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Abstract

Additive manufacturing (AM) and welding are transformative technologies
extensively used across various industries due to their capability to fabricate complex,
high-performance components. However, challenges such as thermal distortion,
residual stresses, and defects like cracks and porosity frequently arise due to the
inherent high thermal gradients and repeated thermal cycles during these processes.
Traditional numerical methods, such as the Finite Element Method, often encounter
difficulties in effectively addressing crack discontinuities in AM and welding
processes due to their reliance on continuity assumptions in classical continuum

mechanics.

This thesis has developed a peridynamics-based numerical modelling tool for
simulating mechanical, thermal, thermo-mechanical, and fluid behaviours, suitable for
the numerical investigation of AM and welding processes. Peridynamics, a nonlocal
integral-based continuum theory, is capable of modelling discontinuities such as cracks
without the need for remeshing, providing a promising alternative to conventional

numerical methods.

The research includes systematic investigations into optimal horizon size (a length
scale parameter determining the level of nonlocal interactions) selection criteria across
different peridynamic formulations, including bond-based, ordinary state-based, and
non-ordinary state-based approaches. A dual-horizon peridynamic formulation is
developed and validated to effectively handle non-uniform discretisation issues,
improving accuracy and computational efficiency in mechanical and thermal diffusion
analyses. Furthermore, a coupled thermomechanical peridynamic model incorporating
phase-change phenomena is formulated to simulate the structural deformation during
welding and AM processes. To further expand peridynamic capabilities, the
Peridynamic Differential Operator is utilised for modelling multiphase flow
behaviours, including wetting dynamics and thermo-capillary (Marangoni) effects,
which are closely related to AM and welding scenarios involving surface tension-

driven fluid motion in the molten pool.



Results demonstrated that the models developed consistently produced reliable and
accurate predictions of deformation, thermal diffusion characteristics, phase

transitions, and multiphase flow dynamics when benchmarked against reference data.

This thesis advances peridynamic modelling capabilities for AM and welding
applications by offering recommendations for horizon size selection and
demonstrating the method’s suitability for simulating mechanical deformation, heat
conduction with phase change, and multiphase flow interactions. Overall, the work
contributes to bridging fundamental peridynamic research with industrial practice,
providing modelling tools and clear methodological guidelines to substantially

enhance process reliability, component quality, and manufacturing efficiency.
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Chapter 1 Introduction

AM and welding technology are rapidly changing the modern engineering landscape,
allowing the production of complex, customised parts across a wide range of industries.
However, as adoption expands, the need for robust predictive modelling tools has
become vital. This chapter introduces the motivations for the research, provides
background on AM, welding and peridynamic theory, outlines the research objectives,

and presents an overview of the thesis structure as well as research contributions.
1.1 Background and Motivations

AM, commonly known as 3D printing, incorporates a family of technologies that build
three-dimensional objects directly from digital models (Wong and Hernandez, 2012).
Unlike traditional subtractive manufacturing, which removes material from a pre-
formed block to achieve the desired shape, AM introduces material only where it is
needed. This approach allows the production of highly complex geometries, offers
design freedom with minimal material waste (Adam and Zimmer, 2015). As a tool-
less, data-driven production method, AM supports shorter production cycles, lower
tooling costs, and greater environmental sustainability, establishing itself as a core
driver of Industry 4.0 and an attractive solution across diverse industries (Adam and

Javaid, 2019).

AM technologies are compatible with a wide range of materials, including polymers,
metals, ceramics, and composites (Yang et al., 2019), making them applicable across
diverse sectors. The aerospace (Katz-Demyanetz et al., 2019), automotive, and
healthcare industries (Mohanavel et al., 2021) have adopted AM for producing highly
customised, lightweight, or geometrically intricate components, revolutionising both
product development and supply chain strategies. Although oil & gas and maritime
applications initially comprised only a small fraction of the global AM market (Bikas

etal., 2016), the technology’s maturity is now prompting a steady expansion into these
fields.

Within the marine industry, challenges such as lengthy lead times for spare parts,
complex logistics, and high inventory costs have made AM more attractive. Recent
developments have shown an industry shift towards decentralised and on-demand

manufacturing, with 3D-printed spare parts now being produced for ships, and yachts.



For example, pilot projects in the U.S. Navy, the deployment of a metal 3D printer
aboard the USS Essex, have demonstrated the value of producing components directly
onboard, which increases operational efficiency and reduces dependence on external
supply chains (Strieby, 2024). In addition, the creation of the world’s first 3D-printed
propeller demonstrates the transformative potential of AM in marine manufacturing,
showcasing new possibilities in design innovation (Tasdemir and Nohut, 2021).
Nevertheless, the widespread industrial adoption of AM is constrained by technical
challenges. High thermal gradients and repeated heating-cooling cycles, inherent in
metal AM processes, contribute to the development of residual stresses, cracks, and
porosity, defects that can compromise the integrity and reliability of components in

safety-critical applications (Abdulhameed et al., 2019; Brennan et al., 2021).

Alongside the rise of AM, welding continues to play a foundational role in
manufacturing, serving as an essential technology for joining metals and alloys in
industries such as shipbuilding, construction, energy, and automotive engineering.
Welding processes, including arc welding, laser welding, and electron beam welding,
are inherently characterised by localised, intense heating and rapid solidification,
leading to complex thermal cycles and steep temperature gradients (Shravan et al.,
2021). Notably, the distinction between AM and welding is increasingly blurred by the
development of hybrid processes such as Wire Arc Additive Manufacturing and Laser
Metal Deposition, which leverage welding-based energy sources to build components
layer by layer (Paskual et al., 2018; Rumman et al., 2019). In both conventional and
hybrid approaches, the resulting thermal history and the risk of defects such as cracks
or porosity can have a direct impact on the service life and structural integrity of ship

hulls and pressure vessels (Gannon, 2011).

To address these challenges, researchers and engineers have employed a combination
of experimental and numerical methodologies, each offering advantages and
limitations. Experimental methods provide empirical data for understanding defect
formation, validating process parameters (Chen et al., 2019; Sola and Nouri, 2019;
Brennan, 2021) but can be time-consuming. In response, numerical modelling has
become popular, allowing researchers and engineers to virtually investigate thermal
histories, stress evolution, material flow, and defect development under varied

processing conditions. Finite element analysis (FEA) and computational fluid



dynamics (CFD) are the most common simulation tools that allow the systematic
exploration of process-structure-performance relationships without extensive physical
experiments (Vastola et al., 2016; Yang et al., 2016; Schoinochoritis et al., 2017; Luo
and Zhao, 2018; ).

However, traditional numerical approaches like FEA encounter challenges when
simulating cracks. Classical Finite Element Method (FEM) is built upon differential
equations that assume continuity across elements, making it difficult to accurately
capture crack initiation and propagation without extensive remeshing or specialised
enrichment techniques (Anderson, 2016), motivating the research for more robust

computational frameworks.

{'. [ 1‘7 - r
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Fig. 1-1 Schematic drawing of peridynamics and its discretisation.

To overcome these limitations, peridynamics, a nonlocal, integral-based, continuum
theory, has emerged as a promising alternative (Silling, 2000). In peridynamics, the
simulation domain is discretised into a series of material points. As shown in Fig. 1-1,
peridynamics represents the material response, i.e., the interaction between a material
point at x and its surrounding material points at x" within a finite distance named the
horizon §. The “bonds” connecting material points deform as the structure is loaded,
and a bond-breaking criterion (e.g., critical stretch) naturally controls crack initiation
and propagation (Silling and Askari, 2005; Foster et al., 2011). As adjacent bonds fail,
microcracks form and merge into macrocracks, enabling the simulation of complex
crack patterns and failure modes (Silling and Askari, 2005). The meshless nature of
peridynamics is ideally suited for studying complex geometries in AM and welding

processes, making it a promising tool in advanced predictive modelling.



1.2 Research Aims and Objectives

Accordingly, the primary aim of this thesis is to advance and validate peridynamic
modelling tools, which are suitable for numerical investigation of AM and welding
processes. This research specifically focuses on improving simulation tools to handle
deformation, thermal diffusion, phase transformations, and multiphase flow behaviour,
which are areas where traditional modelling methods face limitations. To achieve this

aim, the following objectives have been established:

e To investigate the influence of horizon size in peridynamics and provide optimal
selection guidelines for achieving accurate and efficient numerical simulations.

e To develop and implement a peridynamic formulation with variable horizon sizes
and non-uniform discretisation, thereby reducing numerical simulation time while
maintaining accuracy.

e To extend and validate the dual horizon peridynamic formulation for heat transfer
analysis, addressing the challenges of non-uniform discretisation in thermal
diffusion problems.

e To develop and validate a coupled thermomechanical peridynamic model
incorporating phase change, thereby supporting predictive simulation of
deformation during AM and welding processes.

e To extend the peridynamic modelling framework to simulate multiphase flow
using a non-local differential operator, thereby improving the analysis of complex

interfacial behaviours relevant AM and welding.
1.3 Thesis Structure

This thesis is organised into nine chapters, each addressing a specific aspect of
peridynamic modelling techniques for AM and welding processes. The structure is as

follows.

Chapter 1 introduces the research by outlining the motivation, context, and
significance of the study. It articulates the research aims and objectives and presents

an overview of the thesis structure.

Chapter 2 provides a comprehensive literature review, tracing the evolution of

continuum mechanics approaches from classical to nonlocal methods. It discusses



recent advances in peridynamics for mechanical, thermal, and multiphysics modelling,

and identifies current challenges.

Chapter 3 details the methodology adopted in this work, presenting the theoretical
foundations of peridynamic theory and the mathematical formulations of peridynamic

models.

Chapter 4 investigates the influence of horizon size on the accuracy of peridynamic
models. It provides a theoretical discussion of horizon size selection and presents
numerical studies to illustrate its impact on static and dynamic problems, offering

guidance for effective modelling in various engineering applications.

Chapter 5 introduces the dual-horizon peridynamic formulation, which extends the
peridynamic approach to accommodate non-uniform discretisation. This chapter
presents the mathematical development of the dual-horizon concept and demonstrates

its capability through a series of numerical examples.

Chapter 6 extends the dual horizon peridynamic framework to thermal diffusion
analysis, addressing the need for accurate heat transfer modelling in non-uniform
discretisation domains. The effectiveness of the method is validated through numerical

case studies and benchmark simulations.

Chapter 7 develops a coupled thermomechanical peridynamic framework
incorporating phase change phenomena, capturing the interactions between thermal
and mechanical fields in AM and welding processes. The chapter presents the
theoretical formulation, numerical implementation, and validation through simulation

results.

Chapter 8 expands the peridynamic modelling framework into the fluid domain to
address multiphase flow, wetting, and thermo-capillary (Marangoni) effects in AM and
welding processes. It introduces the peridynamic differential operator for simulating
complex interfacial phenomena and demonstrates the framework’s capability through

numerical examples.

Chapter 9 concludes the thesis by summarising the main findings and contributions. It
discusses the limitations encountered, provides recommendations for future work, and

outlines potential directions for further development of peridynamic modelling in AM.



1.4 Publications Arising from this Thesis

The research presented in this thesis has resulted in the following peer-reviewed

publications

1.

Wang, B., Oterkus, S. and Oterkus, E., 2023. Determination of horizon size in
state-based peridynamics. Continuum Mechanics and Thermodynamics, 35(3),
pp-705-728.

Oterkus, S., Wang, B. and Oterkus, E., 2020. Effect of horizon shape in
peridynamics. Procedia Structural Integrity, 28, pp.418-429.

Wang, B., Oterkus, S. and Oterkus, E., 2020. Closed-form dispersion relationships
in bond-based peridynamics. Procedia Structural Integrity, 28, pp.482-490.
Wang, B., Oterkus, S. and Oterkus, E., 2024. Closed-form wave dispersion
relationships for ordinary state-based peridynamics. Journal of Peridynamics and
Nonlocal Modeling, 6(3), pp.394-407.

Wang, B., Oterkus, S. and Oterkus, E., 2023. Derivation of dual-horizon state-
based peridynamics formulation based on Euler—Lagrange equation. Continuum
Mechanics and Thermodynamics, 35(3), pp.841-861.

Wang, B., Oterkus, S. and Oterkus, E., 2020. Thermal diffusion analysis by using
dual horizon peridynamics. Journal of Thermal Stresses, 44(1), pp.51-74.

Wang, B., Oterkus, S. and Oterkus, E., 2022. Thermomechanical phase change
peridynamic model for welding analysis. Engineering Analysis with Boundary
Elements, 140, pp.371-385.

Wang, B., Oterkus, S. and Oterkus, E., 2024. Non-local modelling of multiphase
flow wetting and thermo-capillary flow using peridynamic differential

operator. Engineering with Computers, 40(3), pp.1967-1997.

Several chapters of this thesis are based on the work presented in the publications listed

above. The relationship between each chapter and the relevant publications is as

follows:

= Chapter 2: Basedon [1, 2, 3,4,5, 6,7, 8].
= Chapter 3: Based on [1, 2, 3, 4].
= Chapter 4: Based on [1]

= Chapter 5: Based on [5]



= Chapter 6: Based on [6].
= Chapter 7: Based on [7].
= Chapter 8: Based on [8].

Where appropriate, material from these publications has been adapted, revised, and
supplemented with additional context and discussion to ensure coherence and

completeness within the thesis.



Chapter 2 Literature Review
2.1 Introduction

The continued advancement of AM and welding processes has highlighted the need
for predictive modelling frameworks to accurately capture thermomechanical
behaviour, phase changes, and multiphase flow phenomena. This chapter provides a
review of the evolution of continuum mechanics approaches, from classical
formulations to peridynamic nonlocal integral-based methods. The literature review
addresses the foundations of peridynamic theory, advances in mechanical and thermal
analysis, multiphysics modelling, and recent progress in applying nonlocal methods to
complex interfacial phenomena. The chapter concludes by identifying key gaps in the

literature, thus motivating the research directions pursued in this thesis.

2.2 Overview of Continuum Mechanics

Solid mechanics is a fundamental discipline in engineering that focuses on
understanding the deformation and failure of materials and structures when subjected
to external loads. Over the past two centuries, Classic Continuum Mechanics (CCM)
has provided the principal theoretical framework for describing such behaviour, with
various formulations developed to address different classes of problems. The most
common continuum mechanics formulation was developed by Cauchy (Reddy, 2013),
where the equations of motion for the objects of continuum mechanics, "material

points," are expressed in the form of partial differential equations.

Owing to the complexity of most engineering problems, analytical solutions are
generally restricted to idealised cases involving simple geometries, boundary
conditions, and material properties. To address more engineering scenarios, numerical
methods such as the FEM have been widely adopted. However, the reliance of classical
formulations on spatial derivatives poses a challenge: when discontinuities exist in the
domain (such as cracks or material separation), standard numerical methods become
inapplicable because spatial derivatives become singularities in the presence of these
discontinuities (Anderson, 2016). Consequently, traditional FEM requires
supplementary techniques such as enrichment functions, adaptive mesh refinement, or
remeshing to model crack propagation and material failure (Anderson, 2016). These
approaches, however, can increase computational complexity and may compromise

the accuracy of the simulation because the crack pattern is not naturally defined.



2.3 Peridynamics: Theory and Recent Developments

As an alternative to CCM, Silling (2020) introduced the concept of peridynamics.
Unlike Cauchy’s continuum mechanics, where the equations of motion are formulated
using spatial derivatives, peridynamics expresses these equations in an integral form
that is inherently nonlocal and free from spatial derivatives (Silling and Askari, 2005).
As a result, peridynamics is not subject to the limitations associated with

discontinuities such as cracks.

A key difference between peridynamics and CCM is the nature of material point
interactions. In CCM, a material point interacts only with its immediate neighbours;
by contrast, peridynamics allows each material point to interact with all other points
within a finite distance (Silling, 2000; Silling et al., 2007; Silling, 2017; Gu et al.,
2018). The distance of interactions between material points is denoted as “horizon”,
which is a length scale parameter in peridynamics. Such a parameter does not exist in
Cauchy’s formulation. CCM does not have a length scale parameter. Hence, it cannot
represent non-classical material behaviour which usually appears at micro-scale.
“Horizon” is a fundamental concept in peridynamics, and the term “peri” in the name

corresponds to “horizon” in the Greek language (Madenci and Oterkus, 2013).

Since its introduction, there has been rapid progress in peridynamics research. As a
generalised continuum theory, it can be applied to a wide range of materials, including
metals (Madenci and Oterkus, 2013), composites (Oterkus and Madenci, 2012),
polycrystalline materials (De et al., 2016), concrete (Oterkus et al., 2012), ceramics
(Guski et al., 2020), ice (Vazic et al., 2020), and graphene (Liu et al., 2018). The
versatility of peridynamics extends to the simulation of complex phenomena such as
fatigue (Oterkus et al., 2010), plasticity (Madenci and Oterkus, 2016), and
viscoelasticity (Madenci and Oterkus, 2017). Furthermore, peridynamics has been
successfully extended to address multiphysics problems, with formulations available
for thermal (Oterkus et al., 2014 Gao and Oterkus, 2019), electrical (Oterkus et al.,
2013), and porous flow fields (Oterkus et al., 2017).

Among the various areas where peridynamics has expanded, thermal process
modelling has become an active area. There are various studies in the literature focused

on peridynamic analysis of thermal diffusion. Gerstle et al. (2008) developed a 1-



dimensional multiphysics model coupling thermal diffusion, electrical, mechanical
and vacancy diffusion fields to investigate the electromigration phenomenon. Bobaru
and Duangpanya (2012) introduced a multidimensional bond-based peridynamic
formulation for transient heat transfer analysis. Oterkus et al. (2014) developed an
ordinary state-based peridynamic heat conduction equation based on Lagrangian
formalism. To analyse failure prediction in electronic packages, Oterkus et al. (2014)
proposed a coupled hygro-thermo-mechanical model. Xue et al. (2018) developed a
state-based peridynamic formulation for heat transfer analysis by utilising the domain
decomposition method. Wang et al. (2016) utilised the Green’s function method to
develop a peridynamic diffusion model. Liao et al. (2017) performed peridynamic
simulations for heat conduction analysis of functionally gradient materials by

considering cracks.

Despite these wide range of applications for peridynamics developed over the past
twenty-five years, research on the fundamental length parameter, the horizon size,
remains relatively limited. The current size selection in numerical simulation mainly
depends on suggestions made in the influential paper written by Silling and Askari
(Silling and Askari, 2005). They suggested using a horizon size equivalent to three
times the grid spacing between material points based on the experiences of these
researchers for their simulations. However, their conclusion was obtained based on the
original peridynamic formulation, named bond-based Peridynamics (Silling, 2000).
Although bond-based peridynamics is an effective approach, it has certain limitations
in material properties (Madenci and Oterkus, 2017), as Poisson's ratio is not a free
parameter. To overcome these limitations, advanced peridynamic formulations, such
as ordinary state-based peridynamics (Silling et al., 2007) and non-ordinary state-

based Peridynamics (Warren et al., 2009; Silling, 2017), were developed.

In addition to the gaps associated with horizon size selection, the implementation of
peridynamic models presents further computational considerations. Closed-form
solutions to peridynamic equations are generally not available; therefore, numerical
methods are typically employed to obtain solutions (Madenci and Oterkus, 2013). For
spatial discretization, uniform discretization scheme is widely used. However, for
some problems, using uniform discretization can unnecessarily increase the

computational time since only some part of the solution domain can be solved by using
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fine discretization whereas other parts can be modelled by using coarse discretization.
Moreover, variable horizon size can also be required to reduce the computational time
or due to the nature of the problem. To overcome these concerns, Dual-horizon
Peridynamics was developed by Ren et al. (2016a; 2016b) which allows both non-

uniform discretization and variable horizon for mechanical analysis.

In summary, the horizon size influences the computational time significantly; it is
important to determine optimum horizon sizes for ordinary state-based and non-
ordinary state-based peridynamics formulations to provide a decent level of accuracy
within a reasonable computational time. In addition, a Dual-horizon Peridynamics
formulation specifically addressing thermal diffusion has not been available in the

literature.

2.4 Heat Source Modelling and Thermomechanical Analysis in Welding and AM
Welding remains a widely utilised fabrication process in the manufacturing industry,
relying on high temperatures to melt and join metallic components. The resulting
thermal field not only governs the development of residual stresses but is also closely
linked to the metallurgical, crystallisation, and phase transformation phenomena that
occur during solidification. Building upon similar principles of localised melting and
solidification, AM has emerged as a transformative production technology that enables
layer-by-layer fabrication of complex components. Its unique advantages, including
design freedom, customisation, and material efficiency, have led to increasing
adoption across sectors such as aerospace, healthcare, and automotive. However, the
widespread industrial application of AM is still limited by the lack of understanding
of the underlying processes required for accurate process modelling (Tofail et al.,

2018).

One of the challenges in both welding and AM is the development of reliable
mathematical models, which are necessary to minimise dependence on costly and
time-consuming trial-and-error procedures during process optimisation. An important
aspect of these modelling approaches is the representation of the heat source, which
provides a mathematical description of the fraction of input energy absorbed by the
material and its spatial distribution within the heat-affected zone. In AM modelling,

heat source models are employed to assess the impact of powder deposition on thermal
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transport and to inform the optimisation of powder nozzle designs (Arrizubieta et al.,
2014), as well as to characterise the complex interaction between the melt pool and the

energy input (e.g., laser or electron beam) (Hamahmy and Deiab, 2020).

Heat source models for AM are, in most cases, adapted from approaches in the welding
literature (Thompson et al., 2015). Various heat source models have been proposed in
the past decades to investigate heat transfer mechanisms for welding and AM
processes. The welding heat source model can be classified as a concentrated heat
source, a planar distribution heat source, or a volumetric distributed heat source, which
depends on different welding methods in the manufacturing process (Hamahmy and
Deiab, 2020). While the part of the workpiece concerned is far away from the weld's
centreline, the welding heat source can be treated as a centralised heat source model.
Rosenthal (1941) stated an analytical solution of the temperature field for a semi-
infinite body subjected to a constant heat source. For general arc welding, the welding
arc's heat flow is distributed in a particular area on the weldment. Hence, a plane
distribution of the heat source can be considered in the numerical model. Eagar and
Tsai (1983) applied Rosenthal's theory to a two-dimensional heat source model and
found the analytical solution of the temperature field. However, for high-energy beam
welding, due to the large depth-to-width ratio of the weld, it shows that the heat flow
of the welding heat source has a great influence along the thickness direction of the
workpiece, and it must be treated according to a certain volumetric distributed heat
source model. Goldak (1985) proposed a three-dimensional double ellipsoidal model
to overcome the penetration effect due to the surface heat model, and Nguyen et al.
(1999) provided the analytical solutions for the transient temperature of the three-

dimensional heat source.

Moreover, due to the complexity of the heat transfer in welding and AM processes,
rapid temperature change can induce residual stresses and macro-thermal deformations
(Bian et al., 2019). Therefore, in the investigation of the welding manufacturing
process, the thermomechanical coupling effects needs to be considered in thermal and
structural fields. Goldak et al. (1984) proposed a finite element model (FEM) for
welding heat sources to investigate the temperature distribution. Van Elsen et al. (2007)
used a finite difference model (FDM) for moving heat sources in a semi-infinite

medium. Ning et al. (2019) utilised an analytical model with a moving point heat
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source in metal AM to predict the temperature field and thermal gradient. Sepe et al.
(2021) developed an FEM butt welding and performed a sensitivity analysis on
temperature-dependent material properties such as thermal conductivity, specific heat,
Young’s modulus, and thermal expansion coefficient. The results showed that
temperature-dependent  thermal  expansion has little effect, whereas

temperature-dependent Young’s modulus strongly influences the displacement field.

In addition, heat transfer during welding is often accompanied by phase change. It is
considered a moving boundary problem due to the undetermined moving boundary
between the liquid phase and the solid phase (Jiji, 2009). Due to its non-linear
characteristic, only a small number of exact solutions exist (Jiji, 2009). When a
substance undergoes a phase change such as solidification, modelling of the latent heat
at the solid-liquid interface is crucial in heat transfer analysis. The latent heat can be

mainly handled by front-tracking methods and fixed grid methods.

Jiji Latif (2009) applied the front tracking method to explicitly track the moving phase
boundary during melting or solidification, which sets an additional node at the solid-
liquid interface that splits a single element that contain both solid and liquid regions.
This can accurately predict the location of the moving interface and precisely handle
the latent heat. However, it merely can be used for simple geometries, which restricts

its application in modelling the solidification process (Hu and Argyropoulos, 1996).

The fixed-grid method treats the entire computational domain as a continuous region
(Voller et al., 1990), where the Stefan condition is implicitly incorporated into the heat
conduction equation. The Stefan condition represents the energy balance at the moving
phase interface, so that the heat conducted to the interface is exactly equal to the energy

required to melt or solidify the material at that interface (Jiji, 2009).

In fixed-grid method, the phase boundary is represented indirectly through variables
such as effective heat capacity, or heat generation, thus latent heat in phase change can
be applied using standard heat transfer solvers without complex interface tracking.
However, when applying the effective heat capacity method to account for latent heat
during phase transitions, the time step needs to be relatively small due to the effective
heat capacity in the phase-change interval calculated by integrating over the

temperature range. If the temperature in a control volume jumps from below the
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solidus to above the liquidus in a single time step, the model will fail to capture the

latent heat release during the phase change (Hu and Argyropoulos, 1996).

In summary, the accurate representation of heat source models and the incorporation
of thermomechanical coupling effects are fundamental for advancing the predictive
capability of welding and AM simulations. While the development of analytical and
numerical approaches, such as finite element and finite difference methods, has
improved our understanding of thermal fields, residual stress, and phase change
phenomena, many existing models remain limited by their reliance on classical
continuum mechanics and the challenges of handling complex geometries and
discontinuities. This has led to growing interest in alternative modelling approaches,
such as peridynamics, which offer a promising framework for addressing these
limitations and capturing the complex, multiphysics behaviour intrinsic to advanced

manufacturing processes.

2.5 Multiphase Flow and Surface Tension Modelling

AM and welding processes involve not only heat transfer and mechanical deformation
but also complex fluid flow and interfacial phenomena within the melt pool. During
laser or electron beam AM, a molten pool forms where liquid metal interacts with
surrounding solid and gaseous phases, creating a multiphase system. In such systems,
surface tension, where the force acting along the interface between two phases, plays
an important role in stabilising the melt pool and controlling its shape. Furthermore,
when the characteristic length scale of the system is sufficiently small in AM, the effect

of surface tension on the flow field is more prominent than the inertial effect.

When temperature gradients form across the melt pool surface, the molten metal is
subjected to thermo-capillary effects. Since surface tension generally decreases with
increasing temperature, a non-uniform temperature distribution along the liquid—gas
interface produces a surface tension gradient (Wozniak et al., 2001). This gradient
induces Marangoni forces, which act tangentially along the interface and drive fluid
motion from hotter regions with lower surface tension toward cooler regions with
higher surface tension (Ma and Bothe, 2011). The thermo-capillary effects strongly
influence melt pool dynamics in AM and welding, affecting pool shape, microstructure

evolution, and eventually the mechanical integrity of manufactured components.
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Accurate simulation of these multiphase flows and interfacial phenomena is therefore

important for predictive modelling in AM.

Over the past few decades, extensive research has been conducted on modelling
multiphase fluid flows. Based on the Navier—Stokes equations, there are two common
computational fluid dynamics methods for modelling the multiphase fluid flow motion
from the nanoscale to the macroscale. The first category is Euler methods based on
grids, such as the volume of fluid (VOF) method (Hirt and Nichols, 1981). Cano-
Lozano et al. (2015) performed a numerical study on rising bubbles in still liquids
using the VOF method to track the interface between two fluids. Hoang et al. (2013)
performed numerical simulations of the contact angle and wetted surface properties
using the fluid volume interface tracking method and the continuum surface force
method. Ma et al. (2011) developed a numerical method for directly simulating the
thermal Marangoni effect at the interface in two-phase incompressible fluids and
quantitatively comparing the numerical results of liquid droplet thermal capillary
migration with experimental and theoretical results. Another class of numerical
methods that can be used for multiphase simulations are meshless methods
(Belytschko et al., 1996). The meshless method is a particle method, such as the
smoothed particle hydrodynamics method (Morris, 2000) and peridynamics method
(Gao and Oterkus, 2020). Morris (2020) purposed a technique based on smooth
particle hydrodynamics for simulating two-phase flow with surface tension. This
method addresses problems involving fluids of similar density and viscosity. Adami et
al. (2010) extended the method to higher density and viscosity ratios, using a density-
weighted colour gradient formulation to reflect the asymmetric distribution of surface
tension. Describing wetting phenomena, in addition to including surface tension
effects at the interfaces between fluids, the interaction of fluids with solid substrates
also requires the implementation of appropriate boundary conditions at the solid
interface. Breinlinger et al. (2013) extended the surface tension model using additional
boundary conditions to explicitly include interactions with solid walls. Moreover, if
the temperature or concentration gradient vector is tangent to the interface between the
two fluids, an additional force known as the Marangoni force develops. Hopp-

Hirschler et al. (2018) proposed a smoothed particle hydrodynamics model of surface
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tension gradient-driven thermo-capillary flow based on a continuum of surface force

methods, including Marangoni forces.

As a promising meshless method, peridynamics is a new formulation of non-local
continuum mechanics (Silling, 2000; Silling et al., 2017; Madenci and Oterkus, 2013).
Inspired by peridynamic formulations, Peridynamic Differential Operator (PDDO)
(Madenci et al., 2016) is developed to transfer the differential equations to their
integral forms. Various applications of PDDO can be found in the literature (Madenci
etal., 2017; Madenci et al., 2019; Dorduncu et al., 2023). Gao et al. (2019) developed
a non-local Lagrangian model for Newtonian fluids with low Reynolds number
laminar flow and subsequently extended the model for multiphase fluid flow (Gao and
Oterkus, 2020). Using PDDOs, Nguyen et al. (2021) modelled a truly incompressible
fluid based on Euler’s method, in which the pressure field is no longer calculated by a

weakly compressible fluid model.

Despite progress in both grid-based and meshless approaches for modelling
multiphase flows, accurately capturing the interface interaction remains challenging.
The PDDO has shown promise in extending peridynamic theory to fluid dynamics;
however, existing studies reveal a gap in the development of peridynamic models
capable of addressing multiphase flow problems that involve interfacial wetting and

coupled thermo-fluid behaviour.

2.6 Knowledge Gaps and Thesis Contributions

While peridynamic modelling has seen significant advances in recent years for
mechanical, thermal, and multiphase fluid systems, several challenges remain only
partially resolved. For example, approximate guidelines for horizon size selection have
been suggested, but mainly for bond-based formulations and without systematic
validation across different peridynamic formulations. Variable discretisation methods
have been proposed, but their stability and efficiency are still not fully established.
Similarly, surface-tension-driven multiphase flows, such as those involving
Marangoni effects, are only beginning to be addressed and require further development.
This thesis aims to address these gaps through developing, implementing, and
validating advanced peridynamic models suited for the multiscale, multiphysics

demands of AM and welding applications.
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Chapter 3 Methodology

3.1 Introduction

The accurate modelling of material deformation is a key challenge in computational
mechanics, specifically when dealing with complex phenomena such as crack
initiation, propagation, and coalescence. As previously discussed, traditional
approaches based on Classical Continuum Mechanics (CCM) are limited by their
reliance on local partial differential equations, which become invalid at discontinuities

and require additional treatments to model fractures.

To address these challenges, the peridynamic theory was introduced as a
fundamentally nonlocal reformulation of continuum mechanics, replacing classical
spatial derivatives with integral equations that remain well-defined in the presence of
discontinuities. This chapter presents the theoretical framework and mathematical
formulation of peridynamic methods, laying the foundation for the subsequent

numerical investigations.

3.2 Peridynamic Theory
In CCM, the motion of a material body is described by partial differential equations
based on the local balance of linear momentum. For a body occupying region, the

equation of motion at position x is given as (Reddy, 2013)
p(X)i(x,t) =V -a(x,t)+ b(x,t) (3.1)

in which p is the mass density, u is the displacement, ¢ is the time, V is the nabla
operator, o is the Cauchy stress tensor, and b is the body force per unit volume.
Eq.( 3.1) presents that internal forces at a point are governed by the spatial gradients

of stress in its immediate neighbourhood.

However, this reliance on spatial derivatives introduces inherent limitations when
modelling problems with discontinuities such as cracks, since derivatives become
undefined at those locations. This necessitates supplementary mathematical techniques,
such as remeshing, enrichment to represent fracture processes, thereby complicating

the simulation framework.

To overcome the limitations of CCM, Silling (2020) proposed the peridynamic theory,

which removes the requirement for spatial derivatives by reformulating the equations
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of motion as nonlocal integral equations. In peridynamics, each material point interacts
with surrounding material points within a finite spatial domain known as the horizon

H,, as shown in Fig. 3-1.
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Fig. 3-1 Peridynamic horizon and force states.

Within the horizon, a force density vector acts on the material point x because of its
interaction with neighbouring material points x'. The collection of all such force

density vectors at material point x constitutes the force state T (x, t).

The concept of state in peridynamics is a mathematical object that generalises the
concept of a vector or tensor field, and represented by (-), allowing the description of
interactions between a reference material point and all its neighbours within the
horizon (Silling et al., 2007). For instance, the force density vectors on material points

x from x’ can be denoted in state notation as T(x, t){x’ — x).
With these definitions, the general peridynamic equation of motion can be expressed

as (Madenci and Oterkus, 2013)

p(X)ik(x, ) = j [T(x, O(x' — x) — T, Dx — XN dV' + b(x,t)  (>2)

Hy

where V' represents the volume associated with each neighbouring material point x’

within the horizon.
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Generally, peridynamics can be classified into three main categories: bond-based
(Silling, 2000), ordinary state-based (Silling, 2007), and non-ordinary state-based
(Madenci and Oterkus, 2013) formulations, which are distinguished according to the
direction and magnitude of the force density vector between a pair of material points

(Fig. 3-2).

°
Y e ®ee
y ' '
T(x', t)(x —
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Bond-based Ordinary State-based Non-ordinary State-based
Peridynamics Peridynamics Peridynamics

Fig. 3-2 Force states in the peridynamic framework.

3.2.1 Bond-Based Peridynamics

Bond-based peridynamics is the original formulation (Silling, 2000), in which the
force density vectors acting on a pair of material points are determined only by the
stretch of the bond connecting them. These forces are assumed to be equal in

magnitude and opposite in direction.

The force density vector T(x, t){(x" — x) in linear elastic isotropic materials at material

points x in Eq.( 3.2 ) can be expressed in the form as (Madenci and Oterkus, 2013)

y -y (3.3)
ly' -yl

T(x, t)(x' —x) = Ecs(u’ —u,x —x)

and at material point x" as

y -y (34)
ly' — yl

1
T(x', t){(x—x')=— Ecs(u’ —u,x' —x)

where u and u’ represent the displacement of material points x and its neighbouring
points x', the term y represent the position of material points in the deformed
configuration, thus y = x + u, and similarly, for its family material point x" within

the horizon, it can be represented as y' = x' + u'.
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The term s denotes the stretch of the bond between a pair of material points x and x’

after deformation, this can be defined as

=Iy’—yI—IX’—XI (3.5)
|x" — x|

s(u' —u,x' —x)

The bond constant, denoted as ¢, in Eq.( 3.3 ) and Eq.( 3.4 ) is related to the elastic
modulus and geometry, derived by equating strain energy densities from peridynamics

and CCM (Madenci and Oterkus, 2013).

To establish this relationship, the strain energy density at a material point is calculated
for a given loading condition using both the peridynamic formulation and CCM. By
equating these results, a direct correspondence between the peridynamic and classical

material parameters can be established.
For a linear elastic isotropic material, the bond constant in the two-dimensional case

is given by (Madenci and Oterkus, 2013)

_9E (3.6)
"~ hé3

c

and for a three-dimensional structure is given by (Madenci and Oterkus, 2013)

_12E (3.7)

c =
o+
in which E is the elastic modulus, h is the thickness, and § is the horizon size.

As can be observed from the expression for the bond constant, bond-based
formulations incorporate only the elastic modulus, E, from CCM, while disregarding
the Poisson’s ratio, V. This simplification implies that Poisson’s ratio is not a free
parameter in bond-based peridynamics; instead, the formulation inherently imposes a
fixed value of ¥ = 1/3 for two-dimensional geometries and ¥V = 1/4 for three-

dimensional problems (Silling, 2000).

For materials with Poisson’s ratios different from these fixed values, more general
peridynamic models, such as the ordinary state-based or non-ordinary state-based

formulations, are required.
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3.2.2 Ordinary State-based Peridynamics

The ordinary state-based formulation generalises the bond-based approach by relaxing
the requirement that the forces between two material points must be equal in
magnitude and opposite in direction (Silling, 2000). While the direction of the force
density vectors remains opposed, their magnitudes are no longer required to be equal
(Fig. 3-2). Furthermore, the force acting on a material point depends not only on its
own motion and that of its immediate neighbour, but also on the collective motion of

all family members within their horizons.

The pairwise force density vector at material point x for ordinary state-based

formulation is given by (Madenci and Oterkus, 2013)

y -y (3.8)

1
T(x, t)(x’ - x) = EAW

and at material point x" as (Madenci and Oterkus, 2013)

1 ' — 3.9
Tx' t)(x—x') = ——By,—y (39)

2 1y =yl

where A and B are auxiliary parameters dependent on the material constants, the

deformation field, and the horizon.

For a linear elastic isotropic material, the auxiliary parameter A can be written as
(Madenci and Oterkus, 2013)
4add (3.10)

A= 4 r_ r_
Ix’—xle(x’t)-l_ dbs(u' —u,x' — x)

while B for the paired material point is (Madenci and Oterkus, 2013)

4add 11
=m9(x’,t) + 48bs(u' —u, x’' — x) (3.11)

The term O(x,t) in the above expressions represents the dilatation, or volumetric

strain, and is given by (Madenci and Oterkus, 2013)
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0(x,t) = f(aws) av’ (3.12)

Hy

where a, b and d are the peridynamic parameters.

As discussed previously, these peridynamic parameters can be derived by considering
a common parameter in both peridynamics and CCM. For instance, the relationships
between these parameters can be established by comparing dilatation and strain energy
density under isotropic expansion and simple shear conditions in peridynamics and
CCM. The detailed list of peridynamic parameters in different dimensions is provided

in Table 3-1 (Madenci and Oterkus, 2013).

Table 3-1 Peridynamic parameters in different dimensions

1 611 2
2D ==—(k—-2 b = d=
a=30c=21 Tho* Th&3
1 Su 15u 9
3D == - -~
a 2 (K 3 ) b 218> d 454

in which x is the bulk modulus and u is shear modulus. Table 3-2 provides the

calculation of the bulk modulus x and shear modulus x in different dimensions.

Table 3-2 Bulk modulus and shear modulus in different dimensions

. I _E
“T20- v =20+
. _E _E
“T301- 2 =20+

It is noteworthy that, for two-dimensional calculations when the Poisson’s ratio V =

1/3, there has k = 2u; and for three-dimensional calculations when ¥ = 1/4, there

5 . . . .

has k = ?ﬂ Under these specific conditions, the peridynamic parameter, a, becomes
. 8 8 .

zero, causing the first terms (—li:dMH(x, t) and 2add 0(x',t)) in Eq.( 3.10 ) and

- |xr—x|

Eq.(3.11) to vanish.

Furthermore, substituting these values of u into the peridynamic parameter, b, from

Table 3-1, the factor ‘46b’ in the second term of Eq.( 3.10 ) and Eq.( 3.11 ) becomes
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equivalent to the factor ¢ given in Eq.( 3.3 ) and Eq.( 3.4 ). As a result, the ordinary
state-based formulation reduces to the bond-based formulation for these special values

of Poisson’s ratio (Poisson’s ratio ¥V = 1/3 at 2D, and ¥ = 1/4 for 3D).

3.2.3 Non-ordinary State-based Peridynamics

The force density vector restriction is further relaxed in the non-ordinary state-based
formulation, wherein the directions of the forces are permitted to be arbitrary. However,
once the force direction is no longer constrained to the bond direction, it becomes
necessary to explicitly ensure conservation of angular momentum, a condition that is
automatically satisfied in both bond-based and ordinary state-based peridynamics.

Therefore, the following condition must be met (Madenci and Oterkus, 2013)

j{(y’—y)xT(x,t)<x'_x)}dVr=0 (3.13)

Hy

Within the non-ordinary state-based formulation, the force vector T(x,t)(x" — x)
acting on material point x may be directly expressed using stress definitions from
CCM. This approach allows the integration of established material models from CCM
into the peridynamic framework (Madenci and Oterkus, 2013).

For example, the force state in non-ordinary state-based peridynamics may be related

to the first Piola-Kirchhoff stress tensor, P, as (Madenci and Oterkus, 2013)
T(x,t){x' —x) = w(x' — x)PK 1(x' — x) (3.14)
where K is the shape tensor, defined as

K= jW(x'—x)(X(x'—x)(X)X(x’—x)) av’ (3.15)
Hy

Here, w(x' — x) is the influence state, characterising the strength of the interaction
between material points, @ denotes the dyadic product of two vectors, and X(x' — x)
is the position state, describing the relative position of material points associated with

a particular bond.
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The first Piola-Kirchhoff stress tensor P in Eq.( 3.14 ) can be determined using the
deformation gradient tensor F and the second Piola-Kirchhoff stress tensor S as

follows
P=FS (3.16)

The second Piola—Kirchhoff stress tensor §, can be calculated from the Green—

Lagrange strain tensor E by (Madenci and Oterkus, 2013)
S =Atr(E)I + 2uE (3.17)

where A and p are Lamé constants, related to Young’s modulus and Poisson’s ratio, tr
is trace operation, I is identity matrix, and the Green—Lagrange strain tensor E is

computed as (Madenci and Oterkus, 2013)

E=%(F‘1F—I) (3.18)

To incorporate CCM-based material models into peridynamics, it is necessary to relate
the stress and strain components. In peridynamics, the deformation gradient F can be

defined as (Madenci and Oterkus, 2013)

Sy, wix' = )X (x' — x) @ X(x' — x)) AV’ (3.19)

Sy, wix' = X)X (x' — x) ® X{x' — x)) V"’

where the term Y(x' — x) denotes the position state in the deformed configuration.

Although non-ordinary state-based peridynamics allows the direct utilisation of CCM
material models, typical particle discretisations are prone to zero-energy mode
instabilities (Gu et al., 2018). To overcome this, the stabilisation method proposed by
Silling (2017) 1s employed, whereby a stabilisation term is introduced into the force

formulation (Madenci and Oterkus, 2013)

(3.20)

T(x, t){(x' —x) = w(x' —x) (PK‘l(x’ —-x) + z(x' — x))

Wnopp0
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where G is a positive constant, and c is the bond constant as given in Eq.( 3.6 ) and
Eq.( 3.7 ) for two-dimensional and three-dimensional structures, respectively, and
Wyopp 18 given by

Wnopp = fW(x’ - x) dV, (321 )

Hy

The deformation state z(x' — x) in Eq.( 3.20 ) is defined as (Madenci and Oterkus,
2013)

z(x' —x)=Y(x' —x)—F(x' — x) (3.22)

3.3 Peridynamic Differential Operator

While the peridynamic theory introduced in Section 3.2 reformulates continuum
mechanics using integral equations to overcome the limitations of classical partial
differential equations. Building on this non-local concept, the Peridynamic Differential
Operator (PDDO) has been recently proposed by Madenci et al. (2016), enabling the
representation of any order of partial differentials within an integral form. The first and
second order partial differentials of a function f(x) in two-dimensional domain can

be calculated using PDDO as

(Of (x) (3.23)
dx,
d
gix) 91° ()
22f( 9@
VLD = [ v o - ron{gi@ v
1 Hy 02
it
axzz gZ
9°f (x)
\dx,0x,/

where V' represents the volume associated with each neighbouring material point x’

within the horizon. The parameters gi°(§), g¥1(§), gil(&), g¥2(&) g3°(%) are

peridynamic functions.
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Here, & = x' — x = &, e4 + &, e, is the relative position vector between material point

x and its family material points x" within its horizon H, with

G=x1—x (3.24)

where &;and &, represent the projections of the vector § with respect to x; and x, axes,

and eq, e; are the unit vectors in the coordinate directions.

Peridynamic functions, g1°(§), g7 (§), 92" (§), 92°(§) and g3°(§) in Eq.(3.23), are
constructed to satisfy orthogonality properties (Madenci et al., 2016) that ensure the

peridynamic integral operator correctly recovers the desired derivatives. The
orthogonality properties for peridynamic functions can be given in the compact form
as (Madenci et al., 2016)

1 3.25
[ g ) dsids, = Suyp,n, (325)
m!n,! )

where gf,lpz (&) is the peridynamic function up to second order, n; = 1,2, P, = 1,2 is
the order of differentiation with respect to x;, and &,,.p. is the Kronecker delta (5,,.p. =
i i

1ifn; = Py, otherwise &,,p, = 0).

Eq. (3.25) can also be written in an explicit form as (Madenci et al., 2016)

) (3.26)
§8 08 H8 8 8892°® 0
[lae ag g ae gg|g@|av=|o
i (818 4 48 4 4a||e2'@ 0
g8 a8 a8 g8 a8 0

oo oNOoO
SO =R OO
OR OO O
NO O OO

08§ 804 §a f{’f%“gfl(s‘)

93°(®)

in which the superscript on relative position vector components represents the power

Offl and Ez.

Each peridynamic function g,f,lpz (&) in Eq. ( 3.26 ) at a given material point can be

constructed as (Madenci et al., 2016)
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2 20 (3.27)
IRR@ = ) et w(ENEl e

q1=0q2=0

. . P,P.
in which a! 2

q.q, are the coefficients to be determined, and w(|§]) is a weight function

that describes the level of nonlocal interaction between material points in PDDO.

The weight function typically decays with increasing distance; for example, in this

study, the weight function is chosen as (Madenci et al., 2016)

_(u)z (3.28)
w(§)) =exp \°
. PP, . . .
The unknown coefficients a2 in Eq.( 3.27 ) can be arranged in matrix form as
01 01 ,01 01 01
(@i Aoz A0 11 Ay (3.29)
02 02 02 02 02
Qo1 Qo2 Q10 A1 Q2o
PPy _ 10 10 10 10 10
Ag.q, = Y%1 Qoz Q10 A11 Q20

11 11 11 11 11
apy Qo2 Qip 4Ai; Ayg

20 20 20 20 20
Qo1 doz 419 A11 Ay

By substituting these coefficients into the definition of the peridynamic functions

gf,lpz in Eq.( 3.27 ) the explicit forms up to second order can be represented as

274 3.30
01 — N 01 q1 42 ( )
GO =Y ) all, 0D e

q1=0g2=0
= ag1w([EDEPE; + ag;w(1EDEYE5 + adsw(1EDELED
+afiw(§DEE + aow(1§DEFES

2 2-q1

GE@ =D Y a, 0(EDE e

q1=0q2=0
= adiw(|ENEPE] + adsw(IEDELES + affw(|ENELED
+afw(1§DE1E; + agsw(§DEFET
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2 2-q

g =) ) all, w(lEDE e

q1=0q2=0
= apiw(1§D§rE; + apdw(1§DEPES + ajgw(1§E1ED
+atw(§)§1; + azow(§DEEE?

2 2-q

B © =) > ally, 0(EDE e

q1=0q2=0
= ap1w(1§DE7E37 + apzw(1§DE7¢3 + atow(1§DE142
+ajiw(1§Déié: + a0 (1§DEFE?

2 2-q1

GO =D > aly, w(EDE e

q1=0q2=0
= agiw(1§)E06; + agaw(1§NE0EF + afow(1§1)E1E7
+aRw(§)§18; + afow(§DEEE7

Alternatively, these can be concisely written in matrix form as

921 () (a1 axz aip aii az) (@(§DEE: (331)
92°@| a0t ag; als aii ay | |@(§DEEE
92°(@) =qa0l a2 an @i azelEDiE
92" (§) agr ap; aip ain az| |@(§D§é
9:°@)  \a@ afy afy ot afy) \w(EDETE

PP,

To determine the unknown coefficients Ag.qy>

substituting Eq.( 3.31 ) into orthogonal

condition in Eq.( 3.26 ) resulting in a linear system
Aa=b (3.32)
Here, A is the shape matrix with
165 §08 &6 §& &8 (3.33)
88 &8 S8 8 §i8d
a= [ wten|ag dg ao g g
H

- H& 44 o 88 8%
518 {8 HE §E HE

a is the unknown coefficients matrix with
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a1
ag;
alo
alt
[add

S|
Il

and matrix b is presented as

o
Il

ScCoococomR

aoi
ao3
ais
aii
azg

SO OO Rr O

Aoy
a3
aig
a1l

10
azo

S OO NO O
SO Rr O OO

aoi
ag;
aio
aii

11
azo

SR OO OO

ag1]
asy
aio
aiy

20
asg

NOo oo oo

As aresult, in unknown coefficients matrix, a, can be obtained by

a=

A\b

(3.34)

(3.35)

(3.36)

Therefore, peridynamic functions gf,lpz can then be constructed using Eq.( 3.31 ).

Consequently, the derivative of f(x) can be obtained through Eq.( 3.23).

The linear system from Eq.( 3.32 ) can be solved either analytically or numerically.

When the neighbouring material points x' of material point x are distributed

symmetrically within the horizon, and the weight function from Eq.( 3.28 ) is used,

analytical integration of Eq.( 3.33 ) leads to a closed-form expression for the shape

matrix
[64(—5+ eH)m
32e*
0
A= 0

0

0

0

36°(—13 +eH)m

256e*
0

0
§°(—13+eMm
256e*

§*(=5+eYm

0

0

32e*

0

0

§6(—13 + eY)m

0

0

0

256e*
0

0
§°(—13+eHm
256e*

0

0

36°(—13 + eY)m

256e*

(3.37)

Accordingly, the unknown coefficients a is obtained by analytical solving Eq.( 3.32)

as
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32e* 1 338
192e* 64e*
0 —_——a— 0 0 _—
6°(—=13+eY)m 6°(—=13+eY)m
0 0 32¢% 0 0
a= =
§*(=5+eY)m
0 0 0 256e* 0
6°(—=13+eY)m
64e* 192e*
0 —_——— 0 0 _
6¢(—=13+eY)m 6¢(—13+et)m |

Substituting these coefficients, the analytical forms of the peridynamic functions is

presented as

32t ()’ (3.39)
01(F) — 5 ) ozl .
g1 (®) 84(—5+e4)1'[e §152
192¢* (288’ 64e* 2g)*
02(F) — 5 ) zog2 _ -{757) z2x0
g2°(®) 66(—13+e4)1'[e 818 86(—13+e4)ne §1%2
32¢e* 208)*
10(F) — -(757) z1z0
g1’ (® 64(—5+e4)ne 8152
11(g) = 256e* —%211
g2'(® = 55(—13 +e4)1'[e 8152
64e* (2 : 192¢* - Zm)z
20 - _ 5 ) ¥0%2 — 5 ) §2%0
g25°(®) 55 (—13 + e4)1'[e 153 +55(—13 n e4)1_[e &152

For general, non-symmetric distributions or complex geometries, the coefficients are

determined numerically. The detailed numerical procedure is provided in Chapter 8.
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Chapter 4 Investigation of Horizon Size in Peridynamics

4.1 Introduction

The accuracy of peridynamic simulations is governed by two key numerical
parameters: the discretisation size and, most importantly, the horizon size, which
defines the spatial extent of nonlocal interactions between material points. The choice
of horizon size not only affects the fidelity of simulation results but also has direct
implications for computational cost. The horizon size selection is based on an early
recommendation associated with the original bond-based peridynamics (Silling and
Askari, 2005), which suggests setting the horizon to approximately three times the grid
spacing. While this rule of thumb has been widely used, it was derived specifically for
bond-based formulation, whose formulation imposes certain material property

constraints, such as a fixed Poisson’s ratio.

With the development of state-based peridynamics, both ordinary and non-ordinary
formulations, the mathematical structure have evolved (Madenci and Oterkus, 2013).
These generalised frameworks overcome the limitations of the bond-based approach,
permitting a broader range of material models. However, whether the selection of
horizon size for bond-based peridynamics remain valid for state-based formulations is
not fully understood. The different nature of the interactions and constitutive models
in state-based peridynamics may require different considerations for determining the

optimal horizon size.

This chapter addresses this gap by systematically investigating the influence of horizon
size in bond-based, ordinary state-based, and non-ordinary state-based peridynamics.
A range of two- and three-dimensional benchmark problems, including both static and
dynamic cases, are examined to evaluate how horizon size affects simulation accuracy
and computational efficiency. The aim is to establish recommendations for selecting
the horizon size in different peridynamic formulations, thereby improving the
reliability and predictive capability of peridynamic modelling for applications in

structural engineering.

4.2 Numerical Implementation of Peridynamic Formulations
This section presents the numerical procedures employed for the implementation of

the peridynamic models. The approach accommodates both static and dynamic
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problems and covers bond-based, ordinary state-based, and non-ordinary state-based
formulations. Key aspects include the spatial discretisation of the solution domain,
numerical integration of the peridynamic equations of motion, imposition of boundary
conditions, and the incorporation of correction techniques to address nonlocal effects

at boundaries and interfaces.

4.2.1 Spatial Integration

In numerical implementation, the solution domain is discretised into a finite set of
material points, each representing a finite volume with assigned material properties.
The spatial discretisation forms the basis for all subsequent calculations, as each
material point interacts nonlocally with neighbouring points located within its horizon

radius.

As illustrated in Fig. 4-1, material point k at location xj; interacts with all

neighbouring points j at location x; whose centres fall within a horizon of radius 4.

Ax
-
Ax g
AT
JASACZ RN
A OO
blo o |[ede 019
\\" 050 [ |¥]/
9 4 ]
{':._';Jf(

Fig. 4-1 Numerical discretisation of the simulation domain and volume correction.

The peridynamic equation of motion, originally formulated as an integral from
Eq.( 3.2 ), is approximated numerically by summing the contributions of all family

members within the horizon as
Nk (4.1)

Py = Z[tkj ]k] i + by

j=1
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where 2 ; is the force density vector acts on material point x; by x;, t;; the reciprocal

force, and Nj denotes the number of neighbouring material points within the horizon

of material point k.

To reduce numerical integration errors in Eq.( 4.1 ), two correction factors are

introduced: a volume correction factor and a surface correction factor.

4.2.1.1 Volume Correction
For neighbours near the edge of the horizon, only a portion of their volume is contained
within the horizon. The volume correction factor compensates for this partial overlap

(Madenci and Oterkus, 2013)

(6 +71—|x —xi|) (4.2)
Veor = o
in which and r is defined as
Ax (4.3)
T

where Ax is the discretion size. This correction applies if |xj - xk| >(6-1);

otherwise, vy, = 1.

4.2.1.2 Surface Correction

For material points at or near boundaries, horizons are truncated, resulting in
incomplete nonlocal interactions. To address this, a surface correction factor is
therefore applied. The necessity and magnitude of this correction depend on the

presence of free surfaces, which is determined by the specific problem setup.

The correction is typically computed numerically by integrating both the dilatation and
the strain energy density at each material point under simple loading conditions and

comparing these results with those from CCM.

First, a fictitious uniaxial stretch is applied in the x-, y-, and z-directions before time
integration. The dilatation in peridynamic framework is then computed as (Madenci

and Oterkus, 2013)
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M (44)
050, = d8 ) iy,
=1

where sy ; is the stretch between material point x and x;. The parameter d is given by

Table 3-1. The corresponding dilatation in CCM is determined as

HT%CM = ¢cem (4.5)

where &y 1s the applied normal strain in the x-, y-, and z-directions, with m = 1,2,3.

Consequently, the surface correction factor for dilatation term is computed as

L eEm (4.6)
SCOT‘ - GPD
m oy,

Now the dilatation term in Eq.( 3.10 ) and Eq.( 3.11 ) has corrected via Eq.( 4.6 ).

The strain energy density is used to correct the bond constant, ¢, in the bond-based
formulation (see Eq.( 3.3 ) and Eq.( 3.4 )) or parameter, b, in the ordinary state-based
formulation (see Eq.(3.10 ) and Eq.( 3.11)). This surface correction factor is computed

as

WM (4.7)

SCOT - WPD
m x
k

Here W,EP x,, is the strain energy density in peridynamic framework. W,EEM denotes

the strain energy density in CCM and varies according to the dimensionality of the

problem. Its general form can be written as

1 4.8
WM = —g¢ (48)

2
where o and € represents the stress and strain, respectively. As a result, the force term
in t;; and t;; in Eq.( 4.1 ) is corrected via Eq.( 4.6 ) for dilatation and Eq.( 4.7 ) for
peridynamic parameters. The integral volume V; in is corrected via volume correction

factor in Eq.( 4.2 ). Consequently, the equation of motion in Eq.( 4.1 ) is reformed as
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Nk (4.9)
Prly = Z[Ekj — tjxe| VeorV; + by
j=1

4.2.2 Time Integration
4.2.2.1 Dynamic Problems

For dynamic simulations, either implicit or explicit time integration methods can be
employed. While implicit schemes are unconditionally stable and permit larger time
steps, they involve solving large systems of equations at each time step, which can be
computationally demanding. In this study, an explicit time integration scheme
(Madenci and Oterkus, 2013) is adopted for its simplicity and computational efficiency.
The explicit approach updates the displacement and velocity at each time step using
only information from the previous steps, thereby avoiding the need for solving large

systems of equations.

Given the acceleration of a material point at time step n from Eq.( 4.9 ), the velocity

and displacement at the next time step n + 1 can be calculated as

u;g,jl = il;lllet + ugk (4.10)
and
uQ,jl:u;l:lAt+u§,j1 (4.11)

where At is the time step size.

It should be noted that explicit schemes are only conditionally stable. To ensure
numerical stability, the time step must be chosen according to the critical value
determined by von Neumann stability analysis as (Lapidus and Pinder, 1999; Madenci

and Oterkus, 2013)

2 (4.12)
At < - P -
d6< ;vzll[lxl—xkﬁ |x; — x;] >Vl 4b8
2?’:1 2adé | + VeorVj
|7 — ] |7 = ]
\
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4.2.2.2 Static Problems

Static analyses require the system to reach an equilibrium state where both acceleration
and velocities are zero. Owing to the nonlocal nature and large size of the system,
directly solving for static equilibrium can be computationally challenging. Here, the
Adaptive Dynamic Relaxation (ADR) method is used (Underwood, 1983; Kilic and
Madenci, 2010), in which the equations of motion are integrated in a pseudo-time
domain with artificial inertia and damping, gradually leading the system to a static
equilibrium.

The ADR method introduces fictitious mass and damping terms, leading to the

following reformulation (Madenci and Oterkus, 2013)
DU(X,t) + CDU(X,t) = F(U,U',X,X") (4.13)

where D is fictitious diagonal mass matrix, C is the damping coefficient. The vectors
X and U represent the initial positions and the displacements of all material points,

respectively, and these are expressed as
XT = {x1,x5,%3, ..., X3y} (4.14)
and
UT = {u(x,, ), u(xy, t), u(xs, t), ..., u(xy, t)} (4.15)

with M denoting the total number of material points.

The vector F consists of peridynamic interaction forces and external body forces. Its

ith component can be expressed as

Ny (4.16)
F; = Z[Eij — §i] veorV; + by
=1

By applying the central-difference explicit integration scheme, the velocity and
displacement of each material point at the next time step can be calculated as (Madenci

and Oterkus, 2013)
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ol 4.17
o C"ADU; %+ 2AtD; T F} (417)

i (2 + C"AD)

and

nta 4.18
UM = UT + byAtU, 2 (4.18)
where At is the time step size and is typically set to unity in ADR scheme. The

damping coefficient C™ is determined at each time step, and it is computed as

(Underwood, 1983)

(4.19)

WY KUy
(UD707

with K™ is the stiffness matrix, which is given as (Madenci and Oterkus, 2013)

1;_? 3 Fg-l (4.20)
K = ————-
AtU, 2

4.2.3 Boundary Conditions

The imposition of boundary conditions in peridynamics differs from CCM due to the
nonlocal nature of the formulation. Instead of prescribing values directly at discrete
nodes or along boundaries, as is standard in finite element methods, peridynamics

enforces boundary conditions over finite volumes.

4.2.3.1 Displacement Constraints

Displacement boundary conditions are implemented by prescribing the displacements
of material points located within a fictitious region adjacent to the boundary (Madenci
and Oterkus, 2016). To achieve this, fictitious regions, Ry, are introduced adjacent to
the physical boundaries of the solution domain (see Fig. 4-2). The thickness of this

region is typically set to twice the horizon size (26).
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Fig. 4-2 Application of displacement constraints in peridynamics by introducing a
fictitious region (Madenci and Oterkus, 2016).

Let U*, V*,and W™ denote the prescribed displacements in the x-, y-, and z-directions,
respectively . The displacement of a material point within the fictitious region is then

defined for x direction as (Madenci and Oterkus, 2016)

ur(xp, ¥, 25, t + At) = 2U"(x" y* 2", t + At) —u(x,y, z, t) (4.21)
for y direction as

ve(Xf, Vr, Zp, t + AL) = 2V (x" y* 2", t + At) —v(x,y,2,t) (4.22)
and for z direction as

wr (X, Y, Zp, t + At) = 2U"(x" y* 2", t + At) —w(x,y,2,t) (4.23)

where ug, vy, and wy denote the displacement of material points within the fictitious
region, while u, v and w denotes the corresponding material points in the adjacent
position in the physical domain. By directly specifying the displacement field in the

fictitious region, the desired boundary behaviour is achieved at the interface.

4.2.3.2 Traction Boundary Conditions
Traction boundary conditions are implemented by prescribing the displacements of
material points within the fictitious region in such a way that the intended stress state

is reproduced at the boundary (Madenci and Oterkus, 2016). The explicit expression
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for these imposed displacements depends on both the problem’s dimensionality and

the orientation of the boundary normal.

i |

Fig. 4-3 Application of traction boundary conditions on a surface with a normal
vector in x-direction (Madenci and Oterkus, 2016).

For two-dimensional problems, considering a boundary with a unit normal in the x-
direction, the displacements within the fictitious region are obtained for x direction as

(Madenci and Oterkus, 2016)

uf(xf, e t+ At) (4.24)
(1 =705 _v(,y*,t) —v(x,y,t)
T F 77 vt =" (=)
+u(x,y,t)
and for y direction as
vr(xs, v, € + At) (4.25)
21+ V)oyy, ulx,y*,t) —ulx,y,t)
= E - Yyt —y- (xf - x)
+v(x,y,t)

where oy, and oy, are applied stresses normal and tangent to the boundary,

respectively, E is Young's modulus, and ¥ is Poisson’s ratio.

For three-dimensional problems, the methodology for imposing traction boundary

conditions using fictitious regions is readily extended. When the traction boundary
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possesses a unit normal in the x-direction, the displacement fields are computed for

the x-direction as

uf(foyf'Zfit +At) (426)
B 1 (A +V)(A —2V)0,y
T (1-9) E
v(x,ytt) —v(x,y,t)
yr—y
~ W(X, y+) t) - W(X, y_: t)
— 7 pr—— (xr —x) + u(x,y,0)
for y direction as
vf(xf!yf’Zf’ t+ At) ( 4.27 )
21+ Moy, _ulx,y*t)—ulx,y,t)
= -V + — (xf - .X')
E yr—y
+ v(x,y,t)
and for z direction as
Wf(xf! yf’ Zf, t+ At) ( 4.28 )
21+ V)oy, _ulx,ytt) —ulx,y,t)
= = — 7 pr— (xr —x)
+w(x,y,t)

Note that this procedure is only valid if the traction boundary region is elastic.

4.3 Numerical Investigations
4.3.1 Determination of Horizon Size

The horizon size is a decisive numerical parameter in peridynamic theory, as it
determines the extent of nonlocal interactions between material points. In the context
of uniform discretisation, each point interacts with neighbouring points within a
circular (in 2D), or spherical (in 3D) region defined by the horizon radius §. The choice
of & directly affects the accuracy and computational cost of the peridynamic
simulation. If the horizon is chosen too small, the interaction network becomes sparse,

which limits the model's ability to capture basic deformation modes (i.e., if a material
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point interacts only with its nearest neighbours, shear deformation will not be
captured). Conversely, a larger horizon increases computational expense without

proportionate gains in accuracy.

A commonly adopted guideline, originally developed for bond-based peridynamics, is
to select the horizon size as three times the grid spacing (& = 34x ). This
recommendation ensures that each point maintains enough interacting neighbours,
supporting reliable approximation of both tensile and shear responses. However, with
the emergence of more general state-based peridynamic formulations, this rule
requires re-examination. Moreover, it is important to verify whether these guidelines
are robust for both static and dynamic loading scenarios, as well as for two- and three-

dimensional structures.

This section systematically investigates horizon size selection through a series of
uniform discretisation simulations, analysing both 2D and 3D problems in bond-based,
ordinary state-based, and non-ordinary state-based peridynamics. By considering
simple benchmark geometries and loading conditions, and by analysing both static and
dynamic scenarios, this investigation aims to establish guidelines for horizon size
selection that balance computational efficiency with solution accuracy. For validation,
peridynamic predictions are compared with FEM by ANSYS simulations under

equivalent settings.

FEM simulations were carried out in ANSYS for verification. Planel82 elements
(four-node quadrilateral) were employed for two-dimensional models, while Solid185
elements (eight-node hexahedral) were used for three-dimensional cases. The mesh
configuration was generated to match the nodal spacing of the peridynamic
discretisation, and identical material properties were applied, including Young’s
modulus, Poisson’s ratio, and density as given in each case description. For dynamic

analyses, the time step size was kept consistent with the peridynamic simulations.

4.3.2 Vibration of a Plate

In the first simulation case, the dynamic response of a square plate in Fig. 4-4 with
dimensions L =W =1m and thickness 0.01 m is investigated. The plate is
composed of a linear elastic and homogeneous material, with Young’s modulus E =

200 GPa and density p = 7850 kg/m 3. Vibration is initiated by imposing an initial

41



uniaxial strain of 0.001 in the horizontal direction. The left edge of the plate is fully
constrained using a fictitious region, while all other edges are traction-free, as shown

in Fig. 4-5.

Uniform discretisation is adopted, with a grid spacing of Ax = 0.01 m. Each material
point interacts with its neighbours within a horizon of radius §, which is varied

systematically to assess its influence on simulation results.

The dynamic analysis is performed using an explicit time integration scheme, with a

time step size of 1 X 107 seconds.

&0 = 0.001

Fig. 4-4 Square plate subjected to initial uniaxial strain condition.

-2 L

Fig. 4-5 Discretisation of the square plate.
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4.3.2.1 Bond-based Peridynamics
The analysis begins with the bond-based formulation. Five different horizon sizes (§ =
ndx,n = 1,2,3,4,5) are investigated. Owing to the nature of bond-based formulation

for two-dimensional structure, Poisson’s ratio is fixed at ¥ = 1/3.

A monitoring point at (0.255 m, 0.255 m), distant from boundaries, is used to record
horizontal and vertical displacements. The time histories of both horizontal and
vertical displacements at this point are recorded throughout the simulation. Results are

compared with FEM solutions.

As shown in Fig. 4-6 and Fig. 4-7, a close agreement between peridynamics and FEM
is observed for § = 34x and § = 44x, indicating these as optimal choices for bond-

based formulation for this dynamic case (square plate vibration).
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Fig. 4-6 Variation of horizontal displacement of the material point located at (0.255
m,0.255 m) by using bond-based peridynamics.
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Fig. 4-7 Variation of vertical displacement of the material point located at (0.255

m,0.255 m) with time by using bond-based Peridynamics

4.3.2.2 Ordinary State-based Peridynamics

For the ordinary state-based formulation, the restriction on Poisson’s ratio is lifted;
here, ¥ = 0.25 is used to avoid the formulation being reduced to bond-based
peridynamics as explained in section 3.2.2. The same range of horizon sizes and

monitoring point are adopted.

Fig. 4-8 and Fig. 4-9 compare the peridynamic predictions with the FEM. As observed,
while horizontal displacements are captured closely for all horizon sizes, the vertical
displacement is most closely predicted with § = 34x and § = 44x. For smaller
horizons, § = 14x and § = 24x, the model fails to accurately capture the vertical

displacement response.
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Fig. 4-8 Variation of horizontal displacement of the material point located at (0.255
m,0.255 m) by using ordinary state-based peridynamics.
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Fig. 4-9 Variation of vertical displacement of the material point located at (0.255
m,0.255 m) with time by using ordinary state-based peridynamics.

4.3.2.2 Non-ordinary State-based Peridynamics

The non-ordinary state-based analysis uses Poisson’s ratio vV = 1/3. As before, five
horizon sizes are considered, and the same monitoring point is used. As presented in
Fig. 4-10 and Fig. 4-18, a better agreement with FEM is found for the smaller horizons
6 = 14x and 6 = 24x , with increasing horizon size not yielding significant

improvement and, in some cases, reducing accuracy.
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Fig. 4-10 Variation of horizontal displacement of the material point located at (0.255
m,0.255 m) by using non-ordinary state-based peridynamics.
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Fig. 4-11 Variation of vertical displacement of the material point located at (0.255
m,0.255 m) with time by using non-ordinary state-based peridynamics.

4.3.3 Plate Under Tension

In the second case, the square plate described previously is subjected to uniaxial tensile
loading, with a prescribed stress of 6* = 200 MPa applied to the right edge, as shown
in Fig. 4-12. The loading is implemented via a fictitious region at the right boundary
(Fig. 4-13), following the methodology outlined in Section 4.2.3.2. The steady-state
solution is obtained using the Adaptive Dynamic Relaxation technique (Underwood,
1983; Kilic and Madenci, 2010). All geometric, discretisation, and material properties

remain as specified in the plate vibration case.

y e

w Lx — " =200 x 10°pa

Fig. 4-12 Square plate subjected to uniaxial tension loading.
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Fig. 4-13 Discretisation of the square plate.
4.3.3.1 Bond-based Peridynamics

For the uniaxial tension problem, bond-based formulation is first employed. The
horizontal and vertical displacements along the plate’s central axes are evaluated for

various horizon sizes and compared to FEM reference solutions.

As shown in Fig. 4-14 and Fig. 4-15, the closest agreement with FEM is achieved for
horizon sizes 6§ = 34x, § =4Ax , and 6 = 54Ax . For smaller horizon sizes,
discrepancies arise in both displacement components. These results confirm the
findings from the dynamic vibration analysis; an intermediate horizon size (three to

four times the grid spacing) optimally balances accuracy and efficiency in bond-based

simulations.
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Fig. 4-14 Horizontal displacement along (x, y=0) by using bond-based
peridynamics.
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Fig. 4-15 Vertical displacement along (x=0, y) by using bond-based peridynamics.
4.3.3.2 Ordinary State-based Peridynamics
The ordinary state-based formulation is next applied. As shown in Fig. 4-16 and Fig.
4-17, the simulation results reveal that horizon size values of 6 = 34x, § = 44Ax, and
6 = 5Ax offer a better agreement with the FEM solutions. In contrast, smaller
horizons § = 14x and & = 24x do not sufficiently capture the static vertical
displacement field, which is consistent with the observations made for the dynamic

(vibration) case.
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Fig. 4-16 Horizontal displacement along (x, y=0) by using ordinary state-based
peridynamics.
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Fig. 4-17 Vertical displacement along (x=0, y) by using ordinary state-based
peridynamics.

4.3.3.3 Non-ordinary State-based Peridynamics

Finally, the non-ordinary state-based peridynamic model is assessed. As observed
previously in the vibration case, this formulation achieves close correspondence with
FEM solutions for all tested horizon sizes (see Fig. 4-18 and Fig. 4-19). However, the
best agreement is observed for the smallest horizons § = 14x and 6 = 24x,
suggesting that smaller horizons suffice to accurately capture the static response.
Larger horizons (6 = 34x, 4Ax, and 54x) also yield reliable results, but the best

match is observed at the lower end of the tested range.
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Fig. 4-18 Horizontal displacement along (x, y=0) by using non-ordinary state-based
peridynamics.
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Fig. 4-19 Vertical displacement along (x=0, y) by using non-ordinary state-based
peridynamics.

4.3.4 Vibration of a Cubic Block

The third benchmark investigates the dynamic response of a three-dimensional cubic
block subjected to uniform discretisation. As represented in Fig. 4-20, the block has
dimensions L = H = W = 0.3 m and is initially loaded with a uniaxial strain of 0.001
in horizontal direction. The left face is fully constrained using a fictitious region, as
shown in Fig. 4-21, while all remaining faces are traction-free. The block is modelled
as a linear, elastic, homogeneous material, with Young’s modulus E = 200 GPa and
density p = 7850 kg/m 3. Poisson’s ratio is taken as 0.25 for bond-based simulations,

and non-ordinary state-based simulations, and 1/3 for ordinary state-based simulations.

£ = 0.001

—_—

Nmm e

S—

Fig. 4-20 Three-dimensional block subjected to initial uniaxial strain condition.
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Fig. 4-21 Discretisation of the block.

For computational efficiency, the domain is discretised uniformly with a grid size of
Ax = 0.005 m, resulting in a computational mesh of 60 X 60 X 60 material points.
Explicit time integration is used with a time step of 1 X 1077 s. The effect of horizon

size is systematically evaluated by expressing § as an integer multiple of Ax.

4.3.4.1 Bond-based Peridynamics

In the bond-based simulation, the response at a representative internal material point
(0.0775m,0.0775 m,0.0775 m ) is monitored. The histories of the horizontal,
transverse, and vertical displacement components ( Fig. 4-22, Fig. 4-23 and Fig. 4-24)
demonstrate that a horizon size of § = 34x yields a better agreement with FEM

reference results.
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Fig. 4-22 Variation of horizontal displacement of the material point located at
(0.0775 m, 0.0775 m, 0.0775 m) with time by using bond-based peridynamics.
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Fig. 4-23 Variation of transverse displacement of the material point located at
(0.0775 m, 0.0775 m, 0.0775 m) with time by using bond-based peridynamics.
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Fig. 4-24 Variation of vertical displacement of the material point located at (0.0775
m, 0.0775 m, 0.0775 m) with time by using bond-based peridynamics.

It is noted, that as the time progresses, discrepancies between peridynamic and FEM
results increase. This accumulation of error over time is primarily attributed to the
relatively coarse discretisation required to keep the computational cost reasonable in
three dimensions. With fewer material points, small numerical errors can accumulate
and affect the later stages of the simulation. As such, early-time simulation results are

more reliable for determining the optimal horizon size.

In comparison, this issue is less pronounced in two-dimensional cases where finer

meshes can be used. Overall, for 3D dynamic simulations using bond-based
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formulation, a horizon size of § = 34x continues to offer a good compromise between

accuracy and computational cost.

4.3.4.2 Ordinary State-based Peridynamics

The ordinary state-based peridynamic formulation produces similar trends.
Displacement histories at the monitoring point for all three components are shown in
Fig. 4-25 to Fig. 4-27. The results indicate that a better agreement with FEM is again
achieved for § = 34x. While other horizon sizes can also produce reasonable results,
the § = 34x case consistently shows the close match for both the amplitude and phase

of the displacement histories.

As in the bond-based case, the error relative to FEM increases at later simulation times,
reflecting the influence of the coarser discretisation in three dimensions. These
findings suggest the recommendation of § = 34x for accurate and efficient modelling

with ordinary state-based peridynamics.
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Fig. 4-25 Variation of horizontal displacement of the material point located at
(0.0775 m, 0.0775 m, 0.0775 m) with time by using ordinary state-based
peridynamics.
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Fig. 4-26 Variation of transverse displacement of the material point located at
(0.0775 m, 0.0775 m, 0.0775 m) with time by using ordinary state-based
peridynamics.
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Fig. 4-27 Variation of vertical displacement of the material point located at (0.0775
m, 0.0775 m, 0.0775 m) with time by using ordinary state-based peridynamics.

4.3.4.3 Non-ordinary State-based Peridynamics

For the non-ordinary state-based formulation, displacement time histories for the
horizontal, transverse, and vertical components at the monitoring point are shown in
Fig. 4-38, Fig. 4-39 and Fig. 4-40. The results indicate that all horizon size values
provide reasonably agreement with the reference FEM solution, capturing both the

amplitude and phase of the dynamic response across all displacement components.
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Fig. 4-28 Variation of horizontal displacement of the material point located at
(0.0775 m, 0.0775 m, 0.0775 m) with time by using non-ordinary state-based
peridynamics.
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Fig. 4-29 Variation of transverse displacement of the material point located at
(0.0775 m, 0.0775 m, 0.0775 m) with time by using non-ordinary state-based
peridynamics.
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Fig. 4-30 Variation of vertical displacement of the material point located at (0.0775
m, 0.0775 m, 0.0775 m) with time by using non-ordinary state-based peridynamics.

4.3.5 Cubic Block Under Tension

For the static analysis, the same three-dimensional block geometry, material properties,
and uniform discretisation adopted in the vibration study are used. As illustrated in Fig.
4-31, the block is subjected to a uniaxial tensile loading of 0 = 200 MPa applied at
the right face. The loading is implemented through a fictitious region at the boundary
of the right face, following the procedure outlined in Section 4.3.3.2 and depicted in
Fig. 4-32. The left face of the block is fully constrained, while all other surfaces are
traction-free. The steady-state response is obtained using the Adaptive Dynamic
Relaxation technique (Underwood, 1983; Kilic and Madenci, 2010), with a time step

size At=1 s.

6" =200 x 10%pa

\w‘——————-N
|
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Fig. 4-31 A three-dimensional block subjected to uniaxial tension loading.
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Fig. 4-32 Discretisation of the block.
4.3.5.1 Bond-based Peridynamics

The effect of horizon size on the displacement field is first examined using the bond-
based formulation. The horizontal, transverse, and vertical displacement distributions
along the respective central axes of the block are computed and compared against FEM

reference solutions.

As shown from Fig. 4-33 to Fig. 4-35, the peridynamic predictions exhibit good
agreement with the FEM results for all displacement components when the horizon
size is greater than or equal to 24x. In contrast, the smallest horizon size (§ = 14x)

fails to capture the correct displacement behaviour.
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Fig. 4-33 Horizontal displacement variations along (x, y=0, z=0) by using bond-
based peridynamics.
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Fig. 4-34 Transverse displacement variations along (x=0, y, z=0) by using bond-
based peridynamics.
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Fig. 4-35 Vertical displacement variations along (x=0, y=0, z) by using bond-based
peridynamics.

4.3.5.2 Ordinary State-based Peridynamics

The ordinary state-based formulation demonstrates a similar trend to the bond-based
formulation. Displacement distributions for the horizontal, transverse, and vertical
components are evaluated along the central axes for the same set of horizon sizes. As
illustrated in from Fig. 4-36 to Fig. 4-38, the peridynamic results show good agreement
with FEM solutions for all horizon sizes except § = 14x. The best correspondence is
observed for & = 34x corroborating the findings from the two-dimensional

simulations.
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Fig. 4-38 Vertical displacement variations along (x=0, y=0, z) by using ordinary
state-based peridynamics.

4.3.5.3 Non-ordinary State-based Peridynamics

Finally, the non-ordinary state-based formulation is assessed. Displacement profiles
along the central axes are computed for a range of horizon sizes and compared to FEM
results. As shown in Fig. 4-39, Fig. 4-40 and Fig. 4-41, all horizon sizes except for
6 = 14x exhibit close agreement with the FEM results. Specifically, a horizon size of
6 = 24x provides an optimal solution, accurately capturing the displacement

behaviour in all directions.
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Fig. 4-39 Horizontal displacement variations along (x, y=0, z=0) by using non-
ordinary state-based peridynamics.
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Fig. 4-40 Transverse displacement variations along (x=0, y, z=0) by using non-
ordinary state-based peridynamics.
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Fig. 4-41 Vertical displacement variations along (x=0, y=0, z) by using non-ordinary
state-based peridynamics.

4.3.6 Comparative Results of Ordinary State-based Peridynamics, Non-ordinary State-
based Peridynamics, and FEM

To provide a direct comparison under identical settings, additional results are presented
for the 2D plate in vibration and in tension with Poisson’s ratio fixed at v = 1/3 for
both the ordinary state-based and non-ordinary state-based formulations. This choice
matches the fixed Poisson’s ratio of bond-based peridynamics in 2D, so the bond-based
elastic response is effectively represented by the ordinary state-based curves at vV =

1/3; the bond-based curves are therefore omitted to avoid clutter.
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The comparisons are performed with the same discretisation and material parameters
and with the horizon set to the formulation-specific optimum identified earlier: § =
3Ax for ordinary state-based formulations and § = 24x for non-ordinary state-based
formulations. The same trends were observed in the corresponding 3D studies, so 2D

comparisons are reported here for brevity.

4.3.6.1 Vibration of a Plate

Fig. 4-42 and Fig. 4-43 show the horizontal and vertical displacement time histories
of the material point located at (0.255 m,0.255 m), obtained using ordinary state-based
peridynamics, non-ordinary state-based peridynamics, and FEM. Both formulations
reproduce the FEM results closely in terms of horizontal displacement. In the vertical
displacement, non-ordinary state-based peridynamics provides slightly improved

agreement despite employing a smaller horizon.
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Fig. 4-42 Variation of horizontal displacement of the material point located at (0.255
m,0.255 m) at optimum horizon size for Ordinary State-based Peridynamics and
Non-ordinary State-Based Peridynamics.
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Fig. 4-43 Variation of vertical displacement of the material point located at
(0.255m,0.255m) at optimum horizon size for Ordinary State-based Peridynamics
and Non-ordinary State-Based Peridynamics.

4.3.6.1 Plate Under Tension

Fig. 4-44 and Fig. 4-45 present the horizontal and vertical displacement distributions
along the midlines of the plate under uniform tension, obtained using ordinary state-
based peridynamics, non-ordinary state-based peridynamics, and FEM at their
respective optimum horizon sizes. In both cases, the peridynamic predictions are in

good agreement with FEM, with nearly coincident displacement profiles.
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Fig. 4-44 Horizontal displacement along (x, y=0) by using Ordinary State-based
Peridynamics and Non-ordinary State-Based Peridynamics at their optimum horizon
sizes.
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Fig. 4-45Vertical displacement along (x=0, y) by using Ordinary State-based
Peridynamics and Non-ordinary State-Based Peridynamics at their optimum horizon
sizes.

In summary, the choice of peridynamic formulation depends on the balance between
simplicity, flexibility, and computational cost. The bond-based model is the simplest
and computationally most efficient, but its limitations include a fixed Poisson’s ratio
(V=1/3 in 2D and ¥ = 0.25 in 3D) and the inability to capture more complex
material responses. The ordinary state-based formulation removes this restriction by
decoupling volumetric and deviatoric contributions, enabling a wider range of
Poisson’s ratios while retaining moderate efficiency. The non-ordinary state-based
formulation provides the generality by lifting the requirement that forces act along
bonds, allowing established constitutive models from classical continuum mechanics
to be incorporated directly into the peridynamic framework. However, this increased

versatility comes at a higher computational cost.

Accordingly, bond-based peridynamics may suitable for simple, proof-of-concept
studies, ordinary state-based peridynamics for structural problems requiring flexibility
in Poisson’s ratio, and non-ordinary state-based peridynamics for applications

involving complex materials.

4.4 Chapter Summary

This chapter presented a systematic numerical investigation of horizon size effects in
peridynamic models, focusing on uniform discretisation for both two- and three-
dimensional structures subjected to static and dynamic loading. Through detailed

comparison of bond-based, ordinary state-based, and non-ordinary state-based
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peridynamics with reference FEM solutions, the optimal horizon size for each

formulation is revealed as in the Table 4-1.

Table 4-1 Summary of optimal horizon sizes for different peridynamic formulations in

2D and 3D
Peridynamic models 2D 3D
Bond-based Peridynamics 6 = 34x 6 = 34x
Ordinary State-based Peridynamics 6 = 34x 6 = 34x
Non-ordinary State-based Peridynamics 6 = 24x 6 = 24x

For both the 2D plate and 3D block cases, the analyses demonstrated that bond-based
and ordinary state-based peridynamics achieve good agreement with FEM solutions
when the horizon size is set to three times the grid spacing (§ = 34x). By contrast, the
non-ordinary state-based formulation consistently delivers accurate displacement and
stress predictions with smaller horizons, with § = 24x identified as optimal for both
static and dynamic scenarios. It was also observed that increasing the horizon size
beyond these optimal values does not significantly improve accuracy and can incur

unnecessary computational cost.

Another important finding is the increased sensitivity of three-dimensional simulations
to numerical errors arising from coarse discretisation, mostly in dynamic analyses.
Consequently, early-time responses provide a more reliable basis for horizon size
assessment in dynamic problems, whereas static cases are less affected by

discretisation-induced errors.

In summary, the findings of this chapter offer practical guidance for horizon size
selection in peridynamic modelling with uniform discretisation. For most engineering
applications, a horizon size of three times the grid spacing is recommended for bond-
based and ordinary state-based formulations, while a value of two times the grid
spacing is sufficient for non-ordinary state-based peridynamics. These insights are
expected to contribute to more reliable and efficient peridynamic modelling in future

research.
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Chapter 5 Derivation of Dual-horizon Peridynamics Formulation
5.1 Introduction

While the previous chapter discussed guidelines for horizon size selection in
peridynamics using uniform discretisation, many engineering problems may require
non-uniform meshes to capture complex geometries or local features. Although
uniform discretisation is easy to implement, it increases computational time for some
applications, as only certain parts of the solution domain require a finer discretisation,
while other parts can be discretised using a coarser mesh. Non-uniform discretisation,
therefore, offers benefits in terms of both computational efficiency and modelling
flexibility. In addition to non-uniform discretisation, the horizon size can also be
different at different parts of the solution domain, either to reduce the computational

time or to capture the correct physics of the problem.

In this chapter, a new derivation of the dual-horizon peridynamics formulation is
presented, using the Euler-Lagrange equations as a theoretical basis. The effectiveness
of this approach is demonstrated through numerical verification on two benchmark
problems: a plate under tension and a plate undergoing vibration, both discretised with

non-uniform meshes and variable horizon sizes.
5.2 Dual-horizon Peridynamics Formulation Based on Euler-Lagrange equation

The equation of motion for a material point k at location x; in the reference

configuration can be expressed as (Madenci and Oterkus, 2013)

d(@L) JdL (5.1)

at\oiy) " w, - °

where L denotes the Lagrangian, defined as the difference between the total kinetic

energy, T, and the total potential energy, U, of the body.

In the peridynamic framework, the total kinetic energy is evaluated as the sum over all

material points as

L. (52)
T = Zipiui "W,V
i

where p; is the density and V; is the volume associated with material point i.
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The total potential energy, U, is defined as the difference between the total strain

energy and the work done by external forces
U= z WiVi — Z(bi )V (53)
i i

where, b; is the body force per unit volume acting on material point i.

The strain energy density, Wy, for a given material point k is defined as (Madenci and

Oterkus, 2013)

1< 1 [ @i [Yar = Yoo Yy = Yoo | + (54)
We=3)3

2 j
j=1 Wik [y(lj) Yo Y T y(,-)]

N
where N and N; are the number of family members (i.e., neighbouring material points)

within the horizon of points k and j, respectively, y denotes the position in the

deformed configuration, and wy; is the micropotential arising from the interaction
between material points k and j. Generally, wyjand wjy are not equal, as each is
evaluated over a different domain of influence (the horizon of material points k and j,
respectively).

Substituting Eq.( 5.2 ), Eq.( 5.3 ) and Eq.( 5.4 ) into Eq.( 5.1 ), the equation of motion

for material point k becomes

N (5.5)
Py = Z[tkj — tj| V; + by

j=1

where the force density vectors &y ; and &, are given in terms of the micropotentials

as (Madenci and Oterkus, 2013)

Ny 5.6
SLEY T o)
I AVAE T T

and
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(5.7)

. ZLV
e = ZVk la()’k—)’j)l

For the bond-based peridynamic formulation, the force between two material points at
Xy and x; only depends on their interaction. Therefore, Eq.( 5.6 ) and Eq.( 5.7 )
simplify to

wkj (5.8)

and

o=t Wk (59)
KT 200— )

For variable horizon sizes, these force density vectors can be rewritten as

1 YTk (5.10)
j~
and
1 Yk —JYj (5.11)
t]k akJZCSkjlyj—ykl
where a;; and ay; are defined as
_{1,wkj¢0 (5.12)
@i =10, wp; = 0
and
. _{1,a)jk¢0 (5.13)
Jk — O, a)jk =0

As shown in Fig. 5 1, that due to different horizon sizes, a material point with a smaller

horizon (e.g., shown in blue) may be within the horizon of another point with a larger
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horizon (red), but not vice versa. In such cases, the micropotential in Eq.( 5.12 ) or

Eq.(5.13) is considered zero if is zero if a point lies outside the other's horizon.

:fffff’:,:%\ IR
Ennaal

ooooooooo
oooooooon
oooooooon
ooooooooo
oooooopoon

Fig. 5-1 Non-uniform discretization with different horizon sizes.

The bond constant ¢ in Eq.( 5.10 ) and Eq.( 5.11 ) is as defined previously (Eq.( 3.6)

for two-dimensional structures), and the stretch between material points is given by

N S e (5.14)
Skj =

% — x|

For the ordinary state-based peridynamics, the force terms can be adapted for the

variable horizon case as

tkj = akj <—|x x |9k(xk, t) + 26kbskj>—|y] y |
j T Ak j = Jk

and

2adé; Ve =Y, (5.16)
tjk = ajk (MHJ(x], t) + 26]b5k1>m
] ]

where a, b and d are the peridynamic parameters, and these can be obtained through

Table 3-1.

The dilatation term in Eq.( 5.15 ) and Eq.( 5.16 ) for material points material points k

and j are defined, respectively, as
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Ny (5.17)
Ok = Z dbyskiV;
=1

and

N (5.18)
i=1

For non-ordinary state-based peridynamics, the force density vector for material points

k and j for variable horizon size can be written as

tej = apPlxe K[ ] (x; — xp) (5.19)
and

tie = P x ] K] (3 — x7) (520)
where the shape tensor, K, can be obtained as

Ni (5.21)
K[xk] = Z(xi - xk) ® (xi - xk)Vi

=1
and

(5.22)

K[x;] = Z(xi —x;) @ (x; — %)V

where the symbol & represents dyadic product. It should be noted that the non-
ordinary state-based formulation may exhibit zero-energy modes (Gu et al., 2018); as
discussed in section 3.2.3, in this study, these are addressed using the approach

outlined by Silling (2017).

5.3 Numerical Implementation
The general procedures for the numerical implementation, including the imposition of

boundary conditions, application of surface correction techniques, and time integration
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schemes, are detailed in Chapter 4 (see Sections 4.2). The reader is referred to Chapter
4 for the description of the underlying algorithms and standard computational

procedures.

5.4 Numerical Investigations for Dual-horizon Peridynamic Formulations
As previously discussed, while uniform discretisation is common in the peridynamic
literature, the use of variable mesh sizes offers computational advantages and is widely

adopted in other numerical methods, such as FEM.

In this section, the effectiveness of the dual-horizon peridynamics approach is
demonstrated through case studies involving non-uniform discretisation, where both

the grid size and the horizon radius may vary across the domain.

For clarity and comparison, each problem divides the solution domain into two regions
with different grid sizes and corresponding horizon sizes. Two benchmark problems
are considered: (1) the vibration of a plate (Section 5.4.1), which evaluates the method
dynamically; and (2) a plate under tension (Section 5.4.2), which assesses static
performance. Each case is studied using bond-based, ordinary state-based, and non-
ordinary state-based formulations to demonstrate the flexibility and capability of the

dual-horizon framework with non-uniform discretisation.

5.4.1 Plate Vibration in Nonuniform Discretization

In the first simulation case, the dynamic response of a square plate (Fig. 4-4) with
dimensions L = W = 1 m and thickness 0.01 m is investigated. The plate is modelled
as a linear elastic and homogeneous material, with Young’s modulus E = 200 GPa and
density p = 7850 kg/m3. Poisson’s ratio is taken as 1/3 for bond-based simulations,
and non-ordinary state-based simulations, and 0.25 for ordinary state-based

simulations.

Vibration is initiated by imposing an initial uniaxial strain of 0.001 in the horizontal
direction. The left edge of the plate is fully constrained by a fictitious region (see Fig.
4-5), while all other edges are traction-free. Time integration is carried out using an

explicit scheme with a time step size of 1x107 sec.

For clarity and direct comparison, a material point at (x,y) = (0.255 m, 0.255 m) is

selected as a monitoring point. The horizontal and vertical displacements of this point
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are recorded as functions of time and compared against the finite element solution

obtained in ANSYS.

5.4.1.1 Effect of Locally Defined Horizon Size

In this scenario, as shown in Fig. 5-2, the right half of the plate (Region 2) is discretised
with a coarse grid of Ax, = 0.005 m, while the left half (Region 1) employs a refined
grid of Ax; = 0.01 m. The mesh ratio, k, between these two regions is defined as k =
Axy

= 2.

Ax1

For each region, the horizon size is defined as an integer multiple of the local
discretisation size: §; = nhor;Ax, for Region 1, and §, = nhor,Ax, for Region 2,
where nhor; and nhor, denote the horizon-to-grid spacing ratios in the two regions.
In this study, nhor; and nhor, are varied simultaneously from 1 to 5. ,meaning that
the horizon size of material points in Region 1 is always half of that in Region 2.
Although the mesh differs across the two regions, the number of family material points

remains the same for every material point across the simulation domain.

Region 1 Region 2
Fig. 5-2 Discretisation and horizons for refined grid—coarse grid case.

5.4.1.1.1 Bond-based Peridynamics

Fig. 5-3 and Fig. 5-4 show the time histories of the horizontal and vertical
displacements, respectively, for the selected material point under various combinations
of locally defined horizon sizes (§; and §,) in the bond-based formulation. The results
indicate that peridynamic predictions become more consistent with the FEM solution

as the horizon size increases. Configurations with §; = 3Ax,, §, = 3Ax, and §; =
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4Ax4, 6, = 4Ax, yield the closest agreement with the FEM reference solutions. These
findings are consistent with those obtained under uniform discretisation, confirming
that a locally defined horizon size of § = 34x remains effective for non-uniform grids.
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Fig. 5-3 Variation of horizontal displacement of the material point located at (0.255
m,0.255 m) with time in bond-based formulation, locally defined horizon size.
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Fig. 5-4 Variation of vertical displacement of the material point located at (0.255
m,0.255 m) with time in bond-based formulation, locally defined horizon size.

5.4.1.1.2 Ordinary State-based Peridynamics
Fig. 5-5 and Fig. 5-6 show the time histories of the horizontal and vertical

displacements at the selected material point for the ordinary state-based formulation.
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Horizontal displacement predictions (Fig. 5-5) exhibit good agreement with the FEM
results across all tested horizon sizes. For the vertical displacement (Fig. 5-6), the
combinations, §; = 3Ax;, 6, = 3Ax, and §; = 4Ax;, §, = 4Ax, show the closest
correspondence with the FEM solution, a trend similar to the bond-based case.
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Fig. 5-5 Variation of horizontal displacement of the material point located at (0.255
m,0.255 m) with time in ordinary state-based formulation, locally defined horizon
size.
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Fig. 5-6 Variation of vertical displacement of the material point located at (0.255

m,0.255 m) with time in ordinary state-based formulation, locally defined horizon
size.
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5.4.1.1.3 Non-ordinary State-based Peridynamics

For the non-ordinary state-based formulation, the time histories of horizontal and
vertical displacements at the monitored material point are shown in Fig. 5-7 and Fig.
5-8. The results demonstrate that non-ordinary state-based formulation provides close
agreement with the FEM solution for all tested horizon sizes, with specifically accurate

predictions for smaller horizons (6; = 2Ax,, §, = 2Ax,).
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Fig. 5-7 Variation of horizontal displacement of the material point located at (0.255

m,0.255 m) with time in non-ordinary state-based formulation, locally defined
horizon size.

75



0.00015 , — 581=1Ax1,62=1Ax2
—— 61-2Ax1, 52-2Ax2
—— 61-3Ax1, 62-3Ax2
—— 61-41x1, 52-4Ax2

0.0001
— §1-5Ax1, 62-5Ax2
£ - - - ANSYS
% 0.00005
g 0.
o]
=
o
v
2
= 0
8
2
-0.00005
-0.0001
0 0.0001 0.0002 0.0003 0.0004
Time (s)

Fig. 5-8 Variation of vertical displacement of the material point located at (0.255
m,0.255 m) with time in non-ordinary state-based formulation, locally defined
horizon size.

5.4.1.2 Effect of Constant Horizon Size

In the second set of investigations, the effect of adopting a constant horizon size
throughout the non-uniformly discretised domain is examined. As shown in Fig. 5-9,
the left half of the plate (Region 1) is discretised using a refined grid of Ax; = 0.005m
while the right half (Region 2) employs a coarser grid of Ax, = 0.01m. The mesh ratio

. . Ax
between the two regions is therefore k = j =2
1
P I ER S S S S e i e
e Fe . o[ -1 -
AEIE T .
3k 1 !
AEVE 1 ;
T AT < —
- - '
Region 1 Region 2

Fig. 5-9 Discretisation and horizons for refined grid-coarse grid case

76



However, in contrast to the previous case, where the horizon radius was defined locally
for each region, all material points in the current analysis are assigned a constant
horizon radius irrespective of their underlying mesh size, i.e., §; = 6, = nhor,Ax,,
with nhor, varied from 1 to 5. As before, the dynamic response of the representative

material point is monitored and compared to the FEM reference.

Furthermore, for each peridynamic formulation, the optimal results obtained from the
constant horizon configuration in this section are directly compared to those from the

locally defined horizon case in section 5.4.1.1.

5.4.1.2.1 Bond-based Peridynamics

Fig. 5-10 and Fig. 5-11present the horizontal and vertical displacement time histories
for the material point at (0.255 m, 0.255 m). The closest agreement with the FEM
reference is observed for horizon size combinations §; = 6Ax; = §, = 3Ax,, and

61 = 8Ax1 = 62 = 4Ax2.
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Fig. 5-10 Variation of horizontal displacement of the material point located at (0.255
m,0.255 m) with time in bond-based formulation, constant horizon size.
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Fig. 5-11 Variation of vertical displacement of the material point located at (0.255
m,0.255 m) with time in bond-based formulation, constant horizon size.

A direct comparison between the locally defined and constant horizon approaches is
provided for §; = 3Ax;, §, = 3Ax, and §; = 6Ax; = §, = 3Ax,. As shown in Fig.
5-12 and Fig. 5-13, the horizontal displacement predictions are similar for both
approaches. However, vertical displacement results are improved when a constant
horizon is used, attributable to the increased number of interacting material points

within the horizon.
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51=6bAx1, 62=3Ax2
§1=3Ax1, 62=3Ax2
— — — ANSYS

0 0.0001 0.0002 0.0003 0.0004
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Fig. 5-12 Comparison of horizontal displacement variation with time for the material

point located at (0.255 m,0.255 m) between locally defined and constant horizon size
in the bond-based formulation.
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Fig. 5-13 Comparison of vertical displacement variation with time for the material
point located at (0.255 m,0.255 m) between locally defined and constant horizon size
in the bond-based formulation.

5.4.1.2.2 Ordinary State-based Peridynamics

For the ordinary state-based formulation, the time histories of horizontal and vertical
displacements for the constant horizon scenario are shown in Fig. 5-14 and Fig. 5-15.
The horizontal displacement predictions remain consistent with the FEM results for all
tested horizon sizes, whereas the vertical displacement (Fig. 5-15) shows more
sensitivity to horizon size. The better agreement with FEM is achieved for §; =

6AX1 = 62 = 3Ax2, and 61 = 8Ax1 = 62 = 4‘Ax2
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Fig. 5-14 Variation of horizontal displacement of the material point located at (0.255
m,0.255 m) with time in ordinary state-based formulation, constant horizon size.
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Fig. 5-15 Variation of vertical displacement of the material point located at (0.255
m,0.255 m) with time in ordinary state-based formulation, constant horizon size.

Comparison with the locally defined horizon case (Fig. 5-16 and Fig. 5-17) shows very
similar horizontal displacement predictions for both strategies, with slightly improved
vertical displacement accuracy for the constant horizon case, again due to a larger

number of family members within the horizon.
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Fig. 5-16 Comparison of horizontal displacement variation with time for the material
point located at (0.255 m,0.255 m) between locally defined and constant horizon size
in the ordinary state-based formulation.
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Fig. 5-17 Comparison of vertical displacement variation with time for the material
point located at (0.255 m,0.255 m) between locally defined and constant horizon size
in the ordinary state-based formulation.

5.4.1.2.3 Non-ordinary State-based Peridynamics
Finally, for the non-ordinary state-based formulation, Fig. 5-18 and Fig. 5-19 show
that both the horizontal and vertical displacement histories exhibit good agreement

with the FEM reference for all tested constant horizon sizes. The use of smaller
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constant horizon values §; = 4Ax; = §, = 2Ax, provide the closest match to FEM

predictions.
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Fig. 5-18 Variation of horizontal displacement of the material point located at (0.255
m,0.255 m) with time in non-ordinary state-based formulation, constant horizon size.
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Fig. 5-19 Variation of vertical displacement of the material point located at (0.255
m,0.255 m) with time in non-ordinary state-based formulation, constant horizon size.

A direct comparison between locally defined and constant horizon approaches is
presented in Fig. 5-20 and Fig. 5-21. It is noticed that that both strategies yield nearly

indistinguishable displacement responses at the monitoring point.
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Fig. 5-20 Comparison of horizontal displacement variation with time for the material
point located at (0.255 m,0.255 m) between locally defined and constant horizon size
in the non-ordinary state-based formulation.
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Fig. 5-21 Comparison of vertical displacement variation with time for the material
point located at (0.255 m,0.255 m) between locally defined and constant horizon size
in the non-ordinary state-based formulation.

5.4.2 Plate Under Tension in Nonuniform Discretization

In this case study, a square plate of dimensions L = W = 1 m with thickness 0f 0.01
m is subjected to a prescribed uniaxial tensile stress o * = 200 MPa applied at the
right edge, as illustrated in Fig. 4-12. This loading is imposed via a fictitious region at

the right boundary, following the methodology outlined in Section 4.3.3 (see also Fig.
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4-13). The left edge of the plate is fully fixed by using a fictitious region. The plate
material is linear elastic with E = 200 GPa and density p = 7850 kg/m3. Poisson’s
ratio is taken as 1/3 for bond-based simulations, and non-ordinary state-based
simulations, and 0.25 for ordinary state-based simulations. The steady-state response
is obtained using the Adaptive Dynamic Relaxation technique (Underwood, 1983;
Kilic and Madenci, 2010).

As in the previous plate vibration analysis, both locally defined horizon size and
constant horizon size approaches are investigated. Each approach is implemented for
the bond-based, ordinary state-based, and non-ordinary state-based peridynamic
formulations. The peridynamic results are benchmarked against reference FEM
solutions computed in Ansys. For each formulation, optimised cases from both horizon

selection strategies are compared.

5.4.2.1 Effect of Locally Defined Horizon Size
In this analysis, the solution domain is divided into two equal regions (Region 1 and

Region 2), as illustrated in Fig. 5-2. The mesh size in Region 1 Ax; = 0.005 m, which

is half that of Region 2 (Ax, = 0.01 m), giving a mesh ratio of k = iﬁ = 2.

X1

In each region, the horizon radius is defined as an integer multiple of the local grid
size: 6; = nhor;Ax; for Region 1 and §, = nhor,Ax, for Region 2 with nhor; and

nhor, are varied simultaneously from 1 to 5.

5.4.2.1.1 Bond-based Peridynamics
Fig. 5-22 and Fig. 5-23 present the horizontal and vertical displacement profiles along
the central axes for the bond-based formulation. The results indicate that the better

agreement with the FEM solution is achieved when horizon sizes are set to §; = 3Ax,,

62 = 3Ax2, 51 = 4‘Ax1, 62 = 4Ax2 and 61 = SAXI, 62 = SAXZ
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Fig. 5-22 Variation of horizontal displacements along the central axis (x, y = 0) in
bond-based formulation, locally defined horizon size.
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Fig. 5-23 Variation of vertical displacement along the central axis (x = 0, y) in bond-
based formulation, locally defined horizon size.

5.4.2.1.2 Ordinary State-based Peridynamics

Fig. 5-24 and Fig. 5-25 show the horizontal and vertical displacements for the ordinary
state-based formulation. Like the bond-based results, horizon configurations of §; =
3Ax,, 6, = 3Ax,, 6; = 4Ax;, 6, = 4Ax, and 6; = 5Ax;, §, = 5Ax, yield better
agreement with the FEM reference. Smaller horizon values are insufficient to capture

the correct displacement field, as previously observed.
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Fig. 5-24 Variation of horizontal displacements along the central axis (x, y = 0) in
ordinary state-based formulation, locally defined horizon size.
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Fig. 5-25 Variation of vertical displacement along the central axis (x = 0, y) in
ordinary state-based formulation, locally defined horizon size.

5.4.2.1.3 Non-ordinary State-based Peridynamics

Fig. 5-26 and Fig. 5-27 the horizontal and vertical displacement distributions for the
non-ordinary state-based formulation. The closest correspondence with FEM is
obtained for §; = 2Ax;, §, = 2Ax,. In contrast to bond-based and ordinary state-
based results, the non-ordinary state-based formulation shows increasing horizontal

displacement error at the interface as the horizon size increases.
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Fig. 5-26 Variation of horizontal displacements along the central axis (x, y = 0) in
non-ordinary state-based formulation, locally defined horizon size.
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Fig. 5-27 Variation of vertical displacement along the central axis (x = 0, y) in non-
ordinary state-based formulation, locally defined horizon size.

5.4.2.2 Effect of Constant Horizon Size
In this set of analyses, all material points across both regions are assigned a constant
horizon size, irrespective of local grid spacing. Specifically, the horizon size is taken

as 8, = &, = nhor,4x,, with nhor, varied from 1 to 5.

5.4.2.2.1 Bond-based Peridynamics
Fig. 5-28 and Fig. 5-29 present the horizontal and vertical displacement fields for the
bond-based formulation with constant horizon size. The results demonstrate that

horizon values of 6; = 6Ax; = 6, = 3Ax, , §; = 8Ax; =65, = 4Ax, and §; =
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10Ax; = 8, = 5Ax, provide a better agreement with the FEM solution for both

horizontal and vertical displacements.
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Fig. 5-28 Variation of horizontal displacements along the central axis (x, y = 0) in
bond-based formulation, constant horizon size.
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Fig. 5-29 Variation of vertical displacement along the central axis (x = 0, y) in bond-
based formulation, constant horizon size.

A direct comparison between the constant and locally defined horizon cases (Fig. 5-30
and Fig. 5-31) shows that while horizontal displacements are nearly identical, the
constant horizon approach results in improved vertical displacement accuracy. This
improvement can be attributed to the increased number of neighbouring points within

the constant horizon, especially in the refined region.
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Fig. 5-30 Comparison of horizontal displacements along the central axis (x, y = 0)
between locally defined and constant horizon size in the bond-based formulation.
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Fig. 5-31 Comparison of vertical displacements along the central axis (x = 0, y)
between locally defined and constant horizon size in the bond-based formulation.

5.4.2.2.2 Ordinary State-based Peridynamics

Fig. 5-32 and Fig. 5-33 show the horizontal and vertical displacements for the ordinary
state-based formulation under the constant horizon strategy. The horizon sizes §; =
6Ax, = §, = 3Ax, , 6; = 8Ax; = 6, = 4Ax, and §; = 10Ax; = §, = 5Ax, yield

better agreement with FEM results.
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Fig. 5-32Variation of horizontal displacements along the central axis (x, y = 0) in
ordinary state-based formulation, constant horizon size.
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Fig. 5-33Variation of vertical displacement along the central axis (x = 0, y) in
ordinary state-based formulation, constant horizon size.

Comparison between locally defined and constant horizon approaches (Fig. 5-34 and
Fig. 5-35) confirms that horizontal displacement predictions are indistinguishable for
the optimised horizon sizes, while the constant horizon case yields more accurate

vertical displacement due to a larger number of material points within the horizon.
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Fig. 5-34 Comparison of horizontal displacements along the central axis (x, y = ()
between locally defined and constant horizon size in ordinary state-based
formulation.
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Fig. 5-35 Comparison of vertical displacements along the central axis (x =0, y)
between locally defined and constant horizon size in ordinary state-based
formulation.

5.4.2.2.3 Non-ordinary State-based Peridynamics

Fig. 5-36 and Fig. 5-37 present the horizontal and vertical displacement distributions
for the non-ordinary state-based formulation. For §; = 4Ax; = §, = 2Ax,, the
peridynamic predictions closely follow the FEM reference. Although increasing the
horizon size introduces some interface error in the horizontal displacement, the
magnitude of this error is less significant than that observed in the locally defined

horizon approach.
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Fig. 5-36 Variation of horizontal displacements along the central axis (x, y = 0) in
non-ordinary state-based formulation, constant horizon size.
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Fig. 5-37Variation of vertical displacement along the central axis (x = 0, y) in non-
ordinary state-based formulation, constant horizon size.

Direct comparison (Fig. 5-38 and Fig. 5-39) shows that, for the optimised horizons
(61 = 2Ax, , 6, = 2Ax, for locally defined; §; = 4Ax; = §, = 2Ax, for constant

horizon), both strategies yield nearly identical displacement fields.
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Fig. 5-38 Comparison of horizontal displacements along the central axis (x, y = 0)
between locally defined and constant horizon size in non-ordinary state-based
formulation.
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Fig. 5-39 Comparison of vertical displacements along the central axis (x = 0, y)
between locally defined and constant horizon size in non-ordinary state-based
formulation.

Since a horizon size of 34x is generally preferred in both bond-based and ordinary
state-based formulations, the non-ordinary state-based formulation was also tested
with comparable horizon values. As shown in Fig. 5-40 and Fig. 5-41, adopting the
same horizon selection in non-ordinary state-based formulation does not result in
significant loss of accuracy, but interface-related errors in horizontal displacement are
more pronounced with locally defined horizons. Employing a constant horizon reduces
the magnitude of such errors while maintaining comparable overall displacement

predictions.
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Fig. 5-40 Comparison of horizontal displacements along the central axis (x, y = ()
between locally defined and constant horizon size in non-ordinary state-based
formulation.
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Fig. 5-41Comparison of vertical displacements along the central axis (x = 0, y)
between locally defined and constant horizon size in non-ordinary state-based
formulation.

5.5 Chapter Summary

This chapter has presented a derivation of the dual-horizon peridynamics formulation
using the Euler-Lagrange equations. Dual-horizon peridynamics provides an effective
framework for handling non-uniform discretisation and variable horizon sizes, both of
which may be required for computational efficiency or to capture specific local
features of complex engineering problems. The methodology has been systematically

evaluated through numerical experiments involving both dynamic (plate vibration) and
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static (plate under tension) benchmark problems, using bond-based, ordinary state-

based, and non-ordinary state-based formulations.

The results demonstrate that, for both bond-based and ordinary state-based
formulations, optimum accuracy is generally achieved when the horizon size is set to
three times the local grid spacing (6 = 34x), in line with findings for uniform
discretisation. Both locally defined and constant horizon strategies can deliver reliable
predictions; however, the constant horizon approach tends to yield improved accuracy,

attributed to the increased number of interacting material points.

For the non-ordinary state-based formulation, the optimal horizon size under non-
uniform discretisation is found to be smaller (§ = 2A4x). In addition, the fluctuations
observed in Fig. 5-26 occur when larger horizons are combined with locally defined
strategies, leading to pronounced interface-related errors. At the transition between
coarse and fine regions, the change in horizon size creates mismatched family sizes,
which results in oscillatory behaviour. However, as shown in Fig. 5-40, this effect is

mitigated when a constant horizon is applied across the domain.

Finally, with the advancement of AM technologies, the fabrication of complex
materials such as microstructured materials is possible. peridynamic theory can be a
suitable alternative for the analysis of microstructured materials to some other
approaches presented in the literature (Placidi, 2016; Placidi and Barchiesi, 2018;
Spagnuolo et al., 2017).
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Chapter 6 Thermal Diffusion Analysis by Using Dual-Horizon
Peridynamics
6.1 Introduction

The preceding chapters have systematically developed the theoretical framework and
numerical implementation of peridynamics for mechanical analysis, with a focus on
the influence of discretisation and horizon size under both static and dynamic loadings.
These investigations have established a foundation for the application of peridynamic
methods to a broad range of mechanical engineering problems. However, AM and
welding processes are inherently multiphysical, thermal effects are intrinsically
coupled to the mechanical response, requiring robust modelling strategies that can

capture the effects of nonlocal thermal diffusion and thermal discontinuities.

This chapter extends the peridynamic framework and introduces the dual-horizon
peridynamic formulation to solve thermal diffusion problems. Lagrangian formalism
is utilised to derive the governing equations. The proposed formulation allows
utilisation of variable discretisation and horizon sizes inside the solution domain,
which can result in significant benefits in terms of computational time. To demonstrate
the capability of the Dual-Horizon Peridynamics formulation, three different example
problems are considered, including a square plate with temperature and no flux
boundary conditions, a square plate under thermal shock loading, and a square plate
with an insulated crack. For all problems that are considered, good agreement is

obtained between peridynamics predictions and FEM results.
6.2 Peridynamic Thermal Diffusion Formulation
The governing equation for peridynamic thermal diffusion can be derived by solving

for the Euler—Lagrange equation (Oterkus et al., 2014)

d ((’)L) oL (6.1)
dt\9@/ 00

where 0 is the temperature, and L is the Lagrangian. The Lagrangian may be defined

as
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(62)
L=|Lav
J

where L is the Lagrangian density. In peridynamic framework, the Lagrangian density

at a material point can be defined as
L=Z7Z+ p3so (6.3)

in which Z is thermal potential, p is density, and § represents the heat source per unit

mass.
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Fig. 6-1 Material points and the horizon (Oterkus et al., 2017).

In peridynamics the interactions between material points are nonlocal. Therefore, a
material point exchanges heat energy through non-local interactions with its
surrounding material points within its horizon, H, with a size of, § (see Fig. 6-1)
(Oterkus et al., 2014). Each material point possesses a thermal potential, Z;, which

depends on the temperatures of all neighbouring points inside its horizon.

For a given material point k at x, the thermal potential Zj, is defined as the sum of
microthermal potentials associated with its interactions. Specifically, due to the

bidirectional heat exchange between two material points X and x;, two microthermal

potentials z;; and zj; arise. Microthermal potential, z; depends on the temperature
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difference between the material point x; and the material points that it is interacting

with inside its horizon.

Therefore, the thermal potential Z, at material point x; can be defined as

1( z; |0 @k,---,@Nkk—@k]+ (6.4)
ZZ Y
Zjk [911 Oy @j]

in which Ny and N; are the number of material points inside the horizon of material
points x; and x;, respectively, Oy is the temperature of material point X, @« is the
temperature of the first material point that interacts with point x, by the same token
for j, and V; is the volume associated with the material point x;. The equation
represents that the thermal potential at a material point x; is the sum of all

microthermal potentials associated with that point.

Using the Euler-Lagrange equation given in Eq.( 6.1 ) for the material point x;, yields

the peridynamic governing equation for the thermal diffusion as

Ni (6.5)
z[—lfkj + ]V + prie = 0
=1
where
11 z 07y (6.6)
T T2 | Liace; - o)
and
N;
[ o, (6.7)
ke = 2V |4 a(@k—a)

The first term in Eq.( 6.5 ) represents the heat flow density, Hy;, from x; to x;, while

the second term, v

ik-corresponds to the reverse interaction.

Moreover, the heat source $; in Eq.( 6.5 ) can be further defined as
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Sk = €k — Sbk (6.8)

in which sy,  1s the heat source due to volumetric heat generation per unit mass.

The rate of heat energy stored, €, when heat flow varies over a short period can be

expressed as (Oterkus et al., 2014)

, 90 6.9
(=2 (69)

where C,, is the specific heat capacity.

Therefore, the peridynamic thermal diffusion equation given in Eq.( 6.5 ) can rewritten

as

Ny (6.10)
PrCyOy = Z[ij — Hi|Vj + hgk
j=1

where heat source due to volumetric heat generation can expressed as

hok = PrSpk (6.11)

If bond-based peridynamic thermal diffusion model is considered, the heat flow
density between two material points is assumed to be a function of the temperature

difference between only the interacting material points. Thus,

1 0z, (6.12)
Tk T 28(0; — 0p)

and

1 az, (6.13)
k= 280, - 6))

For microthermal potentials,

1k (6 — 60,)? (6.14)

22y -
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and

1k (6 — 6)? (6.15)
Zip = —m—————
22 - )

As a result, the corresponding heat flow densities in Eq.( 6.12 ) and Eq.( 6.13 ) can be

re-written as

. _K6—0 (6.16)
Y 2] - x
and
. _Egk_@j (6.17)
" 2|x — x;

where peridynamic microconductivity, K can be expressed for 2-Dimensional solution

domains as (Oterkus et al., 2014)

6k (6.18)
e

in which k is the heat conductivity, /4 is the thickness of the geometry, and § is the

horizon size.
6.3 Dual-horizon Peridynamics for Thermal Diffusion

The uniform discretization with constant horizon size is commonly used in
peridynamic simulations since it is simple to implement for the whole geometry.
However, for some problems, using finer discretization size at all locations inside the
solution domain can be computationally time consuming. Thus, it is essential to use
finer discretization size at locations with high temperature gradient and coarse
discretization size can be used elsewhere. Moreover, utilizing variable horizon sizes

can also be required either due to computational or problem specific reasons.
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Fig. 6-2 Non-uniform discretization with different horizon sizes.

It should be noted that in Eq.( 6.12 ) and Eq.( 6.13 ), the microthermal potential is zero
if one material point does not lie within the horizon of the other. As shown in Fig. 6-2,
although a material point associated with a smaller (blue) horizon may fall within the

horizon of another point with a larger (red) horizon, the reverse is not necessarily true.

Accordingly, the heat flow densities between material points xj and x; ,as given in

Eq.(6.16 ) and Eq.( 6.17 ) can be reformulated for the variable horizon case as

o =g KOOk (6.19)
V20—

K Qk—Qj (620)
I-ij—ajkilxk—_le

where the indicator functions are defined as

_{1,zkj £ 0 (621)
i =10,2,; = 0

: {1,zjk #0 (6.22)
%k =10,z = 0

and the peridynamic microconductivities for material points x; and x; are given by
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6k (6.23)
ﬂh6k3

Ky

6k (6.24)
K; = 3

where & and §; are the horizon sizes of the material points x; and x;, respectively.

6.4 Thermal Diffusion Case Studies

To demonstrate the capabilities of the current dual-horizon peridynamics thermal
diffusion formulation, three different problems are considered including a square plate
with temperature and no flux boundary conditions, a square plate under thermal shock
with insulated boundaries and a square plate with an insulated crack. Uniform or non-
uniform discretization was utilized with constant or variable horizon size. Peridynamic
predictions are compared with FEM results obtained by using ANSYS, a commercial
finite element software.

6.4.1 Plate with Temperature and No Flux Boundary Conditions

Ay

Fig. 6-3 Peridynamic model of the plate.

For the first example problem, an isotropic square plate with dimensions of length (L)
= width (W) = 0.01 m is considered (Fig. 6-3). The plate has a thickness of # = 0.001
m and is subjected to temperature boundary conditions of @(x = —0.005,y) = 0 °C
and O (x = 0.005,y) = 10 °C at the left and right edges, respectively. The upper and
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bottom boundaries are insulated boundaries. Boundary conditions are applied by
introducing fictitious regions, R. and following the approach described in Oterkus et
al., (2014). Specific heat capacity C,,, thermal conductivity k and mass density p are
specified as 64 J/kgK, 233 W/mK and 260 kg/m?, respectively.

The geometry is discretized in various forms in peridynamic model. The solution
domain is split into two equal regions as Region 1 and Region 2 from the vertical axis,

y. Mesh ratio k between these two regions is defined as

N (6.25)

k—AZ

where A; indicates the spacing between the material points in Region 1 and A,

indicates the spacing between the material points in Region 2.

The cases are evaluated with various horizon size combinations and horizon size ratio

m is defined as

5, (6.26)

m=6—2

where §; is the horizon size in Region 1 and 6§, is the horizon size in Region 2. The
relationship between horizon size and spacing is given as

61’ = TlAl' ( 6.27 )

where i = 1, 2 represents Regions 1 and 2, respectively, whereas n = 1,...,5 represents
the size the horizon. For example, if §, = 3A,, the horizon in Region2 has a size of

three material points in radius.
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6.4.1.1 Plate with Uniform Discretisation and Identical Horizon Sizes

1 &5

Fig. 6-4 Peridynamic model with uniform discretisation and identical horizon sizes.

In the first case, as shown in the Fig. 6-4, the plate is discretised uniformly with the
spacing between material points A;= A,= 1.0 X 10~ m in horizontal and vertical
directions. All material points have an identical horizon size (6; = §,). Therefore, k
and m parameters defined in Eq.( 6.25 ) and Eq.( 6.26 ) are both equal to 1. The
peridynamic solution of the temperature variations along the horizontal central axis
are obtained by using explicit time integration with a time step size of 1.0 X 1077 s,

and compared with the finite element method results by using PLANESS element in

ANSYS.
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= o

g —PD, 5,514,

g 4r PD, §,=2A, 1

E T %Tes
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——PD, 5,754, |

- ---ANSYS

0 . . . . . . . .
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Location-x (m)

Fig. 6-5 Temperature variations from peridynamic and FEM predictions aty = 0

whenk =1, m=1.

As can be seen in Fig. 6-5, the peridynamic predictions have a good agreement with

FEM results for all horizon sizes for uniform discretization and identical horizon sizes.
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6.4.1.2 Plate with Uniform Discretisation and Different Horizon Sizes

45

Fig. 6-6 Peridynamic model with uniform discretisation but different horizon sizes.

In order to investigate the capability of the dual-horizon concept, the square plate is
discretised with the same discretization parameters (A;= A,= 1.0 X 10~* m) as in the
former case. However, the horizon sizes in Regions 1 and 2 of the plate are different
(see Fig. 6-6). The horizon size of Region 1 is set twice big of the horizon size of

Region 2 (§; = 24,). Therefore, k and m parameters are equal to 1 and 2, respectively.

Temperature (°C)
@

——PD,5,=14,
4 b _ 4
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0 . . . . . . . . .
-0.005 -0.004 -0.003 -0.002 -0.001 0.000 0.001 0.002 0.003 0.004 0.005
Location-x (m)

Fig. 6-7 Temperature variations from PD and FEM predictions aty = 0 when k =
1, m=2.

The peridynamic solution of the temperature variations along horizontal central axis
are obtained by using explicit time integration with a time step size of 1.0 X 1077 s
and compared with FEM results as shown in Fig. 6-7. The peridynamic predictions
generally agree well with FEM. However, there is small difference at the interface of

Regions 1 and 2 for larger horizon sizes and increases as the horizon size increases.
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6.4.1.3 Plate with Non-uniform Discretisation and Identical Horizon Sizes

Fig. 6-8 Peridynamic model with non-uniform discretisation but identical horizon

sizes.

In the third case, the square plate has the same geometric parameters, material
properties and boundary conditions with the first case. Since refined discretisation
increases the computational cost, in order to examine the non-uniform discretisation
on heat conduction, the discretisation size in Region 2 is increased to a size of A,=
2.0 X 10™* m in horizontal and vertical directions whereas the discretisation size in
Region 1 is same as uniform cases which is A;= 1.0 X 10~* m (Fig. 6-8). The horizon
sizes remain the same in each region as the first uniform case. Therefore, k£ and m

parameters are equal to 0.5 and 1, respectively.
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Fig. 6-9 Temperature variations from PD and FEM predictions aty = 0 when k =
0.5, m=1.
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The peridynamic solution of the temperature variations along the horizontal central
axes are obtained by using explicit time integration with a time step size of
1.0 X 1077 s. As shown in Fig. 6-9, the PD predictions for the temperature variations

agree well with the FEM results for various horizon sizes.

6.4.1.4 Plate with Non-uniform Discretisation and Different Horizon Sizes

S

Fig. 6-10 Peridynamic model with non-uniform discretisation but different horizon

sizes.

In peridynamic numerical simulations computational time depends on not only the
discretisation size but also the number of material points within its horizon. The third
case shows a good agreement of peridynamic and FEM predictions for various horizon
sizes with a non-uniform discretisation. Therefore, this last case inherits the non-
uniform discretisation from the third case and the horizon side in Region 1 is reduced
to half of the horizon size in Region 2, i.e. 6, = 28; (see Fig. 6-10). Since A,= 2A,
and §, = 24, horizon in each region contains same number of material points within

their horizon. Moreover, k and m parameters are both equal to 0.5, respectively.
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Fig. 6-11 Temperature variations from PD and FEM predictions aty = 0 when
k =0.5 m=0.5.

As can be observed in the Fig. 6-11, the peridynamic numerical results mostly agree
well with the FEM results. However, as the horizon size grows, a slight difference is
observed at the interface of Regions 1 and 2.

6.4.2 Plate Under Thermal Shock with Insulated Boundaries

Ay

T L T
Fig. 6-12 Peridynamic model of the plate under thermal shock loading.

In the second example problem, an isotropic square plate with insulated boundaries is
subjected to a thermal shock loading on the left edge. The geometric parameters are
10 m in length (L) and width (W) with a thickness of (%) 1 m (see Fig. 6-12). The
specific heat capacity C,,, thermal conductivity k and mass density p are specified as
C,=11J/kgK, k=1 W/mk, and p = 1 kg/m>, respectively. The initial condition and

boundary conditions are stated as

O, y,t=0)=0°C (6.28)
and
0,x(x=15,y) = 0°C, t>0 (6.29)
0,y(x,y = 15) =0°C, t>0 (6.30)
O(x = —5,t) = 5te™ %, t>0 (6.31)
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6.4.2.1 Plate with Uniform Discretisation and Identical Horizon Sizes

In the first case, the peridynamic model has a uniform mesh with spacing A;= A,=
0.02 m and identical horizon sizes in each region (§; = &,). Thus, k and m parameters
are both equal to 1. The peridynamic solution of the temperature variations along
central horizontal axis are obtained by using explicit time integration with a time step

size of 5.0 X 10~ *s.

I3
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———PD, 5,24, 4
PD, §,=3A,
PD, 62=4A2 4
PD, §,=5A,
0.04 |- - - --ANSYS

o
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>
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&

Temperature (°C)
Temperature (°C)
o
8

Location-x (m) T Locationx(m)
(a) (b)
Fig. 6-13 Temperature variations from PD and FEM predictions when (a) t = 3 s, (b)
t=6saty = 0,k =1m=1

The results are assessed with various horizons and predicted at time t =3 sand t =6
s. Both peridynamic and FEM results are shown in Fig. 6-13. As can be observed, the
peridynamic model results agree well with FEM results for various horizons with

uniform discretisation.
6.4.2.2 Plate with Uniform Discretisation and Different Horizon Sizes

In the second case, the numerical model has the same mesh configuration with the first
case. In order to investigate the capability of the dual-horizon concept, horizon size in
Region 2 is doubled, i.e. §; = 26,. Therefore, k and m parameters are equal to 1 and
2, respectively. The second case adopts the identical time step with the former case
and the temperature variations along the central horizontal axis are plotted for time t

=3 sand t = 6 s for various horizons and compared with FEM results.
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Fig. 6-14 Temperature variations from PD and FEM predictions when (a) t =3 s, (b)

t=6saty=0 k=1 m=2.

As shown in Fig. 6-14, peridynamic results for various horizon sizes generally agree

well with FEM results. As the horizon size increases, a slight difference is observed at

the interface of Regions 1 and 2 atbotht =3 sand t =6 s.

6.4.2.3 Plate with Non-uniform Discretisation and Identical Horizon Sizes

In the third case, the geometry is discretized with non-uniform discretisation. The

spacing between material points in Region 2 is twice the spacing in Region 1, i.e. A;=

0.02 m, A,= 0.04 m. However, the horizon sizes are identical in each region, i.e. §; =

8,. Therefore, k and m parameters are equal to 0.5 and 1, respectively. The peridynamic

solution of the temperature variations along the horizontal central axis at times t =3 s

and t = 6 s are evaluated with explicit time integration, with a time step size of

5.0 X 10~* s and compared with FEM results.
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Fig. 6-15 Temperature variations from PD and FEM predictions when (a) t =3 s, (b)
t=6saty=0,k=05 m=1

As can be observed from Fig. 6-15, results from peridynamic and FEM predictions

for various horizons are in a good agreement.

6.4.2.4 Plate with Non-uniform Discretisation and Different Horizon Sizes

The fourth case inherits the same discretisation configuration with the third case,
i.e.A;= 0.02 m,A,= 0.04 m. However, the horizon size in Region 1 reduces to half
size of the horizon size in Region 2, i.e. 6, = 24§;. Since both £ and m parameters are
equal to 0.5, each horizon has identical number of material points. Same time step size
5.0 X 10™* s is adopted to obtain the temperature variations along the horizontal

central axis when time r=3 sand 7= 6 s.
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Fig. 6-16 Temperature variations from PD and FEM predictions when (a) t =3 s, (b)
t=6saty =0, k=05 m=0.5.

The peridynamic results mostly agree with FEM results for various horizon sizes (see
Fig. 6-16). However, with the horizon size increases in each region, a slight difference

is observed at the interface of Regions 1 and 2 for both =3 sand =6 s.

111



6.4.3 Square Plate with an Insulated Crack

Ay

150

Fig. 6-17 Peridynamic model of the plate with an insulated crack.

For the final example problem as shown in Fig. 6-17, the isotropic square plate is
considered with 2 cm in length (L), 2 cm in width (W) and 0.01 cm in thickness (4).
The plate has an insulated crack in the middle with a crack length of 2a = 1 cm. The
specific heat capacity C,,, thermal conductivity k and mass density p are specified as
C, =1 J/kgK , k = 1.14W/cmK and p = 1 kg/cm?, respectively. The plate is subjected

to the following initial and boundary conditions

L L w w (6.32)
= =0° el <y < — AP
0(xy,zt=0)=0°C S <x<, - <ys-
and
w W
9(X)?)t)=1000(:’ 0<X’_?, ):-100 OC’ t>0 (6.33)
(6.34)

L L
0,x<§,y,t>=O°C, 9,X<—§,y,t>=O°C, t>0
Since there is an insulated crack in the geometry, in order to evaluate the effect of dual
horizon concept and non-uniform discretization, the geometry is split into two regions
in perifynamic model as in the previous two numerical examples. Note that the

definition of regions (zones) in this numerical example is different than the previous
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two numerical examples. Moreover, k£ and m parameters are defined similarly as in the

previous two examples.

6.4.3.1 Plate with Uniform Discretisation and Identical Horizon Sizes

. ©
e

[Zone 2

Zone 1

Fig. 6-18 PD model with uniform discretisation and identical horizon sizes.

As shown in Fig. 6-18, in this initial case the plate is uniformly discretised (k = 1)
with 0.01 cm spacing and the same horizon size is used in both zones (m = 1) .The
peridynamic solution of the temperature variations along the vertical central axis is

evaluated with a time step size of 1.0 X 107> s for various horizon sizes and compared

with FEM results.
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Fig. 6-19 Temperature variations from PD and FEA predictions at x = 0 when k =1,

m=1.

As can be seen in Fig. 6-19, the numerical results from peridynamic analyses for

various horizon sizes with uniform discretisation agree well with FEM results.

113



6.4.3.2 Plate with Uniform Discretisation and Different Horizon Sizes

e

5

Zone 2

Zone 1

Fig. 6-20 PD model with uniform discretisation and different horizon sizes.

To investigate the dual-horizon size concept, this second case (see Fig. 6-20) utilizes
uniform discretization as in the first case (k = 1, A;= 0.01 cm, A,= 0.01 cm) and the
horizon size in Region 2 is doubled due to the existence of insulated crack in this region

(m = 0.5,6, = 26;). This case adopts the same time step size as the first case.
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Fig. 6-21 Temperature variations from PD and FEA predictions at x = 0 when k =1,
m=0.35.

As shown in Fig. 6-21, there is a good agreement between peridynamic and FEM
results obtained along the vertical central axis. However, as the horizon size increases,

a slight difference is observed at the interface between Region 1 and Region 2.
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6.4.3.3 Plate with Non-uniform Discretisation and Identical Horizon Sizes

Fig. 6-22 PD model with non-uniform discretisation and identical horizon sizes.

Since coarse mesh requires less computational time, in this third case, the spacing in
Region 1 is increased by two times compared with the first case (k =2, A=
0.02 cm, A,= 0.01 cm). To evaluate the effect of non-uniform discretization, this third
case (see Fig. 6-22) utilizes same horizon sizes in all regions (m = 1,6, = §;). The

time step size is the same as the first case.
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Fig. 6-23 Temperature variations from PD and FEM predictions at x = (0 when k =2,

m=1.

As can be observed in Fig. 6-23, the peridynamic predictions for the temperature
variations along the vertical central axis agree well with the FEM results for various

horizon sizes.
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6.4.3.4 Plate with Non-uniform Discretisation and Different Horizon Sizes
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Fig. 6-24 PD model with non-uniform discretisation and different horizon sizes.

If horizon contains more material points, the computational time will increase.
Therefore, in the last case, horizon size in Region 2 is reduced to half size compared
with the horizon size in Region 1 (m = 2,8; = 26,) as shown in Fig. 6-24. The
discretization size is the same as in the third case (k=2, A;= 0.02 cm, A,= 0.01 cm).
Since both mesh ratio, k and horizon size ratio, m have values of 2, horizons in

Regions 1 and 2 contain identical number of material points.
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Fig. 6-25 Temperature variations from PD and FEM predictions at x = () when k =2,

m=2.

As shown in Fig. 6-25, the perdynamic temperature predictions obtained along the
vertical central axis agree well with FEM results. As the horizon size increases, a small

difference is observed at the interface between Regions 1 and 2.
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6.5 Chapter Summary

In this chapter, the dual-horizon peridynamic formulation is presented for the analysis
of thermal diffusion problems. The framework enables the use of variable
discretisation and horizon sizes within the computational domain, offering significant
advantages in terms of computational efficiency for peridynamic simulations. To
illustrate the capabilities of the dual-horizon approach, three representative case
studies are examined: a square plate with imposed temperature and no-flux boundary
conditions, a square plate subjected to thermal shock loading, and a square plate

containing an insulated crack.

For each example, the solution domain is partitioned into two regions, each potentially
characterised by distinct discretisation and horizon sizes. A range of five different
horizon sizes is considered to systematically investigate the effect of horizon size on
the results. Across all cases, good agreement is observed between peridynamic
predictions and finite element method (FEM) solutions. However, when different
discretisation or horizon sizes are employed in separate regions, minor discrepancies
may arise at the interface, with the magnitude of these differences increasing as the
horizon size ratio becomes larger. Overall, the findings indicate that the proposed
Dual-Horizon Peridynamic formulation can be effectively applied to problems
involving variable discretisation and horizon size, offering a practical balance between

computational efficiency and accuracy.
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Chapter 7 Thermomechanical Phase Change Peridynamic Model for
Welding Analysis

7.1 Introduction

AM and welding are increasingly recognised as transformative technologies within
advanced manufacturing, offering flexibility in fabricating complex geometries.
However, these processes involve highly complex and transient thermomechanical
environments, where rapid heating and cooling, strong coupling between thermal and
mechanical responses, and phase transformations such as melting and solidification
collectively determine the final microstructure of manufactured components.
Consequently, the development of accurate and robust numerical models capable of
simulating these coupled multiphysics phenomena has become essential for optimising

process parameters and minimising costly trial-and-error experimentation.

The preceding chapters of this thesis have systematically developed a theoretical and
computational framework for peridynamic modelling of both mechanical and thermal
analysis. Building upon these developments, this chapter advances the peridynamic
approach to address the challenges posed by AM and welding, with focus on the
modelling of heat transfer and phase change scenarios. Furthermore, a central aspect
of any numerical model for AM or welding is the representation of the heat source.
Inaccuracies in the heat source model can lead to errors in predicting the transient
temperature field, which in turn propagate into mechanical analyses, affecting

displacement and residual stress predictions.

In this chapter, a new non-linear transient peridynamic model employing a variety of
heat source models is developed to predict the temperature distribution and
displacement variation. More importantly, as an essential physical phenomenon in heat
conduction, phase transformation is considered in the peridynamic model. The
importance of how the latent heat in the phase change can affect the temperature
distribution and displacement field is also emphasised. The simulation results are
compared with the FEM results. Close agreements are observed, which demonstrates
the capability of the proposed non-linear transient peridynamic model for

thermomechanical phase change analysis for AM and welding modelling.
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7.2 Peridynamic Thermomechanics Theory
7.2.1 Peridynamic Thermo-Mechanical Governing Equations

The bond-based thermomechanical heat transfer equation for material point at x is

given by (Oterkus et al., 2014)

p(X)C,0(x,t) = ffh AV’ + hy(x, t) (7.1)

where p is the density, C,, is the effective heat capacity, and @ is the temperature. The
term h, represents the volumetric heat generation. In welding and AM process, h, can

represent the heat raised from the heat source.

The heat flow density (Oterkus et al., 2014), f,,, in Eq.( 7.1 ) can be expressed as

i 7.2)
fon =K (7
4
where K is the micro-thermal conductivity, § = |x" — x| is the relative position
between material points x" and x in the reference configuration. For two-dimensional
structure, micro-thermal conductivity, k, is provided in Eq.( 6.18 ). For three-

dimensional structures, it is defined as (Oterkus et al., 2014)

6k (73)

K=
o4
where k is the thermal conductivity, and § is the horizon size.

In addition, the natation 7 in Eq. ( 7.2 ) represents the temperature difference between

a pair of material points x’ and x, and this can be obtained by
(x, x',t) = 0(x',t) — 0(x,t) (7.4)

On the other hand, the general form of the coupled thermo-elasticity in bond-based
peridynamics is provided by Oterkus et al. (2014). The equation of motion can be

expressed as
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(7.5)

p(x)i(x,t) = J. lc (s(u’ —wx —x)—a o _|2_ @I) Ii”: : il

] av’
+ b(x,t)

where c represents the bond constant and is provided in Eq.( 3.6 ) and Eq.( 3.7 ) for
two- and three-dimensional structure, respectively, s represents the stretch between the
two material points as given in Eq.( 3.5 ), «a is the coefficient of thermal expansion, u
is the displacement of material point x, and the term y represent its position in the

deformed configuration, thus y = x + u.

7.2.2 Description of Time Dependent Heat Sources

Heat source modelling can be classified as a point heat source, a planar distribution
heat source, and a volumetric distributed heat source. These sources are used to act on
the numerical model depending on the actual manufacturing process model and the

topographic characteristics of the weld.

7.2.2.1 Point Heat Source

In the case of welding arc/laser beam acting on the surface of thick workpieces, the arc
supplied with power Q can be treated as a point heat source. As shown in Fig. 7-1, a
point heat source, so-called a concentrated source, is considered for thermal analysis

in the peridynamic welding model.

Laser beam

Fig. 7-1 Point heat source moving on the surface of a thick workpiece.
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This is a simplified approximation of a physical situation but can provide a good
temperature prediction under certain conditions. Rosenthal (1941) provides the
solution for the temperature distribution of a steady state moving point heat source

acted on a semi-infinite plate as

Q _Tx-Ut+R) (7.6)

—_ = 2
0 =060 =5 R ¢

where 0, is the initial temperature of the workpieces, Q is the net heat input per unit
time (heat source power), R is the distance to the centre of the welding arc, v is the

speed of arc, t is current time and a is the thermal diffusivity.

As can be observed from Eq.( 7.6 ), the temperature field in the welding arc centre

tends to approach infinity when R —0, which does not have a physical meaning in the

real welding process. However, the analytical temperature distribution for the point
heat source model provides a reasonable temperature field prediction at the positions

of the substance far from the heat source (Christensen, 1965).

7.2.2.2 Gaussian Distribution Heat Source
The laser beam arc is a commonly used heat source in the selective laser melting
technique. The source model can be accurately represented by a Gaussian distribution

heat source as (Eagar and Tsai, 1983)

_(x—vxt)*+y? (7.7)
q(x,y,t) = qpe 207
and
G = Q (7.8)
™ 2mo?

where ¢, is the maximum heat density at the welding arc centre (x — vV * t,y), U is
the speed of the moving heat source, Q is the power of laser beam, and o is a

distribution parameter. q(x, y, t) represents the heat flux at a point (x, y) at time t.
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7.2.2.3 Volumetric Distribution Heat Source
In order to consider high-energy beam welding with heat flow penetration effect in the
physical manufacturing process, a volumetric distributed model, named as semi-

ellipsoidal heat source model, shown in Fig. 7-2 has been proposed by Goldak (1985).

Y
b

——

[rex

Fig. 7-2 Semi-ellipsoidal heat source model.

The mathematical form of heat source is given as (Goldak, 1985)

3(x—v*t)2_3y2 322> (7.9)

q(x,y,2,t) = qm exp (— 2 Z D

where ay,, by, and cj, are ellipsoidal heat source parameters as presented, q(x,y, z, t)
is heat flux at a point (x, y, z) at time t. q,, is the maximum heat density at the centre

of the welding arc which is given as (Goldak, 1985)

6,/Q (7.10)

T = ahthhT[\/E

where Q is the net heat input per unit time.

7.3 Peridynamic Thermomechanics Coupled with Phase Change
Heat transfer scenarios with temperature variation often come with phase change. The
characteristics of non-linearity, due to the multi-physical nature of the processes, make

phase transformation challenging.

Phase change refers to the physical process in which a material transitions between
different states, such as solid to liquid (melting) or liquid to solid (solidification). The
energy required for a material to undergo such a transition, without a temperature
change, is known as latent heat. During phase change, a material can absorb or release

large amounts of latent heat at the transformation temperature. In the context of
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welding and AM, where rapid heating and cooling occur, phase changes such as
melting and solidification are common. Therefore, it is essential to account for the
effects of latent heat in the peridynamic heat conduction equation to accurately model

the thermal response of materials exposed to the high-energy heat source.

In the present work, the latent heat L is implicitly considered by effective heat
capacity, in which the specific heat capacity of the material is artificially increased at
mushy zone. Mushy zone is a temperature interval around the phase change
temperature that the matter processes the phase transformation. The artificially
increased specific heat capacity in the mushy zone can be defined as
c, = Ly (7.11)
@l - é')s

where O is the substance solidification temperature and ©; is the substance fusion
temperature. With the considered latent heat at phase change scenarios, consequently,
the effective heat capacity C, in the bond-based peridynamic heat conduction equation

at different phases can be written as

Cs 0 < 0y solid phase (7.12)
C,=1Cp 0; <0 <0, solid/liquid phase
G 0 > 0, liquid phase

where Cs, C, and C; are the specific heat capacities of the substance at solidus, mushy
zone, and liquidus state, respectively. The effective heat capacity at each material point
is determined based on its local temperature. If the temperature at a material point is
below the melting point, the specific heat capacity corresponding to the solid phase is

used in the heat conduction equation.

In addition, the mechanical properties of most materials used in welding and
manufacturing are strongly affected by temperature. Specifically, for most metals,
increasing temperature leads to a reduction in material stiffness, while lower

temperatures result in higher stiffness.

To account for the temperature-dependent variation in material stiffness during arc
welding scenarios involving phase change, a non-local approach is adopted to model.

In the conventional bond-based peridynamics, the interaction between two material
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points x" and x is linked by a ‘bond’. The bond constant in terms of Young's Modulus,
E for a two- and three-dimensional structure as given by Eq.( 3.6 ) and Eq.( 3.7 ),
respectively. Without considering the temperature influence in the mechanical analysis,

the parameter c is a constant value.

However, in the thermomechanical phase change peridynamic model for welding,
Young’s modulus in the mechanical analysis is treated as a temperature-dependent
property, denoted E (0). As presented in Fig. 7-3, the bonds in the thermomechanical
formulation are referred to as “thermo-mechanical bonds,” in which the effect of

temperature on material stiffness is explicitly incorporated and can be defined as

follows
9E(6y) (7.13)
€000 = The
and
, 9E(0,,)
c(x , @x,) = W

-+ Phase interface

Solid Mi{gfly Zone ¥ jjquid

R 0, .- f/ff*;—ﬁ_\\
I Y/

Fig. 7-3 Peridynamic horizon and its thermal-mechanical bonds (green line).

Therefore, the effect of temperature on material stiffness is incorporated through the
bond constant. As the temperature varies at each material point and its neighbours, the
bond constant is updated accordingly. Thus, the bond constant between two material

points can be expressed as
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c(x,0,) +c(x',0,) (7.14)

c(x,x',0,,0,,) = 5

With the temperature-dependent bond constant, the equation of motion for coupled

thermo-elasticity in bond-based peridynamics can be re-written as

. , (7.15)
p(x)it(x, t) =f c(x,x',0,,0,)s(u —ux"—x)
O+0"\ y —y l
-« - av' + b(x,t
2 )Iy -l (0

where all terms are as previously defined, and the temperature dependence of the bond

constant directly links the local thermal environment to the mechanical response.

7.4 Application of Initial and Boundary Conditions

The initial condition of the temperature distribution can be specified at time t = 0
O(x,t =0) =0y(x) (7.16)

where 0, is the initial temperature. If pre-heat treatment is adapted in the

manufacturing process, 6 is defined as pre-heating temperature.

The boundary conditions in the heat conduction can be specified as temperature, heat

flux, and the heat generation.

7.4.1 Temperature

In peridynamics, the application of prescribed boundary temperatures differs from the
approaches used in CCM. Rather than imposing the boundary temperature as a direct
point load or distributed load on the physical boundary, peridynamics employs a
fictitious layer, denoted as R, which is introduced outside the actual material region,

R; and shown in Fig. 7-4 (Oterkus et al., 2014; Madenci and Oterkus, 2016).
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Fig. 7-4 Material real domain, R, and its fictitious domain, R..

As illustrated in Fig. 7-4, the specified boundary temperature, @, (xp, t), along the real
material surface is imposed within the fictitious layer by assigning temperature values
to the corresponding material points in R.. Specifically, the temperature at a fictitious

material point, X, is determined using the following relationship (Oterkus et al., 2014),
Or(xf,t + At) = 20, (xp, t + At) — O(x, ¢ + Ab) (7.17)

where Oy fand @ are the temperature of material points in the fictitious region R and
real region R;, respectively. Note that the material points at x; and x are

symmetrically located with respect to the location of the boundary xj,. In the case of

0, (xp, t) = 0, this represents the insulated boundary condition.

7.4.2 Heat Flux

The implementation of the heat flux from the heat source in the peridynamic heat
transfer equation can be achieved by evaluating the rate of heat flow into the surface
area and transforming it into a volumetric heat generation term, h, (x, t). Therefore,
the heat flux is applied as a volumetric heat source at the relevant material points and

can be expressed as (Oterkus et al., 2014)

qg(x,t)'n (7.18)

ha(x) = ===
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where q(x, t) is the heat flux, Ax is the spacing between material points and n is the

normal vector to the surface.

7.4.3 Time-dependent Point Heat Source

For the numerical implementation of a moving point heat source on the workpiece, a
birth-and-death procedure for material points is introduced in this work. Specifically,
the point heat source is represented as a time-dependent volumetric heat generation,
applied only to selected material points at each time step as the source moves along its
prescribed path. When the heat source coincides with a particular material point, that
point is assigned the corresponding volumetric heat generation. As the heat source
advances and moves away from a given material point, the heat generation at that point

1s set to zero.

t = 1At
o e
2Ax
e e
t = 2At
i L N ]
2Ax
e e
t = 3At
i oo
2Ax
e e
t=-At
. :
e | e
2Ax
e | e
t = NAt
i e e
2Ax
TR
L sl

Ly

Fig. 7-5 Demonstration of implementing moving point heat source in numerical

model.

The principle for implementing the moving point heat source in the numerical study is

illustrated in Fig. 7-5. The total length of the welding track is denoted as L, which is
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discretised into N material points. The total time required for the welding arc to travel
the entire welding track is tr. Accordingly, the time interval during which the heat

source remains active on each material point can be obtained as

tr (7.19)
At = —
N

7.5 Numerical Results

7.5.1 Stefan's Solidification Problem

Classical Stefan's solidification problem (Jiji, 2009) is considered first. This is a
moving boundary problem that describes the evolution of the interface x; between two
phases as the material undergoes a phase change. As presented in Fig. 7-6, the scenario
assumes that the entire substance initially remains at the fusion temperature 0,. At time
t = 0s, the temperature at the left edge of the material is suddenly reduced and
maintained at @, < 6. initiating the solidification process. As a result, a solidification
front begins to propagate from the cooled boundary, while the remainder of the

substance remains in the liquid phase at the fusion temperature.

o

liquid 6,

Solid

o

Xi

Fig. 7-6 Physical illustration of Stefan's solidification problem.

The Stefan solidification problem was reproduced from the ANSYS Verification
Manual (ANSYS, Inc. 2013). In this scenario, the solidification process of a liquid
region is examined, as demonstrated in Fig. 7-7(a). The region has a length of L =

0.01 m and width of W = 0.01 m.

128



Initially, the entire liquid field is maintained at the fusion temperature, @; = 0 °C. At
t = 0s, the temperature at the left edge (x = —%.) is suddenly subjected to a free
surface temperature @, = —5 °C, triggering the onset of solidification. As a result, the
interface between the solid and liquid phases x; begins to move inward from the cooled

boundary. The thermal conductivity and density of the material are specified as k =

0.6 W/m°C and p = 1000 kg/m3, respectively.

R
A
= |74
R. R, o, .
S e L _— «3Ax>
(a) (b)

Fig. 7-7 Stefan's solidification problem illustration (a) geometry and (b) peridynamic

discretization.

In this study, the substance is assumed to undergo phase change within the

transformation temperature range
O, =—-1C<0<6,=0°C (7.20)

The latent heat L associated with this phase change is taken as 42000 J/kg. Hence,

the effective heat capacity in the mushy zone is calculated as

(7.21)

Ly
Cin =
mn Ql _ QS

= 42000 J/kg°C

Consequently, the specific heat capacity at different temperatures is arranged as
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Cs = 4200 J/kg°C 0 < —1°C (7.22)
C, =4Cp =42000]J/kg°’C —1°C<@®<0°C
C, = 4200 J/kg°C 0>0°C

Fig. 7-7(b) presents the numerical setup, the peridynamic discretization uses a spacing
of Ax = L/100, with the horizon chosen as § = 34x. Time step size of At =
3 X 1072 s is adopted.

The initial temperature is set to the fusion temperature, i.e.,
O(x,y,t=0)=0;,=0°C (7.23)

To implement the temperature boundary condition, a fictitious boundary R, with one

. . . L . .
horizon size is added at (x = — E')’ where the temperature is prescribed as

6(x=—%,y,t>=@b=—5°c (7.24)

The evolution of the temperature distribution is computed numerically using the
peridynamic formulation and compared with finite element results obtained in ANSYS.
The FEM model employed PLANESS elements with a uniform mesh size of Ax =
0.001 m. The same material properties and boundary conditions as in the peridynamic
model were applied. The transient analysis was performed up to t = 900 s using
automatic time stepping. The mesh size was determined following a convergence
check, which confirmed that further refinement produced negligible changes in the

thermal field. The case setup follows the ANSYS Verification Manual (ANSYSS, Inc.
2013).

As shown in Fig. 7-8, the temperature profiles along the central axis (x,y = 0) at
selected time intervals (t = 300s,t = 600s,t = 900s) demonstrate good

agreement between the peridynamic and FEM solutions.
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Fig. 7-8 Temperature comparison along axial axis at (x,y = 0).
A comparison of the temperature variation as a function of time at the point (x =
%, y = 0) between the peridynamic and FEM models is shown in Fig. 7-9. For the time

between 787.82 and 797.82 s, the temperature at x = %, y = 0 reaches O, = —1°C

which is the time that substance completely solidifies.

Temperature(°C)
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Time(s)

Fig. 7-9 Temperature variation at (x = %,y =0).

Further, the comparison of temperature distributions across the plate at 600 s for both
the peridynamic and FEM models is illustrated Fig. 7-10, the temperature field across
the plate predicted by the peridynamic model agrees with the FEM model.
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Fig. 7-10 Temperature distribution at t = 600s (a) peridynamic (b) FEM model.

To further illustrate the effect of latent heat during phase change, the Stefan
solidification problem is also solved without accounting for latent heat effects. The
resulting temperature distribution along the central axis (x,y = 0) att =900 s is
presented in Fig. 7-11. As observed, the inclusion of latent heat leads to differences in
the predicted temperature profile. This is because latent heat is the energy absorbed or
released during a phase change without a corresponding change in temperature.

Neglecting latent heat results in inaccurate temperature predictions.
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Fig. 7-11 Temperature distribution at (x,y = 0) att = 900 s.

7.5.2 Neumann's Solidification Problem
Neumann (Jiji, 2009) extends the classical Stefan problem to cases where the initial
temperature of the substance, 6;, exceeds the fusion temperature, 0;. As shown in Fig.

7-12, the material initially remains at a uniform temperature ;, and then the left
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boundary at x = — % is suddenly maintained at @, < 0,. This abrupt cooling initiates

solidification at the boundary, and the solid-liquid interface propagates into the liquid
phase.

For the numerical study, the geometry and material properties are identical to those in
the Stefan problem (see Fig. 7-7(a)): a plate of length L = 0.01 m and width of W =
0.01 m, with k = 0.6 W/m°C, and p = 1000 kg/m3.

o

Solid Liquid 0;

Fig. 7-12 Physical illustration of Neumann's solidification problem.

The initial temperature throughout the domain is set to &; = 2 °C, , which is above the

melting point. The left edge is then maintained at ), = —5 °C, causing the phase
boundary to advance from x = — % The phase change is accounted for using the same

latent heat treatment as in the previous section (Eq.( 7.22)).

As shown in Fig. 7-7(b), discretization employs a mesh size of Ax = L/100 with a

horizon size of § = 3Ax, and atime step At = 3 X 107%s.

The initial temperature is applied as
O(x,y,t=0)=0;,=2°C (7.25)

Fictitious boundary R, with one horizon size is added to apply the temperature

boundary condition, i.e.
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L
@(x=—§,y,t)=0b=—5°c (726)

The Neumann solidification problem was also implemented in ANSYS using
PLANESS elements. A uniform mesh size of Ax = 0.001 m was adopted following
a convergence test with element sizes of 0.002 m, 0.001 m, and 0.0005 m. The transient

thermal analysis was performed up to t = 1500 s using automatic time stepping.

Temperature distributions along the central axis (x,y = 0) at several time intervals
(t = 300s,t = 600s,t = 900 s) are shown in Fig. 7-13. The results show a linear
temperature profile between — 5 °C and — 1 °C (the solid region), and a smooth, non-
linear transition in the phase change region between — 1 °C and 0 °C, as the latent heat

is accounted for phase change at this temperature interval.

e 7
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x PDt=900s
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X - Location(m) %107

Fig. 7-13 Temperature comparison along (x,y = 0) at several time intervals.

. . . L
Time-dependent temperature responses at two material points, M (x = —%,y =

0) and N (x = %, y = 0) , are compared in Fig. 7-14. As can be observed, the
temperature at point M drops sharply at the onset, as it is closer to the cooling boundary

and is reached by the moving solidification front sooner than point N.

The temperature at N has a quick drop between 2 and 0 °C while the curvature tends
to smooth between 0 and -1 °C due to the latent heat effect. When the temperature is
below -1 °C, the substance completely solidifies. Hence, the temperature variation has

the similar curvature with the temperature between 2 and 0 °C.
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Fig. 7-15 Temperature distribution att = 600 s (a) peridynamic (b) FEM model.

Fig. 7-15 presents the spatial temperature distribution at 600 s as predicted by both the
peridynamic and FEM models. As seen, the peridynamic predictions closely match the

FEM results

7.5.3 Thermal Analysis for a Plate with a Moving Point Heat Source

An isotropic square plate with dimensions L = W = 0.1 m and thickness H =
0.01 m is presented in Fig. 7-16. The plate is subjected to a traveling point heat source
with power @ = 3200 W, which is initially located at the centre of the plate and
moves towards to the positive x coordinate direction with a velocity of v =
0.005 m/s. The specific heat capacity, thermal conductivity and density are specified
as C, = 460]/kg, k = 50 W/m°C, and p = 7820 kg/m3, respectively.
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Fig. 7-16 Point heat source model illustration (a) geometry and (b) peridynamic

discretization.

As shown in Fig. 7-16(b), the material points are discretised with a uniform spacing
Ax = 0.0004 m in x and y directions, respectively. The time step size is specified as

At = 5 x 10™*s. The horizon is chosen as § = 34x.

The FEM model was implemented in ANSYS using PLANESS elements. However,
the transient thermal analysis does not directly incorporate a concentrated point heat
source; instead, the standard practice is to approximate the point source as a volumetric
heat generation applied to the elements. A similar approach is adopted in the
peridynamic model, where the point source is converted into a volumetric heat
generation distributed over four material points surrounding the source location, as

depicted Fig. 7-17.

-- y

¥

240x

Fig. 7-17 Point heat source converted to heat generation.
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The time-dependent point heat source is implemented using the birth-death procedure
for material points, as described in Section 7.4.3. The volumetric heat generation

assigned to each material point is obtained as

Q (7.27)
4Ax2H

hy(x,t) =

The initial temperature of the plate is stated as
Op(x,y,t =0)=0°C (7.28)

To validate the peridynamic implementation, the temperature distribution along the
central axis (x,y = 0) at t =4 s is compared with the analytical solution of

Rosenthal (1941) and FEM results, as shown in Fig. 7-18.
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Fig. 7-18 Temperature variation at along (x,y = 0) att = 4 s.

As expected from Eq.( 7.6 ), the analytical solution predicts a singularity at the centre

of the heat source (@ approach infinity when R —0), which is not physically realized

in numerical simulations. Both peridynamic and FEM results closely agree with the

analytical solution at locations away from the moving source.

It should be noted that the analytical model assumes instantaneous travel of the point
heat source to any location, while the numerical implementation distributes the heat as
volumetric generation over discrete material points. Consequently, the predicted
temperature field is sensitive to the discretization parameters. The discrepancy

between numerical and analytical models can be reduced by employing finer spatial
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and temporal discretization, though this comes at the expense of increased

computational effort.

7.5.4 Thermal Analysis for a Block with a Moving 3D Ellipsoidal Heat Source

To further demonstrate the capability of the proposed peridynamic formulation for
welding heat conduction analysis, a three-dimensional moving ellipsoidal heat source
is applied to a rectangular metal block. As shown in Fig. 7-19, the block has a
dimension of L = W = 0.1 m with a thickness of H = 0.01 m. The ellipsoidal heat
source with Q = 3200 W, moves with a speed of ¥ = 0.005 m/s in positive x-
direction from the centre of the block. The thermal conductivity and density of the

material are setas k = 50 W/m°C and p = 7820 kg/m3, respectively.

Fig. 7-19 Geometrical illustration of ellipsoidal heat source acting on a rectangular

block.

The parameters for the ellipsoidal heat source are defined as

ap = 0.001 m (7.29)
¢, = 0.0005m

The block is discretised with uniform spacing 4x = 4 X 10™* min x, y and z
directions. The horizon is chosen as § = 3A4x. Time step size of At = 5 X 107*s

1s used.

The initial temperature is set as

O(x,y,t =0)=0, =0°C (7.30)
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7.5.4.1 Without Phase Change

In the first simulation, the effect of phase change is neglected, and the specific heat
capacity is set as C, =490]/kg. For comparison, a finite element model is
constructed using ANSYS Solid 70 elements with mesh sizes of 0.001 m in x and y-

directions, and 0.0001 m in the z-direction.

The temperature profile along the heat source path (x,y =0,z= g) att = 4sis

presented in Fig. 7-20 for both peridynamic and FEM simulations. The developed
peridynamic heat conduction model for ellipsoidal heat source is closely agreed with

the FEM model.
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Fig. 7-20 Temperature variation at (x,y = 0,z = g) att = 4s.

The spatial temperature distributions predicted by the peridynamic and FEM models
are also illustrated in Fig. 7-21. As observed, the predicted temperature distribution on

the block has a good agreement with the FEM model.
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Fig. 7-21 Temperature distribution att = 4 s (a) peridynamic (b) FEM model.

7.5.4.2 Considering Phase Change

In second investigation for ellipsoidal heat source model, phase change is considered.
The mushy zone for metal is considered as &; = 1385 °C < @ < ©; = 1450 °C. The
total latent heat required for the phase change completed is 260 k] /kg.

Therefore, the effective heat capacity for metal at mushy zone is defined as

Ly (7.31)

Cin =
mn Ql _ QS

= 4000 J/kg°C

Thus, the effective specific heat capacity at different temperatures can be expressed as

Cs =490 ]/kg°C 0 < 1385 °C (7.32)
C, =4, =4000]/kg°C 1385°C < 6 < 1450 °C
C; = 490 ] /kg°C 0 > 1450 °C

Fig. 7-22 compares the temperature distribution along (x,y =0,z= g) when the

phase change is considered in the heat conduction model. The corresponding spatial

temperature distribution is shown in Fig. 7-23.

As can be observed from the figures, when the phase change is considered in the model,
the predicted temperature field shows a slow variation at the phase change temperature
interval. The temperature is changed to steep variation again when the phase change
has been completed. During the phase change, a large amount of energy is absorbed
without significant temperature variation. As a result, the predicted maximum
temperature in the phase change case is lower when compared with the case the phase

change is neglected.
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Fig. 7-22 Temperature variation at (x,y = 0,z = g)at t=4s.
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Fig. 7-23 Temperature distribution at t = 4 s with phase change considered in

peridynamic model.

7.5.5 Thermomechanical Analysis for a Plate with Moving 2D Gaussian Heat Source

Laser beam arcs are commonly employed in welding and AM processes, and their
thermal effects are often modelled using a moving Gaussian heat source. To
demonstrate the capability of the peridynamic approach for thermomechanical phase

change analysis in such contexts, a two-dimensional plate subjected to a moving

Gaussian heat source is investigated.

As shown in Fig. 7-24(a), plate has L = 0.1 m in length, W = 0.1 m in width, and
athickness of H = 0.01 m. The Gaussian heat source, with a power of Q = 3200 W

is moving with a speed of ¥ = 0.025 m/s in positive x-direction from the centre of
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the plate. The thermal conductivity, density and thermal expansion coefficient are
specified as k = 50 W/m°C, p = 7820 kg/m3 anda = 13 x 107¢°C™1,

y Y y

[y
h 4

I
(@) (b)

Fig. 7-24 Gaussian heat source model illustration (a) geometry and (b) peridynamic

discretization.

Fig. 7-24(b) presents the peridynamic discretization model. The plate is meshed with
a uniform spacing of Ax = 4 X 10~* m with a horizon size of § = 3A4x. The time

step size is takenas At = 1 x 1077 s.

The Gaussian heat source distribution parameter is selected as ¢ = 0.0007 m. The
proposed Gaussian distributed heat flux is converted to volumetric heat generation for

peridynamic implementation as

4Gy (733)

hqe(x,y,t) A

The initial temperature condition is specified as
Ox,y,t=0)=0;=0°C (7.34)

7.5.5.1 Without Phase Change

In the first scenario, latent heat effects are neglected, and the specific heat capacity is
fixed at C, = 490]/kg. The Young's Modulus is specified as E = 200 GPa. To
verify temperature and displacement fields in the peridynamic model, a finite element
model is constructed using ANSYS PLANE223 elements with a mesh size 4 =
0.001 m in x and y -directions. PLANE223 is a two-dimensional coupled-field
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element that models both thermal conduction and structural response, and is therefore

adapted for verification in FEM.

Fig. 7-25 and Fig. 7-26 compare the temperature field and displacement field at t =

0.08 s along the heat source moving track (x,y = 0), respectively. Both temperature
and displacement results show close agreement between peridynamic and FEM
models.
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Fig. 7-25 Temperature variation along (x,y = 0)att = 0.08s.
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Fig. 7-26 Displacement variation along (x,y = 0)att = 0.08s.

Fig. 7-27 presents the temperature field of the plate in peridynamic and FEM models.
The FEM model results agree with the temperature field results predicted by the

peridynamic model.
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Fig. 7-27 Temperature field distribution att = 0.08 s (a) peridynamic (b) FEM

model.

7.5.5.2 Considering Phase Change

In the second case, phase change is considered. The latent heat in phase transformation
is implicitly applied in effective heat capacity and same as stated in Eq. ( 7.32 ). The
temperature-dependent Young's Modulus E () is provided in Table 7-1.

Table 7-1 Temperature-dependent Young's Modulus

0 (K) E(0) (GPa)
298 200
473 187
673 172
873 157
973 141
1673 106
1573 10

Fig. 7-28 compares the temperature distribution along (x,y = 0) att = 0.08 s with
and without phase change. The inclusion of latent heat in the phase change scenario
leads to a lower maximum temperature and a plateau in the temperature profile within

the phase change interval, which is characteristic of energy absorption during melting.

The horizontal displacement field along (x,y = 0) is presented in Fig. 7-29. In

addition, Fig. 7-30(a) and (b) present the two-dimensional displacement fields when
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phase change is considered and omitted, respectively. It can be noticed that when the

effect of temperature is considered for Young's Modulus, it has a significant effect on

the displacement field.
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Fig. 7-28 Temperature variation along (x,y = 0)att = 0.08s.
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Fig. 7-29 Horizontal displacement variation along (x,y = 0)att = 0.08s.
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Fig. 7-30 Horizontal displacement field at t = 0.08 s(a) With phase change (b)

without phase change.

7.6 Chapter Summary

In this chapter, a new non-linear transient peridynamic model has been proposed for
the thermomechanical analysis of the welding and AM process. Phase change, as a
common physical process in heat transfer scenarios, is considered in the model.
Several classical phase change problems, i.e., Stefan's and Neumann's solidification
problems, are simulated by the proposed model. In addition, a wide range of commonly
utilised time-dependent heat source models, i.e., Point, Gaussian, and volumetric
distributed heat source models, which are related to the different methods in the
manufacturing process, have been considered in the peridynamic heat transfer model
and thermoelastic analysis. The predicted thermal and mechanical fields have been
verified with the finite element model. The peridynamic predicted results have a good
agreement with the FEM model results. The phase change is a critical phenomenon in
heat transfer. This is highlighted in the Gaussian and ellipsoidal heat source model.
The effect of phase change on temperature and displacement fields is presented.
Without considering the latent heat in the phase transformation can result in inaccurate

temperature and displacement fields.

146



Chapter 8 Nonlocal Modelling of Multiphase Flow Wetting and
Thermo-capillary Flow by Using Peridynamic Differential Operator
8.1 Introduction

The AM and welding processes are governed not only by mechanical and thermal
interactions but also by fluid dynamics and interfacial phenomena at the microscale.
Thermo-capillary effect, often referred to as the Marangoni effect, which arises from
temperature-dependent surface tension gradients. In AM and welding, this effect drives
fluid flow within melt pools, strongly influencing pool shape, solidification behaviour,
microstructural evolution, and ultimately the mechanical integrity of the fabricated
components. Accurately capturing these multiphysics interactions is therefore

essential for the predictive modelling of AM and welding processes.

Recognising the importance of interfacial phenomena and multiphase interactions, this
chapter extends the peridynamic modelling framework by leveraging the Peridynamic
Differential Operator (PDDO) to address nonlocal multiphase flow motion and the
thermo-capillary effects characteristic of AM and welding environments. Interfaces in
multiphase flows are affected by surface tension, which is further complicated by the
fact that temperature gradients induce tangential surface tension at the fluid interface.
These effects also govern the wetting behaviour of fluids in contact with solid
boundaries, which makes it difficult to accurately describe wetting phenomena. By
utilising the PDDO, which expresses derivatives of any order through integral
equations, the fundamental governing equations for multiphase fluid motion are

reformulated in a nonlocal context.

In this chapter, a novel nonlocal peridynamic approach is developed for modelling
multiphase fluid motion, explicitly incorporating thermal effects on surface tension.
The nonlocal form of the continuum surface force (CSF) model is presented to
accurately describe surface tension forces in both normal and tangential directions.
Furthermore, to address inaccuracies in unit normal vectors at three-phase contact
regions, an improved treatment is introduced. The validity and accuracy of the
proposed methodology are demonstrated through several benchmark cases, including
square droplet deformation, surface wetting, and droplet migration under thermo-
capillary flow. The results confirm that the developed nonlocal model can capture the

surface tension and thermo-capillary effects in multiphase fluid dynamics, thereby
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providing a robust tool for the simulation of phenomena in AM and welding

applications.

8.2 The Governing Equations of Motion for Multiphase Fluid Flow
Fluid dynamics in multiphase fluid flow is governed by continuity equation, Navier—

Stokes equation, and energy equation.

8.2.1 Mass Conservation
The mass conservation in multiphase fluid flow motion can be described by the

continuity equation as

dp _ (8.1)

in which p is density, v is velocity, and ¢ is time.

8.2.2 Momentum Conservation

The Navier-Stokes equation in Lagrangian description has the form of (Brackbill et al.,

1992)

v 2
pE=V-0'+b+FS (8.2)

where b represents the body force, and F is the surface tension force. The divergence

of stress V - o can be represented as (Gao and Oterkus, 2019)
V-e=V-(—pl+1) (83)

in which p is the hydrostatic pressure, and I is the second order unit tensor. The shear-

rate tensor T can be defined as (Gao and Oterkus, 2019)
T=2ué& (84)

in which p is the dynamic viscosity, and € is the shear strain rate. The divergence of

the shear-rate tensor can be represented as (Gao and Oterkus, 2019)

Vet=V- Qué) =& V2u+2uV-& (8.5)
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If the dynamic viscosity u is assumed as a constant after substituting Eq.( 8.3 ) -
Eq.( 8.5 ) into Eq. ( 8.2 ), the Navier-Stokes equation can be re-written as (Gao and
Oterkus, 2019)

ov (8.6)

pE=—7p+2ul7-é+b+Fs

In addition, the shear strain rate tensor & can be expressed as (Gao and Oterkus, 2019)

Vv+ ¥R (8.7)

&€=

N| =

If the fluid is incompressible, Eq.( 8.7 ) can be further simplified by continuity
equation. As a result, the Navier-Stokes equation for incompressible fluid flow
becomes (Hopp-Hirschler et al., 2018)

v (8.8)

pE=—|7p+/,tAv+b+FS

The continuum surface force method (Brackbill et al., 1992) is adopted for modelling
the surface tension force in multiphase fluid flow as the pressure jump occurred at the
phase interface. The surface tension force is applied as a volumetric force and is
distributed along a transition band (Fig. 8-1) along the interface. A weight function is
acted on the transition band area to convert surface tension f into force per unit

volume F¢ (Morris, 2000). This can be represented as (Brackbill et al., 1992)
Fs=f551g (8.9)

where 8,4 is the weight function for surface tension that represents the magnitude

distribution of the surface tension force at the transition band, which has a peak at the
interface and decays with the distance away from the interface. The weight function,

814, 1s further described in section 8.3.2.3.

The volumetric surface tension force Fg comprises the contributions from normal and

tangential directions (Morris, 2000), which can be expressed as

Fs=(fsn+fst)0g=Fon+Fg, (8.10)
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Fig. 8-1 The transition band and unit normal vectors between two fluids.
The normal component of surface tension force F,, represents the surface tension

force due to the local curvature at the transition band area. This can be defined as
FS,TL = )/I%ﬁlgé'lg ( 8.11 )

in which y is the temperature dependent surface tension coefficient in N/m, K is the
interface curvature, and 7, is the unit normal vector at the interface between two

different fluids.

The temperature dependent surface tension coefficient can be written as (Hopp-

Hirschler et al., 2018)

(8.12)

. . ady(T) . . . . .
in which % is the surface tension temperature coefficient (Meier et al., 2021), T is

the current temperature, and y, is the surface tension coefficient at reference

temperature T, .

As the surface tension coefficient y is a function of temperature, the surface tension
force in tangential direction can occur due to temperature gradient and lead to
Marangoni convection (Hopp-Hirschler et al., 2018). Therefore, the term, F ¢, on the
right-hand side of Eq.( 8.10 ) represents the Marangoni force and acts tangentially to

the interface, which drives the fluid from low surface tension region to high tension
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regions. The tangential component of the surface tension force is given as (Morris,

2000)
Fyr = Vsydy, (8.13)
where Vs is the surface gradient, and V5y can be represented as (Russell et al., 2018)

dy(T) (8.14)
Vsy = ——V,T
sY dar_ 'S
in which VT is the surface temperature gradient and can be expressed (Russell et al.,

2018)
VsT = [VT — (VT - fiyy) iy | (8.15)
As aresult, the Marangoni force can be written as

_ay(T)

(8.16)
Fsi= dT

[vT — (VT - 7 5)74]604
8.2.3 Equation of State

Assuming the fluid is barotropic, an additional equation is required to uncouple the
mass and momentum equations (Batchelor, 2000). In this study, the incompressible
fluid flow motion is constrained by a weakly compressible equation of state, whose

density is only a function of pressure. A typical equation of state is given as (Motris et

al., 1997)

2 a
PoCo [(p) ] (8.17)
= —) —1f+
p p o Po

in which p; is the initial density, ¢y is the numerical speed of sound, and a is the
adiabatic exponent. p, is the background pressure which prevents a negative pressure
field and provides tension stabilities (Colagrossi and Landrini, 2003). As the density
changes and it is updated by using continuity equation given in Eq.( 8.1 ). The pressure
field is calculated by the change between the updated density, p and its initial density,
Po 1n the equation of state (Eq.( 8.17 )). In two-phase fluid flow motion, the equation
of state for each type of fluid flow can be expressed as (Zhang et al., 2015)
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2 @ 8.18)
Po,iCo, P (
p bl (o)),

4] Po,l

and

2 % 8.19)
Po,gCo, P (
e

g Po,g

where the subscripts [ and g denote the denser and lighter fluids, respectively.

The adiabatic exponent a defines the degree of incompressibility and pressure of fluid
response to density perturbations. As density perturbations increase, a high adiabatic
exponent can cause progressively large error in the pressure field. For laminar flow

with low Reynolds numbers, the adiabatic exponent is taken as one (a; = ay =1) to

keep the error in density and pressure proportional (Morris et al., 1997).

In weakly compressible approach, the density variation Ap in each fluid domain need

to be (Meier et al., 2021)

A 2
7p<<1 (8.20)

This criterion 1s checked at the end of the simulation in each case.

The numerical speed of sound, ¢, in Eq.( 8.17 ) needs to be chosen large enough to
limit the density change threshold up to 1% (Meier et al., 2021). On the other hand,
the numerical stability is dependent on the time step size. The numerical speed of
sound should not be too large to make the time step excessively small (Morris et al.,

1997).

In this study, as the fluid domain is composed of multiphase flows with different
density ratios, the numerical speed of the sound is estimated by the highest pressure

change Ap in the denser fluid as (Grenier et al., 2013)

Ap (8.21)
Co,g > E
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For gravity-based flow, the maximum pressure variation in Eq.( 8.21 ) is estimated by

(Morris et al., 1997)
Ap = pogH (8.22)

where g is the force of gravity, and H is the reference depth.

For surface tension-driven flows, the pressure changes in Eq.( 8.21 ) is approximated
by using Young—Laplace equation (Breinlinger et al., 2013). The work carried out by

the pressure on an interfacial area can be represented as

dA (823)
A=y,

in which dV and dA are infinitely small volume and area at the interface, respectively.

For a two-dimensional circular droplet, the pressure change at the interfacial area can

be computed as

Ay A dAdr 1 (8.24)
P=Yow = Yarav TR

where 7 is the radius and R is the characteristic radius of droplet curvature. The surface

tension coefficient, y, is calculated from Eq.( 8.12).

On the other hand, the numerical speed of sound in lighter fluid is calculated as (Zhang

etal., 2015)
8.25
o = P0,1C6,1%g ( )
9 alpo,g

in which ¢y ; is obtained from Eq.( 8.21 ).

Note that by comparing the numerical speed of sound in denser in Eq.( 8.21 ) and

lighter fluids in Eq.( 8.25), it can be found that the numerical speed of sound ¢, 4 in
lighter fluid is higher than the numerical speed of sound ¢y ; in denser fluid when the

density ratio pg;/po,g is significant.
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8.2.4 Energy Equation
The local form of total energy in a fluid system can be represented as (Incropera et al.,

1996)

0 1 8.26
ap(e+§|v|2)=—V-q+S—|7-(pv)+|7-(‘r-v)+p(b-v) ( )
in which e is the internal energy per unit mass, % |v|? is the kinetic energy per unit

mass, and S is the source term. The first term on right-hand side, V - g, is the net rate
of heat addition due to conduction. The third term on the right-hand side, V - (pv),
represents the rate of doing work against pressure. The term V - (T - v) represents the
rate of doing work against viscous force, and the term p(b - v) represents the rate of

doing work against the body force.

Using product rule within the divergence operator (V -), the rate of doing work against

pressure and viscous force can be rewritten as
V-(pv) =v-Vp+pV-v (8.27)
and
V-tv)y)=.("Qv)+v-(V-1) (8.28)

The mechanical energy equation can be derived from the momentum equation by

multiplying velocity with momentum equation which leads to (Incropera et al., 1996)

—lplvlz=—(Vp)-v+(|7-r)-v+(pb).v (829)

Using Eq.( 8.27 ) - Eq.( 8.28 ), mechanical energy equation in Eq.( 8.29 ) can be

rewritten as (Incropera et al., 1996)

01
ot 2

1
plv|? +\7'<§pv|v|2) (8.30)
=—V-(pv)+pV-v+V-(v-v) —:(V Qv) + (pb)

v
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In this study, the fluid is assumed to be incompressible for which the speed of fluid
flow is lower than the compressible flow. Therefore, the mechanical energy can be
subtracted from the total energy equation and leads to the internal energy equation as

(Incropera et al., 1996)

dpe .
%z—V-q+S—p\7-v+r:(|7®v) (831)

Defining internal energy as (Incropera et al., 1996)
e=CpT (8.32)

in which C, is the specific heat capacity and substituting Eq.( 8.32 ) into Eq.( 8.31)

leads to (Incropera et al., 1996)

dpC,T 8.33
patp =—V-q+S—-pV-v+T.(VQRv) ( )

The heat flux g based on Fourier’s Law can be represented as (Incropera et al., 1996)
q =—kVT (8.34)

where k is the thermal conductivity.

In the case of sudden expansion or compression phenomenon, the term pV v
represents energy for the cooling or heating a fluid internally (Bird, 2002). Since the
focus of this study is on multiphase flow and there are no significant sudden volume
changes in the fluid domain, this term is omitted from the energy equation. On the
other hand, the term t: (V @ v) representing the motion energy is irreversibly
exchanged into thermal energy, and it is considerable if the speed of the fluid is
relatively high (Bird, 2002). As the current study focuses on the multi-phase flow
motion at a low Reynolds number, this term is also not considered in the energy
equation. The thermal conductivity k is assumed to be a constant number as a result,
the internal energy can be rewritten as
M (8.35)

P — kv2T +S
ot
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8.3 PDDO Governing Equations

Peridynamic differential operator (PDDO) can express partial differentials of any order
by integral equations. Therefore, the governing equations for multiphase fluid motion,
such as the Navier—Stokes equations and energy equations, can be reformulated in
terms of integral equations. The mathematical formulations of peridynamic functions

are introduced in section 3.3.

8.3.1 Non-local Form of Continuity Equation

Velocity divergence in local form can be written as

- v (8.36)
7w =) 0vi(x) _ 0v1(x) | 9vp(x)

. 0x; dx, dx,
=1

The partial derivative terms in velocity divergence can be replaced by the first order

peridynamic function as

vy (x)
ox;

(8.37)

j 912 (®) (v, (x) — vy (x)) AV’
Hy

v, (x)
dx,

= [ g2 ©Ow.0) - v av
Hy
Therefore, the velocity divergence in non-local form can be constructed as

v = [ @@ o@D - ) ar (838)

Hy v, (x") — vy(x)

=| 91® (v(x)—v(x))aV’

As a result, the non-local form of mass conservation can be represented as

dp(x)
ot

(8.39)

=—p®) | 91 (v(x) - v(x))aV’
Hy

where the first order peridynamic functions g4 () are represented as

156



o= (10) (10

97+ (&)

8.3.2 Non-local Form of Terms in Navier-Stokes Equation
As discussed in Section 8.2.2, the Navier-Stokes equation incorporates terms for
pressure gradient, viscosity, surface tension, and body forces. The non-local form of

each term is expressed in this session.

8.3.2.1 Pressure Gradient

The pressure gradient term V7 - (—pI) in local form can be written as

ap(x) (8.41)
700 = | gy
dx,

Correspondingly, by using the first order peridynamic function, its nonlocal form can

be expressed as

g%"(f)) v (842)

Vp(x) = Hx(p(x ) —p(x)) <g§,1(§)

= | (p(x)—px))g.1(Dav’

Hy

8.3.2.2 Viscous Force

Local form of the velocity gradient can be written as

9 v, (x) 0v,(x) (8.43)
7 Qv =| 3 | 0@ v =], o

dx, dx, dx,

The velocity gradient matrix can be transformed into its non-local form by using

peridynamic function which can be expressed as
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10 8.44
7@ v = [ (ﬁtlg‘g)«vax')—vﬂx» W, () = vy av )
Hy \I1

= | 1) -v®)" av’
Hy

=] 1) ® (v(x) —v(x)) dV’
Hy

Local form of Laplacian operator is defined by the divergence of the gradient as

[6171 (%) avlz(x) (8.45)

Mx) =7 (V@) =Vevw) -V = I[ ale(x) 63 xzz(x)Jl

(r 9]
— tr ‘ 0x,2 6x16x2\‘<v1(x))

\lax?;xz Gi; J / )

Hence, the non-local form Laplacian operator can be constructed as

62 62 ( 8.46 )
0x,2  0x,0x, (vl (x))
A =
v(x) =tr 52 52 v, (%)

0x,0x,  0x,2

_ NI TN,
= fo tr(92) (41 — wa )

in which g, (§) is represented as

92°(®) 97" @ (8.47)

92(8) = l nE g2

Subsequently, the non-local form of viscous force in a compact form can be written as

HAv(x) = p f tr(g2() (v(x) —v(x)) AV’ (8.48)
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8.3.2.3 Surface Tension Force in Normal Direction

The classical form of normal surface tension Fg, represented in terms of surface
tension coefficient y, unit normal vector 7,,, weight function §;; and interface
curvature K is denoted in Eq.( 8.11 ). To construct the normal surface tension in a non-
local form, it is first necessary to construct the fluid interface normal vector, 7,4, and

curvature, K, in a nonlocal form.

According to the continuous surface force method (Brackbill et al., 1992), as the colour
function has a unit jump at the interface, it can be used to identify and track the position
of the interface. The normal vectors between fluid and gas interface can be represented

by the gradient of the colour function, Vc;4(x), as

dcg(x) (8.49)
d , 1° :
7260~ sty | = J, ()= 00) (G5 )
dx,

= | (e - y0) g1’

X

where ¢;4(x) is the colour function at material point x. The difference of colour
function between a pair of material points can be represented by

n _ (Lifx and x'are in same fluid domain (8.50)
Cg(x) = c1g(x) = {0, otherwise

In numerical simulations, if there is a large density difference between two fluids at
the interface, a weighted-density approach is used as an alternative method to
determine the difference of colour function (Adami et al., 2010), 1.e.

2px o : . (8.51)
cg(&) = cig(x) = m,lfx and x'are in same fluid domain

0 otherwise

where p, is the density of material point located at x, and p,s is density of material

point located at x'.
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Following the approach purposed by Morris (2000), the unit normal vector between
two fluid domains, 1, (x), as shown in Fig. 8-1, then can be formulated by using the

gradient of colour function in Eq.( 8.49 ) as

Veg(x) Ju, (clg(x’) - clg(x)) g1(&)dv’ (8.52)
||7C1g(x)| |fo (clg(x’) — ¢y (x)) 91(f)dV'|

ﬁlg (x) =

In addition, the weight function for surface tension in Eq.( 8.11 ) in continuum surface
force method is taken as the magnitude of the gradient of the colour function (Motris,

2000) and its non-local form is provided as (Gao and Oterkus, 2020)

8.53
815(%) = Ve (0| = ( )

f (cig(x) = cig(®) gl(f)dv"

Hy

the weight function for surface tension is used to convert the surface tension force into

volumetric force, and distribute the force along the fluid interface transition band area.

Gas-Liquid Interface Gas

. (x)
\ Liquid ?f ff/l/lg

fip(x) 7 4

’/Bi‘,\l‘

Fig. 8-2 Two fluids come into contact at a solid surface, and the triple line region at
the point of contact.

Triple Line Region

Fig. 8-2 shows a droplet surrounded by a gaseous fluid and resting on a solid surface.
The unit normal vectors, 7,4 (x), from Eq.( 8.52 ) represent the normal direction of the
interface between liquid and gaseous fluid, and they can be accurately computed when
material points in each fluid domain fully interact with their family material. However,
at the triple line region, where the liquid—gas interface meets the solid-liquid interface
in Fig. 8-2, the material points in the fluid domain close to the solid wall do not have
enough family material points to contribute to the integral equation, unit normal
vectors between fluids calculated according to Eq.( 8.52 ) can be corrupted. Moreover,

as the curvature is calculated from the divergence of unit normal vectors at the
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interface, these corrupted unit normal vectors result in erroneous curvature

calculations.

Therefore, consideration is required when computing unit normal vectors at the triple
line region. In this study, the corrupted unit normal vectors at this region are corrected
through a normal prescription scheme (Breinlinger et al., 2013).

The unit normal vectors at the triple line region, f;4 o (%), as shown in Fig. 8-3 can

be prescribed as (Breinlinger et al., 2013)
Ny cor(X) = Ae(x) sinb,q — figp(x)cosb,, (8.54)

in which #i, is the projection of unit normal vector, 7,4 (x), between the denser fluid
and the lighter fluid on the solid-fluid interface, fis¢(x) is the unit normal vector
between solid phase and fluid phase, and 6, is the equilibrium contact angle.

Triple Line Region

Gas-Liquid Interface Gas /‘ f p ﬁlg(x) /
Liquid f/‘

Fig. 8-3 Unit normal vector Mg cor(X) at the triple line region and ordinary
computed unit normal vector ;5 (x).

When a droplet is in contact with a solid surface, the balance between the adhesive and
cohesive forces in the droplet forms the equilibrium contact angle 6,,. Eq.( 8.54 )

prescribes unit normal vectors at the triple line region point in the direction of the

interface normal that forms the equilibrium contact angle 6,,. If a droplet comes into

contact with a solid surface and forms an instantaneous contact angle 6 not equal to

the equilibrium contact angle 6., the curvature obtained by the divergence of the
prescribed unit normal vectors ;4 o (x) Will drive the interface to move until the

droplet forms an equilibrium contact angle with the solid interface (Breinlinger et al.,

2013).
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Following a similar approach introduced in continuum surface force method, the unit
normal vector between solid phase and fluid phase, fis¢(x) ,in Eq.( 8.54 ), can be

formulated as (Meier et al., 2021)

_ Vesr (x) (8.55)

in which Vcg¢(x) is the gradient of the colour function between fluid and solid phase.

Similarly, its non-local form can be represented as

9o (8.56)
; , 1O g
o kac’éb ) = ], (s = @) <§flg> v

dx,

= [ (er) ey ) g @av

X

where c;¢(x) is the colour function at material point x for distinguishing fluid and

solid phase. The difference of colour function between a pair of material points can be

defined as

, 1,if x and x’ are in same phase 8.57
Csr () = C5p(X) = {0. otherwise b ( :

Consequently, the projection of unit normal vector between liquid and gaseous fluid
on the solid-fluid interface, 7i;(x), in Eq.( 8.54 ) can be computed as (Breinlinger et

al., 2013)

ﬁt(x) B ﬁlg (x) — (ﬁ-lg(x) . ﬁsf(x)) ﬁsf(x) (8.58)

i@ = (g @) iy (1)) iy ()

where fi;(x) is provided in Eq.( 8.55 ) and #i;4(x) is provided in Eq.( 8.52).

The ordinary computed unit normal vectors fi,4(x) from Eq.( 8.52 ) and prescribed
unit normal vectors ;4 ., (%) at the triple line region from Eq.( 8.54 ) are represented

in Fig. 8-3. Since the calculation of fi;4 ., (x) depends on the equilibrium contact
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angle 6,4, when current contact angle 6 is greatly different from equilibrium contact
angle 6,4, a sharp transition can be observed between fi,4(x) and 7,4 o (x). This
sharp transition will cause a discontinuity when computing the curvature. As a result,
a smoothed unit normal correction scheme is implemented here to ensure a smooth
transition from prescribed unit normal vectors to ordinary computed unit normal

vectors, the smoothed interface unit normal vectors can be obtained as

fw,xﬁlg (x) + (1 - fw,x)ﬁlg,cor(x) ( 8.59 )
|fw,xﬁlg(x) + (1 - fw,x)ﬁlg,cor(x)|

n(x) =

where 74 cor-(X) can be calculated from Eq. ( 8.52 ) and #,4,(x) can be calculated
from Eq. ( 8.54 ). The parameter f,, , is a transition function and determines the

influence of the prescribed normal vector at the triple line region which depends on

the distance to the wall. It is provided as

4 0 d, <0 (8.60)
fx = W/dmax if 0<d, < dmax
1 dW > dmax

in which d,, is the distance between fluid material points and the solid-fluid interface

The d;q5 1n Eq.( 8.60 ) is denoted as the maximum smooth distance from the wall, in
this work, it is taken as 2Ax, where Ax is the spacing between material point. The
schematic diagram of the smoothed interface unit normal vectors calculated from
Eq.( 8.59 ) is shown in Fig. 8-4. Section 8.5.2 gives a numerical example of the

effectiveness of this smoothing correction method.

Gas-Liquid Interface Gas

Fig. 8-4 Corrected unit normal vectors distributed along the fluid interface.

Subsequently, the surface curvature ¥ in Eq.( 8.11 ) then can be calculated via the

divergence of the smoothed interface unit normal vector, i.e.
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#0) = 7 iy =~ | 3@ (R, ) i) (RO
x

As suggested in Morris' work (2020), curvature directly computed from Eq.( 8.61 )
can lead to errors at the edges of the transition region, as the smoothed interface unit
normal vectors are relatively small and can have erroneous directions when they are
away from the interface. Therefore, the surface curvature cannot be approximated
accurately. This problem can be addressed by introducing selection criteria to
determine if a ‘reliable’ normal vector can be obtained for divergence computation. A
function at each material point is used to distinguish ‘reliable’ normal vectors that can

contribute to the curvature approximation in Eq.( 8.61 ) (Morris, 2000), i.e.

N. = {Lif |fW.xﬁlg (x) + (1 - fw,x)ﬁlg,cor(x)l > € ( 8.62 )
* , otherwise
and
fw,xﬁlg (x) + (1 - fw,x)ﬁlg,cor(x) N =1 ( 8.63 )
n;g(x) = |fw,xﬁlg (x) + (1 - fw,x)ﬁlg,cor(x)| , othgrwise
0 )

where € < 1 is a user-defined tolerance (Morris, 2000). As the unit normal vectors
below the tolerance are not contributed to the curvature computation, an intermediate
curvature estimation needs to be used to sum over reliable normal vectors (Motris,

2000). As a result, the curvature in Eq.( 8.61 ) can be recomputed as

#00) == [ min (N, N)gi - (Rl ) — Ry) av (5O

Hy
On the other side, considering material points at the edge of the phase transition region,
whose family material points are within the horizon but outside the transition region,
the interface unit normal vectors at these family material points are zeros. As a result,
a correction factor is used to consider the truncated material points, and it can be

represented as (Gao and Oterkus, 2020)
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Sy, min (N, Nyw(§) v’ (8.65)
- Jy 0@ adv’

in which w(§) is the weight function as represented in Eq.( 3.28 ).

Based on Eq.( 8.59 ),the smoothed interface unit normal vectors,fi;, (x) obtained for
material points at each fluid domain always point from themselves to the fluid interface.
Considering a pair of material points which x is in one fluid domain and x’ is in the
other fluid domain, the direction of their unit normal vectors will opposite with each
other. Therefore, a phase normal coefficient <p,’§' is added to reverse the unit normal
vector direction if it is opposite from the unit normal vector at material point x (Zhang

et al., 2015). Hence, the interface curvature in this study is computed as

fr(x)  Jy min (N, N g1(8) - (03 1y o — Tjy ) av' (8:60)

l%**(x) = . ’
fo min (Ny, Nx)w(f) av
Jy 0@ av’
with
X _ {—1, if x’ is not in the same fluid domain with x (8.67)
¥x 1, if x'isin the same fluid domain with x

Finally, the non-local form of the normal surface tension can be expressed as

Fspn =y (00;5(x)6,4(x) (8.68)

~ Kk

in which y is given by Eq.( 8.12 ), £**(x) is the curvature as described in Eq.( 8.66 ),
7, (x) is the smoothed unit normal vector between liquid-gas interface as described
in Eq. ( 8.59 ) and §,,(x) is weight function for surface tension as described in
Eq.( 8.53).

8.3.2.4 Marangoni Force

The classical form of the Marangoni force is given in Eq.( 8.16).
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To evaluate the non-local form of Marangoni force, the temperature gradient VT in
non-local form needs to be developed. The temperature gradient VT in local form is

given as

aT (x) (8.69)
dx,

T (x)
0x,

VT(x) =

Therefore, the non-local form of the temperature gradient by using the peridynamic

function can be expressed as

_ N T CIAg B , (8.70)
7 = | -1 (931 (8) av' = fom T)g1(§)dv
As a result, the non-local form of Marangoni force can be represented as
dy(T 8.71
Foo = D rr00) - (77 - 7,0 7, (0] 81,0 (870

where VT (x) is calculated from Eq.( 8.70 ), 7, (x) is calculated from Eq.( 8.59 ), and
8,4 is calculated from Eq.( 8.53 ).

8.3.3 Thermal Model
The classical form of the energy equation is given in Eq.( 8.35 ). The local form of the

divergence of the heat flux in the equation can be written as

aT (x) (8.72)
_ B a 0 ax, | 9%T(x) 0%T(x)
700 =~k (5 5| arce —"‘( 3, a)

dx,

The second order partial derivative for temperature can be represented by second order

peridynamic function as

2

(8.73)

T 20 , ,
ox2 fH g; T') —T(x))dv
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- [ w@aE) -ranar
Hy

As a result, the Lagrangian description of internal energy equation in non-local form

can be written as

0C, (x)T(x) _ (8.74)

p(x) 3t

k| tr(g2(®))(T(x) —Tx)dv' + S(x)

8.4 Numerical Implementation

The non-local form of governing equations is solved numerically. The fluid domain is
discretized into a series of material points, and each material point carries information
such as material density, viscosity, pressure, velocity, displacement, and temperature.
Since PDDO inherits analogous concepts with peridynamics theory, the long-range
force is considered in the simulation domain representing a material point interacting
with a series of family material points within a horizon. As shown in Fig. 8-5, x}'
represents the current coordinate of the material point i at time t = t,,, and material
point i interacts with family material points j at x}" within a range of §. With the
updated Lagrangian description, the location of the material points changes at every
time step. Therefore, a material point may interact with different family material points
attime t = t, 4 and the peridynamics function needs to be reconstructed based on the

updated configuration.

= t‘n+1

X

Fig. 8-5 Location of material point x}* with its family members at t = t,, and the
updated location at t = t, 4.
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8.4.1 Discretized Form of Governing Equations by Using PDDO

To ensure the mass conservation is maintained at the fluid domain, each material point
in the simulation domain is assigned with an initial mass after the simulation domain
is discretized. The mass at each material point remains same during simulation, as the
density field of the material point is updated by continuity equation, the volume of
material point can be updated correspondingly at each time step as

v = Eri (8.75)
Pi
where m; is the initial mass of material point i, and p]* is the density at the current

time step.
The discretized form of the peridynamic function up to second order is given as

g%o(fg. ) (8.76)

91(8%) = <gi’1(€?j)

and

(&) 93t (& l (8.77)

ny |9
92(8%) lg%l(fﬁ-) 95°(8%)

in which the relative distance vector between a pair of material points i and j can be
represented as
(8.78)

1Tl
n _ .n_ .n_ |%U
ij = % xl_[zn]
$ij

where superscript n represents the current time step.

As introduced in Eq.( 3.31 ), peridynamic function up to second order is represented

as
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g (8)) (a0t
882 (%)) agy"
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(8.79)

in which coefficient matrix in Eq.( 8.79 ) is obtained by numerically solving Eq.(3.32)

~~

as

1 0 0 O
Ni 0 2 0 0
D elghe = o 1 0
j=1 lO 0 0 1
0 0 0 O

with
(adi" adi” At A" ads™h
n n n n n
ag;  ads a a)f  ad
n n n n n
[a"] =qag) apy ajg ajy  axg
ayt” ait” all” all" al”
29" 223" a2y" a2)" aZl"J

[c"]
(&'@Y @@ @)ED @)@
ny0 ny 3 ny0 ny4 ny1 ny 2 na1 n\3
&) @& &) E) &) GE) E) G
ny1 ny1 ny1 ny2 ny2 ny0 ns2 na1
=& E) GEH)E) G EH G ED
ny1 ny 2 ny1 ny3 ny 2 ny1 ns 2 n~ 2
&) ED G EH E@)ED EHED
ny2 ny1 ny2 ny2 ny3 n\0 n\3 na1
&) &) G E) G E) GG

and

[
w([g5]) = exp

GRIGHN

GHIGHE
n 3 zn 0
®"’@®"
n\3 ny1
GHYGS)

E®"'@"’

(8.80)

(8.81)

(8.82)

(8.83)

where V" is the volume of family material point j, N; represents the number of family

material points of material point i.
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As a study investigated by Madenci et al. (2019), horizon size in the numerical
simulation is chosen as maximum order of differentiation plus one. Since, the
maximum order of differentiation is two, the horizon size is chosen as 3Ax, in which

Ax is spacing between material points at the initial configuration.

The discretized form of the continuity equation is given as

. (8.84)
Pt =pf - p?NZ[gl(s‘E (o =)l
j=1

in which p/"*! is the updated density, At is the time step size, and term v! and

v}‘represent the velocity field of material point i and j, respectively.

In addition, the pressure field of the material material point i at time t = t,, is

computed by equation of state as expressed in Eq.( 8.17 ) as

pt = Po.iCo Ki)ai - 1] + Do (8.85)
' a; Po,i ot

in which p;* is the pressure at the current time step and py ; is the background pressure.

The background pressure in this study is estimated as

Po,iCo (8.86)

4]

po'i = 005 X

Depending on the type of the fluid motion, the numerical speed of sound cg; of
material points in denser and lighter fluid phase is estimated by using Eq.( 8.21 ) and
Eq.( 8.25), respectively.

After the pressure field at each material point is computed by Eq.( 8.85 ), the
discretized form of the pressure gradient in momentum equation then can be

represented as

N; (8.87)
N (R PR G
j=1

The discretized form of the viscous force in momentum equation can be computed as
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(8.88)

i b} Zul o (92(80)) (o) —w0)| v
The discretized form of the normal surface tension force in momentum equation is

calculated from Eq.( 8.68 ) as

F," (8.89)

e 4

Zjvz‘l min(N,-, N;) [gl(f?j) ' ((p{ﬁ’{g? — iy ;" z [
Z?’:ilmin( o Ni) w(83)V; Cig}
Loy

— ") g1 (&) V"

in which y is the temperature dependent surface tension coefficient and is computed

from Eq.( 8.12 ). The term clg;l - clg?represents the difference of colour index

between a pair of material points, and go{ is the phase normal coefficient. nlg is the

smoothed interface unit normal, at time t = t,, this can be expressed as

e T fw,iﬁlg:-1 + (1 - fw,i)ﬁlg,cor? ( 8-90)

|fw,iﬁlg? + (1 - fw,i)ﬁlg,cor?

nlgi =

where f,, ; is the transition function. The ordinary computed unit normal vector, ﬁlg:l,

is calculated as

~ n Z?H[(Clg] Cig, )91(f )] v (8.91)
n
lgl |Z [(Clg Clg )gl(f )] Vn|

and the prescribed unit normal vector at triple line region , 1; g,wr?, is calculated as
-~ n ~n . o N
g cor, = Ny SinBeq — Ngf, COSBeq (8.92)

with
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fig " = L [(Csf? _ Csf?) 91(53)] v (8.93)
sf; |Z?’=i1 [(Csf;.l — csf:l) 91(5{})] V;n|

and

i (2) = (g () - gy () ) gy () (854)

g () = (g () - Ay () ) gy )

Al (%) =

in which the term csf;? - csf? represents the difference of colour index for

distinguishing fluid and solid phase between a pair of material points. 6,4 is a user

predefined equilibrium contact angle before simulation.

N; is the unit normal index and is calculated as

S e (8.95)

N; = {1 if |fw1nlg +(1 le)nl.QCOT
0 otherwise

The discretized form of the Marangoni force in momentum equation then can be

calculated from Eq.( 8.71) as

(8.96)

Pt = dV(T) [Z N TAGHI

Z[(T,ﬂ - 1) g1 (58]
j=1

N;

) ﬁ?g? ﬁ?g? z [(Clg} - Clg )gl(f )] v

j=1

in which &0
dT

is the surface tension temperature coefficient as shown in Eq.( 8.12).

As a result, the discretized form of momentum equation can be represented as
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1 1 8.97
al*t = — [—Vpi” +ui v} + Fp '+ F s.t?] o b, e
l

p;

where a'*! is the updated acceleration at t = t,,,.; and b; is the body force density.

When the density ratio between two fluids is relatively large, the discontinuity of the
fluid density and viscosity field will present at the transition band of the interface. As
PDDO is a non-local approach, the discontinuity will cause stability issues. In order to
reduce numerical oscillations and prevent material points’ penetration during the

simulation, the density and viscosity coefficient can be smoothed by harmonic means

as
w2007 (898)
Pi - pin+1 +pjr_1+1
and
. 2pp; (8.99)
oty

The harmonic means for density and viscosity treatment is validated for multiphase
flow fluid motion at low Reynold’s number. In the case of the flow motion with high
Reynold’s number, additional numerical treatments are required (Gao and Oterkus,

2020). In this study, only the flow with low Reynold’s number is investigated.

The discretized form of the internal energy equation can be represented as

L (8.100)
Tin+1 = Tin + W z k:l [tT (QZ(EZ)) (Tjn - Tin)] an + Si
i Dl

j=1

Similarly, to prevent numerical oscillation in energy equation and to have a smooth
transition of the heat conductivity coefficient at the interface region, the coefficient k}*

in Eq.( 8.100 ) is also smoothed by harmonic means as

2kik; (8.101)
Yokt kg

173



8.4.2 Boundary Conditions

As shown in Fig. 8-6, the boundary conditions are implemented through fictitious
layers in the numerical simulation, which is widely adopted in peridynamic studies
(Oterkus et al., 2014). Three variables are considered in boundaries, which are velocity,

pressure, and temperature.

Fluid 1 § Fluid 2
T
E
. - iy
//. H\\ //-‘-’ M\\\ //—-_—EH"'\
/ \ N o -
/ E*’-% V o /‘j \ /e fem N
Wall 3 TN Sik -' ! "
. \ 5) K+ f { o |
Fictious Layer « i e i 9 & i
NG L&, > \\\ ,/J

Fig. 8-6 Schematic drawing of interface between two fluids and the boundary
material points.

Slip or no-slip velocity boundary conditions are used at wall boundary and
implemented by material points in fictitious layers. The velocities of the material
points in fictitious layers are computed based on the velocities of material points in the
fluid domain. Different methods for implementing these boundary conditions are used
in numerical simulations, such as mirroring material points at boundary approach as
suggested in Oterkus et al., (2014), so that the variable at a material point in the
fictitious layers is mirrored by a material point at the fluid domain. Since the fluid
particles are moving during the simulation, instead of mirroring the moving fluid
particles, a simplified boundary implementation using weighted average approach is
used to keep the material points in the fictitious region at fixed locations (Gao and

Oterkus, 2020).

For slip or no-slip velocity boundary conditions, the velocity of material point i in a

fictitious layer at the current time step n is calculated as

S w0 (1) v + Tp2, (€5 vl (8.102)
Ziv; wO(EE’) + Z}fil wo (§i

n o __
v = 2"7wall - Pw

with
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1 for no — slip boundary condition (8.103)

Pw = {—1 for slip boundary condition with v,,,;; = 0

in which v,,,,;; is the wall velocity, the subscripts j and k represent the family material
points of i in fluid 1 and fluid 2, respectively. The superscript N; and N, represents the
material point i in the fictitious layer has N; family material points in fluid 1 and N,
family material points in fluid 2, respectively. The velocity of family material points

of i in fluid 1 and fluid 2 at current time step n are denoted by v}* and v}, respectively.

The weight function in Eq.( 8.102 ) between a pair of material points is computed as

(Colagrossi and Landrini, 2003)
|EZ‘ z (8.104)
|\ TAx
e —e™?

ny) —
wo (7 Ax3(1 — 10e-9)

Without considering the gravity force, the pressure of material points in fictitious
layers are calculated from the pressure of the material points in fluid domain as (Gao

and Oterkus, 2020)

o _ D% w0(§5) 1] + EiZ, 00§50 i (8.105)
L wo(8) + T, wo (€

in which p}" and pj; are the pressure of family material points of i in fluid 1 and fluid

2 at current time step n.

Dirichlet and Neuman temperature boundary conditions are also implemented by
material points in fictitious layers. With the analogous ideas of computing velocity and
pressure for material points at fictitious layers, the temperature of material point i at

current time step n is computed from its family material points temperature Tj" and Ty

in fluid 1 and fluid 2 as
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Sty wo(§5) T + Tty 0o GR T (8.106)
T wo(§1) + Zpz, wo(Eh,

Tin = 2Twau — @7

with

_ { 1 for Dirichlet boundary condition (8.107)
$r = —1 for Neuman boundary condition with T,,,,;; = 0

in which T,,,4;; 1s the wall temperature.

8.4.3 Time Stepping Scheme

The momentum equation is integrated explicitly in time using Velocity Verlet scheme

as (Adami et al., 2013)

1 A
vt =l + > (! + al)At (8.108)

and the displacement field at each material point in fluid domain is updated by

1 8.109
ulMt = ul' + vIAt + - alAt? ( )
2
As a result, the updated location of the material points can be found as
aftt = x? +ultt (8.110)

in which the superscript 0 represents at time step n = 0.

To maintain the numerical stability in time integration, the time step size At is
constrained by the Courant—Friedrichs—Lewy (CFL) condition (Courant et al., 1928).
The CFL condition in time integration is based on several conditions. The time step

size for numerical speed of sound condition is (Adami et al., 2013)

Aty < 0.25 (8.111)

Cmax + |vmax|

in which ¢4, 1s the maximum numerical speed of sound among all phases. The
estimation of numerical speed of sound in each fluid phase is provided in Eq.( 8.21)

and Eq.( 8.25), and v,,,4, 1s the maximum velocity in the simulation domain.
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The time step size for viscous condition is constrained as (Adami et al., 2013)

Ax? (8.112)

&

max

At, < 0.125

where (pi) is the maximum kinematic viscosity among all phases.
0" max

The time step size for body force condition is applied as (Adami et al., 2013)

' (8.113)
At, <025 |—
g

in which g is the gravity acceleration.

The time step size for surface tension condition is implemented as (Adami et al., 2010)

o Axd (8.114)

2y

At < 0.25

In addition, the time step size in thermal analysis is restricted as (Cleary, 1988)

poCplx? (8.115)

At, < 0.125
t= k

In processing the numerical time integration, the time step size is chosen as the

minimum of above criteria as

At = min{At,, At,, Aty, Atgp, At} (8.116)

8.4.4 Material Points Shifting Technique

Since distorted material points induce stability issues in processing the numerical
integration (Xu et al., 2009), the position shifting technique is applied at material
points at each time step in fluid domain to avoid clustering problems. The application
of position shifting technique is introduced in Gao and Oterkus, (2020) for PDDO. At
each time step, the displacement for each material point in fluid domain u?** is

corrected by a shifted distance (Au?*1)*, which is represented as
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@*H* = ultt + (Ault)” (8.117)
The shifting distance is defined as (Gao and Oterkus, 2020)
(Muf*t)* = CaypsrU; (8.118)

in which U; is the displacement shifting vector. To ensure the shifted distance can
sufficiently prevent the instability and do not cause accuracy issues, the constant C is
typically taken between 0.01-0.1. The shifting magnitude aypgr is set as (Xu et al.,
2009)

AmpsT = VmaxAt (8.119)

In addition, the displacement shifting vector in Eq.( 8.118 ) is provided as (Gao and
Oterkus, 2020)

Ny =2 (8.120)
i = 29Sij
175

The summation of distance vectors in Eq.( 8.120 ) describes the anisotropy of the

-2
spacing between material points, and i‘ 5 1s used as a weight function to evaluate the
ij

influence from material point j. The averaged material points spacing Ei inEq.(8.120)

is defined as (Xu et al., 2009)

N; (8.121)

8.4.5 Moving Least Square Method

In Lagrangian method, the position of material points is tracked and updated at each
time step. When position of material points in the fluid domain changes continuously,
the number of family material points may decrease. In this case, the calculated density
may be smaller than normal. Therefore, the equation of state predicts wrong pressure
values, leading to a gradual deterioration of the entire field (Dilts, 1999). To avoid

mass conservation issues, and oscillations at the density, pressure, and velocity of

178



material points at fluid domain are smoothed using moving least square method (Dilts,

1999).

The velocity field in the fluid domain is smoothed as (Gao and Oterkus, 2020)

Z?Ii v]n wMLs(f?j)V}n (8.122)
iji wms(fﬁ-) an

(v?)smoothed —

The pressure field in the fluid domain is smoothed as (Gao and Oterkus, 2020)

Z?Ii P]T'l wMLs(f?j)V}n (8.123)
iji wMLS(EE‘) an

)smoothed

(i

The density field in the fluid domain is smoothed as (Gao and Oterkus, 2020)

N; -
(p )smoothed ZJ' pJn wMLS(EZ')an (8.124)
l Z?’i wMLs(fg-) v
with
@ (8.125)

[(p, Po,j)a

+ 1] Po,i
pOJCOJ

The weight function, w,; s, for smoothing variables in above equations at fluid domain

is provided as (Colagrossi and Landrini, 2003)

wWLs(fZ') = [Bo(x!) + B4 (X?)(—filjn) + B, (x?)(—fl?jn)]wo(f?j) (8.126)

in which
Bo(xi") 1 (8.127)
B(x?) = | B (x7) | =571 (x]) H
B2 (xi") 0
and
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v, O T 17 (8.128)
sG) = ) wo(E)| 8" @ &e
: -t @)
In addition, to reduce the numerical computation time, the velocity, pressure and
density field only being corrected over a period of time steps by using moving least
square method, and this is optional in numerical simulation. For benchmark cases
moving least square method is used for dynamic cases (Section 8.5.1, 8.5.3 and 8.5.5),

however this method is not needed for static cases (Section 8.5.2 and 8.5.4).

8.5 Numerical Simulations

In this section, five numerical cases are considered by using the developed PDDO for
modelling the surface tension forces in multiphase fluid flow motion. First, a two-
dimensional square droplet deformation is studied to examine the non-local form of
surface tension force model in normal direction. Second, when fluid flow is in contact
with a solid surface, the difference between unit normal vectors at the triple line region
before and after using the unit normal vector prescription scheme are compared
through a static droplet wetting case. Third, simulation of droplet contact angle
development on a solid surface is performed to show the effect of prescribed normal
vectors at the triple line region. Afterwards, capillary stresses tangential to the interface
are computed under a heat conduction phenomenon to validate the non-local form of
the Marangoni force formulation. Finally, a two-dimensional droplet migration in a
thermocapillary flow is presented to test the combination of the surface tension forces
in the normal direction and the tangential direction. The predicted migration velocity
of'the circular droplet in the thermocapillary flow is compared with the volume of fluid

method.

8.5.1 Droplets Deformation

In the first case, a two-dimensional square droplet deformation is conducted to validate
the surface tension force model by using PDDO. As shown in Fig. 8-7(a), the square
droplet with dimensions of 0.6 m X 0.6 m is filled with fluid 2 and surrounded by fluid
1. The fluid domain has a box of size L = W = 1 m. The density for fluid 1 and fluid
2 are specified as p; = 10 kg/m3 and p, = 1 kg/m3, respectively. Fluid 1 has a
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viscosity coefficient of yu; = 1 Pa-s while fluid 2 has u, = 0.2 Pa-s. The surface
tension coefficient between fluid 1 and fluid 2 is independent with the temperature and

chosenasy = 1 N/m.

y y
x w & w
Fluid 2
Flud1 | N
5
L é LLLS oee |
aa L o
(a) (b)
Fig. 8-7 Investigation of square droplet deformation (a) geometry (b) PDDO
discretisation.
The fluid is initially at rest for which the initial condition can be illustrated as
u=0,v=0att=0 (8.129)
No-slip boundary conditions are applied at four edges of the fluid 1 as
Uy =V —Oatx———x—£ ——K —K (8.130)
*x == ST T TR

In processing the numerical simulation, as shown in Fig. 8-7(b), three layers for
fictitious material points are wrapped along the edges of the fluid domain. No-slip
boundary conditions are implemented on these fictitious material points by using
Eq.(8.102)-Eq.(8.103) with v,,,4;; = 0 m/s. The pressure field for fictitious material
points is computed by using Eq.( 8.105 ).

The deformation of the square droplet is driven by surface tension force, which
transforms square droplet in a circular shape at equilibrium state. With
incompressibility hypothesis, the radius of the final circular droplet can be estimated

as
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0.6
— =~ 0.034m (8.131)
N

T

R

Therefore, the pressure changes Ap between fluid 1 and fluid 2 can be estimated by

using Young-Laplace equation as

(8.132)

Ap = == 2.94 Pa

~ =

As introduced in section 8.2.3, the incompressible fluid motion is constrained by a
weakly compressible equation of state, and the numerical speed of sound in the
equation of state is computed based on the pressure change. As a result, the numerical
speed of sound for fluid 1 can be estimated by using Eq.( 8.21 ), and the numerical
speed of sound for fluid 2 can be obtained by Eq.( 8.25 ). In this case, numerical speed

of sound for fluid 1 is taken as ¢; = 6 m/s, and for fluid 2 as ¢, = 18.97 m/s.

As shown in Fig. 8-7(b), the fluid domain is discretised with a uniform spacing of
Ax = 0.0125 m. The horizon size is selected as § = 3Ax. Simulation is processed for
a total time of t = 2.56 s and the time step size is set as At = 8 X 10™°s. The
displacement field of the material points in fluid domain is obtained by velocity Verlet

scheme.

In addition, the moving least square method introduced in section 8.4.5 is used to
correct the density, pressure, and velocity field at fluid domain at every 20-time steps.
In order to obtain a smooth distribution of material points in the fluid domain, the
material points shifting technique is utilized in every time step of the simulation to

smooth the displacement field. The constant C is taken as 0.01 in this case.

y-Location(m)
y-Location(m)
y-Location(m)

02 0 02 02 0 02 02 0
x-Location(m) x-Location(m) x-Location(m)

(2) (b) (c)
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(d) (e) ®
Fig. 8-8 Evolution of droplet deformation at (a)t = 0.128 s, (b)t = 0.384 s, (¢) t =
0.64s,(dt=128s,(e)t =192s,(f)t = 2.56s5.

Fig. 8-8 shows the snapshots of the droplet transformation from square shape to
circular shape. As can be observed from Fig. 8-8(f), at the final state, the droplet has
an average radius of 0.0338 m, which is close to the estimated value given in
Eq.(8.131). The time history of average pressure difference between fluid 1 and fluid
2 is presented in Fig. 8-9(a). As can be observed from the figure, the pressure
difference reaches an equilibrium state after t = 1.5s. The pressure changes Ap
between fluid 1 and fluid 2 predicted by PDDO shows a close agreement with the
analytical solution as computed by Eq.( 8.132 ). The final pressure profile of the fluid
domain at t = 2.56 s is presented in Fig. 8-9(b). The square droplet transforms into a
circular shape with a smooth material point distribution, and the pressure difference
between droplet and surrounding fluids match with the analytical value from Young-
Laplace equation. It can be concluded that the current surface tension model utilizing
the PDDO can accurately capture the surface tension effect in the normal direction in

multiphase flow.
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Fig. 8-9 Pressure profile (a) time history of pressure difference between the droplet
and surrounding fluid (b) distribution at t=2.56 s.
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8.5.2 Unit Normal Veector Correction at Triple Line Region

The first case demonstrates the effectiveness of surface tension force model in normal
direction. However, this only validates the case when fluid 2 is fully surrounded by
fluid 1. When both fluids are in contact with a solid interface, additional processing of
the unit normal vectors between the two fluids at the triple line region is required to
prevent curvature errors. As shown in Fig. 8-10, this section uses cases of droplets
forming two different contact angles on a solid surface to demonstrate the difference
between the unit normal vectors obtained before and after normal prescription scheme

at triple line region.

Lighter Fluid Lighter Fluid

Denser Fluid Denser Fluid .
6 =130 8 =90 /

Fig. 8-10 Demonstration of two droplets lying on a solid surface with 30° contact
angle and 90° contact angle.

As shown in Fig. 8-11, two denser fluid droplets with radius r = 0.0125 m are
surrounded by lighter fluid, and they are both being placed in a rectangular box. The
box has a size of 0.1 m in length and 0.05 m in width. The density for denser fluid is
p1 = 1000 kg/m3 and for lighter fluid is p, = 1.2 kg/m3. Two denser fluid droplets
contact with the solid surface and form a contact angle of 30° and 90°, respectively.

The spacing between material point is set as Ax = 0.0013 m.
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x-Location(m) R x-Location(m)
(a) (b)

Fig. 8-11 PDDO discretisation of droplet contact on solid interface (a) 30° contact
angle (b) 90° contact angle.
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The unit normal vectors between the denser and lighter fluid domains, calculated
according to Eq.( 8.52 ), are shown in Fig. 8-12. It can be observed that in the case of
a 30° contact angle, the unit normal vectors 14 at the triple line region in the lighter
fluid domain is pointed towards the wrong direction. The issues are also reflected in
the 90° contact angle case. This is because, at the triple line region, there are not
enough family material points to contribute to the integral equation when computing
the unit normal for the lighter fluid. Therefore, incorrect unit normal vectors will result

in incorrect curvature calculations and affect the surface tension force modelling.
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[ ot
Vb !
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A A Y 0.01
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Y4 0.015
/
-0.025 002
0.025
-0.03 L L L L 0.03 L L L L L
0 0.005 0.01 0.015 0.02 0.025 0 0.005 0.01 0.015 0.02 0.025 0.03
(a) (b)

Fig. 8-12 The unit normal vectors between fluid domains before correction (a) 30°
contact angle (b) 90° contact angle.

Considering that the same droplet forms contact angles of 30° and 90°, respectively,
the prescription normal vectors 7, .., at triple line region computed based on
Eq.( 8.54), and interface unit normal vectors 71,4, not at the triple line region obtained

based on Eq.( 8.52 ) are presented in Fig. 8-13.
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(a) (b)
Fig. 8-13 The corrected unit normal vectors at triple line region (a) 30° contact
angle (b) 90° contact angle.
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As shown in Fig. 8-13, while the incorrect unit normal vectors at the triple line region
are resolved in both contact angle cases, a sharper transition is observed between the
two types of unit normal vectors. Therefore, calculating the curvature of the interface

remains problematic.
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(a) (b)
Fig. 8-14 Smoothed unit normal vectors at fluid interface (a) 30° contact angle (b)
90° contact angle.

In order to prevent discontinuity of the unit normal vectors not at the triple line region,
the unit normal vectors at the triple line region are smoothed according to Eq.( 8.59).
The unit normal vectors between denser and lighter fluid domains after smoothing are
presented in Fig. 8-14. As can be observed, the unit normal vectors close to the triple
line region comply with the corrected unit normal vector 1y ¢, While far from the
triple line region unit normal vector is computed from 7;,. When the instantaneous
contact angle 6 formed by a droplet contacting a solid surface is not equal to the
equilibrium contact angle 6,4, the curvature creates a force to move the triplet until

the equilibrium contact angle is reached.

8.5.3 Static Contact Angle Development

After demonstrating the influence of treatment for unit normal vectors at the triple line
region, in this section, a two-dimensional liquid droplet deformation on a rigid wall is
investigated to study the characteristics of droplet wetting in different stages. As shown
in Fig. 8-15(a), a rectangular liquid droplet with a dimension of 2.25 X 1072 m? in
length and 1.25 X 1072 m? in width is placed in a rectangular box with a dimension
of 0.1 X 0.05 m?2. The liquid droplet on the wall is surrounded by gas fluids. The
density and viscosity coefficient of the gas phase are specified as p; = 1.2 kg/m3 and

pu; =1 x 1073 Pa- s, respectively. The density and viscosity coefficient for liquid is
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set as p, = 1000 kg/m? and py, = 3.16 X 107° Pa - s, respectively. To focus on the
physical characteristics of droplet wetting, the surface tension coefficient between
liquid and gas fluids is chosen as y = 0.07 N/m, which is independent of the

temperature variation.

The fluid gravitational acceleration is disregarded in this example. The initial condition

of the fluid is provided as
u=0,v=0att=0 (8.133)
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(a) x-Location(m)
(b)
Fig. 8-15 Investigation of square droplet wetting on a solid surface (a) geometry of
the fluid domain (b) PDDO discretisation of the simulation domain.

Fig. 8-15(b) shows the numerical simulation domain. The domain is discretized with
a uniform spacing of Ax = 1.0 X 10™3 m. The horizon size is chosen as § = 3Ax. The
material points in the fluid 1 and fluid 2 are presented in dark red and red, respectively.
The gas and liquid fluid are wrapped by three layers of fictitious material points while
the rigid solid wall boundary is presented in orange colour. The no-slip boundary

conditions are implemented as

o B L w - w (8.134)
vx—vy—Oatx——E,x—E,y——— y=—

Therefore, the velocities at fictitious material points are computed based on Eq.( 8.102)
- Eq.( 8.103 ) with v,,4;; = 0 m/s. The pressure field at fictitious material points is

calculated according to Eq.( 8.105).

The time step size is set as At = 5 X 107> s with a total simulation time of t = 1 s.

The displacement field of the material points in fluid domain is acquired by using
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velocity Verlet scheme. In this case, the moving least squares technique is applied in
the simulation every 20 steps to smooth the velocity, pressure, and density fields. In
addition, the material points shifting technology is used in the simulation, and the
constant C in Eq.( 8.118 ) is taken as 0.01 to ensure the smooth distribution of material

points at each time step.
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Fig. 8-16 Evolution of liquid droplet wetting on a solid surface for various contact
angles.

Fig. 8-16 presents snapshots of the two-dimensional liquid droplet formation on the
solid wall for three different cases 6., = 60°(hydrophilic wetting), 6., = 90° and
8eq = 150° (hydrophobic wetting). The droplet initially stays as a rectangular shape.
The unit normal vectors between the gas and liquid phases at the triple line region are
corrected and smoothed based on the prescribed equilibrium contact angle by using
Eq.( 8.59). The unit normal vectors form a smooth curvature at the interface between
gas and liquid. The curvature obtained from the corrected unit normal vectors induced
a force along the fluid interface to deform the droplet until the prescribed equilibrium

contact angle is reached.

8.5.4 Capillary Stress Tangential to Interface

After investigating the surface tension force in normal direction, in this section, the
developed non-local Marangoni force formulation is examined by considering a heat
conduction test case. As shown in Fig. 8-17(a), two-layered fluids are placed in a
square simulation domain with 5.75 mm in length and width. The heat conduction and
Marangoni force at the fluid interface are simulated by using the developed PDDO
model. The left and right sides of the fluid domain are filled with liquid 1 and liquid 2,
respectively. Two fluids have identical density and viscosity coefficients as p; = p, =
250 kg/m3® and p; = u, = 0.012Pa-s. The specific heat capacity and heat
conduction coefficient for fluid 1 and fluid 2 are taken as ¢, = ¢, = 0.5 X 107*]/
kgK and k; = k, = 1.2 X 107® W/mK. As this case focuses on verifying the heat
conduction and Marangoni force models, only the energy equation is involved in this
model, and the Marangoni force is numerically computed by using PDDO based on

Eq.( 8.16 ). In addition, the surface tension coefficient is a temperature dependent
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property which is given in Eq.( 8.12 ), in which the surface tension temperature

coefficient is chosen to be d’;—(TT) = 0.002 N/mK.

Fluid 1 Fluid 2

o L 5
(a) (b)
Fig. 8-17 Investigation of Marangoni force at the interface between two fluids (a)
geometry (b) PDDO discretisation.

The time step size is chosen as At = 1 X 107> s, and the total simulation time is t =

0.1s.

At the initial state, the temperature distribution of the fluid domain is set to zero as
T=0att=0 (8.135)

The boundary conditions are implemented by using the fictitious layers as shown in

Fig. 8-17(b) and defined as

w
T=0Katy=—? (8.136)

w
T = 1.152Katy=?

aT 0 at

—_—= atx =——=—

0x 2 2
In order to accurately capture the Marangoni force distribution at the interface, the heat
conduction model is first examined with a mesh size of Ax = 9.0 X 107> m. The

horizon size is chosen as § = 3Ax. The temperature distribution predicted by using
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PDDO at t = 0.1 s is compared with ANSYS and presented in Fig. 8-18. A good
agreement is observed between the two methods, which validates the heat conduction
model. In addition, as can be computed from the temperature field and the analytical
solution, a temperature gradient of VT = 200 K/m is distributed along the width of
the simulation domain. As a result, Marangoni force is developed vertically at the
interface. The theoretical Marangoni force distributed along the interface is computed

as fs¢ = Vsy = 0.4 N/m?.

The Marangoni force is examined under different spacings between material points, in
which the mesh size is chosen as Ax = 1.8 X 10™* m, Ax = 9.0 X 10™°> m and Ax =
4.5x 107> m. Fig. 8-19 presents Marangoni force vectors distributed along the
interface by using a mesh size of Ax = 9.0 X 10~° m. The profile of the Marangoni
force vectors is perpendicular to the interface. As the continuum surface force method
is adopted in the model, the volume Marangoni force is smoothed and distributed

symmetrically along the transition band of the fluid interface.

%10

y Location (m)
y Location (m)

X Loca(tjion (m) X10'33 ’ X Loca?ion (m) X10'33

(a) (b)
Fig. 8-18 Temperature distribution of the simulation domain at t=0.1 s (a)PDDO
(b)ANSYS.
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«in-3

Fig. 8-19 Marangoni force vectors distributed along the interface with Ax =
9.0 x 10~ m.

Fig. 8-20 shows the Marangoni force magnitude distribution profile in the horizontal
direction at the centre of the simulation domain by using various mesh sizes. It can be
noticed that the maximum Marangoni force decreases as the material point spacing
increases. The continuum surface force model handles the local Marangoni forces at
the fluid interface by applying them to material points in the transition zone between
the two fluids. As the horizon size is taken as § = 3Ax, material points adjacent to the
interface but beyond a horizon size from the interface do not capture surface tension
forces. As a result, only three layers of material points on either side of the interface
capture the Marangoni force regardless of the spacing chosen. The magnitude
distribution of the Marangoni force at these material points is governed by a weighting
function that controls the decay of the Marangoni force with increasing distance from

the interface.
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Fig. 8-20 Volumetric Marangoni force distribution computed at interfaces of different
mesh sizes using PDDO.

To compare the numerically computed Marangoni force with the analytical solution,
Fig. 8-21 presents the integral of the Marangoni force distributed at the three-layer
material points along the interface for different spacings between material points. As
can be observed, the calculated Marangoni force has a good agreement with the
analytical solution despite the spacing between material points being different.
Therefore, the presented Marangoni force formulation can accurately capture the

Marangoni force due to the temperature gradient.
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Fig. 8-21 Comparison between the PDDQO prediction and analytical solution of
interfacial Marangoni force.

8.5.5 Two-dimensional Droplet Migration in Thermocapillary Flow

After validating the surface tension formulation in normal direction, the Marangoni
force formulation, and heat conduction model, in this case, surface tension in normal
and tangential directions are combined to investigate the motion of a droplet in
thermocapillary flow. Thermocapillary flow motion was studied in the past decades

experimentally and numerically (Young et al., 1959; Balasubramaniam and Chai, 1987;
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Wozniak et al., 2001). In this case, the flow motion is simulated by using PDDO. As
shown in Fig. 8-22(a), a circular droplet with radius R = 0.00144 m is initially
located at the centre of the simulation domain, and it is filled with fluid 1. The density
and viscosity coefficient for fluid 1 are setas p; = 250 kg/m? and y; = 0.012 Pa-s.,
respectively. The droplet is surrounded by fluid 2 in a square box with a dimension of
L =W = 0.00576 m. The density and viscosity coefficient for fluid 2 are specified as
p, = 500 kg/m3 and p, = 0.024 Pa - s. In heat conduction model, the specific heat
capacity for fluid 1 and fluid 2 is ¢,; = 0.5 X 107*J/kgK and ¢, = 1.0 x 107*]/
kgK, respectively. The heat conduction coefficient for fluid 1 and fluid 2 is chosen as

ki =12x10"°W/mK and k, = 2.4 x 10~ W/mK, respectively.

As the incompressible fluid motion is constrained by a weakly compressible equation
of state, the numerical speed of sound in the equation of state for each fluid domain is
setas ¢; = 1.666 m/s and ¢, = 1.178 m/s, and the material constants are @; = a, =
1. The surface tension coefficient is dependent on the temperature as given in
Eq.( 8.12 ). The reference surface tension coefficient, reference temperature, and

surface tension temperature coefficient are chosen as y, = 0.01 N/m, T, = 290 K,

and 202 = 0.002 N/mK.
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4 y
c =
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T =290K [}
L d 4
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Fig. 8-22 Thermocapillary flow migration (a) geometry (b) PDDO discretisation.

The fluid is initially at rest for which the initial displacement and velocity conditions

can be represented as
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u=0,v=0att=0 (8.137)

In addition, a linearly varying temperature profile is initially applied to the fluid
domain with temperature gradient |VT| = 200 K/m and points upwards. This can be

represented as

L
T(x,y) = |VT|(x+E>att=0 (8.138)
No-slip boundary conditions for velocity are applied to the top and bottom edges of
the fluid domain as

w w
‘[7x:‘l]y:0aty:__:y:7 (8139)

Free-slip condition for velocity is applied to the lateral edges of the fluid domain. In
addition, a Dirichlet temperature boundary condition is applied on the top and bottom

edges of the square box as

w
T=290Katy=-— (8.140)

w
T =291.152K aty = >

The Neumann boundary condition is applied on the lateral edges of the square box. As
represented in Fig. 8-22(b), the fluid domain is wrapped with three layers of material
points for implementing the temperature, pressure, and velocity boundary conditions.
No-slip and free slip boundary conditions are implemented on these fictitious material
points by using Eq.( 8.102 ) - Eq.( 8.133) and the pressure field at fictitious material
points is calculated by using Eq.( 8.105 ). In addition, Dirichlet and Neumann
temperature boundary condition for fluid domain are implemented by using Eq.( 8.106)

- Eq.( 8.107 ) for material points at fictitious region.

The fluid domain is discretised with a uniform spacing of Ax = 9 X 107> m and the
horizon size is taken as § = 3Ax. The simulation is conducted with a total time of t =
0.12 s and the time step size is chosen as At = 1 X 1075 s. Material points shifting

technique is implemented, and the constant C is taken as 0.01. In addition, the density,
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pressure, and velocity field are smoothed by moving least square method every 20-

time steps.

The interface between the circular droplet and surrounding fluid is subjected to the
surface tension force in normal direction. The pressure difference between two fluids
maintains the equilibrium of circular shape. The pressure field of the fluid domain at
t = 0.12 s is shown in Fig. 8-23. The pressure difference between two fluids interface
can be analytically verified by Young-Laplace equation, in which AP = 6.944 N/m?.
As can be seen from the figure, a good agreement with the analytical value is observed

for the pressure difference between fluid 1 and fluid 2.
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Fig. 8-23 Fluid field pressure distribution at t=0.12 s.

The dimensionless parameters Reynolds number, Marangoni number, and capillary
number are used to characterize thermocapillary migration. To compare the result with
the Volume of Fluid (VOF) method, the dimensionless parameters are taken as the
same as the case presented in the VOF method (Ma and Bothe, 2011). The

dimensionless parameters in this case are set as

RU

e=2""7 _ 72 (8.141)
Uz

¢,,RU 142

=%=0.72 (8.142)
2

and
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U,
Ca =22 = 0.0576 (8.143)
Yo
in which U, is the characteristic velocity, and it is being computed as
dy(T 8.144
” WD iR 0.002 x 200 x 0.00144 202s ™ (8144)
T Uy B 0.024 o s

The migration of the circular droplet at different times is provided in Fig. 8-24. To
visualise the migration of a droplet, the lowest location of the circular droplet at the

initial stage is used as a reference location and presented as a dash line in the figure.
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Fig. 8-24 Migration of the droplet at (a) t=0.04 s (b) t=0.08 s (c) t=0.12 s.

The ratio between square box and the radius of the droplet is L/R = 4. The migration
velocity of the circular droplet by using VOF method at this ratio is provided in Ma
and Bothe, (2011). The comparison between PDDO method and VOF method for the
time evolution of droplet migration velocity is presented in Fig. 8-25. The velocity is
non-dimensionalized as U* = U/U,., and the time is non-dimensionalized as t* = t/t,
with t, = R/U,.. As can be observed from the figure, the migration velocity predicted
by using the proposed method has a good agreement with the velocity predicted by
using the VOF method.
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Fig. 8-25 Dimensionless velocity of the droplet migration over the dimensionless
time.

The temperature and velocity field of the fluid domain at t = 0.12 s are provided in
Fig. 8-26 and Fig. 8-27, respectively. The uneven temperature distribution in Fig. 8-26
causes a temperature gradient across the fluid domain. As a result, tangential forces
are created at the interface between fluid 1 and fluid 2. Combining with the viscosity
of the fluid, the droplet is pushed to move along the thermal gradient upwards, and the
material points within the droplet recirculate along a pair of symmetrical vortices in

the circular droplet.
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Fig. 8-26 Isothermal distribution of the fluid domain at t=0.12 s.
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Fig. 8-27 Velocity profile of the thermocapillary migration of the droplet at t=0.12 s.
8.6 Chapter Summary

This chapter presents a new non-local surface tension model in multiphase fluid flow
through the PDDO. The model considers surface tension in the normal direction,
Marangoni forces, and surface wetting. The governing equations of multiphase flow
motion are represented using the PDDO. The non-local form of normal surface tension
is verified by simulating the deformation of a square droplet. Subsequently, this work
explains the handling of the unit normal vector at the triple line region using the static
and dynamic behaviour of droplet wetting on solid surfaces. Furthermore, this work
validates the accuracy of the newly developed non-local form of the Marangoni force
formulation via a heat conduction model. Finally, the normal surface tension and
Marangoni forces formulations are simultaneously examined in the multiphase flow
by simulating the migration of droplets in thermal capillary flow. A good agreement is
observed by analysing the droplet migration speed and comparing the results with

existing methods.
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Chapter 9 Conclusion
9.1 Achievement of Research Objectives

This thesis aimed to advance and validate peridynamic modelling approaches for
simulating AM and welding processes, with a focus on thermomechanical behaviour,
phase transformations, and multiphase flow phenomena. The achievement of each

research objective is summarised as follows

e Objective 1: To investigate the influence of horizon size in peridynamics and
provide optimal selection guidelines for achieving accurate and efficient
numerical simulations.

Addressed in Chapter 4, this objective involved a systematic study of horizon
size across bond-based, ordinary state-based, and non-ordinary state-based
peridynamic formulations. The study of horizon size shows a trade-oft between
accuracy and computational efficiency. Smaller horizons, such as § = 14x,
reduce the number of interactions per material point and therefore lower
computational cost, but they fail to capture nonlocal effects and show poor
agreement with FEM. Larger horizons improve accuracy, with optimal results
found for § = 3 — 54x in bond-based and ordinary state-based formulations,
while non-ordinary state-based formulations remain accurate at § = 24x.
However, further increases in § provide little improvement in accuracy while

increasing computational expense.

e Objective 2: To develop and implement a peridynamic formulation with
variable horizon sizes and non-uniform discretisation, thereby reducing
numerical simulation time while maintaining accuracy.

Chapter 5 introduced the dual-horizon peridynamics framework, which allows
for non-uniform discretisation and variable horizon sizes throughout the
computational domain. Through a series of static and dynamic benchmark
problems investigation for a two-dimensional plate, practical guidelines for
varying horizon sizes were provided. This approach also provides finer
resolution where needed while maintaining computational efficiency

elsewhere.
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Objective 3: To extend and validate the dual horizon peridynamic formulation
for heat transfer analysis, addressing the challenges of non-uniform
discretisation in thermal diffusion problems.

Chapter 6 developed a dual-horizon peridynamic formulation for thermal
diffusion in non-uniformly discretised domains. Numerical case studies
demonstrated that peridynamic predictions closely match temperature
distributions and transient responses from FEM simulations. This approach
overcomes computational efficiency limitations associated with uniform

discretisation, enabling thermal analysis in complex geometries.

Objective 4: To develop and validate a coupled thermomechanical peridynamic
model incorporating phase change, thereby supporting predictive simulation of
deformation during AM and welding processes.

In Chapter 7, a coupled thermomechanical peridynamic model was introduced,
incorporating phase transformation phenomena such as solidification and
melting. The formulation supports the predictive simulation of temperature
evolution and structural deformation, including the effects of transient and

moving heat sources.

Objective 5: To extend the peridynamic modelling framework to simulate
multiphase flow using a non-local differential operator, thereby improving the
analysis of complex interfacial behaviours relevant to AM and welding.
The thesis extends peridynamics with the PDDO, enabling meshless simulation
of multiphase flows, wetting dynamics, and thermo-capillary (Marangoni)
effects. Numerical studies validate the approach, with results demonstrating

strong agreement with analytical and reference benchmarks.

9.2 Significance and Implications of Research Findings

This research delivers several significant contributions to the field of computational
mechanics and the modelling of advanced manufacturing processes. The systematic
investigation of horizon size across multiple peridynamic formulations addresses a
longstanding gap in the literature and results in practical guidelines for selecting

optimal horizon sizes in engineering simulations.
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To overcome the computational intensity of peridynamics relative to classical
continuum methods like FEM, this thesis introduces and validates a dual-horizon
peridynamic framework. By using non-uniform discretization, efficient large-scale
modelling with peridynamics can be achieved while maintaining accuracy. For the first
time, the dual-horizon concept is extended to thermal diffusion problems within the
peridynamic framework. Numerical results confirm that the dual-horizon model

reliably captures temperature fields with close agreement to FEM solutions.

The thesis further advances the field of multiphysics modelling by developing a
coupled thermomechanical peridynamic model that incorporates phase changes, such
as solidification and melting. This approach captures the interaction between thermal
and mechanical fields and can simulate the effects of moving and transient heat sources,
as well as latent heat during phase transformation, key features of AM and welding

Pprocesses.

In the area of multiphase modelling, the introduction of the PDDO-based peridynamic
framework allows for meshless simulation of interfacial phenomena, including droplet
deformation, dynamic wetting, and Marangoni effects. Validation against analytical
solutions and benchmark data demonstrates the accuracy of this approach for problems

involving evolving interfaces that challenge traditional methods.

From an applied perspective, these developments provide more reliable predictions of
deformation, temperature evolution, and multiphase flow in manufacturing scenarios
where traditional numerical methods often struggle. Beyond these direct applications,
this study's contributions are also relevant to the emerging field of digital twin
technology. The systematic horizon size study improves predictive reliability while
thermomechanical and multiphase flow models lay the foundation for integrating

peridynamics into the digital twin framework.

Overall, the thesis advances both theoretical understanding and practical
implementation of peridynamics, offering modelling tools that support improved
process optimisation, defect reduction, and the design of reliable components in AM
and welding. Together, these advances allow the creation of accurate and predictive
digital replicas of manufacturing processes, supporting real-time monitoring,

optimisation, and decision-making in AM and welding.
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9.3 Limitations and Recommended Future Work

In Chapter 4, the investigation of horizon size was conducted under the assumption of
undamaged structures. Under these conditions, the peridynamic solution is expected
to converge to the CCM solution as the horizon size approaches zero, allowing
analytical and FEM solutions to serve as effective reference solutions for validating
peridynamic predictions and determining a suitable horizon size. However, this does
not fully capture scenarios involving damage evolution within the material, where the
nonlocal characteristics of peridynamics become critical and direct reference solutions
may be unavailable. Future research should therefore focus on investigating the
influence of horizon size on the prediction of crack initiation, propagation paths, and

failure mechanisms.

Since peridynamics has a relatively high computational cost compared to the FEM,
this can serve as a barrier to industrial applications. While this thesis demonstrates that
the dual-horizon framework can already improve efficiency through non-uniform
discretisation, further strategies are needed to make peridynamic simulations viable at
an industrial scale. Future work should explore adaptive refinement to concentrate
resolution in critical regions, parallel computing and GPU acceleration to reduce
solution times, and hybrid FEM-peridynamic coupling to restrict the nonlocal
formulation to regions where it is essential. These approaches would reduce
computational demands and expand the feasibility of applying peridynamics to large-

scale AM and welding problems.

While the coupled thermomechanical peridynamic model developed in this thesis
captures key aspects of phase change and deformation during AM and welding, the
treatment of material behaviour remains a limitation. The current formulations are
based on simplified, primarily isotropic material properties and idealised phase
transformation kinetics. However, AM applications increasingly involve functionally
graded materials (FGMs), which offer tailored property distributions and enhanced
performance. Extending the peridynamic approach to incorporate FGMs in
thermomechanical analysis represents a promising direction for future research. This
will require the development and validation of constitutive models that can represent

gradations in elasticity, thermal conductivity, and phase transformation behaviour,
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thereby improving the investigation of residual stress distribution, interface stability,

and defect evolution in FGMs produced by AM.

Furthermore, this thesis has presented advanced peridynamic frameworks for
thermomechanical analysis in solids (Chapter 7) and thermal-fluid analysis using the
PDDO (Chapter 8). These models were developed and applied separately to establish
and validate each framework independently, as they address distinct physical
mechanisms and numerical challenges. However, the direct coupling between the
PDDO-based thermal-fluid approach and peridynamic formulations for solid
mechanics has not yet been investigated. As a result, the transition from dynamic melt
pool behaviour during heating to subsequent solidification and mechanical response is
not fully captured within a unified framework. Future research could focus on
developing a fully coupled peridynamic approach that integrates PDDO-based
thermal-fluid and bond-based or state-based solid mechanics models. Such an
approach could simulate the entire process, from melt pool dynamics under a moving
heat source through solidification, to the prediction of residual stresses, deformation,

and potential defects in the final material.

Finally, the validation of this work relies primarily on comparisons with FEM and
analytical solutions. To further improve the robustness of the models, future work can
incorporate experimental measurements. Examples include thermocouple or infrared-
based temperature monitoring, digital image correlation for strain fields, and high-
speed imaging of melt pool dynamics. Such experimental benchmarks would provide
independent validation of peridynamic predictions and support their application in

real-world manufacturing scenarios.

In summary, the tools developed in this thesis lay the foundation for practical
applications in AM and welding. This framework can be used to simulate melt pool
evolution, capture multiphysics interactions, and predict deformation. This capability
supports process optimisation and parameter selection, contributing to the
development of more reliable and efficient manufacturing processes. Future work will
extend this model to complex geometries, FGM materials and validate it with

experimental data to confirm its robustness for industrial applications.
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