised in 4 steps:

Step1 : We first draw parameters from the posterior distributions within the Gibbs

Sampler.

Step2 : We rewrite the errors in Equation (4.7). Suppose ut is a vector and each

element in ut follows standard normal distribution N (0, 1), then:

uπt = Σπ
t ut where Σπ

t = diag(eh1,t , . . . , ehN,t),

uyt = Σy
t ut where Σy

t = diag(ehN+1,t , . . . , ehN+N,t),
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Figure 4.4: Heatmap of posterior means for the coefficients of output gap
lag. The Y axis is the left hand in the equation. The X axis is the right hand in
the equation. Then the Y axis denotes the 34 output equations (this quarter), that
is, yt − τyt . The X axis denotes the second lag of 34-country output gap (the quarter
before last), that is, yt−2 − τyt−2.

ft = Ωπ
t ut where Ωπ

t = diag(eh2N+1,t , . . . , eh2N+rπ,t),

gt = Ωy
t ut where Ωy

t = diag(eh2N+rπ+1,t , . . . , eh2N+rπ+ry,t).

Step3 : We draw ut from the standard normal distribution, then generate two paths:

one with the shock and the other without shock. For the latter case, we just com-

pute the errors in Step2 using ut and then stochastically simulate a random path of

length k using the coefficients drawn from Step1 . For the former case, we set ui,t to

the corresponding shock that we are interested in. For example, say we are interested

in USA inflation shock (we consider 34 countries and the order for USA is 13), then

the disturbance term will be ũt = (u1,t, u2,t, . . . , u13,t + 1, . . . , uN,t)
′. Thus, we compute

the errors in Step2 using ũt and then stochastically simulate another random path of

length k. If we are interested in global inflation shock (we consider one global factor),

then the disturbance term will be ũt = ut + 1.

Step4 :To compute the impulse response function, we take difference between the two

paths.
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We report the generalised impulse response functions in Figure 4.5-4.10. Figure 4.5

is about the US inflation shock, Figure 4.6-4.7 are about the US output shock, Fig-

ure 4.8 is about global inflation shock and Figures 4.9-4.10 are about global output

shock. A quick visual inspection shows that the GIRFs go back to zero over the next

20 quarters and most GIRFs settle down quickly, possibly resulting from the stability

condition we impose on the coefficient matrices (see Equation (4.7) ).

We observe two notable differences. The first difference is between US shocks and

global shocks. Figure 4.5-4.7 are about US shocks, while Figure 4.8-4.10 are about

global shocks. The GIRFs are much larger when a global shock hits the system than

when a US shock hits the system. We think this is because almost all countries load on

the global factors and the loadings are quite large (see Appendix C.2). This provides

evidence that it is important to allow for SIs (static interdependencies) as is done in

this paper, where we assume that the covariance matrices are driven by latent factors.

This possibly further confirms that it is not defensible to view US inflation shock as

global shock (see Dees et al., 2007).

The second difference is the GIRFs of inflation between AEs and EMEs. Whatever

the shock is, the GIRFs of EMEs inflation go back to zero more slowly than AEs,

which implies that a shock has on average a longer-term effect on EMEs inflation. We

call this “fragile inflation”EMEs. We also observe some other differences among differ-

ent shocks and we describe them below.

US Inflation Shock:

Figure 4.5 report the GIRFs of 34-country inflation to a 1-standard-deviation increase

in US inflation. We have in total 68 endogenous variables (34-country inflation and 34-

country output), but We find that, from Equation (4.7), output only depends on the

lag of output and does not depend on inflation. This means that US inflation shock will
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affect 34-country inflation, while does not affect 34-country output, so we only plot the

GIRFs of 34-country inflation to a 1-standard-deviation increase in US inflation over

the next 20 quarters. We report the posterior means and the 84% credible intervals.

US inflation increases by 0.4 on impact, and it quickly goes back to zero, which implies

that US inflation shock has on average only a short-term effect on US inflation. For the

cross-country spillovers, we observe some differences across the remaining 33 countries.

First, US inflation shock has positive effects on 11 countries (Belgium, South Korea,

Sweden, Switzerland, Italy, Finland, France, Australia, Mexico, Bolivia and China). In

these 11 countries, the strongest affect occurs in Switzerland. The mean impact is 0.03.

Second, US inflation shock has negative effects on 13 countries (Ireland, Netherlands,

Latvia, Lithuania, Israel, Spain, Denmark, Germany, Canada, South Africa, Hungary,

Turkey and Thailand) and the absolute effects are quite small (absolute values are

smaller than 0.003). Finally, the GIRFs of the remaining 9 economies (Greece, Por-

tugal, Slovakia, Hong Kong, UK, Russia, Brazil, Philippines and Indonesia) oscillate

between positive and negative territories and then converge back to zero.
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Figure 4.5: The mean generalised impulse responses of inflation to a 1-
standard-deviation increase in US inflation rate over the next 20 quarters.
The shaded areas indicate the 84% posterior credible intervals.
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US Output Shock:

Figure 4.6-4.7 report the GIRFs of 34-country inflation and output to a 1-standard-

deviation increase in USA output respectively. We report the posterior means and the

84% credible intervals.

Figure 4.6 reports the GIRFs of 34-country inflation to a 1-standard-deviation increase

in US output. US inflation increases by 0.01 on impact, and it quickly goes back to

zero, which implies that US output shock has on average only a short-term effect on

US inflation. For the cross-country spillovers, we find the largest impact on China

inflation, which is close to 0.01 at the beginning and takes almost 10 quarters to go

back to zero. The large and immediate impact provides evidence of interdependencies.

Figure 4.7 reports the GIRFs of 34-country output to a 1-standard-deviation increase

in US output. US output increases by 1.7 on impact, and it quickly goes back to zero,

which implies that US output shock has a large but short-term effect on US output. For

the cross-country spillovers, we find US output shock has a positive effect on most AEs,

while US output shock has a negative effect on most EMEs. This provides evidence of

dependencies between AEs, and more importantly, between AEs and EMEs. Imposing

the cross-sectional homogeneity restriction may lead to mis-specification.

Global Inflation Shock:

Figure 4.8 reports the generalised impulse response functions of 34-country inflation

to a 1-standard-deviation increase in global inflation. The impacts are unambiguously

positive in all countries. The GIRFs go back to zero over the next 20 quarters, except

one country, Turkey. The GIRFs in Turkey decrease slowly and arrives at 0.76 after 20

quarters.

Global Output Shock:
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Figure 4.6: The mean generalised impulse responses of inflation to a 1-
standard-deviation increase in US output over the next 20 quarters. The
shaded areas indicate the 84% posterior credible intervals.

Figures 4.9 and 4.10 report the generalised impulse response functions of inflation and

output to a 1 standard deviation increase in global output. Similar to the impacts of

global inflation shock on 34-country inflation, the impacts of global inflation shock on

output are positive and quickly goes back to zero. By contrast, the impacts on inflation

need more time to converge back to zero compared to the impacts on output.

4.4 Estimates of Trends

Figure 4.11-4.12 plot the posterior estimates for trend inflation and trend output re-

spectively, estimated using the full sample. We consider 34 countries: the first 23

countries are AEs (from Belgium to Canada) and the following 11 countries are EMEs

(from South Africa to Thailand). We compare three models: (a) Bi-UC-SV (This is

similar to the bivariate UC model that is used in Stella and Stock (2013), and Chan

et al. (2016). They allow inflation persistence and the slope of Phillips curve to be

time varying. However, we do not allow them to be time varying, that is, inflation

persistence and the slope of Phillips curve are constant. We have allowed for stochas-

tic volatility in inflation equations); (b) MC-UC-FSV (the model in Wu, 2021. The
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Figure 4.7: The mean generalised impulse responses of output to a 1-
standard-deviation increase in US output over the next 20 quarters. The
shaded areas indicate the 84% posterior credible intervals.

number of common factors is set to one, that is, rπ = 1, ry = 1); and (c) PUC-FSV

model. The differences are: the Bi-UC-SV model does not allow for any interdependen-

cies across countries, the MC-UC-FSV model allows for cross-country linkages in the

error covariance matrix, while the PUC-FSV model allows for cross-country linkages

both in the error covariance matrix and in conditional mean. In both figures, the solid

blue lines are the posterior means under PUC-FSV. The dotted blue lines are the 16%

and 84% quantiles under PUC-FSV, the solid black lines are posterior means under

MC-UC-FSV, while the solid red lines are posterior means under Bi-UC-SV.

Figure 4.11 plots the posterior estimates for trend inflation τπ. The title of each

sub-figure is the country name, followed by the official inflation targets (point target

or target bands). For example, the title of the first sub-figure is “Belgium (2) ”, then

the first sub-figure depicts the estimates of trend inflation for Belgium and the official

inflation target set by Belgium central bank is 2%.

The broad contours reflected in the posterior mean from the three models are simi-

lar. However, we observe some interesting differences. First, we find that both the
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Figure 4.8: The mean generalised impulse responses of inflation to a 1-
standard-deviation increase in global inflation over the next 20 quarters.
The shaded areas indicate the 84% posterior credible intervals.

MC-UC-FSV model and the PUC-FSV model can provide narrower width than the

Bi-UC-SV model. The precision of the estimates, as measured by the width of the 84%

credible intervals. This indicates that allowing for cross-country linkages in the error

covariance matrix can provide more precise estimates of trend inflation. We report the

width of the 84% credible intervals in Appendix C.1.

Second, we find that allowing for cross-country linkages has more effects on AEs than

on EMEs. This is in line with the analysis of cross-country spillovers (Through ana-

lyzing P , A, Φ and Θ, we find evident spillovers into AEs, while only several spillovers

into EMEs. See Section 4.3.2). We take the US for example. The official inflation

target is 2%. Trend inflation from the model without any cross-country interdepen-

dencies (that is the Bi-UC-SV model, plotted using solid red lines) increases to 2.5%

in 2000s and has decreased to 1.8% in 2015. However, our PUC-FSV model, which

allows for cross-country interdependencies (solid blue lines), chooses to estimate trend

inflation as a slight increase to 2.3%in 2000s. After the financial crisis has hit, trend

inflation decreases to 1.9% in 2010 and then it begins to recover (that is, increase).

The effect of cross-country interdependencies in the conditional mean is analyzed by
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Figure 4.9: The mean generalised impulse responses of inflation to a 1-
standard-deviation increase in global output over the next 20 quarters. The
shaded areas indicate the 84% posterior credible intervals.

comparing the PUC-FSV (the solid blue line) to the MC-UC-FSV (the solid black line).

The effect is observed before 2002 and allowing for cross-country interdependencies in

conditional mean will generate a higher estimates of trend inflation. Trend inflation

under PUC-FSV fluctuates in a range between 2.0% and 2.3%, while trend inflation

under MC-UC-FSV fluctuates in a range between 1.9% and 2.2%.

Figure 4.12 plots the posterior estimates for trend output τy. First, a similar pattern

to trend inflation is observed. We find that both the MC-UC-FSV and the PUC-FSV

can provide narrower width than the Bi-UC-SV. This indicates that allowing for cross-

country linkages in the error covariance matrix can provide more precise estimates of

trend output. We report the width of the 84% credible intervals in Appendix C.1.

Second, a general effect of cross-country linkages in the conditional mean is observed.

Note that the MC-UC-FSV model allows for cross-country linkages in the error covari-

ance matrix, while the PUC-FSV model allows for cross-country linkages both in the

error covariance matrix and in the conditional mean. We find the estimates of trend

output under MC-UC-FSV (the solid black line) is higher than the estimates under

PUC-FSV (the solid blue line). Although the two models can both provide precise
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Figure 4.10: The mean generalised impulse responses of output to a 1-
standard-deviation increase in global output over the next 20 quarters. The
shaded areas indicate the 84% posterior credible intervals.

estimates, we find the MC-UC-FSV provides a lower model fit than the PUC-FSV (as

shown in Table 4.1, 885.51 against 918.44). This suggests that the PUC-FSV fits the

data better and omitting cross-country interdependencies in the conditional mean will

overestimate trend output.

4.5 Model Comparison

We divide this section into two sub-sections. In both sub-sections, we compare our

PUC-FSV to the Bi-UC-SV (the model in Chan et al., 2016. The coefficients are

constant, but we allow for stochastic volatility in inflation gap equations) and the MC-

UC-FSV (the model in Wu, 2021. The number of common factors is set to one, that is,

rπ = 1, ry = 1). The first sub-section, section 4.5.1, reports the in-sample fit results.

The second sub-section, section 4.5.2, reports the out-of-sample forecasting results.

4.5.1 In-sample fit

The gold standard is using marginal likelihood, however, in our settings where we allow

for time-variation in volatility, the computation of marginal likelihood requires integrat-

ing out all the states, making it a nontrivial task. Therefore, we use an approximation
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Figure 4.11: Posterior estimates for trend inflation τπ. The title of each sub-
figure is the country name, followed by the official inflation targets (point target or
target bands). For Hong Kong and Bolivia, we do not find the official inflation targets,
so we use “- ”. The solid blue lines are the posterior means under PUC-FSV. The
dotted blue lines are the 16% and 84% quantiles under PUC-FSV, the solid black lines
are posterior means under MC-UC-FSV, while the solid red lines are posterior means
under Bi-UC-SV.

to the marginal likelihood (e.g., Geweke, 2001; Cross et al., 2020). They propose that

conditioning on the estimation period, the sums of one-step-ahead joint log predictive

likelihoods of 34 countries can be viewed as an approximation to the marginal likeli-

hood, therefore provides a direct measure of in-sample fit.

Before computing the the sums of one-step-ahead joint log predictive likelihoods, we

need to define some basics. Let ŷ
(i,j)
t+k denote, at time t, the k-step-ahead forecast of the

j-th variable in the i-th country, and y
(i,j)
t+k denote the actual value. In our empirical

work, i = 1, . . . , N with n = 34, j = 1, 2 where j = 1 denote inflation and j = 2

denote output. Y
(i,j)
1:t stores the data up to time t, so ŷ

(i,j)
t+k = E (y

(i,j)
t+k | Y

(i,j)
1:t ). Then we

compute the k-step-ahead log predictive likelihoods (LPL) of the j-th variable in the

i-th country at time t:

LPLt,i,j,k = log p(ŷ
(i,j)
t+k = y

(i,j)
t+k |Y

(i,j)
1:t ), t = T0, . . . , T − k
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Figure 4.12: Posterior estimates for trend inflation τy. The solid blue lines are the
posterior means under PUC-FSV. The dotted blue lines are the 16% and 84% quantiles
under PUC-FSV, the solid black lines are posterior means under MC-UC-FSV, while
the solid red lines are posterior means under Bi-UC-SV.

Then the sums of one-step-ahead joint log predictive likelihoods is computed using:

LPL·,·,·,1 =
T−1∑
t=T0

n∑
i=1

2∑
j=1

log p(ŷ
(i,j)
t+1 = y

(i,j)
t+1 |Y

(i,j)
1:t )

Our estimation period starts from 1995Q4 (to 2018Q1), and the forecasting evaluation

period starts from 2003Q1. We provide the sums of one-step-ahead joint log predictive

likelihoods of 34 countries in Table 4.1.

In Table 4.1, results are presented relative to the forecast performance of the Bi-UC-SV:

we take differences, so that a positive number indicates a model is forecasting better

than Bi-UC-SV. (Please note that we only take the sum, and no average. That may

be why the number seems so large. For example, the sums of LPL under PUC-FSV is

918.44. If we take average over time, then it is 15.06. If we take further average across

country, then it is 0.44). The results show that the PUC-FSV provides the highest

model fit.
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Table 4.1: Sum of one-step-ahead log predictive likelihood

Model against Bi-UC-SV

Bi-UC-SV 0
MC-UC-FSV 885.51
PUC-FSV 918.44

4.5.2 Out-of-sample Forecasting

Having shown that PUC-FSV provides competitive in-sample fit, we now compare the

out-of-sample forecast performance of the three models. We use the data from 1995Q4

to 2002Q4 as an initial estimation period, and use data through 2002Q4 to produce

k-step-ahead forecast distributions. We consider forecast horizons of k = 1, 2, 3, 4, 6

quarters. So our forecast evaluation period begins in 2003Q1. We divide our out-of-

sample forecasting results into three parts: forecasting inflation, forecasting output and

jointly forecasting inflation and output. For each part, we discuss the results in three

dimensions. The first dimension is aggregate forecasting performance over time and

over countries (the aggregate LPL, by summing all countries and all time periods).

The second dimension is about forecasting performance over time (we can study how

the sums of LPL changes over time, by summing all countries at time t). After providing

evidence that PUC-FSV can produce more accurate estimate in economic recession, we

further study whether such good forecast performance is driven by particular countries,

so the third dimension is about the forecasting performance at country level. All results

are presented relative to the forecast under Bi-UC-SV: we take differences, so a positive

number indicates a model is forecasting better than Bi-UC-SV.

Forecasting inflation

We first report the aggregate forecasting performance for inflation over time and over

countries in Table 4.2. It is calculated by summing the LPL for the N countries over
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T0 to T − k (and recall that j = 1 denote inflation):

LPL·,·,1,k =
t=T−k∑
t=T0

n∑
i=1

log p(ŷ
(i,1)
t+k = y

(i,1)
t+k |Y

(i,1)
1:t )

First, the positive values provide evidence that PUC-FSV forecasts inflation more ac-

curately at all horizons. Second, except the case when k = 1, PUC-FSV provides the

most accurate forecast of inflation at other (longer) horizons.

Table 4.2: Sum of k-step-ahead log predictive likelihood for 34-country inflation

Model k=1 k=2 k=3 k=4 k=6

Bi-UC-SV 0 0 0 0 0
MC-UC-FSV 124.57 210.18 216.28 223.02 286.31
PUC-FSV 114.75 252.52 280.23 286.59 387.72

The second dimension of discussion for inflation is sums of LPL over time (by summing

all countries at time t), which can be calculated by:

LPLt,·,1,k =
n∑
i=1

log p(ŷ
(i,1)
t+k = y

(i,1)
t+k |Y

(i,1)
1:t )

We plot the results (against the Bi-UC-SV) in Figure 4.13. If the period to be forecasted

is the period of uncertainty (like 2008), the MC-UC-FSV and the PUC-FSV provide

overall good forecast performance at all horizons. And the PUC-FSV forecasts better

than MC-UC-FSV at long horizons (k = 4 and k = 6).

The third dimension of discussion for inflation is the forecasting result for individual

countries. The LPL of inflation for country i at time t, which can be calculated by:

LPLt,i,1,k = log p(ŷ
(i,1)
t+k = y

(i,1)
t+k |Y

(i,1)
1:t )

We plot the results (against Bi-UC-SV) in Figure 4.14. Here the period of uncertainty

that we plot is 2008Q4, so the period to be forecasted is 2008Q4 (t+ k = 2008Q4). If

k = 1, then the time we make forecast is 2008Q3, and we find overall good forecast

performance for most countries with more pronounced gains in advanced economies
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Figure 4.13: Sums of k-step ahead LPL of inflation for PUC-FSV and MC-
UC-FSV relative to Bi-UC-SV over time. The X axis is t+ k and represents the
period being forecasted.

(The first 23 countries are AEs, and the following 11 countries are EMEs). A similar

pattern is found if k = 6. The time we make forecast is 2007Q2, and we also find overall

good forecast performance for most countries. In Figure 4.14, we only plot the shortest

horizon k = 1 and the longest horizon k = 6, for middle horizons (k = 2, 3, 4), we

find good forecasting result across most countries and did not find particular country

which is important in driving good forecasting results. Overall, We find good forecast

performance for most countries and such good forecast performance is not driven by

particular countries.

Forecasting output

With regard to output, we report the sums of LPL of output over time and over

countries in Table 4.3. It is calculated by summing the LPL for the N countries over

T0 to T − k (and recall that j = 2 denote output):

LPL·,·,2,k =

t=T−k∑
t=T0

n∑
i=1

log p(ŷ
(i,2)
t+k = y

(i,2)
t+k |Y

(i,2)
1:t )

The results show that PUC-FSV provides the most accurate forecast for output at all

horizons.
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Figure 4.14: Sums of k-step ahead LPL of inflation for country i under PUC-
FSV and MC-UC-FSV relative to Bi-UC-SV.

Table 4.3: Sum of k-step-ahead log predictive likelihood for 34-country output

Model k=1 k=2 k=3 k=4 k=6

Bi-UC-SV 0 0 0 0 0
MC-UC-FSV 750.25 979.29 969.58 830.92 942.70
PUC-FSV 791.86 1010.76 1010.26 1041.74 1112.64

Similar to the analysis of inflation, the second dimension of discussion for output is

sums of LPL over time (by summing all countries at time t), which can be calculated

by:

LPLt,·,2,k =

n∑
i=1

log p(ŷ
(i,2)
t+k = y

(i,2)
t+k |Y

(i,2)
1:t )

We plot the results (against Bi-UC-SV) in Figure 4.15. If the period to be forecasted

is the period of uncertainty (like 2008), the MC-UC-FSV and the PUC-FSV provide

overall good forecast performance at all horizons.

To investigate whether the good forecast performance is driven by particular coun-
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Figure 4.15: Sums of k-step ahead LPL of output for PUC-FSV and MC-
UC-FSV relative to Bi-UC-SV over time. The X axis is t+ k and represents the
period being forecasted.

tries, we calculate the sums of LPL of output for country i at time t by:

LPLt,i,2,k = log p(ŷ
(i,2)
t+k = y

(i,2)
t+k |Y

(i,2)
1:t )

We plot the results (against Bi-UC-SV) in Figure 4.16. We choose 2008Q4 to represent

the period of uncertainty. For k = 1 and k = 6, we both find overall good forecast

performance for PUC-FSV and MC-UC-FSV for all countries. For several countries

(like Spain, Italy and Germany), PUC-FSV forecasts better than MC-UC-FSV.

Jointly Forecasting inflation and output

With regard to the joint predictive density for inflation and output, we first report

the sums of joint LPL over time and over countries in Table 4.4. It is calculated by

summing the LPL for the N countries over T0 to T − k (and for all j, recall that j = 1

denote inflation, j = 2 denote output):

LPL·,·,·,k =
t=T−k∑
t=T0

n∑
i=1

2∑
j=1

log p(ŷ
(i,j)
t+k = y

(i,j)
t+k |Y

(i,j)
1:t )
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Figure 4.16: Sums of k-step ahead LPL of output in country i for PUC-FSV
and MC-UC-FSV relative to Bi-UC-SV.

The results show that PUC-FSV provides the most accurate joint forecast for inflation

and output at all horizons. Next, we study the time-variation in forecast performance

Table 4.4: Sum of k-step-ahead joint log predictive likelihood for 34-country inflation
and output

Model k=1 k=2 k=3 k=4 k=6

Bi-UC-SV 0 0 0 0 0
MC-UC-FSV 885.51 1111.32 1221.00 1044.97 1093.88
PUC-FSV 918.44 1169.58 1291.92 1318.78 1253.67

to see whether the benefits arise from the forecast during periods of uncertainty. So

the second dimension of discussion for joint predictive density for inflation and output

is sums of joint LPL over time (by summing all j and all countries at time t), which

can be calculated by:

LPLt,·,·,k =

n∑
i=1

2∑
j=1

log p(ŷ
(i,j)
t+k = y

(i,j)
t+k |Y

(i,j)
1:t )

We plot the results (against Bi-UC-SV) in Figure 4.17. A similar pattern to inflation

and output was found. If the period to be forecasted is the period of uncertainty (like

2008), the MC-UC-FSV and the PUC-FSV provide overall good joint forecast perfor-
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Figure 4.17: Sums of k-step ahead joint LPL for PUC-FSV and MC-UC-FSV
relative to Bi-UC-SV over time. The X axis is t + k and represents the period
being forecasted.

Finally, we investigate whether the good forecast performance of periods of uncer-

tainty is driven by particular countries, so the third dimension of discussion for joint

predictive density for inflation and output is sums of joint LPL at the country level (by

summing all j for country i), which can be calculated by:

LPLt,i,·,k =

t=T−k∑
t=T0

2∑
j=1

log p(ŷ
(i,j)
t+k = y

(i,j)
t+k |Y

(i,j)
1:t )

We plot the results (against Bi-UC-SV) in Figure 4.18. A similar pattern to output

is found. (This is sensible since the gains in output are much larger than gains in

inflation, see Figure 4.14 and Figure 4.16). We find overall good forecast performance

for PUC-FSV for all countries.

4.6 Conclusions

In a globalized world, countries are linked together and cross-country linkages may

influence the estimates of trend. However, such influence has not been considered in
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Figure 4.18: Sums of k-step ahead joint LPL in country i for PUC-FSV and
MC-UC-FSV relative to Bi-UC-SV.

unobserved components models, which are popular to estimate the trend. In this pa-

per, we develop a panel unobserved components model that allows for cross-country

linkages both in the error covariance matrix and in the conditional mean. We extend

the existing unobserved components literature in three ways. First, we take dynamic

interdependencies into account by allowing for cross-country linkages in the conditional

mean, more specifically, in the coefficient matrices associated with the lagged vari-

ables. Second, we takes static interdependencies into account. This is done through

two blocks. One block is allowing for cross-country linkages in the error covariance ma-

trix. Another block is allowing for cross-country linkages in the conditional mean, more

specifically, in the coefficient matrices associated with the Phillips curve. By extending

the traditional (own country) Phillips curve to global Phillips curve, the PUC-FSV

adds a new measure of static interdependencies. Third, we work with unrestricted

panel unobserved components model. To deal with over-parameterization concerns, we

rely on a global-local shrinkage prior.

We demonstrate the merits of our model through a multi-country study involving 34

countries. The estimates of coefficients and generalised impulse response functions

(GIRFs) provide evidence of interdependencies. The estimates of coefficients show that
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the Horseshoe prior can achieve sensible shrinkage. Events in both AEs and EMEs can

spill over into AEs, contemporaneously and with a lag. By contrast, there are only

several spillovers into EMEs. We find more evidence of static interdependencies than

dynamic interdependencies. The GIRFs are much larger when a global shock hits the

system than when a US shock hits the system. The GIRFs also show that whatever

the shock is, the GIRFs of EMEs inflation go back to zero more slowly than AEs. We

call this “fragile inflation”in EMEs. These features show the power of working with

unrestricted model and selecting the appropriate restrictions in a data based manner.

We also present the importance of interdependencies. First, we find that allowing

for cross-country linkages in the error covariance matrix can provide more precise esti-

mates of trend, while omitting cross-country interdependencies in conditional mean will

overestimate trend output. Second, our proposed model provides a superior in-sample

fit and accurate density forecasts compared to existing models in the literature.
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Conclusion

5.1 Summary & policy implications

Globalisation has been accompanied by a weakening in the relationship between do-

mestic slack and domestic inflation, and by a corresponding strengthening in the re-

lationship between global forces and domestic prices (see, Carney, 2017b). Countries,

regions or sectors can no longer be treated in isolation and spillovers can take time to

affect countries’ economies at the policy-relevant horizon, which result in an increasing

importance of both static and dynamic interdependencies. (see, Canova and Ciccarelli,

2013 and Carney, 2017b). Additionally, multi-country studies lead to working with

high-dimensional models, which suggests that an efficient algorithm is desirable.

This thesis deals with all these three important modeling issues. In three distinct -

but increasingly flexible - settings, I show how globalisation can be taken into account

through i) introducing observed global factors into bivariate unobserved components

models with time-varying parameters and stochastic volatility; ii) allowing for cross-

country linkages in the error covariance matrix using factor stochastic volatility speci-

fication; iii) allowing for cross-country linkages both in the error covariance matrix and

in the conditional mean. Additionally, all these methods do not come at the computa-

tional cost. Standard Markov Chain Monte Carlo (MCMC) algorithm can be used to

sample all parameters and, more importantly, equation-by-equation estimation can be
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implemented to most parameters.

In Chapter 2, we extend the country-specific bivariate unobserved components model

to the variable-domain. Except domestic factors, we add two observed global factors

as additional explanatory variables. We allow the model to have both time-varying pa-

rameters and stochastic volatility. We apply these methods to 34 countries covering the

period 1995-2018. The results show that there is stochastic volatility in inflation, and

it has declined across all countries, but remained relatively high in emerging market

economies and few advanced economies. One important result is that inflation dynam-

ics are explained by the combination of domestic factor and global factors. What strikes

us is that the effects of these factors are constant over time and across countries. We

think the reason is that the sample period is from 1995 to 2018. This, together with

the Bayes Factor (see Chapter 3), builds the starting point in Chapter 3 and Chapter 4.

More specifically, we start from the constant coefficient unobserved components model

(we allow for stochastic volatility).

In Chapter 3 we develop a multi-country unobserved components model. It allows for

cross-country linkages in the error covariance matrix through factor stochastic volatil-

ity specification. Additionally, we allow for stochastic volatility in all equations and

factors. To deal with over-parameterization concerns, we propose a method to remove

stochastic volatility in a data based fashion. More specifically, we rewrite the process of

log-volatility using the non-centered parameterization and use the Horseshoe prior to

select time-variation. We apply these methods to the data in Chapter 2. The existence

of global factors provides evidence of cross-country linkages in the error covariance ma-

trix. The estimates under our model are in line with previous studies and, for certain

countries, the estimates indicate that they are influenced by both domestic factors and

global factors. We find that our proposed model provides a superior in-sample fit and

accurate density forecasts compared to existing models in the literature, especially if

period of uncertainty is the period being forecasted.
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In Chapter 4 we develop a panel unobserved components model. It allows for cross-

country linkages both in the error covariance matrix and in the conditional mean. This

is done through dropping the assumption of diagonal coefficient matrices in Chapter

3 and allowing them to be full matrices. No zero restrictions are imposed. Over-

parametrization concern is solved by the Horseshoe prior, which automatically imposes

zero restriction for most elements but dropping the restriction if necessary. We apply

these methods to the data in Chapter 2. The estimates of coefficients and generalised

impulse response functions provide evidence of cross-country linkages. We find that al-

lowing for cross-country linkages in the error covariance matrix can provide more precise

estimates of trend, while omitting cross-country linkages in the conditional mean will

overestimate trend output. Our proposed model provides a superior in-sample fit and

accurate density forecasts compared to existing models in the literature.

5.2 Further research

This thesis focuses on how to consider globalisation in multivariate unobserved compo-

nents models. Given that globalisation seems to have a different pattern (e.g., Brexit),

we may need to consider the implications for modelling if the process of globalisation

were to slow or go into reverse. In this case, the models in Chapter 3 and Chapter

4 with constant coefficients (even if stochastic volatility has been considered) may be

not sensible. Time-variation is a possible extension. Time-varying parameters models

are very popular in modern macroeconomics since they are able to capture many im-

portant features of the observed data (see, Cogley and Sargent, 2005; Primiceri, 2005;

Hauzenberger et al., 2019 and Chan et al., 2020). Structural change is another possible

extension (see, Sims and Zha, 2006 and Jochmann and Koop, 2015). Or even more

complicated methods, like nonlinear state space models.

This thesis uses aggregate data. However, different barriers are imposed on differ-

ent trades. For instance, barriers to services trade are estimated currently to be up to

three times higher than those for goods trade (see, Carney, 2017a). Nowadays, many
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papers propose to use the components of inflation instead of the standard aggregates

(see Stock and Watson, 2020; Zaman, 2019 and Tallman and Zaman, 2017). They find

that some inflation components have strong and stable correlations with the cyclical

component of real activity, while other components have weak and/or unstable correla-

tions with cyclical activity. It would be useful to develop methods to estimate a model

using components of inflation.
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Appendix A

Chapter 2 Appendix

A.1 Priors

ϕ1 ∼ N (0, 10)

ϕ2 ∼ N (0, 10)

τπ1 ∼ N (3, 10)

τy1 ∼ N (5, 10)

h1 ∼ N (0, 1)

ρ1 ∼ N (0, 10)

α1 ∼ N (0, 10)

β1 ∼ N (0, 10)

γ1 ∼ N (0, 10)

σ2τπ ∼ IG(10, 0.18)

σ2τy ∼ IG(10, 0.09)

σ2y ∼ IG(10, 4.5)

σ2h ∼ IG(10, 0.9)

σ2ρ ∼ IG(10, 0.018)

σ2α ∼ IG(10, 0.009)

σ2β ∼ IG(10, 0.009)

σ2γ ∼ IG(10, 0.009)
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A.2 Supplementary material: Tables
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Table A.1: Mean of Trend Inflation over time

countries posterior mean over time 16% quantile 84% quantile

Belgium 1.787 1.376 2.198
Greece 2.592 1.943 3.248
Ireland 1.303 0.605 1.988
Netherlands 1.645 1.256 2.033
Portugal 1.781 1.282 2.278
Latvia 1.427 0.411 2.441
Lithuania 1.839 0.893 2.785
Slovakia 3.074 1.921 4.220
Israel 1.390 0.592 2.183
Hong Kong 1.841 0.943 2.766
South Korea 2.509 2.017 3.002
UK 1.782 1.355 2.209
USA 2.172 1.782 2.563
Sweden 0.794 0.303 1.285
Switzerland 0.467 0.144 0.790
Spain 2.202 1.647 2.759
Denmark 1.727 1.388 2.064
Italy 1.777 1.339 2.228
Finland 1.225 0.734 1.721
France 1.309 0.979 1.639
Germany 1.387 1.075 1.699
Australia 2.196 1.794 2.597
Canada 1.713 1.349 2.077
South Africa 5.018 4.260 5.786
Hungary 3.349 2.157 4.548
Russia 4.585 2.118 7.112
Turkey 7.171 6.237 8.128
Mexico 3.971 3.391 4.559
Bolivia 3.990 3.283 4.696
Brazil 4.867 3.902 5.842
China 1.659 1.075 2.243
Philippines 3.526 2.543 4.506
Indonesia 4.079 3.175 4.993
Thailand 1.936 1.267 2.606
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Table A.2: Inflation persistence

countries posterior mean over time 16% quantile 84% quantile

Belgium 0.303 0.156 0.447
Greece 0.399 0.217 0.577
Ireland 0.577 0.381 0.777
Netherlands 0.268 0.105 0.429
Portugal 0.441 0.257 0.623
Latvia 0.714 0.576 0.855
Lithuania 0.639 0.492 0.790
Slovakia 0.586 0.405 0.769
Israel 0.552 0.386 0.718
Hong Kong 0.487 0.321 0.649
South Korea 0.282 0.112 0.450
UK 0.372 0.218 0.528
USA 0.209 0.072 0.346
Sweden 0.486 0.316 0.656
Switzerland 0.207 0.072 0.342
Spain 0.300 0.135 0.462
Denmark 0.252 0.095 0.407
Italy 0.543 0.372 0.716
Finland 0.489 0.317 0.659
France 0.235 0.091 0.379
Germany 0.160 0.054 0.266
Australia 0.229 0.091 0.366
Canada 0.159 0.052 0.265
South Africa 0.559 0.388 0.732
Hungary 0.483 0.308 0.656
Russia 0.734 0.604 0.865
Turkey 0.518 0.390 0.644
Mexico 0.501 0.342 0.657
Bolivia 0.433 0.269 0.597
Brazil 0.650 0.508 0.796
China 0.479 0.335 0.622
Philippines 0.623 0.451 0.801
Indonesia 0.497 0.330 0.660
Thailand 0.479 0.311 0.646
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Table A.3: Coefficient on domestic output gap

Countries posterior mean over time 16% quantile 84% quantile

Belgium 0.150 0.046 0.250
Greece 0.042 0.016 0.069
Ireland 0.035 0.020 0.043
Netherlands 0.045 0.016 0.072
Portugal 0.078 0.030 0.124
Latvia 0.101 0.037 0.165
Lithuania 0.105 0.034 0.174
Slovakia 0.091 0.031 0.151
Israel 0.114 0.035 0.197
Hong Kong 0.096 0.032 0.163
South Korea 0.112 0.045 0.178
UK 0.098 0.036 0.162
USA 0.103 0.036 0.173
Sweden 0.108 0.038 0.178
Switzerland 0.125 0.048 0.201
Spain 0.119 0.039 0.201
Denmark 0.074 0.034 0.117
Italy 0.080 0.027 0.132
Finland 0.093 0.033 0.151
France 0.092 0.032 0.150
Germany 0.043 0.013 0.074
Australia 0.100 0.073 0.138
Canada 0.142 0.052 0.232
South Africa 0.133 0.048 0.210
Hungary 0.153 0.053 0.255
Russia 0.107 0.036 0.180
Turkey 0.110 0.042 0.177
Mexico 0.060 0.024 0.098
Bolivia 0.121 0.040 0.203
Brazil 0.107 0.042 0.174
China 0.167 0.061 0.274
Philippines 0.068 0.031 0.103
Indonesia 0.212 0.069 0.360
Thailand 0.031 0.013 0.044
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Table A.4: Coefficient on global output gap

countries posterior mean over time 16% quantile 84% quantile

Belgium 0.161 0.056 0.267
Greece 0.113 0.035 0.192
Ireland 0.162 0.075 0.245
Netherlands 0.066 0.020 0.112
Portugal 0.176 0.067 0.284
Latvia 0.169 0.046 0.298
Lithuania 0.151 0.043 0.266
Slovakia 0.171 0.056 0.286
Israel 0.169 0.051 0.290
Hong Kong 0.205 0.058 0.354
South Korea 0.120 0.033 0.208
UK 0.122 0.040 0.205
USA 0.210 0.077 0.343
Sweden 0.174 0.049 0.297
Switzerland 0.123 0.041 0.206
Spain 0.203 0.080 0.323
Denmark 0.125 0.043 0.210
Italy 0.094 0.030 0.156
Finland 0.152 0.052 0.254
France 0.117 0.040 0.195
Germany 0.136 0.044 0.230
Australia 0.138 0.055 0.219
Canada 0.179 0.061 0.298
South Africa 0.120 0.042 0.200
Hungary 0.221 0.063 0.385
Russia 0.160 0.052 0.259
Turkey 0.249 0.078 0.425
Mexico 0.068 0.025 0.112
Bolivia 0.337 0.126 0.542
Brazil 0.166 0.053 0.287
China 0.337 0.170 0.499
Philippines 0.187 0.060 0.319
Indonesia 0.254 0.088 0.421
Thailand 0.322 0.122 0.517
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Table A.5: Coefficient on oil price gap

countries posterior mean over time 16% quantile 84% quantile

Belgium 0.613 0.314 0.871
Greece 0.556 0.251 0.849
Ireland 0.602 0.306 0.876
Netherlands 0.581 0.296 0.844
Portugal 0.502 0.164 0.835
Latvia 0.484 0.167 0.810
Lithuania 0.528 0.207 0.844
Slovakia 0.738 0.469 0.901
Israel 0.545 0.240 0.837
Hong Kong 0.560 0.252 0.860
South Korea 0.590 0.260 0.879
UK 0.570 0.261 0.861
USA 0.698 0.510 0.906
Sweden 0.476 0.168 0.787
Switzerland 0.718 0.502 0.924
Spain 0.589 0.293 0.866
Denmark 0.596 0.303 0.869
Italy 0.628 0.349 0.884
Finland 0.680 0.408 0.916
France 0.708 0.499 0.910
Germany 0.739 0.534 0.915
Australia 0.657 0.401 0.872
Canada 0.527 0.144 0.837
South Africa 0.477 0.154 0.795
Hungary 0.474 0.169 0.791
Russia 0.477 0.141 0.834
Turkey 0.534 0.310 0.702
Mexico 0.533 0.214 0.839
Bolivia 0.513 0.175 0.845
Brazil 0.393 0.109 0.699
China 0.490 0.164 0.836
Philippines 0.463 0.109 0.811
Indonesia 0.532 0.220 0.831
Thailand 0.598 0.189 0.880
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Table A.6: Autoregressive coefficients

countries
AR(1) AR(2)

mean 16% quantile 84% quantile median 16% quantile 84% quantile

Belgium 0.686 0.588 0.784 -0.161 -0.259 -0.063
Greece 0.193 0.102 0.282 0.435 0.346 0.525
Ireland -0.114 -0.208 -0.020 0.100 0.007 0.193
Netherlands 0.377 0.278 0.476 0.188 0.088 0.287
Portugal 0.311 0.213 0.407 0.275 0.178 0.373
Latvia 0.302 0.210 0.392 0.356 0.265 0.447
Lithuania 0.202 0.108 0.297 0.212 0.119 0.305
Slovakia -0.104 -0.200 -0.009 0.060 -0.034 0.154
Israel 0.210 0.113 0.308 0.163 0.070 0.256
Hong Kong 0.241 0.145 0.338 0.212 0.116 0.308
South Korea 0.366 0.268 0.464 0.003 -0.092 0.099
UK 0.605 0.504 0.706 0.070 -0.030 0.170
USA 0.318 0.217 0.419 0.211 0.111 0.312
Sweden 0.293 0.196 0.390 0.153 0.056 0.252
Switzerland 0.491 0.392 0.590 0.039 -0.059 0.138
Spain 0.837 0.736 0.939 0.089 -0.013 0.190
Denmark 0.042 -0.058 0.141 0.118 0.019 0.219
Italy 0.540 0.440 0.640 0.056 -0.043 0.155
Finland 0.245 0.145 0.344 0.118 0.021 0.213
France 0.526 0.424 0.629 0.141 0.039 0.243
Germany 0.343 0.246 0.440 0.035 -0.062 0.132
Australia -0.121 -0.218 -0.023 0.078 -0.020 0.175
Canada 0.522 0.422 0.622 -0.088 -0.188 0.012
South Africa 0.514 0.410 0.618 0.102 -0.001 0.205
Hungary 0.085 0.000 0.351 0.008 0.000 0.000
Russia 0.541 0.445 0.638 -0.042 -0.144 0.060
Turkey 0.017 -0.080 0.114 0.121 0.029 0.214
Mexico 0.476 0.385 0.567 -0.100 -0.178 -0.021
Bolivia -0.169 -0.266 -0.073 -0.167 -0.263 -0.070
Brazil 0.247 0.150 0.344 -0.012 -0.107 0.083
China 0.178 0.075 0.283 0.106 0.008 0.204
Philippines 0.065 -0.035 0.163 0.058 -0.040 0.154
Indonesia 0.515 0.417 0.613 -0.017 -0.114 0.080
Thailand -0.007 -0.105 0.091 0.114 0.020 0.207
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Table A.7: Inflation Gap Decomposition

lagged domestic global oil

Country inflation output output price Other

North USA pre GFC 0.223 0.085 0.223 0.086 0.945

post GFC 0.178 0.098 0.181 0.062 0.976

America Canada pre GFC 0.110 0.211 0.175 0.077 0.945

post GFC 0.136 0.123 0.100 0.094 0.996

Latin Bolivia pre GFC 0.623 0.155 0.179 0.036 1.059

post GFC 0.376 0.085 0.076 0.021 1.006

America Mexico pre GFC 0.890 0.044 0.018 0.020 0.812

post GFC 0.374 0.046 0.032 0.054 1.070

Brazil pre GFC 0.569 0.160 0.049 0.020 1.107

post GFC 0.775 0.098 0.033 0.024 1.151

Europe UK pre GFC 0.232 0.096 0.166 0.135 1.011

post GFC 0.572 0.057 0.076 0.070 1.020

Belgium pre GFC 0.124 0.175 0.139 0.088 0.763

post GFC 0.464 0.153 0.070 0.056 0.567

Greece pre GFC 0.426 0.099 0.124 0.063 1.114

post GFC 0.479 0.066 0.031 0.035 0.730

Italy pre GFC 0.505 0.202 0.169 0.171 1.051

post GFC 0.691 0.140 0.066 0.090 1.007

Spain pre GFC 0.252 0.282 0.161 0.065 0.883

post GFC 0.341 0.132 0.088 0.049 1.114

Sweden pre GFC 0.480 0.177 0.159 0.070 1.298

post GFC 0.562 0.122 0.080 0.053 0.995
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Table A.7: Inflation Gap Decomposition

lagged domestic global oil

Country inflation output output price Other

Switzerland pre GFC 0.142 0.269 0.199 0.157 0.953

post GFC 0.222 0.256 0.140 0.109 0.776

Denmark pre GFC 0.159 0.255 0.176 0.089 0.951

post GFC 0.276 0.187 0.118 0.144 1.145

Finland pre GFC 0.363 0.328 0.199 0.080 1.202

post GFC 0.588 0.238 0.106 0.105 0.968

Germany pre GFC 0.133 0.101 0.149 0.094 1.017

post GFC 0.167 0.086 0.127 0.124 0.935

Slovakia pre GFC 0.522 0.144 0.065 0.025 0.964

post GFC 0.662 0.069 0.048 0.047 1.037

France pre GFC 0.189 0.156 0.121 0.164 0.945

post GFC 0.246 0.172 0.098 0.126 0.972

Ireland pre GFC 0.522 0.060 0.103 0.048 0.937

post GFC 0.616 0.111 0.095 0.069 1.309

Portugal pre GFC 0.511 0.121 0.141 0.070 1.158

post GFC 0.412 0.134 0.143 0.049 1.106

Lithuania pre GFC 0.738 0.116 0.068 0.022 1.068

post GFC 0.715 0.129 0.040 0.035 1.063

Hungry pre GFC 0.603 0.057 0.032 0.009 0.579

post GFC 0.439 0.057 0.057 0.018 0.826

Latvia pre GFC 0.752 0.164 0.050 0.012 0.801

post GFC 0.716 0.128 0.038 0.021 0.991
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Table A.7: Inflation Gap Decomposition

lagged domestic global oil

Country inflation output output price Other

Netherlands pre GFC 0.308 0.077 0.067 0.083 0.988

post GFC 0.184 0.042 0.032 0.063 0.960

Asia Indonesia pre GFC 0.640 0.097 0.044 0.014 0.870

post GFC 0.369 0.244 0.110 0.051 0.968

Philippines pre GFC 0.585 0.079 0.054 0.032 0.939

post GFC 0.552 0.106 0.077 0.040 0.947

China pre GFC 0.589 0.089 0.175 0.035 1.095

post GFC 0.477 0.234 0.180 0.046 0.825

Hong Kong pre GFC 0.756 0.080 0.051 0.021 0.914

post GFC 0.244 0.074 0.049 0.039 1.012

Thailand pre GFC 0.690 0.065 0.202 0.036 1.090

post GFC 0.440 0.050 0.113 0.035 0.980

South Korea pre GFC 0.200 0.181 0.074 0.048 1.122

post GFC 0.263 0.214 0.067 0.120 0.900

Other Australia pre GFC 0.177 0.048 0.133 0.085 0.986

post GFC 0.191 0.046 0.092 0.079 1.033

Israel pre GFC 0.548 0.117 0.055 0.028 1.247

post GFC 0.449 0.112 0.063 0.041 1.029

Russia pre GFC 0.837 0.057 0.015 0.004 0.645

post GFC 0.824 0.068 0.031 0.016 1.175

Turkey pre GFC 0.842 0.025 0.010 0.001 0.491

post GFC 0.219 0.148 0.063 0.020 1.011
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Table A.7: Inflation Gap Decomposition

lagged domestic global oil

Country inflation output output price Other

South Africa pre GFC 0.701 0.090 0.053 0.019 1.269

post GFC 0.497 0.112 0.053 0.037 1.022

End

Note that the increasing contribution is indicated in Bold.
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Figure A.1: Inflation π.

A.3 Supplementary material: Figures

Figure A.1 plots the inflation data that we use in the model. Figure A.2 plots posterior

estimates for trend output τy. Figure A.3 plots coefficient on domestic output gap αt.

Figure A.4 plots coefficient on global output gap βt. Figure A.4 plots coefficient on oil

price gap γt.
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Figure A.2: Posterior estimates for trend output τy. The solid blue line is the
posterior mean, while the dotted red lines are 16% and 84% quantiles.
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Figure A.3: Coefficient on domestic output gap αt. The solid blue line is the
posterior mean, while the dotted red lines are 16% and 84% quantiles.
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Figure A.4: Coefficient on global output gap βt. The solid blue line is the posterior
mean, while the dotted red lines are 16% and 84% quantiles.
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Figure A.5: Coefficient on oil price gap γt. The solid blue line is the posterior
mean, while the dotted red lines are 16% and 84% quantiles.
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B.1 Testing for Time-Variation in Coefficients

In this appendix, we illustrate the method to test for time-variation in coefficients and

report the estimated Bayes Factor, which support the constant coefficients model (we

allow for stochastic volatility in the model).

What we did is to allow the coefficients in UC-SV to be time-varying in the noncentered

parameterization as follows:

πi,t − τπi,t = (ρi,0 + ωρi ρ̃i,t)(πi,t−1 − τ
π
i,t−1) + (αi,0 + ωαi α̃i,t)(yi,t − τ

y
i,t) + επi,t, επi,t ∼ N (0, ehi,t)

(B.1)

yi,t − τyi,t = ϕi,1(yi,t−1 − τyi,t−1) + ϕi,2(yi,t−2 − τyi,t−2) + εyi,t, εyi,t ∼ N (0, σ2y) (B.2)

τπi,t = τπi,t−1 + ετπi,t , ετπi,t ∼ N (0, σ2τπ) (B.3)

τyi,t = τyi,t−1 + ετyi,t , ετyi,t ∼ N (0, σ2τy) (B.4)

hi,t = hi,t−1 + εhi,t, εhi,t ∼ N (0, σ2h) (B.5)

ρ̃i,t = ρ̃i,t−1 + ερi,t, ερi,t ∼ N (0, 1) (B.6)

α̃i,t = α̃i,t−1 + εαi,t, εαi,t ∼ N (0, 1) (B.7)
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We assume a normal prior with zero mean and variance ten for ρi,0, ω
ρ
i , αi,0, ω

α
i . The

prior for other parameters are kept the same as NIOUC-FSV.

Next, we calculate the Bayes factor in favor of the unrestricted model against the

restricted version where ωρi = 0 as:

BFρi =
p(ωρi = 0)

p(ωρi = 0| y)
(B.8)

So if BFρi is larger than 1, then the Bayes Factor is in favor of the unrestricted model.

In this part, the unrestricted model is time-varying ρi. For simplicity, we compare the

log Bayes Factor. So a positive log Bayes Factor supports the time-varying coefficient

ρi. We can calculate the log Bayes Factor for ωαi similarly.

Using the data in the empirical section, we report the log Bayes Factor in Table B.1.

We find most log Bayes Factor are negative (except for 3 cases: log BFρi for Latvia,

Turkey and Mexico), so we think this result strongly supports constant coefficients

models.
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Table B.1: The estimated log Bayes factors for ωρi and ωαi

countries log BFρi log BFαi

Belgium -2.83 -1.03
Greece -2.42 -0.99
Ireland -2.00 -0.86
Netherlands -2.21 -2.23
Portugal -2.61 -1.52
Latvia 0.08 -1.81
Lithuania -2.20 -2.01
Slovakia -2.64 -2.33
Israel -3.30 -3.48
Hong Kong -2.54 -3.65
South Korea -1.71 -2.63
UK -1.44 -3.37
USA -2.86 -3.63
Sweden -2.79 -2.28
Switzerland -2.80 -2.15
Spain -3.15 -2.54
Denmark -3.40 -2.45
Italy -2.30 -2.85
Finland -2.95 -3.02
France -2.72 -2.82
Germany -3.07 -2.94
Australia -3.13 -3.09
Canada -3.02 -1.27
South Africa -1.97 -3.45
Hungary -3.00 -3.57
Russia -1.41 -3.37
Turkey 1.08 -3.42
Mexico 2.99 -3.44
Bolivia -1.02 -3.68
Brazil -2.18 -3.10
China -2.09 -2.87
Philippines -2.99 -2.81
Indonesia -2.91 -2.39
Thailand -3.37 -1.41
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B.2 Estimates of factor loading matrices

In this appendix, we report the posterior estimates of factor loading matrices under

NIOUC-FSV. Basically, we have two classes of factors:

(1): global inflation factor ft, and its loading matrix is Lπ, Lπ is n×rπ, in our empirical

application, n = 34, rπ = 5. Table B.2 is the loadings of global inflation factor. We

report the posterior mean of the five factors’ loadings, but only the quantiles of first

factor’s loadings for brevity.

(2): global output factor gt, and its loading matrix is Ly, Ly is n × ry, in our em-

pirical application, n = 34, ry = 2. Table B.3 is the loadings of global output factor.

We report the posterior mean and quantiles of the two factors’ loadings.

And for identification, we assume the factor loading matrices are lower triangular ma-

trices with ones on the main diagonal, so some elements in Lπ and Ly are 1 or 0.
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Table B.2: Posterior Estimates of factor loading matrix Lπ

1st factor 2nd factor 3rd factor 4th factor 5th factor
country mean 16% 84% mean mean mean mean

Belgium 1 1 1 0 0 0 0
Greece 2.29 1.52 3.01 1 0 0 0
Ireland 2.09 1.40 2.74 1.05 1 0 0
Netherlands 1.79 1.17 2.39 -0.97 -0.69 1 0
Portugal 1.57 0.98 2.15 -0.71 -0.17 0.51 1
Latvia 1.96 1.17 2.75 0.66 0.28 0.20 -0.71
Lithuania 2.26 1.41 3.08 1.00 0.35 0.19 -0.82
Slovakia 2.05 1.35 2.72 -0.09 -0.07 0.50 0.23
Israel 2.06 1.31 2.81 -0.29 0.02 -0.12 0.34
Hong Kong 0.93 0.15 1.74 0.60 0.34 -0.90 -0.73
South Korea 1.53 0.99 2.05 -0.18 -0.21 -0.24 -0.63
UK 1.83 1.24 2.38 0.09 -0.13 0.00 -0.22
USA 2.94 2.02 3.81 -0.73 -0.45 0.29 -0.34
Sweden 1.98 1.32 2.61 0.03 0.15 -0.44 -0.59
Switzerland 1.73 1.17 2.26 -0.16 0.07 -0.27 0.34
Spain 3.08 2.11 3.97 -0.03 -0.01 0.71 0.87
Denmark 1.69 1.14 2.21 0.04 0.03 0.21 -0.03
Italy 1.32 0.87 1.74 -0.42 -0.11 0.11 0.75
Finland 1.23 0.77 1.68 0.42 0.38 -0.18 -0.31
France 2.10 1.46 2.68 0.69 0.59 -0.25 0.26
Germany 2.09 1.43 2.68 0.36 0.15 0.46 -0.23
Australia 2.16 1.47 2.80 0.01 0.29 -0.21 0.44
Canada 2.44 1.65 3.19 -0.08 -0.01 -0.54 -0.45
South Africa 1.72 1.01 2.43 -0.79 -0.68 0.45 -0.27
Hungary 3.00 1.86 4.15 0.14 0.11 0.46 -0.05
Russia 0.26 -0.65 1.17 0.48 0.52 -0.57 -0.04
Turkey 3.04 1.79 4.31 0.15 0.13 -0.12 0.04
Mexico 0.49 0.02 0.97 0.41 0.22 0.07 0.18
Bolivia 0.82 -0.04 1.69 0.65 0.25 -0.52 -0.85
Brazil -0.36 -1.02 0.30 0.17 0.15 -0.50 -0.43
China 0.38 -0.11 0.89 0.50 0.29 -0.62 -0.86
Philippines 1.33 0.68 1.98 -0.25 -0.14 -0.19 -0.12
Indonesia 0.61 0.05 1.18 -0.26 -0.04 -0.16 0.12
Thailand 2.52 1.67 3.33 0.23 -0.04 -0.16 -0.70
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Table B.3: Posterior Estimates of factor loading matrix Ly

1st factor 2nd factor
country mean 16% 84% mean 16% 84%

Belgium 1 1 1 0 0 0
Greece 2.11 1.35 2.86 1 1 1
Ireland 3.91 2.61 5.21 -2.28 -5.00 0.40
Netherlands 1.75 1.23 2.28 2.61 1.59 3.89
Portugal 1.60 1.14 2.06 1.04 -0.15 2.22
Latvia 1.39 0.26 2.52 0.46 -2.13 3.04
Lithuania 3.70 2.22 5.18 5.54 1.06 10.09
Slovakia 2.99 1.84 4.12 4.63 1.79 7.37
Israel 1.08 0.74 1.41 -1.02 -2.19 0.03
Hong Kong 3.57 2.63 4.51 -0.18 -2.42 1.98
South Korea 2.93 2.20 3.66 -2.03 -4.41 0.21
UK 1.34 0.94 1.74 -1.19 -2.81 0.24
USA 1.60 1.20 1.99 -0.68 -2.00 0.57
Sweden 2.91 2.24 3.57 -0.12 -2.33 1.99
Switzerland 1.74 1.37 2.10 -0.95 -2.30 0.28
Spain 0.70 0.48 0.93 0.12 -0.65 0.84
Denmark 2.12 1.46 2.78 0.40 -1.49 2.26
Italy 2.08 1.62 2.54 -0.23 -1.65 1.05
Finland 3.28 2.28 4.27 4.23 2.38 6.28
France 1.41 1.13 1.70 -0.12 -1.00 0.72
Germany 2.56 1.95 3.18 2.23 0.91 3.72
Australia 0.58 0.23 0.93 -1.62 -2.80 -0.62
Canada 1.34 0.98 1.70 0.81 -0.24 1.87
South Africa 1.04 0.73 1.34 0.60 -0.27 1.49
Hungary 1.31 0.45 2.24 -1.53 -4.37 1.17
Russia 3.36 2.48 4.24 -0.62 -3.09 1.76
Turkey 3.83 2.65 5.00 1.05 -1.50 3.55
Mexico 2.52 1.79 3.26 3.37 2.01 5.04
Bolivia 0.83 0.34 1.33 -0.48 -2.01 0.98
Brazil 3.02 2.20 3.83 -2.27 -4.93 0.22
China 0.95 0.51 1.39 -1.15 -2.63 0.23
Philippines 1.37 0.69 2.05 3.03 1.29 4.94
Indonesia 0.60 0.26 0.94 -0.08 -1.39 1.14
Thailand 2.87 2.12 3.63 0.74 -1.21 2.63
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B.3 Estimates of constant coefficients

In this appendix, we report the posterior estimates of constant coefficients: ρ, α, ϕ1,

ϕ2.
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Table B.4: Posterior estimates of inflation persistence ρ

NIOUC-FSV NIOUC-FSV- NIOUC-FSV- NIOUC-FSV-
ry = 0 ry, rπ = 0 ry, rπ = 0, ωhy = 0

country mean 16% 84% posterior mean posterior mean posterior mean

Belgium 0.28 0.19 0.37 0.28 0.33 0.33
Greece 0.36 0.27 0.45 0.36 0.41 0.41
Ireland 0.46 0.35 0.57 0.46 0.59 0.59
Netherlands 0.29 0.18 0.39 0.29 0.28 0.28
Portugal 0.36 0.27 0.46 0.36 0.47 0.47
Latvia 0.65 0.59 0.71 0.65 0.70 0.70
Lithuania 0.62 0.54 0.70 0.62 0.66 0.66
Slovakia 0.54 0.45 0.62 0.54 0.63 0.63
Israel 0.47 0.38 0.56 0.47 0.53 0.53
Hong Kong 0.56 0.45 0.68 0.57 0.58 0.58
South Korea 0.22 0.12 0.31 0.22 0.31 0.31
UK 0.43 0.34 0.52 0.43 0.41 0.41
USA 0.22 0.14 0.29 0.22 0.28 0.28
Sweden 0.37 0.28 0.45 0.37 0.52 0.52
Switzerland 0.34 0.26 0.42 0.34 0.28 0.28
Spain 0.24 0.17 0.30 0.23 0.39 0.40
Denmark 0.23 0.13 0.32 0.23 0.25 0.25
Italy 0.49 0.41 0.57 0.49 0.59 0.59
Finland 0.49 0.40 0.57 0.49 0.56 0.56
France 0.15 0.09 0.21 0.15 0.26 0.26
Germany 0.07 0.02 0.13 0.08 0.11 0.11
Australia 0.16 0.08 0.24 0.16 0.20 0.20
Canada 0.10 0.03 0.16 0.10 0.11 0.11
South Africa 0.55 0.46 0.65 0.55 0.56 0.56
Hungary 0.40 0.30 0.50 0.40 0.49 0.50
Russia 0.80 0.71 0.89 0.80 0.79 0.79
Turkey 0.93 0.90 0.97 0.94 0.94 0.94
Mexico 0.81 0.75 0.88 0.81 0.80 0.81
Bolivia 0.33 0.23 0.44 0.33 0.32 0.33
Brazil 0.63 0.52 0.74 0.63 0.60 0.61
China 0.53 0.44 0.62 0.52 0.58 0.58
Philippines 0.57 0.47 0.67 0.57 0.61 0.61
Indonesia 0.36 0.26 0.47 0.36 0.35 0.35
Thailand 0.41 0.31 0.51 0.41 0.53 0.53
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Table B.5: Estimates of slope of Phillips Curve α

NIOUC-FSV NIOUC-FSV- NIOUC-FSV- NIOUC-FSV-
ry = 0 ry, rπ = 0 ry, rπ = 0, ωhy = 0

country mean 16% 84% posterior mean posterior mean posterior mean

Belgium 0.16 0.09 0.23 0.16 0.22 0.22
Greece 0.02 0.00 0.03 0.02 0.02 0.02
Ireland 0.01 0.00 0.02 0.01 0.01 0.01
Netherlands 0.01 0.00 0.03 0.01 0.03 0.03
Portugal 0.05 0.01 0.08 0.05 0.05 0.05
Latvia 0.07 0.04 0.10 0.07 0.10 0.10
Lithuania 0.02 0.00 0.04 0.02 0.04 0.04
Slovakia 0.03 0.01 0.06 0.03 0.08 0.08
Israel 0.07 0.02 0.12 0.07 0.09 0.09
Hong Kong 0.05 0.01 0.09 0.05 0.06 0.06
South Korea 0.03 0.01 0.06 0.04 0.08 0.08
UK 0.02 0.00 0.04 0.02 0.04 0.04
USA 0.05 0.01 0.08 0.05 0.05 0.06
Sweden 0.09 0.06 0.13 0.09 0.14 0.14
Switzerland 0.07 0.03 0.10 0.07 0.15 0.15
Spain 0.08 0.03 0.13 0.07 0.12 0.11
Denmark 0.03 0.01 0.05 0.03 0.05 0.05
Italy 0.04 0.02 0.06 0.04 0.09 0.09
Finland 0.08 0.05 0.10 0.08 0.11 0.11
France 0.02 0.00 0.04 0.02 0.11 0.11
Germany 0.02 0.00 0.03 0.02 0.05 0.05
Australia 0.02 0.00 0.04 0.02 0.03 0.03
Canada 0.10 0.05 0.16 0.10 0.20 0.20
South Africa 0.04 0.01 0.07 0.04 0.06 0.06
Hungary 0.05 0.01 0.10 0.05 0.08 0.08
Russia 0.04 0.01 0.07 0.04 0.04 0.05
Turkey 0.06 0.02 0.11 0.07 0.08 0.09
Mexico 0.04 0.01 0.08 0.04 0.05 0.05
Bolivia 0.09 0.02 0.15 0.09 0.08 0.08
Brazil 0.09 0.03 0.15 0.09 0.08 0.08
China 0.22 0.13 0.30 0.21 0.23 0.22
Philippines 0.02 0.00 0.04 0.02 0.03 0.03
Indonesia 0.15 0.03 0.26 0.14 0.12 0.15
Thailand 0.01 0.00 0.02 0.01 0.02 0.02
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Table B.6: Estimates of output persistence ϕ1

NIOUC-FSV NIOUC-FSV- NIOUC-FSV- NIOUC-FSV-
ry = 0 ry, rπ = 0 ry, rπ = 0, ωhy = 0

country mean 16% 84% posterior mean posterior mean posterior mean

Belgium 0.37 0.27 0.47 0.58 0.58 0.62
Greece 0.09 -0.02 0.20 0.17 0.17 0.10
Ireland -0.17 -0.29 -0.05 -0.03 -0.03 -0.21
Netherlands 0.14 0.06 0.22 0.31 0.31 0.27
Portugal 0.12 0.02 0.23 0.28 0.28 0.21
Latvia 0.23 0.11 0.34 0.25 0.25 0.17
Lithuania 0.19 0.09 0.28 0.22 0.22 0.06
Slovakia -0.06 -0.15 0.03 -0.06 -0.06 -0.21
Israel 0.28 0.16 0.39 0.34 0.34 0.12
Hong Kong 0.10 -0.03 0.23 0.39 0.39 0.13
South Korea -0.06 -0.18 0.06 0.23 0.24 0.27
UK 0.22 0.10 0.35 0.38 0.38 0.53
USA 0.04 -0.07 0.16 0.26 0.26 0.23
Sweden -0.07 -0.17 0.04 0.07 0.07 0.19
Switzerland 0.21 0.11 0.31 0.46 0.46 0.39
Spain 0.58 0.47 0.71 0.72 0.72 0.73
Denmark -0.13 -0.24 -0.01 -0.02 -0.02 -0.05
Italy 0.29 0.19 0.39 0.54 0.54 0.44
Finland 0.05 -0.03 0.13 0.16 0.16 0.14
France 0.15 0.06 0.24 0.46 0.45 0.43
Germany 0.06 -0.02 0.14 0.20 0.20 0.25
Australia -0.08 -0.20 0.03 -0.09 -0.09 -0.20
Canada 0.33 0.23 0.43 0.43 0.42 0.42
South Africa 0.39 0.28 0.50 0.57 0.57 0.39
Hungary 0.20 0.09 0.32 0.24 0.24 0.39
Russia 0.38 0.27 0.48 0.52 0.52 0.43
Turkey -0.04 -0.14 0.06 0.03 0.03 -0.02
Mexico 0.30 0.22 0.39 0.29 0.29 0.38
Bolivia -0.18 -0.30 -0.06 -0.17 -0.17 -0.28
Brazil 0.26 0.13 0.38 0.39 0.39 0.13
China 0.08 -0.05 0.22 0.19 0.18 0.07
Philippines -0.06 -0.16 0.05 -0.02 -0.02 0.00
Indonesia 0.11 -0.03 0.26 0.13 0.14 0.43
Thailand -0.02 -0.13 0.09 0.10 0.10 -0.10
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Table B.7: Estimates of output persistence ϕ2

NIOUC-FSV NIOUC-FSV- NIOUC-FSV- NIOUC-FSV-
ry = 0 ry, rπ = 0 ry, rπ = 0, ωhy = 0

country mean 16% 84% posterior mean posterior mean posterior mean

Belgium -0.03 -0.12 0.06 -0.07 -0.07 -0.28
Greece 0.35 0.24 0.45 0.39 0.38 0.35
Ireland 0.10 0.01 0.21 0.15 0.15 -0.05
Netherlands 0.30 0.22 0.37 0.36 0.36 0.11
Portugal 0.27 0.17 0.37 0.33 0.33 0.18
Latvia 0.31 0.21 0.42 0.33 0.33 0.29
Lithuania 0.17 0.08 0.26 0.12 0.12 0.07
Slovakia 0.23 0.15 0.31 0.18 0.18 0.02
Israel 0.04 -0.06 0.13 0.06 0.06 0.08
Hong Kong 0.17 0.08 0.26 0.23 0.23 0.12
South Korea 0.12 0.03 0.21 0.18 0.18 -0.10
UK 0.16 0.05 0.27 0.10 0.09 -0.05
USA 0.22 0.12 0.31 0.15 0.15 0.12
Sweden 0.19 0.10 0.28 0.16 0.16 0.05
Switzerland 0.17 0.09 0.26 0.05 0.05 -0.08
Spain 0.22 0.11 0.32 0.18 0.18 -0.01
Denmark 0.07 -0.04 0.17 0.12 0.12 0.04
Italy 0.08 -0.01 0.16 0.01 0.01 -0.04
Finland 0.19 0.11 0.27 0.24 0.24 0.04
France 0.24 0.16 0.32 0.21 0.21 0.03
Germany 0.16 0.09 0.23 0.09 0.09 -0.05
Australia 0.10 -0.01 0.20 0.10 0.10 -0.04
Canada 0.04 -0.05 0.14 -0.02 -0.02 -0.18
South Africa 0.18 0.07 0.28 0.05 0.05 0.02
Hungary 0.16 0.06 0.25 0.12 0.13 -0.06
Russia 0.05 -0.04 0.15 0.07 0.07 -0.11
Turkey 0.06 -0.03 0.14 0.11 0.11 0.06
Mexico -0.06 -0.14 0.02 0.03 0.03 -0.23
Bolivia -0.13 -0.24 -0.01 -0.15 -0.15 -0.24
Brazil 0.14 0.03 0.24 0.08 0.08 -0.05
China 0.05 -0.05 0.16 0.10 0.09 0.01
Philippines 0.09 -0.01 0.18 0.09 0.10 -0.06
Indonesia -0.01 -0.12 0.10 -0.05 -0.05 -0.11
Thailand -0.05 -0.14 0.04 0.00 -0.01 0.08
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B.4 Testing for Time-Variation in volatilities

In this appendix, we report the estimated log Bayes factors to test for time-variation

in volatilities.
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Table B.8: The estimated log Bayes factors for ωhi

countries log BFhi for inflation log BFhi for output

Belgium -6.16 -5.17
Greece -3.97 6.68
Ireland -6.52 20.92
Netherlands -2.86 -8.56
Portugal -7.86 -5.37
Latvia -4.63 4.32
Lithuania -2.48 4.27
Slovakia 82.45 60.82
Israel 21.29 19.80
Hong Kong -5.52 22.35
South Korea 42.60 75.68
UK -10.58 -4.79
USA 3.11 -5.79
Sweden -6.42 -3.43
Switzerland -4.95 -5.51
Spain -6.13 -3.94
Denmark -4.92 -4.83
Italy -5.64 5.33
Finland -5.30 -5.11
France -5.58 -6.11
Germany -1.93 -3.85
Australia 32.10 -2.67
Canada -5.03 -6.21
South Africa -1.29 -4.89
Hungary 3.17 -2.85
Russia 131.11 17.81
Turkey 20.91 3.71
Mexico -4.99 -6.03
Bolivia -2.02 -4.72
Brazil 6.08 -2.82
China -4.20 69.65
Philippines -3.86 -0.19
Indonesia 151.82 200.64
Thailand 8.09 64.03
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C.1 Width of Credible Intervals for Trends

In this appendix, we report the width of 84% credible intervals for trends under three

models: Bi-UC-FSV, MC-UC-FSV and PUC-FSV. Figure C.1 reports the width of

credible interval for trend inflation. Figure C.2 reports the width of credible interval

for trend output.
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Figure C.1: The width of 84% credible interval for trend inflation under three
models: Bi-UC-SV, MC-UC-FSV and PUC-FSV. The red lines are the width
under Bi-UC-SV. The black lines are the width under MC-UC-FSV. The blue lines are
the width under PUC-FSV.
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Figure C.2: The width of 84% credible interval for trend output under three
models: Bi-UC-SV, MC-UC-FSV and PUC-FSV. The red lines are the width
under Bi-UC-SV. The black lines are the width under MC-UC-FSV. The blue lines are
the width under PUC-FSV.

C.2 Estimates of factor loading matrices

In this appendix, we report the posterior estimates of factor loading matrices under

PUC-FSV. Basically, we have two factors:

(1): global inflation factor ft, and its loading matrix is Lπ, Lπ is n×rπ, in our empirical

application, n = 34, rπ = 1. (2): global output factor gt, and its loading matrix is Ly,

Ly is n× ry, in our empirical application, n = 34, ry = 1.

We report the posterior mean and the 84% quantiles of both Lπ and Ly. And for

identification, we assume the factor loading matrices are lower triangular matrices with

ones on the main diagonal, so some elements in Lπ and Ly are 1 or 0.
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Table C.1: Posterior Estimates of factor loading matrix Lπ and Ly

Lπ Ly
country mean 16% 84% mean 16% 84%

Belgium 1 1 1 1 1 1
Greece 1.54 1.03 2.11 2.28 1.54 3.01
Ireland 1.42 0.96 1.93 3.94 2.62 5.27
Netherlands 1.21 0.82 1.66 1.91 1.50 2.32
Portugal 1.18 0.77 1.64 1.83 1.41 2.26
Latvia 1.37 0.85 1.92 2.18 1.16 3.21
Lithuania 1.31 0.77 1.85 3.91 2.70 5.13
Slovakia 1.58 1.07 2.17 3.11 2.16 4.08
Israel 1.38 0.87 1.91 1.23 0.86 1.60
Hong Kong 0.72 0.17 1.27 3.77 2.91 4.63
South Korea 1.08 0.71 1.48 2.54 1.87 3.21
UK 1.21 0.83 1.66 1.47 1.07 1.87
USA 1.96 1.34 2.67 1.62 1.23 2.01
Sweden 1.51 1.03 2.08 2.95 2.33 3.57
Switzerland 1.22 0.84 1.66 1.74 1.39 2.10
Spain 2.09 1.45 2.86 0.61 0.42 0.81
Denmark 1.17 0.80 1.60 1.49 0.85 2.11
Italy 0.92 0.63 1.26 1.96 1.56 2.36
Finland 1.04 0.69 1.43 3.59 2.82 4.35
France 1.44 1.00 1.96 1.45 1.17 1.73
Germany 1.39 0.96 1.91 2.64 2.13 3.16
Australia 1.45 1.00 1.98 0.45 0.15 0.75
Canada 1.72 1.16 2.36 1.26 0.90 1.62
South Africa 1.18 0.67 1.69 1.12 0.84 1.40
Hungary 2.27 1.42 3.16 1.54 0.67 2.37
Russia 0.27 -0.28 0.83 3.46 2.67 4.24
Turkey 2.16 1.21 3.15 3.94 2.87 5.02
Mexico 0.38 0.08 0.68 2.58 2.02 3.14
Bolivia 0.48 -0.05 1.02 0.65 0.18 1.12
Brazil 0.08 -0.32 0.47 3.02 2.22 3.81
China 0.49 0.14 0.83 1.11 0.69 1.52
Philippines 0.87 0.45 1.30 1.73 1.11 2.35
Indonesia 0.41 0.09 0.73 0.65 0.36 0.94
Thailand 1.71 1.11 2.34 3.05 2.40 3.71
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C.3 Estimates of Uncertainty

In this appendix, we report the posterior estimates of uncertainty. There are four un-

certainties in PUC-FSV:

(1): Idiosyncratic Inflation Uncertainty: the idiosyncratic inflation uncertainty is the

standard deviation of the shocks to the inflation gap, exp(hπt /2). We report this in

Figure C.3. The title of each sub-figure is the country name. Each sub-figure plots

the posterior estimates under three competing models (PUC-FSV, MC-UC-FSV and

Bi-UC-SV). The blue lines are the posterior means, 16% and 84% quantiles under

PUC-FSV, the red lines are posterior means under Bi-UC-SV, while the black lines are

posterior means under MC-UC-FSV.

(2): Idiosyncratic Output Uncertainty: the idiosyncratic output uncertainty is the

standard deviation of the shocks to the output gap, exp(hyt /2). We report this in Fig-

ure C.4. The title of each sub-figure is the country name. Each sub-figure plots the

posterior estimates under two competing models (PUC-FSV and MC-UC-FSV). The

stochastic volatility is not allowed in Bi-UC-SV, so we only have the estimates under

two models. The blue lines are the posterior means, 16% and 84% quantiles under

PUC-FSV, while the black lines are posterior means under MC-UC-FSV.

(3): Global Inflation Uncertainty: the global inflation uncertainty is the standard de-

viation of the shocks to the global inflation factor, exp(hft /2). We report this in Figure

C.5. The figure plots the posterior estimates under two competing models (PUC-FSV

and MC-UC-FSV). There is no global factors in Bi-UC-SV model, so we only have the

estimates under two models. The blue lines are the posterior means, 16% and 84%

quantiles under PUC-FSV, while the black lines are posterior means under MC-UC-

FSV.

(4): Global Output Uncertainty: the global output uncertainty is the standard de-
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viation of the shocks to the global output factor, exp(hgt /2). We report this in Figure

C.6. The figure plots plots the posterior estimates under two competing models (PUC-

FSV and MC-UC-FSV). The blue lines are the posterior means, 16% and 84% quantiles

under PUC-FSV, while the black lines are posterior means under MC-UC-FSV.
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Figure C.3: Posterior estimates for idiosyncratic inflation uncertainty
exp(hπt /2). The blue lines are the posterior means, 16% and 84% quantiles under
PUC-FSV, the red lines are posterior means under Bi-UC-SV, while the black lines are
posterior means under MC-UC-FSV.
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Figure C.4: Posterior estimates for idiosyncratic inflation uncertainty
exp(hyt /2). The blue lines are the posterior means, 16% and 84% quantiles under
PUC-FSV, the red lines are posterior means under Bi-UC-SV, while the black lines are
posterior means under MC-UC-FSV.
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Figure C.5: Posterior estimates for global inflation uncertainty exp(hft /2). The
blue lines are the posterior means, 16% and 84% quantiles under PUC-FSV, while the
black lines are posterior means under MC-UC-FSV.
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Figure C.6: Posterior estimates for global output uncertainty exp(hgt /2). The
blue lines are the posterior means, 16% and 84% quantiles under PUC-FSV, while the
black lines are posterior means under MC-UC-FSV.
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