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Abstract

Complex networks are an important tool for the study of biological data. There are

two main aims in this data-driven work, which are explored in tandem. We study

(1) the nature of schizophrenia and (2) utility in novel additions to traditional

network based spectral clustering methods. More specifically, we explore three

facets of schizophrenia. First, we study functional brain data in animal models

of relevance to the condition. Second, we examine the impact of antipsychotic

medication on gene expression in humans, and third we assess whole blood for

potential as a suitable alternative to brain tissue. With regard to spectral clustering,

we employ the Singular Value Decomposition and the Generalized Singular Value

Decomposition in a way that allows us to incorporate additional information into

the clustering problem. This work is of interest in the life sciences due to the

complex heterogeneous nature of schizophrenia, which has created desire for analysis

of large amounts of data. In addition, development of network based approaches

is a timely area of study in general given recent explosions in the amount of data

produced across many subject areas.

Our interdisciplinary work leads to four main conclusions: (a) network approaches

for functional brain animal model studies can produce results that are biologically

meaningful in humans, (b) a novel node-weighted version of the Laplacian is a

flexible tool that allows multiple sources of network information to be combined,

(c) antipsychotic medication, used routinely to treat schizophrenia, has a dominant

effect on gene expression as compared to the control state, masking the underlying

nature of the disease and (d) human whole blood is useful for the study of gene

expression in schizophrenia.
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Chapter 1

Mathematics Introduction

Networks offer a method of observing and studying holistic, emergent, global

and local properties of systems in full context. This is a timely area of study,

with a number of important applications in a wide range of areas from computer

science and physics to sociology and biology. Recent growth in the field owes

much to increases in computational power, digitisation of data and development

of novel high-throughput methods for gathering and processing data. This is

particularly relevant in a time when it is recognised that unexpected qualities

emerge as a consequence of interactions within a network - this ‘systems level’

thinking embraces the idea that interactions cause the whole to be greater than

the sum of the constituents.

In this chapter we provide a brief overview for some important concepts at the

intersection of network science and applied linear algebra, focussing on methods

used for clustering that are most relevant to the problems we will confront in this

thesis. Chapter 6 provides a more detailed discussion of some of these key ideas

when it is necessary.

1



CHAPTER 1. MATHEMATICS INTRODUCTION

1.1 Complex networks

A network is a mathematical tool that can be described as a collection of objects

and their relationships. As an interdisciplinary field, various approaches, tools

and terminology have been developed to suit complex networks - for example, in

network chemistry the objects of study may be sites and the connection/interaction

between them bonds. In sociology the terms commonly used are actors and ties.

For this thesis, we will use node to describe all objects in the various networks

explored, and edge to refer to the connections/interactions. As implied by these

splits in terminology, networks are useful in a variety of circumstances, for example

in biology to understand cellular function [13], in sociology to understand dynamics

of human relationships [193], in finance to mine market data [18] and in technology

to explore structure of the World Wide Web [22]. The field itself has origins in the

mathematics of graph theory (the area of mathematics concerning the study of

networks) - first demonstrated in Euler’s famous 1736 paper solving the problem of

traversing the Seven Bridges of Königsberg [59]. In this paper, Euler realised that

information can be condensed and abstracted to core components - in a problem

of finding a route to traverse bridges the key information is simply a collection of

nodes (the points of land) and edges between them (the bridges).

There are also means to include additional information into network interpretations

of data. For example, networks can be directed where links (edges) form connections

between websites (nodes), as in the case of the internet where links go from one

website to another and not in the other direction. Networks can also be undirected,

where the structure is symmetric - in a network describing handshakes where both

people (nodes) participate. Networks may be weighted, where edges are given a

number that describes the strength of the relationship e.g., in an academic citation

network where it may not only be desirable to show which node (academic) has

cited (edge) which other nodes but also to include the number of citations (edge
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CHAPTER 1. MATHEMATICS INTRODUCTION

weight) between academics or unweighted where the edges are binary and the

number of citations would not be counted. These options allow for utility and

flexibility that makes networks adaptable to a multitude of situations.

1.1.1 Biological Networks

Networks are useful in a broad range of biological settings. We will focus on two

specific types; functional brain networks and microarray data. Steps have already

been made towards this end within network science, providing understanding of

how structural and functional subsystems sit with the anatomy of the human brain

[26, 90, 196, 185]. Networks have also been used to develop models for the brain

- for example, network models can be tailored such that they replicate specific

features of the real case in parameters such as density or clustering [102]. In

understanding how networks must be connected in order to emulate the real case,

inferences can be made about the possible real world mecahnisms, giving a unique

perspective to a biological problem.

The nature of the biological networks we will study will become clearer with

Chapter 2 which will provide an introduction to relevant biological background.

1.2 Notation

In this section we will introduce some key definitions and concepts used throughout

this thesis. This will provide a brief outline to ensure consistency of these ideas

when they are explored in later chapters.

3
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1.2.1 The Adjacency Matrix

The creation of a matrix representation of networks is important in allowing

for application of techniques from linear algebra to explore structure within the

data. One convenient way to do this is with a so-called adjacency matrix. The

creation of an adjacency matrix, A, of a network G involves setting the components

aij = 1 where nodes i and j share an edge, and 0 otherwise. Figure 1.1 shows an

example of a directed network (the edges have arrows indicating direction) and the

corresponding adjacency matrix. The adjacency matrix is then a (0, 1) matrix.

Figure 1.1: A network represented graphically (left) and the corresponding adja-
cency matrix (right).

1.2.2 The Graph Laplacian

There are a number of other matrices used to describe networks, depending on the

structures we wish to explore. The Laplacian is one such matrix, related to the

adjacency matrix, and is the difference between the degree, degi, (the degree of

node i is the number of connections it has to other nodes) matrix and the adjacency

matrix of the network. For an undirected network A ∈ Rn×n, the Laplacian, L, is

defined as:

4
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L = D − A (1.1)

where D = diag(degi). Note that the Laplacian has smallest eigenvalue 0 with

0 = λ1 ≤ λ2 ≤ .. ≤ λn with corresponding eigenvectors labelled v[1], v[2], v[3], .., v[n]

where we set v[1] ∝ 1. If the network is connected, so that every node can be

reached from every other node by traversing edges, then λ2 > 0 [57].

1.2.3 Fiedler Vector

For a connected network, the eigenvector v[2] is called the Fiedler vector of L. The

Fiedler vector was first explored in [48] and developed by the eponymous Fiedler

[61, 62] and is useful in spectral partitioning (the division of data into smaller

components with specific properties) problems, as we will see in Chapter 6.

1.2.4 Normalised Laplacian

An extension of the graph Laplacian, another matrix of interest is:

L̂ = D−
1
2 (D − A)D−

1
2 (1.2)

the normalized graph Laplacian of A. As with the Laplacian in Equation 1.1, this

new matrix has a 0 eigenvalue. This time, the eigenvalues have range [0,2] and are

labelled as 0 = µ1 < µ2 < .. ≤ µn ≤ 2. The corresponding eigenvectors are given

labels w[1], w[2], w[3], ...w[n] see [85] for details.

This normalisation rescales the eigenvectors such that w[1] ∝ D
1
2 1. As the term

Fiedler vector refers to this particular unit vector w[2] of the Laplacian, the normal-

ized Fielder vector is similarly used to describe the unit eigenvector corresponding
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to the second smallest eigenvalue of the normalized graph Laplacian [211]. That

is, D−
1
2w[2] is the equivalent of the Fiedler vector - the normalized Fiedler vector.

The normalized Laplacian then has the effect of reducing possible skew introduced

by nodes with very large weights by rescaling according to D−
1
2 .

1.3 Spectral Methods

Spectral graph theory is the study of matrix representations of networks or graphs,

specifically through their eigenvectors and related quantities. In the way that

chemistry can deduce the constituent components of a material through observing an

energy spectrum (spectroscopy), spectral methods explore the principal properties

of a network through the spectrum of eigenvalues. As we have seen, there are

approaches to generating matrix representations of networks - we will now introduce

methods for finding their spectra. We can say that, broadly, methods for spectral

decomposition of matrices have the effect of giving a lower rank, same dimension,

least squares estimate of the original.

1.3.1 Principal Component Analysis: PCA

Principal component analysis (PCA) is a method for dimensionality reduction that

performs a linear mapping of data to a lower dimension in a way that the variance

in the lower dimension is maximised - that is, the dimension is reduced while

as much of the structure as possible within the data is retained. This property

means that the eigenvectors corresponding to the largest principal components

(eigenvalues) are good approximations of much of the variance in the original data

set. As a result, PCA can be used to identify important/prominant features in

data e.g., where the eigenvectors can be used for extraction of important features

in image processing or image compression [5, 181, 47].
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1.3.2 Singular Value Decomposition: SVD

The singular value decomposition (SVD) is a closely related generalisation of PCA,

which is equivalent to applying the SVD to a covariance matrix of the data.

As an example, the SVD of a matrix A ∈ Rm×n is as follows:

A = UΣV T

where U ∈ Rm×m and V ∈ Rn×n are orthogonal and Σ = diag(σ1, σ2, ..., σm) a

diagonal matrix whose nonzero entries are the corresponding eigenvalues of A. The

columns of U and V are referred to as the left and right singular vectors of A,

respectively.

The SVD has a rich history as a fundamental of spectral clustering, and has seen

use in many different types of data to identify patterns of connectivity between

subsections of the data [159]. In forming a lower dimensional approximation, the

SVD allows large amounts of information to be essentially compressed into a single

summary that is easier to interpret and so is particularly useful in large data sets

[36].

1.3.3 Generalized Singular Value Decomposition: GSVD

The generalized singular value decomposition (GSVD) is an extension of the SVD

- decomposing a pair of rectangular matrices but allowing for the account of

constraints on rows and columns. The result here is again an optimal lower rank,

(weighted) least square estimate of the original [187]. The GSVD has been justified

as an approach to computational network reordering - and is especially useful

because it can be used to reorder two networks in such a way so as to identify

mutually exclusive clusters. See [220] for details of the derivation and justification

of the algorithm.

7
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We provide a basic outline of the mathematics of the algorithm: if we have a

matrix A ∈ Rm×n, m > n, and a matrix B ∈ Rp×n then the GSVD takes the two

as expressing the required constraints on rows and columns, and factorizes them to

give:

A = UCX−1 B = V SX−1

with U ∈ Rm×m, V ∈ Rp×p. C ∈ Rm×n and S ∈ Rp×n are nonnegative diagonal

matrices, with C ∈ diag(c1, c2, ...cn) and S ∈ diag(s1, s2, ...sn). As with the SVD,

U and V are orthogonal. X−T ∈ Rm×m is the invertible ordering matrix [73, 220].

The reason that X−T is able to perform this function is that, by the nature of the

GSVD, the columns of X−T are stationary points of the function:

f : Rn 7→ R where: f(x) =
||Ax||2
||Bx||2

.

It is then argued in [219] (see Algorithm 2) that columns in X−T highlight orderings

for finding clusters in the original matrices A and B. The first columns of X−T

highlight orderings that are good for B and poor for A and vice-versa. This is

particularly useful in areas where experimental comparisons are the ultimate goal,

such as is often the case in the life sciences where test versus control experiments

are common.

1.4 Reordering and Clustering

In large data sets there is often a desire to divide nodes within a network into

groups, based on the patterns the corresponding set of edges forms. The problem

of dividing a network into groups is often known as graph partitioning. Most

commonly, nodes are grouped such that they are dense with edges, leaving a

smaller number of edges to connect groups [166]. The problem of partitioning data

8
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is complex and there are many approaches, each suited to a different situation. In

this thesis we are interested exploring matrix representations of networks with their

SVD and GSVD. These methods fall under the term of spectral clustering, since

the clustering is performed using the matrix spectra (singular values in these cases,

though eigenvalue methods are also appropriate). Spectral clustering methods

derive from graph cutting problems in spectral graph theory - in that context a cut

is a partition of a set of nodes into disjoint sets. This problem involves the creation

of a graph with weighted edges that measure the similarity between nodes.

Spectral clustering techniques are also heuristic in nature, providing a potentially

non-optimal solution to the problem of discretely clustering data. The heuristic

nature of the problem means that the method must validated for new types of data,

hence much of the data we examine in this thesis is microarray gene expression

where spectral methods are well established, for example, spectral approaches on

microarray data has helped to guide cancer treatment by allowing for stratification

of patients [113].

1.4.1 Cluster Verification

In this thesis we will also have to deal with the question of what it means for a data

set to have a good cluster. This can be visually very difficult, particularly when

the size of data sets increase. In Chapters 3 and 4 we will adopt an automated

processing technique and quantify the statistical significance of a proposed cluster.

This involves using some measure to determine the quality of a cluster - then testing

the likelihood that our proposed cluster could have a particular score by chance.

We will use a variation of the ‘Cluster Validation’ approach as outlined in [220],

including determination of a p-value in an attempt to place a level of significance

on the result (p < 0.05). In brief, this method involves:

9
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1. Calculate the density (mean degree) of the cluster of nodes in the reordered

network, relative to the density of edges outside the cluster.

2. Randomize the order of the network.

3. Calculate the same relative density for a group of nodes the same size as the

cluster in Step 1.

4. Repeat steps 2 and 3 999 times.

5. The frequency with which randomized relative density is calculated to be

more than in our deliberately ordered network is the p-value: a probability

that our result occurred by chance.

For an individual network A the cluster quality measure c(A) is the ratio:

density of edges within the cluster in A / density of edges outside the cluster in A.

To calculate p-values we take the same measure for a randomly permuted version of

the same matrix, c(Arand) then the p-value is simply the proportion of c(Arand) >

c(A). This is extended appropriately for use with the GSVD, with networks A and

B, c(A,B) is:

(density of edges within the cluster in A)/ (density of edges outside the cluster in A)
(density of edges within the cluster in B)/ (density of edges outside the cluster in B)

.
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Chapter 2

Biological Background

Reductionism has long been an important approach in the life sciences. The reduc-

tionist philosophy involves dissecting complicated systems in order to understand

them through their constituent parts - and has had great success in understanding

living processes through chemistry. Though we continue to learn from examination

of individual components such as molecular structures and DNA sequences, there

has been a recent shift in the paradigm towards understanding the systems level

through complexity. In this context complexity involves interactions between enti-

ties - it is now understood that there is a limit to that which can be gained from

examination of single biological components. Understanding the wider interplay

between these elements is essential to understanding overall biological function and

outcome - almost always the emergent properties are a result of interactions across

the system rather than any one individual component [111, 116].

In recent years there has been rapid development and deployment of high-throughput

technology across the life sciences. The vast outputs that these approaches yield

has created an environment where the data are now available to tackle questions

on the systems level. This advent of ‘big data’ has resulted in a surge in computer

11
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applications to address complexity within the biological sciences, leading to an

explosion in the field of bioinformatics.

2.1 Microarray

One of the technologies central to this data revolution is the DNA microarray. A

DNA microarray (or biochip) is a piece of experimental equipment that can be used

to carry out multiple genetic tests in parallel. The key to microarray technology is

the use of nucleic acid hybridization - this is done by so-called hybridization probes

- fragments of DNA complimentary to that which the user wishes to detect. The

target substance (sample) is complementary with some detectable molecular marker,

such as a radioactive material or simply a molecule which fluoresces. The target is

then exposed to the microarray probes and, after hybridization, non-hybridized

sequences are washed off. Next, the DNA spot where the probes for a feature are

located is scanned and the strength level of the molecular marker is noted at each

probe. These response levels are then normalized for dynamic factors that affect

hybridization conditions such as temperature.

There are different surface platforms to use when attaching the probes - for instance,

the Illumina branded chip attaches the probes to a microscopic bead structure

whereas the Affymetrix branded chip uses a glass or silicon base [1, 96].

In both surface platforms, the result is that microarray technology allows all features

to be included on a small, convenient, plate. The decrease in size compared with

traditional techniques also means that smaller amounts of biological material are

necessary to yield results. This is good from research and diagnostics perspectives

where smaller and less invasive approaches are more desirable - though the recent

increased interest in microarray technology is mainly related to the ability to

simultaneously quantify a vast number of sequences/probes. There are multiple uses

12
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for microarray kits - expression profiling being one of them, where others include:

pathogen detection and characterization, comparative genome hybridization (CGH),

genotyping and whole genome resequencing.

Gene Expression

Almost all cells in the human body contain the complete set of chromosomes and

genes. The difference in anatomy and function across cell or tissue types and their

response to stimuli or insult (e.g.,disease) is explained in part by differences in the

transcription of these genes. The Central Dogma of molecular biology states that

DNA can self-replicate (replication), the information within DNA can be transferred

to create mRNA (transription) and mRNA can be used to create proteins in a

process called translation. Gene expression describes the level at which, if at all,

each gene is transcribed into the corresponding mRNA and from these onwards to

the functional protein product in an individual.

Gene expression is then an intermediate step - residing between the gene sequence

and phenotype and is controlled through a particular set of proteins known as

Transcription Factors (TFs, which act the stage of transcription mentioned above),

which can either up-regulate (increase) or down-regulate (decrease) expression

levels according to function or need. These TFs activate or repress gene expression

in response to both internal and external states or stimuli, with examples ranging

from sleeping to disease. This process of transcription is then highly variable across

individuals, and given the number of states and stimli that affect the outcome, is

also highly dynamic for a particular person.

13
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2.1.1 Approaches to Microarray Expression Analysis

As a result of the relationship between gene expression and disease states, microarray

analysis is topical and timely - microarrays present a data driven approach to

understanding changes in gene expression and disease states. The typical data

output of a microarray gene expression study is a data set of O(103) genes with

O(10) samples. The set of genes that can be measured in an experiment covers

virtually all genes in the genome, which gives a close-to-complete context to the

nature of the phenotype being studied.

The output from traditional microarray analysis comes in the form of lists of genes

and their associated expression levels - the difficulty with which, due to the large

number of genes involved, lies in the biological interpretation. In order to address

these problems, there have been some attempts to integrate information a priori in

order to focus the analysis and provide a more specific direction for interpretation.

Examples include a co-clustering approach [80] and network component analysis

[129, 67]. Clustering approaches are relevant to this thesis, where we use spectral

clustering approaches on biological data. There are two commonly used types of

clustering techniques used in the life sciences - hierarchical and non-hierarchical

methods.

Hierarchical methods are either agglomerative (where a cluster is constructed in

a bottom-up fashion - initially each node is considered as a separate cluster and

progressively larger groups are formed from there) or divisive (which does the

opposite - starting with all nodes in a single cluster and creating progressively

smaller groups). Hierarchical methods do not result in any definitive clusters

however, and no objective function is minimized [101].

Non-hierarchical methods include the k-means method where, initially, nodes are

arbitrarily assigned to any one of a predetermined k clusters [81]. The number of
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clusters can be guessed, randomized, or implemented based on some previously

performed hierarchical method. The procedure is then iterative and involves

calculation of a centroid of each cluster, and re-assignment of the nodes based

on those results. Although k-means methods scale well for large data, they will

not necessarily converge [19]. As well as the difficulty in choosing a predefined

number of clusters, k-means methods suffer because they tend to generate clusters

of similar size - since nodes are grouped towards the nearest centroid.

One issue with these classical clustering techniques is that they require genes within

a single cluster to have the same response over all samples in an experimental group.

This is not the case with spectral methods, which can accommodate a multitude of

responses across groups of samples. Applying clustering methods to large gene lists

generates a selection of smaller clustered lists that, depending on the clustering

approach, may be related to interesting features of the data.

The automatic translation of a gene list into a specific biological interpretation is

very challenging. As such, although there are a variety of tools, there are many

limiting factors - for instance there is a circular effect in utilization of knowledge

based approaches: the knowledge must already be present in some fashion for it to

appear in a tool. Manual interpretation of microarray experiments is a very time

consuming task, however with a list of thousands of genes, there may be hundreds

that are significantly clustered. Often the relation between these clustered genes

and the experimental parameters under examination is not clear, thus there is an

innate subjectivity in the analysis.

2.1.2 Gene Ontology Project

Gene Ontology (GO) is a bioinformatics project (http://www.geneontology.org/)

that attempts to provide summary biological interpretation for large genetic analysis

project. In particular, GO brings together numerous identification and description
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methods used for genes and gene products [8], aiming to provide tools that can

annotate the genes and their products in a consistent way. There are three different

elements covered in the GO project:

1. Cellular component

2. Molecular function

3. Biological process

Cellular component refers to parts of a cell or parts of the extracellular environment

(e.g.,membranes, proteins, nucleic acid). Molecular function covers function of

the gene product at a molecular level, e.g.,protein binding or enzyme catalysis.

Biological process describes molecular processes that can be mapped with definitive

start and end points. The biological process level covers chemical reactions within

an integrated system, e.g.,cells, tissues.

In this vein of thinking, it is possible that a gene product may have a seemingly

insignificant level of differential expression but be highly relevant in the disease state

when considered as part of an interaction network. Overrepresentation analysis

is one approach where genes are selected based on some criteria and assigned

p−values. There is also functional class scoring which uses either p−values from a

t-test, analysis of variance (e.g.,ANOVA) or fold change (a ratio of means).

GOrilla

We will use two of the many GO tools that have been created to date. The first we

will see is Gene Ontology enRIchment anaLysis and visuaLisAtion (GORILLA:-

http://cbl-gorilla.cs.technion.ac.il/) [52, 51]. GORILLA is an enrichment

tool that accepts ranked lists of genes and generates a directed acyclic graph such
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as in Figure 2.1, illustrating steps in any or all of the three GO elements mentioned

above.

Figure 2.1: Example of Gene Ontology tool GOrilla output. This illustrates a
biological process tree where each lower level tier is an increase in specificity. Colour
indicates p-value for enrichment in a sub-list of genes for a specific ontology term,
relative to the complete list of genes in the experiment.

2.1.3 REVIGO

The GO project is still in early stages - efforts are scattered and some terms

are loosely defined, this is particularly difficult with the arbitrary cutoffs for

tiers in the ontology tree. REduce and VIsualise Gene Ontology (REVIGO:-

www.revigo.irb.hr) [200] is an effort to find overlap between GO terms, allowing

for the identification and removal of possible redundancies. For instance, the
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example Figure 2.1 from GOrilla shows repeat of terms such as “cell cycle”,

“regulation of cell cycle”, “regulation of progression through cell cycle” and “cell

cycle checkpoint” - in generating a large list of ontology terms this pattern of

repetition can lead to an unmanageable amount of information to process. In cases

of exploratory analysis we may be satisfied with a broad representation of ontology

characteristics, such as representing the previous example as “regulation of cell

cycle”.

In addition, REVIGO aims to simplify, and increase the specificity of, GO terms

in cases where potentially uninformative umbrella terms show enrichment due to

enrichment of their lower tier constituents. This is seen in Figure 2.1 where “cell

cycle” is enriched, but is a general, non-specific term. The enrichment is as a

result of more significant enrichment of component terms such as “regulation of

progression through the cell cycle”. The balance between breadth and depth is

important in the usage of GO terms.

2.2 Schizophrenia

This thesis will focus on investigation of schizophrenia using the previously men-

tioned clustering and ontology methods, among others, in an attempt to validate

animal models and explore stratification of human patients. Schizophrenia is a

debilitating psychiatric disorder that affects around 1% of the global population,

ranking as the third most disabling condition (behind quadriplegia and dementia)

[209]. A high impact condition, schizophrenia often appears in late adolescence and

can cause impairment of social interaction, executive function, creative thought and

emotive expression, making it difficult to complete education and often disrupting

early career progression. As a result of these extraneous factors, on top of the

costs of treatment to manage symptoms, in 2007 alone there was an estimated
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societal cost of £6.7bn to England [140] - with a total cost of brain disorders in the

UK during 2010 at £53bn. On a wider scale, brain disorders are now the largest

contributor to ‘all cause morbidity’ in the EU and the Global Burden of Disease

studies has found that the global economic and health burden attributed to brain

disorders is likely to continue to increase in the future [137].

Schizophrenia is also highly complex, spanning multiple psychological domains with

a high level of heterogeneity in presentation. Key symptoms involve hallucinations

and delusions. Owing to the complex nature of the condition, there is also a

huge diversity in investigation - e.g.,psychiatric, genetic, and epidemiological study.

Genetic and environmental factors impact on brain development which can lead to

abnormalities in the formation of brain networks. These abnormalities from both

genetic and environmental sources may then ultimately combine to produce the

overall abnormal behaviour [31]. Despite this understanding we are still presented

with a limited knowledge of specifically how the disease affects brain connectivity

[91, 204, 136, 15]. The network science approach to data analysis has already made

significant steps towards remedying this, with demonstrations that patients exhibit

disruptions in small-world network properties of the brain [136]. These small-world

properties are important in terms of information transfer and functional integration

of different areas of the brain, and disruption of those factors in functional brain

imaging is consistent with other studies that have found dysfunctional integration

of the brain in schizophrenia [128, 152].

2.2.1 Diagnosis

In psychiatry, diagnosis is always based on symptom rather than results from

repeatable, objective biological tests. Symptoms come in three classes and are

described as positive (in addition to normal experience), negative (missing compared

to normal experience) or as deficits in cognitive function. Positive symptoms are
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those that exist in addition to individuals from the general population. Common

examples include hallucination (auditory, visual, olfactory and tactile), delusion,

interruption in logical processing and disorganised speech. In contrast, negative

symptoms describe reductions in experience compared with the general population.

Negative symptoms include anhedonia (reduced capability or inability to experience

pleasure), avolition (lack of motivation) and alogia (reduced fluency of thought

or speech). The final category of symptoms, a long list of cognitive dysfunctions,

have been noted in schizophrenia, with many causing difficulties in every day

living, such as problems with social integration, working memory, attention and

executive function. Due to the variety in the presentation of the symptomatology

of schizophrenia clinical diagnosis is based on matching symptoms with an agreed

clinical standard. This varies across medical bodies, with European countries

commonly adopting the ICD-10 criteria and the United States the DSM-V critera,

though there is broad agreement between standards [98]. There have also been

attempts to differentiate between subtypes of the condition (e.g., disorganised,

catatonic, paranoid) by grouping patients based on the similarity of their symptoms.

One issue with this approach is that symptoms are dynamic, varying over time,

categorisation is also reliant on accurate self-reporting which is difficult with an

illness that often accompanies lack of motivation and other cognitive deficits. To

alleviate these issues a consistent, repeatable biological test would be beneficial to

provide objectivity in diagnosis as well as to explore potential benefits to division

of patient groups.

Currently, the main antipsychotics only treat the positive symptoms associated

with the disease, having little to no effect on negative symptoms or cognitive deficits.

Cognitive enhancers are being explored as a possible treatment modality to address

this but none are currently in standard use.
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2.2.2 Treatment

There are two generations of antipsychotics used in the treatment of schizophrenia

[126]. Antipsychotics such as chlorpromazine and haloperidol act as dopamine

receptor antagonists. The site of action for these drugs is commonly at the dopamine

D2 receptor subtype, acting in the mesolimbic and nigralstriatal dopamine pathways

[35]. Unfortunately, the same mechanism of dopamine blockade that significantly

alleviates positive symptoms also results in a new class of side-effects - movement

disorders. Specifically, nigralstriatal dopamine blockade induces movement issues

resembling Parkinson’s disease (extrapyramidal side effects - in this case the inability

to remain motionless) [179].

The second generation of antipsychotic drugs were developed as a response to

this difficult profile of side effects, including sedation and hypotension. This next

generation of so-called atypical antipsychotics, or AAPs, are used in the treatment

of schizophrenia as well as other conditions such as mania, bipolar disorder and

psychotic agitation, targetting a wider range of receptors than just dopamine.

The result is that these drugs often have similar results to the first generation

neuroleptics with fewer extrapyramidal side effects but this comes at the cost of

introducing new issues such as weight gain and potential links to diabetes. There

are other successes here however, with drugs such as clozapine successful in many

treatment resistant cases.

Recent evidence has shown that distinguishing the drugs as two generations could be

misleading to patients - treatment success may not have improved with the second

generation, and claims to a reduction in side effects are exaggerated [208, 126, 131].

In any case there are multiple avenues of investigation required in the treatment

of schizophrenia. For one, there is a clear need for general improvement and

individualisation in antipsychotic pharmacology - currently, side effects are severe

to the point that a large part of the psychiatric process is to minimise side effects.
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In particular, both generations of antipsychotics have a limited ability to treat

cognitive deficits or negative symptoms. There are very few successes in the de-

velopment of drugs to address the negative and cognitive aspects of the disease.

Recent initiatives have included the Measurement and Treatment Research to

Improve Cognition in Schizophrenics (MATRICS) [74], CATIE Project (Clinical

Antipsychotic Trials of Intervention Effectiveness) [109] and Cognitive Neuroscience

Treatment Research to Improve Cognition in Schizophrenia (CNTRICS) [29]. Sec-

ondly, the action and relationship between the therapeutic effect of antipsychotic

medication and the underlying biology of the condition require further investigation.

Understanding specific effects of antipsychotics is important as it is unclear if

medication masks or eases symptoms in a way that is related to the underlying

cause of the condition.

2.2.3 Genetic Factors

Schizophrenia is a highly heritable condition with estimates of approximately 80%

[130]. This suggests that genetic factors play a key role in the risk of developing the

condition. Twin studies have also shown incidence rates of 41-65% in monozygotic

cases and 0-28% in dizygotic cases [28], and siblings of affected individuals have

a 10-fold increase in risk [127]. The complex nature of the schizophrenic pheno-

type is mirrored in the complexity of the aetiology - there are both genetic and

environmental factors with many genes implicated.

2.2.4 Biomarkers

The discovery of an indicator biomarker is therefore sought after for many reasons.

In pharmacological terms, biomarkers may allow for personalisation of treatment

paradigms and, in broader terms, there is potential for predictive biomarkers for
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early diagnosis or pre-onset intervention. It is possible that biological indicators

are dynamic and could map course of illness, treatment efficacy, and relationship

with side effects - leading to an individualisation of care. In addition, biomarkers

present the opportunity to understand disease mechanisms and so develop new drug

targets or diagnostic assays. This diagnostic element is important for schizophrenia,

particularly considering the aforementioned issues associated with subjective diag-

nostics in psychiatry. Unfortunately the specific biological understanding of many

psychiatric conditions is limited - which decreases the likelihood of development of

a viable biological marker. In psychiatric terms until recently in the DSM there

were five sub-classifications of schizophrenia:- paranoid type, disorganised, residual,

undifferentiated and catatonic. These sub-types were based solely on presentation

of symptoms, in the hope that common symptom profiles would be informative

guiding the treatment regime of newly diagnosed patients. However, with the

release of the DSM-V (2013) the recommendation of specifying a schizophrenia

sub-type has been removed - the conclusion being that psychiatric sub-types have

low diagnostic stability, low reliability and poor validity [9]. This highlights the

need for an objective biomarker based approach that is not reliant on subjective

assessment of symptoms.

Whilst there is still a lack of understanding of the underlying aetiology of schizophre-

nia, there is still potential to divide schizophrenia patients into smaller, more specific

groups - so-called ‘patient stratification’. Once identified, potentially distinct sub-

groups can be informative in guiding treatment and making a prognosis - as was

the case with stratification of breast cancer patients based on the HER2 gene [89].

2.2.5 Animal Models

Genes can be implicated when investigating risk factors for schizophrenia. However,

to prove a definitive link and understand the underlying disease mechanisms,
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biological evidence and understanding is required. Rodent models are one of the

most effective ways of exploring this higher level element, and have a valuable

role in treatment development through verifying and suggesting areas for drug

targeting [180]. There are a number of different types of animal models of relevance

to schizophrenia - created through different means, with different goals in mind

[54, 132]. Because of the complexity of schizophrenia, and the fact that there is no

animal equivalent to the human diagnostic process which is based on self-reporting

of symptoms, development of a coherent and comprehensive animal model is a

major challenge. Hence, animal models tend to focus on a subset of symptoms of

the disorder e.g., behavioural, genetic or neurological. These models are then used

with an understanding that some elements of the phenotypic presentation will be

model specific.

Pharmacological models are a focus of this thesis, where we explore two different

drug models. Pharmacological models are those where a pharmacological agent

is administered, often in an attempt to mimic altered neurotransmitter function

as seen in an individual with schizophrenia. There is strong evidence implicating

N-methyl-D-aspartic (NMDA) acid receptor hypofunction as having a role in

schizophrenia [164]. This hypothesis was suggested, and supported, by multiple

studies showing that repeated dosing of NMDA receptor antagonists causes a

symptom profile, in healthy humans, that induces a variety of positive, negative and

cognitive deficit symptoms, and intensifies symptoms in patients with schizophrenia

[33, 122, 188, 121]. Additionally, acute exposure to ketamine (an NMDA receptor

antagonist) increases the severity of symptoms in schizophrenia patients [122]. As

a result, animal models created through dosing of an NMDA receptor antagonist

such as phencyclidine (PCP) or ketamine, are an approach that is often utilised

to model translationally relevant symptom profiles in schizophrenia [32, 158]. As

a result of the success of PCP in mimicing the symptoms of schizophrenia, the
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glutamate hypothesis of schizophrenia was proposed as a mechanism for psychotic

episodes [149].

There are animal models for many other aspects of the disorder, including pharmaco-

logical models to explore the dopamine hypothesis [147], serotonin association [215]

and GABAergic system involvement [21, 179]. Models are also created through the

introduction of brain lesions, toxins or other insults to explore neurodevelopmental

factors [134, 135], though we will not consider any such models in this thesis.

There are also genetic animal models that can be used to investigate results from

gene association studies: specific genes may be associated or otherwise implicated

in a disease state but uncovering the role a particular gene plays in the overall

biology is often complicated [2].

2.2.6 Summary

This chapter has provided an overview of gene expression and microarray technology,

and the conditon that will be the focus of this thesis, schizophrenia. The scene has

been set in terms of highlighting some of the difficulties that patients and their

clinicians face in dealing with and treating the condition. The main points are that

microarray data can be clustered (using methods seen in Chapter 1) in a way that

provides biologically relevant results, related to differences between disease and

control samples and that animal models can be informative in exploring underlying

aetiology of the disease state in humans.
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2.3 Outline of Thesis

Schizophrenia is a complex neurological disorder. In this thesis we explore different

approaches to understanding the nature of the condition through application of

a variety of spectral clustering based techniques. The opening chapters, Chap-

ters 3 and 4, introduce data from preclinical animal model studies of relevance

to schizophrenia. We examine differences between model and control animals

using spectral clustering methods (the GSVD in particular), and introduce a new

approach to quantify differences in structure between sample groups. This novel

variation in spectral clustering allows us to explore the relevance of animal models

to the human state of disease.

Next, in Chapter 5 we see the construction of two new networks representing

interactions in human metabolism. These networks are formed based on shared

involvement of metabolites in defined metabolic pathways and as such are a

variation on more common metabolic networks which represent interaction between

metabolites. These two new structures are each formed from a different database

of human metabolism, and were developed as part of the aims of the following

Chapter 6. In this chapter we develop a variant, named the node-weighted Laplacian,

of existing spectral methods that can be used to merge information between two

networks with a common set of nodes. This novel method is tested with synthetic

data and the principle is illustrated on real data, framed for use to explore metabolic

involvement of schizophrenia in human data in later chapters.

The study of schizophrenia then moves from preclinical animal data to microarray

data taken from samples of human whole blood in Chapter 7. In this chapter

we cluster gene expression measurements in order to investigate the potential of

blood as a tissue for the study of schizophrenia, in place of the far more commonly

used, but much more difficult to obtain, brain tissue. Since it is suspected that

antipsychotic treatment may have a significant role in altering gene expression
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levels in patients, this chapter is also used as an opportunity to study differences

in expression between medicated and antipsychotic-free patients. We also apply

the previously developed node-weighted Laplacian in combination with metabolic

networks from Chapter 5 to test the approach on more real data and explore

metabolic involvement in schizophrenia.

The promising approach from the previous chapter is tested in Chapter 8, where a

second data set with an antipsychotic-free cohort is subject to the same approach

and examined for consistency across experiments. In addition to the previous

analysis at the gene-level, in this chapter results are generated at the function and

process levels with Gene Ontology terms, which illustrates broad differences in

results between the SVD and GSVD.

Schizophrenia is a disorder in the brain, and so for the final chapter of work the

same methods as in the preceeding chapters are applied to microarray human brain

data. Chapter 9 shows these results, giving context to the earlier studies of data

from whole blood.

Finally, conclusions are made in Chapter 10 where the context of this work within

the greater field is discussed, giving opportunity for the examination of potential

improvements and future work.
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2.4 Publications and Presentations

Much of the material presented in Chapter 3 was presented in a poster at Scot-

tish Neuroscience Group conference (2010), given as a talk at the 2011 Biennial

Conference on Numerical Analysis and appears in the article

• Dawson N, McDonald M, Higham DJ, Morris BJ, Pratt JA. Subanesthetic

Ketamine Treatment Promotes Abnormal Interactions between Neural Sub-

systems and Alters the Properties of Functional Brain Networks, Neuropsy-

chopharmacology, 2014 [39].

A selection of the work related to modafinil in Chapter 4 appears as part of the

article

• Dawson N, Xiao X, McDonald M, Higham DJ, Morris BJ, Pratt, JA. Sus-

tained NMDA receptor hypofunction induces compromised neural systems

integration and schizophrenia-like alterations in functional brain networks,

Cerebral Cortex, 2012 [42].

Much of the work from Chapter 5 and all of the material in Chapter 6 combine to

form the special issue article

• McDonald M, Higham DJ, Vass JK. Spectral algorithms for heterogeneous

biological networks, Briefings in functional genomics, Vol. 11 No. 6, 2012

[146]
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Chapter 3

Neural Subsystems to Interrogate

Ketamine as a Translational

Model for Schizophrenia

The work presented in this chapter forms part of a collaborative publication:-

Dawson N, McDonald M, Higham DJ, Morris BJ, Pratt JA. Subanesthetic Ketamine

Treatment Promotes Abnormal Interactions between Neural Subsystems and Alters

the Properties of Functional Brain Networks, Neuropsychopharmacology, 2014 [39].

This chapter presents the material from that manuscript concerned with the use of

spectral methods to analyse the data.

3.1 Background and the Ketamine Model

An important development in the growth of the field of systems biology is the

application of network theory to biology [57, 195, 26]. This chapter aims to add to

this by providing a quantitative assessment of acute ketamine exposure on brain
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imaging data, using network based methods. This study is carried out in mice

with the goal of understanding the effects of ketamine on functional connectivity of

neural subsystems. As mentioned in Chapter 2, NMDA receptor blockade produces

behavioural alterations and a symptomological profile that resembles schizophrenia.

Though there are phenotypic similarities, the mechanism and the link between

NMDA receptor blockade and this end result have not yet been adequately explored.

The NMDA receptor is a subtype of glutamate receptors - these receptors recognise

the excitatory neurotransmitter glutamate.

Complex network-based approaches provide an opportunity to uncover differences

in network clustering between the ketamine model and control animals, making

inferences about the action of ketamine. We will take lead from strong interest

recently in the literature in characterising interactions between distinct neural

subsystems in the context of complex networks, including some works aimed at

elucidating the aetiology of the ketamine model [168, 40]. A particular point of

interest with regards to the model for schizophrenia is functional integration of the

prefrontal regions of the brain - to test the so-called ‘hypofrontality hypothesis’ -

a decrease of activity in the prefrontal regions of the brain. The hypofrontality

hypothesis has been supported by many brain imaging studies on patients with

schizophrenia [4]. This is consistent with negative and cognitive symptoms in the

disease state, since the prefrontal cortex is known to have involvement in complex

cognitive behaviours, decision making and moderating behaviour [221].

3.1.1 Data: 2-Deoxyglucose (2-DG) Autoradiography and

Suitability for Network Science

Chapters 3 and 4 take a network approach to interpreting 2-deoxyglucose (2-DG)

autoradiography measurements in mice. 2-DG imaging provides a measure of

localised regional metabolism (glucose utilisation) which is directly correlated
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to neuronal activity [115, 194]. The basis for this protocol is that brain cells

metabolise glucose as an energy source - as glucose uptake occurs so does 2-DG,

but 2-DG remains detectable in the cells afterwards as 2-DG phosphate since it is

not completely metabolised. In brief, this process involves injecting the mice with

an isotope 14C 2-DG. They are left for 45 minutes to allow the isotope to distribute

before being sacrificed. The brains are dissected out and divided according to

some pre-determined mapping of areas of desired measurement. After freezing

and coronal sectioning, autoradiograms are taken of each individual brain segment.

Optical intensity of silver graph deposition on X-ray film corresponds to recent

cerebral glucose utilization in that region, which can be expressed with respect to

the average level throughout the whole brain of the animal [40]. Thus the process of

2-DG autoradiography provides an index of regional cerebral metabolism over a time

period, similar to techniques such as fludeoxyglucose positron emission tomography

(FDG PET) which has yielded significant results in human schizophrenia studies

[23, 192] as well as other neurological conditions such as Huntington’s disease

[169, 60].

If a functional interaction exists between measured brain regions across time, it is

supposed that this functional interaction can be detected by observing correlated

changes in metabolism between these regions across subjects or states - one of our

objectives is to test whether this assumption leads to reasonable conclusions.

Interpreting these results in a network sense is appropriate because the brain does

not operate as a collection of individual elements, but as a complex, dynamic network

where functional interaction between regions is highly important in determining

neural operation [26]. In humans, these functional interactions between regions

have previously been elucidated through functional brain imaging methods such

as fMRI, where the correlated activity of brain regions across time supports a

functional interaction between regions [15, 26, 10, 97].
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Given that strong functional interactions are more likely to exist between anatomi-

cally connected neural systems, a major focus of this chapter is the determination

of differences in clustering of functional neural subsystems between a control and

an experimental group treated with ketamine.

3.1.2 Introducing the Data

The data for this chapter are previously unpublished and were provided through

a collaboration with Dr Neil Dawson, who carried out all of the 2-DG data

gathering process (Strathclyde Institute of Pharmacy and Biomedical Sciences,

University of Strathclyde) [39]. This 2-DG study involved two groups of mice -

one acutely treated with NMDA receptor antagonist ketamine (n=9, 30mgkg−1,

intraperitoneally [i.p.]), the other being a control set given physiological saline (n=9,

2mgkg−1, [i.p.]). This experiment followed a published protocol [41]. 14C 2-DG

uptake ratios were measured for 66 regions of interest across the mouse brain. After

gathering the data, the inter-regional Pearson’s correlation coefficients (partial

correlation) were taken as a metric of functional association between regions of

interest, as has been done with previous studies [40, 42]. The data was also Fisher

z-transformed to increase normality.

We were not involved in this laboratory collection phase, instead we received the

data in Pearson’s r/Fisher z processed form as two square, symmetric arrays. We

have A ∈ R66×66 from the ketamine treated animals (n = 9) and, B ∈ R66×66 from

the control animals (n = 9). The arrays have have a common set G = {g1, g2, ...g66}

of nodes representing brain regions. The array entries aij and bij represent the

edge weight between regions i and j. More precisely, these edge weights correspond

to the normalised partial correlation co-efficients, across mice.

The cross-correlations are two-signed and real valued; aij or bij > 0 means the

profile 2-DG levels for regions i and j agree across mice, and aij or bij < 0 means
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there is an anti-correlation. Additionally, aii = 0 and bii = 0. Note that both

real-valued weights and directed graphs have previously been studied in brain

networks [36, 102]. From a networks perspective, this can be re-stated by saying

that there are both positive and negative edge weights between nodes and the zero

diagonals indicate that there are no self-loops. The existence of both positive and

negative edge weights has the consequence in spectral analysis that the first singular

vector becomes relevant - this is in contrast to common spectral analysis of networks

where edges are assumed to be non-negative and the Fiedler vector (2nd) and above

are relevant [87]. Often in analysis of brain networks a threshold is applied to the

matrix of weighted pairwise associations between regions. Though this thresholding

approach allows for the formation of a binary adjacency matrix which simplifies the

process of analysis, the sparsity, among other parameters, depends on the threshold

value. This means that important structure and information can be lost with a

poor choice of threshold [26]. The clustering approach taken in this chapter allows

for the use of real values, and so the full weighted network can be used and the

thresholding problem avoided.

Figure 3.1 shows initial plots of the data, along with a colour bar. This illustrates

the heat map type format that will be used at various stages of this analysis, where

values are represented as colours. This format is widely used in the life sciences,

where visual assessment of clustering methods is beneficial [50, 217]. There are no

obvious visual features or patterns (e.g., collections of similarly weighted/coloured

subsections) in the data at this point, which makes sense since the ordering in

which the brain regions are presented is arbitrary.
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Figure 3.1: The ketamine and control data with their initial arbitrary orderings.
The X/Y dimensions are node IDs, which correspond to brain regions. These node
IDs are initially assigned to nodes based on the order in which the experimenter
collected the data.

Allocating Brain Regions to Functional Groups

The connections in a brain network can take various forms - e.g., functional networks

where edges represent some measure of activity (e.g., fMRI data) or anatomical

networks, where edges are formed from known structural connections between areas

of the brain [210, 65]. In this chapter, the nodes are anatomical and edges represent

function. Since the goal of this experiment was to uncover functional differences

between the two sets, it is useful to assign each member of the node set G to a

subset depending on known biology.

Each of the brain regions were allocated to a discrete neural system on the basis of

established neuroanatomy, connectivity or known functional similarities. While the

neuroanatomy of some of these functional subsystems is established in the literature

[88, 40], others are less well defined or understood. For example, the connectivity of

the thalamic regions of the brain is so wide-ranging and complicated that assigning

these regions to subsystems based on connectivity is not currently possible. Thus,

thalamic nuclei have been designated a thalamic subsystem, due to their functional
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similarities and high anatomical interconnectivity [139]. Similarly, we group regions

of the prefrontal cortex and hippocampus on the basis of functional similarity

and known anatomical connecitivty. The neuromodulatory group is comprised of

neurotransmitter systems that regulate neuronal activity in many neural subsystems

(e.g., serotonin/noradrenaline) and the multimodal group is a series of brain regions

that interact with many different neural systems. The complete set of functional

groups, provided by Dr Neil Dawson, is shown in Table 3.1.

Functional Group Number of Regions

Thalamus 11

Hippocampus 6

Prefrontal Cortex 6

medial Prefrontal Cortex 4

Cortex 6

Mesolimbic 4

Amygdala 3

Septum/DB 4

Basal Ganglia 6

Neuromodulatory 6

Multimodal 10

Table 3.1: Functional groups of 66 regions of interest

To recap, in this subsection an experimental paradigm has been described, and

detail provided of an experiment using this protocol. Since the purpose of this

experiment is to investigate an animal model of relevance to schizophrenia, as

outlined in Section 2.2.5, our aim is to find differences in function between the

control state mouse brain and the acutely treated ketamine model mouse brain.

The suggestion is then that the observable differences between these two sets

of mice is related to the aetiology of schizophrenia. The first objective of this

analysis is to evaluate the use of acute administration of ketamine as an animal

model for schizophrenia, that is, to explore whether ketamine disrupts functional

integration of neural operation in a similar manner to that which is known in

humans. The second, complimentary, objective is to show any other differences
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between the two groups, exploring the possible role of NMDA receptor hypofunction

in schizophrenia.

3.2 Method of Analysis

The methods taking focus in this thesis are spectral clustering approaches - use of

the SVD and the GSVD. These spectral approaches are heuristic in nature, so it is

important to validate results on novel data types. To this end, we employ a cluster

verification technique (Section 3.2.1) and compare results with other calculations

on this data, such as small-world and other traditional network parameters (e.g.,

degree, path length - as performed by Dr Neil Dawson in his own assessment of

the data).

As described in Section 1.3.3, the GSVD can identify mutually exclusive structures

between a pair of networks that share a common node set. In the notation of

Section 1.3.3, taking the GSVD of (A,B) the first few columns of X−T are expressive

of the structures in the control (B) data, and the last few columns of X−T show

the structures of the ketamine (A) data - as according to [219].

These columns are then sorted and used for reordering and clustering of the original

data. So, node i in the original data is assigned a new ID as node k and the

overall reordering can be represented by a permutation of the integers 1 to 66. To

visualise the clustering process, Figure 3.2 shows the networks (from Figure 3.1)

reordered using vectors from the GSVD, with potential clusters highlighted in red:

the clusters can be identified as areas of heat (orange/red in this case), and appear

in the expected areas given the mutually exclusive clustering ability of the GSVD.
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Figure 3.2: Heat maps showing GSVD reordered data. Clusters, as highlighted in
red, can be seen as concentrated areas of heat in the end vector for ketamine data
and start for control.

In this case clusters are seen in the control data in the first column x[1] and with

the last vector x[end] in the ketamine data. Then, according to this interpretation of

the GSVD, the nodes pushed into these clusters are those driving structure within

the data. The next step is to quantify the significance of the clusters.

3.2.1 Cluster Quality Measure

Though visual assessment is useful, and often convincing, we will utilise a previously

developed approach (see ‘c2’ in Chapter 3 [219] and [220], and Section 1.4.1 in

this thesis) to give a quantitative estimate on the quality of a cluster. There are

numerous possible definitions of a cluster, in this method the cluster is defined in
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terms of relative density - an area with a density (mean value) higher than that in

the rest of the network is a cluster.

Figure 3.3 illustrates how cluster quality is calculated according to this measure.

The ratio of the density in area 1 (x× x) of network A and the density of the rest

of the edges in network A, is compared with the same ratio in network B - with

both networks having been reordered by a vector from the GSVD. This value is

assigned a bootstrap style p-value, where the p-value represents the frequency with

which a ratio of this level, or higher, occurs in 10, 000 random permutations of the

same networks.

Figure 3.3: A sample network with a candidate cluster highlighted as area (1)
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Figure 3.4: p-value and relative density measure for varying cluster size. Top
images show values for a cluster starting at the first node, while the bottom images
show those starting at the end node.

Figure 3.5: p-value and relative density measure for varying cluster size. Top
images show values for a cluster starting at the first node, while the bottom images
show those starting at the end node.
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From Figure 3.4 the obvious cluster size for the x[end] ordering in the ketamine

data is to have cluster one as nodes 1− 15 (p = 0.0048) and cluster two as nodes

66− 50 (p < 0.0001). This is a point where the p-value reaches significance, cluster

size is reasonable and the cluster density is locally optimal. To expand on this, the

top left figure shows that after approximately a cluster size of 20, as this cluster

size increases to encompass progressively more of the data (until close to the end)

the p-values remain significant. This is explained by the fact that, as seen on the

top right density measure plot, most of the density is located on that side of the

ordering, thus it is highly likely any group containing those high density nodes will

show significance.

Similarly, from Figure 3.5 the choice clusters are nodes 1− 25 (p = 0.0027) and

66− 52 (p < 0.0001). Having decided on cluster size, the next step is to check for

representation within these clusters for each of the neural subsystems. A reordered

list of brain regions with colour coding for functional group is shown in Figure 3.6.

Visual assessments are difficult and uninformative with this number of regions, as

can be seen in the complicated colour diagram of reordered lists in Figure 3.6. To

achieve a quantitative result, the level of representation can be calculated with a

hypothesis test in order to determine the likelihood of a chance result, in this case

a hypergeometric probability test (see [157] for more details) [220, 42]. In words,

we are testing whether a functional group is present in a cluster at a level that

is very unlikely to arise if the members of the group were distributed at random

throughout the list of nodes.
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Figure 3.6: Left: Colour key for brain subsystems. Right: Lists of brain regions
(nodes) for which measurements were given. Control and ketamine lists show x[1]

and x[end] reorderings of the list respectively, according to the GSVD.

Tables 3.2 and 3.3 show the results for hypergeometric probability testing of the

number of regions appearing in a particular cluster for each functional group, for

the control and ketamine treated groups respectively. Functional groups that are

significantly represented in a cluster are posited to be functionally relevant in the

data for that particular animal group.
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Control

Cluster One Nodes 1-25

Brain subsystem Regions in subsystem (N) Regions in cluster (n) Hypergeometric probability (P(x ≥ n)

Thalamus 11 6 0.152

Hippocampus 6 1 0.942

Prefrontal Cortex 6 1 0.942

medial Prefrontal Cortex 4 0 1.000

Cortex 6 3 0.378

Mesolimbic 4 1 0.845

Amygdala 3 0 1.000

Septum/DB 4 0 1.000

Basal Ganglia 6 2 0.718

Neuromodulatory 6 6 1.48e-3

Multimodal 10 5 0.266

Cluster Two Nodes 52-66

Thalamus 11 0 1.000

Hippocampus 6 0 1.000

Prefrontal Cortex 6 2 0.414

medial Prefrontal Cortex 4 4 1.89e-3

Cortex 6 0 1.000

Mesolimbic 4 0 1.000

Amygdala 3 2 0.130

Septum/DB 4 3 0.034

Basal Ganglia 6 1 0.800

Neuromodulatory 6 0 1.000

Multimodal 10 2 0.722

Table 3.2: p-values from a hypergeometric probability distribution hypothesis test
of finding at least the number of observed elements of a given subsystem within
the clusters generated by the GSVD.

Ketamine

Cluster One Nodes 1-15

Brain subsystem Regions in subsystem (N) Regions in cluster (n) Hypergeometric probability (P(x ≥ n)

Thalamus 11 3 0.480

Hippocampus 6 3 0.125

Prefrontal Cortex 6 0 1.000

medial Prefrontal Cortex 4 0 1.000

Cortex 6 0 1.000

Mesolimbic 4 1 0.653

Amygdala 3 0 1.000

Septum/DB 4 3 0.034

Basal Ganglia 6 4 0.021

Neuromodulatory 6 0 1.000

Multimodal 10 1 0.939

Cluster Two Nodes 50-66

Thalamus 11 0 1.000

Hippocampus 6 0 1.000

Prefrontal Cortex 6 4 0.034

medial Prefrontal Cortex 4 3 0.049

Cortex 6 0 1.000

Mesolimbic 4 2 0.271

Amygdala 3 0 1.000

Septum/DB 4 0 1.000

Basal Ganglia 6 0 1.000

Neuromodulatory 6 4 0.034

Multimodal 10 4 0.228

Table 3.3: p-values from a hypergeometric probability distribution hypothesis test
of finding at least the number of observed elements of a given subsystem within
the clusters generated by the GSVD.
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In the control data, the neuromodulatory group shows significance in cluster one

(p = 0.00148) and septum/diagonal band and medial prefrontal cortex appear in

cluster two together (p = 0.00189, p = 0.034, respectively). This changes in the

ketamine treated group - septum/diagonal band and the basal ganglia now appear

in a cluster (p = 0.034, p = 0.021 respectively) and the prefrontal cortex, medial

prefrontal cortex and neuromodulatory regions show significance (p = 0.034, p =

0.049, p = 0.034 respectively).

The transition of the septum/diagonal band from the same cluster as the medial

prefrontal cortex in the control ordering to separate clusters in the ketamine ordering

suggests that the functional interactions of these two subsystems is compromised

following ketamine treatment. In the opposite direction, the transition of the

neuromodulatory subsystem from a separate cluster from the medial prefrontal

cortex to the same cluster across reorderings suggests these subsystems have become

more functionally integrated in the ketamine treated animals.

3.2.2 Calculating the Variance

Working with this data set in particular was interesting in that it presented an

opportunity to test an alternative method for incorporating known information (i.e.,

functional groups) into the study. In this subsection we therefore take a different

approach to analysing the reordered set of nodes, with the aim of investigating

whether the orderings uncover clusters nodes that form particular functional groups

(as outlined in Section 3.1.2). The measure used here involves reordering the brain

regions with the vectors from the GSVD as before, and calculating the variance of

the components in the reordered vectors that pertain to each functional group. For

example, there are 11 regions assigned to the thalamus - each of the 11 regions has

a corresponding component within the reordering vector from X−T . The variance

of these 11 components throughout the ordering is a measure of how close together
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Functional Group Control Exclusive Ketamine Exclusive

variance p-value variance p-value

Thalamus 0.0027 0.0653 0.0033 0.0467

Hippocampus 0.0023 0.1291 0.0011 0.3813

Prefrontal Cortex 0.0041 0.4503 0.0029 0.0334

medial Prefrontal Cortex 0.0005 0.0303 0.0033 0.4420

Cortex 0.0047 0.5553 0.0021 0.3040

Mesolimbic 0.0073 0.8409 0.0047 0.6275

Amygdala 0.0035 0.4602 0.0006 0.0952

Septum/DB 0.0034 0.3893 0.0032 0.4245

Basal Ganglia 0.0045 0.5278 0.0018 0.1121

Neuromodulatory 0.0001 0.0001 0.0005 0.0041

Multimodal 0.0044 0.4770 0.0038 0.4089

Table 3.4: Single neural subsystem in control and ketamine-treated mice. Columns
show the variance, and corresponding p-value, of singular value components from
GSVD orderings for nodes within each functional group. Significant values are in
bold.

they have been mapped. Then when the variance of nodes within a functional

group is relatively small the component nodes are positioned closely together in

the ordering, suggesting they are functionally interacting.

Measuring Statistical Significance: p-values

As part of validating this method we need to quantify the level of significance

of our results. As an example, to test the significance of the variance of the

aforementioned 11 thalamic regions, we will randomize the distribution of singular

vector components 1, 000 times and take the variance of the blocks of 11 each time.

The p-value is then the frequency with which the experimental variance is smaller

than those from the randomizations.

Table 3.4 shows the variance of the singular vector components for each of the given

neural subsystems, and an assigned p-value where significant values are in bold.
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These results show that ketamine interferes with the connectivity of the medial

prefrontal cortex, and promotes activity in the prefrontal cortex and thalamus. The

neuromodulatory region shows significance in both ketamine and control groups.

This mirrors the results from hypergeometric probability testing of the ketamine

data ordering in an earlier section in Table 3.3 where the prefrontal cortex shows

significance. The septum/diagonal band was also significantly overrepresented in

hypergeometric probability testing in Table 3.3 - this significance does not show

in the variance measure in this section. This shows the septum/diagonal band

regions are part of a larger cluster involving other brain regions (since they are

significantly over-represented in the cluster), but the individual component regions

are not clustered together.

Similarly, Table 3.2 shows the neuromodulatory and medial prefrontal cortex

functional groups as having significant over-representation where their component

regions are also significantly grouped in Table 3.4.

3.2.3 Two-way Neural Subsystem Interaction

To further quantify the alterations in the neural subsystem interaction induced

by acute ketamine treatment, the significance of bipartite interactions between all

investigated subsystems was also determined, through examination of the variance

of the components of all regions across a pair of subsystems. For example, to

quantify interaction between the thalamus and the hippocampus, the variance of

these 17 (11 thalamic, 6 hippocampal) components measures how close together

they have been mapped. As with the previous subsection, p−values are calculated

through randomization of the distribution of singular vector components. The

variance of the block of 17 components is stored each time, and the p−value is

the frequency with which the experimental variance is smaller than those from the

randomizations.
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This measurement of clustering across subsystems is applied and shown in Tables 3.5

and 3.6 In this way, the observation in Section 3.2 that the Septum/DB-mPFC

show significant interaction in the control network but not in the ketamine-treated

animals gains weight through verification from a different angle. In addition, in

the control network the neuromodulatory subsystem is significantly functionally

coupled to the thalamus (p = 0.004) and hippocampus (p = 0.003). In the ketamine

treated animals these interactions are lost and the neuromodulatory subsystem

becomes more functionally coupled to the PFC (p = 0.007), mPFC (p = 0.022),

cortex (p = 0.003) and the amygdala (p = 0.004). Finally, the functional coupling

of thalamic regions to the amygdala (p = 0.012), basal ganglia (p = 0.019) and

cortical regions (p = 0.005) is enhanced by ketamine treatment. In control animals,

a significant interaction existed between the hippocampus and thalamus neural

systems (p = 0.013) that was not altered by ketamine treatment (p = 0.033).
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Thalamus - 0.003 0.003 0.004 0.003 0.004 0.003 0.005 0.003 0.002 0.003

Hippocampus 0.013 - 0.003 0.003 0.003 0.004 0.003 0.004 0.003 0.002 0.003

Prefrontal Cortex 0.076 0.089 - 0.004 0.004 0.005 0.004 0.005 0.004 0.003 0.005

medial Prefrontal Cortex 0.388 0.117 0.317 - 0.006 0.005 0.002 0.002 0.004 0.006 0.006

Cortex 0.063 0.196 0.464 0.833 - 0.005 0.005 0.007 0.005 0.003 0.004

Mesolimbic 0.199 0.293 0.582 0.590 0.741 - 0.005 0.006 0.005 0.004 0.005

Amygdala 0.158 0.108 0.327 0.048 0.683 0.661 - 0.003 0.004 0.004 0.005

Septum/DB 0.674 0.367 0.618 0.026 0.953 0.845 0.248 - 0.005 0.007 0.007

Basal Ganglia 0.115 0.124 0.330 0.313 0.575 0.637 0.375 0.613 - 0.004 0.005

Neuromodulatory 0.004 0.033 0.163 0.793 0.042 0.321 0.345 0.943 0.272 - 0.004

Multimodal 0.070 0.255 0.528 0.932 0.397 0.726 0.735 0.985 0.625 0.046 -
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p-values

Table 3.5: Two-way neural subsystem positioning in control mice. These results show the variance (top right triangle) and p-values

(bottom left triangle, significant in bold), for the x[1] control ordering.
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Thalamus - 0.003 0.004 0.005 0.002 0.003 0.002 0.003 0.002 0.003 0.003

Hippocampus 0.330 - 0.006 0.008 0.003 0.005 0.003 0.003 0.002 0.005 0.005

Prefrontal Cortex 0.401 0.909 - 0.003 0.002 0.004 0.003 0.007 0.006 0.002 0.004

medial Prefrontal Cortex 0.744 0.989 0.199 - 0.003 0.005 0.004 0.009 0.008 0.002 0.004

Cortex 0.005 0.163 0.083 0.291 - 0.002 0.001 0.003 0.003 0.001 0.003

Mesolimbic 0.104 0.601 0.395 0.689 0.070 - 0.003 0.005 0.004 0.002 0.004

Amygdala 0.012 0.234 0.156 0.424 0.002 0.202 - 0.003 0.003 0.001 0.003

Septum/DB 0.049 0.200 0.946 0.997 0.231 0.708 0.332 - 0.002 0.005 0.005

Basal Ganglia 0.019 0.073 0.936 0.994 0.129 0.537 0.144 0.054 - 0.005 0.005

Neuromodulatory 0.116 0.648 0.007 0.022 0.003 0.083 0.004 0.737 0.706 - 0.004

Multimodal 0.130 0.614 0.317 0.596 0.062 0.339 0.155 0.707 0.627 0.079 -

V
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p-values

Table 3.6: Two-way neural subsystem clustering in ketamine-treated mice. These results show the variance (top right triangle)

and p-values (bottom left triangle, significant in bold) for clustering across two functional subsystems, for the x[end] ketamine

ordering.
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3.3 Discussion

In this chapter we have verified the ability of the GSVD to find mutually exclusive

clusters in 2-DG type data. We have illustrated biologically relevant results, and

can now briefly compare with results observed in humans.

In humans, MRI studies have shown abnormal densities in many of these neural

subsystems - including an increase in basal ganglia and decrease in amygdala,

frontal, cortical and thalamic regions [55, 70]. These results from meta-analyses

included studies with patients studied at point of onset (and so medication free),

which is important as treatment may mask the underlying disease mechanism.

Though these results are not directly transferrable, since they are from a different

data type, as well as being from human study, it is clear that schizophrenia has a

wide-ranging effect across the whole brain - this is consistent with the brain wide

disruption observed in this chapter.

The two-way interaction analysis shows that ketamine substantially alters interac-

tion between subsystems - increased activity in the PFC and thalamus between

other subsystems is seen, results which parallel those (published in [42]) found with

another NMDA receptor antagonist, PCP, in the following chapter.

Our clustering results mirror those found through the alternative approach of

examination of traditional topological network parameters - clustering coefficients,

closeness and betweenness centrality, mean degree and average path length, as found

by our co-authors on the same data in the submitted publication. This suggests

that the novel approach to network clustering and the method of calculating the

variance of spectral vector components developed here can yield biologically relevant

results. Further biological interpretation and detailed discussion of the implications

for the ketamine model have been provided by other members of the collaboration

in the manuscript [39].
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There is however an obvious potential disconnect in that this work has been carried

out on a rodent mouse model (that is, there is an issue of transferrability of results

to humans). However, animal models are important for various aforementioned

reasons and, most importantly, the purpose of an animal model in this context is

to mimic some aspect of the condition. While the presentation may be legitimate,

at a system level the biology differs from that seen in humans - questioning the

utility of the model. In particular, hypofrontality is a key neurological correlate

for individuals with schizophrenia - the results seen in this chapter suggest that

ketamine induces increased activity in the frontal regions, a state of hyperfrontality.

It is therefore possible that the alterations in the network in the acute phase may

not be representative of the long term changes in network topology associated with

the chronic condition.

We also note that although we have computed p−values to quantify significance,

the sample size of n = 9 mice per group is not ideal. More data would be desirable

in order to allow further patterns to be discovered. Ideally these results will be

taken as a point of interest for further work. Finally, this chapter has established

the general utility of the GSVD/variance clustering approach - and this approach

will be used in the following chapter.
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Chapter 4

Integration of Neural Subsystems

in Rats Administered Modafinil

and PCP

The results in this chapter form part of a publication:-

Dawson N, Xiao X, McDonald M, Higham DJ, Morris BJ, Pratt, JA. Sustained

NMDA receptor hypofunction induces compromised neural systems integration and

schizophrenia-like alterations in functional brain networks, Cerebral Cortex, 2012

[42].

This chapter presents the material from that manuscript concerned with the use of

spectral methods to analyse the effects of modafinil on integration of neural subsys-

tems in the presence of PCP or vehicle; specifically clustering and hypergeometric

probability test results.
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4.1 Background and the PCP Animal Model

Following successful collaboration with Dr Neil Dawson in Chapter 3, we continued

efforts, now exploring an alternative animal model. The previous chapter revealed

changes in the functional integration of neural subsystems as a response to acute

dosing of the NMDA receptor antagonist ketamine. This chapter provides analysis

of data from a similar 2 − DG study, this time with subchronic phencyclidine

(PCP) dosing of Lister Hooded rats. PCP is also an NMDA receptor antagonist

and like ketamine can produce schizophrenia-like symptoms in healthy volunteers

and exacerbate psychosis in patients with schizophrenia [100, 218]. The animal

model of subchronic PCP treatment effectively reproduces in rats much of the

symptomatology observed in human schizophrenia [53, 198], notably cognitive

deficits [33, 41]. We begin with the assumption that the schizophrenia-like symptoms

induced by the PCP are recreating the differential neural operation that is present

in the disease state. If this assumption is valid then, as with the previous chapter,

we can observe alterations induced by administration of PCP as compared with a

control group.

We will examine data in the context of functional integration of neural subsystems.

Integration between these subsystems is essential for overall cognitive function

- complex tasks are comprised of components that localize to different areas of

the brain. This functional integration is compromised in schizophrenia, a fact

which is proposed to account for cognitive deficits seen in the condition [175, 91].

Specific proposals include compromised integration between prefrontal regions,

both hippocampal [151] and cortical [110] regions.

The psychoactive drug modafinil has been shown to reverse some of the cognitive

deficits observed in animals treated with PCP [41]. Similarly, modafinil has been

shown to restore deficits in cognitive processing in schizophrenia [41], suggesting
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modafinil is a candidate for a translationally relevant treatment for cognitive

deficits.

4.2 Introducing the Data

The approach of analysis in this chapter is similar that used in the previous chapter

with the ketamine model. The data is from a 2-DG study, and was provided through

a further collaboration with Dr Neil Dawson (who carried out the experiments and

processed the data: processing involved forming the correlations across animals

and taking the Fisher-z transform to increase normality). This time there are four

data sets:-

• Actrl ∈ R64×64 control data (n = 7, 0.9% physiological saline [i.p.])

• Bpcp ∈ R64×64 PCP (n = 9, 2.58mgkg−1 PCP.HCl [i.p.])

• Cmod ∈ R64×64 modafinil (n = 6, 64mgkg−1 modafinil in 0.5% methylcellulose

[o.p.])

• Dpcpmod ∈ R64×64 PCP + modafinil (n = 7)

Arbitrarily ordered heat maps of the data are shown in Figure 4.1.
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Figure 4.1: Heat maps of control, PCP, modafinil and PCP + modafinil data

The four data sets can be compared in six different combinations, with twelve

orderings - GSVD of (A,B) results in an ordering for both A and B. This chapter

will provide the following comparisons:-

Control < − > Modafinil

Control < − > PCP

Control < − > PCP + Modafinil

The others:-

PCP < − > Modafinil

Modafinil < − > PCP + Modafinil

PCP < − > PCP + Modafinil

are less informative in terms of the goals of this experiment, hence are not included

in this study.
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The same functional subsystem allocations (Section 3.1.2) are used as with the

previous data set, with the slight difference that there are 64 regions instead of

66. The number of regions per functional subsystem in this chapter is shown in

Table 4.3.

Functional Group Number of Regions

Thalamus 11

Hippocampus 5

Prefrontal Cortex 6

medial Prefrontal Cortex 4

Cortex 6

Mesolimbic 4

Amygdala 3

Septum/DB 4

Basal Ganglia 6

Neuromodulatory 5

Multimodal 10

Table 4.3: Functional groups of 64 regions of interest

4.3 Hypergeometric Probability Testing of Sub-

system Representation

We will test GSVD reordered data for clusters and overrepresentation of functional

subsystems in each of the combinations of data. In the results, this time we omit

any subsystems that have zero regions within the cluster (and so hypergeometric

probability of p = 1.000). Clusters were verified using the same cluster quality

measure as in Section 3.2.1. The resultant cluster size and p−value are given in

each section as appropriate.
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Figure 4.2: Top: Heat maps of control and modafinil data reordered according to
GSVD. Bottom: reordered brain region list with p−values highlighting significant
clusters.
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Modafinil and Control

Figure 4.2 shows a reordering of the modafinil and control data according to

the GSVD. In the modafinil ordered heat map (top right) we can already see

visually that the hot nodes are concentrated towards one end of the ordering - this

is confirmed when significant clusters are elucidated through the cluster quality

measure where, in the control data, nodes 1− 17 (p = 0.034) and nodes 46− 64

(p = 0.010) are clustered. Similarly, in the modafinil data there is a cluster of

nodes 46− 64 (p = 0.020).

Control

Cluster One Nodes 1-17

Brain subsystem Regions in subsystem (N) Regions in cluster (n) Hypergeometric probability (P(x ≥ n)

Thalamus 11 4 0.321

Hippocampus 5 1 0.799

Prefrontal Cortex 6 1 0.857

medial Prefrontal Cortex 4 1 0.719

Cortex 6 3 0.185

Septum/DB 4 1 0.719

Basal Ganglia 6 2 0.509

Neuromodulatory 5 1 0.799

Multimodal 10 1 0.966

Cluster Two Nodes 46-64

Thalamus 11 2 0.905

Hippocampus 5 1 0.840

Prefrontal Cortex 6 1 0.891

Mesolimbic 4 3 0.075

Amygdala 3 1 0.659

Septum/DB 4 2 0.341

Basal Ganglia 6 3 0.242

Neuromodulatory 5 2 0.469

Multimodal 10 4 0.334

Table 4.4: p-values from a hypergeometric probability distribution hypothesis test
of subsystem representation in a significant cluster in control not modafinil rat
data.

56



CHAPTER 4. INTEGRATION OF NEURAL SUBSYSTEMS IN RATS
ADMINISTERED MODAFINIL AND PCP

Modafinil

Cluster One Nodes 1-15

Brain subsystem Regions in subsystem (N) Regions in cluster (n) Hypergeometric probability (P(x ≥ n)

Thalamus 11 7 0.012

Prefrontal Cortex 6 1 0.891

medial Prefrontal Cortex 4 1 0.766

Cortex 6 4 0.049

Mesolimbic 4 1 0.766

Basal Ganglia 6 1 0.891

Neuromodulatory 5 1 0.840

Multimodal 10 3 0.624

Table 4.5: p-values from a hypergeometric probability distribution hypothesis test
of subsystem representation in a significant cluster in modafinil not control rat
data.

Table 4.5 shows the modafinil exclusive ordering. The modafinil data presents one

significant cluster including clustering between thalamic (p = 0.012) and cortical

(p = 0.049) regions. Additionally, in the control exclusive ordering (Table 4.4) it is

notable that the thalamic regions are divided across clusters, where those regions

appear in the same cluster in the data from modafinil treated rats.
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PCP and Control

Table 4.6 with results for control exclusive (vs PCP) data has two clusters, nodes

1-10 (p = 0.046) and nodes 54-64 (p = 0.026), as determined by the cluster quality

measure. The PCP exclusive ordering also shows two significant clusters:- nodes

1-15 (p = 0.031) and nodes 53-64 (p = 0.016). In the control ordering, we see that

the basal ganglia and thalamus are significantly overrepresented.

Control

Cluster One Nodes 1-10

Brain subsystem Regions in subsystem (N) Regions in cluster (n) Hypergeometric probability (P(x ≥ n)

Prefrontal Cortex 6 3 0.044

Septum/DB 4 1 0.502

Basal Ganglia 6 4 0.004

Multimodal 10 2 0.494

Cluster Two Nodes 54-64

Thalamus 11 6 0.002

Hippocampus 5 1 0.624

Cortex 6 1 0.694

Amygdala 3 1 0.438

Basal Ganglia 6 1 0.694

Multimodal 10 1 0.871

Table 4.6: p-values from a hypergeometric probability distribution hypothesis test
of subsystem representation in a significant cluster in control, not PCP rat data.

PCP

Cluster One Nodes 1-15

Brain subsystem Regions in subsystem (N) Regions in cluster (n) Hypergeometric probability (P(x ≥ n)

Thalamus 11 5 0.071

Prefrontal Cortex 6 1 0.814

medial Prefrontal Cortex 4 2 0.211

Cortex 6 3 0.135

Multimodal 10 3 0.430

Cluster Two Nodes 53-64

Hippocampus 5 1 0.659

Mesolimbic 4 2 0.157

Amygdala 3 2 0.088

Septum/DB 4 1 0.574

Basal Ganglia 6 2 0.313

Neuromodulatory 5 1 0.659

Multimodal 10 3 0.276

Table 4.7: p-values from a hypergeometric probability distribution hypothesis test
of subsystem representation in a significant cluster in PCP not control rat data.
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PCP + Modafinil and Control

Tables 4.8 and 4.9 show results for control exclusive ordering compared to PCP +

modafinil data and vice versa, respectively. There is one significant cluster in the

control exclusive ordering- nodes 1− 14 (p = 0.012) and two clusters in the PCP +

modafinil exclusive ordering 1− 11 (p = 0.048) and nodes 46− 64 (p = 0.022).

Control

Cluster Two Nodes 1-14

Brain subsystem Regions in subsystem (N) Regions in cluster (n) Hypergeometric probability (P(x ≥ n)

Thalamus 11 1 0.950

Hippocampus 5 3 0.065

Mesolimbic 4 1 0.638

Septum/DB 4 1 0.638

Basal Ganglia 6 2 0.392

Neuromodulatory 5 2 0.299

Multimodal 10 2 0.701

Table 4.8: p-values from a hypergeometric probability distribution hypothesis test
of subsystem representation in a significant cluster in control (not PCP + modafinil)
rat data.

PCP + Modafinil

Cluster One Nodes 1-11

Brain subsystem Regions in subsystem (N) Regions in cluster (n) Hypergeometric probability (P(x ≥ n)

Thalamus 11 4 0.085

Hippocampus 5 1 0.624

medial Prefrontal Cortex 4 1 0.539

Basal Ganglia 6 2 0.273

Neuromodulatory 5 2 0.201

Multimodal 10 1 0.871

Cluster Two Nodes 46-64

Thalamus 11 3 0.701

Prefrontal Cortex 6 2 0.582

Cortex 6 2 0.582

Mesolimbic 4 3 0.075

Amygdala 3 1 0.659

Septum/DB 4 1 0.766

Basal Ganglia 6 1 0.891

Neuromodulatory 5 2 0.469

Multimodal 10 4 0.334

Table 4.9: p-values from a hypergeometric probability distribution hypothesis test
of subsystem representation in a significant cluster in PCP + modafinil exclusive
(not control) rat data.

According to the hypergeometric probability test there are no significantly overrep-

resented subsystems in these orderings. This is interesting in that it suggests the
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disintegration induced through administration of PCP is counteracted by modafinil,

with no particular subsystems differentiating between the two data sets.

4.4 Clustering of Individual Neural Subsystems

In this section we use the same data reordering from the GSVD, measuring

the variance of the singular vector components for nodes in individual neural

subsystems. Smaller values for variance correspond to functional groups with their

constituents placed relatively closer together. The approach for calculating the

variance of components in the appropriate reordering vector from X−T is outlined

in Section 3.2.2. Similarly, p−values are assigned where the components of the

desired ordering vector are randomly permuted and a variance calculated for a

group the same size as those in the test-subsystem (or pair). The p−value is the

frequency with which the experimental variance is smaller than those from the

random permutations.

In examination of the modafinil and control data, we see in Table 4.10 that thalamic

and cortical regions are clustered in modafinil, and the prefrontal cortex is clustered

only in control animals. This is in agreement with the hypergeometric probability

testing in Table 4.5 which identified overrepresentation of thalamic and cortical

regions.
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Functional Group Control Exclusive Modafinil Exclusive

variance p-value variance p-value

Thalamus 0.0017 0.1846 0.0005 0.0030

Hippocampus 0.0011 0.1411 0.0005 0.0548

Prefrontal Cortex 0.0007 0.0322 0.0012 0.1963

medial Prefrontal Cortex 0.0030 0.6913 0.0005 0.1027

Cortex 0.0026 0.5895 0.0012 0.0056

Mesolimbic 0.0006 0.0890 0.0068 0.9310

Amygdala 0.0019 0.4863 0.0043 0.7998

Septum/DB 0.0055 0.9678 0.0009 0.2179

Basal Ganglia 0.0025 0.5281 0.0039 0.7351

Neuromodulatory 0.0033 0.7409 0.0005 0.0063

Multimodal 0.0032 0.8631 0.0026 0.5127

Table 4.10: Single neural subsystem in control and modafinil-treated rats. Columns
show the variance, and corresponding p-value, of singular value components from
GSVD orderings for nodes within each functional group. Significant values are in
bold.

Next, in Table 4.11 we see that the thalamus (p = 0.0363) and prefrontal regions

(prefrontal cortex, p = 0.0208 and medial prefrontal cortex, p = 0.0435) are

clustered in control animals and the effect is lost after PCP treatment. These

results are consistent with the hypergeometric test results in Table 4.6, only we

add medial prefrontal cortex involvement and lose the basal ganglia. The final

single subsystem results are shown in Table 4.12 for animals that have received

both modafinil and PCP. These results show that the mesolimbic region is the only

subsystem that shows significant grouping in the control animals and not PCP

+ modafinil treated. The lack of difference, particularly in the frontal regions, is

interesting since we find no subsystem oriented differences between the two groups.

This result could suggest that on the level of neural subsystems, the combination

of modafinil and PCP produces a similar neurological output as would be expected

in healthy animals.
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Functional Group Control Exclusive PCP Exclusive

variance p-value variance p-value

Thalamus 0.0011 0.0363 0.0049 0.6329

Hippocampus 0.0012 0.2827 0.0019 0.1663

Prefrontal Cortex 0.0009 0.0208 0.0019 0.3589

medial Prefrontal Cortex 0.0003 0.0435 0.0003 0.114

Cortex 0.0006 0.0334 0.0022 0.1797

Mesolimbic 0.0001 0.0030 0.0113 0.9615

Amygdala 0.0004 0.1526 0.0009 0.1713

Septum/DB 0.0030 0.5920 0.0012 0.1158

Basal Ganglia 0.0036 0.5941 0.0016 0.0855

Neuromodulatory 0.0052 0.3455 0.0035 0.4355

Multimodal 0.0027 0.5220 0.0060 0.7798

Table 4.11: Single neural subsystem in control and PCP-treated rats. Columns
show the variance, and corresponding p-value, of singular value components from
GSVD orderings for nodes within each functional group. Significant values are in
bold.

Functional Group Control Exclusive PCP + Modafinil Exclusive

variance p-value variance p-value

Thalamus 0.0038 0.9410 0.0031 0.9135

Hippocampus 0.0020 0.8852 0.0017 0.7478

Prefrontal Cortex 0.0008 0.1526 0.0020 0.8143

medial Prefrontal Cortex 0.0023 0.5923 0.0027 0.6113

Cortex 0.0031 0.0435 0.0028 0.3243

Mesolimbic 0.0005 0.0029 0.0023 0.7291

Amygdala 0.0032 0.3020 0.0012 0.1802

Septum/DB 0.0050 0.8497 0.0026 0.4531

Basal Ganglia 0.0080 0.4510 0.0011 0.0705

Neuromodulatory 0.0044 0.3455 0.0029 0.3851

Multimodal 0.0040 0.9228 0.0046 0.6359

Table 4.12: Single neural subsystem in control and PCP + modafinil-treated rats.
Columns show the variance, and corresponding p-value, of singular value compo-
nents from GSVD orderings for nodes within each functional group. Significant
values are in bold.
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4.5 Clustering and the Two-way Interaction of

Neural Subsystems

This next section extends the approach of taking the variance across subsystems to

the two dimensional case - each subsystem is grouped with each other subsystem

in turn and variance measured.

Modafinil and Control

In the comparison of modafinil and control data sets, Tables 4.13 and 4.14 show

that the prefrontal cortex is significantly activated in both data sets - interacting

with the thalamus, hippocampus and amygdala in the control animals, and the

thalamus and hippocampal groups in the modafinil treated animals. Though the

GSVD identifies mutually exclusive clusters, we have found that the prefrontal

cortex is activated strongly in both. This could be an indication that the groups

are clustered in a different fashion, migrating positions and playing a different

role within the network. The modafinil animals exhibit clustering between medial

prefrontal cortex and the thalamus. In addition, the multimodal region is more

central, working with the thalamus, hippocampus and medial prefrontal cortex.

With induction of clustering across many multimodal combinations, modafinil has

a wide-ranging effect across the whole system.
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Thalamus - 0.002 0.001 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.003

Hippocampus 0.074 - 0.001 0.002 0.002 0.001 0.001 0.003 0.002 0.002 0.002

Prefrontal Cortex 0.016 0.007 - 0.001 0.002 0.001 0.001 0.003 0.002 0.002 0.002

med Prefrontal Cortex 0.162 0.258 0.080 - 0.003 0.003 0.002 0.004 0.003 0.003 0.003

Cortex 0.167 0.381 0.124 0.538 - 0.003 0.003 0.004 0.003 0.003 0.003

Mesolimbic 0.420 0.028 0.062 0.569 0.805 - 0.001 0.003 0.002 0.003 0.002

Amygdala 0.187 0.063 0.030 0.499 0.594 0.105 - 0.004 0.002 0.003 0.002

Septum/DB 0.857 0.656 0.593 0.961 0.987 0.613 0.853 - 0.003 0.004 0.004

Basal Ganglia 0.392 0.168 0.116 0.670 0.795 0.176 0.356 0.838 - 0.003 0.003

Neuromodulatory 0.553 0.471 0.363 0.813 0.885 0.649 0.680 0.972 0.760 - 0.003

Multimodal 0.550 0.312 0.280 0.782 0.890 0.329 0.549 0.925 0.594 0.867 -

V
a
ri

a
n
c
e

p-values

Table 4.13: Variance (top right) and significance (bottom left) of GSVD ordering vector components for two-way neural subsystem

comibinations. This table shows significant combinations of subsystems in the control (not modafinil) x[end] ordering.

Mod vs Ctrl T
h
a
la

m
u
s

H
ip

p
o
c
a
m

p
u
s

P
re

fr
o
n
ta

l
C

o
rt

e
x

m
e
d

P
re

fr
o
n
ta

l
C

o
rt

e
x

C
o
rt

e
x

M
e
so

li
m

b
ic

A
m

y
g
d
a
la

S
e
p
tu

m
/
D

B

B
a
sa

l
G

a
n
g
li
a

N
e
u
ro

m
o
d
u
la

to
ry

M
u
lt

im
o
d
a
l

Thalamus - 0.002 0.001 0.001 0.002 0.003 0.003 0.003 0.003 0.002 0.001

Hippocampus 0.078 - 0.001 0.001 0.003 0.003 0.002 0.001 0.002 0.002 0.001

Prefrontal Cortex 0.020 0.028 - 0.001 0.003 0.003 0.002 0.002 0.002 0.002 0.001

med Prefrontal Cortex < 0.001 0.193 0.105 - 0.003 0.005 0.004 0.003 0.003 0.002 0.001

Cortex 0.296 0.568 0.530 0.647 - 0.005 0.005 0.004 0.004 0.003 0.003

Mesolimbic 0.659 0.552 0.638 0.875 0.966 - 0.005 0.003 0.005 0.004 0.003

Amygdala 0.473 0.268 0.433 0.744 0.924 0.916 - 0.002 0.004 0.003 0.003

Septum/DB 0.438 0.047 0.222 0.602 0.831 0.712 0.369 - 0.003 0.003 0.002

Basal Ganglia 0.450 0.368 0.419 0.677 0.898 0.892 0.750 0.532 - 0.003 0.002

Neuromodulatory 0.195 0.227 0.216 0.360 0.720 0.797 0.639 0.419 0.603 - 0.002

Multimodal 0.002 0.023 0.227 0.013 0.515 0.686 0.485 0.277 0.463 0.226 -
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Table 4.14: Variance (top right) and significance (bottom left) of GSVD ordering vector components for two-way neural subsystem

comibinations. This table shows significant combinations of subsystems in the modafinil (not control) x[1] ordering.
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PCP and Control

In the two-way comparison of animals treated with PCP and the control group, we

find in Table 4.15 that the hippocampus and prefrontal cortex play a significant role

in the control animals, exhibiting numerous two-way interactions across the brain.

There is a marked difference in the PCP treated animals in Table 4.16. Instead,

this group show activity across the thalamus - with diminished hippocampal and

prefrontal activity.
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Thalamus - 0.005 0.003 0.003 0.003 0.006 0.005 0.005 0.004 0.005 0.005

Hippocampus 0.530 - 0.002 0.004 0.004 0.005 0.002 0.001 0.002 0.004 0.003

Prefrontal Cortex 0.175 0.022 - 0.001 0.002 0.005 0.002 0.002 0.002 0.004 0.003

med Prefrontal Cortex 0.367 0.419 0.009 - 0.002 0.008 0.006 0.004 0.004 0.006 0.007

Cortex 0.319 0.295 0.010 0.013 - 0.007 0.005 0.004 0.003 0.005 0.006

Mesolimbic 0.945 0.686 0.636 0.947 0.890 - 0.006 0.005 0.005 0.007 0.006

Amygdala 0.747 0.037 0.110 0.721 0.574 0.815 - 0.001 0.001 0.005 0.002

Septum/DB 0.599 0.018 0.033 0.509 0.367 0.713 0.014 - 0.001 0.005 0.002

Basal Ganglia 0.461 0.008 0.010 0.349 0.235 0.591 0.022 0.011 - 0.004 0.003

Neuromodulatory 0.849 0.521 0.385 0.828 0.741 0.955 0.705 0.557 0.451 - 0.005

Multimodal 0.876 0.123 0.309 0.865 0.768 0.858 0.088 0.086 0.083 0.793 -
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p-values

Table 4.15: Variance (top right) and significance (bottom left) of GSVD ordering vector components for two-way neural subsystem

comibinations. This table shows significant combinations of subsystems in the control (not PCP) x[1] ordering.
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Thalamus - 0.001 0.002 0.001 0.001 0.001 0.001 0.003 0.005 0.002 0.003

Hippocampus 0.035 - 0.002 0.001 0.001 0.001 0.001 0.004 0.005 0.002 0.003

Prefrontal Cortex 0.052 0.140 - 0.002 0.002 0.001 0.002 0.003 0.004 0.002 0.003

med Prefrontal Cortex 0.013 0.074 0.192 - 0.000 0.001 0.000 0.005 0.006 0.003 0.004

Cortex 0.010 0.041 0.146 0.003 - 0.001 0.000 0.005 0.006 0.003 0.003

Mesolimbic 0.004 0.064 0.089 0.175 0.124 - 0.001 0.002 0.003 0.002 0.003

Amygdala 0.022 0.099 0.249 0.005 0.004 0.170 - 0.005 0.006 0.003 0.004

Septum/DB 0.612 0.683 0.586 0.910 0.856 0.332 0.904 - 0.003 0.003 0.005

Basal Ganglia 0.904 0.878 0.787 0.976 0.974 0.456 0.979 0.484 - 0.004 0.005

Neuromodulatory 0.170 0.228 0.216 0.386 0.320 0.155 0.362 0.549 0.729 - 0.003

Multimodal 0.270 0.477 0.509 0.634 0.508 0.367 0.689 0.855 0.938 0.545 -
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p-values

Table 4.16: Variance (top right) and significance (bottom left) of GSVD ordering vector components for two-way neural subsystem

comibinations. This table shows significant combinations of subsystems in the PCP (not control) x[end] ordering.

PCP + Modafinil and Control

The final comparison is between PCP + modafinil treated animals with the control.

Table 4.17 shows some mesolimbic involvement with the hippocampus and cortex,

which is not present in the PCP + modafinil ordering. In fact, the PCP + modafinil

ordering shows almost no significant clustering - the exception being in a pairing

of the multimodal regions and the amygdala. This further suggests that any

differences between the PCP + modafinil and control data sets are not visible on a

neural subsystems level, thereby vindicating the role of modafinil as an agent to

restore subsystem capacity.
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Thalamus - 0.002 0.003 0.002 0.002 0.003 0.001 0.002 0.002 0.002 0.002

Hippocampus 0.886 - 0.006 0.002 0.002 0.006 0.001 0.003 0.001 0.001 0.003

Prefrontal Cortex 0.670 0.005 - 0.004 0.005 0.004 0.003 0.004 0.004 0.001 0.004

med Prefrontal Cortex 0.951 0.860 0.342 - 0.002 0.005 0.001 0.003 0.001 0.002 0.003

Cortex 0.914 0.797 0.083 0.739 - 0.005 0.002 0.003 0.002 0.003 0.003

Mesolimbic 0.493 0.014 0.377 0.097 0.044 - 0.005 0.006 0.004 0.008 0.004

Amygdala 0.987 0.945 0.560 0.912 0.818 0.150 - 0.002 0.001 0.001 0.003

Septum/DB 0.881 0.636 0.169 0.627 0.523 0.022 0.731 - 0.002 0.004 0.003

Basal Ganglia 0.986 0.972 0.239 0.959 0.927 0.193 0.988 0.852 - 0.001 0.002

Neuromodulatory 0.935 0.881 0.949 0.618 0.513 0.035 0.859 0.305 0.944 - 0.003

Multimodal 0.947 0.682 0.139 0.789 0.736 0.169 0.836 0.628 0.903 0.636 -
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Table 4.17: Variance (top right) and significance (bottom left) of GSVD ordering vector components for two-way neural subsystem

comibinations. This table shows significant combinations of subsystems in the control (not PCP + modafinil) x[1] ordering.
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Thalamus - 0.003 0.003 0.003 0.003 0.004 0.004 0.003 0.003 0.004 0.004

Hippocampus 0.466 - 0.002 0.001 0.002 0.003 0.003 0.002 0.002 0.002 0.004

Prefrontal Cortex 0.545 0.934 - 0.001 0.002 0.002 0.002 0.001 0.002 0.002 0.004

med Prefrontal Cortex 0.532 0.958 0.965 - 0.002 0.003 0.002 0.001 0.002 0.001 0.004

Cortex 0.312 0.771 0.908 0.839 - 0.002 0.002 0.002 0.003 0.002 0.004

Mesolimbic 0.116 0.443 0.713 0.551 0.890 - 0.002 0.002 0.003 0.001 0.004

Amygdala 0.195 0.634 0.811 0.702 0.811 0.824 - 0.002 0.003 0.003 0.004

Septum/DB 0.431 0.885 0.945 0.934 0.942 0.909 0.859 - 0.002 0.001 0.004

Basal Ganglia 0.291 0.793 0.837 0.809 0.648 0.329 0.478 0.757 - 0.003 0.004

Neuromodulatory 0.201 0.776 0.801 0.856 0.720 0.786 0.465 0.815 0.445 - 0.005

Multimodal 0.050 0.238 0.183 0.053 0.595 0.350 0.037 0.798 0.826 0.417 -
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Table 4.18: Variance (top right) and significance (bottom left) of GSVD ordering vector components for two-way neural subsystem

comibinations. This table shows significant combinations of subsystems in the PCP + modafinil (not control) x[end] ordering.
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4.6 Discussion

In this chapter we have seen that the NMDA receptor antagonist PCP compromises

functional integration between neural subsystems - and that the cognitive promoter

modafinil counteracts some of this effect by promoting particular subsystems. We

have seen that consistent results can be obtained through different approaches to

the analysis of the GSVD reordering of data. Hypergeometric probability testing

has been shown again to yield biologically relevant results when used in combination

with spectral clustering. The results from measuring the variance of components

in spectral vectors are consistent with those obtained from the hypergeometric

probability testing, which further validates our approach of exploratory cluster

analysis when individual nodes can be categorized according to known information.

In a comparison with the literature, we find that the PCP-induced compromised

functional integration between the hippocampus and prefrontal cortex, perhaps

driven through a reduction in connectivity of the thalamus. These findings concur

with results from brain imaging studies of schizophrenia [151, 17]. The data shows

that PCP induces segregation of functional subsystems, with the hippocampus,

prefrontal cortex and medial prefrontal cortex acting as discrete clusters in PCP

treated animals but not in control animals. These findings in this translational

model also support prior hypotheses that schizophrenia is a disconnection syndrome

[25]. We also show that modafinil has a dramatically different effect on subsystem

clustering than PCP, failing to show many of the clusters present in the PCP-treated

animals. This provides further evidence that modafinil has little interaction with

NMDA receptors [153], which is important in considering reasons for the reason

for efficacy of modafinil as a treatment for cognitive deficits. In addition, we have

shown that the combined treatment of PCP + modafinil results in few differences

from control animals, suggesting that modafinil has the ability to restore functional

deficits introduced by PCP.
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This work, combined with the previous chapter, establishes the approach of using

the variance to measure clustering of a priori known sub-groups within a data set.

The process of calculating the p-values can be adjusted depending on the data and

desired stringency; it is felt that the basic approach taken here, in combination

with visual assessment, is sufficient to make a strong statement about the viability

of the method.
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Chapter 5

Constructing Metabolic Networks

from the KEGG and MetaCyc

databases

One of the aims of this thesis is to develop tools to incorporate a priori known

information into spectral clustering problems in order to increase flexibility in the

approach to biological data analysis.

To that end, in this chapter we create a novel pair of metabolic networks from

publically available metabolic databases in preparation for the next chapter where

we propose and test a novel method of combining networks. The work in forming

the KEGG metabolic network and testing is contained in the publication:-

Martin McDonald, Desmond J Higham, J Keith Vass. Spectral algorithms for

heterogeneous biological networks, Briefings in functional genomics, Vol. 11 No. 6,

2012 [146]
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5.1 Metabolic Networks

Metabolism describes the process through which cells break down and reassemble

food and other nutrients. Due to the complexity of human metabolic pathways,

there is still much work outstanding in uncovering the complete set of metabolic

pathways and their constituent metabolites. For reference, the complete genome of

E.coli (Escherichia coli MG1655), a widely studied bacterium, has been sequenced

and contains 4, 405 genes - the Escherichia coli Metabolome Database (ECMDB,

http://www.ecmdb.ca), currently contains > 2600 metabolites with links to 1500

genes and is still being updated [78].

Traditionally, a metabolic network consists of a collection of individual chemicals

(the nodes) and their interactions (the edges) [120]. We have taken a different

interpretation of the metabolic network, described in the following section, to meet

our interest in the integration of microarray and metabolic networks. There are

several efforts aimed at completing the human metabolome, we will use information

from two such efforts that differ significantly.

5.2 KEGG

The Kyoto Encyclopedia of Genes and Genomes (KEGG:- http://www.genome.

jp/kegg/) is a knowledge base for analysis of gene function, representing the efforts

of Kanehisa Laboratories [106, 105]. KEGG contains a database of metabolic

pathways (PATHWAY) which contains representations of different types of cellular

processes, in this case we will consult the portion of the database dedicated to

human metabolism. These pathway mappings are manually curated, with some

interactions calculated computationally [106, 105].
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The KEGG database contains pathway maps representing interactions and reactions

between molecules - these maps are available for individual metabolic processes

(e.g., glycolysis). Each individual pathway is comprised of a number of interactions

and reactions, and has a unique ID. Through the knowledgebase of the Database

for Annotation, Visualization and Integrated Discovery (DAVID [94, 93]) we have

access to a list of genes with a corresponding KEGG metabolic pathway identifier

- we specifically select all genes that are linked with a metabolite in a KEGG

metabolic pathway.

The list we are using from DAVID associates each gene with a number of these

KEGG pathway IDs, depending on which metabolic pathways the gene has product

in. Each gene is counted once per pathway regardless of the number of gene

products present in that pathway i.e., if a gene product has influence at multiple

points in an individual pathway it is marked only as being present. With this

information we can identify genes that have products with pathway IDs in common

to declare which genes have known effets on metabolic processes in common. Using

this, we have constructed a gene-gene metabolic adjacency matrix where gene i is

connected to gene j if they appear at least once in the same metabolic pathway.

We then construct B, an RN×N size weight matrix where bij has an integer weight

corresponding to the number of times genes i and j appear in the same pathway

as one another.

We used this viewpoint to construct a gene-gene co-incidence matrix whose (i, j)

entry is a non-negative integer recording the number of times genes i and j appear

in the same pathway. That is, if gene i is present in pathways x, y and z and gene

j is present in pathways x and z then (i, j) will have a score of 2 for the number of

matches. This also means the resultant metabolic network will be symmetric.

Rather than containing data on magnitudes of reactions, our metabolic network

acts as an illustration of how well-connected genes are with each other in the
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Figure 5.1: Binary representation of the KEGG metabolic network: blue signifies
the presence of an edge.

sense of sharing metabolic pathways. We will use this knowledge to gain a new

perspective on biological data to make statements about the metabolomics of a

disease state.

5.2.1 KEGG Network Features

Figure 5.1 shows a MATLAB spy plot of the matrix form of the KEGG network.

Each dot indicates a nonzero value in the matrix, for simplicity weights are not

visible in this figure.

There are some block structures and repeating patterns visible in Figure 5.1,

particularly around the diagonal. These structures are the result of closely related
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genes and cases where multiple gene IDs are present for the same gene. We will

now outline some properties of the gene metabolic network we have constructed.

Firstly, there is an overdispersion in the degree distribution (shown in Figure 5.2) -

this is not expected to cause problems since we are aiming to focus on the high

degree nodes, of which there are few. It is noted at this point that we are also

limited by the completeness of the database from which we obtain the metabolic

pathway information. The definition of pathways within KEGG also plays a key

role in the structure - there may be bias towards specific metabolic pathways, of

particular concern given the fact that metabolic pathways are not uniform in size.

Some are much larger than others which means they automatically contain more

gene products - thus genes in those high volume pathways have higher weights,

effectively becoming more important.

Figure 5.2: Histogram with 50 bins illustrating the degree distribution in the KEGG
metabolic network.

The final network contains N = 1422 genes, according to the official gene symbol

ID, with 5.10% of entries nonzero. The average (mean) nonzero entry is 1.162 and

maximum (i, j) entry of 14.
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5.3 MetaCyc: A Second Metabolic Network

We are also using an additional source of information to create a second metabolic

network that will be used in parallel, allowing us to compare two efforts at catalogu-

ing the human metabolome. This time the MetaCyc (http://www.metacyc.org/

[30]) database will provide the list of genes. The MetaCyc project contains a list of

experimentally derived metabolic pathways and a corresponding list of genes. The

MetaCyc database is also purposely limited to enzymatic, metabolic genes where

the KEGG database contains genes outside this strict criteria of metabolism, thus

using the two databases covers different perspectives on metabolism.

The MetaCyc database provides publically a gene ID (official gene symbol), associ-

ated pathways and reactions. There are 411 unique genes (using the official gene

symbol, the gene ID also used for the KEGG network) spanning 187 pathways. The

network is again undirected (symmetric) and contains 5106 edges - the maximum

degree is 98. The same binary representation, as with the KEGG network, of the

final network is shown in Figure 5.3. This structure contains N = 411 genes with

3.02% of entries nonzero. The average (mean) nonzero entry is 1.69 and maximum

(i, j) entry of 11. A histogram of node degree is shown in Figure 5.4 - we see here

that as with the KEGG case the distribution is overdispersed with a small number

of high-degree nodes.
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Figure 5.3: Binary representation of MetaCyc network: blue signifies the presence
of an edge.

Figure 5.4: Histogram with 50 bins illustrating the degree distribution in the
MetaCyc metabolic network.
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5.4 Network Comparison: KEGG + MetaCyc

In this section we will see a brief comparison of vital statistics between the two

networks. There are 311 genes in common, meaning the majority of genes within

MetaCyc are also present in the KEGG database, other summary details are

similarly displayed in Table 5.1.

KEGG MetaCyc

# Genes 1422 411

Pathways 158 187

Percentage nonzero 5.10% 3.02%

Mean nonzero 1.16 1.69

Max nonzero 14 11

Max Degree 499 98

Table 5.1: Summary information on KEGG and MetaCyc networks for comparison.

The two databases have significant overlap yet have a significantly different number

of entries. One possible reason for this is with ambiguity in the official gene symbol

- a difficulty that is not uncommon in genetics where gene sequences often have

a large number of proprietary and public identifiers. For example, the KEGG

database may include repeats of closely related gene symbols involving the same

product where MetaCyc does not. In order to test this idea, we plot ordered (in

degree) lists for both networks, in Figure 5.5 and Figure 5.6. Repeated or highly

related gene symbols will have the same degree, and appear as flat lines on a plot of

degree versus gene, which should make large groups visually identifiable. Figure 5.5

shows a significant amount of this structure, as well as small clusters (highlighted

in green) with high degree. Figure 5.6 shows a relatively smooth increase in degree,

in very similar pattern to the KEGG network. This similarity, along with the

degree distribution histograms (Figures 5.2 and 5.4) and summary Table 5.1, shows

that the networks have multiple features in common.
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Figure 5.5: Degrees of KEGG network increasing order, highlighting examples of
unlikely duplicate genes in green boxes.

Figure 5.6: Degrees of MetaCyc network increasing order.

It would be time consuming with, considering our goals, little product to investigate

each gene within these two databases. A simple observation to aid in better
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understanding the structures is instead to check the highest degree genes - since

any overlap is less likely to be coincidental, given their separation from the rest

of the group. To this end, Table 5.2 shows the top 15 genes for each network. In

the KEGG list it is clear there is a lot of similarity, e.g., aldehyde dehydrogenases

(ALDH ) and UDP glucuronosyltransferases (UGT ). In the MetaCyc list this is

still present to a smaller extent with e.g., dihydrolipoamide S-acetyltransferase

(DLST ) and dihydrolipoamide S-succinyltransferase (DLAT ).

Rank Top KEGG OGS IDs Degree Top MetaCyc OGS IDs Degree

1 ALDH3A2 499 DBT 98

2 ALDH9A1 499 BCKDHB 98

3 ALDH7A1 499 BCKDHA 98

4 ALDH2 499 PDHN 98

5 ALDH1B1 499 DLAT 98

6 UGT1A3 362 PDHA1 98

7 UGT2B7 362 DLST 98

8 UGT2B4 362 PDHX 98

9 UGT2B28 362 OGDH 98

10 UGT2B17 362 DLD 74

11 UGT2B15 362 INPP5J 74

12 UGT2B11 362 SYNJ1 74

13 UGT12B10 362 INPP5B 74

14 UGT2A3 362 INPP5K 74

15 UGT2A1 362 OCRL 74

Table 5.2: Top 15 genes in degree for both KEGG and MetaCyc.

This investigation into the construction of the networks is not necessarily important

in isolation, but may be useful in terms of setting expectations for future use. For

example, the KEGG network appears to have more significant overlap in closely

related genes and products. This provides a slightly different perspective on future

analysis - the KEGG network may prove more effective at identifying highly profilic

gene products. Otherwise, the main difference between the two constructions is
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that the KEGG network has results with significantly more gene IDs. The other

statistics provided in the summary in Table 5.1 are of similar order, which is

expected given that they contain the same class of information (i.e.,metabolic). It

is interesting that despite the lower number of genes, the MetaCyc database spans

a greater number of pathways. Pathway IDs are not standardized, thus the number

of identifiers depends on the protocol outlined by the creator. The greater number

of pathways has visible effect on the degree distribution. As seen in comparing

Figures 5.2 and 5.4 the KEGG network has many nodes at higher degrees than seen

in the MetaCyc case. This is as expected; with a greater number of pathways the

MetaCyc network is in effect more specialised: the genes are spread thinly across

more specific metabolic pathways, decreasing the likelihood that they overlap.

5.5 Discussion

In this chapter we have seen the creation of two separate, but equivalent, novel

metabolic networks, from different sources of data. There are numerous simplifica-

tions and assumptions made in the construction of these networks. For instance,

a gene is indicated as having a product in a particular pathway or not but there

is no indication of the ‘importance’ (since that is not easily quantifiable) of that

particular gene product. In a similar way, all pathways are given the same degree

of importance, whereas from observing visualisations of specific pathways on the

KEGG database it is clear that the number of gene products per pathway varies

greatly. Thus, no weight is given to critical (or not), larger or smaller pathways.

However, the straightforward network-level representation of this information offers

many conceptual and computational advantages.

A complete and unambiguous knowledgebase of the human metabolome would go

some way to alleviating some of the shortcomings, but others are inherent in the
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process. Labelling of metabolic pathways is, in a sense, a subjective process, and

their importance within an extremely complex system cannot be reliably rated.

These facts mean it should be clear that these networks represent a very specific case

of interest and are likely not suited to making general statements about metabolism.

More specifically, the connections in this analysis are built on counting the total

number of edges for each gene - this favours hub genes. The suitability of this as a

metric depends on the desired output. Rather than containing data on magnitudes

of reactions, our metabolic network presents a view of how well-connected the genes

are.

The variation in size between these two networks may cause issue in later appli-

cations on real data. Our approach is therefore to add information from each of

these networks, in turn, to specific cases of real data (as per the method outlined

in the following chapter) - so the results from utilising the KEGG network can be

compared with those from the MetaCyc network. The disparity in the number of

genes presents a challenge - to combine the metabolic networks with real data the

genes must match on both sides. So, real data will be truncated differently for each

network, meaning that included experimental data will be different in addition to

differences in the metabolic networks.

In summary, our aim here is to incorporate metabolic data in a systematic and

quantifiable manner, while acknowledging the simplifications and approximations

involved. We will show that, despite the limitations, the networks that we construct

hold valuable information that can lead to new insights.
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The Node-Weighted Laplacian

This chapter proposes, investigates and validates a novel approach to combining

multiple sources of data. Specifically, we are interested in establishing an alternative

graph Laplacian that allows for integration of information from a second, related

network. This will allow us to explore biological data in later chapters in a novel

way. The work presented in this chapter (and some of Chapter 5) is the result of

the following publication:-

Martin McDonald, Desmond J Higham, J Keith Vass. Spectral algorithms for

heterogeneous biological networks, Briefings in functional genomics, Vol. 11 No. 6,

2012 [146]

6.1 Spectral Methods and Graph Laplacians

In this chapter, in order to appropriately frame the problem, we revisit, expand

and elaborate on some previously introduced elements of spectral methods. The

work developed here will be tested and used in conjunction with the metabolic

networks of Chapter 5.
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In this section we motivate and explain how the Laplacian and normalized Laplacian

can be used to find structure in a network. The next subsection introduces a key

result from linear algebra: we refer to [85] for more information.

6.1.1 Rayleigh-Ritz Theorem

The following lemma, which is a special case of the Rayleigh-Ritz Theorem [92,

Theorem 4.2.2], will be used to justify the spectral algorithms in the following

sections.

Lemma 1 Let M ∈ RN×N be a symmetric positive semi-definite matrix with

eigenvalues 0 = γ1 < γ2 < γ3 ≤ γ4 ≤ · · · ≤ γN , and corresponding eigenvectors

r[1], r[2], . . . , r[N ]. Then the problem

min

y ∈ RN

yT r[1] = 0

yTy = 1

yTMy (6.1)

is uniquely solved by y = r[2].

Proof. The matrix M has the spectral decomposition M = RΓRT , where Γ ∈

RN×N is diagonal with (i, i)th entry γi and X ∈ RN×N has jth column r[j]. The

eigenvectors are mutally orthogonal, so we may take RTR = I. Letting z = RTy,
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the problem (6.1) becomes

min

z ∈ RN

zTRr[1] = 0

zTz = 1

zTΓz.

The constraint zTRr[1] = 0 simplifies to z1 = 0, so the problem becomes

min

z ∈ RN

zTz = 1

N∑
i=2

γiz
2
i .

Since γ2 < γ3 ≤ γ4 ≤ · · · ≤ γN , it is clear that z2 = 1 and zi = 0 for i = 3, 4, . . . , N

uniquely solves the problem. Hence, we have y = r[2] as required.

6.1.2 Clustering and Reordering

We have applied the SVD and GSVD as methods of spectral clustering in Chapters

3 and 4. Here we outline and expand on the mechanics of this approach to give

context to the new approach formed later in the chapter. Let A ∈ RN×N be a

symmetric matrix with non-negative entries. From a network perspective, we think

of aij = aji ≥ 0 as representing the pairwise similarity between nodes i and j,

where a larger value indicates a greater similarity.

Suppose we wish to divide the vertices in two disjoint clusters, where a pair of

nodes within a cluster are typically well-connected and a pair of nodes in different

clusters are not. One way to judge the quality of a partition is to count the total

weights in the edges that span the two clusters. Introducing the indicator vector y,
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so that yi = − 1
2

if node i is in one set and yi = 1
2

if node i is in the other, the total

weight across the clusters may be written

1
2

∑
i,j

(yi − yj)2aij. (6.2)

In matrix-vector form, this expression becomes

yT (D − A) y, (6.3)

where D ∈ RN×N is the diagonal degree matrix with Dii = degi, and degi :=
∑

j aij

is the degree of node i. Asking for y to minimize this quantity is not reasonable,

since it leads us to the trivial solutions yi ≡ 1
2

and yi ≡ − 1
2
; that is, put all nodes

into a single cluster. It therefore makes sense to add a balancing constraint that

limits the mismatch between cluster sizes. In general, however, it is not feasible

to tackle the discrete problem (6.3) directly, and hence it is standard practice to

allow the yi to take any real values; thereby relaxing the problem. Using y ∈ RN ,

a suitable balancing constraint is yT1 = 0, where 1 ∈ RN is the vector with all

entries equal to one, and in order to avoid the trivial solution yi ≡ 0, we add the

extra constraint yTy = 1. This leads us to the optimization problem

min

y ∈ RN

yT1 = 0

yTy = 1

yT (D − A) y. (6.4)

As we discuss further in subsection 6.1.3, Lemma 1 shows that this problem can be

solved via a spectral decomposition; that is, by computing appropriate eigenvectors

and eigenvalues.
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At this stage, it is worth pointing out that after the relaxation step, where we move

from yi ∈ {− 1
2
, 1

2
} to y ∈ RN , we are in the realm where each node is assigned

a position on the real line. We can recover clusters by picking a threshold, such

as 0, and assigning nodes to the same cluster if they lie on the same side of the

threshold. However, rather than interpreting (6.4) as a problem that approximates

a discrete analogue, we could use it as starting point, and take the viewpoint that

nodes are being mapped to points on the real line in such a way that nearby nodes

are well-connected. Because the solution of (6.4) may be expressed in terms of a

spectral decomposition, this idea may be taken further. Using the fact that the

power method iteration converges to a dominant eigenvector, we may argue that

solving (6.4) is equivalent to placing the nodes on the real line in random locations

and then iteratively “shuffling” them, based on their pairwise affinities, until an

equilibrium state is reached; see [77] for details.

Rather than taking a hard clustering approach through thresholding, it is also

possible to use the real-valued solution y to relabel the nodes. In this way a

permutation vector p ∈ RN is constructed, whose components consist of the

integers from 1 to N , so that node i gets mapped to position pi, with

pi ≤ pj ⇔ yi ≤ yj. (6.5)

In words, y places the nodes on the real line, and we relabel them according to

their position, the left-most becomes node 1 and the right-most becomes node

N . Returning to the matrix interpetation of the data set A, we have equivalently

performed a symmetric permutation that reorders the rows and columns of the

matrix. Viewing the reordered matrix is often a very useful way to visualize

interesting patterns in the data [75, 85, 103, 220], as we have shown previously in

e.g., Chapter 3.
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6.1.3 Graph Laplacian

The matrix L = D−A ∈ RN×N appearing in (6.4) is known as the Graph Laplacian

matrix for the network. This symmetric positive semi-definite matrix has smallest

eigenvalue 0 and corresponding eigenvector 1. We suppose that the network is

connected (every pair of nodes may be joined by at least one set of edges with

non-zero weights), in which case all other eigenvalues of the Laplacian are positive;

see, for example, [45, 211]. We also suppose that there is a unique smallest non-zero

eigenvalue, and order the eigenvalues so that 0 = λ1 < λ2 < λ3 ≤ · · · ≤ λN . We

denote the corresponding eigenvectors v[1],v[2], . . . ,v[N ]. These are orthogonal,

and we assume that they have Euclidean norms of unity. The eigenvector v[2]

corresponding to the first non-zero eigenvalue of the Laplacian plays an important

role in many areas of graph theory and network science, and is referred to as

the Fiedler vector [61]. It now follows from Lemma 1 that the solution of the

relaxed problem (6.4) is given by the Fiedler vector, v[2]. Note that in cases where

eigenvalues are similar e.g., λ2 ≈ λ3 we may need to look in more than one direction

to get a good description of the data.

6.1.4 An Alternative Form of Clustering and Reordering

Next we note that the constraint yT1 = 0 in (6.3) aims to balance the number

of nodes in each group. As an alternative, we may wish to quantify the size

of each node i in terms of its degree and aim to balance the overall size of the

clusters. An appropriate balancing constraint is then yTD1 = 0. Further, rather

than normalizing with yTy = 1, so that all nodes are treated equally in terms

of distributing the locations on the real axis, we may prefer yTDy = 1, which

enourages high degree nodes to be placed nearer the origin. From the reordering

viewpoint, this may be interpreted as an attempt to reduce the influence of
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“promiscuous” nodes, encouraging them away from the extremes of the ordering

range. These issues of calibration can be important when there is a high degree of

variance among the interaction weights, a circumstance that is common for gene

expression data. These two changes convert the relaxed problem (6.4) to

min

y ∈ RN

yTD1 = 0

yTDy = 1

yT (D − A) y. (6.6)

Changing variable to x = D
1
2 y, this problem becomes

min

x ∈ RN

yTD−
1
2 1 = 0

xTx = 1

xTD−
1
2 (D − A)D−

1
2 x, (6.7)

where we make the reasonable assumption that all node degrees are non-zero.

6.1.5 Normalized Graph Laplacian

The matrix D−
1
2 (D − A)D−

1
2 ∈ RN×N appearing in (6.7) is known as the Normal-

ized Graph Laplacian. Like the (unnormalized) Laplacian in subsection 6.1.3, this

symmetric positive semi-definite matrix has an eigenvalue 0 and, in the case of a con-

nected graph, a unique smallest nonzero eigenvalue. The eigenvalues lie in the inter-

val [0, 2], see, for example, [211], and we label them 0 = µ1 < µ2 < µ2 ≤ · · · ≤ µN ,

with corresponding eigenvectors w[1],w[2], . . . ,w[N ]. By construction, we have

w[1] = D
1
2 1/||D 1

2 1 ||.
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We refer to D−
1
2 w[2] as the normalized Fiedler vector. Lemma 1 now shows that

the relaxed problem (6.7) is solved by x = w[2] and hence the required solution of

(6.6) is the normalized Fiedler vector y = D−
1
2 w[2]; see [85, Corollary 1] for further

details.

At this stage it is worth making a few points about the spectral approach.

1. Eigenvalues and eigenvectors are invariant under permutation, in the sense

that

Ax = λx ⇔ PAP Tx = λPx

for x ∈ RN , λ ∈ R and any permutation matrix of both rows and columns

1 P ∈ RN×N . It follows that spectral algorithms are oblivious to the way

that nodes are labelled—for example, relabelling the nodes simply reorders

the elements of the Fielder vector accordingly. As a consequence, when we

test spectral algorithms on synthetic data where known structures have been

deliberately created, it is reasonable to label the nodes of A in any convenient

manner.

2. Whether we use the vector y ∈ RN for hard clustering or for reordering, it is

clear that we should be unconcerned about two types of transformation

translation: where yi 7→ yi + c, for a constant c that is independent of i,

rescaling: where yi 7→ αyi, for a constant α 6= 0 that is independent of i.

In particular, the map y 7→ −y coincides with relabelling the two clusters or

to reversing the node ordering, and we note that eigenvectors are uniquely

defined only up to a ± factor.

3. Using the translation and scaling operations above, we can show that the same

Fiedler vector solutions arise for a very wide range of balancing constraints—

1A permutation matrix is found by permuting the rows of an identity matrix according to
some permutation of the numbers 1 to N .
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we do not need to ask for exactly equal cluster sizes in the original discrete

formulation; see [85].

4. Because a symmetric matrix has orthogonal eigenvectors, moving beyond the

Fiedler cases and using v[3], v[4], . . . and D−
1
2 w[3], D−

1
2 w[3], . . . to cluster or

reorder the data can reveal further information about the data; see [85].

6.1.6 Singular Value Decomposition (SVD)

In the case of a bipartite network, we have two separate groups of nodes and the

weight aij represents the pairwise affinity between node i in the first group and

node j in the second group. If the groups contain M and N nodes respectively,

then A ∈ RM×N . Spectral information is now contained in the Singular Value

Decomposition (SVD)

A = UΣV T ,

where U ∈ RM×M and V ∈ RN×N are orthogonal and Σ ∈ RM×N is diagonal with

diagonal elements σ1 ≥ σ2 ≥ · · · ≥ 0. The columns of U and V are referred to as

the left and right singular vectors of A, respectively.

Analogously to the development in section 6.1.2, we may introduce two indicator

vectors, p ∈ RM and q ∈ RN , and consider the quantity

1
2

∑
i,j

(pi − qj)2aij. (6.8)

After adding appropriate constraints and relaxing to real-valued vectors p and q, it

may be shown that the left and right singular vectors of A can be used to reorder

the two groups of nodes. Similarly, the SVD of the normalized data D
− 1

2
outAD

− 1
2

in

arises if we generalize the yTD1 = 1 alternative in (6.6). We refer to [103] for full

details.
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We note that the left and right singular vectors of A ∈ RM×N are equivalent to the

eigenvalues of ATA and AAT , respectively, and this forms a natural bridge to the

methods described in subsections 6.1.2–6.1.4. For example, we may regard the

operation of forming ATA as correlating across the second group of nodes in order

to form a pairwise affinity matrix for the first group. A spectral method could then

be applied directly to ATA in order to cluster or reorder the first group.

6.2 Formulation

In Section 1.3.2 we motivated spectral methods by setting up appropriately con-

strained optimization problems. This approach offers a lot of flexibility, a fact

that we now exploit to derive an alternative Laplacian style matrix. A network

is said to be assortative if connections are more likely between nodes of similar

degree (where the degree of a node is the number of edges that are connected to it)

[57, 166]. Many authors have considered the issue of quantifying the overall level

of assortativity in a network, relative to some null model [165, 167]. However, here

we consider an inverse problem that also has practical relevance—given a network,

can we identify specific patterns of assortativity? More precisely, can we find a set

of nodes that

(a) form a strong cluster, and

(b) possess similar degrees?

Where a strong cluster is a collection of nodes that shows significance in terms

of weight density, as tested for by the cluster quality measure (as described in

Section 1.4.1). We note that this is a partially local concept—it is possible for a

substructure of this type to be present in a network that is not categorized as being

assortative by a global measure. We also note that this type of substructure has a
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very natural generalization; the condition (b) could be extended to the case where

nodes possess an independent measure of “size” and we seek clusters that involve

nodes of comparable size.

We therefore suppose that a positive weight wi is associated with each node i. In

order to look for nodes that are well-connected and size-compatible, we may replace

the starting point (6.2) with

1
2

∑
i,j

(
√
wiyi −

√
wjyj)

2aij. (6.9)

Letting Dw ∈ RN×N denote the diagonal matrix with iith entry wi, this expression

may be written

yTD
1
2
w (D − A)D

1
2
wy. (6.10)

Here we emphasize that D is the original diagonal degree matrix arising from the

data matrix, but the diagonal matrix Dw may contain any appropriate set of nodal

weights.

To focus on the case where we prioritize nodes with large weights, we take yTD−1
w y =

1 as our normalizing constraint. This encourages the highly weighted nodes to

take values at the extreme ends of the range of yi values. Changing variable to

z = D
− 1

2
w y, the expression (6.10) then becomes

zTDw (D − A)Dwz, (6.11)

with zTz = 1. We will refer to the matrix

Lw := Dw (D − A)Dw (6.12)

appearing in (6.11) as the node-weighted Laplacian. By construction, Lw has a zero

eigenvalue with corresponding eigenvector D−1
w 1. This vector depends only on w-
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information; it ignores the network connectivity. Hence, by analogy with the Fiedler

vector and normalized Fiedler vector approaches, we propose to reorder/cluster

for this generalized notion of assortativity in terms of x[2], the eigenvector of Lw

corresponding to the smallest positive eigenvalue. From Lemma 1, this becomes

the required minimizer of (6.11) if we add the balancing constraint2 zTD−1
w 1 = 0.

Converting back to y = D
1
2
wz, we therefore propose to take D

1
2
wx[2] as our network

reordering vector. The first step to verifying this new algorithm is to verify

performance on a synthetic data set: an artificially manufactured network that is

constructed to specifically contain the type of structure we are hoping to identify.

After dealing with this basic test, the new algorithm is tested on real data where

we have an expectation as to how the algorithm will perform.

6.3 Synthetic Testing

We now examine the behaviour of the new normalisation of the graph Laplacian on

a synthetic network that is designed to contain nodes with the desirable property.

The network, A, shown in Figure 6.3 contains 1, 000 nodes with random weights

between 0− 100 on all edges aij (though A is made to be symmetric so aij = aji).

The aim of this synthetic test is to examine whether or not the new normalisation

for the graph Laplacian can uncover clusters whose nodes also have high degrees,

in general. To create this structure, we force nodes 1 − 100 to become a strong

cluster - the edges between these nodes are given weight 100. Then, in order that

the degrees of the nodes in this cluster are assured to be higher than average, the

edges between this cluster and the rest of the network are boosted by an increase in

weight of 50. To make the test more realistic, another cluster is introduced to the

data, which instead is comprised of nodes that have generally low overall degrees,

2In terms of the original variable, y, this balancing constraint is yT D
− 3

2
w 1 = 0, which further

encourages highly weighted nodes away from the origin.
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as is obvious in the heat map in Figure 6.3. For this, nodes 101− 200 are clustered

in the same way as 1− 100 - each edge in this group is given weight 100. Then the

weights between this second cluster and the rest of the network are decreased by

50.

It is also worth noting that the network in Figure 6.3 is purposefully ordered such

that the structures are readily visible - this is done only as a matter of convenience.

As mentioned in Section 1.3.2, the algorithm is invariant to the initial ordering of

the data - the result will be the same regardless of how the data might be permuted

- so we simply choose one that allows for a simple visual assessment of results.

Figure 6.1: Weight matrix for the synthetic network ‘A’ showing both well and
poorly connected clusters.

Now, as per Section 6.2, we calculate the node-weighted Laplacian (equation 6.12).

In this case, Dw =
∑N

i=1 aij - the degrees of the nodes in the network A. The

next step is to examine the components of the new suggested ordering vector

D
1
2x[2] and compare these results to the components from the Fiedler vector of

the unnormalised Laplacian, u[2], and the components of normalised Fiedler vector

from the traditional normalised Laplacian, D−
1
2w[2]. Success for the algorithm
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would result in components of the singular vectors following the distribution of the

node degrees.

Figure 6.2: The top left picture shows the weights of the nodes in the synthetic
network. The remaining three pictures show the results for the Fiedler vectors
from the various approaches.

In Figure 6.2, we highlight the high-degree cluster by using the ‘o’ marker and the

second cluster that has low degree nodes with the ‘∗’ marker. The desired structure

was identified clearly with the new normalised Laplacian D
1
2x[2], whereas both

clusters were identified in a single set by u[2]. The normalised Laplacian D−
1
2w[2]

had the effect of supressing nodes from the high degree structure and separating

those in the low degree cluster. Degree is plotted in this figure to give a reference

point since we expect the singular vectors will be impacted by this information.

In order to visualise what the placement of nodes in these real valued vectors means

for the recovery of information from our original network A, we assign all nodes

new IDs based on their position in the sorted vector (Section 1.4 has details on data

reordering). If we then use a heat map to output the reordered data, we find an

intuitive image where clusters will be represented as significant areas of hot or cold

(i.e. high or low) values. Figure 6.3 shows the initial network after reordering by

each of the three approaches. The image on the left is from the unnormalised case

and, as we expected from previous examination of the vectors, the unnormalised
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Fiedler vector v[2] fails to separate the two clusters - instead forming one mixed

grouping. In the middle we have the new node-weighted Laplacian approach -

which completely recovers the desired structure from Figure 6.3. The last plot

in Figure 6.2 from the traditional normalised Laplacian is perhaps more difficult

to interpret from vector alone - from this image (Figure 6.3) we can see that the

result of the reordering is scattered such that we have lost most of the information

present in the initial network.

Figure 6.3: The left picture shows synthetic network reordered by v[2], middle by
node-weighted Laplacian D[0.5]x[2] and right by traditional Laplacian D[−0.5]w[2].

6.3.1 Merging Two Data Sets: Synthetic Testing

This next section involves an extension of the idea to the case where the components

of Dw are from a matrix independent of A - that is, we introduce a second data set

that spans the same set of nodes. The proposal is that this time Dw is given a range

of values in order to test how much of the ordering of node-weighted Laplacian

is influenced by structure in A versus weights in Dw. A is constructed as in the

previous example, and the first 50 values in Dw are given a high weight 20, the

next 50 given a low weight 1. This pattern of 50 high and 50 low is repeated for

the next 200 nodes, giving Dw and results shown in Figure 6.4.
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Figure 6.4: Synthetic network, original node ordering. Left: nodal degrees. Middle:
components of Dw for the node-weighted Laplacian. Right: components of the

vector D
1
2
wx[2] arising from the node-weighted graph Laplacian.

The left picture in Figure 6.4 shows the original order of the nodes with degree. The

middle picture shows the new values we are using in Dw, from a second synthetic

network. The right picture shows the result from the node-weighted Laplacian.

In this case, we can see that the node-weighted Laplacian clearly separates the

first 50 nodes - those that were well-connected in matrix A and have high values

in Dw. The 50 nodes that are well-connected but have low values in Dw are not

separated - illustrating the fact that the result of the node-weighted Laplacian

is a combination of both the information in the original network, and the values

in the rescaling vector Dw. In addition to Figure 6.4, we also show the network

reordered according to the normalised Fiedler vector, in Figure 6.5. We see here

the strongly-weighted/high Dw nodes are pushed to the end of the ordering. The

strongly-weighted/low Dw nodes have been pushed away from the end.
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Figure 6.5: Heatmap for network reordering applied to synthetic network in
Figure 6.3 with the node-weighted Laplacian.

In summary, we have shown that the output from the node-weighted Laplacian is

influenced by both the original network and the values used for the components of

Dw. This new approach has then been shown to hold value in identifying assortive

structures within a single network, as well as providing a new method of combining

information when multiple edge sets exist for a single pair of nodes. There are many

possible uses for this method of incorporating extra-information into an analysis,

in the following section we will explore an application pertinant to this thesis - a

combination of metabolic and microarray networks. This will allow a specific type

of analysis that brings together different elements of this project so far - we have

previously created a pair of metabolic networks (see Chapter 5) from publically

available databases, and in later chapters we will examine microarray data as an

exploratory tool for features in schizophrenia.
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6.4 Node-Weighted Laplacian: Microarray Ap-

plication

For this section we will use one publically available microarray data set, adipose

tissue measurements from decode study GSE7965, for 296 samples [56]. This study

contained a cohort of 701 individuals - though this data set contained both male

and female test subjects, for this study we selected only the male contingent, which

is 296 samples. The reason for this is that there are significant levels of variance

between the male and female cohorts - and we wish to examine content of the gene

expression from the adipose tissue, rather than discovering a list of genes that may

differentiate between males and females. Additionally, specific interpretation is not

key to this chapter - we are initially testing the node-weighted Laplacian on real

data.

These data may be regarded as a rectangular array whose (i, j) entry records the

expression level of gene i in sample j, for 23, 765 genes across 296 samples. We use

the absolute value of the expression data, so that all data entries are non-negative;

with this approach we treat under and over-expression as equivalent, on the grounds

that both indicate a deviation from basal behaviour, [112]. Hence, a larger weight

is taken to denote a higher level of activity. It is, of course, possible to retain the

distinction between under/overexpression using a signed network [87], as we will

do later when specific analysis is important.

We make one other modification to the data based on the metabolic network we will

use later. In order to make the two networks compatible, and form a node-weighted

Laplacian, they must have the same number of genes. We then take the KEGG

metabolic network formed in Chapter 5 and check which genes have been measured

in the probe set of this microarray experiment. Note at this point that probes in

microarray kits commonly measure only a portion of the sequence for an individual
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gene - there is often overlap such that multiple probes measure the same gene. We

calculate the degrees in the metabolic network, and repeat assign the degree to

each relevant probe.

Overall, then, in this section we have a non-negative real valued microarray data

set size 4567 by 296 and a non-negative integer valued 4567 by 4567 array of KEGG

metabolic pathway co-incidence data.

6.4.1 SVD: The Rectangular Case

We perform an initial analysis of the microarray data set using the aforementioned

reordering for clustering from the SVD, without the node-weighted Laplacian.

Preserving the rectangular form of the data means that we maintain the ability

to simultaneously reorder the samples as well as the genes (as with [86, 112]). In

the language of Section 1.3.2, the matrix A is the rectangular array of microarray

data with genes and patients as the rows and columns. Then, the matrices U and

V provide the left and right singular vectors - preserving the rectangular form of

the data gives us the ability to reorder the samples as well as the genes (where

in Chapters 3, 4 we acted on symmetric matrices); this type of bi-clustering is

commonly performed on microarray data [103, 112]. Although this SVD is acting

purely on the microarray data, in order to maintain consistency between analyses

we also trim this data set as described previousy, leaving a rectangular N ×M

matrix that contains N = 4567 genes that that are also present in the metabolic

analysis later, and M = 296 samples.

100



CHAPTER 6. THE NODE-WEIGHTED LAPLACIAN

Figure 6.6: The Fiedler vectors for each of the two dimensions of the microarray
data - also known as eigengenes and eigensamples.

The gene that codes for the hormone leptin is of particular interest as a measure in

this adipose tissue data set. The reason for this is that leptin resistance is a good

indicator for obesity - so it should be expected that there is a pattern for leptin

levels in a data set of this type [24]. In our reordered data, the gene that codes for

leptin appears at the end of the ordering vector (u[2]) from the SVD - identifying

the leptin gene as key to explaining variance in the data set. We can check the

levels of leptin across samples (ordered by v[2]), in Figure 6.4.1. As expected, there

is a trend when checking the expression levels of the leptin-gene in the ordered

sample list. This shows that the clustering identified thorugh reordering the sample

list roughly follows a trend in the values of the leptin gene. This is a good check

for the analysis since we have prior information about the impact leptin would be

expected to have on data of this type. We also note that in this, and following

sections within this chapter, we do not show a reordered plot of the full data set.

This is because in a data set, such as this, with thousands of rows it can be difficult

to identify any structure visually.
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Figure 6.7: Leptin expression level from simultaneous ordering of genes and samples
using u[2] and v[2] showing leptin variation per patient.

6.4.2 KEGG Metabolic Network Application

Having shown that the SVD can produce biologically meaningful results on this

data we next show the case where the KEGG metabolic network is used to provide

the node weights in the nodeweighted Laplacian. For the nodeweighted Laplacian

we use Lb = Db(D−AAT )Db where B is the KEGG metabolic network (see Chapter

5 for details), components bij . So, Db =
∑N

i=1 bij - and the node-weighted Laplacian

will re-scale the weights of each node in a network A based on information gleamed

from a separate network B. We treat this metabolic construction as additional

infromation for the microarray problem. Overall, we have (a) a non-negative

real-valued 4567 by 296 array of gene expression data, and (b) a non-negative

integer-valued 4567 by 4567 array of metabolic pathway co-incidence data (with

4.4% percent of entries nonzero, mean nonzero entry is 1.35 and maximum entry is

45).

In this test, we are now seeking to uncover structures that are well-connected within

the microarray network A but also have a high degree in metabolic network B. The

viewpoint we take here is that we are enhancing the presence of the genes that have
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high degrees in the metabolic network, and are thus selecting for clusters in the

microarray network that are composed of genes that are also strongly active in a

metabolic sense. A sensible first step after producing the node-weighted Laplacian

and calculating the reordering vectors using the SVD is to check if the resultant

ordering vector produces any visible structure when used to reorder the vector of

metabolic degrees. The expectation is that if the metabolic degrees are having an

influence on structure within the microarray data, the reordering vector will have

a tendency to push high degree nodes towards either end of the vector.

In the left of Figure 6.8, we show the degree in the metabolic network, Db for the

genes, when ordered by the vector D
1
2
wx[2] from the node-weighted Laplacian, does

indeed give preference to genes with high metabolic weights - placing them at the

extremes of the list. As a minor verification we also produce the right hand picture

which, by contrast, using the Fiedler vector arising from the Laplacian matrix, does

not incorporate any metabolic information. Naturally, in this case, we do not see

any metabolic pattern. This is a basic check to ensure it was not simply the case

that high degree genes in the KEGG network happen to be more important in the

structure of the microarray data.

Figure 6.8: Metabolic degree of reordered genes. Left: ordered by vector from the
node-weighted Laplacian. Right: ordered by Fiedler vector.
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Having confirmed that the metabolic information has affected the ordering, we

now check whether D
1
2
wx[2] has identified structure (i.e. a cluster) in the microarray

data. We may do this by first inspecting the reordered microarray correlation

matrix and choosing an appropriate range of contiguous nodes from the end of

the ordering. In our case, 200 genes appeared to form a strong group. This is our

putative cluster, whose quality can then be measured. There are, of course, many

competing measures of cluster quality. Here, we follow the approach of [220], as

used in Chapter 3, Section 3.2.1.

Using this approach, the 200 genes in clusters at both ends of the data were tested,

producing p-values below 0.01. Overall this confirms that (a) the data contains a

set of nodes with high expression correlation and high metabolic activity, and (b)

the customized spectral approach was able to identify this structure.

6.4.3 Interpreting the Results

Factorizing metabolic pathway data together with gene-expression data is a way

of adding known large-scale biological information to the analysis. This approach

does not attempt to prejudice the outcome, but asks if prior knowledge can add

any useful information.

We are able to add a basic biological narrative to some of the observed genes

that appear at both ends of the matrix. Along with leptin, a signalling molecule

produced in adipose tissue, we find acyl-CoA oxidase 1, palmitoyl, the first enzyme

in fatty-acid beta oxidation; malonyl-CoA decarboxylase, involved in both fatty-

acid bio-synthesis or, more plausibly here, scavenging odd-length dicarboyxlic acid

fatty-acids.

At the other end of the matrix, we find the gene for argininosuccinate lyase,

traditionally linked to low food availability [176]. This is implausible in this
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cohort, both from the social background and internally. Our analysis also finds

ketohexokinase; the presence of this enzyme has been linked to a high fructose diet

and its role is to use this sugar as both an energy source and, in adipose tissue,

as source for precursors of fatty-acids [114]. Ketohexokinase initiates the pathway

through which most dietary fructose is metabolised [46, 14]. Traditionally this was

described as an energy store, but now is usually viewed as leading to undesirable

fat and obesity. Fructose, in developed countries, is a common ingredient in most

diets from the addition of corn syrup [12].

Our analysis has also led us to discover patterns with high probability of relevance

to metabolic syndrome, obesity and type-2 diabetes, which has been linked to

fructose intake [12]. The availability of relevant biometric information would allow

us to place these observations into more specific biological context.

6.5 Discussion

Our aim was to motivate and illustrate spectral methods for network analysis.

We used a first principles, linear algebra setting in order to show that by varying

specific choices in the algorithm design we can generate a range of spectral methods.

In particular we derived a simple, novel extension that can uncover assortative

substructure. We finish by mentioning two key areas of current interest. First, for

a large complex network, that is perhaps noisily defined, it may be of interest to

identify substructures that go beyond simple clusters. For example, algorithms

can be devised that discover subpatterns of bi-partivity [58], periodicity [76] or

hierarchy [37], using spectral means. Second, a more systematic spectral approach

for dealing with two or more related data sets can be developed through the use

of the Generalized Singular Value Decomposition [124, 177, 189, 220], as we have

also demonstrated in Chapters 3 and 4.
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Since the principle has been established, it is not important to verify that the

approach works in individual cases - that is, since the method was successful with

the KEGG metabolic network we know the MetaCyc metabolic network will allow

for equivalent results.

For the interest in this thesis, however, specifics in this adipose microarray data

set are not important. Instead, this chapter has validated the node-weighted

Laplacian, showing that it is possible to identify such structures in synthetic data

and microarray gene expression data. The next step is to implement the approach

as part of a live analysis on schizophrenia data pertinant to this thesis.
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Chapter 7

Exploring the Effect of

Antipsychotic Medication on

Gene Expression in Human

Whole Blood Schizophrenia Data

7.1 Introduction and Motivation

The application of network theory to biological systems is particularly well suited to

the case of gene expression. Gene expression experiments provide a huge amount of

data which is impractical to process using reductionist approaches but is convenient

to represent in network form. In this chapter we create a setting for the exploration

of gene expression data in human whole blood by providing a brief picture of issues

with the more common profiling methodologies of brain tissue. Gene expression

profiling in schizophrenia is typically performed in post-mortem brain tissue; and

there is a lack of a consistent outcome across studies. There are many reasons

for this inconsistency, including factors that will vary from sample to sample
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such as the post-mortem interval, sample pH and possible degradation of RNA

[203, 133]. For instance, false levels of differential expression can arise in cases

where sample parameters alter expression in a subset of genes in opposing directions.

Mitochondrial defects have been implicated as playing a role in both schizophrenia

and bipolar disorder, but it has been shown that a decrease in brain tissue sample

pH has the effect of both decreasing mitochondrial gene expression and increasing

apoptotic pathway expression, resulting in a differential not related to the condition

[213]. There are also potential issues with abundance - low abundance transcripts

may not be detectable or have easily measurable dynamic range [155].

In addition, post-mortem tissue is difficult to obtain, limiting the potential for large

scale study [190]. There is then room to explore potential differential expression

in different tissues. A desirable choice in terms of diagnostics is whole blood.

Blood collection is non-invasive and needs little specialist training - this means it

is relatively straightforward to obtain large numbers of samples, potentially for the

same individuals through different stages of the disease, though this was not the

case with the data set considered here.

In this chapter the analysis is exploratory with the objectives being to investigate

the viability of blood as a sample source, and to uncover differences between gene

expression of different sample sub-groups. To this end different reorderings from the

SVD and GSVD clustering techniques will be used and results can be examined for

potential biological merit. We take this approach since it is unclear if schizophrenia

will influence gene expression measurements in blood - that is, schizophrenia is a

brain disorder and the transferrability and applicability of blood gene expression

on brain disorders is currently under examination [20, 71, 205]. Since there is

potential for the disease to have limited effect on gene expression within whole

blood we note that there may be factors within the data that are more important
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for clustering than the disease state. Consequently, it is sensible to adopt a wide

ranging approach.

Genome Wide Association Study: GWAS

Variations in the genome of an individual are one factor that contributes to

variations in their phenotype. GWAS studies measure genetic features physically

associated with an individual [27]. This includes insertions and deletions of genetic

code, variations in the number of times segments of code are repeated (copy-number

variation) and variations in individual nucleotides, single nucleotide polymorphisms

(SNPs). The GWAS approach examines a particular genetic variation (allele)

across large samples and calculates an odds ratio of association. This odds ratio

gives the probability that the genetic variant is linked to the phenotype. Thus,

in combination with high throughput technology, GWAS studies can be used

in case-control studies to identify physical genetic variants that are related to a

disease state. The result is that GWAS study provides a reliable (through objective

determination of the allele) measure of genetic involvement in a condition.

Although the variations in genetics as investigated in GWAS studies are not

inexorably linked to expression levels, in this chapter we will in part treat the

gene expression study as phenotypic data and examine overlap between this and

GWAS results. As described in Chapter 2, gene expression is a highly variable

process that is affected by a large number of external and internal factors. This

means that definitively linking differential gene expression to a disease state can

be difficult - and so there is more weight in identifying cases where gene expression

levels are altered in genes that have previously been shown to have an association

(in separate studies) with the condition.
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7.1.1 Blood Background

Blood presents an interesting investigative opportunity for schizophrenia. As well

as the aforementioned reasons of availability and cost, there have been suggestions

of lymphatic involvement in an intermediate role between the nervous system and

immune system [69]. Though the publication numbers are limited compared to

brain tissue studies, there have been a number of recent efforts in characterising

the viability of whole or partial blood samples as representatives for neurological

conditions [118]. Results are currently uncertain and more study is required, but

there are some encouraging studies that have shown the reproducability of brain

gene expression profiles in perhipheral blood [99, 199, 183], and our work provides

further positive support. In addition, blood shows stable gene expression profiles,

giving potential for repeat study [148].

7.2 Introducing the Data

Analysis in this section is carried out on a publically available (http://www.ebi.ac.

uk/arrayexpress/experiments/E-GEOD-38484) microarray dataset [43]. This set

was chosen for its large sample size, and for the fact that there are a number of

antipsychotic-free patients included in the cohort. The inclusion of antipsychotic-

free patients is of interest since it is unclear how much of a normalizing (or, more

likely, disruptive) effect antipsychotics will have on an individual’s expression

profile.

The data, summarised in Table 7.1, consists of 118 controls, 92 medicated diagnosed

schizophrenia patients and 29 antipsychotic-free (or ‘unmedicated’) schizophrenia

patients. All individuals are from Denmark or the Netherlands. Age and gender

data is also available for each.
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Samples Mean Age Num. males Num. females

Schizophrenia 92 40.86 66 26

Antipsychotic-free 14 31.21 10 4

Control 96 39.31 42 54

Table 7.1: Summary information on the data set adapted from [43]

The data was gathered on an Illumina microarray kit, model:

• Illumina HumanHT-12 v3.0 Expression BeadChip

There are measurements for 48, 743 probes in this data set, comprising a smaller

number of genes - since the relationship between gene and probe is one to many.

Figure 7.1 shows an unordered list of patient (kept in the order they were given in the

data set) total expression levels (across all probes), colour coded for experimental

state.

Figure 7.1: Sum of expression across all probes for each patient.

Figure 7.1 shows a similar range across each experimental group with a small

number of outliers. Samples 1 − 57 of the control group appear higher on total
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expression than the rest of the controls, and other experimental groups. This

could be an experimental artefact or a result of some unmentioned change in the

experimental protocol. For example, this pattern may be explained by one of the

systematic variations that affect measurement of gene expression - such as variation

in detection of the flourescent dyes or differing amounts of mRNA material in the

samples before measurements are taken. Since we take an unsupervised approach

in the analysis, we will need to take care to check that our results are releated to

the disease state, rather than differences between these control measurements.

7.3 Analysis: SVD and GSVD

In the following sections we will carry out a process of data exploration that utilises

a spectral clustering approach with the SVD and GSVD, as outlined in Chapter

3, and expands to use other statistical approaches in the search for novel genes

implicated in the disease state.

The first analysis will be with the SVD, using a clustering (in this case we can

perform a biclustering of samples and probes) and reordering to generate lists of

probes and genes that are responsible for variation within the data set. There

is an intrinsic assumption here that the disease state is the main factor for the

variation within the data. The genes partitioned towards the ends of the orderings

will then be examined. In Section 7.4.4, a hypothesis test and measurement of fold

change of gene expression are calculated to generate a subset of genes that meet a

significance level (p < 0.05) and surpass a pre-defined level of fold change (1.5+).

The following sections will show results from analysis of the complete data set,

and selected subsets (e.g., schizophrenia + control samples with antipsychotic free

removed). This will allow investigation of potential differences between medicated

and antipsychotic-free samples and provide insight into their differences with the
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control group. We will also apply the GSVD which, as outlined previously, can be

used to identify mutually exclusive structures across networks. This will be applied

to give three comparisons:

• Antipsychotic-free vs control

• Antipsychotic-free vs treated

• Medicated vs control

In addition, the data will be combined with the KEGG and MetaCyc metabolic

networks using the novel node-weighted Laplacian approach developed in Chapter 6

with the goal of uncovering structures that have high degree in either the KEGG

or MetaCyc networks but also have significant structure in the microarray data.

7.4 Clustering with the SVD

This section contains analysis where the data is reordered according to the SVD.

Each of the following subsections contain plots of singular vectors where, based on

classic spectral analysis arguments, as discussed in Chapter 6, we take the view

that (a) nearby genes in the ordering exhibit similar behaviour and (b) the genes

at the end of the orderings are responsible for driving structure of the ordering.

Whole Data

The SVD was carried out on the data as in previous chapters and for illustrative

purposes we show plots of the Fiedler vector and the next left singular vector

(corresponding to probes) in Figure 7.2. The probe IDs in Figure 7.2 have been

reordered according to these singular vectors, showing groups at both ends with

components deviating from zero. This indicates that these probes are responsible

for driving the structure the SVD uncovers.
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Figure 7.2: Components of the left singular vector u[2] and u[3] in increasing order
from an SVD of the data.

Following on from the plots of the left singular vectors, we show in Figure 7.3

the reordering of samples according to the sorted components of the right sin-

gular vectors (corresponding to samples) from the SVD of the data with the

complete sample cohort. For interest, in this figure we have provided different

labels for schizophrenia patients (labelled SCZ), antipsychotic-free schizophrenia

patients (medication/antipsychotic free patients - MFP), controls (CTRL) and

males/females. Gender was split in this way such that we could check whether

gender had a significant effect on gene expression, necessitating separation of males

and females in future analyses.
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Figure 7.3: Components of right singular vectors v[2] and v[3] in increasing order
from an SVD of the data. Each component represents an individual in the data:
each point is labelled according to gender and disease state.

The results in Figure 7.3 show little separation in either singular vector between

males and females, suggesting that gender is of limited importance in driving the

ordering of the samples - and so gender will not be used to separate this data in

future sections. For additional clarity on the division of disease status, we next

plot the singular vectors without the male/female distinction in Figure 7.4.

Figure 7.4: Components of right singular vector v[2] and v[3] in increasing order
with disease state highlighted.
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In this case, the plot on the left with the right singular vector v[2] efficiently

distinguishes the schizophrenia patients from the control. The antipsychotic-free

patients are spread across the ordering - a possible explanation here is that the

relative number of antipsychotic-free patients in this set is small, so the variance

may be dwarfed by the other two sets.

Antipsychotic-free and Controls

Next we present figures where the antipsychotic-free and control patients have

been selected. Figure 7.5 shows the left singular vectors u[2] and u[3] from this

comparison, showing again that a large number of probes drive a division in the

ordering of the data.

Figure 7.5: Components of u[2] and u[3] from SVD of dataset containing control
(CTRL) and antipsychotic-free (MFP) samples.
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Figure 7.6: Components of v[2] and v[3] from SVD of dataset containing control
and antipsychotic-free samples.

In Figure 7.6 the disparity in sample numbers is obvious - v[2] orders antipsychotic

free samples towards the left, where v[3] orders those towards the right. The

antipsychotic free samples are not perfectly clustered, which suggests that there are

factors other than the differences due to their sample type driving the structure.

It could be the case that the antipsychotic-free samples are not vastly different in

gene expression, and so driving features within the data are from any of the factors

that affect gene expression in all individuals (see Gene Expression in Section 2.1 for

related discussion). This idea will be explored in later sections, with for instance a

comparison with schizophrenia literature in Section 7.4.2.

Schizophrenia and Control samples

This final comparison, illustrated in Figures 7.7 and 7.8 results from the SVD on

the data from schizophrenia patients and control samples. There is a weak trend in

v[2] where the schizophrenia samples appear more often on the right hand side of

the plot, similarly the left hand side in v[3], but once again there are discrepancies

where samples are not grouped according to their disease status.
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Figure 7.7: Components of u[2] and u[3] from SVD of dataset containing schizophre-
nia and control samples.

Figure 7.8: Components of v[2] and v[3] from SVD of dataset containing schizophrenia
and control samples. Separation of sample groups is not perfect yet there are some
visible collections of common sample groups.

These results suggest that over the whole probe set there are probes that vary nat-

urally across control individuals, providing some discriminating structure between

samples. The fact that many schizophrenia samples are grouped on the right hand

side of this picture may be indicative of the fact that those samples share some
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common structure in expression. The fact that samples are not grouped perfectly

according to disease state may also be suggestive of the fact that schizophrenia is

not one specific condition - there is a wide variety of samples, variety of onset points

and treatment modalities. Each of these factors can contribute to the measured

expression levels.

7.4.1 Distribution of Variance

Often in microarray analysis low variance (that is the spread of expression level

across all samples, control and disease) genes will be excluded [43], this potentially

limits the scope for discovery of novel genes across sample groups - equivalent to

the issue of discarding genes with low fold changes in expression (as mentioned

in Section 7.4.4). Motivated by this aspect of traditional microarray analysis, the

distribution of variance across probes within the data was checked. The variance

used to create these figures is the the variance across all sample groups. Whilst

there are small differences in the distributions of variance between the sample

subsets, the results are transferrable enough that individual sample groups are

not included. Figures 7.9- 7.10 show a variance histogram and the relationship

between variance and mean expression. Figure 7.11 shows how the SVD responds

to variance by showing some data reorderings.
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Figure 7.9: Frequency plot of sample variance across probes in the complete data
set with 50 bins. There is a visible peak and hump in the elements across variance.

In Figure 7.9 it is clear that the majority of probes are contained within a small

range of variance (we use log10 as a more appropriate scale). This highlights one of

the issues with arbitrary variance level selection procedures; if we were to introduce

a cutoff somewhere in the range where the majority of probes are located, we would

discard many potentially interesting points located close to this cutoff.
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Figure 7.10: Scatter of mean expression for each probe against log10(Variance)
showing that high variance probes tend to have higher mean expression

Figure 7.10 shows that high variance probes in this data tend to have high mean

expression levels. This suggests that significant genes in this data set will likely

be more abundant overall. As the mean expression level increases, the number of

probes begins to decrease, until there is a collection at a ceiling point of expression

between 14 − 15. This is explainable as saturation of the microarray kit. The

second feature of note is the dense beam at the low end of mean expression levels -

this may again signify limitations of the equipment.
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Figure 7.11: Variance of probe ID across samples reordered according to increasing
value of the components of the left singular vectors u[2] and u[3]. There are few low
variance probes at the end of the ordering.

In Figure 7.11 there is the interesting result that whilst the high variance probes

have a tendency to move towards the end of the ordering, there is a scattering in

the distribution (that is, there are high variance probes located throughout the

orderings). This shows that variance across a probe is not the only driver in forming

the reordering from the SVD: another point which suggests it is undesirable to

simply discard low variance probes, particularly in a clustering approach.

7.4.2 Comparison with Gene List Database

As a starting point towards assessing the viability of blood for schizophrenia

diagnostics, we can compare our gene lists with information available from the

literature. There have been many genes implicated in schizophrenia, as a result

categorising the literature and building an objective list of genes would be an

enormous challenge, beyond the scope of this thesis.

However, the Schizophrenia Gene Resource SZGR:-
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http://bioinfo.mc.vanderbilt.edu/SZGR/index.jsp

is an effort to collect information on all genes that have been studied in relation to

schizophrenia - there are three main approaches and categories built in organising

the database: association, expression and literature studies, these are outlined

individually in the following sub-sections.

In this section we compare genes from the reordering of the SVD with the SZGR

database to find out which of the genes that have previously been implicated in

schizophrenia are present in our clusters. In addition, it is interesting to consider

that at least the majority of the genes present in the SZGR database will be results

from studies in brain tissue - in comparing our experiment to this database we are,

in a sense, testing for overlap between blood and brain tissues, an important step

towards demonstrating the practical relevance of a blood based diagnostic assay.

Genome Wide Association Studies

In order to form the association set, SZGR extracted gene information and study de-

tails from the SchizophreniaGene (SZGene:- http://www.szgene.org/) database.

There is then an odds ratio calculated and assigned for each of the genes, with a

score of 3 indicating a p-value < 0.001, 2 is p [0.001− 0.05) and 0 otherwise. Genes

implicated from association experiments are likely to be the most reliable in terms

of definite connection with disease.

Gene Expression

The expression section of the database is constructed from a set of meta-analyses.

This includes a compendium of 12 gene expression data sets spanning 988 arrays

in a study compiled by the Stanley Medical Research Institute (SMRI) [84] and a

comparison of expression profiles (according to Gene Atlas [107]) of genes collected

from meta analyses available in the literature.
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The genes gathered from these studies for entry to SZGR are required to meet a

significance threshold (p < 0.05).

Literature

The literature portion of the database is formed based on a principle of co-occurence

of search terms. The keywords “schizophrenia”, “schizophrenias”, “schizophrenic”,

“schizophrenics”, “schizotypy” and “schizotypal” are searched in the NCBI Entrez

search utility for NCBI PubMed. If a gene and one of the above keywords co-occur

in a publication then a hit counter is incremented. Then the maximum score a

gene can have is 6 - where the gene co-occurs with each of the above keywords.

This is likely to be the least reliable in terms of definite disease link. This approach

is used as a basic mining strategy for large data and has been previously used in

other areas of systems biology [182].

Comparison Between Lists

An obvious step to take with these lists in place before integrating them into the

experimental analysis is to compare them with each other for overlap. Tables 7.2

and 7.3 show how many genes are present (according to the official gene symbol)

in the aforementioned sources: off diagonals show the number of matches between

the lists. For information, Table 7.3 shows the corresponding result for probe ID

rather than official gene symbol.

Association Expression Literature

Association 277 15 250

Expression 15 656 70

Literature 250 70 1599

Table 7.2: Number of matches between SZGR lists in official gene symbol IDs.
There is overlap between all combinations of list, with limited cross-over between
association and expression.
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Association Expression Literature

Association 3856 262 3551

Expression 262 5054 1048

Literature 3551 1048 15124

Table 7.3: Number of matches for Illumina probe IDs between each SZGR list.
There are significantly more probes than gene symbols, with overlap between all
lists.

An interesting result is that there is a small nontrivial overlap between association

and expression studies - this is unexpected due to the difference between the nature

of genetic variants (as measured by association studies) and gene expression. Any

such overlap is of interest as there is an implication of a relationship between

specific genetic variants and expression levels for these genes. We can also see

from these tables that the literature subset is the largest, as expected since it has

the smallest degree of specificity and, again as expected, the literature set has

significant overlap with the other types.

7.4.3 Significance Testing of Ordering Results

The number of matches between SZGR and the SVD ordering are assigned p-values

using a bootstrap type approach (where the original list is resampled repeatedly

[157], though in this case the list corresponds to IDs), estimating the probability of

the result appearing by random chance.

We will do two things:

• Check the ends of the singular vectors, to see how many genes match up with

those in the database.
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• Calculate a p-value for the middle of the ordering (which should be not

significant) as a sanity check to verify a base level of agreement with the

literature.

The p-values are calculated according to the process in Section 3.2.2 and provide a

basic assessment of whether the SVD reordering of the data is identifying genes

that are known to be implicated in schizophrenia. This is of interest since the two

main goals of this chapter are to test the value of blood for expression study in

schizophrenia and report any correlation with current knowledge. A significant

p-value (< 0.05) suggests that the reordering procedure is able to identify a

significantly greater number of genes implicated in the disease state than random

chance.

The p-value results are found in Tables 7.4, 7.5 and 7.6, with p < 0.05 values

highlighted in bold. Also since, as mentioned in Section 7.2, there are often multiple

probes to measure one gene, we provide the number of genes present in the ordering

Sum (number of genes), as well as the number of probes Sum with repeats (which is

the number of probes). For the initial results, we simply chose a selection of 1, 000

probes from either end of the ordered singular vectors. Thus, ‘u[2] Start’ is the first

1, 000 nodes from the left singular vector u[2], ‘u[2] Mid’ is 1, 000 nodes selected

from the middle of the singular vector and ‘u[2] End’ is 1, 000 nodes selected from

the end of u[2], and similarly u[3] results are those from the left singular vector u[3].

The singular vectors used to generate these tables are as shown in Section 7.4.

We can see that the results are very similar between Tables 7.4 and 7.6, which

makes sense since schizophrenia and control populations make up the majority

of the data set. It is particularly notable within these tables that there are a

number of genes from association studies present in either end of the orderings.

This replication across study types could suggest these genes are of a high level of
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Complete Data

Association u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 13 6 9 3 9 15
Sum with repeats 15 6 9 3 9 17
p-value 0.045 0.932 0.687 0.997 0.673 0.027

Expression u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 30 10 29 23 14 24
Sum with repeats 41 11 36 38 16 36
p-value 0.003 0.999 0.016 0.015 0.978 0.026

Literature u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 34 23 42 31 24 47
Sum with repeats 73 38 103 77 47 116
p-value 0.021 0.997 < 0.001 0.003 0.912 < 0.001

Table 7.4: Comparison of selected genes from left singular vectors u[2] and u[3]

(Figure 7.2) of SVD of the complete data set. Significant numbers of genes appear
in almost all orderings and gene lists. No significance in Mid ranges as expected.

Antipsychotic-free and Control

Association u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 14 7 11 8 9 13
Sum with repeats 14 7 12 9 9 15
p-value 0.137 0.804 0.305 0.709 0.584 0.091

Expression u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 30 19 33 29 22 31
Sum with repeats 39 21 46 43 25 38
p-value 0.006 0.761 < 0.001 < 0.001 0.464 0.015

Literature u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 33 17 49 32 26 39
Sum with repeats 69 38 110 76 52 97
p-value 0.039 0.997 < 0.001 0.005 0.730 < 0.001

Table 7.5: Comparison of genes from left singular vectors u[2] and u[3] (Figure 7.5)
of SVD from data of antipsychotic-free and control samples only. Many significant
results, with high significance in expression studies. No significance for association
orderings in this case.
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Schizophrenia and Control

Association u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 13 10 9 4 8 15
Sum with repeats 14 10 9 6 8 17
p-value 0.1434 0.5656 0.6854 0.935 0.799 0.027

Expression u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 29 19 32 27 10 26
Sum with repeats 36 21 43 38 13 36
p-value 0.019 0.828 < 0.001 0.008 0.997 0.022

Literature u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 34 23 42 31 24 49
Sum with repeats 73 38 105 77 47 116
p-value 0.021 0.997 < 0.001 0.003 0.912 < 0.001

Table 7.6: Comparison of genes from left singular vectors u[2] and u[3] (Figure 7.7)
of SVD from data of schizophrenia and control samples only (no antipsychotic-
free). Results are similar to previous table, with significance in all expression and
literature SZGR lists.

interest since they are altered in gene expression and show some genomic variation

in association study.

Finally, these results provide only an indication of the usefulness of this approach.

The generation of p-values here is somewhat arbitrary, and should be taken only

as a guide. For clarity, a non-significant p-value only indicates insignificant overlap

between the ordering and SZGR database. It does not make a statement about

the importance of the genes present in the ordering.

7.4.4 Hypothesis Testing: T-test and Fold Change

We next apply a hypothesis test to genes that have appeared in the clusters of the

SVD orderings. This approach will identify genes that potentially do not appear in

the previous database lists.
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The hypothesis tests in this section compare the schizophrenia samples with the

control samples, and the antipsychotic-free samples with the controls (that is, the

disease state is tested for similarity with the control). The result is a p-value for

each Illumina probe that will give an indication of the likelihood that, for that

probe and the gene it measures, the schizophrenia sample differs in some way

(dependent on the test used) from the control samples. We then also compare the

treated schizophrenia samples with the antipsychotic-free patients. In comparing

the probes that are significant in the experimental orderings in this way we are also

focussing on probes that differ between experimental groups - and checking that

the approach is capable of identifying results that are as such. This will make sure

the separation of control samples seen in Figure 7.1 is not an overriding feature of

the data.

This process is performed for multiple SVD orderings, and the most significant

genes are highlighted, with their positions in the cluster noted. The results of the

hypothesis testing are then used in the generation of volcano plots, as explained

later in this section.

T-Test

For background information on the t-test see [157]. The t-test is commonly used

in applications related to gene expression data [16, 201, 205], though there have

also been noted concerns about the ability of the t-test to manage false positives

- including the fact that the t-test is reliant on the data holding to the normal

distribution, which may not always be the case. The t-test is used to compare the

means of sample groups, where the p-value is the probability of obtaining a t value

at least as extreme as observed. The sampling distribution is known for Student’s

t-test so the p-value is given by the sum of the probabilities of events more extreme

than observed.
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Mann-Whitney Wilcoxon test

Following on from the concern that the t-test may not be suitable due to issues

of normality within the data, we calculated a measure of skewness (a measure

of how skew a distribution is, or tendency for data to lie on a particular side of

the mean) for each of the probes in this data set and also use the more robust

non-parametric Mann-Whitney test. The results from the Mann-Whitney test are

broadly in agreement with those of the t-test - with none or very few instances

where the p-value significance threshold is affected. As a result, in the tables that

follow we show only the t-test results.

Volcano Plot

Volcano plots are a graphical method of examining results in fold change and

statistical significance simultaneously [38], allowing for quick identification of points

that meet a dual threshold criteria, particularly in relation to microarray data

where there is a large amount of data [3]. Volcano plots are typically formed

as a plot of some log scaled p-value (usually −log10) versus a scaled fold change

(commonly log2), as in the example Figure 7.12 - the name ‘Volcano’ comes from

the typical shape of the result. The usage in this data is appropriate since we can

plot p-values for a particular gene (from the hypothesis test comparing the disease

sample to control) and a ratio of the probe mean for each sample group - this will

allow us to identify any genes that are significantly different between experimental

groups, and have a large fold change - the upper corners of a volcano plot contain

genes that have both significant p−values and a high fold change. In each of the

following tables the fold change is always illustrated as disease state relative to

control, so a negative value indicates downregulation.
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Figure 7.12: Illustrative example of a volcano plot formed form one end of reordered
components of u[2] from the SVD of the schizophrenia and control patients data set.
Red dashed lines correspond to fold change > 1.5 and p−value < 0.05 thresholds.

Each point on a volcano plot of this type represents an individual probe or gene -the

top left and top right of the diagram highlight the areas of most interest- where the

p-values are low and the fold change is high. After generating a volcano plot, we

then place a threshold of a fold-change for each gene (typically 1.5 or 2 [207, 141]).

Rather than displaying volcano charts for each ordering and each subset of data,

the significant results have been extracted and displayed in Tables 7.7 - 7.25.

An average gene expression level is calculated for each gene, for each sample group

- the ratio of this is known as the gene expression ratio. The advantage of using the

log2 transform on a set of gene expression ratios is that differential up-regulation

and down-regulation are treated the same, e.g. log2(2) = 1, log2(0.5) = -1. The

log2 mapping is then desirable as it creates a continuous space that allows for direct

comparison of up and down regulation.
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Gene Expression Abundance

Since fold change is a ratio of over or underexpression, it is interesting to include a

measure of the relative abundance, in terms of the overall experimental measure-

ments, of the expression of a particular probe. This will allow an assessment of how

the algorithms respond to the data, as a follow-on from Figure 7.10 in Section 7.4.1

which shows a trend whereby high mean expression probes tend to have higher

variance. The purpose of this addition is twofold:-

• There is more biological information in knowing fold change levels alongside

a relative expression level (the abundance measure).

• The approach is expected to favour high variance probes, in calculating a

measure of abundance we can identify low abundance and, in addition as

implied by Figure 7.10, low variance probes.

To calculate the percentile abundance the MATLAB function tiedrank is used -

ranking each of the probes according to average expression level (of the control sam-

ples). In this section we show the results from fold change and t-test measurements

on genes from the end of the corresponding left singular vectors.

Complete Data

Tables 7.7 and 7.8 show results that meet the dual threshold criteria of the t-test

(comparing schizophrenia, including antipsychotic-free samples, with controls) and

gene fold change. Cluster one in orderings from u[2] and u[3] are very similar, notably

genes such as NDUFA4, HINT1, COX7C and EVI2A appear in both orderings.
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Official Gene Symbol Illumina ID p-Value Fold Change Percentile Abundance

Cluster One

PRF1 ILMN1740633 2.13e-08 -1.58 96

NRGN ILMN1705686 4.30e-08 -1.55 96

SMOX ILMN2367258 1.51e-07 -1.58 89

GPR56 ILMN2352097 7.86e-07 -1.59 95

GPR56 ILMN2384122 2.11e-06 -1.57 95

ZNF683 ILMN1678238 3.31e-06 -1.56 88

EPB49 ILMN1671686 4.71e-05 -1.59 95

GZMH ILMN1731233 1.38e-04 -1.57 97

RNF213 ILMN1749722 3.78e-04 -1.56 98

Cluster Two

RPL9 ILMN1750507 1.23e-10 1.82 98

RPS17P16 ILMN1664610 2.04e-10 1.52 98

NDUFA4 ILMN1751258 2.62e-10 1.52 95

HINT1 ILMN1807710 3.02e-10 1.60 96

EVI2A ILMN1733579 4.22e-10 1.59 88

COX7C ILMN1798189 8.32e-10 1.60 96

RPS17 ILMN2207539 1.49e-09 1.56 97

RSL24D1 ILMN2175465 2.39e-09 1.60 90

COMMD6 ILMN1777378 3.05e-09 1.65 91

RPL31 ILMN1754195 1.83e-08 1.51 95

RPL9P25 ILMN2408415 8.78e-07 1.50 90

Table 7.7: u[2] complete data (ordering of all schizophrenia and control samples) set results: t-test on first and last 1000 nodes

(named cluster one and two, respectively) of u[2] ordering from SVD. Genes that meet fold change > 1.5 and p−value < 0.05 are

shown.
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Official Gene Symbol Illumina ID p-Value Fold Change Percentile Abundance

Cluster One

RPL9 ILMN1750507 1.23e-10 1.82 98

RPS17P16 ILMN1664610 2.04e-10 1.52 98

NDUFA4 ILMN1751258 2.62e-10 1.52 95

HINT1 ILMN1807710 3.02e-10 1.65 96

EVI2A ILMN1733579 4.22e-10 1.59 88

COX7C ILMN1798189 8.32e-10 1.65 96

RPS17 ILMN2207539 1.49e-09 1.56 97

RSL24D1 ILMN2175465 2.39e-09 1.60 90

COMMD6 ILMN1777378 3.05e-09 1.65 91

RPL31 ILMN1754195 1.83e-08 1.51 95

EIF1AY ILMN1755537 3.01e-07 1.65 87

RPL9P25 ILMN2408415 8.78e-07 1.50 90

RPS4Y1 ILMN1783142 5.09e-05 2.50 96

Cluster Two

ORM1 ILMN1696584 3.73e-04 1.51 91

RNF213 ILMN1749722 3.78e-04 -1.56 98

Table 7.8: u[3] complete (ordering of all schizophrenia and control samples) expression data set results: t-test on first and last

1000 nodes (named cluster one and two, respectively) of u[3] ordering from SVD showing genes with significant p-value and fold

change.

Antipsychotic free and Control

The next comparison deals with the (n = 14) antipsychotic-free and the (n = 96)

control samples. Table 7.9 shows the second ordering and Table 7.10 the third. The

first thing to note is the scarsity of genes in these results (3 genes in u[2] and 4 from

u[3]). There are two likely explanations - the antipsychotic free contingent is much

smaller than the controls, and so the majority of the matrix information comes

from the control samples. The control samples are from a single sample group, and

so there are little-to-no consistent differentiating genes that would survive a t-test

between disease and control groups.

The second explanation is that the samples likely to provide variance in the data, the

antipsychotic-free group, simply have a limited consistent alteration in expression
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as compared to controls - of the 2000 genes tested in each ordering only 3 and 4,

respectively, meet the threshold criteria.

Official Gene Symbol Illumina ID p-Value Fold Change Percentile Abundance

Cluster One

PABPC1 ILMN2136133 1.92e-02 -1.60 95

RPS4Y1 ILMN1783142 4.63e-02 -2.63 96

Cluster Two

CDC14B ILMN1733559 6.14e-03 -1.62 99

Table 7.9: u[2] ordering from SVD of all antipsychotic-free and control sample expression data results: t-test on first and last 1000

nodes (named cluster one and two, respectively) of u[2] ordering showing genes with significant p-value and fold change.

Official Gene Symbol Illumina ID p-Value Fold Change Percentile Abundance

Cluster One

EOMES ILMN1760509 1.15e-04 1.51 94

Cluster Two

DDX17 ILMN2371590 2.23e-03 -1.57 95

CDC14B ILMN1733559 6.14e-03 -1.62 99

PABPC1 ILMN2136133 1.92e-02 -1.60 95

Table 7.10: u[3] ordering from SVD of all antipsychotic-free and control sample expression data results: t-test on first and last

1000 nodes (named cluster one and two, respectively) of u[3] ordering showing genes with significant p-value and fold change.

Schizophrenia and Control

Tables 7.11-7.12 show comparison of schizophrenia samples with control (not

including antipsychotic-free). This list is much more comprehensive than that

seen in the previous sub-section with antipsychotic-free and control samples. As

expected, there is significant overlap with Tables 7.7-7.8, since the majority of the

data is the same. Interestingly, the total number of genes passing both thresholds

has increased significantly - from 20 in u[2] and 13 in u[3] of the complete data, to

36 in u[2] and 28 in u[3] in this section. This is likely because the antipsychotic-free

group was having the effect of normalising either fold change or t-test results

towards the levels seen in control patients. This would mean that the schizophrenia

with treatment and antipsychotic-free groups have very different presentations in
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terms of gene expression, a point which we test by analysing those two groups in

the following section.

We also plot, limited to this section, the total expression level for all significant genes

in cluster 2 of Table 7.11. This plot, in Figure 7.13, illustrates a stratification of

patients within a sample group, highlighted in orange. This is a somewhat circular

observation as, since the t-test is a comparison of the mean, the clustered genes are

significant because these patients have higher levels of expression. However, plotting

the individual sample means is informative in terms of further investigation. In

future projects where the profile of an individual is more complete, identifying which

samples are responsible for the variation holds value. For example, perhaps this

sub-group suffers from a particular presentation of the condition - this information

could potentially be linked to particular medication strategies, ultimately leading

to a diagnostic paradigm using a specific differential expression profile.

Figure 7.13: Total expression across probes in Cluster 2 of Table 7.11 for each
sample. This shows a group of schizophrenia samples (orange box) where the total
expression is increased relative to all other samples - this is the reason the t-test is
significant and shows that significance is due to a limited number of patients.
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Official Gene Symbol Illumina ID p-Value Fold Change Percentile Abundance

Cluster One

CD3E ILMN1739794 2.53e-10 -1.51 97

SMOX ILMN2367258 1.01e-09 -1.56 97

NRGN ILMN1705686 1.59e-09 -1.52 98

PRF1 ILMN1740633 6.30e-09 -1.51 92

UCP2 ILMN1685625 6.56e-08 -1.51 93

KIR3DL2 ILMN2190842 9.33e-08 -1.55 97

GPR56 ILMN2352097 1.43e-07 -1.54 99

ZNF683 ILMN1678238 3.01e-07 -1.51 96

GPR56 ILMN2384122 4.05e-07 -1.52 93

EPB49 ILMN1671686 1.60e-06 -1.58 95

NPRL3 ILMN1733581 2.84e-06 -1.51 99

RNF213 ILMN1749722 2.16e-05 -1.57 98

Cluster Two

RPLP0 ILMN1709880 5.23e-14 1.50 86

UQCRQ ILMN1666471 1.38e-12 1.53 92

RPL9 ILMN1750507 1.49e-12 2.00 91

PSMA6 ILMN2151818 1.64e-12 1.54 93

RPL9 ILMN1769277 5.61e-12 2.06 92

RPS17 ILMN1664610 1.30e-11 1.60 84

HINT1 ILMN1807710 1.34e-11 1.71 90

COX7C ILMN1798189 1.66e-11 1.72 89

NDUFA4 ILMN1751258 2.20e-11 1.60 92

RPS17 ILMN2207539 4.28e-11 1.68 81

RPS17 ILMN2207533 4.42e-11 1.52 79

RSL24D1 ILMN2175465 2.69e-10 1.72 95

EVI2A ILMN1733579 2.84e-10 1.66 99

COMMD6 ILMN1777378 3.17e-10 1.80 79

RPL7 ILMN1687738 4.86e-10 1.68 90

RPL31 ILMN1754195 1.11e-09 1.62 97

CAPZA2 ILMN1768870 2.65e-09 1.52 92

LY96 ILMN1724533 2.66e-09 1.58 87

ARGLU1 ILMN1788468 9.77e-09 1.52 89

RPL23 ILMN1755115 1.36e-08 1.57 96

RPS27 ILMN1652955 2.31e-07 1.61 91

RPL31 ILMN1659405 6.32e-07 1.51 89

TMEM123 ILMN1724139 1.42e-06 1.52 84

DEFA1 ILMN1693262 9.41e-05 1.53 94

Table 7.11: u[2] ordering from SVD of schizophrenia and control sample expression data results: t-test on first and last 1000 nodes

(named cluster one and two, respectively) of u[2] ordering showing genes with significant p-value and fold change.
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Official Gene Symbol Illumina ID p-Value Fold Change Percentile Abundance

Cluster One

RPLP0 ILMN1709880 5.23e-14 1.50 99

UQCRQ ILMN1666471 1.38e-12 1.53 96

RPL9 ILMN1750507 1.49e-12 2.00 98

PSMA6 ILMN2151818 1.64e-12 1.54 96

RPS17P16 ILMN1664610 1.30e-11 1.60 98

HINT1 ILMN1807710 1.34e-11 1.71 96

COX7C ILMN1798189 1.66e-11 1.72 96

NDUFA4 ILMN1751258 2.20e-11 1.60 95

RPS17 ILMN2207539 4.28e-11 1.68 97

RPS17 ILMN2207533 4.42e-11 1.52 99

RSL24D1 ILMN2175465 2.69e-10 1.72 90

EVI2A ILMN1733579 2.84e-10 1.66 88

COMMD6 ILMN1777378 3.17e-10 1.80 91

RPL31 ILMN1754195 1.11e-09 1.62 95

LY96 ILMN1724533 2.66e-09 1.58 91

ARGLU1 ILMN1788468 9.77e-09 1.52 96

RPL23 ILMN1755115 1.36e-08 1.57 92

RPL31 ILMN1659405 6.32e-07 1.51 89

EIF1AY ILMN1755537 1.15e-06 1.64 87

RPL9 ILMN2408415 2.21e-06 1.53 90

RPS4Y1 ILMN1783142 1.03e-04 2.48 96

Cluster Two

DNAJC25 ILMN1757074 1.16e-05 1.51 92

GNG10 ILMN1757074 1.16e-05 1.51 92

RNF213 ILMN1749722 2.16e-05 -1.57 98

DEFA1B ILMN2102721 2.87e-04 1.51 98

DEFA1 ILMN1725661 3.19e-04 1.50 98

DEFA3 ILMN2165289 3.35e-04 1.58 98

DEFA1B ILMN2193213 3.68e-04 1.53 99

Table 7.12: u[3] schizophrenia and control sample expression data results: t-test on first and last 1000 nodes (named cluster one

and two, respectively) of u[3] ordering showing genes with significant p-value and fold change.

In terms of specific results, a group of defensin genes (DEFA1, DEFA1B×2, DEFA3 )

appear with increased expression in cluster 2 of the u[3] ordering. This result mirrors

a result found in a study of peripheral blood (the cellular component of whole blood)

and plasma where multiple α-defensins showed increased expression in individuals

with schizophrenia [34]. The authors of this study also remark that the increased

gene expression of α-defensins was observed in in the asymptomatic (monozygotic)
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twin, suggesting that the result represents a potential diagnostic opportunity for

susceptibility of schizophrenia.

Additionally, neurogranin (NRGN ) appears at the very end location of this ordering

- this is important as neurogranin has strong links with schizophrenia, and has

appeared with significance in GWAS studies [197]. This cross-over of results from

GWAS and gene expression is unusual and potentially important.

Schizophrenia and Antipsychotic free

Tables 7.13 and 7.14 show results for t-test comparing schizophrenia with antipsychotic-

free and values for mean fold change. This time there is significant overlap between

cluster two in the u[2] ordering and cluster u[3] ordering. We can also see in these

results that the number of genes differentiating between treated schizophrenia and

antipsychotic-free patients (29 in u[2] and 19 in u[3] vs 3 and 4 respectively) is

much larger than those between the antipsychotic-free and control groups. These

numbers could signify that medication has a significant impact on gene expression,

hence there is much variation between these two cohorts which the t-test and fold

change can identify. This is an interesting proposition, as it becomes unclear if the

genes identified are due to the condition, due to the medication or due to some

extraneous factor that alters gene expression but could be associated with the

medication. As mentioned in the introduction to this thesis, gene expression is

a highly dynamic process that changes in response to a multitude of stimuli and

states. The medication given to treat schizophrenia has a wide array of adverse

effects - many of which (e.g., lethargy, weight gain) could have result in second

order changes on gene expression.

It is also worth re-stating the fact that antipsychotic-free patients are likely in very

early stages of the condition (since they have not yet been assigned treatment),
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and so have a different biological presentation because the condition progresses

afterwards.

Official Gene Symbol Illumina ID p-Value Fold Change Percentile Abundance

Cluster One

FOLR3 ILMN1730454 3.53e-05 1.67 96

KIR3DL2 ILMN2190842 9.07e-05 -1.71 89

CDC14B ILMN1733559 2.37e-04 -2.00 99

ATP6V0C ILMN1773849 4.81e-04 -1.52 96

SEMA3E ILMN2154322 6.16e-04 -1.53 97

BCL2L1 ILMN1654118 1.06e-03 -1.52 98

RNF213 ILMN1749722 1.98e-03 -1.76 98

GATSL3 ILMN2098418 2.19e-03 -1.77 94

EPB49 ILMN1671686 3.02e-03 -1.65 95

SMOX ILMN2367258 8.30e-03 -1.50 89

Cluster Two

CCDC72 ILMN1707783 5.74e-07 1.53 92

UQCRQ ILMN1666471 7.78e-07 1.78 96

C17ORF61 ILMN2201533 1.01e-06 1.51 94

NDUFB2 ILMN2117330 1.65e-06 1.52 96

COMMD6 ILMN1777378 3.51e-06 1.90 91

TMCO1 ILMN1793829 4.12e-06 1.55 93

RPL35P5 ILMN1788742 1.39e-05 1.51 99

RSL24D1 ILMN2175465 2.26e-05 1.72 90

RPL31P17 ILMN1754195 3.57e-05 1.72 95

PSMA6 ILMN2151818 3.74e-05 1.54 96

LY96 ILMN1724533 2.52e-04 1.58 91

RPS17 ILMN2207539 3.37e-04 1.74 97

COX7C ILMN1798189 3.79e-04 1.78 96

RPL9 ILMN1750507 4.93e-04 2.01 98

TPT1 ILMN1789614 6.68e-04 1.61 99

HINT1 ILMN1807710 7.04e-04 1.69 96

RPS29P18 ILMN1739263 7.99e-04 1.60 98

CD52 ILMN2208903 2.15e-03 1.58 98

CLC ILMN1654875 3.86e-02 1.52 97

Table 7.13: u[2] ordering from SVD of schizophrenia and antipsychotic-free sample expression data results: t-test on first and last

1000 nodes (named cluster one and two, respectively) of u[3] ordering.
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Official Gene Symbol Illumina ID p-Value Fold Change Percentile Abundance

Cluster One

CCDC72 ILMN1707783 5.74e-07 1.53 92

UQCRQ ILMN1666471 7.78e-07 1.78 96

C17ORf61 ILMN2201533 1.01e-06 1.51 94

NDUFB2 ILMN2117330 1.65e-06 1.52 96

COMMD6 ILMN1777378 3.51e-06 1.90 91

RPS9 ILMN2038772 7.54e-06 1.55 99

RPL35P5 ILMN1788742 1.39e-05 1.51 99

RSL24D1 ILMN2175465 2.26e-05 1.72 90

RPL31 ILMN1754195 3.57e-05 1.72 95

PSMA6 ILMN2151818 3.74e-05 1.54 96

RPS17 ILMN2207539 3.37e-04 1.74 97

COX7C ILMN1798189 3.79e-04 1.78 96

RPL9 ILMN1750507 4.93e-04 2.01 98

TPT1 ILMN1789614 6.68e-04 1.61 99

HINT1 ILMN1807710 7.04e-04 1.69 96

RPS29P18 ILMN1739263 7.99e-04 1.60 98

CD52 ILMN2208903 2.15e-03 1.58 98

LY6E ILMN1695404 4.02e-02 -1.51 96

Cluster Two

FCGR3B ILMN2134453 1.44e-04 -1.64 95

Table 7.14: u[3] ordering from SVD of schizophrenia and antipsychotic-free sample expression data results: t-test on first and last

1000 nodes (named cluster one and two, respectively) of u[3] ordering showing genes with significant p-value and fold change.

7.5 GSVD: Identification of Mutually Exclusive

Features in Sample Groups

The SVD is useful for identifying clusters that drive structure within a data set, but

in carrying on with the theme of this thesis of examining combinations of networks

the GSVD, will be applied as in previous sections. This allows the comparison

of network A with network B - identifying structures that are mutually exclusive.

To use the GSVD on this data, the complete network was split into sub-samples

based on the sample status. That is, schizophrenia and antispychotic-free samples

can initially be paired in network A, with the controls comprising network B.

In addition, a similar comparison was made between further sub-groups, e.g.,
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schizophrenia vs antipsychotic-free and both, in turn, vs control. This provides

an interesting opportunity to compare the output from exploratory analyses of

the SVD and a more direct result (which makes account of the sample state by

dividing the patient groups).

7.5.1 Singular Vectors from the GSVD

This section shows singular vectors from the GSVD of multiple combinations of

data sub sets. From these figures we can visually check which ends of the vectors

have significant deviation from the midpoint - and compare this with results from

comparison with the gene list database in the following section.

Figure 7.14 shows results for GSVD of schizophrenia (including antipsychotic-free)

and control subsets.

Figure 7.14: Components of the singular vector x[2] for control and x[end] for
schizophrenia in increasing order from GSVD of the data.

Figure 7.15 has plots for schizophrenia (not including antipsychotic-free) compared

with control. These results show a large bias towards nodes on the left hand side

- particularly for x[2]. This suggests that significant genes are more likely to be

found on this side, we can confirm this in the next section.
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Figure 7.15: Components of the singular vector x[2] for control and x[end] for
schizophrenia in increasing order from GSVD of the data.

Figure 7.16 shows antipsychotic-free vs control vectors. There is a large number of

nodes separated on both ends of each vector.

Figure 7.16: Components of the singular vector x[2] for control and x[end] for
antipsychotic-free in increasing order from GSVD of the data.

The final comparison in Figure 7.17 is with schizophrenia and antipsychotic-free

subsets. As with the comparison of schizophrenia and control sets in Figure 7.15,

there is a large bias in separation towards one side of the vector. The next section

will show if this matches probability testing.
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Figure 7.17: Components of the singular vector x[2] for schizophrenia and x[end] for
antipsychotic-free in increasing order from GSVD of the data.

7.5.2 Distribution of Variance

In a comparison with Section 7.4.1, we can check the orderings generated from

the GSVD to examine the behaviour of the variance. Figure 7.18 shows variance

reordered using the vectors for reordering the combination of schizophrenia +

antipsychotic-free (A) and control (B).

Figure 7.18: x[2] and x[end] reordering of variance across samples for each probe,
showing a mixture of low and high variance genes are responsible for structure in
the data.
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This time, as compared to Figure 7.11, we can see that in finding differences

between the two data sets, the GSVD allows for a more significant number of low

variance probes to appear at the ends of the vectors. In fact, if we zoom in on the

ends of Figures 7.11 and 7.18 we actually see that, at the extreme end, the SVD

has no genes from the lowest percentiles of variance. The GSVD, however, does-

we suggest that this is an illustration of the GSVD identifying different structures

that are perhaps even less driven purely by variance.

7.5.3 Comparison with Gene List Database

As with with the SVD in Section 7.4.2, this section contains comparisons of the

probe orderings from the GSVD with the Association, Expression and Literature

lists from SZGR database.

In Table 7.16 it is interesting that there are no significant results for any of the lists

in the x[2] End. Figure 7.15 shows that the important probes in this x[2] ordering

have been driven to one side - the start of the vector. This was as expected given

the separation of genes to this side of the vector seen in Figure 7.15 in the previous

section. Table 7.17 shows multiple significant results, including for association

studies. As compared to the SVD results for antipsychotic-free and control samples,

the GSVD has identified more association derived genes. In Table 7.18 we see no

significance in the end of x[2] ordering, and no significance in the start of the x[end]

ordering. We can see from the components of those vectors in Figure 7.17 that

these portions show little deviation, meaning they are of limited importance in

describing the data - and so the lack of significance is in line with our expectations.

This is an extra verification for this approach.
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Association x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 15 2 6 9 4 11
Sum with repeats 17 2 6 9 4 13
p-value 0.0274 0.993 0.889 0.709 0.939 0.122

Expression x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 37 12 15 11 3 32
Sum with repeats 48 13 12 13 3 42
p-value < 0.001 0.968 0.932 0.799 1.000 < 0.001

Literature x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 46 15 23 24 12 44
Sum with repeats 128 34 41 52 19 127
p-value < 0.001 0.983 0.869 0.738 1.000 < 0.001

Table 7.15: Comparison of selected genes from left singular vectors x[2] and x[end]

of GSVD of schizophrenia + antipsychotic-free vs control samples. x[2] orders for
controls not schizophrenia patients, x[end] for schizophrenia patients not controls.

Association x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 15 6 11 11 7 3
Sum with repeats 17 7 14 16 7 3
p-value 0.0274 0.932 0.146 0.041 0.786 0.998

Expression x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 32 16 15 25 12 32
Sum with repeats 44 16 20 39 19 42
p-value < 0.001 0.969 0.900 < 0.001 0.874 < 0.001

Literature x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 44 22 23 38 31 43
Sum with repeats 124 47 52 87 55 92
p-value < 0.001 0.894 0.730 < 0.001 0.555 < 0.001

Table 7.16: Comparison of selected genes from left singular vectors x[2] and x[end] of
GSVD of schizophrenia vs control samples. x[2] orders for controls not schizophrenia,
x[end] for schizophrenia not controls.
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Association x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 13 13 12 15 9 3
Sum with repeats 17 13 15 15 10 3
p-value 0.036 0.155 0.091 0.094 0.446 0.050

Expression x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 12 20 31 24 16 32
Sum with repeats 15 22 45 35 19 52
p-value 0.985 0.883 < 0.001 0.036 0.883 < 0.001

Literature x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 27 27 39 47 21 21
Sum with repeats 70 46 115 124 53 43
p-value 0.040 0.919 < 0.001 < 0.001 0.664 0.984

Table 7.17: Comparison of selected genes from left singular vectors x[2] and x[end]

of GSVD of antipsychotic-free vs control samples. x[2] orders for controls not
antipsychotic-free, x[end] for antipsychotic-free not controls.

Association x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 12 13 14 11 9 13
Sum with repeats 14 13 15 12 9 15
p-value 0.140 0.138 0.0860 0.341 0.578 0.097

Expression x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 36 14 23 15 16 30
Sum with repeats 56 19 26 15 24 48
p-value < 0.001 0.868 0.463 0.987 0.554 < 0.001

Literature x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 54 23 34 26 28 54
Sum with repeats 122 47 62 56 50 130
p-value < 0.001 0.903 0.226 0.561 0.790 < 0.001

Table 7.18: Comparison of selected genes from left singular vectors x[2] and x[end] of
GSVD of antipsychotic-free vs schizophrenia samples. x[2] orders for schizophrenia
not antipsychotic-free, x[end] for antipsychotic-free not schizophrenia.
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7.5.4 Hypothesis Testing: T-test and Fold Change

We now show results (Tables 7.20-7.25) from the GSVD. This analysis involves

comparing subsets of the data set, in the following order:-

Schizophrenia (including antipsychotic-free) < − > Control

Schizophrenia (excluding antipsychotic-free) < − > Control

Antipsychotic-free < − > Schizophrenia

Antipsychotic-free < − > Control

Schizophrenia (including antipsychotic-free) and Controls

Results in Tables 7.20 and 7.21 show a number of interesting genes. Neurogranin

NRGN has been linked to schizophrenia in males in gene association study [184].

In a postmortem study of the dorsolateral prefrontal cortex and thalamus it was

found that the histidine triad nucleotide-binding protein (HINT1 ) is downregulated

in the dorsolateral prefrontal cortex and upregulated in the thalamus [212]. NADH

Dehydrogenase (Ubiquinone) 1-Alpha Subcomplex (NDUFA4 ) is overexpressed in

the prefrontal cortex, and HINT1 shows decreased expression [214]. Decreased

levels of expression of spermine oxidase (SMOX ) have been found in suicide

completers and there is also an association between SNPs of SMOX and mood

disorder [63, 64]. Finally, probability testing of the SVD of the complete data set

yielded 33 hits across (including genes that appear more than once across both

orderings) two orderings.

This time, the GSVD has 21 genes meet the test thresholds. This reduction may be

as a result of the mutually exclusive nature of GSVD orderings - the SVD identifies

structurally interesting genes where the GSVD acts to distinguish between data

subsets.
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Official Gene Symbol Illumina ID p-value Fold Change Percentile Abundance

Cluster One

NRGN ILMN1705686 4.30e-08 -1.55 96

EIF1AY ILMN1755537 3.01e-07 1.65 87

RPS4Y1 ILMN1783142 5.09e-05 2.50 96

Cluster Two

RPL9 ILMN1750507 1.23e-10 1.82 98

RPS17P16 ILMN1664610 2.04e-10 1.52 98

NDUFA4 ILMN1751258 2.62e-10 1.52 95

HINT1 ILMN1807710 3.02e-10 1.60 96

EVI2A ILMN1733579 4.22e-10 1.59 88

COX7C ILMN1798189 8.32e-10 1.60 96

RPS17 ILMN2207539 1.49e-09 1.56 97

RSL24D1 ILMN2175465 2.39e-09 1.60 90

COMMD6 ILMN1777378 3.05e-09 1.65 91

RPL31 ILMN1754195 1.83e-08 1.51 95

Table 7.20: x[2] ordering from GSVD for control not schizophrenia (including
antipsychotic-free) sample expression data results: t-test on first and last 1000
nodes (named clusters one and two, respectively). This table shows genes with a
significant p-value and fold change.

Schizophrenia (not including antipsychotic-free) and Controls

Table 7.22 shows an upregulation of differential expression of DEFA1B in peripheral

blood mononuclear cells (PBMC) has been found in schizophrenia patients compared

to controls [68] (fold change 1.73 - here we have found a fold change of 1.51).

Official Gene Symbol Illumina ID p-value Fold Change Percentile Abundance

Cluster One

RPLP0 ILMN1709880 5.23e-14 1.50 99

RPS17P16 ILMN1664610 1.30e-11 1.60 98

RPS17 ILMN2207533 4.42e-11 1.52 99

NRGN ILMN1705686 1.59e-09 -1.52 96

RPS4Y1 ILMN1783142 1.03e-04 2.48 96

DEFA1B ILMN2102721 1.87e-03 1.51 98

Table 7.22: x[2] ordering from GSVD for control not schizophrenia (not antipsychotic-
free) sample expression data results: t-test on first and last 1000 nodes (named
clusters one and two, respectively). This table shows genes with a significant
p-value and fold change.
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Official Gene Symbol Illumina ID p-value Fold Change Percentile Abundance

Cluster One

SMOX ILMN2367258 1.51e-07 -1.51 98

Cluster Two

RPL9 ILMN1750507 1.23e-10 1.82 98

RPS17P16 ILMN1664610 2.04e-10 1.52 95

NDUFA4 ILMN1751258 2.62e-10 1.52 96

HINT1 ILMN1807710 3.02e-10 1.60 96

COX7C ILMN1798189 8.32e-10 1.60 90

RPL9 ILMN2408415 8.78e-07 1.50 96

RPS4Y1 ILMN1783142 5.09e-05 2.50 89

Table 7.21: x[end] ordering from GSVD for schizophrenia (including antipsychotic-
free) not control sample expression data results: t-test on first and last 1000
nodes (named clusters one and two, respectively). This table shows genes with a
significant p-value and fold change.

Official Gene Symbol Illumina ID p-value Fold Change Percentile Abundance

Cluster One

SMOX ILMN2367258 1.01e-09 -1.51 89

RPB49 ILMN1671686 1.60e-06 -1.55 95

RNF213 ILMN1749722 2.16e-05 -1.47 98

DEFA1B ILMN2102721 1.87e-03 1.51 98

DEFA1 ILMN1725661 2.19e-03 1.50 98

DEFA3 ILMN2165289 2.35e-03 1.51 98

DEFA1 ILMN1679357 3.41e-03 1.52 98

Cluster Two

RPLP0 ILMN1709880 5.23e-14 1.50 99

UQCRQ ILMN1666471 1.38e-12 1.53 96

RPL9 ILMN1750507 1.49e-12 2.00 98

PSMA6 ILMN2151818 1.64e-12 1.54 96

RPS17P16 ILMN1664610 1.30e-11 1.60 98

HINT1 ILMN1807710 1.34e-11 1.71 96

COX7C ILMN1798189 1.66e-11 1.72 96

NDUFA4 ILMN1751258 2.20e-11 1.60 95

RPS17 ILMN2207539 4.28e-11 1.68 97

RPS17 ILMN2207533 4.42e-11 1.52 99

RSL24D1 ILMN2175465 2.69e-10 1.72 90

EVI2A ILMN1733579 2.84e-10 1.66 88

COMMD6 ILMN1777378 3.17e-10 1.80 91

RPL31 ILMN1754195 1.11e-09 1.62 95

CAPZA2 ILMN1768870 2.65e-09 1.52 94

LY96 ILMN1724533 2.66e-09 1.58 91

ARGLU1 ILMN1788468 9.77e-09 1.52 96

RPL23 ILMN1755115 1.36e-08 1.57 92

RPL31 ILMN1659405 6.32e-07 1.51 89

EIF1AY ILMN1755537 1.15e-06 1.64 87

TMEM123 ILMN1724139 1.42e-06 1.52 96

RPL9 ILMN2408415 2.21e-06 1.53 90

RPS4Y1 ILMN1783142 1.03e-04 2.48 96

Table 7.23: x[end] ordering from GSVD for schizophrenia (not antipsychotic-free) not
control sample expression data results: t-test on first and last 1000 nodes (named
clusters one and two, respectively). This table shows genes with a significant
p-value and fold change.
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In an ordering for schizophrenia not control, cluster one is comprised mainly of

defensin related genes - with multiple probes highlighting DEFA1/B and DEFA3 -

this mirrors the result found in the u[3] ordering from the SVD of schizophrenia +

control samples in Table 7.12 where multiple DEFA1 repeats were found. As with

the previous note, increased expression of DEFA1B has previously been shown in

schizophrenia [68]. SMOX appears in cluster one, as with the analysis in Section

7.5.4. Similarly with Section 7.5.4 NDUFA4 appears again.

Antipsychotic-free and Schizophrenia (not including controls)

SEMA3E appears in the ordering for schizophrenia, not antipsychotic-free in Ta-

ble 7.24 as well as the complimentary ordering for antipsychotic-free not schizophre-

nia in Table 7.25. SEMA3E has been shown, in a closely controlled and matched

study, to have significantly decreased expression in measurements from the pre-

frontal cortex [6] and this table shows similarly decreased expression in blood.

GCNT1 is linked with blood presssure, and RNF213 with Moyamoya disease [104],

a disease whereby arteries in the brain are constricted causing reduced blood flow.

It has been reported that patients with Moyamoya are commonly misdiagnosed as

having schizophrenia [119]. RPS9P4 has appeared in an association study of panic

disorder [172].

Official Gene Symbol Illumina ID p-value Fold Change Percentile Abundance

Cluster One

RPS9 ILMN2038772 7.54e-06 1.55 99

BCL6 ILMN1654118 1.06e-03 1.52 98

RPL35P5 ILMN1788742 1.39e-05 1.51 99

CDC14B ILMN1733559 2.37e-04 -2.00 99

SEMA3E ILMN2154322 6.16e-04 -1.53 97

XRCC2 ILMN2204909 6.41e-04 -1.53 98

TPT1 ILMN1789614 6.68e-04 1.61 99

RNF213 ILMN1749722 1.98e-03 -1.76 98

CLC ILMN1654875 3.86e-02 1.52 97

Table 7.24: x[2] ordering from GSVD for antipsychotic-free not schizophrenia (no
controls) sample expression data results: t-test on first and last 1000 nodes (named
clusters one and two, respectively). This table shows genes with a significant
p-value and fold change.
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Official Gene Symbol Illumina ID p-value Fold Change Percentile Abundance

Cluster One

RPS9 ILMN2038772 7.54e-06 1.55 99

RPS17 ILMN2207539 3.37e-04 1.74 97

CLC ILMN1654875 3.86e-02 1.52 97

Cluster Two

RPL31 ILMN1754195 3.57e-05 1.72 95

PSMA6 ILMN2151818 3.74e-05 1.54 96

KIR3DL2 ILMN2190842 9.07e-05 -1.71 89

FCGR3B ILMN2134453 1.44e-04 -1.64 95

CDC14B ILMN1733559 2.37e-04 -2.00 99

HIST1H4C ILMN2075334 1.67e-03 1.56 98

FCAR ILMN2279367 3.42e-04 -1.52 96

SEMA3E ILMN2154322 6.16e-04 -1.53 97

XRCC2 ILMN2204909 6.41e-04 -1.53 98

RPS29P18 ILMN1739263 7.99e-04 1.60 98

BCL2L1 ILMN1654118 1.06e-03 -1.52 98

DDX17 ILMN2371590 1.22e-03 -1.63 95

PABPC1 ILMN2136133 1.36e-03 -2.01 95

GATSL3 ILMN2098418 2.19e-03 -1.77 94

EPB49 ILMN1671686 3.02e-03 -1.65 95

SMOX ILMN2367258 8.30e-03 -1.50 89

LY6E ILMN1695404 4.02e-02 -1.51 96

Table 7.25: x[2] ordering from GSVD for schizophrenia not antipsychotic-free (no
controls) sample expression data results: t-test on first and last 1000 nodes (named
clusters one and two, respectively). This table shows genes with a significant
p-value and fold change.

Antipsychotic-free and Controls

The SVD analysis of the antipsychotic-free and control group yielded a small

number of genes, and we proposed that this could be due to the low statistical

power of such a small sample cohort (as is seen with the relatively much larger

p−values) or a lack of variation between sample groups. Tables 7.24-7.25 show that

the GSVD has similar results. A small number of genes meet the dual threshold.

CDC14B, PABPC1, RPS4Y1 and DDX17 appear in both the SVD and GSVD

orderings showing that there is an agreement between the approaches, though the

genes are clustered differently - in the SVD, PABPC1 and CDC14B appear at

opposing ends of the vector, where they have migrated to the same cluster in the

GSVD. Two of the genes that appear in the orderings in this section that were not

found in the SVD (LYPD2 and SCGB3A1 ) are both less abundant than any genes

we have found so far.
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Official Gene Symbol Illumina ID p-value Fold Change Percentile Abundance

Cluster One

LYPD2 ILMN1724266 1.20e-04 1.53 79

Cluster Two

DDX17 ILMN2371590 2.23e-04 -1.57 95

CDC14B ILMN1733559 6.14e-04 -1.62 99

PABPC1 ILMN2136133 1.92e-03 -1.60 95

RPS4Y1 ILMN1783142 4.63e-03 -2.63 96

Table 7.26: x[2] ordering from GSVD for control not antipsychotic-free (no medicated
schizophrenia samples) sample expression data results: t-test on first and last 1000
nodes (named clusters one and two, respectively). This table shows genes with a
significant p-value and fold change.

Official Gene Symbol Illumina ID p-value Fold Change Percentile Abundance

Cluster One

CDC14B ILMN1733559 6.14e-04 1.62 99

Cluster Two

SCGB3A1 ILMN1679666 1.22e-03 -1.57 76

Table 7.27: x[end] ordering from GSVD for antipsychotic-free not control (no
medicated schizophrenia samples) sample expression data results: t-test on first
and last 1000 nodes (named clusters one and two, respectively). This table shows
genes with a significant p-value and fold change.

7.6 Node-Weighted Laplacian

This final section shows application of the node-weighted Laplacian, as developed

in Chapter 6 to the pair of networks created from the microarray data and the

KEGG/MetaCyc metabolic pathway networks. The merging of these networks

necessitates that we work with a cross-correlation (across samples) of the microarray

data:- instead of M ∈ R48743×202 we use MMT .

This network is then truncated to include only the probes measuring genes that

are present in a second, metabolic network, B, components bij. So the degree of

node j in the metabolic network B is (Db)j =
∑N

i=1 bij.
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7.6.1 KEGG Metabolic Network

We now show results from the SVD of the node-weighted graph Laplacian con-

structed from the microarray data and the KEGG metabolic network. BK ∈

R2312×202 The node-weighted Laplacian is formed:-

Lb = Db(D −MMT )Db (7.1)

Figure 7.19 show the ordered components of vectors from the node-weighted

Laplacian - in the left picture a pair of nodes are separated at the lower end and

a small group of nodes are separated at the higher end. In the right picture the

results are similar, but reversed.

Figure 7.19: Components of D[0.5]u[2] and D[0.5]u[3] from SVD of complete data set,
order by increasing size.

In Chapter 6 a reordering of the degree of the metabolic network was used to

indicate whether the ordering is influenced by the data, rather than metabolic

information. Figure 7.20 shows the reordering of Db. Where we see a strong

scattering of nodes in terms of degree, though there is a general trend line following

increased degree. The shelf-like structures are explained in some way by the fact
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that many of the degrees used to weight the Laplacian are repeated - a feature

which is increased since the metabolic networks are constructed using the official

gene symbol and the experiments measure Illumina probe IDs. This means there

are often multiple probe IDs for each official gene symbol.

Figure 7.20: Metabolic degree reordered by vectors from the node-weighted Lapla-
cian. There is clear structure in both pictures where high degree nodes are pushed
towards one of the ends.

Next, results are shown for the hypothesis testing and fold change approach as

used in previous sections. No probes met the fold change threshold (1.5), which

is not unexpected given that the metabolic set of genes is a small subset of the

original data so a reduced threshold of fold change 1.3 is chosen to allow for some

observable results.

In Table 7.28 there are some lower percentile abundance genes than have been

seen in previous results. Results in previous sections found genes with expression

levels in often the 90+ percentile - this was explained by showing that variance

across samples in this data tends to increase with increasing abundance. So the

appearance of low abundance (NFS1 at 42%, PKM2 at 62% and GSTM1 at 57%)

is as a result of the influence of the metabolic network.
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Official Gene Symbol Illumina ID p-value Fold Change Percentile Abundance

Cluster One

NFS1 ILMN1703079 1.05e-07 -1.36 42

ST6GALNAC4 ILMN2297453 5.46e-05 -1.37 85

ST6GALNAC4 ILMN2413064 1.68e-04 -1.34 85

Cluster Two

POLR2A ILMN1737704 7.38e-13 -1.33 92

ATIC ILMN1673991 4.45e-08 -1.30 90

PKM2 ILMN1672650 1.12e-06 -1.39 62

GSTM1 ILMN1762255 1.87e-02 -1.32 57

GSTM2 ILMN1713162 3.07e-02 -1.33 92

Table 7.28: Results from t-test and fold change threshold of D[0.5]u[2]. Test on first
and last 200 nodes.

7.6.2 MetaCyc Metabolic Network

Equivalent results are now shown with the metabolic network BM constructed from

the MetaCyc database. The original MetaCyc network had the form B ∈ R411×411.

This time the node-weighted Laplacian is Lb ∈ R672×672 due to the one-to-many

relationship between probes and genes. Figure 7.21 shows components of the

vectors from the node-weighted Laplacian, where we can see a small number of

nodes deviating from the mid point at either end.

Figure 7.21: Components of D[0.5]u[2] and D[0.5]u[3] from SVD of complete data set
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Figure 7.22 shows that the nodes very closely follow a pattern with ascending

degree, with a pair of nodes separated in the top right corner of the left picture

and top left of the picture on the right.

Figure 7.22: Metabolic degree reordered by vectors from the node-weighted Lapla-
cian.

In the MetaCyc analysis the genes that appear at the ends of the ordering do

not meet any reasonable thresholds for fold change. As seen in Figures 7.21-7.22,

the nodes separated at the very end of the ordering match the highest metabolic

degree nodes, suggesting that the experimental data does not contribute much to

the structure.

7.7 Discussion

The inclusion of antipsychotic-free samples in this cohort is important since medi-

cation may introduce therapeutic effects (or adverse effects) through the alteration

of expression profiles. There is a point of comparison for the medicated patients

to develop understanding of drug interactions, as well as the areas of potential

therapeutic interest which could pave the way for introduction of more closely tar-
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getted drug treatments. The inclusion of antipsychotic-free patients is particularly

relevant when considering blood vs brain studies.

There are difficulties with antipsychotic-free samples in general, however. First,

the fact that it is unethical to withold treatment from individuals in a disease

state for the purpose of study means that, naturally, there are far fewer identified

antipsychotic-free samples available. Related to this is the fact that it is likely

that the majority of antipsychotic-free samples are taken at the point of diagnosis.

As a result, there will be a lack of representation of progressed disease states and

so the picture is skewed towards early stage symptoms. This could be useful to

develop early-stage biomarkers that may be relevant for diagnosis, since there is

some discussion of schizophrenia as a progressive illness [144].

The issue of sample size is apparent in the cohort used for this chapter, with a far

smaller number of antipsychotic-free samples than either of the other experimental

groups. One approach to alleviate this concern would be to perform a matching

process whereby control samples are matched according some parameters (e.g., age

and sex). Rather than taking additional steps to match, we have chosen to analyse

a second data set that also presents a number of antipsychotic-free samples, with

comparative numbers of control samples. Chapter 8 will deal with a second data

set that contains only matched antipsychotic-free and control samples.

The approach we used to threshold on fold change and p-value produced some

interesting results. Many genes are altered significantly in expression level across

this large sample group. It is also noted that testing fold change has disadvantages

in that we will only identify as significant genes that have a very high fold change

across groups. This means that we will miss genes with a small, but potentially

significant fold change, as well as potentially identifying false positives with natural

variation, though the reasonably large sample size in this study should help to

minimize that effect. Another previously mentioned issue is with using the t-test
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to examine large groups of genes. Ideally, the distribution of each probe in the

microarray kit would be examined for normality, but when dealing with O(103)

probes this is impractical. As a compromise, we performed the non-parametric

Mann-Whitney-Wilcoxon hypothesis test and compared results with the t-test. In

the end there were few differences between the statistical testing techniques. This

is potentially because the sample sizes are reasonably large - which encourages

the p-values from the statistical testing to be very small with any difference. This

means that the limiting factor with significance from the volcano plot approach is

almost exclusively because of the threshold in fold change.

The first goal of this chapter was to establish whether blood is a viable as a medium

for studying gene expression alterations relevant to schizophrenia. To do this,

we compared clustering results with genes that have been previously implicated

in schizophrenia. Results were positive - many of the orderings used attained

significance (in p-value).

The SVD and GSVD have shown some consistency - there is clear overlap in

orderings, yet the GSVD tends to cluster more statistically significant genes, as was

expected since the GSVD takes information about the sample groups. The last goal

of this chapter was potentially stratify patients or develop a diagnostically relevant

list of genes. We have shown across the different orderings and comparisons that the

antipsychotic-free samples are vastly different from medicated schizophrenia patients.

This suggests that using gene expression as a diagnostic tool will be difficult -

the vast majority of data in the public domain is on medicated schizophrenia

patients, and if their gene expression profiles are as far removed from unmediated

(or pre-diagnosis) schizophrenia patients as our results suggest then there needs

to be further focus and investigation on the antipsychotic-free contingent. Whilst

this is true from a diagnostic perspective in terms of investigating the condition

as a whole, the disparity between medicated and unmedicated patients generates
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several points of interest for potential future study. Unfortunately with this study

we lacked information about current patient states (for instance, how effectively

their current medication paradigm was at tackling their symptoms). This extra

information could allow for identification of the nature, in terms of expression, of

therapeutic pathways. The information on which medication were currently and

previously prescribed for the patients receiving treatment was also unavailable.

This could be used in a similar way to potentially identify therapeutic propensity,

and better understand therapeutic action of specific drugs.

The node-weighted Laplacian generated some results, but was of limited success.

This suggests that the types of structure the node-weighted Laplacian identifies are

not present within this data set - that is, subsets of genes that have high degrees

in a metabolic network and drive structure in a gene expression network. There

are of course metrics other than the degree we could use to assess the metabolic

‘importance’ of a gene, but this question is left open.

As a final note, it may be possible that the SVD identifies genes in the list of those

implicated in schizophrenia simply because those genes vary more than others

within the data. This would mean the p-value is less informative than it otherwise

could be, as genes could be showing up in the clusters due to their natural variance

rather than their significance in this data set. It is also possible that gene expression

changes may be adaptive responses to a disease state, rather than causative - though

even in this case the changes may be able to provide diagnostic insight.

7.8 Summary

In this chapter we have seen spectral clustering with the SVD and GSVD on a data

set containing both medicated and unmedicated schizophrenia patients together

with a control group. We have also seen application of the node-weighted Laplacian

160



CHAPTER 7. EXPLORING THE EFFECT OF ANTIPSYCHOTIC
MEDICATION ON GENE EXPRESSION IN HUMAN WHOLE BLOOD

SCHIZOPHRENIA DATA

with two different metabolic networks. The results have found commonalities

between differential expression in whole human blood and genes that have been

previously implicated in the literature, which is typically made up of brain tissue

studies.

The final approaches to analysis show differences in hypothesis testing results

between medicated and antipsychotic-free samples, suggesting medication has a

significant effect on differential expression.

The following chapter will use the same orderings and divisions (that is, the

separation of the first and last 1000 nodes for investigation) in a different type of

analysis. The focus will shift from individual probes and genes to the summary

approach of gene ontology. In this way we can identify overrepresented biological

functions, or processes.
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Chapter 8

Clustering and Gene Ontology of

Antipsychotic-free Schizophrenia:

Replicate Results

This chapter is, in part, a replication of the process of analysis as Chapter 7 on a

second ‘whole blood’ data set. The goal of this chapter is to further explore the

antipsychotic-free schizophrenia state with a view to exploring possible effect of

medication on gene expression measurements. We also compare results with the

previous chapter to check for consistency across experiments.

8.1 Introducing the Data

The data used in this chapter was once again obtained from a public repository for

microarray data. The data was gathered and uploaded by the same research group

as the study in Chapter 7 (see [43]) and so it is reasonable to assume consistency

in experimental protocol, which will minimize some sources of error. There are

two patient groups in this data set - antipsychotic-free patients with schizophrenia
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Samples Mean Age Num. males Num. females

Antipsychotic-free 15 30.86 11 4

Control 22 29.45 16 6

Table 8.1: Summary information on the data set adapted from [43]: age and gender
information

and control groups. This makes the analysis more straightforward than Chapter 7,

where more comparisons were there were more factors to consider.

The data was gathered using a different Illumina chip than the other expression

data we investigated:-

• Illumina HumanRef-8 v3.0 Expression BeadChip

This chip has a different probe set - there are 24, 526 probes as compared to the

48, 743 measured in Chapter 7. Thus, where [43] chose to merge the two data sets

discarding probes that were not present in both, we have chosen to examine the

two data sets separately, in their entirety. Table 8.1 provides a summary of sample

information for this data. It can be seen that the overall sample size (37 total) is

reduced compared to Chapter 7 where there are 202 samples, but that this time

the control sample size is similar to the antipsychotic-free group.

Figure 8.1 shows the total expression across all probes, for each sample. We can see

that the controls and antipsychotic-free groups have similar levels of variation, which

is useful to check as a first point in assuring that there is no obvious inconsistency

in the experiment across samples.
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Figure 8.1: Sum of expression across all probes for each patient samples. There is
no obvious separation in expression across sample groups.

8.2 Clustering with the SVD

We first take the SVD of the complete data set (both sample groups and all genes),

and show the Fiedler vector and next singular vector in Figure 8.2. We can see

sharp deviations at the ends of both vectors - which we will investigate as clusters.

Figure 8.2: Components of the left singular vector u[2] and u[3] in increasing order
from an SVD of the data.

164



CHAPTER 8. CLUSTERING AND GENE ONTOLOGY OF
ANTIPSYCHOTIC-FREE SCHIZOPHRENIA: REPLICATE RESULTS

For the following sections we will define a cluster as being the nodes that are pushed

to the end of the ordering. In the analysis in Chapter 7, we used the first and

last 1, 000 nodes (for ease of comparison) for each ordering. In this chapter, since

the data set is significantly smaller, to maintain ease of comparison we will select

proportionally a smaller amount, the first and last 600 nodes of the orderings.

8.2.1 Comparison with Gene List Database

As with Chapter 7, the results from the ends of the singular vectors with a gene

list database are compared. This will give further assessment of the viability of

whole blood as a tissue to investigate schizophrenia. The SZGR database is used

as outlined in Section 7.4.2 - we can then directly compare results across the two

antipsychotic-free cohorts. The reduced number of probes in this data set means

that we will compare p-values rather than the number of hits. The number of

probes that appear in the SZGR database will be affected (the ratio could be more

or less), but the p-value approach controls for this by sampling randomly only from

the list of genes present in the data.

Table 8.2 shows the first results from the ends of the cluster. This time, the ‘Start’,

‘Mid’ and ‘End’ portions of the singular vector are each 600 nodes in size.

We see significant results for expression and literature sets in one end of u[2]. In

both orderings the mid-points have, relatively, a very low number of hits for all

three lists. This is indicative of the fact that genes in the middle of the ordering

are likely to be of very low variance - if the expression levels are stable across all

samples then it is unlikely that many approaches to microarray analysis would

identify those as significant - that is, low variance genes are less likely to appear in

the database lists.
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Association u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 11 9 10 7 4 8
Sum with repeats 11 9 13 8 4 10
p-value 0.711 0.889 0.487 0.932 0.999 0.791

Expression u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 27 12 21 16 14 17
Sum with repeats 37 14 26 26 18 19
p-value 0.020 0.995 0.608 0.631 0.982 0.961

Literature u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 22 15 26 28 21 24
Sum with repeats 89 49 53 69 50 73
p-value < 0.001 0.995 0.968 0.423 0.992 0.201

Table 8.2: Comparison of selected genes from left singular vectors u[2] and u[3]

(Figure7.2) of SVD of the complete data set.

8.2.2 Hypothesis Testing: T-test and Fold Change

Next we present results from a t-test and thresholding of fold change of the same

‘First’ and ‘Last’ sections of the ordering vectors as used in the previous section.

In Tables 8.3 and 8.4 we see a small number of genes meet the dual significance

condition of p = 0.05 and fold change > 1.5. Hypothesis tests are again carried out

with the t-test. The small number of significant genes is in line with expectations

from the antipsychotic-free and control SVD results in Tables 7.9 and 7.10.

Official Gene Symbol Illumina ID p-Value Fold Change Percentile Abundance

Cluster One

ACSL1 ILMN1684585 1.77e-03 1.58 90

LAMP2 ILMN2279961 2.40e-03 1.51 90

SUZ12 ILMN1797813 3.61e-03 1.57 91

Cluster Two

HBE1 ILMN1651358 1.10e-03 -1.76 93

GATSL3 ILMN2098418 1.57e-03 -1.55 92

Table 8.3: u[2] ordering from SVD results: t-test on first and last 600 nodes of u[2] ordering (clusters one and two, respectively).

This table shows genes with a significant p-value and fold change.
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Official Gene Symbol Illumina ID p-Value Fold Change Percentile Abundance

Cluster One

MX1 ILMN1662358 9.08e-03 -1.50 98

LYZ ILMN2162972 5.90e-03 -1.56 81

Cluster Two

HBE1 ILMN1651358 1.10e-02 -1.76 93

HBG2 ILMN2084825 1.11e-03 -1.87 99

HBG1 ILMN1796678 1.18e-03 -1.89 99

CDC14B ILMN1733559 1.19e-03 -2.47 93

GATSL3 ILMN2098418 1.57e-03 -1.55 92

RNF213 ILMN1749722 3.79e-03 -1.51 98

Table 8.4: u[3] ordering from SVD results: t-test on first and last 600 nodes of u[3] ordering (clusters one and two, respectively).

This table shows genes with a significant p-value and fold change.

8.3 Clustering with the GSVD

The data is now split into a pair of networks, the control and antipsychotic-free

groups, A ∈ R24526×22 and B ∈ R24526×15 respectively. Taking the GSVD, the

components of two ordering vectors x[2] and x[end] are shown in ascending order in

Figure 8.3.

Figure 8.3: Components of x[2] and x[end] in ascending order from GSVD of
antipsychotic-free and control samples
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8.3.1 Comparison with Gene List Database

Table 8.5 shows occurrences and p-values for nodes in the first, middle and last 600

positions in x[2] and x[end] positions from the GSVD. The ordering from the GSVD

shows significant p-values at both ends for both expression and literature groups.

In particular, for the list of Expression genes the GSVD ordering has a total of

41 (cluster one) + 36 (cluster two) = 77 matches in the ends of the x[2] ordering,

versus 37 + 26 = 63 in the u[2] ordering from the SVD in Table 8.2. Similarly, the

number of nodes in the ends of the x[end] ordering increase from 26 + 19 = 45 in

the u[2] SVD ordering to 24 + 40 = 64. Equivalent numbers are present in the

literature based comparisons. This GSVD is then once again highlighting more

genes that have been implicated in schizophrenia - we can compare the results from

the hypothesis test of GSVD orderings in the next section to the SVD results and

observe any changes in the predictive abilities of the approaches.

Association x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 11 6 11 10 9 7
Sum with repeats 13 10 14 13 9 12
p-value 0.484 0.833 0.404 0.508 0.673 0.595

Expression x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 30 26 27 19 14 27
Sum with repeats 41 34 36 24 16 40
p-value 0.003 0.118 0.046 0.742 0.978 0.014

Literature x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 32 23 42 25 21 29
Sum with repeats 93 38 103 67 65 93
p-value < 0.001 0.997 < 0.001 0.522 0.621 < 0.001

Table 8.5: Comparison of selected genes from left singular vectors u[2] and u[end] of
GSVD. Significant results for expression and literature.
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8.3.2 Hypothesis Testing: T-test and Fold Change

Table 8.6 shows genes that meet the dual threshold criteria for significance we have

previously described. CDC14B, MX1 and RNF213 appear in both the SVD and

these results from the GSVD, but there are a number of differences.

Official Gene Symbol Illumina ID p-Value Fold Change Percentile Abundance

Cluster One

MMP25 ILMN1717207 3.68e-04 1.59 98

MYO1F ILMN1681239 2.86e-03 1.59 96

IFI6 ILMN1687384 4.21e-03 -1.63 97

MX1 ILMN1662358 9.08e-03 -1.72 98

CDC14B ILMN1733559 1.15e-02 -2.47 93

BCL6 ILMN1737314 1.42e-02 1.52 98

LY6E ILMN1695404 2.03e-02 -1.54 95

RNF213 ILMN1749722 3.79e-02 -1.64 98

MXD1 ILMN2214678 4.05e-02 1.53 97

Table 8.6: x[2] ordering from GSVD of antipsychotic-free not control expression data results: t-test on first and last 600 nodes of

x[2] ordering (clusters one and two, respectively). This table shows genes with a significant p-value and fold change.

Official Gene Symbol Illumina ID p-Value Fold Change Percentile Abundance

Cluster One

HBG2 ILMN2084825 1.11e-03 -1.87 99

HBG1 ILMN1796678 1.18e-03 -1.89 99

Cluster Two

MX1 ILMN1662358 9.08e-03 -1.72 98

RNF213 ILMN1749722 3.79e-02 -1.64 98

Table 8.7: x[end] ordering from GSVD of control not antipsychotic-free expression data results: t-test on first and last 600 nodes

of x[end] ordering (clusters one and two, respectively). This table shows genes with a significant p-value and fold change.

8.4 Comparison with Chaper 7 Results

A key reason for the analysis of a second data set was to generate comparison for

the previous results, since such results are lacking in the literature. In the SVD of

antipsychotic-free and control subjects in Chapter 7 (Table 7.9), CDC14B appears
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in both u[2] and u[3] orderings - each with a high negative fold change, as is the case

in this data. This gene also appears in schizophrenia + antipsychotic-free SVD and

GSVD comparisons. Similarly, RNF213 appears in multiple orderings from both

medicated and unmediated individuals with schizophrenia in both experiments

with the same probe each time.

LY6E appears in clusters with similar levels of fold change in antipsychotic-free

+ schizophrenia (Table 7.14 at −1.51) and in the GSVD of schizophrenia and

antipsychotic free data (Table 7.25 at −1.51). In this experiment we see LY6E at

a fold change of −1.54. RNF213 appears in Table 7.7, Table 7.8, Table 7.13 and in

schizophrenia vs antipsychotic-free from the GSVD. In both experiments RNF213

is downregulated by a similar amount (≈ −1.6). A summary of the genes that

appear in both experiments is shown in Table 8.8

Gene ID
Chapter 7 Chapter 8

Fold Change p-value Fold Change p-value

CDC14B -1.61 6.14e-03 -2.47 1.15e-02
RNF213 -1.56 3.78e-04 -1.51 3.79e-03
LY6E -1.51 4.02e-02 -1.54 2.03e-02
GATSL3 -1.77 2.13e-03 -1.55 1.57e-03
BCL6 1.52 1.06e-03 1.52 1.42e-02

Table 8.8: Fold change and p-value of genes that appear in results from both
Chapter 7 and 8. Genes in bold appear only in results from antipsychotic-free
patients.

8.5 Gene Ontology (GO): Annotation of Gene

Lists

We now take a different approach to the analysis. The previous approaches of

comparing clusters to the SZGR database, and hypothesis testing of individual

genes has produced some interesting results but has reduced interpretation of large
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numbers of data to discussion of individual genes. A more expansive approach to

analysis of gene lists, Gene Ontology (as introduced in Section 2.1.2 terms allow for

identification of over-represented biological processes or functions. In this section

we use the web tool GOrilla [51, 52] to identify the GO terms assigned to each

of the genes in the clusters identified in the SVD and GSVD. A separate service

REVIGO [200] is then used to reduce these typically large lists of ontology terms

by identifying overlap and removing redundancies.

The results from this stage are much more general than the previous hypothesis

tests. This approach has both advantages and disadvantages - including all nodes

within a cluster ensures that each gene is represented in some way, regardless

whether the gene meets significant thresholding of t-test and p-value. This is

important in recognising the interactivity (and so complexity) between the cluster

nodes that is missed when carrying out a single element test such as the t-test.

It is possible that gene ontology analysis may not be informative in this data set

- ontology informs of large scale enrichment of particular biological processes or

functions. The genes implicated in schizophrenia may not be prevelant or plentiful

enough to result in enrichment of GO terms.

Gene Ontology enRIchment anaLysis and visuaLizAtion: GOrilla

GOrilla is an enrichment tool that accepts ranked lists of genes and generates a

directed acyclic graph illustrating steps, if any, of three gene ontology elements -

cellular component, molecular function and biological process.

Enrichment is the identification of GO terms that are in some way significantly

over-represented in a list of genes. In our case, we input two gene lists - the genes

from the ends of the re-ordering and the background list of genes of all those used

in the experiment. The result comes with a p-value that tells us the probability of

obtaining the observed hypergeometric probability score.
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reduce + visualise Gene Ontology: REVIGO

In order to simplify this list to assist with the presentation and interpretation of

results, REVIGO was used. This tool applies a clustering approach in combination

with similarity measures to discard uninformative, redundant ontology terms. In

using this we substantially reduce the number of ontology terms generated from

each list - and avoid much of the traditionally problematic overlap.

8.5.1 GO: Results from SVD

Figure 8.4 shows gene ontology enrichment analysis. We have chosen plots of

log(p−value) vs log(size) - where the p-values signify over-representation of specific

ontology terms in a gene subset, relative to the complete set of genes in the data

set. The size of the marker on the plot corresponds to the number of genes listed

under that ontology term, in total. The x-axis shows the size of the ontology term

- ontology terms with more entries will tend to be more general. Interestingly,

the first 600 probes in the reordered list show far more significant results in both

process and functional term enrichment. This signifies the fact that of the 600

probes entered from the end of the ordering there is little to no consistent functional

purpose. This parallels earlier results in Table 8.2 where significant results only

appear in the first 600 probes.
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Figure 8.4: Gene ontology results from u[2] ordering. Top row: First 600 probes,
left picture is GO:process, right is GO:function. Bottom row: End 600 probes, left
is GO:process and right is GO:function. Each plot is log(p-value) vs log(size).

In Figure 8.5 we see both process and function ontology terms differ significantly

from the u[2] ordering This is expected from, and mirrored by, the lack of overlap in

the hypothesis testing. Both orderings in the SVD do, however, show enrichment

of multiple immune system related processes:- regulation of immune system process

and immune system process terms are common to both, with other immune

related terms appearing exclusively in each. This highlights an advantage of using

REVIGO - likely some of the related ontology terms appear because of common
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genes, but REVIGO ensures that the output is not dominated by features like this.

Essentially, after processing with REVIGO we can be confident that related terms

differ significantly.

Figure 8.5: Gene ontology results from u[3] ordering. Top row: First 600 probes,
left picture is GO:process, right is GO:function. Bottom row: End 600 probes, left
is GO:process and right is GO:function. Each plot is log(p-value) vs log(size).

8.5.2 GO: Results from GSVD

The fact that Gene Ontology provides an approach to make summary assessments

of results is particularly interesting here where we are also comparing different
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algorithms in the SVD and GSVD. Whilst we have repeatedly shown overlap in

specific hypothesis testing results (as well as differences in results), genes that meet

somewhat arbitrary hypothesis testing thresholds are a small subset of the genes

driven to the ends of the orderings. Using GO to describe the complete set of genes

from the ends of these orderings will then give an indication as to how expansive

the difference between the two sets of results are. Figures 8.6 and 8.7 show process

and function results from ordering vectors x[2] and x[end] in turn. The bottom row

in Figure 8.6 has features common with the u[3] ordering in the previous section

- namely multiple immune system processes, and MHC protein binding. We can

also see that the last 600 probes in this ordering have a high degree of diversity

- there are relatively a much higher number of ontology terms. In Figure 8.7 we

see that, again, immune system processes are prevelant, and MHC protein binding

in terms of function. The fact that there are many genes involved in immune

system processes is interesting, as immune molecules like the MHC and immune

system regulators/pro-inflammatory cytokines are suggested to have involvement

in neurological processes [163, 44]. Additionally, recent GWAS work has shown

association of MHC variants with schizophrenia [173]. It is also worth mentioning

that we are dealing with data from whole blood, which contains mostly white blood

cells - immune cells. Exploring all of the specific results conferred from GO analysis

is outwith the scope of this project, but this simple test is an effective illustration

of how ontology terms might be used to guide anaylsis, and provides an overview

highlighting differences between the SVD and GSVD.

175



CHAPTER 8. CLUSTERING AND GENE ONTOLOGY OF
ANTIPSYCHOTIC-FREE SCHIZOPHRENIA: REPLICATE RESULTS

Figure 8.6: Gene ontology results from x[2] ordering. Top row: First 600 probes,
left picture is GO:process, right is GO:function. Bottom row: End 600 probes, left
is GO:process and right is GO:function.
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Figure 8.7: Gene ontology results from x[end] ordering. Top row: First 600 probes,
left picture is GO:process, right is GO:function. Bottom row: End 600 probes, left
is GO:process and right is GO:function.

8.6 Node-Weighted Laplacian

In Chapter 7 we saw a test of the node-weighted Laplacian on whole blood gene

expression data. Results were limited, and we concluded that it was likely the type

of structures the node-weighed Laplacian is able to identify were not present in the

data. In this section we employ the same method from the initial dataM ∈ R24526×37

producing a pair of metabolic networks BK ∈ R1945×37 and BM ∈ R572×37. We then
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take MMT for these matrices in turn which, in conjunction with the degrees of

the metabolic networks, produces two node-weighted Laplacian matrices. Since

the inital data is smaller than the set used in the previous chapter, the resultant

metabolic networks BK and BM are also smaller. This time, we aim to both validate

the previous finding for a different data set of the same type and investigate further

the influence of the degree weighting in the node-weighted Laplacian. In essence, we

wish to find out if the same genes appear as were present in the previous analysis.

Finally, since (due to previous results) we are now less interested in the exploratory

possibilities in node-weighted data of this type the analysis is kept to the equivalent

Fiedler vector only.

8.6.1 KEGG Metabolic Network

An ordering vector from the node-weighted Laplacian in Figure 8.8 shows that

again there are a small number of separated components. Figure 8.9 uses this

vector to reorder the degrees of the KEGG network - showing that the ordering

has a trend to follow the degree.

Figure 8.8: Components of D[0.5]u[2] from SVD of complete data set.
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Figure 8.9: Metabolic degree reordered by u[2] from the KEGG node-weighted
Laplacian.

Hypothesis testing of 100 nodes from each end of the vector (based on the distribu-

tion of the ordered components of the singular vector) yields two significant results

that also satisfy the minimum fold change requirement. Table 8.9 shows these two

genes, which do not match those found in the previous chapter.

Official Gene Symbol Illumina ID p-value Fold Change Percentile Abundance

Cluster One

NT5E ILMN1775480 3.68e-03 -1.30 62

Cluster Two

CSAD ILMN1791576 4.79e-02 1.31 42

Table 8.9: Results from t-test and fold change threshold of D[0.5]u[2] from SVD of
node-weighted Laplacian. Clusters one and two correspond to significant (in t-test
and fold change) genes from the first 100 and last 100 nodes in the SVD ordering,
respectively.

8.6.2 MetaCyc Metabolic Network

We also calculate the node-weighted Laplacian using the MetaCyc metabolic

network. After reducing the data to contain only nodes present in the MetaCyc

network, we have an array: MMetaCyc ∈ R572×37. The ordered components of the

singular vector in Figure 8.10 show similarly limited deviation, as compared to the

trial with the KEGG network in the preceeding section.

179



CHAPTER 8. CLUSTERING AND GENE ONTOLOGY OF
ANTIPSYCHOTIC-FREE SCHIZOPHRENIA: REPLICATE RESULTS

Figure 8.10: Components of D[0.5]u[2] from SVD of complete data set

The reordered metabolic degrees for the MetaCyc network in Figure 7.22 almost

exactly ordered for ascending/descending degree. This suggested that the microar-

ray data was of little importance in any structure present in the data. This time

the metabolic degree is less of an indicator as to the order of the data.

Figure 8.11: Metabolic degree reordered by u[2] from the MetaCyc node-weighted
Laplacian.

Results from the t-test in Table 8.10 show three significant genes. This is in contrast

to the previous chapter where no significant results were found. This difference can

also be observed in the previous reordering of metabolic degrees - in contrast to the

previous chapter we see that structure from the microarray data likely contributes

to the ordering, the source of that structure may be in part explained by the genes

in the following table. NUDT1 has previously been found to show increase at the
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transcript level in the schizophrenia brain [178]. SMOX is a gene that has been

previously implicated in this thesis, e.g., in Table 7.7 and discussed in the literature

[63].

Official Gene Symbol Illumina ID p-value Fold Change Percentile Abundance

Cluster One

NUDT1 ILMN1775480 2.62e-02 1.33 82

SMOX ILMN2367258 4.48e-02 -1.37 90

Cluster Two

CHSY1 ILMN1791576 2.34e-02 1.34 92

Table 8.10: Results from t-test and fold change threshold of D[0.5]u[2] from SVD of
the node-weighted Laplacian.

8.7 Discussion

In this chapter differences between antipsychotic-free and control microarray gene

expression measurements are reported. The results from the SVD and GSVD have

much in common, but there are some key differences. This is visible in part with

the results of hypothesis (t-test) testing, but is particularly noticable with vast

differences in ontology terms. There are also a number of consistencies between this

chapter and results from Chapter 7, from both the SVD and the GSVD. This gives

further weight to the conclusion that gene expression in whole blood is a viable

source in which to study schizophrenia. It is also interesting that all matching

results were present in Chapter 7 in SVD or GSVD only when antipsychotic-free

data was included. In partciular, CDC14B, LY6E are not highlighted in any

comparisons of samples from patients receiving antipsychotic treatment, suggesting

that they highlight some feature of the data that is unique to antipsychotic-free

samples. These genes then may better reflect the true disease state rather than

effects as a result of treatment.
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Gene Ontology

An analysis using an approach based on Gene Ontology was also conducted.

Through this we have seen that, as with our other approaches, the SVD and GSVD

have results in common and that there are also key differences. The ontology

results seem to hold value in summarizing the results of these clustering approaches.

Spectral clustering approaches yield large amounts of data for analysis afterwards.

One solution to dealing with this is to use statistical methods, such as with the

t-test we have used here. However, information on individual genes may be sparse

- and it is difficult to observe higher level features that clustering methods aim

to unveil. In a sense, there is a parallel to the difference between reductionist

and systems level approaches - ontology approaches may identify major points of

interest in the system, such as with the appearance of many immune related terms

with our analysis.

In addition to the successes, there are issues with gene ontologies that are worth

mentioning. First, gene ontology results are limited to the information present in

the database. This means investigation with GO tools is limited to that which is

available from current understanding, thus eliminating an angle of potentially novel

result. Secondly, many genes have a multitude of functions in GO classifications -

often the highest occurring function will be presented first in a GO output, this

does not necessarily mean it is the most appropriate one.

Third, related to the other two points is the fact that no GO database is complete.

It is possible to miss important functional detail about a group of genes if either

the function is unknown or if it simply is not present in the database one consults.

A similar point of note is that GO databases are, by their nature, biased towards

larger areas of research. Fields where genetic function is better understood will

produce more results in GO databases, and this can be a problem when analysing

comprehensive genome wide gene expression data.
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In summary, this chapter provides further evidence to the conclusion from Chapter 7

that antipsychotic-free patients exhibit significant differences in gene expression as

compared to medicated schizophrenia patients. This highlights the need for further

research into the role the variety of prescribed antipsychotic medications play in

forming conclusions in studies designed to elucidate on the nature of schizophrenia.

In addition, the GO approach shows that on a high level there is significant value

added in using both the SVD and the GSVD to probe microarray data. A final

comment is that genes identified across Chapters 7 and 8, CDC14B, LY6E, RNF213,

GATSL3 and BCL6 have not previously been implicated in schizophrenia. This

suggests that gene expression changes in blood may be specific to blood, rather

than brain - we can investigate this further in the following chapter.
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Chapter 9

Spectral Clustering of Brain Gene

Expression Data

The previous chapters have shown analysis of microarray data from whole blood of

patients with schizophrenia. This was aimed at developing the study of schizohrenia

in a source of data that is easily accessible, and convenient. However, schizophrenia

is a disorder of the brain, and so the majority of research is carried out on brain

tissue. In this chapter we will apply the same methods to a microarray data set

from human brain tissue. We expect this to be reflected in higher significance levels

(than Chapters 7 and 8 in comparisons with results from the literature.

9.1 Introducing the Data

The data used in this chapter is taken from Gene Expression Omnibus study

GEO21138 [161]. There are N = 30 subjects with schizophrenia, and N = 29

controls, which were age and sex matched in this study. Summary information

of the data is presented in Table 9.1, showing the overall effect of age and sex

matching. The schizophrenia cohort in this study were chosen to provide a balance
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Samples Mean Age Num. males Num. females

Schizophrenia 30 43.40 24 6

Control 29 44.72 24 5

Table 9.1: Summary information on the data set from [161]

of stages of illness - short (< 5 years), intermediate (7− 18 years) and long (> 18

years), since there is some discussion as to the potentially progressive nature of

schizophrenia [144, 216]. Though the stage of illness was not explored directly in

this chapter, it is noted that these possible sub-groups of the disease state are each

represented in the data. This is potentially important since measurements from

antipsychotic-free patients (as appearing in previous chapters) tend to point-of-

diagnosis and so will more likely represent short duration patients. We know these

patients are represented within this data set, albeit with medication included, but

we can use this information to guide comparisons from this chapter with medicated

and antipsychotic-free schizophrenia patients.

As a first step, we plot the total expression across all probes for each of the samples,

in Figure 9.1. There is no apparent structure in the sum of gene expression values,

with a similar midpoint and spread for both sample groups - this is helpful as a

basic check on the quality of the data in case experimental setup was altered at all

between measurements for each sample group.
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Figure 9.1: Sum of expression across all probes for each patient, showing a level of
experimental consistency across patients.

9.2 SVD

Figure 9.2 shows two singular vectors (sorted) from the SVD of the complete data

set. We can see separated groups of nodes at either end of the vectors, indicating

structure within the data.

Figure 9.2: Components of the left singular vector u[2] and u[3] in increasing order
from an SVD of the data.
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9.2.1 Comparison with Gene List Database

As before we compare genes from the ends of the ordering generated by the SVD

for matches with the SZGR database (outlined in Section 7.4.2). Since this data

set is taken from brain tissue and since the vast majority of studies used to create

the SZGR database are from brain tissue, we expect a high (or higher than in

Chapters 7 and 8 with data from whole blood) degree of overlap between the two.

The overlap is, again, expected to be strongest in expression studies, since this

is a study of gene expression. The results from the comparison with SZGR are

shown in Table 9.2 and show this to be a sensible postulate when the majority of

p-values at either end of the singular vectors are highly significant. In fact, due to

high levels of significance, the number of random comparisons used to generate the

p-value is increased to 10, 000.

Association u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 18 5 29 19 5 18
Sum with repeats 21 6 40 22 3 23
p-value 0.3061 1.0000 < 0.0001 0.2219 1.0000 0.1605

Expression u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 40 15 32 46 19 45
Sum with repeats 98 26 48 85 41 111
p-value < 0.0001 0.4981 < 0.0001 0.6640 0.8596 0.0066

Literature u[2] Start u[2] Mid u[2] End u[3] Start u[3] Mid u[3] End

Sum 49 21 52 59 19 59
Sum with repeats 110 35 136 208 32 190
p-value 0.0092 0.9878 < 0.0001 < 0.0001 1.0000 < 0.0001

Table 9.2: Comparison of selected genes from left singular vectors u[2] and u[3] from
SVD of complete data set.
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9.2.2 Hypothesis Testing

We will carry out the same t-test (and threshold based on fold change) on the first

and last 1, 000 in the SVD orderings as performed in previous chapters. Table 9.3

shows results from the u[2] ordering, and Table 9.4 from the u[3] ordering.

Appearing in the first line of Table 9.3, there are suggestions in the literature

that the allele size of potassium intermediate/small conductance calcium-activated

channel gene KCNN3 is linked to schizophrenia [49, 186] and so it is interesting that

expression level is altered in this study. It has been shown that heat shock protein

beta-1 (HSPB1 ) is overexpressed in schizophrenia patients [7], and overexpressed

here with fold change 1.57.

Hypoxia-inducible factor 3-alpha (HIF3A) has shown increased expression levels

in brain tissue samples from Brodmann area 46 (BA46) in patients treated with

antipsychotics, but not in antipsychotic-free subjects, and in the same study it was

found that Neuromedin (NMU ) levels are decreased in schizophrenia [191] (1.75 and

−1.54 respectively here). NTSR2 is a neurotensin receptor subtype - mice deficient

in neurotensin receptor 2 gene NTSR2 have shown decreased basal glutamate levels

[156], which is of interest given the glutamate hypothesis of schizophrenia [72]. One

of the most interesting results in this table is the finding of decreased expression

of parvalbumin (PVALB), validating findings from previous studies implicating

PVALB in studies of the GARAergic origin of schizophrenia [82, 160]. PVALB is a

marker of a subtype of GABAergic interneurones which have a profound inhibitory

role on glutamatergic pyramidal cells [179].

Decreased expression of T-box, brain, 1 (TBR1 ) has been found in postmortem

brain of schizophrenia patients, and is the gene which provides a regulatory protein

for NR2B -NMDA receptors (as explored in Chapters 3 and 4) [117]. Also in the

post mortem temportal conrtex of patients with schizophrenia, phosphodiesterase
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Official Gene Symbol Affymetrix ID p-value Fold Change

Cluster One

KCNN3 244040 AT 2.41e-4 1.57

RGPD6 242712 X AT 4.95e-4 1.53

HSPB1 201841 S AT 5.44e-4 1.57

HIF3A 1555318 AT 7.92e-4 1.75

PITPNC1 239808 AT 2.13e-3 1.59

BCL6 228758 AT 3.12e-3 1.51

A2BP1 1566867 AT 4.06e-3 1.70

NTSR2 206899 AT 4.78e-3 1.52

HGF 209960 AT 5.18e-3 1.60

BAG3 217911 S AT 5.62e-3 1.71

AGAP1 240758 AT 5.93e-3 1.60

EFEMP1 201842 S AT 9.40e-3 1.63

CDKN1A 202284 S AT 9.55e-3 1.59

SLC7A2 225516 AT 1.25e-2 1.53

F3 204363 AT 1.66e-2 1.52

S100A8 202917 S AT 2.35e-2 1.70

AQP1 209047 AT 3.04e-2 1.58

SLC39A 1553126 A AT 3.12e-2 1.60

GJB6 231771 AT 3.81e-2 1.52

Cluster Two

BTBD11 238692 AT 8.25e-4 -1.58

RXFP1 231804 AT 1.40e-3 -1.53

C5ORF13 201309 X AT 1.48e-3 -1.51

RWDD2B 222614 AT 1.50e-3 -1.63

SLC1A1 206396 AT 1.53e-3 -1.66

KCNC2 240614 AT 2.56e-3 -1.52

C1QTNF3 209426 S AT 2.59e-3 -1.66

NMU 206023 AT 2.67e-3 -1.54

PPM1E 205938 AT 2.69e-3 -1.53

PVALB 205336 AT 2.73e-3 -1.61

TBR1 220025 AT 3.32e-3 -1.52

PDE1A 242789 AT 4.61e-3 -1.67

SEC23A 204344 S AT 5.20e-3 -1.50

TRUB1 235447 AT 5.50e-3 -1.55

SYN2 210315 AT 5.58e-3 -1.54

MAP2K4 203265 S AT 5.78e-3 -1.54

PREPL 212216 AT 6.96e-3 -1.55

ZNF385B 1555800 AT 7.25e-3 -1.60

KCNIP4 224530 S AT 7.40e-3 -1.60

PAK1 209615 S AT 8.11e-3 -1.58

GLRB 205279 S AT 8.60e-3 -1.54

RGS4 204338 S AT 8.66e-3 -1.70

GABRG2 206849 AT 9.22e-3 -1.54

ETNK1 231576 AT 9.59e-3 -1.69

GABRA5 215531 S AT 1.21e-2 -1.57

PLCB1 215687 X AT 1.43e-2 -1.50

SCAMP1 206667 S AT 1.62e-2 -1.52

Table 9.3: u[2] ordering of sample expression data results: t-test on first and last
1, 000 nodes (named cluster one and two, respectively) of u[2] ordering showing
genes with significant p-value and fold change.
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1A, calmodulin-dependent gene PDE1A has shown decreased expression (−1.5,

where we have −1.67 in this study) [11]. Synapsin II (SYN2 ) has shown in an

association study to potentially confer susceptibility to schizophrenia [125] and

so with the altered expression found here becomes an interesting candidate for

future study. Regulator of G-protein signaling 4 gene RGS4 is strongly decreased

in expression in schizophrenia patients [154], and is one of the highest fold changes

observed in this study at −1.70. Finally from this table, gamma-aminobutyric

acid (GABA)-α receptor (GABRA5 ) is another gene that has been identified in

association studies for schizophrenia [174] and shows significant down-regulation

here.

Next, Table 9.4 shows results from the u[3] reordering. Cluster two in this table

is broadly similar to cluster one from the u[2] ordering in Table 9.3. Cluster one

in here, however, is small with only one probe surviving the t-test/fold change

thresholding, suggesting that the probes separated to the left hand side of u[3]

ordering in Figure 9.2 represent some feature of the data unrelated to the disease

state of the patients e.g., age, gender. The gene that appears in this cluster YBX2

(Y box binding protein 2), has been implicated as playing a role in male fertility

[79], and so is likely just a chance occurence in passing threshold tests. Interestingly,

BCL6 appears in both u[2] and u[3] orderings - in a comparison of results from both

blood chapters and results in this section so far, this is one of the genes highlighted

in Table 8.8 showing matches for both blood data sets in Chapters 7 and 8.

That a number of genes identified in this study also appear (with expression levels

altered in the same direction) in other studies within the literature is encouraging

for the method, and encouraging for the quality and validity of the data set.
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Official Gene Symbol Affymetrix ID p-value Fold Change

Cluster One

YBX2 219704 AT 4.37e-4 1.61

Cluster Two

KCNN3 244040 AT 2.41e-4 1.57

HIF3A 1555318 AT 7.92e-4 1.75

NEAT1 227062 AT 1.66e-3 1.71

PITPNC1 239808 AT 2.13e-3 1.59

BCL6 228758 AT 3.12e-3 1.51

A2BP1 1566867 AT 4.06e-3 1.70

HGF 209960 AT 5.18e-3 1.60

BAG3 217911 S AT 5.62e-3 1.71

AGAP1 240758 AT 5.93e-3 1.60

PDK4 225207 AT 7.52e-3 1.53

EFEMP1 201842 S AT 9.40e-3 1.63

CDKN1A 202284 S AT 9.55e-3 1.59

MBP 236324 AT 1.10e-2 -1.53

SLC7A2 225516 AT 1.25e-2 1.53

ADM 202912 AT 1.65e-2 1.51

F3 204363 AT 1.66e-2 1.52

S100A8 202917 S AT 2.35e-2 1.70

AQP1 209047 AT 3.04e-2 1.58

SLC39A12 1553126A AT 3.12e-2 1.60

GJB6 231771 AT 3.81e-2 1.52

ATP8A1 231484 AT 4.74e-2 1.54

Table 9.4: u[3] ordering of sample expression data results: t-test on first and last
1, 000 nodes (named cluster one and two, respectively) of u[3] ordering showing
genes with significant p-value and fold change.

9.3 GSVD: Schizophrenia and Control Data

The data is now split into a pair of networks, the schizophrenia cohort, A ∈ R30024×30,

and the control group B ∈ R30024×29. Figure 9.3 shows the x[2] and x[end] reordered

singular vectors.

Figure 9.3: Components of the left singular vector x[2] and x[end] in increasing order
from the GSVD of the data.
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9.3.1 Comparison with Gene List Database

Next we compare the results from the GSVD reordering of the data with the SZGR

gene list database. In both Chapters 7 and 8 we have seen that the GSVD clustered

a greater total number of SZGR genes than the SVD - in this brain data we have

found the opposite to be the case. Table 9.5 shows that in this case the GSVD in

fact clustered significantly fewer SZGR genes. For example, in Expression studies

Table 9.2 shows 98 (cluster one) + 48 (cluster two) = 146 genes in u[2] and 85

(cluster one) + 111 (cluster two) = 196 in u[3] where the GSVD has separated 55

(cluster one) + 87 (cluster two) = 142 in x[2] and 50 (cluster one) + 65 (cluster

two) = 115 in x[end]. This suggests that there is value in applying both SVD and

GSVD, but this assessment cannot be made on the number of genes alone - further

work into the biological interpretation would assist in diagnosing whether the SVD

and GSVD are individually particularly good at highlighting specific biological

features of the data.

Association x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 9 7 30 19 8 19
Sum with repeats 13 7 44 26 11 25
p-value 0.9157 0.9974 < 0.0001 0.0441 0.9490 0.0590

Expression x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 32 15 37 31 15 33
Sum with repeats 55 27 87 50 24 65
p-value 0.1487 0.9993 < 0.0001 0.3823 0.9996 0.0070

Literature x[2] Start x[2] Mid x[2] End x[end] Start x[end] Mid x[end] End

Sum 42 22 60 50 22 47
Sum with repeats 91 36 191 140 44 107
p-value 0.4240 1.0000 < 0.0001 < 0.0001 1.0000 0.0225

Table 9.5: Comparison of selected genes from left singular vectors x[2] and x[end]

of GSVD of antipsychotic-free vs control samples. x[2] orders for controls not
schizophrenia, x[end] for schizophrenia not controls.
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9.3.2 Hypothesis Testing

The final section in this chapter is to apply a t-test and fold change threshold to

the GSVD reordered data.

Table 9.6 shows results for the x[2] reordered data, and Table 9.7 for the x[end]

reordered data. Copy number variation of A2BP1 has been linked to significant

increase in risk for development of schizophrenia [150]. Myelin Basic Protein

(MBP) has shown sigifnicant alterations in regulation in both schizophrenia and

bipolar disorder patients in a microarray study validated by Q-PCR testing [202].

Interestingly, we see gamma-aminobutyric acid α receptor, gamma 2 gene GABRG2

here, another gene involved in the GABA system, an attractive area for the study

of schizophrenia [95]. A number of key results from the SVD analysis of this data

also appear within the GSVD results, including PVALB, RGS4 and HIF3A.

Official Gene Symbol Affymetrix ID p-value Fold Change

Cluster One

HIF3A 1555318 AT 7.92e-4 1.75

A2BP1 1566867 AT 4.06e-3 1.70

MBP 236324 AT 1.10e-2 -1.53

ADM 202912 AT 1.65e-2 1.51

Cluster Two

C5ORF13 201309 X AT 1.48e-3 -1.51

PREPL 212216 AT 6.96e-3 -1.55

MCTP1 220122 AT 7.01e-3 -1.51

FGF12 214589 AT 8.50e-3 -1.53

GLRB 205279 S AT 8.60e-3 -1.54

RGS4 204338 S AT 8.66e-3 -1.70

GABRG2 206849 AT 9.22e-3 -1.54

ATP6VLA 201971 S AT 1.05e-2 -1.53

F3 204363 AT 1.66e-2 1.52

SLC9A12 1553126 A AT 3.12e-2 1.60

GJB6 231771 AT 3.81e-2 1.52

Table 9.6: x[2] ordering from GSVD for control not schizophrenia sample expression
data results: t-test on first and last 1, 000 nodes (named clusters one and two,
respectively). This table shows genes with a significant p-value and fold change.
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Official Gene Symbol Affymetrix ID p-value Fold Change

Cluster One

HSPB1 201841 S AT 5.44e-4 1.57

INVS 232759 AT 1.24e-3 -1.58

PVALB 205336 AT 2.73e-3 -1.61

MCTP1 220122 AT 7.01e-3 -1.51

ZNF385B 1555800 AT 7.25e-3 -1.60

GLRB 205279 S AT 8.60e-3 -1.70

RGS4 204338 S AT 8.66e-3 -1.54

GABRG2 206849 AT 9.22e-3 1.56

CITED2 207980 S AT 1.58e-2 -1.52

ATP8A1 231484 AT 4.74e-2 1.54

Cluster Two

HGF 209960 AT 5.18e-3 1.60

SLC7A 225516 AT 1.25e-2 1.53

SLC39A12 1553126 A AT 3.12e-2 1.60

Table 9.7: x[end] ordering from GSVD for control not schizophrenia sample expres-
sion data results: t-test on first and last 1, 000 nodes (named clusters one and two,
respectively). This table shows genes with a significant p-value and fold change.

9.4 Comparison of Chapters 7, 8 and 9

Section 8.4 contains a brief comparison between the two chapters with data from

whole blood. In this comparison, Table 8.8 highlights a number of genes that meet

significance thresholds in both experiments: CDC14B, RNF213, LY6E, GATSL3

and BCL6. Of these genes only one, BCL6, appears in all three analyses (and is

upregulated in all cases). In this section we provide a brief analysis of all probes

present in this brain data for these genes. Figure 9.4 shows expression levels for

each patient sample for all probes representing these gene IDs (CDC14B, RNF213,

LY6E, GATSL3 and BCL6 ), red ‘x’ are from schizophrenia patients and blue ‘o’

are from controls, as described in Table 9.8
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Figure 9.4: Sum expression levels for genes (as measured in this brain data) present
in in all of Chapter 7, 8 and 9 analysis. Red ‘x’ is schizophrenia patient data, blue
‘o’ is control. See Table 9.8 for details.

Gene ID Official Gene Symbol Affymetrix ID p-value Fold Change

1 RNF213 1569078 AT 6.74e-1 -1.03

2 RNF213 225929 S AT 3.00e-3 1.29

3 RFN213 225931 S AT 7.12e-1 1.03

4 RNF213 230000 AT 1.55e-1 1.14

5 RNF213 241480 AT 3.34e-3 1.22

6 CDC14B 208022 S AT 1.91e-3 1.22

7 CDC14B 216284 AT 6.30e-1 1.03

8 CDC14B 221555 X AT 2.46e-2 1.13

9 CDC14B 221556 AT 4.03e-2 1.15

10 CDC14B 230887 AT 5.70e-1 -1.05

11 CDC14B 234605 AT 2.74e-3 1.45

12 BCL6 215990 S AT 1.38e-1 1.12

13 BCL6 228758 AT 3.10e-3 1.51

14 BCL6 236439 AT 9.08e-2 1.18

15 GATSL3 233528 S AT 3.40e-3 1.22

Table 9.8: Fold change and t-test results (as measured in brain data) exploration
of genes from Chapter 7, 8 and 9 analysis.

In Table 9.8, we see that there are a variety of fold change values - we would expect

genes that are not significant to either experimental group to show an average fold

change of 1.00, with error. Whilst BCL6 is the one gene that meets threshold

testing, it is worth noting that an ID 11 gene CDC14B has a significant t-test and

narrowly misses threshold on fold change. Similarly with ID 2, gene RNF213 has
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a significant t-test and low fold change. Finally, the sole probe measuring GATSL3

expression shows significance in t-test and a minor up-regulation of 1.22. These

genes represent an important cross-over point between experiments - being altered

in expression in both our results from blood studies and results in this brain data.

There are also a number of different probes representing each gene in Table 9.8 -

not all of the probes for each gene are over/under expressed in a similar way. This

could be indicitive of the fact that each probe measures a specific part of the gene

transcript, and alternative splicing points may be expressed differently.

9.5 Discussion

There are points of overlap in our results and the original publication that arose

from the data e.g., implication of PPM1E as having a key role in the structure of

this data [161], which is interesting for verification and validation methods across

approaches to analysis.

This chapter again highlights the desirability for an increase in the amount of

clinical data taken per patient, in this chapter we have data with length of illness but

no details on medication - in Chapters 7 and 8 there were data with medication-free

patients but no information about length of illness. Information about side-effects,

drug type and drug efficacy would also allow for a formal investigation into possible

patient specific symptom vs. management of side-effects, the concern of much of

modern psychiatric treatment. A disparity in data depth (i.e., amount of patient

information or phenotypic) means that, despite the fact that data gathering rates

are at an all-time high, it has proven difficult to convincingly illustrate links between

genes and disease states. A solution may be to adopt an approach based on depth

rather than breadth, this is difficult in situations where postmortem tissue is used,

due to degradation of tissue and other issues of sample quality - but in a tissue
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such as blood a depth-first approach may be possible, exploring schizophrenia in

the same sample group from both genetics and expression viewpoints.

There are various possibilities in terms of future work for a data set of this type.

In previous chapters we have discussed the importance of, and analysed, data from

antipsychotic-free schizophrenia patients. Data from patients at different stages of

the condition offer similar possibilities, and will notably allow for the mapping of

potential progression of the disease. There are suggestions that schizophrenia is

progressive in nature - with studies measuring brain grey matter demonstrating

that grey matter volume decreases from early to chronic stages of the condition

[144]. Abnormalities in white matter volume over time have also been observed

[216]. These facts parallel our earlier findings in Chapter 4 where we illustrate

that PCP, which is used to develop a model relevant to the disease, disrupts brain

connectivity which makes this a strong point of interest for future work. Such

a study would focus on precision measurements in equivalent brain structures

between the model animal and human cases, rather than studying each in isolation.

This also highlights a difficulty that parallels the problem of potential interference

of results by antipsychotic medication - progressive elements of schizophrenia may

lead to less clarity in results since there is no clear pattern across all schizophrenia

patients. It is reasonable to suggest that patients are kept to sample groups appro-

priate to the stage of their disease, as well as their usage and type of antipsychotic

medication (and a number of other factors e.g., smoking). This is in the ideal case,

which is difficult to achieve with the small numbers of available samples, particularly

in the case of post-mortem brain tissue. The ability to study schizophrenia in

a readily available tissue such as blood would help alleviate this issue and allow

researchers to obtain data at multiple time points, mapping both the progression

of the disease and any effects from long term usage of antipsychotic medication,

factors which are both currently not well understood. There has also been evidence
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that schizophrenia is an umbrella-term encompassing a set of conditions - that

is, schizophrenia is heterogeneous in presentation and aetiology [206, 145]. A

comprehensive study into one aspect, in this case gene expression, may begin to

help separate aspects of the disease.

It would also be interesting study the matches with SZGR (from Tables 9.2.1 and

9.3.1) in further detail. In particular, with more time ideally we would have checked

for overlap between the SZGR matches for Chapters 7 and 8 with this chapter.

Conclusions in previous chapters that comparisons with SZGR are sensible as an

investigative approach for whole blood are validated by strongly the positive results

found in this chapter.

It is noted that, though there are a significant number of matches between SZGR

and clustered genes in the whole blood studies and an even greater significance

in this chapter, there is only one overlapping gene in the last of those that pass

hypothesis and fold change thresholding, BCL6. This may highlight limitations

of assuming a fold-change/statistical testing approach in addition to simply using

clustering and SZGR comparisons. There are advantages to using thresholds in

addition to clustering, however. With fold change and significance testing, we are

simply selecting a specific sub-group of genes that, since thresholds must be met,

are more likely to be connected to the sample state.

Finally, we have shown for the first time that BCL6 is a gene of interest that

may overlap between blood and brain expression experiments. This is important

and worthy of further investigation with, for example, verification through PCR

experiments and functional investigations in modelling. In addition, Section 9.4

shows that there are suggestions of differential expression in other probes. Whilst

results here are not conclusive, the suggestion is important enough to warrant

further investigation. A concluding remark is that even given a combination of

unsupervised and supervised processing approaches, the selection via a clustering
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approach and further selecting with fold change and t-test, there are still a large

number of genes separately in whole blood and brain tissue that appear relevant.

After multiple layers of processing (clustering, thresholding), the lack of overlap

between these sets of results highlights a combination of the complexity of gene

expression data, the complexity of the schizophrenia disease state and inherent

differences between blood and brain.
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Chapter 10

Conclusions

The overall aims of this thesis were to systematically analyse data pertinant to

schizophrenia using spectral clustering methods in a variety of settings. We first

investigated animal models relevant to the condition using the generalized singular

value decomposition. This approach aims to find structures mutually exclusive to

subject test groups, and was augmented with use of a novel technique to assess

clustering of subgroups within the test animals. Next we created a pair of new

metabolic networks for use with a new matrix, the node-weighted Laplacian, which

allows the combination of two sources of data. This was used to explore potential

metabolic involvement in schizophrenia across two studies of human whole blood.

The final chapter involves application of spectral clustering methods of microarray

gene expression data from human brain tissue. In this chapter we summarize the

novel developments in the thesis and point to possible future directions.

10.1 Animal Models Relevant to Schizophrenia

The development of animal models useful for studying complex conditions such

as schizophrenia is extremely challenging. There are many reasons for this: in
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humans, the symptomatology is diverse and difficult to profile hence challenging

to cover in a single model. The underlying genetic, biological and environmental

factors are not well categorised or understood - a combination of these two factors

results in a current lack of biomarkers which could be replicated in an animal

model [162]. Chapters 3 and 4 presented work on two pharmacological animal

models relevant to schizophrenia. With the fact that there is an inability to obtain

direct feedback from animals, it is difficult to verify the presence of many of the

common symptoms of schizophrenia e.g., hallucinations. Thus, in this work we

approach analysis of the ketamine and PCP animal models from the perspective

of functional operation of neural subsystems. These measurements do not rely

on profiling symptoms which can be unreliable, instead they provide an objective

examination of the subsystem level activity in the brain. The analysis of data in

the ketamine model found that acute ketamine treatment caused disintegration in

the functional interaction between various regions of the brain, relative to control

animals. Interestingly, our data suggest that the alterations induced through

ketamine treatment are disparate to those seen in chronic schizophrenia. The

observed fundamental differences between brain function in the model state versus

the desired translational parameters in the human disease state have implications

for the relevance of acute ketamine treatment in translational models. Potentially

the acute ketamine model is more representative of the early stages of schizophrenia,

rather than the chronic stage. Indeed there is evidence that ketamine produces a

hyperglutamatergic state which resembles the early phase of schizophrenia but not

the chronic state [142].

It is noted that the data set used for this investigation is relatively small, 9

animals in each sample group, which is not ideal when making confident statistical

conclusions. That said, there is statistical significance in the results after verifying

the quality of clusters (Section 3.2.1), and taking multiple approaches that produce

biologically meaningful conclusions. In addition to contributions from this thesis in
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suggesting caution with the use of ketamine in preclinical models, these results add

insight into the functional response of the brain under NMDA receptor blockade.

Both of these results make contributions to important areas in neuroscience and

warrant further investigation.

The subchronic PCP and modafinil preclinical data show how sustained NMDA

receptor hypoactivity affects brain network structure. These results closely parallel

those reported in schizophrenia, with direct relevance for understanding the nature

of brain dysfunction in the chronic disease state. The quantitative nature of the

study, at the systems level, using the GSVD for the first time to compare disease

model (PCP), treatment (modafinil) and control animals, reinforce the relevance

of NMDA receptor dysfunction models to schizophrenia. Quantifying compromised

functional integration at the level of specific subsystems is a first step towards

exploring targets for medication, in a similar way that the results of this thesis

suggest that modafinil has potential in alleviating cognitive deficits.

10.2 Stratification of Patients and Biomarkers

There are a variety of poorly or un-met clinical needs in schizophrenia [108]. Animal

models are one way we may hope to begin to address this issue, stratification of

patients is potentially another. Stratification of patients into sub-groups has proven

a useful strategy in conditions ranging from cancers to stroke, increasing efficiency

in identification of effective treatments for cancers [83, 89], and understanding or

mitigating future risks, with stroke [171]. Before a similar stage is reached for

a condition such as schizophrenia, there are a multitude of areas where further

research is required. Disease mechanisms could be better understood and an efficient,

reliable and safe way to achieve results is required. In this thesis, Chapters 7 and 8
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make steps towards the later in attempting to validate the use of whole blood as a

tissue relevant to schizophrenia.

With the large number of genes studied in expression studies, it is perhaps un-

surprising that there is a disparity across studies in the literature as to the genes

relevant to the disease. Our study took a new approach by comparing results from

spectral clustering with a database of genes implicated in schizophrenia. Finding

significant overlap between clustering results from whole blood and a database of

genes implicated previously in the condition has two important results (1) that

whole blood is of legitimate interest in studying schizophrenia and (2) that results

from whole blood replicate, at some level, alterations in the brain. Following the

comparison between experiment and database gene lists, it would also be desirable

to study the genes that match for any interesting biological results. In particular,

genes present in more than one study sub-type (e.g., association + expression)

warrant further investigation. For instance, examinations of genetics and gene

expression are usually isolated with different patients in each. In line with our

proposal to limit the data gathering in terms of the number of patients and instead

increase the amount of data for each, a suggestion for future work would be to

comprehensively gather genetics (GWAS), gene expression (microarray) and pheno-

typic data all for a smaller group of patients to allow for correlations across each

source of information.

The focus in this thesis was on gene expression data. Other approaches to the

study of schizophrenia include structural and functional MRI studies. For example,

it has been long established that structural abnormalities are present in patients

with schizophrenia, and that structural abnormalities vary over time, i.e., that the

disease has a progressive element [170]. There are some questions surrounding

this issue, including recent suggestions that progressive changes may be correlated
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with use of antipsychotics [66] or even substance abuse which is prominant among

individuals with schizophrenia [143].

These findings are mirrored in conclusions made in this thesis that antipsychotic-free

schizophrenia patients differ significantly in gene expression from their counterparts

receiving treatment. This raises serious questions for consideration of the majority

of researchers in the field where patients are almost always receiving antipsychotic

medication. That this is not already routinely considered is perhaps an issue

of pragmatism with the difficulty in gathering medication-free data, or a lack of

appreciation for the impact medication may have on results. In either case, in

order to improve data quality, future works would benefit from being explicit with

details where confounding factors such as medication are present. Given that the

vast majority of antipsychotic-free patients involved in schizophrenia research are

simply individuals at the point of diagnosis, developing an understanding of the

effect of specific medication may allow for the isolation and study of other factors

such as disease progression. This is an area where the work in this thesis makes

significant contributions - in showing that much of the alterations seen in gene

expression are the result of medication we do a number of things: (1) highlight

the importance of unambiguously stating medication type and length of treatment

to qualify results (2) set the scene for the correlation of gene expression with

specific drug treatments to understand therapeutic effect (3) open an avenue for a

method of investigation for side effect presentation and severity - measurement of

pre-treatment gene expression levels may help to indicate an individuals propensity

for particular difficulties or complications. If attributes such as drug type and side

effects are to be recorded and reliably studied, the demand for data will increase.

Currently, the fact that a significant proportion of research is carried out using

post-mortem human brain tissue is a clear barrier to increasing patient numbers,

but an increase in phenotypic data may help ensure maximal value.
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All of these points come together in relevance to the identification of a disease

biomarker. To be useful for diagnostics, biomarkers must be unambiguous, accurate

and straightforward to measure.

10.3 Spectral Clustering Methods

In this work we proposed a novel addition to a traditional spectral clustering

approach, calculating the variance of spectral vector components to extend the

clustering method to the real domain. This allows for increased accuracy of

automated clustering assessments, of timely relevance to the recent explosion in

the interest of ‘big data’.

The proposed algorithm is tested on two real data sets in Chapters 3 and 4 and

validated through visual assessment and calculation of p−values as a basic check to

allow a level of automation. Having shown that this approach can be effective, it can

be concluded that, in terms of contributions to spectral clustering, this approach

offers additional flexibility as a means to include additional information to give

specific perspective to a problem. There are many cases outside of neuroscience

where such an algorithm could be useful. For example, clustering methods are

utilised in cases where there are interesting potential divisions within the data - in

cases where there are many a priori sub-groups of interest (e.g., tissue or cancer

types in biology [123], income or age brackets in social networks, institution of

author in citation networks) it can be impractical, particularly in large data sets,

to evaluate results visually.

A new algorithm is proposed based on the node-weighted Laplacian, giving an

extension of existing methods. The node-weighted Laplacian is validated on

synthetic data, proving the principle and illustrating that the approach yeilds

results satisfying a mesh of two data sources. The algorithm is then tested on real
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data at numerous points throughout the thesis - results on real microarray gene

expression data in Chapters 7 and 8 were generally limited. There are likely a

combination of issues here: (1) there may be no metabolic component to discover in

schizophrenia data, and it is less likely there is a high-degree metabolic component

such as the node-weighted Laplacian would identify, (2) there are clear limitations

with the current sources of metabolic information. The KEGG and MetaCyc

databases of human metabolism used to create metabolic networks in Chapter 5

differ significantly, highlighting that the complete human metabolome still requires

significant effort.

With these difficulties in mind, it would have been of particular interest and perhaps

more appropriate to explore wider applications for the node-weighted Laplacian,

more specifically in the first instance a case where there is a clear expectation of

result. In the field of complex networks there are several commonly used approaches

to incorporating extra information, e.g., nodes can be labelled with some extra

variable such as personal income in a social network, networks can have multiple

edge sets; each of these areas can benefit from a construction like the node-weighted

Laplacian which can be adjusted based on relevant questions about the data.

Further effort at investigating integration of other network parameters such as

clustering coefficient, betweenness, etc., would help to explore sensitivity and scope

of the method.

The node-weighted Laplacian is also relevant in a timely sense with the rise of Big

Data (see [138]). Huge amounts of data are consistently generated across many

fields and exploratory analysis on large data sets with large numbers of variables

can be difficult to interpret where many factors can explain variation or observed

effects. In providing an approach to include extra information the scope of the

analysis can be focussed with a structure such as the node-weighted Laplacian to

answer specific questions.
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visualizes long lists of gene ontology terms. PLoS One, 6(7):e21800, 2011.

[201] R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Diagnosis of multiple

cancer types by shrunken centroids of gene expression. Proceedings of the

National Academy of Sciences, 99(10):6567–6572, 2002.



Bibliography 233

[202] D. Tkachev, M. L. Mimmack, M. M. Ryan, M. Wayland, T. Freeman, P. B.

Jones, M. Starkey, M. J. Webster, R. H. Yolken, and S. Bahn. Oligodendrocyte

dysfunction in schizophrenia and bipolar disorder. The Lancet, 362(9386):798–

805, 2003.

[203] H. Tomita, M. P. Vawter, D. M. Walsh, S. J. Evans, P. V. Choudary, J. Li,

K. M. Overman, M. E. Atz, R. M. Myers, E. G. Jones, et al. Effect of

agonal and postmortem factors on gene expression profile: quality control

in microarray analyses of postmortem human brain. Biological psychiatry,

55(4):346–352, 2004.

[204] G. Tononi. Schizophrenia and the mechanisms of conscious integration. Brain

Research Reviews, 31(2-3):391–400, Mar. 2000.

[205] M. T. Tsuang, N. Nossova, T. Yager, M.-M. Tsuang, S.-C. Guo, K. G. Shyu,

S. J. Glatt, and C. Liew. Assessing the validity of blood-based gene expression

profiles for the classification of schizophrenia and bipolar disorder: A prelimi-

nary report. American Journal of Medical Genetics Part B: Neuropsychiatric

Genetics, 133(1):1–5, 2005.

[206] M. T. Tsuang, W. S. STONE, and S. V. Faraone. Genes, environment and

schizophrenia. The British Journal of Psychiatry, 178(40):s18–s24, 2001.

[207] V. G. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays

applied to the ionizing radiation response. Proceedings of the National

Academy of Sciences, 98(9):5116–5121, 2001.

[208] P. Tyrer and T. Kendall. The spurious advance of antipsychotic drug therapy.

The Lancet, 373(9657):4–5, 2009.



Bibliography 234

[209] T. B. Üstün, J. Rehm, S. Chatterji, S. Saxena, R. Trotter, R. Room, and

J. Bickenbach. Multiple-informant ranking of the disabling effects of different

health conditions in 14 countries. The Lancet, 354(9173):111–115, 1999.

[210] M. P. van den Heuvel and H. E. Hulshoff Pol. Exploring the brain net-

work: A review on resting-state fMRI functional connectivity. European

Neuropsychopharmacology, 20(8):519–534, Aug. 2010.

[211] R. Van Driessche and D. Roose. An improved spectral bisection algorithm and

its application to dynamic load balancing. Parallel Computing, 21(1):29–48,

1995.

[212] J. Varadarajulu, A. Schmitt, P. Falkai, M. Alsaif, C. W. Turck, and D. Martins-

de Souza. Differential expression of HINT1 in schizophrenia brain tissue.

European archives of psychiatry and clinical neuroscience, 262(2):167–172,

2012.

[213] M. Vawter, H. Tomita, F. Meng, B. Bolstad, J. Li, S. Evans, P. Choudary,

M. Atz, L. Shao, C. Neal, et al. Mitochondrial-related gene expression changes

are sensitive to agonal-pH state: implications for brain disorders. Molecular

psychiatry, 11(7):663–679, 2006.

[214] M. P. Vawter, J. M. Crook, T. M. Hyde, J. E. Kleinman, D. R. Weinberger,

K. G. Becker, and W. J. Freed. Microarray analysis of gene expression in

the prefrontal cortex in schizophrenia: a preliminary study. Schizophrenia

research, 58(1):11–20, 2002.

[215] P. Whitaker-Azmitia, A. Borella, and N. Raio. Serotonin depletion in the

adult rat causes loss of the dendritic marker MAP-2: A new animal model of

schizophrenia? Neuropsychopharmacology, 12(3):269–272, 1995.



Bibliography 235

[216] T. Whitford, S. Grieve, T. Farrow, L. Gomes, J. Brennan, A. Harris, E. Gor-

don, and L. Williams. Volumetric white matter abnormalities in first-episode

schizophrenia: a longitudinal, tensor-based morphometry study. American

Journal of Psychiatry, 164(7):1082–1089, 2007.

[217] L. Wilkinson and M. Friendly. The history of the cluster heat map. The

American Statistician, 63(2), 2009.

[218] J. Wu, M. Buchsbaum, and W. Bunney. Positron emission tomography study

of phencyclidine users as a possible drug model of schizophrenia. Yakubutsu,

seishin, Japanese journal of psychopharmacology, 11(1):47, 1991.

[219] X. Xiao. Complex Networks and the Generalized Singular Value Decomposition.

PhD thesis, University of Strathclyde, 2011.

[220] X. Xiao, N. Dawson, L. MacIntyre, B. J. Morris, J. A. Pratt, D. G. Watson,

and D. J. Higham. Exploring metabolic pathway disruption in the subchronic

phencyclidine model of schizophrenia with the generalized singular value

decomposition. BMC Systems Biology, 5(1):72, 2011.

[221] Y. Yang and A. Raine. Prefrontal structural and functional brain imaging

findings in antisocial, violent, and psychopathic individuals: a meta-analysis.

Psychiatry Research: Neuroimaging, 174(2):81–88, 2009.


	Contents
	List of Figures
	List of Tables
	Mathematics Introduction
	Complex networks
	Notation
	Spectral Methods
	Reordering and Clustering

	Biological Background
	Microarray
	Schizophrenia
	Outline of Thesis
	Publications and Presentations

	Neural Subsystems to Interrogate Ketamine as a Translational Model for Schizophrenia
	Background and the Ketamine Model
	Method of Analysis
	Discussion

	Integration of Neural Subsystems in Rats Administered Modafinil and PCP
	Background and the PCP Animal Model
	Introducing the Data
	Hypergeometric Probability Testing of Subsystem Representation
	Clustering of Individual Neural Subsystems
	Clustering and the Two-way Interaction of Neural Subsystems
	Discussion

	Constructing Metabolic Networks from the KEGG and MetaCyc databases
	Metabolic Networks
	KEGG
	MetaCyc: A Second Metabolic Network
	Network Comparison: KEGG + MetaCyc
	Discussion

	The Node-Weighted Laplacian
	Spectral Methods and Graph Laplacians
	Formulation
	Synthetic Testing
	Node-Weighted Laplacian: Microarray Application
	Discussion

	Exploring the Effect of Antipsychotic Medication on Gene Expression in Human Whole Blood Schizophrenia Data
	Introduction and Motivation
	Introducing the Data
	Analysis: SVD and GSVD
	Clustering with the SVD
	GSVD: Identification of Mutually Exclusive Features in Sample Groups
	Node-Weighted Laplacian
	Discussion
	Summary

	Clustering and Gene Ontology of Antipsychotic-free Schizophrenia: Replicate Results
	Introducing the Data
	Clustering with the SVD
	Clustering with the GSVD
	Comparison with Chaper 7 Results
	Gene Ontology (GO): Annotation of Gene Lists
	Node-Weighted Laplacian
	Discussion

	Spectral Clustering of Brain Gene Expression Data
	Introducing the Data
	SVD
	GSVD: Schizophrenia and Control Data
	Comparison of Chapters 7, 8 and 9
	Discussion

	Conclusions
	Animal Models Relevant to Schizophrenia
	Stratification of Patients and Biomarkers
	Spectral Clustering Methods

	Bibliography

