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Abstract 

Additive manufacturing (AM) and welding are transformative technologies 

extensively used across various industries due to their capability to fabricate complex, 

high-performance components. However, challenges such as thermal distortion, 

residual stresses, and defects like cracks and porosity frequently arise due to the 

inherent high thermal gradients and repeated thermal cycles during these processes. 

Traditional numerical methods, such as the Finite Element Method, often encounter 

difficulties in effectively addressing crack discontinuities in AM and welding 

processes due to their reliance on continuity assumptions in classical continuum 

mechanics. 

This thesis has developed a peridynamics-based numerical modelling tool for 

simulating mechanical, thermal, thermo-mechanical, and fluid behaviours, suitable for 

the numerical investigation of AM and welding processes. Peridynamics, a nonlocal 

integral-based continuum theory, is capable of modelling discontinuities such as cracks 

without the need for remeshing, providing a promising alternative to conventional 

numerical methods. 

The research includes systematic investigations into optimal horizon size (a length 

scale parameter determining the level of nonlocal interactions) selection criteria across 

different peridynamic formulations, including bond-based, ordinary state-based, and 

non-ordinary state-based approaches. A dual-horizon peridynamic formulation is 

developed and validated to effectively handle non-uniform discretisation issues, 

improving accuracy and computational efficiency in mechanical and thermal diffusion 

analyses. Furthermore, a coupled thermomechanical peridynamic model incorporating 

phase-change phenomena is formulated to simulate the structural deformation during 

welding and AM processes. To further expand peridynamic capabilities, the 

Peridynamic Differential Operator is utilised for modelling multiphase flow 

behaviours, including wetting dynamics and thermo-capillary (Marangoni) effects, 

which are closely related to AM and welding scenarios involving surface tension-

driven fluid motion in the molten pool. 
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Results demonstrated that the models developed consistently produced reliable and 

accurate predictions of deformation, thermal diffusion characteristics, phase 

transitions, and multiphase flow dynamics when benchmarked against reference data. 

This thesis advances peridynamic modelling capabilities for AM and welding 

applications by offering recommendations for horizon size selection and 

demonstrating the method’s suitability for simulating mechanical deformation, heat 

conduction with phase change, and multiphase flow interactions. Overall, the work 

contributes to bridging fundamental peridynamic research with industrial practice, 

providing modelling tools and clear methodological guidelines to substantially 

enhance process reliability, component quality, and manufacturing efficiency. 
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Chapter 1 Introduction 

AM and welding technology are rapidly changing the modern engineering landscape, 

allowing the production of complex, customised parts across a wide range of industries. 

However, as adoption expands, the need for robust predictive modelling tools has 

become vital. This chapter introduces the motivations for the research, provides 

background on AM, welding and peridynamic theory, outlines the research objectives, 

and presents an overview of the thesis structure as well as research contributions. 

1.1 Background and Motivations 

AM, commonly known as 3D printing, incorporates a family of technologies that build 

three-dimensional objects directly from digital models (Wong and Hernandez, 2012). 

Unlike traditional subtractive manufacturing, which removes material from a pre-

formed block to achieve the desired shape, AM introduces material only where it is 

needed. This approach allows the production of highly complex geometries, offers 

design freedom with minimal material waste (Adam and Zimmer, 2015). As a tool-

less, data-driven production method, AM supports shorter production cycles, lower 

tooling costs, and greater environmental sustainability, establishing itself as a core 

driver of Industry 4.0 and an attractive solution across diverse industries (Adam and 

Javaid, 2019). 

AM technologies are compatible with a wide range of materials, including polymers, 

metals, ceramics, and composites (Yang et al., 2019), making them applicable across 

diverse sectors. The aerospace (Katz-Demyanetz et al., 2019), automotive, and 

healthcare industries (Mohanavel et al., 2021) have adopted AM for producing highly 

customised, lightweight, or geometrically intricate components, revolutionising both 

product development and supply chain strategies. Although oil & gas and maritime 

applications initially comprised only a small fraction of the global AM market (Bikas 

et al., 2016), the technology’s maturity is now prompting a steady expansion into these 

fields. 

Within the marine industry, challenges such as lengthy lead times for spare parts, 

complex logistics, and high inventory costs have made AM more attractive. Recent 

developments have shown an industry shift towards decentralised and on-demand 

manufacturing, with 3D-printed spare parts now being produced for ships, and yachts. 
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For example, pilot projects in the U.S. Navy, the deployment of a metal 3D printer 

aboard the USS Essex, have demonstrated the value of producing components directly 

onboard, which increases operational efficiency and reduces dependence on external 

supply chains (Strieby, 2024). In addition, the creation of the world’s first 3D-printed 

propeller demonstrates the transformative potential of AM in marine manufacturing, 

showcasing new possibilities in design innovation (Taşdemir and Nohut, 2021). 

Nevertheless, the widespread industrial adoption of AM is constrained by technical 

challenges. High thermal gradients and repeated heating-cooling cycles, inherent in 

metal AM processes, contribute to the development of residual stresses, cracks, and 

porosity, defects that can compromise the integrity and reliability of components in 

safety-critical applications (Abdulhameed et al., 2019; Brennan et al., 2021). 

Alongside the rise of AM, welding continues to play a foundational role in 

manufacturing, serving as an essential technology for joining metals and alloys in 

industries such as shipbuilding, construction, energy, and automotive engineering. 

Welding processes, including arc welding, laser welding, and electron beam welding, 

are inherently characterised by localised, intense heating and rapid solidification, 

leading to complex thermal cycles and steep temperature gradients (Shravan et al., 

2021). Notably, the distinction between AM and welding is increasingly blurred by the 

development of hybrid processes such as Wire Arc Additive Manufacturing and Laser 

Metal Deposition, which leverage welding-based energy sources to build components 

layer by layer (Paskual et al., 2018; Rumman et al., 2019). In both conventional and 

hybrid approaches, the resulting thermal history and the risk of defects such as cracks 

or porosity can have a direct impact on the service life and structural integrity of ship 

hulls and pressure vessels (Gannon, 2011). 

To address these challenges, researchers and engineers have employed a combination 

of experimental and numerical methodologies, each offering advantages and 

limitations. Experimental methods provide empirical data for understanding defect 

formation, validating process parameters (Chen et al., 2019; Sola and Nouri, 2019; 

Brennan, 2021) but can be time-consuming. In response, numerical modelling has 

become popular, allowing researchers and engineers to virtually investigate thermal 

histories, stress evolution, material flow, and defect development under varied 

processing conditions. Finite element analysis (FEA) and computational fluid 
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dynamics (CFD) are the most common simulation tools that allow the systematic 

exploration of process-structure-performance relationships without extensive physical 

experiments (Vastola et al., 2016; Yang et al., 2016; Schoinochoritis et al., 2017; Luo 

and Zhao, 2018; ). 

However, traditional numerical approaches like FEA encounter challenges when 

simulating cracks. Classical Finite Element Method (FEM) is built upon differential 

equations that assume continuity across elements, making it difficult to accurately 

capture crack initiation and propagation without extensive remeshing or specialised 

enrichment techniques (Anderson, 2016), motivating the research for more robust 

computational frameworks. 

 

Fig. 1-1 Schematic drawing of peridynamics and its discretisation. 

To overcome these limitations, peridynamics, a nonlocal, integral-based, continuum 

theory, has emerged as a promising alternative (Silling, 2000). In peridynamics, the 

simulation domain is discretised into a series of material points. As shown in Fig. 1-1, 

peridynamics represents the material response, i.e., the interaction between a material 

point at 𝒙 and its surrounding material points at 𝒙′ within a finite distance named the 

horizon 𝛿. The “bonds” connecting material points deform as the structure is loaded, 

and a bond-breaking criterion (e.g., critical stretch) naturally controls crack initiation 

and propagation (Silling and Askari, 2005; Foster et al., 2011). As adjacent bonds fail, 

microcracks form and merge into macrocracks, enabling the simulation of complex 

crack patterns and failure modes (Silling and Askari, 2005). The meshless nature of 

peridynamics is ideally suited for studying complex geometries in AM and welding 

processes, making it a promising tool in advanced predictive modelling. 
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1.2 Research Aims and Objectives 

Accordingly, the primary aim of this thesis is to advance and validate peridynamic 

modelling tools, which are suitable for numerical investigation of AM and welding 

processes. This research specifically focuses on improving simulation tools to handle 

deformation, thermal diffusion, phase transformations, and multiphase flow behaviour, 

which are areas where traditional modelling methods face limitations. To achieve this 

aim, the following objectives have been established: 

• To investigate the influence of horizon size in peridynamics and provide optimal 

selection guidelines for achieving accurate and efficient numerical simulations. 

• To develop and implement a peridynamic formulation with variable horizon sizes 

and non-uniform discretisation, thereby reducing numerical simulation time while 

maintaining accuracy. 

• To extend and validate the dual horizon peridynamic formulation for heat transfer 

analysis, addressing the challenges of non-uniform discretisation in thermal 

diffusion problems. 

• To develop and validate a coupled thermomechanical peridynamic model 

incorporating phase change, thereby supporting predictive simulation of 

deformation during AM and welding processes. 

• To extend the peridynamic modelling framework to simulate multiphase flow 

using a non-local differential operator, thereby improving the analysis of complex 

interfacial behaviours relevant AM and welding. 

1.3 Thesis Structure 

This thesis is organised into nine chapters, each addressing a specific aspect of 

peridynamic modelling techniques for AM and welding processes. The structure is as 

follows. 

Chapter 1 introduces the research by outlining the motivation, context, and 

significance of the study. It articulates the research aims and objectives and presents 

an overview of the thesis structure. 

Chapter 2 provides a comprehensive literature review, tracing the evolution of 

continuum mechanics approaches from classical to nonlocal methods. It discusses 
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recent advances in peridynamics for mechanical, thermal, and multiphysics modelling, 

and identifies current challenges. 

Chapter 3 details the methodology adopted in this work, presenting the theoretical 

foundations of peridynamic theory and the mathematical formulations of peridynamic 

models. 

Chapter 4 investigates the influence of horizon size on the accuracy of peridynamic 

models. It provides a theoretical discussion of horizon size selection and presents 

numerical studies to illustrate its impact on static and dynamic problems, offering 

guidance for effective modelling in various engineering applications. 

Chapter 5 introduces the dual-horizon peridynamic formulation, which extends the 

peridynamic approach to accommodate non-uniform discretisation. This chapter 

presents the mathematical development of the dual-horizon concept and demonstrates 

its capability through a series of numerical examples. 

Chapter 6 extends the dual horizon peridynamic framework to thermal diffusion 

analysis, addressing the need for accurate heat transfer modelling in non-uniform 

discretisation domains. The effectiveness of the method is validated through numerical 

case studies and benchmark simulations. 

Chapter 7 develops a coupled thermomechanical peridynamic framework 

incorporating phase change phenomena, capturing the interactions between thermal 

and mechanical fields in AM and welding processes. The chapter presents the 

theoretical formulation, numerical implementation, and validation through simulation 

results. 

Chapter 8 expands the peridynamic modelling framework into the fluid domain to 

address multiphase flow, wetting, and thermo-capillary (Marangoni) effects in AM and 

welding processes. It introduces the peridynamic differential operator for simulating 

complex interfacial phenomena and demonstrates the framework’s capability through 

numerical examples. 

Chapter 9 concludes the thesis by summarising the main findings and contributions. It 

discusses the limitations encountered, provides recommendations for future work, and 

outlines potential directions for further development of peridynamic modelling in AM. 
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1.4 Publications Arising from this Thesis 

The research presented in this thesis has resulted in the following peer-reviewed 

publications 

1. Wang, B., Oterkus, S. and Oterkus, E., 2023. Determination of horizon size in 

state-based peridynamics. Continuum Mechanics and Thermodynamics, 35(3), 

pp.705-728. 

2. Oterkus, S., Wang, B. and Oterkus, E., 2020. Effect of horizon shape in 

peridynamics. Procedia Structural Integrity, 28, pp.418-429. 

3. Wang, B., Oterkus, S. and Oterkus, E., 2020. Closed-form dispersion relationships 

in bond-based peridynamics. Procedia Structural Integrity, 28, pp.482-490. 

4. Wang, B., Oterkus, S. and Oterkus, E., 2024. Closed-form wave dispersion 

relationships for ordinary state-based peridynamics. Journal of Peridynamics and 

Nonlocal Modeling, 6(3), pp.394-407. 

5. Wang, B., Oterkus, S. and Oterkus, E., 2023. Derivation of dual-horizon state-

based peridynamics formulation based on Euler–Lagrange equation. Continuum 

Mechanics and Thermodynamics, 35(3), pp.841-861. 

6. Wang, B., Oterkus, S. and Oterkus, E., 2020. Thermal diffusion analysis by using 

dual horizon peridynamics. Journal of Thermal Stresses, 44(1), pp.51-74. 

7. Wang, B., Oterkus, S. and Oterkus, E., 2022. Thermomechanical phase change 

peridynamic model for welding analysis. Engineering Analysis with Boundary 

Elements, 140, pp.371-385. 

8. Wang, B., Oterkus, S. and Oterkus, E., 2024. Non-local modelling of multiphase 

flow wetting and thermo-capillary flow using peridynamic differential 

operator. Engineering with Computers, 40(3), pp.1967-1997. 

Several chapters of this thesis are based on the work presented in the publications listed 

above. The relationship between each chapter and the relevant publications is as 

follows: 

▪ Chapter 2: Based on [1, 2, 3, 4, 5, 6, 7, 8]. 

▪ Chapter 3: Based on [1, 2, 3, 4]. 

▪ Chapter 4: Based on [1]. 

▪ Chapter 5: Based on [5]. 
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▪ Chapter 6: Based on [6]. 

▪ Chapter 7: Based on [7]. 

▪ Chapter 8: Based on [8]. 

Where appropriate, material from these publications has been adapted, revised, and 

supplemented with additional context and discussion to ensure coherence and 

completeness within the thesis. 
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Chapter 2 Literature Review 

2.1 Introduction 

The continued advancement of AM and welding processes has highlighted the need 

for predictive modelling frameworks to accurately capture thermomechanical 

behaviour, phase changes, and multiphase flow phenomena. This chapter provides a 

review of the evolution of continuum mechanics approaches, from classical 

formulations to peridynamic nonlocal integral-based methods. The literature review 

addresses the foundations of peridynamic theory, advances in mechanical and thermal 

analysis, multiphysics modelling, and recent progress in applying nonlocal methods to 

complex interfacial phenomena. The chapter concludes by identifying key gaps in the 

literature, thus motivating the research directions pursued in this thesis. 

2.2 Overview of Continuum Mechanics 

Solid mechanics is a fundamental discipline in engineering that focuses on 

understanding the deformation and failure of materials and structures when subjected 

to external loads. Over the past two centuries, Classic Continuum Mechanics (CCM) 

has provided the principal theoretical framework for describing such behaviour, with 

various formulations developed to address different classes of problems. The most 

common continuum mechanics formulation was developed by Cauchy (Reddy, 2013), 

where the equations of motion for the objects of continuum mechanics, "material 

points," are expressed in the form of partial differential equations. 

Owing to the complexity of most engineering problems, analytical solutions are 

generally restricted to idealised cases involving simple geometries, boundary 

conditions, and material properties. To address more engineering scenarios, numerical 

methods such as the FEM have been widely adopted. However, the reliance of classical 

formulations on spatial derivatives poses a challenge: when discontinuities exist in the 

domain (such as cracks or material separation), standard numerical methods become 

inapplicable because spatial derivatives become singularities in the presence of these 

discontinuities (Anderson, 2016). Consequently, traditional FEM requires 

supplementary techniques such as enrichment functions, adaptive mesh refinement, or 

remeshing to model crack propagation and material failure (Anderson, 2016). These 

approaches, however, can increase computational complexity and may compromise 

the accuracy of the simulation because the crack pattern is not naturally defined. 



9 

 

2.3 Peridynamics: Theory and Recent Developments 

As an alternative to CCM, Silling (2020) introduced the concept of peridynamics. 

Unlike Cauchy’s continuum mechanics, where the equations of motion are formulated 

using spatial derivatives, peridynamics expresses these equations in an integral form 

that is inherently nonlocal and free from spatial derivatives (Silling and Askari, 2005). 

As a result, peridynamics is not subject to the limitations associated with 

discontinuities such as cracks. 

A key difference between peridynamics and CCM is the nature of material point 

interactions. In CCM, a material point interacts only with its immediate neighbours; 

by contrast, peridynamics allows each material point to interact with all other points 

within a finite distance (Silling, 2000; Silling et al., 2007; Silling, 2017; Gu et al., 

2018). The distance of interactions between material points is denoted as “horizon”, 

which is a length scale parameter in peridynamics. Such a parameter does not exist in 

Cauchy’s formulation. CCM does not have a length scale parameter. Hence, it cannot 

represent non-classical material behaviour which usually appears at micro-scale. 

“Horizon” is a fundamental concept in peridynamics, and the term “peri” in the name 

corresponds to “horizon” in the Greek language (Madenci and Oterkus, 2013). 

Since its introduction, there has been rapid progress in peridynamics research. As a 

generalised continuum theory, it can be applied to a wide range of materials, including 

metals (Madenci and Oterkus, 2013), composites (Oterkus and Madenci, 2012), 

polycrystalline materials (De et al., 2016), concrete (Oterkus et al., 2012), ceramics 

(Guski et al., 2020), ice (Vazic et al., 2020), and graphene (Liu et al., 2018). The 

versatility of peridynamics extends to the simulation of complex phenomena such as 

fatigue (Oterkus et al., 2010), plasticity (Madenci and Oterkus, 2016), and 

viscoelasticity (Madenci and Oterkus, 2017). Furthermore, peridynamics has been 

successfully extended to address multiphysics problems, with formulations available 

for thermal (Oterkus et al., 2014 Gao and Oterkus, 2019), electrical (Oterkus et al., 

2013), and porous flow fields (Oterkus et al., 2017). 

Among the various areas where peridynamics has expanded, thermal process 

modelling has become an active area. There are various studies in the literature focused 

on peridynamic analysis of thermal diffusion. Gerstle et al. (2008) developed a 1-
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dimensional multiphysics model coupling thermal diffusion, electrical, mechanical 

and vacancy diffusion fields to investigate the electromigration phenomenon. Bobaru 

and Duangpanya (2012) introduced a multidimensional bond-based peridynamic 

formulation for transient heat transfer analysis. Oterkus et al. (2014) developed an 

ordinary state-based peridynamic heat conduction equation based on Lagrangian 

formalism. To analyse failure prediction in electronic packages, Oterkus et al. (2014) 

proposed a coupled hygro-thermo-mechanical model. Xue et al. (2018) developed a 

state-based peridynamic formulation for heat transfer analysis by utilising the domain 

decomposition method. Wang et al. (2016) utilised the Green’s function method to 

develop a peridynamic diffusion model. Liao et al. (2017) performed peridynamic 

simulations for heat conduction analysis of functionally gradient materials by 

considering cracks. 

Despite these wide range of applications for peridynamics developed over the past 

twenty-five years, research on the fundamental length parameter, the horizon size, 

remains relatively limited. The current size selection in numerical simulation mainly 

depends on suggestions made in the influential paper written by Silling and Askari 

(Silling and Askari, 2005). They suggested using a horizon size equivalent to three 

times the grid spacing between material points based on the experiences of these 

researchers for their simulations. However, their conclusion was obtained based on the 

original peridynamic formulation, named bond-based Peridynamics (Silling, 2000). 

Although bond-based peridynamics is an effective approach, it has certain limitations 

in material properties (Madenci and Oterkus, 2017), as Poisson's ratio is not a free 

parameter. To overcome these limitations, advanced peridynamic formulations, such 

as ordinary state-based peridynamics (Silling et al., 2007) and non-ordinary state-

based Peridynamics (Warren et al., 2009; Silling, 2017), were developed.  

In addition to the gaps associated with horizon size selection, the implementation of 

peridynamic models presents further computational considerations. Closed-form 

solutions to peridynamic equations are generally not available; therefore, numerical 

methods are typically employed to obtain solutions (Madenci and Oterkus, 2013). For 

spatial discretization, uniform discretization scheme is widely used. However, for 

some problems, using uniform discretization can unnecessarily increase the 

computational time since only some part of the solution domain can be solved by using 
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fine discretization whereas other parts can be modelled by using coarse discretization. 

Moreover, variable horizon size can also be required to reduce the computational time 

or due to the nature of the problem. To overcome these concerns, Dual-horizon 

Peridynamics was developed by Ren et al. (2016a; 2016b) which allows both non-

uniform discretization and variable horizon for mechanical analysis. 

In summary, the horizon size influences the computational time significantly; it is 

important to determine optimum horizon sizes for ordinary state-based and non-

ordinary state-based peridynamics formulations to provide a decent level of accuracy 

within a reasonable computational time. In addition, a Dual-horizon Peridynamics 

formulation specifically addressing thermal diffusion has not been available in the 

literature. 

2.4 Heat Source Modelling and Thermomechanical Analysis in Welding and AM 

Welding remains a widely utilised fabrication process in the manufacturing industry, 

relying on high temperatures to melt and join metallic components. The resulting 

thermal field not only governs the development of residual stresses but is also closely 

linked to the metallurgical, crystallisation, and phase transformation phenomena that 

occur during solidification. Building upon similar principles of localised melting and 

solidification, AM has emerged as a transformative production technology that enables 

layer-by-layer fabrication of complex components. Its unique advantages, including 

design freedom, customisation, and material efficiency, have led to increasing 

adoption across sectors such as aerospace, healthcare, and automotive. However, the 

widespread industrial application of AM is still limited by the lack of understanding 

of the underlying processes required for accurate process modelling (Tofail et al., 

2018) . 

One of the challenges in both welding and AM is the development of reliable 

mathematical models, which are necessary to minimise dependence on costly and 

time-consuming trial-and-error procedures during process optimisation. An important 

aspect of these modelling approaches is the representation of the heat source, which 

provides a mathematical description of the fraction of input energy absorbed by the 

material and its spatial distribution within the heat-affected zone. In AM modelling, 

heat source models are employed to assess the impact of powder deposition on thermal 



12 

 

transport and to inform the optimisation of powder nozzle designs (Arrizubieta et al., 

2014), as well as to characterise the complex interaction between the melt pool and the 

energy input (e.g., laser or electron beam) (Hamahmy and Deiab, 2020). 

Heat source models for AM are, in most cases, adapted from approaches in the welding 

literature (Thompson et al., 2015). Various heat source models have been proposed in 

the past decades to investigate heat transfer mechanisms for welding and AM 

processes. The welding heat source model can be classified as a concentrated heat 

source, a planar distribution heat source, or a volumetric distributed heat source, which 

depends on different welding methods in the manufacturing process (Hamahmy and 

Deiab, 2020). While the part of the workpiece concerned is far away from the weld's 

centreline, the welding heat source can be treated as a centralised heat source model. 

Rosenthal (1941) stated an analytical solution of the temperature field for a semi-

infinite body subjected to a constant heat source. For general arc welding, the welding 

arc's heat flow is distributed in a particular area on the weldment. Hence, a plane 

distribution of the heat source can be considered in the numerical model. Eagar and 

Tsai (1983) applied Rosenthal's theory to a two-dimensional heat source model and 

found the analytical solution of the temperature field. However, for high-energy beam 

welding, due to the large depth-to-width ratio of the weld, it shows that the heat flow 

of the welding heat source has a great influence along the thickness direction of the 

workpiece, and it must be treated according to a certain volumetric distributed heat 

source model. Goldak (1985) proposed a three-dimensional double ellipsoidal model 

to overcome the penetration effect due to the surface heat model, and Nguyen et al. 

(1999) provided the analytical solutions for the transient temperature of the three-

dimensional heat source. 

Moreover, due to the complexity of the heat transfer in welding and AM processes, 

rapid temperature change can induce residual stresses and macro-thermal deformations 

(Bian et al., 2019). Therefore, in the investigation of the welding manufacturing 

process, the thermomechanical coupling effects needs to be considered in thermal and 

structural fields. Goldak et al. (1984) proposed a finite element model (FEM) for 

welding heat sources to investigate the temperature distribution. Van Elsen et al. (2007) 

used a finite difference model (FDM) for moving heat sources in a semi-infinite 

medium. Ning et al. (2019) utilised an analytical model with a moving point heat 
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source in metal AM to predict the temperature field and thermal gradient. Sepe et al. 

(2021) developed an FEM butt welding and performed a sensitivity analysis on 

temperature-dependent material properties such as thermal conductivity, specific heat, 

Young’s modulus, and thermal expansion coefficient. The results showed that 

temperature-dependent thermal expansion has little effect, whereas 

temperature-dependent Young’s modulus strongly influences the displacement field. 

In addition, heat transfer during welding is often accompanied by phase change. It is 

considered a moving boundary problem due to the undetermined moving boundary 

between the liquid phase and the solid phase (Jiji, 2009). Due to its non-linear 

characteristic, only a small number of exact solutions exist (Jiji, 2009). When a 

substance undergoes a phase change such as solidification, modelling of the latent heat 

at the solid-liquid interface is crucial in heat transfer analysis. The latent heat can be 

mainly handled by front-tracking methods and fixed grid methods. 

Jiji Latif (2009) applied the front tracking method to explicitly track the moving phase 

boundary during melting or solidification, which sets an additional node at the solid-

liquid interface that splits a single element that contain both solid and liquid regions. 

This can accurately predict the location of the moving interface and precisely handle 

the latent heat. However, it merely can be used for simple geometries, which restricts 

its application in modelling the solidification process (Hu and Argyropoulos, 1996).  

The fixed-grid method treats the entire computational domain as a continuous region 

(Voller et al., 1990), where the Stefan condition is implicitly incorporated into the heat 

conduction equation. The Stefan condition represents the energy balance at the moving 

phase interface, so that the heat conducted to the interface is exactly equal to the energy 

required to melt or solidify the material at that interface (Jiji, 2009). 

In fixed-grid method, the phase boundary is represented indirectly through variables 

such as effective heat capacity, or heat generation, thus latent heat in phase change can 

be applied using standard heat transfer solvers without complex interface tracking. 

However, when applying the effective heat capacity method to account for latent heat 

during phase transitions, the time step needs to be relatively small due to the effective 

heat capacity in the phase-change interval calculated by integrating over the 

temperature range. If the temperature in a control volume jumps from below the 
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solidus to above the liquidus in a single time step, the model will fail to capture the 

latent heat release during the phase change (Hu and Argyropoulos, 1996). 

In summary, the accurate representation of heat source models and the incorporation 

of thermomechanical coupling effects are fundamental for advancing the predictive 

capability of welding and AM simulations. While the development of analytical and 

numerical approaches, such as finite element and finite difference methods, has 

improved our understanding of thermal fields, residual stress, and phase change 

phenomena, many existing models remain limited by their reliance on classical 

continuum mechanics and the challenges of handling complex geometries and 

discontinuities. This has led to growing interest in alternative modelling approaches, 

such as peridynamics, which offer a promising framework for addressing these 

limitations and capturing the complex, multiphysics behaviour intrinsic to advanced 

manufacturing processes. 

2.5 Multiphase Flow and Surface Tension Modelling 

AM and welding processes involve not only heat transfer and mechanical deformation 

but also complex fluid flow and interfacial phenomena within the melt pool. During 

laser or electron beam AM, a molten pool forms where liquid metal interacts with 

surrounding solid and gaseous phases, creating a multiphase system. In such systems, 

surface tension, where the force acting along the interface between two phases, plays 

an important role in stabilising the melt pool and controlling its shape. Furthermore, 

when the characteristic length scale of the system is sufficiently small in AM, the effect 

of surface tension on the flow field is more prominent than the inertial effect. 

When temperature gradients form across the melt pool surface, the molten metal is 

subjected to thermo-capillary effects. Since surface tension generally decreases with 

increasing temperature, a non-uniform temperature distribution along the liquid–gas 

interface produces a surface tension gradient (Wozniak et al., 2001). This gradient 

induces Marangoni forces, which act tangentially along the interface and drive fluid 

motion from hotter regions with lower surface tension toward cooler regions with 

higher surface tension (Ma and Bothe, 2011). The thermo-capillary effects strongly 

influence melt pool dynamics in AM and welding, affecting pool shape, microstructure 

evolution, and eventually the mechanical integrity of manufactured components. 
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Accurate simulation of these multiphase flows and interfacial phenomena is therefore 

important for predictive modelling in AM.  

Over the past few decades, extensive research has been conducted on modelling 

multiphase fluid flows. Based on the Navier–Stokes equations, there are two common 

computational fluid dynamics methods for modelling the multiphase fluid flow motion 

from the nanoscale to the macroscale. The first category is Euler methods based on 

grids, such as the volume of fluid (VOF) method (Hirt and Nichols, 1981). Cano-

Lozano et al. (2015) performed a numerical study on rising bubbles in still liquids 

using the VOF method to track the interface between two fluids. Hoang et al. (2013) 

performed numerical simulations of the contact angle and wetted surface properties 

using the fluid volume interface tracking method and the continuum surface force 

method. Ma et al. (2011) developed a numerical method for directly simulating the 

thermal Marangoni effect at the interface in two-phase incompressible fluids and 

quantitatively comparing the numerical results of liquid droplet thermal capillary 

migration with experimental and theoretical results. Another class of numerical 

methods that can be used for multiphase simulations are meshless methods 

(Belytschko et al., 1996). The meshless method is a particle method, such as the 

smoothed particle hydrodynamics method (Morris, 2000) and peridynamics method 

(Gao and Oterkus, 2020). Morris (2020) purposed a technique based on smooth 

particle hydrodynamics for simulating two-phase flow with surface tension. This 

method addresses problems involving fluids of similar density and viscosity. Adami et 

al. (2010) extended the method to higher density and viscosity ratios, using a density-

weighted colour gradient formulation to reflect the asymmetric distribution of surface 

tension. Describing wetting phenomena, in addition to including surface tension 

effects at the interfaces between fluids, the interaction of fluids with solid substrates 

also requires the implementation of appropriate boundary conditions at the solid 

interface. Breinlinger et al. (2013) extended the surface tension model using additional 

boundary conditions to explicitly include interactions with solid walls. Moreover, if 

the temperature or concentration gradient vector is tangent to the interface between the 

two fluids, an additional force known as the Marangoni force develops. Hopp-

Hirschler et al. (2018) proposed a smoothed particle hydrodynamics model of surface 
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tension gradient-driven thermo-capillary flow based on a continuum of surface force 

methods, including Marangoni forces. 

As a promising meshless method, peridynamics is a new formulation of non-local 

continuum mechanics (Silling, 2000; Silling et al., 2017; Madenci and Oterkus, 2013). 

Inspired by peridynamic formulations, Peridynamic Differential Operator (PDDO) 

(Madenci et al., 2016) is developed to transfer the differential equations to their 

integral forms. Various applications of PDDO can be found in the literature (Madenci 

et al., 2017; Madenci et al., 2019; Dorduncu et al., 2023). Gao et al. (2019)  developed 

a non-local Lagrangian model for Newtonian fluids with low Reynolds number 

laminar flow and subsequently extended the model for multiphase fluid flow (Gao and 

Oterkus, 2020). Using PDDOs, Nguyen et al. (2021) modelled a truly incompressible 

fluid based on Euler’s method, in which the pressure field is no longer calculated by a 

weakly compressible fluid model.  

Despite progress in both grid-based and meshless approaches for modelling 

multiphase flows, accurately capturing the interface interaction remains challenging. 

The PDDO has shown promise in extending peridynamic theory to fluid dynamics; 

however, existing studies reveal a gap in the development of peridynamic models 

capable of addressing multiphase flow problems that involve interfacial wetting and 

coupled thermo-fluid behaviour. 

2.6 Knowledge Gaps and Thesis Contributions 

While peridynamic modelling has seen significant advances in recent years for 

mechanical, thermal, and multiphase fluid systems, several challenges remain only 

partially resolved. For example, approximate guidelines for horizon size selection have 

been suggested, but mainly for bond-based formulations and without systematic 

validation across different peridynamic formulations. Variable discretisation methods 

have been proposed, but their stability and efficiency are still not fully established. 

Similarly, surface-tension-driven multiphase flows, such as those involving 

Marangoni effects, are only beginning to be addressed and require further development. 

This thesis aims to address these gaps through developing, implementing, and 

validating advanced peridynamic models suited for the multiscale, multiphysics 

demands of AM and welding applications.  
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Chapter 3 Methodology 

3.1 Introduction 

The accurate modelling of material deformation is a key challenge in computational 

mechanics, specifically when dealing with complex phenomena such as crack 

initiation, propagation, and coalescence. As previously discussed, traditional 

approaches based on Classical Continuum Mechanics (CCM) are limited by their 

reliance on local partial differential equations, which become invalid at discontinuities 

and require additional treatments to model fractures. 

To address these challenges, the peridynamic theory was introduced as a 

fundamentally nonlocal reformulation of continuum mechanics, replacing classical 

spatial derivatives with integral equations that remain well-defined in the presence of 

discontinuities. This chapter presents the theoretical framework and mathematical 

formulation of peridynamic methods, laying the foundation for the subsequent 

numerical investigations. 

3.2 Peridynamic Theory 

In CCM, the motion of a material body is described by partial differential equations 

based on the local balance of linear momentum. For a body occupying region, the 

equation of motion at position 𝒙 is given as (Reddy, 2013) 

𝜌(𝒙)𝒖̈(𝒙, 𝑡) = 𝛻 ⋅ 𝝈(𝑥, 𝑡) + 𝒃(𝒙, 𝑡) ( 3.1 ) 

in which 𝜌  is the mass density, 𝒖  is the displacement, 𝑡  is the time, 𝛻  is the nabla 

operator, 𝝈  is the Cauchy stress tensor, and 𝒃  is the body force per unit volume. 

Eq.( 3.1 ) presents that internal forces at a point are governed by the spatial gradients 

of stress in its immediate neighbourhood. 

However, this reliance on spatial derivatives introduces inherent limitations when 

modelling problems with discontinuities such as cracks, since derivatives become 

undefined at those locations. This necessitates supplementary mathematical techniques, 

such as remeshing, enrichment to represent fracture processes, thereby complicating 

the simulation framework. 

To overcome the limitations of CCM, Silling (2020) proposed the peridynamic theory, 

which removes the requirement for spatial derivatives by reformulating the equations 
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of motion as nonlocal integral equations. In peridynamics, each material point interacts 

with surrounding material points within a finite spatial domain known as the horizon 

𝐻𝑥, as shown in Fig. 3-1. 

 

Fig. 3-1 Peridynamic horizon and force states. 

Within the horizon, a force density vector acts on the material point 𝒙 because of its 

interaction with neighbouring material points 𝒙′ . The collection of all such force 

density vectors at material point 𝒙 constitutes the force state 𝑻(𝒙, 𝑡). 

The concept of state in peridynamics is a mathematical object that generalises the 

concept of a vector or tensor field, and represented by ⟨∙⟩, allowing the description of 

interactions between a reference material point and all its neighbours within the 

horizon (Silling et al., 2007). For instance, the force density vectors on material points 

𝒙 from 𝒙′ can be denoted in state notation as 𝑻(𝒙, 𝑡)⟨𝒙′ − 𝒙⟩.  

With these definitions, the general peridynamic equation of motion can be expressed 

as (Madenci and Oterkus, 2013) 

𝜌(𝒙)𝒖̈(𝒙, 𝑡) = ∫[𝑻(𝒙, 𝑡)⟨𝒙′ − 𝒙⟩ − 𝑻(𝒙′, 𝑡)⟨𝒙 − 𝒙′⟩]

𝐻𝑥

𝑑𝑉′ + 𝒃(𝒙, 𝑡) 
( 3.2 ) 

where 𝑉′ represents the volume associated with each neighbouring material point 𝒙′ 

within the horizon. 
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Generally, peridynamics can be classified into three main categories: bond-based 

(Silling, 2000), ordinary state-based (Silling, 2007), and non-ordinary state-based 

(Madenci and Oterkus, 2013) formulations, which are distinguished according to the 

direction and magnitude of the force density vector between a pair of material points 

(Fig. 3-2). 

 

Fig. 3-2 Force states in the peridynamic framework. 

3.2.1 Bond-Based Peridynamics 

Bond-based peridynamics is the original formulation (Silling, 2000), in which the 

force density vectors acting on a pair of material points are determined only by the 

stretch of the bond connecting them. These forces are assumed to be equal in 

magnitude and opposite in direction.  

The force density vector 𝑻(𝒙, 𝑡)⟨𝒙′ − 𝒙⟩ in linear elastic isotropic materials at material 

points 𝒙 in Eq.( 3.2 ) can be expressed in the form as (Madenci and Oterkus, 2013) 

𝑻(𝒙, 𝑡)⟨𝒙′ − 𝒙⟩ =
1

2
𝑐𝑠(𝒖′ − 𝒖, 𝒙′ − 𝒙)

𝒚′ − 𝒚

|𝒚′ − 𝒚|
 

( 3.3 ) 

and at material point 𝒙′ as 

𝑻(𝒙′, 𝑡)⟨𝒙 − 𝒙′⟩ = −
1

2
𝑐𝑠(𝒖′ − 𝒖, 𝒙′ − 𝒙)

𝒚′ − 𝒚

|𝒚′ − 𝒚|
 

( 3.4 ) 

where 𝒖 and 𝒖′ represent the displacement of material points 𝒙 and its neighbouring 

points 𝒙′ , the term 𝒚  represent the position of material points in the deformed 

configuration, thus 𝒚 = 𝒙 + 𝒖 , and similarly, for its family material point 𝒙′ within 

the horizon, it can be represented as 𝒚′ = 𝒙′ + 𝒖′.  
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The term 𝑠 denotes the stretch of the bond between a pair of material points 𝒙 and 𝒙′ 

after deformation, this can be defined as 

𝑠(𝒖′ − 𝒖, 𝒙′ − 𝒙) =
|𝒚′ − 𝒚| − |𝒙′ − 𝒙|

|𝒙′ − 𝒙|
 

( 3.5 ) 

The bond constant, denoted as 𝑐, in Eq.( 3.3 ) and Eq.( 3.4 ) is related to the elastic 

modulus and geometry, derived by equating strain energy densities from peridynamics 

and CCM (Madenci and Oterkus, 2013). 

To establish this relationship, the strain energy density at a material point is calculated 

for a given loading condition using both the peridynamic formulation and CCM. By 

equating these results, a direct correspondence between the peridynamic and classical 

material parameters can be established. 

For a linear elastic isotropic material, the bond constant in the two-dimensional case 

is given by (Madenci and Oterkus, 2013) 

𝑐 =
9𝐸

𝜋ℎ𝛿3
 

( 3.6 ) 

and for a three-dimensional structure is given by (Madenci and Oterkus, 2013) 

𝑐 =
12𝐸

𝜋𝛿4
 

( 3.7 ) 

in which 𝐸 is the elastic modulus, ℎ is the thickness, and 𝛿 is the horizon size. 

As can be observed from the expression for the bond constant, bond-based 

formulations incorporate only the elastic modulus, 𝐸, from CCM, while disregarding 

the Poisson’s ratio, 𝜈 . This simplification implies that Poisson’s ratio is not a free 

parameter in bond-based peridynamics; instead, the formulation inherently imposes a 

fixed value of 𝜈 = 1/3  for two-dimensional geometries and 𝜈 = 1/4  for three-

dimensional problems (Silling, 2000). 

For materials with Poisson’s ratios different from these fixed values, more general 

peridynamic models, such as the ordinary state-based or non-ordinary state-based 

formulations, are required. 
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3.2.2 Ordinary State-based Peridynamics 

The ordinary state-based formulation generalises the bond-based approach by relaxing 

the requirement that the forces between two material points must be equal in 

magnitude and opposite in direction (Silling, 2000). While the direction of the force 

density vectors remains opposed, their magnitudes are no longer required to be equal 

(Fig. 3-2). Furthermore, the force acting on a material point depends not only on its 

own motion and that of its immediate neighbour, but also on the collective motion of 

all family members within their horizons. 

The pairwise force density vector at material point 𝒙  for ordinary state-based 

formulation is given by (Madenci and Oterkus, 2013) 

𝑻(𝒙, 𝑡)⟨𝒙′ − 𝒙⟩ =
1

2
𝐴
𝒚′ − 𝒚

|𝒚′ − 𝒚|
 

( 3.8 ) 

and at material point 𝒙′ as (Madenci and Oterkus, 2013) 

𝑻(𝒙′, 𝑡)⟨𝒙 − 𝒙′⟩ = −
1

2
𝐵
𝒚′ − 𝒚

|𝒚′ − 𝒚|
 

( 3.9 ) 

where 𝐴  and 𝐵  are auxiliary parameters dependent on the material constants, the 

deformation field, and the horizon. 

For a linear elastic isotropic material, the auxiliary parameter 𝐴  can be written as 

(Madenci and Oterkus, 2013) 

𝐴 =
4𝑎𝑑𝛿

|𝒙′ − 𝒙|
𝜃(𝒙, 𝑡) + 4𝛿𝑏𝑠(𝒖′ − 𝒖, 𝒙′ − 𝒙) 

( 3.10 ) 

while 𝐵 for the paired material point is (Madenci and Oterkus, 2013) 

𝐵 =
4𝑎𝑑𝛿

|𝒙′ − 𝒙|
𝜃(𝒙′, 𝑡) + 4𝛿𝑏𝑠(𝒖′ − 𝒖, 𝒙′ − 𝒙) 

( 3.11 ) 

The term 𝜃(𝒙, 𝑡)  in the above expressions represents the dilatation, or volumetric 

strain, and is given by (Madenci and Oterkus, 2013) 
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𝜃(𝒙, 𝑡) = ∫(𝑑𝛿𝑠)

𝐻𝑥

𝑑𝑉′ 
( 3.12 ) 

where 𝑎, 𝑏 and 𝑑 are the peridynamic parameters. 

As discussed previously, these peridynamic parameters can be derived by considering 

a common parameter in both peridynamics and CCM. For instance, the relationships 

between these parameters can be established by comparing dilatation and  strain energy 

density under isotropic expansion and simple shear conditions in peridynamics and 

CCM. The detailed list of peridynamic parameters in different dimensions is provided 

in Table 3-1 (Madenci and Oterkus, 2013). 

Table 3-1 Peridynamic parameters in different dimensions 

2D 𝑎 =
1

2
(𝜅 − 2𝜇) 𝑏 =

6𝜇

𝜋ℎ𝛿4
 𝑑 =

2

𝜋ℎ𝛿3
 

3D 𝑎 =
1

2
(𝜅 −

5𝜇

3
) 𝑏 =

15𝜇

2𝜋𝛿5
 𝑑 =

9

4𝜋𝛿4
 

in which κ is the bulk modulus and μ is shear modulus. Table 3-2 provides the 

calculation of the bulk modulus κ and shear modulus μ in different dimensions. 

Table 3-2 Bulk modulus and shear modulus in different dimensions 

2D 𝜅 =
𝐸

2(1 −  𝜈)
 𝜇 =

𝐸

2(1 + 𝜈)
 

3D 𝜅 =
𝐸

3(1 −  2𝜈)
 𝜇 =

𝐸

2(1 + 𝜈)
 

It is noteworthy that, for two-dimensional calculations when the Poisson’s ratio 𝜈 =

1/3 , there has 𝜅 = 2𝜇; and for three-dimensional calculations when 𝜈 = 1/4, there 

has 𝜅 =
5𝜇

3
. Under these specific conditions, the peridynamic parameter, 𝑎, becomes 

zero, causing the first terms (
2𝑎𝑑𝛿

|𝒙′−𝒙|
𝜃(𝒙, 𝑡)  and 

2𝑎𝑑𝛿

|𝒙′−𝒙|
𝜃(𝒙′, 𝑡) ) in Eq.( 3.10 ) and 

Eq.( 3.11 ) to vanish.  

Furthermore, substituting these values of μ into the peridynamic parameter, 𝑏, from 

Table 3-1, the factor ‘4𝛿𝑏’ in the second term of Eq.( 3.10 ) and Eq.( 3.11 ) becomes 
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equivalent to the factor 𝑐 given in Eq.( 3.3 ) and Eq.( 3.4 ). As a result, the ordinary 

state-based formulation reduces to the bond-based formulation for these special values 

of Poisson’s ratio (Poisson’s ratio 𝜈 = 1/3 at 2D, and 𝜈 = 1/4 for 3D). 

3.2.3 Non-ordinary State-based Peridynamics 

The force density vector restriction is further relaxed in the non-ordinary state-based 

formulation, wherein the directions of the forces are permitted to be arbitrary. However, 

once the force direction is no longer constrained to the bond direction, it becomes 

necessary to explicitly ensure conservation of angular momentum, a condition that is 

automatically satisfied in both bond-based and ordinary state-based peridynamics. 

Therefore, the following condition must be met (Madenci and Oterkus, 2013) 

∫{ (𝒚′ − 𝒚) × 𝑻(𝒙, 𝑡)⟨𝒙′ − 𝒙⟩ }

𝐻𝑥

𝑑𝑉′ = 0 
( 3.13 ) 

Within the non-ordinary state-based formulation, the force vector 𝑻(𝒙, 𝑡)⟨𝒙′ − 𝒙⟩ 

acting on material point 𝒙  may be directly expressed using stress definitions from 

CCM. This approach allows the integration of established material models from CCM 

into the peridynamic framework (Madenci and Oterkus, 2013). 

For example, the force state in non-ordinary state-based peridynamics may be related 

to the first Piola-Kirchhoff stress tensor, 𝑷, as (Madenci and Oterkus, 2013) 

𝑻(𝒙, 𝑡)⟨𝒙′ − 𝒙⟩ = 𝑤〈𝒙′ − 𝒙〉𝑷𝑲−1(𝒙′ − 𝒙) ( 3.14 ) 

where 𝑲 is the shape tensor, defined as 

𝑲 = ∫𝑤〈𝒙′ − 𝒙〉(𝑿〈𝒙′ − 𝒙〉⊗ 𝑿〈𝒙′ − 𝒙〉)

𝐻𝑥

𝑑𝑉′ 
( 3.15 ) 

Here, 𝑤〈𝒙′ − 𝒙〉 is the influence state, characterising the strength of the interaction 

between material points, ⊗ denotes the dyadic product of two vectors, and 𝑿〈𝒙′ − 𝒙〉 

is the position state, describing the relative position of material points associated with 

a particular bond. 
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The first Piola-Kirchhoff stress tensor 𝑷 in Eq.( 3.14 ) can be determined using the 

deformation gradient tensor 𝑭  and the second Piola-Kirchhoff stress tensor 𝑺  as 

follows 

𝑷 = 𝑭𝑺 ( 3.16 ) 

The second Piola–Kirchhoff stress tensor 𝑺 , can be calculated from the Green–

Lagrange strain tensor 𝑬 by (Madenci and Oterkus, 2013) 

𝑺 = 𝜆𝑡𝑟(𝑬)𝑰 + 2𝜇𝑬 ( 3.17 ) 

where 𝜆 and 𝜇 are Lamé constants, related to Young’s modulus and Poisson’s ratio, 𝑡𝑟 

is trace operation, 𝑰  is identity matrix, and the Green–Lagrange strain tensor 𝑬  is 

computed as (Madenci and Oterkus, 2013) 

𝑬 =
1

2
(𝑭−1𝑭 − 𝑰) 

( 3.18 ) 

To incorporate CCM-based material models into peridynamics, it is necessary to relate 

the stress and strain components. In peridynamics, the deformation gradient 𝑭 can be 

defined as (Madenci and Oterkus, 2013) 

𝑭 =
∫ 𝑤〈𝒙′ − 𝒙〉(𝒀〈𝒙′ − 𝒙〉⊗ 𝑿〈𝒙′ − 𝒙〉)
𝐻𝑥

𝑑𝑉′

∫ 𝑤〈𝒙′ − 𝒙〉(𝑿〈𝒙′ − 𝒙〉⊗ 𝑿〈𝒙′ − 𝒙〉)
𝐻𝑥

𝑑𝑉′
 

( 3.19 ) 

where the term 𝒀〈𝒙′ − 𝒙〉 denotes the position state in the deformed configuration. 

Although non-ordinary state-based peridynamics allows the direct utilisation of CCM 

material models, typical particle discretisations are prone to zero-energy mode 

instabilities (Gu et al., 2018). To overcome this, the stabilisation method proposed by 

Silling (2017) is employed, whereby a stabilisation term is introduced into the force 

formulation (Madenci and Oterkus, 2013) 

𝑻(𝒙, 𝑡)⟨𝒙′ − 𝒙⟩ = 𝑤〈𝒙′ − 𝒙〉 (𝑷𝑲−1(𝒙′ − 𝒙) +
𝐺𝑐

𝜔𝑁𝑂𝑃𝐷𝛿
𝒛〈𝒙′ − 𝒙〉) 

( 3.20 ) 
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where 𝐺 is a positive constant, and 𝑐 is the bond constant as given in Eq.( 3.6 ) and 

Eq.( 3.7 ) for two-dimensional and three-dimensional structures, respectively, and 

𝜔𝑁𝑂𝑃𝐷 is given by 

𝜔𝑁𝑂𝑃𝐷 = ∫𝑤〈𝒙′ − 𝒙〉

𝐻𝑥

𝑑𝑉′ 
( 3.21 ) 

The deformation state 𝒛〈𝒙′ − 𝒙〉 in Eq.( 3.20 ) is defined as (Madenci and Oterkus, 

2013) 

𝒛〈𝒙′ − 𝒙〉 = 𝒀〈𝒙′ − 𝒙〉 − 𝑭(𝒙′ − 𝒙) ( 3.22 ) 

3.3 Peridynamic Differential Operator 

While the peridynamic theory introduced in Section 3.2 reformulates continuum 

mechanics using integral equations to overcome the limitations of classical partial 

differential equations. Building on this non-local concept, the Peridynamic Differential 

Operator (PDDO) has been recently proposed by Madenci et al. (2016), enabling the 

representation of any order of partial differentials within an integral form. The first and 

second order partial differentials of a function 𝑓(𝒙) in two-dimensional domain can 

be calculated using PDDO as 

{
 
 
 
 
 

 
 
 
 
 
𝜕𝑓(𝒙)

𝜕𝑥1
𝜕𝑓(𝒙)

𝜕𝑥2
𝜕2𝑓(𝒙)

𝜕𝑥12

𝜕2𝑓(𝒙)

𝜕𝑥22

𝜕2𝑓(𝒙)

𝜕𝑥1𝜕𝑥2}
 
 
 
 
 

 
 
 
 
 

= ∫ [𝑓(𝒙 + 𝝃) − 𝑓(𝒙)]

{
 
 

 
 
𝑔1
10(𝝃)

𝑔1
01(𝝃)

𝑔2
20(𝝃)

𝑔2
02(𝝃)

𝑔2
11(𝝃)}

 
 

 
 

𝐻𝑥

𝑑𝑉′ 

( 3.23 ) 

where 𝑉′ represents the volume associated with each neighbouring material point 𝒙′ 

within the horizon. The parameters 𝑔1
10(𝝃)   𝑔1

01(𝝃)   𝑔2
11(𝝃)   𝑔2

02(𝝃)  𝑔2
20(𝝃)  are 

peridynamic functions. 
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Here, 𝝃 = 𝒙′ − 𝒙 = 𝜉1𝒆𝟏 + 𝜉2𝒆𝟐 is the relative position vector between material point 

𝒙 and its family material points 𝒙′ within its horizon 𝐻𝑥 with 

𝜉1 = 𝑥′1 − 𝑥1 

𝜉2 = 𝑥′2 − 𝑥2 

( 3.24 ) 

where 𝜉1and 𝜉2 represent the projections of the vector 𝝃 with respect to 𝑥1 and 𝑥2 axes, 

and 𝒆𝟏, 𝒆𝟐  are the unit vectors in the coordinate directions. 

Peridynamic functions, 𝑔1
10(𝝃)  𝑔1

01(𝝃)  𝑔2
11(𝝃)  𝑔2

02(𝝃) and 𝑔2
20(𝝃) in Eq.( 3.23 ), are 

constructed to satisfy orthogonality properties (Madenci et al., 2016) that ensure the 

peridynamic integral operator correctly recovers the desired derivatives. The 

orthogonality properties for peridynamic functions can be given in the compact form 

as (Madenci et al., 2016) 

1

𝑛1! 𝑛2!
∫ 𝜉1

𝑛1𝜉2
𝑛2𝑔𝑁

𝑃1𝑃2(𝝃)

𝐻𝑥

𝑑𝜉1𝑑𝜉2 = 𝛿𝑛1𝑃1𝛿𝑛2𝑃2 
( 3.25 ) 

where 𝑔𝑁
𝑃1𝑃2(𝝃) is the peridynamic function up to second order, 𝑛𝑖 = 1,2, 𝑃𝑖 = 1,2 is 

the order of differentiation with respect to 𝑥𝑖, and 𝛿𝑛𝑖𝑃𝑖 is the Kronecker delta (𝛿𝑛𝑖𝑃𝑖 =

1 if 𝑛𝑖 = 𝑃𝑖, otherwise 𝛿𝑛𝑖𝑃𝑖 = 0). 

Eq. ( 3.25 ) can also be written in an explicit form as (Madenci et al., 2016) 

∫

[
 
 
 
 
 
𝜉1
0𝜉2

1 𝜉1
0𝜉2

1 𝜉1
0𝜉2

1 𝜉1
0𝜉2

1 𝜉1
0𝜉2

1

𝜉1
0𝜉2

2 𝜉1
0𝜉2

2 𝜉1
0𝜉2

2 𝜉1
0𝜉2

2 𝜉1
0𝜉2

2

𝜉1
1𝜉2

0 𝜉1
1𝜉2

0 𝜉1
1𝜉2

0 𝜉1
1𝜉2

0 𝜉1
1𝜉2

0

𝜉1
1𝜉2

1 𝜉1
1𝜉2

1 𝜉1
1𝜉2

1 𝜉1
1𝜉2

1 𝜉1
1𝜉2

1

𝜉1
2𝜉2

0 𝜉1
2𝜉2

0 𝜉1
2𝜉2

0 𝜉1
2𝜉2

0 𝜉1
2𝜉2

0]
 
 
 
 
 

[
 
 
 
 
 
𝑔1
01(𝝃)

𝑔2
02(𝝃)

𝑔1
10(𝝃)

𝑔2
11(𝝃)

𝑔2
20(𝝃)]

 
 
 
 
 

𝐻𝑥

𝑑𝑉′ =

[
 
 
 
 
1 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2]

 
 
 
 

 

( 3.26 ) 

in which the superscript on relative position vector components represents the power 

of 𝜉1 and 𝜉2. 

Each peridynamic function 𝑔𝑁
𝑃1𝑃2(𝝃) in Eq. ( 3.26 ) at a given material point can be 

constructed as (Madenci et al., 2016) 
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𝑔𝑃1+𝑃2
𝑃1𝑃2 (𝝃) = ∑ ∑ 𝑎𝑞1𝑞2

𝑃1𝑃2

2−𝑞1

𝑞2=0

2

𝑞1=0

𝜔(|𝝃|)𝜉1
𝑞1𝜉2

𝑞2 

( 3.27 ) 

in which 𝑎𝑞1𝑞2
𝑃1𝑃2  are the coefficients to be determined, and 𝜔(|𝝃|) is a weight function 

that describes the level of nonlocal interaction between material points in PDDO. 

The weight function typically decays with increasing distance; for example, in this 

study, the weight function is chosen as (Madenci et al., 2016) 

𝜔(|𝝃|) = 𝑒𝑥𝑝
−(
2|𝝃|
𝛿
)
2

 
( 3.28 ) 

The unknown coefficients 𝑎𝑞1𝑞2
𝑃1𝑃2  in Eq.( 3.27 ) can be arranged in matrix form as 

𝑎𝑞1𝑞2
𝑃1𝑃2 =

{
 
 

 
 
𝑎01
01 𝑎02

01 𝑎10
01 𝑎11

01 𝑎20
01

𝑎01
02 𝑎02

02 𝑎10
02 𝑎11

02 𝑎20
02

𝑎01
10 𝑎02

10 𝑎10
10 𝑎11

10 𝑎20
10

𝑎01
11 𝑎02

11 𝑎10
11 𝑎11

11 𝑎20
11

𝑎01
20 𝑎02

20 𝑎10
20 𝑎11

20 𝑎20
20}
 
 

 
 

 

( 3.29 ) 

By substituting these coefficients into the definition of the peridynamic functions 

𝑔𝑁
𝑃1𝑃2 in Eq.( 3.27 ) the explicit forms up to second order can be represented as 

𝑔2
01(𝝃) = ∑ ∑ 𝑎𝑞1𝑞2

01

2−𝑞1

𝑞2=0

2

𝑞1=0

𝜔(|𝝃|)𝜉1
𝑞1𝜉2

𝑞2

= 𝑎01
01𝜔(|𝝃|)𝜉1

0𝜉2
1 + 𝑎02

01𝜔(|𝝃|)𝜉1
0𝜉2

2 + 𝑎10
01𝜔(|𝝃|)𝜉1

1𝜉2
0

+ 𝑎11
01𝜔(|𝝃|)𝜉1

1𝜉2
1 + 𝑎20

01𝜔(|𝝃|)𝜉1
2𝜉2

0 

𝑔2
02(𝝃) = ∑ ∑ 𝑎𝑞1𝑞2

02

2−𝑞1

𝑞2=0

2

𝑞1=0

𝜔(|𝝃|)𝜉1
𝑞1𝜉2

𝑞2

= 𝑎01
02𝜔(|𝝃|)𝜉1

0𝜉2
1 + 𝑎02

02𝜔(|𝝃|)𝜉1
0𝜉2

2 + 𝑎10
02𝜔(|𝝃|)𝜉1

1𝜉2
0

+ 𝑎11
02𝜔(|𝝃|)𝜉1

1𝜉2
1 + 𝑎20

02𝜔(|𝝃|)𝜉1
2𝜉2

0 

( 3.30 ) 
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𝑔2
10(𝝃) = ∑ ∑ 𝑎𝑞1𝑞2

10

2−𝑞1

𝑞2=0

2

𝑞1=0

𝜔(|𝝃|)𝜉1
𝑞1𝜉2

𝑞2

= 𝑎01
10𝜔(|𝝃|)𝜉1

0𝜉2
1 + 𝑎02

10𝜔(|𝝃|)𝜉1
0𝜉2

2 + 𝑎10
10𝜔(|𝝃|)𝜉1

1𝜉2
0

+ 𝑎11
10𝜔(|𝝃|)𝜉1

1𝜉2
1 + 𝑎20

10𝜔(|𝝃|)𝜉1
2𝜉2

0 

𝑔2
11(𝝃) = ∑ ∑ 𝑎𝑞1𝑞2

11

2−𝑞1

𝑞2=0

2

𝑞1=0

𝜔(|𝝃|)𝜉1
𝑞1𝜉2

𝑞2

= 𝑎01
11𝜔(|𝝃|)𝜉1

0𝜉2
1 + 𝑎02

11𝜔(|𝝃|)𝜉1
0𝜉2

2 + 𝑎10
11𝜔(|𝝃|)𝜉1

1𝜉2
0

+ 𝑎11
11𝜔(|𝝃|)𝜉1

1𝜉2
1 + 𝑎20

21𝜔(|𝝃|)𝜉1
2𝜉2

0 

𝑔2
20(𝝃) = ∑ ∑ 𝑎𝑞1𝑞2

20

2−𝑞1

𝑞2=0

2

𝑞1=0

𝜔(|𝝃|)𝜉1
𝑞1𝜉2

𝑞2

= 𝑎01
20𝜔(|𝝃|)𝜉1

0𝜉2
1 + 𝑎02

20𝜔(|𝝃|)𝜉1
0𝜉2

2 + 𝑎10
20𝜔(|𝝃|)𝜉1

1𝜉2
0

+ 𝑎11
20𝜔(|𝝃|)𝜉1

1𝜉2
1 + 𝑎20

20𝜔(|𝝃|)𝜉1
2𝜉2

0 

Alternatively, these can be concisely written in matrix form as 

{
 
 

 
 
𝑔2
01(𝝃)

𝑔2
02(𝝃)

𝑔2
10(𝝃)

𝑔2
11(𝝃)

𝑔2
20(𝝃)}

 
 

 
 

=

{
 
 

 
 
𝑎01
01 𝑎02

01 𝑎10
01 𝑎11

01 𝑎20
01

𝑎01
02 𝑎02

02 𝑎10
02 𝑎11

02 𝑎20
02

𝑎01
10 𝑎02

10 𝑎10
10 𝑎11

10 𝑎20
10

𝑎01
11 𝑎02

11 𝑎10
11 𝑎11

11 𝑎20
11

𝑎01
20 𝑎02

20 𝑎10
20 𝑎11

20 𝑎20
20}
 
 

 
 

{
 
 

 
 
𝜔(|𝝃|)𝜉1

0𝜉2
1

𝜔(|𝝃|)𝜉1
0𝜉2

2

𝜔(|𝝃|)𝜉1
1𝜉2

0

𝜔(|𝝃|)𝜉1
1𝜉2

1

𝜔(|𝝃|)𝜉1
2𝜉2

0}
 
 

 
 

 

( 3.31 ) 

To determine the unknown coefficients 𝑎𝑞1𝑞2
𝑃1𝑃2 , substituting Eq.( 3.31 ) into orthogonal 

condition in Eq.( 3.26 ) resulting in a linear system 

𝑨𝒂 = 𝒃̅ ( 3.32 ) 

Here, 𝑨 is the shape matrix with 

𝑨 = ∫ 𝜔(|𝝃|)

[
 
 
 
 
 
𝜉1
0𝜉2

2 𝜉1
0𝜉2

3 𝜉1
1𝜉2

1 𝜉1
1𝜉2

2 𝜉1
2𝜉2

1

𝜉1
0𝜉2

3 𝜉1
0𝜉2

4 𝜉1
1𝜉2

2 𝜉1
1𝜉2

3 𝜉1
2𝜉2

2

𝜉1
1𝜉2

1 𝜉1
1𝜉2

2 𝜉1
2𝜉2

0 𝜉1
2𝜉2

1 𝜉1
3𝜉2

0

𝜉1
1𝜉2

2 𝜉1
1𝜉2

3 𝜉1
2𝜉2

1 𝜉1
2𝜉2

2 𝜉1
3𝜉2

1

𝜉1
2𝜉2

1 𝜉1
2𝜉2

2 𝜉1
3𝜉2

0 𝜉1
3𝜉2

1 𝜉1
4𝜉2

0]
 
 
 
 
 

𝐻𝑥

𝑑𝑉′ 

( 3.33 ) 

𝒂 is the unknown coefficients matrix with 
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𝒂 =

[
 
 
 
 
 
𝑎01
01 𝑎01

02 𝑎01
10 𝑎01

11 𝑎01
20

𝑎02
01 𝑎02

02 𝑎02
10 𝑎02

11 𝑎02
20

𝑎10
01 𝑎10

02 𝑎10
10 𝑎10

11 𝑎10
20

𝑎11
01 𝑎11

02 𝑎11
10 𝑎11

11 𝑎11
20

𝑎20
01 𝑎20

02 𝑎20
10 𝑎20

11 𝑎20
20]
 
 
 
 
 

 

( 3.34 ) 

and matrix 𝒃̅ is presented as 

𝒃̅ =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 2]

 
 
 
 
 

 

( 3.35 ) 

As a result, in unknown coefficients matrix, 𝒂, can be obtained by 

𝒂 = 𝑨\𝒃̅ ( 3.36 ) 

Therefore, peridynamic functions 𝑔𝑁
𝑃1𝑃2  can then be constructed using Eq.( 3.31 ). 

Consequently, the derivative of 𝑓(𝒙) can be obtained through Eq.( 3.23 ). 

The linear system from Eq.( 3.32 ) can be solved either analytically or numerically. 

When the neighbouring material points 𝒙′  of material point 𝒙  are distributed 

symmetrically within the horizon, and the weight function from Eq.( 3.28 ) is used, 

analytical integration of Eq.( 3.33 ) leads to a closed-form expression for the shape 

matrix 

𝑨 =

[
 
 
 
 
 
 
 
 
 
 
𝛿4(−5 + 𝑒4)𝜋

32𝑒4
0 0 0 0

0
3𝛿6(−13 + 𝑒4)𝜋

256𝑒4
0 0

𝛿6(−13 + 𝑒4)𝜋

256𝑒4

0 0
𝛿4(−5 + 𝑒4)𝜋

32𝑒4
0 0

0 0 0
𝛿6(−13 + 𝑒4)𝜋

256𝑒4
0

0
𝛿6(−13 + 𝑒4)𝜋

256𝑒4
0 0

3𝛿6(−13 + 𝑒4)𝜋

256𝑒4 ]
 
 
 
 
 
 
 
 
 
 

 

( 3.37 ) 

Accordingly, the unknown coefficients 𝒂 is obtained by analytical solving Eq.( 3.32 ) 

as 
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𝒂 =

[
 
 
 
 
 
 
 
 
 
 
 

32𝑒4

𝛿4(−5 + 𝑒4)𝜋
0 0 0 0

0
192𝑒4

𝛿6(−13+ 𝑒4)𝜋
0 0 −

64𝑒4

𝛿6(−13 + 𝑒4)𝜋

0 0
32𝑒4

𝛿4(−5 + 𝑒4)𝜋
0 0

0 0 0
256𝑒4

𝛿6(−13 + 𝑒4)𝜋
0

0 −
64𝑒4

𝛿6(−13 + 𝑒4)𝜋
0 0

192𝑒4

𝛿6(−13+ 𝑒4)𝜋 ]
 
 
 
 
 
 
 
 
 
 
 

 

( 3.38 ) 

Substituting these coefficients, the analytical forms of the peridynamic functions is 

presented as 

g1
01(𝛏) =

32ⅇ4

δ4(−5 + ⅇ4)π
ⅇ
−(
2|𝛏|
δ
)
2

ξ1
0ξ2
1 

g2
02(𝛏) =

192ⅇ4

δ6(−13 + ⅇ4)π
ⅇ
−(
2|𝛏|
δ
)
2

ξ1
0ξ2
2 −

64ⅇ4

δ6(−13 + ⅇ4)π
ⅇ
−(
2|𝛏|
δ
)
2

ξ1
2ξ2
0 

g1
10(𝛏) =

32ⅇ4

δ4(−5 + ⅇ4)π
ⅇ
−(
2|𝛏|
δ
)
2

ξ1
1ξ2
0 

g2
11(𝛏) =

256ⅇ4

δ6(−13 + ⅇ4)π
ⅇ
−(
2|𝛏|
δ
)
2

ξ1
1ξ2
1 

g2
20(𝛏) = −

64ⅇ4

δ6(−13 + ⅇ4)π
ⅇ
−(
2|𝛏|
δ
)
2

ξ1
0ξ2
2 +

192ⅇ4

δ6(−13 + ⅇ4)π
ⅇ
−(
2|𝛏|
δ
)
2

ξ1
2ξ2
0 

( 3.39 ) 

For general, non-symmetric distributions or complex geometries, the coefficients are 

determined numerically. The detailed numerical procedure is provided in Chapter 8. 
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Chapter 4 Investigation of Horizon Size in Peridynamics 

4.1 Introduction 

The accuracy of peridynamic simulations is governed by two key numerical 

parameters: the discretisation size and, most importantly, the horizon size, which 

defines the spatial extent of nonlocal interactions between material points. The choice 

of horizon size not only affects the fidelity of simulation results but also has direct 

implications for computational cost. The horizon size selection is based on an early 

recommendation associated with the original bond-based peridynamics (Silling and 

Askari, 2005), which suggests setting the horizon to approximately three times the grid 

spacing. While this rule of thumb has been widely used, it was derived specifically for 

bond-based formulation, whose formulation imposes certain material property 

constraints, such as a fixed Poisson’s ratio. 

With the development of state-based peridynamics, both ordinary and non-ordinary 

formulations, the mathematical structure have evolved (Madenci and Oterkus, 2013). 

These generalised frameworks overcome the limitations of the bond-based approach, 

permitting a broader range of material models. However, whether the selection of 

horizon size for bond-based peridynamics remain valid for state-based formulations is 

not fully understood. The different nature of the interactions and constitutive models 

in state-based peridynamics may require different considerations for determining the 

optimal horizon size. 

This chapter addresses this gap by systematically investigating the influence of horizon 

size in bond-based, ordinary state-based, and non-ordinary state-based peridynamics. 

A range of two- and three-dimensional benchmark problems, including both static and 

dynamic cases, are examined to evaluate how horizon size affects simulation accuracy 

and computational efficiency. The aim is to establish recommendations for selecting 

the horizon size in different peridynamic formulations, thereby improving the 

reliability and predictive capability of peridynamic modelling for applications in 

structural engineering. 

4.2 Numerical Implementation of Peridynamic Formulations 

This section presents the numerical procedures employed for the implementation of 

the peridynamic models. The approach accommodates both static and dynamic 
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problems and covers bond-based, ordinary state-based, and non-ordinary state-based 

formulations. Key aspects include the spatial discretisation of the solution domain, 

numerical integration of the peridynamic equations of motion, imposition of boundary 

conditions, and the incorporation of correction techniques to address nonlocal effects 

at boundaries and interfaces. 

4.2.1 Spatial Integration 

In numerical implementation, the solution domain is discretised into a finite set of 

material points, each representing a finite volume with assigned material properties. 

The spatial discretisation forms the basis for all subsequent calculations, as each 

material point interacts nonlocally with neighbouring points located within its horizon 

radius. 

As illustrated in Fig. 4-1, material point 𝑘  at location 𝒙𝑘  interacts with all 

neighbouring points 𝑗 at location 𝒙𝑗 whose centres fall within a horizon of radius 𝛿. 

 

Fig. 4-1 Numerical discretisation of the simulation domain and volume correction. 

The peridynamic equation of motion, originally formulated as an integral from 

Eq.( 3.2 ), is approximated numerically by summing the contributions of all family 

members within the horizon as 

𝜌𝑘𝒖̈𝑘 =∑[𝒕𝑘𝑗 − 𝒕𝑗𝑘]

𝑁𝑘

𝑗=1

𝑉𝑗 + 𝒃𝑘 

( 4.1 ) 
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where 𝒕𝑘𝑗 is the force density vector acts on material point 𝒙𝑘 by 𝒙𝑗, 𝒕𝑗𝑘 the reciprocal 

force, and 𝑁𝑘 denotes the number of neighbouring material points within the horizon 

of material point 𝑘. 

To reduce numerical integration errors in Eq.( 4.1 ), two correction factors are 

introduced: a volume correction factor and a surface correction factor. 

4.2.1.1 Volume Correction 

For neighbours near the edge of the horizon, only a portion of their volume is contained 

within the horizon. The volume correction factor compensates for this partial overlap 

(Madenci and Oterkus, 2013) 

𝑣𝑐𝑜𝑟 =
(𝛿 + 𝑟 − |𝒙𝑗 − 𝒙𝑘|)

2𝑟
 

( 4.2 ) 

in which and 𝑟 is defined as  

𝑟 =
∆𝑥

2
 

( 4.3 ) 

where ∆𝑥  is the discretion size. This correction applies if |𝒙𝑗 − 𝒙𝑘| > (𝛿 − 𝑟)   

otherwise, 𝑣𝑐𝑜𝑟 = 1. 

4.2.1.2 Surface Correction 

For material points at or near boundaries, horizons are truncated, resulting in 

incomplete nonlocal interactions. To address this, a surface correction factor is 

therefore applied. The necessity and magnitude of this correction depend on the 

presence of free surfaces, which is determined by the specific problem setup.  

The correction is typically computed numerically by integrating both the dilatation and 

the strain energy density at each material point under simple loading conditions and 

comparing these results with those from CCM.  

First, a fictitious uniaxial stretch is applied in the x-, y-, and z-directions before time 

integration. The dilatation in peridynamic framework is then computed as (Madenci 

and Oterkus, 2013) 
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𝜃𝑚
𝑃𝐷

𝒙𝑘
= 𝑑𝛿∑𝑠𝑘𝑗

𝑁𝑘

𝑗=1

𝑉𝑗 

( 4.4 ) 

where 𝑠𝑘𝑗 is the stretch between material point 𝒙𝑘 and 𝒙𝑗. The parameter 𝑑 is given by 

Table 3-1. The corresponding dilatation in CCM is determined as 

𝜃𝑚
𝐶𝐶𝑀 = 𝜉𝐶𝐶𝑀 ( 4.5 ) 

where 𝜉𝐶𝐶𝑀 is the applied normal strain in the x-, y-, and z-directions, with 𝑚 = 1,2,3. 

Consequently, the surface correction factor for dilatation term is computed as 

𝑠𝑐𝑜𝑟
𝑑 =

𝜃𝑚
𝐶𝐶𝑀

𝜃𝑚𝑃𝐷𝒙𝑘
 

( 4.6 ) 

Now the dilatation term in Eq.( 3.10 ) and Eq.( 3.11 ) has corrected via Eq.( 4.6 ). 

The strain energy density is used to correct the bond constant, 𝑐, in the bond-based 

formulation (see Eq.( 3.3 ) and Eq.( 3.4 )) or parameter, 𝑏, in the ordinary state-based 

formulation (see Eq.( 3.10 ) and Eq.( 3.11 )). This surface correction factor is computed 

as 

𝑠𝑐𝑜𝑟
𝑊 =

𝑊𝑚
𝐶𝐶𝑀

𝑊𝑚
𝑃𝐷

𝒙𝑘

 
( 4.7 ) 

Here 𝑊𝑚
𝑃𝐷

𝒙𝑘
  is the strain energy density in peridynamic framework. 𝑊𝑚

𝐶𝐶𝑀  denotes 

the strain energy density in CCM and varies according to the dimensionality of the 

problem. Its general form can be written as 

𝑊𝑚
𝐶𝐶𝑀 =

1

2
𝝈𝜺 

( 4.8 ) 

where 𝝈 and 𝜺 represents the stress and strain, respectively. As a result, the force term 

in 𝒕𝑘𝑗 and 𝒕𝑗𝑘 in Eq.( 4.1 ) is corrected via Eq.( 4.6 ) for dilatation and Eq.( 4.7 ) for 

peridynamic parameters. The integral volume 𝑉𝑗 in is corrected via volume correction 

factor in Eq.( 4.2 ). Consequently, the equation of motion in Eq.( 4.1 ) is reformed as  
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𝜌𝑘𝒖̈𝑘 =∑[𝒕̅𝑘𝑗 − 𝒕̅𝑗𝑘]

𝑁𝑘

𝑗=1

𝑣𝑐𝑜𝑟𝑉𝑗 + 𝒃𝑘 

( 4.9 ) 

4.2.2 Time Integration 

4.2.2.1 Dynamic Problems 

For dynamic simulations, either implicit or explicit time integration methods can be 

employed. While implicit schemes are unconditionally stable and permit larger time 

steps, they involve solving large systems of equations at each time step, which can be 

computationally demanding. In this study, an explicit time integration scheme 

(Madenci and Oterkus, 2013) is adopted for its simplicity and computational efficiency. 

The explicit approach updates the displacement and velocity at each time step using 

only information from the previous steps, thereby avoiding the need for solving large 

systems of equations. 

Given the acceleration of a material point at time step 𝑛 from Eq.( 4.9 ), the velocity 

and displacement at the next time step 𝑛 + 1 can be calculated as  

𝒖̇𝑥𝑘
𝑛+1 = 𝒖̈𝑥𝑘

𝑛+1∆𝑡 + 𝒖̇𝑥𝑘
𝑛  ( 4.10 ) 

and 

𝒖𝑥𝑘
𝑛+1 = 𝒖̇𝑥𝑘

𝑛+1∆𝑡 + 𝒖𝑥𝑘
𝑛+1 ( 4.11 ) 

where ∆𝑡 is the time step size.  

It should be noted that explicit schemes are only conditionally stable. To ensure 

numerical stability, the time step must be chosen according to the critical value 

determined by von Neumann stability analysis as (Lapidus and Pinder, 1999; Madenci 

and Oterkus, 2013) 

∆𝑡 <

√
  
  
  
  
  
  2𝜌

𝑘

∑

[
 
 
 
 

2𝑎𝑑𝛿

𝑑𝛿 (∑ [
1

|𝒙𝒍 − 𝒙𝒌|
+

1

|𝒙𝒋 − 𝒙𝒋|
]

𝑁𝑙
𝑙=1 )𝑉𝑙

|𝒙𝒋 − 𝒙𝒌|
+

4𝑏𝛿

|𝒙𝒋 − 𝒙𝒌|

]
 
 
 
 

𝑁𝑘
𝑗=1 𝑣𝑐𝑜𝑟𝑉𝑗

 
( 4.12 ) 
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4.2.2.2 Static Problems 

Static analyses require the system to reach an equilibrium state where both acceleration 

and velocities are zero. Owing to the nonlocal nature and large size of the system, 

directly solving for static equilibrium can be computationally challenging. Here, the 

Adaptive Dynamic Relaxation (ADR) method is used (Underwood, 1983; Kilic and 

Madenci, 2010), in which the equations of motion are integrated in a pseudo-time 

domain with artificial inertia and damping, gradually leading the system to a static 

equilibrium. 

The ADR method introduces fictitious mass and damping terms, leading to the 

following reformulation (Madenci and Oterkus, 2013) 

𝑫𝑼̈(𝑿, 𝑡) + 𝐶𝑫𝑼̇(𝑿, 𝑡) = 𝑭(𝑼,𝑼′, 𝑿, 𝑿′) ( 4.13 ) 

where 𝑫 is fictitious diagonal mass matrix, 𝐶 is the damping coefficient. The vectors 

𝑿 and 𝑼 represent the initial positions and the displacements of all material points, 

respectively, and these are expressed as 

𝑿𝑻 = {𝒙1, 𝒙2, 𝒙3, … , 𝒙𝑀} ( 4.14 ) 

and 

𝑼𝑻 = {𝒖(𝒙1, 𝑡), 𝒖(𝒙2, 𝑡), 𝒖(𝒙3, 𝑡), … , 𝒖(𝒙𝑀, 𝑡)} ( 4.15 ) 

with 𝑀 denoting the total number of material points. 

The vector 𝑭 consists of peridynamic interaction forces and external body forces. Its 

ith component can be expressed as 

𝑭𝑖 =∑[𝒕̅𝑖𝑗 − 𝒕̅𝑗𝑖]

𝑁𝑖

𝑗=1

𝑣𝑐𝑜𝑟𝑉𝑗 + 𝒃𝑖 

( 4.16 ) 

By applying the central-difference explicit integration scheme, the velocity and 

displacement of each material point at the next time step can be calculated as (Madenci 

and Oterkus, 2013) 
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𝑼̇
𝑖

𝑛+
1
2 =

(2 − 𝐶𝑛∆𝑡)𝑼̇
𝑖

𝑛−
1
2 + 2∆𝑡𝑫𝒊

−1𝑭𝑖
𝑛

(2 + 𝐶𝑛∆𝑡)
 

( 4.17 ) 

and 

𝑼𝑖
𝑛+1 = 𝑼𝑖

𝑛 + 𝒃𝑖∆𝑡𝑼̇𝑖
𝑛+

1
2 

( 4.18 ) 

where ∆𝑡  is the time step size and is typically set to unity in ADR scheme. The 

damping coefficient 𝐶𝑛  is determined at each time step, and it is computed as 

(Underwood, 1983) 

𝐶𝑛 = 2√
(𝑼𝑖

𝑛)𝑇𝑲𝑖
𝑛𝑼𝑖

𝑛

(𝑼𝑖
𝑛)𝑇𝑼𝑖

𝑛  

( 4.19 ) 

with 𝑲𝑛 is the stiffness matrix, which is given as (Madenci and Oterkus, 2013) 

𝑲𝑖
𝑛 = −

𝑭𝒊
𝒏

𝑫𝒊
−
𝑭𝒊
𝒏−𝟏

𝑫𝒊

∆𝑡𝑼̇
𝑖

𝑛−
1
2

 

( 4.20 ) 

4.2.3 Boundary Conditions 

The imposition of boundary conditions in peridynamics differs from CCM due to the 

nonlocal nature of the formulation. Instead of prescribing values directly at discrete 

nodes or along boundaries, as is standard in finite element methods, peridynamics 

enforces boundary conditions over finite volumes. 

4.2.3.1 Displacement Constraints 

Displacement boundary conditions are implemented by prescribing the displacements 

of material points located within a fictitious region adjacent to the boundary (Madenci 

and Oterkus, 2016). To achieve this, fictitious regions, 𝑅𝑓, are introduced adjacent to 

the physical boundaries of the solution domain (see Fig. 4-2). The thickness of this 

region is typically set to twice the horizon size (2𝛿). 
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Fig. 4-2 Application of displacement constraints in peridynamics by introducing a 

fictitious region (Madenci and Oterkus, 2016). 

Let 𝑈∗, 𝑉∗,and 𝑊∗ denote the prescribed displacements in the x-, y-, and z-directions, 

respectively . The displacement of a material point within the fictitious region is then 

defined for x direction as (Madenci and Oterkus, 2016) 

𝑢𝑓(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 , 𝑡 + ∆𝑡) = 2𝑈∗( 𝑥∗ 𝑦∗ 𝑧∗, 𝑡 + ∆𝑡) − 𝑢(𝑥, 𝑦, 𝑧, 𝑡) ( 4.21 ) 

for y direction as 

𝑣𝑓(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 , 𝑡 + ∆𝑡) = 2𝑉∗( 𝑥∗ 𝑦∗ 𝑧∗, 𝑡 + ∆𝑡) − 𝑣(𝑥, 𝑦, 𝑧, 𝑡) ( 4.22 ) 

and for z direction as 

𝑤𝑓(𝑥𝑓, 𝑦𝑓 , 𝑧𝑓 , 𝑡 + ∆𝑡) = 2𝑈∗( 𝑥∗ 𝑦∗ 𝑧∗, 𝑡 + ∆𝑡) − 𝑤(𝑥, 𝑦, 𝑧, 𝑡) ( 4.23 ) 

where 𝑢𝑓, 𝑣𝑓, and 𝑤𝑓 denote the displacement of material points within the fictitious 

region, while 𝑢 , 𝑣  and 𝑤  denotes the corresponding material points in the adjacent 

position in the physical domain. By directly specifying the displacement field in the 

fictitious region, the desired boundary behaviour is achieved at the interface. 

4.2.3.2 Traction Boundary Conditions 

Traction boundary conditions are implemented by prescribing the displacements of 

material points within the fictitious region in such a way that the intended stress state 

is reproduced at the boundary (Madenci and Oterkus, 2016). The explicit expression 
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for these imposed displacements depends on both the problem’s dimensionality and 

the orientation of the boundary normal. 

 

Fig. 4-3 Application of traction boundary conditions on a surface with a normal 

vector in x-direction (Madenci and Oterkus, 2016). 

For two-dimensional problems, considering a boundary with a unit normal in the x-

direction, the displacements within the fictitious region are obtained for x direction as 

(Madenci and Oterkus, 2016) 

𝑢𝑓(𝑥𝑓 , 𝑦𝑓 , 𝑡 + ∆𝑡)

= [
(1 − 𝜈2)𝜎𝑥𝑥

∗

𝐸
− 𝜈

𝑣(𝑥, 𝑦+, 𝑡) − 𝑣(𝑥, 𝑦−, 𝑡)

𝑦+ − 𝑦−
] (𝒙𝑓 − 𝒙)

+ 𝑢(𝑥, 𝑦, 𝑡) 

( 4.24 ) 

and for y direction as  

𝑣𝑓(𝑥𝑓 , 𝑦𝑓 , 𝑡 + ∆𝑡)

= [
2(1 + 𝜈)𝜎𝑥𝑦

∗

𝐸
−
𝑢(𝑥, 𝑦+, 𝑡) − 𝑢(𝑥, 𝑦−, 𝑡)

𝑦+ − 𝑦−
] (𝒙𝑓 − 𝒙)

+ 𝑣(𝑥, 𝑦, 𝑡) 

( 4.25 ) 

where 𝜎𝑥𝑥
∗   and 𝜎𝑥𝑦

∗   are applied stresses normal and tangent to the boundary, 

respectively, 𝐸 is Young's modulus, and 𝜈 is Poisson’s ratio. 

For three-dimensional problems, the methodology for imposing traction boundary 

conditions using fictitious regions is readily extended. When the traction boundary 
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possesses a unit normal in the x-direction, the displacement fields are computed for 

the x-direction as 

𝑢𝑓(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 , 𝑡 + ∆𝑡)

=
1

(1 − 𝜈)
[
(1 + 𝜈)(1 − 2𝜈)𝜎𝑥𝑥

∗

𝐸

− 𝜈
𝑣(𝑥, 𝑦+, 𝑡) − 𝑣(𝑥, 𝑦−, 𝑡)

𝑦+ − 𝑦−

− 𝜈
𝑤(𝑥, 𝑦+, 𝑡) − 𝑤(𝑥, 𝑦−, 𝑡)

𝑧+ − 𝑧−
] (𝒙𝑓 − 𝒙) + 𝑢(𝑥, 𝑦, 𝑡) 

( 4.26 ) 

for y direction as 

𝑣𝑓(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 , 𝑡 + ∆𝑡)

= [
2(1 + 𝜈)𝜎𝑥𝑦

∗

𝐸
− 𝜈

𝑢(𝑥, 𝑦+, 𝑡) − 𝑢(𝑥, 𝑦−, 𝑡)

𝑦+ − 𝑦−
] (𝒙𝑓 − 𝒙)

+ 𝑣(𝑥, 𝑦, 𝑡) 

( 4.27 ) 

and for z direction as 

𝑤𝑓(𝑥𝑓, 𝑦𝑓 , 𝑧𝑓 , 𝑡 + ∆𝑡)

= [
2(1 + 𝜈)𝜎𝑥𝑧

∗

𝐸
− 𝜈

𝑢(𝑥, 𝑦+, 𝑡) − 𝑢(𝑥, 𝑦−, 𝑡)

𝑧+ − 𝑧−
] (𝒙𝑓 − 𝒙)

+ 𝑤(𝑥, 𝑦, 𝑡) 

( 4.28 ) 

Note that this procedure is only valid if the traction boundary region is elastic. 

4.3 Numerical Investigations 

4.3.1 Determination of Horizon Size 

The horizon size is a decisive numerical parameter in peridynamic theory, as it 

determines the extent of nonlocal interactions between material points. In the context 

of uniform discretisation, each point interacts with neighbouring points within a 

circular (in 2D), or spherical (in 3D) region defined by the horizon radius 𝛿. The choice 

of 𝛿  directly affects the accuracy and computational cost of the peridynamic 

simulation. If the horizon is chosen too small, the interaction network becomes sparse, 

which limits the model's ability to capture basic deformation modes (i.e., if a material 
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point interacts only with its nearest neighbours, shear deformation will not be 

captured). Conversely, a larger horizon increases computational expense without 

proportionate gains in accuracy. 

A commonly adopted guideline, originally developed for bond-based peridynamics, is 

to select the horizon size as three times the grid spacing ( 𝛿 = 3𝛥𝑥 ). This 

recommendation ensures that each point maintains enough interacting neighbours, 

supporting reliable approximation of both tensile and shear responses. However, with 

the emergence of more general state-based peridynamic formulations, this rule 

requires re-examination. Moreover, it is important to verify whether these guidelines 

are robust for both static and dynamic loading scenarios, as well as for two- and three-

dimensional structures. 

This section systematically investigates horizon size selection through a series of 

uniform discretisation simulations, analysing both 2D and 3D problems in bond-based, 

ordinary state-based, and non-ordinary state-based peridynamics. By considering 

simple benchmark geometries and loading conditions, and by analysing both static and 

dynamic scenarios, this investigation aims to establish guidelines for horizon size 

selection that balance computational efficiency with solution accuracy. For validation, 

peridynamic predictions are compared with FEM by ANSYS simulations under 

equivalent settings. 

FEM simulations were carried out in ANSYS for verification. Plane182 elements 

(four-node quadrilateral) were employed for two-dimensional models, while Solid185 

elements (eight-node hexahedral) were used for three-dimensional cases. The mesh 

configuration was generated to match the nodal spacing of the peridynamic 

discretisation, and identical material properties were applied, including Young’s 

modulus, Poisson’s ratio, and density as given in each case description. For dynamic 

analyses, the time step size was kept consistent with the peridynamic simulations. 

4.3.2 Vibration of a Plate 

In the first simulation case, the dynamic response of a square plate in Fig. 4-4 with 

dimensions 𝐿 = 𝑊 = 1 m  and thickness 0.01 m  is investigated. The plate is 

composed of a linear elastic and homogeneous material, with Young’s modulus 𝐸 =

200 GPa and density 𝜌 = 7850 kg/m 3. Vibration is initiated by imposing an initial 
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uniaxial strain of 0.001 in the horizontal direction. The left edge of the plate is fully 

constrained using a fictitious region, while all other edges are traction-free, as shown 

in Fig. 4-5. 

Uniform discretisation is adopted, with a grid spacing of 𝛥𝑥 = 0.01 m. Each material 

point interacts with its neighbours within a horizon of radius 𝛿 , which is varied 

systematically to assess its influence on simulation results.  

The dynamic analysis is performed using an explicit time integration scheme, with a 

time step size of 1 × 10−7 seconds. 

 

Fig. 4-4 Square plate subjected to initial uniaxial strain condition. 

 

Fig. 4-5 Discretisation of the square plate. 
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4.3.2.1 Bond-based Peridynamics 

The analysis begins with the bond-based formulation. Five different horizon sizes (𝛿 =

𝑛𝛥𝑥, 𝑛 = 1,2,3,4,5) are investigated. Owing to the nature of bond-based formulation 

for two-dimensional structure, Poisson’s ratio is fixed at 𝜈 = 1/3. 

A monitoring point at (0.255 m, 0.255 m), distant from boundaries, is used to record 

horizontal and vertical displacements. The time histories of both horizontal and 

vertical displacements at this point are recorded throughout the simulation. Results are 

compared with FEM solutions. 

As shown in Fig. 4-6 and Fig. 4-7, a close agreement between peridynamics and FEM 

is observed for 𝛿 = 3𝛥𝑥 and 𝛿 = 4𝛥𝑥, indicating these as optimal choices for bond-

based formulation for this dynamic case (square plate vibration). 

 

Fig. 4-6 Variation of horizontal displacement of the material point located at (0.255 

m,0.255 m) by using bond-based peridynamics. 
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Fig. 4-7 Variation of vertical displacement of the material point located at (0.255 

m,0.255 m) with time by using bond-based Peridynamics 

4.3.2.2 Ordinary State-based Peridynamics 

For the ordinary state-based formulation, the restriction on Poisson’s ratio is lifted; 

here, 𝜈 = 0.25  is used to avoid the formulation being reduced to bond-based 

peridynamics as explained in section 3.2.2. The same range of horizon sizes and 

monitoring point are adopted. 

Fig. 4-8 and Fig. 4-9 compare the peridynamic predictions with the FEM. As observed, 

while horizontal displacements are captured closely for all horizon sizes, the vertical 

displacement is most closely predicted with 𝛿 = 3𝛥𝑥  and 𝛿 = 4𝛥𝑥 . For smaller 

horizons, 𝛿 = 1𝛥𝑥  and 𝛿 = 2𝛥𝑥 , the model fails to accurately capture the vertical 

displacement response. 

 

Fig. 4-8 Variation of horizontal displacement of the material point located at (0.255 

m,0.255 m) by using ordinary state-based peridynamics. 
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Fig. 4-9 Variation of vertical displacement of the material point located at (0.255 

m,0.255 m) with time by using ordinary state-based peridynamics. 

4.3.2.2 Non-ordinary State-based Peridynamics 

The non-ordinary state-based analysis uses Poisson’s ratio 𝜈 = 1/3. As before, five 

horizon sizes are considered, and the same monitoring point is used. As presented in 

Fig. 4-10 and Fig. 4-18, a better agreement with FEM is found for the smaller horizons 

𝛿 = 1𝛥𝑥  and 𝛿 = 2𝛥𝑥 , with increasing horizon size not yielding significant 

improvement and, in some cases, reducing accuracy. 

 

Fig. 4-10 Variation of horizontal displacement of the material point located at (0.255 

m,0.255 m) by using non-ordinary state-based peridynamics. 
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Fig. 4-11 Variation of vertical displacement of the material point located at (0.255 

m,0.255 m) with time by using non-ordinary state-based peridynamics. 

4.3.3 Plate Under Tension 

In the second case, the square plate described previously is subjected to uniaxial tensile 

loading, with a prescribed stress of 𝜎∗ = 200 MPa applied to the right edge, as shown 

in Fig. 4-12. The loading is implemented via a fictitious region at the right boundary 

(Fig. 4-13), following the methodology outlined in Section 4.2.3.2. The steady-state 

solution is obtained using the Adaptive Dynamic Relaxation technique (Underwood, 

1983; Kilic and Madenci, 2010). All geometric, discretisation, and material properties 

remain as specified in the plate vibration case. 

 

Fig. 4-12 Square plate subjected to uniaxial tension loading. 
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Fig. 4-13 Discretisation of the square plate. 

4.3.3.1 Bond-based Peridynamics 

For the uniaxial tension problem, bond-based formulation is first employed. The 

horizontal and vertical displacements along the plate’s central axes are evaluated for 

various horizon sizes and compared to FEM reference solutions. 

As shown in Fig. 4-14 and Fig. 4-15, the closest agreement with FEM is achieved for 

horizon sizes 𝛿 = 3𝛥𝑥 , 𝛿 = 4𝛥𝑥 , and 𝛿 = 5𝛥𝑥 . For smaller horizon sizes, 

discrepancies arise in both displacement components. These results confirm the 

findings from the dynamic vibration analysis; an intermediate horizon size (three to 

four times the grid spacing) optimally balances accuracy and efficiency in bond-based 

simulations. 

 

Fig. 4-14 Horizontal displacement along (x, y=0) by using bond-based 

peridynamics. 
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Fig. 4-15 Vertical displacement along (x=0, y) by using bond-based peridynamics. 

4.3.3.2 Ordinary State-based Peridynamics 

The ordinary state-based formulation is next applied. As shown in Fig. 4-16 and Fig. 

4-17, the simulation results reveal that horizon size values of 𝛿 = 3𝛥𝑥, 𝛿 = 4𝛥𝑥, and 

𝛿 = 5𝛥𝑥  offer a better agreement with the FEM solutions. In contrast, smaller 

horizons 𝛿 = 1𝛥𝑥  and 𝛿 = 2𝛥𝑥  do not sufficiently capture the static vertical 

displacement field, which is consistent with the observations made for the dynamic 

(vibration) case. 

 

Fig. 4-16 Horizontal displacement along (x, y=0) by using ordinary state-based 

peridynamics. 
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Fig. 4-17 Vertical displacement along (x=0, y) by using ordinary state-based 

peridynamics. 

4.3.3.3 Non-ordinary State-based Peridynamics 

Finally, the non-ordinary state-based peridynamic model is assessed. As observed 

previously in the vibration case, this formulation achieves close correspondence with 

FEM solutions for all tested horizon sizes (see Fig. 4-18 and Fig. 4-19). However, the 

best agreement is observed for the smallest horizons 𝛿 = 1𝛥𝑥  and 𝛿 = 2𝛥𝑥 , 

suggesting that smaller horizons suffice to accurately capture the static response. 

Larger horizons (𝛿 = 3𝛥𝑥 , 4𝛥𝑥 , and 5𝛥𝑥 ) also yield reliable results, but the best 

match is observed at the lower end of the tested range. 

 

Fig. 4-18 Horizontal displacement along (x, y=0) by using non-ordinary state-based 

peridynamics. 
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Fig. 4-19 Vertical displacement along (x=0, y) by using non-ordinary state-based 

peridynamics. 

4.3.4 Vibration of a Cubic Block 

The third benchmark investigates the dynamic response of a three-dimensional cubic 

block subjected to uniform discretisation. As represented in Fig. 4-20, the block has 

dimensions 𝐿 = 𝐻 = 𝑊 = 0.3 m and is initially loaded with a uniaxial strain of 0.001 

in horizontal direction. The left face is fully constrained using a fictitious region, as 

shown in Fig. 4-21, while all remaining faces are traction-free. The block is modelled 

as a linear, elastic, homogeneous material, with Young’s modulus 𝐸 = 200 GPa and 

density 𝜌 = 7850 kg/m 3. Poisson’s ratio is taken as 0.25 for bond-based simulations, 

and non-ordinary state-based simulations, and 1/3 for ordinary state-based simulations. 

 

Fig. 4-20 Three-dimensional block subjected to initial uniaxial strain condition. 
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Fig. 4-21 Discretisation of the block. 

For computational efficiency, the domain is discretised uniformly with a grid size of 

𝛥𝑥 = 0.005 m, resulting in a computational mesh of 60 × 60 × 60 material points.  

Explicit time integration is used with a time step of 1 × 10−7 s. The effect of horizon 

size is systematically evaluated by expressing 𝛿 as an integer multiple of 𝛥𝑥. 

4.3.4.1 Bond-based Peridynamics 

In the bond-based simulation, the response at a representative internal material point 

( 0.0775 m, 0.0775 m, 0.0775 m ) is monitored. The histories of the horizontal, 

transverse, and vertical displacement components ( Fig. 4-22, Fig. 4-23 and Fig. 4-24) 

demonstrate that a horizon size of 𝛿 = 3𝛥𝑥  yields a better agreement with FEM 

reference results. 

 

Fig. 4-22 Variation of horizontal displacement of the material point located at 

(0.0775 m, 0.0775 m, 0.0775 m) with time by using bond-based peridynamics. 



52 

 

 

Fig. 4-23 Variation of transverse displacement of the material point located at 

(0.0775 m, 0.0775 m, 0.0775 m) with time by using bond-based peridynamics. 

 

Fig. 4-24 Variation of vertical displacement of the material point located at (0.0775 

m, 0.0775 m, 0.0775 m) with time by using bond-based peridynamics. 

It is noted, that as the time progresses, discrepancies between peridynamic and FEM 

results increase. This accumulation of error over time is primarily attributed to the 

relatively coarse discretisation required to keep the computational cost reasonable in 

three dimensions. With fewer material points, small numerical errors can accumulate 

and affect the later stages of the simulation. As such, early-time simulation results are 

more reliable for determining the optimal horizon size. 

In comparison, this issue is less pronounced in two-dimensional cases where finer 

meshes can be used. Overall, for 3D dynamic simulations using bond-based 
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formulation, a horizon size of 𝛿 = 3𝛥𝑥 continues to offer a good compromise between 

accuracy and computational cost. 

4.3.4.2 Ordinary State-based Peridynamics 

The ordinary state-based peridynamic formulation produces similar trends. 

Displacement histories at the monitoring point for all three components are shown in 

Fig. 4-25 to Fig. 4-27. The results indicate that a better agreement with FEM is again 

achieved for 𝛿 = 3𝛥𝑥. While other horizon sizes can also produce reasonable results, 

the 𝛿 = 3𝛥𝑥 case consistently shows the close match for both the amplitude and phase 

of the displacement histories.  

As in the bond-based case, the error relative to FEM increases at later simulation times, 

reflecting the influence of the coarser discretisation in three dimensions. These 

findings suggest the recommendation of 𝛿 = 3𝛥𝑥 for accurate and efficient modelling 

with ordinary state-based peridynamics. 

 

Fig. 4-25 Variation of horizontal displacement of the material point located at 

(0.0775 m, 0.0775 m, 0.0775 m) with time by using ordinary state-based 

peridynamics. 
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Fig. 4-26 Variation of transverse displacement of the material point located at 

(0.0775 m, 0.0775 m, 0.0775 m) with time by using ordinary state-based 

peridynamics. 

 

Fig. 4-27 Variation of vertical displacement of the material point located at (0.0775 

m, 0.0775 m, 0.0775 m) with time by using ordinary state-based peridynamics. 

4.3.4.3 Non-ordinary State-based Peridynamics 

For the non-ordinary state-based formulation, displacement time histories for the 

horizontal, transverse, and vertical components at the monitoring point are shown in 

Fig. 4-38, Fig. 4-39 and Fig. 4-40. The results indicate that all horizon size values 

provide reasonably agreement with the reference FEM solution, capturing both the 

amplitude and phase of the dynamic response across all displacement components. 
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Fig. 4-28 Variation of horizontal displacement of the material point located at 

(0.0775 m, 0.0775 m, 0.0775 m) with time by using non-ordinary state-based 

peridynamics. 

 

Fig. 4-29 Variation of transverse displacement of the material point located at 

(0.0775 m, 0.0775 m, 0.0775 m) with time by using non-ordinary state-based 

peridynamics. 
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Fig. 4-30 Variation of vertical displacement of the material point located at (0.0775 

m, 0.0775 m, 0.0775 m) with time by using non-ordinary state-based peridynamics. 

4.3.5 Cubic Block Under Tension 

For the static analysis, the same three-dimensional block geometry, material properties, 

and uniform discretisation adopted in the vibration study are used. As illustrated in Fig. 

4-31, the block is subjected to a uniaxial tensile loading of 𝜎∗ = 200 MPa applied at 

the right face. The loading is implemented through a fictitious region at the boundary 

of the right face, following the procedure outlined in Section 4.3.3.2 and depicted in 

Fig. 4-32. The left face of the block is fully constrained, while all other surfaces are 

traction-free. The steady-state response is obtained using the Adaptive Dynamic 

Relaxation technique (Underwood, 1983; Kilic and Madenci, 2010), with a time step 

size ∆𝑡=1 s. 
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Fig. 4-31 A three-dimensional block subjected to uniaxial tension loading. 

 

Fig. 4-32 Discretisation of the block. 

4.3.5.1 Bond-based Peridynamics 

The effect of horizon size on the displacement field is first examined using the bond-

based formulation. The horizontal, transverse, and vertical displacement distributions 

along the respective central axes of the block are computed and compared against FEM 

reference solutions. 

As shown from Fig. 4-33 to Fig. 4-35, the peridynamic predictions exhibit good 

agreement with the FEM results for all displacement components when the horizon 

size is greater than or equal to 2𝛥𝑥. In contrast, the smallest horizon size (𝛿 = 1𝛥𝑥) 

fails to capture the correct displacement behaviour. 

 

Fig. 4-33 Horizontal displacement variations along (x, y=0, z=0) by using bond-

based peridynamics. 
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Fig. 4-34 Transverse displacement variations along (x=0, y, z=0) by using bond-

based peridynamics. 

 

Fig. 4-35 Vertical displacement variations along (x=0, y=0, z) by using bond-based 

peridynamics. 

4.3.5.2 Ordinary State-based Peridynamics 

The ordinary state-based formulation demonstrates a similar trend to the bond-based 

formulation. Displacement distributions for the horizontal, transverse, and vertical 

components are evaluated along the central axes for the same set of horizon sizes. As 

illustrated in from Fig. 4-36 to Fig. 4-38, the peridynamic results show good agreement 

with FEM solutions for all horizon sizes except 𝛿 = 1𝛥𝑥. The best correspondence is 

observed for 𝛿 = 3𝛥𝑥  corroborating the findings from the two-dimensional 

simulations. 
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Fig. 4-36 Horizontal displacement variations along (x, y=0, z=0) by using ordinary 

state-based peridynamics. 

 

Fig. 4-37 Transverse displacement variations along (x=0, y, z=0) by using ordinary 

state-based peridynamics. 
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Fig. 4-38 Vertical displacement variations along (x=0, y=0, z) by using ordinary 

state-based peridynamics. 

4.3.5.3 Non-ordinary State-based Peridynamics 

Finally, the non-ordinary state-based formulation is assessed. Displacement profiles 

along the central axes are computed for a range of horizon sizes and compared to FEM 

results. As shown in Fig. 4-39, Fig. 4-40 and Fig. 4-41, all horizon sizes except for 

𝛿 = 1𝛥𝑥 exhibit close agreement with the FEM results. Specifically, a horizon size of 

𝛿 = 2𝛥𝑥  provides an optimal solution, accurately capturing the displacement 

behaviour in all directions. 

 

Fig. 4-39 Horizontal displacement variations along (x, y=0, z=0) by using non-

ordinary state-based peridynamics. 
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Fig. 4-40 Transverse displacement variations along (x=0, y, z=0) by using non-

ordinary state-based peridynamics. 

 

Fig. 4-41 Vertical displacement variations along (x=0, y=0, z) by using non-ordinary 

state-based peridynamics. 

4.3.6 Comparative Results of Ordinary State-based Peridynamics, Non-ordinary State-

based Peridynamics, and FEM 

To provide a direct comparison under identical settings, additional results are presented 

for the 2D plate in vibration and in tension with Poisson’s ratio fixed at 𝜈 = 1/3 for 

both the ordinary state-based and non-ordinary state-based formulations. This choice 

matches the fixed Poisson’s ratio of bond-based peridynamics in 2D, so the bond-based 

elastic response is effectively represented by the ordinary state-based curves at 𝜈 =

1/3; the bond-based curves are therefore omitted to avoid clutter. 
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The comparisons are performed with the same discretisation and material parameters 

and with the horizon set to the formulation-specific optimum identified earlier: 𝛿 =

3𝛥𝑥 for ordinary state-based formulations and 𝛿 = 2𝛥𝑥 for non-ordinary state-based 

formulations. The same trends were observed in the corresponding 3D studies, so 2D 

comparisons are reported here for brevity. 

4.3.6.1 Vibration of a Plate 

Fig. 4-42 and Fig. 4-43 show the horizontal and vertical displacement time histories 

of the material point located at (0.255 m,0.255 m), obtained using ordinary state-based 

peridynamics, non-ordinary state-based peridynamics, and FEM. Both formulations 

reproduce the FEM results closely in terms of horizontal displacement. In the vertical 

displacement, non-ordinary state-based peridynamics provides slightly improved 

agreement despite employing a smaller horizon. 

 

Fig. 4-42 Variation of horizontal displacement of the material point located at (0.255 

m,0.255 m) at optimum horizon size for Ordinary State-based Peridynamics and 

Non-ordinary State-Based Peridynamics. 
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Fig. 4-43 Variation of vertical displacement of the material point located at 

(0.255m,0.255m) at optimum horizon size for Ordinary State-based Peridynamics 

and Non-ordinary State-Based Peridynamics. 

4.3.6.1 Plate Under Tension 

Fig. 4-44 and Fig. 4-45 present the horizontal and vertical displacement distributions 

along the midlines of the plate under uniform tension, obtained using ordinary state-

based peridynamics, non-ordinary state-based peridynamics, and FEM at their 

respective optimum horizon sizes. In both cases, the peridynamic predictions are in 

good agreement with FEM, with nearly coincident displacement profiles. 

 

Fig. 4-44 Horizontal displacement along (x, y=0) by using Ordinary State-based 

Peridynamics and Non-ordinary State-Based Peridynamics at their optimum horizon 

sizes. 
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Fig. 4-45Vertical displacement along (x=0, y) by using Ordinary State-based 

Peridynamics and Non-ordinary State-Based Peridynamics at their optimum horizon 

sizes. 

In summary, the choice of peridynamic formulation depends on the balance between 

simplicity, flexibility, and computational cost. The bond-based model is the simplest 

and computationally most efficient, but its limitations include a fixed Poisson’s ratio 

(𝜈 = 1/3  in 2D and 𝜈 = 0.25  in 3D) and the inability to capture more complex 

material responses. The ordinary state-based formulation removes this restriction by 

decoupling volumetric and deviatoric contributions, enabling a wider range of 

Poisson’s ratios while retaining moderate efficiency. The non-ordinary state-based 

formulation provides the generality by lifting the requirement that forces act along 

bonds, allowing established constitutive models from classical continuum mechanics 

to be incorporated directly into the peridynamic framework. However, this increased 

versatility comes at a higher computational cost. 

Accordingly, bond-based peridynamics may suitable for simple, proof-of-concept 

studies, ordinary state-based peridynamics for structural problems requiring flexibility 

in Poisson’s ratio, and non-ordinary state-based peridynamics for applications 

involving complex materials. 

4.4 Chapter Summary 

This chapter presented a systematic numerical investigation of horizon size effects in 

peridynamic models, focusing on uniform discretisation for both two- and three-

dimensional structures subjected to static and dynamic loading. Through detailed 

comparison of bond-based, ordinary state-based, and non-ordinary state-based 
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peridynamics with reference FEM solutions, the optimal horizon size for each 

formulation is revealed as in the Table 4-1. 

Table 4-1 Summary of optimal horizon sizes for different peridynamic formulations in 

2D and 3D 

Peridynamic models 2D 3D 

Bond-based Peridynamics 𝛿 = 3𝛥𝑥 𝛿 = 3𝛥𝑥 

Ordinary State-based Peridynamics 𝛿 = 3𝛥𝑥 𝛿 = 3𝛥𝑥 

Non-ordinary State-based Peridynamics 𝛿 = 2𝛥𝑥 𝛿 = 2𝛥𝑥 

 

For both the 2D plate and 3D block cases, the analyses demonstrated that bond-based 

and ordinary state-based peridynamics achieve good agreement with FEM solutions 

when the horizon size is set to three times the grid spacing (𝛿 = 3𝛥𝑥). By contrast, the 

non-ordinary state-based formulation consistently delivers accurate displacement and 

stress predictions with smaller horizons, with 𝛿 = 2𝛥𝑥 identified as optimal for both 

static and dynamic scenarios. It was also observed that increasing the horizon size 

beyond these optimal values does not significantly improve accuracy and can incur 

unnecessary computational cost. 

Another important finding is the increased sensitivity of three-dimensional simulations 

to numerical errors arising from coarse discretisation, mostly in dynamic analyses. 

Consequently, early-time responses provide a more reliable basis for horizon size 

assessment in dynamic problems, whereas static cases are less affected by 

discretisation-induced errors. 

In summary, the findings of this chapter offer practical guidance for horizon size 

selection in peridynamic modelling with uniform discretisation. For most engineering 

applications, a horizon size of three times the grid spacing is recommended for bond-

based and ordinary state-based formulations, while a value of two times the grid 

spacing is sufficient for non-ordinary state-based peridynamics. These insights are 

expected to contribute to more reliable and efficient peridynamic modelling in future 

research. 
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Chapter 5 Derivation of Dual-horizon Peridynamics Formulation 

5.1 Introduction 

While the previous chapter discussed guidelines for horizon size selection in 

peridynamics using uniform discretisation, many engineering problems may require 

non-uniform meshes to capture complex geometries or local features. Although 

uniform discretisation is easy to implement, it increases computational time for some 

applications, as only certain parts of the solution domain require a finer discretisation, 

while other parts can be discretised using a coarser mesh. Non-uniform discretisation, 

therefore, offers benefits in terms of both computational efficiency and modelling 

flexibility. In addition to non-uniform discretisation, the horizon size can also be 

different at different parts of the solution domain, either to reduce the computational 

time or to capture the correct physics of the problem. 

In this chapter, a new derivation of the dual-horizon peridynamics formulation is 

presented, using the Euler-Lagrange equations as a theoretical basis. The effectiveness 

of this approach is demonstrated through numerical verification on two benchmark 

problems: a plate under tension and a plate undergoing vibration, both discretised with 

non-uniform meshes and variable horizon sizes. 

5.2 Dual-horizon Peridynamics Formulation Based on Euler-Lagrange equation 

The equation of motion for a material point 𝑘  at location 𝒙𝑘  in the reference 

configuration can be expressed as (Madenci and Oterkus, 2013) 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝒖̇𝑘
) −

𝜕𝐿

𝜕𝒖𝑘
= 0 

( 5.1 ) 

where 𝐿 denotes the Lagrangian, defined as the difference between the total kinetic 

energy, 𝑇, and the total potential energy, 𝑈, of the body.  

In the peridynamic framework, the total kinetic energy is evaluated as the sum over all 

material points as 

𝑇 =∑
1

2
𝑖

𝜌𝑖𝒖̇𝑖 ∙ 𝒖̇𝑖𝑉𝑖 
( 5.2 ) 

where 𝜌𝑖 is the density and 𝑉𝑖 is the volume associated with material point 𝑖. 
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The total potential energy, 𝑈 , is defined as the difference between the total strain 

energy and the work done by external forces 

𝑈 =∑𝑊𝑖𝑉𝑖
𝑖

−∑(𝒃𝑖 ∙ 𝒖̇𝑖)𝑉𝑖
𝑖

 
( 5.3 ) 

where, 𝒃𝑖 is the body force per unit volume acting on material point 𝑖. 

The strain energy density, 𝑊𝑘, for a given material point 𝑘 is defined as (Madenci and 

Oterkus, 2013) 

𝑊𝑘 =
1

2
∑

1

2
{
 𝜔𝑘𝑗 [𝒚(1𝑘) − 𝒚(𝑘),⋯ , 𝒚(𝑁𝑘𝑘) − 𝒚(𝑘)] +

 𝜔𝑗𝑘 [𝒚(1𝑗) − 𝒚(𝑗),⋯ , 𝒚(𝑁𝑗𝑗) − 𝒚(𝑗)]   
} 𝑉𝑗

𝑁𝑘

𝑗=1

 

( 5.4 ) 

where 𝑁𝑘 and 𝑁𝑗  are the number of family members (i.e., neighbouring material points) 

within the horizon of points 𝑘  and 𝑗 , respectively, 𝒚  denotes the position in the 

deformed configuration, and 𝜔𝑘𝑗  is the micropotential arising from the interaction 

between material points 𝑘  and 𝑗 . Generally, 𝜔𝑘𝑗 and 𝜔𝑗𝑘  are not equal, as each is 

evaluated over a different domain of influence (the horizon of material points 𝑘 and 𝑗, 

respectively). 

Substituting Eq.( 5.2 ), Eq.( 5.3 ) and Eq.( 5.4 ) into Eq.( 5.1 ), the equation of motion 

for material point 𝑘 becomes 

𝜌𝑘𝒖̈𝑘 =∑[𝒕𝑘𝑗 − 𝒕𝑗𝑘]

𝑁𝑘

𝑗=1

𝑉𝑗 + 𝒃𝑘 

( 5.5 ) 

where the force density vectors 𝒕𝑘𝑗 and 𝒕𝑗𝑘 are given in terms of the micropotentials 

as (Madenci and Oterkus, 2013) 

𝒕𝑘𝑗 =
1

2

1

𝑉𝑗
[∑

𝜔𝑘𝑖
𝜕(𝒚𝑗 − 𝒚𝑘)

𝑉𝑖

𝑁𝑘

𝑖=1

] 

( 5.6 ) 

and 
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𝒕𝑗𝑘 =
1

2

1

𝑉𝑘
[∑

𝜔𝑗𝑖

𝜕(𝒚𝑘 − 𝒚𝑗)
𝑉𝑖

𝑁𝑗

𝑖=1

] 

( 5.7 ) 

For the bond-based peridynamic formulation, the force between two material points at 

𝒙𝑘  and 𝒙𝑗  only depends on their interaction. Therefore, Eq.( 5.6 ) and Eq.( 5.7 ) 

simplify to 

𝒕𝑘𝑗 =
1

2

𝜔𝑘𝑗

𝜕(𝒚𝑗 − 𝒚𝑘)
 

( 5.8 ) 

and 

𝒕𝑗𝑘 =
1

2

𝜔𝑗𝑘

𝜕(𝒚𝑘 − 𝒚𝑗)
 

( 5.9 ) 

For variable horizon sizes, these force density vectors can be rewritten as 

𝒕𝑘𝑗 = 𝛼𝑘𝑗
1

2
𝑐𝑠𝑘𝑗

𝒚𝑗 − 𝒚𝑘

|𝒚𝑗 − 𝒚𝑘|
 

( 5.10 ) 

and 

𝒕𝑗𝑘 = 𝛼𝑘𝑗
1

2
𝑐𝑠𝑘𝑗

𝒚𝑘 − 𝒚𝑗

|𝒚𝑗 − 𝒚𝑘|
 

( 5.11 ) 

where 𝛼𝑘𝑗 and 𝛼𝑘𝑗 are defined as 

𝛼𝑘𝑗 = {
1,𝜔𝑘𝑗 ≠ 0

0,𝜔𝑘𝑗 = 0
 

( 5.12 ) 

and 

𝛼𝑗𝑘 = {
1, 𝜔𝑗𝑘 ≠ 0

0, 𝜔𝑗𝑘 = 0
 

( 5.13 ) 

As shown in Fig. 5 1, that due to different horizon sizes, a material point with a smaller 

horizon (e.g., shown in blue) may be within the horizon of another point with a larger 
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horizon (red), but not vice versa. In such cases, the micropotential in Eq.( 5.12 ) or 

Eq.( 5.13 ) is considered zero if is zero if a point lies outside the other's horizon. 

 

Fig. 5-1 Non-uniform discretization with different horizon sizes. 

The bond constant 𝑐 in Eq.( 5.10 ) and Eq.( 5.11 ) is as defined previously (Eq.( 3.6 ) 

for two-dimensional structures), and the stretch between material points is given by 

𝑠𝑘𝑗 =
|𝒚𝑗 − 𝒚𝑘| − |𝒙𝑗 − 𝒙𝑘|

|𝒙𝑗 − 𝒙𝑘|
 

( 5.14 ) 

For the ordinary state-based peridynamics, the force terms can be adapted for the 

variable horizon case as 

𝒕𝑘𝑗 = 𝛼𝑘𝑗 (
2𝑎𝑑𝛿𝑘

|𝒙𝑗 − 𝒙𝑘|
𝜃𝑘(𝒙𝑘, 𝑡) + 2𝛿𝑘𝑏𝑠𝑘𝑗)

𝒚𝑗 − 𝒚𝑘

|𝒚𝑗 − 𝒚𝑘|
 

( 5.15 ) 

and 

𝒕𝑗𝑘 = 𝛼𝑗𝑘 (
2𝑎𝑑𝛿𝑗

|𝒙𝑗 − 𝒙𝑘|
𝜃𝑗(𝒙𝒋, 𝑡) + 2𝛿𝑗𝑏𝑠𝑘𝑗)

𝒚𝑘 − 𝒚𝑗

|𝒚𝑗 − 𝒚𝑘|
 

( 5.16 ) 

where 𝑎, 𝑏 and 𝑑 are the peridynamic parameters, and these can be obtained through 

Table 3-1. 

The dilatation term in Eq.( 5.15 ) and Eq.( 5.16 ) for material points material points 𝑘 

and 𝑗 are defined, respectively, as 
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𝜃𝑘 =∑𝑑𝛿𝑘𝑠𝑘𝑖𝑉𝑖

𝑁𝑘

𝑖=1

 

( 5.17 ) 

and 

𝜃𝑗 =∑𝑑𝛿𝑗𝑠𝑗𝑖𝑉𝑖

𝑁𝑗

𝑖=1

 

( 5.18 ) 

For non-ordinary state-based peridynamics, the force density vector for material points 

𝑘 and 𝑗 for variable horizon size can be written as 

𝒕𝑘𝑗 = 𝛼𝑘𝑗𝑷[𝒙𝑘]𝑲
−1[𝒙𝑘](𝒙𝑗 − 𝒙𝑘) ( 5.19 ) 

and 

𝒕𝑗𝑘 = 𝛼𝑗𝑘𝑷[𝒙𝑗]𝑲
−1[𝒙𝑗](𝒙𝑘 − 𝒙𝑗) ( 5.20 ) 

where the shape tensor, 𝑲, can be obtained as 

𝑲[𝒙𝑘] =∑(𝒙𝑖 − 𝒙𝑘) ⊗ (𝒙𝑖 − 𝒙𝑘)𝑉𝑖

𝑁𝑘

𝑖=1

 

( 5.21 ) 

and 

𝑲[𝒙𝑗] =∑(𝒙𝑖 − 𝒙𝑗) ⊗ (𝒙𝑖 − 𝒙𝑗)𝑉𝑖

𝑁𝑗

𝑖=1

 

( 5.22 ) 

where the symbol ⊗  represents dyadic product. It should be noted that the non-

ordinary state-based formulation may exhibit zero-energy modes (Gu et al., 2018); as 

discussed in section 3.2.3, in this study, these are addressed using the approach 

outlined by Silling (2017). 

5.3 Numerical Implementation 

The general procedures for the numerical implementation, including the imposition of 

boundary conditions, application of surface correction techniques, and time integration 
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schemes, are detailed in Chapter 4 (see Sections 4.2). The reader is referred to Chapter 

4 for the description of the underlying algorithms and standard computational 

procedures. 

5.4 Numerical Investigations for Dual-horizon Peridynamic Formulations 

As previously discussed, while uniform discretisation is common in the peridynamic 

literature, the use of variable mesh sizes offers computational advantages and is widely 

adopted in other numerical methods, such as FEM. 

In this section, the effectiveness of the dual-horizon peridynamics approach is 

demonstrated through case studies involving non-uniform discretisation, where both 

the grid size and the horizon radius may vary across the domain. 

For clarity and comparison, each problem divides the solution domain into two regions 

with different grid sizes and corresponding horizon sizes. Two benchmark problems 

are considered: (1) the vibration of a plate (Section 5.4.1), which evaluates the method 

dynamically; and (2) a plate under tension (Section 5.4.2), which assesses static 

performance. Each case is studied using bond-based, ordinary state-based, and non-

ordinary state-based formulations to demonstrate the flexibility and capability of the 

dual-horizon framework with non-uniform discretisation. 

5.4.1 Plate Vibration in Nonuniform Discretization 

In the first simulation case, the dynamic response of a square plate (Fig. 4-4) with 

dimensions 𝐿 = 𝑊 = 1 m and thickness 0.01 m is investigated. The plate is modelled 

as a linear elastic and homogeneous material, with Young’s modulus 𝐸 = 200 GPa and 

density 𝜌 = 7850 kg/m3. Poisson’s ratio is taken as 1/3 for bond-based simulations, 

and non-ordinary state-based simulations, and 0.25 for ordinary state-based 

simulations. 

Vibration is initiated by imposing an initial uniaxial strain of 0.001 in the horizontal 

direction. The left edge of the plate is fully constrained by a fictitious region (see Fig. 

4-5), while all other edges are traction-free. Time integration is carried out using an 

explicit scheme with a time step size of 1×10-7 sec. 

For clarity and direct comparison, a material point at (x, y) = (0.255 m, 0.255 m) is 

selected as a monitoring point. The horizontal and vertical displacements of this point 
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are recorded as functions of time and compared against the finite element solution 

obtained in ANSYS. 

5.4.1.1 Effect of Locally Defined Horizon Size 

In this scenario, as shown in Fig. 5-2, the right half of the plate (Region 2) is discretised 

with a coarse grid of ∆𝑥2 = 0.005 m, while the left half (Region 1) employs a refined 

grid of ∆𝑥1 = 0.01 m. The mesh ratio, 𝑘, between these two regions is defined as 𝑘 =

∆𝑥2

∆𝑥1
= 2. 

For each region, the horizon size is defined as an integer multiple of the local 

discretisation size: 𝛿1 = 𝑛ℎ𝑜𝑟1∆𝑥1  for Region 1, and 𝛿2 = 𝑛ℎ𝑜𝑟2∆𝑥2  for Region 2, 

where 𝑛ℎ𝑜𝑟1 and 𝑛ℎ𝑜𝑟2 denote the horizon-to-grid spacing ratios in the two regions. 

In this study, 𝑛ℎ𝑜𝑟1 and 𝑛ℎ𝑜𝑟2 are varied simultaneously from 1 to 5. ,meaning that 

the horizon size of material points in Region 1 is always half of that in Region 2. 

Although the mesh differs across the two regions, the number of family material points 

remains the same for every material point across the simulation domain. 

 

Fig. 5-2 Discretisation and horizons for refined grid–coarse grid case. 

5.4.1.1.1 Bond-based Peridynamics 

Fig. 5-3 and Fig. 5-4 show the time histories of the horizontal and vertical 

displacements, respectively, for the selected material point under various combinations 

of locally defined horizon sizes (𝛿1 and 𝛿2) in the bond-based formulation. The results 

indicate that peridynamic predictions become more consistent with the FEM solution 

as the horizon size increases. Configurations with 𝛿1 = 3∆𝑥1 , 𝛿2 = 3∆𝑥2  and 𝛿1 =
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4∆𝑥1, 𝛿2 = 4∆𝑥2 yield the closest agreement with the FEM reference solutions. These 

findings are consistent with those obtained under uniform discretisation, confirming 

that a locally defined horizon size of 𝛿 = 3𝛥𝑥 remains effective for non-uniform grids. 

 

Fig. 5-3 Variation of horizontal displacement of the material point located at (0.255 

m,0.255 m) with time in bond-based formulation, locally defined horizon size. 

 

Fig. 5-4 Variation of vertical displacement of the material point located at (0.255 

m,0.255 m) with time in bond-based formulation, locally defined horizon size. 

5.4.1.1.2 Ordinary State-based Peridynamics 

Fig. 5-5 and Fig. 5-6 show the time histories of the horizontal and vertical 

displacements at the selected material point for the ordinary state-based formulation. 
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Horizontal displacement predictions (Fig. 5-5) exhibit good agreement with the FEM 

results across all tested horizon sizes. For the vertical displacement (Fig. 5-6), the 

combinations, 𝛿1 = 3∆𝑥1 , 𝛿2 = 3∆𝑥2  and 𝛿1 = 4∆𝑥1 , 𝛿2 = 4∆𝑥2  show the closest 

correspondence with the FEM solution, a trend similar to the bond-based case. 

 

Fig. 5-5 Variation of horizontal displacement of the material point located at (0.255 

m,0.255 m) with time in ordinary state-based formulation, locally defined horizon 

size. 

 

Fig. 5-6 Variation of vertical displacement of the material point located at (0.255 

m,0.255 m) with time in ordinary state-based formulation, locally defined horizon 

size. 
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5.4.1.1.3 Non-ordinary State-based Peridynamics 

For the non-ordinary state-based formulation, the time histories of horizontal and 

vertical displacements at the monitored material point are shown in Fig. 5-7 and Fig. 

5-8. The results demonstrate that non-ordinary state-based formulation provides close 

agreement with the FEM solution for all tested horizon sizes, with specifically accurate 

predictions for smaller horizons (𝛿1 = 2∆𝑥1, 𝛿2 = 2∆𝑥2). 

 

Fig. 5-7 Variation of horizontal displacement of the material point located at (0.255 

m,0.255 m) with time in non-ordinary state-based formulation, locally defined 

horizon size. 
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Fig. 5-8 Variation of vertical displacement of the material point located at (0.255 

m,0.255 m) with time in non-ordinary state-based formulation, locally defined 

horizon size. 

5.4.1.2 Effect of Constant Horizon Size 

In the second set of investigations, the effect of adopting a constant horizon size 

throughout the non-uniformly discretised domain is examined. As shown in Fig. 5-9, 

the left half of the plate (Region 1) is discretised using a refined grid of ∆𝑥1 = 0.005m 

while the right half (Region 2) employs a coarser grid of ∆𝑥2 = 0.01m. The mesh ratio 

between the two regions is therefore 𝑘 =
∆𝑥2

∆𝑥1
= 2. 

 

Fig. 5-9 Discretisation and horizons for refined grid-coarse grid case 
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However, in contrast to the previous case, where the horizon radius was defined locally 

for each region, all material points in the current analysis are assigned a constant 

horizon radius irrespective of their underlying mesh size, i.e., 𝛿1 = 𝛿2 = 𝑛ℎ𝑜𝑟2∆𝑥2, 

with 𝑛ℎ𝑜𝑟2 varied from 1 to 5. As before, the dynamic response of the representative 

material point is monitored and compared to the FEM reference.  

Furthermore, for each peridynamic formulation, the optimal results obtained from the 

constant horizon configuration in this section are directly compared to those from the 

locally defined horizon case in section 5.4.1.1. 

5.4.1.2.1 Bond-based Peridynamics 

Fig. 5-10 and Fig. 5-11present the horizontal and vertical displacement time histories 

for the material point at (0.255 m, 0.255 m). The closest agreement with the FEM 

reference is observed for horizon size combinations 𝛿1 = 6∆𝑥1 = 𝛿2 = 3∆𝑥2 , and 

𝛿1 = 8∆𝑥1 = 𝛿2 = 4∆𝑥2. 

 

Fig. 5-10 Variation of horizontal displacement of the material point located at (0.255 

m,0.255 m) with time in bond-based formulation, constant horizon size. 
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Fig. 5-11 Variation of vertical displacement of the material point located at (0.255 

m,0.255 m) with time in bond-based formulation, constant horizon size. 

A direct comparison between the locally defined and constant horizon approaches is 

provided for 𝛿1 = 3∆𝑥1, 𝛿2 = 3∆𝑥2 and 𝛿1 = 6∆𝑥1 = 𝛿2 = 3∆𝑥2. As shown in Fig. 

5-12 and Fig. 5-13, the horizontal displacement predictions are similar for both 

approaches. However, vertical displacement results are improved when a constant 

horizon is used, attributable to the increased number of interacting material points 

within the horizon. 

 

Fig. 5-12 Comparison of horizontal displacement variation with time for the material 

point located at (0.255 m,0.255 m) between locally defined and constant horizon size 

in the bond-based formulation. 
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Fig. 5-13 Comparison of vertical displacement variation with time for the material 

point located at (0.255 m,0.255 m) between locally defined and constant horizon size 

in the bond-based formulation. 

5.4.1.2.2 Ordinary State-based Peridynamics 

For the ordinary state-based formulation, the time histories of horizontal and vertical 

displacements for the constant horizon scenario are shown in Fig. 5-14 and Fig. 5-15. 

The horizontal displacement predictions remain consistent with the FEM results for all 

tested horizon sizes, whereas the vertical displacement (Fig. 5-15) shows more 

sensitivity to horizon size. The better agreement with FEM is achieved for 𝛿1 =

6∆𝑥1 = 𝛿2 = 3∆𝑥2, and 𝛿1 = 8∆𝑥1 = 𝛿2 = 4∆𝑥2. 
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Fig. 5-14 Variation of horizontal displacement of the material point located at (0.255 

m,0.255 m) with time in ordinary state-based formulation, constant horizon size. 

 

Fig. 5-15 Variation of vertical displacement of the material point located at (0.255 

m,0.255 m) with time in ordinary state-based formulation, constant horizon size. 

Comparison with the locally defined horizon case (Fig. 5-16 and Fig. 5-17) shows very 

similar horizontal displacement predictions for both strategies, with slightly improved 

vertical displacement accuracy for the constant horizon case, again due to a larger 

number of family members within the horizon. 
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Fig. 5-16 Comparison of horizontal displacement variation with time for the material 

point located at (0.255 m,0.255 m) between locally defined and constant horizon size 

in the ordinary state-based formulation. 

 

Fig. 5-17 Comparison of vertical displacement variation with time for the material 

point located at (0.255 m,0.255 m) between locally defined and constant horizon size 

in the ordinary state-based formulation. 

5.4.1.2.3 Non-ordinary State-based Peridynamics 

Finally, for the non-ordinary state-based formulation, Fig. 5-18 and Fig. 5-19 show 

that both the horizontal and vertical displacement histories exhibit good agreement 

with the FEM reference for all tested constant horizon sizes. The use of smaller 
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constant horizon values 𝛿1 = 4∆𝑥1 = 𝛿2 = 2∆𝑥2 provide the closest match to FEM 

predictions. 

 

Fig. 5-18 Variation of horizontal displacement of the material point located at (0.255 

m,0.255 m) with time in non-ordinary state-based formulation, constant horizon size. 

 

Fig. 5-19 Variation of vertical displacement of the material point located at (0.255 

m,0.255 m) with time in non-ordinary state-based formulation, constant horizon size. 

A direct comparison between locally defined and constant horizon approaches is 

presented in Fig. 5-20 and Fig. 5-21. It is noticed that that both strategies yield nearly 

indistinguishable displacement responses at the monitoring point. 



83 

 

 

Fig. 5-20 Comparison of horizontal displacement variation with time for the material 

point located at (0.255 m,0.255 m) between locally defined and constant horizon size 

in the non-ordinary state-based formulation. 

 

Fig. 5-21 Comparison of vertical displacement variation with time for the material 

point located at (0.255 m,0.255 m) between locally defined and constant horizon size 

in the non-ordinary state-based formulation. 

5.4.2 Plate Under Tension in Nonuniform Discretization 

In this case study, a square plate of dimensions 𝐿 =  𝑊 =  1 m with thickness of 0.01 

m is subjected to a prescribed uniaxial tensile stress 𝜎 ∗ =  200 MPa applied at the 

right edge, as illustrated in Fig. 4-12. This loading is imposed via a fictitious region at 

the right boundary, following the methodology outlined in Section 4.3.3 (see also Fig. 
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4-13). The left edge of the plate is fully fixed by using a fictitious region. The plate 

material is linear elastic with  𝐸 = 200 GPa and density 𝜌 = 7850 kg/m3. Poisson’s 

ratio is taken as 1/3 for bond-based simulations, and non-ordinary state-based 

simulations, and 0.25 for ordinary state-based simulations. The steady-state response 

is obtained using the Adaptive Dynamic Relaxation technique (Underwood, 1983; 

Kilic and Madenci, 2010). 

As in the previous plate vibration analysis, both locally defined horizon size and 

constant horizon size approaches are investigated. Each approach is implemented for 

the bond-based, ordinary state-based, and non-ordinary state-based peridynamic 

formulations. The peridynamic results are benchmarked against reference FEM 

solutions computed in Ansys. For each formulation, optimised cases from both horizon 

selection strategies are compared. 

5.4.2.1 Effect of Locally Defined Horizon Size 

In this analysis, the solution domain is divided into two equal regions (Region 1 and 

Region 2), as illustrated in Fig. 5-2. The mesh size in Region 1 ∆𝑥1 = 0.005 m, which 

is half that of Region 2 (∆𝑥2 = 0.01 m), giving a mesh ratio of 𝑘 =
∆𝑥2

∆𝑥1
= 2.  

In each region, the horizon radius is defined as an integer multiple of the local grid 

size: 𝛿1 = 𝑛ℎ𝑜𝑟1∆𝑥1 for Region 1 and 𝛿2 = 𝑛ℎ𝑜𝑟2∆𝑥2 for Region 2 with 𝑛ℎ𝑜𝑟1 and 

𝑛ℎ𝑜𝑟2 are varied simultaneously from 1 to 5. 

5.4.2.1.1 Bond-based Peridynamics 

Fig. 5-22 and Fig. 5-23 present the horizontal and vertical displacement profiles along 

the central axes for the bond-based formulation. The results indicate that the better 

agreement with the FEM solution is achieved when horizon sizes are set to 𝛿1 = 3∆𝑥1, 

𝛿2 = 3∆𝑥2, 𝛿1 = 4∆𝑥1, 𝛿2 = 4∆𝑥2 and 𝛿1 = 5∆𝑥1, 𝛿2 = 5∆𝑥2. 
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Fig. 5-22 Variation of horizontal displacements along the central axis (x, y = 0) in 

bond-based formulation, locally defined horizon size. 

 

Fig. 5-23 Variation of vertical displacement along the central axis (x = 0, y) in bond-

based formulation, locally defined horizon size. 

5.4.2.1.2 Ordinary State-based Peridynamics 

Fig. 5-24 and Fig. 5-25 show the horizontal and vertical displacements for the ordinary 

state-based formulation. Like the bond-based results, horizon configurations of 𝛿1 =

3∆𝑥1 , 𝛿2 = 3∆𝑥2 , 𝛿1 = 4∆𝑥1 , 𝛿2 = 4∆𝑥2  and 𝛿1 = 5∆𝑥1 , 𝛿2 = 5∆𝑥2  yield better 

agreement with the FEM reference. Smaller horizon values are insufficient to capture 

the correct displacement field, as previously observed. 
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Fig. 5-24 Variation of horizontal displacements along the central axis (x, y = 0) in 

ordinary state-based formulation, locally defined horizon size. 

 

Fig. 5-25 Variation of vertical displacement along the central axis (x = 0, y) in 

ordinary state-based formulation, locally defined horizon size. 

5.4.2.1.3 Non-ordinary State-based Peridynamics 

Fig. 5-26 and Fig. 5-27 the horizontal and vertical displacement distributions for the 

non-ordinary state-based formulation. The closest correspondence with FEM is 

obtained for 𝛿1 = 2∆𝑥1 , 𝛿2 = 2∆𝑥2 . In contrast to bond-based and ordinary state-

based results, the non-ordinary state-based formulation shows increasing horizontal 

displacement error at the interface as the horizon size increases. 
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Fig. 5-26 Variation of horizontal displacements along the central axis (x, y = 0) in 

non-ordinary state-based formulation, locally defined horizon size. 

 

Fig. 5-27 Variation of vertical displacement along the central axis (x = 0, y) in non-

ordinary state-based formulation, locally defined horizon size. 

5.4.2.2 Effect of Constant Horizon Size 

In this set of analyses, all material points across both regions are assigned a constant 

horizon size, irrespective of local grid spacing. Specifically, the horizon size is taken 

as 𝛿1 = 𝛿2 = 𝑛ℎ𝑜𝑟2𝛥𝑥2, with 𝑛ℎ𝑜𝑟2 varied from 1 to 5. 

5.4.2.2.1 Bond-based Peridynamics 

Fig. 5-28 and Fig. 5-29 present the horizontal and vertical displacement fields for the 

bond-based formulation with constant horizon size. The results demonstrate that 

horizon values of 𝛿1 = 6∆𝑥1 = 𝛿2 = 3∆𝑥2 , 𝛿1 = 8∆𝑥1 = 𝛿2 = 4∆𝑥2  and 𝛿1 =
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10∆𝑥1 = 𝛿2 = 5∆𝑥2  provide a better agreement with the FEM solution for both 

horizontal and vertical displacements. 

 

Fig. 5-28 Variation of horizontal displacements along the central axis (x, y = 0) in 

bond-based formulation, constant horizon size. 

 

Fig. 5-29 Variation of vertical displacement along the central axis (x = 0, y) in bond-

based formulation, constant horizon size. 

A direct comparison between the constant and locally defined horizon cases (Fig. 5-30 

and Fig. 5-31) shows that while horizontal displacements are nearly identical, the 

constant horizon approach results in improved vertical displacement accuracy. This 

improvement can be attributed to the increased number of neighbouring points within 

the constant horizon, especially in the refined region. 
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Fig. 5-30 Comparison of horizontal displacements along the central axis (x, y = 0) 

between locally defined and constant horizon size in the bond-based formulation. 

 

Fig. 5-31 Comparison of vertical displacements along the central axis (x = 0, y) 

between locally defined and constant horizon size in the bond-based formulation. 

5.4.2.2.2 Ordinary State-based Peridynamics 

Fig. 5-32 and Fig. 5-33 show the horizontal and vertical displacements for the ordinary 

state-based formulation under the constant horizon strategy. The horizon sizes 𝛿1 =

6∆𝑥1 = 𝛿2 = 3∆𝑥2 , 𝛿1 = 8∆𝑥1 = 𝛿2 = 4∆𝑥2  and 𝛿1 = 10∆𝑥1 = 𝛿2 = 5∆𝑥2 yield 

better agreement with FEM results. 
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Fig. 5-32Variation of horizontal displacements along the central axis (x, y = 0) in 

ordinary state-based formulation, constant horizon size. 

 

Fig. 5-33Variation of vertical displacement along the central axis (x = 0, y) in 

ordinary state-based formulation, constant horizon size. 

Comparison between locally defined and constant horizon approaches (Fig. 5-34 and 

Fig. 5-35) confirms that horizontal displacement predictions are indistinguishable for 

the optimised horizon sizes, while the constant horizon case yields more accurate 

vertical displacement due to a larger number of material points within the horizon. 



91 

 

 

Fig. 5-34 Comparison of horizontal displacements along the central axis (x, y = 0) 

between locally defined and constant horizon size in ordinary state-based 

formulation. 

 

Fig. 5-35 Comparison of vertical displacements along the central axis (x = 0, y) 

between locally defined and constant horizon size in ordinary state-based 

formulation. 

5.4.2.2.3 Non-ordinary State-based Peridynamics 

Fig. 5-36 and Fig. 5-37 present the horizontal and vertical displacement distributions 

for the non-ordinary state-based formulation. For 𝛿1 = 4∆𝑥1 = 𝛿2 = 2∆𝑥2 , the 

peridynamic predictions closely follow the FEM reference. Although increasing the 

horizon size introduces some interface error in the horizontal displacement, the 

magnitude of this error is less significant than that observed in the locally defined 

horizon approach. 
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Fig. 5-36 Variation of horizontal displacements along the central axis (x, y = 0) in 

non-ordinary state-based formulation, constant horizon size. 

 

Fig. 5-37Variation of vertical displacement along the central axis (x = 0, y) in non-

ordinary state-based formulation, constant horizon size. 

Direct comparison (Fig. 5-38 and Fig. 5-39) shows that, for the optimised horizons 

( 𝛿1 = 2∆𝑥1 , 𝛿2 = 2∆𝑥2 for locally defined; 𝛿1 = 4∆𝑥1 = 𝛿2 = 2∆𝑥2  for constant 

horizon), both strategies yield nearly identical displacement fields. 
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Fig. 5-38 Comparison of horizontal displacements along the central axis (x, y = 0) 

between locally defined and constant horizon size in non-ordinary state-based 

formulation. 

 

Fig. 5-39 Comparison of vertical displacements along the central axis (x = 0, y) 

between locally defined and constant horizon size in non-ordinary state-based 

formulation. 

Since a horizon size of 3𝛥𝑥 is generally preferred in both bond-based and ordinary 

state-based formulations, the non-ordinary state-based formulation was also tested 

with comparable horizon values. As shown in Fig. 5-40 and Fig. 5-41, adopting the 

same horizon selection in non-ordinary state-based formulation does not result in 

significant loss of accuracy, but interface-related errors in horizontal displacement are 

more pronounced with locally defined horizons. Employing a constant horizon reduces 

the magnitude of such errors while maintaining comparable overall displacement 

predictions. 
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Fig. 5-40 Comparison of horizontal displacements along the central axis (x, y = 0) 

between locally defined and constant horizon size in non-ordinary state-based 

formulation. 

 

Fig. 5-41Comparison of vertical displacements along the central axis (x = 0, y) 

between locally defined and constant horizon size in non-ordinary state-based 

formulation. 

5.5 Chapter Summary 

This chapter has presented a derivation of the dual-horizon peridynamics formulation 

using the Euler-Lagrange equations. Dual-horizon peridynamics provides an effective 

framework for handling non-uniform discretisation and variable horizon sizes, both of 

which may be required for computational efficiency or to capture specific local 

features of complex engineering problems. The methodology has been systematically 

evaluated through numerical experiments involving both dynamic (plate vibration) and 
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static (plate under tension) benchmark problems, using bond-based, ordinary state-

based, and non-ordinary state-based formulations. 

The results demonstrate that, for both bond-based and ordinary state-based 

formulations, optimum accuracy is generally achieved when the horizon size is set to 

three times the local grid spacing (𝛿 =  3𝛥𝑥 ), in line with findings for uniform 

discretisation. Both locally defined and constant horizon strategies can deliver reliable 

predictions; however, the constant horizon approach tends to yield improved accuracy, 

attributed to the increased number of interacting material points. 

For the non-ordinary state-based formulation, the optimal horizon size under non-

uniform discretisation is found to be smaller (𝛿 =  2𝛥𝑥). In addition, the fluctuations 

observed in Fig. 5-26 occur when larger horizons are combined with locally defined 

strategies, leading to pronounced interface-related errors. At the transition between 

coarse and fine regions, the change in horizon size creates mismatched family sizes, 

which results in oscillatory behaviour. However, as shown in Fig. 5-40, this effect is 

mitigated when a constant horizon is applied across the domain. 

Finally, with the advancement of AM technologies, the fabrication of complex 

materials such as microstructured materials is possible. peridynamic theory can be a 

suitable alternative for the analysis of microstructured materials to some other 

approaches presented in the literature (Placidi, 2016; Placidi and Barchiesi, 2018; 

Spagnuolo et al., 2017). 
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Chapter 6 Thermal Diffusion Analysis by Using Dual-Horizon 

Peridynamics 

6.1 Introduction 

The preceding chapters have systematically developed the theoretical framework and 

numerical implementation of peridynamics for mechanical analysis, with a focus on 

the influence of discretisation and horizon size under both static and dynamic loadings. 

These investigations have established a foundation for the application of peridynamic 

methods to a broad range of mechanical engineering problems. However, AM and 

welding processes are inherently multiphysical, thermal effects are intrinsically 

coupled to the mechanical response, requiring robust modelling strategies that can 

capture the effects of nonlocal thermal diffusion and thermal discontinuities. 

This chapter extends the peridynamic framework and introduces the dual-horizon 

peridynamic formulation to solve thermal diffusion problems. Lagrangian formalism 

is utilised to derive the governing equations. The proposed formulation allows 

utilisation of variable discretisation and horizon sizes inside the solution domain, 

which can result in significant benefits in terms of computational time. To demonstrate 

the capability of the Dual-Horizon Peridynamics formulation, three different example 

problems are considered, including a square plate with temperature and no flux 

boundary conditions, a square plate under thermal shock loading, and a square plate 

with an insulated crack. For all problems that are considered, good agreement is 

obtained between peridynamics predictions and FEM results. 

6.2 Peridynamic Thermal Diffusion Formulation 

The governing equation for peridynamic thermal diffusion can be derived by solving 

for the Euler–Lagrange equation (Oterkus et al., 2014) 

𝑑

𝑑𝑡
(
𝜕𝐿

𝜕𝛩̇
) −

𝜕𝐿

𝜕𝛩
= 0 

( 6.1 ) 

where 𝛩 is the temperature, and 𝐿 is the Lagrangian. The Lagrangian may be defined 

as 
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𝐿 = ∫Լ𝑑𝑉

𝑉

 
( 6.2 ) 

where Լ is the Lagrangian density. In peridynamic framework, the Lagrangian density 

at a material point can be defined as 

Լ = 𝑍 + 𝜌𝑠̂𝛩 ( 6.3 ) 

in which 𝑍 is thermal potential, 𝜌 is density, and 𝑠̂ represents the heat source per unit 

mass. 

 

Fig. 6-1 Material points and the horizon (Oterkus et al., 2017). 

In peridynamics the interactions between material points are nonlocal. Therefore, a 

material point exchanges heat energy through non-local interactions with its 

surrounding material points within its horizon, 𝐻𝑥  with a size of, 𝛿  (see Fig. 6-1) 

(Oterkus et al., 2014). Each material point possesses a thermal potential, 𝑍𝑘, which 

depends on the temperatures of all neighbouring points inside its horizon. 

For a given material point 𝑘 at 𝒙𝑘, the thermal potential 𝑍𝑘 is defined as the sum of 

microthermal potentials associated with its interactions. Specifically, due to the 

bidirectional heat exchange between two material points 𝒙𝑘 and 𝒙𝑗, two microthermal 

potentials 𝑧𝑘𝑗  and 𝑧𝑗𝑘  arise. Microthermal potential, 𝑧𝑘𝑗  depends on the temperature 
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difference between the material point 𝒙𝑘 and the material points that it is interacting 

with inside its horizon. 

Therefore, the thermal potential 𝑍𝑘 at material point 𝒙𝑘 can be defined as 

𝑍𝑘 =
1

2
∑

1

2
{
 𝑧𝑘𝑗 [𝛩1𝑘 − 𝛩𝑘 , ⋯ , 𝛩𝑁𝑘𝑘 − 𝛩𝑘] +

 𝑧𝑗𝑘 [𝛩1𝑗 −𝛩𝑗 , ⋯ , 𝛩𝑁𝑗𝑗 − 𝛩𝑗]   
}𝑉𝑗

𝑁𝑘

𝑗=1

 

( 6.4 ) 

in which 𝑁𝑘 and 𝑁𝑗 are the number of material points inside the horizon of material 

points 𝒙𝑘 and 𝒙𝑗, respectively, 𝛩𝑘 is the temperature of material point 𝒙𝑘, 𝛩1𝑘 is the 

temperature of the first material point that interacts with point 𝒙𝑘, by the same token 

for 𝑗 , and 𝑉𝑗  is the volume associated with the material point  𝒙𝑗 . The equation 

represents that the thermal potential at a material point 𝒙𝑘  is the sum of all 

microthermal potentials associated with that point. 

Using the Euler–Lagrange equation given in Eq.( 6.1 ) for the material point 𝒙𝑘 yields 

the peridynamic governing equation for the thermal diffusion as 

∑[−ҥ𝑘𝑗 + ҥ𝑗𝑘]𝑉𝑗 + 𝜌𝑘𝑠̂𝑘 = 0

𝑁𝑘

𝑗=1

 

( 6.5 ) 

where 

ҥ𝑘𝑗 =
1

2

1

𝑉𝑗
[∑

𝜕𝑧𝑘𝑖
𝜕(𝛩𝑗 − 𝛩𝑘)

𝑉𝑖

𝑁𝑘

𝑖=1

] 

( 6.6 ) 

and 

ҥ𝑗𝑘 =
1

2

1

𝑉𝑘
[∑

𝜕𝑧𝑗𝑖

𝜕(𝛩𝑘 − 𝛩𝑗)
𝑉𝑖

𝑁𝑗

𝑖=1

] 

( 6.7 ) 

The first term in Eq.( 6.5 ) represents the heat flow density, ҥ𝑘𝑗, from 𝒙𝑗 to 𝒙𝑘, while 

the second term, ҥ𝑗𝑘,corresponds to the reverse interaction. 

Moreover, the heat source 𝑠̂𝑘 in Eq.( 6.5 ) can be further defined as 
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𝑠̂𝑘 = 𝜀𝑠̇,𝑘 − 𝑠𝑏,𝑘 ( 6.8 ) 

in which 𝑠𝑏,𝑘 is the heat source due to volumetric heat generation per unit mass.  

The rate of heat energy stored, 𝜀𝑠̇ when heat flow varies over a short period can be 

expressed as (Oterkus et al., 2014) 

𝜀𝑠̇ = 𝐶𝑣
𝜕𝛩

𝜕𝑡
 

( 6.9 ) 

where 𝐶𝑣 is the specific heat capacity.  

Therefore, the peridynamic thermal diffusion equation given in Eq.( 6.5 ) can rewritten 

as 

𝜌𝑘𝐶𝑣𝛩̇𝑘 = ∑[ҥ𝑘𝑗 − ҥ𝑗𝑘]𝑉𝑗 + ℎ𝑞,𝑘

𝑁𝑘

𝑗=1

 

( 6.10 ) 

where heat source due to volumetric heat generation can expressed as 

ℎ𝑞,𝑘 = 𝜌𝑘𝑠𝑏,𝑘 ( 6.11 ) 

If bond-based peridynamic thermal diffusion model is considered, the heat flow 

density between two material points is assumed to be a function of the temperature 

difference between only the interacting material points. Thus, 

ҥ𝑘𝑗 =
1

2

𝜕𝑧𝑘𝑗

𝜕(𝛩𝑗 − 𝛩𝑘)
 

( 6.12 ) 

and 

ҥ𝑗𝑘 =
1

2

𝜕𝑧𝑗𝑘

𝜕(𝛩𝑘 − 𝛩𝑗)
 

( 6.13 ) 

For microthermal potentials, 

𝜕𝑧𝑘𝑗 =
1

2

ĸ

2

(𝛩𝑗 − 𝛩𝑘)
2

|𝒙𝑗 − 𝒙𝑘|
 

( 6.14 ) 
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and 

𝑧𝑗𝑘 =
1

2

ĸ

2

(𝛩𝑘 − 𝛩𝑗)
2

|𝒙𝑘 − 𝒙𝑗|
 

( 6.15 ) 

As a result, the corresponding heat flow densities in Eq.( 6.12 ) and Eq.( 6.13 ) can be 

re-written as 

ҥ𝑘𝑗 =
ĸ

2

𝛩𝑗 − 𝛩𝑘

|𝒙𝑗 − 𝒙𝑘|
 

( 6.16 ) 

and 

ҥ𝑗𝑘 =
ĸ

2

𝛩𝑘 − 𝛩𝑗

|𝒙𝑘 − 𝒙𝑗|
 

( 6.17 ) 

where peridynamic microconductivity, ĸ can be expressed for 2-Dimensional solution 

domains as (Oterkus et al., 2014) 

ĸ =
6𝑘

𝜋ℎ𝛿3
 

( 6.18 ) 

in which 𝑘 is the heat conductivity, h is the thickness of the geometry, and 𝛿 is the 

horizon size. 

6.3 Dual-horizon Peridynamics for Thermal Diffusion 

The uniform discretization with constant horizon size is commonly used in 

peridynamic simulations since it is simple to implement for the whole geometry. 

However, for some problems, using finer discretization size at all locations inside the 

solution domain can be computationally time consuming. Thus, it is essential to use 

finer discretization size at locations with high temperature gradient and coarse 

discretization size can be used elsewhere. Moreover, utilizing variable horizon sizes 

can also be required either due to computational or problem specific reasons. 
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Fig. 6-2 Non-uniform discretization with different horizon sizes. 

It should be noted that in Eq.( 6.12 ) and Eq.( 6.13 ), the microthermal potential is zero 

if one material point does not lie within the horizon of the other. As shown in Fig. 6-2, 

although a material point associated with a smaller (blue) horizon may fall within the 

horizon of another point with a larger (red) horizon, the reverse is not necessarily true. 

Accordingly, the heat flow densities between material points 𝒙𝑘 and 𝒙𝑗 ,as given in 

Eq.( 6.16 ) and Eq.( 6.17 ) can be reformulated for the variable horizon case as 

ҥ𝑘𝑗 = 𝛼𝑘𝑗
ĸ

2

𝛩𝑗 − 𝛩𝑘

|𝒙𝑗 − 𝒙𝑘|
 

( 6.19 ) 

ҥ𝑗𝑘 = 𝛼𝑗𝑘
ĸ

2

𝛩𝑘 − 𝛩𝑗

|𝒙𝑘 − 𝒙𝑗|
 

( 6.20 ) 

where the indicator functions are defined as 

𝛼𝑘𝑗 = {
1, 𝑧𝑘𝑗 ≠ 0

0, 𝑧𝑘𝑗 = 0
 

( 6.21 ) 

𝛼𝑗𝑘 = {
1, 𝑧𝑗𝑘 ≠ 0

0, 𝑧𝑗𝑘 = 0
 

( 6.22 ) 

and the peridynamic microconductivities for material points 𝒙𝑘 and 𝒙𝑗 are given by 
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ĸ𝑘 =
6𝑘

𝜋ℎ𝛿𝑘
3 

( 6.23 ) 

ĸ𝑗 =
6𝑘

𝜋ℎ𝛿𝑗
3 

( 6.24 ) 

where 𝛿𝑘 and 𝛿𝑗 are the horizon sizes of the material points 𝒙𝑘 and 𝒙𝑗, respectively. 

6.4 Thermal Diffusion Case Studies 

To demonstrate the capabilities of the current dual-horizon peridynamics thermal 

diffusion formulation, three different problems are considered including a square plate 

with temperature and no flux boundary conditions, a square plate under thermal shock 

with insulated boundaries and a square plate with an insulated crack. Uniform or non-

uniform discretization was utilized with constant or variable horizon size. Peridynamic 

predictions are compared with FEM results obtained by using ANSYS, a commercial 

finite element software. 

6.4.1 Plate with Temperature and No Flux Boundary Conditions 

 

Fig. 6-3 Peridynamic model of the plate. 

For the first example problem, an isotropic square plate with dimensions of length (L) 

= width (W) = 0.01 m is considered (Fig. 6-3). The plate has a thickness of h = 0.001 

m and is subjected to temperature boundary conditions of 𝛩(x = −0.005, y) = 0 ℃ 

and 𝛩(x = 0.005, y) = 10 ℃ at the left and right edges, respectively. The upper and 
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bottom boundaries are insulated boundaries. Boundary conditions are applied by 

introducing fictitious regions, Rc and following the approach described in Oterkus et 

al., (2014). Specific heat capacity 𝐶𝑣, thermal conductivity 𝑘 and mass density 𝜌 are 

specified as 64 J/kgK, 233 W/mK and 260 kg/m3, respectively. 

The geometry is discretized in various forms in peridynamic model. The solution 

domain is split into two equal regions as Region 1 and Region 2 from the vertical axis, 

y. Mesh ratio 𝑘 between these two regions is defined as 

𝑘 =
∆1
∆2

 
( 6.25 ) 

where ∆1  indicates the spacing between the material points in Region 1 and ∆2 

indicates the spacing between the material points in Region 2. 

The cases are evaluated with various horizon size combinations and horizon size ratio 

𝑚 is defined as 

𝑚 =
𝛿1
𝛿2

 
( 6.26 ) 

where 𝛿1 is the horizon size in Region 1 and 𝛿2 is the horizon size in Region 2. The 

relationship between horizon size and spacing is given as 

𝛿𝑖 = 𝑛∆𝑖 ( 6.27 ) 

where 𝑖 = 1, 2 represents Regions 1 and 2, respectively, whereas n = 1,…,5 represents 

the size the horizon. For example, if 𝛿2 = 3∆2, the horizon in Region2 has a size of 

three material points in radius. 
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6.4.1.1 Plate with Uniform Discretisation and Identical Horizon Sizes 

 

Fig. 6-4 Peridynamic model with uniform discretisation and identical horizon sizes. 

In the first case, as shown in the Fig. 6-4, the plate is discretised uniformly with the 

spacing between material points ∆1= ∆2= 1.0 × 10−4 m  in horizontal and vertical 

directions. All material points have an identical horizon size (𝛿1 = 𝛿2). Therefore, 𝑘 

and 𝑚  parameters defined in Eq.( 6.25 ) and Eq.( 6.26 ) are both equal to 1. The 

peridynamic solution of the temperature variations along the horizontal central axis 

are obtained by using explicit time integration with a time step size of 1.0 × 10−7 s, 

and compared with the finite element method results by using PLANE55 element in 

ANSYS. 

 

Fig. 6-5 Temperature variations from peridynamic and FEM predictions at 𝑦 =  0 

when 𝑘 = 1, 𝑚 = 1. 

As can be seen in Fig. 6-5, the peridynamic predictions have a good agreement with 

FEM results for all horizon sizes for uniform discretization and identical horizon sizes. 
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6.4.1.2 Plate with Uniform Discretisation and Different Horizon Sizes 

 

Fig. 6-6 Peridynamic model with uniform discretisation but different horizon sizes. 

In order to investigate the capability of the dual-horizon concept, the square plate is 

discretised with the same discretization parameters (∆1= ∆2= 1.0 × 10−4 m) as in the 

former case. However, the horizon sizes in Regions 1 and 2 of the plate are different 

(see Fig. 6-6). The horizon size of Region 1 is set twice big of the horizon size of 

Region 2 (𝛿1 = 2𝛿2). Therefore, k and m parameters are equal to 1 and 2, respectively. 

 

Fig. 6-7 Temperature variations from PD and FEM predictions at 𝑦 =  0 when 𝑘 =

1, 𝑚 = 2. 

The peridynamic solution of the temperature variations along horizontal central axis 

are obtained by using explicit time integration with a time step size of 1.0 × 10−7 s 

and compared with FEM results as shown in Fig. 6-7. The peridynamic predictions 

generally agree well with FEM. However, there is small difference at the interface of 

Regions 1 and 2 for larger horizon sizes and increases as the horizon size increases. 
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6.4.1.3 Plate with Non-uniform Discretisation and Identical Horizon Sizes 

 

Fig. 6-8 Peridynamic model with non-uniform discretisation but identical horizon 

sizes. 

In the third case, the square plate has the same geometric parameters, material 

properties and boundary conditions with the first case. Since refined discretisation 

increases the computational cost, in order to examine the non-uniform discretisation 

on heat conduction,  the discretisation size in Region 2 is increased to a size of ∆2=

2.0 × 10−4 m in horizontal and vertical directions whereas the discretisation size in 

Region 1 is same as uniform cases which is ∆1= 1.0 × 10−4 m (Fig. 6-8). The horizon 

sizes remain the same in each region as the first uniform case. Therefore, k and m 

parameters are equal to 0.5 and 1, respectively.  

 

Fig. 6-9 Temperature variations from PD and FEM predictions at 𝑦 =  0 when 𝑘 =

0.5, 𝑚 = 1. 
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The peridynamic solution of the temperature variations along the horizontal central 

axes are obtained by using explicit time integration with a time step size of 

1.0 × 10−7 s. As shown in Fig. 6-9, the PD predictions for the temperature variations 

agree well with the FEM results for various horizon sizes. 

6.4.1.4 Plate with Non-uniform Discretisation and Different Horizon Sizes 

 

Fig. 6-10 Peridynamic model with non-uniform discretisation but different horizon 

sizes. 

In peridynamic numerical simulations computational time depends on not only the 

discretisation size but also the number of material points within its horizon. The third 

case shows a good agreement of peridynamic and FEM predictions for various horizon 

sizes with a non-uniform discretisation. Therefore, this last case inherits the non-

uniform discretisation from the third case and the horizon side in Region 1 is reduced 

to half of the horizon size in Region 2, i.e. 𝛿2 = 2𝛿1 (see Fig. 6-10). Since ∆2= 2∆1 

and 𝛿2 = 2𝛿1, horizon in each region contains same number of material points within 

their horizon. Moreover, 𝑘 and 𝑚 parameters are both equal to 0.5, respectively. 
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Fig. 6-11 Temperature variations from PD and FEM predictions at 𝑦 =  0 when 

𝑘 = 0.5, 𝑚 = 0.5. 

As can be observed in the Fig. 6-11, the peridynamic numerical results mostly agree 

well with the FEM results. However, as the horizon size grows, a slight difference is 

observed at the interface of Regions 1 and 2. 

6.4.2 Plate Under Thermal Shock with Insulated Boundaries 

 

Fig. 6-12 Peridynamic model of the plate under thermal shock loading. 

In the second example problem, an isotropic square plate with insulated boundaries is 

subjected to a thermal shock loading on the left edge. The geometric parameters are 

10 m in length (L) and width (W) with a thickness of (h) 1 m (see Fig. 6-12). The 

specific heat capacity 𝐶𝑣, thermal conductivity 𝑘 and mass density 𝜌 are specified as 

𝐶𝑣 = 1 J/kgK, 𝑘 = 1 W/mk, and 𝜌 = 1 kg/m3, respectively. The initial condition and 

boundary conditions are stated as 

𝛩(x, y, 𝑡 = 0) = 0 ℃ ( 6.28 ) 

and 

𝛩, x(x = 5, y) = 0 ℃, 𝑡 > 0 ( 6.29 ) 

𝛩, y(x, y = ±5) = 0 ℃, 𝑡 > 0 ( 6.30 ) 

𝛩(x = −5, t) = 5𝑡ⅇ−2𝑡, 𝑡 > 0 ( 6.31 ) 
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6.4.2.1 Plate with Uniform Discretisation and Identical Horizon Sizes 

In the first case, the peridynamic model has a uniform mesh with spacing ∆1= ∆2= 

0.02 m and identical horizon sizes in each region (𝛿1 = 𝛿2). Thus, k and m parameters 

are both equal to 1. The peridynamic solution of the temperature variations along 

central horizontal axis are obtained by using explicit time integration with a time step 

size of 5.0 × 10−4 s. 

 

(a) 

 

(b) 

Fig. 6-13 Temperature variations from PD and FEM predictions when (a) t = 3 s, (b) 

t = 6 s at 𝑦 =  0, 𝑘 = 1, 𝑚 = 1. 

The results are assessed with various horizons and predicted at time 𝑡 = 3 s and 𝑡 = 6 

s. Both peridynamic and FEM results are shown in Fig. 6-13. As can be observed, the 

peridynamic model results agree well with FEM results for various horizons with 

uniform discretisation. 

6.4.2.2 Plate with Uniform Discretisation and Different Horizon Sizes 

In the second case, the numerical model has the same mesh configuration with the first 

case. In order to investigate the capability of the dual-horizon concept, horizon size in 

Region 2 is doubled, i.e. 𝛿1 = 2𝛿2. Therefore, k and m parameters are equal to 1 and 

2, respectively. The second case adopts the identical time step with the former case 

and the temperature variations along the central horizontal axis are plotted for time 𝑡 

= 3 s and 𝑡 = 6 s for various horizons and compared with FEM results. 



110 

 

 

(a) 

 

(b) 

Fig. 6-14 Temperature variations from PD and FEM predictions when (a) t =3 s, (b) 

t = 6 s at y = 0, k =1, m=2. 

As shown in Fig. 6-14, peridynamic results for various horizon sizes generally agree 

well with FEM results. As the horizon size increases, a slight difference is observed at 

the interface of Regions 1 and 2 at both 𝑡 = 3 s and 𝑡 = 6 s. 

6.4.2.3 Plate with Non-uniform Discretisation and Identical Horizon Sizes 

In the third case, the geometry is discretized with non-uniform discretisation. The 

spacing between material points in Region 2 is twice the spacing in Region 1, i.e. ∆1=

0.02 m, ∆2= 0.04 m. However, the horizon sizes are identical in each region, i.e. 𝛿1 =

𝛿2. Therefore, k and m parameters are equal to 0.5 and 1, respectively. The peridynamic 

solution of the temperature variations along the horizontal central axis at times 𝑡 = 3 s 

and 𝑡  = 6 s are evaluated with explicit time integration, with a time step size of 

5.0 × 10−4 s and compared with FEM results. 

 

(a) 

 

(b) 
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Fig. 6-15 Temperature variations from PD and FEM predictions when (a) t =3 s, (b) 

t = 6 s at y = 0, k =0.5, m=1. 

As can be observed from Fig. 6-15, results from peridynamic and FEM predictions 

for various horizons are in a good agreement. 

6.4.2.4 Plate with Non-uniform Discretisation and Different Horizon Sizes 

The fourth case inherits the same discretisation configuration with the third case, 

i.e.∆1= 0.02 m, ∆2= 0.04 m. However, the horizon size in Region 1 reduces to half 

size of the horizon size in Region 2, i.e. 𝛿2 = 2𝛿1. Since both k and m parameters are 

equal to 0.5, each horizon has identical number of material points. Same time step size 

5.0 × 10−4  s is adopted to obtain the temperature variations along the horizontal  

central axis when time t = 3 s and t = 6 s. 

 

(a) 

 

(b) 

Fig. 6-16 Temperature variations from PD and FEM predictions when (a) t =3 s, (b) 

t = 6 s at y = 0, k =0.5, m=0.5. 

The peridynamic results mostly agree with FEM results for various horizon sizes (see 

Fig. 6-16). However, with the horizon size increases in each region, a slight difference 

is observed at the interface of Regions 1 and 2 for both t = 3 s and t = 6 s. 
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6.4.3 Square Plate with an Insulated Crack 

 

Fig. 6-17 Peridynamic model of the plate with an insulated crack. 

For the final example problem as shown in Fig. 6-17, the isotropic square plate is 

considered with 2 cm in length (L), 2 cm in width (W) and 0.01 cm in thickness (h). 

The plate has an insulated crack in the middle with a crack length of 2a = 1 cm. The 

specific heat capacity 𝐶𝑣, thermal conductivity 𝑘 and mass density 𝜌 are specified as 

𝐶𝑣 =1 J/kgK , 𝑘 = 1.14W/cmK and 𝜌 = 1 kg/cm3, respectively. The plate is subjected 

to the following initial and boundary conditions 

𝛩(x, y, z, 𝑡 = 0) = 0 ℃           −
L

2
≤ x ≤

L

2
, −

W

2
≤ y ≤

W

2
 

( 6.32 ) 

and 

𝛩 (x,
W

2
, 𝑡) = 100 ℃, 𝛩 (x,−

W

2
, 𝑡) = −100 ℃, 𝑡 > 0 

( 6.33 ) 

𝛩, x (
L

2
, y, t) = 0 ℃, 𝛩, x (−

L

2
, y, t) = 0 ℃, 𝑡 > 0 

( 6.34 ) 

Since there is an insulated crack in the geometry, in order to evaluate the effect of dual 

horizon concept and non-uniform discretization, the geometry is split into two regions 

in perifynamic model as in the previous two numerical examples. Note that the 

definition of regions (zones) in this numerical example is different than the previous 
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two numerical examples. Moreover, k and m parameters are defined similarly as in the 

previous two examples. 

6.4.3.1 Plate with Uniform Discretisation and Identical Horizon Sizes 

 

Fig. 6-18 PD model with uniform discretisation and identical horizon sizes. 

As shown in Fig. 6-18, in this initial case the plate is uniformly discretised (𝑘 =  1) 

with 0.01 cm spacing and the same horizon size is used in both zones (𝑚 = 1) .The 

peridynamic solution of the temperature variations along the vertical central axis is 

evaluated with a time step size of 1.0 × 10−5 s for various horizon sizes and compared 

with FEM results. 

 

Fig. 6-19 Temperature variations from PD and FEA predictions at x = 0 when k =1, 

m=1. 

As can be seen in Fig. 6-19, the numerical results from peridynamic analyses for 

various horizon sizes with uniform discretisation agree well with FEM results. 
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6.4.3.2 Plate with Uniform Discretisation and Different Horizon Sizes 

 

Fig. 6-20 PD model with uniform discretisation and different horizon sizes. 

To investigate the dual-horizon size concept, this second case (see Fig. 6-20) utilizes 

uniform discretization as in the first case (𝑘 = 1, ∆1= 0.01 cm, ∆2= 0.01 cm) and the 

horizon size in Region 2 is doubled due to the existence of insulated crack in this region 

(𝑚 = 0.5, 𝛿2 = 2𝛿1). This case adopts the same time step size as the first case. 

 

Fig. 6-21 Temperature variations from PD and FEA predictions at x = 0 when k =1, 

m=0.5. 

As shown in Fig. 6-21, there is a good agreement between peridynamic and FEM 

results obtained along the vertical central axis. However, as the horizon size increases, 

a slight difference is observed at the interface between Region 1 and Region 2. 
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6.4.3.3 Plate with Non-uniform Discretisation and Identical Horizon Sizes 

 

Fig. 6-22 PD model with non-uniform discretisation and identical horizon sizes. 

Since coarse mesh requires less computational time, in this third case, the spacing in 

Region 1 is increased by two times compared with the first case (𝑘 = 2 , ∆1=

0.02 cm, ∆2= 0.01 cm). To evaluate the effect of non-uniform discretization, this third 

case (see Fig. 6-22) utilizes same horizon sizes in all regions (𝑚 = 1, 𝛿2 = 𝛿1). The 

time step size is the same as the first case. 

 

Fig. 6-23 Temperature variations from PD and FEM predictions at x = 0 when k =2, 

m=1. 

As can be observed in Fig. 6-23, the peridynamic predictions for the temperature 

variations along the vertical central axis agree well with the FEM results for various 

horizon sizes. 
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6.4.3.4 Plate with Non-uniform Discretisation and Different Horizon Sizes 

 

Fig. 6-24 PD model with non-uniform discretisation and different horizon sizes. 

If horizon contains more material points, the computational time will increase. 

Therefore, in the last case, horizon size in Region 2 is reduced to half size compared 

with the horizon size in Region 1 (𝑚 = 2, 𝛿1 = 2𝛿2 ) as shown in Fig. 6-24. The 

discretization size is the same as in the third case (k=2, ∆1= 0.02 cm, ∆2= 0.01 cm). 

Since both mesh ratio, 𝑘  and horizon size ratio, m have values of 2, horizons in 

Regions 1 and 2 contain identical number of material points. 

 

Fig. 6-25 Temperature variations from PD and FEM predictions at x = 0 when k =2, 

m=2. 

As shown in Fig. 6-25, the perdynamic temperature predictions obtained along the 

vertical central axis agree well with FEM results. As the horizon size increases, a small 

difference is observed at the interface between Regions 1 and 2. 
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6.5 Chapter Summary 

In this chapter, the dual-horizon peridynamic formulation is presented for the analysis 

of thermal diffusion problems. The framework enables the use of variable 

discretisation and horizon sizes within the computational domain, offering significant 

advantages in terms of computational efficiency for peridynamic simulations. To 

illustrate the capabilities of the dual-horizon approach, three representative case 

studies are examined: a square plate with imposed temperature and no-flux boundary 

conditions, a square plate subjected to thermal shock loading, and a square plate 

containing an insulated crack. 

For each example, the solution domain is partitioned into two regions, each potentially 

characterised by distinct discretisation and horizon sizes. A range of five different 

horizon sizes is considered to systematically investigate the effect of horizon size on 

the results. Across all cases, good agreement is observed between peridynamic 

predictions and finite element method (FEM) solutions. However, when different 

discretisation or horizon sizes are employed in separate regions, minor discrepancies 

may arise at the interface, with the magnitude of these differences increasing as the 

horizon size ratio becomes larger. Overall, the findings indicate that the proposed 

Dual-Horizon Peridynamic formulation can be effectively applied to problems 

involving variable discretisation and horizon size, offering a practical balance between 

computational efficiency and accuracy. 
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Chapter 7 Thermomechanical Phase Change Peridynamic Model for 

Welding Analysis 

7.1 Introduction 

AM and welding are increasingly recognised as transformative technologies within 

advanced manufacturing, offering flexibility in fabricating complex geometries. 

However, these processes involve highly complex and transient thermomechanical 

environments, where rapid heating and cooling, strong coupling between thermal and 

mechanical responses, and phase transformations such as melting and solidification 

collectively determine the final microstructure of manufactured components. 

Consequently, the development of accurate and robust numerical models capable of 

simulating these coupled multiphysics phenomena has become essential for optimising 

process parameters and minimising costly trial-and-error experimentation. 

The preceding chapters of this thesis have systematically developed a theoretical and 

computational framework for peridynamic modelling of both mechanical and thermal 

analysis. Building upon these developments, this chapter advances the peridynamic 

approach to address the challenges posed by AM and welding, with focus on the 

modelling of heat transfer and phase change scenarios. Furthermore, a central aspect 

of any numerical model for AM or welding is the representation of the heat source. 

Inaccuracies in the heat source model can lead to errors in predicting the transient 

temperature field, which in turn propagate into mechanical analyses, affecting 

displacement and residual stress predictions. 

In this chapter, a new non-linear transient peridynamic model employing a variety of 

heat source models is developed to predict the temperature distribution and 

displacement variation. More importantly, as an essential physical phenomenon in heat 

conduction, phase transformation is considered in the peridynamic model. The 

importance of how the latent heat in the phase change can affect the temperature 

distribution and displacement field is also emphasised. The simulation results are 

compared with the FEM results. Close agreements are observed, which demonstrates 

the capability of the proposed non-linear transient peridynamic model for 

thermomechanical phase change analysis for AM and welding modelling. 
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7.2 Peridynamic Thermomechanics Theory 

7.2.1 Peridynamic Thermo-Mechanical Governing Equations 

The bond-based thermomechanical heat transfer equation for material point at 𝒙  is 

given by (Oterkus et al., 2014) 

𝜌(𝒙)𝐶𝑣𝛩̇(𝒙, 𝑡) = ∫𝑓ℎ
𝐻𝑥

𝑑𝑉′ + ℎ𝑞(𝒙, 𝑡) 
( 7.1 ) 

where 𝜌 is the density, 𝐶𝑣 is the effective heat capacity, and 𝛩 is the temperature. The 

term ℎ𝑞 represents the volumetric heat generation. In welding and AM process, ℎ𝑞 can 

represent the heat raised from the heat source. 

The heat flow density (Oterkus et al., 2014), 𝑓ℎ, in Eq.( 7.1 ) can be expressed as 

𝑓ℎ = ĸ
𝜏

|𝝃|
 ( 7.2 ) 

where ĸ  is the micro-thermal conductivity, 𝝃 = |𝒙′ − 𝒙|  is the relative position 

between material points 𝒙′ and 𝒙 in the reference configuration. For two-dimensional 

structure, micro-thermal conductivity, κ , is provided in Eq.( 6.18 ). For three-

dimensional structures, it is defined as (Oterkus et al., 2014) 

𝜅 =
6𝑘

𝜋𝛿4
 

( 7.3 ) 

where 𝑘 is the thermal conductivity, and 𝛿 is the horizon size. 

In addition, the natation 𝜏 in Eq. ( 7.2 ) represents the temperature difference between 

a pair of material points 𝒙′ and 𝒙, and this can be obtained by 

𝜏(𝒙, 𝒙′, 𝑡) = 𝛩(𝒙′, 𝑡) − 𝛩(𝒙, 𝑡) ( 7.4 ) 

On the other hand, the general form of the coupled thermo-elasticity in bond-based 

peridynamics is provided by Oterkus et al. (2014). The equation of motion can be 

expressed as 
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𝜌(𝒙)𝒖̈(𝒙, 𝑡) = ∫ [𝑐 (𝑠(𝒖′ − 𝒖, 𝒙′ − 𝒙) − 𝛼
𝛩 + 𝛩′

2
)
𝒚′ − 𝒚

|𝒚′ − 𝒚|
] 𝑑𝑉′

+ 𝒃(𝒙, 𝑡) 

( 7.5 ) 

where 𝑐 represents the bond constant and is provided in Eq.( 3.6 ) and Eq.( 3.7 ) for 

two- and three-dimensional structure, respectively, 𝑠 represents the stretch between the 

two material points as given in Eq.( 3.5 ), 𝛼 is the coefficient of thermal expansion, 𝒖 

is the displacement of material point 𝒙, and the term 𝒚 represent its position in the 

deformed configuration, thus 𝒚 = 𝒙 + 𝒖. 

7.2.2 Description of Time Dependent Heat Sources 

Heat source modelling can be classified as a point heat source, a planar distribution 

heat source, and a volumetric distributed heat source. These sources are used to act on 

the numerical model depending on the actual manufacturing process model and the 

topographic characteristics of the weld. 

7.2.2.1 Point Heat Source 

In the case of welding arc/laser beam acting on the surface of thick workpieces, the arc 

supplied with power 𝑄 can be treated as a point heat source. As shown in Fig. 7-1, a 

point heat source, so-called a concentrated source, is considered for thermal analysis 

in the peridynamic welding model. 

 

Fig. 7-1 Point heat source moving on the surface of a thick workpiece. 
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This is a simplified approximation of a physical situation but can provide a good 

temperature prediction under certain conditions. Rosenthal (1941) provides the 

solution for the temperature distribution of a steady state moving point heat source 

acted on a semi-infinite plate as 

𝛩 − 𝛩0 =
𝑄

2𝜋𝑘𝑅
𝑒−

𝑣̅(𝒙 − 𝑣̅𝑡 + 𝑅)
2𝑎  

( 7.6 ) 

where 𝛩0 is the initial temperature of the workpieces, 𝑄 is the net heat input per unit 

time (heat source power), 𝑅 is the distance to the centre of the welding arc, 𝑣̅ is the 

speed of arc, 𝑡 is current time and 𝑎 is the thermal diffusivity. 

As can be observed from Eq.( 7.6 ), the temperature field in the welding arc centre 

tends to approach infinity when R →0, which does not have a physical meaning in the 

real welding process. However, the analytical temperature distribution for the point 

heat source model provides a reasonable temperature field prediction at the positions 

of the substance far from the heat source (Christensen, 1965). 

7.2.2.2 Gaussian Distribution Heat Source 

The laser beam arc is a commonly used heat source in the selective laser melting 

technique. The source model can be accurately represented by a Gaussian distribution 

heat source as (Eagar and Tsai, 1983) 

𝑞(𝑥, 𝑦, 𝑡) = 𝑞𝑚𝑒
−
(𝑥−𝑣̅∗𝑡)2+𝑦2

2𝜎2  
( 7.7 ) 

and 

𝑞𝑚 =
𝑄

2𝜋𝜎2
 

( 7.8 ) 

where 𝑞𝑚 is the maximum heat density at the welding arc centre (𝑥 − 𝑣̅ ∗ 𝑡, 𝑦), 𝑣̅ is 

the speed of the moving heat source, 𝑄  is the power of laser beam, and 𝜎  is a 

distribution parameter. 𝑞(𝑥, 𝑦, 𝑡) represents the heat flux at a point (𝑥, 𝑦) at time 𝑡. 
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7.2.2.3 Volumetric Distribution Heat Source 

In order to consider high-energy beam welding with heat flow penetration effect in the 

physical manufacturing process, a volumetric distributed model, named as semi-

ellipsoidal heat source model, shown in Fig. 7-2 has been proposed by Goldak (1985). 

 

Fig. 7-2 Semi-ellipsoidal heat source model. 

The mathematical form of heat source is given as (Goldak, 1985) 

𝑞(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞𝑚 𝑒𝑥𝑝 (−
3(𝑥 − 𝑣 ∗ 𝑡)2

𝑐ℎ
2 −

3𝑦2

𝑎ℎ
2 −

3𝑧2

𝑏ℎ
2 ) 

( 7.9 ) 

where 𝑎ℎ, 𝑏ℎ, and 𝑐ℎ are ellipsoidal heat source parameters as presented, 𝑞(𝑥, 𝑦, 𝑧, 𝑡) 

is heat flux at a point (𝑥, 𝑦, 𝑧) at time 𝑡. 𝑞𝑚 is the maximum heat density at the centre 

of the welding arc which is given as (Goldak, 1985) 

𝑞𝑚 =
6√𝑄

𝑎ℎ𝑏ℎ𝑐ℎ𝜋√𝜋
 

( 7.10 ) 

where 𝑄 is the net heat input per unit time. 

7.3 Peridynamic Thermomechanics Coupled with Phase Change 

Heat transfer scenarios with temperature variation often come with phase change. The 

characteristics of non-linearity, due to the multi-physical nature of the processes, make 

phase transformation challenging. 

Phase change refers to the physical process in which a material transitions between 

different states, such as solid to liquid (melting) or liquid to solid (solidification). The 

energy required for a material to undergo such a transition, without a temperature 

change, is known as latent heat. During phase change, a material can absorb or release 

large amounts of latent heat at the transformation temperature. In the context of 
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welding and AM, where rapid heating and cooling occur, phase changes such as 

melting and solidification are common. Therefore, it is essential to account for the 

effects of latent heat in the peridynamic heat conduction equation to accurately model 

the thermal response of materials exposed to the high-energy heat source. 

In the present work, the latent heat 𝐿𝑇  is implicitly considered by effective heat 

capacity, in which the specific heat capacity of the material is artificially increased at 

mushy zone. Mushy zone is a temperature interval around the phase change 

temperature that the matter processes the phase transformation. The artificially 

increased specific heat capacity in the mushy zone can be defined as 

𝐶𝑝 =
𝐿𝑇 

𝛩𝑙 − 𝛩𝑠
 

( 7.11 ) 

where 𝛩𝑠  is the substance solidification temperature and 𝛩𝑙  is the substance fusion 

temperature. With the considered latent heat at phase change scenarios, consequently, 

the effective heat capacity 𝐶𝑣 in the bond-based peridynamic heat conduction equation 

at different phases can be written as 

𝐶𝑣 = {

𝐶𝑠   
𝐶𝑝   

𝐶𝑙     

𝛩 < 𝛩𝑠
𝛩𝑠 ≤ 𝛩 ≤ 𝛩𝑙
𝛩 > 𝛩𝑙

solid phasⅇ
 solid/liquid phasⅇ

liquid phasⅇ
 

( 7.12 ) 

where 𝐶𝑠, 𝐶𝑝 and 𝐶𝑙 are the specific heat capacities of the substance at solidus, mushy 

zone, and liquidus state, respectively. The effective heat capacity at each material point 

is determined based on its local temperature. If the temperature at a material point is 

below the melting point, the specific heat capacity corresponding to the solid phase is 

used in the heat conduction equation. 

In addition, the mechanical properties of most materials used in welding and 

manufacturing are strongly affected by temperature. Specifically, for most metals, 

increasing temperature leads to a reduction in material stiffness, while lower 

temperatures result in higher stiffness. 

To account for the temperature-dependent variation in material stiffness during arc 

welding scenarios involving phase change, a non-local approach is adopted to model. 

In the conventional bond-based peridynamics, the interaction between two material 
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points 𝒙′ and 𝒙 is linked by a ‘bond’. The bond constant in terms of Young's Modulus, 

𝐸 for a two- and three-dimensional structure as given by Eq.( 3.6 ) and Eq.( 3.7 ), 

respectively. Without considering the temperature influence in the mechanical analysis, 

the parameter 𝑐 is a constant value. 

However, in the thermomechanical phase change peridynamic model for welding, 

Young’s modulus in the mechanical analysis is treated as a temperature-dependent 

property, denoted 𝐸(𝛩). As presented in Fig. 7-3, the bonds in the thermomechanical 

formulation are referred to as “thermo-mechanical bonds,” in which the effect of 

temperature on material stiffness is explicitly incorporated and can be defined as 

follows 

𝑐(𝒙,𝛩𝑥) =
9𝐸(𝛩𝑥)

𝜋ℎ𝛿3
 

( 7.13 ) 

and 

𝑐(𝒙′, 𝛩𝑥′) =
9𝐸(𝛩𝑥′)

𝜋ℎ𝛿3
 

 

 

Fig. 7-3 Peridynamic horizon and its thermal-mechanical bonds (green line). 

Therefore, the effect of temperature on material stiffness is incorporated through the 

bond constant. As the temperature varies at each material point and its neighbours, the 

bond constant is updated accordingly. Thus, the bond constant between two material 

points can be expressed as 
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𝑐(𝒙, 𝒙′, 𝛩𝑥, 𝛩𝑥′) =
𝑐(𝒙, 𝛩𝑥) + 𝑐(𝒙′, 𝛩𝑥′)

2
 

( 7.14 ) 

With the temperature-dependent bond constant, the equation of motion for coupled 

thermo-elasticity in bond-based peridynamics can be re-written as 

𝜌(𝒙)𝒖̈(𝒙, 𝑡) = ∫ [𝑐(𝒙, 𝒙′, 𝛩𝑥, 𝛩𝑥′) (𝑠(𝒖′ − 𝒖, 𝒙′ − 𝒙)

− 𝛼
𝛩 + 𝛩′

2
)
𝒚′ − 𝒚

|𝒚′ − 𝒚|
] 𝑑𝑉′ + 𝒃(𝒙, 𝑡) 

( 7.15 ) 

where all terms are as previously defined, and the temperature dependence of the bond 

constant directly links the local thermal environment to the mechanical response. 

7.4 Application of Initial and Boundary Conditions 

The initial condition of the temperature distribution can be specified at time 𝑡 =  0 

𝛩(𝒙, 𝑡 = 0) = 𝛩0(𝒙) ( 7.16 ) 

where 𝛩0  is the initial temperature. If pre-heat treatment is adapted in the 

manufacturing process, 𝛩0 is defined as pre-heating temperature. 

The boundary conditions in the heat conduction can be specified as temperature, heat 

flux, and the heat generation. 

7.4.1 Temperature 

In peridynamics, the application of prescribed boundary temperatures differs from the 

approaches used in CCM. Rather than imposing the boundary temperature as a direct 

point load or distributed load on the physical boundary, peridynamics employs a 

fictitious layer, denoted as 𝑅𝐶, which is introduced outside the actual material region, 

𝑅𝑡 and shown in Fig. 7-4 (Oterkus et al., 2014; Madenci and Oterkus, 2016). 
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Fig. 7-4 Material real domain, 𝑅𝑡 and its fictitious domain, 𝑅𝑐. 

As illustrated in Fig. 7-4, the specified boundary temperature, 𝛩𝑏(𝒙𝒃, 𝑡), along the real 

material surface is imposed within the fictitious layer by assigning temperature values 

to the corresponding material points in 𝑅𝐶. Specifically, the temperature at a fictitious 

material point, 𝒙𝒇, is determined using the following relationship (Oterkus et al., 2014), 

𝛩𝑓(𝒙𝒇, 𝑡 + ∆𝑡) = 2𝛩𝑏(𝒙𝒃, 𝑡 + ∆𝑡) − 𝛩(𝒙, 𝑡 + ∆𝑡) ( 7.17 ) 

where 𝛩𝑓 fand 𝛩 are the temperature of material points in the fictitious region 𝑅𝐶 and 

real region 𝑅𝑡 , respectively. Note that the material points at 𝒙𝒇  and 𝒙  are 

symmetrically located with respect to the location of the boundary 𝒙𝒃. In the case of 

𝛩𝑏(𝒙𝒃, 𝑡) = 0, this represents the insulated boundary condition. 

7.4.2 Heat Flux 

The implementation of the heat flux from the heat source in the peridynamic heat 

transfer equation can be achieved by evaluating the rate of heat flow into the surface 

area and transforming it into a volumetric heat generation term, ℎ𝑞(𝒙, 𝑡). Therefore, 

the heat flux is applied as a volumetric heat source at the relevant material points and 

can be expressed as (Oterkus et al., 2014) 

ℎ𝑞(𝒙, 𝑡) = −
𝑞(𝒙, 𝑡) ∙ 𝒏

∆𝑥
 

( 7.18 ) 
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where 𝑞(𝒙, 𝑡) is the heat flux, ∆𝑥 is the spacing between material points and 𝒏 is the 

normal vector to the surface. 

7.4.3 Time-dependent Point Heat Source 

For the numerical implementation of a moving point heat source on the workpiece, a 

birth-and-death procedure for material points is introduced in this work. Specifically, 

the point heat source is represented as a time-dependent volumetric heat generation, 

applied only to selected material points at each time step as the source moves along its 

prescribed path. When the heat source coincides with a particular material point, that 

point is assigned the corresponding volumetric heat generation. As the heat source 

advances and moves away from a given material point, the heat generation at that point 

is set to zero. 

 

Fig. 7-5 Demonstration of implementing moving point heat source in numerical 

model. 

The principle for implementing the moving point heat source in the numerical study is 

illustrated in Fig. 7-5. The total length of the welding track is denoted as 𝐿𝑊, which is 
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discretised into 𝑁 material points. The total time required for the welding arc to travel 

the entire welding track is 𝑡𝑇. Accordingly, the time interval during which the heat 

source remains active on each material point can be obtained as 

∆𝑡 =
𝑡𝑇
𝑁

 
( 7.19 ) 

7.5 Numerical Results 

7.5.1 Stefan's Solidification Problem 

Classical Stefan's solidification problem (Jiji, 2009) is considered first. This is a 

moving boundary problem that describes the evolution of the interface 𝑥𝑖 between two 

phases as the material undergoes a phase change. As presented in Fig. 7-6, the scenario 

assumes that the entire substance initially remains at the fusion temperature 𝛩𝑙. At time 

𝑡 =  0 s , the temperature at the left edge of the material is suddenly reduced and 

maintained at 𝛩𝑏 < 𝛩𝑠. initiating the solidification process. As a result, a solidification 

front begins to propagate from the cooled boundary, while the remainder of the 

substance remains in the liquid phase at the fusion temperature. 

 

Fig. 7-6 Physical illustration of Stefan's solidification problem. 

The Stefan solidification problem was reproduced from the ANSYS Verification 

Manual (ANSYS, Inc. 2013). In this scenario, the solidification process of a liquid 

region is examined, as demonstrated in Fig. 7-7(a). The region has a length of 𝐿 =

 0.01 m and width of 𝑊 =  0.01 m. 
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Initially, the entire liquid field is maintained at the fusion temperature, 𝛩𝑙 = 0 ℃. At 

𝑡 =  0 s, the temperature at the left edge (𝑥 = −
𝐿

2
.) is suddenly subjected to a free 

surface temperature 𝛩𝑏 = −5 ℃, triggering the onset of solidification. As a result, the 

interface between the solid and liquid phases 𝑥𝑖 begins to move inward from the cooled 

boundary. The thermal conductivity and density of the material are specified as 𝑘 =

 0.6 W/m°C and 𝜌 =  1000 kg/m3, respectively. 

 

Fig. 7-7 Stefan's solidification problem illustration (a) geometry and (b) peridynamic 

discretization. 

In this study, the substance is assumed to undergo phase change within the 

transformation temperature range 

𝛩𝑠 = −1 ℃ ≤ 𝛩 ≤ 𝛩𝑙 = 0 ℃ ( 7.20 ) 

The latent heat 𝐿𝑇 associated with this phase change is taken as 42000 J/kg. Hence, 

the effective heat capacity in the mushy zone is calculated as 

𝐶𝑖𝑛 =
𝐿𝑇

𝛩𝑙 − 𝛩𝑠
= 42000 J/kg℃ 

( 7.21 ) 

Consequently, the specific heat capacity at different temperatures is arranged as 
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Cv = {

Cs = 4200 J/kg℃
Cp = 42000 J/kg℃

Cl = 4200 J/kg℃

Θ < −1 ℃
    −1 ℃ ≤ Θ ≤ 0 ℃

Θ > 0 ℃
 

( 7.22 ) 

Fig. 7-7(b) presents the numerical setup, the peridynamic discretization uses a spacing 

of 𝛥𝑥 =  𝐿/100 , with the horizon chosen as 𝛿 =  3𝛥𝑥 . Time step size of 𝛥𝑡 =

 3 × 10−2 s is adopted. 

The initial temperature is set to the fusion temperature, i.e., 

𝛩(𝑥, 𝑦, 𝑡 = 0) = 𝛩𝑙 = 0 ℃ ( 7.23 ) 

To implement the temperature boundary condition, a fictitious boundary 𝑅𝑐 with one 

horizon size is added at (𝑥 = −
𝐿

2
.), where the temperature is prescribed as 

𝛩 (𝑥 = −
𝐿

2
, 𝑦, 𝑡) = 𝛩𝑏 = −5 ℃ 

( 7.24 ) 

The evolution of the temperature distribution is computed numerically using the 

peridynamic formulation and compared with finite element results obtained in ANSYS. 

The FEM model employed PLANE55 elements with a uniform mesh size of 𝛥𝑥 =

0.001 m. The same material properties and boundary conditions as in the peridynamic 

model were applied. The transient analysis was performed up to 𝑡 = 900 s  using 

automatic time stepping. The mesh size was determined following a convergence 

check, which confirmed that further refinement produced negligible changes in the 

thermal field. The case setup follows the ANSYS Verification Manual (ANSYS, Inc. 

2013). 

As shown in Fig. 7-8, the temperature profiles along the central axis (𝑥, 𝑦 =  0) at 

selected time intervals (𝑡 =  300 s, 𝑡 =  600 s, 𝑡 =  900 s)  demonstrate good 

agreement between the peridynamic and FEM solutions. 
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Fig. 7-8 Temperature comparison along axial axis at (𝑥, 𝑦 = 0). 

A comparison of the temperature variation as a function of time at the point (𝑥 =

𝐿

2
, 𝑦 = 0) between the peridynamic and FEM models is shown in Fig. 7-9. For the time 

between 787.82 and 797.82 s , the temperature at 𝑥 =
𝐿

2
, 𝑦 = 0  reaches 𝛩𝑠 = −1 ℃ 

which is the time that substance completely solidifies. 

 

Fig. 7-9 Temperature variation at (𝑥 =
𝐿

2
, 𝑦 = 0). 

Further, the comparison of temperature distributions across the plate at 600 s for both 

the peridynamic and FEM models is illustrated Fig. 7-10, the temperature field across 

the plate predicted by the peridynamic model agrees with the FEM model. 



132 

 

 

Fig. 7-10 Temperature distribution at 𝑡 = 600𝑠 (a) peridynamic (b) FEM model. 

To further illustrate the effect of latent heat during phase change, the Stefan 

solidification problem is also solved without accounting for latent heat effects. The 

resulting temperature distribution along the central axis (𝑥, 𝑦 =  0)  at 𝑡 = 900 𝑠  is 

presented in Fig. 7-11. As observed, the inclusion of latent heat leads to differences in 

the predicted temperature profile. This is because latent heat is the energy absorbed or 

released during a phase change without a corresponding change in temperature. 

Neglecting latent heat results in inaccurate temperature predictions. 

 

Fig. 7-11 Temperature distribution at (𝑥, 𝑦 = 0) at 𝑡 = 900 𝑠. 

7.5.2 Neumann's Solidification Problem 

Neumann (Jiji, 2009) extends the classical Stefan problem to cases where the initial 

temperature of the substance, 𝛩𝑖, exceeds the fusion temperature, 𝛩𝑙. As shown in Fig. 

7-12, the material initially remains at a uniform temperature 𝛩𝑖 , and then the left 
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boundary at 𝑥 = −
𝐿

2
 is suddenly maintained at 𝛩𝑏 < 𝛩𝑙. This abrupt cooling initiates 

solidification at the boundary, and the solid-liquid interface propagates into the liquid 

phase. 

For the numerical study, the geometry and material properties are identical to those in 

the Stefan problem (see Fig. 7-7(a)): a plate of length 𝐿 =  0.01 m and width of 𝑊 =

 0.01 m, with 𝑘 =  0.6 W/m°C, and 𝜌 =  1000 kg/m3.  

 

Fig. 7-12 Physical illustration of Neumann’s solidification problem. 

The initial temperature throughout the domain is set to 𝛩𝑖 = 2 °C, , which is above the 

melting point. The left edge is then maintained at 𝛩𝑏 = −5 °C , causing the phase 

boundary to advance from 𝑥 = −
𝐿

2
. The phase change is accounted for using the same 

latent heat treatment as in the previous section (Eq.( 7.22 )).  

As shown in Fig. 7-7(b), discretization employs a mesh size of 𝛥𝑥 =  𝐿/100 with a 

horizon size of 𝛿 =  3𝛥𝑥, and a time step 𝛥𝑡 =  3 × 10−2 s. 

The initial temperature is applied as 

𝛩(𝑥, 𝑦, 𝑡 = 0) = 𝛩𝑖 = 2 ℃ ( 7.25 ) 

Fictitious boundary 𝑅𝑐  with one horizon size is added to apply the temperature 

boundary condition, i.e. 
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𝛩 (𝑥 = −
𝐿

2
, 𝑦, 𝑡) = 𝛩𝑏 = −5 ℃ 

( 7.26 ) 

The Neumann solidification problem was also implemented in ANSYS using 

PLANE55 elements. A uniform mesh size of 𝛥𝑥 =  0.001 m was adopted following 

a convergence test with element sizes of 0.002 m, 0.001 m, and 0.0005 m. The transient 

thermal analysis was performed up to 𝑡 =  1500 s using automatic time stepping. 

Temperature distributions along the central axis (𝑥, 𝑦 =  0) at several time intervals 

(𝑡 =  300 s, 𝑡 =  600 s, 𝑡 =  900 s) are shown in Fig. 7-13. The results show a linear 

temperature profile between – 5 °C and – 1 °C (the solid region), and a smooth, non-

linear transition in the phase change region between – 1 °C and 0 °C, as the latent heat 

is accounted for phase change at this temperature interval. 

 

Fig. 7-13 Temperature comparison along (𝑥, 𝑦 =  0) at several time intervals. 

Time-dependent temperature responses at two material points, M(𝑥 = −
4𝐿

5
, 𝑦 =

0)  and N(𝑥 =
𝐿

2
, 𝑦 = 0) , are compared in Fig. 7-14. As can be observed, the 

temperature at point M drops sharply at the onset, as it is closer to the cooling boundary 

and is reached by the moving solidification front sooner than point N. 

The temperature at N has a quick drop between 2 and 0 °C while the curvature tends 

to smooth between 0 and -1 °C due to the latent heat effect. When the temperature is 

below -1 °C, the substance completely solidifies. Hence, the temperature variation has 

the similar curvature with the temperature between 2 and 0 °C. 
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Fig. 7-14 Temperature variation at 𝑀(𝑥 = −
4𝐿

5
, 𝑦 = 0) and 𝑁 (𝑥 =

𝐿

2
, 𝑦 = 0). 

 

Fig. 7-15 Temperature distribution at 𝑡 =  600 𝑠 (a) peridynamic (b) FEM model. 

Fig. 7-15 presents the spatial temperature distribution at 600 s as predicted by both the 

peridynamic and FEM models. As seen, the peridynamic predictions closely match the 

FEM results 

7.5.3 Thermal Analysis for a Plate with a Moving Point Heat Source 

An isotropic square plate with dimensions 𝐿 =  𝑊 =  0.1 m  and thickness 𝐻 =

 0.01 m is presented in Fig. 7-16. The plate is subjected to a traveling point heat source 

with power 𝑄 =  3200 W , which is initially located at the centre of the plate and 

moves towards to the positive 𝑥  coordinate direction with a velocity of 𝑣̅  =

 0.005 m/s. The specific heat capacity, thermal conductivity and density are specified 

as 𝐶𝑣  =  460 J/kg, 𝑘 =  50 W/m°C, and 𝜌 =  7820 kg/m3, respectively. 
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Fig. 7-16 Point heat source model illustration (a) geometry and (b) peridynamic 

discretization. 

As shown in Fig. 7-16(b), the material points are discretised with a uniform spacing 

𝛥𝑥 =  0.0004 m in 𝑥 and 𝑦 directions, respectively. The time step size is specified as 

𝛥𝑡 =  5 ×  10−4 s. The horizon is chosen as 𝛿 =  3𝛥𝑥. 

The FEM model was implemented in ANSYS using PLANE55 elements. However, 

the transient thermal analysis does not directly incorporate a concentrated point heat 

source; instead, the standard practice is to approximate the point source as a volumetric 

heat generation applied to the elements. A similar approach is adopted in the 

peridynamic model, where the point source is converted into a volumetric heat 

generation distributed over four material points surrounding the source location, as 

depicted Fig. 7-17. 

 

Fig. 7-17 Point heat source converted to heat generation. 
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The time-dependent point heat source is implemented using the birth-death procedure 

for material points, as described in Section 7.4.3. The volumetric heat generation 

assigned to each material point is obtained as 

ℎ𝑞(𝒙, 𝑡) =
𝑄

4∆𝑥2𝐻
 

( 7.27 ) 

The initial temperature of the plate is stated as 

𝛩0(𝑥, 𝑦, 𝑡 = 0) = 0 ℃ ( 7.28 ) 

To validate the peridynamic implementation, the temperature distribution along the 

central axis ( 𝑥, 𝑦 =  0 ) at 𝑡 = 4 𝑠  is compared with the analytical solution of 

Rosenthal (1941) and FEM results, as shown in Fig. 7-18. 

 

Fig. 7-18 Temperature variation at along (𝑥, 𝑦 = 0) at 𝑡 = 4 𝑠. 

As expected from Eq.( 7.6 ), the analytical solution predicts a singularity at the centre 

of the heat source (𝛩 approach infinity when R →0), which is not physically realized 

in numerical simulations. Both peridynamic and FEM results closely agree with the 

analytical solution at locations away from the moving source. 

It should be noted that the analytical model assumes instantaneous travel of the point 

heat source to any location, while the numerical implementation distributes the heat as 

volumetric generation over discrete material points. Consequently, the predicted 

temperature field is sensitive to the discretization parameters. The discrepancy 

between numerical and analytical models can be reduced by employing finer spatial 
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and temporal discretization, though this comes at the expense of increased 

computational effort. 

7.5.4 Thermal Analysis for a Block with a Moving 3D Ellipsoidal Heat Source 

To further demonstrate the capability of the proposed peridynamic formulation for 

welding heat conduction analysis, a three-dimensional moving ellipsoidal heat source 

is applied to a rectangular metal block. As shown in Fig. 7-19, the block has a 

dimension of 𝐿 =  𝑊 =  0.1 m with a thickness of 𝐻 = 0.01 m. The ellipsoidal heat 

source with 𝑄 =  3200 W , moves with a speed of 𝑣̅  =  0.005 m/s  in positive 𝑥 -

direction from the centre of the block. The thermal conductivity and density of the 

material are set as 𝑘 =  50 W/m°C and 𝜌 =  7820 kg/m3, respectively. 

 

Fig. 7-19 Geometrical illustration of ellipsoidal heat source acting on a rectangular 

block. 

The parameters for the ellipsoidal heat source are defined as 

𝑎ℎ = 0.001 m 

𝑏ℎ = 0.001 m 

𝑐ℎ = 0.0005 m 

( 7.29 ) 

The block is discretised with uniform spacing 𝛥𝑥 =  4 × 10−4 m in 𝑥 , 𝑦  and 𝑧 

directions. The horizon is chosen as 𝛿 =  3𝛥𝑥. Time step size of 𝛥𝑡 =  5 × 10−4 s 

is used. 

The initial temperature is set as 

𝛩(𝑥, 𝑦, 𝑡 = 0) = 𝛩𝑖 = 0 ℃ ( 7.30 ) 
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7.5.4.1 Without Phase Change 

In the first simulation, the effect of phase change is neglected, and the specific heat 

capacity is set as 𝐶𝑣 = 490 J/kg . For comparison, a finite element model is 

constructed using ANSYS Solid 70 elements with mesh sizes of 0.001 m in 𝑥 and 𝑦-

directions, and 0.0001 m in the 𝑧-direction. 

The temperature profile along the heat source path (𝑥, 𝑦 = 0, 𝑧 =
𝐻

2
)  at 𝑡 =  4 s  is 

presented in Fig. 7-20 for both peridynamic and FEM simulations. The developed 

peridynamic heat conduction model for ellipsoidal heat source is closely agreed with 

the FEM model. 

 

Fig. 7-20 Temperature variation at (𝑥, 𝑦 = 0, 𝑧 =
𝐻

2
) at 𝑡 = 4 𝑠. 

The spatial temperature distributions predicted by the peridynamic and FEM models 

are also illustrated in Fig. 7-21. As observed, the predicted temperature distribution on 

the block has a good agreement with the FEM model. 
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Fig. 7-21 Temperature distribution at 𝑡 =  4 𝑠 (a) peridynamic (b) FEM model. 

7.5.4.2 Considering Phase Change 

In second investigation for ellipsoidal heat source model, phase change is considered. 

The mushy zone for metal is considered as 𝛩𝑠 = 1385 ℃ < 𝛩 < 𝛩𝑙 = 1450 ℃. The 

total latent heat required for the phase change completed is 260 kJ/kg. 

Therefore, the effective heat capacity for metal at mushy zone is defined as 

𝐶𝑖𝑛 =
𝐿𝑇

𝛩𝑙 − 𝛩𝑠
= 4000 J/kg℃ 

( 7.31 ) 

Thus, the effective specific heat capacity at different temperatures can be expressed as 

𝐶𝑣 = {

𝐶𝑠 = 490 J/kg℃
𝐶𝑝 = 4000 J/kg℃

𝐶𝑙 = 490 J/kg℃

𝛩 < 1385 ℃
    1385 ℃ < 𝛩 < 1450 ℃

𝛩 > 1450 ℃
 

( 7.32 ) 

Fig. 7-22 compares the temperature distribution along (𝑥, 𝑦 = 0, 𝑧 =
𝐻

2
)  when the 

phase change is considered in the heat conduction model. The corresponding spatial 

temperature distribution is shown in Fig. 7-23.  

As can be observed from the figures, when the phase change is considered in the model, 

the predicted temperature field shows a slow variation at the phase change temperature 

interval. The temperature is changed to steep variation again when the phase change 

has been completed. During the phase change, a large amount of energy is absorbed 

without significant temperature variation. As a result, the predicted maximum 

temperature in the phase change case is lower when compared with the case the phase 

change is neglected. 
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Fig. 7-22 Temperature variation at (𝑥, 𝑦 = 0, 𝑧 =
𝐻

2
)at 𝑡 = 4 𝑠. 

 

Fig. 7-23 Temperature distribution at 𝑡 = 4 𝑠 with phase change considered in 

peridynamic model. 

7.5.5 Thermomechanical Analysis for a Plate with Moving 2D Gaussian Heat Source 

Laser beam arcs are commonly employed in welding and AM processes, and their 

thermal effects are often modelled using a moving Gaussian heat source. To 

demonstrate the capability of the peridynamic approach for thermomechanical phase 

change analysis in such contexts, a two-dimensional plate subjected to a moving 

Gaussian heat source is investigated. 

As shown in Fig. 7-24(a), plate has 𝐿 =  0.1 m in length, 𝑊 =  0.1 m in width, and 

a thickness of 𝐻 =  0.01 m. The Gaussian heat source, with a power of 𝑄 =  3200 W 

is moving with a speed of 𝑣̅  =  0.025 m/s in positive 𝑥-direction from the centre of 
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the plate. The thermal conductivity, density and thermal expansion coefficient are 

specified as 𝑘 =  50 W/m°C, 𝜌 =  7820 kg/m3 and 𝛼 =  13 × 10−6 ℃−1.  

 

Fig. 7-24 Gaussian heat source model illustration (a) geometry and (b) peridynamic 

discretization. 

Fig. 7-24(b) presents the peridynamic discretization model. The plate is meshed with 

a uniform spacing of 𝛥𝑥 =  4 × 10−4 m with a horizon size of 𝛿 =  3𝛥𝑥. The time 

step size is taken as 𝛥𝑡 =  1 ×  10−7 s. 

The Gaussian heat source distribution parameter is selected as 𝜎 =  0.0007 m. The 

proposed Gaussian distributed heat flux is converted to volumetric heat generation for 

peridynamic implementation as 

ℎ𝑞(𝑥, 𝑦, 𝑡) =
𝑞(𝑥, 𝑦, 𝑡)

 ∆𝑥
 

( 7.33 ) 

The initial temperature condition is specified as 

𝛩(𝑥, 𝑦, 𝑡 = 0) = 𝛩𝑖 = 0 ℃ ( 7.34 ) 

7.5.5.1 Without Phase Change 

In the first scenario, latent heat effects are neglected, and the specific heat capacity is 

fixed at 𝐶𝑣  =  490 J/kg . The Young's Modulus is specified as 𝐸 =  200 GPa . To 

verify temperature and displacement fields in the peridynamic model, a finite element 

model is constructed using ANSYS PLANE223 elements with a mesh size 𝛥 =

 0.001 m  in 𝑥  and 𝑦 -directions. PLANE223 is a two-dimensional coupled-field 
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element that models both thermal conduction and structural response, and is therefore 

adapted for verification in FEM. 

Fig. 7-25 and Fig. 7-26 compare the temperature field and displacement field at 𝑡 =

 0.08 s along the heat source moving track (𝑥, 𝑦 =  0), respectively. Both temperature 

and displacement results show close agreement between peridynamic and FEM 

models. 

 

Fig. 7-25 Temperature variation along (𝑥, 𝑦 =  0) at 𝑡 =  0.08 𝑠. 

 

Fig. 7-26 Displacement variation along (𝑥, 𝑦 =  0) at 𝑡 =  0.08 𝑠. 

Fig. 7-27 presents the temperature field of the plate in peridynamic and FEM models. 

The FEM model results agree with the temperature field results predicted by the 

peridynamic model. 
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Fig. 7-27 Temperature field distribution at 𝑡 =  0.08 𝑠 (a) peridynamic (b) FEM 

model. 

7.5.5.2 Considering Phase Change 

In the second case, phase change is considered. The latent heat in phase transformation 

is implicitly applied in effective heat capacity and same as stated in Eq. ( 7.32 ). The 

temperature-dependent Young's Modulus 𝐸(𝛩) is provided in Table 7-1. 

Table 7-1 Temperature-dependent Young’s Modulus 

𝛩 (K) 𝐸(𝛩) (GPa) 

298 200 

473 187 

673 172 

873 157 

973 141 

1673 106 

1573 10 

Fig. 7-28 compares the temperature distribution along (𝑥, 𝑦 =  0) at 𝑡 =  0.08 s with 

and without phase change. The inclusion of latent heat in the phase change scenario 

leads to a lower maximum temperature and a plateau in the temperature profile within 

the phase change interval, which is characteristic of energy absorption during melting. 

The horizontal displacement field along (𝑥, 𝑦 =  0)  is presented in Fig. 7-29. In 

addition, Fig. 7-30(a) and (b) present the two-dimensional displacement fields when 
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phase change is considered and omitted, respectively. It can be noticed that when the 

effect of temperature is considered for Young's Modulus, it has a significant effect on 

the displacement field. 

 

Fig. 7-28 Temperature variation along (𝑥, 𝑦 =  0) at 𝑡 =  0.08 𝑠. 

 

Fig. 7-29 Horizontal displacement variation along (𝑥, 𝑦 =  0) at 𝑡 =  0.08 𝑠. 
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Fig. 7-30 Horizontal displacement field at 𝑡 =  0.08 𝑠(a) With phase change (b) 

without phase change. 

7.6 Chapter Summary 

In this chapter, a new non-linear transient peridynamic model has been proposed for 

the thermomechanical analysis of the welding and AM process. Phase change, as a 

common physical process in heat transfer scenarios, is considered in the model. 

Several classical phase change problems, i.e., Stefan's and Neumann's solidification 

problems, are simulated by the proposed model. In addition, a wide range of commonly 

utilised time-dependent heat source models, i.e., Point, Gaussian, and volumetric 

distributed heat source models, which are related to the different methods in the 

manufacturing process, have been considered in the peridynamic heat transfer model 

and thermoelastic analysis. The predicted thermal and mechanical fields have been 

verified with the finite element model. The peridynamic predicted results have a good 

agreement with the FEM model results. The phase change is a critical phenomenon in 

heat transfer. This is highlighted in the Gaussian and ellipsoidal heat source model. 

The effect of phase change on temperature and displacement fields is presented. 

Without considering the latent heat in the phase transformation can result in inaccurate 

temperature and displacement fields. 
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Chapter 8 Nonlocal Modelling of Multiphase Flow Wetting and 

Thermo-capillary Flow by Using Peridynamic Differential Operator 

8.1 Introduction 

The AM and welding processes are governed not only by mechanical and thermal 

interactions but also by fluid dynamics and interfacial phenomena at the microscale. 

Thermo-capillary effect, often referred to as the Marangoni effect, which arises from 

temperature-dependent surface tension gradients. In AM and welding, this effect drives 

fluid flow within melt pools, strongly influencing pool shape, solidification behaviour, 

microstructural evolution, and ultimately the mechanical integrity of the fabricated 

components. Accurately capturing these multiphysics interactions is therefore 

essential for the predictive modelling of AM and welding processes. 

Recognising the importance of interfacial phenomena and multiphase interactions, this 

chapter extends the peridynamic modelling framework by leveraging the Peridynamic 

Differential Operator (PDDO) to address nonlocal multiphase flow motion and the 

thermo-capillary effects characteristic of AM and welding environments. Interfaces in 

multiphase flows are affected by surface tension, which is further complicated by the 

fact that temperature gradients induce tangential surface tension at the fluid interface. 

These effects also govern the wetting behaviour of fluids in contact with solid 

boundaries, which makes it difficult to accurately describe wetting phenomena. By 

utilising the PDDO, which expresses derivatives of any order through integral 

equations, the fundamental governing equations for multiphase fluid motion are 

reformulated in a nonlocal context. 

In this chapter, a novel nonlocal peridynamic approach is developed for modelling 

multiphase fluid motion, explicitly incorporating thermal effects on surface tension. 

The nonlocal form of the continuum surface force (CSF) model is presented to 

accurately describe surface tension forces in both normal and tangential directions. 

Furthermore, to address inaccuracies in unit normal vectors at three-phase contact 

regions, an improved treatment is introduced. The validity and accuracy of the 

proposed methodology are demonstrated through several benchmark cases, including 

square droplet deformation, surface wetting, and droplet migration under thermo-

capillary flow. The results confirm that the developed nonlocal model can capture the 

surface tension and thermo-capillary effects in multiphase fluid dynamics, thereby 



148 

 

providing a robust tool for the simulation of phenomena in AM and welding 

applications. 

8.2 The Governing Equations of Motion for Multiphase Fluid Flow 

Fluid dynamics in multiphase fluid flow is governed by continuity equation, Navier–

Stokes equation, and energy equation. 

8.2.1 Mass Conservation  

The mass conservation in multiphase fluid flow motion can be described by the 

continuity equation as 

𝜕𝜌

𝜕𝑡
= −𝜌𝛻 ∙ 𝒗 

( 8.1 ) 

in which 𝜌 is density, 𝒗 is velocity, and 𝑡 is time. 

8.2.2 Momentum Conservation 

The Navier-Stokes equation in Lagrangian description has the form of (Brackbill et al., 

1992) 

𝜌
𝜕𝒗

𝜕𝑡
= 𝛻 ∙ 𝝈 + 𝒃 + 𝑭𝑠 

( 8.2 ) 

where 𝒃 represents the body force, and 𝑭𝑠 is the surface tension force. The divergence 

of stress 𝛻 ∙ 𝝈 can be represented as (Gao and Oterkus, 2019) 

𝛻 ∙ 𝝈 = 𝛻 ∙ (−𝑝𝑰 + 𝝉) ( 8.3 ) 

in which 𝑝 is the hydrostatic pressure, and 𝑰 is the second order unit tensor. The shear-

rate tensor 𝝉 can be defined as (Gao and Oterkus, 2019) 

𝝉 = 2𝜇𝜺̇ ( 8.4 ) 

in which 𝜇 is the dynamic viscosity, and 𝜺̇ is the shear strain rate. The divergence of 

the shear-rate tensor can be represented as (Gao and Oterkus, 2019) 

𝛻 ∙ 𝝉 = 𝛻 ∙ (2𝜇𝜺̇) = 𝜺̇ ∙ 𝛻2𝜇 + 2𝜇𝛻 ∙ 𝜺̇ ( 8.5 ) 
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If the dynamic viscosity 𝜇  is assumed as a constant after substituting Eq.( 8.3 ) -

Eq.( 8.5 ) into Eq. ( 8.2 ), the Navier-Stokes equation can be re-written as (Gao and 

Oterkus, 2019) 

𝜌
𝜕𝒗

𝜕𝑡
= −𝛻𝑝 + 2𝜇𝛻 ∙ 𝜺̇ + 𝒃 + 𝑭𝑠 

( 8.6 ) 

In addition, the shear strain rate tensor 𝜺̇ can be expressed as (Gao and Oterkus, 2019) 

ε̇ =
1

2
[∇⊗ 𝐯 + (∇⊗ 𝐯)T] 

( 8.7 ) 

If the fluid is incompressible, Eq.( 8.7 ) can be further simplified by continuity 

equation. As a result, the Navier-Stokes equation for incompressible fluid flow 

becomes (Hopp-Hirschler et al., 2018) 

𝜌
𝜕𝒗

𝜕𝑡
= −𝛻𝑝 + 𝜇∆𝒗 + 𝒃 + 𝑭𝑠 

( 8.8 ) 

The continuum surface force method (Brackbill et al., 1992) is adopted for modelling 

the surface tension force in multiphase fluid flow as the pressure jump occurred at the 

phase interface. The surface tension force is applied as a volumetric force and is 

distributed along a transition band (Fig. 8-1) along the interface. A weight function is 

acted on the transition band area to convert surface tension 𝒇𝑠  into force per unit 

volume 𝑭𝑠 (Morris, 2000). This can be represented as (Brackbill et al., 1992) 

𝑭𝑠 = 𝒇𝑠𝛿𝑙𝑔 ( 8.9 ) 

where 𝛿𝑙𝑔  is the weight function for surface tension that represents the magnitude 

distribution of the surface tension force at the transition band, which has a peak at the 

interface and decays with the distance away from the interface. The weight function, 

𝛿𝑙𝑔, is further described in section 8.3.2.3. 

The volumetric surface tension force 𝑭𝑠 comprises the contributions from normal and 

tangential directions (Morris, 2000), which can be expressed as 

𝑭𝑠 = (𝒇𝑠,𝑛 + 𝒇𝑠,𝑡)𝛿𝑙𝑔 = 𝑭𝑠,𝑛 + 𝑭𝑠,𝑡 ( 8.10 ) 
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Fig. 8-1 The transition band and unit normal vectors between two fluids. 

The normal component of surface tension force 𝑭𝑠,𝑛  represents the surface tension 

force due to the local curvature at the transition band area. This can be defined as 

𝑭𝑠,𝑛 = 𝛾𝜅̃𝒏̂𝑙𝑔𝛿𝑙𝑔 ( 8.11 ) 

in which 𝛾 is the temperature dependent surface tension coefficient in N/m, 𝜅̃ is the 

interface curvature, and 𝒏̂𝑙𝑔  is the unit normal vector at the interface between two 

different fluids. 

The temperature dependent surface tension coefficient can be written as (Hopp-

Hirschler et al., 2018) 

𝛾 = 𝛾0 −
𝑑𝛾(𝑇)

𝑑𝑇
(𝑇 − 𝑇𝛾0) 

( 8.12 ) 

in which 
𝑑𝛾(𝑇)

𝑑𝑇
 is the surface tension temperature coefficient (Meier et al., 2021), 𝑇 is 

the current temperature, and 𝛾0  is the surface tension coefficient at reference 

temperature 𝑇𝛾0 . 

As the surface tension coefficient 𝛾 is a function of temperature, the surface tension 

force in tangential direction can occur due to temperature gradient and lead to 

Marangoni convection (Hopp-Hirschler et al., 2018). Therefore, the term, 𝑭𝑠,𝑡, on the 

right-hand side of Eq.( 8.10 ) represents the Marangoni force and acts tangentially to 

the interface, which drives the fluid from low surface tension region to high tension 



151 

 

regions. The tangential component of the surface tension force is given as (Morris, 

2000) 

𝑭𝑠,𝑡 = 𝛻𝑆𝛾𝛿𝑙𝑔 ( 8.13 ) 

where 𝛻𝑆 is the surface gradient, and 𝛻𝑆𝛾 can be represented as (Russell et al., 2018) 

𝛻𝑆𝛾 =
𝑑𝛾(𝑇)

𝑑𝑇
𝛻𝑆𝑇 

( 8.14 ) 

in which 𝛻𝑆𝑇 is the surface temperature gradient and can be expressed (Russell et al., 

2018) 

𝛻𝑆𝑇 = [𝛻𝑇 − (𝛻𝑇 ∙ 𝒏̂𝑙𝑔)𝒏̂𝑙𝑔] ( 8.15 ) 

As a result, the Marangoni force can be written as 

𝑭𝑠,𝑡 =
𝑑𝛾(𝑇)

𝑑𝑇
[𝛻𝑇 − (𝛻𝑇 ∙ 𝒏̂𝑙𝑔)𝒏̂𝑙𝑔]𝛿𝑙𝑔 

( 8.16 ) 

8.2.3 Equation of State 

Assuming the fluid is barotropic, an additional equation is required to uncouple the 

mass and momentum equations (Batchelor, 2000). In this study, the incompressible 

fluid flow motion is constrained by a weakly compressible equation of state, whose 

density is only a function of pressure. A typical equation of state is given as (Morris et 

al., 1997) 

𝑝 =
𝜌0𝑐0

2

𝛼
[(
𝜌

𝜌0
)
𝛼

− 1] + 𝑝0 
( 8.17 ) 

in which 𝜌0  is the initial density, 𝑐0  is the numerical speed of sound, and 𝛼  is the 

adiabatic exponent. 𝑝0 is the background pressure which prevents a negative pressure 

field and provides tension stabilities (Colagrossi and Landrini, 2003). As the density 

changes and it is updated by using continuity equation given in Eq.( 8.1 ). The pressure 

field is calculated by the change between the updated density, 𝜌 and its initial density, 

𝜌0 in the equation of state (Eq.( 8.17 )). In two-phase fluid flow motion, the equation 

of state for each type of fluid flow can be expressed as (Zhang et al., 2015) 
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𝑝𝑙 =
𝜌0,𝑙𝑐0,𝑙

2

𝛼𝑙
[(
𝜌𝑙
𝜌0,𝑙

)

𝛼𝑙

− 1] + 𝑝0,𝑙 
( 8.18 ) 

and 

𝑝𝑔 =
𝜌0,𝑔𝑐0,𝑔

2

𝛼𝑔
[(
𝜌𝑔

𝜌0,𝑔
)

𝛼𝑔

− 1] + 𝑝0,𝑔 
( 8.19 ) 

where the subscripts 𝑙 and 𝑔 denote the denser and lighter fluids, respectively. 

The adiabatic exponent 𝛼 defines the degree of incompressibility and pressure of fluid 

response to density perturbations. As density perturbations increase, a high adiabatic 

exponent can cause progressively large error in the pressure field. For laminar flow 

with low Reynolds numbers, the adiabatic exponent is taken as one (𝛼𝑙 = 𝛼𝑔 =1) to 

keep the error in density and pressure proportional (Morris et al., 1997). 

In weakly compressible approach, the density variation ∆𝜌 in each fluid domain need 

to be (Meier et al., 2021) 

∆𝜌

𝜌
≪ 1 

( 8.20 ) 

This criterion is checked at the end of the simulation in each case. 

The numerical speed of sound, 𝑐0, in Eq.( 8.17 ) needs to be chosen large enough to 

limit the density change threshold up to 1% (Meier et al., 2021). On the other hand, 

the numerical stability is dependent on the time step size. The numerical speed of 

sound should not be too large to make the time step excessively small (Morris et al., 

1997). 

In this study, as the fluid domain is composed of multiphase flows with different 

density ratios, the numerical speed of the sound is estimated by the highest pressure 

change ∆𝑝 in the denser fluid as (Grenier et al., 2013) 

𝑐0,𝑔 ≫ √
∆𝑝

𝜌0,𝑙
 

( 8.21 ) 
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For gravity-based flow, the maximum pressure variation in Eq.( 8.21 ) is estimated by 

(Morris et al., 1997) 

∆𝑝 = 𝜌0,𝑙𝑔𝐻 ( 8.22 ) 

where 𝑔 is the force of gravity, and 𝐻 is the reference depth. 

For surface tension-driven flows, the pressure changes in Eq.( 8.21 ) is approximated 

by using Young–Laplace equation (Breinlinger et al., 2013). The work carried out by 

the pressure on an interfacial area can be represented as 

∆𝑝 = 𝛾
𝑑𝐴

𝑑𝑉
 

( 8.23 ) 

in which 𝑑𝑉 and 𝑑𝐴 are infinitely small volume and area at the interface, respectively. 

For a two-dimensional circular droplet, the pressure change at the interfacial area can 

be computed as 

∆𝑝 = 𝛾
𝑑𝐴

𝑑𝑉
= 𝛾

𝑑𝐴

𝑑𝑟

𝑑𝑟

𝑑𝑉
= 𝛾

1

𝑅
 

( 8.24 ) 

where 𝑟 is the radius and 𝑅 is the characteristic radius of droplet curvature. The surface 

tension coefficient, 𝛾, is calculated from Eq.( 8.12 ). 

On the other hand, the numerical speed of sound in lighter fluid is calculated as (Zhang 

et al., 2015) 

𝑐0,𝑔 = √
𝜌0,𝑙𝑐0,𝑙

2 𝛼𝑔

𝛼𝑙𝜌0,𝑔
 

( 8.25 ) 

in which 𝑐0,𝑙 is obtained from Eq.( 8.21 ). 

Note that by comparing the numerical speed of sound in denser in Eq.( 8.21 ) and 

lighter fluids in Eq.( 8.25 ), it can be found that the numerical speed of sound 𝑐0,𝑔 in 

lighter fluid is higher than the numerical speed of sound 𝑐0,𝑙 in denser fluid when the 

density ratio 𝜌0,𝑙/𝜌0,𝑔 is significant. 
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8.2.4 Energy Equation 

The local form of total energy in a fluid system can be represented as (Incropera et al., 

1996) 

𝜕

𝜕𝑡
𝜌 (𝑒 +

1

2
|𝒗|2) = −𝛻 ∙ 𝑞 + 𝑆 − 𝛻 ∙ (𝑝𝒗) + 𝛻 ∙ (𝝉 ∙ 𝒗) + 𝜌(𝒃 ∙ 𝒗) 

( 8.26 ) 

in which 𝑒 is the internal energy per unit mass, 
1

2
|𝒗|2 is the kinetic energy per unit 

mass, and 𝑆 is the source term. The first term on right-hand side, 𝛻 ∙ 𝑞, is the net rate 

of heat addition due to conduction. The third term on the right-hand side, 𝛻 ∙ (𝑝𝒗), 

represents the rate of doing work against pressure. The term 𝛻 ∙ (𝝉 ∙ 𝒗) represents the 

rate of doing work against viscous force, and the term 𝜌(𝒃 ∙ 𝒗) represents the rate of 

doing work against the body force. 

Using product rule within the divergence operator (𝛻 ∙), the rate of doing work against 

pressure and viscous force can be rewritten as  

𝛻 ∙ (𝑝𝒗) = 𝒗 ∙ 𝛻𝑝 + 𝑝𝛻 ∙ 𝒗 ( 8.27 ) 

and 

𝛻 ∙ (𝝉 ∙ 𝒗) = 𝝉: (𝛻 ⊗ 𝒗) + 𝒗 ∙ (𝛻 ∙ 𝝉) ( 8.28 ) 

The mechanical energy equation can be derived from the momentum equation by 

multiplying velocity with momentum equation which leads to (Incropera et al., 1996) 

𝜕

𝜕𝑡

1

2
𝜌|𝒗|2 = −(𝛻𝑝) ∙ 𝒗 + (𝛻 ∙ 𝝉) ∙ 𝒗 + (𝜌𝒃) ∙ 𝒗 

( 8.29 ) 

Using Eq.( 8.27 ) - Eq.( 8.28 ), mechanical energy equation in Eq.( 8.29 ) can be 

rewritten as (Incropera et al., 1996) 

𝜕

𝜕𝑡

1

2
𝜌|𝒗|2 + 𝛻 ∙ (

1

2
𝜌𝒗|𝒗|2)

= −𝛻 ∙ (𝑝𝒗) + 𝑝𝛻 ∙ 𝒗 + 𝛻 ∙ (𝝉 ∙ 𝒗) − 𝝉: (𝛻 ⊗ 𝒗) + (𝜌𝒃)

∙ 𝒗 

( 8.30 ) 
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In this study, the fluid is assumed to be incompressible for which the speed of fluid 

flow is lower than the compressible flow. Therefore, the mechanical energy can be 

subtracted from the total energy equation and leads to the internal energy equation as 

(Incropera et al., 1996) 

𝜕𝜌𝑒

𝜕𝑡
= −𝛻 ∙ 𝑞 + 𝑆 − 𝑝𝛻 ∙ 𝒗 + 𝝉: (𝛻 ⊗ 𝒗) 

( 8.31 ) 

Defining internal energy as (Incropera et al., 1996) 

𝑒 = 𝐶𝑝𝑇 ( 8.32 ) 

in which 𝐶𝑝 is the specific heat capacity and substituting Eq.( 8.32 ) into Eq.( 8.31 ) 

leads to (Incropera et al., 1996) 

𝜕𝜌𝐶𝑝𝑇

𝜕𝑡
= −𝛻 ∙ 𝑞 + 𝑆 − 𝑝𝛻 ∙ 𝒗 + 𝝉: (𝛻 ⊗ 𝒗) 

( 8.33 ) 

The heat flux 𝑞 based on Fourier’s Law can be represented as (Incropera et al., 1996) 

𝑞 = −𝑘𝛻𝑇 ( 8.34 ) 

where 𝑘 is the thermal conductivity.  

In the case of sudden expansion or compression phenomenon, the term 𝑝𝛻 ∙ 𝒗 

represents energy for the cooling or heating a fluid internally (Bird, 2002). Since the 

focus of this study is on multiphase flow and there are no significant sudden volume 

changes in the fluid domain, this term is omitted from the energy equation. On the 

other hand, the term 𝝉: (𝛻 ⊗ 𝒗)  representing the motion energy is irreversibly 

exchanged into thermal energy, and it is considerable if the speed of the fluid is 

relatively high (Bird, 2002). As the current study focuses on the multi-phase flow 

motion at a low Reynolds number, this term is also not considered in the energy 

equation. The thermal conductivity 𝑘 is assumed to be a constant number as a result, 

the internal energy can be rewritten as 

𝜕𝜌𝐶𝑝𝑇

𝜕𝑡
= 𝑘𝛻2𝑇 + 𝑆 

( 8.35 ) 
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8.3 PDDO Governing Equations 

Peridynamic differential operator (PDDO) can express partial differentials of any order 

by integral equations. Therefore, the governing equations for multiphase fluid motion, 

such as the Navier–Stokes equations and energy equations, can be reformulated in 

terms of integral equations. The mathematical formulations of peridynamic functions 

are introduced in section 3.3. 

8.3.1 Non-local Form of Continuity Equation 

Velocity divergence in local form can be written as 

𝛻 ∙ 𝒗(𝒙) =∑
𝜕𝑣𝑖(𝒙)

𝜕𝑥𝑖

2

𝑖=1

=
𝜕𝑣1(𝒙)

𝜕𝑥1
+
𝜕𝑣2(𝒙)

𝜕𝑥2
 

( 8.36 ) 

The partial derivative terms in velocity divergence can be replaced by the first order 

peridynamic function as 

𝜕𝑣1(𝒙)

𝜕𝑥1
= ∫ 𝑔1

10(𝝃)(𝑣1(𝒙
′) − 𝑣1(𝒙))

𝐻𝑥

𝑑𝑉′ 
( 8.37 ) 

𝜕𝑣2(𝒙)

𝜕𝑥2
= ∫ 𝑔1

01(𝝃)(𝑣2(𝒙
′) − 𝑣2(𝒙))

𝐻𝑥

𝑑𝑉′ 
 

Therefore, the velocity divergence in non-local form can be constructed as 

𝛻 ∙ 𝒗(𝒙) = ∫ (𝑔1
10(𝝃) 𝑔1

01(𝝃)) (
𝑣1(𝒙

′) − 𝑣1(𝒙)

𝑣2(𝒙
′) − 𝑣2(𝒙)

)
𝐻𝑥

𝑑𝑉′

= ∫ 𝒈𝟏(𝝃) ∙ (𝒗(𝒙′) − 𝒗(𝒙))
𝐻𝑥

𝑑𝑉′ 

( 8.38 ) 

As a result, the non-local form of mass conservation can be represented as 

𝜕𝜌(𝒙)

𝜕𝑡
= −𝜌(𝒙)∫ 𝒈𝟏(𝝃) ∙ (𝒗(𝒙′) − 𝒗(𝒙))

𝐻𝑥

𝑑𝑉′ 
( 8.39 ) 

where the first order peridynamic functions 𝒈𝟏(𝝃) are represented as 
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𝒈1(𝝃) = (
𝑔1
10(𝝃)

𝑔1
01(𝝃)

) 
( 8.40 ) 

8.3.2 Non-local Form of Terms in Navier-Stokes Equation 

As discussed in Section 8.2.2, the Navier-Stokes equation incorporates terms for 

pressure gradient, viscosity, surface tension, and body forces. The non-local form of 

each term is expressed in this session. 

8.3.2.1 Pressure Gradient 

The pressure gradient term 𝛻 ∙ (−𝑝𝑰) in local form can be written as 

𝛻𝑝(𝒙) =

(

 
 

𝜕𝑝(𝒙)

𝜕𝑥1
𝜕𝑝(𝒙)

𝜕𝑥2 )

 
 

 

( 8.41 ) 

Correspondingly, by using the first order peridynamic function, its nonlocal form can 

be expressed as 

𝛻𝑝(𝒙) = ∫ (𝑝(𝒙′) − 𝑝(𝒙)) (
𝑔1
10(𝝃)

𝑔1
01(𝝃)

)𝑑𝑉′
𝐻𝑥

= ∫ (𝑝(𝒙′) − 𝑝(𝒙))𝒈𝟏(𝝃)𝑑𝑉′
𝐻𝑥

 

( 8.42 ) 

8.3.2.2 Viscous Force 

Local form of the velocity gradient can be written as 

𝛻 ⊗ 𝒗(𝒙) =

(

 
 

𝜕

𝜕𝑥1
𝜕

𝜕𝑥2)

 
 
(𝑣1(𝒙) 𝑣2(𝒙)) =

[
 
 
 
 
𝜕𝑣1(𝒙)

𝜕𝑥1

𝜕𝑣2(𝒙)

𝜕𝑥1
𝜕𝑣1(𝒙)

𝜕𝑥2

𝜕𝑣2(𝒙)

𝜕𝑥2 ]
 
 
 
 

 

( 8.43 ) 

The velocity gradient matrix can be transformed into its non-local form by using 

peridynamic function which can be expressed as 
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𝛻 ⊗ 𝒗(𝒙) = ∫ (
𝑔1
10(𝝃)

𝑔1
01(𝝃)

) ((𝑣1(𝒙
′) − 𝑣1(𝒙)) (𝑣2(𝒙

′) − 𝑣2(𝒙)))
𝐻𝑥

𝑑𝑉′

= ∫ 𝒈𝟏(𝝃)(𝒗(𝒙′) − 𝒗(𝒙))
𝑇

𝐻𝑥

𝑑𝑉′

= ∫ 𝒈𝟏(𝝃)⊗ (𝒗(𝒙′) − 𝒗(𝒙))
𝐻𝑥

𝑑𝑉′ 

( 8.44 ) 

Local form of Laplacian operator is defined by the divergence of the gradient as 

∆𝒗(𝒙) = 𝛻 ∙ (𝛻 ⊗ 𝒗(𝒙)) = (𝛻 ⊗ 𝒗(𝒙))
𝑻
∙ 𝛻 =

[
 
 
 
 
𝜕𝑣1

2(𝒙)

𝜕𝑥12
+
𝜕𝑣1

2(𝒙)

𝜕𝑥22

𝜕𝑣2
2(𝒙)

𝜕𝑥12
+
𝜕𝑣2

2(𝒙)

𝜕𝑥22 ]
 
 
 
 

= 𝒕𝑟

(

 
 

[
 
 
 
 

𝜕2

𝜕𝑥12
𝜕2

𝜕𝑥1𝜕𝑥2
𝜕2

𝜕𝑥1𝜕𝑥2

𝜕2

𝜕𝑥22 ]
 
 
 
 

)

 
 
(
𝑣1(𝒙)
𝑣2(𝒙)

) 

( 8.45 ) 

Hence, the non-local form Laplacian operator can be constructed as 

∆𝒗(𝒙) = 𝑡𝑟

(

 
 

[
 
 
 
 

𝜕2

𝜕𝑥12
𝜕2

𝜕𝑥1𝜕𝑥2
𝜕2

𝜕𝑥1𝜕𝑥2

𝜕2

𝜕𝑥22 ]
 
 
 
 

)

 
 
(
𝑣1(𝒙)
𝑣2(𝒙)

)

= ∫ 𝑡𝑟(𝒈𝟐(𝝃)) (
𝑣1(𝒙

′) − 𝑣1(𝒙)

𝑣2(𝒙
′) − 𝑣2(𝒙)

)
𝐻𝑥

𝑑𝑉′ 

( 8.46 ) 

in which 𝒈𝟐(𝝃) is represented as 

𝒈2(𝝃) = [
𝑔2
02(𝝃) 𝑔2

11(𝝃)

𝑔2
11(𝝃) 𝑔2

20(𝝃)
] 

( 8.47 ) 

Subsequently, the non-local form of viscous force in a compact form can be written as 

𝜇∆𝒗(𝒙) = 𝜇∫ 𝑡𝑟(𝒈𝟐(𝝃))(𝒗(𝒙′) − 𝒗(𝒙))
𝐻𝑥

𝑑𝑉′ 
( 8.48 ) 
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8.3.2.3 Surface Tension Force in Normal Direction 

The classical form of normal surface tension 𝑭𝑠,𝑛  represented in terms of surface 

tension coefficient 𝛾 , unit normal vector 𝒏̂𝑙𝑔 , weight function 𝛿𝑙𝑔  and interface 

curvature 𝜅̃ is denoted in Eq.( 8.11 ). To construct the normal surface tension in a non-

local form, it is first necessary to construct the fluid interface normal vector, 𝒏̂𝑙𝑔, and 

curvature, 𝜅̃, in a nonlocal form. 

According to the continuous surface force method (Brackbill et al., 1992), as the colour 

function has a unit jump at the interface, it can be used to identify and track the position 

of the interface. The normal vectors between fluid and gas interface can be represented 

by the gradient of the colour function, 𝛻𝑐𝑙𝑔(𝒙), as 

𝛻𝑐𝑙𝑔(𝒙) =

(

 
 

𝜕𝑐𝑙𝑔(𝒙)

𝜕𝑥1
𝜕𝑐𝑙𝑔(𝒙)

𝜕𝑥2 )

 
 
= ∫ (𝑐𝑙𝑔(𝒙′) − 𝑐𝑙𝑔(𝒙)) (

𝑔1
10(𝝃)

𝑔1
01(𝝃)

)𝑑𝑉′
𝐻𝑥

= ∫ (𝑐𝑙𝑔(𝒙′) − 𝑐𝑙𝑔(𝒙))𝒈𝟏(𝝃)𝑑𝑉′
𝐻𝑥

 

( 8.49 ) 

where 𝑐𝑙𝑔(𝒙)  is the colour function at material point 𝒙 . The difference of colour 

function between a pair of material points can be represented by 

𝑐𝑙𝑔(𝒙′) − 𝑐𝑙𝑔(𝒙) = {
1,
0,
if 𝐱 and 𝐱′arⅇ in samⅇ fluid domain

othⅇrwisⅇ
 

( 8.50 ) 

In numerical simulations, if there is a large density difference between two fluids at 

the interface, a weighted-density approach is used as an alternative method to 

determine the difference of colour function (Adami et al., 2010), i.e. 

𝑐𝑙𝑔(𝒙′) − 𝑐𝑙𝑔(𝒙) = {

2𝜌𝒙
𝜌𝒙 + 𝜌𝒙′

,

0,

if 𝐱 and 𝐱′arⅇ in samⅇ fluid domain
othⅇrwisⅇ

 

( 8.51 ) 

where 𝜌𝒙 is the density of material point located at 𝒙, and 𝜌𝒙′ is density of material 

point located at 𝒙′. 
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Following the approach purposed by Morris (2000), the unit normal vector between 

two fluid domains, 𝒏̂𝑙𝑔(𝒙), as shown in Fig. 8-1, then can be formulated by using the 

gradient of colour function in Eq.( 8.49 ) as 

𝒏̂𝑙𝑔(𝒙) =
𝛻𝑐𝑙𝑔(𝒙)

|𝛻𝑐𝑙𝑔(𝒙)|
=

∫ (𝑐𝑙𝑔(𝒙′) − 𝑐𝑙𝑔(𝒙))𝒈𝟏(𝝃)𝑑𝑉′𝐻𝑥

|∫ (𝑐𝑙𝑔(𝒙′) − 𝑐𝑙𝑔(𝒙))𝒈𝟏(𝝃)𝑑𝑉′𝐻𝑥
|
 

( 8.52 ) 

In addition, the weight function for surface tension in Eq.( 8.11 ) in continuum surface 

force method is taken as the magnitude of the gradient of the colour function (Morris, 

2000) and its non-local form is provided as (Gao and Oterkus, 2020) 

𝛿𝑙𝑔(𝒙) = |𝛻𝑐𝑙𝑔(𝒙)| = |∫ (𝑐𝑙𝑔(𝒙′) − 𝑐𝑙𝑔(𝒙))𝒈𝟏(𝝃)𝑑𝑉′
𝐻𝑥

| 
( 8.53 ) 

the weight function for surface tension is used to convert the surface tension force into 

volumetric force, and distribute the force along the fluid interface transition band area. 

 

Fig. 8-2 Two fluids come into contact at a solid surface, and the triple line region at 

the point of contact. 

Fig. 8-2 shows a droplet surrounded by a gaseous fluid and resting on a solid surface. 

The unit normal vectors, 𝒏̂𝑙𝑔(𝒙), from Eq.( 8.52 ) represent the normal direction of the 

interface between liquid and gaseous fluid, and they can be accurately computed when 

material points in each fluid domain fully interact with their family material. However, 

at the triple line region, where the liquid–gas interface meets the solid-liquid interface 

in Fig. 8-2, the material points in the fluid domain close to the solid wall do not have 

enough family material points to contribute to the integral equation, unit normal 

vectors between fluids calculated according to Eq.( 8.52 ) can be corrupted. Moreover, 

as the curvature is calculated from the divergence of unit normal vectors at the 
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interface, these corrupted unit normal vectors result in erroneous curvature 

calculations. 

Therefore, consideration is required when computing unit normal vectors at the triple 

line region. In this study, the corrupted unit normal vectors at this region are corrected 

through a normal prescription scheme (Breinlinger et al., 2013).  

The unit normal vectors at the triple line region, 𝒏̂𝑙𝑔,𝑐𝑜𝑟(𝒙), as shown in Fig. 8-3 can 

be prescribed as (Breinlinger et al., 2013) 

𝒏̂𝑙𝑔,𝑐𝑜𝑟(𝒙) = 𝒏̂𝑡(𝒙) 𝑠𝑖𝑛𝜃𝑒𝑞 − 𝒏̂𝑠𝑓(𝒙)𝑐𝑜𝑠𝜃𝑒𝑞 ( 8.54 ) 

in which 𝒏̂𝑡 is the projection of unit normal vector, 𝒏̂𝑙𝑔(𝒙), between the denser fluid 

and the lighter fluid on the solid-fluid interface, 𝒏̂𝑠𝑓(𝒙)  is the unit normal vector 

between solid phase and fluid phase, and 𝜃𝑒𝑞 is the equilibrium contact angle. 

 

Fig. 8-3 Unit normal vector 𝒏̂𝑙𝑔,𝑐𝑜𝑟(𝒙) at the triple line region and ordinary 

computed unit normal vector 𝒏̂𝑙𝑔(𝒙). 

When a droplet is in contact with a solid surface, the balance between the adhesive and 

cohesive forces in the droplet forms the equilibrium contact angle 𝜃𝑒𝑞 . Eq.( 8.54 ) 

prescribes unit normal vectors at the triple line region point in the direction of the 

interface normal that forms the equilibrium contact angle 𝜃𝑒𝑞. If a droplet comes into 

contact with a solid surface and forms an instantaneous contact angle θ not equal to 

the equilibrium contact angle 𝜃𝑒𝑞 , the curvature obtained by the divergence of the 

prescribed unit normal vectors 𝒏̂𝑙𝑔,𝑐𝑜𝑟(𝒙)  will drive the interface to move until the 

droplet forms an equilibrium contact angle with the solid interface (Breinlinger et al., 

2013). 
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Following a similar approach introduced in continuum surface force method, the unit 

normal vector between solid phase and fluid phase, 𝒏̂𝑠𝑓(𝒙) , in Eq.( 8.54 ), can be 

formulated as (Meier et al., 2021) 

𝒏̂𝑠𝑓(𝒙) =
𝛻𝑐𝑠𝑓(𝒙)

|𝛻𝑐𝑠𝑓(𝒙)|
 

( 8.55 ) 

in which 𝛻𝑐𝑠𝑓(𝒙) is the gradient of the colour function between fluid and solid phase. 

Similarly, its non-local form can be represented as 

𝛻𝑐𝑠𝑓(𝒙) =

(

 
 

𝜕𝑐(𝒙)

𝜕𝑥1
𝜕𝑐(𝒙)

𝜕𝑥2 )

 
 
= ∫ (𝑐𝑠𝑓(𝒙′) − 𝑐𝑠𝑓(𝒙))(

𝑔1
10(𝝃)

𝑔1
01(𝝃)

)𝑑𝑉′
𝐻𝑥

= ∫ (𝑐𝑠𝑓(𝒙′) − 𝑐𝑠𝑓(𝒙))𝒈𝟏(𝝃)𝑑𝑉′
𝐻𝑥

 

( 8.56 ) 

where 𝑐𝑠𝑓(𝒙)  is the colour function at material point 𝒙  for distinguishing fluid and 

solid phase. The difference of colour function between a pair of material points can be 

defined as 

𝑐𝑠𝑓(𝒙′) − 𝑐𝑠𝑓(𝒙) = {
1,
0,
if 𝐱 and 𝐱′ arⅇ in samⅇ phasⅇ

othⅇrwisⅇ
 

( 8.57 ) 

Consequently, the projection of unit normal vector between liquid and gaseous fluid 

on the solid-fluid interface, 𝒏̂𝑡(𝒙), in Eq.( 8.54 ) can be computed as (Breinlinger et 

al., 2013) 

𝒏̂𝑡(𝒙)  =
𝒏̂𝑙𝑔(𝒙) − (𝒏̂𝑙𝑔(𝒙) ∙ 𝒏̂𝑠𝑓(𝒙)) 𝒏̂𝑠𝑓(𝒙)

|𝒏̂𝑙𝑔(𝒙) − (𝒏̂𝑙𝑔(𝒙) ∙ 𝒏̂𝑠𝑓(𝒙)) 𝒏̂𝑠𝑓(𝒙)|
 

( 8.58 ) 

where 𝒏̂𝑠𝑓(𝒙) is provided in Eq.( 8.55 ) and 𝒏̂𝑙𝑔(𝒙) is provided in Eq.( 8.52 ). 

The ordinary computed unit normal vectors 𝒏̂𝑙𝑔(𝒙) from Eq.( 8.52 ) and prescribed 

unit normal vectors 𝒏̂𝑙𝑔,𝑐𝑜𝑟(𝒙) at the triple line region from Eq.( 8.54 ) are represented 

in Fig. 8-3. Since the calculation of 𝒏̂𝑙𝑔,𝑐𝑜𝑟(𝒙)  depends on the equilibrium contact 
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angle 𝜃𝑒𝑞, when current contact angle 𝜃 is greatly different from equilibrium contact 

angle 𝜃𝑒𝑞 , a sharp transition can be observed between 𝒏̂𝑙𝑔(𝒙)  and 𝒏̂𝑙𝑔,𝑐𝑜𝑟(𝒙) . This 

sharp transition will cause a discontinuity when computing the curvature. As a result, 

a smoothed unit normal correction scheme is implemented here to ensure a smooth 

transition from prescribed unit normal vectors to ordinary computed unit normal 

vectors, the smoothed interface unit normal vectors can be obtained as 

𝒏̂𝑙𝑔
∗ (𝒙) =

𝑓𝑤,𝑥𝒏̂𝑙𝑔(𝒙) + (1 − 𝑓𝑤,𝑥)𝒏̂𝑙𝑔,𝑐𝑜𝑟(𝒙)

|𝑓𝑤,𝑥𝒏̂𝑙𝑔(𝒙) + (1 − 𝑓𝑤,𝑥)𝒏̂𝑙𝑔,𝑐𝑜𝑟(𝒙)|
 

( 8.59 ) 

where 𝒏̂𝑙𝑔,𝑐𝑜𝑟(𝒙)  can be calculated from Eq. ( 8.52 ) and 𝒏̂𝑙𝑔(𝒙)  can be calculated 

from Eq. ( 8.54 ). The parameter 𝑓𝑤,𝑥  is a transition function and determines the 

influence of the prescribed normal vector at the triple line region which depends on 

the distance to the wall. It is provided as 

𝑓𝑤,𝑥 = {

0
𝑑𝑤

𝑑𝑚𝑎𝑥
⁄

1

  if  

𝑑𝑤 < 0
0 < 𝑑𝑤 < 𝑑𝑚𝑎𝑥
𝑑𝑤 > 𝑑𝑚𝑎𝑥

 

( 8.60 ) 

in which 𝑑𝑤 is the distance between fluid material points and the solid-fluid interface  

The 𝑑𝑚𝑎𝑥 in Eq.( 8.60 ) is denoted as the maximum smooth distance from the wall, in 

this work, it is taken as 2∆𝑥 , where ∆𝑥  is the spacing between material point. The 

schematic diagram of the smoothed interface unit normal vectors calculated from 

Eq.( 8.59 ) is shown in Fig. 8-4. Section 8.5.2 gives a numerical example of the 

effectiveness of this smoothing correction method. 

 

Fig. 8-4 Corrected unit normal vectors distributed along the fluid interface. 

Subsequently, the surface curvature 𝜅̃  in Eq.( 8.11 ) then can be calculated via the 

divergence of the smoothed interface unit normal vector, i.e. 
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𝜅̃(𝒙) = −𝛻 ∙ 𝒏̂𝑙𝑔
∗ (𝒙) = −∫ 𝒈𝟏(𝝃) ∙ (𝒏̂𝑙𝑔

∗ (𝒙′) − 𝒏̂𝑙𝑔
∗ (𝒙))

𝐻𝑥

𝑑𝑉′ 
( 8.61 ) 

As suggested in Morris' work (2020), curvature directly computed from Eq.( 8.61 ) 

can lead to errors at the edges of the transition region, as the smoothed interface unit 

normal vectors are relatively small and can have erroneous directions when they are 

away from the interface. Therefore, the surface curvature cannot be approximated 

accurately. This problem can be addressed by introducing selection criteria to 

determine if a ‘reliable’ normal vector can be obtained for divergence computation. A 

function at each material point is used to distinguish ‘reliable’ normal vectors that can 

contribute to the curvature approximation in Eq.( 8.61 ) (Morris, 2000), i.e. 

𝑁𝒙 = {
1,
0,
if |𝑓𝑤,𝑥𝒏̂𝑙𝑔(𝒙) + (1 − 𝑓𝑤,𝑥)𝒏̂𝑙𝑔,𝑐𝑜𝑟(𝒙)| > 𝜖

othⅇrwisⅇ
 

( 8.62 ) 

and 

𝒏̂𝑙𝑔
∗ (𝒙) = {

𝑓𝑤,𝑥𝒏̂𝑙𝑔(𝒙) + (1 − 𝑓𝑤,𝑥)𝒏̂𝑙𝑔,𝑐𝑜𝑟(𝒙)

|𝑓𝑤,𝑥𝒏̂𝑙𝑔(𝒙) + (1 − 𝑓𝑤,𝑥)𝒏̂𝑙𝑔,𝑐𝑜𝑟(𝒙)|
,

                0                                                    ,    

if 𝑁𝒙 = 1 
othⅇrwisⅇ

 

( 8.63 ) 

where 𝜖 ≪ 1 is a user-defined tolerance (Morris, 2000). As the unit normal vectors 

below the tolerance are not contributed to the curvature computation, an intermediate 

curvature estimation needs to be used to sum over reliable normal vectors (Morris, 

2000). As a result, the curvature in Eq.( 8.61 ) can be recomputed as 

𝜅̃∗(𝒙) = −∫ 𝑚𝑖𝑛 (𝑁𝒙′ , 𝑁𝒙)𝒈𝟏(𝝃) ∙ (𝒏̂𝑙𝑔
∗ (𝒙′) − 𝒏̂𝑙𝑔

∗ (𝒙))
𝐻𝑥

𝑑𝑉′ 
( 8.64 ) 

On the other side, considering material points at the edge of the phase transition region, 

whose family material points are within the horizon but outside the transition region, 

the interface unit normal vectors at these family material points are zeros. As a result, 

a correction factor is used to consider the truncated material points, and it can be 

represented as (Gao and Oterkus, 2020) 
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𝜁 =
∫ 𝑚𝑖𝑛 (𝑁𝒙′ , 𝑁𝒙)𝜔(𝝃)𝐻𝑥

𝑑𝑉′

∫ 𝜔(𝝃)
𝐻𝑥

𝑑𝑉′
 

( 8.65 ) 

in which 𝜔(𝝃) is the weight function as represented in Eq.( 3.28 ). 

Based on Eq.( 8.59 ),the smoothed interface unit normal vectors,𝒏̂𝑙𝑔
∗ (𝒙) obtained for 

material points at each fluid domain always point from themselves to the fluid interface. 

Considering a pair of material points which 𝒙 is in one fluid domain and 𝒙′ is in the 

other fluid domain, the direction of their unit normal vectors will opposite with each 

other. Therefore, a phase normal coefficient 𝜑𝒙
𝒙′  is added to reverse the unit normal 

vector direction if it is opposite from the unit normal vector at material point 𝒙 (Zhang 

et al., 2015). Hence, the interface curvature in this study is computed as 

𝜅̃∗∗(𝒙) =
𝜅̃∗(𝒙)

𝜁
= −

∫ 𝑚𝑖𝑛 (𝑁𝒙′ , 𝑁𝒙)𝒈𝟏(𝝃) ∙ (𝜑𝒙
𝒙′𝒏̂𝑙𝑔,𝒙′

∗ − 𝒏̂𝑙𝑔,𝒙
∗ )

𝐻𝑥
𝑑𝑉′

∫ 𝑚𝑖𝑛 (𝑁𝒙′ , 𝑁𝒙)𝜔(𝝃)𝐻𝑥
𝑑𝑉′

∫ 𝜔(𝝃)
𝐻𝑥

𝑑𝑉′

 

( 8.66 ) 

with 

𝜑𝒙
𝒙′ = {

−1,
1,
 
if 𝒙′ is not in thⅇ samⅇ fluid domain with 𝒙
if  𝒙′ is in thⅇ samⅇ fluid domain with 𝒙

 
( 8.67 ) 

Finally, the non-local form of the normal surface tension can be expressed as 

𝑭𝑠,𝑛 = 𝛾𝜅̃∗∗(𝒙)𝒏̂𝑙𝑔
∗ (𝒙)𝛿𝑙𝑔(𝒙) ( 8.68 ) 

in which 𝛾 is given by Eq.( 8.12 ), 𝜅̃∗∗(𝒙) is the curvature as described in Eq.( 8.66 ), 

𝒏̂𝑙𝑔
∗ (𝒙) is the smoothed unit normal vector between liquid-gas interface as described 

in Eq. ( 8.59 ) and 𝛿𝑙𝑔(𝒙)  is weight function for surface tension as described in 

Eq.( 8.53 ). 

8.3.2.4 Marangoni Force 

The classical form of the Marangoni force is given in Eq.( 8.16 ).  
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To evaluate the non-local form of Marangoni force, the temperature gradient 𝛻𝑇 in 

non-local form needs to be developed. The temperature gradient 𝛻𝑇 in local form is 

given as 

𝛻𝑇(𝒙) =

(

 
 

𝜕𝑇(𝒙)

𝜕𝑥1
𝜕𝑇(𝒙)

𝜕𝑥2 )

 
 

 

( 8.69 ) 

Therefore, the non-local form of the temperature gradient by using the peridynamic 

function can be expressed as 

𝛻𝑇(𝒙) = ∫ (𝑇(𝒙′) − 𝑇(𝒙)) (
𝑔1
10(𝝃)

𝑔1
01(𝝃)

)𝑑𝑉′
𝐻𝑥

= ∫ (𝑇𝒙′ − 𝑇𝒙)𝒈𝟏(𝝃)
𝐻𝑥

𝑑𝑉′ 
( 8.70 ) 

As a result, the non-local form of Marangoni force can be represented as 

𝑭𝑠,𝑡 =
𝑑𝛾(𝑇)

𝑑𝑇
[𝛻𝑇(𝒙) − (𝛻𝑇(𝒙) ∙ 𝒏̂𝑙𝑔

∗ (𝒙)) 𝒏̂𝑙𝑔
∗ (𝒙)] 𝛿𝑙𝑔(𝒙) 

( 8.71 ) 

where 𝛻𝑇(𝒙) is calculated from Eq.( 8.70 ), 𝒏̂𝑙𝑔
∗ (𝒙) is calculated from Eq.( 8.59 ), and 

𝛿𝑙𝑔 is calculated from Eq.( 8.53 ). 

8.3.3 Thermal Model 

The classical form of the energy equation is given in Eq.( 8.35 ). The local form of the 

divergence of the heat flux in the equation can be written as 

𝛻 ∙ 𝑞(𝒙) = −𝑘 (
𝜕

𝜕𝑥1

𝜕

𝜕𝑥2
)

(

 
 

𝜕𝑇(𝒙)

𝜕𝑥1
𝜕𝑇(𝒙)

𝜕𝑥2 )

 
 
= −𝑘 (

𝜕2𝑇(𝒙)

𝜕𝑥12
+
𝜕2𝑇(𝒙)

𝜕𝑥22
) 

( 8.72 ) 

The second order partial derivative for temperature can be represented by second order 

peridynamic function as 

𝜕2𝑇

𝜕𝑥12
= ∫ 𝑔2

20(𝝃)(𝑇(𝒙′) − 𝑇(𝒙))
𝐻𝑥

𝑑𝑉′ 
( 8.73 ) 



167 

 

𝜕2𝑇

𝜕𝑥22
= ∫ 𝑔2

02(𝝃)(𝑇(𝒙′) − 𝑇(𝒙))
𝐻𝑥

𝑑𝑉′ 
 

As a result, the Lagrangian description of internal energy equation in non-local form 

can be written as 

𝜌(𝒙)
𝜕𝐶𝑝(𝒙)𝑇(𝒙)

𝜕𝑡
= 𝑘∫ 𝑡𝑟(𝒈𝟐(𝝃))(𝑇(𝒙

′) − 𝑇(𝒙))
𝐻𝑥

𝑑𝑉′ + 𝑆(𝒙) 
( 8.74 ) 

8.4 Numerical Implementation 

The non-local form of governing equations is solved numerically. The fluid domain is 

discretized into a series of material points, and each material point carries information 

such as material density, viscosity, pressure, velocity, displacement, and temperature. 

Since PDDO inherits analogous concepts with peridynamics theory, the long-range 

force is considered in the simulation domain representing a material point interacting 

with a series of family material points within a horizon. As shown in Fig. 8-5, 𝒙𝑖
𝑛 

represents the current coordinate of the material point 𝑖 at time 𝑡 = 𝑡𝑛, and material 

point 𝑖  interacts with family material points 𝑗  at 𝒙𝑗
𝑛  within a range of 𝛿 . With the 

updated Lagrangian description, the location of the material points changes at every 

time step. Therefore, a material point may interact with different family material points 

at time 𝑡 = 𝑡𝑛+1 and the peridynamics function needs to be reconstructed based on the 

updated configuration. 

 

Fig. 8-5 Location of material point 𝒙𝑖
𝑛 with its family members at 𝑡 = 𝑡𝑛, and the 

updated location at 𝑡 = 𝑡𝑛+1. 
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8.4.1 Discretized Form of Governing Equations by Using PDDO 

To ensure the mass conservation is maintained at the fluid domain, each material point 

in the simulation domain is assigned with an initial mass after the simulation domain 

is discretized. The mass at each material point remains same during simulation, as the 

density field of the material point is updated by continuity equation, the volume of 

material point can be updated correspondingly at each time step as 

𝑉𝑖
𝑛 =

𝑚𝑖

𝜌𝑖
𝑛  ( 8.75 ) 

where 𝑚𝑖 is the initial mass of material point 𝑖, and 𝜌𝑖
𝑛 is the density at the current 

time step. 

The discretized form of the peridynamic function up to second order is given as 

𝒈𝟏(𝝃𝑖𝑗
𝑛 ) = (

𝑔1
10(𝝃𝑖𝑗

𝑛 )

𝑔1
01(𝝃𝑖𝑗

𝑛 )
) 

( 8.76 ) 

and 

𝒈𝟐(𝝃𝑖𝑗
𝑛 ) = [

𝑔2
02(𝝃𝑖𝑗

𝑛 ) 𝑔2
11(𝝃𝑖𝑗

𝑛 )

𝑔2
11(𝝃𝑖𝑗

𝑛 ) 𝑔2
20(𝝃𝑖𝑗

𝑛 )
] 

( 8.77 ) 

in which the relative distance vector between a pair of material points 𝑖 and 𝑗 can be 

represented as 

𝝃𝑖𝑗
𝑛 = 𝒙𝑗

𝑛 − 𝒙𝑖
𝑛 = [

𝝃𝑖𝑗
1 𝑛

𝝃𝑖𝑗
2 𝑛
] 

( 8.78 ) 

where superscript 𝑛 represents the current time step. 

As introduced in Eq.( 3.31 ), peridynamic function up to second order is represented 

as 
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{
  
 

  
 
g1
01(𝛏ij

n)

g2
02(𝛏ij

n)

g1
10(𝛏ij

n)

g2
11(𝛏ij

n)

g2
20(𝛏ij

n)}
  
 

  
 

=

{
 
 

 
 
a01
01n a02

01n a10
01n a11

01n a20
01n

a01
02n a02

02n a10
02n a11

02n a20
02n

a01
10n a02

10n a10
10n a11

10n a20
10n

a01
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11n a10
11n a11

11n a20
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a01
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1
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0
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n|)(𝛏ij
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1
(𝛏ij

2n)
0
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n|)(𝛏ij
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1
(𝛏ij

2n)
1

ω(|𝛏ij
n|)(𝛏ij

1n)
2
(𝛏ij

2n)
0

}
 
 
 

 
 
 

 

( 8.79 ) 

in which coefficient matrix in Eq.( 8.79 ) is obtained by numerically solving Eq.( 3.32 ) 

as 

∑𝜔(|𝝃𝑖𝑗
𝑛 |)[𝑪𝑛]𝑉𝑗

𝑛

𝑁𝑖

𝑗=1

[𝒂𝑛] =

[
 
 
 
 
1 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 2]

 
 
 
 

 

( 8.80 ) 

with 

[𝒂𝑛] =

{
 
 

 
 a01

01n a02
01n a10

01n a11
01n a20

01n

a01
02n a02

02n a10
02n a11

02n a20
02n

a01
10n a02

10n a10
10n a11

10n a20
10n

a01
11n a02

11n a10
11n a11

11n a20
11n

a01
20n a02

20n a10
20n a11

20n a20
20n}

 
 

 
 

 

( 8.81 ) 

[𝑪𝑛]

=
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2n)
2

(𝛏ij
1n)

0
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2n)
1

(𝛏ij
1n)

1
(𝛏ij
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( 8.82 ) 

and 

𝜔(|𝝃𝑖𝑗
𝑛 |) = 𝑒𝑥𝑝

−(
2|𝝃𝑖𝑗

𝑛 |

𝛿
)

2

 

( 8.83 ) 

where 𝑉𝑗
𝑛 is the volume of family material point 𝑗, 𝑁𝑖 represents the number of family 

material points of material point 𝑖. 
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As a study investigated by Madenci et al. (2019), horizon size in the numerical 

simulation is chosen as maximum order of differentiation plus one. Since, the 

maximum order of differentiation is two, the horizon size is chosen as 3∆𝑥, in which 

∆𝑥 is spacing between material points at the initial configuration. 

The discretized form of the continuity equation is given as 

𝜌𝑖
𝑛+1 = 𝜌𝑖

𝑛 − 𝜌𝑖
𝑛∆𝑡∑[𝒈𝟏(𝝃𝑖𝑗

𝑛 ) ∙ (𝒗𝑗
𝑛 − 𝒗𝑖

𝑛)]𝑉𝑗
𝑛

𝑁𝑖

𝑗=1

 

( 8.84 ) 

in which 𝜌𝑖
𝑛+1  is the updated density, ∆𝑡  is the time step size, and term 𝒗𝑖

𝑛  and 

𝒗𝑗
𝑛represent the velocity field of material point 𝑖 and 𝑗, respectively. 

In addition, the pressure field of the material material point 𝑖  at time 𝑡 = 𝑡𝑛  is 

computed by equation of state as expressed in Eq.( 8.17 ) as  

𝑝𝑖
𝑛 =

𝜌0,𝑖𝑐0,𝑖
2

𝛼𝑖
[(
𝜌𝑖
𝑛

𝜌0,𝑖
)

𝛼𝑖

− 1] + 𝑝0,𝑖 
( 8.85 ) 

in which 𝑝𝑖
𝑛 is the pressure at the current time step and 𝑝0,𝑖 is the background pressure. 

The background pressure in this study is estimated as 

𝑝0,𝑖 = 0.05 ×
𝜌0,𝑖𝑐0,𝑖

2

𝛼𝑖
 

( 8.86 ) 

Depending on the type of the fluid motion, the numerical speed of sound 𝑐0,𝑖  of 

material points in denser and lighter fluid phase is estimated by using Eq.( 8.21 ) and 

Eq.( 8.25 ), respectively. 

After the pressure field at each material point is computed by Eq.( 8.85 ), the 

discretized form of the pressure gradient in momentum equation then can be 

represented as 

𝛻𝑝𝑖
𝑛 =∑[(𝑝𝑗

𝑛 − 𝑝𝑖
𝑛)𝒈𝟏(𝝃𝑖𝑗

𝑛 )]𝑉𝑗
𝑛

𝑁𝑖

𝑗=1

 

( 8.87 ) 

The discretized form of the viscous force in momentum equation can be computed as 
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𝜇𝑖
𝑛∆𝒗𝑖

𝑛 =∑𝜇𝑖
𝑛 [𝑡𝑟 (𝒈𝟐(𝝃𝑖𝑗

𝑛 )) (𝒗𝑗
𝑛 − 𝒗𝑖

𝑛)] 𝑉𝑗
𝑛

𝑁𝑖

𝑗=1

 

( 8.88 ) 

The discretized form of the normal surface tension force in momentum equation is 

calculated from Eq.( 8.68 ) as 

𝑭𝑠,𝑛𝑖
𝑛

= −𝛾
∑ 𝑚𝑖𝑛(𝑁𝒋, 𝑁𝒊) [𝒈𝟏(𝝃𝑖𝑗

𝑛 ) ∙ (𝜑𝑖
𝒋
𝒏̂𝑙𝑔
∗

𝑗

𝑛
− 𝒏̂𝑙𝑔

∗

𝑖

𝑛)] 𝑉𝑗
𝑁𝑖
𝑗=1

∑ 𝑚𝑖𝑛(𝑁𝒋, 𝑁𝒊)𝜔(𝝃𝑖𝑗
𝑛 )𝑉𝑗

𝑁𝑖
𝑗=1

∑ 𝜔(𝝃𝑖𝑗
𝑛 )𝑉𝑗

𝑁𝑖
𝑗=1 ′

𝒏̂𝑙𝑔
∗

𝑖

𝑛 |∑[(𝑐𝑙𝑔𝑗
𝑛

𝑁𝑖

𝑗=1

− 𝑐𝑙𝑔𝑖
𝑛)𝒈𝟏(𝝃𝑖𝑗

𝑛 )] 𝑉𝑗
𝑛| 

( 8.89 ) 

in which 𝛾 is the temperature dependent surface tension coefficient and is computed 

from Eq.( 8.12 ). The term 𝑐𝑙𝑔𝑗
𝑛 − 𝑐𝑙𝑔𝑖

𝑛 represents the difference of colour index 

between a pair of material points, and 𝜑𝑖
𝒋
 is the phase normal coefficient. 𝒏̂𝑙𝑔

∗

𝑖

𝑛
 is the 

smoothed interface unit normal, at time 𝑡 = 𝑡𝑛 this can be expressed as 

𝒏̂𝑙𝑔
∗

𝑖

𝑛 =
𝑓𝑤,𝑖𝒏̂𝑙𝑔𝑖

𝑛 + (1 − 𝑓𝑤,𝑖)𝒏̂𝑙𝑔,𝑐𝑜𝑟𝑖
𝑛

|𝑓𝑤,𝑖𝒏̂𝑙𝑔𝑖
𝑛
+ (1 − 𝑓𝑤,𝑖)𝒏̂𝑙𝑔,𝑐𝑜𝑟𝑖

𝑛
|
 

( 8.90 ) 

where 𝑓𝑤,𝑖 is the transition function. The ordinary computed unit normal vector, 𝒏̂𝑙𝑔𝑖
𝑛

, 

is calculated as 

𝒏̂𝑙𝑔𝑖
𝑛 =

∑ [(𝑐𝑙𝑔𝑗
𝑛 − 𝑐𝑙𝑔𝑖

𝑛)𝒈𝟏(𝝃𝑖𝑗
𝑛 )] 𝑉𝑗

𝑛𝑁𝑖
𝑗=1

|∑ [(𝑐𝑙𝑔𝑗
𝑛 − 𝑐𝑙𝑔𝑖

𝑛)𝒈𝟏(𝝃𝑖𝑗
𝑛 )] 𝑉𝑗

𝑛𝑁𝑖
𝑗=1 |

 

( 8.91 ) 

and the prescribed unit normal vector at triple line region , 𝒏̂𝑙𝑔,𝑐𝑜𝑟𝑖
𝑛

, is calculated as  

𝐧̂lg,cori
n = 𝐧̂ti

n sinθeq − 𝐧̂sfi
ncosθeq ( 8.92 ) 

with 
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𝒏̂𝑠𝑓𝑖
𝑛 =

∑ [(𝑐𝑠𝑓𝑗
𝑛 − 𝑐𝑠𝑓𝑖

𝑛)𝒈𝟏(𝝃𝑖𝑗
𝑛 )] 𝑉𝑗

𝑛𝑁𝑖
𝑗=1

|∑ [(𝑐𝑠𝑓𝑗
𝑛 − 𝑐𝑠𝑓𝑖

𝑛)𝒈𝟏(𝝃𝑖𝑗
𝑛 )] 𝑉𝑗

𝑛𝑁𝑖
𝑗=1 |

 

( 8.93 ) 

and 

𝒏̂𝑡𝑖
𝑛(𝒙)  =

𝒏̂𝑙𝑔𝑖
𝑛(𝒙) − (𝒏̂𝑙𝑔𝑖

𝑛(𝒙) ∙ 𝒏̂𝑠𝑓𝑖
𝑛(𝒙)) 𝒏̂𝑠𝑓𝑖

𝑛(𝒙)

|𝒏̂𝑙𝑔𝑖
𝑛(𝒙) − (𝒏̂𝑙𝑔𝑖

𝑛(𝒙) ∙ 𝒏̂𝑠𝑓𝑖
𝑛(𝒙)) 𝒏̂𝑠𝑓𝑖

𝑛(𝒙)|
 

( 8.94 ) 

in which the term 𝑐𝑠𝑓𝑗
𝑛 − 𝑐𝑠𝑓𝑖

𝑛  represents the difference of colour index for 

distinguishing fluid and solid phase between a pair of material points. 𝜃𝑒𝑞 is a user 

predefined equilibrium contact angle before simulation. 

𝑁𝒊 is the unit normal index and is calculated as 

𝑁𝒊 = {
1,
0,
𝑖𝑓 |𝑓𝑤,𝑖𝒏̂𝑙𝑔𝑖

𝑛 + (1 − 𝑓𝑤,𝑖)𝒏̂𝑙𝑔,𝑐𝑜𝑟𝑖
𝑛| > 𝜖

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

( 8.95 ) 

The discretized form of the Marangoni force in momentum equation then can be 

calculated from Eq.( 8.71 ) as 

𝑭𝑠,𝑡𝑖
𝑛 =

𝑑𝛾(𝑇)

𝑑𝑇
[∑[(𝑇𝑗

𝑛 − 𝑇𝑖
𝑛)𝒈𝟏(𝝃𝑖𝑗

𝑛 )]𝑉𝑗
𝑛

𝑁𝑖

𝑗=1

− (∑[(𝑇𝑗
𝑛 − 𝑇𝑖

𝑛)𝒈𝟏(𝝃𝑖𝑗
𝑛 )]𝑉𝑗

𝑛

𝑁𝑖

𝑗=1

∙ 𝒏̂𝑙𝑔
∗

𝑖

𝑛) 𝒏̂𝑙𝑔
∗

𝑖

𝑛] |∑[(𝑐𝑙𝑔𝑗
𝑛 − 𝑐𝑙𝑔𝑖

𝑛)𝒈𝟏(𝝃𝑖𝑗
𝑛 )] 𝑉𝑗

𝑛

𝑁𝑖

𝑗=1

| 

( 8.96 ) 

in which 
𝑑𝛾(𝑇)

𝑑𝑇
 is the surface tension temperature coefficient as shown in Eq.( 8.12 ). 

As a result, the discretized form of momentum equation can be represented as 
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𝒂𝑖
𝑛+1 =

1

𝜌𝑖
𝑛+1 [−𝛻𝑝𝑖

𝑛 + 𝜇𝑖
𝑛∆𝒗𝑖

𝑛 + 𝑭𝑠,𝑛𝑖
𝑛 + 𝑭𝑠,𝑡𝑖

𝑛] +
1

𝜌𝑖
𝑛+1 𝒃𝑖 

( 8.97 ) 

where 𝒂𝑖
𝑛+1 is the updated acceleration at 𝑡 = 𝑡𝑛+1 and 𝒃𝑖 is the body force density. 

When the density ratio between two fluids is relatively large, the discontinuity of the 

fluid density and viscosity field will present at the transition band of the interface. As 

PDDO is a non-local approach, the discontinuity will cause stability issues. In order to 

reduce numerical oscillations and prevent material points’ penetration during the 

simulation, the density and viscosity coefficient can be smoothed by harmonic means 

as 

𝜌𝑖
𝑛+1 =

2𝜌𝑖
𝑛+1𝜌𝑗

𝑛+1

𝜌𝑖
𝑛+1 + 𝜌𝑗

𝑛+1 
( 8.98 ) 

and 

𝜇𝑖
𝑛 =

2𝜇𝑖𝜇𝑗

𝜇𝑖 + 𝜇𝑗
 

( 8.99 ) 

The harmonic means for density and viscosity treatment is validated for multiphase 

flow fluid motion at low Reynold’s number. In the case of the flow motion with high 

Reynold’s number, additional numerical treatments are required (Gao and Oterkus, 

2020). In this study, only the flow with low Reynold’s number is investigated. 

The discretized form of the internal energy equation can be represented as 

𝑇𝑖
𝑛+1 = 𝑇𝑖

𝑛 +
∆𝑡

𝜌𝑖
𝑛+1𝐶𝑝,𝑖

[∑𝑘𝑖
𝑛 [𝑡𝑟 (𝒈𝟐(𝝃𝑖𝑗

𝑛 )) (𝑇𝑗
𝑛 − 𝑇𝑖

𝑛)] 𝑉𝑗
𝑛

𝑁𝑖

𝑗=1

+ 𝑆𝑖] 

( 8.100 ) 

Similarly, to prevent numerical oscillation in energy equation and to have a smooth 

transition of the heat conductivity coefficient at the interface region, the coefficient 𝑘𝑖
𝑛 

in Eq.( 8.100 ) is also smoothed by harmonic means as 

𝑘𝑖
𝑛 =

2𝑘𝑖𝑘𝑗

𝑘𝑖 + 𝑘𝑗
 

( 8.101 ) 
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8.4.2 Boundary Conditions 

As shown in Fig. 8-6, the boundary conditions are implemented through fictitious 

layers in the numerical simulation, which is widely adopted in peridynamic studies 

(Oterkus et al., 2014). Three variables are considered in boundaries, which are velocity, 

pressure, and temperature. 

 

Fig. 8-6 Schematic drawing of interface between two fluids and the boundary 

material points. 

Slip or no-slip velocity boundary conditions are used at wall boundary and 

implemented by material points in fictitious layers. The velocities of the material 

points in fictitious layers are computed based on the velocities of material points in the 

fluid domain. Different methods for implementing these boundary conditions are used 

in numerical simulations, such as mirroring material points at boundary approach as 

suggested in Oterkus et al., (2014), so that the variable at a material point in the 

fictitious layers is mirrored by a material point at the fluid domain. Since the fluid 

particles are moving during the simulation, instead of mirroring the moving fluid 

particles, a simplified boundary implementation using weighted average approach is 

used to keep the material points in the fictitious region at fixed locations (Gao and 

Oterkus, 2020).  

For slip or no-slip velocity boundary conditions, the velocity of material point 𝑖 in a 

fictitious layer at the current time step 𝑛 is calculated as 

𝒗𝑖
𝑛 = 2𝒗𝑤𝑎𝑙𝑙 − 𝜑𝑤

∑ 𝜔0(𝝃𝑖𝑗
𝑛 )

𝑁1
𝑗=1 𝒗𝑗

𝑛 + ∑ 𝜔0(𝝃𝑖𝑘
𝑛 )𝑁2

𝑘=1 𝒗𝑘
𝑛

∑ 𝜔0(𝝃𝑖𝑗
𝑛 )

𝑁1
𝑗=1 + ∑ 𝜔0(𝝃𝑖𝑘

𝑛 )𝑁2
𝑘=1

 
( 8.102 ) 

with 
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𝜑𝑤 = {
1
−1

for no − slip boundary condition 
 for slip boundary condition with 𝒗𝑤𝑎𝑙𝑙 = 0

 
( 8.103 ) 

in which 𝒗𝑤𝑎𝑙𝑙 is the wall velocity, the subscripts 𝑗 and 𝑘 represent the family material 

points of 𝑖 in fluid 1 and fluid 2, respectively. The superscript 𝑁1 and 𝑁2 represents the 

material point 𝑖 in the fictitious layer has 𝑁1 family material points in fluid 1 and 𝑁2 

family material points in fluid 2, respectively. The velocity of family material points 

of 𝑖 in fluid 1 and fluid 2 at current time step 𝑛 are denoted by 𝒗𝑗
𝑛 and 𝒗𝑘

𝑛, respectively. 

The weight function in Eq.( 8.102 ) between a pair of material points is computed as 

(Colagrossi and Landrini, 2003) 

𝜔0(𝝃𝑖𝑗
𝑛 ) = (

 
 
𝑒
−(

|𝝃𝑖𝑗
𝑛 |

∆𝑥
)

2

− 𝑒−9

)

 
 

∆𝑥3𝜋(1 − 10𝑒−9)
 

( 8.104 ) 

Without considering the gravity force, the pressure of material points in fictitious 

layers are calculated from the pressure of the material points in fluid domain as (Gao 

and Oterkus, 2020) 

𝑝𝑖
𝑛 =

∑ 𝜔0(𝝃𝑖𝑗
𝑛 )

𝑁1
𝑗=1 𝑝𝑗

𝑛 + ∑ 𝜔0(𝝃𝑖𝑘
𝑛 )𝑁2

𝑘=1 𝑝𝑘
𝑛

∑ 𝜔0(𝝃𝑖𝑗
𝑛 )

𝑁1
𝑗=1 + ∑ 𝜔0(𝝃𝑖𝑘

𝑛 )𝑁2
𝑘=1

 
( 8.105 ) 

in which 𝑝𝑗
𝑛 and 𝑝𝑘

𝑛 are the pressure of family material points of 𝑖 in fluid 1 and fluid 

2 at current time step 𝑛.  

Dirichlet and Neuman temperature boundary conditions are also implemented by 

material points in fictitious layers. With the analogous ideas of computing velocity and 

pressure for material points at fictitious layers, the temperature of material point 𝑖 at 

current time step 𝑛 is computed from its family material points temperature 𝑇𝑗
𝑛 and 𝑇𝑘

𝑛 

in fluid 1 and fluid 2 as 
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𝑇𝑖
𝑛 = 2𝑇𝑤𝑎𝑙𝑙 − 𝜑𝑇

∑ 𝜔0(𝝃𝑖𝑗
𝑛 )

𝑁1
𝑗=1 𝑇𝑗

𝑛 +∑ 𝜔0(𝝃𝑖𝑘
𝑛 )𝑁2

𝑘=1 𝑇𝑘
𝑛

∑ 𝜔0(𝝃𝑖𝑗
𝑛 )

𝑁1
𝑗=1 +∑ 𝜔0(𝝃𝑖𝑘

𝑛 )𝑁2
𝑘=1

 
( 8.106 ) 

with 

𝜑𝑇 = {
1
−1

for Dirichlⅇt boundary condition 
 for Nⅇuman boundary condition with 𝑇𝑤𝑎𝑙𝑙 = 0

 
( 8.107 ) 

in which 𝑇𝑤𝑎𝑙𝑙 is the wall temperature. 

8.4.3 Time Stepping Scheme 

The momentum equation is integrated explicitly in time using Velocity Verlet scheme 

as (Adami et al., 2013) 

𝒗𝑖
𝑛+1 = 𝒗𝑖

𝑛 +
1

2
(𝒂𝑖

𝑛+1 + 𝒂𝑖
𝑛)∆𝑡 

( 8.108 ) 

and the displacement field at each material point in fluid domain is updated by 

𝒖𝑖
𝑛+1 = 𝒖𝑖

𝑛 + 𝒗𝑖
𝑛∆𝑡 +

1

2
𝒂𝑖
𝑛∆𝑡2 

( 8.109 ) 

As a result, the updated location of the material points can be found as 

𝒙𝑖
𝑛+1 = 𝒙𝑖

0 + 𝒖𝑖
𝑛+1 ( 8.110 ) 

in which the superscript 0 represents at time step 𝑛 = 0. 

To maintain the numerical stability in time integration, the time step size ∆t  is 

constrained by the Courant–Friedrichs–Lewy (CFL) condition (Courant et al., 1928). 

The CFL condition in time integration is based on several conditions. The time step 

size for numerical speed of sound condition is (Adami et al., 2013) 

∆𝑡𝑠 ≤ 0.25
∆𝑥

𝑐𝑚𝑎𝑥 + |𝒗𝑚𝑎𝑥|
 

( 8.111 ) 

in which 𝑐𝑚𝑎𝑥  is the maximum numerical speed of sound among all phases. The 

estimation of numerical speed of sound in each fluid phase is provided in Eq.( 8.21 ) 

and Eq.( 8.25 ), and 𝒗𝑚𝑎𝑥 is the maximum velocity in the simulation domain. 
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The time step size for viscous condition is constrained as (Adami et al., 2013) 

∆𝑡𝑣 ≤ 0.125
∆𝑥2

(
𝜇
𝜌0
)
𝑚𝑎𝑥

 
( 8.112 ) 

where (
𝜇

𝜌0
)
𝑚𝑎𝑥

 is the maximum kinematic viscosity among all phases. 

The time step size for body force condition is applied as (Adami et al., 2013) 

∆𝑡𝑏 ≤ 0.25√
∆𝑥

𝑔
 

( 8.113 ) 

in which 𝑔 is the gravity acceleration. 

The time step size for surface tension condition is implemented as (Adami et al., 2010) 

∆𝑡𝑠𝑓 ≤ 0.25√
𝜌0∆𝑥3

2𝜋𝛾
 

( 8.114 ) 

In addition, the time step size in thermal analysis is restricted as (Cleary, 1988) 

∆𝑡𝑡 ≤ 0.125
𝜌0𝐶𝑝∆𝑥

2

𝑘
 

( 8.115 ) 

In processing the numerical time integration, the time step size is chosen as the 

minimum of above criteria as 

∆𝑡 = 𝑚𝑖𝑛{∆𝑡𝑣, ∆𝑡𝑣, ∆𝑡𝑏 , ∆𝑡𝑠𝑓 , ∆𝑡𝑡} ( 8.116 ) 

8.4.4 Material Points Shifting Technique 

Since distorted material points induce stability issues in processing the numerical 

integration (Xu et al., 2009), the position shifting technique is applied at material 

points at each time step in fluid domain to avoid clustering problems. The application 

of position shifting technique is introduced in Gao and Oterkus, (2020) for PDDO. At 

each time step, the displacement for each material point in fluid domain 𝒖𝑖
𝑛+1  is 

corrected by a shifted distance (∆𝒖𝑖
𝑛+1)∗, which is represented as 
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(𝒖𝑖
𝑛+1)∗ = 𝒖𝑖

𝑛+1 + (∆𝒖𝑖
𝑛+1)∗ ( 8.117 ) 

The shifting distance is defined as (Gao and Oterkus, 2020) 

(∆𝒖𝑖
𝑛+1)∗ = 𝐶𝛼𝑀𝑃𝑆𝑇𝑼𝑖 ( 8.118 ) 

in which 𝑼𝑖  is the displacement shifting vector. To ensure the shifted distance can 

sufficiently prevent the instability and do not cause accuracy issues, the constant 𝐶 is 

typically taken between 0.01-0.1. The shifting magnitude 𝛼𝑀𝑃𝑆𝑇 is set as (Xu et al., 

2009) 

𝛼𝑀𝑃𝑆𝑇 = 𝒗𝑚𝑎𝑥∆𝑡 ( 8.119 ) 

In addition, the displacement shifting vector in Eq.( 8.118 ) is provided as (Gao and 

Oterkus, 2020) 

𝑼𝑖 =∑
𝜉
𝑖

2

|𝝃𝑖𝑗
𝑛 |

2

𝑁𝑖

𝑗

𝝃𝑖𝑗
𝑛  

( 8.120 ) 

The summation of distance vectors in Eq.( 8.120 ) describes the anisotropy of the 

spacing between material points, and 
𝝃𝑖
2

|𝝃𝑖𝑗
𝑛 |

2 is used as a weight function to evaluate the 

influence from material point 𝑗. The averaged material points spacing 𝜉
𝑖
 in Eq.( 8.120 ) 

is defined as (Xu et al., 2009) 

𝜉
𝑖
=
1

𝑁𝑖
∑|𝝃𝑖𝑗

𝑛 |

𝑁𝑖

𝑗

 

( 8.121 ) 

8.4.5 Moving Least Square Method 

In Lagrangian method, the position of material points is tracked and updated at each 

time step. When position of material points in the fluid domain changes continuously, 

the number of family material points may decrease. In this case, the calculated density 

may be smaller than normal. Therefore, the equation of state predicts wrong pressure 

values, leading to a gradual deterioration of the entire field (Dilts, 1999). To avoid 

mass conservation issues, and oscillations at the density, pressure, and velocity of 
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material points at fluid domain are smoothed using moving least square method (Dilts, 

1999). 

The velocity field in the fluid domain is smoothed as (Gao and Oterkus, 2020) 

(𝒗𝑖
𝑛)𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 =

∑ 𝒗𝑗
𝑛𝑁𝑖

𝑗 𝜔𝑀𝐿𝑆(𝝃𝑖𝑗
𝑛 )𝑉𝑗

𝑛

∑ 𝜔𝑀𝐿𝑆(𝝃𝑖𝑗
𝑛 )

𝑁𝑖
𝑗 𝑉𝑗

𝑛
 

( 8.122 ) 

The pressure field in the fluid domain is smoothed as (Gao and Oterkus, 2020) 

(𝑝𝑖
𝑛)𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 =

∑ 𝑝𝑗
𝑛𝑁𝑖

𝑗 𝜔𝑀𝐿𝑆(𝝃𝑖𝑗
𝑛 )𝑉𝑗

𝑛

∑ 𝜔𝑀𝐿𝑆(𝝃𝑖𝑗
𝑛 )

𝑁𝑖
𝑗 𝑉𝑗

𝑛
 

( 8.123 ) 

The density field in the fluid domain is smoothed as (Gao and Oterkus, 2020) 

(𝜌𝑖
𝑛)𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 =

∑ 𝜌̅𝑗
𝑛𝑁𝑖

𝑗 𝜔𝑀𝐿𝑆(𝝃𝑖𝑗
𝑛 )𝑉𝑗

𝑛

∑ 𝜔𝑀𝐿𝑆(𝝃𝑖𝑗
𝑛 )

𝑁𝑖
𝑗 𝑉𝑗

𝑛
 

( 8.124 ) 

with 

𝜌̅𝑗
𝑛 = [

(𝑝𝑗
𝑛 − 𝑝0,𝑗)𝛼𝑗

𝜌0,𝑗𝑐0,𝑗
2 + 1]

1
𝛼𝑖

𝜌0,𝑖 

( 8.125 ) 

The weight function, 𝜔𝑀𝐿𝑆, for smoothing variables in above equations at fluid domain 

is provided as (Colagrossi and Landrini, 2003) 

𝜔𝑊𝐿𝑆(𝝃𝑖𝑗
𝑛 ) = [𝛽0(𝒙𝑖

𝑛) + 𝛽1(𝒙𝑖
𝑛)(−𝝃𝑖𝑗

1 𝑛) + 𝛽2(𝒙𝑖
𝑛)(−𝝃𝑖𝑗

2 𝑛)]𝜔0(𝝃𝑖𝑗
𝑛 ) ( 8.126 ) 

in which 

𝛽(𝒙𝑖
𝑛) = (

𝛽0(𝒙𝑖
𝑛)

𝛽1(𝒙𝑖
𝑛)

𝛽2(𝒙𝑖
𝑛)

) = 𝑺−1(𝒙𝑖
𝑛) [

1
0
0
] 

( 8.127 ) 

and 
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𝑺(𝒙𝑖
𝑛) =∑𝜔0(𝝃𝑖𝑗

𝑛 )

[
 
 
 
 1 −𝝃𝑖𝑗

1 𝑛 −𝝃𝑖𝑗
2 𝑛

−𝝃𝑖𝑗
1 𝑛 (𝝃𝑖𝑗

1 𝑛)
2

𝝃𝑖𝑗
1 𝑛𝝃𝑖𝑗

2 𝑛

−𝝃𝑖𝑗
2 𝑛 𝝃𝑖𝑗

1 𝑛𝝃𝑖𝑗
2 𝑛 (𝝃𝑖𝑗

2 𝑛)
2

]
 
 
 
 𝑁𝑖

𝑗

 

( 8.128 ) 

In addition, to reduce the numerical computation time, the velocity, pressure and 

density field only being corrected over a period of time steps by using moving least 

square method, and this is optional in numerical simulation. For benchmark cases 

moving least square method is used for dynamic cases (Section 8.5.1, 8.5.3 and 8.5.5), 

however this method is not needed for static cases (Section 8.5.2 and 8.5.4). 

8.5 Numerical Simulations 

In this section, five numerical cases are considered by using the developed PDDO for 

modelling the surface tension forces in multiphase fluid flow motion. First, a two-

dimensional square droplet deformation is studied to examine the non-local form of 

surface tension force model in normal direction. Second, when fluid flow is in contact 

with a solid surface, the difference between unit normal vectors at the triple line region 

before and after using the unit normal vector prescription scheme are compared 

through a static droplet wetting case. Third, simulation of droplet contact angle 

development on a solid surface is performed to show the effect of prescribed normal 

vectors at the triple line region. Afterwards, capillary stresses tangential to the interface 

are computed under a heat conduction phenomenon to validate the non-local form of 

the Marangoni force formulation. Finally, a two-dimensional droplet migration in a 

thermocapillary flow is presented to test the combination of the surface tension forces 

in the normal direction and the tangential direction. The predicted migration velocity 

of the circular droplet in the thermocapillary flow is compared with the volume of fluid 

method. 

8.5.1 Droplets Deformation 

In the first case, a two-dimensional square droplet deformation is conducted to validate 

the surface tension force model by using PDDO. As shown in Fig. 8-7(a), the square 

droplet with dimensions of 0.6 m × 0.6 m is filled with fluid 2 and surrounded by fluid 

1. The fluid domain has a box of size 𝐿 = 𝑊 = 1 m. The density for fluid 1 and fluid 

2 are specified as 𝜌1 = 10 kg/m3  and 𝜌2 = 1 kg/m3 , respectively. Fluid 1 has a 
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viscosity coefficient of 𝜇1 = 1 Pa ∙ s  while fluid 2 has 𝜇2 = 0.2 Pa ∙ s . The surface 

tension coefficient between fluid 1 and fluid 2 is independent with the temperature and 

chosen as 𝛾 = 1 N/m.  

  
(a) (b) 

Fig. 8-7 Investigation of square droplet deformation (a) geometry (b) PDDO 

discretisation. 

The fluid is initially at rest for which the initial condition can be illustrated as 

𝑢 = 0, 𝑣 = 0 at 𝑡 = 0 ( 8.129 ) 

No-slip boundary conditions are applied at four edges of the fluid 1 as 

𝑣𝑥 = 𝑣𝑦 = 0 at 𝑥 = −
𝐿

2
, 𝑥 =

𝐿

2
, 𝑦 = −

𝑊

2
, 𝑦 =

𝑊

2
  

( 8.130 ) 

In processing the numerical simulation, as shown in Fig. 8-7(b), three layers for 

fictitious material points are wrapped along the edges of the fluid domain. No-slip 

boundary conditions are implemented on these fictitious material points by using 

Eq.( 8.102 ) - Eq.( 8.103 ) with 𝐯𝑤𝑎𝑙𝑙 = 0 m/s. The pressure field for fictitious material 

points is computed by using Eq.( 8.105 ). 

The deformation of the square droplet is driven by surface tension force, which 

transforms square droplet in a circular shape at equilibrium state. With 

incompressibility hypothesis, the radius of the final circular droplet can be estimated 

as 
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𝑅 =
0.6

√𝜋
≈ 0.034 m 

( 8.131 ) 

Therefore, the pressure changes ∆𝑝 between fluid 1 and fluid 2 can be estimated by 

using Young-Laplace equation as 

∆𝑝 =
𝛾

𝑅
≈ 2.94 Pa ( 8.132 ) 

As introduced in section 8.2.3, the incompressible fluid motion is constrained by a 

weakly compressible equation of state, and the numerical speed of sound in the 

equation of state is computed based on the pressure change. As a result, the numerical 

speed of sound for fluid 1 can be estimated by using Eq.( 8.21 ), and the numerical 

speed of sound for fluid 2 can be obtained by Eq.( 8.25 ). In this case, numerical speed 

of sound for fluid 1 is taken as 𝑐1 = 6 m/s, and for fluid 2 as 𝑐2 = 18.97 m/s. 

As shown in Fig. 8-7(b), the fluid domain is discretised with a uniform spacing of 

∆𝑥 = 0.0125 m. The horizon size is selected as 𝛿 = 3∆𝑥. Simulation is processed for 

a total time of 𝑡 = 2.56 s  and the time step size is set as ∆𝑡 = 8 × 10−5 s . The 

displacement field of the material points in fluid domain is obtained by velocity Verlet 

scheme. 

In addition, the moving least square method introduced in section 8.4.5 is used to 

correct the density, pressure, and velocity field at fluid domain at every 20-time steps. 

In order to obtain a smooth distribution of material points in the fluid domain, the 

material points shifting technique is utilized in every time step of the simulation to 

smooth the displacement field. The constant 𝐶 is taken as 0.01 in this case. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

 

(e) 

 

(f) 

Fig. 8-8 Evolution of droplet deformation at (a)𝑡 = 0.128 𝑠, (b) 𝑡 = 0.384 𝑠, (c) 𝑡 =
0.64 𝑠, (d) 𝑡 = 1.28 𝑠, (e) 𝑡 = 1.92 𝑠, (f) 𝑡 = 2.56 𝑠. 

Fig. 8-8 shows the snapshots of the droplet transformation from square shape to 

circular shape. As can be observed from Fig. 8-8(f), at the final state, the droplet has 

an average radius of 0.0338 m , which is close to the estimated value given in 

Eq.( 8.131 ). The time history of average pressure difference between fluid 1 and fluid 

2 is presented in Fig. 8-9(a). As can be observed from the figure, the pressure 

difference reaches an equilibrium state after 𝑡 = 1.5 s . The pressure changes  ∆𝑝 

between fluid 1 and fluid 2 predicted by PDDO shows a close agreement with the 

analytical solution as computed by Eq.( 8.132 ). The final pressure profile of the fluid 

domain at 𝑡 = 2.56 s is presented in Fig. 8-9(b). The square droplet transforms into a 

circular shape with a smooth material point distribution, and the pressure difference 

between droplet and surrounding fluids match with the analytical value from Young-

Laplace equation. It can be concluded that the current surface tension model utilizing 

the PDDO can accurately capture the surface tension effect in the normal direction in 

multiphase flow. 

 
(a) 

 
(b) 

Fig. 8-9 Pressure profile (a) time history of pressure difference between the droplet 

and surrounding fluid (b) distribution at  t=2.56 s. 
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8.5.2 Unit Normal Vector Correction at Triple Line Region 

The first case demonstrates the effectiveness of surface tension force model in normal 

direction. However, this only validates the case when fluid 2 is fully surrounded by 

fluid 1. When both fluids are in contact with a solid interface, additional processing of 

the unit normal vectors between the two fluids at the triple line region is required to 

prevent curvature errors. As shown in Fig. 8-10, this section uses cases of droplets 

forming two different contact angles on a solid surface to demonstrate the difference 

between the unit normal vectors obtained before and after normal prescription scheme 

at triple line region. 

 

Fig. 8-10 Demonstration of two droplets lying on a solid surface with 30° contact 

angle and 90° contact angle. 

As shown in Fig. 8-11, two denser fluid droplets with radius 𝑟 = 0.0125 m  are 

surrounded by lighter fluid, and they are both being placed in a rectangular box. The 

box has a size of 0.1 m in length and 0.05 m in width. The density for denser fluid is 

𝜌1 = 1000 kg/m3 and for lighter fluid is 𝜌2 = 1.2 kg/m3. Two denser fluid droplets 

contact with the solid surface and form a contact angle of 30° and 90°, respectively. 

The spacing between material point is set as ∆𝑥 = 0.0013 m.  

 
(a) 

 
(b) 

Fig. 8-11 PDDO discretisation of droplet contact on solid interface (a) 30° contact 

angle (b) 90° contact angle. 
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The unit normal vectors between the denser and lighter fluid domains, calculated 

according to Eq.( 8.52 ), are shown in Fig. 8-12. It can be observed that in the case of 

a 30° contact angle, the unit normal vectors 𝒏̂𝑙𝑔 at the triple line region in the lighter 

fluid domain is pointed towards the wrong direction. The issues are also reflected in 

the 90° contact angle case. This is because, at the triple line region, there are not 

enough family material points to contribute to the integral equation when computing 

the unit normal for the lighter fluid. Therefore, incorrect unit normal vectors will result 

in incorrect curvature calculations and affect the surface tension force modelling. 

 
(a) 

 
(b) 

Fig. 8-12 The unit normal vectors between fluid domains before correction (a) 30° 

contact angle (b) 90° contact angle. 

Considering that the same droplet forms contact angles of 30° and 90°, respectively, 

the prescription normal vectors 𝒏̂𝑙𝑔,𝑐𝑜𝑟  at triple line region computed based on 

Eq.( 8.54 ), and interface unit normal vectors 𝒏̂𝑙𝑔 not at the triple line region obtained 

based on Eq.( 8.52 ) are presented in Fig. 8-13. 

 
(a) 

 
(b) 

Fig. 8-13 The corrected unit normal vectors at triple line region (a) 30° contact 

angle (b) 90° contact angle. 
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As shown in Fig. 8-13, while the incorrect unit normal vectors at the triple line region 

are resolved in both contact angle cases, a sharper transition is observed between the 

two types of unit normal vectors. Therefore, calculating the curvature of the interface 

remains problematic. 

 
(a) 

 
(b) 

Fig. 8-14 Smoothed unit normal vectors at fluid interface (a) 30° contact angle (b) 

90° contact angle. 

In order to prevent discontinuity of the unit normal vectors not at the triple line region, 

the unit normal vectors at the triple line region are smoothed according to Eq.( 8.59 ). 

The unit normal vectors between denser and lighter fluid domains after smoothing are 

presented in Fig. 8-14. As can be observed, the unit normal vectors close to the triple 

line region comply with the corrected unit normal vector 𝒏̂𝑙𝑔,𝑐𝑜𝑟 while far from the 

triple line region unit normal vector is computed from 𝒏̂𝑙𝑔. When the instantaneous 

contact angle 𝜃  formed by a droplet contacting a solid surface is not equal to the 

equilibrium contact angle 𝜃𝑒𝑞, the curvature creates a force to move the triplet until 

the equilibrium contact angle is reached. 

8.5.3 Static Contact Angle Development 

After demonstrating the influence of treatment for unit normal vectors at the triple line 

region, in this section, a two-dimensional liquid droplet deformation on a rigid wall is 

investigated to study the characteristics of droplet wetting in different stages. As shown 

in Fig. 8-15(a), a rectangular liquid droplet with a dimension of 2.25 × 10−2 m2 in 

length and 1.25 × 10−2 m2 in width is placed in a rectangular box with a dimension 

of 0.1 × 0.05 m2 . The liquid droplet on the wall is surrounded by gas fluids. The 

density and viscosity coefficient of the gas phase are specified as 𝜌1 = 1.2 kg/m3 and 

𝜇1 = 1 × 10−3 Pa ∙ s, respectively. The density and viscosity coefficient for liquid is 
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set as 𝜌2 = 1000 kg/m3 and 𝜇2 = 3.16 × 10−5 Pa ∙ s, respectively. To focus on the 

physical characteristics of droplet wetting, the surface tension coefficient between 

liquid and gas fluids is chosen as 𝛾 = 0.07 N/m , which is independent of the 

temperature variation. 

The fluid gravitational acceleration is disregarded in this example. The initial condition 

of the fluid is provided as 

𝑢 = 0, 𝑣 = 0 at 𝑡 = 0 ( 8.133) 

 

 
(a)  

(b) 

Fig. 8-15 Investigation of square droplet wetting on a solid surface (a) geometry of 

the fluid domain (b) PDDO discretisation of the simulation domain. 

Fig. 8-15(b) shows the numerical simulation domain. The domain is discretized with 

a uniform spacing of ∆𝑥 = 1.0 × 10−3 m. The horizon size is chosen as 𝛿 = 3∆𝑥. The 

material points in the fluid 1 and fluid 2 are presented in dark red and red, respectively. 

The gas and liquid fluid are wrapped by three layers of fictitious material points while 

the rigid solid wall boundary is presented in orange colour. The no-slip boundary 

conditions are implemented as 

𝑣𝑥 = 𝑣𝑦 = 0 at 𝑥 = −
𝐿

2
, 𝑥 =

𝐿

2
, 𝑦 = −

𝑊

2
, 𝑦 =

𝑊

2
 

( 8.134 ) 

Therefore, the velocities at fictitious material points are computed based on Eq.( 8.102 ) 

- Eq.( 8.103 ) with 𝑣𝑤𝑎𝑙𝑙 = 0 m/s. The pressure field at fictitious material points is 

calculated according to Eq.( 8.105 ).  

The time step size is set as ∆𝑡 = 5 × 10−5 s with a total simulation time of 𝑡 = 1 s. 

The displacement field of the material points in fluid domain is acquired by using 
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velocity Verlet scheme. In this case, the moving least squares technique is applied in 

the simulation every 20 steps to smooth the velocity, pressure, and density fields. In 

addition, the material points shifting technology is used in the simulation, and the 

constant 𝐶 in Eq.( 8.118 ) is taken as 0.01 to ensure the smooth distribution of material 

points at each time step. 

   

𝑡
=
0
.1
2
5
 𝑠

 

   

𝑡
=
0
.2
5
 𝑠

 

   

𝑡
=
0
.5
 𝑠

 

   

𝑡
=
0
.7
5
 𝑠

 



189 

 

   

𝑡
=
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(a)60°contact angle (b) 90°contact angle (c) 150°contact angle  

Fig. 8-16 Evolution of liquid droplet wetting on a solid surface for various contact 

angles. 

Fig. 8-16 presents snapshots of the two-dimensional liquid droplet formation on the 

solid wall for three different cases 𝜃𝑒𝑞 = 60° (hydrophilic wetting), 𝜃𝑒𝑞 = 90°  and 

𝜃𝑒𝑞 = 150° (hydrophobic wetting). The droplet initially stays as a rectangular shape. 

The unit normal vectors between the gas and liquid phases at the triple line region are 

corrected and smoothed based on the prescribed equilibrium contact angle by using 

Eq.( 8.59 ). The unit normal vectors form a smooth curvature at the interface between 

gas and liquid. The curvature obtained from the corrected unit normal vectors induced 

a force along the fluid interface to deform the droplet until the prescribed equilibrium 

contact angle is reached. 

8.5.4 Capillary Stress Tangential to Interface 

After investigating the surface tension force in normal direction, in this section, the 

developed non-local Marangoni force formulation is examined by considering a heat 

conduction test case. As shown in Fig. 8-17(a), two-layered fluids are placed in a 

square simulation domain with 5.75 mm in length and width. The heat conduction and 

Marangoni force at the fluid interface are simulated by using the developed PDDO 

model. The left and right sides of the fluid domain are filled with liquid 1 and liquid 2, 

respectively. Two fluids have identical density and viscosity coefficients as 𝜌1 = 𝜌2 =

250 kg/m3  and 𝜇1 = 𝜇2 = 0.012 Pa ∙ s . The specific heat capacity and heat 

conduction coefficient for fluid 1 and fluid 2 are taken as 𝑐𝑝1 = 𝑐𝑝2 = 0.5 × 10−4 J/

kgK  and 𝑘1 = 𝑘2 = 1.2 × 10−6 W/mK . As this case focuses on verifying the heat 

conduction and Marangoni force models, only the energy equation is involved in this 

model, and the Marangoni force is numerically computed by using PDDO based on 

Eq.( 8.16 ). In addition, the surface tension coefficient is a temperature dependent 
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property which is given in Eq.( 8.12 ), in which the surface tension temperature 

coefficient is chosen to be 
𝑑𝛾(𝑇)

𝑑𝑇
= 0.002 N/mK. 

 
(a) (b) 

Fig. 8-17 Investigation of Marangoni force at the interface between two fluids (a) 

geometry (b) PDDO discretisation. 

The time step size is chosen as ∆𝑡 = 1 × 10−5 s, and the total simulation time is 𝑡 =

0.1 s.  

At the initial state, the temperature distribution of the fluid domain is set to zero as 

𝑇 = 0 at 𝑡 = 0 ( 8.135 ) 

The boundary conditions are implemented by using the fictitious layers as shown in 

Fig. 8-17(b) and defined as 

 𝑇 = 0 𝐾 at 𝑦 = −
𝑊

2
 

 𝑇 = 1.152 𝐾 at 𝑦 =
𝑊

2
 

( 8.136 ) 

𝜕𝑇

𝜕𝑥
= 0 at 𝑥 = −

𝐿

2
=
𝐿

2
 

 

In order to accurately capture the Marangoni force distribution at the interface, the heat 

conduction model is first examined with a mesh size of ∆𝑥 = 9.0 × 10−5 m . The 

horizon size is chosen as 𝛿 = 3∆𝑥. The temperature distribution predicted by using 
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PDDO at 𝑡 = 0.1 s  is compared with ANSYS and presented in Fig. 8-18. A good 

agreement is observed between the two methods, which validates the heat conduction 

model. In addition, as can be computed from the temperature field and the analytical 

solution, a temperature gradient of ∇𝑇 = 200 K/m is distributed along the width of 

the simulation domain. As a result, Marangoni force is developed vertically at the 

interface. The theoretical Marangoni force distributed along the interface is computed 

as 𝒇𝑠,𝑡 = 𝛻𝑆𝛾 = 0.4 N/m2. 

The Marangoni force is examined under different spacings between material points, in 

which the mesh size is chosen as ∆𝑥 = 1.8 × 10−4 m, ∆𝑥 = 9.0 × 10−5 m and ∆𝑥 =

4.5 × 10−5 m . Fig. 8-19 presents Marangoni force vectors distributed along the 

interface by using a mesh size of ∆𝑥 = 9.0 × 10−5 m. The profile of the Marangoni 

force vectors is perpendicular to the interface. As the continuum surface force method 

is adopted in the model, the volume Marangoni force is smoothed and distributed 

symmetrically along the transition band of the fluid interface. 

 
(a) 

 
(b) 

Fig. 8-18 Temperature distribution of the simulation domain at t=0.1 s (a)PDDO 

(b)ANSYS. 
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Fig. 8-19 Marangoni force vectors distributed along the interface with ∆𝑥 =

9.0 × 10−5 𝑚. 

Fig. 8-20 shows the Marangoni force magnitude distribution profile in the horizontal 

direction at the centre of the simulation domain by using various mesh sizes. It can be 

noticed that the maximum Marangoni force decreases as the material point spacing 

increases. The continuum surface force model handles the local Marangoni forces at 

the fluid interface by applying them to material points in the transition zone between 

the two fluids. As the horizon size is taken as 𝛿 = 3∆𝑥, material points adjacent to the 

interface but beyond a horizon size from the interface do not capture surface tension 

forces. As a result, only three layers of material points on either side of the interface 

capture the Marangoni force regardless of the spacing chosen. The magnitude 

distribution of the Marangoni force at these material points is governed by a weighting 

function that controls the decay of the Marangoni force with increasing distance from 

the interface.  
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Fig. 8-20 Volumetric Marangoni force distribution computed at interfaces of different 

mesh sizes using PDDO. 

To compare the numerically computed Marangoni force with the analytical solution, 

Fig. 8-21 presents the integral of the Marangoni force distributed at the three-layer 

material points along the interface for different spacings between material points. As 

can be observed, the calculated Marangoni force has a good agreement with the 

analytical solution despite the spacing between material points being different. 

Therefore, the presented Marangoni force formulation can accurately capture the 

Marangoni force due to the temperature gradient. 

 

Fig. 8-21 Comparison between the PDDO prediction and analytical solution of 

interfacial Marangoni force. 

8.5.5 Two-dimensional Droplet Migration in Thermocapillary Flow 

After validating the surface tension formulation in normal direction, the Marangoni 

force formulation, and heat conduction model, in this case, surface tension in normal 

and tangential directions are combined to investigate the motion of a droplet in 

thermocapillary flow. Thermocapillary flow motion was studied in the past decades 

experimentally and numerically (Young et al., 1959; Balasubramaniam and Chai, 1987; 
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Wozniak et al., 2001). In this case, the flow motion is simulated by using PDDO. As 

shown in Fig. 8-22(a), a circular droplet with radius 𝑅 = 0.00144 m  is initially 

located at the centre of the simulation domain, and it is filled with fluid 1. The density 

and viscosity coefficient for fluid 1 are set as 𝜌1 = 250 kg/m3 and 𝜇1 = 0.012 Pa ∙ s., 

respectively. The droplet is surrounded by fluid 2 in a square box with a dimension of 

𝐿 = 𝑊 = 0.00576 m. The density and viscosity coefficient for fluid 2 are specified as 

𝜌2 = 500 kg/m3 and 𝜇2 = 0.024 Pa ∙ s. In heat conduction model, the specific heat 

capacity for fluid 1 and fluid 2 is 𝑐𝑝1 = 0.5 × 10−4 J/kgK and 𝑐𝑝2 = 1.0 × 10−4 J/

kgK, respectively. The heat conduction coefficient for fluid 1 and fluid 2 is chosen as 

𝑘1 = 1.2 × 10−6 W/mK and 𝑘2 = 2.4 × 10−6 W/mK, respectively. 

As the incompressible fluid motion is constrained by a weakly compressible equation 

of state, the numerical speed of sound in the equation of state for each fluid domain is 

set as 𝑐1 = 1.666 m/s and 𝑐2 = 1.178 m/s, and the material constants are 𝛼1 = 𝛼2 =

1 . The surface tension coefficient is dependent on the temperature as given in 

Eq.( 8.12 ). The reference surface tension coefficient, reference temperature, and 

surface tension temperature coefficient are chosen as 𝛾0 = 0.01 N/m, 𝑇𝛾0 = 290 K, 

and 
𝑑𝛾(𝑇)

𝑑𝑇
= 0.002 N/mK. 

 

Fig. 8-22 Thermocapillary flow migration (a) geometry (b) PDDO discretisation. 

The fluid is initially at rest for which the initial displacement and velocity conditions 

can be represented as 
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𝐮 = 0, 𝐯 = 0 at 𝑡 = 0 ( 8.137 ) 

In addition, a linearly varying temperature profile is initially applied to the fluid 

domain with temperature gradient |∇𝑇| = 200 K/m and points upwards. This can be 

represented as 

 𝑇(𝑥, 𝑦) = |∇𝑇| (𝑥 +
𝐿

2
) at 𝑡 = 0  

( 8.138 ) 

No-slip boundary conditions for velocity are applied to the top and bottom edges of 

the fluid domain as 

𝑣𝑥 = 𝑣𝑦 = 0 at 𝑦 = −
𝑊

2
, 𝑦 =

𝑊

2
 

( 8.139 ) 

Free-slip condition for velocity is applied to the lateral edges of the fluid domain. In 

addition, a Dirichlet temperature boundary condition is applied on the top and bottom 

edges of the square box as  

 𝑇 = 290 𝐾 at 𝑦 = −
𝑊

2
  

 𝑇 = 291.152 𝐾 at 𝑦 =
𝑊

2
 

( 8.140 ) 

The Neumann boundary condition is applied on the lateral edges of the square box. As 

represented in Fig. 8-22(b), the fluid domain is wrapped with three layers of material 

points for implementing the temperature, pressure, and velocity boundary conditions. 

No-slip and free slip boundary conditions are implemented on these fictitious material 

points by using Eq.( 8.102 ) - Eq.( 8.133) and the pressure field at fictitious material 

points is calculated by using Eq.( 8.105 ). In addition, Dirichlet and Neumann 

temperature boundary condition for fluid domain are implemented by using Eq.( 8.106 ) 

- Eq.( 8.107 ) for material points at fictitious region. 

The fluid domain is discretised with a uniform spacing of ∆𝑥 = 9 × 10−5 m and the 

horizon size is taken as 𝛿 = 3∆𝑥. The simulation is conducted with a total time of 𝑡 =

0.12 s and the time step size is chosen as ∆𝑡 = 1 × 10−5 s. Material points shifting 

technique is implemented, and the constant 𝐶 is taken as 0.01. In addition, the density, 
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pressure, and velocity field are smoothed by moving least square method every 20-

time steps.  

The interface between the circular droplet and surrounding fluid is subjected to the 

surface tension force in normal direction. The pressure difference between two fluids 

maintains the equilibrium of circular shape. The pressure field of the fluid domain at 

𝑡 = 0.12 s is shown in Fig. 8-23. The pressure difference between two fluids interface 

can be analytically verified by Young-Laplace equation, in which ∆𝑃 = 6.944 N/m2. 

As can be seen from the figure, a good agreement with the analytical value is observed 

for the pressure difference between fluid 1 and fluid 2.  

 

Fig. 8-23 Fluid field pressure distribution at t=0.12 s. 

The dimensionless parameters Reynolds number, Marangoni number, and capillary 

number are used to characterize thermocapillary migration. To compare the result with 

the Volume of Fluid (VOF) method, the dimensionless parameters are taken as the 

same as the case presented in the VOF method (Ma and Bothe, 2011). The 

dimensionless parameters in this case are set as 

𝑅𝑒 =
𝜌2𝑅𝑈𝑟
𝜇2

= 0.72 
( 8.141 ) 

𝑀𝑎 =
𝜌2𝑐𝑝2𝑅𝑈𝑟

𝑘2
= 0.72 

( 8.142 ) 

and 
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𝐶𝑎 =
𝜇2𝑈𝑟
𝛾0

= 0.0576 
( 8.143 ) 

in which 𝑈𝑟 is the characteristic velocity, and it is being computed as 

𝑈𝑟 =
 
𝑑𝛾(𝑇)
𝑑𝑇

|∇𝑇|𝑅

𝜇2
=
 0.002 × 200 × 0.00144

0.024
= 0.024 

m

s
 

( 8.144 ) 

The migration of the circular droplet at different times is provided in Fig. 8-24. To 

visualise the migration of a droplet, the lowest location of the circular droplet at the 

initial stage is used as a reference location and presented as a dash line in the figure. 

   
Fig. 8-24 Migration of the droplet at (a) t=0.04 s (b) t=0.08 s (c) t=0.12 s. 

The ratio between square box and the radius of the droplet is 𝐿/𝑅 = 4. The migration 

velocity of the circular droplet by using VOF method at this ratio is provided in Ma 

and Bothe, (2011). The comparison between PDDO method and VOF method for the 

time evolution of droplet migration velocity is presented in Fig. 8-25. The velocity is 

non-dimensionalized as 𝑈∗ = 𝑈/𝑈𝑟, and the time is non-dimensionalized as 𝑡∗ = 𝑡/𝑡𝑟 

with 𝑡𝑟 = 𝑅/𝑈𝑟. As can be observed from the figure, the migration velocity predicted 

by using the proposed method has a good agreement with the velocity predicted by 

using the VOF method. 
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Fig. 8-25 Dimensionless velocity of the droplet migration over the dimensionless 

time. 

The temperature and velocity field of the fluid domain at 𝑡 = 0.12 s are provided in 

Fig. 8-26 and Fig. 8-27, respectively. The uneven temperature distribution in Fig. 8-26 

causes a temperature gradient across the fluid domain. As a result, tangential forces 

are created at the interface between fluid 1 and fluid 2. Combining with the viscosity 

of the fluid, the droplet is pushed to move along the thermal gradient upwards, and the 

material points within the droplet recirculate along a pair of symmetrical vortices in 

the circular droplet. 

 

Fig. 8-26 Isothermal distribution of the fluid domain at t=0.12 s. 
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Fig. 8-27 Velocity profile of the thermocapillary migration of the droplet at t=0.12 s. 

8.6 Chapter Summary 

This chapter presents a new non-local surface tension model in multiphase fluid flow 

through the PDDO. The model considers surface tension in the normal direction, 

Marangoni forces, and surface wetting. The governing equations of multiphase flow 

motion are represented using the PDDO. The non-local form of normal surface tension 

is verified by simulating the deformation of a square droplet. Subsequently, this work 

explains the handling of the unit normal vector at the triple line region using the static 

and dynamic behaviour of droplet wetting on solid surfaces. Furthermore, this work 

validates the accuracy of the newly developed non-local form of the Marangoni force 

formulation via a heat conduction model. Finally, the normal surface tension and 

Marangoni forces formulations are simultaneously examined in the multiphase flow 

by simulating the migration of droplets in thermal capillary flow. A good agreement is 

observed by analysing the droplet migration speed and comparing the results with 

existing methods. 
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Chapter 9 Conclusion 

9.1 Achievement of Research Objectives 

This thesis aimed to advance and validate peridynamic modelling approaches for 

simulating AM and welding processes, with a focus on thermomechanical behaviour, 

phase transformations, and multiphase flow phenomena. The achievement of each 

research objective is summarised as follows 

• Objective 1: To investigate the influence of horizon size in peridynamics and 

provide optimal selection guidelines for achieving accurate and efficient 

numerical simulations. 

Addressed in Chapter 4, this objective involved a systematic study of horizon 

size across bond-based, ordinary state-based, and non-ordinary state-based 

peridynamic formulations. The study of horizon size shows a trade-off between 

accuracy and computational efficiency. Smaller horizons, such as 𝛿 =  1𝛥𝑥, 

reduce the number of interactions per material point and therefore lower 

computational cost, but they fail to capture nonlocal effects and show poor 

agreement with FEM. Larger horizons improve accuracy, with optimal results 

found for 𝛿 =  3 − 5𝛥𝑥 in bond-based and ordinary state-based formulations, 

while non-ordinary state-based formulations remain accurate at 𝛿 =  2𝛥𝑥 . 

However, further increases in 𝛿 provide little improvement in accuracy while 

increasing computational expense.  

 

• Objective 2: To develop and implement a peridynamic formulation with 

variable horizon sizes and non-uniform discretisation, thereby reducing 

numerical simulation time while maintaining accuracy. 

Chapter 5 introduced the dual-horizon peridynamics framework, which allows 

for non-uniform discretisation and variable horizon sizes throughout the 

computational domain. Through a series of static and dynamic benchmark 

problems investigation for a two-dimensional plate, practical guidelines for 

varying horizon sizes were provided. This approach also provides finer 

resolution where needed while maintaining computational efficiency 

elsewhere. 
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• Objective 3: To extend and validate the dual horizon peridynamic formulation 

for heat transfer analysis, addressing the challenges of non-uniform 

discretisation in thermal diffusion problems. 

Chapter 6 developed a dual-horizon peridynamic formulation for thermal 

diffusion in non-uniformly discretised domains. Numerical case studies 

demonstrated that peridynamic predictions closely match temperature 

distributions and transient responses from FEM simulations. This approach 

overcomes computational efficiency limitations associated with uniform 

discretisation, enabling thermal analysis in complex geometries. 

 

• Objective 4: To develop and validate a coupled thermomechanical peridynamic 

model incorporating phase change, thereby supporting predictive simulation of 

deformation during AM and welding processes. 

In Chapter 7, a coupled thermomechanical peridynamic model was introduced, 

incorporating phase transformation phenomena such as solidification and 

melting. The formulation supports the predictive simulation of temperature 

evolution and structural deformation, including the effects of transient and 

moving heat sources. 

 

• Objective 5: To extend the peridynamic modelling framework to simulate 

multiphase flow using a non-local differential operator, thereby improving the 

analysis of complex interfacial behaviours relevant to AM and welding. 

The thesis extends peridynamics with the PDDO, enabling meshless simulation 

of multiphase flows, wetting dynamics, and thermo-capillary (Marangoni) 

effects. Numerical studies validate the approach, with results demonstrating 

strong agreement with analytical and reference benchmarks. 

9.2 Significance and Implications of Research Findings 

This research delivers several significant contributions to the field of computational 

mechanics and the modelling of advanced manufacturing processes. The systematic 

investigation of horizon size across multiple peridynamic formulations addresses a 

longstanding gap in the literature and results in practical guidelines for selecting 

optimal horizon sizes in engineering simulations. 
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To overcome the computational intensity of peridynamics relative to classical 

continuum methods like FEM, this thesis introduces and validates a dual-horizon 

peridynamic framework. By using non-uniform discretization, efficient large-scale 

modelling with peridynamics can be achieved while maintaining accuracy. For the first 

time, the dual-horizon concept is extended to thermal diffusion problems within the 

peridynamic framework. Numerical results confirm that the dual-horizon model 

reliably captures temperature fields with close agreement to FEM solutions. 

The thesis further advances the field of multiphysics modelling by developing a 

coupled thermomechanical peridynamic model that incorporates phase changes, such 

as solidification and melting. This approach captures the interaction between thermal 

and mechanical fields and can simulate the effects of moving and transient heat sources, 

as well as latent heat during phase transformation, key features of AM and welding 

processes. 

In the area of multiphase modelling, the introduction of the PDDO-based peridynamic 

framework allows for meshless simulation of interfacial phenomena, including droplet 

deformation, dynamic wetting, and Marangoni effects. Validation against analytical 

solutions and benchmark data demonstrates the accuracy of this approach for problems 

involving evolving interfaces that challenge traditional methods. 

From an applied perspective, these developments provide more reliable predictions of 

deformation, temperature evolution, and multiphase flow in manufacturing scenarios 

where traditional numerical methods often struggle. Beyond these direct applications, 

this study's contributions are also relevant to the emerging field of digital twin 

technology. The systematic horizon size study improves predictive reliability while 

thermomechanical and multiphase flow models lay the foundation for integrating 

peridynamics into the digital twin framework. 

Overall, the thesis advances both theoretical understanding and practical 

implementation of peridynamics, offering modelling tools that support improved 

process optimisation, defect reduction, and the design of reliable components in AM 

and welding. Together, these advances allow the creation of accurate and predictive 

digital replicas of manufacturing processes, supporting real-time monitoring, 

optimisation, and decision-making in AM and welding. 
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9.3 Limitations and Recommended Future Work 

In Chapter 4, the investigation of horizon size was conducted under the assumption of 

undamaged structures. Under these conditions, the peridynamic solution is expected 

to converge to the CCM solution as the horizon size approaches zero, allowing 

analytical and FEM solutions to serve as effective reference solutions for validating 

peridynamic predictions and determining a suitable horizon size. However, this does 

not fully capture scenarios involving damage evolution within the material, where the 

nonlocal characteristics of peridynamics become critical and direct reference solutions 

may be unavailable. Future research should therefore focus on investigating the 

influence of horizon size on the prediction of crack initiation, propagation paths, and 

failure mechanisms. 

Since peridynamics has a relatively high computational cost compared to the FEM, 

this can serve as a barrier to industrial applications. While this thesis demonstrates that 

the dual-horizon framework can already improve efficiency through non-uniform 

discretisation, further strategies are needed to make peridynamic simulations viable at 

an industrial scale. Future work should explore adaptive refinement to concentrate 

resolution in critical regions, parallel computing and GPU acceleration to reduce 

solution times, and hybrid FEM-peridynamic coupling to restrict the nonlocal 

formulation to regions where it is essential. These approaches would reduce 

computational demands and expand the feasibility of applying peridynamics to large-

scale AM and welding problems. 

While the coupled thermomechanical peridynamic model developed in this thesis 

captures key aspects of phase change and deformation during AM and welding, the 

treatment of material behaviour remains a limitation. The current formulations are 

based on simplified, primarily isotropic material properties and idealised phase 

transformation kinetics. However, AM applications increasingly involve functionally 

graded materials (FGMs), which offer tailored property distributions and enhanced 

performance. Extending the peridynamic approach to incorporate FGMs in 

thermomechanical analysis represents a promising direction for future research. This 

will require the development and validation of constitutive models that can represent 

gradations in elasticity, thermal conductivity, and phase transformation behaviour, 
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thereby improving the investigation of residual stress distribution, interface stability, 

and defect evolution in FGMs produced by AM. 

Furthermore, this thesis has presented advanced peridynamic frameworks for 

thermomechanical analysis in solids (Chapter 7) and thermal-fluid analysis using the 

PDDO (Chapter 8). These models were developed and applied separately to establish 

and validate each framework independently, as they address distinct physical 

mechanisms and numerical challenges. However, the direct coupling between the 

PDDO-based thermal-fluid approach and peridynamic formulations for solid 

mechanics has not yet been investigated. As a result, the transition from dynamic melt 

pool behaviour during heating to subsequent solidification and mechanical response is 

not fully captured within a unified framework. Future research could focus on 

developing a fully coupled peridynamic approach that integrates PDDO-based 

thermal-fluid and bond-based or state-based solid mechanics models. Such an 

approach could simulate the entire process, from melt pool dynamics under a moving 

heat source through solidification, to the prediction of residual stresses, deformation, 

and potential defects in the final material. 

Finally, the validation of this work relies primarily on comparisons with FEM and 

analytical solutions. To further improve the robustness of the models, future work can 

incorporate experimental measurements. Examples include thermocouple or infrared-

based temperature monitoring, digital image correlation for strain fields, and high-

speed imaging of melt pool dynamics. Such experimental benchmarks would provide 

independent validation of peridynamic predictions and support their application in 

real-world manufacturing scenarios. 

In summary, the tools developed in this thesis lay the foundation for practical 

applications in AM and welding. This framework can be used to simulate melt pool 

evolution, capture multiphysics interactions, and predict deformation. This capability 

supports process optimisation and parameter selection, contributing to the 

development of more reliable and efficient manufacturing processes. Future work will 

extend this model to complex geometries, FGM materials and validate it with 

experimental data to confirm its robustness for industrial applications. 
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