
Long-Range Interactions in Complex Networks

Franck Kalala Mutombo

Department of Mathematics and Statistics

University of Strathclyde

Glasgow, UK

April 2012



This thesis is submitted to the University of Strathclyde for the

degree of Doctor of Philosophy in the Faculty of Science.

2



The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material in, or

derived from, this thesis.



Acknowledgements

I am heartily thankful to my advisor, Professor Ernesto Estrada, whose encour-

agement, guidance and support from the initial to the final level enabled me to

develop an understanding of the subject. Without his guidance, support and en-

couragement, this thesis would never have come true, not to mention his advice

and his knowledge of Complex Networks.

I offer my regards and blessings to all of those who supported me in any respect

during the completion of the project.

Last but not the least, my family and the one above all of us, the omnipresent

God, for answering my prayers for giving me the strength to plod on despite of all

the difficulties encountered.

i



Abstract

An interaction in a complex network is any kind of information or process that

can propagate between network units or components along network links. Com-

plex networks, which represent the structural skeleton of our societal, technologi-

cal and infrastructural systems, play a major role in the propagation of processes.

These processes include for example the case of epidemic spreading, the diffusion

process, synchronisation, the consensus process and many others. It is usually

assumed that interactions in networks propagate only from a node to its nearest

neighbours. This thesis is about interactions that can be transmitted from a node

to others that are not directly connected to it. These types of interactions are

here called long-range interactions (LRI). The thesis is about those long-range in-

teractions in complex networks. We will focus on the case of infection or epidemic

spreading in complex networks. An “infection”, understood here in a very broad

sense, can be propagated through the network of social contacts among individu-

als. These social contacts include both “close” contacts and “casual” encounters

among individuals in transport, leisure, shopping, etc. Knowing the first through

the study of the social networks is not a difficult task, but having a clear picture

of the network of casual contacts is a very hard problem in a society of increasing

mobility. Here we assume, on the basis of several pieces of empirical evidence,

that the casual contacts between two individuals are a function of their social
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distance in the network of close contacts. Then, we assume that we know the

network of close contacts and infer the casual encounters by means of nonrandom

long-range (LR) interactions determined by the social proximity of the two indi-

viduals. This approach is then implemented in a susceptible-infected-susceptible

(SIS) model accounting for the spread of infections in complex networks. A pa-

rameter called “conductance” controls the feasibility of those casual encounters.

In a zero conductance network only contagion through close contacts is allowed.

As the conductance increases the probability of having casual encounters also in-

creases. We show here that as the conductance parameter increases, the rate of

propagation increases dramatically and the infection is less likely to die out. This

increment is particularly marked in networks with scale-free degree distributions,

where infections easily become epidemics. We show that the epidemic threshold of

the model is given by the inverse of the largest eigenvalue of the generalised graph

matrix that represents all the social contacts in the network. We point out that,

from a Statistical Mechanical point of view, the epidemic threshold is also seen as

the negative of the inverse of the free energy of the network when the system is

frozen at extremely low temperatures. The proposed model is able to reproduce

the age-assortativity or homophily observed in many social networks. Our model

provides a general framework for studying epidemic spreading in networks with

arbitrary topology with and without casual contacts accounted for by means of

LR interactions.
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Introduction

0.1 A word on Complex Networks

In an abstract way, a complex network is a collection of entities or components

that represent its fundamental units and a set of links or connections that char-

acterise any kind of relationship between these components. Networks are ev-

erywhere, ranging from social networks, technological networks and biological

networks [52, 92–94]. Examples of social networks include the networks of ac-

quaintances, networks of collaborations and phone-call networks. For instance the

famous Erdös numbers in fact describe a social network where mathematicians

are assigned numbers indicating their ‘collaboration distance’ to the well-known

mathematician Paul Erdös who published nearly 1500 papers in his life, mostly

co-authored with others. Technological networks include the internet, telephone

networks, transportation networks and railway systems. The internet is one of the

largest man-made networks and can be defined as a huge collection of thousands

of millions of computers and routers connected by physical links, or at a more

coarse-grain level, can be considered as consisting of thousands of administrative

domains among which data are transferred. Biological networks include cellular

networks, which is an ensemble of genes, proteins and other molecules, and their

interactions to regulate cell activities; a biological neural network consisting of

1



Introduction 2

functionally related neurons that perform a specific physiological function. All of

these are relatively small complex networks compared to the majority of complex

networks seen in real life

The last ten years has seen significant interest and attention devoted to under-

standing the infrastructure underlying complex networks, particularly their topolo-

gies and the large-scale properties that can be derived. The topology of a complex

network is usually represented as a large graph. In this perspective, each unit of

a complex network can be represented by a site (physics), node (computer sci-

ence), actor (sociology), or vertex (graph theory) and the connection/interaction

between two units may corresponds to a bond (physics), link (computer science),

tie (sociology) or edge (graph theory). The study of the topological structure of

complex networks is one the most fundamental steps for gaining a basic under-

standing of certain aspects of real-world phenomena of many kinds. The structure

of a network can determine many, it not all, of the properties of the complex sys-

tem represented by it [52]. The structure of a network always affects its functions.

Structure is defined as the ’arrangement of and relations between the parts or

elements of something complex’ or ’the way in which the parts of a system or ob-

jects are arranged or organised’ [52]. The study and understanding of topological

networks’ structure also plays an important role in evaluating and designing net-

works regulations and protocols that run on top of them. Understanding complex

networks’ topologies can also protect networks from failures and attacks, so as to

achieve a better design and evolution of networks. Social networks’ topologies can

help to prevent pandemic influenza from spreading when available to health care.

The study of complex networks’ topologies has not been a simple problem over

the past decade. This may be explained by the fact that large-scale networks are

often a collection of thousands or millions of nodes and there is no single place
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from which one can obtain a complete picture of the topology. Aside from that,

complex networks can change dramatically and evolve constantly. For example,

a web page on the World Wide Web (WWW) can be created or removed on a

daily basis, and therefore it is difficult to obtain a snapshot of this network. Fur-

thermore, because the network does not lend itself naturally to direct inspection,

the task of discovering topologies has been left to experimentalists who develop

more or less sophisticated methods to infer its topology from appropriate network

measurements. The elaborate nature of the network means that there are a mul-

titude of possible measurements that can be made, each having its own strengths,

weaknesses and limitations and each resulting in a distinct specific view of the

network topology. In order to fully understand the structure of complex networks

we need some reference model with which we can compare them.

As a consequence of these challenges, the recent use of network models to

describe complex systems has emphasised the study of graph theoretic properties

as a means to characterise the similarities and differences in the structures and

the functions of systems across a variety of domains [3, 26, 94]. Many more studies

have been conducted on the empirical analysis of graph theoretic properties of

real systems and trying to find unifying properties across many complex networks.

Even more attention has focused on developing generic and universal models in an

attempt to explain such unifying properties, so as to infer more properties that are

not easy to obtain by empirical analysis. An implicit assumption in many of these

works is that graph theoretic properties adequately capture key system features in

order to serve as a basis for comparison.

The well-known model of a network is the one introduced by Erdös and Rényi

in 1960 [47]. This model is also known as the Erdös-Rényi model and is sometimes

called a ’classical random’ network. The model begins with n isolated nodes and
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each pair of nodes is connected with a given probability. A typical characteristic

of the classical random network is that the probability of selecting at random a

node of degree k follows a Poisson distribution when n is large [47]. However, it

has now been realised that there are many complex networks, which cannot be

described by the random model.

In 1998, Watts and Strogatz proposed the Small-World network model [123].

A Small-World network is between a regular network and a stochastic network. In

a ring network, an arbitrary edge between adjacent nodes constantly reconnects

with other nodes according to a certain probability. It can constitute a Small-

World network. When p = 0, it is a regular network. When p = 1, it is a random

network. When 0 < p < 1, it is a new network with a higher cluster character

than a regular network and a lower average path length than the random network.

A complex network with these two properties is called a Small-World network.

One of the most popular properties that has been discovered across many

topologies of real complex networks systems is the high variability in the degree

distribution. This high changeability deviates significantly from low variability

distributions such as the Poisson and exponential distributions in classic random

networks. In particular these highly variable distributions follow a power-law rela-

tionship [3, 59] in many real complex networks, such as both the router-level and

the AS-level topologies of the internet [59], the World Wide Web [4], the network

of citations between scientists’ papers [107], metabolic reaction networks [71], and

the telephone call graph [1]. Since traditional graph theory on regular graphs

or random graphs [47] cannot explain the high changeability of degree sequence,

the discovery of the power-law degree distribution has stimulated a great deal of

work in the construction of the so-called ‘Scale-free’ networks, aiming to match the

power-law distribution and other scale statistical properties, as well as to provide a
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universal theory to understand all complex networks. The well known model that

exhibits a power-law characteristic was proposed by Barabási and Albert in 1999.

They described a growing process called preferential attachment for a complex

network in which a new node is added to the network with probability propor-

tional to the degrees of existing nodes. As the high degree nodes can connect to

more and more nodes, these nodes significantly contribute to the high variability in

the power-law distribution. Since then, numerous refinements and modifications

to the original Barabási and Albert construction have been proposed and have

resulted in many types of scale-free network models that can reproduce power-law

degree distributions with different variations, for example the ability to tune the

parameters of the power-law distribution in order to agree with different complex

networks.

Despite these variations, scale-free networks have many common characteris-

tics. The most attractive one is that they have power-law degree distribution which

makes them a plausible model for many complex networks. In fact scale-free theory

has dominated the current literature of complex networks and has been considered

as the universal law for any large-scale networks since none of the previous graph

theory can explain the power-law degree distribution. Scale-free networks have

highly connected hubs, which hold the network together. The structure of such

networks are highly vulnerable (i.e. can fragment) to attacks that target these

hubs. At the same time they are resilient to attacks that knock out nodes at ran-

dom, since a randomly chosen node is unlikely to be a hub, and thus its removal

has minimal effect on network connectivity.

The node degrees of stochastic networks and Small-World networks obey a

Poisson distribution. This distribution is bell-shaped and the peak value just

corresponds with the average value of the degree of all the nodes. In both sides
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of the peak value, the distribution probability obeys exponential decline, which

indicates that most node degrees are concentrated near the average value of the

degree. Therefore, this type of network is called a homogeneous network. There

is no peak value in the degree distribution of scale-free networks. There is a

descending line showing the scale-free characteristics in bilogarithmic coordinates.

Therefore, scale-free networks are called inhomogeneous networks or heterogeneous

networks.

0.2 Spreading in Complex Networks

Spreading in networks includes the propagation of any kind of information such as

infections, rumours, influences, fashion etc. We will particularly study the case of

infections spreading. The main paradigm of the study of dynamic processes in com-

plex networks is that information is transmitted through the paths that connect

pairs of nodes [3, 18, 94, 116]. Such paths are formed by sequences of nodes repre-

senting the entities of a complex system which are connected by links representing

the interactions between these entities. This paradigm is particularly useful for

studying the spreading of information in complex networks [18], in particular for

studying how “infections” propagate and become epidemics in social, ecological,

technological and economical systems [6, 10, 12, 20, 37, 38, 58, 78, 85, 90, 113]. Since

the complex network research with small-world networks and scale-free networks

appeared, many scholars have adopted complex networks to study the spreading

of diseases and a large arsenal of theoretical methods has been developed for mod-

elling the propagation of infections. The earliest of these models assumed a homo-

geneous distribution of the number of contacts per node in a network [6, 85, 113].

However, since the discovery that many real-world networks deviate from this ho-
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mogeneity [24] several models have been proposed to study epidemic spreading in

scale-free networks [24, 90, 101]. For instance Watts and Strogatz simulated the

spread of disease model and found that disease spreading in small world networks is

faster and easier than in regulation networks [123]. Newman and Watts thoroughly

discussed disease spreading problems in social networks and proposed an improved

Small-World model namely the NW model [96]. Pastor-Satorras and Vespignani

studied the infinite scale-free network SIS model, and they were surprised to find

that the propagation threshold does not exist [101]. Yang and others studied the

spreading mechanism of bird flu based on the complex network approach [124].

In 2008, Chakrabarti et al. [32] developed a nonlinear dynamical system (NLDS),

which models the propagation of an infection in a network of arbitrary topology.

This model is based on the susceptible-infected-susceptible paradigm of epidemic

contagion [18] and is applicable to a network with any degree distribution. More

recently, by using the same assumptions as in [32], S. Gomèz, A. Arenas, J. Borge-

Holthoefer, S. Meloni, and Y. Moreno [63, 64] developed a probabilistic framework

for epidemic spreading in complex networks, which is a Discrete-time Markov chain

approach to contact-based disease spreading in complex networks.

One of the most important challenges of modelling the spread of epidemics

is the determination of the network of social contacts that allow the transmis-

sion of the infection. While in some situations, like in the spreading of sexually-

transmitted diseases or computer viruses, knowing the network of contacts is not

so difficult, in those cases involving the transmission of airborne or close contact

infections the contact network is quite hard to define [45]. This is, for instance,

the case of the Severe Acute Respiratory Syndrome (SARS), which was propa-

gated when a medical doctor from Guangzhou, China, eventually met at a hotel

in Kowloon, people from Singapore, Viet Nam, Canada and Hong Kong, who were
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not among his “close” social contacts [115]. This also includes the case of diseases

such as Chickenpox, Acute coryza (or the cold), Influenza (or Flu), Tuberculo-

sis and Mumps which are caused by pathogenic microbial agents and transmitted

through the air. These pathogens ride on either dust particles or small respiratory

droplets and can stay suspended in the air and are capable of travelling distances

on air currents. These kind of encounters between individuals who can facili-

tate the transmission of an infection are referred to as “casual” contacts in order

to distinguish them from the more frequent “close” contacts among individuals

[13, 14, 44, 79]. These “casual” contacts can play a major role in a variety of phe-

nomena, which include, for instance, imitative obesity as “it may be easier to be

fat in a society that is fat” [23], or the fact that “the spread of obesity is related to

the environment in which individuals live” [36] in addition to their social ties [33].

Other examples can include epidemic hysteria [29] as well as the recent growth of

“binge” drinking in the UK as a “fashion-related phenomenon” [99].

Due to the importance of the social contacts, both “close” and “casual”, among

individuals in our society for understanding disease and attitude spreading, there

have been serious attempts to account for them in an experimental basis. The

first attempt traced the route of the circulation of bank notes in the United States

[30]. The second one studied the trajectory of 100, 000 mobile phone users by

detecting their positions during a period of half a year [65]. The results of these

studies are both theoretically and practically interesting. However, we never make

commercial transactions in our elevators, buses, trains or airplanes, and do not

necessarily use our mobile phones all at the same time and place. Then, the

problem of determining the social contacts of individuals in a society is a very dif-

ficult and challenging problem of tremendous importance. More recently, however,

some attempts at quantifying all “close” and “casual” contacts among individu-
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als have been conducted in a series of European cities [91]. This study and its

implications will be analysed later in this thesis. The division of social contacts

between “close” and “casual” is somehow artificial but it allows some important

theoretical approaches. For instance, by knowing the network of “close” contacts

among individuals it is possible to include some effects produced by the “casual”

encounters among individuals. This has been generally done by considering that

these “casual” contacts occur at random. We will analyse the implications of this

assumption in this thesis.

0.3 Thesis Contributions

This thesis proposes a model that accounts for both the “close” and “casual” con-

tacts among individuals by considering the transmission of an infection through

paths and by long-range Interactions (LRI) in a complex network. Both processes

are assumed to be independent. The main paradigm used by this model is that if

we know the structure of the network of “close” contacts we can infer the “casual”

contacts by means of the long-range interactions between two individuals, which

here are assumed to depend on the social distance between them. We also assume

that the long-range ‘infectability’ of a node depends on the shortest path distance

from it to an infected node as well as on the ‘conductance’ of the medium to the

transmission of the infection. These concepts will be explained in this thesis when

we will introduce a generalisation of the NLDS as a way for modelling epidemic

spreading in networks with LR interactions. Further, we analyse this model in

random networks having different kinds of degree distributions as well as in some

real-world scenarios. Using this model we study how an infected node can propa-

gate an infection in random and real-world networks. We also generalise concepts
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of degree, subgraph centrality or self-communicability, communicability, commu-

nicability betweeness, closeness etc. and connect some of them to spreading in

networks using the long-range interactions.

0.4 Thesis structure

The thesis consists of eight chapters organised into two main parts which follow

the introduction giving an overview on complex networks and the essentials of

graph theory. The first part (theory) gives background on complex networks,

dynamics on networks, spreading in networks and introduces and motivates the

idea of long-range interactions. The second part (results and discussions) describes

the mechanism of long-range interactions in general and its application to the case

of spreading in networks.

Part I: Theory

In Chapter 1 we present network structures and their models that will be relevant

for this thesis. In Chapter 2 we review some concepts of dynamical systems (linear

and non-linear) that will be useful in this thesis. Chapter 3 is devoted to epidemic

spreading in networks. We present and discuss some of the models for epidemic

spreading in populations and networks. In Chapter 4 we introduce the concept of

long-range interactions (LRI) in complex networks. Several examples are given to

illustrate where long-range interactions in networks occur and how they are used.

In Chapter 5, the last chapter of Part I, the topic of social contacts, close and

casual, and provide empirical evidences for the implications of casual contacts in

the transmission of infections in networks.
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Part II: Results and Discussions

In Chapter 6, we provide a network model for accounting for close and casual con-

tacts in complex networks. Based on the new model developed in this chapter, we

generalise the concepts of degree and centrality measures and others. In Chapter 7

we review a discrete Non-Linear Dynamical System (NDLS) model for the spread

of epidemics that can be applied to any kind of network. In Chapter 8 we gener-

alise the NDLS model to a Generalised Non-Linear Dynamical System (GNLDS)

and apply it to model the spreading of epidemics in networks when casual contacts

are allowed by the means of long-range interactions (LRI).

0.5 Essentials of Graph Theory

In this chapter we are going to cover essential material on graph theory that will

be useful through this thesis. More about graph theory may be found in the

literature [27].

0.5.1 Graph

Let V be a finite set, and denote by

E(V ) = {{u, v}|u, v ∈ V, u 6= v},

the subsets of two distinct elements.

Definition 0.5.1 A pair G = (V,E) with E ⊆ E(V ) is called a graph on V . The

elements of V are the vertices of G, and those of E the edges of G. The vertex

set of the graph G will be denoted by V (G) and its edge set by E(G). Therefore

G = (VG, EG).
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Most often, graphs are also called simple graphs ; vertices are called nodes or points ;

and edges are called lines or links. A pair {u, v} is usually written as uv (sometimes

(u, v)). Notice that then uv = vu. In order to simplify notations, we also write

v ∈ G and e ∈ E instead of v ∈ V (G) and e ∈ E(G).

Definition 0.5.2 For a graph G, we denote

n = |V (G)| m = |E(G)|.

The number of vertices n is called the order of G, and m is the size of G. For an

edge e = uv ∈ G, the vertices u and v are adjacent or neighbours, if uv ∈ G. Two

edges e1 = uv and e2 = uw having a common end, are said to be adjacent with

each other.

A graph G can be represented as a plane figure by drawing a line (or a curve)

between the points u and v (representing vertices) if e = uv is an edge of G.

For example, the Figure 1 (right) is the geometric representation of the graph G

with V (G) = {a, b, c, d, e, f} and E(G) = {ab, ac, ce, be, ef, cd, ed}. Graphs can be

Figure 1: Illustration of graph representations

generalised by allowing loops vv and parallel (or multiple) edges between vertices to

obtain a multigraph G = (V,E, φ), where E = {e1, e2, · · · , em} is a set (of symbols)

and φ : E → E(V ) ∪ {vv|v ∈ V } is a function that attaches an unordered pair of

vertices to each e ∈ E : φ(e) = uv.
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Note that we can have φ(e1) = φ(e2). This is drawn in the figure of G by

placing two (parallel) edges that connect common ends. In Figure 1 (left) is (a

drawing of) a multiple G with vertices V = {k, l,m, n} and edges φ(e1) = kl,

φ(e2) = km, φ(e3) = lm, φ(e4) = kk, φ(e5) = nm, φ(e6) = mn, φ(e7) = nn. We

will only concentrate on simple graphs.

Definition 0.5.3 A directed graph or a digraph D = (V,E) is a graph where the

edges have a direction, that is, the edges are ordered: E ⊆ V × V . In this case

uv 6= vu.

The directed graphs have representations, where the edges are drawn as arrows.

A digraph can contain edges uv and vu of opposite directions.

Figure 2: A digraph with 4 vertices and 5 edges

Definition 0.5.4 A weighted graph is a graph in which each edge e is associated

with a real number w(e), called its weight. A weighted graph is often written as

G = (V (G), E(G),W (G)) where W (G) is the set of edge weights.

In applications of graph theory weights may have several interpretations. It can

mean for example intensity of friendship in a friendship graph, or the costs in a

communication graph, etc..

Definition 0.5.5 Two graphs G and H are identical (written G = H) if V (G) =

V (H), E(G) = E(H), and φG = φH .

Identical graphs can be represented by identical diagrams. However, it is also

possible for graphs that are not identical to have the same diagrams.
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Isomorphism of Graphs

Definition 0.5.6 Two graphs G and H are isomorphic, denoted by G ∼= H, if

there exists a bijection α : V (G) → V (H) and γ : E(G) → E(H) such that

φG(e) = uv ⇐⇒ φH(γ(e)) = α(u)α(v)

for all u, v ∈ G.

(a) G (b) H

Figure 3: Two isomorphic graphs

The pair (α, γ) is called an isomorphism between G and H.

Example 0.5.7 The graph in the Figure 3 where

G = (V (G), E(G), φG),

where

V (G) = {a1, a2, a3, a4, a5},

E(G) = {e1, e2, e3, e4, e5, e6, e7, e8},
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and φG is defined by

φG(e1) = a1a2, φG(e2) = a2a3, φG(e3) = a3a3, φG(e4) = a3a4,

φG(e5) = a2a4, φG(e6) = a4a5, φG(e7) = a2a5, φG(e8) = a2a5,

is isomorphic to the graph

G = (V (H), E(H), φH),

where

V (H) = {k, l,m, n, o},

E(H) = {b1, b2, b3, b4, b5, b6, b7, b8},

and φH is defined by

φG(b1) = kl, φG(b2) = kk, φG(b3) = lm, φG(b4) = mn,

φG(b5) = ln, φG(b6) = mn, φG(b7) = kn, φG(b8) = no.

Indeed the pair of mappings (α, γ) defined by

α(a1) = o, α(a2) = n, α(a3) = k, α(a4) = l, α(a5) = m,

and

γ(e1) = b8, γ(e2) = b7, γ(e3) = b2, γ(e4) = b1,

γ(e5) = b5, γ(e6) = b3, γ(e7) = b4, γ(e8) = b6,
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is an isomorphism between the graphs G and H. The graphs G and H have the

same structure and differ only in the names of their vertices and their edges. As we

are only interested in the structural properties of a graph, labels are often omitted

when drawing graphs. An unlabelled graph can be thought of as a representative

of an equivalence class of isomorphic graphs. We assign labels to vertices and edges

in a graph mainly for the purpose of referring to them. For example in a simple

graph, it is often convenient to refer to the edge with ends u and v as the ‘edge

uv’. This convention results in non ambiguity since, in a simple graph, at most

one edge joins any pair of vertices.

0.5.2 Adjacency Matrix

An adjacency matrix A is a means of representing which vertices of a graph are

adjacent to which other vertices. Specifically, the adjacency matrix of a finite

graph G on n vertices is the n × n matrix where the non diagonal entry aij is the

number of edges from vertex i to vertex j, and the diagonal entry aii, depending

on the convention, is either 1 or twice the number of edges (loops) from vertex

i to itself. Undirected graphs often use the former convention of counting loops

twice, whereas directed graphs typically use the latter convention. The adjacency

matrix is defined to be

ai,j =






1 if (i, j) ∈ E

0 otherwise.

(1)

There exists a unique adjacency matrix for each graph (up to permuting rows and

columns) which is not the adjacency matrix of any other graph. In the special

case of a finite simple graph, the adjacency matrix is a (0, 1)-matrix with zeros on
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its diagonal. If the graph is undirected, the adjacency matrix is symmetric. For a

directed graph the adjacency matrix is defined to be:

ai,j =






1 if there is an edge from j to i

0 otherwise.

(2)

This matrix is not symmetric. Another matrix representation for a graph is the

incidence matrix. If we denote the vertices of G by v1, v2 · · · , vn and the edges by

e1, e2, · · · , em, then the incidence matrix of G is the matrix B(G) = (bij), where

bij is the number of times (0, 1 or 2) that vi and ej are incident. The adjacency

matrix of a weighted graph G = (V,E,W ) reads

bi,j =






wi,j if (i, j) ∈ E

0 otherwise

for i, j = 1, · · · , n. (3)

For unweighted networks, wi,j are replaced by 1. The adjacency matrix of a graph

is generally considerably smaller than its incidence matrix, and it is in this form

that graphs are commonly stored in computers.

0.5.3 Subgraphs

Definition 0.5.8 A graph H is a subgraph of G (written H ⊆ G) if V (H) ⊆

V (G), E(H) ⊆ E(G), and φH is a restriction of φG to E(H). H is a proper

subgraph of G when H ⊆ G but H 6= G and we write H ⊂ G. If H is subgraph of

G, then G is a supergaph of A.

A spanning subgraph (or a spanning supergraph) of G is a subgraph (or super-

graph) H with V (H) = V (G). The underlying graph of G is the graph obtained by

deleting all loops and, for every adjacent vertex, all but one link joining them. The
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induced subgraph of G induced by V
′ ⊂ V , V 6= ∅ (written G[V

′

]) is the subgraph

of G whose vertex set is V ′ and whose edge set is the set of those edges of G that

have ends in V ′, i.e.

E(G[V
′

]) = E(G) ∩ E(V
′

).

The induced subgraph G[V \ V ′] is denoted by G − V
′

. It is the subgraph

obtained from G by deleting the vertices in V
′

together with their incident edges.

If V ′ = {v}, we write G− v for G−{v}. To a non-empty subset A ⊆ V (G), there

corresponds a unique induced subgraph

G[A] = (A,EG ∩ E(A)).

To each subset F ⊆ E(G) of edges there corresponds a unique spanning subgraph

of G,

G[F ] = (V (G), F ).

(a) G (b) Subgraph (c) Spanning

(d) Induced

Figure 4: Graph (a) and its subgraph (b), spanning graph (c) and induced graph
(c).
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Let E
′ ⊆ E be a non-empty subset. The subgraph of G whose vertex set is the

ends of the edges in E
′

and whose edge set is in E ′ is called the subgraph induced

by E
′

written G[E
′

]. The subgraph G[E
′

] is also called an edge induced subgraph

of G.

The spanning subgraph of G with edge set E\E
′

is simply written as G−E
′

. It

is the subgraph obtained from G by deleting the edges in E
′

. Similarly, the graph

obtained from G by adding a set of edges E
′

is denoted by G + E
′

. If E
′

= {e}

we write G − e and G + e instead of G − {e} and G + {e}.

Let G1 and G2 be subgraphs of G. We say that G1 and G2 are disjoint if they

have no vertices in common, and edge-disjoint if they have no edges in common.

The union G1 ∪ G2 of G1 and G2 is the subgraph with vertex set V (G1) ∪ V (G2)

and edge set E(G1) ∪ V (E2).

0.5.4 Degree of Vertices

Definition 0.5.9 Let v ∈ G be a vertex of a graph G. The neighbourhood of v is

the set

NG(v) = {u ∈ G|vu ∈ G}. (4)

The degree of the node v is defined to be

kv = |NG(v)|. (5)

The degree kv is also the number of entries in the vth row or column of the

adjacency matrix A of the graph G. It represents the number of nearest neighbours

of v. The node degree of a vertex v is also considered as the number of edges of G

incident with v where each loop is counted as two edges. If kv = 0, then v is said

to be isolated in G, and if kv = 1, then v is a leaf of the graph. The minimum
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degree and the maximum degree of G are defined as

kmin(G) = min{kv|v ∈ G} and kmax(G) = max{kv|v ∈ G}. (6)

The column vector of node degrees for a graph G is given by

k = (1TA)T = A1 (7)

where 1 is a |V |×1 column vector and 1T its transpose and A its adjacency matrix.

For an directed graph we define two types of degree; the in-degree which is the

number of links pointing towards a given vertex defined by

kin = (1TA)T , (8)

or, for each component,

kin

i =
∑

j

aji, (9)

and the out-degree which is the number of links departing from the corresponding

node and defined by

kout = A1 (10)

or, for each component,

kout

i =
∑

j

aij. (11)

The total degree of a node in this case is then given by

k = kin + kout. (12)

For example the in-degree, out-degree and the degree of the node g in the below
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graph are

kin
g = 4, kout

g = 1, and kg = kin
g + kout

g = 5,

respectively. The average node degree in a graph is defined by

k =
1

n
1Tk =

1

n

n∑

i=1

ki. (13)

The list of node degrees of a graph is called the degree sequence. The degree matrix

K is the matrix which has the node degrees as its main diagonal and is given by

K = diag(k). (14)

The adjacency matrix A, the incidence matrix B and the degree matrix K are

related by the relation

A = BBT − K. (15)

Let us mention a useful lemma that was proved by Euler in 1736 and is known in

graph theory as the handshaking lemma.

Lemma 0.5.10 In a graph G, the sum of all node degrees is equal to twice the
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number of links. That is,

n∑

i=1

ki = 2|E(G)| = 2m.

Moreover, the number of vertices of odd degree is even.

proof 0.5.11 Every edge e ∈ E(G) has two ends. The second claim follows im-

mediately from the first one.

Lemma 0.5.10 holds equally well for multigraphs, where kv is defined to be the

number of edges that have v as an end and where each loop vv is counted twice.

Note that the degrees of a graph G do not determine G. Indeed, there are graphs

G = (V,E(G)) and H = (V,E(H)) on the same set of vertices that are not

isomorphic, but for which kG(v) = kH(v) for all v ∈ V . The sum of all node

degrees is given by

1TA1 = KT =
n∑

i=1

ki = 2|E(G)|. (16)

Therefore, the average degree is given by

k =
2|E|
n

=
2m

n
. (17)

0.5.5 Special Graphs

Definitions.

• A graph G = (V,E) is trivial, if it has only one vertex, i.e., |V (G)|=1;

otherwise G is nontrivial.

• The graph G = KV (G) is the complete graph on V (G), if every two vertices

are adjacent: E = E(G). All complete graphs of order n are isomorphic to

each other, and they will be denoted by Kn.
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• The complement of a graph G is the graph G on VG, where EG = {e ∈

E(V )|e /∈ EG}. The complement of a complete graph is a discrete graph. In

a discrete graph E(G) = ∅. All discrete graphs of order n are isomorphic to

each other.

• A regular graph is a graph G in which every vertex has the same degree. If

this degree is equal to k, then G is a k-regular of degree k.

• A discrete graph is 0-regular, and a complete graph Kn is (n − 1)-regular.

In particular |V (Kn)| = n(n − 1)/2, and therefore |V (G)| ≤ n(n − 1)/2 for

all graphs that have order n.

• A star graph Sn is a graph having n − 1 leaves (nodes of degree 1) and one

central node having degree n−1. A star graph can also be seen as a complete

bipartite graph K1,n.

(a) (b) (c)

(d)

Figure 5: Complete graph K5 on 5 nodes (a), a star graph S7 having 6 leaves (b),
and a 4-regular graph on 8 nodes (c) and a comb graph (d).
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0.5.6 Paths and cycles

0.5.7 Walks

Definition 0.5.12 Let ei = uiui+1 ∈ G be edges of G for i ∈ [1, k]. The sequence

W = e1e2 · · · ek is a walk of length k from u1 to uk+1.

Here ei and ei+1 are compatible in the sense that ei is adjacent to ei+1 for all

i ∈ [1, k − 1]. We write, more informally,

W : u1 → u2 · · · → uk → uk+1 (18)

or

W : u1
k−→ uk+1, (19)

meaning that W is a walk of length k starting at node u1 and ending at node uk+1.

We write

W : u
∗−→ v

to say that there is a walk of some length from u to v. We understand that

W : u
∗−→ v is always a specific walk, W = e1e2 · · · ek, although we sometimes

do not mention the edges ei on it. The length of a walk W is denoted by |W |.

Definitions Let W = e1e2 · · · ek (ei = uiui+1) be a walk.

• W is closed, if u1 = uk+1.

• W is a path, if ui 6= uj for all i 6= j.

• W is a cycle, if it is closed, and ui 6= uj for i 6= j with the exception that

u1 = uk+1.

• W is a trivial path, if its length is 0.
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• A trivial path has no edges.

• The inverse W−1 of a walk W : u = u1 → · · · → uk+1 = v, is a walk which

is such that W−1 : v = uk+1 → · · · → u1 = u.

A vertex u is an end of a path P , if P starts or ends at u. The join of two walks

W1 : u
∗−→ v and W2 : v

∗−→ w is the walk W1W2 : v
∗−→ w. The end v must be

common to the walks. Paths P and Q are disjoint, if they have no vertices in

common, and they are independent, if they share only their ends.

(a) (b)

Figure 6: Path P4 (a) and cycle C6 (b).

A (sub)-graph, which is a path (cycle) of length k − 1 (k, respectively) having

k vertices is denoted by Pk (Ck, respectively). If k is even (odd), we say that the

path or cycle is even (odd). All paths of length k are isomorphic. The same holds

for cycles of fixed length.

Definition 0.5.13 If there exists a walk (and hence) a path from u to v in G, let

duv = dG(u, v) = min{k|u k−→ v}

be the distance between u and v. If there are no walks u
∗−→ v, let dG(u, v) = ∞ by

convention.

Definition 0.5.14 A graph is connected, if dG(u, v) < ∞ for all u, v ∈ G; other-

wise it is disconnected.
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Connection is an equivalence relation on the vertex set V . Indeed there is a

partition of V into non-empty subsets V1, V2,· · · , Vω such that two vertices u

and v are connected if and only if both u and v belong to the same Vi. The

maximal subgraphs G[V1], G[V2], · · · , G[Vω] are called connected components of G.

The number of connected component of G is denoted c(G). If c(G) = 1, then G

is, of course, connected.

Definition 0.5.15 A bipartite graph is one whose vertex set can be partitioned

into two subsets X and Y , such that each edge has one end in X and one in Y ;

such a partition (X,Y ) is called a bipartite graph with bipartition (X,Y ) in which

each vertex of X is joined to each vertex of Y ; if |X|= m and |Y |= n, such a

graph is denoted by Km,n.

The adjacency matrix of a bipartite graph having two sets of disjoint nodes V1 and

V2, such as |V1|= n1 and |V2|= n2 can be written as

A =




0 RT

R 0



 ,

where R is a n1 × n2 matrix and 0 is an all-zeros matrix. A subset X ⊆ VG is

stable, if G[X] is a discrete graph.

Figure 7: A K4,4 bipartite graph
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0.5.8 Shortest Paths

Definition 0.5.16 Let Gδ be an edge weighted graph, that is Gδ is a graph together

with a weight function δ : E(G) → R on its edges. For H ⊆ G, let

δ(H) =
∑

e∈H

δ(e) (20)

be the total weight of H. In particular, if P = e1e2 · · · ek is a path, then its weight

is δ(P ) =
∑k

i=1 δ(ei). The minimum weighted distance between two vertices is

dα
G(u, v) = min{α(P )|P : u

∗−→ v}.

In extremal problems we seek an optimal subgraph H ⊆ G satisfying specific

conditions. In practice we encounter situations where G might represent

• a distribution or transportation network where the weights on edges are

distances, travel expenses, or rates of flow in the network;

• a system of channels in (tele)-communication or computer architecture, where

weights represent unreliability or frequency of action of the connections;

• a model of chemical bonds, where the weights measure molecular attraction.

In these examples we look for a subgraph with the smallest weight and which

connects two given vertices, or all vertices (if we want to travel around). On the

other hand, if the graph represents a network of pipelines, the weights are volumes

or capacities, and then one wants to find a subgraph with the maximum weight.

The shortest Path Problem

Given a connected graph G with a weight function α : E(G) → N, find dα
G(u, v)

for all u, v ∈ G.
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Assume that G is a connected graph. Dijkstra’s algorithm solves the problem

for every pair u, v, where u is a fixed starting point and v ∈ G. Let us use the

convention that α(u, v) = ∞, if uv /∈ G.

Dijkstra’s algorithm

1. Set u0 = u, t(u0) = 0 and t(v) = ∞ for all v 6= u0.

2. For i ∈ [0, νG − 1] : for each v /∈ {u1, · · · , ui},

replace t(v) by min{t(v), t(ui) + α(uiv)}.

Let ui+1 /∈ {u1, · · · , ui} be any vertex with the least value of t(ui+1).

3. Conclusion: dα
G(u, v) = t(v).

Example 0.5.17 Consider the weighted graph G in Figure 8. Apply Dijkstra’s

algorithm to the vertex v0.

Figure 8: Weighted graph

• u0 = v0, t(u0) = 0, and all others are ∞

• t(v1) = min{∞, 2} = 2, t(v2) = min{∞, 3} = 3,

and all others are ∞. Thus u1 = v1.

• t(v2) = min{3, t(u1) + α(u1v2)} = min{3, 4} = 3,

t(v3) = 2 + 1 = 3, t(v4) = 2 + 3 = 5, t(v5) = 2 + 2 = 4.

Thus choose u2 = u3.
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• t(v2) = min{3,∞} = 3, t(v4) = min{5, 3 − 2} = 5,

t(v5) = min{4, 3 + 1} = 4. Thus set u3 = v2.

• t(v4) = min{5, 3 + 1} = 4, t(v5) = min{4,∞} = 4. Thus choose u4 = v4.

• t(v5) = min{4, 4 + 1} = 4. The algorithm stops.

We have obtained:

t(v1) = 2, t(v2) = 3, t(v3) = 3, t(v4), t(v5) = 4.

These are the minimal weights from v0 to each vi. The steps of the algorithm can

also be rewritten as a tale:

v1 2 - - - -

v2 3 3 3 - -

v3 ∞ 3 - - -

v4 ∞ 5 5 4 -

v5 ∞ 4 4 4 4

0.5.9 Tree

A graph is called acyclic, if it has no cycle. An acyclic graph is also called a forest.

A tree is a connected acyclic graph.
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Figure 9: A tree having 9 nodes.
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Chapter 1

Networks Structure and Models

In this chapter we are going to introduce some network structures and models

which are of relevant importance for this thesis. We will only scratch the surface

as there is a huge amount of literature on network structures and dynamics and

other advanced topics [52, 93].

Definition 1.0.18 A network G = (V,E, γ, θ) consists of:

• A graph G = (V,E), where V is the set of vertices, E1 is the set of arcs,

E2 is the set of edges, and E = E1 ∪ E2 is the set of lines, n = card(V ),

m = card(E).

• γ vertex value functions/properties: γ : V → A.

• θ line value functions/weights: θ : E → B.

We will designate a network by its underlying graph, i.e. G = (V,E). For instance

if we consider the simple network shown in Figure 1.1 for which the set of vertices is

V = {a, b, c, d}, the set of arcs E1 = {a1, a2, a2, a4}, where a1 = (a, b), a2 = (b, a),

a3 = (d, a), a4 = (d, d), the set of edges E2 = {e1, e2}, with e1 = (b, c), e2 = (c, d)

and vertex value properties (these can be node ages for example) γ(a) = 10,

32
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γ(b) = 12, γ(c) = 20, γ(d) = 18 and line value functions (these can be the

cost of maintaining the links for example) θ(a1) = 1.0, θ(a2) = 2.1, θ(a3) = 1.7,

θ(a4) = 0.5, θ(e1) = 1.2, θ(e2) = 2.1.

Figure 1.1: Very simple networks, with node values and lines values.

1.1 Some Example of Networks

• Computer Networks: The Internet topology (at both the Router and the

Autonomous System (AS) levels) is a graph, with edges connecting pairs of

routers/AS. This is a self-graph, which can be both weighted or unweighted.

• Ecology: Food webs are self-graphs with each node representing a species,

and the species at one endpoint of an edge eats the species at the other

endpoint.

• Biology: Protein interaction networks link two proteins if both are necessary

for some biological process to occur.

• Sociology: Individuals are the nodes in a social network representing ties

(with labels such as friendship, business relationship, trust, etc.) between

people.
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• User Psychology: Clickstream graphs are bipartite graphs connecting inter-

net users to the websites they visit, thus encoding some information about

the psyche of the web user.

Figure 1.2: Chess masters network containing all 685 World Chess Championship
matches from 1886-1985. Each node is the last name of a chess master. Each
edge is directed from white to black and contains selected game info. The network
consisted of 25 players (nodes) and 685 edges (number of games). This network
was produced using NetworkX [9] in Python.

1.2 Properties of Networks

Degree Distributions

From the information provided by the node degrees of a network we can find some

important insights about the structure of all the network. This analysis is based

on the distribution of node degrees in the network. For example, in Figure 1.4 we

are illustrating the plot of the adjacency matrices of the network of jazz musicians
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(a) Internet (b) Protein Interactions

(c) Ego Network (d) Friendship Network

Figure 1.3: Examples of networks (a) the Internet network, (b) The network of
Protein Interaction, (c) Ego network of the largest hub in a Barabási-Albert net-
work. An Ego network consist of a focal node (‘ego’) and the nodes to whom ego
is directly connected to (these are called ‘alters’) plus the ties, if any, among the
alters, and (d) the Friendship network.

[62] and the network of corporate directors of the top 500 corporations in the

United States of America (USA) [41]. The jazz network consists of 1258 nodes

and 38562 edges and the one for corporate directors in the USA consists of 1586

nodes. It can be seen from these plots that the two networks show very different

characteristics. The node degree looks more uniformly distributed in the second

plot (b) than in the right plot (a) of Figure 1.4. The degree distribution is the

most fundamental topological characterisation of a network. It may be obtained

in terms of the probability p(k), which is defined as the probability that a node

chosen uniformly at random has degree k or equivalently as the fraction of nodes

in the graph having degree k. The probability p(k) is given by
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Figure 1.4: Plots of the adjacency matrices of the Jazz musician network (a) and
the network of the top 500 corporations in the USA (b).
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Figure 1.5: Illustration of the degree distribution (b) for a simple network in (a).

p(k) =
n(k)

n
, (1.1)

where n(k) is the number of nodes having degree k in a network of size n. For

example the network in Figure 1.5 (a) has n = 10 vertices, for which 1 has degree

4, 2 have degree 3, 4 have degree 2, 2 have degree 1 and 1 has degree 0. Hence

the values of p(k) for k = 0, · · · , 4 are: 1
10

, 2
10

, 4
10

, 2
10

, 1
10

, The degree distribution

k 0 1 2 3 4
p(k) 1

10
2
10

4
10

2
10

1
10

Table 1.1: Degree distribution of the simple network in Figure 1.5 (b).

given in Table 1.1 completely determines the structure of the network in Figure
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1.5 (a). However, in many cases this is not the case. We can have another network

which is different from the one in Figure 1.5 (a) but has exactly the same degree

distribution. The degree distribution gives us some important information about

the network but it does not give us all the information. In the case of directed

networks one needs to consider two distributions, the in-degree distribution of

node p(kin) with kin
i =

∑
j aji and the out-degree distribution of p(kout) with

kout
i =

∑
j aij. Information on how the degree is distributed among the nodes of

an undirected network can be obtained either by a plot of p(k) versus the degree

k, often in log-log scale which gives a qualitative idea about the kind of statistical

distribution followed by the node degrees or by the calculation of the moments of

the distribution. The n-moment of p(k) is defined as follows:

〈kn〉 =
∑

k

knp(k). (1.2)

The first moment 〈k〉 (sometimes written k) is the mean degree of the network.

The second moment 〈k2〉 called the divergence measures the fluctuations of the

connectivity distribution. In the limit of infinite graph size, 〈k2〉 radically changes

the behaviour of the dynamical processes that take place over the network. In

Figure 1.6 we are illustrating histogram plots of the degree distributions of the

jazz musician network and the network of corporate directors in the USA. In

Figure 1.7 we are illustrating plots of some degree distributions in networks, the

Poisson distribution, the Gaussian distribution, the power-law distribution and

the exponential distribution.
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Figure 1.6: A histogram of the degree distribution of the network of Jazz musicians
(a) and the network of corporate directors in the USA (b).
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(d) p(k) ∼ k−γ

Figure 1.7: Degree distributions in networks (a) Poisson distribution, (b) Gaussian
distribution, (c) Power-law distribution, (d) Exponential distribution.

1.3 Binomial Distribution

Sequences of Bernoulli Trials

Sequences of Bernoulli trials are sequences of independent identical trials, each of

which is a success with probability p, for some fixed p ∈ (0, 1), and a failure with
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probability 1− p. Such sequences of trials form one of the fundamental models of

probability theory, with many applications [66, 100]. We may conveniently speak

of successes and failures no matter what is being modelled: thus, in the case of

repeatedly tossing a coin which lands heads with probability p we may regard a

head as a success and a tail as a failure. Let us define a sequence of independent

identically distributed random variables X1, X2, · · · by setting

Xi =






1 if the ith trial is a success ,

0 if the ith trial is a failure.

(1.3)

Thus, for each i,

P (Xi = 0) = 1 − p, P (Xi = 1) = p. (1.4)

Let us consider a sequence of independent identical random variables X1, X2, · · · , Xn

with

P (Xi = 1) = p and P (Xi = 0) = 1 − p. (1.5)

We also define

S0 = 0, Sn =
n∑

i=1

Xi.

Consider the distribution, for fixed n, of the random variable Sn. Since this is the

total number of successes in a sequence of n independent identically distributed

trials, it is known that Sn has a binomial distribution with parameters n and p,

i.e. that

P (Sn = k) =

(
n

k

)
pk(1 − p)n−k, k = 0, 1, · · · , n, (1.6)
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and we write Sn ∼ B(n, k). It can be shown that the mean of E and the variance

V ar of Sn are given by [66]:

E(Sn) = np, V ar(Sn) = nV ar(X1) = np(1 − p).

1.4 Poisson Distribution

By letting p vary with n and taking limits we obtain a different fundamental law,

the Poisson law. Specifically,

Lemma 1.4.1 if pn = λ
n

+ o(1/n) as n → ∞ then

P (Sn = k) → λk

k!
e−λ (1.7)

proof 1.4.2 We have that

P (Sn = k) =
n!

k!(n − k)!
pk

n(1 − pn)n−k

=
1

k!

n(n − 1) · · · (n − k + 1)

nk
(npn)k(1 − pn)n(1 − pn)−k

→ 1

k!
.1.λk.e−λ.1

=
λk

k!
e−λ. (1.8)

This is the Poisson distribution (law) with parameter λ. The Poisson law is fun-

damental when, roughly speaking, we deal with independent rare events. If X is

random variable that follows a Poisson law, its mean and variance are given by

EX = λ and V ar(X) = λ

respectively.
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1.5 Power-Law Degree Distribution

Among all the possible degree distributions, the power-law degree distribution is

the one that has attracted most of the attention in scientific and even popular

literature.

Definition 1.5.1 (Non-stochastic) Let us consider a finite sequence k = (k1, · · · , kn)

of real numbers, such that k1 ≤ k2 · · · ≤ kn. The sequence k is said to follow a

power-law or scaling relationship if

r = ck−γ
r , (1.9)

where r (by definition) is the rank of kr, c is a fixed constant, and γ is called the

scaling index. The definition is said to be non-stochastic in the sense that there

is no underlying probability model for the given sequence. The relationship for

the rank r versus k appears as a line of slope −γ when plotted on a log-log scale.

Indeed we have

log(r) = log(c) − γ log(kr). (1.10)

The relationship (1.9) is referred to as the size-rank (or cumulative) form of scaling.

While the definition of scaling in (1.9) is fundamental, a more common usage

of power-laws and scaling occurs in the context of random variables and their

distributions.

Definition 1.5.2 (Stochastic) Let us assume an underlying probability model P

for a non-negative random variable X, let F (x) = P [X ≤ x] for x ≥ 0 denote the

(cumulative) distribution function (CDF) of X, and let F (x) = 1 − F (x) denote

the complementary CDF (CCDF) or the tail function [66, 100]. In this context, a

random variable X or its corresponding distribution function F is said to follow a
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power-law or is scaling with index λ > 0 if as x → ∞,

P [X > x] = 1 − F (x) ∼ cx−λ, (1.11)

for some 0 < c < ∞ and a tail index λ > 0.

Here, we write f(x) ∼ g(x) as x → ∞ if f(x)/g(x) → 1 as x → ∞. Requiring

the existence of the cumulative distribution function F (x), the probability density

function (pdf) of the random variable X is defined to be [66, 100]:

f(x) = dF (x)/dx, (1.12)

so for the random variable X, its stochastic cumulative form of scaling or size-rank

relationship (1.11) has an equivalent non-cumulative or size-frequency counterpart

given by

f(x) ∼ cx−(1+γ) (1.13)

which appears similarly as a line of slope −(1 + γ) on a log-log scale. If X is a

continuous random variable, its first moment, i.e. its mean, is given by

E(X) =

∫ ∞

−∞
xf(x)dx = cλ

∫ ∞

xmin

1

xλ
=

cλ

1 − λ

1

xλ−1

∣∣∣
∞

xmin

dx. (1.14)

For 1 < λ < 2, the first moment is finite but the second moment/variance is infinite

and for 0 < λ ≤ 1, both the second moment/variance and the first moment/mean

are infinite. For this reason power-law distributions are sometimes called heavy

tail distributions. In general, all moments of F of order β ≥ γ are infinite. Since

relationship (1.11) implies log(P [X > x]) ≈ log(c) − λ log(x), doubly logarithmic

plots of x versus 1 − F (x) yield straight lines of slope −λ, at least for large x. If
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x > u, then the conditional distribution of X given that X > u is given by

P{[X > x|X > u]} =
P{[X > x] ∩ [X > u]}

P [X > u]
=

P [X > x]

P [X > u]
∼ c1x

−γ, (1.15)

where the constant c1 is given by 1/u−γ and does not depend on x. Hence, when

x is large, the conditional probability P [X > x|X > u] is identical to the (uncon-

ditional) distribution P [X > x], except for a change in scale. Owing to this fact,

power-law distributions are often called scaling distributions or scale-free distri-

butions. The usual way of referring to power-law networks is scale-free networks

meaning that there exists a power-law relationship between the probability density

function (or probability mass function for discrete random variables) and the node

degree often translates as

p(k) = Bk−γ. (1.16)

If we scale the degree by a constant factor, say c, then this produces only a pro-

portionate scaling of the function, i.e.

p(k, c) = B(ck)−γ = Bc−γ.p(k) (1.17)

which is identical to p(k) except for a change of scale. In a log− log scale equa-

tion (1.16) results in a straight line of slope −γ. Most of the time degree dis-

tributions do not follow equation (1.16). In fact, the degree distribution is not

monotonic for small values of k. A true power-law distribution is decreasing

monotonically over the entire range of values of k. Hence in this case, the de-

gree distribution characterised by the equation (1.16) deviates from the power-law

for small values of k. In many scenarios the power-law relationship (1.16) is satis-

fied only in the tail of the distribution, when the value of k tends to infinity but
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not for small values of k. Therefore, we usually write

p(k) ∼ k−γ. (1.18)

When we say that a network has a power-law degree distribution we mean that the

power-law behaviour is only followed in the tail of the distribution. In Figure 1.8
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Figure 1.8: Probability (a) and cumulative distribution functions (b) for the ver-
sion of the internet at autonomous system (AS) level displaying a power-law degree
distribution.

(a) we are plotting in a log-log scale the probability p(k) versus k for the version

of the internet at autonomous system (AS) level. We can see that the tail of the

distribution is very noisy and one way to solve this problem is to consider the

cumulative distribution function (CDF) given by

P (k) =
∞∑

k′=k

p(k
′

) (1.19)

which represents the fraction of nodes having degree k or greater or a probability

of choosing a node with degree greater than or equal to k. For this case we can

show that P (k) also shows a power-law decay with the degree. In fact

P (k) =
∞∑

k
′
=k

p(k
′

) = C

∞∑

k
′
=k

k
′−γ ≃

∫ ∞

k

k
′−γdk

′

=
C

γ − 1
kγ−1, (1.20)
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where p(k
′−γ) = Ck

′−γ and k ≥ kkmin. In the Figure 1.8 (b) we illustrate a plot

for the case of the (AS) version of the internet. As we can see the CDF plot

significantly reduced the noise compared to the plot in (a) of the same figure.

Another approach to reduce the noise in the tail of the distribution is to use

the logarithmic binning of the form an−1 ≤ k < an where a = 2 and n runs in the

range of nodes. For example the first bin for n = 1 is 1 ≤ k < 2 and all nodes

of degree 1 fall in that bin. The second bin is 2 ≤ k < 4 and contains nodes of

degree 2 and 3 and so on. Doing so, we are using wider bins in the tail of the

distribution than for nodes having lower degree. We have to divide each bin by its

width an − an−1 = (a − 1)an−1 if we want to compare the count in those different

bins.
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Figure 1.9: Cumulative distribution functions for the version of the internet using
logarithmic bins displaying a power-law degree distribution.

All power laws with a particular scaling exponent are equivalent up to constant

factors, since each is simply a scaled version of the others. This behaviour is what

produces the linear relationship when logarithms are taken of both p(x) or P (x)

and x (see Figures 1.8 (b) or 1.9) and the straight-line on the log-log plot is often

called the signature of a power law. However, with real data, such straightness

is a necessary, but not sufficient, condition for the data following a power-law
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relation. Often the probability density function p(x) or the probability distribution

is estimated by constructing a histogram and the resulting function can be fitted to

the linear form by least square linear regression. The slope of the fit is interpreted

as the estimate α̂ of the scaling parameter and the variance r2 is taken as an

indicator of the quality of the fit. There are many ways to generate finite amounts

of data that mimic this signature behaviour, but, in their asymptotic limit, are

not true power laws. Thus, accurately fitting and validating power-law models is

an active area of research in statistics. Let us consider for instance the following

distributions:

1. Power-law distribution with density function p(x) = x−α, with α = 2.5,

2. Log-normal distribution with density function p(x) = 1
x

exp[− (ln x−µ)2

2σ2 ], with

µ = 0.25, σ = 0.18,

3. Exponential distribution with density function p(x) = exp(−λx), with λ =

0.125.
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Power law, α=2.5
Exponential, λ=0.125
Log−normal, µ=0.25, σ=0.18

Figure 1.10: The CDFs of three small samples drawn from continuous distribu-
tions: a power law with α = 2.5, a log normal with µ = 0.25, σ = 0.18 and
exponential with λ = 0.125. Visually these three CDF appear roughly straight on
the logarithmic scales used, but only one is a true power-law.
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As can be seen from the Figure 1.10 the log-log plots are close to a straight line

for the distributions we have considered. In reality one of them is a power law

distribution and it will be a mistake to infer that the others distributions are also

power-law just because they are close to a straight line.

In practice we can not be certain that an observed quantity is drawn from a

power-law distribution or not. The question of how to recognise a power law is

one the most difficult one. Clauset et al. [34] described in some details a set of

statistical analysis that allow one to decide whether an observed quantity follow a

power law as well as the methods of calculating the parameters of the power law.

The first step in this direction is the fitting power laws to empirical data. For this

one need to estimate the lower bound xmin on power law behaviour and the scaling

parameter α from the data.

Estimating the Lower Bound on Power-Law behaviour

Empirical data do not follow a power law for all values of x, but they do so above

a certain value xmin. Therefore before estimating the scaling parameter, one needs

to estimate the point xmin and eliminate those values for which the power law

properties does not follow. Often, the estimate x̂min is chosen by visualising the

point beyond which the probability density p(x) or the probability distribution

P (x) becomes roughly straight on a log-log plot, or to plot the estimate α̂ as a

function of x̂min and identify a point beyond which the value appears relatively

stable. This approach is not rigorous and can be sensitive to noise or fluctuations

in the tail of the distribution. One candidate approach which is objective to

determine x̂min is the the Bayesian information criterion or BIC [34] which consists

in maximizing the marginal likelihood or the likelihood of the data given the

number of model parameters, integrated over the parameters’ possible value.
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Another approach for estimating x̂min, is proposed by Clauset et al. [34] and

can be applied to both discrete and continuous data. The approach chooses a

value x̂min that makes the probability distribution of the measured data and the

best-fit power law model as similar as possible above x̂min. For quantifying the

distance between two probabilities, the Kolmogorov-Smirnov or KS statistic, was

used. This statistic is the maximum distance between the CDFs of the data and

the fitted model, that is :

D = max
x≥xmin

| S(x) − P (x) |, (1.21)

where S(x) is the CDF of the data for the observations which value at least xmin,

and P (x) si the CDF for the power law model that best fits the data in the region

x ≥ xmin. The estimate x̂min si then the value of xmin that maximises D. It has

been shown that the KS model produces better results the BIC approach. (See

details in [34] paragraph 3.4).

Maximum Likelihood Estimators for the Power Law

If we assume that the lower bound xmin of power-law is known, then the scaling

parameter can be found by using the method of maximum likelihood, which gives

accurate parameter estimates in the limit of large sample size [34].

1. Continuous data

The probability density p(x) (x > xmin) in the case of continuous data is

such:

p(x)dx = Pr(x ≤ X ≤ x + dx) = Cx−αdx, (1.22)

where X is the observed value and C is the normalisation constant and is
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such that

∫ ∞

xmin

p(x)dx =

∫ ∞

xmin

Cx−αdx

= C

[
x−α+1

−α + 1

]∞

xmin

= 1.

Provided α > 1, we have

C =
α − 1

x−α+1
min

, (1.23)

and substituting C in (1.22) we have

p(x) =
α − 1

xmin

(
x

xmin

)−α

. (1.24)

The probability that the data were drawn from the model is given by the

likelihood [100] of the data

p(x|α) =
n∏

i=1

α − 1

xmin

(
x

xmin

)−α

. (1.25)

The data are most likely to have been generated by the model with the

scaling parameter α that maximises the function (1.25) [100]. For simplicity,

the logarithm L of the likelihood is considered and has its maximum at the

same point,

L = ln p(x|α) = ln
n∏

i=1

α − 1

xmin

(
x

xmin

)−α

(1.26)

=
n∑

i=1

[
ln(α − 1) − ln xmin − α ln

xi

xmin

]
, (1.27)
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and

∂L

∂α
=

n∑

i=1

[
1

α − 1
− ln

xi

xmin

]
. (1.28)

Setting ∂L
∂α

= 0 and solving for α, we obtain the maximum likelihood estimate

(MLE) for the scaling parameter:

α̂ = 1 + n

[
n∑

i=1

ln
xi

xmin

]−1

. (1.29)

The standard error on α̂, which is derived from the width of the likelihood

maximum [34, 100] is,

σ =
α̂ − 1√

n
+ O(1/n). (1.30)

There are a number of reasons that motivate the use of the maximum like-

lihood. We state here some of them without proof [100].

Proposition 1.5.3 (consistency) Under mild regularity conditions, if the

data are independent, identically distributed drawn from a distribution with

parameter α, then as the sample size n → ∞, α̂ → α almost surely.

Proposition 1.5.4 The maximum likelihood estimator α̂ of the continuous

power-law converges almost surely on the true value α.

Proposition 1.5.5 (asymptotic consistency) The MLE of the continuous

power law is asymptotically Gaussian with variance (α − 1)2/n.

2. Discrete data

When the random variable X can takes only discrete values x (x > xmin),

the probability distribution is given by:

p(x) = Pr(X = x) = Cx−α, (1.31)
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where the constant C is the normalisation constant and is such that

∞∑

x=xmin

p(x) =
∞∑

x=xmin

Cx−α,

= 1. (1.32)

So that

C =
1∑∞

x=xmin
x−α

=
1

ζ(α, xmin)
, (1.33)

where

ζ(α, xmin) =
∞∑

n=0

(n + xmin)
−α. (1.34)

The normalised probability distribution is:

p(x) =
x−α

ζ(α, xmin)
. (1.35)

In this case the log-likelihood function is given by:

L = ln
n∏

i=1

x−α

ζ(α, xmin)
= −α

n∑

i=1

ln xi − n ln ζ(α, xmin), (1.36)

and

∂L

∂α
=

−n

ζ(α, xmin)

∂

∂α
ζ(α, xmin) −

n∑

i=1

ln xi. (1.37)

Setting ∂L
∂α

= 0, we find that the maximum likelihood estimator α̂ for the

scaling parameter is the solution to the equation

ζ
′

(α̂, xmin)

ζ(α̂, xmin)
+

1

n

n∑

i=1

ln xi = 0, (1.38)

and this equation can be solved numerically for α̂. When xmin is large, an

approximate solution of α̂ can be found by the following way: Let f(x) be a
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differentiable function then we have:

∫ x+ 1
2

x− 1
2

f(θ)dθ = F (x +
1

2
) − F (x − 1

2
), (1.39)

where F (x) is such that F
′

(x) = f(x). We can expand the right hand side

of (1.39) by using the following Taylor expansion

h(x0 + ∆x) = h(x0) + h
′

(x0)∆x +
1

2!
h

′′

(x0)(∆x)2 +
1

3!
h

′′′

(x0)(∆x)3 + · · · ,

(1.40)

in which x ≡ x0 and ∆x ≡ 1
2

to get

∫ x+ 1
2

x− 1
2

f(x) = f(x) +
1

24
f

′′

(x) + · · · (1.41)

Now if we take the sum of these terms from xmin to ∞ we have:

∫ ∞

xmin− 1
2

f(θ)dθ =
∞∑

x=xmin

f(x) +
1

24

∞∑

x=xmin

f
′′

(x) + · · · (1.42)

If f(x) = x−α (α > 1), then we have f
′′

(x) = α(α − 1)x−α−2 and

∫ ∞

xmin− 1
2

θ−αdθ =
(xmin − 1

2
)−α+1

α − 1

=
∞∑

x=xmin

x−α +
α(α − 1)

24

∞∑

x=xmin

x−α−2 + · · ·

=
∞∑

x=xmin

x−α

[
1 +

α(α − 1)

24

∞∑

x=xmin

x−2 + · · ·
]

= ζ(α, xmin)
[
1 + O(x−2

min)
]
, (1.43)

where in the last equality we have made use of the fact that x−2 ≤ x−2
min.
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Therefore

ζ(α, xmin) =
(xmin − 1

2
)−α+1

α − 1

[
1 + O(x−2

min)
]
, (1.44)

and

ζ
′

(α, xmin) = −(xmin − 1
2
)−α+1

α − 1

[
1

α − 1
+ ln(xmin −

1

2
)

] [
1 + O(x−2

min)
]

(1.45)

Substituting expressions (1.44) and (1.45) into Equation (1.38) we have

−
[

1

α − 1
+ ln(xmin −

1

2
)

] [
1 + O(x−2

min)
]
+

1

n

n∑

i=1

ln xi = 0, (1.46)

An approximate of the estimator α̂ can be found by solving Equation (1.46).

For large xmin we can neglect high order terms in xmin and solve for α̂ to get,

α̂ ≃ 1 + n

[
n∑

i=1

ln
xi

xmin − 1
2

]−1

. (1.47)

In this case the standard error on α̂ is given by [34]:

σ =
1√

n

[
ζ
′′
(bα,xmin)

ζ(bα,xmin)
−

(
ζ
′
(bα,xmin)

ζ(bα,xmin)

)2
] . (1.48)

Goodness-of-fit tests

Given an observed data set and and a hypothesised power-law distribution from

which the data are drawn, we would like to know whether the power-law hypothesis

is a plausible one, given the data. A goodness-of-fit tests answers to this question

by generating a p-value that quantified the plausibility of the power law hypothesis.

This method can be summarised in the following points [34]:
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(i.) fit the empirical data to the power law model using the method described

previously and calculate the KS statistic;

(ii.) generate a large number of power-law distributed synthetic data sets with

scaling parameter α and lower xmin equal to those of the distribution that

best fits the observed data;

(iii.) fit each synthetic data set individually to its own power law model and

calculate the KS statistic for each one relative to its own model;

(iv.) count the fraction of the time the resulting statistic is larger than the value

for the empirical data. This fraction is the p-value;

(v.) if p < 0.1 then the power law is ruled out. Some authors use the rule

p < 0.05, reducing then the chance of really following a power-law.

A large value of p does not necessarily mean that the power-law is correct. In fact

there may be another distribution that matches the data well over the range of

x observed and it is possible that for small values of n the empirical distribution

follows a power-law closely and has a large p-value, even when the power-law is

the wrong model for the data (See Figure 1.10). The performance of the goodness-

of-fit test has been verified in [34] by detecting the true power-law in plots such

as the one shown in Figure 1.10. Alternative methods are described in [34] when

there are competitive distributions that also fit the data well. One cannot compare

the power-law distribution to all existing distributions. A reasonable hypothesis

on the data will guide one in deciding which distribution fits the data well.
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1.6 Small World Effect

Average Shortest Path Length

A measure of the typical separation between two nodes in the graph is given by

the average shortest path length, also known as characteristic path length, defined

as the mean of geodesic lengths over all pairs of nodes [102, 121]:

L =
1

n(n − 1)

∑

i,j∈V,i6=j

dij, (1.49)

where dij is the shortest distance between nodes i and j. Shortest paths play an

important role in networks. For example in the internet, if we need to send a data

packet from one computer to another, then the geodesic path provides an optimal

path way, since one would achieve a fast transfer and save system resources [122].

In a real network like the World Wide Web, a short average path length facilitates

the quick transfer of information and reduces costs. The efficiency of mass transfer

in a metabolic network can be judged by studying its average path length. A power

grid network will have less losses if its average path length is minimised. For such

a reason, shortest paths have also played an important role in the characterisation

of the internal structure of a graph [123]. All shortest path lengths of a given

network are represented by a matrix D(G) in which the entry dij is the length of

the geodesic from node i to node j.

Diameter

The maximum value of dij is called the diameter of the network denoted and given

by

Diam(G) = max{dij}. (1.50)
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In the case of a disconnected network we cannot use relation (1.49) otherwise

the average shortest path length is not defined. To overcome this problem we

use instead the harmonic mean [82] of geodesic lengths, and define the so-called

efficiency of the network as [82, 83]:

e =
1

n(n − 1)

∑

i,j∈V,i6=j

1

dij

. (1.51)

According to (1.51) any two pairs of nodes belonging to different connected com-

ponents yield a zero contribution. Most real networks have a very short average

path length leading to the concept of a small world where everyone is connected

to everyone else through a very short path. The results of Milgram’s experiment

[117] are the first demonstrations of the small world effect.

Milgram‘s Experiment

The experiment consisted in selecting at random several people in the U.S. cities

of Omaha (Nebraska) and Wichita (Kansas), which are located at the centre of

the continental U.S., and asking those people to send a letter to a target person

who lives in Boston (Massachusetts) in the west coast. The individuals at the

stating points were asked to send the letters to somebody they know on a first-

name basis. In those cases in which the letter arrived at its target, the researcher

had the opportunity of following the trajectory that the letter followed in the U.S.

If you were selected as one of the starting points you must first think if you know

personally the target, in which case you simply direct the letter to him/her. If not

then you must think about somebody you know personally that you think has a

large probability of knowing the target personally. If we consider that the starting

points and the target are separated by more than 2000 km, it is strange to think
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that the number of steps that a letter needs to take is very large. The results then

came with the following conclusions:

1. The average number of steps used for the letters that arrived at their targets

was around 5.5 or 6.

2. There was large group interconnection, resulting in an acquaintance of one

individual feeding back into his/her own circle, normally eliminating new

contact.

As a result, most models of real networks are created with this condition in mind.

One of the first models which tried to explain real networks was the random

network model. It was later followed by the Watts and Strogatz model, and even

later there were the scale-free networks starting with the Barabási-Albert (BA)

model. All these models have one thing in common: they all predict very short

average path length. The average path length depends on the system size but

does not change drastically with it. Small world network theory predicts that the

average path length changes proportionally to log n, where n is the number of

nodes in the network.

1.7 Clustering Coefficient

Clustering, also known as transitivity, is a typical property of acquaintance net-

works, where two individuals with a common friend are likely to know each other.

In terms of network topology, transitivity means the presence of a high number

of triangles. A triangle being a set of three vertices each of which is connected

to each other [121]. Two versions of this measure exist: the global and the local

clustering coefficient. The global version was designed to give an overall indica-
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tion of the clustering in the network, whereas the local gives an indication of the

embeddedness of single nodes.

Global Clustering Coefficient

The global clustering coefficient can be quantified by defining the clustering C of

the network as the relative number of transitive triples (expression borrowed from

the sociology literature), i.e. the fraction of connected triples of nodes (triads)

which also form triangles [92, 94, 104]:

C =
3 × number of triangles in the network

number of connected triplets in the network
(1.52)

or

C =
number of closed triplets

number of connected triplets of vertices
. (1.53)

A triplet is three nodes that are connected by either two (open triplet) or three

(closed triplet) undirected ties. A triangle consists of three closed triplets, one

centred on each of the nodes. The global clustering coefficient is the number of

closed triplets (or 3× triangles) over the total number of triplets (both open and

closed). The factor 3 in the numerator compensates for the fact that each complete

triangle of three nodes contributes three connected triplets, one centred on each of

the three nodes, and ensures that 0 ≤ C ≤ 1, with C = 1 for the complete graph

KN . The global clustering coefficient can also be written in the form

C =
6 × number of triangles in the network

number of path of length two
. (1.54)
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Local Clustering Coefficient

Watts and Strogatz introduced an alternative definition for the clustering coeffi-

cient of a network [123] which is widely used. This measure is defined as follows. A

quantity ci, the local clustering coefficient of node i is first introduced, expressing

how likely akj = 1 for two neighbours k and j of node i. It is also the probability

that nearest neighbours of a node are themselves nearest neighbours. Concretely

if node i has ki nearest neighbours with ei connections i.e. the value obtained

by counting the actual number of edges in Gi (the subgraph of neighbours of i).

In some cases, Gi can be, unconnected. Hence, the local clustering coefficient is

defined as the ratio between ei and ki(ki − 1)/2, the maximum possible number of

edges in Gi [122, 123]:

ci =
ei

ki(ki − 1)/2
. (1.55)

For this alternative, the clustering coefficient of a network is defined to be the

average of ci over all the nodes in the network:

C =
1

n

n∑

i=1

ci. (1.56)

We are going to show by an illustrative example that relation (1.56) is not equiv-

alent to relation (1.52), relation (1.53) or relation (1.54), i.e. the two versions of

clustering coefficient are not equivalent (See Figure 1.11).
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Figure 1.11: Illustration of the definitions of the clustering coefficient C, using
equation (1.52), this network has two triangles and six connected triples (three
for each triangle), C = 3 × 2/6 = 1 or if we use equation (1.53), the network
has six closed triples triples and six connected triples, C = 6/6 = 1 and using
equation (1.54), the network has two triangles and twelve closed path of length
two, C = 6 × 2/12 = 1. The individual vertices have local clustering coefficients
ca = cc = 1 and cb = cd = 2/3 using equation (1.55) and for the mean value
C = 5/6 when using equation (1.56).

1.8 Degree-degree Correlations and Assortativ-

ity

Another interesting characteristic of complex networks is the existence of different

types of degree-degree correlation. The degree-degree correlation accounts for the

ways in which nodes with given degree are connected in networks. For instance, a

network in which high-degree nodes tend to connect to each other displays positive

degree-degree correlation and they are called assortative networks. On the other

hand, networks in which high-degree nodes tend to be linked to low-degree nodes

display negative degree-degree correlation and are called ’disassortative’ networks.

The assortativity of a network is quantified by measuring the correlation coefficient

of its degree correlation, that is by computing the correlation coefficients for the

degree of nodes existing at both sides of all links in a network [94]. Let e(kikj) be

the fraction of links that connect a node of degree ki to a node of degree kj. As

in [93] we considered for mathematical convenience the degree minus one instead
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of the degree of the corresponding nodes, and named them ‘excess degree’. Let

p(kj) be the probability that a node selected at random in the network has degree

kj. Then, the distribution of the excess degree of a node at the end of a randomly

chosen link is:

q(kj) =
(kj + 1)p(kj + 1)∑

i kip(ki)
. (1.57)

The assortativity coefficient is defined as

r =

∑
kikj

kikj [e(kikj) − q(ki)q(kj)]

σ2
q

, (1.58)

where σ2
q is the standard deviation of the distribution q(kj). For regular networks

the assortativity coefficient in (1.58) is not defined. In the case of directed networks

the assortativity coefficient is calculated by considering the distribution of the two

types of ends and their respective standard deviation [93]. This coefficient, which

is the Pearson correlation coefficient of the degree of nodes at both ends of links,

is given by

r =
m−1

∑
e ki(e)kj(e) −

[
m−1

∑
e

1
2
(ki(e) + kj(e))

]2

m−1
∑

e
1
2
(ki(e) + kj(e)) −

[
m−1

∑
e

1
2
(ki(e) + kj(e))

]2 , (1.59)

where ki(e) and kj(e) are the degrees at both ends of the link e, and m = |E|. The

expression (1.59) can be written in matrix form as follows [52]:

r =
〈ν|A|ν〉 − 1

2m
(〈1|E′|1〉)2

〈1|E′2|1〉 − 〈ν|A|ν〉 − 1
2m

(〈1|E′|1〉)2
, (1.60)

where E
′

denotes the modified link adjacency matrix, that is E
′

= BTB = E +

2I. We distinguish the following types of assortativity depending of the sign of

coefficient r:

1. If r < 0 we say that the network displays disassortative mixing of degrees
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and the network is disassortative. Disassortative mixing of degrees implies

that high-degree nodes are preferentially attached to low-degree nodes.

2. If r > 0 we say that the network displays assortative mixing of degrees

and the network is assortative. Assortative mixing of degrees means that

low-degree nodes prefer to join to other low-degree nodes, while high-degree

nodes are preferentially bonded to other high-degree nodes.

3. If r = 0 we say that the network displays neutral mixing of degrees.

E. Estrada [52] gives an illustration of the different types of degree assortativity. It

is reported in [52] that almost all networks seem to be disassortative, except for the

social networks which are normally assortative. The presence of high clustering and

community structure is among the possible causes for this characteristic mixing

pattern of social networks. A clear structural explanation is given in [52] explaining

why some networks display assortative mixing of node degrees while other show a

disassortative pattern. To learn more about the structure of complex networks for

the assortativity coefficient or to know what kind of structural characteristic makes

some networks assortative or disassortative we write the assortative coefficient in

the form:

r =
2M2 − |P2|2

m
− 2m − 4|P2|

M e
1 + 4|P2| + 2m − 2M2 − |P2|2

m

, (1.61)

where |P2| stands for the number of paths of length 2, m is the number of links,

and M2 and M e
1 are known as the second Zagreb index of the graph and the first

Zagreb index of the line graph, respectively, and can be expressed as

M e
1 = 2|P2| + 2|P3| + 6|S1,3| + 6|C3| (1.62)
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and

M2 = m + 2|P2| + |P3| + 3|C3|. (1.63)

Therefore the assortativity coefficient in structural terms reads:

r =
|P2|(|P3/2| + C − |P2/1|)
3|S1,3| + |P2|(1 − |P2/1|)

, (1.64)

where C is the ratio of three times the number of triangles to the number of 2-

paths, i.e. the clustering coefficient and |Pr/s| = |Pr|/|Ps|. The denominator of

(1.64) can be written as:

[
1

4

∑

i<j

kikj(k
2
i + k2

j ) −
1

2

∑

i<j

(kikj)
2

]
/|P1|. (1.65)

As

1

4

∑

i<j

kikj(k
2
i + k2

j ) >
1

2

∑

i<j

(kikj)
2, (1.66)

the denominator of (1.64) is always larger than, or equal to zero. Equality occurs

for the regular graph for which the assortativity is not defined. Depending on the

sign of the numerator we have the following cases:

1. assortative (r > 0) if, and only if, |P2/1| < |P3/2| + C,

2. disassortative (r < 0) if, and only if, |P2/1| > |P3/2|+C.
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1.9 Laplacian of a Network

Definition 1.9.1 The matrix L whose entries are defined as follows:

L(i, j) =






di if i = j

−1 if i and j are adjacent,

0 otherwise.

(1.67)

is called the Laplacian matrix of the network.

If D is the diagonal matrix whose entries are the degrees of the vertices of the

network, i.e.

D(i, j) =






di if i = j

0 otherwise,

(1.68)

then, the Laplacian of the network is also defined to be

L = D − A. (1.69)

The Normalised Laplacian

The normalised Laplacian may have a different form depending on the normal-

isation factor chosen. Here are examples of two different normalised Laplacian

matrices.

• The normalised Laplacian denoted by L whose entries are given by:

L(i, j) =






1 if i = j anddi 6= 0

− 1√
didj

if i and j are adjacent,

0 otherwise.

(1.70)
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• The normalised Laplacian denoted ∆ whose entries are given by:

∆(i, j) =






1 if i = j anddi 6= 0

− 1
dj

if i and j are adjacent,

0 otherwise.

(1.71)

The relationship between the normalised Laplacian L, the degree matrix D and

the Laplacian L is given by:

L = D−1/2LD−1/2 (1.72)

= I − D−1/2AD−1/2, (1.73)

where I is the identity matrix and the matrix D−1/2 is such that D−1/2 = 1√
di

. We

also have a similar relationship involving the normalised Laplacian ∆

∆ = D1/2LD−1/2. (1.74)

The matrices ∆ and L are then similar and have the same spectrum. The Lapla-

1

2

3

4

(a)

1

2

3

4

e1
e2

e3

(b)

Figure 1.12: The orientation of arbitrary edges in (b) of the corresponding undi-
rected graph in (a)
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cian L for the network in Figure 1.12 is given by

L =





1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1





, Q =





−1 0 0

1 −1 0

0 1 −1

0 0 1





.

Given any orientation of the edges, let us label the edges as in Figure 1.12 (a) and

define the vertex edge matrix Q by

Q(i, j) =






1 if ej starts from i

−1 if ej ends at i

0 otherwise.

(1.75)

The matrix Q for the network in Figure 1.12(b) is given above. We have the

following properties for:

• L = QQT . Does not depend on the orientation. So L is semi-positive

definite.

• xTLx =
∑

i∼j(xi − xj)
2

Many other interesting properties of the Laplacian matrix of a network can be

found in [52].
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1.10 Network Spectrum

The spectrum of a network is the set of the eigenvalues of its adjacency matrix A

and their multiplicities. Let

λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A)

be the distinct eigenvalues of A and let

m(λ1(A)),m(λ2(A)), · · · ,m(λn(A))

be their multiplicities, i.e., the number of times each of them appears as an eigen-

value of A. Then, the spectrum of A is written as

SpA =




λ1(A) λ2(A) · · · λn(A)

m(λ1(A)) m(λ2(A)) · · · m(λn(A))



 . (1.76)

The eigenvalues of the adjacency matrix A are the zeros of the characteristic

polynomial of the network, det(λI − A) and the numbers λ satisfy the equation

Au = λ(A)u, (1.77)

where each non-zero vector u is called an eigenvector of A. For simple undirected

networks the adjacency matrix A is real and symmetric, therefore its eigenvalues

λ1(A) ≥ λ2 ≥ A · · · ≥ λn(A) are real and the associate eigenvectors are orthog-

onal. When the network is directed, the eigenvalues may have imaginary parts.

The largest eigenvalue of the adjacency matrix A is called the index of the network

or its spectral radius denoted by ρ(A). Here are some spectra of some particular
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networks [52]:

1. Path, Pn : λj(A) = 2 cos
(

πj
n+1

)
, j = 1, · · · , n,

2. Cycle, Cn : λj(A) = 2 cos
(

πj
n

)
, j = 1, · · · , n,

3. Star, Sn : Sp(A) = {√n 0n−2 −√
n} ,

4. Complete, Kn : Sp(A) = {1 − 1n−1} ,

5. Complete bipartite, Kn1,n2 : Sp(A) =
{√

n1n2 0n−2 −√
n1n2

}
.

By the Perron-Frobenuis Theorem [97], if λ1(A) is the index of a connected undi-

rected network, then it has multiplicity equal to one and its associate eigenvector,

called the principal eigenvector is positive. Furthermore, this index is such that

|λi(A)| < λ1(A) for all eigenvalues different from λ1(A). The same theorem also

states that for a connected undirected network we have kmin < k < λ1(A) < kmax

or kmin = k = λ1(A) = kmax. The later holds only if the network is regular. The

values kmin and kmax are the minimum and the maximum, respectively, degree of

the network. The index of any network satisfies the following inequality:

2 cos
π

n + 1
≤ λ1(A) ≤ n − 1, (1.78)

where the lower bound is obtained for the path Pn and the upper one is obtained

for the complete network Kn. In a similar way as for the network spectrum based

on the adjacency matrix, the spectrum of the Laplacian matrix is given by:

SpL =




λ1(L) λ2(L) · · · λn(L)

m(λ1(L)) m(λ2(L)) · · · m(λn(L))



 , (1.79)
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where the eigenvalues of L are such that: λ1(L) ≤ λ2L · · · ≤ λn(L). The eigenval-

ues of the Laplacian matrix L are bounded as

0 6 λj(L) 6 2kmax (1.80)

and

λn > kmax. (1.81)

The multiplicity of the eigenvalue of L, λ1(L) = 0 (associate to the eigenvector

1 = (1, · · · , 1)T ) is equal to the number of connected components in the network.

The second eigenvalue is such that λ2(L) > 0 if and only if the network is connected

[52] and this eigenvalue is usually called the algebraic connectivity of the network.

On the other hand, the normalised Laplacian matrix L is also positive semi-definite

having eigenvalues 0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λn(L) which are bounded as

0 6 λj(L) 6 2 (1.82)

and

λn >
n

n − 1
. (1.83)

More on the spectrum of the normalised Laplacian L can be found in [52]. The

spectra of matrices A, L and L are related by the following inequalities:

kmax − λn(A) 6 λn(L) 6 kmax − λ1(A) (1.84)

and

λj(L) 6 λj(L) 6 λj(L)kmax. (1.85)



Networks Structure and Models 70

1.11 Random Models of Networks

It is only in the last 10 years that complex networks have attracted a lot of atten-

tion. Before then, an important source of ideas was the study of random graphs

introduced in the 1960s by Paul Erdös and Alfréd Rényi [46–48] after they found

that probabilistic methods were often useful in solving problems in graph theory.

Random graphs are graphs in which the edges are distributed at random. Networks

with a complex topology and unknown organising principles often appear random;

thus random-graph theory is regularly used in the study of complex networks. A

detailed review of the field of random graphs can be found in the classic book of

Bollobás [15]. Here we briefly describe the most important results of random graph

theory, focusing on the aspects that are of direct relevance to complex networks

and used in the present thesis.

1.11.1 Erdös-Rényi (ER) Model

A random network is a model in which some parameters are fixed. Today the best

known model of random networks is the one that was introduced by Erdös and

Renyi in 1960. This model is called the Erdös-Rényi (ER) model and is sometimes

called a ‘classical’ random network because of the emergence of “quantum” random

graph models [52]. In this model we fix the number of vertices n and the number

of edges m. This means we take n vertices and place m edges at random from

n(n − 1)/2 possible edges [93]. This model is often denoted by G(n,m). An

equivalent definition of the model is to say that the network is created by choosing

a network uniformly at random from the set of all possible graphs with exactly

n vertices and m edges. Therefore the random network model is defined as an

ensemble of networks (and one element of the ensemble is called a realisation), i.e.
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a probability distribution over possible networks. Thus the model G(n,m) is seen

as a probability distribution P (G) over all graphs such that P (G) = 1/Ω, where

Ω is the total number of such graphs. Many properties of the G(n,m) random

graph are calculated by using an equivalent model. This model is called G(n, p)

or the Gilbert model [42, 93]. This model is defined by taking a fixed number n

of vertices labelled i = 1, · · · , n and interlinking them with a fixed probability p.

Every element G ∈ G(n, p) appears with the probability
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(d) p = 1.000

Figure 1.13: Illustrations of some realisations/configurations of Erdös-Rényi ran-
dom networks with 20 nodes and different interlink probabilities (for each proba-
bility only one member of the ensemble G(n, p) is shown).

P (G) = pm(1 − p)(
n
2)−m, (1.86)
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where m is the number of edges in G. The probability of drawing a graph with m

edges from the ensemble G(n, p) is given by

P (m) =

((
n
2

)

m

)
(1 − p)(

n
2)−m, (1.87)

therefore the mean number of links or edges is given by

m =

(n
2)∑

m=0

mP (m) =
n(n − 1)

2
p. (1.88)

The mean degree in G(n,m) is k = 2m
n

and hence the mean degree in G(n, p) is

given by

k =

(n
2)∑

m=0

2m

n
P (m) = (n − 1)p. (1.89)

The degree ki of a node i follows a binomial distribution with parameters n − 1

and p, i.e.

p(ki = k) =

(
n − 1

k

)
pk(1 − p)n−1−k. (1.90)

This probability represents the number of ways in which k edges can be drawn

from a certain node. To find the degree distribution of the graph, we need to

study the number of nodes n(k) with degree k. We need to find the probability

that n(k) takes a certain value, p(n(k) = r). Using equation (1.90) we can find

the expected number of nodes with degree k as follows:

E(n(k)) = n(k)p(k) = λk, (1.91)

where

λk =

(
n − 1

k

)
pk(1 − p)n−1−k. (1.92)
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The distribution of n(k) approaches the Poisson distribution for large n (n → ∞):

p(n(k) = r) =
λr

k

r!
e−λk . (1.93)

The probability that any two vertices are neighbours of each other in a random

graph is exactly the same and can be found from equation (1.89)

p =
k

n − 1
. (1.94)

Therefore, the Watts-Strogatz clustering coefficient of an undirected Erdös-Rényi

random network G(n, p) is given by [17]:

C = p =
k

n − 1
. (1.95)

As we can see, this clustering coefficient tends to zero as n become very large.

The clustering coefficient defined in equation (1.95) is also called the density of

the network.

There is no known exact result for the average path length of this undirected

network. A widely known scaling relationship [17, 116] can be used to provide

qualitative guidance on how L changes with the network size and mean degree k:

L ∼ log n

log k
. (1.96)

This scaling relationship says that for fixed mean degree, the average path length

is expected to increase logarithmically with the network size. Less well known is

an approximation to the average path length due to Fronczak et al. [60], which
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states that for n sufficiently large and k ≪ n,

L ≃ log n − 0.557

log k
+ 0.5. (1.97)

Although the theory of random graphs is elegant and simple, Erdös and many other

authors in the social sciences [108–111] believed it corresponded to the fundamental

truth. However, the real world interpreted as a network by current science are not

aleatory. The established links between the nodes of various domains of reality

follow fundamental natural laws. Despite the fact that some edges might be set

up at random, and that they might play a non-negligible role, randomness is not

the main feature in real networks. Therefore, the development of new models

to capture real-life system’s features other than randomness has motivated novel

developments. Two of these new models occupy a prominent place in contemporary

thinking about complex networks. Here we define and briefly discuss one of them.

1.11.2 Scale Free Networks

There are some real-world phenomena that small-world phenomena cannot cap-

ture, the most relevant one being evolution. (Small world models will be studied

later on). In 1999, Barabási and Albert presented some data and formal work that

has led to the construction of various scale-free models that, by focusing on the

network dynamics, aim to offer a universal theory of network evolution [16]. Sev-

eral empirical results demonstrate that many large networks are scale free, that is,

their degree distribution follows a power law for large k. The important question

is then: what is the mechanism responsible for the emergence of scale free net-

works? Answering this question requires a shift from modelling network topology

to modelling the network assembly and evolution. While the goal of the former
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models is to construct a graph with correct topological features, the modelling of

scale-free networks will put the emphasis on capturing the network dynamics.

In the first place, the network models discussed up to now (random network)

assume that graphs start with a fixed number n of vertices that are then randomly

connected or rewired, without modifying n. In contrast, most real-world networks

describe open systems that grow by the continuous addition of new nodes. Starting

from a small nucleus of nodes, the number of nodes increases throughout the

lifetime of the network by the subsequent addition of new nodes. For example, the

World Wide Web grows exponentially in time by the addition of new web pages.

Secondly, network models discussed so far assume that the probability that two

nodes are connected is independent of the node’s degrees, i.e. new edges are placed

randomly. However, most real networks exhibit preferential attachment, such that

the likelihood of connecting to a node depends on the node’s degree. For example,

a web page will be more likely to include hyperlinks to popular documents with

already high degrees, because such highly connected documents are easy to find

and are thus well known.
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Figure 1.14: Example of a random network obtained with the preferential attach-
ment method of Barabási and Albert with n = 20 and d = 4.
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Figure 1.15: Cumulative degree distribution (a) and probability distribution (b)
for a SF with n = 10000, constructed according to the BA model. For each node
entering the network, 2 new edges are placed.

1.11.2.1 The Barabási-Albert (BA) Model

These two ingredients, growth and preferential attachment, inspired the introduc-

tion of the Barabási-Albert model (BA), which led for the first time to a network

with a power-law degree distribution. The algorithm of the BA model is the fol-

lowing:

1. Growth: Starting with a small number (m0) of nodes, at every time step, we

add a new node with m(≤ m0) edges that links the new node to m different

nodes already present in the system.

2. Preferential attachment: When choosing the nodes to which the new node

connects, we assume that the probability
∏

i that a new node will be con-

nected to node i depends on the degree ki, such that

∏

i

=
ki∑
j kj

. (1.98)
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The Barabási and Albert (1999) network produces a network with the following

approximate probability distribution for the degrees within the network:

p(k) =
2m2

k3
, k = m, m + 1, · · · , n. (1.99)

This power-law relationship conforms with the definition of scale-free introduced

earlier, with γ = 3. However, this is only an approximation to the degree distribu-

tion which should be clear if one attempts to sum up P (n) for all n, since the result

will not be unity. An exact result for the degree distribution due to Dorogovtsev

et al. [43] is that

p(k) =
2m(m + 1)

k(k + 1)(k + 2)
, k = m, m + 1, · · · , n. (1.100)

For large k, i.e. when k → ∞, we have that

p(k) ∼ k−3 (1.101)

which immediately implies that the cumulative degree distribution is given by

P (k) ∼ k−2. (1.102)

Since the algorithm always adds m links at each of the n − m0 steps, the total

number of (undirected) links in the final network is always m0(m0 − 1)/2 +m(n−

m0), and therefore the mean degree is [106]

k = 2
0.5m0(m0 − 1) + m(n − m0)

n
=

m0(m0 − 1) + 2m(n − m0)

n
, (1.103)
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and when n → ∞, with m0 small we get

k ≃ 2m. (1.104)

No exact expression for the average path length is known, however, the approxi-

mate scaling L ∼ (log(n)/ log(log(n))) is derived in [25] and the expression for the

approximate pathlength

L ≃ log(n) − log(m/2) − 1 − 0.577

log(log(n)) + log(m/2)
+ 1.5 (1.105)

is derived in [60]. The clustering coefficient is not known exactly. It was shown

in [3] that the clustering coefficient decreases with n, but less slowly than it de-

creases for an Erdös-Rényi network. Recently, the approximate expression for the

clustering coefficient

C ∼ m log(n)2

8n
(1.106)

has been derived [75]. However, since the clustering coefficient decreases with n we

can expect that the clustering coefficient will become close to zero as n increases.



Chapter 2

An Overview of Dynamical

Systems

We find it necessary to review some notions on dynamical systems, as later in this

thesis we will be dealing with dynamic processes on complex networks. We are

not going to cover everything in this field, but we present some simple concepts

that are relevant in some way to this thesis. Literature on the topic of dynamical

systems is huge and here we just scratch its surface.

2.1 Dynamical Systems

A dynamical system is any system whose state, as represented by some set of quan-

titative variables, changes over time according to some given rules or equations.

More precisely, a dynamical system is specified by a state vector x ∈ R
n (a list of

numbers which may change as time progress) and a function f : R
n → R

n which

describes how the system evolves over time. There are two types of dynamical

systems, continuous and discrete-time ones and they can be either deterministic

79
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or stochastic. Discrete dynamical systems are specified by the equations:

yt+1 = f(yt); y(0) = y0. (2.1)

Dynamic system (2.1) is often called the difference equation. It thus follows that

yt = fn(y0), where fn = f ◦ f ◦ · · · ◦ f is the k-fold application of f to y0.

Continuous dynamical systems are specified by the equations:

y
′

(t) = f(yt); y(0) = y0. (2.2)

A deterministic dynamical system is that in which the equations that describe the

time evolution are continuous functions. This includes for instance the epidemic

models on populations that will be described in a separate chapter. On the other

hand, the simulation of an epidemic, lets say SIS, on a network is stochastic because

of the probabilistic aspect that a susceptible node can be infected by an infected

node. Time may be represented in discrete time-steps or continuous time steps

depending on the choice of the researchers. We will be focusing later on discrete

dynamical systems on networks. In this chapter we simply review concepts of one-

dimensional and multi-dimensional first order discrete dynamical systems that will

be useful later in this thesis.

2.1.1 One-Dimensional First-Order Discrete Dynamical Sys-

tems

Linear Systems

In this section we study dynamical systems in which the function f is particularly

nice: we assume f is linear and to gain intuition we begin with the case where f
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is a function of only one variable. Let consider the one-dimensional, autonomous,

first-order, linear difference equation

yt+1 = ayt + b; t = 0, 1, 2, · · · ,∞, (2.3)

where the state variable at time t, yt, is one-dimensional, yt ∈ R, the parameters a

and b are constant across time (i.e., the dynamical system is autonomous), a, b ∈ R,

and the initial value of the state variable at time t = 0, y0, is given.

The Solution

A solution to the difference equation yt+1 = ayt + b is a trajectory (or orbit or

a curve), {yt}∞t=0, that satisfies this equation at any point in time. It relates the

value of the state variable at time t, yt, to the initial condition y0 and to the

parameters a and b. The derivation of a solution may follow several methods. In

particular the intuitive method of iterations generates a pattern that can be easily

generalised to a solution rule. Given the value of the state variable at t = 0

y1 = ay0 + b;

y2 = ay1 + b = a(ay0 + b) + b = a2y0 + ab + b;

y3 = ay2 + b = a(a2y0 + ab + b) + b = a3y0 + a2b + ab + b;

...

yt = aty0 + at−1b + at−2b + · · · + ab + b

= aty0 + b
t−1∑

j=0

aj. (2.4)
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Since
∑t−1

j=0 aj is the sum of a geometric series, it follows that

yt =






aty0 + b1−at

1−a
if a 6= 1

y0 + bt if a = 1,

(2.5)

or

yt =






(
y0 + b

1−a

)
at + b

1−a
if a 6= 1

y0 + bt if a = 1.

(2.6)

Therefore, if the initial condition of the state variable is given, the trajectory of the

dynamical system is uniquely determined. The trajectory given by (2.6) reveals

the qualitative role that the parameters a and b play in the evolution of the state

variable over time. These parameters determine whether the dynamical system

evolves monotonically or in oscillations, and whether the state variable diverges,

or converges in the long-run to either a stationary state or a periodic orbit.

Existence of Stationary Equilibria

Steady-state equilibria provide an essential reference point for a qualitative analysis

of the behaviour of dynamical systems. A steady-state equilibrium (or alternatively,

a stationary equilibrium, a rest point, an equilibrium point, or a fixed point) is

a value of the state variable yt that is invariant under further iterations of the

dynamical system. More precisely,

Definition 2.1.1 A Steady-state equilibrium of the difference equation yt+1 =

ayt + b is a value y ∈ R, such that

y = ay + b. (2.7)
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Then,

y =






b
1−a

if a 6= 1

y0 if a = 1 and b=0.

(2.8)

When a = 1 and b 6= 0 a steady-state equilibrium does not exist. Hence, the

necessary and sufficient conditions for the existence of a steady-state equilibrium

are as follows:

Proposition 2.1.2 A Steady-state equilibrium of the difference equation yt+1 =

ayt + b exists if and only if

{a 6= 1} or { a = 1 and b = 0 } (2.9)

Using expression (2.8), the solution to the difference equation derived in (2.4) can

be written in terms of the deviation of the initial value of the state variable from

its steady-state value:

yt =






(y0 − y)at + y if a 6= 1

y0 + bt if a = 1.

(2.10)

Uniqueness of Steady-State Equilibrium

A steady state of a linear dynamical system is not necessarily unique. As can be

seen in Figure 2.1 (a),(b),(c) and (d) for a 6= 1, the steady-state equilibrium is

unique, whereas as shown in Figure 2.1 (e), for a = 1 and b = 0, a continuum for

steady-state equilibria exists and the system remains where it starts.

Proposition 2.1.3 A steady-state equilibrium of the difference equation yt+1 =

ayt + b is unique if and only if [118]
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(a) a ∈ (0, 1) (b) a ∈ (−1, 0)

(c) a = −1 (d) a < −1

(e) a = 1, b = 0 (f) a = 1, b 6= 0

Figure 2.1: Unique, globally stable, steady-state, equilibrium (monotonic conver-
gence) (a), Unique, globally stable, steady-state equilibrium (oscillatory conver-
gence) (b), two periodic cycles (c), Unique and unstable steady-state equilibrium
(oscillatory divergence) (d), Continuum of unstable steady-state equilibrium (e),
Continuum of unstable steady-state equilibrium (f).
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a 6= 1.

Stability of the Steady-State Equilibrium

The stability analysis of steady-state equilibria determines the nature of a steady-

state equilibrium (e.g., attractive, repulsive, etc.). It facilitates the study of the

local, and often the global, behaviour of a dynamical system, and it permits the

analysis of the implications of small, and often large, perturbations that occur

once the system is in the vicinity of a steady-state equilibrium. If for a sufficiently

small perturbation the dynamical system converges asymptotically to the original

equilibrium, the system is locally stable, whereas if regardless of the magnitude of

the perturbation the system converges asymptotically to the original equilibrium,

the system is globally stable. Formally the definition of local and global stability

are as follows

Definition 2.1.4 A steady-state equilibrium, y of the difference equation yt+1 =

ayt + b is

1. globally (asymptotically) stable, if

lim
t→∞

yt = y ∀y0 ∈ R

2. locally (asymptotically) stable if

∃ǫ 0 such that lim
t→∞

yt = y ∀y0 ∈ Bǫ(y).

Thus, a steady-state equilibrium is globally (asymptotically) stable if the system

converges to the steady-state equilibrium regardless of the level of the initial con-

dition, whereas a steady-state equilibrium is locally (asymptotically) stable if there
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exists an ǫ-neighbourhood of the steady-state equilibrium such that for every ini-

tial condition within this neighbourhood the system converges to this steady-state

equilibrium. Clearly, the existence of a globally unique steady-sate equilibrium ne-

cessitates the absence of any additional steady-state equilibrium (i.e., the absence

of any point in the space from which there is no escape.)

Corollary 2.1.5 A steady-state equilibrium, y, of the difference equation yt+1 =

ayt + b is globally (asymptotically) stable only if the steady-state equilibrium is

unique [118].

Following equation (2.10)

lim
t→∞

yt =






(y0 − y) limt→∞ at + y if a 6= 1;

y0 + b limt→∞ t a 6= 1,

(2.11)

and therefore

lim
t→∞

|yt| =






y if |a| < 1;

y0 if a = 1; b = 0;





y0 (t = 0, 2, 4, · · · )

(b − y0) (t = 1, 3, 5 · · · )
if a = −1;

y if |a| > 1 and y0 = y;

∞ otherwise.

(2.12)

Discussions

1. if |a| < 1, then the system is globally (asymptotically) stable, converging to

the steady-state equilibrium y = b/(1− a) regardless of the initial condition

y0. In particular, if a ∈ (0, 1) then the system, as show in Figure 2.1 (a),
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is characterised by monotonic convergence, whereas if a ∈ (−1, 0), then as

shown in Figure 2.1(b), the convergence is oscillatory. Further, we call y an

attractive or stable fixed point because the system is attracted to this point.

2. if a = 1 and b = 0, the system, as shown in Figure 2.1 (e), is neither globally

stable nor locally (asymptotically) stable. The system is characterised by a

continuum of steady equilibria. Each equilibria can be reached if and only if

the system starts at this equilibrium. Thus, the equilibria are unstable.

3. if a = 1 and b 6= 0, the system has no steady-state equilibrium, as shown in

Figure 2.1 (f) limt−→∞ yt = +∞ if b > 0 and limt−→∞ yt = −∞ if b < 0.

4. if a = −1, then the system, as seen in Figure 2.1 (c) is characterised by

(an asymptotically unstable) two-period cycle, and the unique steady-state

equilibrium, y = b/2, is (asymptotically) unstable.

5. if |a| > 1 then the system, as shown in Figure 2.1 (d) and (f), is unstable.

For y0 6= b/(1− a), limt−→∞ yt = +∞, whereas for y0 = b/(1− a) the system

starts at the steady-state equilibrium where it remains thereafter. Every

minor perturbation, however, causes the system to step on a diverging path.

If a > 1 the divergence is monotonic whereas if a < −1 the divergence is

oscillatory.

Proposition 2.1.6 A steady-state equilibrium of the difference equation yt+1 =

ayt + b is globally stable if and only if

|a| < 1.
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2.2 Non-linear System

Let us consider the one-dimensional first-order non-linear equation

yt+1 = f(yt); t = 0, 1, 2, · · · ,∞, (2.13)

where f : R → R is a differential single-variable function and the initial value of

the state variable, y0, is given.

The Solution

Using the method of iterations, the trajectory of the non-linear system, {yt}∞t=0

can be written as follows:

y1 = f(y0);

y2 = f(y1) = f(f(y0)) ≡ f 2(y0);

... (2.14)

yt = f t(y0)

Unlike the solution to the linear system (2.3), the solution for the non-linear sys-

tem (2.14) is not very informative. Hence, additional methods of analysis are

required in order to gain an insight about the qualitative behaviour of this non-

linear system. In particular, a local approximation of the non-linear system by a

linear one is instrumental in the study of the qualitative behaviour of non-linear

dynamical systems [118].
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Existence, Uniqueness and Multiplicity of Stationary Equilibria

Definition 2.2.1 A steady-state equilibrium of the difference equation yt+1 =

f(yt) is a level y ∈ R such that

y = f(y). (2.15)

Generically, a non-linear system can be characterised by either the existence of a

unique steady-state equilibrium, the non-existence of a steady-state equilibrium,

or the existence of a multiplicity of (distinct) steady-state equilibria. Figure 2.2

(a) shows a system with a globally stable unique steady-state equilibrium, whereas

Figure 2.2 (b) depicts a system with multiple distinct steady-state equilibria.

(a) a = 1, b = 0 (b) a = 1, b 6= 0

Figure 2.2: Unique and globally stable steady-state equilibrium (a), Multiple lo-
cally stable steady-state equilibria (b).

Linearisation and Local Stability of Steady-State Equilibria

The behaviour of a non-linear system around a steady-state equilibrium, y, can be

approximated by a linear system. Consider the Taylor expansion of yt+1 = f(yt)

around y. Namely,

yt+1 = f(yt) = f(y) + f
′

(y)(yt − y) +
f

′′

(y)(yt − y)2

2!
+ · · · + Rn. (2.16)
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The linearised system around the steady-state equilibrium y is therefore

yt+1 = f(y) + f
′

(y)(yt − y)

= f
′

(y)yt + f(y) − f
′

(y)y

= ayt + b, (2.17)

where, a = f
′

(y) and b = f(y)−f
′

(y)y are given constants. Applying the stability

results established for the linear system, the linearised system is globally stable if

|a| ≡ |f−1(y)| < 1. However, since the linear system approximates the behaviour

of the non-linear system only in a neighbourhood of a steady-state equilibrium,

the global stability of the linearised system implies only the local stability of the

non-linear difference equation. Thus, the following proposition is established:

Proposition 2.2.2 The dynamical system yt+1 = f(yt) is locally stable around

the steady-state equilibrium y, if and only if

∣∣dyt+1

dyt

∣∣ < 1.

Consider Figure 2.2 (b) where the dynamical system is characterised by four

steady-state equilibria. Since f0(y1) < 1 and f0(y3) < 1, then y1 and y3 are

locally stable steady-state equilibria.

2.2.1 Multi-Dimensional First-Order Systems

Linear-System

Consider a system of autonomous, first-order, linear difference equations

zt+1 = Nzt + M, t = 0, 1, 2,∞, (2.18)
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where the state variable zt is an n-dimensional vector; zt ∈ R
n, N is a n × n

matrix of parameters which are constant across time; N = (nij), nij ∈ R, ∀i, j =

1, 2, · · · , n, and M is a n-dimensional column vector of constant parameters. The

initial value of the state variable z0 is given.

The Solution

A solution to the multi-dimensional linear system zt+1 = Nzt + M is a trajectory

{zt}∞t=0 of the vector {zt} that satisfies this equation at any point in time and

relates the value of the state variable at time t, zt to the initial condition z0 and

the set of parameters embodied in the vector M and the matrix N . Given the value

of the state variable at time 0, z0, the method of iterations generates a pattern

that constitutes a general solution:

z1 = Ny0 + M ;

z2 = Nz1 + M = N(Nz0 + M) + M = N2z0 + NM + M ;

z3 = Nz2 + M = N(N2z0 + NM + M) + M = N3z0 + N2M + NM + M ;

...

zt = N tz0 + N t−1M + N t−2M + · · · + NM + M

= N tz0 +
t−1∑

j=0

N jM.

Unlike the one-dimensional case, the solution depends on the sum of a geometric

series of matrices rather than of scalars.

Lemma 2.2.3 Let N be a matrix such that |I − N | 6= 0. Then

t−1∑

j=0

N j = (I − N t)(I − N)−1.
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proof 2.2.4 We have that

t−1∑

j=0

N j(I −N) = I + N + N2 + · · ·+ N t−1 − (N + N2 + N3 + · · ·+ N t) = I −N t.

Hence, post multiplication of both sides of the equation by the matrix (I − N)−1

establishes the lemma.

By Lemma 2.2.3 it follows that

zt = N t(z0 − (I − N)−1M) + (I − N)−1M if |I − N | 6= 0. (2.19)

As will be shown below, the qualitative behaviour of the solution will be determined

by the parameters of the matrix N .

Existence and Uniqueness of Stationary Equilibria

Definition 2.2.5 A steady-state equilibrium of a system of difference equations

zt+1 = Nzt + M is a vector z such that

z = Nz + M. (2.20)

Following the definition, in analogy to the analysis of the one-dimensional system,

there exists a unique steady-state equilibrium

z = (I − N)−1M if |N − M | 6= 0. (2.21)

Analogous to Proposition 2.1.3, the following result concerning the uniqueness of

steady-state equilibrium holds:

Proposition 2.2.6 A steady-state equilibrium of the system zt+1 = Nzt + M is
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unique if and only if

|I − N | 6= 0. (2.22)

Remark 2.2.7 The necessary and sufficient condition for uniqueness is the non-

singularity of the matrix I − N . It is analogous to the requirement that a 6= 1 in

the one-dimensional case.

Using (2.21), we can write the solution of the system in the form

zt = N t(z0 − z) + z if |I − N | 6= 0. (2.23)

Results from Linear Algebra

Details of those results can be found in [7, 86].

Lemma 2.2.8 Let N be an n×n matrix where nij ∈ Rn, i, j = 1, 2, · · · , n. Then,

there exists a n × n non-singular matrix Q such that N = QDQ−1, where

•

D =





D1 0 0 · · · 0 0

0 D2 0
. . . 0 0

0 0 D3
. . . 0 0

0 0 0
. . . 0 0

0 0 0
. . . 0 0

0 0 0
. . . 0 Dm





is the Jordan matrix and Q is an n×n matrix whose columns are the eigen-

vectors of N .

• For distinct real eigenvalues:

Di = λi,
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• For repeated eigenvalues:

Di =





λ 0

1 λ

1
. . .

0
. . . 1 λ





• For distinct complex eigenvalues

Di =




αi −βi

βi αi





• For repeated complex eigenvalues:

D =





α −β

β α

1 0 α −β

0 1 β α
. . .

1 0
. . .

0 1
. . .

α −β

α β





Phase diagrams of two-dimensional Uncoupled Systems

Consider the system yt+1 = Dyt , where D is a diagonal matrix with λ1 and λ2

along the diagonal. It follows that the steady-state equilibrium is

y = (y1, y2) = (0, 0)
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where

y1t = λt
1y10

and

y2t = λt
2y20.

The phase diagram of this dynamical system depends upon the sign of the eigen-

values, their relative magnitude, and their absolute value relative to unity. We

only summarise the results for the case of real eigenvalues. More can be found

in [118].

1. Positive Eigenvalues:

• Stable Node: 0 < λ2 < λ1 < 1. See Figure 2.3 (a).

The steady-state equilibrium is globally stable. Namely, limt→∞ y1t = 0

and limt→∞ y2t = 0, ∀(y10, y20) ∈ R
2. The convergence to the steady-state

equilibrium is monotonic. However, since λ2 < λ1 the convergence of y2t is

faster.

• Saddle : 0 < λ2 < 1 < λ1. See Figure 2.3 (b).

The steady-state equilibrium is a saddle point. Namely, limt→∞ y2t = 0

∀y20 ∈ R, whereas limt→∞ y1t = 0 if and only if y10 = 0. The convergence

along the saddle path (i.e., the stable eigenspace or alternatively, the stable

manifold) is monotonic.

• Focus: 0 < λ1 = λ2 < 1. See Figure 2.3 (c).

The steady-state equilibrium is globally stable. Namely, limt→∞ y1t = 0 and

limt→∞ y2t = 0, ∀(y10, y20) ∈ R
2. Convergence is monotonic and the speed
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of convergence is the same for each variable. Consequently every trajectory

can be placed along a linear curve.

• Source: 1 < λ1 < λ2. See Figure 2.3 (d).

The steady-state equilibrium is unstable. Namely, limt→∞ y1t = ∓∞ and

limt→∞ y2t = ∓∞, ∀(y10, y20) ∈ R
2 − {0}. The divergence is monotonic.

However, since λ2 > λ1 the divergence of y2t is faster.

2. Negative Eigenvalues:

• Stable Node (oscillating convergence): −1 < λ2 < λ1 < 0.

The steady-state equilibrium is globally stable. The convergence of both

variables towards the steady-state equilibrium is oscillatory. Since λ2 < λ1

the convergence of y2t is faster.

• Saddle (oscillatory convergence/divergence) λ2 < −1 < λ1 < 0.

The steady-state equilibrium is a saddle. The convergence along the saddle

path is oscillatory. Other than along the stable and the unstable manifolds,

one variable converges in an oscillatory manner while the other variable di-

verges in an oscillatory manner.

• Focus (oscillatory convergence): −1 < λ1 = λ2 < 0.

The steady-state equilibrium is globally stable. Convergence is oscillatory.

• Source (oscillatory divergence): λ2 < λ1 < −1.

The steady-state equilibrium is unstable. Divergence is oscillatory.
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3. Mixed Eigenvalues (one positive and one negative eigenvalue): one variable

converges (diverges) monotonically while the other is characterised by os-

cillatory convergence (divergence). Iterations are therefore reflected around

one of the axes.

(a) 0 < λ2 < λ1 < 1 (b) 0 < λ2 < 1 < λ1

(c) 0 < λ2 = λ1 < 1 (d) 1 < λ1 < λ2(d)

Figure 2.3: Stable node (a), Saddle node (b), Focus (c), Source (d)

Stable and Unstable Eigenspaces

In a linear system the stable eigenspace relative to the steady-state equilibrium x,

is defined as

Es(x) = span{eigenvectors whose eigenvalues are of modulus smaller than 1}.
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In an homogeneous two-dimensional autonomous linear system, xt+1 = Axt, the

eigenspace is

Es(x) = {(x1t, x2t)| lim
n→∞

Anxt = x}. (2.24)

Namely, the stable eigenspace is the geometric locus of all pairs (x1t, x2t) that

upon a sufficient number of forward iterations are mapped in the limit towards

the steady-state equilibrium, x,.

The unstable eigenspace relative to the steady-state equilibrium x, is defined

as

Eu(x) = span{eigenvectors whose eigenvalues are of modulus greater than 1}.

In an homogeneous two-dimensional autonomous linear system, xt+1 = Axt,

Eu(x) = {(x1t, x2t)| lim
n→∞

A−nxt = x}. (2.25)

That is, the unstable eigenspace is the geometric locus of all pairs (x1t, x2t) that

upon a sufficient number of backward iterations are mapped in the limit to the

steady-state equilibrium .

The Solution in Terms of the Jordan Matrix

It is desirable to express the solution to the multi-dimensional, first-order, linear

system, zt+1 = Nxt +M , in terms of the Jordan Matrix. This reformulation of the

solution facilitates the analysis of the qualitative nature of the multi-dimensional

system.

Proposition 2.2.9 A non-homogeneous system of first-order linear difference equa-
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tions of the form

zt+1 = Nzt + M (2.26)

can be transformed into an homogeneous system of first-order linear difference

equations ut+1 = Nut, where ut = zt − z and z = (I − N)−1M with I − N 6= 0

proof 2.2.10 Given that zt+1 = Nzt + M and ut = zt − z, it follows that

ut+1 = N(zt + z) + M − z = Nzt − (I − N)z + M.

Therefore, since z = (I − N)−1M ,

ut+1 = Nut.

Thus, the non-homogeneous system is transformed into a homogeneous one by

shifting the origin of the non-homogeneous system to the steady-state equilibrium.

Proposition 2.2.11 The solution of a non-homogeneous first-order linear differ-

ence equations

zt+1 = Nzt + N (2.27)

is

zt = QDtQ−1(z0 − z) + z, (2.28)

where D is the Jordan matrix corresponding to N.

Stability

In order to analyse the qualitative behaviour of the dynamical system a distinction

will be made among four possible cases each defined in terms of the corresponding
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nature of the eigenvalues: (1) distinct real eigenvalues, (2) repeated real eigenval-

ues, (3) distinct complex eigenvalues, and (4) repeated complex eigenvalues. We

only look at the case where the matrix N has n distinct real eigenvalues.

The matrix N has n distinct real eigenvalues

Consider the system

zt+1 = Nzt + M.

As established in Lemma 2.2.8 and equation (2.28), if N has n distinct eigenvalues

{λ1, λ2, · · · , λn}, then there exists a non-singular matrix Q, such that

zt = Qut + z.

Furthermore,

ut+1 = Dut,

where

D =





λ1 0

λ2

· · ·

0 λn





.

Following the method of iterations

ut = Dtu0
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where

Dt =





λt
1 0

λt
2

· · ·

0 λt
n





and therefore,

u1t = λt
1u10

u2t = λt
2u20

... (2.29)

unt = λt
nun0.

Since

zt = Qut + z,

it follows that





z1t

z2t

...

znt





=





Q11 Q12 · · · Q1n

Q21 Q22 · · · Q2n

...

Qn1 Qn2 · · · Qnn









λt
1u10

λt
2u20

...

λt
2un0





+





z1

z2

...

zn





,

and therefore

zit =
n∑

j=1

Kijλ
t
j + zi ∀i = 1, 2, · · · , n, (2.30)

where Kij = Qijuj0.

Equation (2.30) provides the general solution for zit in terms of the eigenvalues

λ1, · · · , λn, the initial conditions u10, u20, · · · , un0, and the steady-state value zi.
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It sets the stage for the stability result stated in the following main theorem.

Theorem 2.2.12 Consider the system zt+1 = Nzt + M , where zt ∈ R
n and z0 is

given. Suppose that |I−N | 6= 0 and N has n distinct real eigenvalues {λ1, · · · , λn}.

Then,

• the steady-state equilibrium z = (I − N)−1M is globally stable if and only if

|λj| < 1,∀j = 1, 2, · · · , n;

• limt→∞ zt = z if and only if ∀j = 1, 2, · · · , n

{|λj| < 1 or zj0 = 0},

where u0 = Q−1(z0−z), and Q is a non-singular n×n matrix whose columns

are the eigenvectors of the matrix N .

proof 2.2.13 The steady-state equilibrium is globally stable if ∀z0 ∈ R
n limt→∞ zit =

zi for ∀i = 1, 2, · · ·n, thus it follows from equation (2.30) that global stability is sat-

isfied if and only if ∀kij ∈ R limt→∞
∑

j Kijλ
t
j = 0, namely if and only if |λj| < 1

∀j = 1, 2, · · ·n. As follows from equation (2.30) limt→ zit = zi if and only if either

|λj| < 1, or {|λj| ≥ 1 and zj0 = 0} ∀j = 1, 2, · · · , n. Thus the second part follows

as well.

2.2.2 Non-Linear System

Let us consider the system of autonomous nonlinear first-order difference equations

zt+1 = θ(zt); t = 0, 1, 2, · · · ,∞, (2.31)
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where

θ : R
n → R

n,

and the initial value of the n-dimensional state variable vector, z0, is given. Namely,

z1t+1 = θ1(z1t, z2t, · · · , znt)

z2t+1 = θ2(z1t, z2t, · · · , znt)

... (2.32)

z2t+1 = θn(z1t, z2t, · · · , znt).

Local Analysis

Suppose that the dynamical system has a steady-state equilibrium, z. Namely

∃z ∈ R
n such that z = θ(z). A Taylor expansion of the ith equation, zit+1 = θi(zt),

around the steady-state value, z, yields

zit+1 = θi(zt) = θi(z) +
n∑

j=1

θi
j(z)(zjt − z) + · · · + Rn, (2.33)

where θi
j(z) is the partial derivative of θi(z) with respect to zjt, evaluated at z.

Thus, the linearised equation around the steady-state z is given by

zit+1 = θi
1(z)z1t + θi

2(z)z1t + · · · + θi
n(z)znt + θi(z) −

n∑

j=1

θi
j(z)zj. (2.34)
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The linearised system is therefore:





z1t+1

z2t+1

...

znt+1





=





θ1
1(z) θ2

1(z) · · · θ1
n(z)

θ2
1(z) θ2

2(z) · · · θ2
n(z)

...
...

...

θn
1 (z) θn

2 (z) · · · θn
n(z)









z1t

z2t

...

znt





+





θ1(z) − ∑n
j θ1

j (z)zj

θ2(z) − ∑n
j θ2

j (z)zj

...

θn(z) − ∑n
j θn

j (z)zj





.

Thus, the non-linear system has been approximated, locally (around a steady-state

equilibrium) by a linear system,

zt+1 = Nzt + M, (2.35)

where

Dθ(z) =
∂θi

∂zj

(z) =





θ1
1(z) θ2

1(z) · · · θn
1 (z)

θ2
1(z) θ2

2(z) · · · θ2
n(z)

...
...

...

θn
1 (z) θn

2 (z) · · · θn
n(z)





= N

is the Jacobian matrix of θ(zt) evaluated at z, and

M =





θ1(z) − ∑n
j θ1

j (z)zj

θ2(z) − ∑n
j θ2

j (z)zj

...

θn(z) − ∑n
j θn

j (z)zj





.

As is established in the previous theorem, the local behaviour of the nonlinear

dynamical system can be assessed on the basis of the behaviour of the linear system

that approximates the nonlinear one in the vicinity of the steady-state equilibrium.

Hence, the eigenvalues of the Jacobian matrix N determine the local behaviour of
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the nonlinear system according to the results stated in Theorem 2.2.12 [61, 118].

We end this chapter by giving a general formulation of a continuous dynamic on

a complex network along with two examples.

2.3 Simple Dynamical System on a Network

Let us assume that we have independent dynamical variables xi, yi, · · · , on each

vertex i and that they are coupled together only along the edges of the network.

Therefore, equations describing the time evolution of the variables will involve

only the variables themselves and other variables on vertex i or more variables

on neighbours of vertex i. There is no term involving variables on non nearest

neighbours and no term involving more than one adjacent vertex. For instance

let us consider the dynamic describing the time evolution of the probability of

infection of a vertex in a network of the type (continuous version):

dxi

dt
= β(1 − xi)

∑

j

Aijxj. (2.36)

The dynamic described by this equation only involve pairs of variables that are

connected by edges since these are the only pairs for which Aij is non-zero. In

general, for systems with a single variable on each vertex we have the equation [93]:

dxi

dt
= fi(xi) +

∑

j

Aijgij(xi, xj), (2.37)

in which the first term only involves variables on vertices and the second term

involves variables on adjacent vertices. The function fi describes how vertex i will

evolve on its own without the other vertices and gij describes only the contribution

from the nearest connections themselves. The function gij also represents the
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coupling between variables on different vertices that are directly connected by an

edge. Often the dynamic of each vertex is the same and we can simply write,

dxi

dt
= f(xi) +

∑

j

Aijg(xi, xj). (2.38)

We also assume that the network is undirected such that if xi is affected by xj then

xj is similarly affected by xi. The dynamic for which f(x) = 0 and g(xi, xj) =

β(1 − xi)xj correspond to the SI model of epidemics (this will be presented in

the next chapter). The dynamic described by equation (2.38) is non-linear and to

study the stability of the fixed point we choose to linearise it in the vicinity of the

fixed point.

Linearisation

Let suppose there is a fixed point x for equation (2.38) such that

f(x) +
∑

j

Aijg(xi, xj) = 0. (2.39)

If we write xi = xi + ǫi, (ǫi ≪ xi) and use the Taylor expansion around x we have

f(xi + x) = f(xi) + ǫif
′

(xi) + ǫ2
i f

′′

(xi) + · · · (2.40)

and

g(xi + ǫi, xj + ǫj) = g(xi, xj) + ǫi
∂g(xi, xj)

∂xi

(xi, xj) + ǫj
∂g(xi, xj)

∂xj

(xi, xj) +

+ 2ǫiǫj
∂2g(xi, xj)

∂xi∂xj

(xi, xj) + ǫ2
i

∂2g(xi, xj)

∂x2
i

(xi, xj) +

+ ǫ2
j

∂2g(xi, xj)

∂x2
j

(xi, xj) + · · · (2.41)
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and

dxi

dt
=

dǫi

dt
. (2.42)

Substituting relations (2.40), (2.41) and (2.42) into equation (2.38) and ignoring

small terms of second order and higher we get

dǫi

dt
= (αi +

∑

j

βijAij)ǫi +
∑

j

γijAijǫj, (2.43)

or in matrix notation

dǫ

dt
= Mǫ, (2.44)

where

αi =
∂f

∂xi

(x), βij =
∂g(xi, xj)

∂xi

(xi, xj), γij =
∂g(xi, xj)

∂xj

(xi, xj),

and

M = δij(αi +
∑

j

βijAij) + γijAij.

Let us write the solution of (2.44) in the following form

ǫ(t) =
∑

r

cr(t)v, (2.45)

where v is an eigenvector of the matrix M. Substituting (2.45) in equation (2.44),

we have:

dcr

dt
= µrcr(t) (2.46)

and

cr(t) = cr(0)eµrt (2.47)
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where µr is an eigenvalue of the matrix M. We summarise the stability of the

fixed point as follows: Let Re(µr) be the real part of µr, if

• Re(µr) < 0 then cr(t) and ǫ go to zero as t → ∞ and the fixed point will be

stable or attractive.

• If Re(µr) > 0 then cr(t) → ∞ as t → ∞ and the fixed point will be unstable

or repelling.

• If some real parts of µr are positive and others are negative the fixed point

will be a saddle point.

2.3.1 Examples: The Diffusion and Synchronisation Pro-

cesses on Networks

We end this section by two examples illustrating dynamical processes on a net-

work. Apart from the diffusion and synchronisation processes, there are many

other processes that can evolve on a network, such as consensus [18], epidemic

spreading [18], etc. We simply consider here the case of the diffusion process [93]

and synchronisation. The case of epidemics will be analysed in a separate chapter.

The Diffusion Process

Diffusion is known as the process by which gas moves from regions of high density

to regions of low density, driven by the radiative pressure or partial pressure of

the different regions. We can consider on the other hand diffusion processes on

networks and some times those processes serve as simple models of spread across

a network, such us the spread of an idea, or the spread of disease or any kind of

information. Suppose we have some substance of some kind on the vertices of a
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network and let ωi be the amount of that substance on vertex i. Suppose that the

substance moves along the edges, flowing from one vertex j to an adjacent vertex

i at a rate C(ωj −ωi) where C is a constant called the diffusion constant. That is,

in a small interval of time the amount of fluid flowing from j to i is C(ωj − ωi)dt.

The evolution equation of ωi on the network is given by:

dωi

dt
= C

∑

j

Aij(ωj − ωi). (2.48)

The adjacency matrix in this expression ensures that the only terms appearing in

the sum are those that correspond to vertex pairs that are actually connected by

an edge. In the case of an undirected network we can write equation (2.48) as

follows:

dωi

dt
= C

∑

j

Aijωj − Cωi

∑

j

Aij

= C
∑

j

Aijωj − Cωiki

= C
∑

j

(Aij − δijki)ωj (2.49)

where ki is the degree of vertex i and δij is the Kronecker symbol. In matrix

notation we have

dω

dt
= C(A − D)ω, (2.50)

where A is the adjacency matrix of the network and D is the matrix with the

vertex degrees along its diagonal and ω is a vector whose components are ωi. By

the definition of the Laplacian of the previous chapter, equation (2.50) can be

written as

dω

dt
= CLω, (2.51)
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where L = A − D. This equation has the same form as the ordinary diffusion

equation for a gas where the the Laplacian operator ∇2 has been replaced by the

Laplacian matrix L which also occurs in many places such as random walks on

networks, resistor networks, graph partitioning and network connectivity.

The Solution

Equation (2.51) can be solved by writing the unknown vector ω as a linear com-

bination of the eigenvector of the Laplacian matrix L. That is,

ω(t) =
∑

i

αiui. (2.52)

Putting together equations (2.51) and (2.52) we have the following:

∑

i

(
dαi

dt
+ Cλiαi

)
ui = 0. (2.53)

Multiplying both sides of equation (2.52) by uj and taking into account that

eigenvectors of the Laplacian matrix are orthogonal we get

dαi

dt
+ Cλiαi = 0, ∀i, (2.54)

which has the solution

αi(t) = α(0)eCλit, (2.55)

thus the solution to equation (2.50) is

ω(t) =
∑

i

α(0)eCλitui. (2.56)
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2.3.2 The Synchronisation Process

Natural systems can be described as a collection of oscillators coupled to each

other via an interaction matrix. These systems include, for example, the ecosys-

tem, neurons, cardiac pacemaker cells, or animal and insect behaviour. Coupled

systems display synchronised behaviour, that is they are following a common dy-

namical evolution. Synchronisation properties depend also on the coupling pattern

among oscillators which is conveniently represented as an interaction network char-

acterising each system. Networks therefore play a fundamental role in the study

of synchronisation phenomena. In this section we are going simply to review the

general framework of synchronisation as a process that can take place on a complex

network as the diffusion process. More on synchronisation can be found here [8, 18]

General Formulation of Synchronisation in Networks

Let us consider a large number N of oscillators (units) in interaction. Each oscil-

lator/unit i can be described by an internal degree of freedom φi (i = 1, · · · , N)

which evolves in time both because of an internal dynamic and because of the

coupling with the other units. The time evolution of the system is given in general

by the following set of equations

dφi

dt
= fi(φ1, · · · , φN), i = 1, · · · , N. (2.57)

The set of different units can be seen as a network whose nodes represent oscillators

and two nodes i and j are connected by a directed edge from j to i if the evolution

equation of i depends on the state φj of j. In the case of symmetric interactions, the

evolution of φj depends on φi reciprocally and the resulting network is undirected.

There are various type of synchronisation that may occur in a complex network of

coupled units, these include,
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• complete synchronisation [103]: in this case there is an equality of all internal

variables evolving in time, i.e.

φi = s(t), ∀i,

• phase synchronisation [105]: is a weaker form of synchronisation described

by a phase and an amplitude consisting in a locking of the phase while the

correlation between amplitudes is weak.

• Generalised synchronisation [77]: is an extension of the synchronisation con-

cepts in which two dynamical units interact such that the output of one unit

is equal to the output of a function of another unit.

The case of Linearly Coupled Identical Oscillators

In this case the set of governing differential equations are

dφi

dt
= F (φi), i = 1, · · · , N. (2.58)

Since each unit i is interacting with its nearest neighbours j, we consider a simple

case corresponding to linear coupling, for which each unit i is coupled to a linear

combination of the outputs of its neighbours units which allows us to write the

evolution equations in the form

dφi

dt
= F (φi) + σ

N∑

j=1

CijH(φj), i = 1, · · · , N, (2.59)

where H is a fixed output function, σ represents the interaction strength, and Cij

is the coupling matrix. If the coupling between two units depends only on the
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difference between their outputs we have

dφi

dt
= F (φi) + σ

∑

j∼i

Cij [H(φj) − H(φj)] , i = 1, · · · , N. (2.60)

This corresponds to the coupling C = L where L is the Laplacian matrix. If s(t) is

the evolution of the uncoupled oscillators, according to equation (2.58), then the

fully synchronised behaviour φi(t) = s(t), is a solution of (2.60). The stability of

this state can be studied by writing

φi = s + ǫi, (2.61)

where ǫ ≪ s, and we can use the approximation

F (φi) ≈ F (s) + ǫiF
′

(s) and H(φi) ≈ H(s) + ǫiH
′

(s)

and

ds

dt
= F (s(t)).

The time evolution equation of ǫi(t) reads

dǫi

dt
= F

′

(s)ǫi + σ
∑

j

(
LijH

′

(s)
)

ǫi. (2.62)

The system can be decoupled by using the set of eigenvectors ηi which are an

appropriate set of linear combinations of the perturbations ǫi, to obtain

dηi

dt
=

(
F

′

(s) + σλiH
′

(s)
)

ηi (2.63)
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from which we get the solution

ηi(t) = η0
i e

“
F

′

(s)+σλiH
′

(s)
”
t
. (2.64)

The perturbation may increase or decrease depending on the sign of
(
F

′

(s) + σλiH
′

(s)
)
.



Chapter 3

Epidemic Spreading in Complex

Networks

Epidemic spreading is one of the most studied dynamic processes that take place

in complex networks. The study of this subject is becoming a hot and an interest-

ing area of complex networks. Among the most important questions one can ask

in this area are, for example, how is an infection spreading in networks? will the

infection die out? or will it survive and become an epidemic? how the network

topology or structure influence the spreading of an epidemic in a network? A num-

ber of approach have been proposed so far for tackling the dynamics of epidemics

in networks, some are exact and some are just approximations. Given a specific

network, we can always perform computer simulations of epidemics and get nu-

merical answers for the typical disease outbreak. Analytic approaches give more

insight and some results are known but they are more confined to a specific class

of model network such as a random one. In this chapter we review some interest-

ing and straightforward models of epidemic spreading on population based on the

standard approach of compartmental models and the homogeneous assumption.

115
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We will also review the spread of diseases in heterogeneous networks.

3.1 Compartmental Models and the Homogeneous

Assumption

In these models it is assumed that the population is divided into classes or com-

partments related to the stage of the disease [37], such as susceptible (S) those

who can contact the infection, infectious (I) those who have contacted the infec-

tion and are contagious, and recovered (R) those who have recovered from the

disease. Some other compartments may be added. These include for instance

the immune or exposed classes, for individuals exposed to the infection but not

yet infectious. In this framework, in each compartment individuals are assumed

to be identical and homogeneously mixed, and the larger the number of sick and

infectious individuals among one individual’s contacts, the higher the probability

of transmission of the infection. In these compartmental models there two types

of elementary processes ruling the disease dynamics [37]:

Spontaneous Transition (ST)

This case is characterised by the moving of one individual from one class to an-

other. Let X [m](t) and X [h](t) be the number of individuals in class [m] and [h],

respectively, at time t. A spontaneous transition from class [m] to class [h] can be

expressed in the following way:






X [m] → X [m] − 1 move of one individual from class [m]

X [h] → X [h] + 1 move of one individual to class [m].

(3.1)
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The number of individuals in the population is given by:

N =
∑

m

X [m](t).

Spontaneous transition includes for instance the case of spontaneous recovery of

infected individuals I → R or the passage from a latent condition to an infectious

one L → I. Let vm
h be the change in number of X [m] due to spontaneous transition

from or to the compartment [h] which we define as follow:

vm
h =






1 if from class [h]

−1 if to class [h]

0 otherwise.

(3.2)

The variation in the number of individuals X [m] due to spontaneous transition is

given by:

∂t,ST X [m] =
∑

h

vm
h ahX

[h], (3.3)

where ah is the rate of transition from class [h].

Binary Interactions

This includes the case of contagion when a susceptible individual enters in inter-

action with an infectious one,

S + I → 2I, (3.4)

in this case the change in number of X [m] is given by [37]:

∂t,BIX
[m] =

∑

h,g

vm
h,gah,gX

[h] X
[g]

N
, (3.5)
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where ah,g is the transition rate of the process and vh,g = 1, 0 or − 1 is the

change in the number of X [m] due to the interaction. The general deterministic

rate equation for the average number of individuals in the class [m] is then given

by:

∂tX
[m] = ∂t,ST X [m] + ∂t,BIX

[m]

=
∑

h

vm
h ahX

[h] +
∑

h,g

vm
h,gah,gX

[h] X
[g]

N
. (3.6)

Equation (3.6) is a general framework that allows us to derive three basic models

describing the dynamics of disease spreading. We will review some models in the

next sections.

3.2 The Susceptible-Infected (SI) Model

In this model there are only two different classes or states susceptible and infected.

An individual in the susceptible state is someone who does not have the disease

yet but could catch it if he comes into contact with someone who is infected. An

individual in the infected state is someone who has the disease and can, potentially,

pass it on if they come into contact with a susceptible individual.

Model Equation

Let us consider a disease that is spreading in a population of individuals. Let

S(t) be the average number of susceptible individuals and I(t) be the average

number of infected individuals and let N be the total number of individuals or

the size of the population. The number of infected individuals goes up when

susceptible individuals contract the disease from infected ones. Individuals that
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enter the infected state remain permanently infectious. The epidemic can only

grow as the number of infectious individuals increases monotonically and the seed

of infectious individuals placed at time t = 0. Let us suppose that each individual

has, on average, β contacts with randomly chosen others per unit time. There is

infection transmission only when an infected individual enters in contact with a

susceptible one. The evolution of the SI model is then completely defined by I(t).

The probability that an individual picked at random in the population be infected

is S(t)/N , and therefore, by the homogeneous assumption, an infected individual

has contact with an average of βS(t)/N susceptible individuals per unit time. The

overall average rate of new infected individuals is

βS(t)I(t)/N. (3.7)

The differential equation for the rate of change of I(t) is given by:

dI

dt
= β

SI

N
. (3.8)

At the same time the number of susceptible individuals goes down at the same

rate, that is

dS

dt
= −β

SI

N
, (3.9)

where we write S(t) = S and I(t) = I for simplicity. The system of differential

equations that describes the evolution SI model reads






dI(t)
dt

= β SI
N

,

dS(t)
dt

= −β SI
N

.

(3.10)
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Let s and i be respectively the variables that represent the fractions of susceptible

S(t) and infected I(t) individuals, i.e.

s =
S

N
, i =

I

N
, (3.11)

and system (3.10) read, 




ds
dt

= −βsi

di
dt

= βsi.

(3.12)

The variables s and i are such that

s + i = 1,

hence s = 1 − i and using the second equation of (3.12) we get the following

differential equation for the number of infected individuals

di

dt
= βi(1 − i). (3.13)

If the number of infected individuals is a very small fraction of the total popula-

tions, that is i(t) ≪ 1, then equation (3.13) can be linearly approximated by:

di

dt
= βi, (3.14)

which has the following solution

i(t) ≃ i0e
t/τ , (3.15)
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where i0 is the initial fraction of infected individuals and

τ =
1

β
.

Equation (3.15) says that the larger the spreading rate β, the faster the outbreak

will be. In the SI model the epidemic always propagates in the population until

all individuals are infected, but the linear approximation (3.14) breaks down when

the fraction of infected individuals becomes large and the shape of i(t) deviates

from a simple exponential. If i0 is the initial value of i at t = 0 or the initial

number of infected nodes, we can solve the differential equation (3.13) and get the

equation that describes the evolution of infectious individuals in time, i.e.

i(t) =
i0e

βt

1 − i0 + i0eβt
. (3.16)
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Figure 3.1: Evolution of the number of infected individuals in the SI Model. The
rate of infection here is β = 0.2, the initial number of infected individuals is 20%
of the total population N = 1000. The curve grows exponentially at the very
beginning and the infected individuals infect more and more the susceptible ones.
The curve saturates as the number of susceptible get reduced.
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3.3 The Susceptible-Infected-Recovered Model (SIR)

In the SI model, if an individual is infected he will stay infected for ever. For

many diseases, however, people recover from infection after a certain period of

time because their immune system fights off the agent causing the disease. This

behaviour is a represented in a new model that extends the SI model in some way.

A new state is introduced; the state of recovered individuals denoted by R and

the resulting model is called susceptible-infected-recovered (SIR) or SIR model.

For certain authors R stands for removed in the sense that a recovered individual

may dies and is removed from the population and the resulting model is called

susceptible-infected-removed.

Model Equation

There are two stages in the dynamics of the SIR model. In the first stage, suscepti-

ble individuals become infected when they have contact with infected individuals.

Contacts between individuals are assumed to happen at an average rate of β per

person as in the SI model. In the second stage, infected individuals recover (or

die) at some constant average rate δ. Without loss of generality, the system of

differential equations that describes the evolution of the SIR model in terms of the

fractions of susceptible s(t), infected i(t) and removed r(t) is given by [18, 93]:






ds
dt

= −βsi,

di
dt

= βsi − δi,

dr
dt

= δi,

(3.17)

and in addition we have:

s + i + r = 1. (3.18)
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As can be seen from system (3.17), all infected individuals will sooner or later

enter the recovered state, so it is then obvious that in the infinite time limit the

epidemic must fade away. We can solve these equations by eliminating i in the

first and third equations of (3.17) to get,

(1/s)
ds

dt
= −β

δ

dr

dt
. (3.19)

If s0 is the value of s at t = 0 integrating both side of equation (3.19) we get

s(t) = s0e
−βr(t)

δ . (3.20)

Combining equation (3.20) and equation (3.18) and the third equation of (3.17)

we have

dr

dt
= δ(1 − r − s0e

−βr
δ ), (3.21)

or by integrating both sides of equation (3.21) we get

1

δ

∫ r

0

dv

1 − v − s0e
−βv

δ

= t. (3.22)

The integral on the left hand side of equation (3.22) cannot be evaluated in terms

of known functions. We use the Matlab tool ode45 to solve numerically the sys-

tem (3.17). From Figure 3.2 we draw the following conclusion:

• The number of susceptible individuals is decreasing monotonically during

time.

• The number of recovered individuals is increasing monotonically with time

and reaches saturation for large values of time. This is because if an indi-

vidual recovers then he will never get infected again.
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Figure 3.2: Illustration of the time evolution of the SIR model. The curves show
the fractions of the population in the susceptible, infected and recovered states
as a function of time. The values of the parameters used are β = 0.3, δ = 0.1,
s0 = 0.99, i0 = 0.01, and r0 = 0.

• At the start the number of infected individuals is increasing, then goes down

as the individuals recover, and eventually goes to zero as t → ∞.

The number of susceptible individuals does not go to zero as time increases. This

is because, asymptotically when i → 0 there is no infected individuals to infected

the susceptible ones. Some individuals will never get infected until the outbreak

has passed. Similarly the fraction of recovered individuals does not quite reach one

as t → ∞. The total number of individuals who ever catch the disease during the

entire course of the epidemic is given by the asymptotic value or r, that is when

i → 0:

r = 1 − s0e
−βr/δ, (3.23)

and if the initial number of infected individuals is very small, we have s0 ≃ 1 and

hence,

r = 1 − e−βr/δ. (3.24)
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Early stage of the epidemic behaviour in the SIR model

It is possible to solve approximately the system of differential equations (3.17) in

the early stage of an epidemic. Let us consider the second equation of system (3.17)

di

dt
= βis − δi. (3.25)

In the early stage of the epidemic we can neglect the fraction of removed i.e. r = 0

and substitute s = 1 − i into equation (3.25) to get

di

dt
= βi(1 − i) − δi

= βi − βi2 − δi. (3.26)

We can also ignore the term in i2 and consider the following linear approximation

di

dt
≃ βi − δi, (3.27)

whose solution is

i(t) ≃ i0e
t/τ , (3.28)

where the typical outbreak time is given by

τ−1 = β − δ = δ(
β

δ
− 1). (3.29)

The typical outbreak time is the combination of two terms, the spread rate β and

the recovery rate δ and can be negative in the case when the recovery rate is large

enough. Hence, the infection will not spread across the population but will die

out. The key value governing the time evolution of these equations is the so-called
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basic reproduction number R0 which in the case of the SIR model is given by

R0 =
β

δ
, (3.30)

and relation (3.29) can be written as

τ−1 = δ(R0 − 1), (3.31)

where R0 is considered to be the number of secondary infections caused by a single

primary infection. It determines the number of people infected by contact with a

single infected person before his death or recovery.

• When R0 < 1 there is no epidemic, i.e. each diseased individual infects

fewer than one person before dying or recovering, so the outbreak will die

out (di/dt < 0).

• When R0 > 1, the infection will be able to propagate in the population, that

is each diseased individual infects more than one person, so the epidemic will

spread (di/dt > 0).

• The point R0 = 1 (di/dt = 0) corresponds to the epidemic threshold between

regimes in which the disease either multiplies or dies out.

In the SI model R0 = ∞ and the infection will propagate for ever and infect more

and more susceptible individuals.

3.4 The Susceptible-Infected-Susceptible Model

In this model an individual can only be in two different states, susceptible or

infected. In the SI model once an individual gets infected he stays for ever in that



Epidemic Spreading in Complex Networks 127

state. However, in the SIS model an infected individual may recover and go back

to the susceptible state. In this way the SIS model is also seen as an extension of

the SI model. Without loss of generality the system of differential equations for

this model is given by [37, 93]:






ds
dt

= δi − βi,

di
dt

= βsi − δi,

(3.32)

with

s + i = 1. (3.33)

3.4.1 The Solution

Substituting s = 1 − i into the second equation of system (3.32) we have

di

dt
= (β − δ − βi)i. (3.34)

After separating the variables and integrating we get

i(t) =

(
1 − δ

β

)
Ce(β−δ)t

1 + Ce(β−δ)t
. (3.35)

Using i(t = 0) = i0, we get the constant

C =
βi0

β − δ − βi0
, (3.36)
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and substituting C in (3.35), we have the following expression for the evolution of

the number of infected individuals over time

i(t) = i0
(β − δ)e(β−δ)t

(β − δ) − βi0(1 − e(β−δ)t)
. (3.37)
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Figure 3.3: Illustration of the time evolution for the SIS model. The fraction of
infected in the SIS model grows with time as for the SI model but in this model,
the fraction of infected never reaches one, tending instead to a steady state at
which the rate of infection and recovery are equal.

• If β > δ we have a curve similar to that of Figure 3.1 but in this case the

fraction of infected does not reach one as time evolves. In the long term

the fraction of infected reaches an intermediate state at which the rate of

infection and recovery are balanced. This fraction of infected is given by

i =
β − δ

β
(3.38)

and can be obtained from equation (3.34) by setting di/dt = 0.

• If β/δ < 1 it can be seen from expression (3.37) that the fraction of infected

goes to zero and the disease dies out over time. The point β = δ corresponds
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to an epidemic transition as for the SIR model marking the transition be-

tween a state in which the disease spreads and in which it does not.

• The basic reproduction number R0 in the SIS model is given by

R0 =
β

δ
.

3.5 The Susceptible-Infected-Recovered-Susceptible

(SIRS) model

In this model infected individuals recover, but this recovery is temporary, they go

back to the susceptible state again and may catch the disease again. Let η be the

average rate at which individuals lose their immunity. Without lost of generality,

the system of differential equations for the SIRS model is given by:






ds
dt

= ηr − βsi,

di
dt

= βsi − δi,

dr
dt

= δi − ηr,

(3.39)

and

s + r + i = 1. (3.40)

In general the SIRS model cannot be solve analytically. Numerical methods can

be used to solve the system (3.39) and treated using linear stability and some

others methods of non-linear dynamics. From equation (3.40) we have

i = 1 − r − s, (3.41)
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and the model described by the system (3.39) can be reduced to the following two

dimensional system 




ds
dt

= −βsi + η(1 − s − i)

di
dt

= βsi − δi.

(3.42)

Local stability analysis shows that if an endemic equilibrium e∗ = (s∗, i∗), i∗ > 0

exists, then it is locally asymptotically stable. Notice that e∗ exists if and only if

s∗ =
δ

β
< 1. (3.43)

Therefore the total population must be larger than a threshold size of δ/β. Several

other models have been proposed to model the spread of a particular disease in a

population. Some different extra state may be added, such as the exposed state

that represents individuals who have caught a disease but whose infection is not

yet developed to the point where they can pass it on others.

3.6 Epidemics in Heterogeneous Networks

In the previous models described so far, it was assumed that the network or popula-

tion that describes the connectivity among individuals is homogeneous, such that,

in the first approximation each individual in the system has the same number of

connections or contacts. However, many real networks exhibit very heterogeneous

topology [51]. Recently, [90] empirical evidence that emphasised the role of het-

erogeneity by showing that many epidemiological networks are heavy-tailed and

therefore the average degree 〈k〉 (also written k) is no longer the relevant variable.

We then expect the fluctuations to play a major role in determining the properties

and evolution of the epidemics. These include mobility networks as well as the
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web of sexual contacts. Computer epidemics can also be studied in the same way

as biological epidemics [73]. As a consequence of the topological fluctuations, we

need a mathematical model that will take into account the degree variabilities of

nodes or vertices. This is achieved by making the following assumption:

• All nodes with the same degree are statistically equivalent resulting in a

grouping in the same class or block of nodes with the same degree.

We can then define the fraction of infected ik and susceptible sk in the group of

nodes having degree k to be

ik =
Ik

Nk

; sk =
Sk

Nk

, (3.44)

where Nk is the number of nodes in the group degree k and Ik and Sk the number of

infected and susceptible, respectively in the group. The total number of fractions

of infected ik and susceptible sk is given by:

i =
∑

k

P (k)ik; s =
∑

k

P (k)sk (3.45)

where P (k) is the degree distribution of the network.

3.6.1 The SI model on Heterogeneous Networks

The differential equation describing the evolution over time of the fraction of in-

fected in this case is given by [18, 24]:

dik(t)

dt
= β(1 − ik(t))kθk(t), (3.46)

where β stands for the spreading rate across the links/edges of the network, k is

the degree, 1 − ik(t) is the probability that a vertex with degree k is not infected
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(from neighbours) and the term θk(t) is introduced to account for the density of

infected neighbours having degree k. That quantity can also be seen as the average

probability that any given neighbour of a vertex of degree k is infected. In general

θk(t) is unknown in the heterogeneous model. In the homogeneous model it was

equal to the density of infected nodes/individuals. In this case the quantity θk(t)

takes into account the different degree classes and the connections between them

as well. To get around this difficulty, we simply ignore the degree correlation of

nodes and assume that the network is uncorrelated. A network is independent of

the degree-correlation if the probability that a link going from a vertex of degree k

arrives at a vertex of degree k
′

does not depend on the initial node and it is shown

that [42, 93], any edge can point to a node of degree k
′

with a probability that is

proportional to k
′

that is:

P (k
′ |k) = k

′ P (k
′

)

〈k〉 , (3.47)

where 〈k〉 =
∑

k′ k
′

P (k
′

). We can then write the following expression for θk(t)

that does not depend on k:

θk(t) = θ(t) =

∑
k
′ (k

′ − 1)P (k
′

)ik′ (t)∑
k
′ k′P (k′)

. (3.48)

The time evolution of θ(t) is given by:

dθ(t)

dt
=

∑
k
′ (k

′ − 1)P (k
′

)
di

k
′ (t)

dt∑
k′ k′P (k′)

, (3.49)
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or (using equation(3.46))

dθ(t)

dt
=

∑
k
′ (k

′ − 1)P (k
′

)βk
′

θ(t)∑
k
′ k′P (k′)

=
βθ(t)

∑
k
′ (k

′ − 1)P (k
′

)k
′

∑
k
′ k′P (k′)

=
βθ(t)

(∑
k
′ k

′2P (k
′

) − ∑
k
′ P (k

′

)k
′
)

∑
k
′ k′P (k′)

= β

(〈k2〉
〈k〉 − 1

)
θ(t), (3.50)

where,

〈k2〉 =
∑

k
′

k
′2P (k

′

).

Therefore neglecting the term in i2, we have






dik(t)
dt

= βkθ(t),

dθ(t)
dt

= β
(

〈k2〉
〈k〉 − 1

)
θ(t).

(3.51)

From the second equation of the above system we can solve for θ(t) and get:

θ(t) = θ0e
t/τ , (3.52)

where the initial condition θ0 can be obtained from expression (3.48)

θ(t = 0) = i0

∑
k
′ k

′

P (k
′

) − ∑
k
′ P (k

′

)∑
k
′ k′P (k′)

= i0
〈k〉 − 1

〈k〉 , (3.53)

and

τ =
〈k〉

β(〈k2〉 − 〈k〉) . (3.54)
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Substituting θ(t) given by expression (3.52) into the first equation of system (3.51)

and using the initial condition i(t = 0) = i0 and integrating both sides we have

the following expression for ik(t):

ik(t) = i0

[
1 +

k(〈k〉 − 1)

〈k2〉 − 〈k〉 (e
t/τ − 1)

]
, (3.55)

and

i(k) =
∑

k

P (k)ik,

= i0

[
∑

k

P (k) +

∑
k kP (k)〈k〉 − ∑

k kP (k)

〈k2〉 − 〈k〉 (et/τ − 1)

]
,

= i0

[
1 +

〈k〉2 − 〈k〉
〈k2〉 − 〈k〉(e

t/τ − 1)

]
. (3.56)

3.6.2 The SIR and the SIS models in Heterogeneous net-

works

For the SIR and SIS models we have the following equation that describes the time

evolution of ik(t) for uncorrelated networks [18, 24]::

dik(t)

dt
= βksk(t)θk(t) − δik(t). (3.57)

For the SIS model we have

sk(t) = 1 − ik(t), (3.58)

and in the SIR model we have

sk(t) = 1 − ik(t) − rk(t), (3.59)
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and rk(t) is the density of removed individuals of degree k. Let us analyse the case

of the SIR model in the early stage of the epidemic. At this stage we can assume

that rk(t) ≈ 0 and combining expression (3.59) and equation (3.57) we have

dik(t)

dt
= βk(1 − ik(t))θk(t) − δik(t),

= βkθk(t) − δik(t). (3.60)

The last equation is obtained by neglecting the terms in i2 in the early stage of

the epidemic. Combining equation (3.60) and expression (3.48) we find the time

evolution equation of θ(t) to be

dθ(t)

dt
=

∑
k
′ (k

′ − 1)P (k
′

)
di

k
′ (t)

dt∑
k
′ k′P (k′)

. (3.61)

Or

dθ(t)

dt
=

∑
k
′ (k

′ − 1)P (k
′

)
di

k
′ (t)

dt∑
k
′ k′P (k′)

,

=

∑
k
′ (k

′ − 1)P (k
′

)(βk
′

θ(t) − µik′ (t))∑
k′ k′P (k′)

,

= β

(〈k2〉
〈k〉 − 1

)
− δθ(t),

= θ(t)

[
β

(〈k2〉
〈k〉 − 1

)
− δ

]
. (3.62)

Using the initial condition (3.53) we can solve equation (3.62) for θ(t)

θ(t) = θ0e
t/τ , (3.63)
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where the time scale is given by

τ =
〈k〉

β〈k2〉 − (δ − β)〈k〉 . (3.64)

In order to ensure an epidemic outbreak the basic condition is

τ > 0,

or

β

δ
≥ 〈k〉

〈k2〉 − 〈k〉 . (3.65)

So for heavy-tail networks we have that 〈k2〉 → ∞ in the limit of networks of

infinite size and this results in a null epidemic threshold and relation (3.65) will

be always true. In a finite size real-network, a large heterogeneity level leads

to a small epidemic threshold. This absence of epidemic threshold for scale-free

networks makes them an ideal environment for the spreading of viruses, which even

in the case of very weak spreading capabilities are able to pervade the network.

3.6.3 The case of the effect of mixing patterns

In the case of correlated networks, we need to take into consideration the full

structure of the conditional correlation function P (k
′ |k) in order to consider the

case of non-trivial correlations. This is not a simple task and we will only look at

particular cases.
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The Case of the SI Model

For simplicity we are going to restrict ourselves to the case of the SI model. In

this case we have the following equations:

dik(t)

dt
= β(1 − ik)kθk(t), (3.66)

where

θk =
∑

k
′

ik′

k
′ − 1

k′
P (k

′ |k). (3.67)

This time the density function θk depends on k and takes account of the structure of

the conditional probability that an infected node having degree k
′

points to a node

having degree k, without any of its k
′ −1 free edges pointing to the original source

of its infection. When there is no correlation we have that P (k
′ | k) = k

′

P (k
′

)/〈k〉

and we recover the cases of the previous sections. In the presence of correlations in

the network measured by P (k
′|k) the situation is more complicated. By neglecting

the terms in i2, the time evolution equation of ik(t) is given by:

dik(t)

dt
=

∑

k
′

βk
k

′ − 1

k′
P (k

′ |k)ik′ (t),

=
∑

k′

Ck,k
′ ik′ (t), (3.68)

which is a system of linear differential equations whose matrix is given by

Ck,k
′ = βk

k
′ − 1

k′
P (k

′|k) (3.69)

and whose solution can be written in the form

ik(t) =
∑

j

eλjt, (3.70)
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where the λj are the eigenvalues of the matrix C. The dominant behaviour of the

average prevalence is given by:

ik(t) ∼ eλmt, (3.71)

where λm is the largest eigenvalue of the matrix C. So the time scale governing

the increase of the prevalence is therefore given by

τ ∼ 1/λm.

When the network is uncorrelated, the entries C∗
k,k

′ of the matrix C are obtained

by combining equation (3.47) and equation (3.69), i.e.

C∗
k,k′ = βk(k

′ − 1)P (k
′

)/〈k〉, (3.72)

and the matrix C has a unique eigenvalue that satisfies:

∑

k′

Ck,k
′Φk

′ = λ∗
mΦk, (3.73)

where

λ∗
m = β

〈k2〉
〈k〉 − 1

and

Φk = k.
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In the case of correlated networks, Boguñá et al. [24] show by using the Frobenius

theorem that the largest eigenvalue is bounded by below as follows:

λ2
m ≥ min

k

∑

k′

∑

l

(k
′ − 1)(l − 1)P (l|k)P (k

′ |l). (3.74)

3.7 Large Time Limit of Epidemic Outbreaks

In the previous paragraphs we have solved equations describing the SI, SIS and

SIR model only in the early stage of the epidemics. In this section we want to

analyse the opposite, that is when t → ∞. It is evident that for the SI model in

the large time limit we have that i(t) → 1. In the case of the SIS and SIR model

the behaviour of the epidemic depends upon the disease parameters of the model

and the heterogeneity of the network.

The SIS Model

The full evolution equation of the SIS on a network with arbitrary degree distri-

bution is given by:

dik(t)

dt
= −δik(t) + βk(1 − ik(t))θk(t). (3.75)

We consider for simplicity the case of general random networks with no degree

correlations. Therefore from the previous section, the average density θk(t) of

infected vertices pointed to by any given edge is simply given by:

θk =
1

〈k〉
∑

k
′

k
′

P (k
′

)ik′ , (3.76)
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Figure 3.4: Evolution of the fraction of infected as a function of the average density
of infected vertices θ and for different degrees.

which does not depend on k and is simply written as θ(t). To have information on

t → ∞ we simply impose the stationary condition dik(t)/dt = 0. Therefore from

equation (3.75) we get the following:

ik =
kβθ

δ + kβθ
. (3.77)

From the equation (3.77) and Figure (3.4) we can see that the higher the vertex

degree, the higher its probability to be in an infected state. Substituting equa-

tions (3.77) into equation (3.76) we get an equation of following form for θ

θ = h(θ) (3.78)

where

h(θ) =
1

〈k〉
∑

k

kP (k)
βkθ

δ + βkθ
. (3.79)

The solution of equation (3.78) depends on the values of the parameters β and δ.

The admissible values of these parameters corresponding to a solution θ∗ > 0 of

that equation will allow us to find the epidemic threshold from equation (3.78).
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The function h(θ) is monotonically increasing between h(0) = 0 and h(1) < 1. A

non trivial solution θ∗ 6= 0 exists if the slope of the function h(θ) at the point θ = 0

is larger than or equal to 1. The situation is illustrated graphically in Figure 3.5

(a) and (b). Mathematically this condition can be translated as:
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Figure 3.5: Graphic solution of equation (3.78). If the slope of the function h(θ) is
greater than or equal to 1 there is a non trivial solution (a) but if the slope of the
function h(θ) is less than one we only have one trivial solution (b). The solution
occurs at the intersection of the curves h(θ) and y = θ (see plot (a)).

dh(θ)

dθ
|θ=0 =

1

〈k〉
∑

k

k2P (k)
β

δ

=
β

δ

〈k2〉
〈k〉 ≥ 1. (3.80)
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The epidemic threshold corresponds to the values of the disease parameters yielding

the equality in relation (3.80), that is

τ =
β

δ
=

〈k〉
〈k2〉 . (3.81)

We recover the results obtained from the linear approximation for a short time

and confirm that topological fluctuations lower the epidemic threshold.

The SIR Model

In this case the number of infected individuals goes to zero as all the susceptible

individuals move to the recovered state after infection. The main information on

the course of the epidemic is then provided by the total number of individuals

affected by the infection which corresponds to the number of recovered individuals

if the starting population was composed only of susceptible individuals. Taking

into account of the degree heterogeneity, this number can be expressed as

r∞ = lim
t→∞

r(t), (3.82)

where

r(t) =
∑

k

P (k)rk(t). (3.83)

For this we use the SIR equations for the degree classes:






dik(t)
dt

= −δik(t) + βksk(t)θk(t),

dsk(t)
dt

= −βksk(t)θk(t),

drk(t)
dt

= δik(t),

(3.84)
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where θk(t) for an uncorrelated network is given by:

θk(t) =

∑
k
′ (k

′ − 1)P (k
′

)ik′ (t)

〈k〉 . (3.85)

Initial conditions are given by:

rk(0) = 0, ik(0), and sk(0) = 1 − ik(0). (3.86)

We consider the case of a homogeneous initial distribution of infected individuals

at time t = 0, i.e. ik(t) = i0 ∀k and we assume that i0 → 0 and sk(0) ≃ 1. The

second equation of the system (3.84) gives

sk(t) = e−βkρ(t), (3.87)

and the third equation of the same system gives,

rk(t) = δ

∫ t

0

ik(η)dη, (3.88)

where (using (3.85))

ρ(t) =

∫ t

0

ρ(η)dη =

∫ t

0

∑
k(k − 1)P (k)ik(η)

〈k〉 dη

=

∑
k(k − 1)P (k)

〈k〉

∫ t

0

ik(η)dη

=
1

δ〈k〉
∑

k

(k − 1)P (k)rk(t), (3.89)
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where in the last relation we have used Equation 3.88. The time evolution of ρ(t)

is given by

dρ(t)

dt
=

1

δ〈k〉
∑

k

(k − 1)P (k)
drk(t)

dt

=
1

〈k〉
∑

k

(k − 1)P (k)ik(t)

=
1

〈k〉
∑

k

(k − 1)P (k)(1 − rk(t) − sk(t))

=
1

〈k〉
∑

k

kP (k) − 1

〈k〉
∑

k

P (k) + · · ·

−
∑

k

1

〈k〉(k − 1)P (k)rk(t) +
∑

k

1

〈k〉(k − 1)P (k)sk(t)

= 1 − 1

〈k〉 − δρ(t) −
∑

k

1

〈k〉(k − 1)P (k)e−βkρ(t), (3.90)

where we have used equation (3.87) and equation (3.89). Equation (3.90) cannot

be solved explicitly for ρ(t), but we can get useful information in the infinite time

limit; when there is no epidemic. That is,

r∞ =
∑

k

P (k)(1 − e−βkρ∞), (3.91)

where

r∞ =
∑

k

P (k)rk(∞), ρ∞ = lim
t→∞

ρ(t), (3.92)

using the fact that rk(∞) = 1− sk(∞) and equation (3.87) equation (3.88). Since

ik(∞) = 0 we have

lim
t→∞

dρ(t)

dt
= 0.
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Then from Equation (3.90) we have the following equation for ρ∞:

δρ∞ = 1 − 1

〈k〉 −
∑

k

1

〈k〉(k − 1)P (k)e−βkρ(∞). (3.93)

We can check that ρ∞ = 0 is a solution of equation (3.93) and this equation can

also be solved by the same considerations as in the previous section:

δρ∞ = g(ρ∞), (3.94)

where

g(ρ∞) = 1 − 1

〈k〉 −
∑

k

1

〈k〉(k − 1)P (k)e−βkρ(∞).

Equation (3.94) has a non zero positive solution if the slope of the function g(ρ∞)

at zero is greater than the slope of the line y = δρ∞, that is

d

dρ∞

(
1 − 1

〈k〉 −
∑

k

1

〈k〉(k − 1)P (k)e−βkρ(∞)
)
)
|ρ∞=0 ≥ δ (3.95)

or equivalently

β

〈k〉
∑

k

k(k − 1)P (k) ≥ δ. (3.96)

Therefore the epidemic threshold condition is given by

β

δ
=

〈k〉
〈k2〉 − 〈k〉 , (3.97)

such that

• If β
µ

< 〈k〉
〈k2〉−〈k〉 the epidemic prevalence is r∞ = 0 and,

• If β
µ

> 〈k〉
〈k2〉−〈k〉 the epidemic prevalence is such that r∞ > 0.
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Remark 3.7.1 In the stochastic epidemic models presented in this chapter, (de-

scribed by the mean field equation (3.75) and equation (3.76)) the disease can be

eventually eliminated from the population or from the network regardless of the

value of the basic reproduction number R0 and of the initial distribution [88]. This

is due to the fact that those stochastic models have an absorbing state, where all

infectives equal zero (no nodes are infected), so that the probability of disease ex-

tinction approaches one in the infinite time limit. Mathematically, this means that

all paths will eventually reach this state and remain there for ever, but in practice

as shown in this chapter, the mean field approximations are useful for describ-

ing the behaviour over realistic time-scales. The threshold for stochastic models of

epidemics is discussed in [88].



Chapter 4

Long-Range Interactions in

Networks

In the previous chapters interactions between network units or components are

along the edge of the network. For instance in the diffusion process if a node i

possesses some kind of information, this information can be transmitted or spread

to the nearest neighbours of that node that are directly connected to it. Another

example is the spread of an epidemic where an infected node can only infect nodes

that are its nearest neighbours which are separated by distance one. This chapter

will analyse and describe the non direct interactions between units of a complex

network, here called long-range interactions (LRI).

147
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4.1 Random Long-Range Interactions

4.1.1 Watts-Strogatz Model(WSM)

4.1.1.1 Small world model

In simple terms, the small-world concept describes the fact that despite their often

large size, in most networks there is a relatively short path between any two nodes.

The distance between two nodes is defined as the number of edges along the short-

est path connecting them. The most popular manifestation of small worlds is the

“six degrees of separation” concept, uncovered by the social psychologist Stanley

Milgram [87, 117], who concluded that there was a path of acquaintances with a

typical length of about six between most pairs of people in the United States.

This feature (short path lengths) is also present in random graphs. However, in a

random graph, since the edges are distributed randomly, the clustering coefficient

is considerably smaller. Instead, in most, if not all, real networks the clustering

coefficient is typically much larger than it is in a comparable random network (i.e.,

the same number of nodes and edges as the real network). Beyond Milgram’s ex-

periment, it was not until 1998 that Watts and Strogatz work [123] stimulated the

study of such phenomena. Their main discovery was the distinctive combination

of high clustering with short characteristic path length, which is typical in real-

world networks (either social, biological or technological) that cannot be captured

by traditional approximations such as those based on regular lattices or random

graphs. From a computational point of view, Watts and Strogatz proposed a one-

parameter model that interpolates between an ordered finite dimensional lattice

and a random graph. The algorithm behind the model is the following [123]:

1. Start with order : Start with a ring lattice with n nodes in which every node

is connected to its first k neighbours (k/2 on either side). In order to have a
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sparse but connected network at all times, consider n ≫ k ≫ ln(n) ≫ 1.

2. Randomise: Randomly rewire each edge of the lattice with probability p

such that self connections and duplicate edges are excluded. This process

introduces pnk/2 long-range edges which connect nodes that otherwise would

be part of different neighbourhoods. By varying p one can closely monitor

the transition between order (p = 0) and randomness (p = 1).

The rewiring can be considered as the process through which, with probability p we

replace each link i, j with a link i, k, where k is a randomly chosen node different

from i and j. In the case that i, k is already contained in the modified network

no action is considered. This process is illustrated in Figure 4.1. Obviously, as

p → 1 the network tends to a completely random graph (see Figure 4.3). The

Watts-Strogatz network is often written as a three-parameters graph: WS(n, k, p).

These networks have a high clustering coefficient in comparison with Erdös-Rényi

random networks, i.e., if each node has a degree k, where k is even, then [19]

C =
3(k − 2)

4(k − 1)
, (4.1)

which means that the clustering coefficient of these networks is independent of the

network size and it tends to the value C = 0.75 for large value of k. The simple but

interesting result when applying the algorithm was the following. Even for a small

probability of rewiring, when the local properties of the network are still nearly

the same as for the original regular lattice and the average clustering coefficient

does not differ essentially from its initial value, the average shortest path length

is already the same order as that for classical random graphs.

As discussed in [122], the origin of the rapid drop in the average path length L

is the appearance of shortcuts between nodes. Every shortcut, created at random,



Long-Range Interactions in Networks 150

0

1

2

3
456

7

8

9

10

11

12

13
14 15 16

17

18

19

(a) n = 20, k = 4, p = 0

0

1

2

3
456

7

8

9

10

11

12

13
14 15 16

17

18

19

(b) n = 20, k = 4, p = 0.110
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(c) n = 20, k = 4, p = 0.50
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(d) n = 20, k = 4, p = 0.85

Figure 4.1: Illustrations of the rewiring process, which is the basis of the Watts-
Strogatz model for small networks. Starting from a regular lattice network with
n = 20, k = 4 some links are rewiring with probability p.

is likely to connect widely separated parts of the graph, and thus has a significant

impact on the characteristic path length of the entire graph. Even a relatively low

fraction of shortcuts is sufficient to drastically decrease the average path length, yet

locally the network remains highly ordered. In addition to a short average path

length, small-world networks have a relatively high clustering coefficient. The

Watts-Strogatz model (SW ) displays this duality for a wide range of the rewiring

probabilities p. In a regular lattice the clustering coefficient does not depend on

the size of the lattice but only on its topology. As the edges of the network are

randomised, the clustering coefficient remains close to C(0) for relatively large

values of p.

Although the mean degree is exactly k = k [19], no exact expression for the

degree distribution for a Watts-Strogatz small-world network is known, except
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Figure 4.2: Structural evolution of the Watts-Strogatz model. Illustrations of the
variation of the average path length and the clustering coefficient with the change
of the rewiring probability for a network having n = 1000 nodes and k = 10. Each
point is the average of 50 realisations. The values for the average path length
and clustering coefficient are normalised by dividing them by the respective values
obtained for WS(1000, 10, 0).

Figure 4.3: Three basic network types in the model of Watts and Strogatz. The
leftmost network is a ring of 20 nodes (n = 20), where each vertex is connected to
its four neighbours (k = 4). This is an ordered network which has a high clustering
coefficient C and a long pathlength L. By choosing an edge at random, and
reconnecting it to a randomly chosen vertex, networks with increasingly random
structure can be generated for increasing rewiring probability p. In the case of
p = 1, the network becomes completely random, and has a low clustering coefficient
and a short pathlength. For small values of p so-called small-world networks arise,
which combine the high clustering coefficient of ordered networks with the short
pathlength of random networks.

when p = 0, in which case every node has degree k. An approximation for the

case of 0 < p < 1 has been calculated by Barrat and Weigt [19]. There is also
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no known exact expression for the average path length of this network. A scaling

approximation is given by [93]:

L ∼ n

K

1√
u2 + 4u

tanh−1

(
u√

u2 + 4u

)
, (4.2)

where u = pkn. For the case of fixed p and k, if k ≪ n and n is sufficiently large,

then the average path length is expected to increase with network size, because the

terms involving u converge to a constant for large n [94]. Although the clustering

coefficient does also not have a known exact expression, it is well approximated

[19] for large n as

C ∼ 0.75

(
k − 2

k − 1
(1 − p)3 + O(

1

n
)

)
. (4.3)

Since n is assumed to be large, for p < 1 the term expressed as O(1/n) can be

ignored.

4.2 Kleinberg Model (KM)

There are many generalisations of models of random networks. The Kleinberg

model [74] is one model that represents a variation of the WS-model and was

introduced by Kleinberg. In designing his network model, Kleinberg sought a

simple framework that encapsulates the paradigm of Watts and Strogatz, that is

rich in local connections, with a few long-range connections. Rather than using

a ring as the basic structure however, the Kleinberg model begins from a two

dimensional grid and allows for edges to be directed.

1. Start with a set of nodes (representing individuals in the social network)

that are identified with the set of lattice points in an n × n square, {(i, j) :

i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · , n}}, and define the lattice distance or the
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Manhattan distance between two nodes (i, j) and (k, l) to be the number of

“lattice steps” separating them: d((i, j), (k, l)) = |k − i| + |l − j|,

2. for a universal constant d ≥ 1, the node u has a directed edge to every other

node within lattice distance d; these are its local contacts,

3. for universal constants q ≥ 0 and α ≥ 0, construct directed edges from u

to q other nodes (the long-range contacts) using independent random trials;

the ith directed edge from u has endpoint v with probability proportional

to (d(u, v))−α. (To obtain a probability distribution, we divide this quantity

by the appropriate normalising constant
∑

v(d(u, v))−α; we will call this the

inverse αth-power distribution.)

Geographically the algorithms means that individuals live on a grid and know their

neighbours for some number of steps in all directions (local contacts); they also

have some number of acquaintances distributed more broadly across the grid (long-

range contacts). For fixed constants d and q we obtain a one-parameter family of

network models by tuning the value of the exponent α. The Kleinberg model

graph can then be defined by the following set of parameters Gk(n, d, q, α). When

α = 0, we have the uniform distribution over long-range contacts, the distribution

used in the basic network model of Watts and Strogatz in which the long-range

contacts are chosen independently of their position on the grid. As α increases,

the long-range contacts of a node become more and more clustered in its vicinity

on the grid. Thus, α serves as a basic structural parameter measuring how widely

‘networked’ the underlying society of nodes is.
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(a) (b)

Figure 4.4: A two-dimensional grid network with n = 6, p = 1, and q = 1 (a), and
(b) the contacts of a node u with p = 1 and q = 3. The three long range contacts
are v, z and t.

Expected Delivery Time

The concept of local routing of a message in a network refers to sending a mes-

sage from a source to a target with local information only, as in the case of the

Milgram experiment described in the small-world section. One way of studying

the transmission of such a message is by using a decentralised algorithm. We start

with two arbitrary nodes in the network, denoted s and t; the goal is to transmit

a message from s to t in as few steps as possible. Decentralised algorithms, are

mechanisms whereby the message is passed sequentially from a current message

holder to one of its (local or long-range) contacts, using only local information. In

particular, the message holder u in a given step has knowledge of

1. the set of local contacts among all nodes (i.e. the underlying grid structure);

2. the location, on the lattice, of the target t; and

3. the locations and long-range contacts of all nodes that have come in contact

with the message.
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Crucially, u does not have knowledge of the long-range contacts of nodes that

have not touched the message. Given this, u must choose one of its contacts v, and

forward the message to this contact. The efficiency of such decentralised algorithms

is measured by the expected delivery time. That is the expected number of steps

taken by the algorithm to deliver the message over a network generated according

to an inverse αth-power distribution, from a source to a target chosen uniformly

at random from the set of nodes. Of course, constraining the algorithm to use

only local information is crucial to the model; if one had full global knowledge of

the local and long-range contacts of all nodes in the network, the shortest chain

between two nodes could be computed simply by a breadth-first search.

Kleinberg found that the expected delivery time t, which measures the effi-

ciency of the algorithm and corresponds to the expected number of steps needed

to forward a message from a random source is bounded by below as follows [52]:

t ≥ cnξ (4.4)

where

ξ =






(2 − α)/3 for 0 ≤ α ≤ 2,

(α − 2)/(α − 1) for α > 2

(4.5)

As the parameter α increases, a decentralised algorithm can take more ad-

vantage of the “geographic structure” implicit in the long-range contacts; at the

same time, long-range contacts become less useful in moving the message a large

distance. The value α = 2 is critical for the delivery time. This means that effi-

cient navigability is a fundamental property of only some small-world structures.

In particular, when long-range connections follow an inverse-square distribution,

(ξ = 2) the delivery time of a message carried out by a decentralised algorithm is
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Figure 4.5: The lower bound of the expected delivery time in a decentralised
algorithm. The x-axis is the value of α; the y-axis is the resulting exponent of n.

very fast.

4.3 Range Dependent Model (RDM)

Some models of random networks have been inspired by the structure of biological

networks. In this section we will review what Grindrod [67] did. He defined a new

class of range dependent random graphs inspired by protein-protein interaction

networks that, in some sense, generalise the work of Watts and Strogatz for the

small world model. In this model the nodes are ordered in a natural linear way:

i = 1, 2, · · · , n. Then a link between nodes i and j is created independently of

the order of the links, with probability αη|j−i|−1, where α > 0 and η ∈ (0, 1) are

fixed parameters. When α = 1, all nearest neighbours are connected, and the

network contains a Hamiltonian path connecting all nodes independently of η. In

general, for a given undirected network the probability that any pair of nodes i, j

are connected is given by a function of the form

pij = f(|j − i|) ∈ [0, 1] , (4.6)
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and the range of an edge R(i, j) is equal to |i− j| and is the length of the shortest

path between i and j in the absence of that edge. Grindrod has determined that

these networks have the following properties:

k =
2α

1 − η
(4.7)

and

C =
3αη

(1 + η)(1 + 3η)
, (4.8)

which means that for α = 1, C = 3/8 as η → 1. The clustering coefficient in these

networks displays a maximum which is located at η = 3−0.5. If we consider that

α = k(1 − η)/2, we can write the clustering coefficient as

C =
3k(1 − η)η

2(1 + η)(1 + 3η)
, (4.9)

which has a maximum at η = (
√

8 − 1)/7 ≈ 0.261, independent of the average

degree.
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Figure 4.6: Clustering coefficient in the Grindrod random network. The change in
the average clustering coefficient in range-dependent random networks developed
by Grindrod, with the change in the parameter η for three different average degrees:
continuous line (k = 2.5), line with stars (k = 3.5) and line with circles (k = 2.5).
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4.4 Nonrandom Long-Range Interactions

4.4.1 The Jackson and Wolinsky Model (JWM)

Jackson and Wolinsky [69] studied the stability and efficiency of social and eco-

nomic networks, where individuals can form or delete links [70]. The goal of

their work was to begin to understand which networks are stable when individuals

choose to form new links or deleting existing links. Their analysis was designed

to give us some predictions concerning which networks are likely to form, and this

depends on productive and redistributive structures. In particular, they exam-

ined the relationship between the set of networks which are productively efficient,

and those which are stable. To capture the notion of total productivity and how

this is allocated among the individual nodes they introduced the notion of a value

function and an allocation function.

The Network

Let N = {1, · · · , n} be the finite set of players who are connected in some network

relationship. The network relationships are reciprocal and the network is thus

modelled as a non-directed graph. We write the complete graph of subsets of N

of size 2 by Gn and the set of all possible graphs on N is then Ξ = {G|G ⊂ Gn}.

The network obtained by adding a link (i, j) to an existing network G is denoted

G+(i, j) and the network obtained by deleting link (i, j) from an existing network

G is denoted G− (i, j). For any network G, let N(G) = {i|∃j such that (i, j) ∈ G}

be the set of players who have at least one link in the network G.
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Value Function and Efficiency

Different network configurations lead to different values of overall production or

overall utility to players. These various possible valuations are represented via a

value function. A value function is a function v : Ξ → R. The set of all possible

value functions is V = {v|v : Ξ → R}. In some applications the value functions

are aggregate of individual utilities and production, i.e.

v(G) =
∑

i

ui(G), (4.10)

where ui ∈ V.

In evaluating societal welfare, we may take various perspectives. A network G

is Pareto efficient relative to V and Y if there does not exist any G0 ∈ Gn such that

Yi(G0,V) ≥ Yi(G,V) for all i with strict inequality for some i. This definition of

efficiency of a network takes Y as fixed, and hence can be thought of as applying

to situations where no intervention is possible. A graph G is said to be strongly

efficient if v(G) ≥ v(G
′

) for all G
′ ∈ Gn. This is a strong notion of efficiency as it

takes the perspective that value is fully transferable.

Allocation Rule

A value function only keeps track of how the total societal value varies across

different networks. We also wish to keep track of how that value is allocated or

distributed among the players forming a network. An allocation function/rule

Y : Ξ × V → R
n describes how the value associated with each network is dis-

tributed to the individual players. The expression Yi(G,V) is the payoff of player

i from the graph G under the value function V . It is important to note that an

allocation rule depends on both G and v. This allows an allocation rule to take



Long-Range Interactions in Networks 160

full account of player i’s role in the network. This includes not only what the

network configuration is, but also and how the value generated depends on the

overall network structure.

Pairwise Stability

The main interest is to understand which networks are likely to arise in various

contexts, so we need to define a notion which captures the stability of a network.

A stable network embodies the idea that players have the discretion to form or

delete links. The formation of a link requires the consent of both parties involved,

but severance can be done unilaterally. A simple way to analyse the networks that

one might expect to emerge in the long run is to examine a sort of equilibrium

requirement that agents not benefit from altering the structure of the network. A

weak version of such a condition is the pairwise stability notion defined by Jackson

and Wolinsky. A network is pairwise stable if no player benefits from severing one

of their links and no other two players benefit from adding a link between them,

with one benefiting strictly and the other at least weakly.

Definition 4.4.1 The Network G is pairwise stable with respect to V and Y if

1. for all links (i, j) ∈ E(G), Yi(G,V) ≥ Yi(G − (i, j),V) and Yi(G,V) ≥

Yi(G + (i, j),V)

and

2. for all links (i, j) 6∈ E(G) if Yi(G,V) < Yi(G + (i, j),V) then Yj(G,V) >

Yj(G + (i, j),V)

Let us say that G
′

is adjacent to G if G
′

= G + (i, j) or G
′

= G − (i, j) for some

(i, j). A network G
′

defeats G if either G
′

= G − (i, j) and Yi(G
′

,V) ≥ Yi(G,V),
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or if G
′

= G + (i, j) with Yi(G
′

,V) ≥ Yi(G,V) and Yj(G
′

,V) ≥ Yj(G,V) with at

least one inequality holding strictly. Pairwise stability is equivalent to saying that

a network is pairwise stable if it is not defeated by another (necessarily adjacent)

network. In words, graph G is pairwise when

• for any link (i, j) in G both i and j prefer not to remove the link

• for any link (i, j) not in G both i and j prefer not to add the link.

Therefore the pairwise stability presumes that actors can unilaterally breaks links,

while pairs of actors can add links.

4.4.2 Example 1: The Connections Model

This model models the social communication among individuals. Individuals di-

rectly communicate with those to whom they are linked (short contacts) to ex-

change, for example, some information. Through these links or short contacts

they also benefit from indirect communication (long-range contacts) from those to

whom their adjacent nodes are linked, and so on. Let wij ≥ 0 denote the intrinsic

value of individual j to individual i and cij denote the cost to i of maintaining the

link (i, j). If individual i is connected to player j, by a path of tij links, then player

i receives a payoff of δtijwij from his indirect connection with individual j. It is

assumed that 0 < δ < 1, and so the payoff δtijwij decreases as the path connecting

individual i and j increases; thus information that travels a long distance becomes

diluted and is less valuable than information obtained from a closer neighbour.

The parameter 0 < δ < 1 captures the idea that the value that i derives from

being connected to j is proportional to the proximity (concepts of proximity will

be briefly described in the next chapter) of j to i. The value of communication

obtained from other nodes depends on the distance to those nodes. Communica-
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tion is costly so that individuals must weigh the benefits of a link against its cost.

Each direct link (i, j) results in a cost cij = cij = c for both i and j. The cost can

have different meanings, it can be interpreted as the time an individual must spend

with another in order to maintain a direct link. Less distant connections are more

valuable than distant ones, but direct connections are costly. The payoff/utility of

each player i from graph G is formally given by:

ui(G) = wii +
∑

j 6∼i

δtijwij −
∑

j∈(i,j)

cij. (4.11)

The value of the graph is given by:

V =
∑

i

u. (4.12)

If we assume that wii = 0 and wij = 1 and cij = c then the payoff function (4.11)

reads:

ui(G) =
∑

j 6∼i

δtij − dicij, (4.13)

where di is the number of links held by individual i.

4.4.3 Example 2: The Co-author Model

In this case, nodes can be considered as researchers who spend time writing pa-

pers [70]. Each node’s productivity is a function of its links. A link represent a

collaboration between two researchers. The amount of time a researcher spends

on any given project is inversely related to the number of projects that researcher

is involved in. Therefore, in contrast to the connection model, here the indirect

connections will enter the utility/payoff in a negative way as they detract from

one’s co-author’s time. The fundamental utility or productivity of player i given
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the network G is

ui(G) =
∑

j∈(i,j)

wi(ni, j, nj) − c(ni), (4.14)

where wi(ni, j, nj) is the utility derived by i from a direct contact with j when i

and j are involved in ni and nj projects, respectively, and c(ni) is the cost to i

of maintaining ni links. A specific version of this utility function is given by the

following expression. For ni > 0

ui(G) =
∑

j∈(i,j)

[
1

ni

+
1

nj

+
1

ninj

]

= 1 +

(
1 +

1

ni

) ∑

j∈(i,j)

1

nj

(4.15)

and for ni = 0 and ui(G) = 0. This form assumes that each researcher has units of

time which they allocate equally across their projects. The output of each project

depends on the total time invested in it by the two collaborators, 1/ni + 1/nj,

and on some synergy in the production process captured by the interaction term

1/ninj. The interaction term is inversely proportional to the number of projects

each author is involved with. Here, there is no direct cost of connection. The cost

of connecting with a new author is that the new link decreases the strength of the

interaction term with the existing link.

Example 3: Pairwise Stability in the Connection Model

To illustrate the pairwise stability condition, we return to the connection model,

fixing the set of actors N = {1, 2, 3, 4, 5} and the parameter values δ = 0.5 and

c = 0.55. Let us consider the star graph G = {(1, 2), (1, 3), (1, 4), (1, 5)}. It is easy

to see that this star graph is not pairwise stable. The payoff for actor 1 (who is
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the centre of the star) is (we use formula (4.13))

u1(G) = −d1c + 4δ = 4(δ − c) = −0.2,

where d1 = 4 is the degree of node 1. By severing any existing links (say link 12),

actor 1’s payoff rises to

u1(G − 12) = 3(δ − c) = −0.15

and thus the graph G is not pairwise stable. Intuitively, given our maintained

assumption that c > δ, the cost of maintaining a link exceeds the benefits of a

direct connection, and thus no individual would be willing to serve as the centre

of a star graph. In contrast, the cycle graph G = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}

is pairwise stable for the assumed parameter values. In this graph, all actors hold

similar positions, and payoffs are

ui(G) = 2δ + 2δ2 − 2c = 0.4 ∀i.

To establish the pairwise stability of this graph, we must first show that no

actor would want to sever an existing link. For instance, suppose link (1, 2) was

removed from G. This implies

u1(G − (1, 2)) = u2(G − (1, 2)) = δ + δ2 + δ3 + δ4 − c = 0.3875

and hence neither actor 1 or 2 would prefer to break this link. Given that the

removal of any other edge (i, j) in G has the same consequence for actors i and j,

we see that no actor wishes to sever an existing link. Secondly, we must show that

no pair of actors would want to add a link. For instance, suppose that link (1, 3)
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was added to G. This implies

u1(G + (1, 3)) = u3(g + (1, 3)) = 3δ + δ2 − 3c = 0.1

and hence both actors 1 and 3 would prefer not to add this link. Given that the

addition of any new link (i, j) to the cycle graph would have the same consequences

for actors i and j, we see that no pair of actors would prefer to add a new link.

Thus, the graph G is pairwise stable. Note that a single violation of the pairwise

stability condition is sufficient to demonstrate the negative result that G is not

pairwise stable. Moving beyond these two graphs, Jackson and Wolinsky [69]

provide the following characterisation of pairwise stable graphs in the connections

model. For c < δ − δ2, the complete graph (with links between every pair of

actors) is the unique pairwise stable network. For δ − δ2 < c < δ, the star graph

is pairwise stable, but is not always the unique pairwise stable graph. Finally, for

c > δ, the star graph is not pairwise stable. Intuitively, as c becomes very large,

no actor is ever willing to maintain links, and only the empty graph is pairwise

stable. Usually it takes more work to establish that a graph is pairwise stable.

This result might suggest the possibility for “side payments” from actors on the

periphery of the star to the actor in the centre. See Jackson and Wolinsky [69] for

development of the connections model with transferable utility.

The model of Jackson and Wolinsky [69] as well as the one by Bala and Goyal

[11] are mainly concerned with stability and efficiency of the network resulting

from different dynamic updating rules. As we have seen the model of Jackson and

Wolinsky study the pairwise stability when agents can only update a link at a time

(either delete it or create it), while Bala and Goyal allow agents to rearrange all

their connections at once. The updating is deterministic in both models, and a
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new configuration is accepted only if it increases the utility of the agent.

Carvalho and Iori [31] combine the physics structure of networks and the eco-

nomics approach of [69] and [11] by introducing a stochastic network formation

mechanism inspired by the utility maximisation models which naturally extends

the well known physicists’ preferential attachment rule. Their approach can be

reduced to two main points:

1. They studied how the average utility depends on the underlying network

topology

2. They gained insight into specific network growth mechanisms and network

topologies. They studied the preferential attachment mechanism by node

utility.

They focus on one particular case in which they set wij = 1, wii = 0 and cij = c

and rewrote the payoff/utility of a node as:

ui =

l
(i)
max∑

l=1

∑

{k|dik=l}
δδ −

∑

j∈(i,j)

c =

l
(i)
max∑

l=1

δlzi
l − czi

1, (4.16)

where the sum in l is over all the shortest paths of length l from node i, the sum

in k is over all nodes whose shortest path from i is dik = l, l
(i)
max is the path length

of the node the furthest away from node i, and zi
l is the number of lth-nearest

neighbours of node i.

The average utility in a star network is given by:

u∗(δ) = δz1

(
1 + δ

n − 2

2

)
, (4.17)

where z1 = 2(n − 1)/n. For large n, z1 ∼ 2 and u∗(δ) ∼ nδ2. The average utility
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in a generic network is obtained by averaging (4.16)

u(δ) =
l∑

l=1

δlzl − cz1, (4.18)

where zl is the average number of lth neighbours of a node and l is the average

path length. Without loss of generality they set c = 0 and we get

u(δ) =
l∑

l=1

δlzl. (4.19)

By comparing the average utility in different network topologies with the same size

and the same average degree, they show that scale-free networks are more efficient

than Poisson random networks (even though less efficient than for the star graph).

By more efficient we mean of course a network whose structure maximises the total

of the average utility.

The high average utility of scale-free networks compared to random networks

suggests a new mechanism of growth model. The authors extended the preferential

attachment mechanism by introducing a growing process inspired by the work of

Jackson and Wolinsky. Thus, the probability that a new node j will be connected

to an existing node i depends on the utility of i, such that

∏

i

=
ui∑n

i=1 uk

. (4.20)

For δ = 0 and δ = 1 the utility of all nodes is given by:

ui =






0 ∀i when δ = 0,

N ∀i when δ = 1,

(4.21)
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so in this case attachment happens randomly and we recover an exponential dis-

tribution of node degree. The preferential attachment (4.20) is invariant up to

multiplicative factors in (4.16) and so for δ 6= 0 the qualitative behaviour of the

model remains unchanged if we define the utility as

u
′

i =
ui

δ
= ki +

l
(i)
max∑

l=2

∑

{k|dik=l}
δδ, (4.22)

where ki is the degree of node i. Thus, as δ → 0 the model of Corvhallo and Iori

converges to the Barabási-Albert model and the network becomes scale-free. They

also show that for small values of δ their model based on utility retains a scale-free

structure that is nonetheless destroyed when δ increases.

A Nonrandom Network Model to account for Short and

Long-Range Connections

Cohen et al. [35] developed a network model for the spread of tuberculosis to

account for both close and casual contacts among individuals.

Network Description

The network consisted of individuals placed randomly on a square patch at a con-

stant average density. Contacts between individuals are drawn as edges connecting

nodes. These edges represent sufficient contacts for the transmission of TB. It is

specified that the chance of a link between two individuals decreases as the dis-

tance between them increases such that infection is transmitted preferentially to

individuals in the proximity of a case of infection. (The idea of proximity will be

briefly presented in the next chapters). We can think of individuals located near-

est to each other on the network as family members, while those slightly farther
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away may be neighbours, friends or others social contacts. The fact that links

between individuals are assigned with a probability related to their distance from

each other allows that some long-distance contact will exist in the network. They

considered a parameter D that controls the relative probability of creating shorter-

versus longer-distance connections in a network. Given two vertices separated by

a distance d, they defined a probability of an edge linking them by

p =
n

2πD2
e

−d2

2D2 , (4.23)

where n is the average number of contacts and D is the desired length-scale. As can
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Figure 4.7: Probability p of an edge linking two vertices as a function of the
distance d separating these two vertices in the Cohen et al. model

be seen in Figure 4.7, if the parameter D is small, individuals separated at short

distances are preferentially linked; when D is large, the long-range interactions are

favoured. Adjustment of this single parameter allows us to calibrate the extent of

clustering. A network with lower D is dominated by high clustering and a network

with larger D is dominated by long-range connections. It is remarkable that the

number of casual social contacts is considered to be a product of these long-range

interactions. Their results demonstrate that in large communities with low TB
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incidences, non-random mixing of the population allows re-infection to play a larger

role in disease dynamics than previously recognised. The authors have claimed that

“in areas where a substantial proportion of transmission is due to ‘casual’ contacts,

a network with higher D value would better represent the contact structure.” That

is, casual contacts are proportional to long-range interactions among nodes in a

network. In the work of Cohen et al., however, the proximity between individuals

is considered to be the Euclidean distance between nodes placed randomly on a

plane, which in some way tries to capture their “geographical” separation. We

need to provide some of the empirical evidence about the interrelation existing

between geographic and social proximity.



Chapter 5

Social Contacts: Close and Casual

Contacts. Empirical Evidence

In this chapter we are going to give a group of close and casual contacts in social

networks relevant to the transmission of epidemics. Based on this evidence we

will elaborate a network model in the next chapter to account for both types of

contacts.

5.1 Social Networks

A social network is a social structure made up of individuals (or organisations)

called ”nodes”, which are tied (connected) by one or more specific types of in-

terdependency, such as friendship, kinship, common interest, financial exchange,

dislike, sexual relationships, or relationships of beliefs, knowledge or prestige. So-

cial network analysis (SNA) views social relationships in terms of network theory

consisting of nodes and ties (also called edges, links, or connections). Nodes are

the individual actors within the networks, and ties are the relationships between

the actors. The resulting graph-based structures are often very complex. There

171
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can be many kinds of ties between the nodes. Research in a number of academic

fields has shown that social networks operate on many levels, from families up

to the level of nations, and play a critical role in determining the way problems

are solved, organisations are run, and the degree to which individuals succeed in

achieving their goals.

In its simplest form, a social network is a map of specified ties, such as friend-

ship, between the nodes being studied. The nodes to which an individual is thus

connected are the social contacts of that individual. The network can also be used

to measure social capital, the value that an individual gets from the social network.

These concepts are often displayed in a social network diagram, where nodes are

the points and ties are the lines. Social contacts include close contacts and casual

contacts. In the case of epidemic transmission for example, these types of contacts

can be defined or characterised as follows:

Nomenclature

• Index case: A suspected or confirmed case of a certain infection on an indi-

vidual, let say for instance tuberculosis TB or pandemic influenza.

• Casual contact: A person who has shared air with the index case.

• Close contact: A person who has prolonged, frequent, or intense contact with

an index case during the case’s period of infectiousness. Whether a person

is a close contact also depends on:

– Physical proximity to the index case.

– The environment in which exposure to the index case occurs.

Examples of close contacts include, but are not limited to, persons who
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carpool with the index case several days per week or share the same house or

room as the index case or spend time with the index case frequently or share

air in small, enclosed spaces with little natural or mechanical ventilation.

• Casual contact: A person who has less prolonged, intense, or frequent contact

with the index case than close contacts. Examples of casual contacts include,

but are not limited to, persons who visited the index case occasionally or

visited the index case weekly for a short time.

5.2 Relevance of Social Network Interactions for

the Spread of Infections

The pattern of human interactions in social networks has important implications

for the spread and management of infectious diseases [72, 91]. As we have seen in

the previous chapters on epidemic spreading in networks, the usual approach to

epidemic spreading imposes a number of assumptions [18, 93] that make analytic

and numerical treatment relatively straightforward (see Chapter 3); however, at

least in some cases, that approach may cause a departure from reality. One such

assumption is uniform mixing, whereby the individuals of a population are as-

sumed to come in contact with equal probability, independent of their location. In

order to relax this assumption, we observe that contact processes, such as disease

transmission, are well localised in space and require that the two or more individ-

uals be no farther apart than some typical distance characteristic of the disease

transmission process. In heavily populated urban areas, disease is usually trans-

mitted within such locations as buildings and mass transit areas (waiting areas

and mass transit cars). The identification of individuals with a large number of

interactions forms the basis of many sexually transmitted disease control policies.
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For example the emergence of HIV/AIDS in the 1980s, has lead to many attempts

for quantifying the structure of sexual interactions [45]. In the case of sexually

transmitted diseases or computer viruses, the determination of socials contacts

can be done in an effective way. However, in other scenarios, such as in the trans-

mission of airborne or close contact infections, the pattern of human interactions

produced by encounters between individuals is harder to define [35, 45].

Only recently, some studies have been conducted that shed some light on the

patterns of these social contacts. Mossong et al. [91], studied the combination

of both close and casual contacts among individuals to account for those social

interactions, which include physical and non-physical contacts occurring at dif-

ferent environments (home, work, school, transport, leisure, etc.) for periods of

time that range between a few minutes and several hours. These authors stud-

ied 97, 904 contacts among 7, 290 participants in 8 Europeans countries. They

recorded the age, sex, location, duration, frequency, and occurrence of physical

contact. As they study the occurrence of these social contacts in places like home,

work, school, leisure, transport, and others as well as the combination of them,

this study accounts for both close and casual contacts among individuals. Infor-

mation on social contacts was obtained using cross-sectional surveys conducted

by different commercial companies or public health institutes in Belgium (BE),

Germany (DE), Finland (FI), Great Britain (GB), Italy (IT), Luxembourg (LU),

The Netherlands (NL), and Poland (PL). The recruitment and data collection

were organised at the country level according to a common agreed quota sampling

methodology and diary design. The surveys were conducted between May 2005

and September 2006 with the oral informed consent of participants and approval

of national institutional review boards following a small pilot study to test the

feasibility of the diary design and recruitment.
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Each participant in that study was given the following instructions when filling

in the diary [91]:

• Record in the diary every person that you have contact with on your assigned

day.

• A contact is defined as:

– Either a two-way conversation with three or more words in the physical

presence of another person,

– Or physical skin-to-skin contact (for example a handshake, hug, kiss or

contact sports).

• Write down every person that you contact during the day, regardless of

whether the contact was long or short, and whether you know the person or

not.

• Contacts made exclusively by telephone or mobile phone should not be

recorded.

• If you contact the same person several times in the course of the day, only

record him/her once, and record the total time you spent with that person

over the entire day. So each person you meet during the day and have contact

with should only have one line in the diary: one person, one line.

• Please provide information on your contact, namely:

– Age.

– Gender.

– How long the contact with the person was over the entire day.
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– Places where contact(s) occurred (you may indicate several locations).

– How often you contact this person in general.

– Whether there was skin-to-skin contact.

• If you don’t know the exact age, give an estimate of the age range (e.g.

40 − 45) and try to make it as narrow as possible.

• Estimate the total duration of time spent in the presence of the contact

person that day. Example: 5 − 15 minutes for a contact in a shop or 1 − 4

hours for longer contact caring for a child at home.

• After you have finished recording the diary, we suggest that you double check

the diary entries by trying to remember all of your activities to make sure

you have not missed any contact persons.

• The order in which you write down your contact persons is not important.

The easiest is to use a chronological order according to when you met the

person for the first time during your assigned day and then add anyone else

that you might remember as you go through your daily activities.

• For the purposes of this study, the day starts at 5 a.m. on the morning of

the day assigned, and ends at 5 a.m. the next morning.

In order to simulate the initial phase of an epidemic, these authors partition the

population into 5 years age bands, and group all individuals aged 70 years and

older together. The focus is on the generic features of epidemic spreading along

the transmission route that is specified by physical and non-physical contacts as

defined here. This process results in 15 age classes. Let αij be the number of at-risk

contacts of an individual in age class j with individuals in age class i. The number

αij is also proportional to the observed number of contacts (both physical and



Social Contacts: Close and Casual Contacts. Evidence 177

non-physical) that a respondent in age band j makes with other individuals in age

band i. The matrix Λ = (kij) is known as the next generation matrix and it can

be used to calculate the distribution of numbers of new cases in each generation

of infection from any arbitrary initial number of introduced infections. If x0 is the

vector of the initial number of infected in generation 0, then the expected numbers

of new cases in the ith generation is given by:

xi = Λix0. (5.1)

The incidence of new infections per age band is obtained by dividing the expected

number of new cases per age class by the number of individuals in each age class.

To facilitate comparison among countries, the distribution of incidence over age

classes is normalised in such a way that for each country the age-specific incidences

sum to one.

Sample Description

A total of 7, 290 diaries covering all contacts made by respondents during a full day

were collected in eight countries ranging from 267 in NL to 1, 328 in DE. 37.6%

of participants in the survey were under 20 years of age, 12.4% of participants

were over 60 years of age, and the medians were 28 years in BE (the lowest) to

33 years in DE (the highest). Returns of diaries by female participants showed

a slight excess in all countries (ranging from 50.8% in FI to 55.7% in DE). In

all countries except DE, single-person households were under-represented in the

sample. This can be partially explained by the fact that children and adolescents

were deliberately oversampled, and they are more likely to live in larger households.

Overall, 35.3% of the participants were in full-time education, 32.64% em-
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ployed, 11% retired, 6.1% home- makers, 3.6% unemployed or seeking employment,

whereas 8.6% recorded other and 2.8% failed to record their occupation. The pro-

portion employed or in full-time education was fairly consistent across the eight

countries; the other categories differed somewhat between countries. The analysis

of the total number of reported contacts using a multiple regression model shows a

consistent pattern of contact in children, a peak among 10 to 19 years old, followed

by a fall to a lower plateau in adults until the age of 50 and a shape decrease after

that age [91].

These authors used different ways to measure the frequency, intensity and

location of contacts and these measures seem to be highly correlated with each

other (see Figure 5.1 for pooled data from all countries). As it can be seen from

Figure 5.1, contacts of long duration or of daily frequency were much more likely to

involve physical contact. In fact, approximately 70% of contacts made on a daily

basis last in excess of an hour, whereas approximately 75% of contacts made with

individuals who have never been contacted before lasted for less than 15 minutes.

Approximately 75% of contacts at home and 50% of school and leisure contacts

were physical, whereas only a third of contacts recorded in other settings were

physical; approximately two-thirds of the persons contacted in multiple settings

involved a contact at home, and so a high proportion were physical.

Based on association rules of maximum length 3 on the frequency, duration

and type of contacts, they show that 75% of the contacts lasting 4 hours or more

involved physical contact and occurred on a daily basis (83%), while 83% of the

first-time contacts lasting less than 5 minutes were non-physical. First time and

occasional contacts mostly lasted less than 15 minutes (lift values 3.3 and 1.8,

respectively) and, when non-physical, this association was intensified (lift values

3.6 and 2.6, respectively). Whether contacts were physical or not did not influence



Social Contacts: Close and Casual Contacts. Evidence 179

the association between contacts lasting at least 4 hours and occurring on a daily

basis nor did it influence the association between contacts lasting from 5 minutes

up to one hour and occurring on a weekly or monthly basis. Overall, 67% of all

physical contacts lasted for at least 1, while 56% of all physical contacts occurred

on a daily basis. Due to the high degree of correlation between physical contact

and other measures of intimate contact, physical contacts were used as a proxy

measure for high intensity contacts.

Figure 5.1: Graphs show data by (A) duration, (B) location, and (C) frequency
of contact; the correlation between duration and frequency of contact is shown in
(D). All correlations are highly significant (p < 0.001, χ2-test). The figures are
based on pooled contact data from all eight countries and weighted according to
sampling weights as explained in the methods (based on household size and age).
Figure reproduced from [91] with the permission of the authors.

Findings of Mossong et al.

These authors found that mixing patterns and contact characteristics were remark-

ably similar across different European countries (see Figure 5.2 A and Figure 5.3

B for all numbers of contacts reported and physical contacts only respectively).
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Figure 5.2: Smoothed contacts matrices for each country based on all reported
contacts occurring in the home setting. White indicates high contact rates, green
intermediate contact rates, and blue low contact rates. Figure reproduced from [91]
with the permission of the authors.

Apart from that similarity, the authors have made a remarkable finding from the

study. They discovered that the social contacts among individuals occur preferen-

tially among those of similar ages. This pattern is particularly pronounced among

children and youngsters in the age range between 5 and 24 years. This can be seen

on the main diagonal for almost all countries where the colour white indicates

high contact rates. This kind of age assortativity is also observed for adults of

about 40 years. This is shown in the figures by two parallel secondary diagonals

starting at roughly 30 − 35 years for both contacts and participants. It is well

known that children, teenagers, and youngsters develop friendship relationships
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Figure 5.3: Smoothed contacts matrices for each country based on physical con-
tacts only occurring in the work setting. White indicates high contact rates, green
intermediate contact rates, and blue low contact rates. Figure reproduced from [91]
with the permission of the authors.

preferentially among them, observing some kind of age assortativity in their social

ties. This pattern is responsible for why children and teenagers are and have been

an important conduit for the initial spread of close contact interactions in the case

of influenza for example. Middle-aged adults are also preferentially tied to other

individuals of similar ages by means of working relationships or other social ties.

The findings of these authors is particularly interesting because of the fact that

it permits us to assess and quantify the risk of transmission in different settings.

The have included different measures of “closeness of contact” such as duration and

frequency of contact and whether skin-to-skin contact occurred. These measures
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correlated highly with each other, such that the longer-duration contacts tended

to be frequent and to involve physical contact (and vice verse). More intimate

contacts are likely to carry a greater risk of transmission. Furthermore, these

types of contact tend to occur in distinct social settings: the most intimate contacts

occur at home or in leisure settings, whereas the least intimate tend to occur while

travelling. Thus, the risk of infection in these settings varies. This variation has

important implications for contact tracing during outbreaks of a new infection.

Their results suggest that if efforts concentrate on locating contacts in the home,

school, workplace, and leisure settings, on average more than 80% of all contacts

would be found. The extent to which individuals preferentially mix with people of

the same age (assortativeness) is a key heterogeneity that is now routinely included

in models and attempts have also been made to further represent the underlying

structure of contact patterns by partitioning the population into household and

workplace compartments [68].

Peter Horby et al. [68] have done a similar study to that of Mossong et al. for

developing countries despite the fact of the almost complete absence of data from

developing countries. They sought to address this knowledge gap by conducting a

household based social contact diary in rural Vietnam. The instructions given to

participants for this study were similar to those for European countries but adapted

to the local context. A diary based survey of social contact patterns was conducted

in a household-structured community cohort in North Vietnam in 2011. They used

generalised estimating equations (GEE) to model the number of contacts while

taking into account the household sampling design, and used weighting to balance

the household size and age distribution towards the Vietnamese population. They

recorded 6675 contacts from 865 participants in 264 different households and found

that mixing patterns were assortative by age but were more homogeneous than
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observed in the recent European study [91].

There are similarities in the results found by Peter Horby et al. in compar-

ison to the results of Mossong et al. By using the same definition of a contact

and comparable methodology to a large European study, they have identified both

similarities and potentially important differences in their study site in Vietnam.

Similarities with the European data include significant over dispersion in the dis-

tribution of contacts and no gender differences in reported contact frequency. They

also observe a peak in contact frequency in school age children, but in contrast to

the European data, they also observed a second peak in adults aged 40−60 years.

Another similarity with the European study was that prolonged and frequent con-

tacts, and contacts occurring at home were much more likely to be physical in

nature. However, there were important differences in the total number of con-

tacts, and the duration and intimacy of contacts.

Overall they recorded a mean of 7.7 contacts per participant per day versus

13.4 in the study by Mossong et al. The lower number of daily contacts they

recorded may be a feature of the particular community studied or may reflect a

recall bias introduced by the retrospective nature of the study design compared to

the prospective design of the European study. Over 80% of contacts that occurred

on a daily basis in the Vietnam study were more than 4 hours, compared to only

around 45% in the study by Mossong et al. Physical contact was more common

in the European study, with 75% of home contacts being physical compared to

around 45% in their study, and over 60% of daily contacts being physical compared

to around 40% in their study. The importance of these differences to disease

patterns depends on the relative importance of duration of contact versus intimacy

of contact on the probability of successful transmission.

The contact patterns in their study were more homogeneous than that reported
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elsewhere. They observed smaller differences between age groups in contact fre-

quency and no significant differences between household sizes. They saw similar

patterns of age dependent mixing to those reported by Mossong et al, with pro-

nounced assortative mixing seen as a high intensity diagonal, signals of parent-child

mixing, and a ‘plateau’ of mixing of adults with one another. They also observed

no significant differences in contact frequency by day of the week, whereas signifi-

cantly more contacts in Europe were recorded on weekdays compared to weekends.

This may be because weekends are not generally observed as a special rest period

in rural Vietnam to the extent they are in Europe. They also saw fewer contacts

in ‘leisure’ settings (1% vs 16%), which may reflect true differences in the amount

of time devoted to leisure, cultural differences in the conceptual separation be-

tween work, family and leisure activities, or limitations of the survey method in

distinguishing leisure from other activities.

5.3 Role of Assortativity in Social Networks and

its Implications on Long-Range Interactions

The role of assortativity in social relationships has been well documented. In

social science it is also known as “homophily” and refers to the observed fact

that “similarity breeds connections” or that “birds of a feather flock together.”

There are many dimensions of homophily that include race and ethnicity, sex

and gender, age, religion, education, occupation and social class. An excellent

compendium on homophily in social networks is the work of McPherson et al. [84].

To review some of the results described in [84], it has been found in studies of

close friendship that homophily (assortativity) by age is the strongest dimension

controlling the relationships, with only the exception of race. For instance, about
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38% of close friends among men in Detroit were found to be within two years of

age and 72% within eight years. This assortativity is less marked in the people in

the 60+ age group, which has been the only group for which there was significant

outbreeding [84]. These results on social friendship, or close contacts, reproduce

very well those obtained for the social contacts, which include both close and

causal contacts, in the work of Mossong et al. [91] and of Horby et al. [68].

Consequently, the assortativity relationship between social contacts (close and

casual) and age is indicative of the relationship between social distance between

individuals and social contacts. By social distance we mean the shortest path

distance between two individuals in their social network. That is, two teenagers

who are not friends are closer to each other than they are to some middle-aged

strangers. The probability that these two teenagers frequent the same place, e.g.,

concerts, cinema, school, etc., is larger than that for the social contact among the

teenager and the adult.

By social network we understand here the social interaction between individu-

als that can be considered to be of relevance for epidemiological studies and which

excludes those contacts that do not correlate with transmission opportunities for

infections, such as links by means of only letters, telephone, emails, etc. Unfortu-

nately, we have not found studies that provide empirical evidence of other types of

homophily in the casual contacts among individuals. However, it is highly proba-

ble that individuals with similar ethnicity, religion, education, occupation, social

class, etc., who have been found to be closer in their social networks [84], live in

similar geographic locations, use similar transportation, and visit similar places

for leisure than individuals with less similarities, confirming the hypothesis of a

correlation between casual contacts and social distance. Homophily/Assortativity

is the principle that a contact between similar people occurs at a higher rate than
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among dissimilar people.

The pervasive fact of homophily means that cultural, behavioural, genetic or

material information that flows through networks will tend to be localised. Ho-

mophily implies that distance in terms of social characteristics translates into net-

work distance, the number of relationships through which a piece of information

must travel to connect two individuals. It also implies that any social entity that

depends to a substantial degree on networks for its transmission will tend to be

localised in social space and will obey certain fundamental dynamics as it interacts

with other social entities in an ecology of social forms.

We are aware of the lack of empirical data about casual contacts in real social

systems. Even the empirical study of Mossong et al. [91] and Horby et al. [68]

does not include social contacts among individuals in a confined space or in close

physical proximity in which the individuals are not talking to each other, e.g.,

crowds at concerts. Then, we look for some empirical evidence that allows us

to model casual social contacts. In some cases these casual encounters between

individuals have been modelled by considering that they occur at random [13, 14,

44, 79, 91].

The concept of proximity is widely used in social sciences, in particular in in-

novation studies, organisation science, and regional science [76]. In many cases

“proximity” refers to “geographical proximity,” such as territorial, spatial, local,

or physical proximity. Therefore, different types of proximity facilitate the perfor-

mance and survival of organisations. There are however some others dimensions

of proximity such as ‘institutional proximity’, ‘organisational proximity’, ‘cultural

proximity’, ‘social proximity’ and ‘technological proximity’. Social proximity in

particular refers to actors that belong to the same space of social relations [76].

Social proximity is sometimes denoted as personal proximity or as relational prox-



Social Contacts: Close and Casual Contacts. Evidence 187

imity. In some cases it has been observed that geographical proximity is subordi-

nate to the social one. For instance, for the transmission of knowledge Agrawal et

al. [2] have concluded that “geographical proximity matters most in the absence

of social proximity that may otherwise facilitate access to knowledge”. However,

it is difficult in many cases to disentangle social and geographical proximities. In

fact, it has been stated that the dichotomy between spatial and aspatial indices is

somewhat a false one, since both types of measures incorporate implicit notions of

social distance” [112]. We then assume here that in general the concept of social

proximity encloses important information about other types of proximities, such as

the geographical and cultural ones. Geographical proximity is the most frequent

used dimension of proximity in the literature and is sometimes called territorial,

spatial, local or physical proximity. It can be also considered as the absolute

distance that separates actors. The relevance of geographical proximity in social

networks rely on the fact that small geographical distances facilitate face-to-face

interactions and, therefore, fosters knowledge transfer and innovation. The main

reasoning behind these effect is that short geographical distances bring organisa-

tions (or individuals) together, favour interactions with a high level of information

richness and facilitate the exchange of, especially tacit, knowledge between actors.

The larger the distance between actors, the more difficult it is to transfer these

tacit forms of knowledge. All of these concepts of proximity refer to the idea of

“being close to something measured on a certain dimension”.
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5.4 Attempts for Accounting for all Close Con-

tacts

There have been several studies made on the relationship between human mobility

and the spread of infections. Human travel is responsible for the geographical

spread of human infectious disease. D. Brockamnn et al. [30] made a study on

human mobility that can help to understand the spread of diseases when closed

and casual contact are considered. They reported on a solid and quantitative

assessment of human travelling statistics by analysing the circulation of bank notes

in the United States, using a comprehensive data set of over a million individual’s

displacements. The central aim of their work was to use data collected at online

bill-tracking websites (which monitor the world-wide dispersal of large numbers of

individual bank notes) to infer the statistical properties of human dispersal with

very high spatio-temporal precision.

Analysis Description

In order to track and analysis human movement, the authors obtained trajectories

of 464, 670 dollar bills from the bill-tracking system www.wheresgeorge.com. They

studied the dispersal of bank notes in the U.S., excluding Alaska and Hawaii. The

data consisted of 1, 033, 095 reports to the bill-tracking website. From the reports,

they then calculated the geographical displacements r = |x2 − x1| between a first

(x1) and secondary (x2) report location of a bank note and the elapsed time T

between successive reports. The qualitative features of bank note trajectories

are illustrated by short-time trajectories (T < 14 days) originating from three

major U.S. cities: Seattle, New York and Jacksonville. After their initial entry

into the tracking system, most bank notes are next reported in the vicinity of
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the initial entry location, that is |x2 − x1| < 10 km (Seattle, 52.7%; New York,

57.7%; Jacksonville, 71.4%). However, a small but considerable fraction is reported

beyond a distance of 800 km (Seattle, 7.8%; New York, 7.4%; Jacksonville, 2.9%).

From a total of 20, 540 short-time trajectories originating across the U.S., they

measured the probability P (r) of traversing a distance r in a time interval δT of 14

days. 71% of secondary reports occurred outside a short-range radius Lmin = 10

km. Between Lmin and the approximate average East-West extension of the United

States, Lmax < 3, 200 km, the kernel shows power-law behaviour P (r) ∼ r1+β

with an exponent β = 0.59 ± 0.02. They shown that for r < Lmin, P (r) increases

linearly with r, and implies that displacements are distributed uniformly inside the

disk |x2 − x1|Lmin. The probability P (r) was measured for three classes of initial

entry locations: highly populated metropolitan areas (191 sites, local population

Nloc > 120, 000), cities of intermediate size (1, 544 sites, local population 120, 000 >

Nloc > 22, 000) and small towns (23, 640 sites, local population Nloc < 22, 000),

comprising 35.7%, 29.1% and 25.2% of the entire population of the United States,

respectively. Despite systematic deviations for short distances, they shown that

all distributions P (r) show an algebraic tail with the same exponent β < 0.6,

which confirms that the observed power-law is an intrinsic and universal property

of dispersal. In summary these authors found the following:

• Travelling distances distribution of bank notes decays as a power law, show-

ing that trajectories of bank notes are reminiscent of scale-free random walks

i.e. ‘Levy flights’. A Levy flight is a random walk for which the step size ∆r

follows a power-law distribution, i.e.

P (∆r) ∼ (∆r)−1+β
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where the displacement exponent β is such that β < 2.

• The probability of remaining in a small spatially confined region for a time

T is dominated by algebraically long tails that attenuate the super-diffusive

spread. They show that human travelling behaviour can be described math-

ematically on many spatio-temporal scales by a two-parameter continuous-

time random walk model to a surprising accuracy, and conclude that human

travel on geographical scales is an ambivalent and effectively superdiffusive

process.

Given that money is carried by individuals, bank note dispersal is a proxy

for human movement, suggesting that human trajectories are best modelled as a

continuous-time random walk with fat-tailed displacements and waiting-time dis-

tributions. A particle following a Levy flight has a significant probability to travel

very long distances in a single step which seems to be consistent with human travel

patterns: most of the time we travel only over short distances, between home and

work, whereas occasionally we take longer trips. Each consecutive sighting of a

bank note reflects the composite motion of two or more individuals who owned

the bill between two reported sightings. Thus, it is not clear whether the observed

distribution reflects the motion of individual users or some previously unknown

convolution between population-based heterogeneities and individual human tra-

jectories. Owing to that fact, a similar study has been done by Marta C. Gonzalez

et al. [65]. They studied instead the trajectory of 100, 000 mobile phone users by

detecting their position during the period of a half year. Contrary to bank notes,

mobile phones are carried by the same individual during his/her daily routine,

offering the best proxy to capture individual human trajectories.

Marta C. Gonzalez et al. used two different data sets for exploring the mobility

pattern of individuals. The first data set (D1) consisted of the mobility patterns
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recorded over a six-month period for 100, 000 individuals selected randomly from

a sample of more than 6 million anonymous mobile phone users. The location

of the tower routeing the communication was recorded at each time a user initi-

ated or received a call or a text message, allowing them to reconstruct the user’s

time-resolved trajectory. The time between consecutive calls followed a ‘bursty’

pattern, indicating that although most consecutive calls are placed soon after a

previous call, occasionally there are long periods without any call activity. To

make sure that the obtained results were not affected by the irregular call pattern,

they also studied a second data set (D2) that captured the location of 206 mobile

phone users, recorded every two hours for an entire week. In both data sets, the

spatial resolution was determined by the local density of the more than 104 mobile

towers, registering movement only when the user moved between areas serviced by

different towers. The average service area of each tower was approximately 3 km2,

and over 30% of the towers covered an area of 1 km2 or less. The authors explored

the statistical properties of the populations mobility patterns, they measured the

distance between users positions at consecutive calls, capturing 16, 264, 308 dis-

placements for the D1 and 10, 407 displacements for the D2 data set. It has been

found that the distribution of displacements over all users is well approximated by

a truncated power-law:

P (∆r) = (∆r + ∆r0)
−β exp(−∆r/κ) (5.2)

where β = 1.75 ± 0.15, ∆r0 = 1.5 km and cut-off values κ|D1 = 400 km, and

κ|D1 = 80 km.

In summary these authors have found the following:

• They found that, in contrast to the results found by D. Brockamnn et al.
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(the random trajectories predicted by the prevailing Levy flight and ran-

dom walk models), human trajectories show a high degree of temporal and

spatial regularity, each individual being characterised by a time-independent

characteristic travel distance and a significant probability to return to a few

highly frequented locations.

• The individual travel patterns collapse into a single spatial probability distri-

bution, indicating that, despite the diversity of their travel history, humans

follow simple reproducible patterns. This inherent similarity in travel pat-

terns could impact all phenomena driven by human mobility from epidemic

prevention to emergency response, urban planning and agent-based mod-

elling.

Finally, there is a group of empirical evidence that is important for the development

of the current approach. This refers to the way in which individuals establish

their links in social networks. We remark that the number of close and casual

contacts among individuals has been claimed to be proportional to the probability

of creating links among them [35]. This probability has been considered to be

proportional to the gain that these two individuals will obtain from the new link

[69]. Similarly, Sorenson and his co-authors have assumed that the new social links

are created on the basis of the “expectations of the value” of those relationships

[114]. An illuminating piece of evidence for the use of a “value motivation” for the

establishment of social relations was obtained by Manson [81] in the study of the

primates rhesus macaques. Manson [81] observed that “a young female may gain

by investing in a friendship with a low-ranking male who

1. is not presently sought by many females as a friend and,

2. will stay in the group and achieve high rank and thus have high protective
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ability in the future.”

So far, it is evident that the creation of new social ties is seen as an investment

in which the “future value” of the relation is more important than the “present

value” that the establishment of this link represents.

Summary

We have seen that there is empirical evidence that support the following claims:

1. Social contacts among individuals are somewhat determined by their social

distance. They account for an amalgam of proximities including social and

geographical ones.

2. The number of close and casual contacts is somewhat determined by the

probability of linking pairs of individuals by means of short-range and long-

range interactions.

3. The probability of linking pairs of individuals in a network depends on the

future value that such a new link will bring to both individuals.
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Chapter 6

Accounting for Close and Casual

Contacts in Complex Networks

In Chapter 3 of the first part we have analysed and described the spreading of

disease in a population and complex networks. Models studied in that chapter

are characterised by the fact that an infected node can only transmit infections

to its close neighbours or close contacts along the edges of the network conceptu-

alised by its adjacency matrix. There are many things we can consider on a social

network and it is difficult to capture all the information which is relevant to the

disease spreading. The adjacency matrix that represent the network is then an ap-

proximation to represent only close contact among individuals. In this chapter we

aim to combine the empirical evidence analysed in Chapter 5 of the first part and

summarised in the three points at the end of it (see page 193) into a mathematical

model. That is we are going to construct a network model that will account for

close and casual contacts via short contacts and long-range contacts. Our aim is

to account for the probability that two individuals have social contacts that are

relevant for the transmission of an infection. Most of the material in this Chapter,

195
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Chapter 5 and all the following chapters are based on our paper [56].

6.1 The Network

6.1.1 Probability of establishing Short/Direct-Contacts

We start by considering the existence of a social network among a group of in-

dividuals that is represented by a graph G = (V,E). We assume that the social

relationship between node i and node j in a network, which is represented by

(i, j) ∈ E, corresponds to one that conveys close contacts of relevance to the

transmission of the type of infection under consideration. In doing so we are as-

suming that if (i, j) ∈ E, the probability εij that the two nodes have close social

contacts is equal to 1, i.e., εij ≡ 1. Our next assumption is that if (i, j) /∈ E,

then the probability that both nodes have social contacts is not necessarily equal

to zero, but is such that 0 < εij < 1. This means that both nodes can “eventually

meet” in the same place and time by means of some kind of casual contacts, such

as in transport, leisure, the supermarket, etc. Using empirical evidence points

(1) and (2) at the end of Chapter 5 on the page 193, we will assume that this

probability is determined by the structure of the social network, in particular by

the probability of establishing a new link between both nodes.

6.1.2 Probability of establishing Long-Range Contacts

Now we are going to use point (3) of the summary on page 193 from Chapter 5

to determine the probability εij for non-nearest neighbours (or for long-range con-

tacts). That is, we assume that if two nodes are not directly connected, they will

have casual contacts in a way that is proportional to the establishment of a new

link between them. They will see the establishment of this new link as an invest-
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ment in which its future value will determine their decision to form a new tie. We

consider such a process like the one in which the time value of money, in particular

the future value of a growing annuity is determined in quantitative finance [22].

6.1.3 Future Value (FV) of a piece of Information

Assume that we have a piece of information with a value of 1.00 now and we want

to invest it to earn r interest. After one period, we will have the value of 1.00 plus

the interest earned on the 1.00. Let FV be the future value of information and r

be the annual interest rate. Then,

FV = 1 + r. (6.1)

Repeating the process, at time 2 we will have

FV = (1 + r) + r(1 + r) = (1 + r)2 (6.2)

and the future value of the piece of information with value 1.00 invested for n

periods is

FV = (1 + r)n. (6.3)

If for example r = 0.10 and n = 2, we have

FV = (1 + r)n = (1.10)2 = 1.21.
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If instead of starting with a piece of information with 1.00 we start with a piece

of information having present value, PV , of 50, the value at time 2 is

FV = PV (1 + r)n (6.4)

= 50(1.10)2 = 60.50.

With a 0.10 interest rate, the value 50 grows to 55 at time 1. The value 55 grows

to 60.50 at time 2. Equation (6.4) is the standard compound interest formula.

The term (1 + r)n is called the accumulation factor. The power of compounding

(earning interest on interest) is dramatic. It can be illustrated by computing how

long it takes to double the value of an investment.

6.1.4 Present Value (PV) of a piece of Information

Starting with Equation (6.4), we have

PV =
FV

(1 + r)n
. (6.5)

Using Cn to denote the future value of information at the end of period n and r to

denote the time value of that information, the present value, PV , of Cn is given

by:

PV =
Cn

(1 + r)n
(6.6)

or, equivalently,

PV = Cn(1 + r)−n, (6.7)

where (1 + r)−n is the present value of the piece of information with value 1 to be

received at the end of period n when the time value of information is r. The term

(1 + r)−n is called the present value factor.
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Example 6.1.1 • What is the present value of a piece of information with

value 1.00 to be received three time periods from now if the time value of the

information is 0.10 per period? We have that Cn = 1$, n = 3 and r = 0.10.

Using (6.7) we get PV = (1 + 0.10)−3 = 0.7513.

• The present value of a piece of information with value 100.00 to be received

three time periods from now if the time value of the information is 0.10 is

given by PV = 1000(1 + 0.10)−3 = 75.13.

Now lets come back to networks and instead of money we generalise the process

by considering that a node lends a piece of information to another node. This in-

formation has a future value FV that is determined, according to the quantitative

finance theory, by its present value PV , the interest rate r, and the number of time

periods t at which the information is lent [21]. Here we assume that if the node

i lends some information to node j, the information flows through the shortest

path connecting both nodes (or one of them if more than one exists) according to

empirical evidence point (2) of the summary on the page 193. The information is

passed using a discrete time in which every step in the path is considered to have

a unit time. That is, the number of periods for which the information is borrowed

is assumed here to be equal to the shortest path separation of the two nodes.

Let us consider the shortest paths between the two nodes as a directed chain

from the lender to the borrower. We assume that the chain has length l and that

the nodes are numbered in consecutive order starting with 1. In a process of lending

information from node v1 to node vl+1, the information is first transferred to node

v2 with a value A and an interest rate r. The present value of the information in

the hands of node v2 is

A

(1 + r)
. (6.8)
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Then node v2 enriched this information by a given value g, which we will designate

as the growth rate of the information [21]. When node v2 lends this information

to node v3 with the same interest and growth rates, the information will have a

value

A(1 + g)

(1 + r)2
, (6.9)

in the hands of node v3. As every node in the chain lends the information to its

nearest neighbour with interest r and growth rate g, the information in the hands

of borrower node vl+1 will have a value of

A(1 + g)l−1

(1 + r)l
. (6.10)

The cumulative present value of the information in this process is given by the

sum of all the values at the nodes of the chain [21]:

PV =
A

(1 + r)
+

A(1 + g)

(1 + r)2
+ · · · + A(1 + g)l−1

(1 + r)l
. (6.11)

If the growth and interest rates are the same, i.e., g = r, the present value of the

information is simplified to

PV =
Al

1 + r
. (6.12)

Then, the future value of the information is given as [21]

FV = Al(1 + r)l−1. (6.13)

We will consider here that A ≡ 1 for the sake of simplicity. Then, because in a

connected network any two nodes i and j are separated by a shortest-path distance

dij, the expression for the future value of the information transmitted from i to j
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is given by

FV = dijx
dij−1, (6.14)

where x = 1 + r = 1 + g. We consider here that lending information is carried

out with a negative gain g. That is, every node will appropriate some part of the

information they receive before lending to its nearest neighbour. Due to this, a

node prefers to lend information to its closest neighbours than to far strangers.

We also consider that the maximum benefit that a node can have is by lending

information to its nearest neighbour. As a consequence, the values of the parameter

x are bounded as 0 6 x < 0.5. The value x = 0 presents the situation in which

no long-range transmission is allowed, which corresponds to the case in which

only close contacts take place (as considered in Chapter 3). When x → 0.5, the

nodes are allowed to transmit information directly to their non-nearest neighbours

(long-range contacts). This situation represents scenarios in which a substantial

proportion of transmission is due to casual contacts. To avoid the future value

of nodes separated at distance 2 becoming equal to unity, equation (7.16) must

satisfy the inequality

dijx
dij−1 < 1. (6.15)

So when dij = 2, the parameter x should be such that

0 ≤ x < 0.5. (6.16)

In closing, the probability to establish long-range contacts in our model is given

by:

εij = FV = dijx
dij−1, (6.17)
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which means that the maximum social contacts is obtained for the nearest neigh-

bours and it decreases with the increase of the social distance between the two

nodes. This simple model agrees with the three groups of empirical evidence

analysed in summary page 193 of Chapter 5. In addition it also agrees with the

empirical observation that most of the transmission usually occurs through close

contacts rather than through casual ones [35]. At this point it is straightforward

to propose a matrix representation M for the social contacts (close and casual)

among all nodes in a network. The entries of this matrix, that represents the

network, are defined as follows:

1. M(i, j) = 1 if individuals i and j are directly connected, that is, this entry

accounts for direct contact or close contacts in the network,

2. M(i, j) = dijx
dij−1 if individuals i and j are not directly connected in the

network and are separated by a distance dij, that is, this entry accounts for

long-range contacts or casual contacts between i and j, decreasing when the

distance separating nodes increases,

3. M(i, j) = 0 otherwise.

The matrix representation M is exactly the ‘generalised graph matrix’ introduced

in [50] to describe a more general network structure. Properties of this matrix will

be described in the next section.

6.2 Generalised Topological Index and the Gen-

eralised Graph Matrix

Generalised Topological Indices have been introduced by E. Estrada [50] by means

of the vector-matrix-vector multiplication (VMV) and the Generalised Graph Ma-
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trix of a graph G, Γ(G, x, p) which gives a unified expression from which classical

topological indices can be obtained. The generalised graph matrix Γ(G, x, p) intro-

duced was shown to describe a more general network structure under which, not

only different topological indices of chemical properties can be obtained, but also

encompasses the classical network information as a particular case [50]. In this

sense, the Generalised Graph Matrix allows, for instance, to consider long-range

interactions in a performing network and to defined the generalised centralities

measures [94].

6.2.1 Mathematical Definition

Let G = (V,E) be a network with |V | = n vertices and |E| = m edges. Let dij

denote the geodesic distance between vertices i 6= j in G. The generalised graph

matrix Γ(G, x, p) is a n × n symmetric matrix whose elements gij are defined as

gij =






1 if i ∼ j

(dijx
dij−1)p if i 6= j and i ≁ j,

0 if i = j.

(6.18)

From this matrix Γ(G, x, p), the most important graph matrices can be obtained

as particular cases for different values of x and p. Thus, for instance, Γ(G, 0, 1) =

A(G), the adjacency matrix of the graph G, and Γ(G, 1, 1) = D(G), the topological

distance matrix of the graph G. In this thesis we will consider the case when p = 1

and simply write the generalised graph matrix as Γ(G, x) which corresponds to

the matrix M introduced at the end of the previous section.

The parameter x can have several interpretations according to the field of

study. From now on, in this thesis, we will call the parameter x the ‘conductance’
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as it controls the way in which casual contacts are allowed in a network. In a zero

conductance network only close contacts are allowed, which can be the case for the

transmission of sexually transmitted diseases or computer viruses. As an example,

Figure 6.1: G = (V,E), with |V | = 5 vertices and |E| = 5 edges

for the graph G in Figure 6.1 we obtain the following generalised graph matrix

Γ(G, x, p = 1) =





0 1 2x 2x 3x2

1 0 1 1 2x

2x 1 0 1 2x

2x 1 1 0 1

3x2 2x 2x 1 0





(6.19)

which, for the particular value

Γ(G, x = 0) =





0 1 0 0 0

1 0 1 1 0

0 1 0 1 0

0 1 1 0 1

0 0 0 1 0





= A(G), Γ(G, x = 1) =





0 1 2 2 3

1 0 1 1 2

2 1 0 1 2

2 1 1 0 1

3 2 2 1 0





= D(G).

A generalised topological index GTI [50] associated to a graph G is defined as a
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generalised vector-matrix-vector invariant through the generalised graph matrix

GTI[G] = KuT (y,−→w , q)Γ(x, p)v(z,−→s , r),

where K is a constant and u(y,−→w , q) and v(z,−→s , r) are column vectors whose

components are given by

ui(y,−→w , q) = (ωi +
n∑

j=1

gij(y, 1))q

and

vi(z,
−→s , r) = (si +

n∑

j=1

gij(z, 1))r.

6.2.2 Properties of the Matrix Γ(G, x)

We consider only undirected networks, so that the matrix Γ(G, x) is symmetric.

The first observation concerning the matrix Γ(x) is that it represents a weighted

complete graph in which the weights of the non-adjacent nodes are given by wij =

dijx
dij−1. Let Pk be the k-path matrix of the network, whose entries are defined

as follows:

(Pk)ij =






1 if there is a path of length k between node i and j,

0 otherwise.

(6.20)

Note that P1 = A. Then, the matrix Γ(G, x) can be represented as a polynomial-

matrix also known as a λ-matrix

Γ(G, x) = A + 2xP2 + 3x2P3 + · · · + DxD−1PD, (6.21)
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where D is the diameter of the network. In this sense the generalised network

matrix can be represented by a multi-layered network as illustrated in Figure 6.2.

Lambda-Matrix

Figure 6.2: Multilayer representation of the Γ(G, x). In (a) a social network with
5 nodes and 5 social connections is represented. In layers (b) and (c) the eventual
proximity interactions between nodes are represented. Eventual proximity of nodes
in (b) and (c) are given by 2x and 3x2, respectively. Layer (d) represents the
superposition of the three previous layers and accounts for both direct and LR
transmission of an infection by superposing the social and proximity networks.

A λ-matrix is a m × n matrix whose elements are polynomials in the scalar λ;

the coefficient of the polynomials may be complex numbers. Such a matrix may

obviously be considered as a polynomial in λ whose coefficients are constant m×n

matrices. In the case of the generalised graph matrix Γ(G, x) we have that λ = x.

The derivative of the matrix Γ(G, x) with respect to x is defined as the ma-

trix whose elements are the first derivative of the elements of the same matrix.

Therefore

dΓ(G, x)

dx
= 2P2 + 6xP3 + · · · + (D − 1)DxD−2PD,

and if Γ1(G, x) and Γ2(G, x) are two x-matrices then we have:

d

dx
[Γ1(G, x) + Γ2(G, x)] =

dΓ1(G, x)

dx
+

Γ2(G, x)

dx
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and

d

dx
(Γ1(G, x)Γ2(G, x)) =

dΓ1(G, x)

dx
Γ2(G, x) + Γ1(G, x)

dΓ2(G, x)

dx
.

It is important to note that the order of the factors must always be preserved.

This implies that in general

d

dλ
(Γn(G, x)) 6= nΓn−1(G, x)

dΓ(G, x)

dx

for integers n > 1, as one might hope, but that

d

dλ
(Γn(G, x)) =

n∑

i=1

Γi−1(G, x)
dΓ(G, x)

dx
Γn−1(G, x).

For non-singular matrices we have

Γ−n(G, x)Γn(G, x) = I,

Where I is the identity matrix. Therefore we have

dΓ−n(G, x)

dx
Γn(G, x) + Γ−n(G, x)

Γn(G, x)

dx
= 0.

Thus the derivative of a negative integer power of Γ(G, x) is given by

dΓ−n(G, x)

dx
= −Γ−n(G, x)

dΓ−n(G, x)

dx
Γ−n(G, x). (6.22)

The integral of Γ(G, x) with respect to x is simply defined as the matrix whose
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elements are the corresponding integrals of the elements of Γ(G, x), that is

∫
Γ(G, x)dx = A

∫
dx + 2P2

∫
xdx + 3P3

∫
x3dx + · · · + DPD

∫
xD−1dx

= xA + x2P2 +
3

4
x4P3 + · · · + PD + C,

where C is a constant matrix. There is a relation between the Jackson and Wolin-

sky model presented in Chapter 4 and the generalised network matrix Γ(G, x)

introduced in this section. This relationship will be analysed later.

In general the determinant of the matrix Γ(G, x), |Γ(G, x)| depends on x and

we call the values of x for which |Γ(G, x)| = 0 the latent roots of Γ(G, x). If xi is

any such root, then the sets of homogeneous equations

Γ(G, x = xi)u = 0 and v
′

Γ(G, x = xi) = 0 (6.23)

have at least one non-trivial solution for u and v respectively. Any non-trivial

solutions of (6.23) are known as right or left latent vectors of Γ(G, x), respec-

tively. The number of linearly independent solutions of either set is equal to the

degeneracy of Γ(G, x). If Γ(G, x) has degeneracy αi, then there are αi linearly

independent right latent vectors (solutions) associated with the latent root xi, and

similarly for the left latent vectors. As Γ(G, x) is a symmetric matrix, then the

subspace of right and left latent vectors associated with a particular root coincide.

Latent roots and vectors are only defined for matrices dependent on a parameter.
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6.3 Generalised Degree

For a given node, the generalised degree is given by a polynomial of the form:

ki(x) =
∑

j

Aij + 2x
∑

j

(P2)ij + · · · + DxD−1
∑

j

(PD)ij, (6.24)

which clearly is the ‘classical degree’ of the node when x = 0. The analogous result

of the Handshaking Lemma 0.5.10 of the introduction page 21 for the generalised

network matrix reads as follow:

n∑

i=1

ki(x) = 2(|P1| + 2x|P2| + 3x2|P3| + · · · + DxD−1|PD|), (6.25)

where |Pk| stands for the number of paths of length k in the network, and |P1| = m

is the number of links. Indeed the generalised degree of a node is the sum of the

weights of the edges adjacent to it and every edge of weight one or dijx
dij−1 connects

two vertices. Therefore the sum of generalised degree must be the double of the sum

of the weights of all the edges. We can also generalise all concepts on networks on

the basis of the generalised graph matrix, such as degree distribution, average path

length, clustering coefficient, degree centrality [93, 94], eigenvalue centrality [94],

betweenness centrality [94], communicability centrality [54], subgraph centrality

[57], the Estrada Index [49] etc. For instance the generalised degree distribution

of a given network can be obtaining by plotting the probability p(k, x) of finding

a node of degree k for a certain value of the parameter x, versus the generalised

degree k(x), where

p(k, x) =
n(k, x)

n
, (6.26)

in which n(k, x) is the number of nodes having generalised degree k(x). We recall

that the procedure is quite similar to what is done for the ‘strength distribution’
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in weighted networks [38]. However, in the current case the distribution converges

to the degree distribution of the network when x → 0. Also, because k(x) is not

an integer it is customary to use ranges of values of the generalised degree in order

to obtain n(k, x). In the next section we will analyse an interesting effect that

takes place when the generalised degree distribution is studied for heterogeneous

networks for different values of the parameter x.

6.3.1 Generalised Degree for Some Special Networks

Path Network, Pn

A path network contains only vertices of degree 1, also called terminals, and ver-

tices of degree 2. If the nodes are labelled from 1 to n starting from an endpoint,

the degree distribution of the path for x = 0, consists of two peaks at k1 = 1 and at

kn = 1 with probability p(k1) = p(kn) = 2
n

and peaks at ki = 2 (i = 2, · · · , n − 1)

with probability p(ki) = n−2
n

. Now, when x 6= 0 the generalised degrees for termi-

nals are given by:

k1(x) = kn(x) =
D∑

α

αxα ∀x, (6.27)

where D is the diameter of the network. For any other vertex of degree 2 the

generalised degree is given by

ki(x) = 1 +

ǫi∑

α=1

αxα ∀x, (6.28)

where ǫi is the greatest geodesic distance (also known as the eccentricity) between

node i and any other vertex.

Cycle Network, Cn

In a cycle network every vertex has degree 2. For x = 0 the degree distribution of

a cycle network consists of one peak at ki = 2 with probability p(ki) = 1
n
. When
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x 6= 0 the generalised degree of every vertex is given by:

ki(x) = 2
D∑

α

αxα ∀x, (6.29)

where D is the diameter of the network.

Star Network, Sn

The star network is a very simplified network in which a central node has n − 1

nearest neighbours and all the other nodes are only connected to the central one.

Then, it can be considered as a simple example of a network with ‘heterogeneous’

degree distribution [51]. The degree distribution of the star for x = 0 consists

of two peaks, one at ki = 1 with probability p(ki) = (n − 1)/n and another at

kj = n − 1 with probability 1/n , which indeed is a very skew distribution. Now,

when x 6= 0 the generalised degrees of the two nodes are given by:

ki(x) = 1 + (n + 1)x ∀x, (6.30)

and

kj(x) = n − 1, ∀x. (6.31)

Consequently, when

x → n − 2

n(n − 1)
(6.32)

in the star graph both types of nodes have exactly the same generalised degree,

i.e., ki = kj = n−1, which means that the generalised degree distribution consists

of only one peak at k = n − 1 with unit probability. This distribution is identical

to those of regular networks, indicating that the ‘degree heterogeneity’ of the star

graph has disappeared as a consequence of the consideration of LR interactions

among its nodes. The same situation occurred when we analysed the generalised
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degree distribution of networks with power-law degree distributions obtained for

instance with the BA model.

Complete Network, Kn

In a complete network each pair of vertices is connected by an edge. The complete

network with n vertices has
(

n
2

)
= n(n− 1)/2 (the triangular numbers) undirected

edges. The degree distribution of a complete network for x = 0 consists of one

peak at ki = n− 1 with probability p(ki) = 1
n
. For x 6= 0 the generalised degree of

every vertex is given by:

ki(x) = n − 1, ∀x. (6.33)

6.3.2 Connection with Jackson and Wolinsky Model

If we consider the Jackson and Wolinsky model of Chapter 4 in which δ = x for

a network in which wii = 0 ∀i ∈ V , wij = 1 and cij = 0 ∀i, j ∈ E, the utility

function of a node i introduced by Jackson and Wolinsky can be written as:

ui =

∫
ki(x)dx (6.34)

which indicates that the utility is the area under the curve defined by the polyno-

mial representing the generalised degree of a node. The probabilities introduced

by Carvalho and Iori [31] are then expressed as,

π(u) =

∫
ki(x)∑

i

∫
ki(x)

. (6.35)

These probabilities do not recover in the limit the Barabási-Albert [17] ones, i.e.

p(u) = ki/2m and consequently this model cannot be seen as a generalisation of

the BA preferential attachment. However, the following simple modification based

on the generalised network matrix model immediately recovers the BA model in
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the limit when x → 0. This modification simply consists of the use of the following

probability instead of the one given by (6.35):

π(k(x)) =
ki(x)∑
i ki(x)

(6.36)

6.3.3 The Study of the Generalised Degree for BA Net-

work

An interesting effect takes place when the generalised degree distribution is studied

for networks with ‘heterogeneous’ degree distributions. In this section we are going

to study how the generalised degree of a BA network changes with the values of the

parameter x. We want to answer the question: what happens to the generalised

degree of each node when the value of x increases? In Figures 6.3 and 6.4 we
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Figure 6.3: Illustration of the evolution of the degree of the nodes in a network
created with the BA model as the values of the conductance change. Here for a BA
network with n = 1000 and k ≈ 6 we represent the values of the generalised degree
k(x) for every node for different values of 0 6 x 6 0.5. Notice that there is an
inversion of the centrality of the nodes as the values of the conductance increases.
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Figure 6.4: Illustration of the evolution of the degree of the nodes in a network
created with the BA model as the values of the conductance change. Here for a BA
network with n = 1000 and k ≈ 6 we represent the values of the generalised degree
k(x) for every node for different values of 0.6 6 x 6 1. Notice that there is an
inversion of the centrality of the nodes as the values of the conductance increases.

illustrate the typical values for a BA network in which we simply represent the

nodes in the abscissa and generalised degree of the nodes in the ordinate. In

Figure 6.3 (a) we illustrate the case for x = 0. This plot looks like any typical

distribution of the degrees in a SF network, with very few nodes of high degree

and many of low degree. Now, if we explore what happens when the value of

x increase, the results are very appealing see Figure 6.3 (b)-(f) and Figure 6.4

(a)-(e). As can be seen, there is an inversion in the population of high and low

degree nodes in the network. After a certain value of x the original hubs of the

network become the poorest connected ones in terms of the generalised degree

ki(x) =
∑n

j=1 Γij(G, x). We allow for a while that x takes values up to 1. At the

same time all nodes with low degree k(x = 0) are now among the most central

ones in the network according to k(x = 1). This inversion is a direct consequence
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of the fact that ki(x = 1) =
∑n

j=1 dij is the sum of all distances from node i to

the rest of the nodes in the network. Then, in Figure 6.4 (e) (in which x = 1) we

observe the distribution of the distance-sum for every node in the network.

6.3.4 The Study of the Generalised Degree for ER Net-

work

We wish also to study what happen to the generalised degree of the nodes in

an ER network. As we can see from the Figure 6.5 and Figure 6.6 all the node

degrees for different values of x such that 0 6 x 6 0.5 are localised in a band

which have almost the same value, reflecting the homogeneity in the node degree

for a Poissonian network.
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Figure 6.5: Illustration of the evolution of the degree of the nodes in a network
created with the ER model as the values of the conductance change. Here for a
ER network with n = 1000 and k ≈ 6 we represent the values of the generalised
degree k(x) for every node for different values of x such that 0 6 x 6 0.5.
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Figure 6.6: Illustration of the evolution of the degree of the nodes in a network
created with the ER model as the values of the conductance change. Here for a
ER network with n = 1000 and k ≈ 6 we represent the values of the generalised
degree k(x) for every node for different values of x such that 0.6 6 x 6 1.

6.3.5 Relationship between Degree and Generalised De-

gree

In this section we want to compare the node degree (x = 0) and the generalised

degree (x 6= 0) when x is increasing. One way to do this is to compute the rank

correlation coefficients, between degree and generalised degree. Rank correlation

coefficients such as Spearman’s rank correlation coefficient (ρ) or Kendall’s rank

correlation coefficient (τ) [125] measure the extent to which, as one variable in-

creases, the other variable tends to increase, without requiring that increase to

be represented by a linear relationship. If, as one variable increases, the other

decreases, the rank correlation coefficients will be negative. They are used to

measure the association between two measured quantities. The ρ and τ test are

a non-parametric hypothesis test which uses the coefficient to test for statistical
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dependence. They assess how well the relationship between two variables can be

described using a monotonic function. If there are no repeated data values, a

perfect Spearman correlation of +1 or −1 occurs when each of the variables is

a perfect monotone function of the other. Without going into much detail, the

Kendall rank correlation coefficients can be mathematically formulated as follow:

Kendall rank correlation

Let (x1, y1), (x2, y2), · · · , (xn, yn) be a set of joint observations from two random

variables X and Y respectively, such that all the values of (xi) and (yi) are unique.

Any pair of observations (xi, yi) and (xj, yj) are said to be concordant if the ranks

for both elements agree: that is, if both xi > xj and yi > yj or if both xi < xj and

yi < yj. They are said to be discordant, if xi > xj and yi < yj or if xi < xj and

yi > yj. If xi = xj or yi = yj, the pair is neither concordant nor discordant. The

Kendall τ coefficient is defined as:

τ =
(number of concordant pairs) − (number of discordant pairs)

1
2
n(n − 1)

(6.37)

Spearman rank correlation

The Spearman correlation coefficient is defined as the Pearson correlation coeffi-

cient between the ranked variables. For a sample of size n, the n raw scores Xi,

Yi are converted to ranks xi, yi, and ρ is computed from these:

ρ =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
∑

i(yi − ȳ)2
(6.38)

Tied values are assigned a rank equal to the average of their positions in the

ascending order of the values. In applications where ties are known to be absent,

a simpler procedure can be used to calculate ρ. Differences di = xi − yi between

the ranks of each observation on the two variables are calculated, and ρ is given
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by:

ρ = 1 − 6
∑

i d
2
i

n(n2 − 1)
(6.39)

We will be interested here only in the Kendall τ measure. Figure 6.7 shows an

illustration of the Kendall rank correlation coefficient between the degree and the

generalised degree for BA and ER networks. As can be seen when the conductance

increases, there is an inversion in the rank correlation coefficient going from positive

values to negative values for BA and ER networks. The inversion point in the rank

correlation coefficient appears earlier in BA networks than in ER networks.
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Figure 6.7: Illustration of the Kendall rank correlation coefficient τ between the
degree (x = 0) and the generalised degree (x 6= 0) for BA and ER networks having
both n = 1000 nodes and average degree k ≈ 6.

6.4 Extension of the concepts of Subgraph Cen-

trality, Closeness, and Betweenness Central-

ity

In a social network, a centrality measure is used to characterise the importance of a

node or a group of nodes in the network. In this section we are going to extend the

definitions of some of those measures that will be relevant for the next chapters
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of this thesis. Several measures have been introduced and details on centrality

measures can be found in [52].

6.4.1 Subgraph Centrality in terms of the Generalised Graph

Matrix Γ(G, x)

The subgraph centrality (SC) measure measures the participation of each node in

all subgraphs in a network. This measure was introduced in 2005 by E. Estrada [57]

who has shown that the subgraph centrality measure can be obtained from the

spectra of the adjacency matrix of the network. The aim of this section is to

extend this concept when the generalised graph matrix of the network Γ(G, x) is

used. We will also extend the concept of closeness and betweenness centralities

measure in the framework of the generalised graph matrix Γ(G, x). Subgraph

centrality as introduced in [57] is defined in terms of the adjacency matrix A

of the network. Let G be a simple graph of order n as shown in [57] subgraph

centrality of a vertex i is defined to be the sum of the closed walks of different

lengths in the network starting and ending at vertex i. In this sum all subgraphs

are considered. Here, we are going to extend subgraph centrality in terms of the

generalised graph matrix Γ(G, x). The key concept behind subgraph centrality is

the characterisation of the importance of a node by considering its participation

in all closed walks starting and ending at it. In terms of the matrix Γ(G, x), and

for a given value of x, a closed walk of length k, starting and ending at node i

denoted by µk(i, x) ∈ R is given by the ith diagonal entry of the kth power of the

matrix Γ(G, x), that is,

µk(i, x) = (Γk(G, x))ii, 0 ≤ x ≤ 1, (6.40)
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where (Γ(G, x))k
ii = (Γk(G, x))ii for simplicity. We notice that µk(i, x) is also the

number of closed walks of length k starting and ending at node i. This number of

walks µk(i, x) is a real number instead of an integer as it was in the case when the

adjacency matrix is considered. Following [57] the generalised subgraph centrality

SC(i, x) for a vertex i and for a given conductance x can be written as:

SC(i, x) =
∞∑

k=0

µk(i, x). (6.41)

As the sum in (6.41) is divergent we need to scale the contribution of closed walks
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Figure 6.8: Generalised subgraphs centrality measures in the BA network having
100 nodes and average degree k ≈ 6 and for different values of the conductance x.

to the centrality of the vertex i by the factorial of the order of the spectral moment

and rewrite (6.41) as follows:

SC(i, x) =
∞∑

k=0

µk(i, x)

k!
. (6.42)
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If λm(x) is an eigenvalue of the matrix Γ(G, x) corresponding to the eigenvector

vm(x), then we have:

Γ(G, x)vm(x) = λm(x)vm(x) m = 1, · · · , n (6.43)

Letting λ1,Γ(x) be the largest eigenvalue of Γ(G, x), we have

(Γ(G, x))ii(vm(x))i = λm(x)(vm(x))i ≤ λ1,Γ(x)(vm(x))i, (6.44)

and

((Γ(G, x))ii)
k ≤ (λ1,Γ(x))k, (6.45)

therefore

µk(i, x) ≤ λk
1,Γ(x), i = 1, · · · , n (6.46)

and we can show that the series (6.42) of non-negative terms converges

∞∑

k=0

µk(i, x)

k!
≤

∞∑

k=0

λk
1,Γ(x)

k!
= eλ1,Γ(x). (6.47)

Thus, the subgraph centrality for every vertex i and for a given x is bounded above

by:

SC(i, x) ≤ eλ1,Γ(x). (6.48)

Theorem 6.4.1 Let G = (V,E) be a simple graph of order n. Let v1, v2, · · · , vn

be an orthonormal basis of R
N composed from the eigenvectors of the matrix Γ(x)

associated to the eigenvalues λ1(x), λ2(x), · · · , λN(x). Let vi
j(x) be the i component
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of vj. For all i ∈ V , the generalised subgraph centrality SC(i, x) is given by:

SC(i, x) =
N∑

j=1

(vi
j(x))2eλj(x) i = 1, · · · , N. (6.49)

proof 6.4.2 We can write (6.40) as follow,

µk(i) = (Γk(x))ii =
〈
Γk(x)ei, ei

〉
=

〈
Γk(x)

N∑

j=1

pj(ei),
N∑

j=1

pjei

〉
=

N∑

j=1

λk
j (x)(vi

j(x))2,

(6.50)

where pj(ei) is the orthogonal projection of the unit vector ei, the ith vector of the

canonical basis of R
N on vj. Using expression (6.42), we obtain,

SC(i, x) =
∞∑

k=0

( N∑

j

λk
j (x)(vi

j(x))2

k!

)
. (6.51)

Reordering the terms of the series of (6.51), we obtain the absolute convergent

series

SC(i, x) =
N∑

j

( ∞∑

k=0

(vi
j(x))2

λk
j (x)

k!

)
, (6.52)

and this finishes the proof.

An alternative way of computing the subgraph centrality of node i is to take the

iith entry of the exponential matrix expm of the generalised graph matrix Γ(G, x),

that is

SC(i, x) = (exp(Γ(G, x)))ii. (6.53)
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Figure 6.9: Generalised subgraphs centrality measures in the BA network having
100 nodes and average degree k ≈ 6 and for different values of the conductance x.

6.4.2 Communicability in terms of the Generalised Graph

Matrix Γ(G, x)

Communicability between a pair of nodes in a network is assumed to depend on all

routes that connect two nodes. The shortest path being one of those routes makes

the most important contribution as it is the most ’optimal’ way of connecting two

nodes in a network. The new concept of communicability in networks introduced

in [54] is expressed in terms of the adjacency matrix of the network A. As we

did for the subgraph centrality, we are also going to extend this new concept of

communicability measure in the framework of the generalised graph matrix Γ(x).

Following [54] the communicability between pairs of nodes p and q uses the same

strategy making longer walks have small contributions to the communicability

function than shorter ones. If P s
pq is the number of the shortest paths between the

nodes p and q having length s and W
(k)
pq is the number of walks connecting p and



Accounting for Close and Casual Contacts in Networks 224

q of length k > s, the communicability between nodes p and q can be written as:

Gpq =
1

s!
P s

pq +
∑

k>s

1

k!
W (k)

pq . (6.54)

The communicability between a pair of nodes in a network is usually considered as

the shortest path connecting both nodes. However, the expression (6.54) for the

communicability between a pair of nodes (p, q) accounts not only for the shortest

paths communicating them but also for all the other walks that permit for a

“particle” or a piece of information to travel from one to the other. The strategy

in (6.54) is to make longer walks have lower contributions to the communicability

function than shorter ones. In the framework of the generalised graph matrix

Γ(x), the quantities Gpq, P s
pq and W

(k)
pq will be functions of the conductance of the

medium x. Taking into account the conductance of the medium, expression (6.54)

can be generalised in the following way:

Gpq(x) =
1

s!
P s

pq(x) +
∑

k>s

1

k!
W (k)

pq (x). (6.55)

In term of the power of the generalised graph matrix Γ(x), the generalised com-

municability between nodes p and q may be formally determined by:

Gpq(x) =
∞∑

k=0

(Γ(x))k

k!
= eΓ(x), (6.56)

where 0 ≤ x ≤ 1. Using the graph spectrum of Γ(x) we can rewrite ((6.56)) in the

following form:

Gpq(x) =
n∑

j=1

φp
j(x)φq

j(x)eλj(x), (6.57)
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where φp
j(x) is the pth element of the j th orthonormal eigenvector of the generalised

matrix Γ(x) associated with the eigenvalue λj(x).

6.4.3 Closeness Centrality in terms of the Generalised Graph

Matrix Γ(G, x)

Sometimes it is important to look not for the nodes of high degree, but for those

which are relatively close to all other nodes in the network. An appropriate mea-

surement of the centrality of a node for a connected network G = (V,E) having

n vertices and m edges, is defined as the inverse of the sum of shortest path dis-

tances from the node in question to all other nodes in the network. This centrality

measure is known as closeness centrality [52], which is expressed by:

CC(i) =
1∑

j∈V (G) dij

. (6.58)

Closeness centrality of a vertex i is also defined as the geodesic mean from vertex

i to all other nodes in the network. Let us assume that a piece of information

is carried from one node to another in the network. In the framework of the

generalised graph matrix the closeness centrality of a node i is defined this time as

the inverse of the sum of the future values εij = FV = dijx
dij−1 (see Chapter 6) of

the information transmitted from a node i to nearest and non nearest neighbours

nodes j that is:

CCi(x) =
1∑

j∈V (G) εij

. (6.59)

When x = 1 we recover the closeness centrality of the node i and when x = 0,

CCi(x) is the inverse of the degree centrality [52] of the node i.
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6.4.4 Betweenness Centrality in terms of the Generalised

Graph Matrix

Apart from the closeness centrality we can consider the relative importance of a

node in the communication between other pairs of nodes. These nodes facilitate

or inhibit the communication between other nodes in the network. Betweenness

centrality measure accounts for the proportion of information that passes through

a given node in communicating other pairs of nodes in the network. Following [52],

we are going to define the betweenness centrality in the framework of the gener-

alised graph matrix matrix. Let us assume that information is going from one

node to another through the shortest paths connecting those nodes. Then for a

given conductance, if ρ(i, j, x) is the number of these shortest paths from node i

to node j, and ρ(i, k, j, x) is the number of these shortest paths that pass through

node k in the network for a conductance x, the betweenness centrality of node k

in this framework is given by:

BC(k)(x) =
∑

i

∑

j

ρ(i, k, j, x)

ρ(i, j, x)
, i 6= j 6= k. (6.60)

It is known that communication between pairs of nodes in complex networks does

not always take place through the shortest paths connecting pairs of nodes. In

many real-world situations such communication occurs by using some or even all

of the available channels to go from one place to another in the network. Sev-

eral measures have been proposed to account for the betweenness of a node when

communication takes place by using such other alternative ways. These measures

include for instance the communicability betweenness centrality [54], the flow be-

tweenness centrality, and the random walk betweenness centrality. The details

about these measures can be found in [52].
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6.4.5 Influence of the Conductance on Centrality Measures

In this section we want to analyse what happens to the generalised subgraph

centrality, closeness centrality, communicability or betweenness centrality when

we increase the conductance of the medium. We will only restricted here to the

generalised subgraph centrality and closeness centrality. The impact of this effect

will be exploited later when we will study the spreading of infection in networks.

We consider the Barabási-Albert and the Erdö-Rényi networks having both a small

number n = 100 nodes for simplicity and average degree k ≈ 6. We shall also

consider real-world networks; the network of corporate directors of the 500 top

corporations in the USA and the jazz musicians network. In this section we will

allow x to vary between 0 and 1. In order to have a clear idea of the results reported
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Figure 6.10: Generalised subgraphs centrality measures in the ER network having
100 nodes and average degree k ≈ 6 and for different values of the conductance x

in Figure 6.8, 6.9, 6.10 and 6.12, we report in Figure 6.11 the mean subgraph

centrality value and the variance for different value of the conductance. As can

be seen from the Figure 6.11 the mean subgraph centrality value is increasing as
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the conductance increases. As the reported variance is very small (less than 0.2),

there is no large variability in the node subgraph centralities as the conductance

increases. There is a kind of transition in the subgraph centralities corresponding

to a particular value of the conductance where the mean subgraph centrality value

reaches its maximum associated to the lowest value of the variance. Then after

this critical point, the mean centrality value decreases and keeps a very small value

of the variance.
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Figure 6.11: Illustrations of the mean subgraph centrality and variance for different
values of the conductance in the BA and ER networks having both 100 nodes and
average degree k ≈ 6.

In Figure 6.8 and Figure 6.9 we are plotting the subgraph centralities measures

of nodes for the Barabási-Albert (BA) graph and in Figure 6.10 and Figure 6.12

we show the nodes subgraph centralities for the Erdös-Rényi (ER) random graph

and for different values of the conductance x. The first thing that we can see

from these plots is that the centralities of nodes are changing as the value of the

conductance increases. To see how the values of nodes centralities are affected by

the conductance, we have reported in Table 6.1 and Table 6.2 the first ten most

central nodes and the first ten less central nodes for the Barabási-Albert graph and

in Table 6.3 we present the first ten central nodes only for Erdö-Rényi network and

for different values of x. In both cases it can be seen that the most central nodes
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are becoming the less central nodes as the value of the conductance x is increasing

(Table 6.1 and Table 6.2 for BA and for ER (Table 6.3). There is an inversion

in the nodes subgraph centralities. Centralities show a power-law distribution for

small values of x (x ≤ 0.1) for the BA graph and a certain homogeneity for the

ER graph. For instance for the BA graph this fact is similar to what we observed

earlier in the generalised degrees of nodes when increasing the conductance, see

page 213.

It is known that from expression (6.42) the subgraph centrality of the vertex i

is defined as the sum of closed walks of different length in the network starting and

ending at vertex i, with shorter closed walks being more important than longer

closed walks. When x = 0 there is no influence of the term dijx
dij−1 and smaller

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Nodes

S
C

(i)

 

 

x=0.6

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Nodes

S
C

(i)

 

 

x=0.65

(b)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Nodes
S

C
(i)

 

 

x=0.67

(c)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Nodes

S
C

(i)

 

 

x=0.73

(d)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Nodes

S
C

(i)

 

 

x=0.8

(e)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Nodes

S
C

(i)

 

 

x=1

(f)

Figure 6.12: Generalised subgraphs centrality measures in the ER network having
100 nodes and average degree k ≈ 6 and for different values of the conductance x

distance means that nodes of high degree (hubs) in BA or ER graphs participate

in a large number of smaller subgraphs of length two and contribute more to the

subgraph centralities for these nodes. Longer walks having weight close to zero.
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That is why we see that nodes of high degree in BA networks having larger sub-

graph centrality when x = 0 and showing a power-law distribution (for x ≤ 0.1).

In ER networks most of the nodes have the same degree and also participate in

the same large number of small subgraphs of length two when x = 0 giving more

contribution to the centrality of nodes showing certain homogeneity in the node

centrality. When x 6= 0, the term dijx
dij−1 influence directly the generalised sub-

graph centralities of nodes. Let us consider the quantity d(k)xd(k)−1 where d(k) is

the average shortest path distance for nodes having degree k. When x increases,

the term d(k)xd(k)−1 is larger for nodes of high degree (for example the hubs in

a BA network) which means that these nodes participate in a small number of

subgraphs of length two having the weight dijx
dij−1 than in subgraphs of length

two having weight one. At the same time the term d(k)xd(k)−1 is smaller for nodes

of law degree which means that these nodes participate in a very large number of

subgraphs of length two having weight dijx
dij−1 than in subgraphs of length two

having weight one.

In short, when x increases nodes of law degree participate in a large number of

subgraphs (closed walks) of length two having a weight greater that one, but nodes

of high degree participate in a large number of smaller subgraphs (closed walks)

of length two having weight one than in subgraphs of length two having weight

more than one. This fact explains why central nodes i.e. nodes having high cen-

trality in BA or ER networks are becoming less central nodes, i.e. nodes of law

centrality as the value of the conductance increases. These are the scenarios we

are observing in Figure 6.8 and Figure 6.9, Figure 6.10 and Figure 6.12 or in

Table 6.1, Table 6.2 and Table 6.3 when centralities is changing with x showing

nodes of larger centrality becoming nodes of small centrality when x increases and

vice-versa. In Figure 6.19 we illustration the generalised closeness centrality for
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Table 6.1: First 10 most central nodes (left to right) for different values of x for a
BA network having n = 100 nodes and average degree k ≈ 6.

x nodes

0.00 6 3 5 4 8 2 7 14 1 16
0.02 6 3 5 4 8 2 7 14 16 1
0.06 6 3 5 8 4 2 7 14 16 1
0.1 6 3 5 8 4 2 7 14 16 1
0.4 3 6 5 8 4 2 16 7 14 1
0.5 3 4 6 5 8 2 7 1 16 14
0.6 4 3 1 13 8 5 10 7 2 18
0.63 46 18 71 10 68 13 4 1 15 35
0.65 71 46 68 18 90 35 57 51 33 45
0.66 71 68 46 90 35 45 18 98 57 51
0.67 71 68 90 46 98 45 35 63 55 33
0.70 55 63 60 96 98 97 71 45 73 74
0.73 87 91 94 89 72 55 60 76 88 86
0.76 80 91 87 89 88 94 72 86 78 76
0.8 80 91 89 87 88 94 78 72 86 99
0.9 80 91 89 88 87 78 94 72 99 86
1 80 91 89 88 87 78 94 72 99 86

each node in a BA network having n = 100 nodes and average degree k ≈ 6. As

can be seen, there is an inversion in the generalised closeness centrality of nodes as

the conductance x increases. This fact can be explained by a similar argument as

for the generalised subgraph centrality of each node. Indeed when x = 0 nodes of

high degree show larger closeness centrality. When x increases, the term dijx
dij−1 is

increasing for nodes of high degree result in a lower generalised closeness centrality.

Relation Between Subgraph Centrality and Generalised Subgraph Centrality

The results obtained in the previous section indicate that if we compute the rank

correlation coefficient between centralities (x = 0) and generalised centralities

(x 6= 0) we will also observe a point where the initial positive correlation becomes

negative (as this was the case for the degree and the generalised degree of Sec-

tion 6.3.5). In Figure 6.13 and Figure 6.14 we plot the rank correlations of nodes
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subgraph centralities for a BA graph.
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Figure 6.13: Rank correlations between subgraph centrality and generalised sub-
graph centrality for a BA network having n = 100 nodes and average degree k ≈ 6
and for different values of x.

In Figure 6.13 and Figure 6.14 we only compute the Spearman’s rank correla-

tion coefficient (ρ) for the BA network having n = 100 and average degree k ≈ 6.

In Figure 6.15 and Figure 6.16 we plot the Spearman’s rank correlation for ER

network with same number on nodes and average degree. For values of x much

larger than zero, the correlation coefficient is close to zero showing no correlation

between rank centralities of nodes as seen in Figure 6.17. For a certain range of

values of x this correlation is negative showing inverse correlation between ranks

of nodes centralities and generalised centralities.

The same effects on subgraph centrality can also be formulated for the com-

municability centrality and betweenness centrality.
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Figure 6.14: Rank correlations between subgraph centrality and generalised sub-
graph centrality for a BA network having n = 100 nodes and average degree k ≈ 6
and for different values of x.
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(d) ρ = 0.9655
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Figure 6.15: Rank correlations between subgraph centrality and generalised sub-
graph centrality for a ER network having n = 100 nodes and average degree k ≈ 6
and for different values of x.

We can do the same analysis for real-world networks. For instance the network

of corporate directors of the top 500 corporations in the USA and the network of
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Figure 6.16: Rank correlations between subgraph centrality and generalised sub-
graph centrality for a ER network having n = 100 nodes and average degree k ≈ 6
and for different values of x.
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Figure 6.17: Evolution of the rank correlation coefficient ρ as a function of the
conductance for BA and ER networks. The inversion point in the centrality mea-
sure is pretty much the same for both BA and ER networks, but in BA network
this inversion point is reached much earlier than in ER network.

jazz musicians. Due to the memory limitation of computers, it becomes impossible

to compute the subgraph centrality (or communicability centrality) of the vertex

i for large networks when the value of x is increasing and when the generalised
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Table 6.2: First 10 less central nodes (left to right) for different values of x for a
BA network having n = 100 nodes and average degree k ≈ 6.

x nodes

0.00 87 80 88 94 89 76 91 72 86 95
0.02 80 88 87 89 94 91 65 76 86 72
0.06 80 88 87 89 91 94 65 86 72 76
0.1 80 88 87 91 89 94 65 86 72 78
0.4 80 91 89 88 87 78 94 65 86 72
0.5 80 91 89 88 87 78 65 94 99 86
0.6 80 91 89 88 78 87 65 94 99 50
0.63 80 91 89 88 78 65 87 99 50 94
0.65 80 91 89 88 78 65 87 50 99 6
0.66 80 6 89 91 88 5 78 8 65 50
0.67 6 80 5 8 3 16 14 2 88 89
0.70 6 5 8 3 4 2 16 14 7 19
0.73 6 5 8 3 4 2 16 14 7 1
0.76 6 5 3 8 4 2 16 14 7 1
0.8 6 5 3 8 4 2 16 14 7 1
0.9 6 3 5 8 4 2 16 14 7 1
1 6 3 5 8 4 2 16 14 7 1

graph matrix Γ(x) is considered. To overcome this difficulty we use the relation

exp(Γ(x) − rI) = exp(−r) exp(Γ(x)). (6.61)

This means that if we simply use (exp(Γ(x) − rI))ii as the subgraph centralities

we will obtain values which are linearly correlated with those of (exp(Γ(x)))ii but

having smaller values. This technique has been used for the corporate directors

and jazz musicians networks. As for theoretical networks we have also provided

in Figure 6.20 and Figure 6.21 plots for rank correlations of nodes centralities for

the networks of corporate directors and jazz musicians showing also and inversion

of nodes centralities when x increases.
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Table 6.3: Top 10 most central nodes (left to right) for different values of x for an
ER network having n = 100 nodes and average degree k ≈ 6

x nodes

0.00 87 34 11 84 26 45 30 21 27 41
0.02 87 34 11 84 26 30 45 21 27 41
0.06 87 34 11 84 26 30 27 21 45 42
0.1 87 34 11 84 26 30 27 21 45 77
0.4 87 34 11 84 77 30 27 26 32 42
0.5 87 34 11 84 77 27 30 32 26 42
0.6 87 34 11 77 27 84 32 50 12 42
0.63 77 87 11 34 27 12 86 50 42 32
0.65 86 12 77 70 9 50 83 27 45 42
0.66 83 86 70 12 94 9 77 6 50 45
0.67 83 94 70 86 3 6 9 12 95 2
0.70 83 3 62 94 2 99 6 15 51 95
0.73 81 53 72 62 51 85 57 69 0 36
0.76 53 0 72 81 57 69 36 85 23 51
0.8 53 0 72 81 57 36 69 23 55 85
0.9 53 0 72 81 57 23 36 69 55 85
1. 53 0 72 81 57 23 36 69 55 59

6.5 Age-Assortativity and the Modification of Watt-

Strogatz Model

Based on the empirical evidence provided in Chapter 5 we have set up in Section 6.1

a network model that accounts for close and casual contacts relevant to the trans-

mission of epidemics. In this section we are going to show that our model is able

to reproduce the age-assortativity/homophily as observed in the work of Mossong

et al. [91]. Epidemics are usually modelled on small-world networks [28]. That is,

individuals are placed at the nodes of a regular lattice whose links represent close

contacts along which the infection may spread to others. Then, an infection pro-

ceeds either locally (through close contacts), within a prescribed neighbourhood,

or through casual contacts established at random between any two individuals

[28, 89, 95, 119]. That is, in this case the long-range interactions among individu-
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Figure 6.18: Generalised closeness centrality measures for each node in a BA
network having n = 100 nodes and average degree k ≈ 6 and for different values
of the conductance x.

als are considered to be at random and not to depend at all on the social distance

between individuals in the network.

6.5.1 Random Rewiring and Age Homophily

In this section we are going to illustrate the lack of age homophily when casual

contacts are considered as random. For this, we modify the Watts-Strogatz (WS)

model [123] in order to account for the age of individuals. For simplicity, we

start from a cycle graph of 100 nodes, and then we connect every node to its

second nearest neighbours as shown in Figure 6.22 (a). This lattice, which is a

circulant graph, is known as the WS-graph for rewiring probability p = 0.0. We

then assign an age to every node staring from the node labelled as 1. The ages are
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Figure 6.19: Generalised closeness centrality measures for each node in a BA
network having n = 100 nodes and average degree k ≈ 6 and for different values
of the conductance x.

assigned starting from 0 years with a clockwise increment of 0.757 years. The node

labelled as 100 is then 75 years old. Thus, the nearest neighbours have similar ages,

reproducing the observed age homophily in real social networks [68, 72, 84, 91]. In

addition, the youngest and older nodes are also linked together as a consequence

of the circular nature of the lattice. This characteristic has also been observed
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Figure 6.20: Rank correlations for the network of corporate directors of the top
500 corporations in the USA for different values of x.
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Figure 6.21: Rank correlations for the network measures for the jazz musicians for
different values of x.

in real-world social relationships [68, 72, 84, 91]. We shall call this modified WS-

graph/model the aged-WS model. For the aged-WS graph we proceed with the

typical rewiring of links with probability p > 0.0 as illustrated in Figure 6.22 (b) in
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(a) Cycle graph of 100
nodes

(b) Random rewiring (c) NonRandom rewiring

Figure 6.22: In (a) individuals are places on a WS-model starting from node
labelled 1 to node labelled 100. Individual 1 has age 0, individual 2 has 0.757
and individual 100 has age 75. In (b) we are rewiring some edges at random. For
example link (16, 15) has been rewired at random to link (15, 100) and link (10, 9)
has been rewired at random to link (9, 20) and so on. In (c) the rewiring is not
random, but depends on the distance between nodes. For instance the link (15, 16)
is rewired to the link (15, 20) but taking into account the distance between the
node 15 and 20 represented in red.

which few links have been rewired completely at random. Then, we calculate the

average age of the nearest neighbours of each node for a given rewiring probability

and report the average for the groups of ages 0− 5, 5− 10, 10− 15, 15− 20, 20−

30, 30 − 40, 40 − 50 , 50 − 60, 60 − 70, and 70+ as in the work of Mossong et

al. [91].

The results are also illustrated in Figure 6.23. As can be seen in Figure 6.23

the classical WS model is unable to reproduce the age assortativity observed in

social contacts. As p → 1.0, all nodes tend to have neighbours of the same average

age. The age assortativity disappears even for small values of p. For instance, for

nodes in the group 10−15, which are known to display high age homophily in real

networks [91], the average age of nearest neighbours is almost doubled from 12.5

for p = 0.0 to 22.8 for p = 0.4. For the nodes with ages between 5 and 24 for which

Mossong et al. [91] have found strong age assortativity, the average age of nearest

neighbours is almost duplicated for p = 0.5 when a random rewiring is used in the



Accounting for Close and Casual Contacts in Networks 241

Figure 6.23: Average age of the nearest neighbour nodes in different age groups (see
text) by using the WS model with node ages and a random rewiring of links. The
ages are organised from top to bottom at probability 0.0 in the following groups:
0−5, 5−10, 10−15, 15−20, 20−30, 30−40, 40−50, 50−60, 60−70, and 70+.

age-WS model. In closing, the randomness of casual contacts is not able to explain

the age assortativity observed by Mossong et al. [91] and other possibly existing

homophilies in the social contacts among individuals in eight different European

countries.

6.5.2 Deterministic Rewiring and Age Homophily

One of the main characteristics of the current model (see Section 6.1) is that it

reproduces the age assortativity observed by Mossong et al. [91] in the social con-

tacts in real networks. We consider the modification of the age-WS model used

in the previous section in which casual contacts depend this time on the social

distance between individuals. Then, instead of considering a random rewiring

such as in the age-WS model we consider that for nodes i and j, with dij > 1,
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the probability that i has a link with j is given by pij = dijx
dij−1. That is, the

rewiring is carried out here on the basis of the “social distance” that separates two

individuals (the social distance between two individuals being the shortest path

length between them). That is a link, lets say (i, j), is rewired to the link (i, k)

not just at random, but this rewiring depends on the distance between i and k

and the rewiring probability is given by pik = dikx
dik−1. That is why here we call

this kind of rewiring deterministic as opposed to the completely random one of the

previous section. Using exactly the same age assignation to nodes as in the previ-

ous section (see Figure 6.22 (a)). As can be seen, from Figure 6.24, the aged-WS

Figure 6.24: Average age of the nearest neighbour nodes in different age groups
(see text) by using the WS model with node ages in which the rewiring probability
depends explicitly on the inter node distance. The ages are organised in groups as
in Figure 6.23.

model with distance-based rewiring displays strong age assortativity for all values

of the conductance. In the case of the two extreme age groups, i.e., 0−5 and 70+,

there is a larger difference in the average age of the nearest neighbours between

x = 0.0 and x = 0.5, which is about 18 years. We remark again that in these

groups it has been observed “experimentally” that there is a larger outbreeding
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than in the rest of age groups [91]. For the nodes in each of the other groups of

ages analysed in the previous section the increase of age does not exceed 10 years

even for a high conductivity of x = 0.5, in complete agreement with the empirical

evidence provided by the work of Mossong et al. [91]. For instance, for the same

age group analysed previously (10 − 15 years), the average age of nearest neigh-

bours changes from 12.5 at x = 0.0 to 18.1 at x = 0.5. For the nodes with ages

between 5 and 24 years analysed by Mossong et al. [91] the average age of nearest

neighbours changed only by 6 years when the conductance changed from 0.0 to 0.5.

These results clearly point out the fact that the consideration of social distance

as a director for casual social contacts is of relevance for studying the spread of

infections in the real-world. This characteristic has not long been reproduced by

existing models that account for casual contacts as random long-range interactions

among individuals.

Average Path Length and Average Clustering Coefficient

In Figure 6.25 we plot the characteristic average path length and average clustering

coefficient for Aged-WS model with deterministic rewiring of links. As can be seen

the average clustering coefficient is decreasing as x is increased. The average path
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Figure 6.25: Characteristic average path length and average clustering coefficients
in age-WS model with deterministic rewiring.

length is also decreasing but still high compared to the average path length in the
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random rewiring of the Watts-Strogatz model. In this strategy it is not possible to

have a small word characteristic. That is, having at the same time high clustering

coefficient and low average path length for a certain value of the conductance.

Age-Assortativity Measure

In order to compare the variability in the age of nodes in the random and de-

terministic rewiring, we introduce a measure for the age-assortativity defined as

follow:

1. Random rewiring. In this case the age assortativity measure A(p) given by:

A(p) =
∑

i6=j

(age(i)(p) − age(j)(p))2, (6.62)

where age(i)(p) is the age of individual i for probability p.

2. Deterministic rewiring. For this case the age assortativity measure A(x) is

defined as:

A(x) =
∑

i6=j

(age(i)(x) − age(j)(x))2, (6.63)

where age(i)(x) is the age of node i and age(j)(x) is the age of node j for a given

conductance x. In Figure 6.26 we plot both A(p) and A(x) for the same values of

the probability p, and the conductance x. As can be seen, the age assortativity

measure A(p) in the random rewiring is always large than the age assortativity

measure A(x) in the deterministic rewiring. This is telling us that there is less age

variability in the deterministic rewiring than in the random rewiring. This fact

is also in agreement with the age homophily observed in the work of Mossong et

al. [91].
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Figure 6.26: Age assortativity measure A(x) in the deterministic rewiring and
A(p) in the random rewiring. As can be seen the assortativity measure in random
rewiring is larger than the age assortativity measure in the deterministic rewiring.
There is less variability in the age of nodes in deterministic rewiring than in random
rewiring. This fact is in agreement with the age homophily observed by Mossong
et al. [13]



Chapter 7

Non-Linear Dynamical System

(NLDS)

In Chapter 3 we studied the epidemics in complex networks and we presented

various equations that described the spread of epidemics in different scenarios.

Most of those equations were continuous in time or were seen as continuous dy-

namical systems. Several assumptions were made that allowed us to get simpler

approximate equations which were straightforward to solve. For example, the ho-

mogeneous assumption was used in the case of SIS, SIR models on populations.

In the case of epidemics on networks, the assumption of statistical equivalence of

all nodes of the same degree were made to make things easy and in some cases the

degree correlation was completely ignored. We have seen that there is no unified

framework to study and analyse the spread of epidemics. Each model was spe-

cific to a particular case and cannot be used to tackle all cases. In this chapter

we are going to present a probabilistic framework for epidemic spreading in com-

plex networks which is a discrete-time formulation of the problem of contact-based

epidemic spreading in networks. This model has the advantage of being network

246
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free, that is it does not depend on the type of the network under consideration.

It works fine in most of the cases considered. This approach consists of a model

independently developed by Chakrabarti et al. [32] and Gómez et al. [63, 64] on

the basis of susceptible-infected-susceptible (SIS) epidemic models. The model so

far considered was first developed by Chakrabarti et al. [32] as a Non-Linear Dy-

namical System (NLDS) in order to explain the propagation of viruses in computer

networks. More recently, Gómez et al. [63, 64] have proposed a similar Microscopic

Markov-Chain Approach (MMCA), which uses the same principles as in NLDS,

but concentrates on the probability of infection of individuals rather than on the

common heterogeneous mean-field approach. We clarify beforehand that our in-

terest here, as in the precedent papers [63, 64], is in networks of very large size,

with any kind of topology. For obvious reasons we propose to call this model

NLDS/MMCA. The framework introduced separately by these authors will play

an important role in the next chapter of this thesis. All the future development of

the thesis will be based on that framework. Before going into the development of

the NLDS/MMCA let us briefly summarise the propagation of viruses in computer

networks. We begin by a quick overview of the Kephart and White (KW) model.

7.1 Propagation of Computer Viruses

Kephart and White were the first to propose an epidemiology-based model to

study and analyse the propagation of computer viruses [73]. Their model falls into

the general class of the so called homogeneous epidemiological models described

in Chapter 4, that is each individual has equal contact to others in the population

and the rate of infection is principally determined by the density of the infected

population.
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Description of the Kephart-White Model

In the Kephart-White Model (KWM) the communication among individuals is

modelled as a directed graph: a directed edge from node i to node j means that i

can directly infect node j. A rate of infection, the birth rate β is associated with

each edge. A virus death rate δ is associated with each infected node.

Mathematical description of KWM

The mathematical formulation of the SIS model based on the KW assumption will

be derived for a random graph with n nodes and edge probability p. Let η(t) be

the total number of the infected population at time t and let i(t) = η(t)
N

be the

fraction of infected nodes in the population. Given n nodes and edge probability

p, the expected number of edges in the graph is

E = pn(n − 1). (7.1)

Now, if we consider a particular infected node, then the expected number of edges

emanating from that node (also called the connectivity) is

k = E/n = p(n − 1). (7.2)

The fraction of neighbours of the infected node that are susceptible to infection is

f(t) = 1 − i(t) = 1 − η(t)

n
.

The expected number of nodes that can be infected is

k

(
1 − η(t)

n

)
.
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Therefore the total system-wide rate at which infected nodes infect uninfected

nodes is

r(t) = βkη(t)(1 − i(t))

where βk is the average total rate at which a node attempts to infect its neighbours.

The system-wide rate at which nodes are cured is δη(t). The equation of evolution

of i(t) is

di(t)

dt
= βki(t)(1 − i(t)) − δi(t). (7.3)

Since i(t) = η(t)
n

we have also

dη(t)

dt
= βkη(t)(1 − η(t)

N
) − δη(t). (7.4)

The solution to (7.4) is given by:

η(t) =
η0(1 − δ

βk
)

η0

n
+ (1 − η0

n
− δ

βk
)e−(βk−δ)t

(7.5)

where η0 = η(t = 0) is the initial number of infected nodes in the population

(network). The steady state solution of (7.4) is given by:

η = n

(
1 − δ

βk

)
. (7.6)

Equation (7.5) gives the evolution in time of the number of infected nodes in the

network. From equation (7.5) we can see that:

• if δ/β > k then η(t) → 0 as t → ∞ and the infection dies out, and

• if δ/β < k then η(t) → n(1− δ
βk

) and the infection survives and becomes an

epidemic.
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From this fact, we can draw the following conclusion: The epidemic threshold in

the KW model is given by:

τKW =
1

k
. (7.7)

Limitations of KW Model

This model was designed for the epidemiology approach in the case of computer

viruses and assumes a directed network. In the real world, transmission of infec-

tions can go in two directions and therefore the model cannot perform very well for

undirected networks. Moreover, this approach uses the homogeneous assumption.

There is no need for all nodes to have the same average degree. NLDS/MMCA

goes beyond these limitations, by considering not only the case of computer net-

works but any real or random network and also removes the assumption of degree

homogeneity by considering a network with any degree distribution.

7.2 Model definition of NLDS

As mentioned in the previous chapters, a node or an individual in SIS can only be

in two different states either susceptible or infected. For graphs having n nodes,

the process of viruses spreading is described by a Markov chain having 2n possible

states. Each state of the Markov chain corresponds to one particular configuration

of n nodes. It becomes almost impossible to solve this Markov chain for large

networks. In Chapter 4 several assumptions were made to simplify the equations

so they can be easily and straightforwardly solved. Chakrabarti et al. developed

a mathematical model for the SIS method of viral infection, which is applicable

to any undirected graph G. Their model assumes very small discrete time-steps of

size ∆t, where ∆t → 0. Their results can also be applied equally well to continuous

systems, though they focus on discrete systems for ease of exposition. In the NLDS
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model [32], a node i remains healthy at time t in a network if it does not receive

infection from its nearest neighbours at a previous time step, t− 1. In addition, if

the node has been infected, it can recover and become healthy again with a certain

probability. The probability 1− pi,t that the node remains healthy in the network

is given by:

1 − pi,t = (1 − pi,t−1)ξi,t + δpi,t−1ξi,t, (7.8)

where pi,t is the probability that node i is infected at time t, ξi,t is the probability

that it does not receive infection from its nearest neighbours at time t and δ is

the rate at which it can recover from infection. The probability that a node does

not receive infection from its nearest neighbours is assumed to be determined

by the product of individual probabilities (independence assumption), which are

determined by pj,t−1 for all nearest-neighbours of i and by the universal birth rate

of the infection β [32]. That is,

ξi,t =
∏

j∼i

(1 − βpj,t−1), (7.9)

where j ∼ i indicates that j is directly connected to i. The size of the infected

population in the network is given by:

η(t) =
n∑

i=1

pi,t. (7.10)

The quantity ξi,t depends on the universal birth rate of the infection β and the

network topology around i. In this model, within a ∆t time interval, an infected

node i tries to infect its neighbours with probability β. At the same time, i may

be cured with probability δ.
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Independence Assumption

This assumption appears for the first time here in this model. It says that the

states of the nearest neighbours of a given node i are independent from each other,

that is in relation (7.9) the probabilities pj,t−1 are independent from each other.

This assumption places no constraints on network topology; and the method works

with any arbitrary finite graph. Also, this assumption is far less constrained than

the mean field assumption. In fact, Chakrabarti et al. showed experimentally that

the number of infected nodes over time under the independence assumption is very

close to that without any assumptions, for a wide range of datasets. The hypoth-

esis of independence assumption turns out to be valid for many cases of complex

networks because the inherent topological disorder makes dynamical correlations

not persistent [63, 64]. Equation (7.8) can be written as follows:

pt = F (pt−1), (7.11)

where

F : R
n → R

n, pt=t0 = p0 (7.12)

and

F i(pt−1) = 1 − (1 − pi,t−1)ξi(t) + δpi,t−1ξi,t (7.13)

(pt)i = pi,t (7.14)

and Fi(.) and (pt)i are respectively the ith element of the function F and pt. The

equivalent equations (7.8) and (7.12) can be seen as a multidimensional non linear

discrete dynamical system as introduced and reviewed previously in Chapter 2. Let

us suppose that the dynamical system has a steady-state equilibrium, p. Namely,
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∃p ∈ Rn such that:

p = F (p). (7.15)

A Taylor expansion of the ith equation of (7.12), pi,t = F i(pt−1), around the

steady-state value, p, yields

pi,t = F i(pt−1) = F i(p) +
n∑

j=1

F i
j (p)(pj,t−1 − pj) + · · · + Rn, (7.16)

where

F i
j (p) =

∂F i(pt−1)

∂pj,t−1

(p) =






β for j 6= i,

1 − δ for j = i.

(7.17)

We can show that p = 0 is a fixed point for the system, that is

F (0) = 0. (7.18)

In fact the infection dies out when pi(t) = 0 for all i. We have

Fi(0) = 1 − ξi(t). (7.19)

The other solutions can be founded iteratively by solving:

(p)i,t = 1 − (1 − (p)i,t)ξi,t − δ(p)i,tξi,t. (7.20)

Thus, using (7.16) the linearised equation (an approximation) around the steady

state p = 0 is given by:

pi,t ≈ (1 − δ)pi,t−1 + β

n∑

j∼i

pj,t−1, (7.21)



Non-Linear Dynamical System (NLDS) 254

which can be expressed in matrix form as

pt ≈ (βA + (1 − δ)I)pt−1, (7.22)

where pt is a vector whose ith entry is pi,t, A is the adjacency matrix of the network

and I is the identity matrix. The first term in brackets represents the probability

that a node is infected from the nearest neighbours and the second is the probabil-

ity that it recovers from infection. We notice that the linear approximation (7.21)

is satisfied only in the vicinity of the steady state solution p = 0.

7.3 The Epidemic Threshold under NLDS

Theorem 7.3.1 In NLDS, the epidemic threshold τNLDS for an undirected graph

G = (V,E) is [32]

τNLDS =
1

λ1,A

, (7.23)

where λ1,A is the largest eigenvalues of the adjacency matrix A of the graph.

The epidemic threshold τNLDS for NLDS is a value such that

• if β/δ < τNLDS then the infection dies out over time, i.e. pi(t) → 0 as t → ∞

∀i.

• if β/δ > τNLDS then the infection survives and becomes an epidemic.

Chakrabarti et al. [32] have proved that in order to ensure that over time the

infection probability of each node in the graph goes to zero (that is, the epidemic

dies out), it is necessary to have:

β/δ < τNLDS (7.24)
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and if (sufficient condition)

β/δ < τNLDS (7.25)

then the epidemic will die out over time (the infection probabilities will go to zero),

irrespective of the size of the initial outbreak of infection.

7.4 Numerical Experiment on NLDS

In this section we are going to illustrate the propagation of infection in theoretical

and real networks by using the NLDS. We are going to consider the cases of, the

path graph Pn, the cycle graph Cn, the star graph Sn, the complete graph Kn,

the Erdös-Rényi (ER) random graph, the Barabási-Albert Graph and the graph

of jazz musicians and the top 500 corporate directors in the USA.

Path Graph

We are considering a path graph Pn having n = 200 nodes in two different cases. In

the first case the values of the parameters are β = 0.35 with two different values of

δ, namely δ = 0.02 and δ = 0.075 (see Figure 7.1). In the second scenario, we keep

the same number of nodes but this time β = 10−5 and δ = 0.024 and δ = 0.038

(see Figure 7.2). In both cases we start the simulations with a small number of

randomly infected nodes n0 = 10. The largest eigenvalue of the adjacency matrix

A for a path graph Pn is given by (see Chapter 1)

λ1,A = 2 cos

(
π

n + 1

)
. (7.26)
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Then, according to NLDS the epidemic threshold for this case is given by:

τ =
1

2 cos
(

π
n+1

) . (7.27)

For instance, for n = 200 and τ = 0.5.
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Figure 7.1: Results for the simulations (dashed lines) and the NLDS (solid lines)
for a path graph having n = 200 nodes. In both cases β = 0.035 and δ = 0.02
(left) and δ = 0.075 (right). As β/δ > τ = 0.5 (left plot) and also β/δ > τ = 0.5
(right plot), we see that the infection is growing and becomes an epidemic. The
simulations are the averages of just 10 realisations.
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Figure 7.2: Results for the simulations (dashed lines) and the NLDS (solid lines)
for a path graph having n = 200 nodes. In both cases β = 10−5 and δ = 0.024
(left) and δ = 0.038 (right). As β/δ < τ = 0.5 (left plot) and also β/δ < τ = 0.5
(right plot),we see that the infection dies out and as time is increasing the infection
is going to zero.



Non-Linear Dynamical System (NLDS) 257

Cycle Graph

We are considering a cycle graph Pn having n = 200 nodes in two different cases.

In the first case the value of the parameters are β = 0.35 and δ = 0.02 (see

Figure 7.3 (left)). In the second scenario, we keep the same number of nodes but

with this time β = 10−5 and δ = 0.024 (see Figure 7.3 (right). In both cases the

simulations start with a small number of randomly infected nodes, n0 = 10. The

results are similar to those of the path graph having the same parameters. This

may be explained by the fact that a cycle is a version of a path graph in which the

two terminals are joined. The largest eigenvalue of the adjacency matrix A for a

cycle graph Cn is given by

λ1,A = 2 cos

(
2π

n

)
, (7.28)

then according to NLDS the epidemic threshold in this case is given by:

τ =
1

2 cos
(

2π
n

) . (7.29)

For instance, for n = 200, τ = 0.5.

Star Graph

Here we consider a star graph having n = 1000 nodes. In the first two scenarios

we infect all nodes (see Figure 7.4 (a) and (b)) and the values of the parameters

are β = 0.002 and δ = 0.316 and δ = 0.158. In the second scenario (see Figure 7.4

(c) and (d)) we start with a very small number of infected nodes, 5 in this case,

and the values of the parameters are β = 0.2 and δ = 0.24 and δ = 0.09. We can

see that the simulations and NLDS match. According to Chapter 3 the largest
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Figure 7.3: Results for the simulations (dashed lines) and the NLDS (solid lines)
for a cycle graph having n = 200 nodes. In the first case β = 0.35 and δ = 0.024
(left) and in the second case β = 10−5 and δ = 0.038 (right). As β/δ < τ = 0.5
(left plot) the infection is growing and never dies out and as β/δ < τ = 0.5 (right
plot), we see that the infection dies out and as time is increasing the number of
infected nodes is going to zero.

eigenvalue of the adjacency matrix A for a star graph is given by:

λ1,A =
1√

n − 1
, (7.30)

then according to NLDS the epidemic threshold in this case is given by:

τ =
1

λ1,A

(7.31)

=
1√

n − 1
(7.32)

Complete Graph

We consider a complete graph Kn having n = 200 in two different cases. In the

first case β = 0.0023 and δ = 0.001 (see Figure 7.5 (left)). In the second case

β = 10−6 and δ = 10−1. The largest eigenvalue of the adjacency matrix A for

a complete graph Kn is λ1,A = 1 and the epidemic threshold is τ = 1. In the

first scenario (Figure 7.5 (left)) the infection survives and becomes an epidemic.
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Figure 7.4: Results for the simulations (dashed lines) and the NLDS (solid lines)
for a star graph having n = 1000 nodes. In (a) and (b) we start with all nodes
infected. As β/δ < τ = 1/999 we see that the infection dies out and as time is
increasing the number of infected nodes is going to zero. In (c) and (d) we start
with a small number of infected nodes, in this case 5, and as β/δ > τ = 1/999
we see that the epidemic is growing and never dies out and becomes an epidemic.
The results are the average of just 15 realisations.

We can see that in the complete graph the infection is propagating a lot faster

than in any other network. For very small values of the parameters almost all the

nodes are infected. This may be explained by the fact that in a complete graph

every node is connected to all other nodes and an infected node may infect all

other nodes resulting in a high increase in the infected population. In the second

scenario (Figure 7.5 (left)) we start with all nodes infected. As can be seen, it is

very hard to eradicate the infection in this case. We need a very small value of β

and a large value of δ.
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Figure 7.5: Results for the simulations (dashed lines) and the NLDS (solid lines)
for a complete graph having n = 200 nodes. In the left plot we start with 10
infected nodes and β = 0.0023 and δ = 0.001. As β/δ > τ we see that the
infection is growing and never dies out and becomes an epidemic. In the right plot
we have β = 10−6 and δ = 10−1 and we see that the infection dies out and as time
is increasing the number of infected nodes is going to zero. The results are the
average of just 10 realisations.

Complete Bipartite Graph

We consider here a bipartite graph with n1 = 100 and n2 = 100 and keeping the

same values of parameters as for the complete graph of the previous section. The

largest eigenvalue of the adjacency matrix A for a complete bipartite graph Kn1,n2

is

λ1,A =
√

n1n2, (7.33)

and the epidemic threshold is

τ =
1√
n1n2

. (7.34)

For n1 = 100 and n2 = 100, τ = 0.032.

Erdös-Rényi (ER) random graph and Barabási-Albert BA

graph.

We illustrate in Figure 7.7 the results of simulations and NLDS for the ER random

graph (a) and (c) (β = 0.2 and δ = 0.12 and δ = 0.24) having n = 1000 and for a
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Figure 7.6: Results for the simulations (dashed lines) and the NLDS (solid lines)
for a complete bipartite graph having n1 = 100 and n2 = 100. In the left plot we
start with 10 infected and β = 0.0023 and δ = 0.001. As β/δ > τ we see that
the epidemic is growing and never dies out and becomes an epidemic. In the right
plot we have β = 10−6 and δ = 10−1 and we see that the infection dies out and as
time is increasing the number of infected nodes is going to zero. The results are
the average of just 10 realisations.

BA network (b) and (d) with the same values of parameters. The largest eigenvalue

of the adjacency matrix A for a ER network having n = 1000 nodes and average

degree k ≈ 6 is λ1,A ≈ 15.18. As β/δ > 1/λ1,A = 0.066, the infection survives

and becomes an epidemic (see Figure 7.7 (a) and (c)). For the BA graph with the

same number of nodes and the same average degree, the largest eigenvalue of the

adjacency matrix is λ1,A ≈ 13.17. Also in this case as β/δ > 1/λ1,A = 0.076, the

infection survives and becomes an epidemic (see Figure 7.7 (b) and (d)).

Network of Jazz musicians and for the network of top 500

corporate directors in the USA

The Jazz musicians network has 1265 nodes/individuals and 32358 links and the

second network has 1586 corporate directors and 11540 links or collaborations

between them. The largest eigenvalues of the adjacency matrices A1 and A2

of the Network of Jazz musicians and for the top 500 corporate directors are

respectively λ1,A1
≈ 171.5 and λ1,A2

≈ 23.23. As β/δ > λ1,A1
and β/δ > λ1,A2
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Figure 7.7: Results for the simulations (dashed lines) and the NLDS (solid lines)
for an ER network having n = 1000 nodes (a) and (c) (β is fixed and δ varies) and
for a BA network (b) and (d) (β is fixed and δ varies) having the same number of
nodes. Both networks have the same average degree k ≈ 6. In the two cases the
simulations start with a small number of randomly infected nodes, here 20.
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Figure 7.8: Results of the simulations (dashed lines) and NLDS (solid lines) for
the Jazz musicians network (left) and for top 500 corporate directors in the USA
(right). The results are averages of 100 realisations and β = 0.02, δ = 0.12
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in both cases the infection survives and becomes an epidemic. We can see that

the spread of infection in the Jazz musicians is much faster than in the top 500

corporate directors in the USA.

Limitations of NLDS

In Chapter 6 we have seen that a node in a network can also interact with nodes

that are not directly connected to it. We have illustrated this fact by providing a

lot of empirical evidence. In Chapter 5 we have given a huge amount of empirical

evidence about close and casual contact in networks. NLDS is limited in the

sense that it can only model the spreading of infections that involve only close

contacts conceptualised by the adjacency matrix. This is for instance the case of

sexual transmitted diseases, or computer viruses. The adjacency matrix is just

an approximation that represents contacts in a network and it cannot represent

every thing or all the information relevant to the transmission of infection. As a

consequence of these facts, NLDS cannot be used to model long-range transmission

of diseases due to casual contacts. In Chapter 6 we have provided a model of a

network that can be used to model the spreading of epidemics involving long-range

interactions. We now need to extend NLDS to a generalised model, called here the

Generalised Non Linear Dynamical System (GNLDS), that accounts for direct and

indirect contacts. This generalised dynamic will be developed in the next chapter.



Chapter 8

Generalised Non-Linear

Dynamical System (GNLDS)

8.1 Model definition of GNLDS

In this chapter we are interested in considering the case in which an infection

is transmitted from one infected node to its close and casual contacts with a

certain probability. Obviously, the nearest neighbours, representing close contacts

in the social network of that infected node are at the highest risk to be infected.

However, we consider here that every node in that network can be infected directly

from that infected node as they can be casually proximal to it at a certain stage.

Our assumption is that these casual contacts depend on the shortest-path distance

which these nodes are from the infected node. Then, the generalised graph matrix

Γ(G, x) introduced in Chapter 6 is a natural substitution for the adjacency matrix

in NLDS-MMCA, which transforms this model into a generalised one (GNLDS-

MMCA), where the probability 1−pi,t that node i remains healthy in the network

264
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is given by

1 − pi,t = (1 − pi,t−1)ξ
G
i,t + δpi,t−1ξ

G
i,t, (8.1)

and now the generalised probability that node i does not receive an infection at

time t, ξG
i,t, is given by

ξG
i,t =

∏

j∼i

(1 − βpj,t−1)
∏

j≁i

(1 − dijx
dij−1βpj,t−1). (8.2)

The first term in this expression, which corresponds to ξi,t, represents the prob-

ability that a node is not infected by close contacts in the social network. The

second term accounts for the probability that a node does not receive an infection

from its casual contacts. Obviously, as x → 0, ξi,t → ξi,t and Γ(G, x = 0) → A(G),

which means that GNLDS-MMCA is reduced to the NLDS-MMCA model. In this

context, the parameter x controls the feasibility that an infected node can transmit

an infection in only one step to others that are not its close contacts. When x = 0

we recover the particular case of NLDS of Chapter 7. In this general case, we also

make use of the independence assumption, that is probabilities pj,t−1 are assumed

to be independent from each other.

Theorem 8.1.1 Epidemic threshold under GLNDS

Let G be a connected undirected network with generalised matrix Γ(G, x). Let

λ1(x) ≥ λ2(x) ≥ · · · ≥ λn(x) be the eigenvalues of Γ(G, x). Then, the epidemic

threshold for this network by considering a conductance equal to x (0 < x ≤ 0.5)

is uniquely determined by

τ =
1

λ1(x)
. (8.3)

proof 8.1.2 Equation (8.1) can be expressed as

pt = F (pt−1), F : R
n → R

n, (8.4)
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and where

Fi(pt−1) = 1 − (1 − pi(t − 1))ξG
i,t + δpi,t−1ξ

G
i,t. (8.5)

The infection dies out when pi = 0 for all i. If pi,t−1 = 0 for all i, it follows

from (8.1) and (8.2) that pi,t = 0 and therefore p = 0 is a fixed point of the

system (8.5). Thus, we need to see if p = 0 is an asymptotically stable fixed

point in the dynamical system (8.5) and, proceeding as in [32]. According to Theo-

rem 2.2.12, the system (8.5) is asymptotically stable at p = 0 if the eigenvalues of

the Jacobian ∇F (0) matrix (evaluated at p = 0) are less than 1 in absolute value,

where

[∇F (0)]i,j =
∂Fi

∂pj

|p=0.

By combining equation (8.2) and equation (8.5) we have

∇F (0) =






β if dij = 1,

βdijx
dij−1 if i 6= j and dij 6= 1,

1 − δ if dij = 1,

(8.6)

and by the definition of the generalised network matrix Γ(G, x) in Chapter 6 we

can write,

∇F (0) =






βΓij if j 6= i,

1 − δ if j = i.

(8.7)

Thus, we can obtain the system matrix S(x) of the non linear system (8.5) as

S(x) = ∇F (0) = (1 − δ)I + βΓ(G, x), (8.8)
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which describes the behaviour of the virus when it is about to die. If ui(x) is an

eigenvector of the generalised network matrix Γ(G, x) associated with the eigen-

value λi(x) then we have

Sui(x) = [(1 − δ)I + βΓ(G, x)]ui(x)

= (1 − δ)ui(x) + βΓ(G, x)ui(x)

= (1 − δ)ui(x) + βλi(x)ui(x)

= (1 − δ + βλi(x))ui(x). (8.9)

Thus

λi,S(x) = 1 − δ + βλi(x) (8.10)

is an eigenvalue of the system matrix S(x) and where λi(x) ≡ λi,Γ(x) denotes

the eigenvalue of Γ(G, x) and the eigenvectors of S(x) are the same as those for

Γ(G, x). Hence, by Theorem 2.2.12 the system is asymptotically stable when

|λi,S(x)| < 1 ∀i ,∀x. (8.11)

Now, since Γ(G, x) is a real symmetric matrix, (Chapter 6) its eigenvalues are real,

and by (8.10), the eigenvalues of S(x) are real too. Also, since the network G is

connected, Γ(G, x) represents the adjacency matrix of a weighted complete undi-

rected graph, and therefore it is irreducible. Thus, Γ(G, x) is a real, symmetric,

non-negative, irreducible, and square matrix. Under these conditions, the Perron-

Frobenuis Theorem [97] states that the largest eigenvalue λ1,Γ(x), also called the

Perron root of Γ(G, x), is positive and simple. Thus

λ1,Γ(x) = |λ1,Γ(x)| > λi,Γ(x) ∀i > 1,∀x, (8.12)
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and

λ1,S(x) = |λ1,S(x)| > λi,S(x) ∀i > 1 ∀x. (8.13)

Using (8.10) and (8.11) we have

λ1,S(x) = 1 − δ + βλ1,Γ(x) < 1. (8.14)

Thus, if the epidemic dies out, we must have

β

δ
< τ =

1

λ1,Γ(x)

. (8.15)

In order to complete the proof of Theorem 1, we need to see that if

β

δ
< τ =

1

λ1,Γ(x)

, (8.16)

then the epidemic will die out over time (sufficiency of epidemic threshold).

In (8.2), since all terms β, pj,t−1, and dijx
dij−1 are non-negative and not greater

than 1,
∏

j∼i

(1 − βpj,t−1) > 1 − β
∑

j∼i

pj,t−1

and
∏

j≁i

(1 − dijx
dij−1βpj,t−1 > 1 − β

∑

j∼i

dijx
dij−1pj,t−1.
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Thus,

ξG
i,t >

(
1 − β

∑

j∼i

pj,t−1

) (
1 − β

∑

j≁i

dijx
dij−1pj,t−1

)

= 1 − β
∑

j∼i

pj,t−1 − β
∑

j≁i

dijx
dij−1pj,t−1 +

+ β2

(
∑

j∼i

pj,t−1

) (
∑

j≁i

dijx
dij−1pj,t−1

)
,

and since

β2

(
∑

j∼i

pj,t−1

) (
∑

j≁i

dijx
dij−1pj,t−1

)
> 0,

ξG
i,t > 1 − β

∑

j∼i

pj,t−1 − β
∑

j≁i

dijx
dij−1pj,t−1

= 1 − β

(
∑

j∼i

pj,t−1 +
∑

j≁i

dijx
dij−1pj,t−1

)

= 1 − β
∑

j

Γijpj,t−1.

Thus, from (8.1)

1 − pi,t = (1 − pi,t−1)ξ
G
i,t + δpi,t−1ξ

G
i,t >

> (1 − (1 − δ)pi,t−1)

(
1 − β

∑

j

Γijpj,t−1

)

= 1 − (1 − δ)pi,t−1 − β
∑

j

Γijpj,t−1 +

+ (1 − δ)pi,t−1β
∑

j

Γijpj,t−1,



Generalised Non-Linear Dynamical System (GNLDS) 270

and then

pi,t 6 (1 − δ)pi,t−1 + β
∑

j

Γijpj,t−1 − · · ·

− (1 − δ)pi,t−1β
∑

j

Γijpj,t−1,

6 (1 − δ)pi,t−1 + β
∑

j

Γijpj,t−1,

which can be expressed in matrix form as

pt 6 [(1 − δ)I + βΓ(G, x)]pt−1, (8.17)

which uses the same system matrix as (8.8),

pt 6 S(x)pt−1 6 S2(x)pt−1 6 · · · 6 St(x)p0

6
∑

i

λt
i,S(x)ui,S(x)u

′

i,S(x)p0,

where the last inequality is the spectral decomposition of St(x) and u
′

i,Sx) is the

transpose of ui,S(x). By (8.10), when

β

δ
<

1

λ1,Γ(x)

,

then

λi,S(x) < 1 and λt
i,S(x) ≈ 0

for all i and large t, which makes pt ≈ 0 as t increases, implying that the infection

dies out over time. We will make use of the following theorem which states the

monotonicity property of the Perron root for non-negative and irreducible square

matrices (see Theorem 1.3 in [5]).
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Theorem 8.1.3 Let A and B be non-negative matrices of order n > 1. If A 6 B,

then the Perron roots of A and B satisfy the inequality

λ1,A 6 λ1,B. (8.18)

Furthermore, if B is irreducible and A = B, then the inequality holds strictly:

λ1,A < λ1,B. (8.19)

Corollary 8.1.4 If β/δ > λ1,Γ(xc), then the infection survives and becomes an

epidemic for any x > xc and if β/δ < λ1,Γ(xc), then the infection dies out for any

value of the conductance x 6 xc.

proof 8.1.5 Let 0 6 x1 6 x2. If dij = 1, then Γij(x1) = Γij(x2) = 1, and if

dij > 1, then

Γij(x1) = dijx
dij−1

1 < Γij(x2) = dijx
dij−1

2 .

Thus

Γij(x1) 6 Γij(x2)

and the result is a direct consequence of Theorem 8.1.3.

8.2 Applications of the GNLDS-MMCA Model

8.2.1 Networks Generation

We start by analysing the accuracy of the GNLDS-MMCA model by comparing

it with the results obtained from simulations in random networks. We generate

random networks with Poisson degree distribution using the Erdös-Rényi (ER)
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model as well as random networks with power-law degree distributions according

to the Barabási-Albert (BA) model. These networks were generated by using

NetworkX [9] in Python. In addition, we also generate scale-free networks having

power-law degree distribution of the form p(k) ∼ kγ for a given power exponent

1.894 6 γ 6 3, which were generated using the algorithm described in [120].

8.2.2 Simulations

For the simulations we use the average of at least 100 individual runs that begins

with a set of randomly chosen infected nodes (usually between 2.0% and 2.5% of

the total number of nodes) and fixed values of the parameters β and δ and the

conductance x. Simulations evolve in steps of one time unit. During each step,

an infected node i attempts to infect its nearest neighbours j with probability β

and also nodes that are far away with probability dijx
dij1β. Every infected node

is cured with probability δ. An infection attempt on an already infected node

has no effect. Simulations as well as GNLDS-MMCA were implemented in C and

PYTHON, and the programs are available on request.

8.2.3 Simulations and GNLDS Tests on a Path and Cycle

Networks

We consider here a path and a cycle network having both the same number of

nodes n = 100. The values of the parameters are β = 0.35 and δ = 0.023 and the

values of the conductance are x = 0, 0.1, 0.2. In Figure 8.1 we show the results of

the simulations (dashed lines) and the GNLDS (solid lines) for the path network

(left) and for the cycle network (right). The effect of GNLDS can be see in the

earlier stage of the epidemic and when the time increases the infection reaches the
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saturation faster. The lower effect of the GNLDS in these cases can be explained

by the fact that in a path network, for example, a terminal can only infect a node

at shorter distances and as the distance increases the chance to infect nodes that

are far away reduces. We can see here that some shortest path distances are very

long and reduce the effect of long-range interactions and therefore of GNLDS. We

observe the same thing in the cycle network. In fact the cycle network is just

a version of a path network. For this reason there are not many differences in

the results of the simulations and GNLDS for the two networks as can be seen in

Figure 8.1. We now going to analyse the case of a star network.
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Figure 8.1: Results of the simulations (dashed lines) and the exact GNLDS-MMCA
(solid lines) for a path graph (left) and cycle graph (right) with n = 100 nodes,
where τ(0) = 0.5 for both of them. Parameters in both plots are β = 0.35,
δ = 0.0023 and starting with about 10% of the nodes infected; since β/δ > τ(0), the
infection will become an epidemic for any value of the conductance x. The results
are the average of 150 realizations. The values of the conductivity parameter are,
from bottom to top, x = 0, 0.1 and 0.2.

8.2.4 Simulations and GNLDS Tests on a Star Network

We consider now a star graph having n = 1000 nodes in two different cases.

• Case 1 In this case the simulations start with a very small number of infected

nodes (0.2%) and the values of the parameters are β = 0.002 and δ = 0.01

with different values of the conductance x.
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• Case 2 In this case the simulations start with all the node infected (100%)

and the values of the parameters are β = 0.0002 and δ = 0.024 with the

same values of the conductance x as in Case 1.

We have illustrated the dependence of the epidemic threshold on the conductance

in Figure 8.3 for a network with a star topology. In the case of a star network we

have

λ1(x) = x(n − 1) +
√

x2(n − 2)2 + (n − 1)

>
√

n − 1 = λ1,A = λ1(0). (8.20)

From Figure 8.3 and from Case 1 we can see that β/δ > τ(x) for all x and the

epidemic survives for all conductance and becomes an epidemic. This is illustrated

in Figure 8.2 (left) showing the progress of the infection. In Case 2 and from

Figure 8.3 we can see that β/δ = 0.0083 < τ(x) for all x and the epidemic dies out

over time for any value of the conductance smaller than 0.5 as shown in Figure

8.2 (right). Note that for any 0 6 x 6 0.5, we have Γ(G, x) > Γ(G, 0) = A,

and from (8.20) we can see that as the conductance parameter is increased, the

network is more resistant to the elimination of the infection. That is, when there is

no conductance, about 10% of the nodes remain infected at time t = 100. However,

for x = 0.13 this percentage is about 30%. In summary, by Corollary 8.1.4 when

β/δ > 1/λ1(x = 0), the infection survives for any value of the conductance x > 0

and the number of infected nodes saturates for relatively small times as x → 0.5

(Figure 8.3 left). On the other hand, when β/δ < 1/λ1(x = 0.5) the infection dies

out for any value of the conductance x < 0.5 (Figure 8.3 right).
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Figure 8.2: Results of the simulations (dashed lines) and the exact GNLDS-MMCA
(solid lines) for a star graph with n = 1000 nodes, where τ = 1/999 ≈ 0.0316.
Parameters in the left plot are β = 0.002, δ = 0.01 and starting with about 20% of
the nodes infected; since β/δ = 0.2 > τ , the infection will become an epidemic for
any value of the conductance x. Parameters in the right plot are β = 0.0002 and
δ = 0.024; thus β/δ = 0.0083 < τ , and even when starting with all nodes infected,
the epidemic dies out for all values of the parameter x. The results are the average
of 100 realizations. The values of the conductivity parameter are, from bottom to
top, 0.0, 0.03, 0.06, 0.09, 0.13, 0.20, 0.30, and 0.50.
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Figure 8.3: Dependence of the epidemic threshold with the conductance for a star
graph having n = 1000 nodes.
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8.3 Simulations and GNLDS Tests on ER and

BA Random Networks

In the first experiment we consider an ER and a BA random network having the

same number of nodes n = 1000 and the same average degree k = 6. The values of

parameters are β = 0.02 and δ = 0.12 and we have to consider different values of

the conductance, x = 0.00, x = 0.03, x = 0.06, x = 0.09 and x = 0.13. In Figure

8.4 we illustrate the results of the exact GNLDS-MMCA and the simulations for

the ER and BA random networks for different values of the conductance. First

Figure 8.4: Results of the simulations (dashed lines) and the exact GNLDS-MMCA
(solid lines) for (left) ER and (right) BA networks having n = 1000 nodes, k ≈ 6,
with β = 0.02 and δ = 0.12, and for different values of the parameter x. The results
are the average of 250 realisations. The values of the conductivity parameters are,
from bottom to top, 0.0, 0.03, 0.06, 0.09, and 0.13.

of all, it can be seen that the GNLDS-MMCA reproduces the results obtained by

simulating the infection spread in both types of networks very well. In Table 8.1

we show the values of the largest eigenvalues λ1(x) and the epidemic thresholds

1/λ1(x) for different value of the conductance for both ER and BA networks. As

for both cases β/δ > 1/λ1(x) for all x, the epidemic survives and becomes an

epidemic for all x. In Figure 8.5 we illustrate a snapshot of the propagation of
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ER, τ = β/δ = 0.167 BA, τ = β/δ = 0.167
x λ1(x) 1/λ1(x) x λ1(x) 1/λ1(x)
0.00 7.18 0.139 0.00 13.16 0.075
0.03 10.27 0.097 0.03 19.77 0.051
0.06 14.75 0.068 0.06 28.69 0.035
0.09 20.93 0.048 0.09 40.18 0.025
0.13 32.44 0.031 0.13 59.97 0.017

Table 8.1: Conductance x, largest eigenvalues λ1(x) and epidemic thresholds
1/λ1(x) for the ER and BA random networks having n = 1000, k = 6, β = 0.02
and δ = 0.12. The threshold in the ER model is almost the double of the threshold
in the BA model.

(a) 10% infected (b) 46% infected (c) 58% infected

(d) 10% infected (e) 35% infected (f) 77% infected

Figure 8.5: Illustration of the progress of an infection in an ER (first row) and a
BA (second row) network. The first column represents the initial stage in which
only 10% of the nodes are infected (marked in red) in ER and BA. In the second
column we illustrate the progress of the infection for time t = 25 when only direct
transmission is considered for both ER and BA. The last column represents the
progress of the infection at the same time as before (t = 25) but now considering
both direct and LR transmissions of the infection. Both networks have the same
size (n = 100) and average degree (k = 12). The value of the conductance for this
snapshot is x = 0.03.

an infection in both ER (first row) and BA (second row) networks. By starting

in both at t = 0 with 10% of randomly infected nodes (first column), at t = 25

there is no significant difference in the percentage of infected nodes when only
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direct transmissions are considered (second column). However, as soon as LR

interactions are allowed the percentage of infected nodes in the scale-free network

overpasses that in the Poissonian one by about 20% at t = 25 (third column). We

will explain in the next section why epidemics in general spread faster in BA than

in ER networks.

8.3.1 Why epidemics spread faster in a BA than in an ER

random networks as the conductance increases?

We will answer this question in different stages. Apart from the fact that the

simulations and the GNLDS match perfectly for the values of parameters chosen,

the second, and more important observation, is related to the relationship between

the structure of these networks and the dynamics of the epidemic spreading. By

keeping all other topological parameters identical, we can compare the effect of

the degree distribution of a network on the propagation of an infection. It can be

seen that the initial rate of propagation is faster in scale-free BA networks than

in Poissonian ER ones. This is true for any value of the conductance. In fact, let

t1/2 be the time needed by an infection to infect 50% of the population in a given

network. In Table 8.2 we show the t1/2 for a BA and an ER network for different

values of the conductance x. As can be seen, for x = 0, t1/2 ≈ 48.44 for ER

networks with 1000 nodes and average degree k = 6, while it is only t1/2 ≈ 34.45

for BA networks of the same size and average degree. As soon as we allow for

casual contacts, that is the long-range interactions, the time needed to infect 50%

of the population reduces dramatically, and it continues to be smaller for BA than

for ER networks as shown in Table 8.2 or in Figure 8.6 showing the evolution of

t1/2 as a function of the conductance x. For instance, a very small increase in the

conductance to x = 0.03 drops this time to t1/2 ≈ 28.36 in ER networks and to
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ER, τ = β/δ = 0.167 BA, τ = β/δ = 0.167
x t1/2 x t1/2

0.00 48.44 0.00 34.45
0.03 28.36 0.03 16.67
0.06 18.3 0.06 13.22
0.09 13.87 0.09 7.76
0.13 8.29 0.13 5.09

Table 8.2: Time needed by an infection to infection 50% of the population for
different values of the conductance, for an ER and a BA network having both
n = 1000 nodes and k = 6, β = 0.02 and δ = 0.12.

t1/2 ≈ 15 in BA ones. As x → 0.5, the number of infected nodes in both networks

tends to saturation.
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Figure 8.6: Illustration of the evolution of t1/2 as a function of the conductance in

ER and BA random networks (n = 1000 nodes, k = 6, β = 0.02 and δ = 0.12).

8.3.2 GNLDS on Regular Networks

In this section we are going to study the effect of long-range interactions on regular

networks. In a regular network each node has the same number of neighbours, that

is every node has the same degree. For simplicity we are going to consider regular

networks having n = 10 nodes in which every node has degree 3. There are in total

19 regular networks with that condition (see Figure 8.7 and 8.8). The values of the
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parameters are β = 0.3 and δ = 0.0001. Simulations start with only one randomly

infected node and were averaged over 100 realisations. As β/δ > 1/λ1(0) = 3 the

infection grows and never dies out. As can be seen in Figure 8.9 and Figure 8.10,

GNLDS has an effect only for short period of time and as time increases, the

infection quickly reaches the saturation and GNLDS has no effect for large period

of time.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 8.7: Regular Networks having n = 10 nodes where each node has degree 3
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 8.8: Regular Networks having n = 10 nodes where each node has degree 3
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Figure 8.9: Results of the simulations (dashed lines) and the exact GNLDS-MMCA
(solid lines) for the first nine regular networks of Figure 8.7 which all have n =
10 nodes which each have degree 3, β = 0.3 and δ = 0.0001. The values of
conductance parameter are, from bottom to top, 0.0, 0.3. Simulations start with
only one randomly infected node and are the average of 100 realisations.

8.3.3 Influence of the Network Heterogeneity on the Spread-

ing of Infections

In this section, we turn our attention to the influence of the network heterogeneity

on the rate of epidemic spreading. Concretely, we consider the variation of the

power-law exponent in the degree distribution of scale-free networks. That is,

we consider networks with 1000 nodes having power-law degree distribution of the

form p(k) ∼ k−γ, 1.89 6 γ 6 3. In Figure 8.11 we illustrate the results obtained for
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Figure 8.10: Results of the simulations (dashed lines) and the exact GNLDS-
MMCA (solid lines) for the last ten regular networks of Figure 8.7 which each
have n = 10 nodes which each have degree 3, β = 0.3 and δ = 0.0001 and for two
different values of the conductance. The values of the conductivity parameter are,
from bottom to top, 0.0, 0.3. Simulations start with only one randomly infected
node and are the average of 100 realisations.

two of these networks having γ = 1.89 and γ = 1.98. We explore different values

of the conductance parameter, both by using our simulation strategy and by using

the GNLDS model. In Table 8.3 we have reported the largest eigenvalues, and the
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γ = 1.89, τ = β/δ = 0.167 γ = 1.98, τ = β/δ = 0.167
x λ1(x) 1/λ1(x) x λ1(x) 1/λ1(x)

0.00 46.93 0.021 0.00 39.58 0.025
0.03 65.78 0.015 0.03 55.25 0.018
0.06 96.22 0.010 0.06 78.68 0.013
0.09 132.44 0.0076 0.09 106.98 0.0093
0.13 185.90 0.0054 0.13 150.22 0.0067
0.15 214.36 0.0047 0.15 173.93 0.0057
0.20 290.038 0.0034 0.20 239.18 0.0042

Table 8.3: Conductance x, largest eigenvalues λ1(x), and epidemic threshold
1/λ1(x) for two power-law distributions with γ = 1.89 and γ = 1.89, k = 6,
β = 0.02 and δ = 0.12. The threshold for γ = 1.89 is always smaller than for
γ = 1.98.

thresholds for two power-law networks having the same number of nodes n = 1000

and γ = 1.89, γ = 1.98 respectively and with different values of the conductance

x. As β/δ > τ = 1/λ1(x) for all x, the infection will survive and become an

epidemic. As can be seen for x = 0, there are no significant differences between

the epidemic spreading in both networks. However, even for relatively low values

of the conductance the differences between the spreading in both kinds of networks

are quite significant. For instance, the networks with power-law coefficient γ = 1.98

have about 20% more nodes infected for x = 0.03 than when x = 0. A small drop

of the power-law exponent to γ = 1.89 almost doubles the percentage of infected

nodes for x = 0.03 in comparison with the network having γ = 1.98. As before we

also compute the time t1/2 needed by the epidemic to infect 50% of the population.

In Figure 8.12 we have illustrated in three dimensions t1/2 as a function of the

conduction x and the power-law exponent between 1.89 6 γ 6 3. In general, as

can be seen in Figure 8.12, the rate of epidemic spreading as measured by t1/2

increases very fast with the increase of the power-law exponent γ and decreases

as the conductance x increases. Using STATISTICA, the value of t1/2 scales as a

negative exponential of the parameter x and as a power law of the exponent γ:
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Figure 8.11: Results of the simulations (dashed lines) and the exact GNLDS-
MMCA (solid lines) for networks with power-law degree distributions p(k) ∼ k−γ

with (left) γ = 1.89 and (right) γ = 1.98. The results are the average of 100
realisations for networks with n = 1000 nodes, β = 0.02, and δ = 0.12 and for
different values of the parameter x. The values of the conductivity parameter are,
from bottom to top, 0.0, 0.03, 0.06, 0.09, 0.13, 0.15, and 0.20.

that is

t1/2(x, γ) ≈ 24.36 exp(−13.58x) − 0.44γ3.38 − 10.56. (8.21)

In other words, an epidemic spreads much faster in a network with high heteroge-

neous degree distribution than in one with more regularity, i.e., for small values of

γ. This rate of spreading is significantly increased if casual contacts (LR interac-

tions) are present, in which case the rate of spreading is exponentially affected by

small variations of the conductance parameter.

8.4 Influence of the force of infection dijx
dij−1 in

BA and ER random networks

The term dijx
dij−1 influences directly the probability with which an infection

spreads through casual contacts in a network. In order to understand the basic
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Figure 8.12: Rate of epidemic spreading measured by t1/2, i.e., the time needed to
infect 50% of the whole population, for different values of the power-law exponent
γ and for different values of the conductance x.

differences between the consideration of casual contacts in the spread of epidemics

in networks with Poissonian and scale-free degree distributions we start by consid-

ering how distances are distributed in both types of networks as a function of the

node degrees. In Figure 8.13 we illustrate the plot of the probability of infection

(infectability) d(k)xd(k)−1β versus k for networks with Poissonian and scale-free

degree distributions. Here d(k) is the average shortest-path distance for nodes

having degree k, and we use a fixed value of the parameter β. Nodes with large

degree tend to have small average shortest-path distance, which means that they

are closer to the rest of the nodes than nodes with low degree. Then, for a given

value of 0 < x < 0.5 the term d(k)xd(k)−1β is larger for smaller distances and

decreases as the distance separating a pair of nodes increases. According to Sec-

tion 6.4.5 of Chapter 6 these nodes of high degree participate in a large number

of subgraphs of length two and they are having high subgraph centrality and high

closeness centrality and high communicability centrality. Consequently, the most
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Figure 8.13: Probability of infection d(k)xd(k)−1 for different values of the conduc-
tance x for BA and ER networks having the same number of nodes, n = 1000, and
the same average degree.

connected nodes in the network display the largest infectability, which means that

the probability that they are infected through casual contacts is very high. In net-

works with power-law degree distributions there are nodes with much higher degree

than in Poissonian networks of the same size and density. Thus, these nodes are

very susceptible to being infected through casual encounter transmission, and once

they are infected, they can spread the infection in a very effective way, both by

close and casual contact transmission. As the value of the conductance increases,

the infectability is also increased as seen in Figure 8.13, which explains why in

scale-free networks the infection spreads so fast when the conductance increases.

The situation occurring here in BA networks was illustrated in Chapter 6,

Section 6.3.3 (Figure 6.3 (a)-(f) and Figure 6.3 (a)-(e)) where we plotted the

generalised degrees of each node for different values of the conductance x. We

learnt that as x increases from zero to one, at a certain point there is an inversion

in the generalised degree, that is nodes of high degree become nodes of low degree

and vice verse. In [80], it is pointed out that the node-node distribution of distances

in SF networks have Poisson-like shapes. In fact in Figure 8.14 and Figure 8.15 we
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plot the cumulative generalised degree distributions for a BA network, and as can

be seen as soon as we depart from the value of x = 0, the distributions become

Poisson-like even for small values of the conductance.

(a) x = 0 (b) x = 0.1

(c) x = 0.2 (d) x = 0.3

(e) x = 0.4 (f) x = 0.5

Figure 8.14: Illustration of the evolution of the cumulative degree distribution of
the nodes for the network studied in Figure 6.3 and Figure 6.4 for x = 0, x = 0.1,
x = 0.2, x = 0.3, x = 0.4 and x = 0.5. Notice that there is a change in the
distribution from a power law at x = 0 to a Poissonian-like distribution as x
increases.

The results illustrated in Figure 6.3 and Figure 6.4 of Chapter 6, Section 6.3.3

indicate that if we obtain the rank correlation between ki(x = 0) versus ki(x 6= 0)
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(a) x = 0.6 (b) x = 0.7

(c) x = 0.8 (d) x = 0.9

(e) x = 1.0

Figure 8.15: Illustration of the evolution of the cumulative degree distribution of
the nodes for the network studied in Figure 6.3 and Figure 6.4 for x = 0.6, x = 0.7,
x = 0.8, x = 0.9 and x = 1. Notice that there is a change in the distribution from
a power law at x = 0 to a Poissonian-like distribution as x increases.

for all nodes i in the network, we will observe a point in which the initially positive

correlation becomes negative. This is exactly what we observe in Figure 8.16

(left), where we plot the values of the rank correlation coefficient, measured by the

Kendall τ index, versus the values of the conductivity for networks with different

values of the power-law exponent γ. It is interesting to note that the value of x
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at which the sign inversion occurs increases with the value of γ. That is, the more

heterogeneous a network is, then the smaller the value of x at which the inversion

point of the rank correlation occurs, compared to a homogeneous network. The
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Figure 8.16: (left) Change of the rank correlation between ki(x = 0) and ki(x 6= 0)
as a function of the conductance x for scale-free (SF) networks with different
exponents of the power law. (Right) Scaling of the conductance at which an
inversion in the rank correlation occurs as a function of the exponent of the power
law in SF networks (see text for explanations).

value of x at which the inversion of the rank correlation occurs (inversion point)

changes as a sigmoid function with the power-law exponent Figure 8.16 (b). More

exactly, using STATISTICA, it can be expressed as

xinv ≈ 0.099 tanh(3.123γ + 7.357) + 0.736. (8.22)

All in all, these results indicate that heterogeneous networks are very sensitive to

changes in the conductivity and consequently when casual contacts are included

the spread of infection increases dramatically.
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8.5 Epidemics Spreading in Real World Networks

We turn now our attention to the real world, where not only diseases can prop-

agate in a network through close and casual contacts but also attitudes, fads,

fashion styles, and tendencies of a different nature can use similar mechanisms of

propagation. We consider here a couple of real-world networks from two different

scenarios. The first one is a network of collaboration between 1265 jazz musicians

in which two nodes are linked if the respective musicians have collaborated in the

same band [62]. The total number of such collaborations in this network is 32358.

The second network represents 1586 corporate directors of the top 500 corpora-

tions in the United States [40]. Here two nodes are connected if the corresponding

directors share a position on the board of at least one corporation. In the first

scenario we can think about the propagation of musical tendencies and styles in

jazz, which can be diffused through the direct collaboration between musicians. In

Figure 8.17: Results of the simulations and GNLDS-MMCA for the networks of
collaboration among (left) jazz musicians and (right) for the corporate directors of
the top 500 corporations in the United States. The results are the average of 250
realisations with β = 0.02, δ = 0.12 and for different values of the conductance
parameter x. The values of the conductivity parameter are, from bottom to top,
0.0, 0.03, 0.06, 0.09, 0.13, and 0.20.

addition, two musicians that have not collaborated directly in a band can influence
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each other simply if they have listened to or studied their respective music. In the

second scenario we can be interested in the analysis of how strategic decisions taken

in one corporation can be adopted by others. Such strategies can be transmitted

by those directors who share positions on the board of more than one corpora-

tion, but they can also be propagated by casual encounters of the directors. In

this case casual contacts can account for the way in which some directors analyse,

copy, and adapt what other directors are doing in corporations where the first are

not members of the board of directors. For the network of jazz musicians, taking

β = 0.02, δ = 0.12 and null conductance, the infection propagates in a very fast

way, infecting about 70% of the whole population for t > 20. This network has a

large average degree, k = 50.6, and a fat-tail degree distribution. Consequently,

an infection propagates through close contacts in a very effective way due to the

density of the network and the fact that each time one of the high degree nodes

is infected, the infection is able to propagate to a large number of other nodes.

The consideration of long-range interactions does not have a big impact on the

infection spreading in this network. Here t1/2 < 5 for x = 0, and it is impossi-

ble to have a dramatic increase in the rate of propagation due to an increase in

the conductance. However, as can be seen in Figure 8.17, the consideration of a

conductance of x = 0.13 increases the percentage of the population infected to

about 90%, and saturation is reached with small increases of this parameter. The

situation is quite different for the network of the US corporate elite. First of all,

the time at which 50% of the population is infected drops from t1/2 ≈ 40 for x = 0

to t1/2 ≈ 7 for x = 0.13. This represents a dramatic increase in the rate of prop-

agation of attitudes among directors of the corporate elite in the United States if

relatively small chances for casual contacts are allowed. In fact, the increase of

the conductance up to x = 0.13 produces an increase of about 30% in the infected



Generalised Non-Linear Dynamical System (GNLDS) 293

population in comparison with the consideration of direct contagion only.

8.6 Statistical Mechanics Interpretation of the

Epidemic Threshold in the GNLDS Model

Generalising the results published in [53, 54] we can have the following interpreta-

tion for the epidemic threshold in the GNLDS model. We may define the Estrada

index [52] in terms of the generalised graph matrix Γ(x) in the form:

EE(x) = EE(G, x) =
∞∑

r=0

N∑

j=1

λk
j (x) =

N∑

j=1

eλj(x), (8.23)

where EE(G, x) is the generalised Estrada index. Let us consider a network in

which every pair of vertices is weighted by a parameter β. Let B(x) be the adja-

cency matrix of this network. It is obvious that B(x) = βΓ(x) and

µr(B(x)) = Tr(Br(x)) = βrTr(Γr(x)) = βrµr(x), (8.24)

where Tr(A) denotes the trace of the matrix A. The subgraph centrality can be

generalised in the follwing way:

EE(G, β, x) =
∞∑

r=0

βrµr(x)

r!
=

N∑

j=1

eβλj(x). (8.25)

Alternatively, we can write EE(G, β, x) as follows:

EE(G, β, x) = Tr

( ∞∑

r=0

βrΓr(x)

r!

)
= Tr(eβΓ(x)). (8.26)
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Let us consider that the network is submerged into a thermal bath of temperature

T . The sum of all closed walks in the network having generalised graph matrix

Γ(x) is given by:

Z(G, β, x) = Tr

( ∞∑

r=0

βr[Γ(x)]r

r!

)
= Tr(eβΓ(x)). (8.27)

It is straightforward to realise that this is the partition function of the complex

network, where the generalised Hamiltonian is H = −Γ(x) [53, 54] and β can

be considered here as the ‘strength’ of infection along the adges of the network

between an infected nodes and a susceptible one and assuming that this strength

is the same for all edges of the network. In term of statistical mechanics, the

strength of the infection β can be related to the temperature T by the expression:

β = 1/(KBT ). (8.28)

As we can see from Equation (8.28) the lowest the temperature the strongest the

strength of infection between an infected node and a susceptible one and in this

case the spreading of the infection across the network is favoured. At very large

temperatures, β → 0, the strength of the infection along edges decreases to zero

and the spreading is unfavoured.

We can now define the probability pj that the system occupies a microstate j

as follows:

pj(x) =
eβλj(x)

∑
j βλj(x)

=
βλj(x)

Z(G, β, z)
. (8.29)

Based on equation (8.29) we can also define the information theoretic entropy for
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the network using the Shannon expression:

S(G, β, x) = −kB

∑

j

[pj(x)(βλj(x) − lnZ)], (8.30)

where we wrote Z(G, β, x) = Z. This expression can be written in the following

equivalent way:

S(G, β, x) = −kBβ
∑

j

λj(x)pj(x) + kBlnZ
∑

j

pj(x), (8.31)

which, by using the standard relation F = H − TS, immediately suggests the

expressions for the total energy H(G) and the Helmholtz free energy F (G) of the

network:

H(G, β, x) = − 1

Z

n∑

j=1

(λj(x)eβλj(x))

= − 1

Z
Tr(Γ(x)eβΓ(x))

= −
n∑

j=1

λj(x)pj(x), (8.32)

and F (G, β, x) = −β−1lnZ. Now, let us consider the low temperature limit. The

principal eigenvalue dominates the rth spectral moment of the Γ(x) matrix for

large r [39]:

µr ≈ [λ1(x)]r = erlnλ1(x) (r → ∞). (8.33)

Then, in the zero temperature limit we approximate the value of the partition

function as

Z ≈
∞∑

r=0

βrerlnλ1(x)

r!
, (8.34)

for large β, or as T → 0. This expression indicates that in the zero temperature
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limit the system is “frozen” at the ground state configuration which has the in-

teraction energy −λ1(x). Then, the total energy and Helmholtz free energy are

simply reduced to the interaction energy of the network:

H(G, T → 0, x) = F (G, T → 0, x) = −λ1(x). (8.35)

Consequently, we have S(G, T → 0, x) = 0 because the system is completely

localised at the ground state with p1
∼= 1.

As a consequence of this result we have the following interpretation of the epidemic

threshold in the GNLDS model:

Theorem 8.6.1 The epidemic threshold is the negative of the inverse of the free

energy of the network when the system is frozen at extremely low temperatures, i.e.

τ =
1

λ1(x)
= − 1

F (G, T → 0, x)
. (8.36)

8.7 Programs Developed

In this section we give some programs developed to producing some of the results

in this thesis. Most of the programs developed were written in Python, C or

Matlab. Most of the analysis of network structure and disease dynamics were

written in Python using NetworkX or Igraph (the python version and R version).

Some simulations for the NLDS and GNLDS were written in C while Matlab was

used for curve fitting, solving non linear equations, plotting etc.

Python is a general-purpose, high-level programming language whose design

philosophy emphasises code readability. Python claims to combine “remarkable

power with very clear syntax”, and its standard library is large and comprehensive.

NetworkX (http://networkx.lanl.gov/) [9] is a Python language software
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package for the creation, manipulation, and study of the structure, dynamics,

and functions of complex networks. Igraph is another Python language soft-

ware package similar to NetworkX. Igraph comes in three different versions, the

Python version, the C version and the R version. I have contributed the sub-

graph centrality and communicability algorithms (http://networkx.lanl.gov/

reference/credits.html) used to produce some results in section 6.4.

Python comes with many Linux machines. Apart from Python one needs to in-

stall some packages such us Scipy (scientific python equivalent to Matlab), Numpy

(Numerical Python), Matplolib (a tool for visualisation) and NetworkX and Igraph

packages. For programs in C one needs to have a C compiler such as gcc or g++

or Cywin depending on whether we are under Linux or Windows.

Programs developed to produce results in Chapter 3

Program used to compute the characteristic path length and clustering coefficient

in the Watt-Strogatz model. See Figure 4.2 on page 151. This program is called

WS.py

WS.py

# This python program computes the characteristic average

# path length and average clustering coefficient in the

# Watt-Strogatz model.

# Franck KM.

from __future__ import division

import networkx as nx

import pylab as pb

N=1000
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k=10

probability=[0,0.00025,0.000375,0.0005,0.000625,0.00075,0.000875,0.001,\

0.002,0.003,0.004,0.005,0.006,0.007,0.008,0.009,0.01,0.02,0.03,0.04,0.05\

,0.06,0.07,0.08,0.09,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,

0.70,0.75,0.8,0.85,0.9,0.95,1]

C=[]

L=[]

niter=50 # number of iteration.

for p in prob:

s1=0

s2=0

for j in range(niter):

g2=nx.connected_watts_strogatz_graph(N, k, p)

av=nx.average_clustering(g2)

ap=nx.average_shortest_path_length(g2)

s1=s1+av/niter

s2=s2+ap/niter

C.append(s1)

L.append(s2)

Cp=[n/C[0] for n in C]

Lp=[n1/L[0] for n1 in L]

pb.figure(2)

pb.semilogx(prob,Cp,’s’)

pb.semilogx(prob,Lp,’o’)

pb.xlabel(’p’)

pb.show()
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Programs developed to produce results in Chapter 6

Program developed to compute the generalised degree shown in Figure 6.3 and

Figure 6.3 page 213 and page 214 and in Figure 6.5 and Figure 6.6 on page 215

and page 216. The same program can be used to compute the generalised graph

matrix of any network. This program is called gendegree.py

gendegree.py

# This python program computes the generalised

# degree of each node for different values of the conductance.

# Franck KM.

from __future__ import division

from networkx import *

import pylab as p

import scipy

p.rcParams[’legend.loc’] = ’best’

numN=1000 # number of nodes

nodes=list(range(numN)) # list of nodes

#create the barabasi albert network with n=1000 nodes and m0=3.

Gb=barabasi_albert_graph(numN,3)

# or create the Erdos-Renyi network with

# n=1000 and p=0.014 (average degree 6).

#G=gnp_random_graph(numN,0.014)

#while is_connected(G)==False:

# G=gnp_rando_graph(numN,0.014)

#nodes=list(range(numN))



Generalised Non-Linear Dynamical System (GNLDS) 300

all_ones=scipy.ones((1,numN)) #column vector of 1

conductance=[0,0.02,0.05,0.1,0.4,0.5,0.6,0.63,0.65\

,0.66,0.67,0.70,0.73,0.76,0.8,0.9,1]

# setting up the Generalised Graph Matrix GGM

weigth=shortest_path_length(Gb) # single source shortest path length.

# assigning a weight dij*x**(dij) to every edge (i,j) in G.

for x in conductance:

weighted_edges=[] #initialise the list of edges and their weight.

for i in range(numN):

for j in range(numN):

if i==j: # no loops

continue

weighted_edges.append((i,j,weigth[i][j]*x**(weigth[i][j]-1)))

GGM=Graph()# generalised graph matrix with no vertex and no edges

# adding to GGM weighted_edges

GGM.add_weighted_edges_from(weighted_edges) #GGN is here.

# compute the adjacency A matrix of GGM

A=adj_matrix(GGM)

# do the dot multiplication of A and

#the transpose of the vector all_ones

gendegree=scipy.dot(A,scipy.transpose(all_ones))

# plot the vector gendegree against the list of nodes

p.figure(conductance.index(x))

p.plot(nodes,gendegree,’.’)

#visualise the plots.

p.show()
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Program used to do the random rewiring and the deterministic rewiring and com-

pute the age assortativity measure in both cases to produce Figure 6.25 and Fig-

ure 6.26 on page 243 and page 245. This program is called assorm.py

assorm.py

# This program does the deterministic rewiring in PART 1.

# It is a modification of the randon rewiring of

# the Watts-Strogatz model, see program WS.py

# In PART2 for random rewiring we just use the function

# connected_watts_strogatz_graph(n,k,p) provided

# by the package NETWORKX in PYTHON.

# Franck KM

from __future__ import division

import random

import scipy

import pylab as plb

import networkx as nx

import itertools

pb.rcParams[’legend.loc’] = ’best’

Num=1000 # number of node

nodes=list(range(Num)) # list of node

k=4

ninter =20 # number of iterations

# generating a regular ring of 1000 nodes each

# having 4 nearest neighbours

G=nx.connected_watts_strogatz_graph(Num,k,0)
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########################################

# PART 1 deterministic rewiring

########################################

# setting up the age list between 0 and 75.

age=scipy.zeros((Num,1)) # all_zeros vector

age[0]=0 # first node is assigned age 0

for i in nodes:

age[i]=age[i-1]+(75/(Num-1)) # age of node i

age=age.ravel() # one dimensional age vector

# assign node attributes, i.e. assign to each node i of G its age

for i in nodes:

G.node[i][’age’]=int(age[i])

Cx=[] # initialising average clustering coefficient list

Lx=[] # initialising average shortest path length list

Ax=[] # initialising age assortativity measure list

conductance =[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]

for x in conductance:

s1=0

s2=0

s3=0

for r in range(niter):

H=G.copy() # make a copy of G for each iteration

for j in range(1, k// 2+1):

targets = nodes[j:]+nodes[0:j]

for u,v in zip(nodes,targets): # for every edge (u,v) in G

w=random.choice(nodes) # choose a random node
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d=nx.shortest_path_length(H,source=u,target=w)

if d==0 or d==1:

continue

if random.random() < d*x**(d-1):

H.add_edge(u,w)

H.remove_edge(u,v)

av=nx.average_clustering(H)

ap=nx.average_shortest_path_length(H)

s2=s2+av/niter

s3=s3+ap/niter

# computing the age assortativity measure

for e in H.edges_iter():

s1=s1+((H.node[e[0]][’age’]- H.node[e[1]][’age’])**2)/niter

Ax.append(s1)

Cx.append(s2)

Lx.append(s3)

Cxn=[n/Cx[0] for n in Cx] # normalising

Lxn=[n/Lx[0] for n in Lx] # normalising

#############################################

# PART2 RANDOM REWIRING

#############################################

Cp=[] # initialising average clustering coefficient list

Lp=[] # initialising average shortest path length list

Ap=[] # initialising age assortativity measure list

probability =[0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]

for p in probability:



Generalised Non-Linear Dynamical System (GNLDS) 304

s1p=0

s2p=0

s3p=0

for r in range(niter):

Gp=nx.connected_watts_strogatz_graph(Num,k,p)

av1=nx.average_clustering(Gp)

ap1=nx.average_shortest_path_length(Gp)

s2p=s2p+av1/niter

s3p=s3p+ap1/niter

# computing the age assortativity measure

for e in Gp.edges_iter():

s1p=s1p+((Gp.node[e[0]][’age’]- Gp.node[e[1]][’age’])**2)/niter

Ap.append(s1p)

Cp.append(s2p)

Lp.append(s3p)

Cpn=[n/Cp[0] for n in Cp] # normalising

Lpn=[n/Lp[0] for n in Lp] # normalising

plb.plot(prob,Cpn,’o-’,prob,Lxn,’s-’)

plb.plot(conductance,Ax,’o-’,prob,Ap,’s-’)

pb.show() # visualise

Programs developed to produce results in Chapter 7

Program developed for the NLDS and GNLDS in Python used for the simulation

of the spread of disease in networks. This program is called GNLDS.py
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GNLDS.py

# This program does the simulation

# and computes the results of the

# GNLDS. Both results of the

# GNLDS and simulation are written

# to a file GNLDS-SIMUL.txt

# and the program does plot the

# results. When x=0 this program

# is simply the NLDS.

# Franck KM

from __future__ import division

from numpy import array as ar

from networkx import *

import pylab as p

import random as rd

import scipy

import numpy as np

p.rcParams[’legend.loc’] = ’best’

kate=file(’GNLDS-SIMUL.txt’,’w’)

DODYN=1

Num=1000

m0=3

beta=0.35

delta=0.023

T=100

niter=60
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conductance=[0,0.1,0.2]

nodes=list(range(numN)) # list of nodes

G=barabasi_albert_graph(numN,m0) # BA graph

ininf =10 # initial number of infected nodes

# we start with a small number of infected.

# if state = ’0’ then we only infected few

# nodes and if state = ’1’ then we infect all nodes.

state =’0’ # we infect only a few nodes randomly

# setting up the Generalised Gamma Matrix GGM

# as in the program assorm.py

weigth=shortest_path_length(G1)

weighted_edges=[]

for i in range(numN):

for j in range(numN):

if i==j:

continue

weighted_edges.append((i,j,weigth[i][j]))

GGM=Graph()

GGM.add_weighted_edges_from(weighted_edges) # Gamma Matrix.

# this function initialises the state of each node,

# infected (set to 1) or susceptible (set to 0)

def initialisation():

global N, pit, nodes, ininf
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pit=scipy.zeros((1,numN)).ravel()

N=scipy.zeros((1,numN)).ravel()

if state == ’0’: #infect few nodes

infected=0

infected_node=[]

for i in range(ininf):

w=rd.choice(nodes)

while w in infected_node:

w=rd.choice(nodes)

infected_node.append(w)

N[w]=1

pit[w]=1

infected = infected+1

else:

for i in nodes: # infected all nodes

N[i] = 1

pit[i] = 1

infected = numN

return infected

for x in conductance:

SUMSIMUL=scipy.zeros((1,T)).ravel() # initialise simulation cumul to 0

SUMGNLDS=scipy.zeros((1,T)).ravel() # initialise GNLDS cumul to 0

for r in range(niter):

SIMUL=scipy.zeros((1,T)).ravel()

GNLDS=scipy.zeros((1,T)).ravel()

if DODYN:
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numinf = initialisation()

SIMUL[0]=GNLDS[0]=numinf

if DODYN:

zeta=scipy.ones((1,numN)).ravel()

for t in range(1,T):

if(numinf==0 and DODYN==0):

print t, numinf

continue

if numinf:

for i in range(numN):

if (N[i]!=0) and (rd.random() < delta):

N[i]=0

numinf=numinf-1

for n in nodes:

if G[n].keys()==[]:

continue

for v in G[n].keys():

if DODYN:

d=G[n][v][’weight’]

zeta[n]=(1-d*x**(d-1)*beta*pit[v])*zeta[n]

zeta[v]=(1-d*x**(d-1)*beta*pit[n])*zeta[v]

if numinf:

if(N[n]-N[v]==0):

continue

if rd.random() < d*x**(d-1)*beta:

if(N[n]):
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N[v]=1

else:

N[n]=1

numinf=numinf+1

SIMUL[t]=numinf

if DODYN:

expinf=0

for i in range(numN):

pit[i]=1-(1-(1-delta)*pit[i])*zeta[i]

expinf=expinf+pit[i]

GNLDS[t]=expinf

SUMSIMUL=SUMSIMUL+SIMUL/niter

SUMGNLDS=SUMGNLDS+GNLDS/niter

for i in range(T):

print >> kate, SUMSIMUL[i]/numN,# print simulations to file GNLDS-SIMUL

print >> kate, ’’

for i in range(T):

print >> kate, SUMGNLDS[i]/numN,# print GNLDS to file GNLDS-SIMUL

print >> kate, ’’

p.plot(range(T),SUMSIMUL/numN,’.-’,range(T),SUMGNLDS/numN,’*-’)

p.ylim(0,1.04)

p.show()

kate.close()

Often simulations under python take more time to complete for large networks,

here is the equivalent of GNLDS.py written in C. The program is called GNLDS.c
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GNLDS.c

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>

#include <sys/time.h>

#include <iostream>

#include <algorithm>

#define DO_DYN_SYSTEM 1

using namespace std;

int numN;

FILE *fp;

int *N;

int T;

double b,d;

double *pit, *zeta, *SIMUL, *SUMSIMUL, *GNLDS, *SUMGNLDS,*p;

// conductance array having 5 elements

double conductance[5]={0.0,0.03,0.06,0.09,0.13};

int nn=5;

float SIMULRESULTS[100][6];

float GNLDSRESULTS[100][6];

int niter=2; // number of iterations

int NN=100; // number of nodes

int state=0;

// if state = 0 we infecte only few node

// if state = 1 we infecte all the nodes
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int ininf=15; // initial number of infected node

main(int argc, char **argv){

int t,i,j,k,m,from,to,seed,numinf,node;

double tmp,expinf,x;

float weight;

int *p;

//double time_start = get_time();

if(argc != 6){

printf("Usage: %s <numnodes> <edgefile> <timesteps> <beta> <delta>\n",argv[0]);

printf("Graph is considered undirected\n");

exit(1);

}

numN = atoi(argv[1]);

if(!(fp=fopen(argv[2],"r"))){ fprintf(stderr,"Cannot open %s\n",argv[2]);exit(1);}

T = atoi(argv[3]);

b = atof(argv[4]);

d = atof(argv[5]);

srand(seed);

srand ( time(NULL) );

for(i=0;i<T;i++){SIMULRESULTS[i][0]=(float)i;GNLDSRESULTS[i][0]=(float)i;}

for(k=0;k<nn;k++){

x=conductance[k];

//cout <<x<<"\n";
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SUMSIMUL=(double*)calloc(T, sizeof(double));

SUMGNLDS=(double*)calloc(T, sizeof(double));

int *p;

for(m=1;m<=niter;m++){

SIMUL=(double*)calloc(T, sizeof(double));

GNLDS=(double*)calloc(T, sizeof(double));

zeta=(double*)calloc(numN, sizeof(double));

N = (int*)calloc(numN, sizeof(int));

pit = (double*)calloc(numN, sizeof(double));

if (state==0){

numinf= 0;

int index[15]={};

for(i=0;i<15;i++){index[i]=-1;}

for(i=0;i<15;i++){

node=rand() % NN;

p = find(index,index+15,node);

if (p == index+15){

index[i] = node;

N[index[i]]=1;

pit[index[i]]=1;

numinf=numinf+1;
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}

else --i;

}

}

else{

for(i=1;i<=NN;i++){

N[i]=1;

pit[i]=1;

numinf = NN;

}

}

SIMUL[0]=(float)numinf;

GNLDS[0]=(float)numinf;

for(t=1;t<T;t++){

if(!numinf && !DO_DYN_SYSTEM){

printf("%d %d\n",t,numinf);

continue;

}

if(numinf){

for(i=0;i<numN;i++){

if(N[i] && 1.0*rand()/(RAND_MAX+1.0)<d){

N[i]=0; numinf--;

}
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}

}

if(DO_DYN_SYSTEM)

for(i=0;i<numN;i++) {

zeta[i] = 1.0;

//cout<<zeta[i]<<endl;

}

fseek(fp,0,SEEK_SET);

while(fscanf(fp,"%d %d %g",&from,&to,&weight) == 3){

if(DO_DYN_SYSTEM){

if((x==0.0) && (weight==1)){

zeta[from] *= (1-b*pit[to]);

zeta[to] *= (1-b*pit[from]);}

if((x!=0.0) && (weight >=1)){

zeta[from] *= (1-weight*pow(x,weight-1)*b*pit[to]);

zeta[to] *= (1-weight*pow(x,weight-1)*b*pit[from]);

}

}

if(numinf){

if((x==0.0) && (weight==1)){

if(N[from]-N[to] == 0) continue; /* both inf/uninf */

if((double)rand()/((double)RAND_MAX+1) < b){

if(N[from]) N[to] = 1;

else N[from] = 1;

numinf++;

}
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}

}

if(numinf){

if((x!=0.0) && (weight >=1)){

if(N[from]-N[to] == 0) continue; /* both inf/uninf */

if((double)rand()/((double)RAND_MAX+1) < weight*pow(x,weight-1)*b){

if(N[from]) N[to] = 1;

else N[from] = 1;

numinf++;

}

}

}

}

if(DO_DYN_SYSTEM){

expinf = 0.0;

for(i=0;i<numN;i++){

pit[i] = 1-(1-(1-d)*pit[i])*zeta[i];

expinf += pit[i];

}

}

SIMUL[t]=numinf;

GNLDS[t]=expinf;

}

for (t=0;t<T;t++)

{SUMSIMUL[t]=SUMSIMUL[t]+SIMUL[t]/niter;
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SUMGNLDS[t]=SUMGNLDS[t]+GNLDS[t]/niter;

}

}

for(t=0;t<T;t++){

SIMULRESULTS[t][k+1]=SUMSIMUL[t]/NN;

GNLDSRESULTS[t][k+1]=SUMGNLDS[t]/NN;

}

}

for(i=0;i<T;i++){

for(j=0;j<nn+1;j++){

printf("%g ",SIMULRESULTS[i][j]);

}

printf("\n");

}

for(i=0;i<T;i++){

for(j=0;j<nn+1;j++){

printf("%g ",GNLDSRESULTS[i][j]);

}

printf("\n");

}

//double time_end = get_time();

//printf("Code took %f seconds.\n", time_end - time_start);

}
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Programs developed to compute the generalised closeness

centralities of nodes in Chapter 6

The program is named closenessx.py

8.7.1 closenessx.py

# This python program computes

# the closeness centrality of

# each node for different

# values of the conductance.

# Franck KM.

from __future__ import division

from numpy import array as ar

from networkx import *

import pylab as p

import random as rd

import scipy

import numpy as np

p.rcParams[’legend.loc’] = ’best’

numN=100

G1=barabasi_albert_graph(numN,3)

#or for an Erdos-Renyi random graph

#issue the following commands

#G=gnp_random_graph(1000,0.014)

#while is_connected(G)==False:

# G=gnp_rando_graph(1000,0.014)
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d=scipy.ones((1,numN))# all one column vector

conductance=[0,0.02,0.05,0.1,0.4,0.5,0.6,0.63,0.65,\

0.66,0.67,0.70,0.73,0.76,0.8,0.9,1]

nodes=list(range(numN))

weigth=shortest_path_length(G1)

for x in conductance:

weighted_edges=[]

for i in range(numN):

for j in range(numN):

if i==j:

continue

weighted_edges.append((i,j,weigth[i][j]*x**(weigth[i][j]-1)))

G=Graph()

G.add_weighted_edges_from(weighted_edges)

A=adj_matrix(G)

cl=scipy.dot(A,scipy.transpose(d))

clr=scipy.array(cl)

clrn=1/f1 # closeness

p.figure(conducx.index(x))

p.plot(range(numN),clrn,’o’)

p.show()



Chapter 9

Conclusion

We have proposed a way for accounting for the social contacts among individu-

als by considering that casual contacts can be inferred from the network of close

contacts. We based our model on a series of empirical observations made in the

epidemiological and social science literature. We model such casual contacts by

means of the probability that two nonconnected individuals in a close contact so-

cial network have of creating a new link between them. Then, we use the principle

that new social ties are created on the basis of the future value of this relationship

to infer the casual contacts among individuals. In this model, casual contacts are

created on the basis of long-range interactions as a function of the social distance

between two individuals, while close contacts are assumed to be determined by

the links in the social network. This approach is then integrated in an epidemic

spreading model such as the NLDS-MMCA model. In this case we observe that

there are two main factors influencing the rate of propagation of an epidemic in a

complex network when both close and casual interactions are considered. The first

one is the conductance parameter, which controls how feasible casual contacts are

by means of LR interactions. If this conductance is set to zero, there is no possibil-

319
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ity of contagion through casual contacts, and everything happens only by means

of the close contacts among individuals, such as in the case of sexually transmitted

diseases or computer viruses. As the conductance parameter increases, the rate of

propagation increases dramatically, and the infection is less likely to die out. In

these cases the number of infected nodes saturates in relatively short times after the

initiation of the propagation. The second factor influencing the propagation is the

heterogeneity of the network. It has been observed that epidemics are propagated

much faster in scale-free networks than in more regular ones. Furthermore, in

scale-free networks the influence of the conductance parameter on the propagation

is significantly more marked than in networks with Poissonian degree distributions.

All in all, an infection propagates very quickly in heterogeneous networks when the

number of casual contacts is large, making the infections easily become epidemics

with high resistance to dying out. As we have shown here, GNLDS-MMCA can be

a useful tool for understanding important problems in modern societies, ranging

from viral epidemics to the propagation of attitudes and consumer styles.

We have extended several keys concepts of graph theory in the framework of

the generalised graph matrix and studied the influence of the conductance on these

concepts too. These include, for instance, the generalised degree or the generalised

centrality. We have shown that the generalised centrality increases with the con-

ductance of the medium. We observed an inversion in the degree centrality of

nodes as the conductance increases. Nodes of high degree becoming nodes of low

degree and vice-verse. That is, there is a point (the inversion point) where the

rank correlation coefficients between centrality and generalised centrality change

sign going from positive values to negative values as the conductance increases.

The inversion point is reached earlier in the heterogeneous networks than in ho-

mogeneous networks with the same number of nodes and same average degree. In
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power-law networks, the inversion point is increasing with the conductance. The

same kind of inversion was observed when studying the effect or the influence of the

conductance on the closeness centrality, subgraph centrality, communicability cen-

trality and betweenness centrality. Extending the Estrada Index in the framework

of the generalised network matrix, and using its statistical mechanical interpreta-

tion we established at the very end of this thesis that the epidemic threshold in

the GNLDS is the negative inverse of the free energy of the network when it is

frozen at extremely low temperature.

We have developed several codes in this thesis and we have provided at the end

of Chapter 8 some of the most important codes that we used to produce some of

the results in this thesis. These codes can be copied and used free of charge.

9.1 Future Work

The results in this thesis provide a strong foundation for future work. A num-

ber of chapters provide several research directions. The concept of long range

interactions outlined and developed in this thesis can be extended to other areas

of complex networks, such as the consensus process [98], the synchronisation pro-

cess [8], the diffusion process [93], random walks on networks [93] and the resistance

network [52], etc.

In the second part of the thesis we extended concepts of centrality measures

in the framework of the generalised graph matrix. We have studied the influence

of the conductance of the medium on those measures. Physical interpretations,

both classical and quantum, of various communicability functions have been gained

in [55], by considering a network as a system of coupled oscillators. A new line of

research will be the generalisation of concepts in [55] by the use of the generalised
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graph matrix.

In Chapter 8 we have introduced a connection between the epidemic threshold

in GNLDS and statistical mechanical functions. The epidemic threshold is seen as

the negative inverse of the free energy of the network when it is frozen at a very

low temperature. We have not yet established the connection between the GNLDS

and statistical mechanics. Another line of research will be the interpretation of the

GNLDS (or the NLDS when x = 0) in terms of statistical mechanical functions.
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