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Abstract 

Hyperspectral data contains rich spectral information and so have become very useful 

in data classification. However, hyperspectral data contains several spectral bands 

(usually in hundreds) which bring about curse of dimensionality and limits its potential 

in classification applications. With a focus on addressing this problem, this thesis 

applies Linear Discriminant Analysis (LDA) for hyperspectral data dimensionality 

reduction and proposes novel extensions of LDA.  

LDA is a supervised technique which can reduce the number of dimensions in data. 

One problem with LDA is that the number of features it can produce is limited to  𝑐𝑐 −

1 where 𝑐𝑐 is the number of classes in the data. Also, LDA gives sub-optimal 

performance when applied on small training samples, which limits its use on 

hyperspectral data since such data does not always contain enough samples for 

training. 

Firstly, this thesis applies LDA on spectral features extracted from hyperspectral data 

to reduce its dimensionality and combines the LDA outputs with spatial features from 

RGB images. Comparative performance analysis of LDA and PCA is also performed. 

Results show that LDA can perform better than PCA and that combining spectral 

features with spatial features from RGB images can improve performance of 

classification models. Secondly, Folded LDA (F-LDA), a novel extension of LDA, is 

proposed for hyperspectral data dimensionality reduction. F-LDA is based on a 

mathematical ‘trick’ (folding the pixels) which was inspired by previous work to 

extend PCA using a similar innovative step. Results show that F-LDA achieves higher 

accuracy than LDA and other state-of-the-art methods when applied on small training 

samples. When compared with LDA, F-LDA achieves reduction in computational 
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complexity and memory requirement, and can extract many more features. Finally, F-

LDA is applied on optimal spectral features selected by Genetic Algorithms. Results 

show that  a novel combination of GA and F-LDA can achieve further reduction in 

computational complexity and memory requirement in certain applications. 
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1. Introduction 

Hyperspectral imaging (HSI) systems have become very useful in data classification 

applications due to the rich spectral information which are present in hyperspectral 

images (produced by such systems) [1],[2],[3] and the major role that hyperspectral 

images play in precision agriculture [4], environment monitoring [5], national security 

[6], etc. Hyperspectral imaging systems offer simultaneous acquisition of spectral and 

appearance-based information [7],[8],[9]. Consequently, chemical and physical 

profiles of samples are captured in the acquired hyperspectral images and are utilised 

for enhanced classification [8],[10]. This is different from the conventional RGB 

imaging and spectroscopy which have been applied separately for classification 

[8],[9]. RGB imaging can only provide appearance-based information of samples in 

the acquired images and not their constituents [8]. Similarly, spectroscopy can only 

provide information on the molecular composition [8],[11] and no information on the 

appearance of samples is captured. 

Hyperspectral imaging systems have produced very promising results in classification 

[12],[13],[14],[15],[8],[10]. However, hyperspectral imaging still faces some 

challenges which limit its potential for classification. Firstly, traditional classification 

models suffer from curse of dimensionality due to the presence of very high number 

of spectral features (usually in hundreds) in the acquired hyperspectral images, and 

this degrades performance of such models [16],[17],[18]. Hence, the development of 

innovative data dimensionality reduction techniques for redundant data removal while 

retaining important information becomes imperative for enhanced classification. The 

research community working on providing optimal classification systems still faces 

the challenges of getting the best dimensionality reduction tools to deal with the 
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problem of high number of spectral features, which are present in the acquired 

hyperspectral imaging data. Secondly, while RGB imaging captures reflectance in 3 

channels (Red, Green and Blue), hyperspectral imaging captures reflectance in several 

spectral bands (usually in hundreds) with increased spectral resolution. However, 

hyperspectral imaging, when compared to RGB imaging, often provides a decreased 

pixel density due to spatial binning and to enhance the data (acquired) robustness 

[19],[20]. Hence, fidelity in the appearance-based features is reduced especially when 

discriminating small objects such as rice seeds which are studied as one application in 

this thesis.  

This thesis is therefore aimed at conducting investigations and proposing solutions to 

address these challenges. Firstly, this thesis evaluates the effectiveness of combining 

spectral information from high spectral resolution hyperspectral images and 

appearance based information from high spatial resolution RGB images for 

hyperspectral data classification while also applying Linear Discriminant Analysis 

(LDA) for dimensionality reduction of the spectral data before combining it with the 

spatial data for enhanced classification. It is necessary to justify the selection of LDA 

for this study since it is a less commonly applied technique than Principal Component 

Analysis (PCA) for dimensionality reduction of spectral data [15],[21],[10],[13]. 

Performance of LDA is therefore compared with that of the commonly applied PCA. 

The results from the comparative study of LDA and PCA show that LDA can perform 

better than PCA when applied to reduce the dimensionality of hyperspectral data. 

Performance evaluation of the proposed approach is performed on hyperspectral data 

of rice seeds. The rice seed data is selected for this study due to the role that 

classification plays as an important step in rice seed screening exercises, the promising 
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results achieved in recent papers by hyperspectral imaging data in rice seed 

classification and the continued need for rice seed screening exercises to be automated 

and enhanced [15],[22],[23]. Experimental results show that the proposed combination 

of spectral features from the hyperspectral images and spatial features from the RGB 

images can improve performance of classification models.  

Secondly, based on the superior performance achieved by LDA when applied on 

hyperspectral data, this thesis also proposes an extended and improved version of 

LDA, named Folded LDA (F-LDA). Performance of the proposed F-LDA is evaluated 

on five hyperspectral datasets from different sensors namely Hyperion sensor [5], 

ROSIS (Reflective Optics System Imaging Spectrometer) sensor [24], and AVIRIS 

(Airborne Visible/InfraRed Imaging Spectrometer) sensor [25]. These five datasets are 

selected for this study because their use will broaden the scope of the proposed 

technique since the selected datasets are widely used in related papers [24],[26],[27]. 

Results obtained demonstrate the ability of the proposed F-LDA to outperform the 

conventional LDA in terms of classification accuracy, computational complexity, and 

memory requirement.  

Finally, this thesis proposes the hybridization of GA and F-LDA (i.e., GA+F-LDA) 

for dimensionality reduction of spectral data. This is based on the promising results 

achieved in other publications where a Genetic Algorithm (GA) was applied to select 

optimal features in the data prior to feature extraction using PCA [28],[29] and LDA 

[30],[31]. The proposed GA+F-LDA is achieved by applying F-LDA on reduced 

hyperspectral datasets (datasets containing optimal spectral features selected by the 

GA). Performance of the proposed approach (GA+F-LDA) is evaluated on 

hyperspectral datasets of rice seeds and sugar. The continued need for rice seed 
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screening exercises to be automated and enhanced [15],[22],[23] makes it a good 

application domain for F-LDA and the proposed GA+F-LDA where they would be 

deployed to enhance rice seed classification (an important step in rice seed screening 

exercises). The sugar dataset is selected to demonstrate the potential of the proposed 

approach in enhancing the classification of other Agri-tech products. Results obtained 

show that the proposed GA+F-LDA can further reduce the computational complexity 

and memory requirement at the different stages of F-LDA. These benefits, however, 

come with a slight reduction in classification performance (in terms of accuracy and 

F1 score) when compared with those attained by the standard F-LDA. 

1.1. Original Contribution 

The novel contributions of this thesis are summarised as follows: 

1) The effectiveness of an innovative framework for combining spatial and spectral 

features is evaluated. (Chapter 4). 

2) Comparative study of LDA and PCA as dimensionality reduction techniques for 

hyperspectral data is conducted (Chapter 4). 

3) Performance of the innovative framework in 1) above is carried out on a large, 

diverse dataset of 90 rice seed species and similarity assessment of species 

(classes) is recommended in rice seed classification (Chapter 4). 

4) The large hyperspectral dataset of rice seeds used in this work is made publicly 

available to the community (Chapter 4). 

5) F-LDA, an extended and improved version of LDA, is proposed for hyperspectral 

data dimensionality reduction (Chapter 5).  

6) Hybridization of GA and F-LDA (GA + F-LDA) is proposed for dimensionality 

reduction of hyperspectral data (Chapter 6). 
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Detailed explanation of these contributions is provided below: 

 

In Chapter 4, effectiveness of fusing spatial features from RGB images and spectral 

features for hyperspectral data classification is evaluated. It is necessary to reduce the 

dimensionality of the spectral features prior to fusing them with the spatial features to 

enhance the classifier’s performance. Also, since PCA is a more commonly applied 

dimensionality reduction techniques for hyperspectral data, it is necessary to compare 

its performance with LDA in preliminary analysis and use the superior technique in 

the final analysis where the performance of the framework for fusing spatial and 

spectral features will be evaluated. Hence, LDA and PCA are applied separately on 

the spectral data to reduce its dimensionality. It is observed that LDA can outperform 

PCA when used to reduce dimensions of spectral data. LDA is therefore utilised to 

reduce the dimensionality of spectral features, the outputs of which are then combined 

with the spatial features. It is also observed that the combination of spatial and spectral 

features improves discrimination ability and classifier’s performance.  

State-of-the-art techniques (as will be shown in Chapter 3) which are related to the 

approach evaluated in Chapter 4 were mainly evaluated on datasets with small variety 

of species; usually, 5-6 with the exception of [32] (30 species) and [33] (754 species). 

It is therefore difficult to confirm if the varying results achieved in those papers were 

due to superiority of algorithms employed, effectiveness of feature descriptors used 

for model training, or, differences in the inter-class or intra-class variation of species 

used in each paper since the datasets used in those papers are not publicly available. 

Consequently, performance evaluation of the proposed approach is evaluated on a 

large, diverse hyperspectral dataset of 90 rice seed species with 96 seeds per species. 



6 
 

It is then observed that performance of classification models can be impacted by 

varying the number of species in the datasets. Hence, similarity assessment of species 

is recommended. The large dataset of rice seeds is made publicly available [34],[35] 

to the community to assist in the benchmarking of the framework for feature 

combination. Specifically, the rice seed dataset was made available at an online 

research repository named Zenodo [36] in January 2020 and has been downloaded 

6,205 times as at 27th June 2022. However, the dataset is yet to be cited based on the 

information available at Zenodo [36]. 

In Chapter 5, an extended and improved version of LDA, named Folded-LDA (F-

LDA) is proposed. The proposed F-LDA is based on a simple but effective 

mathematical ‘trick’ (folding the pixels) which was inspired by previous work where 

an extension of PCA was proposed [37]. The proposed F-LDA shares the concepts of 

‘folding the pixels’ with the two dimensional (2D) LDA [38] but also improves it by 

treating resulting eigenvectors individually and unfolding the projected samples. 

These allow more discriminant features to be extracted by the proposed F-LDA. These 

differentiate the proposed F-LDA from the 2D LDA where the eigenvectors are 

combined into a single projection vector and consequently, projection samples are also 

not folded. Performance of the proposed technique is evaluated on five publicly 

available hyperspectral datasets. Experimental results show that the proposed F-LDA 

produces more informative features and achieves higher classification accuracy than 

the original feature space, conventional LDA, 2D LDA and other state-of-the-art 

methods namely Generalized Discriminant Analysis (GDA) [39], Nonparametric 

Weighted Feature Extraction (NWFE) [40], Kernel PCA (KPCA) [41] and Folded 

PCA (F-PCA) [37] when applied in small sample size scenarios. When compared with 

https://zenodo.org/record/3241923#.Yflbw-rP02w
https://zenodo.org/record/3241923#.Yflbw-rP02w
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the conventional LDA, the proposed F-LDA can also achieve reduction in contiguous 

memory requirement and computational complexity.  

In Chapter 6, hybridization of GA and F-LDA (GA + F-LDA) for dimensionality 

reduction of hyperspectral data is proposed. The use of GA to select optimal spectral 

features in the data is followed by the application of F-LDA on the selected features 

for feature extraction and further dimensionality reduction. Performance of the 

proposed approach (GA + F-LDA) is evaluated on two hyperspectral datasets of 10 

and 20 rice seed species (with both containing 256 spectral features), and another 

hyperspectral dataset of sugar containing 9 species and 160 spectral features. 

Experimental results show that, while the standard F-LDA gives slightly higher 

classification results than the proposed GA+F-LDA, applying F-LDA on datasets 

containing GA-selected optimal spectral features can further reduce the computational 

complexity and memory requirement of F-LDA.  

1.2. Thesis Organisation   
The remainder of this thesis is arranged as follows: 

Chapter 2 provides relevant technical background information on hyperspectral 

imaging and various dimensionality reduction approaches for hyperspectral imaging 

data. The techniques presented are relevant to the methods that are used, developed 

and extended in the later chapters of this work.  

Chapter 3 presents a review of approaches used by various authors in the literature for 

dimensionality reduction and classification of hyperspectral imaging data. 

Chapter 4 proposes a novel combination of spatial features (extracted from high 

resolution RGB) and spectral features (extracted from hyperspectral images) for 
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hyperspectral data classification. It also applies LDA and compares its performance 

with that of the widely used PCA for dimensionality reduction of hyperspectral data. 

Chapter 5 presents a novel dimensionality reduction method named F-LDA. This 

proposed technique is an extended and improved version of LDA for dimensionality 

reduction of hyperspectral imaging data.  

Chapter 6 explores the effectiveness of hybridizing GA and F-LDA (GA+ F-LDA) for 

dimensionality reduction of hyperspectral imaging data. 

Chapter 7 presents a summary of the thesis contributions and suggestions for future 

research directions. 
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2. Theoretical Background 

Based on the research motivation presented in Chapter 1, this chapter provides 

theoretical background on hyperspectral imaging data classification with a focus on 

dimensionality reduction techniques for hyperspectral data in classification 

applications. Specifically, this chapter explains the workings of various data 

dimensionality reduction approaches for hyperspectral imaging data as well as related 

classification steps which are relevant to the contributions made in this thesis which 

will be described in the next chapters.  

2.1. Hyperspectral Imaging  

Hyperspectral images, as illustrated in Figure 2.1, are data cubes which consist of a set 

of 2D images 𝐼𝐼 (of rows 𝑘𝑘  and columns 𝑙𝑙) captured at different wavelengths, 𝑤𝑤 (third 

dimension) of the acquiring HSI sensors. Hence, each pixel in the data cube represents 

a set of spectral bands of reflected light in the wavelength range of the sensors 

[42],[34],[43]. Dimensions of the data cube can be denoted as 𝑘𝑘 × 𝑙𝑙 × 𝑏𝑏, where b is 

the number of spectral bands in the data [7].  
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Figure 2.1 (a) Schematic diagram of the hyperspectral data cube, where 𝑘𝑘 × 𝑙𝑙  and 𝑏𝑏 

denote the number of samples (pixels) and features (bands) in the hyperspectral data 

respectively  (b) Pictorial diagram of the hyperspectral data cube where its spatial 

dimension is denoted as x × y and the spectral dimension as λ [43]. 

Hyperspectral imaging provides an alternative way of acquiring and processing images 

to the conventional RGB imaging and spectroscopy which have been applied 

separately for classification and process automation [8],[9]. RGB imaging can only 

provide morphological, colour and textural information of acquired images and not the 

constituents [8]. Similarly, traditional point spectroscopy can provide information on 

the molecular composition [8],[11] and no information on the spatial context. 

Hyperspectral imaging systems produce images with very high spectral resolution and 

offer simultaneous acquisition of spatial, textural and spectra information [8],[9],[7]. 

Hence, both the chemical and physical profiles of acquired hyperspectral images are 

utilised for improved model performance [8],[10]. 

Data cube 𝑘𝑘 

𝑏𝑏 
𝑙𝑙 

(𝑎𝑎) (𝑏𝑏) 
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2.2. Hyperspectral Imaging Data Classification 

Hyperspectral imaging data classification is performed using the following 4 key steps 

[2],[39],[23]: data acquisition, data pre-processing, dimensionality reduction and 

classification. The classification steps are illustrated in Figure 2.2 and explained fully 

in the following subsections. 

 

Figure 2.2 A block diagram showing the steps for hyperspectral imaging data 

classification 

2.2.1. Data Acquisition 

Hyperspectral images of samples are usually acquired at this stage using hyperspectral 

imaging systems. Such images can be acquired either by positioning the acquiring 

systems over a scene containing the samples for remote data acquisition or by 

installing the acquiring systems in a laboratory where samples whose images are to be 

captured are positioned below the cameras attached to the acquiring systems (As 

illustrated in Figure 2.3).  

The hyperspectral imaging system can acquire data using different approaches namely 

whiskbroom, push-broom, and staring [44]. Whiskbroom is a technique used in 

Dimensionality  

Reduction 
Classification Data  

Pre-processing 

Data 
Acquisition 
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hyperspectral imaging system to capture a point (pixel) in the image at a time. A  

dispersive element such as prism can then be used to disperse the spectral information 

in the captured point on a line detector. The hyperspectral data cube can therefore be 

formed by scanning the entire image point by point. Hence, whiskbroom scanning is 

also referred to as point or pixel scanning [1],[45]. When operating in the push-broom 

mode, the hyperspectral imaging system can capture a line (a set of points or pixels) 

in the image at a time. The spectra information of the scanned image line is then 

dispersed on a matrix detector. One axis of the matrix detector always shows the spatial 

information on the scanned image line while the other axis shows the corresponding 

spectral information. The hyperspectral data cube can therefore be formed by scanning 

the entire image in the spatial domain line by line. Hence, push-broom scanning is also 

Figure 2.3 A pictorial diagram of the hyperspectral imaging camera 

set up in the laboratory. Samples whose image are to be acquired are 

positioned on a stage and below the hyperspectral imaging camera 
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referred to as line scanning [2],[45],[46]. When using the staring approach, the 

hyperspectral imaging system can capture the entire image at a time. The captured 

image is passed through a tunable filter and acquired at a narrow frequency range. This 

is possible by tuning the filter to the corresponding wavelength (as a function of time). 

The process above is repeated at different wavelengths of the filter. The resulting 

hyperspectral data cube is therefore an accumulation of images acquired at different 

spectral bands [45],[47]. Another approach which can be used is snapshot [44]. In 

snapshot mode, the acquiring system does not employ the scanning approach. Instead, 

it captures both the spectral and spatial information in one shot. Hence, snapshot is 

also known as single-shot [45]. In Chapter 4 of this thesis, where a hyperspectral 

imaging system is used to acquire images of rice seeds of different species, the push-

broom approach is adopted. This is due to the high spectral resolution it offers [45] 

and its successful deployment in recently published related papers [13],[15],[48].  

It is also worth noting that there are existing publicly available hyperspectral imaging 

data which were captured remotely using popular sensors such as Hyperion sensor [5], 

ROSIS (Reflective Optics System Imaging Spectrometer) sensor [24], and AVIRIS 

(Airborne Visible/InfraRed Imaging Spectrometer) sensor [25]. For instance, 

Hyperion sensor on the National Aeronautics and Space Administration (NASA) EO-

1 satellite was deployed at the Okavango Delta to capture Botswana hyperspectral data 

at a spectral range of 400-2500 nm. The acquired Botswana data contains 14 different 

classes and originally has 242 spectral bands and a spatial dimension of 1476 × 256 

pixels. ROSIS sensor was deployed over Pavia in northern Italy to capture Pavia 

Centre hyperspectral data. There are 9 different classes in the acquired hyperspectral 

data which originally has 114 spectral bands and a spatial dimension of 1096 × 1096 



14 
 

pixels. ROSIS sensor was also used to acquire another hyperspectral data named Pavia 

University Scene when deployed over Pavia, in northern Italy. There are 9 different 

classes in the acquired Pavia University hyperspectral data which has 115 spectra 

bands and a spatial dimension of 610 × 340 pixels. AVIRIS sensor was deployed over 

Salinas Valley in California to capture Salinas-A hyperspectral data. 6 different classes 

are present in the acquired Salinas-A hyperspectral data which has a spatial dimension 

of 86×83 pixels and originally contains 224 spectral bands. AVIRIS sensor was also 

deployed at Indian Pine test site in North-western Indiana to capture Indian Pine 

hyperspectral data at a range of 400-2500 nm. The acquired Indian Pine data contains 

16 different classes and originally has 224 spectral bands and a spatial dimension of 

145 × 145 pixels. The Botswana, Pavia Centre, Pavia University, Salinas-A and Indian 

Pine data are all used in Chapter 5 of this thesis. 

Also, hyperspectral images of rice seed samples were acquired in the laboratory using 

a hyperspectral imaging system for use in this thesis. The hyperspectral imaging 

system, which consisted of a Specim V10E Imaging Spectrograph and Hamamatsu 

ORCA-05G CCD camera, was used to acquire the hyperspectral images at a Visible - 

Near Infrared (VIS/NIR) range of ~ (385 – 1000) nm. This is a part of a bigger data 

acquisition system, based on which the performance of a new data fusion technique is 

evaluated in Chapter 4. Hence, full description of the system will be presented in that 

chapter.  

2.2.2. Data Pre-processing 

At this stage, the acquired hyperspectral imaging data is pre-processed to reduce or 

remove noises which are present in the acquired hyperspectral data. Discarding noisy 
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bands and subtraction of dark current from the acquired hyperspectral data [49] are 

two well-known approaches for achieving this and are described below: 

A. Removal of noisy bands 

The spectral range of hyperspectral imaging cameras are often characterised by the 

presence of noisy bands at both ends of such range [49]. It is necessary to remove these 

noisy bands to prevent them from limiting the performance of models when presented 

with hyperspectral data for classification. 

For instance, the Botswana, Pavia Centre, Pavia University, Salinas-A and Indian Pine 

data were all pre-processed using this approach before they were made publicly 

available as illustrated in Table 2.1 below [5],[24],[25],[50]. 

Table 2.1 Number of bands in the Botswana, Pavia Centre, Pavia University, Salinas-

A and Indian Pine data before and after the removal of noisy bands 

Datasets Number of 

bands 

(originally) 

Number of 

discarded 

bands 

Number of 

retained 

bands 

Botswana 242 97 145 

Pavia Centre 114 12 102 

Pavia 

University 

115 12 103 

Salinas-A 224 20 204 

Indian Pine 224 24 200 
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B. Subtraction of dark currents 

Dark currents are electronic currents which flow through detectors in hyperspectral 

imaging systems and constitute noise in the images acquired by the systems [49],[51]. 

Dark currents are usually generated due to the difference in temperature between the 

environment and the sensor [51]. Charged-Couple Device (CCD) detector is an 

example of detectors in where thermally induced current can be generated [49]. 

Subtraction of a dark current image (which is usually captured by covering the camera 

lens using its cap while the light source is turned off [8],[13]) from the acquired 

hyperspectral image is a common approach for removing the influence of dark current 

[49],[14].       

2.2.3. Dimensionality Reduction of HSI Data 

Dimensionality reduction of HSI data is the process of reducing the number of spectral 

features which are present in the data. Dimensionality reduction of HSI data can be 

classified into feature extraction and feature selection.  

Feature extraction is the process of extracting useful features from the data by 

transforming it from the original feature space to a lower dimensional space. The lower 

dimensional space contains new features which provide important information for 

improved model performance. After applying feature extraction techniques on HSI 

data, the features extracted are usually fed to models for further action such as 

classification. Feature selection, on the other hand, is the process of selecting an 

optimal feature subset from several subsets of the original feature set. Since the new 

space is a subset of the original set, it usually contains features which are also present 

in the original set. It retains important information in the data while discarding the 

others.  
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Explained below are the reasons why dimensionality reduction of HSI data is 

necessary for improved model performance: 

1. For a data with a fixed number of samples, classification accuracy will continue 

to increase as more features are added to the data until the classification 

accuracy reaches a peak. A decline in the classification accuracy begins after 

the peak is reached following the initial rise. This is called Hughes 

phenomenon. HSI data is characterised by the presence of many spectral bands, 

usually in the order of hundreds. Also, the applications of HSI data are faced 

with the problem of small sample size (limited number of labelled samples for 

training). Lack of enough samples for training and high dimensionality of data 

are responsible for the Hughes phenomenon which limits the performance of 

traditional machine learning classifiers when applied on HSI data. Hence, 

dimensions of HSI data are often reduced before they are presented to 

classification models to avoid the Hughes phenomenon. 

2. Many of the spectral bands which are present in HSI data are highly correlated. 

High correlation among the bands results in data redundancy and noise which 

in turn limit the performance of models when applied on HSI data. Hence, 

dimensionality reduction tools are often applied on HSI data to produce or 

retain features which contain key information while discarding features which 

constitute noise and redundancy in the data. 

3. Models perform various mathematical operations such as multiplication on 

hyperspectral data matrices. The computational complexity of these operations 

are often dependent on the dimension of the data matrices. Hence, reducing the 
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dimensionality of the hyperspectral data matrices will reduce the 

computational complexity as well as the space required to store such matrices. 

While pre-processed hyperspectral imaging data can be fed directly to models for 

classification, dimensionality reduction techniques have proven to be effective in 

improving performance of such models when applied on the data prior to 

classification. A description of selected dimensionality reduction techniques are 

presented below - with a focus on those which will be applied and extended in the 

contribution chapters of this thesis (Chapter 4 - 6):  

2.2.3.1. Principal Component Analysis  

Principal Component Analysis (PCA) performs data dimensionality reduction by 

transforming the data into a linearly uncorrelated (orthogonal) components by looking 

for directions with the most variations in the data. PCA then ranks these Principal 

Components (PCs) based on the percentage of variance they explain in the data. This 

is illustrated in Figure 2.4 where the first principal component (PC1) accounts for the 

most variation in the data followed by the second principal component (PC2) which is 

selected to be orthogonal and ranked (based on the amount of variation it accounts for) 

next to PC1. PCA achieves this without considering the classes in the data. Hence, it 

is classified as an unsupervised dimensionality reduction technique. 
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Figure 2.4 Transformation of a 2 dimensional data into two orthogonal PCs by PCA.  

 PCA consists of the following three main steps: (1) Covariance matrix computation 

(2) Eigenvalues and eigenvectors computation and (3) Data projection. 

Implementation steps of the PCA and its applications for feature extraction and 

dimensionality reduction of hyperspectral data are fully described below: 

1. Covariance matrix computation 

Firstly, as illustrated in Figure 2.5, the hyperspectral data cube is converted into a data 

matrix, 𝑿𝑿 of size 𝑠𝑠 ∗  𝑓𝑓 where 𝑠𝑠 = 𝑘𝑘 × 𝑙𝑙  and 𝑓𝑓 = 𝑏𝑏 represent the number of samples 

(pixels) and features (bands) in the hyperspectral data respectively.  The elements of 

𝑿𝑿  are as shown in (2.1). 

 

 

Feature 1 

Feature 2 

PC1 
PC2 
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𝑥𝑥11 𝑥𝑥12 𝑥𝑥13 ⋯ 𝑥𝑥1𝑓𝑓 

 

 

𝑥𝑥21 𝑥𝑥22 𝑥𝑥23 ⋯ 𝑥𝑥2𝑓𝑓  

⋮ ⋮ ⋮ ⋱ ⋮  

𝑥𝑥𝑠𝑠1 𝑥𝑥𝑠𝑠2 𝑥𝑥𝑠𝑠3 ⋯ 𝑥𝑥𝑠𝑠𝑓𝑓  
 

 

Figure 2.5 Conversion of the hyperspectral data cube into a 2D matrix 𝐗𝐗 with a 

dimension of 𝑠𝑠 × 𝑓𝑓 where 𝑠𝑠 = 𝑘𝑘 × 𝑙𝑙 is the number of samples and 𝑓𝑓 = b is the 

number of features in the data. Each row in 𝐗𝐗 represents the spectral vector of a pixel 

in the hyperspectral data cube. 

𝑿𝑿 =  �

𝑥𝑥11
𝑥𝑥21

𝑥𝑥12
𝑥𝑥22

⋯
⋯

𝑥𝑥1𝑓𝑓
𝑥𝑥2𝑓𝑓

⋮
𝑥𝑥𝑠𝑠1

⋮
𝑥𝑥𝑠𝑠2

⋱
⋯

⋮
𝑥𝑥𝑠𝑠𝑓𝑓

�                                (2.1) 

Each column (feature) in 𝑿𝑿 can be represented as 𝑥𝑥𝑒𝑒  = [𝑥𝑥1𝑒𝑒 ,  𝑥𝑥2𝑒𝑒 , … . 𝑥𝑥𝑆𝑆𝑒𝑒] 𝑇𝑇where  

𝜖𝜖 [1, 𝑓𝑓]. If the mean of 𝑥𝑥𝑒𝑒 is denoted as 𝑐𝑐𝑒𝑒, each feature can be centralised as in (2.2).  

�̅�𝑥𝑒𝑒 =  𝑥𝑥𝑒𝑒 −  𝑐𝑐𝑒𝑒                                                       (2.2) 

𝑏𝑏 

  
𝑙𝑙 

𝑘𝑘 Data cube 
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If each column in 𝑿𝑿 is replaced with the corresponding centralised �̅�𝑥𝑒𝑒,  𝑿𝑿 can be mean-

centered and formulated as in (2.3).  

𝑿𝑿� =  

⎣
⎢
⎢
⎡�̅�𝑥11�̅�𝑥21

�̅�𝑥12
�̅�𝑥22

⋯
⋯

�̅�𝑥1𝑓𝑓
�̅�𝑥2𝑓𝑓

⋮
�̅�𝑥𝑠𝑠1

⋮
�̅�𝑥𝑠𝑠2

⋱
⋯

⋮
�̅�𝑥𝑠𝑠𝑓𝑓⎦

⎥
⎥
⎤
                                 (2.3) 

The covariance matrix of the data matrix, 𝑾𝑾 can be computed using (2.4). 

𝑾𝑾 =  1
𝑆𝑆
𝑿𝑿�𝑇𝑇𝑿𝑿�                                                            (2.4) 

2. Eigenvalues and eigenvectors computation 

The covariance matrix can be decomposed into three different matrices as in (2.5). 

𝑾𝑾 =  𝑣𝑣𝜆𝜆𝑣𝑣𝑇𝑇                                                              (2.5) 

where 𝑣𝑣 = �𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … . 𝑣𝑣𝑓𝑓� is an orthonormal matrix that contains the eigenvectors 

and 𝜆𝜆 = [𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3, … . 𝜆𝜆𝑓𝑓] is a diagonal matrix containing the eigenvalues. 

3. Data projection. 

The data can be projected using (2.6). If the eigenvectors are ranked in accordance 

with their corresponding eigenvalues in descending order, a sub matrix containing the 

first 𝑑𝑑 eigenvectors, represented as 𝑽𝑽𝒅𝒅, can be selected to transform the data matrix 

into a lower dimensional space 𝑌𝑌𝑇𝑇 as in (2.7).  

𝑌𝑌 =  𝑿𝑿�𝑣𝑣                                                                  (2.6) 

𝑌𝑌 =  𝑿𝑿�𝑽𝑽𝑑𝑑                                                                 (2.7) 
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2.2.3.2. Linear Discriminant Analysis  

Linear Discriminant Analysis (LDA) performs data dimensionality reduction by 

computing a transformation matrix to maximize the between class variance and 

minimize the within class variance in the data. LDA therefore goes further than PCA 

by considering the classes in the data. Hence, LDA is classified as a supervised 

dimensionality reduction technique. LDA can be broken down into the following three 

steps: (1) Computation of the within-class variance and between-class variance, (2) 

Computation of the transformation matrix and eigenvectors, and (3) Data projection. 

Implementation steps of the conventional LDA and its applications for feature 

extraction and dimensionality reduction of hyperspectral data are fully described 

below: 

1. Computation of the within-class and between-class variance  

Before LDA can be applied on the hyperspectral data cube, the data cube has to be 

converted into a data matrix 𝑿𝑿 as illustrated in Figure 2.5. The dimension of 𝑿𝑿 is given 

as 𝑠𝑠 × 𝑓𝑓 where 𝑠𝑠 = 𝑘𝑘 × 𝑙𝑙  and 𝑓𝑓 = 𝑏𝑏 represent the number of samples (pixels) and 

features (bands) in the hyperspectral data respectively. Each sample in 𝑿𝑿 is a spectral 

vector of a pixel in the hyperspectral data cube and can be represented by 𝒙𝒙𝒏𝒏 where 

𝑛𝑛 𝜖𝜖 [1, 𝑠𝑠].  If the number of classes and jth class in 𝑿𝑿 are represented as 𝑐𝑐 and 𝑐𝑐𝑗𝑗  

respectively, the number of samples in each class can be represented as  𝑁𝑁𝑗𝑗 and the ith 

sample in class 𝑐𝑐𝑗𝑗 represented as 𝑥𝑥𝑖𝑖𝑗𝑗 where 𝑖𝑖 𝜖𝜖 [1, 𝑁𝑁𝑗𝑗]. The mean of the samples in 

each class 𝑐𝑐𝑗𝑗, denoted as 𝒎𝒎𝒋𝒋 where 𝑗𝑗 𝜖𝜖 [1, 𝑐𝑐] , and the mean of all the samples in the 

data matrix 𝑿𝑿, denoted as 𝒎𝒎, can then be computed using (2.8) and (2.9) below. 

𝒎𝒎𝒋𝒋 = 1
𝑁𝑁𝑗𝑗

 ∑ 𝑥𝑥𝑖𝑖𝑗𝑗
𝑁𝑁𝑗𝑗
𝑖𝑖=1                                                        (2.8) 
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𝒎𝒎 =  ∑ 𝑁𝑁𝑗𝑗
𝑠𝑠
𝒎𝒎𝒋𝒋

𝑐𝑐
𝑗𝑗=1                                                         (2.9) 

The within-class variance 𝑽𝑽𝑾𝑾 and the between-class variance 𝑽𝑽𝑩𝑩 of 𝑿𝑿 can be 

computed using (2.10) and (2.11) respectively.  

𝑽𝑽𝑾𝑾 = ∑ ∑ (𝑥𝑥𝑖𝑖𝑗𝑗  −  𝒎𝒎𝒋𝒋)𝑇𝑇(𝑥𝑥𝑖𝑖𝑗𝑗  −  𝒎𝒎𝒋𝒋)
𝑁𝑁𝑗𝑗
𝑖𝑖=1

𝑐𝑐
𝑗𝑗=1                             (2.10) 

𝑽𝑽𝑩𝑩 = ∑ 𝑁𝑁𝑗𝑗(𝐦𝐦𝒋𝒋 −  𝐦𝐦)𝑇𝑇(𝐦𝐦𝒋𝒋 −  𝐦𝐦)𝑐𝑐
𝑗𝑗=1                                    (2.11) 

where 𝑽𝑽𝑾𝑾 𝜖𝜖 ℜ𝑓𝑓 ×𝑓𝑓 and 𝑽𝑽𝑩𝑩 𝜖𝜖 ℜ𝑓𝑓 ×𝑓𝑓. 

2. Computation of transformation matrix and eigenvectors computation, and data 

projection 

The transformation matrix, 𝑻𝑻, can be calculated to maximize the between-class 

variance, 𝑽𝑽𝑩𝑩, and minimize the within-class variance, 𝑽𝑽𝑾𝑾, using (2.12). 

𝑻𝑻 = 𝑽𝑽𝑾𝑾−1𝑽𝑽𝑩𝑩,𝑻𝑻  𝜖𝜖 ℜ𝑓𝑓 ×𝑓𝑓     (2.12) 

The eigenvalues 𝜆𝜆 and the eigenvectors 𝒗𝒗 are computed from the EigenValue 

Decomposition (EVD) of 𝑻𝑻. The eigenvectors 𝒗𝒗 with a dimension of  𝑓𝑓 ∗ 𝑓𝑓 are then 

ranked using their corresponding eigenvalues (starting from the highest to the lowest). 

By selecting the first 𝑑𝑑 columns of the ranked 𝒗𝒗 and discarding the remaining 

eigenvectors (with small eigenvalues), the ranked 𝒗𝒗 is reduced to 𝑽𝑽𝒅𝒅  with a dimension 

of 𝑓𝑓 ×  𝑑𝑑. It is noteworthy that the value of 𝑑𝑑 is bound by the number of non-zero 

eigenvalues, which is given as 𝑐𝑐 − 1. This limits the number of components that can 

be selected by the LDA to 𝑐𝑐 − 1 which is also the rank of the between-class variance 

matrix, 𝑽𝑽𝑩𝑩 [52],[53],[54]. 

The data matrix 𝑿𝑿 can then be projected into a lower dimensional space 𝑌𝑌 using (2.13). 
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𝒀𝒀 = 𝑿𝑿𝑽𝑽𝒅𝒅, 𝑿𝑿 𝜖𝜖 ℜ𝑠𝑠 ×𝑓𝑓 ,𝑽𝑽𝒅𝒅 𝜖𝜖 ℜ𝑓𝑓 ×𝑑𝑑                                    (2.13) 

where 𝒀𝒀 is the projected data and 𝑿𝑿 is the original data. 

2.2.3.3. Folded Principal Component Analysis (F-PCA) 

Folded PCA (F-PCA) is an extension of the conventional PCA. F-PCA folds each 

spectral vector in the data matrix into a 2D matrix. The data is now structured as a 

stack of 2D matrices (folded spectral vectors). F-PCA applies the three main steps of 

the PCA mentioned in Section 2.2.3.1 on the data, treating each 2D matrix in the stack 

as a sample. After projecting the data into a lower dimensional space, F-PCA unfolds 

the projected samples. Unlike PCA which applies the three key steps on the data matrix 

(a set of spectral vectors), F-PCA processes a set of 2D matrices (the stack). By folding 

each spectral vector, F-PCA can extract the local features in the hyperspectral data for 

improved classification performance. Also, since the dimension of the folded matrices 

are usually much smaller than the original data matrix, the computational costs and 

memory requirement for the F-PCA are also usually smaller than those of the PCA 

[37]. Different dimensions of the folded matrices are usually explored with the one 

that gives the best classification accuracy selected.  

Let �̅�𝑥𝑛𝑛 =  [�̅�𝑥𝑛𝑛1, �̅�𝑥𝑛𝑛2, … . �̅�𝑥𝑛𝑛𝑓𝑓] represents each row (spectral vector) in the data matrix 𝑿𝑿� 

where 𝑛𝑛 𝜖𝜖 [1, 𝑠𝑠], each spectral vector is folded into a 2D matrix (folded sample), 𝑿𝑿�𝑛𝑛. 

The covariance matrix of each folded vector is computed using (2.14). This is known 

as the partial covariance matrix [37]. All the partial covariance matrices are 

accumulated to form the main covariance matrix of the data matrix 𝑿𝑿� as in (2.15). 

𝑾𝑾𝑛𝑛 = 𝑿𝑿�𝒏𝒏
𝑇𝑇𝑿𝑿�𝑛𝑛                                                    (2.14) 
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𝑾𝑾𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 =  1
𝑠𝑠

  ∑ 𝑾𝑾𝑛𝑛
𝑠𝑠
𝑛𝑛=1 =  1

𝑠𝑠
  ∑ 𝑿𝑿�𝑛𝑛

𝑇𝑇𝑿𝑿�𝑛𝑛𝑠𝑠
𝑛𝑛=1         (2.15) 

As in the PCA, EVD of the covariance is done to obtain the eigenvectors and their 

corresponding eigenvalues. Projection of each folded samples is done using a subset 

of the eigenvector matrix (first 𝑑𝑑 eigenvectors selected) using (2.16). 

𝒀𝒀𝒏𝒏  =  𝑿𝑿�𝑛𝑛𝑽𝑽𝑑𝑑                                                      (2.16) 

The final step of the F-PCA is the unfolding of each projected sample matrix, 𝒀𝒀𝒏𝒏. 

2.2.3.4. Genetic Algorithms 

Genetic Algorithms (GAs) are optimization techniques which have found applications 

in data dimensionality reduction process, specifically feature selection. Genetic 

algorithms function as a wrapper-based feature selector. This is illustrated in Figure 

2.6 where a Genetic Algorithm, like any other wrapper-based feature selectors,  

analyses the relationship between the entire feature sets in the raw data and 

classification model to select an optimal subset of features for increased classification 

performance.  
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GAs selects optimal feature subset from the main feature sets using the principle of 

natural selection, crossover, and mutation which are explained below: 

1) Selection:  GAs randomly initialize a set of chromosomes (possible solutions), 

also known as the candidate solutions. Each chromosome is usually encoded 

as a vector containing binary values (genes). Fitness of each chromosomes are 

estimated using a fitness function, also known as the objective function. 

Chromosomes which are considered unfit are discarded while those which are 

considered fit are selected. Selected chromosomes are mated using crossover 

and mutation to produce new offspring.  

2) Crossover: This is an operator used by GAs to mate chromosomes which are 

considered fit to reproduce fitter chromosomes. New chromosomes which are 

produced by crossover usually contains genes which are present in at least one 

of the mating chromosomes.  

3) Mutation: This is another operator used by GAs to produce new offspring but 

differ from the crossover because the offspring it produces contain genes which 

Raw Data 

 

Genetic Algorithm  

 
Feature 

Selection 
Classification 

 Output (data 
containing 

selected optimal 
features) 

Classification 

 

Figure 2.6 Selection of optimal features in the raw data using a Genetic Algorithm. The 

Genetic Algorithm considers several subsets of the original feature set and uses a 

classification model to select the optimal feature subset as its output.  
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are not present in the parent chromosomes. Reproduction by mutation provides 

a way for GAs to explore the search space and reach a global solution.  

The selection, crossover, and mutation processes are repeated for many generations 

until certain conditions are met. The common approach is to  terminate the process 

when the maximum number of generations set is reached or fitness of the solution has 

reached a peak level such that better results cannot be attained at further generations 

[55],[56]. Output of the feature selection process using Genetic Algorithm is a reduced 

dataset which contains selected optimal features. Performance of classification models 

can be improved by feeding such models with the reduced dataset instead of the data 

containing the full features.  

2.2.4 Classification 

At this stage, classification models are built to classify the hyperspectral data. To 

achieve this, the hyperspectral data is divided into training and testing sets, after which 

classification models are trained using the training set. The trained models can then be 

applied to classify samples (spectral vectors) which are present in the testing sets i.e. 

different classes are assigned to samples in the testing set. The models selected and 

implemented for classification of hyperspectral imaging data in this thesis are Random 

Forests [8] and Support Vector Machines [37].  Workings of the selected classification 

models and reasons for their selection are explained below: 

1) Random Forest  

Random Forest is an ensemble model which contains many decision trees. Each 

decision tree in the Random Forest, as its name implies, is a tree-like classifier which 

uses the concepts of flow-chart to learn the representation in data to make decision 
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when presented with new data. In each decision tree are nodes and branches. Each 

node in the tree shows the test of an attribute or feature. Each branch of the tree joins 

(extends) a node to the subsequent one and shows one of the possible test results on 

the attribute in the node it extends [57]. Each branch therefore provides an alternative 

route from the previous node it extends to a new node.  Starting with the topmost node 

(which is the parent or root node), each decision tree in the Random Forest outlines all 

possible routes or branches to the final nodes (which are also known as the leaf nodes). 

The leaf nodes show the outcomes (targeted classes or categories in the data). Each 

decision tree is constructed from a bootstrapped (sampled with replacement) dataset 

and allowed to grow to a maximum extent from a random subset of variables at each 

nodes of the trees. Each decision tree in the Random Forest classification model is  

illustrated in Figure 2.7 where the final nodes show the targeted classes (possible 

decisions) [58]. Each decision tree in the Random Forest is allowed to make a decision 

and accumulation of the decisions reached by the trees are used by the Random Forest 

to make predictions on new data (as illustrated in Figure 2.8). 

Random Forests can effectively process large datasets and overcome the problem of 

overfitting through the use of many decision trees. Random Forests is selected for the 

tasks in Chapter 3 and 6 of this thesis where new data fusion and dimensionality 

reduction techniques are proposed for hyperspectral data classification and 

hyperspectral images of rice seeds are used to evaluate performance of the proposed 

techniques. The selection of Random Forests is due to the promising results achieved 

by the Random Forests model when applied in related papers on hyperspectral imaging 

data of rice seeds [8],[9],[59]. 
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Registered 
? 

Not 
Allowed 

Age ≥ 25 

Not 
Allowed 

Allowed 

No Yes 

No 
Yes 

Figure 2.7 A decision tree to classify people as ‘allowed’ or ‘not allowed’ (to enter a venue). 

Based on this tree, only those who are registered and are aged 25 or above will be classified 

as allowed. 
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Figure 2.8 A random forest classification model containing three decision trees where 

the aggregate of the decisions reached by each tree is used to make a final prediction 

on the data. 

2) Support Vector Machines (SVM)  

SVM is a classification model which uses a kernel function to transform data into a 

higher dimensional space where it finds an optimal hyperplane (as illustrated in Figure 

2.9) to discriminate the different classes in the data. One kernel that is commonly 

adopted for use in SVM when applied on hyperspectral imaging data is Radial Bias 

Functions (RBF), which uses two parameters namely penalty and gamma [60],[61]. 

The first step in using SVM is to optimize parameters of the kernel function. The 

optimal parameter selection can be achieved at the training stage using a grid search 
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and the training dataset. The SVM model with the optimized parameters can then be 

applied on the test dataset for final evaluation. SVM is adopted for the tasks in Chapter 

5 of this thesis where a new dimensionality reduction approach is proposed for 

hyperspectral data classification and remotely sensed hyperspectral images are used to 

evaluate performance of the proposed approach. The satisfactory classification 

performance achieved by the SVM model when applied in related papers [60],[61] on 

remotely sensed hyperspectral data motivated its selection.    

 

2.2.5. Performance Evaluation 

Performance metrics are usually computed to evaluate how well the model has 

performed in classifying the hyperspectral data. It is worth noting here that the model 

performance can be influenced by the type of pre-processing techniques, 

dimensionality reduction techniques and classification models adopted. This work is 

focused on developing new dimensionality reduction approaches for hyperspectral 

Original feature space Higher (2) dimensional feature space 

Kernel Function 

Figure 2.9 Transformation of the data by SVM to a higher dimensional space using a kernel 

function. The two categories become separable in the new space. 
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imaging data and so it will be given utmost attention when performance evaluation of 

model is being carried out. Description of the various performance metrics which will 

be used at different stages of this thesis is provided below: 

1) Classification Accuracy  

Accuracy of a classification model can be computed by comparing the predicted labels 

and the targeted labels in the test set. The Overall Accuracy (OA) can be computed as 

the ratio of the number of correct predictions to the total number of predictions. 

Mathematically, OA can be defined using (2.17). If the accuracy for each class in the 

data, 𝐴𝐴𝑗𝑗   is calculated using (2.17), then the Average Accuracy (AA) can be calculated 

as the average of all 𝐴𝐴𝑗𝑗 for the data. AA is mathematically defined in (2.18).  

OA =  
number of correctly predicted labels  

total number of predictions
            (2.17) 

AA =  
∑ 𝐴𝐴𝑗𝑗𝑐𝑐
𝑗𝑗

𝑐𝑐
                                                                           (2.18) 

where 𝐴𝐴𝑖𝑖 is the accuracy for class 𝑖𝑖 and 𝑐𝑐 is the number of classes in the data. 

2) Precision, Recall and F1 score 

Precision is a measure of the fraction of positive predictions that are true positives 

while recall is a measure of the fraction of the actual positives that are true positives. 

F1 score is the harmonic mean of precision and recall. It aims to find a balance between 

the precision and recall. Precision, recall and F1 score are mathematically defined in 

(2.19), (2.20) and (2.21). 

𝑃𝑃 =
𝑡𝑡𝑝𝑝

𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑝𝑝
                                                    (2.19) 
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𝑅𝑅 =  
𝑡𝑡𝑝𝑝

𝑡𝑡𝑝𝑝 + 𝑓𝑓𝑛𝑛
                                                 (2.20) 

𝐹𝐹1 score = 2 ∗  
𝑃𝑃 ∗ 𝑅𝑅
𝑃𝑃 + 𝑅𝑅

                                (2.21) 

where 𝑡𝑡𝑝𝑝 is the number of true positives, 𝑓𝑓𝑝𝑝 is the number of false positives, 𝑡𝑡𝑛𝑛 is the 

number of true negatives and 𝑓𝑓𝑛𝑛 is the number of false negatives.  

Macro averaging and micro averaging are two common approaches for computing the 

average of P, R and 𝐹𝐹1 score. In macro averaging, the P, R and 𝐹𝐹1 for each class are 

computed and the mean of P, R and 𝐹𝐹1 for all classes are reported as the macro 

averaged P, R and 𝐹𝐹1. In micro averaging, true positives, false positives, true negatives 

and false negatives are computed for each of the classes.  Macro averaged and macro 

averaged P, R and 𝐹𝐹1 score are mathematically defined in (2.22) – (2.27), where c is 

the number of classes in the data.  

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑃𝑃1+ 𝑃𝑃2+⋯+𝑃𝑃𝐶𝐶
𝐶𝐶

                               (2.22) 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑅𝑅1+ 𝑅𝑅2+⋯+𝑅𝑅𝐶𝐶
𝐶𝐶

                              (2.23) 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐹𝐹1 score1+ 𝐹𝐹1 score2+⋯+𝐹𝐹1 score𝐶𝐶
𝐶𝐶

    (2.24) 

           𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑡𝑡𝑝𝑝1 +  𝑡𝑡𝑝𝑝2 + ⋯𝑡𝑡𝑝𝑝𝑚𝑚

𝑡𝑡𝑝𝑝1 +  𝑡𝑡𝑝𝑝2 + ⋯𝑡𝑡𝑝𝑝𝑚𝑚 + 𝑓𝑓𝑝𝑝1 +  𝑓𝑓𝑝𝑝2 + ⋯+  𝑓𝑓𝑝𝑝𝑚𝑚
   (2.25) 

𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 =  
𝑡𝑡𝑝𝑝1 +  𝑡𝑡𝑝𝑝2 + ⋯𝑡𝑡𝑝𝑝𝑚𝑚

𝑡𝑡𝑝𝑝1 +  𝑡𝑡𝑝𝑝2 + ⋯𝑡𝑡𝑝𝑝𝑚𝑚 +  𝑓𝑓𝑛𝑛1 + 𝑓𝑓𝑛𝑛2 + ⋯+ 𝑓𝑓𝑛𝑛𝑚𝑚
         (2.26) 

𝐹𝐹1 score𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎  = 2 ∗  
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎
   (2.27) 

 



34 
 

3) Kappa Coefficient  

Kappa coefficient (𝑘𝑘𝑘𝑘) is a statistical tool used as a performance metric in classification 

to quantify the degree of agreement between the predicted labels and the actual labels 

[61],[62]. Kappa coefficient can be calculated using (2.28) and takes both the 

observed and chance agreements into account. Higher Kappa coefficient implies a 

better classification performance [21].  

𝑘𝑘𝑘𝑘 =  
𝑃𝑃𝑚𝑚 − 𝑃𝑃𝑎𝑎
1 − 𝑃𝑃𝑎𝑎

                                                           (2.28) 

where 𝑃𝑃𝑚𝑚 is the observed agreement and 𝑃𝑃𝑎𝑎 is the probability of chance agreement. 
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3. Related Work 

 Review of publications which are related to the current study is presented in 

this chapter. Specifically, 3.1 presents a review of dimensionality reduction techniques 

for hyperspectral imaging data in classification applications. 3.2 reviews computer 

vision based techniques used by various authors in the literature for classification 

purposes with a focus on the potential of hyperspectral imaging data in rice seed 

classification. A review of various techniques which are used for dimensionality 

reduction of hyperspectral imaging data when applied for classification of rice seeds 

is presented in 3.3. 

3.1. A Review of Dimensionality Reduction Tools for Hyperspectral Data 

Classification  

 Hyperspectral data usually contains hundreds of spectral bands, many of which 

are highly correlated [63],[64],[65]. High correlation among the spectral bands in the 

hyperspectral data results in data redundancy and noise [65],[66]. Also, enough 

samples are usually not available in the hyperspectral data for training [63],[67]. 

Insufficient training samples and high dimensionality of hyperspectral data often result 

in Hughes phenomenon [24],[68],[69]. The Hughes phenomenon is usually 

responsible for the decline in the classification accuracy as the number of spectral 

bands increases after the accuracy has initially risen to a peak [17],[18],[70]. Hence, 

the classification performance (classification accuracy and computational complexity) 

of traditional machine learning models can be degraded by Hughes phenomenon when 

the number of training samples are limited and the data dimensionality is high. 

Dimensionality reduction of hyperspectral data through feature extraction techniques 

can therefore resolve the problem posed by the Hughes phenomenon. Feature 
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extraction techniques can be applied on hyperspectral data to transform it into a lower 

dimensional space where features are de-correlated and reduced in numbers. Hence, 

the classification accuracy is increased, and the computational complexity and 

memory requirements are reduced as well. 

 Deep learning models which incorporate layers for feature extraction prior to 

classification have been applied for hyperspectral data classification. In [68], a three 

dimensional Convolutional Neural Network (3D CNN) was proposed for the 

classification of hyperspectral images. In the proposed 3D CNN, the convolution 

layers and the feature maps are three dimensional to capture both the spatial and 

spectral information in the hyperspectral images. A pooling layer was included in the 

network by the authors in [68] to further reduce the size of the feature maps. The 

authors in [68] used Pavia University dataset to evaluate performance of  the 3D CNN 

and showed that the 3D CNN can outperform CNN when applied to classify 

hyperspectral data in terms of classification accuracy.  

 In another paper [24], four different deep learning models namely two 

dimensional CNN (2D-CNN), three dimensional CNN (3D-CNN), recurrent 2D-CNN 

(R-2D-CNN) and recurrent 3D-CNN (R-3D-CNN) were proposed for classification of  

hyperspectral data. In the 2D-CNN, the authors implemented a 2D convolution layers 

for feature extraction and excluded the pooling layers (which can further reduce 

dimensionality of the feature maps) from the network to prevent them from affecting 

the network’s classification accuracy. The authors went further to develop a recurrent 

2D CNN (R-2D CNN) which is capable of shrinking the small patch at the centre of 

each pixel gradually and concentrating them at the central pixel to reduce any noise 

which can arise in the 2D CNN. Similar approaches were implemented to develop the 
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3D CNN and the recurrent 3D CNN wherein the three dimensional convolutional 

layers were implemented to allow the network to capture both the spatial and the 

spectral context.  The authors observed that the R-2D-CNN and R-3D-CNN gave 

higher classification accuracy than the 2D-CNN and 3D-CNN respectively and that R-

3D-CNN gave the best classification performance when applied on Indian Pines, 

Botswana, Salinas, Pavia Center, Pavia University and Kennedy Space hyperspectral 

datasets. 

 While the deep learning classifiers achieved promising results, they require 

complex parameter tuning. Unlike deep learning based models, traditional machine 

learning classifiers require simple parameter tuning and outputs of a separate feature 

extraction technique [24],[71]. These feature extraction techniques can be divided into 

supervised and unsupervised techniques. This division depends on whether the labels 

in the data are used in the feature extraction process or not. Supervised techniques 

make use of the labels in the feature extraction process while unsupervised techniques 

do not. Several supervised feature extraction techniques have been applied for 

dimensionality reduction of hyperspectral data.  

 In [72], dimensionality reduction of Indian Pine hyperspectral data was 

performed using Linear Discriminant Analysis (LDA), a supervised feature extraction 

technique. The authors in [72] fed the features extracted from the hyperspectral data 

to a SVM classification model and observed that data dimensionality reduction using 

LDA can improve performance of classification models.  

 Generalized Discriminant Analysis (GDA) is another supervised technique 

which was applied in [39] for feature reduction of hyperspectral data acquired using 
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AVIRIS  (Airborne Visible/Infrared Imaging Spectrometer) and PHI (Pushbroom 

Hyperspectral Imager) sensors . In [39], GDA was implemented as a non-linear version 

of the LDA by using a kernel trick to map all the samples in the hyperspectral data to 

a new high dimensional space. The use of polynomial kernels, RBF kernels and neural 

network kernels were considered. Subsequently, the traditional steps in the linear 

version (LDA) were applied on the data in the new space for non-linear feature 

extraction. The significant improvement on the classification performance of the full 

spectral bands and the LDA achieved by the GDA using the RBF kernel demonstrated 

the potential of GDA for feature extraction of hyperspectral data.     

 Similarly, dimensionality reduction of hyperspectral data have been carried out 

using several unsupervised feature extraction techniques. In [73], dimensions of 

different hyperspectral datasets namely Indian Pines, Salinas, and Washington DC 

hyperspectral datasets were reduced using Principal Component Analysis (PCA), an 

unsupervised feature extraction technique. PCA transformed the original features into 

linearly uncorrelated principal components – the components which explain the most 

variance in the data are usually retained. The performance of PCA in [73] are 

promising and demonstrates its potential in feature extraction of hyperspectral data 

prior to classification.  

 Singular Spectral Analysis (SSA) is another unsupervised feature extraction 

techniques which was applied in [74] on two hyperspectral datasets (captured using 

AVIRIS) namely 92AV3C and Salinas C datasets. In [74], SSA decomposed each 

pixel into several components and reconstructed the pixel while discarding the noisy 

and less representative ones based on EigenValue Decomposition (EVD). By so doing, 

SSA achieved improvements in the classification accuracy.  
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 Recent research has focused more on extending and proposing different 

versions of some of these techniques for improved classification performance. For 

instance, the paper in [41] applied a non-linear version of PCA to transform the Pavia 

University, Pavia Center and Washington DC hyperspectral datasets into a linearly 

separable feature space to capture higher order statistics while extracting the principal 

components. By capturing higher order statistics, the authors in [41] achieved 

improvement in the classification accuracy. Also, the authors in [75] improve the 

performance of SSA, which was evaluated on  92AV3C and Salinas C hyperspectral 

datasets, by applying Singular Value Decomposition (SVD) on a representative pixel. 

This is different from the conventional SSA where SVD is applied on every pixel in 

the hyperspectral data. The application of SVD on a representative pixel by the authors 

in [75]  led to reduction in computational complexity.  

 The paper in [37] proposed an extension of the PCA where each of the spectral 

vectors in the data matrix was folded into feature matrix.  The authors in [37] then 

computed the covariance matrix and eigenvectors using the converted matrix (folded 

vectors) and unfolded the projected samples for classification of hyperspectral data 

which resulted in higher classification accuracy and reduced computational 

complexity. Improvements in the performance of the classification model (SVM) 

achieved in [37] when applied on Indian Pine hyperspectral and Synthetic Aperture 

Radar (SAR) datasets motivates the work in Chapter 5 of this thesis where LDA is 

extended using a similar innovative step.  

 LDA transforms the data into a lower dimensional space by computing a 

transformation matrix to maximize the between class variance and minimize the within 

class variance. The transformation matrix produced by LDA can maximize the 
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separability among the different classes in the data. The number of features (𝑓𝑓) which 

are present in the data determines the size of the between class matrix, the within class 

matrix and the transformation matrix (which is given as 𝑓𝑓 ∗ 𝑓𝑓). Since hyperspectral 

data usually contains many features (usually in hundreds), the dimension of these 

matrices can become very large and huge memory and high computational cost will 

be required by LDA to store and process such matrices [76],[77],[78]. The maximum 

number of features that can be extracted by LDA is 𝑘𝑘 − 1, where 𝑘𝑘 is the number of 

classes in the hyperspectral data. This limitation is imposed on LDA by the rank of the 

between class variance matrix which is given as 𝑘𝑘 − 1 [52],[53],[54]. Also, LDA gives 

below par performance when applied on small training samples which explains why 

its usage on hyperspectral data is limited since the availability of hyperspectral data 

samples for training is usually limited [26].  

 To solve the small sample size problem, the papers in [79],[80],[81] used two 

dimensional (2D) LDA in face recognition applications. In the 2D-LDA proposed by 

the authors in [79], each sample was represented using a matrix and so the data was 

treated as a collection of matrices. This is different from the common data 

representation where each sample is a vector and the data is a data matrix. The authors 

in [79] went on to propose another approach named 2D-LDA + LDA, where LDA is 

applied on the outputs of the 2D-LDA to further reduce the features produced by the 

2D-LDA. Performance of the two proposed approaches were evaluated on three 

publicly available face datasets namely PIX, ORL, and PIE. The results obtained by 

the authors in [79] demonstrate the potential of the 2D-LDA in improving the 

performance of the traditional LDA when used in small sample size scenarios. The 
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authors in [79] also observed that 2D-LDA + LDA gave the highest classification 

accuracy though it was slower than the 2D LDA.  

 The papers in [80] and [81] also applied 2D-LDA but on different face datasets. 

The authors in [80] applied 2D-LDA on ORL and Yale face database B while ORL 

face database was used for performance evaluation of 2D-LDA by the authors in [81]. 

Potential of 2D LDA in solving the problem of small sample size (which limits the 

traditional LDA) was demonstrated, according to the experimental results obtained in 

[80] and [81]. 

  In a more related paper, 2D LDA was applied in [38] for feature extraction of 

four different hyperspectral datasets namely Indian Pines, Pavia University, Kennedy 

Space Center (KSC) and Botswana hyperspectral datasets. In [38], each of the feature 

vectors in the data was converted into a feature matrix to overcome the influence of 

small sample size on classification results. However, the authors in [38] did not 

consider the concept of ‘folding of the pixel’, which was introduced for PCA in [37]. 

Hence, unfolding of the projected samples was also not considered. Instead, the 

eigenvectors were combined into a single projection vector using a weighted sum. By 

using a single projection vector, the number of features that can be extracted by 2D 

LDA becomes limited to the number of columns in the feature matrix. Also, the 

performance of 2D LDA was not compared with that of the Full Spectral Bands 

(FSBs). It is therefore difficult to verify the effectiveness of 2D LDA in solving the 

small sample size problem since feature extraction and data reduction of hyperspectral 

data are aimed at enhancing the performance of classifiers on FSBs. Finally, 

computational complexity analysis and experiments to illustrate how the feature vector 

to matrix conversion can be limited were not performed.   
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3.2. A Review of Computer Vision Based Approaches for Classification Tasks 

with A Focus on the Potential of Hyperspectral Imaging Data in Rice Seed 

Classification 

While hyperspectral imaging data continues to be limited by its high dimensional 

nature, it has become very useful in classification of Agri-tech products, specifically 

rice seeds [39], using computer vision based approaches. This section will review the 

use of computer vision based approaches for classification tasks with a focus on the 

potential of hyperspectral imaging data when applied in rice seed classification. 

 Computer vision systems have been used in a range of food quality assessment 

applications [82], [83], [12], [21]. Recent research has focused on creating new 

techniques to automatically inspect and assess food quality by combining image 

analysis and machine learning techniques. The paper in [84] explored different rice 

seeds (polished) classification and quality control tasks. Specifically,  the paper in [84] 

presents a comprehensive survey of various computer vision techniques, physical 

property measurements, compound content and distributions of rice grains for seed 

quality control.  

 Classification is an important task in rice seed quality control and assessment 

process [15]. Rice seed classification using computer vision systems are usually 

implemented in several key steps, some of which are image data collection, data 

dimensionality reduction and feature representations via models using pattern 

recognition algorithms or multivariate analysis techniques. Appearance-based 

approaches usually apply one or combination of the following features: morphological, 

colour, and textural. Table 3.1 presents a summary of existing techniques used by 

various authors for rice seed classification using computer vision based systems.  
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Table 3.1 A Survey on Rice Seed Classification Techniques Using Computer Vision 

Approaches 

Ref. Number 
of 
Varieties
  

Extracted Features Sensing 
modality 

DRT Classifier Performance Dataset 
Public 

Year 

Huang et al. 
[85] 

3 Shape-based RGB - Back-propagation 
neural network (BPNN) 

95.56% No 2017 

Hong et al. 
[59] 

6 Morphological, 
colour, texture, 
GIST, and SIFT 

RGB - RF, SVM 90.54% No 2015 

Lui et al. [86] 6 Colour, and 
morphological 

RGB PCA Neural network 84.33% No 2005 

Wang et al. 
[15] 

3 Spectral and 
morphological 

HSI PCA PCA, back-propagation 
neural network (BPNN) 

89.18% - 94.45% No 2014 

Vu et al. [9] 6 Spectral and 
morphological 

HSI PCA RF, SVM 84% No 2016 

Kuo et al. 
[32] 

30 Morphological, 
colour, and 
texture 

RGB - Sparse coding 89.1% No 2016 

OuYang et al. 
[87] 

5 Colour RGB - Back-propagation 
neural network (BPNN) 

93.66% No 2010 

Aznan et al. 
[88]   

5 Morphological RGB - Discriminant function 
analysis 

96% No 2016 

Pazoki et al. 
[89] 

5 Colour, 
morphological, and 
shape 

RGB UTA 
algorithm 

Multi-layer perceptron, 
neuro-fuzzy neural 
networks 

98.40% - 99.73 % No 2014 

Sun et al. 
[10] 

4 Spectral, texture and 
morphological 

HSI PCA SVM 91.67% No 2015 

Singh et al. 
[90]  

4 Colour, texture, and 
wavelet  

RGB Mean feature 
vector 
similarity 

Back-propagation 
neural network (BPNN) 

96.25 - 100% No 2016 

Shwetank et 
al. [16] 

5 Spectral HSI PCA, 
Segmented 
PCA 

SAM 82.61 % No 2010 

Liu et al. [91] 2 Spectral  HSI PCA probabilistic neural 
network (PNN) 

100% No 2011 

Gilanie et al. 
[92] 

7 Deep  RGB - CNN 100% No 2021 

Kiratiratanapr
uk [22] 

14 Shape-based, colour, 
and texture 

RGB PCA Logistic Regression 
(LR), Linear 
Discrimination Analysis 
(LDA), k-Nearest 
Neighbours (KNN), 
SVM and CNN 

95.14% No 2020 

Joshi et al. 
[93] 

4,7 Deep Optical 
Coherence 
Tomography 
(OCT) 

- CNN 89.6% No 2021 

Sun et al. 
[94] 

5 Spectral, colour, 
texture, and 
morphological  

HSI Bootstrapping 
soft shrinkage  

SVM 99.44% No 2021 

Yong et al. 
[95] 

2 Spectral, and deep HSI PCA CNN, Residual Neural 
Network (RNN), Partial 
Least Squares 
Discrimination Analysis 
(PLS-DA), SVM 

99.50% No 2020 
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 Lai et al. [96] manually classified cereal grains. Seven types of grain namely 

corn, soybeans, sorghum, white rice, brown rice, wheat and barley were selected by 

the authors in [96] for the classification tasks. Basic physical parameters (area, 

perimeter, width, length, ferret diameters, projected height, projected width, volume, 

and convex perimeter) measured using image analysis were initially employed by the 

authors to create patterns for each of the grains. After finding out that the measured 

physical parameters were not effective enough in classifying the grains, different 

shape-based functions were then derived from the basic physical parameters by the 

authors to enhance the process. For instance, aspect ratio (𝑙𝑙𝑎𝑎𝑛𝑛𝑎𝑎𝑙𝑙ℎ
𝑤𝑤𝑚𝑚𝑎𝑎𝑙𝑙ℎ

), 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚
𝑎𝑎𝑚𝑚𝑙𝑙𝑣𝑣𝑚𝑚𝑎𝑎

, and 

circularity were adopted by the authors to define the pattern for sorghum to 

differentiate them from other types of grains. Convex perimeter and 𝑚𝑚𝑚𝑚𝑎𝑎𝑚𝑚
𝑎𝑎𝑚𝑚𝑙𝑙𝑣𝑣𝑚𝑚𝑎𝑎

   were 

selected as the criteria for identifying brown rice. The pattern for differentiating 

soybeans from other types of grains were defined using area and circularity, as selected 

by the authors. To differentiate corn, white rice, wheat and barley from other types of 

grains, two, four, three and nine criteria were adopted respectively. 

 Similarly, Sakai et al. [97] manually differentiated brown rice from polished 

rice grains. The authors created a population of polished rice grains by polishing a 

selected number of brown rice using polishing machines. For the classification task, 

the authors extracted physical dimensions and shape functions of 4 varieties of rice 

grains using two-dimensional image analysis. The dimensions extracted are area, 

perimeter, maximum length and maximum width while compactness and elongation 

are the shape functions which were derived from the dimensions. For instance, 

elongation was computed by the authors as  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑚𝑚 𝑙𝑙𝑎𝑎𝑛𝑛𝑎𝑎𝑙𝑙ℎ
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑣𝑣𝑚𝑚 𝑤𝑤𝑚𝑚𝑎𝑎𝑙𝑙ℎ

. By using the extracted 
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dimensions and the shape functions as criteria, the authors in [97] achieved 95.4% as 

the probability of discriminating between brown rice and polished rice. 

 More recent papers [59], [86] and [87] focused on automatic classification of 

rice seeds. The authors in [59] extracted colour, texture, GIST, SIFT and shape based 

(area, length, width, 𝑙𝑙𝑎𝑎𝑛𝑛𝑎𝑎𝑙𝑙ℎ
𝑤𝑤𝑚𝑚𝑎𝑎𝑙𝑙ℎ

, major axis length, minor axis length, convex hull area and 

convex hull perimeter) features to classify 6 varieties of rice seeds using Random 

Forests, K-Nearest Neighbours and Support Vector Machines models. In [59], the 

Random Forests model gave the highest average accuracy of 90.54%. The authors in 

[86] extracted colour and morphological (area, length, width, major axis length, minor 

axis length, thinness ratio, aspect ratio, etc.) features to classify 6 varieties of rice 

seeds. Due to high correlation among the extracted features, the authors in [86] 

selected 17 out of the 21 features extracted. The feature selection process in [86] was 

based on correlation coefficients. PCA was applied on the rice seed data by the authors 

to further reduce the remaining 17 features to 4 principal components. Output of the 

PCA in [86] was then used to train a neural network model for classification of the rice 

seeds. The authors in [86] achieved an average classification accuracy of 84.33%.  In 

a quest for automatic classification of rice seeds using appearance-based features of 

the seeds, the authors in [87] extracted colour and basic shape-based (length, area, etc.) 

features of 5 varieties of rice seeds and used the extracted features to train a neural 

network and achieved a classification accuracy of 93.66%.  

 Huang et al. [85] analysed shape descriptors which go beyond the commonly 

applied features in the literature namely, chaff tip (width, height), depth of concavities 

of rice kernels, etc. The paper in [85] achieved a classification accuracy of  95.56% 

when discriminating similar rice seed varieties using a neural network. The authors 
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also compared the performance of the neural network in [85] with that of a Bayes 

classifier and they both achieved comparable results. However, evaluation in [85] is 

limited to only 3 varieties. Kuo et al. [32] extracted and employed morphological, 

colour, and textural features to classify 30 varieties of rice seeds  using multi-focus 

image fusion and sparse representation classification. The authors in [32] achieved an 

accuracy of 89.1%. Although, the authors in [32] briefly acknowledged the use of 

limited number of rice seed species by majority of the literature, they did not illustrate 

how this would affect the discrimination ability of classifiers. Instead, their paper 

focused on detailed region of interest (e.g., sterile lemmas) on the grains. 

 Recently, HSI data have been applied and produced promising classification 

performance in food and agriculture engineering. Wang et al. [15] extracted spectral 

information in the VIS/NIR range of 400-1000 nm to classify 3 rice seed varieties. The 

authors in [15] combined the extracted spectral features with the degree of chalkiness 

and shape-based features which were also extracted from the acquired HSI images. 

PCA was applied on the spectral data to reduce its dimensionality and the extracted 

principal components were used to train a neural network which attained a 

classification accuracy of 94.45%. 

 In [98], the authors showed that combining Least Squares Support Vector 

Machine (LS-SVM) regression method and VIS/NIR spectroscopy at a range of 325-

1075 nm can be successfully applied to monitor nitrogen status in rice. More recently, 

the authors in [8] used HSI data to identify four rice seed cultivars. The authors in [8] 

utilised full spectral bands in the range 1,039-1,612 nm, and achieved a classification 

accuracy of up to 100% using a Random Forest (RF) classifier. However, the authors 
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in [8] hybridized four cultivars from other species to attain that level of performance, 

hence, it is not clear how the inter/intra class varies among the cultivars.  

 In a search for optimal feature combination, the authors in [9] and [10] 

extracted the following different feature combination schemes: spectral and texture 

features; morphological, texture and spectral features; and morphological and texture 

features. The authors in [9] applied PCA on a combination of spectral and spatial 

features extracted from a dataset of 6 rice seed species and used the output of PCA to 

train Random Forest and Support Vector Machines models. The authors in [9] 

observed that the Random Forest model achieved the best precision of 84%. The 

authors in [10] also applied PCA on a combination of spectral, texture and 

morphological features extracted from a dataset of 4 rice seed species and used the 

extracted features to train a Support Vector Machines model. The author in [10] 

observed that the combination of spectral, morphological and textural features 

(classification accuracy of 91.67%, with four polished rice species) gave the best 

classification results.  

  Finally, it is worth noting that Table 3.1 includes new publications, 

which are related to the current study and some of which have cited [34] (which is the 

result of work that will be presented in Chapter 4 of this thesis).  
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3.3. A Review of Dimensionality Reduction Techniques for Hyperspectral 

Imaging Data When Applied in Classification of Agri-tech Products 

(With a Special Focus on Rice Seeds) 

 Hyperspectral imaging systems have produced very promising results when 

applied in the classification of Agri-tech products such as tea [21], lamb [13], and more 

specifically rice seeds [15].  

 In [21], a maximum likelihood classifier and artificial neural network were 

used to classify 5 types of tea samples using hyperspectral imaging data which were 

acquired at a visible light range of 400 – 800 nm. PCA was used for dimensionality 

reduction of the data prior to classification. The authors in [21] achieved promising 

classification results and also observed that artificial neural networks performed better 

than maximum likelihood classifiers.  

 The authors in [13] classified 3 types of lamb muscles using hyperspectral 

imaging data which was acquired at a NIR range of 900 – 1700 nm. PCA was applied 

on the data in [13] to reduce its dimensions. Optimal spectral features were selected in 

[13] by analysing PCA loadings and finding wavelengths which correspond to the two 

most significant principal components. Selected features were presented to a Linear 

Discriminant Analysis model for classification. Overall classification accuracy of 

100% achieved by the authors in [13] demonstrates the potential of hyperspectral 

imaging in lamb muscles classification. 

 A more related paper [15] trained an artificial neural network to classify 3 

varieties of rice seeds using hyperspectral images which were acquired at a VIS/NIR 

range of 400-1000 nm. PCA was used by the authors in [15] for dimensionality 
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reduction of the spectral features extracted from the hyperspectral data. The degree of 

chalkiness and shape-based features, which were also extracted from the acquired 

hyperspectral images, were fused with the outputs of PCA to train the classification 

model which attained promising classification results (accuracy of 94.45%). 

 However, hyperspectral imaging still faces some challenges that continue to 

limit its potential for classification and quality inspection of rice seeds. One of these 

limitations is the presence of very high number of spectral features, usually in 

hundreds, in the acquired hyperspectral images of rice seeds. Conventional 

classification models suffer from curse of dimensionality due to the presence of a large 

number of features, and this degrades classifier performance [17],[16],[18]. Hence, the 

development of innovative data dimensionality reduction techniques for redundant 

data removal while retaining important information becomes imperative for enhanced 

classification performance.  

 PCA and LDA are two well-known tools for dimensionality reduction of 

hyperspectral imaging data [99],[73]. PCA is a conventional technique used for the 

dimensionality reduction of data [16] and is noted from the summary of the literature 

review into dimensionality reduction techniques presented in Table 3.1 to be the most 

applied for dimensionality reduction in HSI-based rice seed classifications. The paper 

in [64] which will form a part of Chapter 4 in this thesis carried out a comparative 

analysis of the performance of LDA and PCA and observed that LDA can perform 

better, as a dimensionality reduction tool, than PCA for hyperspectral imaging data. 

 Genetic Algorithms (GAs), are another dimensionality reduction tool which 

function as a wrapper-based feature selector. Like any other wrapper-based feature 
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selectors, GAs analyse the relationship between the entire feature sets and 

classification models to select an optimal subset of features for increased classification 

performance [100], [101]. GAs have been applied for feature selection and reduction 

and produced very promising results in a host of applications. 

 GA was applied in [100] for feature selection in a spam detection application. 

Features which were relevant for spam detection were selected by the GA to solve the 

problem of high number of features (attributes) which characterize spam messages. 

The outputs of the GA were then presented to a random weight network model for 

classification. Promising classification results were obtained by the authors in [100] 

and demonstrated the potential of feature selection using GA in spam detection. 

  In [101], GA was used to select an optimal feature subset from a set of features 

which were extracted from a vowel speech signal. The selected features were presented 

to a KNN classifier to classify Turkish vowels. The authors in [101] achieved a 

classification accuracy of 100% which demonstrates the potential of GA as a feature 

selector in vowel classification. 

 The authors in [102] applied GA as a part of a two-stage gene selection 

approach for cancer data classification. The first stage involved selection of genes 

which contain cancer-related information. This was followed by selection of an 

optimal gene subset from many subsets of the genes which were selected in the first 

stage. Outputs of the second stage was then presented to a SVM model for 

classification. The authors in [102] observed that the proposed two-stage approach 

achieved the highest classification accuracy when compared with other gene selection 
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approaches (clustered gene selection, non-clustered gene selection, GA gene selection 

and mutual information gene selection). 

 It is noted that none of the techniques reported in Table 3.1 utilised GA for 

feature reduction when designing dimensionality reduction techniques for automated 

rice seed inspection using HSI data. It is also noted from the review of the literature 

that very promising results were produced by the hybridization of GA and PCA 

[28],[29], and GA and LDA [30],[31] in other applications. 

 In [28], GA and PCA were combined for dimensionality reduction of ear 

biometrics data. The authors in [28] used GA to select an optimal feature subset in the 

data and PCA for feature extraction and further dimensionality reduction of the 

selected subset. The combined GA and PCA achieved accuracy which are comparable 

with those of PCA and the full feature system with reduced feature size.  

 GA and PCA were also combined in [29] to reduce the dimensions of a time 

series data for human activity recognition using a 2-level Hidden Markov Model 

(HMM) classifier. As in [28], selection of optimal features was followed by feature 

extraction using GA and PCA respectively. The combined GA and PCA achieved the 

highest classification accuracy in [29] when its performance was compared with that 

of PCA and the full feature system. 

 The paper in [30] combined GA and LDA for dimensionality reduction in 

image retrieval systems using K-Nearest Neighbour model (for similarity measure 

between the features of an image database and that of the image that is being retrieved). 

GA was applied to select optimal colour and textural features from dermatological 

images. Features selected by the GA were then fed to LDA for feature extraction and 
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further dimensionality reduction of the data.  When compared with other techniques 

like LDA, PCA and Independent Components Analysis (ICA) in [30], the combined 

GA and LDA gave the best performance which demonstrate its effectiveness in 

reducing the dimensions of the data for image retrieval. 

 Similar to the paper in [30] is the one carried out by the authors in [31] where 

dimensionality of hyperspectral imaging and Synthetic Aperture Radar data was 

reduced using the combination of GA and LDA. Promising results achieved by the 

authors in [31] further demonstrate the effectiveness of optimal feature selection  using 

GA prior to feature extraction using LDA.    

3.4. Summary, Discussion and Proposed Contributions 

This chapter presented the review of publications which are related to the current 

study. Firstly, this chapter reviewed the various techniques which were used in the 

literature for dimensionality reduction of hyperspectral imaging data in classification 

applications. It was noted in the review that despite the great potential shown by deep 

learning models in classifying hyperspectral imaging data, such models are still limited 

by their requirements for complex parameter tuning. It was also noted that, unlike deep 

learning models, traditional machine learning classifiers require simple parameter 

tuning and a separate data dimensionality reduction tools (deep learning models 

incorporate these tools). Hence, the review focused more on dimensionality reduction 

tools applied on hyperspectral data prior to classification using traditional machine 

learning models. Specifically, the review noted the limited use of LDA in reducing the 

dimensionality of hyperspectral data (which is characterised by the presence of limited 

samples for training) due to the below par performance given by LDA when applied 

on small data samples and the limit on the number of features that can be extracted by 
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LDA. 2D LDA was then noted to have been applied to solve the problem of small 

sample size in a recent paper [38] where spectral vectors in the hyperspectral data were 

converted to matrices and data projection was performed using a single projection 

vector. These continue to limit the number of features that can be extracted.  

In Chapter 5 of this thesis, a folded LDA (F-LDA), an extension and improved version 

of LDA, will be proposed for dimensionality of hyperspectral data. The proposed 

approach is motivated by the concept of ‘folding the pixels’ which was introduced for 

PCA in a related paper [37], where improved classification performance was achieved 

and noted in the review. By folding each pixel in the hyperspectral data, the proposed 

F-LDA can focus on each spectral vector and will be able to extract the local features 

within the data [75],[37]. It is expected that the proposed F-LDA will outperform the 

conventional LDA in terms of classification accuracy. It is also expected that reduced 

computational complexity and memory requirement will be achieved due to the size 

of the various matrices, which will be processed and stored at different stages of the 

proposed F-LDA, will be smaller than those in the conventional LDA. While the 

proposed F-LDA shares the concept of feature vector – feature matrix conversion with 

the 2D LDA, it is further expected that the proposed F-LDA will attain higher 

classification accuracy than the 2D LDA because of the individual treatment of the 

eigenvectors and unfolding of the projected samples in the proposed F-LDA.  

Secondly, this chapter also reviewed various computer vision based techniques used 

in the literature with a special focus on the potential of hyperspectral imaging data in 

rice seed classification. It was noted that many papers utilised spatial information 

extracted from RGB images to classify rice seeds. Some more recent papers were also 

noted to have utilised spectral information (and in some cases, spectral and spatial 
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information) extracted from hyperspectral data for rice seed classification and 

achieved promising results. Some research gaps can also be noted from the review of 

existing rice seed data classification techniques. Firstly, the performance of related 

techniques presented in Table 3.1 varies significantly and there are no common 

datasets to compare or benchmark the performance of those techniques with one 

another. Secondly, although the classification performance attained in those studies 

are promising, most authors used a relatively limited number of different rice seed 

species to evaluate performance of the related techniques. In practical applications, the 

presence of different rice seed varieties poses a challenge to automated system. For 

instance, the authors in [33] observed the presence of a very large number of rice 

accessions (120,000+ accessions) in TT Chang Genetic Resources Centre at the 

International Rice Research Institute (IRRI), Philippines. They argued that shape-

based features of cultivated rice accessions can be helpful in new rice seed 

authentication. Kuo et al. [32] also observed the cultivation of rice grains of hundreds 

of varieties. These make the proposition of robust non-destructive approaches to 

authenticate large number of rice seed varieties imperative. In this thesis, the rice seed 

dataset which consists of ninety rice seed varieties will be utilised. The dataset of 90 

seed varieties is also made publicly available. Both the high spatial resolution and 

spectral information are essential when developing and deploying robust classification 

models and will be exploited for rice seed species classification (an important step in 

automated rice seed screening exercises for quality control and inspection). 

Finally, this chapter reviewed various techniques which are used for dimensionality 

reduction of hyperspectral imaging data when applied for classification of Agri-tech 

products with a special focus on rice seeds. It was noted that PCA is a more commonly 
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applied dimensionality reduction tool for hyperspectral data than LDA and that LDA 

can perform better, as a dimensionality reduction tool, than PCA for hyperspectral 

imaging data as will be shown later in chapter 4 [64]. The paper in [64], which presents 

a comparative analysis of the performance of LDA and PCA on hyperspectral data of 

rice seeds, will form a part of Chapter 4 in this thesis. The review also noted the 

promising results achieved by GA in many applications as an optimal feature selection 

technique and in papers where GA was used to select optimal features prior to feature 

extraction using PCA in [28],[29], and LDA in [30],[31]  for further data 

dimensionality. No attempt was made in any of the related papers in Table 3.1 to apply 

the hybridized approach for dimensionality reduction in HSI-based rice seed 

classification. This conceptual gap coupled with the LDA’s superiority to PCA as a 

dimensionality reduction technique [64] therefore inspires the hybridization of GA and 

F-LDA (GA+F-LDA) which will be proposed for dimensionality reduction of 

hyperspectral imaging data in Chapter 6. 
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4. Hyperspectral Imaging Data Classification: Evaluating the Effectiveness of 

Combining Spectral Features from Hyperspectral Images and Spatial Features 

from RGB Images 

Chapter 2 reviewed various computer vision-based techniques which were proposed 

in the literature for classification. It can be noted from the review of related techniques 

presented in Chapter 2 that several approaches relied on the use of appearance-based 

information (such as morphological, textural or colour features) extracted from RGB 

images to train machine learning models for data classification [103],[59],[86],[33]. It 

can also be noted from the review that recent approaches focused more on the use of 

an alternative sensing modality named, hyperspectral imaging which offers 

simultaneous extraction of both the appearance-based and spectra information 

[15],[82],[9] to enhance the performance of machine learning models [8]. However, 

hyperspectral imaging, when compared to RGB imaging, provides a decreased pixel 

density due to spatial binning and to enhance robustness of acquired data [19],[20]. 

Consequently, fidelity in the appearance-based features is reduced especially when 

small objects such as rice seeds are being discriminated. This downside of 

hyperspectral imaging is addressed in this chapter by evaluating the performance of a 

system that combines spatial (appearance based) information extracted from high 

spatial resolution images (RGB) and spectral information extracted from high spectral 

resolution images (hyperspectral) to enhance the classification process.  

Furthermore, while the application of hyperspectral imaging for data classification can 

produce very promising results [15],[10], the high number of spectral features  which 

are present in acquired hyperspectral images is responsible for the problem of curse of 

dimensionality which degrades the performance of classification models. This limits 
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the potential of hyperspectral imaging data in classification. It is therefore necessary 

to reduce the number of features by removing redundant and noisy information from 

the hyperspectral data with minimal loss through the application of dimensionality 

reduction techniques. From the review of literature presented in Chapter 3, it can be 

noted that Principal Component Analysis (PCA) and Linear Discriminant Analysis 

(LDA) are examples of data dimensionality reduction techniques and that PCA is a 

more commonly applied dimensionality reduction technique for hyperspectral imaging 

data than LDA [15],[21],[10],[13]. This chapter therefore also aims to carry out a 

comparative analysis of the performance of PCA and LDA when applied to reduce the 

dimension of spectral data in classification applications.  

It is also worth noting, as established in Chapter 1 and 2, that classification using 

computer vision-based approaches has become very useful in rice seed screening 

exercises. Such exercises, which can be carried out manually by experts using visual 

inspection, is aimed at removing weeds and off-types from the seed batch. There is a 

continued need to enhance the screening process by employing automatic systems to 

reduce the time and efforts required for visual inspection [15],[22],[23]. Hence, the 

performance of the approach proposed in this chapter is evaluated on a dataset of rice 

seeds. From the review of related papers on rice seeds presented in Chapter 2, it can 

be noted that most of the approaches presented in those papers are implemented using 

RGB images. It can be further noted that performance of most of the approaches are 

evaluated using only a small number of different rice seed species with varying degrees 

of accuracy achieved. It is therefore not clear whether superiority of algorithms 

employed, effectiveness of feature descriptors used to train the models, or, differences 

in the inter-class or intra-class variation of species used in each paper is responsible 
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for differences in classification performance among existing techniques. Nevertheless, 

Kue et al. [32] and Peralta et al. [33] evaluated the performance of their methods using 

30 and 754 species (relatively large number of species) and achieved accuracy of up 

to 89.1% and 44.87% respectively. The performance reported by the authors in [32] 

and [33] are not as strong as those reported in some of the other methods in the related 

papers. This lends credence to the hypothesis that other methods do not necessarily 

used superior algorithms or more effective feature descriptors. Instead, it is likely that 

less challenging datasets containing a smaller number of species which exhibit 

favourable intra-class and inter-class variation were used for performance evaluation 

of those methods. However, it is difficult to confirm or reject this hypothesis since the 

datasets used in those papers are not publicly available. 

This chapter therefore makes the following contributions: 

1) The effectiveness of an innovative framework for combining spatial and spectral 

features is evaluated and it is shown that the combined features improve 

discrimination ability of the selected classifier. 

2) Comparative study of LDA and PCA as dimensionality reduction techniques for 

hyperspectral data is conducted and it is shown that LDA can perform better than 

PCA when applied to reduce dimensionality of spectral data. 

3) Performance evaluation of the proposed approach is carried out on a large, diverse 

dataset of 90 rice seed species. Experimental results show that performance of 

classification models can be impacted by varying the number of species in the 

datasets. Hence, similarity assessment of species is recommended in rice seed 

classification. 
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4) The large hyperspectral dataset of rice seeds is made publicly available [34],[35] to 

the community to assist in the benchmarking of the proposed approach and feature 

combination. The rice seed dataset, which has been downloaded 6,205 times as at 

27th June 2022, was made available at an online research repository named Zenodo 

[36] in January 2020. However, the information available at Zenodo  [36] shows that 

the dataset is yet to be cited. 

4.1. System Setup 

HSI and RGB images of the rice seeds were captured during a research exchange 

funded by the British Council and Newton Fund (grant number: NRCP1516/1/65). All 

images (HSI and RGB) were gathered in University of Strathclyde's Hyperspectral 

Imaging Centre by Dr Hai Vu and Dr Dao Trung Kien of Hanoi University of Science 

and Technology - co-authors on [34] as follows: Images of rice seeds were acquired 

using a system which comprised of a high resolution RGB camera and a hyperspectral 

imaging system. A photo of the acquisition system is shown in Figure 4.1. RGB images 

were collected at 4,896 × 3,264 pixels using a Fujifilm X-M1 with a 35mm/F2.0 lens 

as the digital camera. A hyperspectral imaging system was deployed to collect 

hyperspectral images at a Visible - Near Infrared (VIS/NIR) range of ~ (385 – 1000) 

nm. Classification models can exploit the difference in colour variation of species in 

the Visible region ~ (385 - 700) nm and chemical composition in the NIR region ~ 

(700 - 1000) nm to discriminate the seed species [23],[7],[104]. Hence, the VIS/NIR 

range is used in this work. The hyperspectral imaging system consisted of a Specim 

V10E Imaging Spectrograph and Hamamatsu ORCA-05G CCD camera. Two halogen 

bulbs were included in the system to provide illumination. The bulbs were accurately 

positioned to ensure that balanced lighting are provided across the scene. For stability, 

https://zenodo.org/record/3241923#.Yflbw-rP02w
https://zenodo.org/record/3241923#.Yflbw-rP02w
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after switching the bulbs on, they were allowed to reach constant temperature. This 

was done before the data can be acquired in a dark room to minimise any other sources 

of illumination variance. The Fujifilm RGB digital camera was operated in a manual 

mode with an ISO and a shutter speed of 400 and 16 ms respectively. Acquired images 

were saved in JPEG format with no automatic adjustment (e.g., white balance) applied. 

The hyperspectral imaging system is a push-broom system which captures HSI data 

using a line by line approach. Hence, a motorised translational stage was placed 

directly below the imager to allow scanning. Three important parameters of the 

hyperspectral imaging system were adjusted as follows: 

1) The exposure time of the camera versus the speed of movement of the translational 

stage. This was calibrated to avoid spatial distortions; 

2) A trade-off between the exposure time and the aperture of camera (f=18). This was 

done to ensure a suitable light intensity; 

3) Setting of the height between the lens and the stage. This was done to allow the 

camera field of view to capture the entire area containing all seeds in each data 

cube. 

Before the images of rice seeds were acquired, images of a flat checkerboard patterns 

were collected for calibrating planar and lens distortion effects for the RGB and HSI 

sensors. This was performed once and the rotation and transformation parameters 

(camera calibration parameters) were stored in a XML file for alignment and 

registration of the images acquired from both the RGB and hyperspectral imaging 

systems. The image registration, devised by Dr Hai Vu and Dr Dao Trung Kien of 

Hanoi University of Science and Technology along with co-authors at the University 

of Strathclyde on [34], was performed using the following method: To register (warp) 
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the images from RGB to HSI plane, firstly, the corner points in chessboard images 

collected by HSI and RGB cameras were detected using harris corners operator 

(detector). Affine transformation was then applied on both images to determine the 

scale, translation and rotation matrices. The HSI images and the RGB images of rice 

seeds were multiplied using the affine transformation operator (scale, rotation and 

translation parameters). During registration, it was necessary to align the HSI and RGB 

images. To achieve this, firstly, canny detector was used to get the edge of each rice 

seed species. Then, coordinates of the HSI images was determined. This was followed 

by application of the transformation matrix to align the two images. [34],[35]. 

4.2. Description and Processing of Dataset 

Ninety known rice seed varieties which were provided by the National Center of 

Protection of New Varieties and Goods of Plants (NCPNVGGP) in Vietnam are used 

in this study. These rice seed varieties are frequently planted in Vietnam to cultivate 

rice for consumption and exportation and so were chosen for use in this work. 

Experienced technical staff at NCPNVGGP manually screened the selected samples 

in the traditional way to ensure that only seeds which belong to the 90 species to be 

analysed are contained in each sample population. A single kernel from each of the 90 

varieties is illustrated in Figure 4.2. 

96 individual rice seeds were provided for each of the 90 species considered. The 96 

kernels of each of the 90 species were divided into 2 batches with each batch 

containing 48 individual rice seed samples. HSI system and the digital RGB camera 

were then deployed to acquire images of each batch of 48 seeds which was placed on 

a white sheet of paper in a (6 x 8) matrix structure. Hence, 2 hyperspectral data cubes 

and 2 high resolution RGB images (each containing 48 different seeds) of each of the 
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90 species of rice seeds were captured. In total, the dataset is made up of fully 

registered images (RGB and hyperspectral) of 8640 seeds i.e. 90 varieties x 96 seeds. 

In this study, manual positioning of the seeds on the white sheet was done to avoid 

overlaps or touching boundaries between them. In practice, an arrangement of a 

conveyor belt where seeds are mechanically and individually spread under appropriate 

and consistent illumination can be conceived for imaging.  

 

Figure 4.1 A photo of the HSI and CCD cameras setup for data acquisition. 
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Figure 4.2 Photos of rice seed samples of 90 species. The short name of each species 

is given beneath each kernel. © 2020 IEEE 

The processing steps used for spatial and spectral features extraction is illustrated in 

Figure 4.3. Initially, rotation and transformation matrix obtained from the 

checkerboard pattern (as described in Section 4.1) are used to calibrate both image 

modalities for lens and planar effects. Normalisation of the HSI data cube is then 

performed as described in Section 4.4. After this, the processing paths take a slightly 

different direction. Segmentation of the RGB data is performed using the process 

described in Section 4.3. High resolution spatial features are then extracted using 

binary masks for each rice seed in the RGB image as described in Section 4.4. 
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To segment the rice seeds in the HSI data, transformation of the masks obtained from 

the RGB segmentation to the HSI space is then performed using the calibration matrix 

obtained from imaging the checkboard pattern. Spectral features are subsequently 

extracted using the segmented seeds as described in Section 4.5. 

 

Figure 4.3 A diagram showing the stages of the data processing task: (a) Raw RGB image obtained by 

the Fujifilm digital camera. (b) Lens distortion and planer camera calibration. (c) Rice seed 

segmentation and mask extraction. (d) Computation of spatial features for each of the rice seed masks. 

(e) Raw HSI data. (f) HSI normalisation, lens distortion and planer camera calibration. (g) The rice seed 

masks from step (c) are translated to the HSI plane and used to segment the rice seeds in the HSI 

image. (h) Computation of the spectral features.           
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4.3. Calibration Procedures and Segmentation of Rice Seeds  

The rice seed image segmentation, devised by Dr Hai Vu and Dr Dao Trung Kien of 

Hanoi University of Science and Technology along with co-authors at the University 

of Strathclyde on [34], was performed as follows: The rice seed is segmented on the 

high spatial resolution RGB images to ensure that the kernel is completely captured. 

The proposed procedure is implemented in the following steps:  

(1) Extraction of the R-channel of the RGB image; the R-Channel is selected since it 

offers the highest contrast to the background.  

(2) A Morphological opening [105] is applied to the R-channel image to generate a 

background image. Subtraction of the generated background image from the R-

channel is then performed. This is followed by the application of a thresholding 

operator to obtain the binary images of seeds [106],[107]. 

4.4. Extraction of Spatial Features  

Trained personnel manually screen rice seeds by analysing their spatial features. In 

this study, spatial features of rice seeds are extracted from RGB image masks to 

capture the know-how of the trained personnel. The features extracted are selected due 

to their effectiveness in species discrimination, as shown in related papers, [59] and 

[86]. The following six parameters are computed for a single rice seed kernel to set up 

a morphological feature vector 𝑓𝑓: 

1) 𝑓𝑓1 (Area) : refers to the number of pixels inside a rice seed kernel 

2) 𝑓𝑓2, 𝑓𝑓3 (Major Axis Length and Minor Axis Length) : refer to the length (in pixels) 

of the major and minor axis of the ellipse that has the same normalised second 

central moment at the region of the sample seed 
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3) 𝑓𝑓4 (Aspect Ratio) : refers to the ratio of Minor Axis Length over the Major Axis 

length i.e (𝑓𝑓3
𝑓𝑓2

) 

4) 𝑓𝑓5: refers to the Perimeter over Area Ratio 𝑃𝑃𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙𝑎𝑎𝑚𝑚
𝐴𝐴𝑚𝑚𝑎𝑎𝑚𝑚

, where Perimeter is the number 

of pixels along the seed boundary; and Area is the same as 𝑓𝑓1  

 

Figure 4.4 Results of the spatial feature extraction. The identification number of each 

seed is shown to its right. For illustration purposes, only features 𝑓𝑓4 and 𝑓𝑓6 are shown 

below each kernel. The MajorAxisLength 𝑓𝑓2 and MinorAxisLength 𝑓𝑓3 are marked with 

a red and a blue line, respectively. © 2020 IEEE 

5) 𝑓𝑓6 (Eccentricity): refers to the distance between two foci of the ellipse, and the 

major axis length of the ellipse (i.e. feature) i.e. 𝐹𝐹𝑚𝑚𝑚𝑚𝑚𝑚𝐹𝐹𝑚𝑚𝐹𝐹𝑙𝑙𝑚𝑚𝑛𝑛𝑚𝑚𝑎𝑎
𝑀𝑀𝑚𝑚𝑀𝑀𝑚𝑚𝑚𝑚𝐴𝐴𝑚𝑚𝑚𝑚𝐹𝐹𝑀𝑀𝑎𝑎𝑛𝑛𝑎𝑎𝑙𝑙ℎ

 . 
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Figure 4.4 illustrates results of the spatial feature extraction process using a sample 

image containing 48 rice seeds. As shown in Figure 4.4, the spatial features are 

expected to be more accurate than those reported in [9], [10] (where they were 

extracted from the HSI system which has lower spatial resolution). This is because 

they have been extracted from the high spatial resolution images. 

 

Figure 4.5 Comparing segmentation results of rice seeds on HSI images. (a) Using 

RGB images for reference (b) A Zoom-in version of two segmentation results (Red 

and white points are the results from (a) and (c) respectively) (c) Without using RGB 

images. © 2020 IEEE 

4.5. Extraction of Spectral Feature Extraction 

The process of extracting spectral information from the data can be divided into the 

following two key stages (which are illustrated in Figure 4.3): data correction, and 

feature extraction. Firstly, correction of the collected data is carried out following the 

approach described in [108] to reduce the variation in the acquired reflectance values 

(a) (c) 

(b) 
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among measurements. Let y represents a hyperspectral data cube which consist of 

reflectance values as a two-parameter set: 

yw(x), x ∈  X, w ∈  Λ                                                          (4.1) 

where 𝑤𝑤 represents a wavelength which belong to Λ (a set of wavelengths) and x 

represents a pixel in I where I is a 2D image (of row k and column l). Hence, the array 

of reflectance values at each wavelength can be represented as an image where 

relationships between the pixel reflectance values in the spatial domain have meanings. 

Different lighting conditions could cause the raw reflectance value at each x to vary. 

In order to reduce the variation of the acquired reflectance values, the data was scaled 

in relation to a known max reflectance value; (4.2) is used to normalise the raw data: 

yw(x): = yraw,w(x) - b(n,w) 
wr(n,w) - b(n,w)

, w ∈  Λ                              (4.2) 

where b(n,w) and 𝑤𝑤𝑚𝑚(n,w) are the reflectance values of reference dark and white 

images respectively. The lens-cap was covered to acquire the dark reference images. 

For the white reference, it is a 100% reflective spectralon tile. This is a highly reflective 

Lambertian scatter which is commonly used for HSI systems calibration. The average 

of b(n) and 𝑤𝑤𝑚𝑚(n) on reflectance values at column n along the height dimension of the 

white tile is computed for each wavelength (𝑤𝑤). After the spectral data is normalised, 

transformation  of the rice seed masks (obtained from the above description of the rice 

seed segmentation procedure) to the HSI plane is performed using a transformation 

matrix (including the rotation and translation operators) to segment the seed samples 

on the spectral images, as illustrated in Figure 4.3. The advantages of using the 

proposed segmentation method compared to the conventional work (e.g., in [9], [10] 

where the authors of those papers directly extracted the seed segments from the low 
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spatial resolution images acquired by HSI system) is clearly illustrated in Figure 4.5. 

When the seed segmentation is performed using only the HSI data, in many cases, 

some pixels at boundary regions of the shadow are included in the segments and not 

the pure spectra of the seeds themselves. Consequently, extracting the morphological 

features using only spectral image segmentation could become inaccurate and cause 

the inclusion of spectra of non-rice-seed pixels in the analysis. Hence, in this study, 

segmentation of the seeds is performed from the high resolution RGB images. This 

will ensure the correct inclusion of both the spatial and spectral features in the analysis. 

Spectral data from every pixel of the seed regions is extracted using the segmented 

seed samples on a hyperspectral data. The spectrum of all the pixels in each seed is 

averaged and the result obtained is used to determine the spectral features for the seed. 

As stated in (4.2), a raw spectral feature vector in the hyperspectral data cube is a set 

of yw where 𝑤𝑤 is one of the 256 bands which belong to 𝛬𝛬 (a set of spectral wavelengths 

or bands) at a range of ~ (385 – 1000) nm for the utilised VIS/NIR hyperspectral 

imaging system. 

4.6. Dimensionality Reduction  

The acquired hyperspectral data contains many spectral features (originally 256). PCA 

and LDA are feature extraction techniques which can be used to reduce the 

dimensionality of data [109]. One of the objectives of the study presented in this 

chapter is to compare the performance of LDA with the commonly used PCA when 

applied on spectral data. In line with this objective, PCA and LDA are applied on the 

spectral data to reduce its dimension in a preliminary analysis conducted. The outputs 

of the PCA and the LDA are used separately to train a classifier for performance 

comparison of the two dimensionality reduction techniques. The technique which 
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gives a better performance is then selected for use at a later stage where analysis on 

the RGB and hyperspectral imaging system is conducted. When PCA is applied on the 

data, the number of principal components selected is varied starting from 1 up to 𝑓𝑓, 

where 𝑓𝑓 = 256 is the number of features in the dataset. The number of features 

extracted by LDA is varied starting from 1 up to 𝑘𝑘 − 1 where 𝑘𝑘 is the number of species 

in the dataset. For the PCA and LDA, the classification results obtained using the 

optimal principal components and features are reported respectively. 

4.7. Classification 

The classification of rice seed variety is aimed at detecting seeds within a batch which 

do not belong to the species that are expected to be in the batch. Classification models 

are trained to perform this task and can directly make use of the full-band wavelengths 

or only the outputs of feature extraction or dimensionality reduction techniques applied 

on the spectral data, and/or spatial features. Hence, the features extracted from the rice 

seed data are utilised in the following four different ways:  

1) Spatial features only 

2) Spectral features only 

3) A combination of spectral features and spatial features 

4) A combination of features extracted from the application of dimensionality 

reduction tool on the spectral data and the spatial features.  

A Random Forest (RF) classifier, which has produced better classification results than 

many other classifiers including support vector machines and k-Nearest Neighbor in 

many related papers [9],[59],[8], is the classification model adopted for rice seed 
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variety classification. The number of decision trees used in the Random Forest and the 

ratio of training to testing samples selected are 500 and 4:1 respectively.  

4.8. Results and Analysis 

In this thesis, Precision, P, Recall, R, and F1 score are selected as performance metrics 

to evaluate the RF classifier’s performance and the effectiveness of the proposed 

approach.  

In accordance with the objectives of this thesis, first, 100 sub-datasets which contains 

256 spectral features and 20 randomly selected species was extracted from the dataset 

of 90 species for performance comparison of PCA and LDA as dimensionality 

reduction techniques for hyperspectral imaging data. Second, using the collected 

datasets of 90 rice seed species, analysis on the proposed fusion of spatial features 

extracted from RGB images and spectral features extracted from hyperspectral images 

are carried out and presented under the following three separate circumstances:  

1) Training the RF classifier and evaluating the performance of the proposed 

approach using all 90 species.  

2) Training the classifier separately using 6 different subsets of the dataset of 90 

species. There are 6 species (greater than or similar to those used in related 

papers – see Chapter 3) in each of the 6 subsets which are drawn randomly 

from the available 90 species. This is motivated by the need to compare 

performance of the proposed approach to state-of-the-art techniques which are 

more inclined to evaluating performance of proposed techniques on datasets 

containing small number of species. 
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3) Finally, another 6 subsets (different from the ones used in the second 

circumstance) of the dataset of 90 species is selected by varying the number of 

species in the new subsets from 6 – 90. Each sub-dataset is then used to train 

the RF classifier. This is done to explore how the classifier’s performance can 

be affected when the number of species in the dataset is increased.  

The results obtained from the preliminary analysis (comparing the performance of 

PCA and LDA) and those obtained when considering three separate circumstances for 

the new and fused RGB and hyperspectral imaging system are reported and analysed 

in the following sub-sections. 

4.8.1. Comparative Analysis of the Performance of PCA and LDA on A Sub 

Dataset of 20 Species  

In this experiment, the RF classifier was trained using 100 sub datasets of 20 randomly 

selected species and 256 spectral features before the application of the two 

dimensionality techniques (PCA and LDA). PCA and LDA are then applied separately 

to reduce the dimensionality of the sub datasets. The features extracted by PCA and 

LDA are used to train the RF classifier to determine which of the two techniques will 

be more effective in reducing the dimensions of hyperspectral data. Classification 

results obtained from the use of raw spectral features and features extracted by PCA 

and LDA on the RF classifier and 100 selected sub datasets are averaged and presented 

in Table 4.1. From Table 4.1, it can be observed that the lowest average precision, 

average recall and average F1 score were given by the RF classifier when trained using 

the full raw spectral features in the sub dataset. Also, from Table 4.1, it can be observed 

that performance of the RF classifier can be improved by applying dimensionality 

reduction techniques on the data prior to classification.  Specifically, the RF classifier 
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gave higher average precision, average recall and average 𝐹𝐹1 scores when trained 

using the PCA outputs. It can be further observed that the LDA features gave the 

highest average precision, average recall and average 𝐹𝐹1 score overall.  The results 

obtained therefore show that LDA can give better performance than PCA when used 

for feature extraction and dimensionality reduction of hyperspectral imaging data. 

Table 4.1 Classification results obtained from the comparative analysis of the 

performance of PCA and LDA 
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Spectral 59.65 ± 5.14 59.90 ± 5.01 58.93 ± 5.11 

PCA outputs 81.67 ± 3.21 81.69 ± 3.33 80.87 ± 3.41 

LDA outputs 85.88 ± 3.31 85.90 ± 3.30 85.52 ± 3.35 

 

4.8.2. Performance Analysis on All 90 Species  

In this experiment, 4 different RF models are trained using the following different 

feature types and combinations of features extracted from the dataset of 90 species: 

1) Spatial features  

2) Spectral features  

3) Combination of spatial features and spectral features on full bands  

4) Combination of spatial features and features extracted by LDA when applied 

on the spectral features. 

The classification results obtained are presented in Table 4.2. From Table 4.2, it can 

be observed that the lowest average precision, average recall and average 𝐹𝐹1 score 



74 
 

were achieved when the RF model was trained using only spatial features. Training 

the RF model using only spectral features improved the average precision, average 

recall and average 𝐹𝐹1 score. As expected, the RF model gave higher average precision, 

average recall and average 𝐹𝐹1 scores when trained using the combined spatial and 

spectral features. LDA is then applied on the spectral features (originally 256) in the 

dataset to reduce dimensionality of the spectral data. The spatial features are combined 

with the features extracted by the LDA to train the RF model. Classification results 

obtained for each approach are presented in Table 4.2 and Figure 4.6. The 

classification results obtained when using the spatial features and LDA features 

combined is an improvement on those obtained when the other feature types and 

feature combinations are used. The usefulness of the approach is therefore validated. 

From Figure 4.6, it can be observed that the spatial features and the first 85 LDA 

components gives the best classification results with average precision, average recall 

and average F1 score of 79.64%, 78.80% and 78.27% respectively for all 90 species. 

While the average precision, recall and 𝐹𝐹1 score have been discussed here, the 

individual results for each of the 90 species are also presented in Table 4.3. 

Interestingly, as can be seen in Table 4.3, the 𝐹𝐹1 scores vary between 80-100%, and 

90-100% for 45 and 22 varieties respectively. These classification results show 

𝐹𝐹1 scores which are very high and comparable with those reported in Chapter 3. These 

results demonstrate the potential of the proposed imaging modality (combining spatial 

features extracted from RGB images and spectral features extracted from hyperspectral 

images) for rice seed species discrimination even when the number of species is fairly 

large. However, as can be seen in Table 4.3, this technique performs better for some 

species than others when used on the entire dataset of 90 species. Further analyses are 
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carried out and presented in Section 4.8.4  to identify what might be responsible for 

this.  

Table 4.2 Classification results with and without dimensionality reduction. © 2020 

IEEE 
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Spatial  16.33 16.57 15.96 

Spectral 34.93 35.86 34.46 

Spatial + spectral on full 

bands 

51.66 51.49 50.51 

Spatial + 85 LDA 

Components from Spectral 

(based on Figure 4.6) 

79.64 78.80 78.27 
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Figure 4.6 Classification results (average precision, average recall and average F1 

score) using the spatial + 85 LDA features, and 90 species. © 2020 IEEE 
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Table 4.3 Classification results with spatial + 85 LDA features, and 90 species. © 

2020 IEEE 
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GS55R 100.00 100.00 100.0
0 

LTH35 89.47 80.95 85.00 KN5 62.50 90.91 74.07 

TC10 100.00 100.00 100.0
0 

PD211 82.61 86.36 84.44 TV2 78.57 68.75 73.33 

NV1 100.00 100.00 100.0
0 

LT183 75.00 95.45 84.00 DTH15
5 

81.25 65.00 72.22 

KL25 100.00 100.00 100.0
0 

PC10 81.82 85.71 83.72 ND9 68.18 75.00 71.43 

N97 100.00 100.00 100.0
0 

HQ15 73.91 94.44 82.93 KB6 73.33 68.75 70.97 

NPQ 96.00 100.00 97.96 KD18 87.50 77.78 82.35 NTBH 77.27 65.38 70.83 
NT16 95.24 100.00 97.56 TB14 94.12 72.73 82.05 GL301 60.87 82.35 70.00 
BT6 100.00 94.74 97.30 NTP 72.73 94.12 82.05 NH92 66.67 71.43 68.97 
HS1 100.00 94.12 96.97 NTHY 76.47 86.67 81.25 DMV5

8 
66.67 71.43 68.97 

TXHQ 93.75 100.00 96.77 NDSLH 76.47 86.67 81.25 NBP 75.00 62.50 68.18 
NCT 100.00 92.86 96.30 VS6 78.95 83.33 81.08 NM142 66.67 66.67 66.67 
N54 92.31 100.00 96.00 DA1 80.00 80.00 80.00 LDA8 55.17 84.21 66.67 
CS6 93.33 93.33 93.33 NC7 87.50 73.68 80.00 NC2 54.17 81.25 65.00 
NPT3 93.33 93.33 93.33 MH88 73.68 87.50 80.00 HD1 60.00 70.59 64.86 
CL61 89.47 94.44 91.89 NN4B 79.17 79.17 79.17 VP1 66.67 62.50 64.52 
DT66 85.00 100.00 91.89 AH1000 70.83 89.47 79.07 VS1 51.61 84.21 64.00 
VT8 100.00 84.21 91.43 SVN1 81.82 75.00 78.26 DT8 57.89 68.75 62.86 
SHPT1 95.45 87.50 91.30 A128 84.21 72.73 78.05 H229 69.23 56.25 62.07 
VH8 95.24 86.96 90.91 CT286 80.00 76.19 78.05 TX1 100.0

0 
44.44 61.54 

N98 95.00 86.36 90.48 CH12 76.19 80.00 78.05 HP28 71.43 52.63 60.61 
NHN 95.00 86.36 90.48 TQ14 72.73 84.21 78.05 MT151 100.0

0 
42.86 60.00 

R068 91.67 88.00 89.80 KB27 73.68 82.35 77.78 BC15 56.25 64.29 60.00 
NDC1 95.45 84.00 89.36 91RH 100.0

0 
62.50 76.92 CNC12 100.0
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42.11 59.26 

BQ10 95.45 84.00 89.36 CTX30 83.33 71.43 76.92 KC111 72.73 50.00 59.26 
DTL2 87.50 91.30 89.36 R998KB

L 
66.67 90.00 76.60 NBK 69.23 47.37 56.25 

HN39 84.21 94.12 88.89 HT18 81.25 72.22 76.47 DT52 64.29 50.00 56.25 
HL 85.71 90.00 87.80 TC112 81.25 72.22 76.47 NBT1 50.00 50.00 50.00 
DV108 80.00 94.12 86.49 BTS7 66.67 88.89 76.19 NPT1 40.00 40.00 40.00 
9d 86.36 86.36 86.36 TQ36 64.00 94.12 76.19 TB13 42.86 35.29 38.71 
NKB19 82.14 88.46 85.19 VS5 76.19 76.19 76.19 KB16 33.33 30.77 32.00 
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4.8.3. Performance Analysis on Selected Subsets of 6 Species 

In this experiment, 6 subsets are selected from dataset of 90 species in order to compare 

the proposed approach with state-of-the-art techniques which (as shown in Chapter 3) 

tend to be evaluated on data with small variety of species; usually, 5-6 with the 

exception of [32] (30 species) and [33] (754 species). 5 of the 6 selected subsets, each 

consisted of 6 species which are randomly selected while the 6th subset consists of 

species that showed the worst classification performance in Table 4.3. A summary of 

all the subsets is presented in Table 4.4. LDA is applied on the spectral data of each 

subset to extract features which are combined with corresponding spatial features. The 

RF classifier is trained separately using the 6 subsets and the classification results 

obtained are presented in Table 4.5. It is also noted that the time required for 

computation (also considering both the segmentation and classification tasks) is 0.53 

s on a commodity hardware (Intel Core i7). When compared to a manual rice seed 

screening which normally takes minutes, the computation time (0.53 s) is negligible 

for screening such seeds in practical applications. It was observed that the average 

precision and average recall were significantly improved for the first 5 subsets when 

compared to the classification results obtained for the dataset of 90 species. The 

proposed approach gave very high average 𝐹𝐹1 scores and outperformed equivalent 

scores attained by the state-of-the-art techniques reviewed in Chapter 3 with the 

exception of those reported in [8],[89],[90]. These experimental results demonstrate 

that, in line with state-of-the-art techniques for rice seed classification, taking 

advantage of spatial features from high spatial resolution images and combining them 

with spectral features from hyperspectral images can achieve very good classification 

results and removal of impure species from rice seed samples. For the 6th subset of 
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species, the average F1 score obtained when employing the first model trained on the 

dataset of 90 species is 45.54%. On the other hand, the F1 score rises to 61.29% when 

the 6 species selected was used specifically to train the RF model. This increase in the 

F1 score becomes possible due to the dataset which is now smaller and suggests that 

the use of a targeted model would be more appropriate when the species are known a-

priori. 

4.8.4. Performance Analysis on Subsets with Varying Species Sizes  

It is clear from the results presented in both Sections 4.8.2 and 4.8.3 that the size of 

the dataset and variety of species considered in each experiment directly affects the 

performance of the RF model. To further explore this, another 6 subsets of data are 

selected from the dataset of 90 species. This time, the number of species in each subset 

of data is varied to include 6, 20, 40, 60, 80 and 90 different species to explore exactly 

how the performance of the classifier in a study can be influenced by varying number 

of species. LDA is applied on each of the data subsets of increasing size and the 

features extracted are combined with the corresponding spatial features. The RF model 

is then trained using the spatial features combined with the features extracted from 

LDA (starting from 1 LDA features up to 𝑘𝑘 − 1, where 𝑘𝑘 is the number of species in 

the dataset). A plot of average 𝐹𝐹1 score against the number of LDA features used to 

train the classifier is obtained for each subset of the data considered. These plots are 

illustrated in Figure 4.7. The maximum average F1 score is also obtained from each of 

the plots in Figure 4.7 and used to obtain plots of the maximum average 𝐹𝐹1 scores 

against the number of species considered as illustrated in Figure 4.8. From Figure 4.8, 

it can be observed that the RF model’s performance is influenced by the number of 

species used in this study. The average 𝐹𝐹1 scores decreased significantly from 98.17% 
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for 6 species to 78.27% for 90 species. One reason for this decrease in the performance 

of the classifier could be due to an increase in the similarity level among the rice seed 

species as the number of species increases.  

Consequently, investigating the influence of similarities among the species or classes 

which are present in the data of rice seeds on the classifiers’ performance becomes 

important. Also, it was reported in the previous subsection that the methods employed 

in [8],[89],[90] attained better classification results than the approach used in this 

chapter. Assessing the similarity level among the species of rice seeds will also be 

helpful in clarifying whether the use of better feature combination schemes, better 

algorithms or inter/intra class variation among species themselves is responsible for 

the higher performances reported in those papers. Though, in general, the approach 

used in this chapter performs very well, it is not without some limitations. This can be 

illustrated by analysing situations where the approach performs well and where it does 

not. For instance, spectral profiles of some species which gave good classification 

results in Table 4.3 are illustrated in Figure 4.9 and Figure 4.10. It is clear from Figure 

4.9 and Figure 4.10 that the spectral profiles of those species are not identical which 

was responsible for the good classification results reported for them. Spectral profiles 

of some species which gave poor classification results in Table 4.3 are also illustrated 

in Figure 4.11 and Figure 4.12. As can be seen in Figure 4.11, the spectral profiles of 

species TB13, KB16, NBK and NPT1 are virtually identical. Similarly, spectral 

profiles of species KC111, BC15 and MT15 are also virtually identical as can be seen 

in Figure 4.12. This led to the misclassification of some seeds by the proposed 

approach which was responsible for the poor classification results reported for those 

species. It is therefore necessary to assess how similar the species or classes of rice 
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seeds are and to overcome the negative effects on the performance of the classifiers 

due to the similarity levels. While it is believed that misclassifications occur due to 

species in the data showing similar properties, it is worth noting that the observed 

decrease in classification performance could also be due to the limited number of rice 

seed samples available against what is needed to cover the large feature space. It is 

also necessary to explore the effects of varying the number of rice seed samples in 

each class. 

Table 4.4 Species contained in each sub-dataset. © 2020 IEEE 

Subset Species 

1 HS1, CH12, AH1000, SVN1, 91RH, DT8 

2 TB14, N54, NKB19, HQ15, BT6, NC7 

3 KB6, AH1000, HQ15, TQ14, KL25, NHN 

4 TC10, DTL2, KB16, BT6, KB27, CNC12 

5 CL61, NKB19, VH8, TX1, MT15, HL 

6 NBK, DT52, NBT1, NPT1, TB13, KB16 
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Table 4.5 Classification results using the output of LDA (combined with the spatial 

features) and randomly drawn 6 species. © 2020 IEEE 
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1 96.03 96.46 96.18 89.66-100 

2 96.23 96.31 96.21 89.47-100 

3 98.59 98.33 98.42 97.30-100 

4 98.55 97.93 98.17 95.45-100 

5 96.39 96.73 96.52 92.86-100 

6 61.99 61.12 61.29 35.71 -85.71 

 

 

Figure 4.7 Plots of average F1 score against number of features for sub-datasets with 

species sizes of 6, 20, 40, 80, and 90. © 2020 IEEE 
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Figure 4.8 A plot of maximum average F1 score against number of species. © 2020 

IEEE 

 

Figure 4.9 Average spectral profiles of some species with good classification results 

in Table 4.3. © 2020 IEEE 
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Figure 4.10 Average spectral profiles of some species with good classification results 

in Table 4.3. © 2020 IEEE 

 

Figure 4.11 Average spectral profiles of some species with poor classification results 

in Table 4.3. © 2020 IEEE 
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Figure 4.12 Average spectral profiles of some species with poor classification results 

in Table 4.3. © 2020 IEEE 

4.9. Summary 

Comparison of the performance of LDA and PCA for dimensionality reduction of 

hyperspectral imaging data has been presented in this chapter. Experimental results 

obtained show that LDA can perform better than PCA as a dimensionality reduction 

technique for hyperspectral imaging data. This chapter also evaluated the performance 

of a new, fused, RGB and HSI system for hyperspectral data classification. The system 

was used to acquire RGB images and hyperspectral image data cubes which offer high 

spatial and spectral resolution respectively. Spatial features extracted from the 

acquired RGB images and spectral features extracted from the acquired hyperspectral 

data cubes constitute the dataset which was used in this work to evaluate performance 

of the RGB and hyperspectral imaging system. The dataset has been made publicly 

available [34],[35]. Experimental results demonstrate that taking advantage of spatial 
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features from high spatial resolution images and combining them with spectral features 

from hyperspectral data cubes can achieve very good classification results and removal 

of impure species from the data. Suboptimal performance was reported for some 

species and this was linked to the use of large number of species and similarities among 

the species.  
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5. Folded Linear Discriminant Analysis: A Novel Technique for Feature Extraction 

and Dimensionality Reduction of Hyperspectral Imaging Data 

From the review of related papers presented in Chapter 3, it can be noted that PCA is 

a more commonly applied dimensionality reduction tool for hyperspectral imaging 

than LDA [15],[21],[10],[13]. In Chapter 4, LDA was used to reduce the 

dimensionality of hyperspectral imaging data prior to classification. LDA achieved 

promising results in Chapter 4 and gave better performance than the commonly applied 

PCA. In [37], an extension of PCA, named folded-PCA, was proposed for feature 

extraction and dimensionality reduction of hyperspectral imaging data. The folded-

PCA was implemented by folding each of the spectral vectors in the hyperspectral data 

matrix, applying the conventional PCA steps on the resulting data (a set of 2D 

matrices) and unfolding the projected samples for classification. Promising results 

achieved by LDA as a dimensionality reduction technique for hyperspectral data in 

Chapter 4 and the increased accuracy and reduced computational complexity achieved 

by the authors in [37] motivate the extension of LDA for hyperspectral data in this 

chapter using a mathematical step which is similar to the one used in [37]. 

It can also be noted from the review of related papers presented in Chapter 3 that LDA 

gives sub-optimal performance on small training samples and that the number of 

features that can be extracted by LDA is limited to 𝑐𝑐 − 1 where 𝑐𝑐 is the number of 

classes in the data. These constraints often limit the use of LDA on hyperspectral data 

since sufficient samples are not usually available in such data for training. To solve 

these problems, 2D LDA was applied in a recent paper [38] where pixels in the HSI 

data were converted to a matrix and a single vector was computed for projection. While 
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this is a nice extension, the approach used continues to limit the number of features 

that can be extracted to the number of columns in the converted matrix.  

This chapter therefore proposes a new Folded-LDA (F-LDA), an improved version of 

the traditional LDA transform. The proposed F-LDA folds each spectral vector 

(samples) in the hyperspectral data into a matrix. Different dimensions 

(configurations) of the folded samples are exploited and extensive experiments carried 

out to illustrate the folding limits, especially when the dimensions of the folded 

samples is set to 𝑓𝑓 ∗ 1  or 1 ∗ 𝑓𝑓 where 𝑓𝑓 is the number of features in the hyperspectral 

data. Eigenvectors are processed individually and the projected samples unfolded to 

extract the final features. Therefore, the number of features that can be extracted is no 

longer limited to 𝑐𝑐 − 1 but is now given as the product of the number of columns in 

the folded samples (converted matrices) and the rank of the between-class variance 

matrix. This allows the extraction of many more discriminant features by the proposed 

F-LDA which makes it more flexible than the conventional LDA. The proposed F-

LDA is therefore capable of extracting more informative features (capturing local 

structure in the hyperspectral data through the use of folded samples), and targeting 

higher classification accuracy than the conventional LDA, 2D LDA and the full feature 

space. Computational complexity of the proposed approach is analysed to illustrate its 

additional benefits (when compared with the traditional LDA) which are summarized 

as follows: 

1) The complexity of computing the within-class variance, between-class 

variance, transformation matrix, and eigenvectors is reduced in the 

proposed approach.  
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2) The complexity of projecting the hyperspectral data into a lower 

dimensional space is reduced. 

3) The proposed approach requires much less contiguous memory than the 

conventional LDA.  

5.1. Proposed Folded-LDA 

5.1.1. Concepts of the Proposed F-LDA 

The proposed F-LDA folds each sample (spectral vector) in the hyperspectral data 

matrix, 𝑿𝑿,  into a matrix, as illustrated in Figure 5.1. This approach is different from 

that of the conventional LDA where samples are treated as spectral vectors. Folding 

of the spectral vectors into matrices by the proposed F-LDA provides an alternative 

way of generating variance matrices, where local structure (information across 

contiguous spectral bands) in the data are captured [75],[37].   

Following the conversion of all the spectral vectors in the data matrix 𝑿𝑿 into matrices 

of the same configuration (size) in the proposed F-LDA, data samples in a class are 

represented as a stack of matrices (folded samples) which belong to that class. Using 

the new data representation, the mean of each class and the overall mean of the data 

matrix are computed as matrices, which can then be used to compute the within-class 

variance, between-class variance and the transformation matrix. 

Each spectral vector, whose length is given as 𝑓𝑓 (the number of features in the data 

matrix), can be folded in such a way that the size of the folded samples is given as  

𝐺𝐺 × 𝐵𝐵 where  𝐺𝐺 is the number of groups and 𝐵𝐵 is number of bands in each group, 

which is the same for all groups for simplicity.  𝐺𝐺 =  𝑓𝑓 will be shown later in Section 

5.3 as a special case of the F-LDA which simplifies it to the conventional LDA since 
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the number of groups in the folded samples is set to 𝑓𝑓. It will also be shown that 𝐺𝐺 =

 1  is another special case of the F-LDA which simplifies it to the original data matrix 

since the number of groups in the folded samples is 1. The last step of the proposed F-

LDA is to fold the projected samples, which can be fed to models for classification. 

Computing the transformation matrix using the stack of folded samples facilitates the 

extraction of features (which are now many more than 𝑐𝑐 − 1) from the HSI data in an 

alternative but more effective way. This leads to improvement in classification 

performance (higher classification accuracy, less computation complexity and reduced 

contiguous memory requirement). It is noteworthy here that this improvement depends 

on the configuration of the folded samples, 𝐺𝐺 × 𝐵𝐵. 
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X 

𝑥𝑥11 𝑥𝑥12 𝑥𝑥13 ⋯ 𝑥𝑥1𝑓𝑓 

 

 

𝑥𝑥21 𝑥𝑥22 𝑥𝑥23 ⋯ 𝑥𝑥2𝑓𝑓  

⋮ ⋮ ⋮ ⋱ ⋮  

𝑥𝑥𝑠𝑠1 𝑥𝑥𝑠𝑠2 𝑥𝑥𝑠𝑠3 ⋯ 𝑥𝑥𝑠𝑠𝑓𝑓  

(b)  

𝒙𝒙𝒏𝒏 𝑥𝑥𝑛𝑛1 𝑥𝑥𝑛𝑛2 𝑥𝑥𝑛𝑛3 𝑥𝑥𝑛𝑛4 𝑥𝑥𝑛𝑛5 𝑥𝑥𝑛𝑛6  

 
 

                                
 

 

 

𝑷𝑷𝒏𝒏 
 𝑥𝑥𝑛𝑛1 𝑥𝑥𝑛𝑛2 𝑥𝑥𝑛𝑛3 

  
 

 𝑥𝑥𝑛𝑛4 𝑥𝑥𝑛𝑛5 𝑥𝑥𝑛𝑛6   

(c)      

Figure 5.1 (a) the hyperspectral data (b) the data matrix X where each row depicts a 

spectra vector (sample),  𝑥𝑥𝑛𝑛 =   [𝑥𝑥𝑛𝑛1 𝑥𝑥𝑛𝑛2 𝑥𝑥𝑛𝑛3 … … . . 𝑥𝑥𝑛𝑛𝑓𝑓] (c) The spectral vector 𝒙𝒙𝒏𝒏 is 

folded to form a 2D matrix, 𝑷𝑷𝒏𝒏 where 𝑛𝑛 𝜖𝜖 [1, 𝑠𝑠], 𝐺𝐺 = 2,  𝐵𝐵 = 3 and 𝑓𝑓 = 𝐺𝐺 × 𝐵𝐵 = 6. 

© 2020 IEEE 

5.1.2. Implementation of the Proposed F-LDA 

If a spectral vector in the data matrix is denoted as 𝒙𝒙𝒏𝒏 =   [𝑥𝑥𝑛𝑛1 𝑥𝑥𝑛𝑛2 𝑥𝑥𝑛𝑛3 … … . . 𝑥𝑥𝑛𝑛𝑓𝑓] as 

shown in Figure 5.1 where 𝑛𝑛 𝜖𝜖 [1, 𝑠𝑠], a folded sample (converted matrix), 𝑷𝑷𝒏𝒏,  of this 

vector can be denoted using (5.1). 

𝑷𝑷𝒏𝒏 =  �
𝑝𝑝𝑛𝑛(1,1) ⋯ 𝑝𝑝𝑛𝑛(1,𝐵𝐵))
⋮ ⋱ ⋮

𝑝𝑝𝑛𝑛(𝐺𝐺,1) ⋯ 𝑝𝑝𝑛𝑛(𝐺𝐺,𝐵𝐵)

�                                         (5.1) 

𝑏𝑏 

  
𝑙𝑙 

𝑘𝑘 Data cube 

𝐵𝐵 

𝐺𝐺 
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and each element in the matrix 𝑃𝑃𝑛𝑛, can be denoted as 𝑝𝑝𝑛𝑛(ℎ+1,𝑖𝑖) and computed using 

(5.2). 

𝑝𝑝𝑛𝑛(ℎ+1,𝑖𝑖) =  𝑥𝑥(ℎ∗𝐵𝐵)+𝑖𝑖                                               (5.2) 

where ℎ 𝜖𝜖 [0,𝐺𝐺 − 1] and 𝑖𝑖 𝜖𝜖 [1,𝐵𝐵].  

The mean of the folded samples in each class 𝑐𝑐𝑗𝑗, denoted as 𝑴𝑴𝒋𝒋 where 𝑗𝑗 𝜖𝜖 [1, 𝑐𝑐] , and 

the overall mean of all the folded samples, denoted as 𝑴𝑴, can be calculated using (5.3) 

and (5.4).  

𝑴𝑴𝒋𝒋 = 1
𝑁𝑁𝑗𝑗

 ∑ 𝑃𝑃𝑖𝑖𝑗𝑗  𝑴𝑴𝒋𝒋 𝜖𝜖 ℜ𝐺𝐺 ×𝐵𝐵𝑁𝑁𝑗𝑗
𝑖𝑖=1                                       (5.3) 

 

𝑴𝑴 =  ∑ 𝑁𝑁𝑗𝑗
𝑠𝑠
𝑀𝑀𝑗𝑗

𝑐𝑐
𝑗𝑗=1 , 𝑴𝑴 𝜖𝜖 ℜ𝐺𝐺 ×𝐵𝐵                                       (5.4) 

where 𝑷𝑷𝒊𝒊𝒋𝒋 is the ith converted matrix in class 𝑐𝑐𝑗𝑗  and 𝑖𝑖 𝜖𝜖 [1, 𝑁𝑁𝑗𝑗].  

The within-class variance 𝑽𝑽𝑷𝑷𝑷𝑷 and the between-class variance 𝑽𝑽𝑷𝑷𝑷𝑷 of the data matrix 

can be computed using (5.5) and (5.6) respectively. 

𝑽𝑽𝑷𝑷𝑷𝑷 = ∑ ∑ (𝑷𝑷𝒊𝒊𝒋𝒋 −  𝑴𝑴𝒋𝒋)(𝑷𝑷𝒊𝒊𝒋𝒋 −  𝑴𝑴𝒋𝒋)𝑇𝑇
𝑁𝑁𝑗𝑗
𝑖𝑖=1

𝑐𝑐
𝑗𝑗=1                             (5.5) 

𝑽𝑽𝑷𝑷𝑷𝑷 = ∑ 𝑁𝑁𝑗𝑗(𝐌𝐌𝒋𝒋 −  𝐌𝐌)(𝐌𝐌𝒋𝒋 −  𝐌𝐌)𝑇𝑇𝑐𝑐
𝑗𝑗=1                                      (5.6) 

where 𝑽𝑽𝑷𝑷𝑷𝑷 𝜖𝜖 ℜ𝐺𝐺 ×𝐺𝐺 and 𝑽𝑽𝑷𝑷𝑷𝑷 𝜖𝜖 ℜ𝐺𝐺 ×𝐺𝐺 .  

Using the between-class variance, 𝑽𝑽𝑷𝑷𝑷𝑷, and the within-class variance, 𝑽𝑽𝑷𝑷𝑷𝑷, the 

transformation matrix, 𝑻𝑻𝑷𝑷, the eigenvalues, the eigenvectors, and the selected 

eigenvectors, 𝑽𝑽𝑷𝑷𝑷𝑷 can be computed by applying the same approach in the conventional 
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LDA. The data can then be projected into a lower dimensional space using (5.8) where 

𝒀𝒀𝒏𝒏 is the projected matrix of each sample.  

𝑻𝑻𝑷𝑷 = 𝑽𝑽𝑷𝑷𝑷𝑷−1𝑽𝑽𝑷𝑷𝑷𝑷 ,𝑻𝑻𝑷𝑷 𝜖𝜖 ℜ𝐺𝐺 ×𝐺𝐺                                   (5.7) 

𝒀𝒀𝒏𝒏 = 𝑷𝑷𝒏𝒏𝑻𝑻𝑽𝑽𝑷𝑷𝑷𝑷, 𝑽𝑽𝑷𝑷𝑷𝑷 𝜖𝜖 ℜ𝐺𝐺 ×𝑑𝑑′,  𝒀𝒀𝒏𝒏 𝜖𝜖 ℜ 𝐺𝐺×𝑑𝑑′                      (5.8) 

Finally, the algorithmic step code of the proposed F-LDA is presented in Table 5.1. 

The size of the between-class variance 𝑽𝑽𝑷𝑷𝑷𝑷, and the within-class variance, 𝑽𝑽𝑷𝑷𝑷𝑷, is 

𝐺𝐺 × 𝐺𝐺 while the size of the between-class variance, 𝑽𝑽𝑷𝑷, and the within-class variance, 

𝑽𝑽𝑷𝑷, computed using the conventional LDA is 𝑓𝑓 × 𝑓𝑓 or 𝐺𝐺𝐵𝐵 × 𝐺𝐺𝐵𝐵. Similarly, the size 

of the transformation matrix, 𝑻𝑻𝑷𝑷 is 𝐺𝐺 × 𝐺𝐺 while that of the transformation matrix 

computed using the conventional LDA is  𝑓𝑓 × 𝑓𝑓 or 𝐺𝐺𝐵𝐵 × 𝐺𝐺𝐵𝐵. This therefore leads to 

significant reduction in the complexity of computing the within-class variance, 

between-class variance, transformation matrix, eigenvalues and eigenvectors as will 

be shown in Section 5.3.2. Furthermore, data projection is done by the multiplication 

of two smaller matrices, 𝑷𝑷𝒏𝒏𝑻𝑻and 𝑽𝑽𝑷𝑷𝑷𝑷 which are of size 𝐵𝐵 × 𝐺𝐺 and 𝐺𝐺 × 𝑑𝑑 respectively. 

This also contributes to the significant reduction in computational complexity.  
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Table 5.1 Algorithmic step code of the proposed F-LDA. © 2020 IEEE 

Step Algorithmic code 

1. Convert the hyperspectral data cube to data matrix 𝑿𝑿 

2. Fold each spectral vector 𝒙𝒙𝒏𝒏 in the data matrix to a 2D matrix 𝑷𝑷𝒏𝒏 to form a 

set of 2D matrices 

3. Compute the mean 𝑴𝑴𝒋𝒋 of all  𝑷𝑷𝒏𝒏 (folded samples) in each class  

4. Compute the mean 𝑴𝑴  of all 𝑷𝑷𝒏𝒏 (folded samples) in the data  

5. Use matrices 𝑴𝑴  and 𝑴𝑴𝒋𝒋 to compute the within-class variance matrix 

𝑽𝑽𝑷𝑷𝑷𝑷 and between-class variance matrix 𝑽𝑽𝑷𝑷𝑷𝑷 

6. Compute the transformation matrix 𝑻𝑻𝑷𝑷 using   (5.7) 

7. Compute the eigenvectors and eigenvalues of  𝑻𝑻𝑷𝑷 

8. Rank the eigenvectors in descending order according to their eigenvalues  

9. Use the first 𝑘𝑘 eigenvectors to project the data into a lower dimensional 

space as in (5.8)  

10. Unfold the projected matrices 

 

5.1.3. Extraction of Local Structures Using the Proposed F-LDA 

This subsection provides explanation on how the proposed F-LDA can capture the 

local structure in the spectral vectors. If each row in each of the folded matrices 

𝑃𝑃𝑖𝑖𝑗𝑗 = 𝑃𝑃𝑛𝑛 in (5.1) is denoted as 𝑝𝑝𝑖𝑖𝑗𝑗𝑖𝑖 where 𝑘𝑘 𝜖𝜖 [1,𝐺𝐺], 𝑃𝑃𝑖𝑖𝑗𝑗 can be formulated as (5.9).  

𝑃𝑃𝑖𝑖𝑗𝑗 =  �

𝑝𝑝𝑖𝑖𝑗𝑗1
𝑝𝑝𝑖𝑖𝑗𝑗2
⋮

𝑝𝑝𝑖𝑖𝑗𝑗𝐺𝐺

� =  �

𝑝𝑝1
𝑝𝑝2
⋮
𝑝𝑝𝐺𝐺

�                                                           (5.9) 
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Each spectral vector in the data matrix can then be expressed as 𝑥𝑥𝑖𝑖𝑗𝑗 = 𝑥𝑥𝑛𝑛 =

 [𝑝𝑝𝑛𝑛1 𝑝𝑝𝑛𝑛2 … 𝑝𝑝𝑛𝑛𝐺𝐺] . If 𝒎𝒎𝒋𝒋, the overall mean of each class in the conventional LDA, 

is folded into a 𝐺𝐺 × 𝐵𝐵 matrix, 𝒎𝒎𝒋𝒋 can also be formulated using (5.10). 

𝑴𝑴𝒎𝒎𝑱𝑱 =  �

𝑚𝑚𝑗𝑗1
𝑚𝑚𝐽𝐽2
⋮

𝑚𝑚𝐽𝐽𝐺𝐺

�                                                                       (5.10) 

The within-class variance 𝑽𝑽𝑷𝑷 as used in the conventional LDA can then be expressed 

using (5.11) 

𝑽𝑽𝑷𝑷 =

∑ ∑

⎣
⎢
⎢
⎡

(𝑝𝑝1 −𝑚𝑚𝑗𝑗1)(𝑝𝑝1 − 𝑚𝑚𝑗𝑗1)
(𝑝𝑝2 − 𝑚𝑚𝑗𝑗2)(𝑝𝑝1 − 𝑚𝑚𝑗𝑗1)

⋮
(𝑝𝑝𝐺𝐺 − 𝑚𝑚𝑗𝑗𝐺𝐺)(𝑝𝑝1 − 𝑚𝑚𝑗𝑗1)

(𝑝𝑝1 −𝑚𝑚𝑗𝑗1)(𝑝𝑝2 − 𝑚𝑚𝑗𝑗2)
(𝑝𝑝2 − 𝑚𝑚𝑗𝑗2)(𝑝𝑝2 − 𝑚𝑚𝑗𝑗2)

⋮
(𝑝𝑝𝐺𝐺 − 𝑚𝑚𝑗𝑗𝐺𝐺)(𝑝𝑝2 −𝑚𝑚𝑗𝑗2)

…
⋯
⋱
⋯

(𝑝𝑝1 − 𝑚𝑚𝑗𝑗1)(𝑝𝑝𝐺𝐺 − 𝑚𝑚𝑗𝑗𝐺𝐺)
(𝑝𝑝2 − 𝑚𝑚𝑗𝑗2)(𝑝𝑝𝐺𝐺 − 𝑚𝑚𝑗𝑗𝐺𝐺)

⋮
(𝑝𝑝𝐺𝐺 − 𝑚𝑚𝑗𝑗𝐺𝐺)(𝑝𝑝𝐺𝐺 − 𝑚𝑚𝑗𝑗𝐺𝐺)⎦

⎥
⎥
⎤

𝑁𝑁𝑗𝑗
𝑖𝑖=1

𝑐𝑐
𝑗𝑗=1      

                                                                                                  (5.11) 

Also, if each row in 𝑴𝑴𝒋𝒋 is denoted as 𝑡𝑡𝑗𝑗𝑖𝑖 where 𝑖𝑖 𝜖𝜖 [1,𝐺𝐺], 𝑴𝑴𝑱𝑱 can be formulated as 

(5.12).  
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Figure 5.2 Comparing the within-class variance matrices constructed using the F-

LDA and the conventional LDA. The F-LDA matrix is based on the accumulation of 

those blocks across the main diagonal of the conventional LDA matrix, leading to a 

local extraction of features. © 2020 IEEE 

𝑴𝑴𝑱𝑱 =  �

𝑡𝑡𝑗𝑗1
𝑡𝑡𝐽𝐽2
⋮
𝑡𝑡𝐽𝐽𝐺𝐺

� =  �

𝑚𝑚𝑗𝑗1
𝑚𝑚𝐽𝐽2
⋮

𝑚𝑚𝐽𝐽𝐺𝐺

� = 𝑴𝑴𝒎𝒎𝑱𝑱                                                 (5.12) 

Finally, the within-class variance 𝑽𝑽𝑷𝑷𝑷𝑷 in (5.5) as used in the proposed F-LDA can 

then be expressed using (5.13).  

𝑽𝑽𝑷𝑷𝑷𝑷 = ∑ ∑ � �𝑝𝑝1 − 𝑡𝑡𝑗𝑗1��𝑝𝑝1 − 𝑡𝑡𝑗𝑗1� +  �𝑝𝑝2 − 𝑡𝑡𝑗𝑗2��𝑝𝑝2 − 𝑡𝑡𝑗𝑗2� + ⋯  +  (𝑝𝑝𝐺𝐺 −
𝑁𝑁𝑗𝑗
𝑖𝑖=1

𝑐𝑐
𝑗𝑗=1

𝑡𝑡𝑗𝑗𝐺𝐺)(𝑝𝑝𝐺𝐺 − 𝑡𝑡𝑗𝑗𝐺𝐺)�                                                                              (5.13)     

Accumulation of the diagonal elements of 𝑽𝑽𝑷𝑷  in the conventional LDA are used to 

construct the within-class variance matrix, 𝑽𝑽𝑷𝑷𝑷𝑷 in (5.5) as shown in (5.13) and 

illustrated in Figure 5.2.  The proposed F-LDA therefore captures the local structures 

within the group bands and extract features that improve discrimination.                                                                    

G 

G 
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5.1.4. Different Configurations and Their Implications 

Different configurations (𝐺𝐺 × 𝐵𝐵) of the folded samples can be exploited in the 

proposed F-LDA. The factors of 𝑓𝑓, the number of features in the data matrix, is used 

in selecting the different configurations to be exploited. The total number of features 

that can be extracted by F-LDA in each case is 𝑑𝑑 and is given as 𝐵𝐵 × 𝑑𝑑EVD , where 

𝑑𝑑EVD is the number of extracted components at the EigenValue Decomposition (EVD) 

of the transformation matrix, 𝑻𝑻𝑷𝑷. The number of discriminant components that can be 

extracted is limited to the number of non-zero eigenvalues, which is also the rank of 

the between-class variance matrix, 𝑽𝑽𝑷𝑷𝑷𝑷 [52],[53],[54]. This implies that the value of 

𝑑𝑑EVD can only be varied from 1 to 𝑟𝑟 where 𝑟𝑟 is the rank of 𝑽𝑽𝑷𝑷𝑷𝑷. The value of 𝑟𝑟 is not 

the same for different configurations as shown in Table 5.2 – 5.16. It can be seen in 

Table 5.2 – 5.16 that the value of 𝑟𝑟  is equal to 𝑐𝑐 − 1 whenever the configuration of 

the folded sample is set to 𝐺𝐺 × 1 where 𝑐𝑐 is the number of classes in the data. This is 

a special case of the F-LDA which simplifies it to the conventional LDA. In all the 

cases considered, the configuration (𝐺𝐺 × 𝐵𝐵) that gives the best classification results is 

selected as the optimal configuration.  

The configuration of the folded samples can only be set to 𝑓𝑓 × 1 and 1 × 𝑓𝑓 in a case 

where 𝑓𝑓 is a prime number. To explore other configurations (𝐺𝐺 × 𝐵𝐵) in the  proposed 

F-LDA, extra feature vectors of zeros can be added to the data matrix to fill the empty 

spaces in the folded samples with zeros [37].  

5.1.5. Classification 

To compare the performance of the proposed and the traditional approaches, a Support 

Vector Machine (SVM) model is adopted for classification and implemented in this 

work using the RBF kernel because of its satisfactory performance in related papers 
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[60],[61]. The SVM model was trained using k-fold cross validation (𝑘𝑘 = 5) to 

optimize parameters (penalty (𝑝𝑝𝑐𝑐) and gamma (𝑔𝑔)) of the RBF kernel using a grid 

search. The training was carried out k times. In each case, the training set was divided 

into k folds, one of which was held out for validation and the rest for training. 

Classification results computed for all the k cases were then averaged and used to 

optimize parameters of the SVM. The SVM model with the optimal value of pc and g 

was used for final evaluation on the test set. This process was carried out 10 times and 

the classification results obtained in all the cases were averaged and reported. 

5.2. Datasets and Experimental Settings 

5.2.1. Datasets 

Five hyperspectral datasets which are publicly available [50] and widely used in 

related papers [24],[26],[27] were selected to evaluate the performance of the proposed 

F-LDA. Full description of the selected hyperspectral datasets (Botswana, Salinas – 

A, Pavia Center, Pavia University, and Indian Pine data) are provided in Chapter 2 of 

this thesis. Each of the selected datasets was divided into training and testing sets. The 

size of the training and testing sets was selected to simulate a small sample size 

scenario for training [27],[110]. Specifically, the Botswana data was divided into 

training (5%) and testing (95%) sets. For the Salinas – A, Pavia Center, and Pavia 

University data, 220 samples were selected for training while the rest were used for 

testing. The Indian Pine hyperspectral data was split into training (6%) and testing 

(94%) sets. 

5.2.2. Experimental Settings 

Overall Accuracy (OA), Average Accuracy (AA) and kappa coefficient (kc) are widely 

used as metrics to evaluate performance of proposed techniques on the selected five 
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datasets in related papers [73],[41],[110]. Hence, OA, AA and kc are adopted in this 

chapter as metrics for performance evaluation of the proposed approach. The following 

three different feature schemes are initially used to train the SVM model on each of 

the datasets: 1) Full feature space; 2) LDA features; and 3) F-LDA features. The 

number of features extracted by the LDA, 𝑑𝑑, from each dataset is varied from 1 up to 

𝑐𝑐 − 1 (where 𝑐𝑐 is the number of class in the dataset).  For the proposed F-LDA, the 

number of features 𝑑𝑑 that can be extracted depends on the values of 𝐵𝐵 and 𝑑𝑑EVD and 

is given as 𝐵𝐵 × 𝑑𝑑EVD where 𝑑𝑑EVD is the number of EVD components selected for 

projection. For F-LDA, the number of extracted features is also varied from 1 up to 𝑟𝑟, 

where 𝑟𝑟 is the rank of the between-class variance matrix, 𝑽𝑽𝑷𝑷𝑷𝑷. It is worth noting that 

the number of features in the Pavia University dataset is 103. This is a prime number 

which limits the size of the converted matrices that can be obtained from the data to 

1 ×  103 and 103 ×  1. Extra zeros are added to the data so that the empty spaces in 

the converted matrices can be filled and the proposed F-LDA can be applied using 

other configurations [75],[37]. 

The performance of the proposed F-LDA is compared with that of three supervised 

techniques namely 2D LDA [38], GDA [39] and NWFE [40]. These techniques (2D 

LDA, GDA and NWFE) are selected for fair comparisons since the proposed approach 

is also a supervised technique. The proposed F-LDA is further compared with two 

unsupervised techniques namely KPCA [41] and F-PCA (the technique that motivated 

this work) [37] for wider comparison. Gaussian kernel is selected as the kernel function 

for GDA and KPCA. Parameter (width) of the Gaussian kernel is optimized in the 

range [101 , 102 … 105].  Different configurations of the folded samples are also 

exploited when applying the 2D LDA and F-PCA on the selected hyperspectral 
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datasets for comparison with the proposed F-LDA. In the 2D LDA, the data was 

projected using 𝑦𝑦𝑷𝑷𝑷𝑷 = 𝑷𝑷𝒏𝒏𝑻𝑻𝒗𝒗𝑷𝑷𝑷𝑷, 𝑷𝑷𝒏𝒏 𝜖𝜖 ℜ 𝐺𝐺×𝐵𝐵, 𝒗𝒗𝑷𝑷𝑷𝑷 𝜖𝜖 ℜ𝐺𝐺 ×1, where 𝒗𝒗𝑷𝑷𝑷𝑷  is the single 

projection vector. Hence, the number of features that can be extracted by the 2D LDA 

is limited to 𝐵𝐵 (the number of columns in the folded samples) [38].        

5.3. Experimental Results and Analysis 

In this section, effects of the proposed method on the classification accuracy, 

computational complexity, and contiguous memory requirement for the selected 

datasets are investigated. The experimental results and analysis are therefore presented 

in the following three separate sub-sections addressing each of the following aspects: 

classification accuracy, computational complexity, and contiguous memory 

requirement). 

5.3.1. Effect on Classification Accuracy 

Firstly, the SVM model is trained using the full feature space available in each of the 

datasets. Secondly, traditional LDA is used to reduce the dimensionality of the datasets 

and extract features therefrom to train the SVM model. Plots of the OA and AA against 

the number of features extracted by LDA are obtained and the results illustrated in 

some figures for each dataset. The maximum OA and maximum AA are obtained from 

these plots and presented alongside the results obtained when the full feature space is 

used in Table 5.2 – 5.16. The maximum kappa coefficients (kc) are also obtained and 

reported in Table 5.2 – 5.16 in each of the considered cases. As shown in Table 5.2 – 

5.16, the classification accuracy attained by the SVM model is lower when it was 

trained using the LDA features than when the full feature space was used to train it for 

all the datasets considered. These results are expected since LDA is known for giving 

below par performance when used in SSS scenarios [26],[111],[27],[110],[112]. 
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Finally, the proposed F-LDA was used to reduce the dimensionality of the datasets and 

extract features therefrom to train the SVM model.  

1. Classification Accuracy for the Botswana Dataset 

F-LDA is applied on the Botswana dataset and while exploring different 

configurations (𝐺𝐺 × 𝐵𝐵) of the converted matrices. Plots of the OA and AA against the 

number of components at the EVD, 𝑑𝑑EVD  are obtained and illustrated in Figure 5.3 for 

each of the configurations. The maximum OA and AA are then obtained from each of 

these plots and the classification results presented in Table 5.2. From Table 5.2, it can 

be observed that OA, AA, and kc were lowest when the configuration was set to 

145 ×  1. This is a special case of the F-LDA where 𝐺𝐺 =  𝑓𝑓, which simplifies the F-

LDA to the conventional LDA. Also, from Table 5.2, it can be observed that the 

maximum OA, AA and kc was highest when the F-LDA configuration was set to 29 × 

5. This is an improvement on the classification accuracy obtained when the SVM 

model was trained using: (1) the LDA features and (2) the full feature space. One can 

also see that another special case of the F-LDA where 𝐺𝐺 =  1 simplifies the F-LDA 

to the full feature space. Further steps are taken to train the SVM model using the 

features extracted by the 2D LDA, GDA, NWFE, KPCA and F-PCA when applied on 

the Botswana dataset. Again, the best OA, AA and kc are obtained and presented in 

Table 5.2. From Table 5.2, it can be seen that the proposed F-LDA consistently 

produce better classification performance (higher OA, AA and kc) than the other 

techniques used to benchmark its performance. When considering the standard 

deviation, from Table 5.2, it can be observed that the lower bands of the OA, AA and 

kc achieved by the proposed F-LDA (91.17 ± 1.06, 91.69 ± 1.15 and 90.43 ± 0.01 

respectively) are higher than the average classification results reported for the other 
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techniques except for KPCA (89.97%, 90.41% and 89.13% respectively) and F-PCA 

(89.96%, 90.10% and 89.13 respectively) where the reported average OA, AA and kc 

are comparable to those reported for the proposed approach. The improvement on the 

performance of the classifier (when fed with the outputs of F-PCA and KPCA) 

achieved by the proposed approach is not much (when considering the standard 

deviation reported in each case) and therefore considered not significant.  

The classifier’s performance is also reported in terms of Precision (P), Recall (R) and 

F1 score (F1) in Table 5.3 and Table 5.4. From Table 5.3 and Table 5.4, it can be 

observed that the proposed F-LDA continues to give the best classification 

performance in terms of P, R and F1. It can be noted in Table 5.3 that P, R and F1 all 

have the same value. This is usually the case when their average is computed using  

micro averaging [113]. It is also worth noting in Table 5.4, which shows the results of 

macro averaging, that some of the results in P, R and F1 are ‘nan’. This occurs due to  

division by zero when computing P, R and F1 for each class [114]. Division by zero 

can occur when the following is equal to zero for any of the classes in the dataset (1) 

sum of true positives and false positives in the formula for computing P (2) sum of 

true positives and false negatives in the formula for computing R. F1 for a class will 

be set to ‘nan’ when either the recall or precision for that class is already ‘nan’. Because 

macro averaging directly computes the average of all the classification results recorded 

for all classes, ‘nan’ is reported as the overall average since at least one of the values 

to be averaged is ’nan’. It should also be noted that in some of the cases reported, 

macro averaged F1 is ‘nan’ while both the macro averaged precision and macro 

averaged recall are not. The reason for this is explained as follows: when the precision 

for any of the class is zero, the average precision can still be a valid number. This is 
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also the case for recall i.e. when the recall for any of the class is zero, the average recall 

can still be a valid number. But if both recall and precision are zero for a particular 

class, then the average F1 for that class will be set to ‘nan’. This will again set the 

macro averaged F1 to ‘nan’ since at least one of the values to be averaged is ’nan’.  

 

Figure 5.3 Classification results for the Botswana dataset using F-LDA. © 2020 

IEEE 

 

 

 

 

 



104 
 

Table 5.2 Classification Results (Best Cases) for the Botswana Dataset (14 Classes) 

Using Original Feature Space, Conventional LDA, F-LDA (with Different 

Configurations), 2D LDA, GDA, NWFE, KPCA and F-PCA. © 2020 IEEE 

Sample 
Shape 

VB Matrix Rank 
(r)/ EVD 

Components  
 (d EVD) 

Best 
d EVD 

Number of 
Features 
(d TOTAL) 

OA (%) AA (%) kc (%)_ 

Original Feature Space 
1 × 145 N/A N/A 145 87.60 ± 0.73 88.54 ± 0.75 86.56 ± 0.01 

 Conventional LDA 
1 × 145 13 12 12 13.31 ± 5.14 13.04 ± 2.68 6.07 ± 0.03 

Folded-LDA  
1 × 145 N/A N/A 145 87.60 ± 0.73 88.54 ± 0.75 86.56 ± 0.01 
5 × 29 5 5 145 89.79 ± 1.03 90.68 ± 1.08 88.94 ± 0.01 
29 × 5 29 12 60 91.17 ± 1.06 91.69 ± 1.15 90.43 ± 0.01 

145 × 1 13 12 12 13.31 ± 5.14 13.04 ± 2.68 6.07 ± 0.03 
2D-LDA  

1 × 145 N/A N/A 145 87.60 ± 0.73 88.54 ± 0.75 86.56 ± 0.01 
5 × 29 5 N/A 29 79.46 ± 2.59 80.50 ± 2.91 77.75 ± 0.03 
29 × 5 29 N/A 5 69.81 ± 5.59 70.67 ± 5.42 67.29 ± 0.06 

145 × 1 13 N/A 1 14.15 ± 3.37 14.40 ± 3.38 7.44 ± 0.04 
GDA 

1 × 145 13 13 13 85.72 ± 1.04 85.97 ± 1.85 84.52 ± 0.01 
NWFE 

1 × 145 20 5 5 87.57 ± 1.77 88.10 ± 2.29 86.53 ± 0.02 
KPCA 

1 × 145 10 7 7 89.97 ± 1.15 90.41 ± 1.51 89.13 ± 0.01 
Folded PCA 

1 × 145 5 5 5 89.96 ± 0.91 90.10 ± 1.01 89.13 ± 0.01 
5 × 29 5 2 10 87.27 ± 1.74 88.45 ± 1.85 86.21 ± 0.02 
29 × 5 5 1 29 87.47 ± 1.07 88.47 ± 1.05 86.43 ± 0.01 

145 × 1 N/A N/A 145 87.60 ± 0.73 88.54 ± 0.75 86.56 ± 0.01 
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Table 5.3 Classification Results (Precision, Recall and F1 Score using Micro 

Averaging) for the Botswana Dataset (14 Classes) Using Original Feature Space, 

Conventional LDA, F-LDA (with Different Configurations), 2D LDA, GDA, 

NWFE, KPCA and F-PCA. 

Sample 
Shape 

VB Matrix Rank 
(r)/ EVD 

Components  
 (d EVD) 

Best 
d EVD 

Number of 
Features 
(d TOTAL) 

Precision (%) Recall (%) F1 Score (%) 

Original Feature Space 
1 × 145 N/A N/A 145 87.60 + 0.01 87.60 + 0.01 87.60 + 0.01 

 Conventional LDA 
1 × 145 13 12  13.31 + 0.05 13.31 + 0.05 13.31 + 0.05 

Folded-LDA  
1 × 145 N/A N/A 145 87.60 + 0.01 87.60 + 0.01 87.60 + 0.01 
5 × 29 5 5 145 89.79 +  0.01 89.79 +  0.01 89.79 + 0.01 
29 × 5 29 12 60 91.17 +  0.01 91.17 + 0.01 91.17 + 0.01 

145 × 1 13 12 12 13.31 + 0.05 13.31 + 0.05 13.31 + 0.05 
2D-LDA  

1 × 145 N/A N/A 145 87.60 + 0.01 87.60 + 0.01 87.60 +0.01 
5 × 29 5 N/A 29 79.46 + 0.03 79.46 + 0.03 79.46 +  0.03 
29 × 5 29 N/A 5 69.81 + 0.06 69.81 + 0.06 69.81 + 0.06 

145 × 1 13 N/A 1 14.15 + 0.03 14.15 + 0.03 14.15 + 0.03 
GDA 

1 × 145 13 13 13 85.72 + 0.01 85.72 + 0.01 85.72 + 0.01 
NWFE 

1 × 145 20 5 5 87.57 + 0.02 87.57 + 0.02 87.57 + 0.02 
KPCA 

1 × 145 10 7 7 89.97 + 0.01 89.97 + 0.01 89.97 + 0.01 
Folded PCA 

1 × 145 5 5 5 89.96 + 0.01 89.96 + 0.01 89.96 + 0.01 
5 × 29 5 2 10 87.27 + 0.02 87.27 + 0.02 87.27 + 0.02 
29 × 5 5 1 29 87.47 +  0.01 87.47 +  0.01 87.47 +  0.01 

145 × 1 N/A N/A 145 87.60 + 0.01 87.60 + 0.01 87.60 + 0.01 
 

 

 

 

 

 



106 
 

Table 5.4 Classification Results (Precision, Recall and F1 Score Using Macro 

Averaging) for the Botswana Dataset (14 Classes) Using Original Feature Space, 

Conventional LDA, F-LDA (with Different Configurations), 2D LDA, GDA, 

NWFE, KPCA and F-PCA1. 

Sample 
Shape 

VB Matrix Rank 
(r)/ EVD 

Components  
 (d EVD) 

Best 
d EVD 

Number of 
Features 
(d TOTAL) 

Precision (%) Recall (%) F1 Score (%) 

Original Feature Space 
1 × 145 N/A N/A 145 88.81 + 0.01 88.54 + 0.01 88.46 + 0.01 

 Conventional LDA 
1 × 145 13 2 2 23.16 + 0.05 13.04 + 0.03 - 

Folded-LDA  
1 × 145 N/A N/A 145 88.81 + 0.01 88.54 + 0.01 88.46 + 0.01 
5 × 29 5 5 145 90.71 + 0.01 90.68 + 0.01 90.50 + 0.01 
29 × 5 29 12 60 92.35 + 0.01 91.69 + 0.01 91.82 + 0.01 

145 × 1 13 2 2 23.16 + 0.05 13.04 + 0.03 - 
2D-LDA  

1 × 145 N/A N/A 145 88.81 + 0.01 88.54 + 0.01 88.46 + 0.01 
5 × 29 5 N/A 29 80.96 + 0.03 80.50 + 0.03 80.28 + 0.03 
29 × 5 29 N/A 5 72.07 + 0.05 70.67 + 0.05 70.60 + 0.06  

145 × 1 13 N/A 1 - 14.40 + 0.03 - 
GDA 

1 × 145 13 13 13 87.85 + 0.01 85.97 + 0.02 86.49 + 0.01 
NWFE 

1 × 145 20 5 5 88.87 +0.01  88.10 + 0.02 88.16 + 0.02 
KPCA 

1 × 145 10 9 9 91.02 + 0.01 90.41 + 0.02 90.50 + 0.01 
Folded PCA 

1 × 145 5 5 5 90.78 +0.01  90.10 + 0.01 90.24 + 0.01 
5 × 29 5 2 10 88.49 + 0.02 88.45 +0.02  88.25 + 0.02 
29 × 5 5 1 29 88.71 + 0.01 88.47 + 0.01 88.37 + 0.01 

145 × 1 N/A N/A 145 88.81 + 0.01  88.54 + 0.01 88.46 + 0.01 
 

 

 

 

                                                            
1 A dash is used in Table 5.4 where the result is not a number i.e. it cannot be computed. This happens because either the true 

positives and false positives are both zero or the true positives and false negatives are both zero. 
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2. Classification Accuracy for the Pavia Center Dataset 

The F-LDA operation is also carried out on the Pavia Center dataset. The plots of OA 

and AA against 𝑑𝑑EVD are obtained for each of the configurations considered and 

presented in Figure 5.4. The maximum OA and AA are extracted from Figure 5.4 and 

the classification results, including the maximum kc presented in Table 5.5. It can be 

observed that the highest OA, OA and kc are obtained when the configuration is set 

to 17 × 6. This is an improvement on the classification accuracy obtained when the 

SVM model was trained using the full feature space. The case 102 × 1 simplifies the 

proposed F-LDA to the conventional LDA, while another case 𝐺𝐺 =  1 (i.e.   1 × 102) 

simplifies it to the full feature space. The outputs of 2D LDA, GDA, NWFE, KPCA 

and F-PCA when applied on the Pavia Center dataset are also used to train the SVM 

model. The classification results obtained are presented in Table 5.5. From Table 5.5, 

it can be observed that the proposed F-LDA continues to give the best classification 

performance in terms of OA, AA and kc.  When considering the standard deviation, 

from Table 5.5, it can be observed that the lower bands of the OA, AA and kc achieved 

by the proposed F-LDA (96.63 ± 0.37, 88.06 ± 1.51 and 95.23 ± 0.01) are higher than 

the average classification results reported for the other techniques except for F-PCA 

where the reported average OA (96.17) and kc (94.58) are comparable to those 

reported for the proposed approach. Also, the average AA (86.87) reported for F-PCA 

is slightly higher than the lower band of the AA (88.06 ± 1.51) achieved by the 

proposed approach. The improvement on the performance of the classifier (when fed 

with the output of F-PCA) achieved by the proposed approach can also be considered 

not significant in this case.  
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The classifier’s performance is also reported in terms of P, R and F1 in Table 5.6 and 

Table 5.7. From Table 5.6 and Table 5.7, it can be seen that the proposed F-LDA 

consistently produce better classification performance (higher P, R and F1) than the 

other techniques used to benchmark its performance. It can be noted in Table 5.6 that 

P, R and F1 all have the same value. This is usually the case when their average is 

computed using  micro averaging [113]. It is also worth noting in Table 5.7 that some 

of the results in P, R and F1  are ‘nan’. This occurs due to  division by zero when 

computing them [114].  

 

 

   

 

Figure 5.4 Classification results for the Pavia Center dataset using F-LDA. © 2020 

IEEE 
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Table 5.5 Classification Results (Best Cases) for the Pavia Center Dataset (9 Classes) 

Using Original Feature Space, Conventional LDA, F-LDA (with Different 

Configurations), 2D LDA, GDA, NWFE, KPCA and F-PCA. © 2020 IEEE 

Sample 
Shape 

VB Matrix Rank 
(r)/ EVD 

Components  
 (d EVD) 

Best 
d EVD 

Number 
of 

Features 
(d TOTAL) 

OA (%) AA (%) kc (%)_ 

Original Feature Space 
1 × 102 N/A N/A 102 95.44 ± 0.53 84.85 ± 1.51 93.54 ± 0.01 

 Conventional LDA 
1 × 102 8 6 6 90.76 ± 1.63 76.50 ± 3.33 86.92 ± 0.02 

Folded-LDA  
1×102 N/A N/A 102 95.44 ± 0.53 84.85 ± 1.51 93.54 ± 0.01 
2×51 2 2 102 95.23 ± 0.65 84.69 ± 1.90 93.24 ± 0.01 
3×34 3 3 102 95.69 ± 0.56 84.69 ± 3.04 93.90 ± 0.01 
6×17 6 6 102 96.63 ± 0.39 87.76 ± 2.11 95.23 ± 0.01 
17×6 17 9 54 96.63 ± 0.37 88.06 ± 1.51 95.23 ± 0.01 
34×3 24 8 24 96.21 ± 0.26 87.25 ± 0.85 94.63 ± 0.00 
51×2 16 8 16 95.28 ± 0.53 84.69 ± 1.54 93.30 ± 0.01 

102×1 8 6 6 90.76 ± 1.63 76.50 ± 3.33 86.92 ± 0.02 
2D-LDA  

1×102 N/A N/A 102 95.44 ± 0.53 84.85 ± 1.51 93.54 ± 0.01 
2×51 2 N/A 51 93.49 ± 1.45 81.31 ± 3.20 90.74 ± 0.02 
3×34 3 N/A 34 92.13 ± 0.68 74.40 ± 2.72 88.77 ± 0.01 
6×17 6 N/A 17 88.90 ± 4.23 66.30 ± 10.03 83.90 ± 0.06 
17×6 17 N/A 6 86.27 ± 3.27 61.88 ± 8.42 80.22 ± 0.05 
34×3 24 N/A 3 77.92 ± 7.11 47.60 ± 9.42 66.89 ± 0.12 
51×2 16 N/A 2 75.64 ± 7.91 44.38 ± 8.65 63.51 ± 0.13 

102×1 8 N/A 1 66.20 ± 8.87 37.62 ± 5.40 52.00 ± 0.13 
GDA 

1 × 102 8 8 8 95.73 ± 0.42 85.35 ± 1.93 93.95 ± 0.01 
NWFE 

1 × 102 20 4 4 94.73 ± 0.58 81.71 ± 2.98 92.52 ± 0.01 
KPCA 

1 × 102 10 10 10 95.49 ± 0.51 84.60 ± 2.13 93.61 ± 0.01 
Folded PCA 

1×102 5 3 3 95.18 ± 0.46 83.26 ± 2.48 93.17 ± 0.01 
2×51 5 3 6 95.98 ± 0.44 86.09 ± 1.42 94.31 ± 0.01 
3×34 5 3 9 96.17 ± 0.51 86.87 ± 2.18 94.58 ± 0.01 
6×17 5 2 12 95.96 ± 0.56 86.35 ± 2.00 94.27 ± 0.01 
17×6 5 2 34 95.50 ± 0.45 84.96 ± 1.13 93.63 ± 0.01 
34×3 5 2 68 95.08 ± 0.39  83.50 ± 3.24 93.02 ± 0.01 
51×2 5 1 51 95.06 ± 0.93 83.58 ± 3.21 92.99 ± 0.01 

102×1 N/A N/A 102 95.44 ± 0.53 84.85 ± 1.51 93.54 ± 0.01 
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Table 5.6 Classification Results (Precision, Recall and F1 Score Using Micro 

Averaging) for the Pavia Center Dataset (9 Classes) Using Original Feature Space, 

Conventional LDA, F-LDA (with Different Configurations), 2D LDA, GDA, 

NWFE, KPCA and F-PCA. 

Sample 
Shape 

VB Matrix Rank 
(r)/ EVD 

Components  
 (d EVD) 

Best 
d EVD 

Number 
of 

Features 
(d TOTAL) 

Precision (%) Recall (%) F1 Score (%) 

Original Feature Space 
1 × 102 N/A N/A 102 95.44 + 0.01 95.44 + 0.01 95.44 + 0.01 

 Conventional LDA 
1 × 102 8 6 6 90.76 + 0.02 90.76 + 0.02 90.76 + 0.02 

Folded-LDA  
1×102 N/A N/A 102 95.44 + 0.01 95.44 + 0.01 95.44 + 0.01 
2×51 2 2 102 95.23 + 0.01 95.23 + 0.01 95.23 + 0.01 
3×34 3 3 102 95.69 + 0.01 95.69 + 0.01 95.69 + 0.01 
6×17 6 6 102 96.63 + 0.00 96.63 + 0.00 96.63 + 0.00 
17×6 17 9 54 96.63 + 0.00 96.63 + 0.00 96.63 + 0.00 
34×3 24 8 24 96.21 + 0.00 96.21 + 0.00 96.21 + 0.00 
51×2 16 8 16 95.28 + 0.01 95.28 + 0.01 95.28 + 0.01 

102×1 8 6 6 90.76 + 0.02 90.76 + 0.02 90.76 + 0.02 
2D-LDA  

1×102 N/A N/A 102 95.44 + 0.01 95.44 + 0.01 95.44 + 0.01 
2×51 2 N/A 51 93.49 + 0.01 93.49 + 0.01 93.49 + 0.01 
3×34 3 N/A 34 92.13 + 0.01 92.13 + 0.01 92.13 + 0.01 
6×17 6 N/A 17 88.90 + 0.04 88.90 + 0.04 88.90 + 0.04 
17×6 17 N/A 6 86.27 + 0.03 86.27 + 0.03 86.27 + 0.03 
34×3 24 N/A 3 77.92 + 0.07 77.92 + 0.07 77.92 + 0.07 
51×2 16 N/A 2 75.64 + 0.08 75.64 + 0.08 75.64 + 0.08 

102×1 8 N/A 1 66.20 + 0.09 66.20 + 0.09 66.20 + 0.09 
GDA 

1 × 102 8 8 8 95.73 +  8.00 95.73 +  8.00 95.73 +  8.00 
NWFE 

1 × 102 20 4 4 94.73 + 0.01 94.73 + 0.01 94.73 + 0.01 
KPCA 

1 × 102 10 10 10 95.49 + 0.01 95.49 + 0.01 95.49 + 0.01 
Folded PCA 

1×102 5 3 3 95.18 + 0.00 95.18 + 0.00 95.18 + 0.00 
2×51 5 3 6 95.98 + 0.00 95.98 + 0.00 95.98 + 0.00 
3×34 5 3 9 96.17 + 0.01 96.17 + 0.01 96.17 + 0.01 
6×17 5 2 12 95.96 +  0.01 95.96 +  0.01 95.96 +  0.01 
17×6 5 2 34 95.50 + 0.00 95.50 + 0.00 95.50 + 0.00 
34×3 5 2 68 95.08 + 0.00 95.08 + 0.00 95.08 + 0.00 
51×2 5 1 51 95.06 + 0.01 95.06 + 0.01 95.06 + 0.01 

102×1 N/A N/A 102 95.44 + 0.01 95.44 + 0.01 95.44 + 0.01 
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Table 5.7 Classification Results (Precision, Recall and F1 Score Using Macro 

Averaging) for the Pavia Center Dataset (9 Classes) Using Original Feature Space, 

Conventional LDA, F-LDA (with Different Configurations), 2D LDA, GDA, 

NWFE, KPCA and F-PCA2. 

Sample 
Shape 

VB Matrix Rank 
(r)/ EVD 

Components  
 (d EVD) 

Best 
d EVD 

Number 
of 

Features 
(d TOTAL) 

Precision (%) Recall (%) F1 Score (%) 

Original Feature Space 
1 × 102 N/A N/A 102 86.82 + 0.02 84.85 + 0.02 85.41 + 0.02 

 Conventional LDA 
1 × 102 8 7 7 77.18 + 0.03 76.50 + 0.03 75.61 + 0.04 

Folded-LDA  
1×102 N/A N/A 102 86.82 + 0.02 84.85 + 0.02 85.41 + 0.02 
2×51 2 1 51 87.36 + 0.01 84.69 + 0.02 85.58 + 0.02 
3×34 3 2 68 86.31 + 0.02 84.69 + 0.03 84.68 + 0.03 
6×17 6 6 102 89.33 + 0.01 87.76 + 0.02 87.98 + 0.02 
17×6 17 11 66 89.86 + 0.01 88.06 + 0.02 88.24 +  0.02 
34×3 24 7 21 88.03 + 0.02  87.25 + 0.01 87.37 + 0.01 
51×2 16 7 14 87.38 + 0.02 84.69 + 0.02 85.18 + 0.02 

102×1 2 7 7 77.18 + 0.03 76.50 + 0.03 75.61 + 0.04 
2D-LDA  

1×102 N/A N/A 102 86.82 + 0.02 84.85 +0.02  85.41 +  0.02 
2×51 2 N/A 51 85.60 + 0.03 81.31 + 0.03 82.91 + 0.03 
3×34 3 N/A 34 78.82 + 0.03 74.40 + 0.03 - 
6×17 6 N/A 17 - 66.30 +0.10  - 
17×6 17 N/A 6 - 61.88 + 0.08 - 
34×3 24 N/A 3 - 47.60 + 0.09 - 
51×2 16 N/A 2 - 44.38 + 0.09 - 

102×1 8 N/A 1 - 37.62 + 0.05 - 
GDA 

1 × 102 8 8 8 87.89 + 0.01 85.35 + 0.02 86.12 + 0.02 
NWFE 

1 × 102 20 4 4 84.53 + 0.02 81.71 + 0.03 82.34 + 0.02 
KPCA 

1 × 102 10 6 6 86.45 + 0.02 84.60 +  0.02 84.83 + 0.02 
Folded PCA 

1×102 5 3 3 85.63 + 0.01 83.26 + 0.02 83.68 + 0.02 
2×51 5 4 8 87.60 + 0.01 86.09 + 0.01 86.51 + 0.01 
3×34 5 3 9 88.59 + 0.01 86.87 + 0.02 87.32 + 0.02 
6×17 5 2 12 88.04 + 0.02 86.35 + 0.02 86.89 + 0.02 
17×6 5 2 34 86.19 + 0.01 84.96 + 0.01 85.35 + 0.01 
34×3 5 1 34 86.25 + 0.02 83.50 +0.03  84.23 + 0.03 
51×2 5 1 51 86.42 + 0.01 83.58 + 0.03 84.32 + 0.02 

102×1 N/A N/A 102 86.82 + 0.02 84.85 + 0.02 85.41 + 0.02 
                                                            

2 A dash is used in Table 5.7 where the result is not a number i.e. it cannot be computed. This happens because either the true 
positives and false positives are both zero or the true positives and false negatives are both zero. 
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3. Classification Accuracy for the Salinas-A Dataset 

The proposed F-LDA is also applied on the Salinas-A data and the plots of OA and 

AA against 𝑑𝑑EVD obtained for each of the configurations considered are presented in 

Figure 5.5. The maximum OA and AA are extracted from these plots and the 

classification results, including the maximum kc presented in Table 5.8. One can see 

in Table 5.8 that the highest OA, AA and kc are achieved when the configuration was 

set to  17 ×  12 (99.19%). This is higher than the 98.60% attained when the full 

feature space was used to train the SVM model. Once more, the proposed F-LDA 

simplifies to the conventional LDA and the full feature space when the configuration 

is set to 204 ×  1 (i.e., when 𝐺𝐺 =  𝑓𝑓), and when  𝐺𝐺 =  1 respectively.  The proposed 

F-LDA gives the best classification performance in terms of OA, AA, and kc as can 

be seen in Table 5.8. When considering the standard deviation, from Table 5.8, it can 

be observed that the lower bands of the OA, AA and kc achieved by the proposed F-

LDA (99.19 ± 0.29, 98.94 ± 0.45 and 98.98 ±  0.00) are comparable to (and slightly 

lower in some cases) those achieved by the other techniques namely F-PCA (99.06, 

98.86 and 98.82), KPCA (99.01, 98.85 and 98.76), GDA (98.77, 98.49 and 98.46), and 

2D LDA (98.60, 98.38 and 98.24). Based on these, the improvement on the 

performance of the classifier achieved (when fed with the outputs of other techniques) 

by the proposed approach can be considered not significant.  

The classifier’s performance is also reported in terms of P, R and F1 in Table 5.9 and 

Table 5.10. From Table 5.9 and Table 5.10, it can be seen that the proposed F-LDA 

consistently produce better classification performance (higher P, R and F1) than the 

other techniques used to benchmark its performance. It can be noted in Table 5.9 that 

P, R and F1 all have the same value. This is usually the case when their average is 
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computed using  micro averaging [113]. It is also worth noting in Table 5.10 that some 

of the results in P, R and F1  are ‘nan’. This occur due to division by zero when 

computing them [114]. 

 

 

Figure 5.5 Classification results for the Salinas-A dataset using F-LDA 
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Table 5.8 Classification Results (Best Cases) for the Salinas-A Dataset (6 Classes) 

Using Original Feature Space, Conventional LDA, F-LDA (with Different 

Configurations), 2D LDA, GDA, NWFE, KPCA and F-PCA 

Sample 
Shape 

VB Matrix 
Rank (r)/ 

EVD 
Components  

 (d EVD) 

Best 
d EVD 

Number of 
Features 
(d TOTAL) 

OA (%) AA (%) kc (%)_ 

Original Feature Space 
1 × 204 N/A N/A 204 98.60 ± 0.21 98.38 ± 0.25 98.24 ± 0.00 

 Conventional LDA 
1 × 204 5 1 1 38.95 ± 8.01 44.20 ± 7.04 25.97 ± 0.09 

Folded-LDA  
1 × 204 N/A N/A 204 98.60 ± 0.21 98.38 ± 0.25 98.24 ± 0.00 
2 × 102 2 2 204 98.62 ± 0.23 98.38 ± 0.28 98.27 ± 0.00 
3 × 68 3 3 204 98.61 ± 0.32 98.33 ± 0.40 98.26 ± 0.00 
4 × 51 4 4 204 98.88 ± 0.27 98.66 ± 0.40 98.60 ± 0.00 
6 × 34 6 4 136 99.06 ± 0.34 98.86 ± 0.49 98.82 ± 0.00 

12 × 17 12 10 170 99.05 ± 0.24  98.81 ± 0.37 98.81 ± 0.00 
17 × 12 17 10 120 99.19 ± 0.29 98.94 ± 0.45 98.98 ±  0.00 
204 × 1 5 1 1 38.95 ± 8.01 44.20 ± 7.04 25.97 ± 0.09 

2D-LDA  
1 × 204 N/A N/A 204 98.60 ± 0.21 98.38 ± 0.25 98.24 ± 0.00 
2 × 102 2 N/A 102 98.21 ± 0.33 97.91 ± 0.41 97.75 ± 0.00 
3 × 68 3 N/A 68 98.46 ± 0.30 98.17 ± 0.37 98.07 ± 0.00 
4 × 51 4 N/A 51 97.94 ± 0.41 97.67 ± 0.51 97.42 ± 0.01 
6 × 34 6 N/A 34 98.32 ± 0.52 98.06 ± 0.62 97.90 ± 0.01 

12 × 17 12 N/A 17 97.29 ± 0.61 96.89 ± 0.90 96.61 ± 0.01 
17 × 12 17 N/A 12 95.83 ± 1.96 95.24 ± 2.32 94.76 ± 0.02 
204 × 1 5 N/A 1 39.05 ± 8.09 43.41 ± 7.62 25.33 ± 0.09 

GDA 
1 × 204 5 4 4 98.77 ± 0.31 98.49 ± 0.46 98.46 ± 0.00 

NWFE 
1 × 204 20 20 20 98.71 ± 0.33 98.38 ± 0.48 98.39 ± 0.00 

KPCA 
1 × 204 10 7 7 99.01 ± 0.25 98.85 ± 0.33 98.76 ± 0.00 

Folded PCA 
1 × 204 5 5 5 98.85 ±  0.24 98.61 ± 0.36 98.56 ± 0.00 
2 × 102 5 4 8 98.93 ± 0.25 98.66 ± 0.37 98.66 ± 0.00 
3 × 68 5 4 12 98.63 ± 0.47 98.38 ± 0.40 98.28 ± 0.01 
4 × 51 5 4 16 98.97 ± 0.24 98.74 ± 0.23 98.71 ± 0.00 
6 × 34 5 4 24 99.06 ± 0.32 98.86 ± 0.39 98.82 ± 0.00 
12 × 17 5 3 36 99.04 ± 0.16 98.79 ± 0.25 98.80 ±  0.00 
17 × 12 5 3 51 98.86 ± 0.26 98.59 ± 0.37 98.56 ± 0.00 
204 × 1 N/A N/A 204 98.60 ± 0.21 98.38 ± 0.25 98.24 ± 0.00 
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Table 5.9 Classification Results (Precision, Recall and F1 Score Using Micro 

Averaging) for the Salinas-A Dataset (6 Classes) Using Original Feature Space, 

Conventional LDA, F-LDA (with Different Configurations), 2D LDA, GDA, 

NWFE, KPCA and F-PCA 

Sample 
Shape 

VB Matrix 
Rank (r)/ 

EVD 
Components 

(d EVD) 

Best 
d EVD 

Number of 
Features 
(d TOTAL) 

Precision (%) Recall (%) F1 Score (%) 

Original Feature Space 
1 × 204 N/A N/A 204 98.60 + 0.00 98.60 + 0.00 98.60 + 0.00 

Conventional LDA 
1 × 204 5 1 1 38.95 + 0.08 38.95 + 0.08 38.95 + 0.08 

Folded-LDA 
1 × 204 N/A N/A 204 98.60 + 0.00 98.60 + 0.00 98.60 + 0.00 
2 × 102 2 2 204 98.62 +  0.00 98.62 +  0.00 98.62 +  0.00 
3 × 68 3 3 204 98.61 + 0.00 98.61 + 0.00 98.61 + 0.00 
4 × 51 4 4 204 98.88 + 0.00 98.88 + 0.00 98.88 + 0.00 
6 × 34 6 4 136 99.06 + 0.00 99.06 + 0.00 99.06 + 0.00 

12 × 17 12 10 170 99.05 + 0.00 99.05 + 0.00 99.05 + 0.00 
17 × 12 17 10 120 99.19 + 0.00 99.19 + 0.00 99.19 + 0.00 
204 × 1 5 1 1 38.95 + 0.08 38.95 + 0.08 38.95 + 0.08 

2D-LDA 
1 × 204 N/A N/A 204 98.60 + 0.00 98.60 + 0.00 98.60 + 0.00 
2 × 102 2 N/A 102 98.21 + 0.00 98.21 + 0.00 98.21 + 0.00 
3 × 68 3 N/A 68 98.46 + 0.00 98.46 + 0.00 98.46 + 0.00 
4 × 51 4 N/A 51 97.94 + 0.00 97.94 + 0.00 97.94 + 0.00 
6 × 34 6 N/A 34 98.32 + 0.01 98.32 + 0.01 98.32 + 0.01 

12 × 17 12 N/A 17 97.29 + 0.01 97.29 + 0.01 97.29 + 0.01 
17 × 12 17 N/A 12 95.83 + 0.02 95.83 + 0.02 95.83 + 0.02 
204 × 1 5 N/A 1 39.05 + 0.08 39.05 + 0.08 39.05 + 0.08 

GDA 
1 × 204 5 4 4 98.77 + 0.00 98.77 + 0.00 98.77 + 0.00 

NWFE 
1 × 204 20 1 1 25.11 +  0.00 25.11 +  0.00 25.11 +  0.00 

KPCA 
1 × 204 10 7 7 99.01 + 0.00 99.01 + 0.00 99.01 + 0.00 

Folded PCA 
1 × 204 5 5 5 98.85 + 0.00 98.85 + 0.00 98.85 + 0.00 
2 × 102 5 4 8 98.93 + 0.00 98.93 + 0.00 98.93 + 0.00 
3 × 68 5 4 12 98.63 +  0.00 98.63 +  0.00 98.63 +  0.00 
4 × 51 5 4 16 98.97 + 0.00 98.97 + 0.00 98.97 + 0.00 
6 × 34 5 4 24 99.06 + 0.00 99.06 + 0.00 99.06 + 0.00 
12 × 17 5 3 36 99.04 + 0.00 99.04 + 0.00 99.04 + 0.00 
17 × 12 5 3 51 98.86 + 0.00 98.86 + 0.00 98.86 + 0.00 
204 × 1 N/A N/A 204 98.60 + 0.00 98.60 + 0.00 98.60 + 0.00 
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Table 5.10 Classification Results (Precision, Recall and F1 Score Using Macro 

Averaging) for the Salinas-A Dataset (6 Classes) Using Original Feature Space, 

Conventional LDA, F-LDA (with Different Configurations), 2D LDA, GDA, 

NWFE, KPCA and F-PCA3. 

Sample 
Shape 

VB Matrix 
Rank (r)/ 

EVD 
Components 

(d EVD) 

Best 
d EVD 

Number of 
Features 
(d TOTAL) 

Precision (%) Recall (%) F1 Score (%) 

Original Feature Space 
1 × 204 N/A N/A 204 98.84 + 0.00 98.38 + 0.00 98.60 + 0.00 

Conventional LDA 
1 × 204 5 4 4 86.31 + 0.02 44.20 +  0.07 29.52 + 0.05 

Folded-LDA 
1 × 204 N/A N/A 204 98.84 + 0.00 98.38 + 0.00 98.60 + 0.00 
2 × 102 2 2 204 98.84 + 0.00 98.38 + 0.00 98.60 + 0.00 
3 × 68 3 3 204 98.86 + 0.00 98.33 + 0.00 98.58 + 0.00 
4 × 51 4 4 204 99.06 + 0.00 98.66 + 0.00 98.85 + 0.00 
6 × 34 6 5 170 99.20 + 0.00 98.86 + 0.00 99.00 + 0.00 

12 × 17 12 8 136 99.22 + 0.00 98.81 + 0.00 99.00 + 0.00 
17 × 12 17 14 168 99.36 + 0.00 98.94 + 0.00 99.13 + 0.00 
204 × 1 5 4 4 86.31 + 0.02 44.20 + 0.07 29.52 + 0.05 

2D-LDA 
1 × 204 N/A N/A 204 98.84 + 0.00 98.38 + 0.00 98.60 + 0.00 
2 × 102 2 N/A 102 98.50 +  0.00 97.91 + 0.00 98.18 + 0.00 
3 × 68 3 N/A 68 98.67 +  0.00 98.17 + 0.00 98.40 + 0.00 
4 × 51 4 N/A 51 98.12 +  0.00 97.67 + 0.01 97.88 + 0.00 
6 × 34 6 N/A 34 98.47 + 0.01 98.06 + 0.01 98.25 + 0.01 

12 × 17 12 N/A 17 97.35 + 0.01 96.89 + 0.01 97.09 + 0.01 
17 × 12 17 N/A 12 95.92 + 0.02 95.24 + 0.02 95.50 + 0.02 
204 × 1 5 N/A 1 43.97 + 0.05 43.41 + 0.08 41.71 + 0.07 

GDA 
1 × 204 5 4 4 98.79 +  0.00 98.49 + 0.00 98.62 + 0.00 

NWFE 
1 × 204 20 1 1 - 16.67 + 0.00 - 

KPCA 
1 × 204 10 7 7 99.09 + 0.00 98.85 + 0.00 98.96 + 0.00 

Folded PCA 
1 × 204 5 5 5 98.98 + 0.00 98.61 + 0.00 98.78 +  0.00 
2 × 102 5 4 8 99.13 + 0.00 98.66 + 0.00 98.88 + 0.00 
3 × 68 5 4 12 98.83 + 0.00 98.38 + 0.00 98.58 + 0.00 
4 × 51 5 4 16 99.15 + 0.00 98.74 +  0.00 98.93 + 0.00 
6 × 34 5 4 24 99.20 + 0.00 98.86 + 0.00 99.02 + 0.00 

12 × 17 5 4 48 99.26 + 0.00  98.79 + 0.00 99.01 + 0.00 
17 × 12 5 3 51 99.14 + 0.00 98.59 +  0.00 98.85 +  0.00 
204 × 1 N/A N/A 204 98.84 + 0.00 98.38 + 0.00 98.60 + 0.00 

                                                            
3 A dash is used in Table 5.10 where the result is not a number i.e. it cannot be computed. This happens because either the true 

positives and false positives are both zero or the true positives and false negatives are both zero. 
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4. Classification Accuracy for the Indian Pine Dataset  

Plots of OA and AA against 𝑑𝑑EVD obtained for each of the configurations considered 

when the proposed F-LDA is applied on the Indian Pine dataset and related 

classification results are presented in Figure 5.6 and Table 5.11 respectively. Lowest 

OA, AA and kc are obtained when the configuration is set to 200 × 1. The highest OA 

and AA are attained when the configurations are set to 20 × 10 and 8 ×

25 , respectively. It can be observed that the configurations 20 × 10 and 8 × 25 both 

produce the highest kc. The highest classification results (OA, AA and kc) reported for 

the proposed F-LDA are much higher than those attained by the SVM model when it 

was trained using the LDA features. Again, the case  200 × 1 (i.e., when 𝐺𝐺 =  𝑓𝑓) 

simplifies the proposed F-LDA to the conventional LDA while another case 1 × 200 

(𝐺𝐺 =  𝑓𝑓) simplifies it to the full feature space. The 2D LDA, GDA, NWFE, KPCA 

and F-PCA are also applied to reduce the dimensionality of the Indian Pine dataset, 

and the proposed F-LDA achieves the best classification performance again. When 

considering the standard deviation, from Table 5.11, it can be observed that the lower 

bands of the OA, AA and kc achieved by the proposed F-LDA (85.57 ± 0.98, 80.24 ± 

3.22 and 83.49 ± 0.01) are higher than the average classification results reported for 

the other techniques except for F-PCA where the reported average OA (84.10) is 

comparable to those reported for the proposed approach. Also, the average AA (79.02) 

reported for F-PCA can be seen to be higher than the lower band of the AA (81.80) 

achieved by the proposed approach. The improvement on the performance of the 

classifier (when fed with the output of F-PCA) achieved by the proposed approach can 

also be considered not significant in this case.  
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The classifier’s performance is also reported in terms of P, R and F1 in Table 5.12 and 

Table 5.13. From Table 5.12 and Table 5.13, it can be observed that the proposed F-

LDA continues to give the best classification performance in terms of P, R and F1.  It 

can be noted in Table 5.12 that P, R and F1 all have the same value. This is usually the 

case when their average is computed using  micro averaging [113]. It is also worth 

noting in Table 5.13 that some of the results in P, R and F1  are ‘nan’. This occur due 

to  division by zero when computing them [114]. 

  

 

Figure 5.6 Classification results for the Indian Pine dataset using F-LDA 
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Table 5.11 Classification Results (Best Cases) for the Indian Pine Dataset (16 

Classes) Using Original Feature Space, Conventional LDA, F-LDA (with Different 

Configurations), 2D LDA, GDA, NWFE, KPCA and F-PCA 

Sample 
Shape 

VB Matrix 
Rank (r)/ 

EVD 
Components  

 (d EVD) 

Best 
d EVD 

Number of 
Features 
(d TOTAL) 

OA (%) AA (%) kc (%)  

Original Feature Space 
1 × 200 N/A N/A 200 80.03 ± 0.62 73.04 ± 2.24 77.10 ± 0.01 

 Conventional LDA 
1 × 200 15 9 9 68.95 ± 0.94 64.06 ± 2.45 64.49 ± 0.01 

Folded-LDA  
1×200 N/A N/A 200 80.03 ± 0.62 73.04 ± 2.24 77.10 ± 0.01 
2×100 2 2 200 82.23 ± 0.71 76.36 ± 2.34 79.66 ± 0.01 
4×50 4 3 150 84.09 ± 0.95 80.22 ± 2.55 81.82 ± 0.01 
5×40 5 4 160 83.30 ± 0.88 78.78 ± 3.21 80.91 ± 0.01 
8×25 8 7 175 85.55 ± 0.81 80.24 ± 3.22 83.49 ± 0.01 
10×20 10 9 180 84.64 ± 0.92 79.78 ± 2.68 82.41 ± 0.01 
20×10 20 13 130 85.57 ± 0.98 79.90 ± 2.81 83.49 ± 0.01 
200×1 15 9 9 68.95 ± 0.94 64.06 ± 2.45 64.49 ± 0.01 

2D-LDA  
1×200 N/A N/A 200 80.03 ± 0.62 73.04 ± 2.24 77.10 ± 0.01 
2×100 2 N/A 100 76.33 ± 1.32 70.50 ± 4.85 72.85 ± 0.02 
4×50 4 N/A 50 71.97 ± 2.32 63.62 ± 3.40 67.80 ± 0.03 
5×40 5 N/A 40 69.22 ± 2.63 58.37 ± 4.82 64.54 ± 0.03 
8×25 8 N/A 25 68.39 ± 1.85 56.03 ± 4.26 63.53 ± 0.02 
10×20 10 N/A 20 68.59 ± 2.37 58.23 ± 4.80 63.69 ± 0.03 
20×10 20 N/A 10 58.18 ± 1.86 44.35 ± 2.76 51.32 ± 0.02 
200×1 15 N/A 1 42.64 ± 2.00 25.94 ± 2.91 32.19 ± 0.02 

GDA 
1×200 15 14 14 79.12 ± 0.74 73.10 ± 1.92 76.07 ± 0.01 

NWFE 
1×200 20 12 12 81.23 ± 0.85 75.56 ± 4.40 78.48 ± 0.01 

KPCA 
1×200 10 6 6 79.01 ± 0.90 75.67 ± 2.06 75.98 ± 0.01 

Folded PCA 
1×200 5 5 5 75.09 ± 0.85 71.32 ± 2.58 71.45 ±  0.01 
2×100 5 5 10 83.16 ± 0.67 79.59 ± 2.05 80.78 ± 0.01 
4×50 5 5 20 82.06 ± 0.43 77.41 ± 2.15 79.45 ± 0.01 
5×40 5 5 25 83.68 ± 0.70 78.77 ± 2.37 81.33 ± 0.01 
8×25 5 4 32 84.10 ± 0.97 79.02 ± 4.11 81.80 ± 0.01 
10×20 5 3 30 82.39 ± 1.05 77.82 ± 2.39 79.86 ± 0.01 
20×10 5 2 40 83.62 ± 0.68 79.31 ± 3.00 81.26 ± 0.01 
200×1 N/A N/A 200 80.03 ± 0.62 73.04 ± 2.24 77.10 ± 0.01 
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Table 5.12 Classification Results (Precision, Recall and F1 Score Using Micro 

Averaging) for the Indian Pine Dataset (16 Classes) Using Original Feature Space, 

Conventional LDA, F-LDA (with Different Configurations), 2D LDA, GDA, 

NWFE, KPCA and F-PCA 

Sample 
Shape 

VB Matrix 
Rank (r)/ 

EVD 
Components 

(d EVD) 

Best 
d EVD 

Number of 
Features 
(d TOTAL) 

Precision (%) Recall (%) F1 Score (%) 

Original Feature Space 
1 × 200 N/A N/A 200 80.03+ 0.01 80.03+ 0.01 80.03+ 0.01 

Conventional LDA 
1 × 200 15 9 9 68.95 + 0.01 68.95 + 0.01 68.95 + 0.01 

Folded-LDA 
1×200 N/A N/A 200 80.03 + 0.01 80.03 + 0.01 80.03 + 0.01 
2×100 2 2 200 82.23 + 0.01 82.23 + 0.01 82.23 + 0.01 
4×50 4 3 150 84.09 + 0.01 84.09 + 0.01 84.09 + 0.01 
5×40 5 4 160 83.30 + 0.01 83.30 + 0.01 83.30 + 0.01 
8×25 8 7 175 85.55 + 0.01 85.55 + 0.01 85.55 + 0.01 
10×20 10 9 180 84.64 + 0.01 84.64 + 0.01 84.64 + 0.01 
20×10 20 13 130 85.57 + 0.01 85.57 + 0.01 85.57 + 0.01 
200×1 15 9 9 68.95 + 0.01 68.95 + 0.01 68.95 + 0.01 

2D-LDA 
1×200 N/A N/A 200 80.03 + 0.01 80.03 + 0.01 80.03 + 0.01 
2×100 2 N/A 100 76.33 + 0.01 76.33 + 0.01 76.33 + 0.01 
4×50 4 N/A 50 71.97 + 0.02 71.97 + 0.02 71.97 + 0.02 
5×40 5 N/A 40 69.22 + 0.03 69.22 + 0.03 69.22 + 0.03 
8×25 8 N/A 25 68.39 + 0.02 68.39 + 0.02 68.39 + 0.02 
10×20 10 N/A 20 68.59 + 0.02 68.59 + 0.02 68.59 + 0.02 
20×10 20 N/A 10 58.18 + 0.02 58.18 + 0.02 58.18 + 0.02 
200×1 15 N/A 1 42.64 + 0.02 42.64 + 0.02 42.64 + 0.02 

GDA 
1×200 15      

NWFE 
1×200 20 12 12 81.23 + 0.01 81.23 + 0.01 81.23 + 0.01 

KPCA 
1×200 10 6 6 79.01 + 0.01 79.01 + 0.01 79.01 + 0.01 

Folded PCA 
1×200 5 5 5 75.09 + 0.01 75.09 + 0.01 75.09 + 0.01 
2×100 5 5 10 83.16 + 0.01 83.16 + 0.01 83.16 + 0.01 
4×50 5 5 20 82.06 + 0.00 82.06 + 0.00 82.06 + 0.00 
5×40 5 5 25 83.68 + 0.01 83.68 + 0.01 83.68 + 0.01 
8×25 5 4 24 84.10 + 0.01 84.10 + 0.01 84.10 + 0.01 
10×20 5 3 30 82.39 + 0.01 82.39 + 0.01 82.39 + 0.01 
20×10 5 2 40 83.62 + 0.01 83.62 + 0.01 83.62 + 0.01 
200×1 N/A N/A 200 80.03 + 0.01 80.03 + 0.01 80.03 + 0.01 
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Table 5.13 Classification Results (Precision, Recall and F1 Score Using Macro 

Averaging) for the Indian Pine Dataset (16 Classes) Using Original Feature Space, 

Conventional LDA, F-LDA (with Different Configurations), 2D LDA, GDA, 

NWFE, KPCA and F-PCA4. 

Sample 
Shape 

VB Matrix 
Rank (r)/ 

EVD 
Components 

(d EVD) 

Best 
d EVD 

Number of 
Features 
(d TOTAL) 

Precision (%) Recall (%) F1 Score (%) 

Original Feature Space 
1 × 200 N/A N/A 200 79.50 + 0.02 73.04 + 0.02 75.10 + 0.02 

Conventional LDA 
1 × 200 15 9 9 69.13 + 0.02 64.06 + 0.02 64.23 + 0.02 

Folded-LDA 
1×200 N/A N/A 200 79.50 + 0.02 73.04 + 0.02  75.10 + 0.02 
2×100 2 2 200 81.66 + 0.01 76.36 + 0.02 78.09 + 0.02 
4×50 4 3 150 85.27 + 0.02 80.22 + 0.03 81.91 + 0.02 
5×40 5 4 160 85.24 + 0.02 78.78 + 0.03 80.87 + 0.03 
8×25 8 7 175 87.25 + 0.01 80.24 + 0.03 82.69 + 82.69 
10×20 10 9 180 87.76 + 0.02 79.78 + 0.03 82.17 + 0.02 
20×10 20 18 180 89.34 + 0.01 79.90 + 0.03 82.89 + 0.02 
200×1 15 9 9 69.13 + 0.02 64.06 + 0.02 64.23 + 0.02 

2D-LDA 
1×200 N/A N/A 200 79.50 + 0.02  73.04 + 0.02 75.10 + 0.02 
2×100 2 N/A 100 - 70.50 + 0.05 - 
4×50 4 N/A 50 69.90 + 0.03 63.62 + 0.03 65.12 + 0.03 
5×40 5 N/A 40 - 58.37 + 0.05 - 
8×25 8 N/A 25 - 56.03 + 0.04 - 
10×20 10 N/A 20 - 58.23 + 0.05 - 
20×10 20 N/A 10 -  44.35 + 0.03 - 
200×1 15 N/A 1 - 25.94 + 0.03 - 

GDA 
1×200 15 13 13 84.67 + 0.01 73.10 + 0.02 76.50 + 0.02 

NWFE 
1×200 20 12 12 81.96 + 0.03 75.56 + 0.04 76.55 + 0.04 

KPCA 
1×200 10 6 6 77.87 + 0.02 75.67 + 0.02 76.28 + 0.02 

Folded PCA 
1×200 5 5 5 74.74 + 0.01 71.32 + 0.03 72.30 + 0.02 
2×100 5 5 10 83.58 + 0.02 79.59 + 0.02 80.81 + 0.02 
4×50 5 5 20 82.75 + 0.01 77.41 + 0.02 78.98 + 0.02 
5×40 5 5 25 83.94 + 0.01 78.77 + 0.02 80.58 +  0.02 
8×25 5 3 24 83.28 + 0.01 79.02 + 0.04 79.23 + 0.02 

10×20 5 5 50 84.14 +0.02   77.82 + 0.02 79.75 + 0.02 
20×10 5 2 40 83.95 + 0.01 79.31 + 0.03 80.87 + 0.02 
200×1 N/A N/A 200 79.50 + 0.02 73.04 + 0.02 75.10 + 0.02 

                                                            
4 A dash is used in Table 5.13 where the result is not a number i.e. it cannot be computed. This happens because either the true 

positives and false positives are both zero or the true positives and false negatives are both zero. 
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5. Classification Accuracy for the Pavia University Dataset 

Finally, the outputs of the F-LDA is applied on the Pavia University dataset to train 

the SVM model. The classification results attained are then used to obtain the plots of 

OA and AA against 𝑑𝑑EVD which are presented in Figure 5.7. The highest classification 

values are extracted from these plots and presented in Table 5.14. The highest OA, AA 

and kc are obtained when the configuration is set to 8 × 13. This is an improvement 

on the accuracies from the full feature space. As can be seen in Table 5.14, 

configurations 103 × 1  and 1 × 103 simplifies the proposed F-LDA to the 

conventional LDA and the full feature space respectively. The features extracted by 

the 2D LDA, GDA, NWFE, KPCA and F-PCA when applied on the Pavia Center 

dataset are also used to train the SVM model. The classification results are obtained 

and presented in Table 5.14. From Table 5.14, it can be observed that the proposed F-

LDA continues to give the best classification performance (highest OA, AA and kc). 

When considering the standard deviation, from Table 5.14, it can be observed that the 

lower bands of the OA, AA and kc achieved by the proposed F-LDA (86.43 ± 1.16, 

81.05 ± 2.42 and 81.77 ± 0.02) are higher than the average classification results 

reported for the other techniques except for F-PCA (85.02, 79.61 and 79.84) and 2D 

LDA (85.02, 79.61 and 79.84) where the reported average OA, AA and kc are 

comparable (slightly higher in some cases) to those reported for the proposed 

approach. The improvement on the performance of the classifier (when fed with the 

outputs of F-PCA and 2D LDA) achieved by the proposed approach can be considered 

not significant in these cases.   

The classifier’s performance is also reported in terms of P, R and F1 in Table 5.15 and 

Table 5.16. From Table 5.15 and Table 5.16, it can be observed that the proposed F-
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LDA continues to give the best classification performance in terms of P, R and F1. It 

can be noted in 5.15 that P, R and F1 all have the same value. This is usually the case 

when their average is computed using  micro averaging [113]. It is also worth noting 

in Table 5.16 that some of the results in P, R and F1  are ‘nan’. This occur due to  

division by zero when computing them [114]. 

Finally, the classification maps of the five selected hyperspectral data are presented in 

Figure 5.8 - 5.12 to qualitatively compare the proposed F-LDA approach to 

conventional LDA when used to classify the hyperspectral data. From Figure 5.8 - 

5.12, it can be observed that the classification maps generated when the F-LDA is 

applied are generally smoother than the ones generated when the LDA is applied for 

all the selected datasets. Classification maps obtained when F-PCA was used are also 

presented in Figure 5.8 – 5.12 for comparison with F-LDA and interpretation of which 

pixels are misclassified. While in general F-LDA performs better than F-PCA, from 

the classification maps, it can be observed that F-PCA classified pixels in some classes 

better than F-LDA. In Figure 5.11, it can be seen that the model with the F-PCA 

classified the grass-pastures and grass-trees pixels better than the model with the F-

LDA. Also, in Figure 5.12, it can be seen that the model with the F-PCA classified the 

gravel pixels better than the model with the F-LDA. 
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Figure 5.7 Classification results for the Pavia University dataset using F-LDA. © 2020 

IEEE 
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Table 5.14 Classification Results (Best Cases) for the Pavia University Dataset (9 

Classes) Using Original Feature Space, Conventional LDA, F-LDA (with Different 

Configurations), 2D LDA, GDA, NWFE, KPCA and F-PCA. © 2020 IEEE 

Sample 
Shape 

VB Matrix 
Rank (r)/ EVD 
Components  

 (d EVD) 

Best 
d EVD 

Number of 
Features 
(d TOTAL) 

OA (%) AA (%) kc (%)_ 

Original Feature Space 
1 × 103 N/A N/A 103 85.02 ± 1.47 79.61 ± 3.20 79.84 ± 0.02 

 Conventional LDA 
1 × 103  8 5 5 66.45 ± 1.66 57.07 ± 3.80 55.86 ± 0.02 

Folded-LDA  
1 × 103 N/A N/A 103 85.02 ± 1.47 79.61 ± 3.20 79.84 ± 0.02 
2 × 52 2 2 104 84.77 ± 1.30 79.85 ± 2.61 79.49 ± 0.02 
4 × 26 4 4 104 84.21 ± 0.98 79.30 ± 3.06 78.74 ± 0.01 
8 × 13 8 6 78 86.43 ± 1.16 81.05 ± 2.42 81.77 ± 0.02 
13 × 8 13 10 80 85.06 ± 1.49 79.14 ± 3.20 79.95 ± 0.02 

103 × 1 8 5 5 66.45 ± 1.66 57.07 ± 3.80 55.86 ± 0.02 
2D-LDA  

1 × 103 N/A N/A 103 85.02 ± 1.47 79.61 ± 3.20 79.84 ± 0.02 
2 × 52 2 N/A 52 76.52 ± 1.26 66.61 ± 3.44 67.41 ± 0.02 
4 × 26 4 N/A 26 69.76 ± 2.99 56.12 ± 6.71 57.72 ± 0.05 
8 × 13 8 N/A 13 74.42 ± 1.80 64.31 ± 5.96 64.76 ± 0.03 
13 × 8 13 N/A 8 69.95 ± 3.07 58.99 ± 5.57 58.65 ± 0.04 

103 × 1 8 N/A 1 51.49 ± 6.01 33.80 ± 5.85 32.30 ± 0.11 
GDA 

1 × 103 8 7 7 77.76 ± 1.93 70.91 ± 2.30 70.28 ± 0.02 
NWFE 

1 × 103 20 17 17 80.32 ± 1.29 70.21 ± 2.42 73.28 ± 0.02 
KPCA 

1 × 103 10 9 9 80.33 ± 2.19 70.96 ± 3.77 73.22 ± 0.02 
Folded PCA 

1 × 103 5 4 4 78.32 ± 1.39 68.13 ±  3.39 69.95 ± 0.02 
2 × 52 5 4 8 82.01 ± 1.13 75.57 ± 5.02 75.61 ± 0.02 
4 × 26 5 2 8 82.06 ± 0.99 75.33 ± 3.26 75.68 ± 0.02 
8 × 13 5 2 16 82.24 ± 1.01 77.50 ± 3.20 76.12 ± 2.00 
13 × 8 5 3 39 83.86 ± 0.99  76.92 ±  4.99 78.19 ± 0.01 

103 × 1 N/A N/A 103 85.02 ± 1.47 79.61 ± 3.20 79.84 ± 0.02 
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Table 5.15 Classification Results (Precision, Recall and F1 Score Using Micro 

Averaging) for the Pavia University Dataset (9 Classes) Using Original Feature 

Space, Conventional LDA, F-LDA (with Different Configurations), 2D LDA, GDA, 

NWFE, KPCA and F-PCA. 

Sample 
Shape 

VB Matrix 
Rank (r)/ EVD 
Components 

(d EVD) 

Best 
d EVD 

Number of 
Features 
(d TOTAL) 

Precision (%) Recall (%) F1 Score (%) 

Original Feature Space 
1 × 103 N/A N/A 103 85.02 + 0.01 85.02 + 0.01 85.02 + 0.01 

Conventional LDA 
1 × 103 8 5 5 66.45 + 0.02 66.45 + 0.02 66.45 + 0.02 

Folded-LDA 
1 × 103 N/A N/A 103 85.02 + 0.01 85.02 + 0.01 85.02 + 0.01 
2 × 52 2 2 104 84.77 + 0.01 84.77 + 0.01 84.77 + 0.01 
4 × 26 4 4 104 84.21 + 0.01 84.21 + 0.01 84.21 + 0.01 
8 × 13 8 6 78 86.43 + 0.01 86.43 + 0.01 86.43 + 0.01 
13 × 8 13 10 80 85.06 + 0.01 85.06 + 0.01 85.06 + 0.01 

103 × 1 8 5 5 66.45 + 0.02 66.45 + 0.02 66.45 + 0.02 
2D-LDA 

1 × 103 N/A N/A 103 85.02 + 0.01 85.02 + 0.01 85.02 + 0.01 
2 × 52 2 N/A 52 76.52 + 0.01 76.52 + 0.01 76.52 + 0.01 
4 × 26 4 N/A 26 69.76 + 0.03 69.76 + 0.03 69.76 + 0.03 
8 × 13 8 N/A 13 74.42 + 0.02 74.42 + 0.02 74.42 + 0.02 
13 × 8 13 N/A 8 69.95 + 0.03 69.95 + 0.03 69.95 + 0.03 

103 × 1 8 N/A 1 51.49 +  0.06 51.49 + 0.06 51.49 + 0.06 
GDA 

1 × 103 8 7 7 77.76 + 0.02 77.76 + 0.02 77.76 + 0.02 
NWFE 

1 × 103 20 17 17 80.32 + 0.01 80.32 + 0.01 80.32 + 0.01 
KPCA 

1 × 103 10 9 9 80.33 + 0.02 80.33 + 0.02 80.33 + 0.02 
Folded PCA 

1 × 103 5 4 4 78.32 + 0.01 78.32 + 0.01 78.32 + 0.01 
2 × 52 5 4 8 82.01 + 0.01 82.01 + 0.01 82.01 + 0.01 
4 × 26 5 2 8 82.06 + 0.01 82.06 + 0.01 82.06 + 0.01 
8 × 13 5 2 16 82.24 + 0.01 82.24 + 0.01 82.24 + 0.01 
13 × 8 5 3 39 83.86 + 0.01 83.86 + 0.01 83.86 + 0.01 

103 × 1 N/A N/A 103 85.02 + 0.01 85.02 + 0.01 85.02 + 0.01 
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Table 5.16 Classification Results (Precision, Recall and F1 Score Using Macro 

Averaging) for the Pavia University Dataset (9 Classes) Using Original Feature 

Space, Conventional LDA, F-LDA (with Different Configurations), 2D LDA, GDA, 

NWFE, KPCA and F-PCA5. 

Sample 
Shape 

VB Matrix 
Rank (r)/ EVD 
Components 

(d EVD) 

Best 
d EVD 

Number of 
Features 
(d TOTAL) 

Precision (%) Recall (%) F1 Score (%) 

Original Feature Space 
1 × 103 N/A N/A 103 83.06 + 0.02 79.61 + 0.03 80.60 + 0.03 

Conventional LDA 
1 × 103 8 6 6 61.06 + 0.03 57.07 + 0.04 57.66 + 0.03 

Folded-LDA 
1 × 103 N/A N/A 103 83.06 + 0.02 79.61 + 0.03 80.60 + 0.03 
2 × 52 2 2 104 82.90 + 0.02 79.85 + 0.03 80.84 + 0.02 
4 × 26 4 4 104 83.24 + 0.02 79.30 + 0.03 80.57 + 0.02 
8 × 13 8 6 78 85.44 + 0.02 81.05 + 0.02 82.48 + 0.02 
13 × 8 13 8 64 82.40 + 0.01 79.14 + 0.03 79.84 + 0.02 

103 × 1 8 6 6 61.06 + 0.03 57.07 + 0.04 57.66 + 0.03 
2D-LDA 

1 × 103 N/A N/A 103 83.06 + 0.02 79.61 +0.03 80.60 + 0.03 
2 × 52 2 N/A 52 75.27 + 0.03 66.61 + 0.03 - 
4 × 26 4 N/A 26 63.83 + 0.05 56.12 +0.07 56.92 + 0.07 
8 × 13 8 N/A 13 - 64.31 + 0.06 - 
13 × 8 13 N/A 8 - 58.99 +0.06 - 

103 × 1 8 N/A 1 - 33.80 + 0.06 - 
GDA 

1 × 103 8 7 7 75.42 + 0.03 70.91 + 0.02 72.48 + 0.02 
NWFE 

1 × 103 20 17 17 77.37 + 0.02 70.21 + 0.02 72.36 + 0.02 
KPCA 

1 × 103 10 10 10 76.95 + 0.04 70.96 + 0.04 71.86 +0.04 
Folded PCA 

1 × 103 5 4 4 - 68.13 + 0.03 - 
2 × 52 5 5 10 80.20 + 0.03 75.57 + 0.05 - 
4 × 26 5 4 16 79.41 + 0.02 75.33 + 0.03 76.29 + 0.03 
8 × 13 5 2 16 79.88 + 0.03 77.50 + 0.03 77.31 + 0.01 
13 × 8 5 2 26 80.65 + 0.04 76.92 + 0.05 75.83 + 0.01 

103 × 1 N/A N/A 103 83.06 + 0.02 79.61 + 0.03 80.60 + 0.03 
 

 

                                                            
5 A dash is used in Table 5.16 where the result is not a number i.e. it cannot be computed. This happens because either the true 

positives and false positives are both zero or the true positives and false negatives are both zero. 
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Water (270) 

Hippo grass (101) 

Floodplain grasses1 (251) 

Floodplain grasses2 (215) 

Reeds1 (269) 

Riparian (269) 

Firescar2 (259) 

Island interior (203) 

Acacia woodlands (314) 

Acacia shrublands (248) 

Acacia grasslands (305) 

Short mopane (181) 

Mixed mopane (268) 

Exposed soils (95) 

Figure 5.8 Botswana data’s (a) Ground truth image (b) Classification map using F-LDA (29 × 5) 

(c) Classification map using LDA (d) Classification map using F-PCA (1 × 145) (also showing the 

number of samples in each class). 
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Water (65971) 

Trees (7598) 

Asphalt (3090) 

Self-Blocking Bricks (2685)  

Bitumen (6584)  

Tiles (9284) 

Shadows (7287) 

Meadows (42826) 

Bare Soil (2863) 

Figure 5.9 Pavia Center data’s (a) Ground truth image (b) Classification map using F-LDA 

(17×6) (c) Classification map using LDA (d) Classification map using F-PCA (3×34) (also 

showing the number of samples in each class). 
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Corn_senesced_green_weeds  (1343) 

Lettuce_romaine_7wk (799) 

Lettuce_romaine_6wk (674) 

Lettuce_romaine_5wk (1525) 

Lettuce_romaine_4wk (616)  

Brocoli_green_weeds_1 (391) 

Figure 5.10 Salina-A data’s (a) Ground truth image (b) Classification map using F-LDA (17 × 12) 

(c) Classification map using LDA (d) Classification map using F-PCA (6 × 34) (also showing the 

number of samples in each class). 
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Grass-pasture-mowed (26) Alfalfa (54) 

Corn-notill (1434) 

Corn-mintill (834) 

Corn (234) 

Grass-pasture (497) 

Grass-trees (747) 

Hay-windrowed (489) 

Oats (20) 

Soybean-notill (968) 

Soybean-mintill (2468) 

Soybean-clean (614) 

Wheat (212) 

Woods (1294) 

Buildings-Grass-Trees-Drives (380) 

Stone-Steel-Towers (95) 

Figure 5.11 Indian Pine data’s (a) Ground truth image (b) Classification map using F-LDA 

(8×25) (c) Classification map using LDA (d) Classification map using F-PCA (8×25) (also 

showing the number of samples in each class). 
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5.3.2. Effect on Computational Complexity 

The computational complexity of the different stages of the conventional LDA and the 

proposed F-LDA are illustrated and compared in Table 5.17 where 𝑐𝑐, 𝑁𝑁𝑗𝑗  and 𝑑𝑑 

Painted metal sheets (1345) 

Asphalt (6631) 

Meadows (18649) 

Gravel (2099) 

Trees (3064) 

Bare Soil (5029) 

Bitumen (1330) 

Self-Blocking Bricks (3682) 

Shadows (947) 

Figure 5.12 Pavia University data’s (a) Ground truth image (b) Classification map using F-LDA (8 × 

13) (c) Classification map using LDA (d) Classification map using F-PCA (103 × 1) (also showing the 

number of samples in each class). 
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represent the number of classes in the data, the number of samples in each class and 

the number of features extracted respectively.  

In the conventional LDA, the complexity of computing the within-class variance 𝑽𝑽𝑾𝑾 

and between-class variance 𝑽𝑽𝑩𝑩  matrices are 𝑜𝑜(𝑐𝑐𝑁𝑁𝑗𝑗𝐺𝐺2𝐵𝐵2) and 𝑜𝑜(𝑐𝑐𝐺𝐺2𝐵𝐵2) respectively 

where 𝑽𝑽𝑾𝑾 𝜖𝜖 ℜ𝐺𝐺𝐺𝐺 ×𝐺𝐺𝐺𝐺, 𝑽𝑽𝑩𝑩 𝜖𝜖 ℜ𝐺𝐺𝐺𝐺 ×𝐺𝐺𝐺𝐺, �𝑥𝑥𝑖𝑖𝑗𝑗  −  𝒎𝒎𝒋𝒋� 𝜖𝜖 ℜ1 ×𝐺𝐺𝐺𝐺, and �𝐦𝐦𝒋𝒋 −  𝐦𝐦� 𝜖𝜖 ℜ1 ×𝐺𝐺𝐺𝐺. 

The cost of claculating 𝑽𝑽𝑾𝑾 −1 is 𝑜𝑜(𝐺𝐺3𝐵𝐵3). 𝑜𝑜(𝐺𝐺3𝐵𝐵3) is the complexity of multiplying 

𝑽𝑽𝑾𝑾 −1  and 𝑽𝑽𝑩𝑩.  Hence, the required complexity of computing the transformation 

matrix 𝑻𝑻 and eigenvectors are 𝑜𝑜(2𝐺𝐺3𝐵𝐵3) and 𝑜𝑜(𝐺𝐺3𝐵𝐵3) , respectively. The complexity 

of projecting the data is 𝑜𝑜(𝑠𝑠𝐺𝐺𝐵𝐵𝑑𝑑). 

In the proposed F-LDA, the complexity of computing the within-class variance 𝑽𝑽𝑷𝑷𝑾𝑾 

and between-class variance 𝑽𝑽𝑷𝑷𝑩𝑩  matrices are 𝑜𝑜(𝑐𝑐𝑁𝑁𝑗𝑗𝐵𝐵𝐺𝐺2) and 𝑜𝑜(𝑐𝑐𝐵𝐵𝐺𝐺2) respectively 

where 𝑽𝑽𝑷𝑷𝑾𝑾 𝜖𝜖 ℜ𝐺𝐺 ×𝐺𝐺, 𝑽𝑽𝑷𝑷𝑩𝑩 𝜖𝜖 ℜ𝐺𝐺 ×𝐺𝐺, �𝑷𝑷𝒊𝒊𝒋𝒋 −  𝑴𝑴𝒋𝒋�𝜖𝜖 ℜ𝐺𝐺 ×𝐺𝐺 and �𝐌𝐌𝒋𝒋 −  𝐌𝐌� 𝜖𝜖 ℜ𝐺𝐺 ×𝐺𝐺. The 

complexity of computing 𝑽𝑽𝑷𝑷𝑾𝑾 −1 is o (𝐺𝐺3). The computational complexity required to 

calculate the product of 𝑽𝑽𝑷𝑷𝑾𝑾 −1  and 𝑽𝑽𝑷𝑷𝑩𝑩, is o (𝐺𝐺3). Hence, the complexity of 

computing the transformation matrix  𝑻𝑻𝑷𝑷 and eigenvectors are 𝑜𝑜(2𝐺𝐺3) and 

𝑜𝑜(𝐺𝐺3) respectively.  The complexity of projecting each sample is 𝐺𝐺𝑑𝑑 where 𝑑𝑑 =

 𝐵𝐵 × 𝑑𝑑EVD. Hence, the complexity of projecting all the samples is 𝑠𝑠𝐺𝐺𝑑𝑑. 

The content consumption for the selected datasets are also computed using the 

computational complexities and presented in Table 5.18. One can see in Table 5.17 

and Table 5.18 that F-LDA requires less computational complexity to implement all 

stages. The complexity of computing the within-class variance and between-class 

variance is reduced by a saving factor of 𝐵𝐵. A reduction in the cost of computing the 

transformation matrix and eigenvectors by 𝐵𝐵3 is reported. A saving factor of 𝐵𝐵 is 
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reported for the data projection. Reduced computational complexity is achieved by the 

proposed F-LDA thanks to the dimensions of its within-class variance, between-class 

variance, and the transformation matrices which are now smaller than those in the 

traditional LDA.  

Table 5.17 Computational complexity for the different stages of the proposed F-LDA 

and the conventional LDA. © 2020 IEEE 

Stages LDA F-LDA Saving factors 

Within-class                

variance matrix  

𝑜𝑜(𝑐𝑐𝑁𝑁𝑗𝑗𝐺𝐺2𝐵𝐵2) 𝑜𝑜(𝑐𝑐𝑁𝑁𝑗𝑗𝐺𝐺2𝐵𝐵) 𝐵𝐵 

Between-class        

variance matrix  

𝑜𝑜(𝑐𝑐𝐺𝐺2𝐵𝐵2) 𝑜𝑜(𝑐𝑐𝐺𝐺2𝐵𝐵) 𝐵𝐵 

Transformation matrix  𝑜𝑜(2𝐺𝐺3𝐵𝐵3) 𝑜𝑜(2𝐺𝐺3) 𝐵𝐵3 

Eigen problem 𝑜𝑜(𝐺𝐺3𝐵𝐵3) 𝑜𝑜(𝐺𝐺3) 𝐵𝐵3 

Data projection  𝑜𝑜(𝑠𝑠𝐺𝐺𝐵𝐵𝑑𝑑) 𝑜𝑜(𝑠𝑠𝐺𝐺𝑑𝑑) 𝐵𝐵 
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Table 5.18 Computational complexity (content consumption) for the different stages 

of the proposed F-LDA and the conventional LDA. © 2020 IEEE 

Dataset  Best 
configur

ation 
(𝐺𝐺 × 𝐵𝐵) 

Within-class                
variance 
matrix 

Between-
class        

variance 
matrix 

Transformatio
n matrix 

Eigen 
problem 

Data 
projection 

Botswana LDA N/A o(294350𝑁𝑁𝑗𝑗) o(294350) o(6097250) o(30486
25) 

o(145 𝑠𝑠𝑑𝑑) 

 F-LDA 29 × 5 o(58870𝑁𝑁𝑗𝑗) o(58870) o(48778) o(24389) o(29 𝑠𝑠𝑑𝑑) 
 Saving 

factors 
- 5 5 125 125 5 

Pavia 
Center 

LDA N/A o(93636𝑁𝑁𝑗𝑗) o(93636) o(2122416) o(10612
08) 

o(102 𝑠𝑠𝑑𝑑) 

 F-LDA 17×6 o(15606𝑁𝑁𝑗𝑗) o(15606) o(9826) o(4913) o(17 𝑠𝑠𝑑𝑑) 
 Saving 

factors 
- 6 6 216 216 6 

Salinas-A LDA N/A o(249696𝑁𝑁𝑗𝑗) o(249696) o(16979328) o(84896
64) 

o(204 𝑠𝑠𝑑𝑑) 

 F-LDA 17 × 12 o(20808𝑁𝑁𝑗𝑗) o(20808) o(9826) o(4913) o(17 𝑠𝑠𝑑𝑑) 
 Saving 

factors 
- 12 12 1728 1728 12 

Indian 
Pine 

LDA N/A o(640000𝑁𝑁𝑗𝑗) o(640000) o(16000000) o(80000
00) 

o(200 𝑠𝑠𝑑𝑑) 

 F-LDA 8×25 o(25600𝑁𝑁𝑗𝑗) o(25600) o(1024) o(512) o(8 𝑠𝑠𝑑𝑑) 
 Saving 

factors 
- 25 25 15625 15625 25 

Pavia 
University 

LDA N/A o(97344𝑁𝑁𝑗𝑗) o(97344) o(2249728) o(11248
64) 

o(104 𝑠𝑠𝑑𝑑) 

 F-LDA 8 × 13 o(7488𝑁𝑁𝑗𝑗) o(7488) o(1024) o(512) o(8 𝑠𝑠𝑑𝑑) 
 Saving 

factors 
- 13 13 2197 2197 13 

 

The feature extraction time of the proposed F-LDA on the datasets (selecting the first 

five EVD components where applicable) are also presented and compared to the other 

techniques in Table 5.19. In all cases, one can see from Table 5.19 that both the 2D 

LDA and F-LDA are slower than the conventional LDA. This can be attributed to the 

extra time used by the 2D LDA and F-LDA to convert each spectral vector into a 

feature matrix. It is worth noting that while the proposed approach F-LDA is slower 
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than the conventional LDA, the proposed F-LDA requires less computational 

complexity because it processes relatively smaller matrices at key stages as shown in 

the earlier parts of this section. One can also see that the F-LDA is slightly slower than 

the 2D LDA. This can also be attributed to the extra time required for individual 

treatment of the eigenvectors and unfolding of the projected samples. In most cases, 

while F-LDA can be found to be slower than K-PCA, it is faster than NWFE, GDA 

and F-PCA. Generally, the range of the time required by the proposed F-LDA for 

feature extraction is 0.084 - 2.059s. While this is slightly slower than the time required 

by its counterparts, this trade-off is offset by the benefits of the proposed F-LDA 

(higher classification accuracy, reduced computational complexity and reduced 

contiguous memory requirement). 

Table 5.19 Feature extraction time (s) of different techniques (using the first five 

EVD components when applicable, F-LDA and 2D LDA include related 

configuration). © 2020 IEEE 

Techniques Botswana Pavia Center  Salinas-A Indian Pine Pavia University 

LDA 0.012 0.072 0.023 0.029 0.029 

F-LDA 0.084 (29×5) 2.059 (17×6) 0.100 (17×12) 0.159 (8×25) 0.432 (8×13) 

2D LDA 0.032 (1×145) 0.929 (1×102) 0.059 (1×204) 0.118 (1×200) 0.292 (1×103) 

NWFE 0.111 0.085 0.110 0.544 0.076 

GDA 4.846 267.021 10.646 60.171 76.052 

F-PCA 0.179 1.654 0.130 0.228 1.028 

KPCA 0.021 0.860 0.037 0.291 0.250 
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5.3.3. Effect on Contiguous Memory Requirement 

The contiguous memory requirement at the different stages of the conventional LDA 

and the proposed F-LDA are illustrated in Table 5.20. Content consumption for each 

of the five datasets are also computed and illustrated in Table 5.21 using the results in 

Table 5.20. From Table 5.20 and Table 5.21, it can be seen that the within-class 

variance matrix, between-class variance matrix and transformation matrix in the F-

LDA require less memory than those in the conventional LDA by a saving factor of 

𝐵𝐵2. Similarly, saving factors of 𝑆𝑆 and 𝐵𝐵2 are reported for the original data matrix and 

the projected data matrix respectively when the proposed F-LDA is applied instead of 

the conventional LDA. Overall, the F-LDA required much less contiguous memory 

than the conventional LDA. This can be attributed to the size of the matrices at the 

different stages of the proposed F-LDA which are now smaller than their counterparts 

in the conventional LDA. 
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Table 5.20 Different stages of the F-LDA and LDA and corresponding memory 

requirements. © 2020 IEEE 

Stages LDA F-LDA Saving factor 

Data matrix size 𝑠𝑠 × 𝐺𝐺𝐵𝐵 𝐺𝐺 × 𝐵𝐵 s 

Within-class variance 

matrix size 

𝐺𝐺𝐵𝐵 × 𝐺𝐺𝐵𝐵 𝐺𝐺 × 𝐺𝐺 𝐵𝐵2 

Between-class 

variance matrix size 

𝐺𝐺𝐵𝐵 × 𝐺𝐺𝐵𝐵 𝐺𝐺 × 𝐺𝐺 𝐵𝐵2 

Transformation matrix 

size 

𝐺𝐺𝐵𝐵 × 𝐺𝐺𝐵𝐵 𝐺𝐺 × 𝐺𝐺 𝐵𝐵2 

Projection matrix size 𝐺𝐺𝐵𝐵 × 𝑑𝑑 𝐺𝐺 × 𝑑𝑑
𝐵𝐵�  𝐵𝐵2 
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Table 5.21 Different stages of the F-LDA and LDA and corresponding memory 

requirements (content consumption). © 2020 IEEE 

Dataset  Best 
Configurati
on (𝐺𝐺 × 𝐵𝐵) 

Data 
matrix 

size 

Within-
class 

variance 
matrix 

size 

Between-
class 

variance 
matrix size 

Transformation 
matrix size 

Projecti
on 

matrix 
size 

Botswana LDA - 145𝑠𝑠 21025 21025 21025 145𝑑𝑑 
 F-LDA 29 × 5 145 841 841 841 5.8𝑑𝑑 
 Saving 

factors 
- 𝑠𝑠 25 25 25 25 

Pavia 
Center 

LDA - 102𝑠𝑠 10404 10404 10404 102𝑑𝑑 

 F-LDA 17×6 102 289 289 289 2.8333𝑑𝑑 
 Saving 

factors 
- 𝑠𝑠 36 36 36 36 

Salinas-A LDA - 204𝑠𝑠 41616 41616 41616 204𝑑𝑑 
 F-LDA 17 × 12 204 289 289 289 1.4167

𝑑𝑑 
 Saving 

factors 
- 𝑠𝑠 144 144 144 144 

Indian 
Pine 

LDA - 200𝑠𝑠 40000 40000 40000 200𝑑𝑑 

 F-LDA 8×25 200 64 64 64 0.32𝑑𝑑 
 Saving 

factors 
- 𝑠𝑠 625 625 625 625 

Pavia 
Univ. 

LDA - 104𝑠𝑠 10816 10816 10816 104𝑑𝑑 

 F-LDA 8 × 13 104 64 64 64 0.6154
𝑑𝑑 

 Saving 
factors 

- 𝑠𝑠 169 169 169 169 

 

5.4. Summary 

A new Folded Linear Discriminant Analysis (F-LDA) for effective and efficient 

feature extraction and dimensionality reduction of hyperspectral data in Small Sample 

Size (SSS) scenarios is presented in this chapter. By replicating a simple but effective 

mathematical ‘trick’ (folding the pixels) which was motivated by a previous work to 
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extend PCA [37], the proposed, new, F-LDA can produce more informative features 

(higher classification accuracy than the original feature space, conventional LDA, 2D 

LDA, and other state-of-the-art methods) with reduced contiguous memory 

requirement and less computational complexity. Performance of the proposed F-LDA 

is evaluated on five publicly available hyperspectral datasets from different sensors 

(AVIRIS, ROSIS, Hyperion). Experimental results showed that the proposed approach 

is superior to the traditional approach when applied in SSS scenarios.  
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6. Hybridizing GA and F-LDA for Dimensionality Reduction of Hyperspectral Data  

It was established from the review of literature presented in Chapter 3 that PCA is a 

more commonly applied dimensionality reduction tool for hyperspectral imaging than 

LDA [15],[21],[10],[13]. In Chapter 4, LDA was applied on hyperspectral data to 

transform it to a lower dimensional space while extracting useful features to better 

classify the data. The results obtained showed that LDA can perform better when 

applied on hyperspectral data than the more commonly applied PCA.  

From the review of related papers presented in Chapter 3, it can be noted that the 

performance of LDA as a feature extraction and dimensionality technique for 

hyperspectral imaging data can be limited by the lack of enough samples in the 

hyperspectral data for training. In Chapter 5, an extended and improved version of the 

LDA, named Folded LDA (F-LDA) was proposed to effectively reduce the 

dimensionality reduction of hyperspectral data in small training sample size scenario. 

The proposed F-LDA outperformed the traditional LDA in terms of classification 

accuracy, computational complexity and memory requirement when used in that 

scenario. It was also established from the review of related papers presented in Chapter 

3 that Genetic Algorithm (GA) has become a useful feature selection technique for 

data dimensionality reduction in many applications. It was further established that 

using GA to select optimal feature subset from the original feature set prior to feature 

extraction using PCA [29],[28] or LDA [31],[30] can improve performance of 

classification models. 

This chapter is thus aimed at exploring the effectiveness of a new hybridized GA and 

F-LDA (GA + F-LDA) for data dimensionality reduction in classification of 

hyperspectral data. The proposed approach is evaluated on two hyperspectral datasets 
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of rice seeds containing 256 spectral features and another hyperspectral dataset of 

sugar containing 160 spectral features. Data classification is an important step in rice 

seed screening exercises and there is a continued need to automate and enhance such 

screening exercises [15],[22],[23]. These make rice seed classification a suitable area 

of application where F-LDA and the proposed (GA + F-LDA) would be deployed to 

reduce the dimensionality of hyperspectral data of rice seeds thus enhancing the 

classification tasks and the screening exercises. Hence, rice seed dataset was selected 

for this study. For the sugar dataset, it was selected to demonstrate the potential of the 

proposed approach for dimensionality reduction of hyperspectral data of other Agri-

tech products. Experimental results show that applying F-LDA on reduced spectral 

datasets (datasets containing optimal features selected by GA) can achieve reduction 

in computational complexity and memory requirement. 

6.1. Methods and Materials 

6.1.1. Data Acquisition and Description 

Two groups of rice seed datasets are used in this work to evaluate performance of the 

proposed approach. There are 10 different rice seed sub datasets in the first group with 

each sub dataset containing 10 varieties. The second group contains another 10 

different rice seed sub datasets with each sub dataset containing 20 varieties. The rice 

seed datasets in the two groups, which are subsets of the main rice seed datasets of 90 

varieties used in Chapter 4, are randomly selected to demonstrate the consistency of 

the proposed approach in achieving improved classification performance. Average of 

classification results obtained using the sub datasets in each group are computed and 

reported. The rice seed datasets contain 256 spectra features which were extracted 

from hyperspectral images collected using a Visible-Near Infrared (VIS/NIR) range 
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HSI system operating at ~ (385 – 1000) nm and 6 spatial features (area, major axis 

length, minor axis length, aspect ratio, perimeter over area ratio and eccentricity) 

which were extracted from RGB images collected using a Fujifilm X-M1 with a 

35mm/F2.0 lens. The procedure and processing steps used to extract the spatial and 

spectral features are described in Chapter 4. While this chapter is focused on 

addressing the high dimensionality problem in the spectral domain, spatial features are 

also included in the rice seed analysis to show their ability to further improve 

classification results when fused with spectral features. 

In order to demonstrate the potential of the proposed technique for other applications, 

a hyperspectral dataset of sugar containing 9 different varieties (Sugar Ester S170, 

Sugar Ester S770, Sugar Ester S1570, Sugar Ester P1570, D-Mannitol, D-Sorbitol, D-

Glucose, D-Galactose and D-Fructose) was utilised. The hyperspectral images of the 

sugar were collected [115] using the Neo VNIR-1600 sensor and has a spectral range 

of ~ 400 – 1000 nm. The number of samples per variety in the sugar dataset is 125. In 

total, the sugar dataset has 1125 samples. The sugar dataset was published in Machine 

Learning Reports [116] and made available at an online research repository named, 

4TU.ResearchData  and the University of Groningen research pure portal in 2016. The 

dataset is yet to be cited based on the information available at 4TU.ResearchData and 

pure portal. According to the information available on pure portal, the dataset has been 

downloaded 214 times as at 27th June 2022. The information available on 

4TU.ResearchData shows that the data has been downloaded 256 times as at 27th June 

2022. 

https://data.4tu.nl/articles/dataset/The_sugar_dataset_-_A_multimodal_hyperspectral_dataset_for_classification_and_research/12719294/1
https://research.rug.nl/en/publications/the-sugar-dataset-a-multimodal-hyperspectral-dataset-for-classifi/datasets/
https://data.4tu.nl/articles/dataset/The_sugar_dataset_-_A_multimodal_hyperspectral_dataset_for_classification_and_research/12719294/1
https://research.rug.nl/en/publications/the-sugar-dataset-a-multimodal-hyperspectral-dataset-for-classifi/datasets/
https://research.rug.nl/en/publications/the-sugar-dataset-a-multimodal-hyperspectral-dataset-for-classifi/datasets/
https://data.4tu.nl/articles/dataset/The_sugar_dataset_-_A_multimodal_hyperspectral_dataset_for_classification_and_research/12719294/1
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6.1.2. Spectral Reflectance Profiles of Rice Seeds 

The average spectra, in the VIS/NIR range of ~ (385 – 1000) nm, of samples of each 

of the species in two rice seed datasets containing 10 and 20 varieties are plotted and 

illustrated in Figure 6.1 and Figure 6.2. The average spectral profiles show differences 

which can be attributed to the differences in chemical property (composition) of the 

species of rice seeds in the NIR region ~ (700 - 1000) nm and physical property (colour 

variation) in the Visible region ~ (385 - 700) nm [23],[7],[104]. Hence, models are 

built to exploit the spectral differences in these regions, reduce the dimensionality of 

the data by retaining only key features and discriminate the rice seed species. The 

average spectra, in the VIS/NIR of 429.19 – 986.32 nm, of the 9 species in the sugar 

data sets are also plotted and illustrated in Figure 6.3.  

 

Figure 6.1 The average spectral profiles of 10 rice seed species. 
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Figure 6.2 The average spectral profiles of 20 rice seed species. 

 

Figure 6.3 The average spectral profiles of 9 sugar species 
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6.1.3. Proposed Approach 

6.1.3.1. Concepts 

The proposed approach (GA + F-LDA) consists of the following three important steps, 

which are illustrated, in Figure 6.4: data acquisition, dimensionality reduction (DR), 

and classification. The proposed approach differs from those reported in the review of 

techniques used by various authors to classify hyperspectral images of rice seeds 

presented in Chapter 3 in the way the dimensionality reduction stage is realized. In the 

GA + F-LDA, dimensionality reduction is performed in two steps: 1) optimal feature 

subset selection using a Genetic Algorithm and 2) feature extraction using F-LDA. A 

data subset is extracted from each of the original spectral datasets through the selection 

of optimal spectral features using the Genetic Algorithm. The features of the extracted 

data subsets are then reduced further using F-LDA. This allow the application of F-

LDA on a reduced dataset (number of features is now much less than what is in the 

Raw Spectral Data 

 

Genetic Algorithm 

 

Feature 
Selection 

Classification 

 

F-LDA 

Classification 

Figure 6.4 Proposed technique 
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original dataset) while also improving the classification performance of the 

conventional LDA. It is expected that, in principle, the use of reduced number of 

features will further reduce the computational complexity and memory requirement of 

F-LDA. Implementation details of the dimensionality reduction stage and 

classification step are explained in the next subsection.  

6.1.3.2. Implementation Details 

First, the genetic algorithm is implemented in 3 key steps which are motivated by the 

principles of natural selection and genetics: selection, crossover and 

mutation[101],[117],[118],[102]. The algorithm randomly initiates a population of 

candidate solutions, uses an objective function to estimate the fitness of the current set 

of candidate solutions, discards the candidate solutions which are considered unfit and 

mates the fitter ones by crossover and mutation to produce the next generation 

offspring solutions (a new population of candidate solutions). This process is repeated 

over many generations until either an optimal solution is achieved or the maximum 

generation set is reached. When offspring solutions are produced by crossover, they 

contain genes which are present in the parents’ chromosomes (each solution is 

considered a chromosome with a set of genes). Offspring solutions produced by 

mutations contain genes which are not present in both parents. During mutation, the 

search space is explored to achieve a global optimal solution. In this thesis, the 

crossover and the mutation was set to a probability of 0.6 and 0.2 respectively while 

the initial population of candidate solutions and maximum number of generations were 

set to 100 [118],[102]. The algorithm was implemented in PYTHON using the scikit-

learn module, sklearn-genetic [36] to select the feature subset that maximizes the 
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objective function.  The classifier and the fitness (objective) function utilised are 

Random Forest and accuracy respectively.  

Second, optimal spectral features of the extracted data subsets are further reduced 

using F-LDA. F-LDA converts each spectral vector in the hyperspectral data matrix in 

to a 2D matrix (folded sample or vector) of size 𝐺𝐺 × 𝐵𝐵 = 𝑓𝑓, where 𝑓𝑓 is the length of 

each spectral vector and also the number of features in the hyperspectral data. F-LDA 

then applies the traditional LDA steps on the new data which is a now set of 2D 

matrices, project the data unto a lower dimensional space, unfolds the projected 

samples and present the unfolded samples to models for classification. Instead of 

processing a set of spectral vectors as in LDA, F-LDA handles a set of folded spectral 

vectors (2D matrices). Different dimensions (configurations) of the folded samples 

(converted matrices) are considered in this chapter and the one that produces the best 

classification results is selected as the best and reported. A full explanation of the 

theoretical and mathematical concepts of both the LDA and F-LDA can be found in 

Chapter 2 and 5 of this thesis respectively. 

Finally, a Random Forest (RF) model is trained for data classification. Random Forest 

model is used in this work due to the promising results it achieved when applied on 

hyperspectral imaging data of rice seeds in related papers [8],[9],[59]. For the Random 

forest classification, the data is split into training and testing sets. The number of 

decision trees in the Random forest, D is varied from 100 to 1000 in step of 100. The 

optimal values of D are determined using a k-fold (k=5) cross validation on the training 

set. That is, the Random Forest classifier was trained and validated k times. In each 

case, the classifier was trained using k-1 of the folds and validated using the remaining 

fold. The cross validation then output the average of the accuracies recorded in all 
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cases. The classification results obtained during the final evaluation on the test set is 

reported in the next section.  

6.2. Results and Discussion 

Accuracy together with Precision, P, Recall, R, and F1 score are adopted as metrics for 

performance evaluation and comparison of the proposed approach with different 

feature schemes using the RF classifier. Entire spectral feature sets or selected/reduced 

spectral feature sets resulting from a dimensionality reduction process are used for the 

training of classification models. Therefore, in this work, the following different 

feature schemes are utilised and their performances compared with that of the proposed 

GA+F-LDA features (F-LDA features extracted from the GA outputs): 

1) Raw spectral features  

2) An optimal feature subset selected from the raw spectral feature sets using the 

GA only  

3) LDA features extracted from the raw spectral feature sets  

4) PCA features extracted from the raw spectral feature sets  

5) PCA features extracted from the GA outputs  

6) LDA features extracted from the GA outputs  

7) Features extracted by the standard F-LDA i.e., without GA 

6.2.1. Spectra Features Selection 

Using the GA, the number of spectral features selected varied for different datasets as 

illustrated in Table 6.1. For the group of rice seed datasets with 10 and 20 species, the 

number of spectral features selected ranges from 96 to 177 and 94 to 225 respectively. 

The number of spectral features selected when the sugar data was utilised is 64. 
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In order to visualize the regions of the spectral range that contain the selected spectral 

features and are most relevant for the classification tasks in this work, the average 

spectra of a sample species taken from each of the datasets considered is plotted and 

illustrated in Figure 6.5 to Figure 6.25. As shown in Figure 6.5, for the sugar dataset, 

features in both the visible region and the lower bands of the NIR region are useful in 

discriminating the sugar varieties. GA selected more informative features around the 

following three clusters: 429.19 – 534.79 nm, 574.85 – 753.28 nm and 811.54 – 986.32 

nm regions. Selected features around 429.19 – 534.79 nm and 574.85 – 753.28 nm can 

be related to variation in the physical property of the varieties [23],[7],[104] while 

those selected around 811.54 – 986.32 nm can be related to the second and third 

overtones of O-H, C-H and N-H absorption bands [119],[104]. 

For the rice seed dataset, as can be seen in Figure 6.6 to Figure 6.25, the selected 

features can be seen to have spread across the spectral range and cannot be grouped 

into clusters in most of the cases. This indicates that all regions of the spectral range 

are relevant and that the differences in chemical property (composition) in the lower 

bands of the NIR region ~ (700 - 1000) nm and physical property (colour variation 

among the species) in the visible region ~ (385 - 700) nm of the spectral profiles are 

useful in discriminating the rice seed species [23],[7],[104]. While both Visible and 

NIR regions of the spectral range can be seen to be important, GA has been able to 

reduce redundancy (resulting from correlation among the spectral bands) in the 

datasets by selecting only the relevant spectral features in each dataset. 
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Table 6.1 Number of features in each dataset before and after the selection of optimal 
features using GA 

Dataset Random 
subsets 

Number of 
spectral features 

Number of selected 
features 

Rice seeds (10 species) 

1st  

256 

139 
2nd  96 
3rd  114 
4th  177 
5th  145 
6th  147 
7th  132 
8th  110 
9th  111 
10th  103 

Rice seeds (20 species) 

1st  

256 

155 
2nd  123 
3rd  183 
4th  225 
5th  212 
6th  157 
7th  137 
8th  94 
9th  140 
10th  128 

Sugar N/A 160 64 
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Figure 6.5 Average spectra of a sample species taken from the sugar dataset 
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Figure 6.6 Average spectra of a sample species taken from the first data subset 

containing 10 rice seed species 
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Figure 6.7 Average spectra of a sample species taken from the second data subset 

containing 10 rice seed species 
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Figure 6.8 Average spectra of a sample species taken from the third data subset 

containing 10 rice seed species 
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Figure 6.9 Average spectra of a sample species taken from the fourth data subset 

containing 10 rice seed species 



157 
 

 

Figure 6.10 Average spectra of a sample species taken from the fifth data subset 

containing 10 rice seed species 
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Figure 6.11 Average spectra of a sample species taken from the sixth data subset 

containing 10 rice seed species 
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Figure 6.12 Average spectra of a sample species taken from the seventh data subset 

containing 10 rice seed species 
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Figure 6.13 Average spectra of a sample species taken from the eight data subset 

containing 10 rice seed species 
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Figure 6.14 Average spectra of a sample species taken from the ninth data subset 

containing 10 rice seed species 
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Figure 6.15 Average spectra of a sample species taken from the tenth data subset 

containing 10 rice seed species 
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Figure 6.16 Average spectra of a sample species taken from the first data subset 

containing 20 rice seed species 
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Figure 6.17 Average spectra of a sample species taken from the second data subset 

containing 20 rice seed species 
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Figure 6.18 Average spectra of a sample species taken from the third data subset 

containing 20 rice seed species 
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Figure 6.19 Average spectra of a sample species taken from the fourth data subset 

containing 20 rice seed species 
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Figure 6.20 Average spectra of a sample species taken from the fifth data subset 

containing 20 rice seed species 
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Figure 6.21 Average spectra of a sample species taken from the sixth data subset 

containing 20 rice seed species 
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Figure 6.22 Average spectra of a sample species taken from the seventh data subset 

containing 20 rice seed species 
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Figure 6.23 Average spectra of a sample species taken from the eight data subset 

containing 20 rice seed species 
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Figure 6.24 Average spectra of a sample species taken from the ninth data subset 

containing 20 rice seed species 
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Figure 6.25 Average spectra of a sample species taken from the tenth data subset 

containing 20 rice seed species 

6.2.2. Analysing the Performance on the Rice Seed Datasets 

Firstly, before any dimensionality reduction of the rice seed spectral data is performed, 

the 10 random subsets of 10 rice seed varieties are used to train the RF classifier. Sub  

datasets with reduced feature subset are also selected from each of  the  random subsets 

using GA and used to train the RF classifier. F-LDA is applied on the raw spectral 

datasets and the datasets with the selected GA features. The outputs of the F-LDA from 
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both cases are used separately to train the RF classifier. In order to compare 

performance of the proposed approach, (GA+ F- LDA) with other techniques (LDA, 

GA + LDA, PCA and GA+PCA), firstly, outputs of PCA are applied on the spectral 

data and the data with the selected GA features, starting from 1 up to 10 principal 

components in the dataset. Secondly, outputs of LDA are applied on the spectral data 

and the data with the selected GA features, starting from 1 up to 𝑐𝑐 − 1 where 𝑐𝑐 is the 

number of species in the dataset. Finally, outputs of F-LDA and GA+F-LDA are 

separately combined with 6 spatial features.  In all the cases considered, the size of the 

training samples are varied and the average of classification results obtained using the 

10 random subsets of rice seed varieties are computed and presented in Table 6.2 and 

Table 6.3.  

From the classification results presented in Table 6.2 and Table 6.3, it can be observed 

that the accuracy and F1 score with the spectral features only were improved when the 

RF was trained with the selected GA features. As expected, these results are 

significantly improved when the RF is trained with the output of PCA and LDA 

applied to the raw spectral data. Ultimately, as can be seen in Table 6.2 and Table 6.3, 

the classification accuracy and F1 score obtained when LDA features extracted from 

the spectral data (with high training to testing samples ratio) are utilised is greater than 

the accuracy and F1 score obtained when the PCA features are utilised. This validates 

the motivation for proposing the hybridization of GA and F-LDA for dimensionality 

reduction of hyperspectral data in rice seed classification.  

It can also be observed that the classification accuracy and F1 score increase with the 

size of the training sets when the RF classifier is trained with the outputs of the LDA 

and that GA+LDA, F-LDA and GA+FLDA feature schemes all compensate for the 
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inability of LDA to give comparable classification results when applied on small 

training samples. Furthermore, Table 6.2 and Table 6.3 show that GA + F-LDA 

features performed better than the features produced by PCA, LDA, GA+PCA and 

GA+LDA when used to train the classifier. It is also observed that the proposed GA+F-

LDA gave accuracy and F1 score which are lower than those given by F-LDA only as 

can be seen in Table 6.2 and Table 6.3. The reduction in classification performance of 

GA+F-LDA (when compared with F-LDA only) can be considered insignificant since 

the accuracy and F1 score achieved by both GA+F-LDA and F-LDA only are 

comparable when the standard deviation reported in both cases are considered.. As can 

be seen in Table 6.2 and Table 6.3, classification performance of F-LDA and GA+F-

LDA are improved when their outputs are combined with the spatial features. 

While the proposed GA + F-LDA is slightly outperformed by the standard F-LDA in 

term of accuracy and F1 score, the proposed GA + F-LDA can reduce the 

computational complexity and memory requirement at the different stages of  F-LDA 

(in majority of the cases considered) as illustrated in Table 6.8 and Table 6.9. These 

reduction in computational complexity and memory requirement may be preferred in 

practice, though at the expense of slight reduction in classification performance 

(accuracy and F1 score). The adoption of which technique (F-LDA or GA+FLDA) to 

use would then depend on the application. The important point is that F-LDA comes 

out well whether it is applied on the datasets with full spectral features or on reduced 

datasets (dataset containing optimal features selected by GA). The average feature 

extraction time (s) of F-LDA (when applied on the random datasets of 10 varieties) in 

both cases are also illustrated in Table 6.14. As can be seen in Table 6.14, F-LDA used 

less time in extracting the features when applied on the reduced datasets, though the  
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reduction in feature extraction time is not significant when considering the standard 

deviation reported for each case. Also, the time used by F-LDA in both cases can be 

seen in Table 6.14 to be less than 0.1s. The reduction in computational complexity and 

memory requirement attained by F-LDA when applied on the reduced datasets 

therefore demonstrates the potential of the proposed approach (GA+F-LDA) in feature 

extraction and dimensionality reduction of hyperspectral data.   

The above process is repeated on the rice seed datasets of 20 varieties and the 

classification results presented in Table 6.4 and Table 6.5. Again, as can be seen in 

Table 6.4 and Table 6.5, GA+LDA, F-LDA and GA+F-LDA feature schemes continue 

to compensate for the inability of LDA to perform well on small training samples. One 

can also see in Table 6.4 and Table 6.5 that GA+F-LDA continues to outperform the 

other techniques namely PCA, LDA, GA+PCA, GA+LDA and gave F1 score and an 

accuracy which are lower than those attained by F-LDA. Again, the reduction in 

classification performance of GA+F-LDA (when compared with F-LDA only) can be 

considered insignificant since the accuracy and F1 score achieved by both GA+F-LDA 

and F-LDA only are comparable when the standard deviation reported in both cases 

are considered. As can be seen in Table 6.10 and Table 6.11, reduction in 

computational complexity and memory requirement are recorded for majority of the 

cases in F-LDA when applied on the reduced datasets (datasets containing the selected 

GA features). The average feature extraction time (s) of F-LDA when applied on the 

full and GA features is also illustrated in Table 6.14. As can be seen in Table 6.14, F-

LDA used less time in extracting the features when applied on the reduced datasets, 

though the reduction in feature extraction time is not significant when considering the 
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standard deviation reported for each case. Also, the time used by F-LDA in both cases 

can be seen in Table 6.14 to be less than 0.25s.  

It is worthy of note that the hyperspectral data of rice seeds used in this thesis were 

collected at a Visible - Near Infrared (VIS/NIR) range of ~ (385 – 1000) nm. To 

investigate whether the values below 400nm affect the results, some extra work was 

carried out and this is shown in Appendix A. 

6.2.3. Analysing the Performance on the HSI Data of Sugar Dataset 

In order to show the potential of the proposed technique for dimensionality reduction 

of hyperspectral data of other Agri-tech products, the process described in 6.2.1 is 

repeated on the sugar dataset of 9 varieties and the classification results illustrated in 

Table 6.6 and Table 6.7. Table 6.6 and Table 6.7 show that GA+F-LDA features 

performed better than those produced by PCA, LDA, GA+PCA and GA+LDA. Table 

6.6 and Table 6.7 also show that the F-LDA features gave accuracy and F1 score which 

are higher than those given by GA+F-LDA features when used to train the RF 

classifier. While the standard F-LDA gave a slightly better classification performance 

than the proposed GA+F-LDA in term of accuracy and F1 score, as can be seen in 

Table 6.6 and Table 6.7, reduction in computational complexity and memory 

requirement was achieved at the different stages of the F-LDA when it was applied on 

the features selected by GA. This once again demonstrate the potential of applying F-

LDA on reduced datasets (datasets containing optimal features selected by GA). It is 

also worth noting that, as illustrated in Table 6.14, F-LDA used less time in extracting 

the features when applied on the reduced dataset, though the time used by F-LDA in 

both cases can be seen to be less than 0.1s.  
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Table 6.2 Classification accuracies using the rice seed datasets with 10 varieties 

Train:Test 
Ratio 30:70 40:60 50:50 60:40 70:30 80:20 

Spectra 66.70 ± 4.54 69.85 ± 5.02 69.50 ± 5.11 71.45 ± 5.67 71.89 ± 5.53 71.10 ± 4.77 

GA 66.40 ± 4.31 69.67 ± 5.03 68.85 ± 4.84 71.88 ± 4.77 72.38 ± 5.59 71.34 ± 4.14 

PCA 74.40 ± 5.09 75.96 ± 4.12 76.46 ± 4.31 77.80 ± 4.93 78.66 ± 4.17 79.80 ± 5.55 

GA + PCA 73.83 ± 5.29 75.72 ± 5.16 76.59 ± 4.96 77.82 ± 5.69 78.96 ± 5.13 79.18 ± 5.75 

LDA 39.72 ± 6.06 66.66 ± 6.47 73.76 ± 4.50 80.19 ± 4.65 83.04 ± 5.03 84.54 ± 4.10 

GA + LDA 76.41 ± 6.71 83.07 ± 3.94 85.59 ± 4.76 87.62 ± 3.61 88.35 ± 3.34 90.01 ± 3.64 

F-LDA 88.72 ± 3.01 90.89 ± 2.15 91.82 ± 2.43 91.98 ± 2.76 92.50 ± 2.09 93.98 ± 2.77 

GA + F-LDA 85.10 ± 5.28 87.85 ± 3.45 89.26 ± 3.67 89.59 ± 3.34 90.93 ± 2.02 91.93 ± 2.94 

F-LDA + 
Spatial 92.96 ± 2.80 94.18 ± 1.84 94.94 ± 2.25 95.22 ± 2.39 95.81 ± 1.79 96.99 ± 1.84 

GA + F-LDA 
+ Spatial 91.46 ± 3.86 93.65 ± 2.93 93.66 ± 2.70 94.65 ± 2.17 95.17 ± 1.45 96.21 ± 1.45 

 

 

Table 6.3 F1 scores using the rice seed datasets with 10 varieties 

Train:Test 
Ratio 30:70 40:60 50:50 60:40 70:30 80:20 

Spectra 66.27 ± 4.58 69.28 ± 5.12 69.22 ± 5.08 71.14 ± 5.73 71.09 ± 5.84 70.22 ± 5.09 

GA 66.00 ± 4.40 69.14 ± 5.07 68.60 ± 4.86 71.60 ± 4.97 71.50 ± 5.92 70.33 ± 4.43 

PCA 74.03 ± 5.24 75.51 ± 4.21 76.44 ± 4.21 77.51 ± 4.98 78.01 ± 3.97 79.32 ± 5.44 

GA + PCA 73.52 ± 5.40 75.30 ± 5.19 76.52 ± 4.82 77.53 ± 5.82 78.52 ± 4.81 78.51 ± 5.67 

LDA 39.18 ± 6.10 66.42 ± 6.46 73.78 ± 4.39 80.15 ± 4.61 82.78 ± 4.83 84.05 ± 3.92 

GA + LDA 76.39 ± 6.63 82.97 ± 3.95 85.66 ± 4.67 87.51 ± 3.64 88.25 ± 3.18 89.66 ± 3.84 

F-LDA 88.66 ± 3.04 90.83 ± 2.15 91.84 ± 2.38 91.91 ± 2.76 92.40 ± 1.97 93.76 ± 3.05 

GA + F-LDA 85.05 ± 5.30 87.79 ± 3.45 89.32 ± 3.73 89.51 ± 3.25 90.83 ± 2.03 91.66 ± 3.31 

F-LDA + 
Spatial 93.00 ± 2.75 94.15 ± 1.77 94.97 ± 2.21 95.18 ± 2.43 95.74 ± 1.79 96.91 ± 1.83 

GA + F-LDA 
+ Spatial 90.94 ± 3.87 93.01 ± 2.91 93.06 ± 2.96 94.08 ± 2.72 94.73 ± 1.77 95.90 ± 1.37 
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Table 6.4 Classification accuracies using the rice seed datasets with 20 varieties 

Train:Test 
Ratio 30:70 40:60 50:50 60:40 70:30 80:20 

Spectra 54.68 ± 3.63 55.98 ± 3.37 57.58 ± 4.12 58.29 ± 3.30 59.63 ± 3.92 60.03 ± 3.77 

GA 54.54 ± 3.81 56.17 ± 3.33 57.35 ± 4.33 58.00 ± 3.01 59.42 ± 3.92 59.99 ± 4.61 

PCA 61.69 ± 4.12 64.06 ± 3.89 64.98 ± 3.76 65.17 ± 3.23 67.01 ± 3.72 68.09 ± 4.21 

GA + PCA 62.30 ± 3.69 63.76 ± 4.26 64.93 ± 4.18 65.41 ± 3.02 66.67 ± 4.44 67.53 ± 4.41 

LDA 64.92 ± 3.80 74.51 ± 2.70 77.55 ± 2.51 81.86 ± 2.53 83.30 ± 2.99 84.32 ± 2.19 

GA + LDA 73.89 ± 3.47 78.83 ± 2.05 81.22 ± 3.05 83.93 ± 2.26 84.42 ± 3.32 85.73 ± 1.84 

F-LDA 82.15 ± 2.49 84.32 ± 1.95 85.45 ± 2.24 87.16 ± 2.49 87.49 ± 2.97 88.39 ± 2.46 

GA + F-LDA 79.97 ± 4.18 82.21 ± 3.05 83.44 ± 3.20 84.81 ± 2.50 85.84 ± 3.50 86.65 ± 2.46 

F-LDA + 
Spatial 88.94 ± 2.22 90.24 ± 2.05 91.10 ± 1.35 92.26 ± 2.11 92.84 ± 2.14 93.02 ± 1.73 

GA + F-LDA 
+ Spatial 87.51 ± 2.93 88.65 ± 1.74 89.84 ± 1.39 90.62 ± 2.35 91.67 ± 2.38 91.64 ± 2.08 

 

Table 6.5 F1 scores using the rice seed datasets with 20 varieties 

Train:Test 
Ratio 30:70 40:60 50:50 60:40 70:30 80:20 

Spectra 54.04 ± 3.79 55.36 ± 3.57 56.90 ± 4.27 57.70 ± 3.28 58.97 ± 3.70 59.29 ± 3.94 

GA 53.88 ± 3.94 55.52 ± 3.52 56.70 ± 4.44 57.32 ± 3.02 58.75 ± 3.73 59.16 ± 4.62 

PCA 61.04 ± 4.35 63.37 ± 4.28 64.14 ± 3.96 64.56 ± 3.24 66.39 ± 3.92 67.34 ± 4.73 

GA + PCA 61.69 ± 3.86 63.07 ± 4.64 64.09 ± 4.49 64.85 ± 3.10 66.02 ± 4.57 66.84 ± 4.79 

LDA 64.83 ± 3.74 74.35 ± 2.74 77.38 ± 2.62 81.85 ± 2.54 83.05 ± 3.02 84.21 ± 2.23 

GA + LDA 73.75 ± 3.40 78.58 ± 2.16 80.96 ± 3.22 83.86 ± 2.17 84.24 ± 3.45 85.49 ± 2.03 

F-LDA 82.02 ± 2.46 84.01 ± 2.07 85.14 ± 2.40 87.10 ± 2.46 87.31 ± 3.03 88.25 ± 2.55 

GA + F-LDA 79.77 ± 4.23 81.92 ± 3.16 83.16 ± 3.25 84.75 ± 2.49 85.59 ± 3.67 86.45 ± 2.64 

F-LDA + 
Spatial 88.89 ± 2.22 90.12 ± 2.10 90.88 ± 1.48 92.24 ± 2.00 92.75 ± 2.15 93.03 ± 1.88 

GA + F-LDA 
+ Spatial 87.44 ± 2.93 88.61 ± 1.81 89.66 ± 1.39 90.55 ± 2.35 91.55 ± 2.39 91.60 ± 2.21 

 



179 
 

Table 6.6 Classification accuracies using the sugar data 

Train:Test 
Ratio 30:70 40:60 50:50 60:40 70:30 80:20 

Spectra 39.47 39.26 42.98 43.11 44.67 48.00 

GA 39.72 39.26 45.29 46.22 45.86 48.00 

PCA 46.83 46.96 47.78 50.22 51.48 53.78 

GA + PCA 53.17 55.41 54.71 54.44 55.62 55.56 

LDA 46.19 51.41 55.24 57.56 57.10 64.00 

GA + LDA 55.20 56.74 57.37 60.00 62.43 60.89 

F-LDA 62.94 63.26 66.96 67.11 69.53 70.67 

GA + F-LDA 60.79 59.41 61.46 63.56 63.31 64.44 

 

Table 6.7 F1 scores using the sugar data 

Train:Test 
Ratio 30:70 40:60 50:50 60:40 70:30 80:20 

Spectra 38.18 38.48 42.29 42.18 42.67 46.55 

GA 38.64 38.92 44.46 45.45 44.65 47.08 

PCA 46.70 47.06 47.58 48.99 49.62 52.93 

GA + PCA 53.00 55.56 54.10 54.05 55.23 54.15 

LDA 46.18 51.76 55.19 57.02 56.77 61.85 

GA + LDA 55.42 56.51 56.68 59.09 62.21 60.14 

F-LDA 62.74 63.26 66.67 66.04 68.62 68.49 

GA +F-LDA 60.38 59.15 61.33 62.78 63.07 62.97 
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Table 6.8 Computational complexity (content consumption) for the different stages 

of the F-LDA when applied separately on the full and selected GA features using the 

rice seed datasets of 10 species (𝑁𝑁𝑗𝑗  and 𝑑𝑑  represent the number of samples per 

species and the number of features extracted by F-LDA respectively). 

Dataset 
(ratio of 

training to 
testing sample 

size used is 
80:20) 

 

 

Best 
configurati
on based on 

the 
classifier’s 
accuracy  
(𝐺𝐺 × 𝐵𝐵) 

Within-class                
variance matrix 

Between-class        
variance matrix 

Transformation 
matrix 

Eigen 
problem 

Data 
projection 

Random 
Subsets 

Computational complexity 
(formulated for F-LDA in 

Chapter 5) 
 

- 𝑜𝑜(𝑐𝑐𝑁𝑁𝑗𝑗𝐺𝐺2𝐵𝐵) 𝑜𝑜(𝑐𝑐𝐺𝐺2𝐵𝐵) 𝑜𝑜(𝐺𝐺3) 𝑜𝑜(𝐺𝐺3) 𝑜𝑜(𝑠𝑠𝐺𝐺𝑑𝑑) 

1st 
F-LDA (full features) 128  * 2 o(327680𝑁𝑁𝑗𝑗) o(327680) o(2097152) o(2097152) o(128𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 139 *  1 o(193210𝑁𝑁𝑗𝑗) o(193210) o(2685619) o(2685619) o(139 𝑠𝑠𝑑𝑑) 

Saving factors - 1.70 1.70 0.78 0.78 0.92 

2nd 
 

F-LDA (full features) 64  * 4 o(163840𝑁𝑁𝑗𝑗) o(163840) o(262144) o(262144) o(64 𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 24 *  4 o(23040𝑁𝑁𝑗𝑗) o(23040) o(13824) o(13824) o(24 𝑠𝑠𝑑𝑑) 

Saving factors - 7.11 7.11 18.96 18.96 2.67 

3rd 
F-LDA (full features) 32  * 8 o(81920𝑁𝑁𝑗𝑗) o(81920) o(32768) o(32768) o(32 𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 57 *  2 o(64980𝑁𝑁𝑗𝑗) o(64980) o(185193) o(185193) o(57 𝑠𝑠𝑑𝑑) 

Saving factors - 1.26 1.26 0.18 0.18 0.56 

4th 
F-LDA (full features) 64  * 4 o(163840𝑁𝑁𝑗𝑗) o(163840) o(262144) o(262144) o(64 𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 59 *  3 o(104430𝑁𝑁𝑗𝑗) o(104430) o(205379) o( 205379) o(59 𝑠𝑠𝑑𝑑) 

Saving factors - 1.57 1.57 1.28 1.28 1.08 

5th 
F-LDA (full features) 64  * 4 o(163840𝑁𝑁𝑗𝑗) o(163840) o(262144) o(262144) o(64 𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 29 *  5 o(42050𝑁𝑁𝑗𝑗) o(42050) o(42050) o(42050) o(29 𝑠𝑠𝑑𝑑) 

Saving factors - 3.90 3.90 6.23 6.23 2.21 

6th 
F-LDA (full features) 64  * 4 o(163840𝑁𝑁𝑗𝑗) o(163840) o(262144) o(262144) o(64 𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 49 *  3 o(72030𝑁𝑁𝑗𝑗) o(72030) o(117649) o(117649) o(49 𝑠𝑠𝑑𝑑) 

Saving factors - 2.27 2.27 2.23 2.23 1.31 

7th 
F-LDA (full features) 64  * 4 o(163840𝑁𝑁𝑗𝑗) o(163840) o(262144) o(262144) o(64 𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 66 * 2 o(87120𝑁𝑁𝑗𝑗) o(87120) o(287496) o(287496) o(66 𝑠𝑠𝑑𝑑) 

Saving factors - 1.88 1.88 0.91 0.91 0.97 

8th 
F-LDA (full features) 128  * 2 o(327680𝑁𝑁𝑗𝑗) o(327680) o(2097152) o(2097152) o(128 𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 110 *  1 o(121000𝑁𝑁𝑗𝑗) o(121000) o(1331000) o(1331000) o(110 𝑠𝑠𝑑𝑑) 

Saving factors - 2.71 2.71 1.58 1.58 1.16 

9th 
F-LDA (full features) 64  * 4 o(163840𝑁𝑁𝑗𝑗) o(163840) o(262144) o(262144) o(64 𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 37 * 3 o(41070𝑁𝑁𝑗𝑗) o(41070) o(50653) o(50653) o(37 𝑠𝑠𝑑𝑑) 

Saving factors - 3.99 3.99 5.18 5.18 1.73 

10th 
F-LDA (full features) 128  * 2 o(327680𝑁𝑁𝑗𝑗) o(327680) o(2097152) o(2097152) o(128 𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 103 *  1 o(106090𝑁𝑁𝑗𝑗) o(106090) o(1092727) o(1092727) o(103 𝑠𝑠𝑑𝑑) 

Saving factors - 3.09 3.09 1.92 1.92 1.24 
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Table 6.9 Memory requirement (content consumption) at the different stages of the 

F-LDA when applied separately on the full and selected GA features using the rice 

seed datasets of 10 species (𝑁𝑁𝑗𝑗  and 𝑑𝑑  represent the number of samples per species 

and the number of features extracted by F-LDA respectively). 

Dataset 
(ratio of 

training to 
testing sample 

size used is 
80:20) 

 

 

Best 
configurati
on based on 

the 
classifier’s 
accuracy  
(𝐺𝐺 × 𝐵𝐵) 

Data matrix size 
Within-class 

variance matrix 
size 

Between-class 
variance matrix 

size 

Transformatio
n matrix size 

Projection 
matrix size 

Random 
Subsets 

Memory requirement 
(formulated for F-LDA in 

Chapter 5) 
 

- 𝐺𝐺 × 𝐵𝐵 𝐺𝐺 × 𝐺𝐺 𝐺𝐺 × 𝐺𝐺 𝐺𝐺 × 𝐺𝐺 𝐺𝐺 × 𝑑𝑑
𝐵𝐵�  

1st 
F-LDA (full features) 128  * 2 256 16384 16384 16384 64𝑑𝑑 
F-LDA (GA features) 139 *  1 139 19321 19321 19321 139𝑑𝑑 

Saving factors - 1.84 0.85 0.85 0.85 0.46 

2nd 
 

F-LDA (full features) 64  * 4 256 4096 4096 4096 16𝑑𝑑 
F-LDA (GA features) 24 *  4 96 576 576 576 6𝑑𝑑 

Saving factors - 2.67 7.11 7.11 7.11 2.67 

3rd 
F-LDA (full features) 32  * 8 256 1024 1024 1024 4𝑑𝑑 
F-LDA (GA features) 57 *  2 114 114 114 114 28.50𝑑𝑑 

Saving factors - 2.25 8.98 8.98 8.98 0.14 

4th 
F-LDA (full features) 64  * 4 256 4096 4096 4096 16𝑑𝑑 
F-LDA (GA features) 59 *  3 177 3481 3481 3481 19.67𝑑𝑑 

Saving factors - 1.45 1.18 1.18 1.18 0.81 

5th 
F-LDA (full features) 64  * 4 256 4096 4096 4096 16𝑑𝑑 
F-LDA (GA features) 29 *  5 145 841 841 841 5.8  

Saving factors - 1.77 4.87 4.87 4.87 2.76 

6th 
F-LDA (full features) 64  * 4 256 4096 4096 4096 16𝑑𝑑 
F-LDA (GA features) 49 *  3 147 2401 2401 2401 16.33  

Saving factors - 1.74 1.71 1.71 1.71 0.98 

7th 
F-LDA (full features) 64  * 4 256 4096 4096 4096 16  
F-LDA (GA features) 66 * 2 132 4356 4356 4356 4356  

Saving factors - 1.94 0.94 0.94 0.94 0.00 

8th 
F-LDA (full features) 128  * 2 256 16384 16384 16384 64  
F-LDA (GA features) 110 *  1 110 12100 12100 12100 110  

Saving factors - 2.33 1.35 1.35 1.35 0.58 

9th 
F-LDA (full features) 64  * 4 256 4096 4096 4096 16𝑑𝑑 
F-LDA (GA features) 37 * 3 111 1369 1369 1369 12.33𝑑𝑑 

Saving factors - 2.31 2.99 2.99 2.99 1.30 

10th 
F-LDA (full features) 128  * 2 256 16384 16384 16384 64𝑑𝑑 
F-LDA (GA features) 103 *  1 103 10609 10609 10609 103𝑑𝑑 

Saving factors - 2.49 1.54 1.54 1.54 0.62 
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Table 6.10 Computational complexity (content consumption) for the different stages 

of the F-LDA when applied separately on the full and selected GA features using the 

rice seed datasets of 20 species (𝑁𝑁𝑗𝑗  and 𝑑𝑑  represent the number of samples per 

species and the number of features extracted by F-LDA respectively) 

Dataset 
(ratio of 

training to 
testing sample 

size used is 
80:20) 

 

 

Best 
configurati
on based on 

the 
classifier’s 
accuracy  
(𝐺𝐺 × 𝐵𝐵) 

Within-class                
variance matrix 

Between-class        
variance matrix 

Transformation 
matrix 

Eigen 
problem 

Data 
projection 

Random 
Subsets 

Computational complexity 
(formulated for F-LDA in 

Chapter 5) 
 

- 𝑜𝑜(𝑐𝑐𝑁𝑁𝑗𝑗𝐺𝐺2𝐵𝐵) 𝑜𝑜(𝑐𝑐𝐺𝐺2𝐵𝐵) 𝑜𝑜(𝐺𝐺3) 𝑜𝑜(𝐺𝐺3) 𝑜𝑜(𝑠𝑠𝐺𝐺𝑑𝑑) 

1st 
F-LDA (full features) 128 * 2 o(655360𝑁𝑁𝑗𝑗) o(655360) o(2097152) o(2097152) o(128𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 31 * 5 o(96100𝑁𝑁𝑗𝑗) o(96100) o(29791) o(29791) o(31𝑠𝑠𝑑𝑑) 

Saving factors - 6.82 6.82 70.40 70.40 4.13 

2nd 
 

F-LDA (full features) 64 * 4 o(327680𝑁𝑁𝑗𝑗) o(327680) o(262144) o(262144) o(64𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 41 * 3 o(100860𝑁𝑁𝑗𝑗) o(100860) o(68921) o(68921) o(41𝑠𝑠𝑑𝑑) 

Saving factors - 3.25 3.25 3.80 3.80 1.56 

3rd 
F-LDA (full features) 128 * 2 o(655360𝑁𝑁𝑗𝑗) o(655360) o(2097152) o(2097152) o(128𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 183 * 1 o(669780𝑁𝑁𝑗𝑗) o(669780) o(6128487) o(6128487) o(183𝑠𝑠𝑑𝑑) 

Saving factors - 0.98 0.98 0.34 0.34 0.70 

4th 
F-LDA (full features) 128 * 2 o(655360𝑁𝑁𝑗𝑗) o(655360) o(2097152) o(2097152) o(128𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 75 * 3 o(337500𝑁𝑁𝑗𝑗) o(337500) o(421875) o(421875) o(75𝑠𝑠𝑑𝑑) 

Saving factors - 1.94 1.94 4.97 4.97 1.71 

5th 
F-LDA (full features) 128 * 2 o(655360𝑁𝑁𝑗𝑗) o(655360) o(2097152) o(2097152) o(128𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 106 * 2 o(449440𝑁𝑁𝑗𝑗) o(449440) o(1191016) o(1191016) o(106𝑠𝑠𝑑𝑑) 

Saving factors - 1.46 1.46 1.76 1.76 1.21 

6th 
F-LDA (full features) 128 * 2 o(655360𝑁𝑁𝑗𝑗) o(655360) o(2097152) o(2097152) o(128𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 157 * 1 o(492980𝑁𝑁𝑗𝑗) o(492980) o(3869893) o(3869893) o(157𝑠𝑠𝑑𝑑) 

Saving factors - 1.33 1.33 0.54 0.54 0.82 

7th 
F-LDA (full features) 128 * 2 o(655360𝑁𝑁𝑗𝑗) o(655360) o(2097152) o(2097152) o(128𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 137 * 1 o(375380𝑁𝑁𝑗𝑗) o(375380) o(2571353) o(2571353) o(137𝑠𝑠𝑑𝑑) 

Saving factors - 1.75 1.75 0.82 0.82 0.93 

8th 
F-LDA (full features) 128 * 2 o(655360𝑁𝑁𝑗𝑗) o(655360) o(2097152) o(2097152) o(128𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 94 * 1 o(176720𝑁𝑁𝑗𝑗) o(176720) o(830584) o(830584) o(94𝑠𝑠𝑑𝑑) 

Saving factors - 3.71 3.71 2.52 2.52 1.36 

9th 
F-LDA (full features) 128 *  2 o(655360𝑁𝑁𝑗𝑗) o(655360) o(2097152) o(2097152) o(128𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 70 * 2 o(196000𝑁𝑁𝑗𝑗) o(196000) o(343000) o(343000) o(70𝑠𝑠𝑑𝑑) 

Saving factors - 3.34 3.34 6.11 6.11 1.83 

10th 
F-LDA (full features) 64 *  4 o(327680𝑁𝑁𝑗𝑗) o(327680) o(262144) o(262144) o(64𝑠𝑠𝑑𝑑) 
F-LDA (GA features) 128 * 1 o(327680𝑁𝑁𝑗𝑗) o(327680) o(2097152) o(2097152) o(128𝑠𝑠𝑑𝑑) 

Saving factors - 1.00 1.00 0.13 0.13 0.50 

 

 



183 
 

Table 6.11 Memory requirement (content consumption) at the different stages of the 

F-LDA when applied separately on the full and selected GA features using the rice 

seed datasets of 20 species (𝑁𝑁𝑗𝑗  and 𝑑𝑑  represent the number of samples per species 

and the number of features extracted by F-LDA respectively). 

Dataset 
(ratio of 

training to 
testing sample 

size used is 
80:20) 

 

 

Best 
configurati
on based on 

the 
classifier’s 
accuracy  
(𝐺𝐺 × 𝐵𝐵) 

Data matrix size 
Within-class 

variance matrix 
size 

Between-class 
variance matrix 

size 

Transformatio
n matrix size 

Projection 
matrix size 

Random 
Subsets 

Memory requirement 
(formulated for F-LDA in 

Chapter 5) 
 

- 𝐺𝐺 × 𝐵𝐵 𝐺𝐺 × 𝐺𝐺 𝐺𝐺 × 𝐺𝐺 𝐺𝐺 × 𝐺𝐺 𝐺𝐺 × 𝑑𝑑
𝐵𝐵�  

1st 
F-LDA (full features) 128 * 2 256 16384 16384 16384 64𝑑𝑑 
F-LDA (GA features) 31 * 5 155 155 155 155 6.20𝑑𝑑 

Saving factors - 1.65 105.70 105.70 105.70 10.32 

2nd 
 

F-LDA (full features) 64 * 4 256 4096 4096 4096 16𝑑𝑑 
F-LDA (GA features) 41 * 3 123 1681 1681 1681 13.67𝑑𝑑 

Saving factors - 2.08 2.44 2.44 2.44 1.17 

3rd 
F-LDA (full features) 128 * 2 256 16384 16384 16384 64𝑑𝑑 
F-LDA (GA features) 183 * 1 183 33489 33489 33489 183𝑑𝑑 

Saving factors - 1.40 0.49 0.49 0.49 0.35 

4th 
F-LDA (full features) 128 * 2 256 16384 16384 16384 64𝑑𝑑 
F-LDA (GA features) 75 * 3 225 5625 5625 5625 25𝑑𝑑 

Saving factors - 1.14 2.91 2.91 2.91 2.56 

5th 
F-LDA (full features) 128 * 2 256 16384 16384 16384 64𝑑𝑑 
F-LDA (GA features) 106 * 2 212 11236 11236 11236 53𝑑𝑑 

Saving factors - 1.21 1.46 1.46 1.46 1.21 

6th 
F-LDA (full features) 128 * 2 256 16384 16384 16384 64𝑑𝑑 
F-LDA (GA features) 157 * 1 157 24649 24649 24649 157𝑑𝑑 

Saving factors - 1.63 0.66 0.66 0.66 0.41 

7th 
F-LDA (full features) 128 * 2 256 16384 16384 16384 64𝑑𝑑 
F-LDA (GA features) 137 * 1 137 18769 18769 18769 137𝑑𝑑 

Saving factors - 1.87 0.87 0.87 0.87 0.47 

8th 
F-LDA (full features) 128 * 2 256 16384 16384 16384 64𝑑𝑑 
F-LDA (GA features) 94 * 1 94 8836 8836 8836 94𝑑𝑑 

Saving factors - 2.72 1.85 1.85 1.85 0.68 

9th 
F-LDA (full features) 128 *  2 256 16384 16384 16384 64𝑑𝑑 
F-LDA (GA features) 70 * 2 140 4900 4900 4900 35𝑑𝑑 

Saving factors - 1.83 3.34 3.34 3.34 1.83 

10th 
F-LDA (full features) 64 *  4 256 4096 4096 4096 16𝑑𝑑 
F-LDA (GA features) 128 * 1 128 16384 16384 16384 128𝑑𝑑 

Saving factors - 2.00 0.25 0.25 0.25 0.13 
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Table 6.12 Computational complexity (content consumption) for the different stages 

of the F-LDA when applied separately on the full and selected GA features using the 

sugar dataset (𝑁𝑁𝑗𝑗  and 𝑑𝑑  represent the number of samples per species and the number 

of features extracted by F-LDA respectively). 

Dataset  
(ratio of 

training to 
testing sample 

size used is 
80:20) 

 
 

 

Best 
configuration 
based on the 
classifier’s 

accuracy  (𝐺𝐺 ×
𝐵𝐵) 

Within-class                
variance matrix 

Between-class        
variance matrix 

Transformation 
matrix Eigen problem Data 

projection 

Computational 
complexity 
(formulated for F-
LDA in Chapter 5) 

 

- 𝑜𝑜(𝑐𝑐𝑁𝑁𝑗𝑗𝐺𝐺2𝐵𝐵) 𝑜𝑜(𝑐𝑐𝐺𝐺2𝐵𝐵) 𝑜𝑜(𝐺𝐺3) 𝑜𝑜(𝐺𝐺3) 𝑜𝑜(𝑠𝑠𝐺𝐺𝑑𝑑) 

Sugar data 

F-LDA (using the full 
features) 32×5 𝑜𝑜(46080𝑁𝑁𝑗𝑗) 𝑜𝑜(46080) 𝑜𝑜(32768) 𝑜𝑜(32768) 𝑜𝑜(32𝑠𝑠𝑑𝑑) 

F-LDA (using the 
optimal features) 16×4 𝑜𝑜(9216𝑁𝑁𝑗𝑗) 𝑜𝑜(9216) 𝑜𝑜(4096) 𝑜𝑜(4096) 𝑜𝑜(16𝑠𝑠𝑑𝑑) 

Saving factors - 5 5 8 8 2 
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Table 6.13 Memory requirement (content consumption) at the different stages of the 

F-LDA when applied separately on the full and selected GA features using the sugar 

dataset (𝑁𝑁𝑗𝑗  and 𝑑𝑑  represent the number of samples per species and the number of 

features extracted by F-LDA respectively). 

Dataset  
(ratio of 

training to 
testing sample 

size used is 
80:20) 

 

 

Best 
configuration 
based on the 
classifier’s 

accuracy  (𝐺𝐺 ×
𝐵𝐵) 

Data matrix size 
Within-class 

variance matrix 
size 

Between-class 
variance matrix size 

Transformation 
matrix size 

Projection 
matrix size 

Memory requirement 
(formulated for F-
LDA in Chapter 5) 

 

- 𝐺𝐺 × 𝐵𝐵 𝐺𝐺 × 𝐺𝐺 𝐺𝐺 × 𝐺𝐺 𝐺𝐺 × 𝐺𝐺 𝐺𝐺 × 𝑑𝑑
𝐵𝐵�  

Sugar data 

F-LDA (using the full 
features) 32×5 160 1024 1024 1024 6.40𝑑𝑑 

F-LDA (using the 
optimal features) 16×4 64 256 256 256 4𝑑𝑑 

Saving factors - 2.50 4 4 4 1.60 

 

Table 6.14 Feature extraction time (s) of F-LDA when applied separately on the full 

and selected GA features (the ratio of training to testing sample size used is 80:20) 

F-LDA Approach Rice seed datasets 
(10 species) 

Rice seed datasets 
(20 species) 

Sugar 
dataset 

F-LDA (using the full 
features) 0.0739  ±  0.0314 0.2055 ± 0.0393 0.0510 

F-LDA (using the GA 
features) 0.0581  ±  0.0319 0.1798 ± 0.0844 0.0260 

 

 

6.2.4. Comparing performance of the proposed approach on the selected 

data subsets of 6 species which were utilised in Section 4.8.3 of 

Chapter 4 with those reported for the said data subsets of 6 species 

using the approach proposed in Chapter 4. 

In this section, performance of F-LDA and GA+F-LDA when applied on the data 

subsets of 6 species which were utilised in Section 4.8.3 of Chapter 4 are compared 
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with those reported for the same data subsets of 6 species in Chapter 4 (classifiers’ 

performance on the data subsets of 6 species using the approach presented in Chapter 

4 are shown in Table 4.5 of that same chapter, i.e. Chapter 4). A summary of all the 

subsets utilised in this section can be found in Table 4.4 in Chapter 4. As in Chapter 4 

and for fair comparison, the ratio of training to testing samples used in this section is 

80:20. 

Firstly, F-LDA and GA + F-LDA are separately applied on the spectral data of each 

subset to extract features which are combined with corresponding spatial features. The 

RF classifier is trained separately using the combined spectral and spatial features 

obtained from the 6 subsets and the classification results obtained are presented in 

Table 6.15 and Table 6.16. From Table 6.15 and Table 6.16, it can be observed that 

the classification results were significantly improved for F-LDA and GA+F-LDA 

when compared to the classification results on the data subsets of 6 species which are 

presented in Table 4.5 of Chapter 4. These experimental results further demonstrate 

the potential of F-LDA and GA+F-LDA in feature extraction and dimensionality 

reduction of hyperspectral data. 
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Table 6.15 F1 scores using F-LDA and GA+F-LDA on the selected data subsets of 6 

species utilised in Section 4.8.3 of Chapter 4. 

Subsets F-LDA 
BEST 

CONFIG 
GA + F-LDA 

BEST 

CONFIG 

1 100.00 64 × 4 100.00 70 × 2 

2 100.00 16 × 16 100.00 76 × 2 

3 100.00 32 × 8 99.33 23 × 6 

4 99.12 128 × 2 99.07 74 × 2 

5 98.44 128 × 2 96.51 49 × 3 

6 69.62 128 × 2 61.94 23 × 5 

 

Table 6.16 Classification accuracy using F-LDA and GA+F-LDA on the selected 

data subsets of 6 species utilised in Section 4.8.3 of Chapter 4. 

 Subsets F-LDA 
BEST 

CONFIG 
GA + F-LDA 

BEST 

CONFIG 

1 100.00 64 × 4 100.00 70 × 2 

2 100.00 16 × 16 100.00 38 × 4 

3 100.00 32 ×  8 99.26 23 × 6 

4 99.17 128  × 2 99.17 74 × 2 

5 98.26 128 × 2 96.52 21 × 7 

6 70.49 128 × 2 62.30 23 × 5 
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6.3. Summary 

In this chapter, a novel hybridized GA and F-LDA (GA+F-LDA) has been introduced 

and its effectiveness evaluated for dimensionality reduction of hyperspectral imaging 

data. Rice seed spectral datasets are used for performance evaluation of the proposed 

approach. The experimental results obtained by the hybridized dimensionality 

reduction scheme (GA+F-LDA) are promising and demonstrate the potential of 

applying F-LDA on hyperspectral datasets reduced by GA (reduction in computational 

complexity and memory requirement can be achieved). The application of the 

proposed approach can also be extended to the classification and quality evaluation of 

other Agri-Tech products and similar hyperspectral data related classification tasks in 

other areas too. 
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7. Conclusion and Future Work 

Challenges which limit the potential of hyperspectral imaging data in classification 

applications have been identified in this thesis. One of these is the problem of curse of 

dimensionality (Hughes phenomenon) which arises due to the presence of very high 

number of features (usually in hundreds) in the hyperspectral data. Another challenge 

which was identified is the reduced fidelity in the appearance-based features from 

hyperspectral images when compared with those extracted from RGB images. 

This thesis therefore focuses on proposing novel solutions to address the identified 

challenges. Specifically, new dimensionality reduction approaches were proposed for 

hyperspectral imaging data. Also, the effectiveness of a new way of combining spatial 

and spectral features was evaluated for hyperspectral data classification. The following 

subsections present a summary of the contributions of this thesis, highlight their 

limitations and provide future research directions. 

7.1. Hyperspectral Imaging Data Classification: Evaluating the Effectiveness 

of Combining Spectral Features from Hyperspectral Images and Spatial 

Features from RGB Images 

Chapter 4 evaluates the effectiveness of combining spatial features from RGB images 

(which offer high spatial resolution) and spectral features from hyperspectral images 

(which offer high spectral resolution) for hyperspectral data classification. Chapter 4 

applied LDA as an alternative dimensionality reduction approach to the commonly 

applied PCA for dimensionality reduction of spectral data. The performances of LDA 

and PCA for dimensionality reduction of the hyperspectral imaging data were 

presented and compared. A dataset containing spatial and spectral features (which 
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were extracted from the acquired RGB images and hyperspectral image data cubes of 

rice seeds respectively) and a large number of species (90 rice seed varieties with 96 

seeds per variety) was used to evaluate performance of the proposed approach. 

 Experimental results showed that LDA can perform better than PCA when applied to 

reduce dimensionality of spectral data. The results obtained also demonstrate the 

ability of the proposed approach (combining spectral features, extracted from 

hyperspectral images, and spatial features, extracted from high resolution RGB) to 

achieve good classification results. The large hyperspectral data of rice seeds was 

made publicly available [34],[35] to the community to assist in benchmarking of the 

proposed approach. 

7.2. F-LDA for Feature Extraction of Hyperspectral Imaging Data 

Based on the superior performance of LDA to PCA as a dimensionality reduction 

technique for hyperspectral imaging data in Chapter 4 and the increased accuracy and 

reduced computational complexity achieved in a previous work that extended PCA 

[37], Chapter 5 proposed a new Folded-LDA (F-LDA). The proposed F-LDA is an 

extended and improved version of the LDA transform, for feature extraction of 

hyperspectral imaging data. The proposed F-LDA is based on a mathematical ‘trick’ 

(folding the pixels) which was inspired by the paper in [37].  

Performance evaluation of the proposed technique was carried out using five publicly 

available hyperspectral datasets which were acquired using different sensors (AVIRIS, 

ROSIS, Hyperion). The proposed F-LDA produced more informative features  and 

achieved higher classification accuracy than the original feature space, conventional 

LDA, 2D LDA [38], and other state-of-the-art methods namely GDA [39], NWFE 
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[40], KPCA [41] and F-PCA [37]. Experimental results showed that the proposed 

technique is superior to the other approaches when applied in Small Sample Size (SSS) 

scenarios. The proposed F-LDA also achieved reduced contiguous memory 

requirement and reduced complexity when compared with the conventional LDA. 

Though the proposed F-LDA and 2D LDA [38] share some concepts, the proposed F-

LDA improved the classification performance of 2D LDA, according to the 

experimental results. 

7.3. Hybridizing GA and F-LDA for Dimensionality Reduction of Hyperspectral 

Data  

 Chapter 6 explored the effectiveness of hybridizing GA and F-LDA (GA+F-

LDA) for dimensionality reduction of hyperspectral imaging data. This is based on: 

A. The superior performance of LDA to PCA as a dimensionality reduction 

technique when applied on hyperspectral imaging data in Chapter 4. 

B. The improved classification performance achieved by F-LDA in Chapter 5 

when applied on hyperspectral imaging data. 

C. The improved classification performance achieved when GA was used for the 

selection of optimal feature subset from the original feature set prior to feature 

extraction using PCA [28],[29] or LDA [30],[31] in other work. 

In the proposed approach, GA was applied on the datasets to select optimal spectral 

features. This was followed by the application of F-LDA on the data with the selected 

optimal features. Performance of the proposed approach (GA + F-LDA) was evaluated 

on two spectral datasets of 10 and 20 rice seed species and another spectral dataset of 

sugar containing 9 species. Experimental results obtained show that by applying F-
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LDA on the selected optimal spectral features, its computational complexity and 

memory requirement can be reduced further. Though the proposed GA+F-LDA has 

some benefits (reduction in computational complexity and memory requirement), it is 

slightly outperformed by the standard F-LDA in terms of classification accuracy and 

F1 score.  

7.4. Future Work 

This thesis focused on proposing novel approaches to address the problem of high data 

dimensionality and reduced fidelity in appearance-based features which limit the 

potential of hyperspectral imaging data in classification applications. While the 

various approaches presented in this thesis performed very well, they have some 

limitations which can translate into gaps and opportunities for future research 

investigations. Future work will be focused on addressing these limitations which are 

summarized below: 

1) The suboptimal classification results reported for some rice seed species in Chapter 

4 were linked to the use of samples with similarities among the species in the data. 

It is therefore necessary to assess the similarity among species of different rice seed 

species and explore ways in which the degrading effects on classifiers’ 

performance due to seed similarity can be mitigated.  

2) Also, the proposed approach in Chapter 4 was applied on a large set of 90 rice 

seeds which were provided by the National Center of Protection of New Varieties 

and Goods of Plants (NCPNVGGP) in Vietnam. This approach can be extended to 

datasets with larger number of species which are available at other agricultural 

institutes. 
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3) In the F-LDA proposed in Chapter 5, each pixel in the hyperspectral data was 

folded from vector to matrix. Different configurations (𝐺𝐺 × 𝐵𝐵) of the matrices 

were exploited, and the optimal configuration was chosen as one that gave the best 

classification results. New techniques can be developed to automatically determine 

the F-LDA configuration that gives the best classification results.   

4) In Chapter 6, hybridized GA and F-LDA were introduced and their effectiveness 

evaluated for dimensionality reduction of hyperspectral imaging using rice seed 

datasets. As demonstrated with the sugar data, the application of the proposed 

approaches can also be extended to the classification and quality evaluation of 

other Agri-tech products, and similar HSI related classification tasks in other areas 

too. 
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Appendix 
 

Appendix A. Comparison of Classification Results Obtained Using Rice Seed 
Datasets Before and After the Removal of Values Below 400nm. 

The hyperspectral data of rice seeds used in this thesis were collected at a Visible - 

Near Infrared (VIS/NIR) range of ~ (385 – 1000) nm. Some extra work was therefore 

carried out to investigate whether the values below 400nm affect the results, and this 

is presented in this section. Firstly, the values below 400 nm were removed from the 

rice seed datasets of 20 and 10 species. Secondly, the original datasets (containing 256 

spectral features) and resulting datasets were separately presented to a  Random Forest 

model for classification. The classification results are presented in Table 1 and Table 

2 below. As can be seen in Table 1 and Table 2, the classification accuracies and F1 

scores achieved using the resulting datasets are lower than those achieved using the 

original datasets. This is because those values which were removed carry some 

significance i.e. they contain useful information. 

Table 17 Classification results using the rice seed datasets of 20 species before and 
after the removal of values below 400 nm  

Number 
of bands 
discarded 

Number of 
bands used Wavelength range (nm) Accuracy F1 Score 

- 256 383.22 - 1006.5 58.33 56.87 
7 249 400.25 - 1006.5 57.03 55.77 

 

Table 18 Classification results using the rice seed datasets of 10 species before and 
after the removal of values below 400 nm 

Number 
of bands 
discarded 

Number of 
bands used Wavelength range (nm) Accuracy F1 Score 

- 256 383.22 - 1006.5 70.31 68.72 
7 249 400.25 - 1006.5 68.75 66.77 
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The average spectral profiles of the datasets before and after the removal of values 

below 400 nm are also illustrated in Figure 1 - Figure 4 below. 

 

 

Figure 26 The average spectral profiles of 20 rice seed species before the removal of 

values below 400 nm 
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Figure 27 The average spectral profiles of 20 rice seed species after the removal of 
values below 400 nm 
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Figure 28 The average spectral profiles of 10 rice seed species before the removal of 
values below 400 nm 

 

 

 

 

 

 

 



217 
 

 

Figure 29 The average spectral profiles of 10 rice seed species after the removal of 
values below 400 nm 
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