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Preface

A description in clarity for the complete framework for the numerical formula-

tion, implementation algorithms to deduce a finite element simulation solution

within this thesis is given. As the subsequent models analysed our quite varied

in their structural configuration, it is not possible to adopt the same formula-

tion to analyse each model. A clean straightforward layout approach has been

used, with this chapter dedicated to the motivation for this study to define the

significant chapters taken into review during the numerical formulation and

analysis process of the membrane structures. Then, successive chapters will

characterize the problem at hand alongside the undetermined issues that have

to be taken into consideration. A detailed overview outline will be presented

at the end of this chapter for relevance. It should be noted that for the sake

of brevity, only a broad overview is stated herewith. Comprehensive exami-

nations and literature reviews are deferred to the relevant sections within the

subsequent chapters.
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Research Objectives and Overview

The objectives of this research are listed below:

1. This research study will be investigating new innovative wrinkling mod-

els for membrane materials, taking into account the model competency,

accuracy, simulation expenditure and the rate of convergence. These de-

rived wrinkling models should be able to be applied to a wide range of

material models.

2. The second concern in this research is to take into account the effects of

the pressure acting on the membrane surface in an analytical manner.

This matter leads to additional stiffness terms within the constitutive

equations caused either by the variation of the membrane surface nor-

mals, altering cavity pressure or the deformation of the membrane. This

research focuses on a variety of membrane models; ranging from the

displacement of rectangular membrane model to fully enclosed cavity

membrane models filled with gas or fluid.

3. The third interest is to assimilate the user-defined material (VUMAT)

subroutine into the membrane model. This subroutine will define the

material dynamics and contact issues for inflatable membranes undergo-

ing large deformation. The expected conclusion is an accurate, reliable

and stable formula which depicts the benefits of the VUMAT subrou-

tine integration. This derived formula appears to be much more realistic

compared to conventional treatment of membrane material and contact

problems.

4. The final goal will be to combine all the algorithms and methods men-

tioned above into one unique tool which is able to solve all these phe-

nomena simultaneously.

xiv



Summary

This thesis gives the conceptualization of inflation of inflatable membrane space

structures. Although there has been little study using software simulation and

the majority of documented research is based on theoretical numerical calcula-

tions. This research advanced the prior understanding of wrinkling within in-

flated membranes by using complex structures subjected to deformation loads.

Within this thesis, a computational framework for the numerical analysis of

the interaction between acting forces on the membrane and the membrane

structure dynamics is presented. Moreover, in the case with thin membrane

deformations, the synergy between the membrane wrinkling and structural

forces has to be examined. This membrane structure-anatomical forces cor-

relation results in a dynamic wrinkling problem, which can only be modelled

easily and effectively by a simulation software that can integrate each assump-

tion and attribute within the analysis.

In the structural simulation within Abaqus FEA software, key consideration

has to be given in modelling the geometric non-linearity behaviour of the mem-

brane. By using the existing continuum expression for the virtual internal work

in curvilinear coordinates. This is used to derive the modified fundamental

formulation in which all subsequent analysis is established on and the initial

equilibrium shape of the membrane.
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A critical feature of the new formulation is the prospect of adding pre-stressed

forces to the membrane structure. The approach developed, established on an

alteration of the material stiffness matrix to integrate the effects of wrinkling

and deformation, can be utilized to calculate the behaviour of the membrane

within a finite element simulation. In the wrinkling model, the state of the

membrane element (taut, wrinkled or slack) is characterized by a mixed wrin-

kling criterion. Once it has been identified that the membrane element is

wrinkled, an iterative scheme looks for the wrinkled orientation angle and the

precise stress distribution, including only uni-axial tension in the wrinkle di-

rection, is then derived.

The wrinkling model has been verified and validated by contrasting the simu-

lated conclusions with documented results for the instance of a time-independent

isotropic membrane subjected to shear and axial loading. Utilizing the time-

integration method, a time-dependant pseudo-elastic stiffness matrix was rep-

resented and therefore, rather than calculating the convolution integral all

through the Abaqus simulation, then we can calculate the behaviour of a

membrane structure by superposition of a series of step by step increments

in basic finite element software.

The theoretical computations from the Abaqus/Explicit analysis were com-

pared with documented results for the shear and axial loading. The results

agreed very well, assuming friction and any relativistic dynamic effects were

excluded. The discrepancy between the shear loading solution is 7% while the

discrepancy between the axial loading is only 5% between the Abaqus model

and the documented model. This discrepancy could be the resultant of the

source of energy dissipation from the visco-elastic behaviour during the loading

and unloading of forces. It can be stated that for the Kapton HN membrane,

this result falls within acceptable range but to increase accuracy, the load and

xvi



unloading will be carried out on a set steady amplitude to inhibit in shock

effects within the model.

A three-dimensional finite element model which integrates wrinkling and friction-

less contact has been developed to simulate the adaptive smart cell and cylin-

drical membrane structure. The loading of both structures is given by a non-

uniform differential inflation pressure with a continual gradient adjacent to

height. The resultant solutions are computed using Abaqus/Explicit software,

with an integrated user-defined material subroutine to account for elastic wrin-

kling deformation that administers a combined stress-strain criterion. Fric-

tionless contact within the membrane structure is prescribed for both complex

structures (Adaptive Smart Structures Model and Inflatable Beam Model) in

order to prohibit the penetration of the membrane structure through itself.

Both the complex inflatable membrane wrinkling models accomplish the pur-

pose of exceptional subgrid scale performance in relation to accuracy, com-

petency, computing hardware & software expense, complexity and the model

convergence rate. The numerical algorithm is created in general context and is

flexible for a large variety of material models. For a closed membrane structure,

the skew symmetric constraint parameters vanish, while the existing symmet-

ric domain variables mirror preservation of the system. This procedure does

not demand the discretization of the fluid (gas) domain or the link between

coupling of fluid (gas) and membrane. As a result of this basic fact, the com-

putation is drastically simplified.

The adaptive structures model introduces a novel approach in harnessing solar

power for reuse on the ground as a stable source of power. The simulations were

based on the space part of the stiff structure created of hexagonal membrane

cells. Simulations are carried out in Abaqus Finite Element Analysis software

for simplicity & a comparison for validation purposes is tested against an

xvii



experimental inflatable cell within a vacuum chamber. It was showcased that

the final configuration could be achieved regardless of the packaging shape of

the inflatable cell array.

The inflatable beam model is comprised of two sections, the bending & buck-

ling of the inflated beam and the post-inflation of the bent and buckled beam.

Abaqus software was used to simulate the inflatable beam during each configu-

ration utilizing the integration of a modified VUMAT subroutine. A compari-

son is showcased representing the importance of the integration of the VUMAT

subroutine within our Abaqus model.

xviii



Chapter 1

Introduction

This thesis explores the detailed stress distribution in the membrane skin of

an inflatable structure. By using numerical models based on the finite element

method (FEM) alongside solution algorithms of structural and material perfor-

mance to derive a detailed understanding for the inflatable structure behaviour.

We will address three key non-linearities within the derived result to achieve

an accurate solution: a user-defined material model subroutine to attain an

efficient wrinkling model, additional stiffness terms to accurately define the

pressure loads acting upon the material membrane surface and finally deduced

discretized non-linear formulation to take into account the frictionless contact

problems in case of infinitesimal deformations for inflatable membranes with

regards to material dynamics, potency, efficiency and rate of convergence. This

derived solution will be incorporated within an Abaqus simulation to model

the relative inflated Kapton membrane structures. In this chapter, we will

look into the background of inflatable membrane structures and the underly-

ing motivation for this Doctorate research.

1
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1.1 Background

The foundations of membrane design can be traced back to the Ice Age, ap-

proximately 40,000 years ago, where the findings have concluded simplistic

shelters created and constructed of animal hide. This implies that this is the

first human construction to be uncovered, where simplistic textiles where used

for spatial division and shelters [1]. This simplistic method evolved into one of

the dominant classes of fabric structural design, the freely woven black tent.

The black tent concept speared quickly through the Arab conquests in the

eighth century. The lightweight and portability characteristics of the mem-

brane structure inevitably brought about great military interest. During the

first century BC, Roman Legions used an abundance of leather tents from mil-

itary use to recreational banquets. Moving through the fabric of time, during

the 12th century, exquisite and extravagant tent structures became a fashion

accessory in Western Europe for the prestige and elite members of society.

These structures became increasingly larger and glamorous by the turn of the

sixteenth century and matured into symbolic icons for wealth and fortune [2].

The first circus tent, a large linen structure was hoisted upright in 1770 at

Westminster Bridge, UK. In essence, this paved the first steps to widespread

commercialisation of fabric structures and by 1887, the first American Railway

circus had began its national excursions. In August 1783, the next evolution of

membrane structures was initiated with the Montgolfier Brothers attempting

the first mass advertised unmanned public launch of a large-scale hot-air bal-

loon [3]. This was the foundation stone that allowed mankind to reach space in

less than 200 years from this date. Even in this day in age we can use rockets

and aeroplanes to carry out research, balloons still play an integral role as they

require no energy to keep aloft.
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After the Montgolfier brothers demonstration, a French scientist named Jacques

Charles developed the first manned hydrogen filled balloon. Jacques Charles

and his co-pilot Nicolas Louis Robert reached an altitude of approximately

1800 feet in December 1783. Their invention of hydrogen propulsion for en-

gine throttle led to this class of balloon being named Charliere (as opposed to

a Mongolfiere which used hot air) [4]. It was evident from the manned flight

that the hydrogen balloon design was much superior to the hot air balloon

design. During this era, hot air balloons were made from paper and could only

be safely used for one flight while hydrogen balloons could be used more than

once and had a higher lifting capacity. In order to have a successful launch

mission, Jacques Charles based his hydrogen balloon on two different designs.

The first was a hydrogen balloon with a super pressure design with an en-

closed envelope. This prevailed to an increase in differential pressures while

ascending and the envelope would eventually burst. In order to overcome this

anatomical deterioration, the succeeding design had an aperture at the base of

the balloon; therefore, the preceding stresses formed at the balloon envelope

were acute in magnitude. This design was also more or less independent of the

altitude the balloon reached. This design is still used in modern day balloons

and is known as zero-super pressure designs.

In the nineteenth century, the majority of the manned scientific balloon flights

investigated the properties of the atmosphere. In the 1890s, these manned

missions however evolved once the balloon sondes became readily accessible,

allowing unmanned missions to carry out the desired research. The balloon

borne-sounding system (SONDE) gives sedentary evaluations (vertical profiles)

including atmospheric wing speed, direction and its thermodynamic state [5].

Even though scientists were able to carry out ground breaking research, one

main problem was that the balloon drifted considerably away from the launch

point. This was very time consuming and, costly as there was no way to locate
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the balloon once it drifted back to Earth or if it reached an altitude not visible

clearly from the ground. This drifting dilemma was nonetheless resolved by

Richard ABmann in 1892, who introduced super-pressure balloons that rup-

tured when they ascended a given altitude and descended back to the ground

using a variety of different parachutes to ease the fall [3]. Another break-

through was achieved by a Russian scientist called Pavel Molchanov in 1930.

The super-pressure balloons were equipped with radio transmitters making it

possible to attain accurate actual time information of the atmosphere [6].

Similar instruments are used in modern day research throughout the Globe

for gathering information which is essential to accurately forecast the weather

conditions and, secondly to initialise arithmetical calculations. In order to

further our understanding of the solar system, manned balloons are utilized

as a scientific podium in the early nineteenth century to study the intrinsic

influences of the Sun and cosmic rays outside the intrusion of atmospheric

instabilities. Nevertheless, the growing altitudes of balloon flights showcased

a severe complication. Once an organic life form reaches above 12 km, the

deficiency in air pressure leads to relative gases bubbling out of the blood.

Therefore balloon structures are not equipped with the necessary pressure

vessel and often prove lethal and the cause of an excruciating and painful death

[3]. A number of test flights were taken by the US Army Air Corps in 1929 to

an altitude of above 13 km. These flights were made to test clothing, oxygen

systems and various scientific systems. But all were in vain as there wasn’t a

successful mission that allowed a manned craft to safely land back on ground

after reaching this altitude. This prompted the American Space programme

to carry out detailed investigation of spacesuits. This major problem was

overcome in the 1930 by a Swiss physicist Auguste Piccard by developing a

pressurized, spherical gondola for two men with an approximate diameter of

two metres [4]. This gondola contained a scientific instrument that prevented
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carbon dioxide from building up and also had a supply of bottled oxygen.

Other small but crucial changes were also implemented by Auguste Piccard in

his design. These utilize an envelope which is bigger by a magnitude of five

when compared with the gas volume required to achieve ascension from the

ground. Earlier envelopes were entirely inflated on the Earth and, most of the

gas was lost due to considerable expansion during the ascent [7]. By using this

change in design, there was minuscule gas lost during ascension and attained

sufficient lift amid the night to arrive safely to the ground. Although with

these radical envelope changes, this was not an optimal shape for the balloon

design. Antecedently to the commencement of World War Two, supported

by the National Geographic Society, U.S. Army Air Corps Captain Albert W.

Stevens in 1933 made the first helium balloon flight. Albert W. Stevens along

with Captain Orvil Anderson used a 10, 000m3 balloon [8].

Helium replenished hydrogen balloons comprehensively during the subsequent

decade established on safe usage as hydrogen gas was very flammable. During

this time, it was obvious that the giant and weighty balloon envelopes, com-

prised of rubberised fabrics had arrived at their operational capacity. After

World War Two ended, scientists had to come to a new design concept in re-

gards to the structural material used. During this era, post World War Two,

polyethylene had become widely attainable, which led to new design concepts

for future balloons.

In the 1950s, large plastic-strato balloons constructed by Otto Winzen, were

used in scientific unmanned and manned research projects to reach extreme

heights into the stratosphere [9]. This was achieved by constructing innate-

assembled zero super-pressure balloons from n-identical flat polyethylene gores

by wielding adjacent lobes collectively and incorporating a stiff tendon along

the joining boundary. Hence, the load tapes carry the differential pressure
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with acute membrane stresses; so in essence, it is conceivable to carry bigger

payloads to self-weight proportion. The longitudinal tendons also aid a focal

connection point for cargo resulting in no extra consideration [10]. These

balloons were a new era of super-pressure balloon design commenced in the

1960s. These balloons have been the scientific podium for a large selection of

experiments.

The next stage of evolution was reached at the start of the twenty-first cen-

tury. Inflatable structures have now evolved from these spherical enclosed

habitats to complex structures engineered for specific mission parameters. A

number of space missions have proposed and successfully delivered inflatable

space structures for lightweight radars, space antennas, optical communica-

tions systems and telescopes, amongst other viable potential structures. These

structures range from free deployment to semi- and controlled deployment to

achieve mission requirements. The first fully inflatable antenna experiment

was launched in 1996 and marked the first fully inflated space structure us-

ing free deployment from its host satellite. These experiments led to major

scientific innovations and discoveries that changed the modern day of life.

1.2 Motivation

Inflatable space structures are being used in these missions, such that the neg-

ative impact, not only on human health but also on other animal and plant life,

can be reduced drastically. Inflatable space structures are needed in a number

of space fields from solar sails and potential inflatable rovers to the next gener-

ation of habitat modules for extra-terrestrial exploration. For these structures

to be efficient and effective, the membrane surface has to be wrinkle free, the

support booms have to be strong and rigid to support any and all external
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Figure 1.1: Simple illustrations of inflatable membranes: (A) Inflatable Wall

for the Federation Square in Melbourne, (B) Eco-Friendly Blimp used by the

Police in Florida, America, (C) Red Blood Cells within the Arterial Wall, (D)

Mars Exploration Rover Protective Airbag, (E) Vehicle Airbag Crash Test, (F)

Vehicle Airbag Full Deployment
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loads while the structure has to reach a stable deployment configuration. The

structure also has to be able to survive in a host environment different from

Earth and deployment storage.

Albert Einstein once said, ”Pretty good scientists can explain complex things

in complex terms but excellent scientists can explain complex things in sim-

plistic terms”. In order to understand the complex problems presented within

this thesis, we will divulge into a number of illustrations to act as simplified

analogous.

In figure 1.1A, we can see a large-scale inflatable membrane structure, acting

as a building wall and in figure 1.1B, we can notice an eco-friendly blimp com-

posed from thin membrane fabric. This blimp can achieve flight due to the air

pressure interactions from inside the membrane material and the outside atmo-

sphere. This exchange in gases is inspired from continuum mechanics, notably,

Archimedes Principle and has led to breakthroughs in air and marine technol-

ogy. Collisions of red blood cells flowing through the blood plasma can be

seen in figure 1.1C. Each cell is an membrane enclosed fluid cavity interacting

with the fluid plasma and the impact interactions with other blood cells and

the arterial wall. The Mars Exploration Rover used a protective cushion for

impact control against the Mars surface. This protective cushion was formed

from twenty-four inflated membrane lobes which when fully deployed look like

a massive bunch of white grapes with the rover cradled inside and is visible

in figure 1.1D. In figure 1.1E, we can observe the impact assessment for the

collision of a driver against the deployed airbag. The airbag here is pressurized

with a multiple mixture of gases and then undergoes large deformation upon

contact with the driver. One can examine the propagating wrinkles through

the airbag membrane surface area, where the compressive stresses are induced

at the point of contact. The airbag deployment can also be seen in figure
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1.1F, showcasing the deployment process achieving full equilibrium with the

outside atmosphere. It is apparent that non-linearities arise between the ac-

tions and responses of an inflatable membrane undergoing large deformations.

In this thesis, we will analyse three issues of these non-linearities: wrinkling

of the membrane surfaces, the depiction of displacement loads acting on the

membrane surfaces and the contact interactions of these membrane surfaces.

Membrane wrinkling is a local phenomenal, generally based on the elastic shell

theory and is caused by the lack of resistance against compressive stresses. A

membrane is usually assumed to have no bending stiffness, therefore, negating

the existence of any compressive stresses, i.e. the formation of immediate

wrinkling. A purely tensile stress state is said to be free from wrinkles when

subjected on a membrane surface but, on occasion wrinkles can occur because

of the in-plane loads acting in the structure.

Wrinkling can generically be categorised in two types, namely structural and

material wrinkling. Material wrinkling is a permanent deformation and, can

cause surface creases on the membrane surface. Material wrinkling results from

manufacturing flaws and/or packaging imperfections caused by high localised

strains. Structural wrinkling is a temporary deformation by reason of localised

buckling of the membrane when undergoing compressive stress. The wrinkle

characteristics (i.e. size, direction and wavelength) varies depending on the

load paths and boundary conditions with the membrane structure. One of the

key areas focussed on this thesis will be to research effective ways to eradicate

structural wrinkles through design and analysis of the membrane structures.

The second key interest area is the investigation of dependant forces acting on

the membrane structure. If the inflated membrane structure is modelled as

an enclosed cavity, the acting loads can be affected by the interaction between

the internal fluid and/or gas with the surrounding membrane. This interac-
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tion is commonly a dynamic process and can potentially decree the structural

responses of the enclosed responses of the enclosed membrane to the applied

action. The influences of the inertial forces will be assumed to be negligible

due to the dynamic deformation process occurring at a relatively slow pace.

With this presumption in mind, we can concur that there will be no iner-

tial forces transmitted between the cavity membrane surface and the enclosed

cavity fluid/gas.

The final subject of concern is the contact interactions of the inflatable mem-

brane. The main problem in regards to the contact interaction would be to

find an uncertain unknown contact area at any particular point of the sim-

ulation while penetration between the bodies and surfaces of the model are

restricted. From which we can calculate the membrane contact pressure over

the resulting contact area which can alter drastically depending on the con-

nection between the constraints and the conforming contact pressure. This

connection is very problematic in regards to the geometrical and material non-

linearities. In present day technology, numerical problem solving covering large

deformation continuum mechanics, non-linear equations and constitutive re-

sponse techniques are satisfactory but the material dynamics of the membrane

have not been investigated thoroughly. By incorporating a user-defined mate-

rial subroutine (VUMAT) to the model to characterize the material dynamics

has shown great promise and has successfully depicted the material behaviour

much more accurately. We will analyse this VUMAT against conventional fi-

nite element models and well documented theories, taking into account the

membrane material dynamics at each incremental step within the model sim-

ulation.
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1.3 Organisation of this Thesis

The introductory Chapter 1 presents the background and motivation for this

work and a brief understanding of the key areas of interest within this the-

sis research. Due to the complexity of the membrane wrinkling problem and

anonymous deformation, a list of relevant publications describing the back-

ground, theoretical understanding and practical implementation is provided in

the respective chapters.

The background of the evolution of membrane structures is presented, describ-

ing the importance of this thesis study and the potential applications of how

this can be used in potential applications for the benefits of science.

Chapter 2 is where the main characteristics and attributes of membrane struc-

tures are discussed. These are the fundamental theories at which our methods

and numerical simulations with the Finite Element Method are based. These

models incorporate the non-linear continuum mechanics, mechanics of mem-

brane structures and time integration methods. The culmination of all these

attributes are utilized to setup a numerical model to act as the foundation, for

all membrane structures used within this PhD research.

In Chapter 3, important components of membrane wrinkling are presented.

The definition of each component is given alongside the relevance to our model

is presented. Two model approaches, axial and shear loading, are used to

analyze the theoretical assumptions and accuracy of our foundation model.

These models have been documented numerous times and comparisons are

made with the simulation results derived against documented results.

Chapter 4 investigates a novel green approach in harnessing solar energy to be

used as a fuel source on the ground usage. The detailed bio-inspired concept is
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presented of a smart membrane material which has the capability of changing

size and shape to meet mission requirements.

In Chapter 5, a detailed study is given of an inflatable boom which is necessary

for over 90% of inflatable space structures to act as a load bearing support. The

chapter is divided into two parts, the bending and buckling of the inflatable

beam and the post-inflation of the beam to restore it to its approximate initial

configuration after deformation.

Finally, Chapter 6 gives a summary and discussion of the methods developed

and the results obtained within this research. The thesis concludes with a

discussion, how and to what extent, the simulation models and results can be

used for the design and analysis of inflatable membrane structures.



Chapter 2

Background Theory

In this chapter, we will review the notational, conceptual and computational

theoretical background of the relevant problems investigated within this Doc-

toral Research. Therefore, we will not be going into stringent depth of the

theory but to provide a platform to define the global equations into which

the subsequent chapters are incorporated. In case of interest, the reader can

consult [11], [12], [13], and [14] for a comprehensive guide.

2.1 Non-Linear Continuum Mechanics

Continuum mechanics is defined as the study of the kinematic and mechani-

cal behaviour of materials shaped on the continuum supposition. Continuum

mechanics can be divided into two key themes; namely fundamental and con-

stitutive equations. In the first theme, attention is given to the derivation of

the fundamental equations which hold for all continuous media. These derived

fundamental equations are established upon universal laws of physics, such as

13
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principle of energy and momentum, conservation of mass etc. In the subse-

quent theme, primary consideration is on the construction of the constitutive

equations portraying the behaviour of specific rhapsodised materials. These

equations define the vital points about which research in elasticity, plasticity,

visco-elasticity and fluid mechanics proceed.

Non-linear and linear continuum mechanics act on similar topics such as kine-

matics, stress and constitutive behaviour. But there is a key difference between

the two. In linear continuum mechanics, the assumption is stated that the de-

formation is relatively small to have any significant change in the geometrical

arrangement of the solid, whereas in non-linear continuum mechanics, there is

no constraint on the deformation magnitude. As we are only dealing with large

deformations of membrane materials within this research, focus will solely be

given to non-linear continuum mechanics.

2.1.1 Geometry Arrangement

Within this section, a generic arrangement geometry used within continuum

mechanics of the interested problems within this research are presented. The

characterization of differential geometry and kinematics utilise the quintessen-

tial tensor analysis that illustrates the operations taking place in three dimen-

sional Euclidean space R (as long as space and time is decoupled).

Spatial surfaces in R are usually defined by either a Cartesian coordinate

system xi that is connected via orthonormal vectors ei = ei or a curvilinear

coordinate system θi. It should be noted that each material point P on the

surface is designated by two autonomous surface coordinates or surface param-

eters θ1 and θ2. In essence, the designated lines, i.e. coordinate lines, lines of

constant surface coordinates, are curved lines in space. The position vector r
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Figure 2.1: Geometry Arrangement

of a material point P on the surface can be described in the notation:

r = r(θ1, θ2) (2.1)

where θ1 and θ2 represent a specific location on the surface.

Using a similar notation arrangement, a position vector in a three dimensional

body is defined as x(θ1, θ2, θ3), where θ3 is the thickness-direction parameter

needed to define the three dimensional body illustrated in figure 2.1. The body

under examination is comprised of the aforesaid surface, its mid-surface, as a

subset in the form

x(θ1, θ2, 0) = x|θ3=0 = r(θ1, θ2), θ3 ∈ [−t(θ
1, θ2)

2
,
t(θ1, θ2)

2
], (2.2)
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where t(θ1, θ2) is the shell thickness. On the mid-surface, we can represent the

covariant base vectors g1 and g2 by differentiation of the reciprocal position

vectors x with reference to the convective coordinate in either case.

g1 =
∂x

∂θ1
; g2 =

∂x

∂θ2
⇒ gi = x,i. (2.3)

The covariant base vectors are tangential to the relevant surface coordinate

lines, for example, g1 is tangential to the coordinate line θ1 where an alternative

coordinate θ2 is constant. Covariant base vectors are generally not orthogonal

or of unit length. The surface normal vector g3 is determined as,

g3 =
g1 × g2

‖g1 × g2‖
; |g3| = 1. (2.4)

Their scalar products gij, the factors of the covariant metric tensor I (identity

tensor) which mirrors the metric of the surface, i.e. the magnitude of the

covariant base vectors and the angle amidst them, can be conveyed both in

the co- and contra-variant basis in the form:

I = gij.g
i ⊗ gj = gij.gi ⊗ gj = gi ⊗ gi = gi ⊗ gi;

gij = gi · gj and g
ij = gi · gj

(2.5)

where ⊗ represents the tensor product. The contra-variant tensor is regarded

as the reversal of the co-variant metric tensor:

gij = (gij)
−1 (2.6)
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As a dual pair of the co-variant basis, the contra-variant basis gi are formalised

by,

gi · gj = δij =

 1 i = j,

0 otherwise,
(2.7)

where δij symbolizes the Kronecker delta. It should be noted that Equation

2.7 advises the contra-variant basis gi is the dual basis of the covariant basis

gj, on the presumption that both of them are orthogonal to each other. It

can be stated that g3 is orthogonal to both gi and gj, hence, it can be said

that g3 = g3 and ‖g3‖ = 1. Another way to describe the contra-variant basis

is by partially deriving the relative convective coordinate with respect to the

position vector x, particularly,

g1 =
∂θ1

∂x
; g2 =

∂θ2

∂x
⇒ gi =

∂θi

∂x
(2.8)

By incorporating the use of metric tensors, the co- and contra-variant compo-

nents and base vectors are remodelled into:

Ai = gij.A
j; Bi = gij.Bj; gi = gij.g

j; gi = gij.gj. (2.9)

The differential surface of area da is described by the vector parallelogram that

can be postulated by the co-variant base vector g1 and g2. An infinitesimal

area content da is conferred by the total area a in regards to the surface

coordinates by
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Figure 2.2: Kinematic Body Arrangement

da = ‖g1 × g2‖ dθ1 dθ2 = j dθ1 dθ2

⇒ a =

∫
θ1

∫
θ2
jdθ1 dθ2 =

∫
θ1

∫
θ2
‖g1 × g2‖ dθ1 dθ2.

(2.10)

2.1.2 Kinematics

Kinematics is the analysis of movement and distortion of continua disregard-

ing the forces liable for the corresponding action. The precise definition is a

necessity to accurately represent the motion of continua.

A deformable body B can be described as the constituents of an array of mate-

rial points residing in the domain of Euclidean space R3 (where the 3 represents

three-dimensional Euclidean space). This relative body is in the primary mode

of being at time, t = 0 as illustrated in figure 2.2. It should be noted that

this body is bounded by the boundary defined by dB. In this state, the body

has a domain, Ω0 occupying a region in Euclidean space, R3, named the initial

arrangement. To characterize the kinematics of this body, we need to define a

secondary arrangement where mathematical solutions are designated to, and
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we call this the reference/secondary arrangement. For simplicity, we assume

the initial arrangement coincides with the reference arrangement, unless speci-

fied otherwise. As the body B translates in space from one instance to another,

it populates a sequence of regions named Ωt for any subsequent time t > 0.

During this period, the arrangement and state of the body is named the current

arrangement or deformed arrangement. The stated dimension of any model

is designated ηdim and represents the bodies associated sum of space ranges.

Boundary of the domain in question is denoted by Γn, where n is the domain

number.

Within the reference arrangement, a material point’s positional vector can be

stated as x, where

x = Xiei =

ηdim∑
i=1

Xiei (2.11)

In the reference arrangement, x is a constituent of Xi and ei are the unit base

vectors for a rectangular Cartesian coordinate system. The changeable vectors

x are termed material coordinates or Lagrangian coordinates. The movement

of this body B is stated as

x = Φ(x, t) = x(x, t) (2.12)

where

x = xiei =

ηdim∑
i=1

xiei (2.13)

is the positional location of the material point x in the current arrangement.
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The variable vectors x are termed spatial coordinates or Euclidean coordi-

nates, and the stated function Φ(x, t) is needed to align and map the reference

arrangement against the current arrangement.

The discrepancy for a material point from its current arrangement to its ref-

erence arrangement yields the displacement that can be stated (in material

characterization) as

u(x, t) = x− x (2.14)

Incorporating the Equation 2.11 and Equation 2.12 into Equation 2.14 gives

u(x, t) = Φ(x, t)− Φ(x, 0) = Φ(x, t)− x (2.15)

We achieve this, by reason of taking t = 0, x = Φ(x, 0) = x and that implies

x = x. Utilizing (x, t) as the autonomous variables, the inverse mapping of

the movement is characterized as

x = Φ−1(x, t) = x(x, t) (2.16)

This implies that the material point x is related with both the location x and

the time t. The velocity is described as the derivative of the position vector,

for a given material point. Assuming x is taken to be a consistent value, then

the derivative is described as the material time derivative. Utilising Equation

2.12 and Equation 2.15, the material velocity can be stated as

v(x, t) =
∂x(x, t)

∂t
=
∂u(x, t)

∂t
= u̇(x, t) (2.17)
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As stated in general physics, the material acceleration can be calculated by

the derivation of the material time velocity derivative and is expressed as

a(x, t) =
∂v(x, t)

∂t
= v̇(x, t) = ü(x, t) (2.18)

For interpretations given in spatial description, i.e. the velocity v(x, t) =

v(x(x, t), t). Assimilating this with Equation 2.12, we can determine the ma-

terial time derivative by

Dυi(x, t)

Dt
=
∂v(x, t)

∂t
+
∂v(x, t)

∂xj
· ∂xj(x, t)

∂t
=
∂υi
∂t

+
∂υi
∂xj

υj (2.19)

where
∂xj(x, t)

∂t
is the spatial time derivative and

∂υi
∂xj

is the right gradient of

the velocity vector field in regards to the spatial coordinates. This variable

can be expressed as υi,j in its indicial form or ∇v in its tensor representation.

Employing Equation 2.16 to present the velocity in spatial description, we can

rewrite Equation 2.19 as,

Dv(x, t)

Dt
=
∂v(x, t)

∂t
+ v(x, t) · ∇v(x, t) (2.20)

where ∇v is the left gradient of the velocity vector field in relation to the

spatial coordinates, which can be stated as ∂jυi in its indicial form.

Hence, one can come to the critical conclusion that

Dv(x, t)

Dt
=
∂v(x, t)

∂t
(2.21)
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Generically, we can acquire the material time derivative for any given function,

vector or tensor in regards to its spatial variables x and time t via

D(•)
Dt

=
∂()•
∂t

+ v · ∇• (2.22)

As the body translates from the reference arrangement Ω0 to the current ar-

rangement Ω, the extent and structural form alters due to its deformation. One

key method of determining the deformation amount in non-linear mechanics

is the material deformation gradient tensor given by,

F =
∂x

∂x
or Fij =

∂φi
∂Xj

=
∂xi
∂Xj

(2.23)

which depicts a variable in the reference arrangement to its relating variable

within the current arrangement. To help understand this better; let us ex-

amine a minuscule line segment dx within the reference arrangement, then

incorporating Equation 2.23, the proceeding line segment within the current

arrangement is given by,

dx = F · dx or dxi = Fijdxj (2.24)

where F is the deformation gradient, otherwise known as the Jacobian matrix.

To conserve the consecutive structure in Ω at the same time as the deformation,

the mapping Equation 2.16 has to be completed respectively, i.e. F can never

be singular which is comparable to the case,

J =
dυ

dV
= det(F) 6= 0 (2.25)
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where J is the Jacobian determinant.

We have the Jacobian determinant J > 0 to exclude self penetration for the

model. This positive scalar also illustrates the ratio between the current dif-

ferential volume dυ and the reference differential volume dV of the material.

Integrating Equation 2.14 and Equation 2.23, we can rewrite the deformation

gradient tensor as

F =
∂ui
∂Xj

+
∂Xi

∂Xj

=
∂ui
∂Xj

+ δij (2.26)

where
∂ui
∂Xj

is connoted the material displacement gradient tensor and δij rep-

resents the Kronecker delta function which has the values

δij =

 1 i = j,

0 otherwise,
(2.27)

2.1.3 Strain Measure

Structural components or continuum bodies will exhibit large strains when

undergoing a geometrically non-linear deformation process. In terms of mate-

rial behaviour, the geometrical distortion induced via the forces exercised on a

continuum body B is called the strain. The inherent difference amid the bodies

undistorted initial composition and its deformed final composition. Hence, the

strain conveys the movement and distortion/deformation of the body.

There are a number of methods of kinematically measuring the strain within

continuum mechanics. The most widely used, symmetric and objective mate-

rial for the Lagrangian description is the Green-Lagrange Strain tensor:
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E =
1

2
(FT · F− I) (2.28)

where E is the material tensor and F is the deformation gradient and I is

the identity matrix, as previously stated. This equation can be modified and

represented as a function of the displacement gradient tensor giving,

Eij =
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

+
∂Uk
∂Xi

∂Uk
∂Xj

)
(2.29)

In regards to linear strain problems; we can determine the infinitesimal strain

tensor from the above equation, by ignoring the non-linear variables, viz,

εij =
1

2

(
∂Ui
∂Xj

+
∂Uj
∂Xi

)
(2.30)

We will now establish the spatial velocity gradient tensor by

l =
∂v

∂x
or lij =

∂vi
∂xj

(2.31)

This can be broken down into its symmetric and skew-symmetric segments

via,

l =
1

2

(
l + lT

)
+

1

2

(
l− lT

)
(2.32)

Using the symmetric component of the velocity gradient tensor, we can deter-

mine d, the spatial rate of deformation, commonly called the velocity strain

tensor
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d =
1

2
(l + lT ) or dij =

1

2
(
∂υi
∂xj

+
∂υj
∂xi

) (2.33)

Hence, vice-versa, we can use the skew-symmetric component to attain the

spatial rate of rotation tensor w, commonly called the spin tensor

ω =
1

2
(1− lT ) or ωij =

1

2
(
∂υi
∂xj
− ∂υj
∂xi

) (2.34)

Taking into account the material time derivative component of the deformation

gradient tensor from the stated Equation 2.23, we can deduce,

Ḟ =
∂v

∂x
or Ḟij =

∂υi
∂Xj

(2.35)

This can be used to rewrite Equation 2.31 as,

l = Ḟ · F−1 or lij = ḞikF
−1
kj (2.36)

We can incorporate this into the spatial deformation gradient tensor to give

F−1 =
∂x

∂x
or F−1

kj =
∂Xk

∂xj
(2.37)

Using the material time derivative from the Equation 2.28, we can derive,

Ė =
1

2
(FT · Ḟ + Ḟ T · F) = FT · d · F (2.38)
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2.1.4 Stress Measure

The stress measure portrays the magnitude of the force occurring in the interior

parts of the body B while it interacts with the neighbouring body and the

environment during the deformation. Let us take point, P , of the body B on

the boundary Γ, n the unit outward normal vector for P and dΓ, the bodies

surface boundary constraint. Now, we can describe the surface traction t on

the surface at point P with unit normal n as,

t = t(n) = lim
dΓ→0

dfs
dΓ

(2.39)

where t does not have to correspond with the unit normal vector n direction.

The units of the surface traction are force/area(unit) for the equation stated

above. We will introduce a spatial tensor field σ, commonly known as the

Cauchy stress tensor,

t = n · σ = σT · n or ti = σjinj (2.40)

The equation above postulates a relation between the Cauchy traction t and

the unit normal vector n of an arbitrary surface, also known as the Cauchy’s

Theorem. The Cauchy traction tensor is a symmetric stress tensor defined in

the current arrangement. While in the reference arrangement, the accompani-

ment to Equation 2.40 is,

t0 = n0 ·P or t0i = Pjin
0
j (2.41)

where P is the nominal stress tensor, n0 and t0 is the unit normal vector
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and surface traction force with respect to the reference arrangement. Being

the counterpart, it can be stated that the nominal stress tensor has a non-

symmetric nature. If we were to transpose the nominal stress tensor matrix,

we would attain the first Piola-Kirchhoff stress tensor,

P = detF σF−T (2.42)

With some manipulation, we can derive a symmetric tensor in the current

arrangement called the second Piola-Kirchhoff stress tensor S,

F−1 · t0 = n0 · S (2.43)

where the transmutation of the forces by F−1 attributes to the stress tensor

being symmetric. The transmutation betwixt these stresses can be stated via

σ = J−1F ·P = J−1F · S · FT (2.44)

P = jF−1 · σ = S · FT (2.45)

S = JF−1 · σ · F−T = P · F−T (2.46)

2.1.5 Conservation Equations

Conservation equations mirror a physical quantity for a continuum body and

as a prerequisite must be fulfilled and have no constraints in their utilization
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to any material.

In this section, we derive an integral relation by applying the conservation

equations to a domain Ω of a body B. This derived integral relation has to

maintain for all the B sub-domains; this allows the conservation equations to

be represented as partial differential equations.

Antecedent to representing the conservation equations, we must specify the

material time derivative of an integral relation for any spatial property

D

Dt

∫
Ω

(•) =

∫
Ω

(
D(•)
Dt

+ (•)∇ · v
)
dΩ (2.47)

Equation 2.47 is also known as Reynold’s Transport Theorem. In brief, the

Reynold’s Transport Theorem is a three-dimensional postulation of the Leibniz

Integral Rule which is also known as differentiation under the integral. It

should be noted that the divergence ∇ · (•) has been employed in regards to

the current arrangement and can additionally be represented as div(v) or in

its incidial configuration υi,i.

Mass Conservation

Mass conservation is the principle that in any closed system subjected to no

external forces, the mass is constant irrespective of its changes in form.

Let us examine the domain Ω of a body B constrained by the surface Γ that is

occupied by a fixed perpetual material density ρ(x, t). Then we can state the

mass of the body as,
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m =

∫
Ω

ρ (x, t) dΩ =

∫
Ω0

ρ(x, t)J dΩ0 =

∫
Ω0

ρ0(x) dΩ0 (2.48)

where the Jacobian determinant is utilized to correlate the reference and cur-

rent arrangement integrals. A fundamental requirement for the mass of con-

servation to hold is that the mass of any material domain must be fixed.

Therefore, the material time derivative of the mass has to equate to zero, viz

Dm

Dt
=

D

Dt

∫
Ω

ρ dΩ = 0 (2.49)

This brings us to the subsequent integral relation employing Equation 2.47,

D

m
=

D

Dt

∫
Ω

(
Dρ

Dt
+ ρ∇ · v

)
dΩ = 0 (2.50)

where the variables stated are interpreted in spatial coordinates. As this Equa-

tion maintains for any sub-domain Ω, the mass conservation produces a suc-

cessive first-order partial differential, also called the continuity equation,

Dρ

Dt
+ ρ∇ · v = 0 or ρ̇+ ρυi,i = 0 (2.51)

We can rewrite the continuity equation by incorporating the first term in Equa-

tion 2.51 and the material time derivative in Equation 2.22 to get,

∂ρ

∂t
+ (ρυi),i = 0 (2.52)

Equation 2.52 is commonly well-known as the conservative configuration of

the mass conservation equation. If we take the material to be incompressible,
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then we can state that the density is constant and the material time derivative

within the continuity equation vanishes.

∇ · v = 0 or υi,i = 0 (2.53)

Equation 2.53 is known as the continuity equation utilized within this research

where the fluid and/or gas is considered to be incompressible. We can attain

an numerical equation for the density by assimilating time in to the mass

conservation equation 2.49 to get

ρ(x, t)J = ρ0(x) (2.54)

This equation is also known as the Lagrangian definition for the mass conser-

vation equation.

Conservation of Linear and Angular Momentum

The conservation of linear momentum, also known as momentum conservation

principle describes that total ratio of change of its linear momentum equates to

applying the entire force. Let us examine an arbitrary domain Ω with surface

constraint Γ within the current arrangement governed to body forces ρb and

surface tractions t. The total/entire force f is determined by

f(t) =

∫
Ω

ρb(x, t) dΩ +

∫
Γ

t(x, t) dΓ (2.55)

where b is the force per unit mass. We can define the linear momentum by

the product of the density ρ and the velocity v over the stated domain
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p(t) =

∫
Ω

ρv(x, t) dΩ (2.56)

By using Equation 2.56, we can portray the conservation of linear momentum

as,

D

Dt

∫
Ω

ρv(x, t) dΩ =

∫
Ω

ρb(x, t) dΩ +

∫
Γ

t(x, t) dΓ (2.57)

By consolidating Equations 2.47, 2.51 and 2.57, we can obtain the rate of

change of the linear momentum to be,

D

Dt

∫
Ω

ρv(x, t) dΩ =

∫
Ω

ρ
Dv(x, t)

Dt
dΩ (2.58)

By utilizing Equation 2.49 and Gauss’ Divergence Theorem, we can translate

the boundary integral in Equation 2.57 to a domain integral, viz

∫
Γ

t(x, t) dΓ =

∫
Ω

∇ · σ(x, t) dΩ (2.59)

By incorporating Equations 2.58 and 2.59 into Equation 2.57, we get

∫
Ω

(ρ
Dv

Dt
− ρb−∇ · σ) dΩ = 0 (2.60)

The above equation remains true for any arbitrary domain, therefore, one can

specify the momentum equation to take the form

ρ
Dv

Dt
= ∇ · σ + ρb or ρ

Dυi
Dt

=
∂σij
∂xj

+ ρbi (2.61)
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The momentum equation can be described in the Lagrangian form where all

the variables are represented in material coordinates, such as

ρ
∂v

∂t
= ∇ · σ + ρb or ρ

∂υi
∂t

=
∂σij
∂xj

+ ρbi (2.62)

It should be noted that Equation 2.61 is established in the current arrangement,

the divergence variable is stated in spatial coordinates and accordingly σ(x, t)

is represented by σ(φ−1(x, t)), in order to evaluate the spatial gradient of the

stress field.

The conservation of angular momentum is determined by taking the cross

product of the current vector position x by each term of the linear momentum

Equation 2.57, giving

D

Dt

∫
Ω

x× ρv(x, t) dΩ =

∫
Ω

x× ρb(x, t) dΩ +

∫
Γ

x× t(x, t) dΓ (2.63)

This can be deduced to give the following expression

σ = σT (2.64)

If we assume that the loads are applied slowly, the acceleration variable in

Equation 2.61 can be ignored, implying that the inertial forces are negligible.

This assumption leads us to the following expression

∇ · σ + ρb = 0 or
∂σij
∂xj

+ ρbi = 0 (2.65)

which is commonly recognised as the equilibrium equation. Any problems that



2.1 Non-Linear Continuum Mechanics 33

adopts the equilibrium equation are known as static problems.

The conservation of linear momentum could additionally be represented in

the reference arrangement. Let us examine an arbitrary domain Ω0 with the

surface constraint Γ0 governed by body forces ρ0b and surface tractions t0,

then we can state the total force f as

f(t) =

∫
Ω0

ρ0b(x, t) dΩ0 +

∫
Γ0

t(x, t) dΓ0 (2.66)

We can describe the linear momentum by

p(t) =

∫
Ω0

ρv(x, t) dΩ0 (2.67)

Therefore, we can define the conservation of linear momentum as,

d

dt

∫
Ω0

ρv(x, t) dΩ0 =

∫
Ω0

ρ0b(x, t) dΩ0 +

∫
Γ

t(x, t) dΓ0 (2.68)

Using a similar approach to Equation 2.59; the boundary integral in Equation

2.68 can be translated to a domain integral by utilizing Equation 2.49 and

Gauss’ Divergence Theorem to get

∫
Γ0

t0(x, t) dΓ0 =

∫
Ω0

∇0 ·P(x, t) dΩ0 (2.69)

where ∇0 · (•) is the divergence with regards to the material coordinates.

The Lagrangian form of the momentum equation in the reference arrangement

can be deduced by neglecting the derivation conditions which follows from

Equation 2.68, viz.
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ρ0
∂v

∂t
= ∇0 ·P + ρ0b or ρ0

∂υi
∂t

=
∂Pji
∂Xj

+ ρ0bi (2.70)

The Equation 2.70 is also known as the Total Lagrangian Formulation for

non-linear solid finite elements. The reciprocal equilibrium equation for this

characterization, viz.

∇0 ·P + ρ0b = 0 or
∂Pji
∂Xj

+ ρ0bi = 0 (2.71)

As an after-effect of the conservation of angular momentum from Equations

2.63 and Equation 2.64, the nominal stress tensor deduces the following non-

symmetric expression

F ·P = PT · FT (2.72)

The sum of demands enforced by angular momentum conservation are gener-

ally enforced directly on the constitutive equation. Applying Equation 2.45

into Equation 2.72, we can determine the Second Piola-Kirchhoff symmetric

stress tensor as

S = ST (2.73)

Conservation of Energy

In general terms, the conservation of energy asseverates that the total energy

of an isolated system can never change; it can be stated that the total energy

is conserved over time.
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The generic definition of ’kinetic energy’ for any given material is stated as,

εKE =

∫
Ω

1

2
ρv · v dΩ (2.74)

It should be noted that for continuum body B, this is not the total energy.

The other contributing factor to the total energy is the internal energy, ωIE

per unit mass. The internal energy per unit volume can be stated as,

εIE =

∫
Ω

ρωIE dΩ (2.75)

Hence, we can use the descriptions of the kinetic energy and the internal energy

for a continuum body B to represent the total energy as,

εTOT = εIE + εKE (2.76)

The energy conservation principle postulates that the power of total energy

must equate the power of applied forces in addition to the power at which

other energies enter into the domain. The other energies may take a variety

of configurations but the highest significance is the energy on account of the

heat sources and heat flux over the continuum body B. The variety of energy

forms may emerge from radiation, chemical changes, electromagnetic fields,

etc. Within this research, we only account for therm-mechanical processes.

The power of the total energy can be represented as

PTOT = PIE + PKE =
D

Dt

∫
Ω

ρωIE dΩ +
D

Dt

∫
Ω

1

2
ρv · v dΩ (2.77)
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The power of the applied forces can be stated as

PEXT =

∫
Ω

v · ρb dΩ +

∫
Γ

v · t dΓ (2.78)

The power provided by the heat sources s and the heat flux q is

PHEAT =

∫
Ω

ρs dΩ−
∫

Γ

n · q dΓ (2.79)

Therefore, the conservation of energy can be illustrated as

PTOT = PEXT + PHEAT (2.80)

Equation 2.80 is called the first law of thermodynamics. By substituting the

relevant variables into Equation 2.80 from the Equations 2.77, 2.78 and 2.79,

we can derive the Equation of Conservation of Energy as

D

Dt

∫
Ω

ρωIE dΩ +
D

Dt

∫
Ω

1

2
ρv · v dΩ =

∫
Ω

v · ρb dΩ

+

∫
Γ

v · t dΓ +

∫
Ω

ρs dΩ−
∫

Γ

n · q dΓ

(2.81)

The integral of Equation 2.81 produces the subsequent Eulerian partial differ-

ential equation of energy conservation

ρ
DωIE
Dt

= σ : d−∇ · q + ρs (2.82)

As we only deal with the mechanical component within this research, the above

equation develops into a non-partial differential equation
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ρ
DωIE
Dt

= σ : d (2.83)

As an after-effect of Equation 2.83, one can state that the Cauchy stress tensor

σ alongside the rate of deformation tensor d are conjugate in power. The

Lagrangian description can additionally be used to represent the conservation

of energy in the reference arrangement. We can illustrate the equivalent part

of Equation 2.81 as

d

dt

∫
Ω0

(
ρ0ωIE +

1

2
ρ0v · v

)
dΩ0 =

∫
Ω0

v · ρ0b dΩ0

+

∫
Γ0

v · t0 dΓ0 +

∫
Ω0

ρ0s dΩ0 −
∫

Γ0

n0 · q dΓ0

(2.84)

This yields the following Lagrangian partial-differential equation of energy

conservation

ρ0ω̇IE = P : Ḟ T −∇0 · q + ρ0s (2.85)

As stated previously, we only consider the mechanical element of this equation,

therefore, the Lagrangian energy conservation becomes

ρ0ω̇IE = P : Ḟ T (2.86)

It can be demonstrated from Equation 2.86, that the nominal stress tensor and

the material derivative of the deformation gradient are conjugate in power. By

substituting Equation 2.45 into Equation 2.86, we can achieve the following

energy conservation equation in regards to the Piola-Kirchhoff stress tensor



2.1 Non-Linear Continuum Mechanics 38

ρ0ω̇IE = S : Ė (2.87)

which represents the second Piola-Kirchhoff stress tensor and the rate of the

Green-lagrange strain tensor being conjugate in power.

2.1.6 Constitutive Equations

To accurately establish the mechanical behaviour of any material, we need

to define the constitutive equations of the material. Generally, for a sole me-

chanical methodology, the constitutive equations of the material indicate the

stress tensor dependency in regards to the kinematic factors, such as, the strain

tensor.

Linear Elasticity It has been well documented that engineering materials

like metal or concrete undergo minute alterations of shape when they are

regulated by external forces. If these forces are removed, the material returns

to its original shape. As the shape change of the material is minuscule, there

is no disparity between the reference and current arrangement.

The behaviour of these materials can be successfully described by the linear

elasticity theory. The infinitesimal strain tensor ε can be adopted to evaluate

the strains and the Cauchy stress tensor σ is used to evaluate the stresses.

We can represent the energy conservation equation in regards to the linear

elasticity theory as

ρ0ẇIE = σ : ε̇ = σij ε̇ij (2.88)
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where σ and ε̇ are conjugate in power. Traditionally, the internal energy per

unit volume, ρ0ωIE is commonly symbolized as WIE which is known as the

strain energy function. In terms of a linear elastic material, the strain energy

function relies on the components εij solely and, is represented by the quadratic

function of the form:

WIE =
1

2
Cijklεijεkl or WIE =

1

2
ε : C : ε (2.89)

where we denote Cijkl as the elastic constants. Elastic constants are completely

symmetric and can be illustrated as

Cijkl = Cjikl = Cklij = Cijlk (2.90)

From Equation 2.90, we can state that for isotropic materials, the proper-

ties/characteristics are the same in all directions. As WIE only relies on εij,

the material derivative of Equation 2.89 can be stated as

∂WIE

∂t
=
∂WIE

∂εij

∂εij
∂t

=
∂WIE

∂εij
ε̇ij (2.91)

where the material symmetry has been stated. Incorporating Equation 2.89

into Equation 2.88, yields

σij =
∂WIE

∂εij
(2.92)

Nevertheless, from Equation 2.89 and Equation 2.90, we can deduce
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∂WIE

∂εij
= Cijklεkl (2.93)

By incorporating Equation 2.93 into Equation 2.92, we get the following con-

stitutive equation that correlates stresses and strains.

σij = Cijklεkl or σ = C : ε (2.94)

The constitutive equation completes the set of equations that define the me-

chanical behaviour of linear elastic materials. It can be stated that for an

isotropic material, Cijkl can be illustrated as

Cijkl = λδijδkl + µ(δikδjl + δilδjk) or C = λI⊗ I + 2µI (2.95)

where λ and µ are the Lamé constants. I is the second order identity tensor and

I is the fourth-order symmetric identity tensor represented by
1

2
(δikδjl+δilδjk).

It should be noted that only two constants (Lamé constants) remain of the

initial eighty-one of the fourth-order tensor due to the constraints of material

isotropy and stress symmetry on a material. The constitutive equation 2.94

can be written as

σij = λεkkδij + 2µεij or σ = λ tr(ε)I + 2µε (2.96)

where tr(ε) is the trace of ε = εkk.
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Non-linear Elasticity

Just like the linear elasticity theory accounting for small deformations, there

exists a contradictory theory that accounts for materials involving petite strains

and big deformations. These contradictory mechanical behavioural effects orig-

inate from big displacements and big rotations of the structure. The Saint

Venant-Kirchhoff material can be used to represent the material characteris-

tics which can be stated as an abstraction of the linear theory to big deforma-

tions conferring to the non-linear elasticity theory. The strain energy function

for a non-linear elastic material is a simplified notation of Equation 2.90 and

can be expressed as

WIE =
1

2
CijklEijEkl or WIE =

1

2
E : C : E (2.97)

where the stress can be stated as

Sij =
∂WIE

∂Eij
(2.98)

The equivalent part of Equation 2.94 in the non-linear theory gives

Sij = CijklEkl or S = C : E (2.99)

where Cijkl is defined by Equation 2.95. Adopting these equations, we can

rewrite the constitutive equation for non-linear elastic material as

Sij = λEkkδij or = λ tr(E)I + 2µE (2.100)
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The Lamé constants λ and µ can also be represented in regards to other phys-

ical calculations such as

µ =
E

2(1 + υ)
(2.101)

λ =
υE

(1 + υ)(1− 2υ)
(2.102)

K = λ+
2

3
µ (2.103)

where E is the Young’s modulus, υ is the Poisson’s ratio and K is the bulk

modulus.

Newtonian Fluid

In this research, we will be investigating enclosed inflatable membranes with

internal fluid cavities; therefore, it is essential to define the equations that can

consolidate the material behaviour associated with this. An equation that can

correlate linearly the stress tensor to the rate of strain tensor within a fluid

is termed the constitutive equation for Newtonian fluids. Let us consider a

static fluid with only normal components of the stress tensor on the surface

constraint, hence the stress tensor for a fluid at rest is isotropic and can be

stated as

σij = −pδij (2.104)

where p is the thermodynamic pressure associated with the density ρ and
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temperature T . Additional components of stress originate from non-static

(moving) fluids due to viscosity, giving

σij = −pδij + σdevij (2.105)

where the strain rate tensor is linearly associated with the deviatoric stress

tensor σdevij via

σdevij = Cijkldkl (2.106)

Incorporating Equation 2.33 and Equation 2.96 into Equation 2.106 with Equa-

tion 2.105 yields

σij = −pδij + λdkkδij + 2µdij (2.107)

where dkk = ∇ · v and is defined as the volumetric strain rate. If the generic

Stoke’s assumption (λ +
2

3
µ = 0) is integrated into Equation 2.107 to link λ

and µ, the constitutive equation for Newtonian fluids can be written as

σij = −
(
p+

2

3
µ∇ · v

)
δij + 2µdij or σ = −

(
p+

2

3
µ∇ · v

)
I + 2µd

(2.108)

In terms of incompressible fluids, the continuity Equation 2.53 is integrated

into the above Equation 2.108 giving rise to the following form

σij = −pδij + 2µdij or σ = −pI + 2µd (2.109)
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where p is denoted as the mechanical pressure for incompressible fluids.

2.2 Mechanics of Membrane Structures

In this section, we will give a brief overview about the model which is suit-

able to define the mechanical behaviour of inflatable membrane structures. In

essence, a membrane is characterised as a member of the class of continua and

therefore, the theory of continuum mechanics discussed in the previous section

is inherently valid for membrane mechanics. Although, it should be noted

that the governing equations for general continua stated previously have been

notably conventionalized as a result of the assumptions made for membrane

structures.

2.2.1 Membrane Theory

Fundamentally, a membrane can be considered as a thin shell with no stiffness

in the flexure direction, therefore, a membrane subjected to compression can

not showcase any resistance. Within this stated theory, only the in-plane

stress resultants are incorporated. The deformation state of the membrane

is stated by the position of points on the surface of the Euclidean space. A

number of numerical solutions for membranes have been documented adopting

a finite element method approach. Case study solutions for petite deformations

can be researched in Zienkiewicz [15]. In regards to big deformation case

study solutions, the proceedings from Simo [16] and Braun [17] may be of

interest to the reader. A basic formulations for membranes established on

Curvilinear coordinates is stated by Bonet [11] while Valdes [18] suggested a

large displacement formulation of a triangular membrane element established
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on Cartesian coordinates.

From a mechanical standpoint, a membrane can be classified as a thin walled

structure with exceedingly low bending stiffness which predetermines the load

carrying behaviour. This behaviour results in the membrane deforming con-

siderably subjected to applied forces perpendicular to its mid-surface to an-

other arrangement in which a balance between the applied forces and stresses

developed within the tangential plane of the membrane mid-surface is held.

Establishing on this characteristic, we can state the following assumptions:

• The membrane is exceptionally thin with an even thickness h across

the surface during the deformation. Due to this, the Poison’s effect

which associated the in-plane deformation and the thickness direction

can be neglected. Therefore, shear strains relating the thickness direction

disappear

E13 = E23 = 0

• The normal stresses in the tangential plane of the mid-surface are dis-

tributed evenly over the thickness

• The plane stress precondition is presumed on the mid-plane of the mem-

brane where all stress components in regards to the thickness direction

are ignored

σi3 = σ3i = 0
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2.2.2 Membrane Wrinkling

It has been documented by Khoma [19] that when a membrane undergoes a

compression in a sole principal direction and tension in the alternative princi-

pal direction, the membrane will buckle and, will generate a number of narrow

wrinkles with crests and troughs relatively laterally to the tensile direction,

which is apparent from figure 2.3. In this figure, we can see the square mem-

brane subjected to tangential displacements away from the centre of the mem-

brane at two opposite corners. The membrane is only fixed in the z-direction

at these points of displacement while the remaining membrane is free moving.

The reduction in the flexural stiffness of the membrane leads to the reduc-

tion of the critical buckling stress and the separation amidst the crests of the

membrane. In conclusion, once the flexural stiffness disappears, so does the

critical buckling stress and creating an absolute amount of wrinkles laterally

along the tensile direction. Nevertheless, conventional theory can withstand

compression without wrinkling, even though the flexural stiffness disappears.

Hence, one key complication in modelling membranes is to accurately describe

the wrinkling phenomena that is not accountable by the conventional mem-

brane theory. A successful membrane theory which portrays the wrinkling

effectively does not permit any negative stresses to appear in the model. As

when the negative stress is about to materialize, the membrane would wrinkle.

The modelling of membranes undergoing wrinkling was initiated by Wagner

[21]. Herbert Wagner attempted to describe the behaviour of thin metal webs

and spars transmitting a shear load exceeding the initial buckling value. Since

this publication, a number of authors such as Reissner [22] and Mansfield [23]

have researched the linear analysis of wrinkles in materials.

To this day, a large number of documented and published results have been
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Figure 2.3: An Example of Wrinkling within a Square Membrane subjected to

Tangential Displacement at Opposite Corners [20]

stated globally devoted to the research of wrinkling models investigated via

different concepts. Some generic description of the basic concepts will be

illustrated here to give the reader a broad understanding of the theory behind

these models while concepts integrated to the research within this thesis will

be given in the relevant subsequent chapters accordingly.

The first concept incorporates the modification of the constitutive relations of

the membrane to replicate wrinkling on the surface. In the work presented by

Contri [24] a no compression material model is used in a two step procedure

to obtain the mean deformed position of the wrinkled surface. In a similar

concept, Liu [25] suggests a penalty parameter altered material model with a

fixed parameter, which revolves the constitutive equation to the direction of

principal strains. After which the values of the second principal strains are

castigated to zero and then the constitutive equation is revolved back to its

initial arrangement. The model procedure suggested by Liu Liu was taken one

step further by Rossi [26], by adding in one additional variable to keep the

convergence properties of the material element.
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A second concept proposition is established on transforming the deformation

gradient tensor without altering the constitutive relation. A membrane model

based on the wrinkling of membranes plane-stress theory was given by Wu

[27]. In this model, the deformation gradient tensor was altered by adding an

extra parameter. The value of this additional parameter was dependant on

the limitation of the stress in the wrinkling direction equating to zero. This

alteration of the deformation gradient selected on the basis that the principal

Cauchy directions do not alter during the wrinkling process, which is only valid

when the material is considered to be isotropic. Roddeman [28] created an al-

ternative model to manage the anisotropy of the material by proposing the

correct criterion to calculate the arrangement of the membrane at any point.

This complex formulation led to explicit expressions for the nodal forces and

the tangent stiffness matrix of the material. However, this work inspired Mut-

tin [29] to simplify the wrinkling theory of Roddeman for curved membranes

using a curvilinear coordinate system, which also used numerical calculations

to determine the internal forces and the tangent stiffness matrix.

It should be noted that conventional finite element software packages do not

normally support tension field models, resulting in inaccurate wrinkle mod-

elling. In the present work, following a similar concept to Jarasjarungkiat [30]

we will create and utilize our very own modified material model for isotropic

and orthotropic membranes. The prime difference between the two models

is how the algorithm computes the membrane dynamics during deformation.

The model showcased by Jarasjarungkiat [30] takes into account the mem-

brane within three separate states and only computes these states at start of

the incremental step during analysis while our algorithm will run a step by step

approach during each iteration of the incremental analysis. Our approach leads

to a much more accurate model of membrane wrinkling and deformation when

compared to previously documented integrated subroutines. This approach
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will allow us to input the relevant material model criterion as a user-defined

material subroutine to predict the material deformation dynamics accurately.

A detailed study on this user-defined material subroutine will be presented in

an consequent subsection.

2.2.3 Membrane Wrinkling Algorithm

In this section, we will discuss a developed algorithm based on the modified

material model to depict wrinkling within the material. The principle behind

the algorithm is to calculate the wrinkling phenomena which is not relatively

predicted by conventional membrane theory even when the flexural stiffness

disappears. It should be noted that this algorithm is not proposed for the

time-history analysis, ergo, solely the final precise solution.

It is well known that a membrane must be in one of three states at any given

point. In the taut state, the membrane is undergoing tension in all directions.

In the slack state, the membrane is said to be in a relaxed state, no stretching

in any direction. If the membrane is not within the taut or slack state, it is

said to be in the wrinkle state, experiencing uni-axial tension. In the wrinkled

or slack criterion, the ’actual’ arrangement of the membrane is ambiguous and

not defined. To overcome this, the wrinkled or slack area can be substituted

with a mean smoothed pseudo-surface where the material points on the ’actual’

wrinkled surface are blueprinted onto the pseudo-surface.

To forecast the ’actual’ arrangement of the wrinkled membrane, a very close-

knit finite element is essential to achieve a successful analysis, which occa-

sionally requires an initial perturbation, see Tessler [31]. In the present work,

the work carried out by Roddeman [32], will be incorporated detailing the

wrinkling criterion established on principal stresses and principal strains. The
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Stress and Strain Wrinkling Membrane

SII > 0 No Taut

EI > 0 and SII ≤ 0 One axial Wrinkled

EI ≤ 0 Two axial Slack

Table 2.1: Wrinkling criterion to define the different membrane states

main purpose of this is to distinguish between the different membrane states,

represented in table 2.1.

2.3 Time Integration Methods

It can be stated that the majority of dynamic problems within the field of

mechanics cannot be computed analytically. In order to achieve a satisfactory

solution, numerical time stepping methods for integration of differential equa-

tions must be utilized. We will make use of the following generic structural

dynamic equilibrium equations, also known as the governing equations for the

deployment simulation.

Md̈+ Cḋ+ Fint = Fext (2.110)

Md̈+ Cḋ+ Kd = Fext (2.111)

where M is the mass matrix, C is the damping matrix and K is the stiffness

matrix. Fint and Fext are the internal and external loading vectors while d, ḋ,

and d̈ are known as the displacement, velocity and acceleration, accordingly. It

should be noted that both these equations 2.110 and 2.111 represent the exter-
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nal loads equating a combination of inertia forces, damping forces and internal

stresses. In this section, we will investigate two well-known but essentially

different methods, namely, implicit and explicit methods.

2.3.1 Explicit Time Integration Method

In an explicit analysis, the solution in each step relies solely upon the quantities

achieved within the previous step. This implies that the displacements at

tn + ∆t are functions of the data at times tt and tn − ∆t, where ∆t is the

time step and n is the time. If M and C are stated as diagonal matrices, each

individual time step is computed very quickly as the solution of simultaneous

equations is not needed. The explicit analysis is computing Equation 2.110 for

each time step and the initial values are d0 = 0 and d̈0 = 0 at time t0 = 0 [33].

The algorithm yields:

1 If n = 0: calculate the acceleration at t0, the velocities at t1/2 and the

displacement at t1:

d̈
0

= M−1(F0
ext − F0

int)

ḋ
1/2

=
1

2
∆td̈

0

d1 = d0 + ∆tḋ
1/2

2 If n 6= 0: calculate the velocity at tn+1/2 and the displacement at tn+1

ḋ
1/2

=

(
1

∆t
M +

1

2
C

)−1 [(
1

∆t
M− 1

2
C

)
ḋ

(n−1/2)
+ Fn

ext − Fn
int

]
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d(n+1) = dn + ∆tḋ
(n+1/2)

3 Not a prerequisite for calculating the displacements but the velocity and

acceleration at tn can be calculated as

ḋ
n

=
1

2
(ḋ

(n+1/2)
+ ḋ

(n−1/2)
)

d̈
n

=
1

∆t
(ḋ

(n+1/2)
+ ḋ

(n−1/2)
)

4 Increment the time t(n+1) = tn + ∆t and revisit to step 2.

It should be noted that the computer efficiency is increased by the capitaliza-

tion of the diagonal mass and damping matrices which leads to the manage-

able matrix inversion (M/∆t + C/2)−1. Another major contributing factor

is the composition of the tangent stiffness matrix is not required, and the so-

lution computes without any iterations. These benefits do not come without

a drawback; the explicit analysis demands long computational times due to

the incremental time steps essential to achieve stability. The central difference

operator is provisionally stable, and the stability limit for undamped systems

can be stated as

∆tstable ≤
2

ωmax
(2.112)

The stable time increment can be described in regards to the highest eigenvalue

in the model (ωmax), also known as the maximum angular frequency and the

fraction of the critical damping (ξ) in the highest mode as
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∆tstable ≤
2

ωmax
(
√

1 + ξ2 − ξ) (2.113)

The stable time increment is the minimum time that a dilatational (i.e. pres-

sure) wave takes to move across any element in the model. The dilatation

consists of volume expansion and contraction. Therefore, we can express the

dilatational wave speed as:

cd =

√
2E(1− ν)

ρ (1 + ν)(1− 2ν)
(2.114)

where E is the Young’s modulus, ρ is the density and ν is the Poisson’s ratio.

In order for the solution to converge, it is essential that the time increments

employed in the analysis are smaller than the stability limit of the central

difference operator.

2.3.2 Implicit Time Integration Method

The implicit analysis computes the Equation 2.111 and the displacements,

velocities and accelerations at time tn + ∆t are determined by exploiting the

data attained from times tn−∆t, tn and tn+∆t. Contradictory to the explicit

analysis, within the implicit method, an array of coupled equations must be

solved concurrently. The implicit time integration algorithm taking advantage

of the Newmark General formula can be stated as

ḋ
(n+1)

= ḋ
n

+ (1− γ)∆t d̈
(n+1)
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d(n+1) = dn + ∆tḋ+ ∆t2
(

1

2
− β

)
d̈
n

+ ∆t2β d̈
(n+1)

The average acceleration method gives the following variables, γ = 1/2 and

β = 1/4 in defining the accuracy and stability of the implicit time integration

analysis. The algorithm gives the following:

1 Calculate the acceleration:

d̈t =
1

2

(
Fn
ext −Cḋ

n −Kdn
)

2 Define the incremental time:

t(n+1) = tn + ∆tn

3 Express the displacements and velocities:

ḋ
(n+1)

? = ḋ
n

+ (1− γ) ∆tḋ
n

d(n+1)
? = dn + ∆tḋ

n
+

(
1

2
− β

)
∆t2d̈

n

4 Calculate the acceleration:

S = M + γ∆tC + β∆t2K

d̈
(n+1)

= S−1
(
F

(n+1)
ext −Cḋ

(n+1)

? −Kd(n+1)
?

)
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Explicit Analysis Method Implicit Analysis Method

+ no stiffness matrix assembly + large time steps

+ no matrix inversion necessary + time steps include full iterations

+ simplification of contact interaction

- very small time steps - stiffness matrix assembly needed

- time steps scale with mass density - matrix inversion needed

Table 2.2: Advantages and Disadvantages for Explicit and Implicit Methods

5 Regulate the displacements and velocities:

ḋ(n+1) = ḋ
(n+1)

? + γ∆td̈
(n+1)

d(n+1) = d(n+1)
? + β∆t2d̈

(n+1)

6 Calculate the residual forces

F(n+1) = F
(n+1)
ext −Md̈

(n+1) −Cḋ
(n+1) −Kd(n+1)

7 If the solution does not converge, i.e. ‖ F(n+1) ‖> tolerance, specify

ḋ
(n+1)

? + ḋ
(n+1)

d(n+1)
? + d(n+1)

and repeat steps 4-6 until solution reaches convergence
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Model Size

Solution Time Implicit
Analysis

Explicit
Analysis

Figure 2.4: An Example of Wrinkling within a Square Membrane

2.3.3 Explicit versus Implicit Integration Methods

From the information stated in the preceding sections, it is apparent that

there are major differences between the two methods in terms of modelling

and computational time. A basic representation of this can be seen in figure

2.4 showcasing the differences of the analysis relative to the model size and

computational time. A basic summary of advantages and disadvantages of

both these methods can be seen in table 2.2. However, there are two further

key advantages for selecting an explicit time integration method for the models

investigated within this research, namely, wrinkling and contact phenomena.

ARCHIE-WeSt

In order to compensate for the simulation processing speed, we used the

ARCHIE-WeSt High Performance Computer located on the premises of the

University of Strathclyde. ARCHIE-WeSt is a regional supercomputer centre

funded by EPSRC and dedicated to research excellence and wealth creation in

the West of Scotland. Archie comprises almost 3500 cores for distributed par-

allel computing providing almost 38 Teraflops peak performance, eight 512GB
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RAM large memory nodes, 8 GPU servers, 2 visualisation servers and 150TB

of high performance LUSTRE storage. Due to these technical specifications,

I was able to run parallel simulations to reach accurate results within my dy-

namic simulation modelling. It should be noted, that if there was no funding

put aside for the use of Archie, it would have been very unlikely to utilize

the explicit integration method due to the high computing power needed for

simulation models to reach convergence.

Contact Modelling

The implicit procedure in Abaqus-Standard makes use of constraints to ad-

minister the contact conditions. This implies that the solver must iterate to

comply with all contact conditions. There will be a decrease of the time in-

crements if the contact conditions are not satisfied in an acceptable number

of iterations. Three-dimensional models generally have a very large number

of conceivable contact points, and transforming contact conditions can lead to

exceptionally small time steps or convergence complications.

The explicit integration method efficiently solves extremely discontinuous events.

In essence, contact is an extremely discontinuous form of non-linearity and it is

possible to solve complicated, very general, three-dimensional contact problems

with deformable bodies in Abaqus/Explicit. The explicit procedure provides

two algorithms for modelling contact:

1 General Contact gives the user the possibility of representing con-

tact between a large amount or all of the regions of the model with

a single interaction. Interactions typically include all bodies in the

model and Abaqus automatically defines the surface but the user can

include/exclude surface pairs. The contact conditions are administered



2.3 Time Integration Methods 58

by the Penalty method.

2 Contact pairs describe contact between two given surfaces. The user

needs to be very careful when defining this type of contact as every

possible contact pair interaction must be defined. Unfortunately, this

type of contact has a large restriction on the types of surfaces involved.

The contact constraints are governed by two separate methods within the

Contact Pairs algorithm, namely, the Kinematic Compliance method and

the Penalty method.

The time increment size is independent of the number of contact points and

the intricacy of the contact conditions for the kinematic method. The penalty

method can affect the size of the time increment of the model.

Local Instabilities

The nature of the drawing processes as previously stated induce compressive

stresses within the material, which leads to wrinkling. Wrinkling alone can

cause severe convergence complications in the implicit procedure. From the

implicit algorithm, it can be stated that the implicit procedure is optimal

for smooth non-linear response while wrinkling represents an abrupt buckling

discontinuity within the non-linear response. This can lead to considerable

decrease in the time increment size, forecasting convergence not being achieved

in some cases.

Although wrinkling can cause a number of difficulties within the implicit pro-

cedure, it is relatively straightforward within the explicit procedure. Displace-

ments, velocities and accelerations are calculated independently of the discon-

tinuity severity. Inertia within the model prevents unchecked growth of the
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instability through the time step. The explicit analysis however has one limi-

tation: since the method calculates problems by propagating disturbances as

waves (which travel from elements to their nearest neighbours in each time

increment), it can be relatively slow for very simple stages, such as lateral

loading of a 2-D membrane.

2.4 Originality of the Current Work

The majority of previous published work deals with the deformation of un/inflated

membrane using numerical calculations with little focus on simulation mod-

elling showcasing the deformations from a visual perspective. Even though

stress-strain criterion within membranes has been documented extensively,

taking into account deformation of rectangular and cylindrical membranes,

to the authors knowledge, the process of re-inflation of a deformed cylindri-

cal membrane structure and the adaptive membrane structure has not been

simulated before. The originality of the current work lies within five principal

points: each principal point stated will be discussed in detailed within the

subsequent section:

1 A novel patent pending smart adaptive space structure to harness solar

energy to be re-used as a potential source of green energy on the ground.

2 Design of the new cell structures for the adaptive smart cell to be shaped

to the user specification after deployment.

3 The post-inflation of the deformed inflated membrane structure to restore

it to its approximate initial configuration.

4 Simulation design of the membrane elements used within Abaqus using

the fluid cavity inflation and internal layer method.
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5 Abaqus simulation technique employed to meet convergence and run suc-

cessfully.

However, in order to meet the parameters of the above points within our FEA

simulation model, careful consideration has been given to the following:

- In regards to membrane deformation, an in-depth look is given into the

interaction between the structural forces and membrane wrinkling.

- Modelling the geometric non-linearity behaviour of the membrane by

integrating a user defined VUMAT subroutine to define the membrane

material dynamics. It should be noted that previous research has been

published for UMAT subroutines and the author only modified a previous

UMAT by changing the calculation of the mixed wrinkling criterion at

each incremental phase during the course of the Abaqus dynamic explicit

analysis based on the Stein-Hedgepeth theory.

- Once the model characterizes the membrane using a mixed wrinkling

criterion, an iterative scheme is utilized to calculate the wrinkling orien-

tation angle and the stress distribution.

- A 3-Dimensional Finite Element model which integrates wrinkling and

frictionless contact has been developed to simulate the adaptive smart

cell and cylindrical membrane structure.

A computer model has been developed to accomplish exceptional performance

in relation to accuracy, competency, computing hardware, software expense,

complexity and the model convergence rate. The numerical algorithm is cre-

ated to be malleable/flexible for a large variety of material models and has

been showcased to work successfully for two very different models undergoing

different inflation and deformation.
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2.4.1 A novel patent pending smart adaptive space struc-

ture to harness solar energy to be re-used as a

potential source of green energy on the ground

A comprehensive study has been presented where by solar energy can be har-

nessed in space and beamed to a ground station for re-use. An experimental

apparatus was created using PET elastic membrane material to showcase the

residual air inflation method however Kapton DuPoint is suggested for mission

use for protection against UV radiation. The solar energy smart cell structure

comprises of two specific structures: the solar panel assembly & transmission

assembly and the deployable concentrator. The inflatable smart cells within

the deployable concentrator are coated with a reflective material that can redi-

rect and focus the sun’s energy onto the stationary solar panel & assembly in

space. The cells can be interchangeable, if one fails, it does not affect the whole

structure and can be replaced with ease using robots. This implies that the

structure is robust enough to meet mission requirements even under extreme

scenarios of a meteorite shower puncturing some of the inflated cells. The

cells can be inflated in two proposed methods, namely using a pressure tank in

space to inflate each cell incrementally or inflating each cell using the residual

inflation method which was utilized within this research.

2.4.2 Design of the new cell structures for the adaptive

smart cell to be shaped to the user specification

after deployment

As the deployable concentrator is bio-inspired, two inflatable cells are con-

nected together via micro-pumps. The innovative micro-pumps are used to
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allow air change between two neighbouring cells, therefore, changing the vol-

ume of the cells. A large horizontal level structure can be created by joining

actuator elements. Changing the actuator and other connecting actuators lo-

cally on the structure will translate the global shape of the structure into any

given shape. The proposed design concept is effortlessly adaptable and scalable

to any dimensions as a result of the cellular technique of each cell employed.

2.4.3 The post-inflation of the deformed inflated mem-

brane structure to restore it to its approximate

initial configuration

Extensive research has been done into the deformation of a bent & buckled

beam using numerical calculations and finite element simulations. However,

to the author’s knowledge, no research has been found on the post-inflation

of a bent & buckled beam using FE simulation software. This research is

vital for a detailed understanding of inflatable beams as these could be used

as acting support booms for inflatable structures such as, solar sails. If the

support boom of the solar sail has been deformed, restoring it back to its

initial configuration will allow the mission to be carried out successfully or for

the potential structure to be manoeuvred back to a relay point for repair or

maintenance.
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2.4.4 Simulation design of the membrane elements used

within Abaqus using the fluid cavity inflation and

internal layer method

Abaqus isn’t the conventional software used for inflation simulations such as

airbag deployment. With the integration of a custom programming scripting

and exploiting the fluid cavity (*control volume) method alongside the inter-

nal element layer (*skin) method, Abaqus was executed successfully to attain

accurate and robust results. By using the *skin method, the internal elements

of the structure are defined in order to prescribe conditions on dedicated nodes

as opposed to the nodes occupying both inside and outside regions of the mem-

brane structure. As the width of the membrane element is so small, a finite

element software package usually prescribes the one node for both the inside

and outside the membrane structure. This is fine as you can define two sep-

arate surface areas but a node must be defined to characterize the reference

conditions of the gas during stability and inflation. In order to meet these

requirements, a separate internal layer needs to be defined which conforms to

the simple constraint of being one global structure and doesn’t affect/deviate

the outcome of the simulation result. By using the method, we were able to

model an enclosed volume for gas inflation using the *control volume method.

The *control volume method allows you to define gas expansion of tapped air

administering the structure to a decreased pressure situation. The mass flow

needed for the control volume method was deduced by utilizing simplistic el-

lipsoidal geometric and thermodynamic equations by postulating that the gas

is an ideal gas. A custom triangular shaped mass flow attribute is created

and utilized due to the essence of the residual air inflation method presumably

starting slow, leading to an optimal maximum and eventually slowing down.
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2.4.5 Abaqus simulation technique employed to meet

convergence and run successfully

Finite Element Analysis provides engineering information about a structure/component

which cannot be obtained by using traditional analysis methods. It is possible

to generate a simulation of any design concept and to determine its real world

behaviour under almost any imaginable environments, therefore allowing the

concept to be refined prior to the creation of drawings.

Abaqus was used over conventional software packages due to the following

benefits:

- The Abaqus coupled Eulerian Lagrangian technique provides the ability

to model gas flow in the airbag and include the effects of surrounding air

during deployment.

- Ability to easily enforce contact interactions between the Lagrangian

bodies and the materials in the Eulerian mesh using the powerful and

robust general contact algorithm.

- Extensive material library to model woven airbag fabrics and gas equa-

tions of state.

- GPU Acceleration of AMS and of the modal frequency response solver.

- Generation of cohesive elements through the Mesh function.

The Abaqus software suite delivers accurate, robust, high-performance solu-

tions for challenging non-linear problems, large-scale linear dynamics applica-

tions, and routine design simulations. Its unmatched integration of implicit

and explicit FEA capabilities enables you to use the results of one simulation
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directly in a subsequent analysis to capture the effects of prior history, such

as manufacturing processes on product performance. User programmable fea-

tures, scripting and GUI customization features allow proven methods to be

captured and deployed to your enterprise, enabling more design alternatives

to be analysed in less time.



Chapter 3

Rectangular Membrane Model

In the era of light structures, thin membranes structures have gained vital

roles in a multitude of Engineering disciplines from deep sea to space applica-

tions such as solar arrays, sun shields, inflatable antennas and radars. These

pre-stressed membrane structures normally remain partially wrinkled in there

operational arrangement. Mitigating and erasing the wrinkles on the mem-

brane requires a biaxially tensile stress state, hence, considerably increasing

the loads transmitted to the edges of the deployable structure that supports

the membrane [34] [35].

These wrinkles can cause complications in solar sail manoeuvrability and also

reduce the performance of solar reflectors and sun shields. In order for mem-

branes to perform at optimum levels, the membrane must remain wrinkle free.

To deal with such complications, wrinkling models based on kinematic or ma-

terial modifications are preferred to costly computer simulations with very

densely refined model meshes. The second part of this chapter focuses on the

user-defined material subroutine to modify the stress-strain relationship of an

element to erase all compressive stresses. This is justifiable as the relative

66



3.1 Literature Review of Rectangular Membrane Structures 67

simulations focus on the ’global’ stress and displacement field, and hence, the

single wrinkle is neglected.

The modified material model approach incorporates a user-defined material

subroutine to define the material behaviour dynamics. We will discuss the va-

lidity of using Abaqus as a finite element software for our membrane modelling

simulations and thereafter investigate the benefits of using a material modified

subroutine approach alongside Abaqus. The main objective of this chapter is

to study the important components of wrinkling of thin membranes. It should

be noted that several fundamental analyses were completed to tackle several

issues associated with membrane simulation modelling, such as element type,

mesh density, imperfection sensitivity, material model and stabilizing factor to

function as a reference point for subsequent analyses. The wrinkle onset and

wrinkle profiles of membranes undergoing loading and shearing are investigated

on the conclusions of the pre-buckling eigenvalue analysis and post-buckling

analysis respectively.

3.1 Literature Review of Rectangular Mem-

brane Structures

In this section, we will give a comprehensive critical literature review of exper-

imental and simulation models which have carried out similar research goals

with numerous different procedures. In essence, we use a modified approach

to the subsequent citations and a comparison has been executed within this

section.

Satish Kumar [36] gave a comprehensive investigation of the formation and

evolution of wrinkle patterns that are observed in stretched thin membranes.
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The model investigated is set up under numerous displacement load conditions.

As a pre-requisite condition for wrinkling, creation of compressive stresses in

the transverse direction is deduced to be dependent on both the length-to-

width aspect ratio and thickness of the thin membrane. The calculated shape

and size of the wrinkle also depends on the applied tensile strain and shear

strain.

A prime advantage of the study investigated by Satish Kumar [36] is that

one can probe the simulation results in order to gain additional insights into

the characteristics of wrinkles and their evolution under deviating thickness,

number of elements, loads or boundary conditions on different shapes. Ku-

mar gives a FEA simulation procedure to investigate the membrane wrinkling,

which prognosticates with favourable accuracy and natural frequencies and

mode shapes of wrinkled membrane structures. Kumar predicts that the out-

of-plane pressure can by utilized to remove some wrinkles by overwhelming

compression in the bulk of the membrane. However, this may be true, the key

problem is to take into account the membrane dynamics on the formation of

the initial wrinkles which lead to secondary wrinkles. This cannot be deduced

by conventional tension field models but by integrating an Iterative Modified

Properties (IMP) method as used within this study.

An alternative to the tension field theory model was initially created by Xinxi-

ang [37]. The prime distinction between Kumar’s method and the IMP method

is that, in lieu of modifying the material properties iteratively, the utilizer pre-

selects a soi-distant penalty tension field parameter to provide a modicum of

stiffness in the direction transverse to the wrinkles. This avails to surmount

the numerical singularities associated with vanishingly minute diagonal terms

in the tangent stiffness matrix. [37] compounded the approach of their earlier

paper with the semi-analytical firmness of the impending buckling model by
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Lin and Mote [38]. The wrinkle wavelength and amplitude, by applying Lin

and Mote’s eigenvalue analysis to regulate the number of wrinkles. The wrinkle

amplitude is then derived through an argument fundamentally comparatively

equivalent to that put forward by Wong and Pellegrino [34] [39]. It is implic-

itly theorized that the number of wrinkles will not vary once the wrinkles have

commenced to compose (which is inaccurate), and that the wrinkled region

can be theorized to deport as a simply fortified rectangular plate. Xinxiang

[37] has shown this approach to provide plausibly precise results for square

membranes subjected to a concrete coalescence of tension and shear but the

results lack consistency for different shapes of membranes and cannot be used

as foundation theory for our research.

Several iterative schemes that utilize no-compression material models have

been proposed. In their simplest form, these schemes begin by assuming that

the behaviour of the membrane is linear elastic. Then, any compressive princi-

pal stresses are equated to zero and the associated stiffness matrix coefficients

are also equated to zero. The principal stresses are recalculated at every it-

eration, to eschew history dependency in the results. Contri and Schrefler

[24] set a sample quandary that many others have subsequently tackled. An

analogous approach was carried out in this study as Kumar using the *NO

COMPRESSION command within Abaqus but to no avail, poor convergence

was observed within the results. Determinately, a user-defined membrane finite

element that incorporates wrinkling within its material dynamics formulation

has been designed and integrated as a VUMAT subroutine within ABAQUS.

The wrinkling of a uniformly stretched thin elastic plate administered to a

pressure acting perpendicular to its surface is revisited by Coman [40]. This

problem is solved under the presumption that the basic state can be adequately

depicted by a suitable non-linear membrane analysis. The validity of this sim-
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plification was presumed reasonable based on recent published work in which

numerical simulations established that bending effects tend to be negligible for

conventional load levels that induce the initial axi-symmetric deformation of

the plane to bifurcate into an asymmetric mode. The effect of this presumed

inconsequential alteration on the asymptotic depiction of the wrinkling insta-

bility is investigated by Coman [40] in its entirety and, an absolute quantitative

assessment is made with earlier results in which the bending resistance of the

axi-symmetric deformation mode was accounted for.

Coman studied the edge wrinkling of a uniformly stretched thin elastic plane

subjected to a normal pressure acting on one of its faces. Coman [40] took ad-

vantage of the local nature of the instability, boundary-layer arguments have

led to accurate asymptotic formulae for both the critical pressure and the

reciprocal number of wrinkles in a clear interpretation of the problem. In or-

der to achieve this result, Coman [40] neglected the bending stiffness in the

pre-buckling stage which leaves the base state (non-linear) equations free of

any boundary layers, and the entire asymptotic structure of the problem can

be traced back to the three coupled displacement bifurcation. This approach

however accurate for membrane plates, could not be utilized within ABAQUS

or with membrane elements within ABAQUS. Upon running numerous sim-

ulations, convergence was not met and the initial conditions of negating the

bending stiffness were proving detrimental to the formation of wrinkling within

the displacement loading steps.

In contradiction to conventional methods, Mosler [41] examines every aspect of

the physical problem, deriving from minimization of suitable energy function-

als. A variational formulation of finite plasticity theory, which corresponds to

a minimization problem for the constitutive updates, serves as the initiation

point for the derivations. In consideration for the kinematics inferred by wrin-
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kles and slacks, a relaxed version of the finite strain functional is theorized. In

effect, the local increment stress-strain relations are derived via differentiation

of the relaxed energy functional in correlation to the strains. Hence, the given

formulation by Mosler [41] is completely analogous to that of hyper-elasticity

with the sole exception that the aforementioned functional depends on history

variables and, accordingly, it is path dependant. Once the wrinkling occurs,

the resulting stress field can be calculated from the classical tension field the-

ory, albeit, the tension field theory does not derive any information on wrinkle

formation. Hence, an additional criterion is needed, which is commonly based

on the principal strains, principal stresses or a combination of both. Clearly,

since these loading conditions often introduced in ad-hoc manner, there is no

guarantee that they comply well with tension field theory. As a deduction, the

resulting boundary value problem is not continuous in general.

Alternatively, a comprehensively variational procedure convenient for the anal-

ysis of wrinkles and slacks in membranes was proposed in a series of papers

by Pipkin [42], [43], and [44]. Pipkin examined the energy of a membrane

under given assumptions and validated that the quasi-convexification of the

Helmholtz energy delineates a relaxed energy functional whose derivatives gen-

erate the membrane stresses, i.e. the stresses expected by this relaxed potential

fulfil the restrictions dictated by the tension field theory. The methodology

introduced by Pipkin encompasses physically sound loading and unloading con-

ditions; additional ad-hoc presumptions are not required. As an after-effect,

the proceeding the boundary value is continuous (more precisely, sufficiently

smooth), which makes it physically and mathematically sound and convenient

for numerical implementations. Pipkin’s idea was further elaborated by Mosler

[41], in which a novel variational algorithmic formulation for wrinkling at finite

strains were proposed. In accordance with Pipkin’s original method, the un-

known wrinkle distribution is calculated by minimizing the Helmholtz energy
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of the membrane with the respect to the wrinkling parameters. The finite el-

ement model allows to employ arbitrary, fully three-dimensional hyper-elastic

constitutive models directly. This methodology was taken one step further

by adopting a fully variational approach by Mosler, i.e. the wrinkling pa-

rameters, together with the plasticity related variables, follow from relaxing

an incrementally characterized potential. Therefore, the relaxed potential is

formally identical to that of the standard hyper-elasticity. Clearly, such a

variational method showcases numerous advantages in comparison to conven-

tional strategies. For instance, it opens up the possibility of applying standard

optimization algorithms to the numerical implementation. This is especially

important for highly non-linear or singular problems such as wrinkling. On

the other hand, minimization principles provide a suitable basis for posteriori

error estimation and thus, for adaptive finite element formulations.

Within this study, the Mosler fully variational formulation to account for wrin-

kling in elastic membranes at finite strains is integrated alongside the Miller-

Hedgepeth membrane model. The distinguishing aspect of the new method-

ology used is that every part of the problem is considered using an iterative

scheme taking into account the material dynamics for wrinkling. The addi-

tion of ad-hoc loading conditions are not required, but they emanate naturally

from the mathematically and physically sound variational principal itself. The

VUMAT subroutine is discussed in detail in a later section.

3.2 Finite Element Analysis with Abaqus

Membrane wrinkling is a highly geometrically non-linear phenomenal, creating

instability within the structure. To accurately simulate this type of phenome-

nal demands a non-linear solution method and an entirely dynamic, transient
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analysis. The primary non-linear solution method within Abaqus is the full

’Newton-Raphson’ method. This method solves a sequence of non-linear equi-

librium equations incrementally with increasing load or displacement. An al-

ternative method for determining the post-buckling snap-through problems is

the ’Arc-length’ method, commonly recognized as the ’modified Riks’ method.

In this method, a sequence of equilibrium states is determined within the load-

displacement space by the two parameters, nodal displacement and loading.

Both these parameters are used incrementally to achieve equilibrium solutions,

rather than solely controlling a single load or displacement increment as in the

Newton-Raphson method. Wong [39] [45] documented unsuccessful attempts

at the Riks method due to highly localized instability, concluding that mono-

tonic displacement incrementation as a successful working option.

3.3 Analysis Procedure

A detailed flowchart is given in figure 3.1 stating the simulation procedure used

by the finite element analysis software Abaqus.

3.3.1 Initial Conditions

In order to stabilize the membrane, a small uniform pre-stress is applied in the

first stage of the analysis. It should be noted that the magnitude of the ap-

plied pre-stress should be sufficiently big to compensate the successive buckling

mode analysis but, not too big to influence the first solution.

An edge displacement is prescribed to define the level of pre-stress required.

After the initial pre-stress has been applied to the membrane, a static non-
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Figure 3.1: Flowchart depicting the Abaqus Wrinkling Analysis
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linear geometric check is executed. This check assigns a small redistribution

of the pre-stress state alongside the small in-plane displacement.

3.3.2 Pre-Buckling Eigenvalue Analysis

In the consequent stage of the analysis, the buckling mode-shapes of the pre-

stressed membrane are computed. These calculated modes are used to seed

petite imperfections that prompt the development of wrinkle formation in the

successive non-linear analysis.

In order to achieve this, we use the *BUCKLE option within Abaqus to fore-

cast the buckling load and the potential wrinkling modes of the membrane

dependant on the boundary constraints and loading conditions. Rather than

defining the load as a force here, it is instead defined as an edge displacement.

Generically, we expect the loads for the model stiffness matrix to become

singular during an eigenvalue buckling analysis, viz.

Kijυi = 0

where Kij is the tangent stiffness matrix when the loads are administered, υi

are the non-trivial displacement solutions, i and j are the degrees of freedom

for the complete model. Abaqus uses two standard eigensolvers to derive the

eigenvalues, namely Subspace iteration and Lanczos method.
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Standard Eigensolvers

Before we can define the Subspace Iteration method or the Lanczos method, we

need to understand the simplest iterative method available, the Power method.

Power Method is the basic iterative method. It takes a starting vector

and lets the matrix operate on it until we get vectors that are parallel to

the leading eigenvector. It converges when there is one unique eigenvalue of

largest magnitude, but even in these favourable cases it is slower than other

algorithms, such as the Lanczos method.

Subspace Iteration, also called Simultaneous Iteration lets the matrix op-

erate on a set of vectors simultaneously, until the iterated vectors span the

invariant subspace of the leading eigenvalues. It is the basis of several struc-

tural engineering software packages and has a simple implementation and the-

ory of convergence to recommend it. It is, however, slower to converge than

algorithms based on the Lanczos orthogonalization.

Lanczos method builds up an orthogonal basis of the Krylov sequence of

vectors produced by repeated application of the matrix A to a starting vector.

In this orthogonal basis, the matrix operator is represented by a tridiago-

nal matrix T, whose eigenvalues yield Ritz approximations to several of the

eigenvalues of the original matrix A. Its main advantage, compared to the

power method, is that it yields approximations to several eigenvalues from one

sequence of vectors and that these converge after much fewer matrix-vector

multiplications. On the other hand, there are potential complications: even if

a simple three-term recurrence is enough to give a mathematically orthogonal

basis, rounding errors will destroy orthogonality as soon as the first eigenvalue
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converges, and one has to apply some kind of re-orthogonalization. If one

needs only eigenvalues, the Lanczos algorithm is economical in storage space.

For modelling relatively thin membranes, the eigenvalue buckling analysis is

complex due to the applied initial pre-stress. An applied pre-stress that is too

small can lead to two ramifications: the model fails to converge, or only nega-

tive eigenvalues are written in the eigenvalue buckling analysis. The negative

eigenvalues express the membrane buckling if the loads were enforced in the

reverse direction, e.g. the membrane is much more inclined to buckle when the

tensile load is substituted by a compressive load. If a large enough pre-load

is applied prior to the buckling analysis, these negative buckling modes can

be averted. It should be noted that with the Lanczos solver, only positive

eigenvalues can be attained by imposing a lower limit to the eigenvalue.

The model configuration after the initial step, during which the pre-load PN is

exercised to the membrane, is known as the base state of the buckling step. The

buckling loads are determined comparative to the base state of the membrane

structure. An incremental load (’live’ load), QN is prescribed in the eigenvalue

buckling step. The degree of this loading is insignificant as it will be scaled by

the load multipliers, λn, established in the eigenvalue analysis:

(K0
ij + λnK

∆
ij ) υni = 0

where K0
ij is the stiffness matrix relative to the base state which incorporates

the effects of any pre-loads, K∆
ij is the differential initial stress and loads stiff-

ness matrix as a result of the incremental loading pattern, QN , λn are the

eigenvalues, υni are the buckling mode shapes (eigenvectors) and n indicates

the buckling mode number.
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The buckling loads can now be stated as,

P = PN + λnQN

Typically, the minimum value of λn is of interest and the pre-load PN and

the perturbation load QN may be of a dissimilar nature. In the course of this

research, they are both established as edge displacements in the longitudinal

direction. It should be noted that the buckling mode shapes υi are standard-

ized vectors and do not depict the real deformation value at critical load. The

buckling mode shapes are standardized to assure the maximum displacement

component equates to 1.0. These attained buckling mode shapes can be re-

garded as a key component in the eigenvalue analysis, as they forecast the

possible failure mode of the structure.

In an eigenvalue buckling prediction step, Abaqus initiates a static perturba-

tion analysis to calculate the internal stress, ∆σ due to QN . This in turn

creates the stiffness matrix Kij
∆ relating to ∆σ. The stiffness matrix Kij

0 re-

lating to the base state geometry is created during the eigenvalue extraction

part of the buckling step. The initial stress and load stiffness variables in rela-

tion to the pre-load, PN , are incorporated and derived based on the base state

geometry.

PN+λ1QN with λ1 being the eigenvalue minimum, usually gives a good approx-

imate for the critical buckling load other than structures with closely spaced

eigenvalues, leading to complex numerics. An array of densely spaced eigen-

values demonstrate that the structure is imperfection sensitive. An eigenvalue

buckling analysis does not yield a precise forecast of the buckling load for

imperfection sensitive structures.
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Normally a buckling analysis is carried out for ’hard’ structures, it is not a

necessity to incorporate the effects of geometric alterations in reaching equi-

librium for the base state. However, it is concluded that for some membrane

ranges, the pre-load has to be large enough in order to achieve positive eigenval-

ues. In these circumstances, the pre-load may prompt considerable geometric

alteration within the base state. Therefore, we make use of the geometric

non-linearity feature, *NLGEOM within Abaqus is incorporated for the base

step and during the whole analysis in each simulation. The *NLGEOM op-

tion indicates that geometric non-linearity should be accounted for during the

analysis step (stress analysis, fully coupled thermal-stress analysis, and cou-

pled thermal-electrical-stress analysis only). Once the NLGEOM option has

been switched on, it will be active during all subsequent steps in the analysis.

3.3.3 Post-Buckling Analysis

Once the buckling mode shapes have been determined, we interpolate a linear

combination of chosen eigenmodes into the model as a geometric imperfection.

The eigenvectors related to the lowest eigenvalues are of major importance

within the analysis, and typically the seeded imperfections of a model are

attained as a linear sequence of these chosen eigenvectors. The preference

of the imperfection modes that are interpolated within the membrane model

have to be established on the proposed final wrinkling pattern. Therefore, the

selected eigenmodes must mirror the wrinkle pattern forecast.

After establishing relevant eigenmode shapes, we incorporate geometrical im-

perfections as out-of-plane deformations within the model using option *IM-

PERFECTION within Abaqus.
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δz =
∑
i

φnυn

where υn is the nth eigenmode and φn is a scaling factor whose value is deter-

mined as a factor of the membrane thickness. Different values for the mem-

brane thickness have been investigated to evaluate the sensitivity of a predicted

response.

A geometric non-linear analysis (*NLGEOM) is executed using edge displace-

ment incrementation employing the Newton-Raphson method. In order to

overcome a model instability, a transient analysis is performed using the stabi-

lize feature (*STABILIZE) within Abaqus. This feature automatically admin-

isters pseudo-inertia and pseudo-viscous forces at all nodes when an instability

is identified, and replicates a potential dynamic response of the membrane as

it snaps to achieve the first static equilibrium state after the snapping has de-

veloped. After which, rather than progressing with the quasi-static analysis,

Abaqus systematically changes to a dynamic integration of the equations of

motion for the model, hence lowering the possibility of numerical singularities.

3.3.4 Material Model

Hyper-elastic membrane materials like Kapton HN have very high flexibility in

comparison to their compressibility. Simulink Abaqus software can provide a

useful tool in determining the compressibility of elastomer’s by implementing

them into a hyper-elastic material model.

Within Abaqus software, hyper-elastic materials are represented in regards to

the ’strain energy potential’, U(ε), which is called the strain energy kept within

the material per unit of the reference volume, as an operator of the deformation
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at that point within the material. It can be stated that, there are a variety

of strain energy potentials within Abaqus that are used to model isotropic

materials: namely Arruda-Boyce form, the Marlow form, the polynomial and

reduced polynomial forms, the Yeoh form, the Van der Walls form and the

Ogden form.

Abaqus systematically establishes the optimal strain energy potential(s) based

on the initial model conditions stated, calculates the relevant coefficients in

the strain energy potential formula, and constructs the stress-strain curve(s)

of the reciprocal hyper-elastic model. Due to the constraints and objectives of

this work, we will not divulge into greater depth of the various strain energy

potential forms but adopt the modified Mooney-Rivlin model as our standard

model. This is the most efficient and typical form of the polynomial class,

whose strain energy potential can be represented as

U =
N∑

i+j=1

Cij(I1 − 3)i(I2 − 3)j +
N∑
i=1

1

Di

(Jel − 1)2i,

where N is the material component, Cij and Di are the temperature dependant

components, I1 and I2 are the first and second deviatoric strain invariants, and

Jel is the elastic volume ratio. The bulk and shear modulus is represented via,

µ0 = 2(C10 + C01), K0 =
2

D1

It should be noted that when implementing the Mooney-Rivlin model within

Abaqus, it is impossible to adopt the assumption that the material is com-

pletely incompressible as the Abaqus model has no algorithm to impose such

a constraint at every material calculation point. Due to this complexity, the

user must define some data on the incompressibility parameters to be used.



3.3 Analysis Procedure 82

Commonly, general hyper-elastic material model simulations are vastly unsta-

ble when in comparison with linear elastic material models. All attempts to

use the evaluated Mooney-Rivlin material model within the buckling analysis

were unsuccessful and a linear elastic model was adopted with the material

parameters stated in table 3.2 for all the numerical simulations within this

model.

3.3.5 Element Selection

A key requirement in successfully modelling an accurate simulation model

within Abaqus is the selection of the element type used to discretize the struc-

ture. There is an abundant supply of different elements within the Abaqus

software which can be used in a wide range of scenarios, of which membrane

elements and shell elements were recognized as potential nominees for mod-

elling membrane structures within this study. In essence, membrane elements

have fewer degrees-of-freedom when compared with shell elements but require

significantly less memory and solution time when solving the relative model.

While shell elements do give increased accuracy (e.g., if a few percent increase

in maximum stress due to the inclusion of bending stresses is critical), the trade

off with computer power needed was satisfactory and therefore shell elements

were used for all material models presented.

The shell elements within Abaqus can be generically categorised into two types,

conventional shell elements and continuum shell elements. Continuum shell

elements discretize the complete three dimensional body, allowing only the

displacement degree of freedom. However, conventional shell elements dis-

cretize a body by characterizing the geometry at a reference surface, allowing

displacement and rotational degrees of freedom.
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Figure 3.2: Shell Element Name representation within Abaqus

Conventional shell elements can be used in linear interpolation and include

both finite-strain and small-strain elements. Element types such as S3, S3R, S4

and S4R elucidate finite membrane strains and forthwith large rotations within

Abaqus and therefore are well suited for large-strain analysis. While element

types such as S4R5, S8R, S8R5 and S9R5 are used for small membrane strains

and forthwith large rotation problems. The small-strain shell elements within

Abaqus cater to a computation efficient substitute to the finite-membrane

strain elements for suitable utilization albeit solution accuracy may diminish as

membrane strains increase. Complexities of shell structures experiencing large-

scale buckling may implement either of the two types of element depending on

the measure of in-plane stretching and compression on the membrane.

In figure 3.2, we can see the three dimensional shell element representation as

given by Abaqus. For instance, S4R5 is a a 4-node, quadrilateral, stress/displacement

shell element with reduced integration, small-strain formulation and an op-

tional 5 degrees of freedom.

In the case of conventional shell elements within Abaqus, the Poisson’s ratio

must be defined in accordance with the shell section definition. This is to

account for the modification of the shell thickness in finite-strain elements as

a function of the membrane strain. It should be noted that if the Poisson’s

ratio is stated as zero within this section, the shell thickness for the membrane
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will remain constant, hence, well suited for small-strain models. If the user

was to simulate materials that incur large-strain applications, the Poisson ratio

would need to be given in order to generate the incompressible response of the

material during high-plastic or hyper-elastic deformation.

For all simulations within this study, the element S4R5 will be used as this

element type gives a lower critical buckling strain and a lower tensile strain at

maximum wrinkle amplitude when compared with other element types. This

however is common knowledge as element types S4R5 and S8R5 are small-

strain elements and may underestimate the membrane strain or overestimate

the wrinkle amplitude at small strains. But the S4R5 produces fairly accurate

results and has the biggest advantage of being computationally efficient.

3.3.6 Responsiveness to Stimuli

One of the drawbacks of finite element simulations are the complexities oc-

curred when analysing post-buckling problems and Abaqus is no different.

Within Abaqus, the post-buckling complication cannot be solved as a result

of the discontinuous response (bifurcation) at the initiation of buckling. To

overcome this complication, the problem in question must be transformed into

a problem with continuous response, which can be achieved by injecting a geo-

metric imperfection pattern within the ideal geometry in order to create some

response in the buckling mode prior to the critical load is attained.

Imperfections within the Abaqus model are introduced via perturbations within

the geometry. Generally, imperfections can be characterized within Abaqus in

two forms: firstly, by the linear superimposition of buckling eigenmodes from

the displacements of static analysis or secondly by literally designating the

node number and imperfection constants. The normals are then computed
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by generic algorithms dependant on the perturbed coordinates. It should be

noted that on most cases, the former method is adopted since the precise and

accurate shape of the model imperfection is usually unknown. The structural

response in most structures relies upon the imperfections of the original model

geometry, specifically in cases where the buckling modes merge post-buckling.

By conforming the proportional values of the scaling factors of the individual

buckling modes, the imperfection responsiveness to stimuli sensitivity can be

calculated. The proportional values of the perturbation are commonly a few

percent of the corresponding structural dimension, such as shell thickness.

In order to achieve accurate simulation results, a number of examinations

should be carried out to examine the responsiveness to stimuli of the structure

to imperfections. For each proportional value, a full wrinkling simulation was

determined, with geometrical imperfections seeding to the immaculate mesh

using the *IMPERFECTION command within Abaqus. It was noted that

the maximum wrinkle amplitude and relating strain were not sensitive to the

proportional values of the geometric imperfections. For small-scale imperfec-

tions, the deformation is minuscule below the critical load. From this point

at the critical load, the response increases drastically, generating a expedi-

tiously behaviour modification. Alternatively, a large imperfection contributes

to the structural instability at the initial stage of deformation, and the cor-

responding post-buckling response will rise consistently prior to the critical

load being achieved. In the latter case, the progression to the post-buckling

behaviour will be easy to analyse and comparatively steady. Using previously

documented experimental results, the Abaqus element guide and experimental

Abaqus membrane simulations, an intermediate scale factor of 1% is selected

for the membrane thickness for all subsequent wrinkling membrane models.
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3.3.7 Stabilizing Factor

Problems exhibiting buckling are very unstable due to the non-linear geometri-

cal dynamics of the structure. Abaqus automatically implements an algorithm

for balancing unstable quasi-static problems through the integration of volume-

proportional damping. It should be noted that this algorithm is generated by

integrating automatic stabilization in any non-linear model.

A key assumption made during the simulation is that the structure is stable

at the beginning of the step and that any instability is developed over the

time-frame of the step. When the model is presumed to be in the steady state,

viscous forces acting on the model and the viscous energy dissipated is very

small. Therefore, the integration of the artificial damping has no affect on the

model. The local velocities of the structure increase when the local region of

the model becomes unstable, ergo, some of the strain energy is dissipated by

the integrated damping. However, Abaqus can, if need be, decrease the time

increment to allow the simulation to ensue without the unstable response pro-

ducing a big displacement. Abaqus computes the damping factor established

on the solution of the initial increment of a step. As stated previously, the

initial increment of a step assumes the model is stable, hence, the damping

factor is then calculated to such a degree that the deduced dissipated energy

for the initial step is a little portion of the deduced strain energy. This portion

is called the dissipated energy fraction and has a default value of 2.0 × 10−4

and can be an arbitrary value.

In order to reach an accurate and efficient solution, the dissipated energy

fraction should be set to the lowest possible value to attain convergence. This

value was adjusted progressively, relative to the convergence of the solution by

using the *RESTART option within Abaqus. This method allows the user to
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minimise the initial numerical damping value, and the corresponding deviation

between the calculated equilibrium path and the actual path, and only raise the

value when needed. It should be noted that the smaller the stabilizing factor,

the longer the computation time needed to reach a solution. The smallest

factor used for all subsequent simulations was 1×10−7 for the two finite element

models discussed in the next section and relative computation time listed in

table 3.1.

Stabilizing Factor Computation Time (secs) ωmax Strain at ωmax

2× 10−4 (default) 1924 0.2972 11.28%

1× 10−6 2738 0.3100 11.46%

1× 10−7 3452 0.3100 11.42%

Table 3.1: Effect of the Stabilizing Factor on the Post-buckling Analysis solu-

tion

3.3.8 Finite Element Models

In the following sections, we will investigate and discuss two separate finite

element models experiencing axial loading and shear loading. The dimensions

and material properties of the Kapton membrane used within all wrinkling

analyses presented within this study is given in table 3.2.

The two models investigated initially deal with the stretching and shearing

of a rectangular Kapton Du Point membrane with the specifications stated in

table 3.2.
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Parameters Physical Model SI Units

Length, L 0.5 metre(s)

Width, W 1.0 metre(s)

Thickness, d 0.005 metre(s)

Young’s Modulus, E 5× 106 Pascal(s)

Poisson’s Ratio, v 0.34a

Table 3.2: Kapton Membrane parameters used within Abaqus

3.4 Axial Loading on the Membrane Structure

It has been previously documented that wrinkling onset in relation to buckling

strain (critical) is very difficult to measure. However, from experimentation

conclusions, the membrane dimensions can also play a significant role in un-

derstanding the membrane structural instability in regards to in-plane tensile

loading.

The quantitative effects of these attributes on our model must be understood

to accurately predict deformation. A series of simulations were employed and

executed for a variety of membrane dimensions in the pre-buckling analysis

phase of the model. 114 dimensions with widths ranging from 20 mm to 150

mm and lengths from 50 mm to 250 mm were examined and compared with

previously (experimental) documented results to perceive the accuracy of the

model.

3.4.1 Simulation Methodology

This model was created in Abaqus software by using the initial conditions

defined in the preceding section. Initially, the model was assigned an *ASYM-
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METRIC boundary condition to the central location to fix the membrane in

place prior to the displacement load acting on the membrane. This allowed

the user to apply a uniform displacement load on the model without creating

any static warp on the model. The displacement loads were applied using the

*BOUNDARY CONDITION option and gave a linear amplitude to the acting

displacement. This allowed a gradual load to be applied to the membrane

structure and mitigated any sudden out-of-plane deformations. This gradual

load also allowed the deformation to be monitored and the failure points to be

identified.

3.4.2 Simulation Analysis

By interpolating the 114 data points listed from the 100 dimensions, a contour

map displaying the relative critical buckling strain can be created as depicted

in figure 3.3. The length and width of the membrane is represented by each

coordinate of the data point illustrated on the contour map. Each contour

line links the ranges with similar values of critical buckling strain. As stated

previously, the 100 dimensions of rectangular membrane were subjected to

axial loading under the same boundary and loading conditions. From the

results for each membrane analysis, the membrane critical buckling strain were

exported to a spreadsheet where Matlab was used to layer the relative results

of each membrane. These layered membranes were then integrated/correlated

together by linking nodes of similar critical buckling strain values to make the

plot more appeasing to the naked eye and to view a well documented analysis

from a different perspective.

From the contour map, it can be clearly stated that wrinkles appear to occur

more frequently in larger membranes when compared to smaller ones. From
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Figure 3.3: Contour Map depicting the Buckling Strain (critical) for 0.1mm

thickness membranes [46]
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the Abaqus simulations, it can be concluded that the lowest critical buckling

strain of 1.5% occurs within the 250 × 140 mm membrane while the highest

critical buckling strain of 62.5% occurs within the 100 × 30 mm membrane.

Furthermore, it can be stated that wrinkling generally develops on membranes

with intermediary aspect ratios in comparison with membranes with severe

aspect ratios.

In order to obtain a comprehensive wrinkling analysis on the structure, two

separate analysis approaches are combined: The Bifurcation Analysis and The

Tension Field Theory. Both of these approaches have their own relative merit

and a brief definition of each approach will be given.

The Bifurcation Analysis

The analysis of a system of ordinary differential equations (ODE’s) under

parameter variation. In this analysis, the membrane has a non-zero bending

stiffness and is treated like a thin shell. Commonly, a geometrically non-linear

finite element procedure is utilized with the use of shell elements for numerical

analysis [47] [33].

By this approach, we can predict both the post buckling behaviour and the

critical conditions for wrinkling. For comparatively straightforward scenar-

ios, analytical techniques have also been postulated and suggested to attain

proximate solutions.

The Tension Field Theory

Investigation of the formation of wrinkling in isotropic membranes being sub-

jected to finite deformations. The first assumption we make here is that the



3.4 Axial Loading on the Membrane Structure 92

membrane has zero bending stiffness. The conceptualization of tension field

theory was first proposed by Wagner in 1929 [21].

This was used to clarify the post buckling investigation of malleable shear

panels in aeroplane manufacture. Due to the applied shear edge loading, the

thin panel is severely affected by the post buckling range. During this phase,

a load is spread fundamentally on one of primary axes of stress, while bending

effects stay secondary. The panel warps to a wavy or irregular surface, the

crests of the wrinkled waves coincides roughly with trajectories of the tensile

stress [48].

Here Wagner created a tractable concept by completely ignoring bending stiff-

ness and depicting the stress to be uni-axial. The next dilemma is to resolve the

magnitude and direction of stress and thereby infer the overall load-deflection

response of the buckled panel. This idea forms the basic foundation of subse-

quent investigations into wrinkling as a load transmission mechanism in mem-

branes.

3.4.3 Wrinkling Analysis

The adoption of both analyses not only accurately predicts the critical buckling

load (eigenvalues) but also the buckling modes (eigenvectors). In an wrinkling

analysis, the thickness of the sheet becomes a very major factor. Practically,

the two factors: the magnitude and the area of compressive stresses must be

big enough to stimulate buckling. It can be stated that the outcomes from

the eigenvalue (bifurcation) analysis, along with the corresponding eigenvalues

and eigenmodes, relies drastically on the sensitivity of the width-to-thickness

proportion of the Kapton membrane alongside the applied pre-stretch.
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The following figures represent the initial symmetric wrinkling modes in rela-

tion to the smallest eigenvalues of the Kapton membrane with inherent variant

aspect ratios.

These simulated wrinkling modes give greater insight on the possible deforma-

tions that can take place within membranes upon the critical buckling strain.

One clear observation that can be made is the formation of the wrinkles, the

wrinkles always form parallel to the direction of load. Generally, three pri-

mary wrinkles would form on the membrane within the initial mode except

for membranes with acute aspect ratios whereby five primary wrinkles would

by generated. From the simulated results, it was also concluded that the for-

mation of the wrinkles differ with varying aspect ratio although they always

form on the longitudinal medial level surface of the membrane for symmetric

modes. This is postulated by the locational position of the eigenvectors with

the greatest weighting. It was further concluded that membranes with the

aspect ratio L/W 6 2.8, wrinkles would commence from the central location

of the membrane; where in fact membranes with an aspect ratio L/W > 2.9,

wrinkling would commence from two separate locations equally spaced from

the central point of the membrane. This separation distance from the central

location increases proportionally with the increasing of the membrane aspect

ratio.

Generally, the modes of membrane wrinkling are generated in pairs (symmetric

and anti-symmetric). The smallest eigenvalue is given by the initial two modes,

stating that the resultant simulation has an even chance in deforming into any

mode past the critical buckling load.

It can be seen that with the aspect L/W ratio increases, the number of wrinkles

decreases but the size of the wrinkle increases as showcased in figure 3.4. The

amplitude of wrinkle increases with increasing load. The corresponding out-of-
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(a) First mode of membrane buckling

(b) Second mode of membrane buckling

(c) Third mode of membrane buckling

(d) Fourth mode of membrane buckling

(e) Fifth mode of membrane buckling

Figure 3.4: Buckling analysis of the Kapton membrane under axial loading in

five stages
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plane displacements are re-scaled to the same amplitude such that, when these

sets of displacements are added together and then correlated at the mesh, the

maximum imperfection height is equal to the membrane thickness.

3.4.4 Validation of the Axial Loading on the Membrane

In order to prove the validity of preceding model, a previously published model

by Satish Kumar [36] is replicated using our computational framework within

Abaqus finite element analysis software. The characteristics of the Kapton

membrane material used within this validity simulation are stated in table 3.3.

The dimensions of the Kapton membrane material are 1.5m × 0.5m with a

variational thickness of 2.5× 10−4m, 5.0× 10−4m and 1.0× 10−4m

Mass Density Young’s Modulus Poisson’s Ratio Element

1420 (kg/m3) 2.5×109(N/m2) 0.34 S4R

Table 3.3: Material properties of the Kapton membrane used for the validation

simulation within Abaqus FEA

Using the same initial conditions, constraints and boundary conditions as

stated in previous section, 3.4. An axial load is applied in the longitudinal

direction of the membrane to act as the horizontal displacement. The axial

load is defined as ε =
L

L0

where L is the stretched length of the membrane

material and L0 is the original membrane material length. The geometry of

the membrane is defined as a single dimensionless ratio (α) between the length

(L0) and the width (W ), giving the formulation, α =
L0

W
.

The eigenvalue increases with decreases in width-to-thickness (W/L) ratio in-

creases as shown in figure 3.5. This result correlates perfectly with the axial

loading simulation in the previous section as the dimensionless ratio (α) in-
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Figure 3.5: Comparison of eigenvalues with different thickness and aspect ratios

for the Abaqus FEA simulation and previously documented results

creases, the number of wrinkles decreases but the relative size of the wrinkle

increases as shown in figure 3.4. This is further verified by previous docu-

mented results, namely [39] and [42], which state that the amplitude of the

wrinkle increases when the applied load is increased.

From figure 3.5, we can see the biggest disparity is seen within the L/W = 1.5

as 31% and this is concluded as an anomaly. The simulation was run successive

times and the same results were achieved. A model was also run without the

implementation of an IMP subroutine and even then, the highest disparity

was measured as 29% for the L/W = 1.5 eigenvalue during axial loading. The

contradictory statement is that the other two values have only a 1% and 3.7%

difference which fit within the error margins of this work. Small percentage

differences can be attributed to the integration of the IMP subroutine to define

the membrane material dynamics to simulate wrinkling which has not been

included in the work published by Satish Kumar [36].
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3.5 Shear Loading on the Membrane Struc-

ture

There are a large amount of space missions whereby high accuracy and preci-

sion membrane structures of varied shapes and sizes are essential to the mission

success. For example, sun shields for cold climate telescopes, inflatable reflec-

tor antennas, cosmic arrays & sails and space based radars. A few of the above

stated membrane structures will be partially wrinkled during deployment and

functional commission, which may cause substantial problems. For instance,

wrinkles in the solar array, could cause insufficient heat extraction and wrin-

kling within solar sails could make them uncontrollable. However, it has been

stated that small magnitude wrinkles could also produce benefiting effects i.e.

a growth in the out-of-plane stiffness or the reverberation or the oscillation

desensitization of the membrane.

In this section, we will present a numerical examination of a wrinkled mem-

brane under shear loading. It should be noted that a number of experimental

results and solutions have been published already but the primary aim of this

simulation is to explore the dynamic accuracy and robustness of our membrane

model created within Abaqus. The prime focus of this study will be to investi-

gate the evolution of wrinkles on the surface of a Kapton membrane subjected

to shear displacement.

3.5.1 Simulation Methodology

In order to stabilize the model before any loads are administered, a small

uniform pre-stress was applied to the membrane at the start of the simula-

tion. One must be careful at the amount of pre-stress applied to the structure
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as it must be sufficient to govern the preceding bucking analysis but minus-

cule enough to not influence the derived solution. Once the pre-stress has

been applied to the model, a static non-geometric non-linear equilibrium check

(*STATIC, NLGEOM) is performed in order to permit the repositioning of the

pre-stress phase, alongside the acute in-plane displacements.

Eigenvalue Buckling Analysis

After the initial conditions have been met, the next phase of the simulation

is to perform an analysis to determine the buckling modes of the rectangular

membrane. Once derived, these modes are utilized to seed acute imperfections

which will cause the creation of wrinkles within the consequent non-linear

geometric study.

In order to anticipate the relative modes of wrinkling of the membrane reg-

ulated by the boundary conditions and loads acting, an eigenvalue buckling

analysis must be performed using the *BUCKLE command within Abaqus. It

is critical to accurately compute the tangent stiffness matrix; the pair of the

primary stresses and displacements from the preceding phase of the analysis,

alongside the applied loads on the membrane. The corresponding eigenvalues

and eigenvectors associated with the tangent stiffness matrix correlate to the

potential wrinkling modes of the membrane, both in magnitude and shape.

Once the potential wrinkling modes have been derived, a linear sequence of

chosen eigenmodes is integrated into the model as a geometric imperfection.

The eigenvectors matching the smallest eigenvalues are of great interest as

these eigenvalues are associated with the initial buckling load i.e. the for-

mation of the initial wrinkle. But the primary objective of the study is to

determine evolution of the initial wrinkle and the creation of subsequent wrin-
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kles thereafter. Hence, the chosen imperfection modes which are integrated in

our analysis is based on the accurate prediction of the final wrinkling pattern.

Once the suitable eigenmode shapes are selected, geometrical imperfections

are applied via out-of-plane deformations within Abaqus using the *IMPER-

FECTION command.

4z = Σiωiφi

where ωi is the ith eigenmode and φi is the the relative scale factor selected

giving a magnitude as a fraction of the membrane thickness.

Post Wrinkling Analysis

Using the Newton-Raphson Method, a geometrical non-linear (*NGLEOM)

analysis is executed governed by under edge displacement incrementation. In

order to calculate the complete response of the structure, the Riks Method

is utilized. The Riks Method is in theory the only accurate procedure since

the equilibrium track of the membrane wrinkling has a number of unstable

divisions, with each correlating to a bounded snap-through because of the

generation of an additional wrinkle.

In simple cases linear eigenvalue analysis may be sufficient for design eval-

uation; but if there is concern about material non-linearity, geometric non-

linearity prior to buckling, or unstable post-buckling response, a load-deflection

(RIKS) analysis must be performed to investigate the problem further. The

Riks method uses the load magnitude as an additional unknown; it solves si-

multaneously for loads and displacements. Therefore, another quantity must

be used to measure the progress of the solution; Abaqus/Standard uses the
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“Arc Length,” l, along the static equilibrium path in the load-displacement

space. This approach provides solutions regardless of whether the response is

stable or unstable. It was noticed that the model would fail if the displacement

acting on the model is increased monotonically due to failure in the structural

response. This failure led to all successive trials to utilize the arc-length res-

olution procedure in Abaqus (*RIKS) were unsuccessful, perhaps due to the

wrinkling phenomena being a very bounded type of instability. Due to this fail-

ure, the only possibility of a successful simulation would be to use monotonic

incremental displacement.

Stabilization was maintained in the model using the automatic *STABILIZE

function within Abaqus. This function automatically interpolates pseudo-

inertia and pseudo-viscous forces at every node when an instability is encoun-

tered. Once a instability is encountered, Abaqus stops using the quasi-static

analysis and shifts to a dynamic integration for the equation of motion for the

model, hence diminishing the possibility of generating numerical aberrations.

The viscous forces that are interpolated into the analysis model by the stabi-

lize function are computed via the structural response within the initial step

of the dissection phase, by presuming that the power exhausted to be a por-

tion of the strain energy amid the initial phase. In order to attain excellent

accuracy, it is recommended to set this variable to smallest value possible to

reach convergence within the model.

3.5.2 Simulation Analysis

A rectangular Kapton membrane with similar dimensions to the Axial loading

analysis was used, therefore 114 dimensions with widths ranging from 20 mm to

150 mm and lengths from 50 mm to 250 mm were used. The first step stabilized
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the membrane model by administering a uniform pre-stress φy = 1.7N/mm2.

This pre-stress was applied in the y-direction by manoeuvring the uppermost

edge of membrane by 0.0005m.

The consequent step in the process was to initiate an eigenvalue buckling anal-

ysis by applying a horizontal displacement at the upper edge of the membrane

of a value of 3mm. From initial analysis, it was concluded that eigenmodes

correlating to eigenvalues lower than 0.2 relate to local deformation modes of

the rectangular membrane. For this reason, the remaining analysis was carried

out for eigenvalues above 0.2 and the Lanczos Solver within Abaqus is utilized

to produce these eigenmodes.

To understand the membrane sensitivity against the amplitude of the estab-

lished imperfections, a variety of synthesis of different eigenmodes and scaling

factors were examined. For each set, a comprehensive wrinkling analysis was

completed and the respective minimum ωmin and maximum ωmax out-of-plane

displacements were calculated and can be seen in table 3.4.

Pre-Stress ωmax (mm) ωmin (mm)

0.025t 1.12 -1.49

0.050t 1.10 -1.48

0.075t 1.11 -1.49

0.100t 1.11 1.49

0.125t 1.09 -1.49

0.150t 1.11 1.50

0.200t 1.11 1.50

0.250t 1.14 -1.51

Table 3.4: Effects of Imperfection Magnitudes

From the computed values in table 3.4, we can see that the out-of-place dis-



3.5 Shear Loading on the Membrane Structure 102

placements are comparatively consistent even when the imperfection magni-

tude is reciprocated by a factor of 10.

From these computed results, it can be stated that the imperfection magnitude

selected for the analysis is insignificant and a standard imperfection greater

value than 0.2 were selected for this analysis, established by Abaqus and each

multiplied by φi = 0.125t. The variable that maintains and applies the damp-

ing factor to manage occurring instability within Abaqus was altered from the

default value of 2 × 10−4 to 1 × 10−8. This was altered using the *STABI-

LIZE FACTOR = 1 × 10−8 to reduce the aberration between the simulated

equilibrium way and the physical way.

3.5.3 Wrinkling Analysis

From the simulation results, it can be concluded that the general behaviour of

the membrane is relatively linear, however a small softening can be seen at the

origin of the membrane. This conforms to the generation of the initial series

of wrinkles, therefore, indicating the end of the exclusive in-plane nature of

the membrane. The introductory in-plane shear stiffness is 100N/mm, which

eventually lowers by one third. From figure 3.6, it can seen that the direction

of the major principal stress relates to the orientation of the wrinkles, which

are formed about 45◦ and evenly across the centre of the membrane.

The post wrinkling behaviour of the membrane under shear loading showcases

some very intriguing effects, if looked in detail. As the shear displacement is

raised, the wrinkles also escalate in amplitude. Eventually becoming unstable

and in turn creating additional wrinkles with small wavelengths. It is observed

from the simulation results that there is a high density of wrinkles in the middle

of the membrane, implying that new wrinkles are mostly created in this area.
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Figure 3.6: Wrinkling of the membrane under shear loading

The large wrinkles occur at the ends of the membrane, the end sides and do not

move much across the membrane as they are restrained by the corner supports.

The transition from one shape of the wrinkle to the next is very rough and is

caused by the local instability. In some of the simulations, it was concluded

that the solution would not converge and the analysis had to be restarted with

the damping intensity factor decreased to 1 × 10−7. This allowed the com-

putation to finish successfully however the damping factor had to be further

increased for the subsequent step. In essence, changing the damping factor

within the simulation has a similar effect of generating a varied amount of

hysteresis within the model.

3.5.4 Validation of the Shear Loading on the Membrane

Once again, a model is created within Abaqus to prove its validity when com-

pared with previous published and documented results. Similar membrane

properties and characteristics are utilized within this shear validation model

as stated in Section 3.4.4 with the sole difference of the applied load and

boundary constraints on the Kapton membrane. The bottom section of the
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Abaqus FEA Results S. Kumar Results

S.No. Thickness No. of Wrinkles Eigenvalue (1st) No. of Wrinkles Eigenvalue (1st)

1 0.01 14 0.30284 13 0.30289

2 0.02 13 0.30311 13 0.30314

3 0.03 13 0.30339 13 0.30342

4 0.04 12 0.30362 12 0.30371

5 0.05 12 0.30378 12 0.30402

Table 3.5: Comparison of Eigenvalue and Number of Wrinkles when the pre-

stressed of 0.005m is applied to the membrane Kapton material subjected to

shear loading

Kapton membrane is constrained using the *ASSYMETRIC boundary condi-

tion within Abaqus and a horizontal displacement of 0.03m is applied to the

top of the membrane to initiate shearing in the x-direction only.

As the pre-tensioning is increased within the rectangular membrane, major

wrinkles begin to form by propagating along straight lines between the loaded

vertices. These also finely trace the regions of negative principal stresses, which

show more clearly thin bands of compression on the free edges where wrinkles

may be expected in practice. Number of wrinkles increases when element size

decreases and eigenvalues vary with varying type of elements, number of ele-

ments within the mesh and thickness of the membrane as showcased in table

3.5 and the graphical representation in figure 3.7. Eigenvalue decreases by one

tenth when the shear forces increase by ten times. This implies that the eigen-

value is inversely proportional to the shear force. At the end of the Abaqus

simulation, the wrinkling pattern bears a clear similarity with previously doc-

umented results although the previous stated results do not showcase visually

the secondary wrinkling formation between the primary wrinkles.

It is apparent from figure 3.7 that the model abides by the relativistic results

expected from membrane shearing. The largest disparity between the results
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Figure 3.7: Comparison of eigenvalues with different thickness for the Abaqus

FEA simulation solution, S. Kumar solution [36]

achieved from the Abaqus finite element simulation and Satish Kumar’s [36]

published results are 0.08%. Even though this percentage difference is neg-

ligible, it can be attributed to the implementation of the wrinkling dynamic

properties taken into account within this model while Satish Kumar did not

implement a IMP subroutine to define the membrane material dynamics.

3.6 Discussions & Conclusions

In this chapter, we have defined the primary initial conditions used for all

precedent and subsequent Abaqus simulations. These initial conditions are

essential to create the fundamental governing equations that membrane struc-

tures abide to in physical reality. In order to understand the accuracy of our

initial conditions, two separate simulations were designed, executed and com-
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pared to previous documented work, namely published work by Satish Kumar

[36]. This comparison allowed the accuracy of the rectangular Kapton mem-

brane undergoing axial and shear loading.

The Finite Element analysis solutions deduced using continuum membrane el-

ements within Abaqus and the variation in natural frequency is observed. In

the simulation, we remove the initial imperfection from our model to eliminate

the influence of the imperfections on the post-wrinkling characteristics by using

the commands available within Abaqus and by applying an initial pre-stress.

The relevant modes due to this initial pre-stress are found. The analysis of

wrinkling problems of the wrinkle prediction of rectangular membranes un-

der variation of thickness, element type, mesh density, length-to-width aspect

ratio, tensile and shear loading has been studied.

The unconventional membrane theory was not adopted for this research due

to the membrane theory underestimating the magnitude of the loading at

impending wrinkling. Membrane theory predicts that the wrinkled regions

are those under compression and also that an infinite number of wrinkle lines

appear in the wrinkled regions. However, the wrinkles extend the length of

the membrane and the shapes and sizes of the wrinkled regions are different

from those of the regions under width compression. Therefore, the effects of the

small flexural stiffness on the prediction of the critical non-linear component of

the edge loading that causes wrinkling, on the number and the direction of the

wrinkle lines, and on the sizes and shapes of the wrinkled regions are significant

and cannot be neglected. Due to this, a iterative displacement approach is

adopted within Abaqus FEA based on the Newton-Raphson method alongside

a modified approach to the membrane theory is utilized to achieve successful

results.

The FEA simulations presented within this chapter have been presented to
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be accurate, reliable and capable of generating great quality results. Both

simulations are accurate and the extended conclusions drawn lie within the

governing equations used to simulate the deformation within the membrane.



Chapter 4

Smart Adaptive Structures

With energy becoming increasingly expensive and the current energy manu-

facture trends being limited and eco-hazardous, new solutions to sustain our

current energy standards are needed. The modern trend in generating energy

is using green processes to harvest natural environmental phenomena’s and

convert this into usable energy. For space based missions, the only natural

and extensive natural source is the sun and, if there was a procedure to har-

vest the sun’s rays and convert this into usable energy for space applications,

the possibilities of use would be limitless. For these proposed solar power

structures, massive structures are needed to harness sufficient energy for re-

cycled use in other applications on ground or space. In the current climate,

the only possibility of such a size of structure is a deployable inflatable struc-

ture that can be manipulated to fit into a payload volume of a space launcher

available today. In this chapter, we will present a new concept and design of

such a structure which has been biologically inspired and is able to increase its

size and volume once deployed and is able to change its shape to any mission

requirement needed.

108
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This project has been carried out with Thomas Sinn, who is a PhD candidate

from the Mechanical & Aerospace Department from the University of Strath-

clyde. Thomas has completed the LS-DYNA model of the deployment of the

structure but his work has not been included within this research. A visual

verification was carried out to test both models within Abaqus and LS-Dyna

and they were considered satisfactory with difference of 4 % within the wrinkle

formation, we believe this may be due to the inflation mechanisms being dif-

ferent in both simulation packages leading to varied stresses at different parts

of the cell structure. The designed Abaqus model is used as a comparison

with a physical experimental apparatus to showcase consistency, accuracy and

robustness of the simulation.

An example of this type of structure would be the adaptive concentrator dish

of the space based solar power station which will be manipulating the solar

panels to have them perpendicularly facing against the incoming sun rays for

efficient and effective energy gathering depending on the time of solar day.

The respective multi-body was created to simulate the dynamic behaviour of

the structure and relative perturbations acting on the structure using Abaqus

and LS-Dyna.

4.1 Literature Review of Adaptive Smart Struc-

tures

Within this section, we will cover the modern published research within adap-

tive smart structures and the influences they may have had on the current

research investigated within this Doctorate research. A critical examination is

carried out, showcasing similarities, discrepancies, modifications and enhance-
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ments of the current state of art techniques and procedures used to investigate

the simulation of inflatable adaptive smart structures.

The study within this research has been derived from a number of previous

research theories which led to a novel patented concept of smart adaptive

structures. One aspect of the smart adaptive structure is the actuating pumps

interconnected within the inflatable membrane cells in order to transfer pres-

sure between each cell. The theory behind this intrinsic bio-inspired principle

was utilized within this study as successfully implemented by Fleurent-Wilson

[49]. Fleurent-Wilson proposed a bio-inspired application for an actuator which

is derived from the ciliary muscle and choroidea controlling the curvature of

the human ocular lens. The roles of the choroidea are akin to those of the

curved aluminium plate and MFC’s respectively, which govern the tension in

the zonule fibers and the curvature of the lens (the membrane and its wrinkling,

respectively).

The application of piezo-electric materials on curved plates have long been

researched as actuator’s [50] [51], an application for which there has been

difficulty leveraging the large forces and small displacements available from

piezo-electric materials [52] [53]. Fleurent-Wilson’s contribution to the field is

the actuated-MFC design and their application to control localized wrinkling

of gossamer structures. The experiment is modelled, in part, after the sym-

metric corner tensile loaded membrane experiments by [39] [54]. The tension

in the initially unwrinkled membrane was increased until visible wrinkling de-

veloped across the diagonal without the actuator. The actuator was adjusted

to eliminate the target wrinkle for the initial non-actuator diagonal wrinkling

tension. We have used a simple bio-inspired principle as the actuating con-

trol of membrane cells bending with the transfer of internal pressure between

connected membrane cells.
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One aspect of the studied problem is the bio-inspired concept; another is to

simulate the inflation of the membrane accurately. The globally adopted uni-

form pressure approach can simulate the behaviour of a side curtain air-bag

after its full deployment, but is incapable of deducing accurate inflation kine-

matics at the early stages of the analysis due to the large discrepancy of pres-

sure and temperature from one end of the membrane air-bag to the other end.

Consequently, a coupling Computational Fluid Dynamics (CFD) code with a

Finite Element (FE) code, the Finite Point Method (FPM) is able to simulate

the gas dynamics inside the air-bag, therefore, resulting in a much more robust

and realistic inflation kinematics.

It should be noted however, that the conventional air-bag model was unable to

predict neither the kinematics of the deployment or anything occurring during

the inflation of the air-bag with the uniform pressure model. The restraint of

this approach can be accounted for by the basic assumption that the algorithms

used by this model do not account for the non-uniformity of the fluid dynamic

variables, such as temperature, pressure etc.

In order to overcome this, Gai [55] proposed a concept to simulate the side cur-

tain air-bag by utilizing the FPM approach and a comparison of computation

results alongside test data results for both the flat airbag folded airbag show-

cased good correlation. The new model, named FPM is utilized to solve the

compressible viscous and non-viscous flows. The density, velocity and pressure

fields are deduced at specific points (Finite Points) established on interpolation

over a cloud of neighbouring points. Due to the integration of the Lagrangian

formulation, the points follow the streamlines of the fluid. The designed FPM

fluid code by [55], has been integrated with a solid finite element code PAM-

SAFE within her research. The pressure on the boundary points of the fluid is

applied to the air-bag membrane elements and the membrane elements provide
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the position and velocity of the boundary back to the fluid. A CFD air-bag

model such as FPM can have its advantages over the uniform pressure model

as a consequence of its capability to prognosticate what actually happens in

the initial milliseconds of the inflation deployment. The FPM model is a great

way to test-model a controlled air-bag deployment but lacks the density of the

material dynamics to take into account the secondary wrinkles that form on

the membrane during inflation. The FPM method doesn’t account for any jet

effects induced by the air-bag inflator, nor any phenomenon of gas propagat-

ing from one chamber to the next. On key component which is missing within

this model is its inability to predict local phenomena such as, local pressure

variation at a specific location of the air-bag.

Groenenboom [56] constructed a model for the commercially available code

PAM-SAFE which takes into account the turbulent diffusion in a conical jet

originating from the gas generator during inflation. Similar models can be

found in other codes, such as Lupker [57] in Madymo and Hallquist [58] in LS-

Dyna. Jetting models have been tested by Fredriksson [59] for OOP problems,

where an air-bag inflates against the chest of a hybrid III dummy. Fredriksson

showcases that the chest acceleration values for the dummy model tend to be

too large when using the control volume model with jetting. His conclusions

in regards to this problem is the inability for the prediction of redirection

of gases when it hits an obstacle using the control volume model. Recently,

a number of conference papers on coupled fluid-structure analysis have been

presented. Mestreau [60] combines the PAM-CRASH and PAM-SAFE codes

and use a re-meshing technique for the modelling of the fluid within the air-bag

membrane. Therefore, the fluid mesh is kept inside the structure throughout

the simulation.

It should be noted that neither of these papers offer any experimental verifica-



4.1 Literature Review of Adaptive Smart Structures 113

tion or comparison with previous documented results. The inequalities show-

cased within the PAM-SAFE and FPM models have been included within our

inflation model utilizing the *FLUID CAVITY option within the finite element

software ABAQUS and therefore, the research showcased here gives better re-

sults in terms of material dynamics and wrinkling. A clearer definition of the

approach utilized within this study is given in the subsequent sections.

A similar approach was used by Marklund [61] by utilizing a multi-material

arbitrary Lagrangian-Eulerian technique in the explicit finite element code LS-

Dyna is used for the fluid and it is coupled to the structure using a penalty

based fluid structure contact algorithm. The correlation between the test

results and the multi-material ALE simulation are good except for a few dis-

crepancies. There is a 26% error within the acceleration peaks and an 11%

discrepancy between the time needed for full inflation between the experiment

and simulated models. Possible reasons for these errors could be errors in

inlet parameters, modelling of the surrounding environment being inadequate

or even damping in the structure. Due to these intrinsic disparities, we did

not model our structure within LS-Dyna and chose Abaqus as our favourable

simulation software.

Diaby [62] proposed an innovative method in dealing with the numerical com-

putation of buckles and wrinkles appearing in membrane structures by means

of the total Lagrangian formulation, utilizing zero bending stiffness finite ele-

ments and a pre-stressed hyper-elastic constitutive law. The bifurcation anal-

ysis is carried out without presenting any imperfections in the structure. By

incorporating a simple yet effective technique designed by Lam and Morley

[63] in the solution procedure to deal with the possible complex roots when

solving the arc-length method, making thus possible the treatment of wrinkles

by bifurcation. This solution formulation correctly predicts the critical values
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for wrinkles to appear as well as the wrinkled regions. The usual singularity of

the stiffness matrix at the beginning process has been avoided by pre-loading

the structure, either with an artificial internal pre-stress or a real load or dis-

placement prescribed on the boundary. Although the wrinkles were correctly

defined, analysis needs to be carried out on the amplitude, wavelength and

number of wrinkles present. When utilizing this approach within our research,

it was found that their existed a discrepancy between the experimental results

and simulation results, primarily at the source of wrinkle formation. The pro-

posed [62] methodology presented a much more ideal solution than expected

from a realistic viewpoint and experimental testing. Barsotti [64] investigated

the membrane as a von-Karman plate with negligible bending stiffness. Their

relaxed energy concept solutions in a consistent linear-wrinkle elasticity the-

ory, which allows recognizing the boundary between taut, slack and wrinkled

areas. The tension field theory supports correct stress allocations and fore-

casts for wrinkled and slack regions, yet not wrinkle details such as amplitude,

wavelength and number of wrinkles.

Wang [54] investigated the explicit time integration method incorporating the

model of ’AIRBAG’ within LS-Dyna to analyse the dynamic deformation of

wrinkles with time, including the occurrence and the evolution. A solution

for the numerical simulation of the wrinkles in the membrane structures is

the development of the iterative modified properties (IMP) method based on

the tension field theory. The IMP method, based on the membrane element,

allowed the extent of the wrinkled region, the wrinkle angle, and the stress state

within the membrane. One key disadvantage on the use of this method is that

the stability of the algorithm is feeble. Using the IMP approach adopted by

Wang cannot obtain the detailed out-of-plane wrinkles within the membrane

structure. The detailed information about the individual wrinkles, including

the wrinkle amplitudes and wavelength, can be predicted using the non-linear
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buckling finite element method, based on thin shell element. The convergence

of this procedure is enhanced by including artificial damping. Nevertheless, for

this to be accurate, a highly mesh density needs to be implemented within the

membrane structure to achieve analysis robustness. To overcome this problem,

Wang [54] adopted the explicit time integration method integrating the model

of ’AIRBAG’ within Abaqus to analyse the dynamic deformation of wrinkles

with time, including the occurrence and the evolution. The self-contact and

damping in the ’AIRBAG’ model is used to ensure the convergence, and the

effect of the mesh density on the characteristic of wrinkles. It was observed that

this methodology gave robust and good quality results, and numerical results

can accurately simulate the physical experimental results. It was observed

however, that there was no change in the mesh density on the model solution

to produce satisfactory results. However, this model does not take into account

the material dynamics at each analysis step iteration and this may be due to

the computation power needed to integrate within the model. As our model

was run on the High Performance Computing Archie-West, we are able to

integrate the methodology utilized by Wang and take it one step further by

integrating a modified VUMAT subroutine based on the IMP approach.

4.2 Introduction

From a number of published and documented sources, it is apparent that the

current trend in energy consumption can not be maintained by energy gen-

eration sources on Earth used today, especially with developing countries be-

coming wealthier and reaching industry standardization and consuming more

and more energy requiring higher energy demands. A simplistic ideology and

complex solution would be to utilize the abundant supply of energy received

form the Sun. One modern day approach would be to convert all ground based
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to solar based power plants, the energy lost from atmospheric conditions could

be decreased to the fractional cost of current day systems [65] [66].

For this to be a viable solution, the space structure in question must be larger

than anything that has been launched into space till the current date. For

this basic reason, the only possible solution to meet the payload restrictions

would be to utilize deployable inflatable structures as they can loaded into

the payload at a portion of the deployed size. Another expensive solution

to this problem would be to utilize a orbit assembly such as the assembly

of the International Space Station. However, this proposed method requires

a number of rocket launches to deliver the relevant payloads for assembly

and goes beyond the financial scope of this proposed solution and will not

be investigated any further. In the modern climate, deployable structures are

used in an abundance of different space missions ranging from space habitats,

booms, space buggies to reflectors, sun-shields to solar sails, to name a few.

In the past decade, considerable interest has been given to deployable struc-

tures for potential future solar power generation space missions within the

larger corporations such as ESA, NASA, JAXA and a number of predominant

academic universities and institutes. In the year 2012, NASA launched an in-

genious program called NIAC (NASA’s Innovative Advance Concepts) under

the team lead of John C. Mankins to further the research into modular solar

power plant designs, named the SPS-Alpha [67].

The system is created to collect the suns energy by large-scale movable mirrors

designed like a bee-hive type of structure onto solar panels which transmit the

collected energy to a ground station via microwaves. A graphical representa-

tion of the SPS-Alpha structure can be seen in figure 4.1 for your consideration.
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4

Figure 4.1: Graphical Representation of the SPS-Alpha Structure

Figure 4.2: Representation of the Space Segment in Operation

4.3 System Design

The proposed design concept of the adaptive structure used to harness solar

energy has two distinct segments. One of the segments is ground control which

collects the transmitted energy and the space segment which is similar but not

identical to the SPS-Alpha whereby, concentrators will be used to redirect and

focus the solar energy onto the solar panels and this can be visualised on figure

4.2.

It should be noted that in order for safe operation of the space segment of the

proposed design concept, since the energy collected needs to be transmitted to
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the ground station in a control and collected manner. For this basic consid-

eration, only the application of geostationary space platforms with a unique

ground station location is possible.

4.3.1 Ground Segment

The location of the ground segment depends predominately on the energy

usage, the corresponding population density at the chosen area and the position

of the space segment in orbit. The recommended locations for possible ground

location are Brazil or Columbia for the Americas continent, Indonesia for the

continents of Asia and Australia and Kenya or Congo for the African continent.

Care must be taken in selecting a ground location, taking into account the

international politics and the effects of the national and local community at

the chosen site.

4.3.2 Space Segment

As stated previously, the basic design and architecture for the proposed space

segment is similar to that of NIAC’s SPS-Alpha structure. The proposed

design consists of two separate sections, the stiff solar panel & transmission

assembly and the deployable concentrator that redirects and focuses the energy

from the Sun onto the solar panel. It should be noted that the deployable

concentrator is a novel approach with a patent pending via the University of

Strathclyde Research and Knowledge Exchange Services and the Department

of Mechanical and Aerospace Engineering. This patent will be filed with the

Intellectual Property Office within the UK initially with the final scope of

having an international and corporation classification.
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Figure 4.3: Representation of the rigidized solar panel on top and the power

transmission system at the bottom

Solar Panel Assembly and Transmission Assembly

The solar panel and power transmission assembly is comprised of stiff hexagons

with a radius of approximately 2.5 metres. This radius is chosen for easy trans-

portation in the payload as several of the hexagonal shells could be stacked

together, allowing the structure to be folded numerous times. A graphical

visualization of the hexagonal shell can be seen in figure 4.3 and, showcase a

high efficiency solar panel situated at the top and a power transmission sys-

tem at the bottom pointing towards the ground segment. The energy will be

transmitted to the ground segment via microwaves or lasers, however, these

possibilities strongly depends on the legal schema and the safety issues asso-

ciated with the use of these technologies for energy transmission.

The stiff shells are merged together after the deployment in space in a geosta-

tionary orbit. The shells can interlock with each other using the mechanical

and electrical interconnects located on each of the six sides of the panel. The

relative characteristics of each panel, such as health data and pressure is moni-

tored and shared between panels. This allows up-to-date accurate information

to be monitored with a validation method using neighbouring panels. It is pro-

posed to employ controlled robots to assemble the relative panels into place
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and act as maintenance robots for the complete life-cycle of the structure. For

example, this may include damage due to space debris or micro-meteoroids.

Deployable Concentrator

For the deployable concentrator to work effectively and efficiently, the size of

the concentrator has to be large enough to redirect and focus the sun’s energy

onto the stationary solar panels/power transmission assembly. The propose

concept is an adaptable lightweight inflatable structure that can alter its shape

and volume in space. The primary application of the proposed conceptual

design is that several provinces, each with several individual cell structures

will be integrated and assembled in space which will then become the basic

framework for singular joined structure [68].

Each province consists of either a two dimensional flat surface or a three di-

mensional surface compromising of inflatable cells envisioning the cardinal

pressure source. The interchangeable provinces and the cells are malleable

i.e. the provinces and cells can be altered to any application from nano to

macro scale. The high pressure used to inflate each individual cell is stored in

a pressure tank and filled at the initial phase of the mission. Once deployed,

the pressure is used to inflate each cell until the pressure tank is empty.

Each of the malleable cells or provinces used to compromise the solar power

plane can be free-moving in a pre-defined distance to the solar panel/power

transmission assembly or it could be anchored to a structure like the SPS-

Alpha [67].

There are a number of ways to construct the various provinces once deployed

in space to create the global structure. One possible solution is to deploy
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a large number of provinces in one single space launch and inflate the cells

with a predetermined pressure and cellular configuration. Once deployed, a

space robot can construct the relative provinces into one global structure. The

benefit of this method is that the construction robots have time to examine

each cell and province before construction and therefore leads to a more robust

and reliable global structure. If there is a failure in the global structure, the

construction robots can easily replace any section or even alter the principal

shape of the global structure.

4.4 Bio-Inspiration for the Structure

Over the millennia, evolution has led nature to safeguard its organisms in the

harsh Earth environment. This key statement does not testify to the survival

of the biggest or strongest organisms but to the survival of the organisms that

are better at adapting in changing environments. In order to fully exploit this

condition, it has become a common place for space systems to be bio-inspired

[69].

One proposal for implementing this application is studying the execution of a

plant or organism to an incurred catalyst, these experiences are called tropisms.

4.4.1 Heliotropism and Phototropism

Some flowers have the ability to trace the path of the Sun in the sky by using

their leaves, or flower heads. This phenomena was discovered and documented

in 1832 by the ancient Greeks and called Helio-tropism but the action was

hypothesized to be passive [70].
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Following a number of lab experiments in the 19th century, it was observed

that some sort of growth processes in stems play an integral role within the

phenomena and the phenomena was renamed in Photo-tropism in 1892. The

rationale for the change in name was due to the number of lab experiments

carried out on algae which demonstrated intense reliance to the luminosity and

direction of light and not only sunlight.

The lab experimentation was inspired by the inherent motion of sunflower

heads to follow the path of the Sun in the sky. In principle, the natural

phenomena of Helio-tropism and Photo-tropism can be modelled in the lab

without using the Sun as a light source.

4.4.2 The Principal

The biological cells which give the plant the capability to move are termed

motor cells and they basically behave like hinges or joints. The motion of

the plant is induced by the shrinking and inflammation of the contending cell

sectors of the pulvinus (motor organ) [71].

The motor cells govern the density of the internal potassium ions and can

change their internal turgor pressure and therefore alter the inherent shape.

The aggregation of the potassium ions through the pathways in the plasma

membrane facilitates the osmotic uptake of water into the cell, whereby ex-

panding the volume and making the cell turgid. Additionally, the potassium

pathways can also discharge potassium ions leading to water discharge and the

shrinking of the cell. The alteration of the turgor pressure within the plant

is a continuous slow process and can take from a few minutes upto hours. A

faster example of this process is the carnivorous venus fly trap plant closing

of its leaves to trap small insects. Once provoked, the motor cells in the leave
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Figure 4.4: Residual air inflated cell within a vacuum chamber

joint line become candidly absorbent to potassium ions compelling the water to

exit the cell, culminating to the prompt collapse of the cells and consequently

closing of the leaf and trapping of in the insect.

With this simplistic operation, the flower has skill to perform relatively speedy

motion of its head without the requirement of developing extra cells. Due to

the absence of complication in this method, the action due to variation in

pressure is ideal for the utilization in space based structures.

4.4.3 Residual Air Inflation

Residual air inflation is entirely a passive deployment mechanism which can be

adopted and utilized in a variety of space applications. Conventional deploy-

ment mechanisms generally demand an intricate method or extensive auxiliary

structures for successful deployment [72].

The principal behind the residual air inflation relies on small pockets of air,
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trapped within a sealed membrane, expanding when the structure is exposed

to vacuum. This expansion of trapped air then inflates the membrane.

The fundamental concept of the residual air inflation method is to exploit the

increase in air when transitioning in a pressure variation from ambient sea

level pressure to vacuum pressure. By encompassing the air within an elastic

flexible membrane material, a super lightweight and compressible structure

can be developed. If the cell with the trapped air is subjected to a vacuum

environment, the inflation pressure of a few Pascals is sufficient enough to

develop a semi-rigid structure. Figure 4.4 showcases two cells inflated using the

change in pressure within a vacuum chamber at the Advanced Space Concepts

Laboratory at the University of Strathclyde. This test proved the underlying

theory of the cell inflation. Two separate thin layers of material were placed

one on top of the other and, joined around the cell circumference.

4.4.4 Cell Design

The basic design objective was to integrate a very robust deployment system

with the skill to change an organisms shape from nature. The concluding struc-

ture compromises of a considerable amount of cells which are rigidized using

residual air inflation. Thin elastic membrane material is used to fabricate the

cells. Further information will be given in the subsequent sections to inves-

tigate the fabrication process. A experimental laboratory test was designed

and executed using Polyethylene Terephthalate (PET) as the elastic mem-

brane material. This material is readily available in the market and generally

used in rescue or space blankets. However, for an actual mission, it is ad-

vised to use Kapton DuPoint due to its protection against UV radiation. Heat

was employed to glue the circumferences of the two cells at sea level pressure
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Figure 4.5: 38 Cell array modelled in Abaqus simulation software

and then vacuum conditions were administered to the membrane, resulting in

rigidization and inflation.

To conform the inflatable cells to obey the basic laws of helio-tropism in re-

gards to pressure change, two inflatable cells are connected together via a

micro-pump. The micro-pumps sole purpose is to be the medium between

neighbouring cells to allow air change between them and in turn, changing the

volume of the cells. We can create a large horizontally level structure by join-

ing actuator elements. Changing this actuator and other actuators locally on

the structure can translate global shape of the structure into any given shape.

A representation of a 19 actuator element array can be seen in figure 4.5. It

can be seen in this figure, that there has been no actuation force applied and

hence the presented membrane is flat.

As there is no single inflated cell, it mitigates the risk of a deflated cell within

the global structure when compared with conventional inflatable structures.

The global structural integrity and the adaptive nature of surrounding cells

will ensure the array will maintain the desired shape even when one or several

inflated cells deflate. This implies that a direct hit of a micro-meteoroid or

space debris would not automatically cause structural failure of the complete

global structure.
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The entire design is effortlessly adaptable and scalable to any dimensions as

a result of the cellular technique. For this study, we have used a cell with

diameter of 14.5 cm. This diameter allows close packaging of cells into a

10× 10 cm2 box.

4.4.5 Cell Fabrication

In order to establish a viable accurate and robust concept, relative fabrication

techniques need to be investigated for the cells. Due to the widespread of

applications and a variety of sizes, only a few cell types could be investigated

due to time and money constraints.

The first fabrication concept investigated is to use flat circular Mylar sheets

for the membrane material. These Mylar sheets are welded together along

the circumference creating perfect ellipsoids once inflated. An array of Myler

cells was created with the dimensions 5 × 2 × 1 (x,y,z direction) and can be

visualised in figure 4.6. Mylar as a material is very easily available for fine

sheets of acute thickness of micro metres and high plane stiffness. High stiffness

is beneficial for inflatable structures as they provide a semi-rigid inflatable

cell but detrimental for escalating the volume further once inflated. This is

because of the large tensional stiffness of the membrane material, preserving

consistent cell surface area. The fabrication techniques investigated for this

study have been: heat welding the material, self-adhesive material and an

additional adhesive layer.

The second fabrication concept investigated is to fabricate the cells with a

hyper-elastic material, such as Latex or silicon rubber which in theory can

increase its surface area with variation in internal pressure. The fundamentals

of helio-tropism takes into account the relative volume variation of specific
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Figure 4.6: Prototype of the Myler array
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cells, whereby altering the global shape of the structure. In order to obtain

these behavioural characteristics and attain a volume variation, the cell needs

a membrane material which is very flexible and elastic so that acute differential

pressure changes result in large increases in volume and also conclude that dif-

ferential pressure resides within the inflated cell to self-deflate when susceptible

to a vacuum environment. Albeit the requisite for elasticity and flexibility of

the membrane cell is critical, it is also critical that the material chosen can be

integrated with all other factors into the comprehensive architectural design of

the cell. Therefore, the material capability used in the comprehensive fabrica-

tion process which permits for coherent assimilation of all factors into a single

cell becomes a vital parameter for the design of the material. On this basis, a

silicone based polymer material has been chosen as the membrane material.

4.5 Deployment Simulations

All simulations of the membrane deployment were modelled in Abaqus finite

element software. Abaqus is not the conventional software used for airbag

deployment analysis but using custom programming scripting code was written

to model this phenomena.

The key benefits of using Abaqus to simulate this inflation is:

1 The Abaqus coupled Eulerian Lagrangian technique provides the ability

to model gas flow in the airbag and include the effects of surrounding air

during deployment

2 Ability to easily enforce contact interactions between the Lagrangian

bodies and the materials in the Eulerian mesh using the powerful and

robust general contact algorithm
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3 Extensive material library to model woven airbag fabrics and gas equa-

tions of state

In order to model the enclosed inside surface area of the cell, the *CAVITY

method is used to define the enclosed surface area. The *CONTROL VOL-

UME method is used to model the cell inflation. In order to use this method, a

pre-defined mass flow rate into the enclosed structure has to be stated. The in-

flation is progressed by the gas expansion of the trapped air administering the

structure to a decreased pressure situation. The residual air approach has no

mass in-flow within the system but, it has to be predefined in the simulation in

order to use the *CAVITY method within Abaqus. By integrating the control

volume method and employing it to the complete structure, a complementary

inflation attribute compared to the residual air method can be attained, on

the basis that the complete volume increases without a stated initial point.

The mass flow needed for the control volume method was deduced by utilizing

simplistic ellipsoidal geometrics and thermodynamic equations by postulating

that the gas is an ideal gas.

By assuming the modelled sphere is ideal, the computed volume of one inflated

sphere is 1596cm3. The simulations showcased that if a flat shaped sphere of

diameter 14.5 cm is used, after inflation, a ellipsoid of approximate volume of

500cm3 is formed. Assuming the desired inflation volume of the cell in space

to be 500cm3 and assuming the pressure variation between the inside structure

and vacuum environment of 100 pascals, the trapped gas mass deduced is in

the order of 595× 10−9 kg.

A custom triangular shaped mass flow attribute is chosen over the rectangular

advancement due to the essence of the residual air inflation approach which

will presumably start slow, lead to an optimal maximum and eventually slow

down. The adopted triangular mass in-flow is given in figure 4.7.
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Figure 4.7: Adopted triangular mass inflow for the control volume approach

From the Abaqus simulations, it is apparent that the full inflated volume is

accomplished at a portion of the inflation time, while the pressure expansion

demands the entire inflation time. The pressure expansion is by cause of the

prescribed triangular mass in-flow, it has to be confirmed if the actual pressure

functions in a similar manner throughout the bench test.

4.5.1 Smart Adaptive Single Cell Simulation

Initially, a single cell was modelled in Abaqus. Two individual circular mem-

brane sheets with a radius of 7.25 centimetre were placed above one another

with a 1 millimetre gap in between as shown in figure 4.8. The side elements

of the circumference were joined together using the *CONTACT CONTROLS

to provide the enclosed volume required for inflation. The *CONTACT CON-

TROLS commands allows the user to provide additional optional solution con-

trols for models involving contact between bodies. These are essential when

contact incurs between two complex geometrical bodies and numerous contact
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Figure 4.8: Simulation of the inflation of s single cell in Abaqus

interfaces. The simulation time for inflation was chosen to be one second.

We used the equations derived by Mladenov, an non-inflated radius of the

7.25cm circular sheet leads to an inflated diameter of 10.80cm. Using the

stated calculations, it can be stated that the thickness of the inflated ellipsoidal

membrane will be approximately 6.50 cm [73].

The single cell Abaqus inflation acts as a validation method for the residual air

inflation concept and the practical vacuum tests carried out at the University

of Strathclyde. Due to the size constraints of the vacuum chamber and only a

small number of cells fitting the chamber at any one time, therefore, a number

of simulations had to run consecutively for multiple cells. It should also be

noted that with any ground testing or vacuum chamber experiments, all bodies

are subject to approximately 1g gravity and should be taken into consideration

for all analysis. This can be a severe external factor within low pressure and

low stiffness structures and needs to be corrected for in order to obtain accurate
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and reliable results. In order to correct for this, a secondary experiment of a

sounding rocket, Rexus13 is suggested and was carried out in spring 2014.

REXUS13 Experiment

The experiment StrathSat-R was launched on-board the sounding rocket REXUS13

from the Swedish Space Port ESRANGE. The REXUS (Rocket Experiments

for University Students) has been running for a number of years and is funded

and managed by the German Aerospace Centre (DLR), European Space As-

sociation (ESA) and the Swedish National Space Board (SNSB). The mission

programme is designed to discharge two cube satellites at an altitude of ap-

proximately 85 to 100km. Once the cube satellites have been discharged, the

payloads will separate into inflatable structures using the residual air inflation

method. One of the cube satellites and the one which infers to this study

will deploy a 35 smart cell adaptive inflatable structure with two integrated

actuators cells. This experiment was designed and contrived to verify and

validate the residual air method and the mechanical modification of the bio-

logical inspired shape altering notion. Attached high resolution cameras and

inertial motion units will record the deployment stages and dynamic behaviour

of the actuation during deployment. The recorded information will be corre-

lated to ground based simulations and experiments for comparison and error

calculation.

4.5.2 Double Smart Adaptive Cell Simulation

In order to ascertain a visual verification of the residual air inflation method of

the double cell inflation, an Abaqus finite element simulation model is created.

This model takes into account the specifications stated within the single cell
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section with the only disparity being two cells are modelled in inflation as a

connected structure. From the final sub-figure 4.9c, a relative clean comparison

can be made with the experimental vacuum cell inflation in figure 4.4. Both

figures showcase the structural wrinkling with the residual air inflated cell

representing larger wrinkling with structural deformation perpendicular to the

seams. This may be due to the cells being man handled after inflation within

the vacuum chamber to the work desk or, due to inherent pressure & heat

loss during the transfer from vacuum conditions to atmospheric conditions.

It should also be noted that the contact between two spherical flat cells has

been chosen to be ideal i.e. perfect bonding around the circumference of the

cell. This implies that ideal loads are exhibited at each point on the bonded

cell surface, leading to uniform stress and strain during inflation. Albeit, this

may not be the case for the residual air inflation method, as seen from the

figure 4.4, the bonding width is larger in certain areas of the cell surface when

compared with other points, implying that a uniform even bond has not been

applied.

From figure 4.9, we can also see perturbations of the membrane within the

double cell structure during inflation. As the cell is inflated, the gasses within

the cell fluid cavity are moving and constantly attempting to reach equilibrium

while at the same time increasing in mass for the initial 0.70 seconds. Within

the Abaqus simulation model, this is illustrated as a bobbing motion of the

cells along the incident normal of inflation i.e. the y-axis. from 0.70 seconds to

1.0 seconds, the gas inflation stops and a time is prescribed to the simulation

to allow the gas mixture within the fluid cavity to reach a steady state of

equilibrium.



4.5 Deployment Simulations 134

(a) Showcases initial configuration of the double cells at 0.00 and 0.05 seconds

of simulation

(b) Configuration of cells at 0.10, 0.20 and 0.30 seconds into the simulation

analysis
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(c) Final configuration of the inflated cells at 0.50, 0.70 and 1.0 seconds

Figure 4.9: Abaqus inflation of the multi-smart cell structure to be used as

visual comparison with experimental results

4.5.3 Adaptive Smart Cell Array Simulation

Within Abaqus, a 5× 2 adaptive smart cell array is simulated as represented

in figure 4.10. This simulation was conducted to portray similar relativistic

conditions as the experimental prototype inflation of the Mylar array as given

in figure 4.6. As with the precedent section, this cell array model was only

simulated to give base state for visual comparison against the experimental

results and to convey some validation between the experimental apparatus

and simulated solution.

The simulated cell array showcases similar wrinkling across the membrane

surface of the inflated cell as the experimental mylar array. The volumetric size

of cells from the experimental and simulated array are of similar magnitude

with a discrepancy of only 0.2mm in the vertical radius and 0.4mm in the

horizontal radius. This proves from visual inspection alone, the experimental
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array inflated within vacuum conditions complies with theoretical principles

adopted as given by the Abaqus finite element simulation.

Perturbations as showcased in the double cell simulated model can also be seen

in the cell array model within Abaqus and this is due to the fluid cavity inflator

gases reaching equilibrium. The cell array stops inflating at 0.7 seconds and

0.3 seconds are needed for the cell structures to reach equilibrium. It should

also be noted that each cell within the array has a slight disparity between the

inflation and final configuration i.e. wrinkling of the membrane surface the

equilibrium path adopted. This is a critical consideration when modelling as

it proves inevitably not one path is chosen by Abaqus during inflation with a

gas mixture and every time the simulation is run, a difference of the inflation

path can be seen while the final configuration is relativistically similar each

time the simulation is completed.

A clear discrepancy which can be seen visually is the 5mm gaps between the

cells upon inflation. Extensive simulations were carried out to mitigate this

gap but there were three key problems associated while modelling:

1 The gaps do not exist upon the initial configuration of the model within

Abaqus before the commencement of inflation. Once the cells inflate,

a decrease in diameter size is observed as the cells are stretched during

inflation within the y-direction i.e. direction of principal gas inflation

pressure.

2 One approach would be to constrain the edges of each cell with its neigh-

bouring cell, as carried out within the experimental mylar array as repre-

sented in 4.6. The problem with simulating this in Abaqus is the inherent

non-linearity present in the membrane material dynamics which would

lead to self-penetration of the membrane surface upon inflation and the
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resulting model would fail to converge due to negative eigenvalues.

3 A secondary approach would be to overlap the cells within the initial

configuration to alleviate the gap size upon inflation. If this concept was

adopted, the model would be different from the comparison model and

the base reasons for carrying out this simulation would be nullified.

Therefore, a simplistic visual inspection can be carried out of the experimental

cell array and the Abaqus simulated cell array with clear focus on solely the

membrane cell shape and size. While further investigation is needed to account

for a much more robust and accurate model to showcase an exact verification.

With the current computer needed and scope of the current work within this

Doctorate, further research on this simulation has not been carried out but

future work is proposed to use a different finite element simulation software to

recreate the multiple adaptive smart cell array.

4.5.4 Multiple Cell Inflation from Packed Environment

A simulation of the inflation of a cluster of 18 cell elements comprising of

two rows was modelled initially for a deployment analysis. For the starting

configuration of this simulation i.e. before inflation, we assumed the cells to

be flat in the axial plane of the 1U satellite deployment box, as shown in figure

4.11. Inflation time was chosen to be one second as before and all previously

described initial conditions were assumed.

It can be seen from the inflation process, the membrane is constrained with

the deployment box using the *BOUNDARY CONDITION, ENCASTRE com-

mand within Abaqus. This fixes all degrees of freedom at the selected region

i.e. deployment box. The deployment box is an entirely fixed structure and
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(a) Showcases initial configuration of the cell array at 0.00 and 0.05 seconds of

simulation
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(b) Configuration of cell array at 0.10 and 0.15 seconds into the simulation

analysis
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(c) Representation of cell array at 0.20 and 0.25 seconds of simulation
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(d) Final phase of analysis at 0.40 and 0.50 seconds of the inflatable adaptive

smart cell array

Figure 4.10: A finite element Abaqus comparison of the experimental inflated

smart cell array
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Figure 4.11: Inflation of a flat packed array of adaptive membrane

can therefore be considered a rigid body. Figure 4.11 illustrates the inflation

from initial configuration to final configuration of the membrane inflation in

six consecutive frames. The first five frames displayed have intervals of 0.1 sec-

onds while the final frame showcases the configuration stabilization after three

seconds of inflation commencement. The final frame was selected to represent

the inflated membrane structure being completely stabilized i.e. without any

oscillation as shown in figure 4.12.

Cell inflation from deployment box

For the secondary Abaqus simulation, we modelled a 19 cell array membrane

being inflated from a deployment box, which relatively sits at the central point

of the structure as shown in figure 4.13. Rigid constraints were used as the

initial boundary conditions to compress the membrane within the deployment

box before the inflation process.

An overview of the Abaqus simulation can be seen in the six frames displayed in

figure 4.13. As stated previously in the first Abaqus simulation modelled, the

first five frames have an interval spacing of 0.1 seconds while the sixth frame



4.5 Deployment Simulations 143

Figure 4.12: Cell radius monitored during the inflation process from initial to

final state

is captured after three seconds have passed and no oscillation is detected of

the membrane surface. It can be stated that the inflated membrane within

the sixth frame is of the same shape and size configuration as depicted in the

sixth frame in figure 4.11.

Within the first second of inflation, four constraints restrain the membrane

from the sides acting as a rigid wall and one constraint is applied to the top,

in order to compress the structure within the deployment box. Inflation of the

membrane initiates after one second of the simulation and lasts for one second

to reach final inflated configuration. From the Abaqus simulation, it can be

seen that the initial radius of the membrane is 35 cm and decreases to 27.5 cm

after inflation, which is the same radius as the deployment simulation from the

first state described above. It can also be stated that the inherent shape and

configuration of the final inflated structure is the same despite the packaging

method.

Once the inflation is finished, the differential pressure does not change but one

can apply leakage to specific cells or the complete array. Conventionally, this

leakage could occur due to micrometeorite impacts, impurities in fabrication,
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Figure 4.13: Inflation of a membrane array (blue) from a deployment box

(greeen)

material deterioration, or innate leakage due to the inflatable structure being

in space.

4.6 Method of Shape Adaption

The relative shape changing process of the inflatable membrane was modelled

in Abaqus with a validation model created in LS-Dyna software as well. The

process involved altering the air pressure between two neighbouring inflated

cells. Due to the programming constraints in Abaqus and LS-Dyna for simu-

lating accurate shape control of the membrane structure, a decision was made

to create a multi-body code in Matlab and integrate it with the solution.

Within this code, the cell is modelled as a point mass within the centre of

the inflating cell. The connectors between these masses are posed as springs

which can dynamically exhibit tension, compression and bending loads. Con-

sequently, each point mass has three degrees of freedom (two in translation
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and one in rotational). At present time, the structure is simulated in a two

dimensional framework but plans are in place to expand the structure to be

modelled in the three dimensional case soon. One aspect which is missing in

the two dimensional case is to model the torsional stiffness within the springs

but this will be incorporated within the three dimensional case. The complex

problem of modelling the micro-pumps for the change of pressure between two

neighbouring cells is very problematic in a three dimensional finite element

software. This is primarily due to the model being unable to converge with a

rigid structure bonded to two membrane cells which are drastically deforming

subjected to internal inflation in a acute interval of time. Currently, all hopes

of having the model converge with the computing power available have been

non-successful, future work has been planned to incorporate our model on the

Archie-West high performance computer to achieve a solution for overcoming

the cost of computing time needed for a small incremental analysis.

A simplified diagrammatic of the designed multi-body can be seen in figure

4.14. In the course of actuation within the middle cells, air is translated

from the bottom to the top cell producing a volume change within the cells.

As showcased in the schematic, the top middle cell applies a force to the

neighbouring cells while the two neighbouring bottom cells apply a force to

the bottom middle cell. With this change in volume and concurrently the

change in pressure will bend the global structure at that region of pressure

change. By interpolating a control algorithm within the simulation model, the

structural shape can be changed into a desired shape and therefore enhancing

the shape changing process. This is of great importance when modelling the

structure in a three dimensional case or a structure with a high number of

elements as the required shape change can not be characterized intuitively.
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Figure 4.14: Designed simplified schematic of the multi-body model

4.7 Potential Applications

The designed smart structure alongside the finite element analysis and simu-

lation code has a variety of potential applications due to scalability from the

micro atom size robotic assembling structures to a couple of hundred metre

long inflatable structures.

The structure concept has a number of applications such as solar sail substruc-

ture which can be rigidized during deployment and inflation. This flat rigidized

structure gives a flat area for the solar particles to power the spacecraft for

propulsion. Additionally, the flat rigidized sail can have it’s shape changed

subject to solar wind and, therefore, making the spacecraft steerable with just

the solar sail and, no need for additional thrusters.

An application for terrestrial rovers can also be proposed whereby the smart

membrane structure could be continuously actuated to move the structure like

a snake over terrain or swim in the water. As the actuation within the mem-

brane occurs by inflating and deflating the structure, the rover can fit through

small openings when compared to conventional rovers. Other proposed appli-

cations for this concept could be for disaster relief, for example, for finding

survivors within collapsed buildings after an earthquake.
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4.8 Discussions & Conclusions

The conceptual design of a solar based power station satellite is established on

a geostationary based platform with a ground station where the energy can be

transmitted for storage and distribution for use. The space part is comprised of

a stiff structure made up of hexagonal cells which have solar panels on the top

and power transmitters at the bottom. These hexagonal cells are connected

to neighbouring cells via micro-pumps enabling pressure transfer between the

cells to change the global shape of the structure.

An alternative approach for large space structures is given by using self-

inflating adaptive membranes. With the passive residual air inflation method

and the biologically inspired automation, a simple smart inflatable structure

is constructed. Abaqus simulations were created of single cell and multiple

cells and validated with experimental vacuum tests. Two separate inflation

simulations were designed: one for the structure to be flat and the second

for the structure to deploy from a deployment box and both simulations were

compared for the final configuration of the inflated structure. This compari-

son illustrated that the desired configuration can be achieved regardless of the

packaging shape. The deployment was further investigated by comparing the

simulations to a REXUS experiment which launched in Spring 2014.

Abaqus simulations for the double cell and cell array structure were modelled to

showcase visual validation between the experimental vacuum chamber results.

The solutions achieved from Abaqus showcased validity on the size and shape of

the final configuration, further verifying our previous statement. A disparity

can be seen in the multiple cell array and this has been addressed in the

previous sections and is sought to be due to the limitations of the Abaqus

software and computer power when tackling problems with dense non-linearity
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due to membrane wrinkling.

A customized design code was written to model the dynamic structure accu-

rately within the inflation simulations. The code incorporated each inflated

cell as a point mass which experiences bending, tension and torsion springs

in-between them. The executed simulations illustrated that the structure can

alter its focal point and orientation depending on the location of the sun in

relation to the structure to ensure sufficient energy is redirected towards the

solar power assembly. Particularly, decreasing the storage volume by folding

up the deflated structure within the deployment box and the robust deploy-

ment of the concentrator should increase the cost and risk of launching a large

structure into space.



Chapter 5

Inflated Beam Model

Inflatable booms are the support beams for 90% inflatable space structures.

These booms act as load bearing pillars, which may act as structural members

of trusses or the support structures of the membrane structure. The structural

performance can be derived in numerous ways, including particular bending

stiffness and buckled strength, or via combined performance index.

This chapter is divided into two primary sections, the bending and buckling

of the inflated Kapton membrane beam and the post-inflation of the beam

after deformation to restore the beam to it’s approximate starting configura-

tion. The inflatable beam is modelled in the finite element software package

Abaqus using membrane elements. To understand the membrane dynamics

during deformation when wrinkling, the numerical subroutine based on the

Miller-Hedgepeth membrane theory is created, utilizing a user-defined VU-

MAT subroutine. In order to understand the behaviour of the non-linear in-

flated membrane, bending of a range of beams with different lengths and radii

is investigated. And secondly, using the same software, the beam is re-inflated

after the deformation has occurred and a range of pressures required to bring

149
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the beam to its initial configuration is examined.

5.1 Literature Review of Inflatable Beam Mod-

els

Within this section, a brief literature review will be given of documented jour-

nal papers which have a direct influence on our methodology. Variations or

modifications of previously documented work will be given, giving a clear un-

derstanding of the benefits and enhancements of our adopted simulation model

to the inflatable membrane model subjected to deformation loads.

Leonard [74] and Comer & Levy [75] investigated the inflatable cylindrical

cantilevered beams by the Euler beam theory. Within their research, the

cross-section of the inflated beam is presumed unaltered during the deforma-

tion and the non-linear wrinkle behaviour of the fabric was reputed for by the

presumption of the compressive stress in the fabric not being pertinent. Based

on this theory, the wrinkle moment Mw = πR3p/2 and the collapse moment

Mc = πR3p were calculated respectively. Within these equations, R is denoted

as the radius of the cylindrical beam and p is the inflation pressure. Main

[76] further researched inflatable cylindrical cantilevered beams with the ap-

plication of the biaxial stress state in the beam fabric due to the consolidation

of pressurization and structural loads. Main debated that the wrinkle of the

fabric was due to the compressive strain rather than the stress and therefore,

deduced lower wrinkling and collapse moments such as Mw = πR3p(1− 2ν/2)

and Mc = πR3p(1− 2ν), where v is the Poisson’s ratio of the fabric. It should

be noted that the above stated references do not account for the effects of the

internal pressure and shear deformation of the fabric, Wielgosz and Thomas
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[77] modelled the inflatable cylindrical beams by considering the pressure as

a follower force and using the Timoshenko’s beam theory to account for the

shear deformations of the fabric. Therefore, an inflatable beam element was

created and utilized for the analysis of simply supported inflatable cylindrical

beam subjected to a central load. The numerical results calculated agree with

the experimental data reasonably. However, their element does not include the

wrinkling effects as they have carried out the analysis on a membrane element

instead of a shell element. On a publication, Davids [78] refined an inflat-

able beam element by considering the internal pressure through the volume

change and local fabric wrinkle utilizing Stein and Hedgepeth [79] taut and

wrinkled criterion. The numerical results agreed very well with the experimen-

tal results of three-point bending test. Unfortunately, no comparison between

these inflatable beam elements and the experiments of the cantilevered inflated

cylindrical beams are available in the documented literature.

Zhu [80] investigates experimentally the bending of inflatable cylindrical can-

tilevered beams made of modern fabric materials. Using a dimensionless form

of the load vs deflection, Zhu was is able to characterize and generalize the

bending behaviour of the inflatable cylindrical cantilevered beams of different

sizes, materials, and inflation pressures in a unified way for easy application. It

should be noted that within Zhu’s experimental approach, the initial wrinkle

is hardly noticeable and the transition from non-wrinkle to wrinkle is mainly

given by the slope alteration of the load-deflection curve. Compared with the

experimental data, the strain-based wrinkle moment provides a lower bound

prediction while the stress-based wrinkle moment gives an upper bound pre-

diction. In the post-wrinkle stage, the adopted Euler-beam theory using a

non-linear moment-curvature model gives an upper bound estimation of load-

deflection relationship while the finite element analysis established on mem-

brane theory gives lower bound estimation. This discrepancy, of the measured
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collapse moment and the theoretical prediction is approximately 42% and can

be stated as primarily due to the beam-type method assuming the cross-section

of the beam undeformed in bending while the finite element method approach

has no restriction. Zhu stated that the actual collapse moment is very hard to

deduce in experiments due to the inflatable beam becoming unstable near the

collapse stage.

Wrinkling, developing from compressive stresses, often occurs for inflated mem-

brane structures, and can be seen associated to geometric effects. The wrinkles

evolve in the membrane in the direction orthogonal to the negative principal

stress. This breaks the convexity condition of the strain energy density func-

tion of the membrane as stated by Pipkin [42] and Steigmann [48], therefore,

the standard strain energy function cannot be used in the wrinkled areas.

In a research study on wrinkling, Pipkin [42] introduces the use of a relaxed

strain energy function to examine wrinkling of an isotropic membrane, with

wrinkling idealized as continuously distributed over membrane surface to main-

tain the strain compatibility. This research showcased that when a relaxed

energy function is replacing the standard strain energy functions, tension field

theory appears as an integral part of the membrane theory, and automati-

cally satisfies several conditions such as convexity and Legendre-Hadamard

conditions. In subsequent papers, Pipkin [43] [44] has demonstrated minimum

energy and minimum complementary energy theorems with a relaxed strain

energy density function for small and large deformation of membranes.

Patil [81] considers a hyper-elastic cylindrical membrane with non-uniform

thickness pressurized by internal gas or fluid. When pre-stretched and in-

flated, the wrinkles are generated in a certain portion of the membrane de-

pending on the loading medium and boundary conditions. The wrinkling is

established through a criterion based on kinematic conditions acquired from
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non-negativity of Cauchy principal stresses. The equilibrium solution of a

wrinkled membrane is acquired by a particularized combination of standard

and relaxed strain energy functions. The governing equations are discretized

by a finite difference approach and a Newton-Raphson procedure is utilized

to derive the solution. An interesting relationship between stretch induced,

softening/stiffening with the wrinkling phenomenon has been identified. The

effects of pre-stretch, inflating medium, thickness variations and boundary con-

ditions on the wrinkling patterns are clearly delineated. No limit point or snap

through behaviour was detected by Patil for the researched membranes with

non-uniform thickness in the considered angles of pressures. One prime dis-

advantage of Patil’s approach is not knowing the final shape of the membrane

after wrinkling as detailed structure of wrinkles within a membrane is governed

by its bending stiffness [82]. As this is neglected by Patil’s incorporated mem-

brane theory, the wrinkled surface is represented by plane surfaces through

the definition of the relaxed strain energy function. It can be stated from

Patil’s research that for a more general usage, advanced simulations must be

developed to consider a priori unknown principal stretch orientations, for in-

stance through the eigen-solutions to the local strain tensor. These advanced

simulations required to enhance Patil’s work has been provided herewith in

our research by using the finite element software Abaqusm with an integrated

VUMAT subroutine.

Chan-Guo [83] proposed a new model to accurately deduce the wrinkling and

collapse loads of a membrane inflated beam. Chan-Guo considers the pressure

effects and utilizes a modified factor to achieve this accurate solution via mod-

ifying the pressure-related structural parameters established on elastic small

strain considerations, and the modified factor is determined by our test data.

A critical concern in regards to wrinkling and collapse loads of inflated beams

is whether the material is regarded as an actual membrane, or as a very thin
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shell, and therefore, there are two subsequent models for inflated beams. For

the membrane model, the wrinkles will occur when the axial and compression

reaches zero, in essence, the wrinkles will cancel out the compressive stress in

the membrane. In the membrane model, both the critical wrinkling and the

collapse moments are independent of the material properties, and therefore

related to the cross-sectional size and inflated pressure only. In the thin shell

model, the wrinkles will occur when the compressive stress reaches a critical

value.

Compared to previous documented results, Chang-Guo’s [83] test data gives a

better correlation with the test results than the existing models in predicting

the wrinkling and collapse loads of inflated beams with a discrepancy of up to

4.18%. This discrepancy is stated due to the modified parameter value which

was obtained from experimental results and therefore, Chang-Guo stated that

further bending tests were needed to derive a much more accurate modified

factor. One key problem with Chang-Guo’s method is that this modified pa-

rameter relies on a number of experimental tests in order to gain a precise

modified factor and this brings a number of risk factors within the appara-

tus, such as using the same atmospheric conditions while testing, using the

same variables and attributes for each experimental test, etc. Using previous

documented experimental test results and comparing that to our derived fi-

nite element simulation model would have some discrepancy of 1.4% but was

much lower than what was experienced by Chang-Guo. This lower observed

discrepancy may be due to using vacuum conditions within our simulation and

is discussed subsequently in this Chapter. Due to the financial limitations of

this thesis, we were unable to carry out experimental test results and therefore

adopted a theoretical approach within the analysis, comparing our values with

previous documented results for validation.
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5.2 Introduction

Inflatable beams and booms are utilized in a wide range of space applications

due to their compressed storage, lightweight and easy packaging. Although

it should be noted that a membrane element has approximately zero bending

stiffness and, therefore, the wrinkles are easy to form during manufacturing,

packaging and compression of these thin structures. Wrinkles are generally

caused by surface irregularities and minimizing the load bearing capacity of

precision space membrane design. These errors can impede the mechanical

efficiency, hence, a large amount of study has been conducted on membrane

wrinkling of membrane structures.

A number of researchers and scientists have created wrinkling analyses of in-

flated and non-inflated membrane structures. One of the preliminary studies

was the tension field theory, in this theory it was postulated that the in-

vestigated membrane has no bending stiffness and no compressive stress is

transmitted. With these conditions, the antecedent winkling is considered as

an in-plane complication. Hence, within this theory, only the wrinkled areas

and the wrinkling orientation is attained. Mansfield [84] [23] created a world

renowned tension field theory and executed a comprehensive analysis of the

load transmission of a wrinkled membrane. Pipkin [42] investigated the rel-

ative relaxed energy density for isotropic flexible membrane. This was the

first documented solution to integrate the wrinkling theory with the iterative

material properties model (IMP) created by Hedgepeth [85] and Miller [86].

This method was primarily based on the inspection of the membrane element

presumed to be wrinkled, the geometric strain incurred perpendicular to the

wrinkling direction caused by the materials out-of-plane deformation can be

created by incorporating a changeable Poisson’s ratio for the element.



5.2 Introduction 156

As stated by Satish Kumar [36], wrinkling theory was the Iterative Materials

Properties model (IMP) is predicted on the observation that if during a simu-

lation a membrane element is deemed to be wrinkled, the geometric strain in

the direction perpendicular to the direction of the wrinkles, due to out-of-plane

deformation of the material, can be modelled by introducing a variable effica-

cious Poisson’s ratio for the element. By administering an iterative material

properties approach, Adler [87] incorporated this approach as a user-defined

material (VUMAT) subroutine within the ABAQUS finite element software.

Yang [88] created and modified the analysis procedure of the wrinkling of

membrane structures alongside a customized constitutive relationship model.

In this study, an integrated subroutine is established based on the methodology

set out by Adler [87] and Yang [88], in which the Newton-Raphson method and

updated Lagrangian formulation are utilized. With the suggested design, an

inflated cylinder is subjected to bending & buckling and re-inflated to restore

it to it’s initial configuration.

In physical scenarios, the wrinkling phenomena is due to the bifurcation and

is dramatically affected by acute bending stiffness’s; Wong-Wesle [89] recom-

mended a different non-linear geometric analysis method for wrinkling phe-

nomena established on the bifurcation theory. The prime advantage of the

bifurcation theory over the traditional tension field theory is that the com-

prehensive wrinkling behaviour such as the number and amplitude of wrinkles

can be deduced, while this information cannot be obtained in the tension field

theory. Wong and Pellegrino [34] [39] [45], gave an exhaustive practical lab in-

vestigation of the progression and shape of reversible wrinkles. They suggested

a generalized interpretive method to conclude the pattern, location, direction,

amplitude and wavelength of wrinkles in thin membranes. Using this method-

ology as the foundation, non-linear geometric finite element membrane models

were used to depict the growth and commencement of the winkles. The non-
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linear finite element solutions were researched by using the simple Newton

iteration with the flexible load incrementation for mapping out the load de-

flection response of the inflated beam. To determine the relativistic effects

of the geometric non-linearities and the inflation pressure on the stability be-

haviour of the inflatable beam, a supported beam was studied within the finite

element package Abaqus.

Within this research, the approach to govern the wrinkling progression and

deformation arrangement with the simplistic process of secondary inflation to

compensate for the deformation is theoretically investigated. To understand

the non-linear behaviour of the inflatable cylindrical membrane due to wrin-

kling, the object is simulated in the finite element software Abaqus with an

integrated VUMAT subroutine. The VUMAT subroutine for membrane wrin-

kling is established on the Miler-Hedgepeth membrane theory. The membrane

material used is DuPoint Kapton with the same material properties as stated in

the previous chapters. To identify the relative non-linear behaviours of the in-

flatable cylinder, number of simulations are carried out at different cylindrical

radii and initial inflation pressures. Secondary inflation of the membrane cylin-

der will allow the structure to return to it’s approximate initial configuration

to mitigate the structural performance deterioration incurred from membrane

deformation.

5.3 Deformation of the Inflated Cylinder

In this section, we will evaluate the methodology used to model the inflated

cylinder subjected to displacement loading. This inflated cylinder bends &

buckles and the relative load-deflection is measured with and without the

wrinkling subroutine, various material thickness’s, elastic moduli and inter-
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nal pressures. The wrinkling subroutine is explained in detail, showcasing the

underpinning theory used and the benefits of using this approach compared to

conventional methods.

5.3.1 Simulation Method

The *DYNAMIC, EXPLICIT analysis method was used to model the defor-

mation in the cylinder. This method has been created to resolve exceedingly

discontinuous, fast dynamic complications with ease. The method has an

integrated powerful and reliable contact algorithm which inhibits additional

degrees of freedom to the model. The complete cylindrical membrane was

modelled in Abaqus and the end caps and cylinder body were created using

three separate parts. These parts were assembled together using the *CON-

TACT CONTROLS function and this allowed the user to set the type of con-

tact needed between different surfaces touching together. In order to apply

accurate loading to the cap and edge of the cylinder body, the *RIGID BODY

function was used. This function allows the user to select one node or element

and applies the same load to any other selected area of the model. There-

fore, for this study, we selected the middle node of the cap and using the

sub-function *TIE, we connected this node to the edge of the circumference of

the cylinder. This was done for both caps with their respective cylinder ends.

To model the inflation within the cylinder, the *SKIN method was used to

define the inside surface of the enclosed cylindrical beam. This allowed only

this surface to be isolated from the rest of the cylinder. Using the *FLUID

CAVITY method as stated in the previous chapter, the inside of the cylinder

surface was given a prescribed surface pressure. In order to prescribe a new

pressure, an initial pressure of magnitude 6000 Pascals, must be given to the
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inside surface using *INITIAL CONDITIONS function. This has two bene-

fits, firstly, the cylinder is assigned a prescribed pressure in order to activate

the fluid cavity method and secondly, the cylinder is made from an elastic

membrane and it stops the cylinder from self-collapsing while having an acute

enough temperature and pressure to not affect the final results. The relative

behaviours for the inside gases must be prescribed within the coding and the

properties defined by Abaqus within the user manual were used. These proper-

ties were used in an air-bag example and have been verified from experimental

results. The gases used within the inflation were air, carbon dioxide, nitrogen,

helium, nitrogen oxide and argon. Expansion parameters for each gas over

a given time-scale were stated. Using the *FLUID CAVITY ACTIVATION

function, the inflation of the cylinder was commenced. The amount of total

pressure could be altered and the corresponding fractal of gases used were low-

ered or increased automatically. An amplitude was assigned to the load and

inflation to give a smooth change in configuration to stop failure within the

simulation and, allow the solution to converge. The bottom cap of the cylinder

was fixed using the *BOUNDARY CONDITION, ENCASTRE function and,

there were no degrees of freedom given to this region. The cylinder was inflated

to an initial stable configuration and a load was applied to the cylinder using

the *DSLOAD function, this allows a prescribed displacement to be given to

any region of the cylinder.

5.3.2 Simulation Model

In simulating the inflated cylinder utilizing finite element method, the mem-

brane element is generally employed due to the vast behavioural similarities

to thin film structures. It has been stated that a membrane element has no

bending rigidity and is stated as a surface element which relays solely in-plane
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Parameter Name Value of Parameter

Diameter of Beam 0.2m

Length of Beam 1.0m

Thickness of Beam 30 µ m

Young’s Modulus 3.0 GPa

Poisson’s Ratio 0.34

Table 5.1: Membrane properties and geometric dimensions of the Kapton beam

membrane

forces. This inherent attribute makes it near impossible for membranes to

showcase three dimensional wrinkling patterns or out-of-plane deformations

but it does allow the computations of stress and strain in the membrane sur-

face. The inflatable beam is numerically simulated by using M3D4 membrane

elements with an initial resulting pre-stress, this is in essence, the initial in-

ternal pressure of the beam to stop the beam from collapsing on itself. The

relative properties of the DuPoint Kapton membrane used and geometric di-

mensions of the beam can be seen in table 5.1.

Wrinkling VUMAT subroutine

Structural wrinkling of an inflatable structure can have detrimental effects on

the performance, manoeuvrability and stability. Therefore, the wrinkling phe-

nomena must be taken into account during the analysis phase to effectively

account for non-linear behaviours of inflatable structures. Even though this

prediction is a necessity for accurate modelling of amplitude and deformed

area, it is still considered a very difficult and tedious process. Therefore,

alongside the integration of a finite element subroutine, the simulation of the

wrinkled region and the global dynamic response of the membrane structure
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can be successfully modelled. To model the wrinkling deformation, a numerical

algorithm established on the Miller-Hedgepeth membrane theory is created uti-

lizing the user-defined material VUMAT subroutine inscribed in FORTRAN.

The wrinkled area and directional magnitude, customized stress and strain

of the structure can all be computed with the written algorithm. The IMP

Iterative Modified Properties approach integrated in the VUMAT subroutine

is a recurrent stiffness-adjustment operation to prognosticate the membrane

condition such as taut, wrinkled or slack. The relative condition of the mem-

brane is generally resolved with definitive standards established on principal

stress or strain. The modern day prevailing standard of combined stress-strain

criterion [90] are stated as:

σ2 > 0 : taut (5.1)

ε1 > 0 and σ2 ≤ 0 : wrinkled (5.2)

ε1 ≤ 0 : slack (5.3)

where σ1 is known as the principal maximum stress, σ2 is known as the principal

minimum stress, and ε1 is known as the principal maximum strain.

After the condition of membrane is postulated by the stated standards, the

stiffness of each element must be adjusted as stated [90]:
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∣∣∣∣∣∣∣∣∣ (5.6)

where P = cos(α), Q = sin(α), and α is the principal stress angle.

5.3.3 Simulation Analysis

An incremental step by step process of the deformed cylinder can be seen in

figure 5.1, the increments were in 0.05 second intervals and the simulation can

be summarized in 0.20 seconds from start to finish. The bending stiffness of

the beam can be used to deduce the structural performance of the inflated

structure. To account for bending stiffness, only the beam deflection versus

the beam loading is needed. After extensively investigating the wrinkled region

of the membrane from the output data file, it was concluded that progression

of wrinkles degrades the structural performance of the inflatable membrane

beam. Specifically, the deflection dramatically escalates subjected to an acute

load once wrinkled regions are produced. There are numerous variables that

can influence the behaviour of the simulated inflatable membrane beam, such

as the membrane material, material properties, internal pressure, thickness
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(a) Showcases initial configuration of cylinder and configuration

at 0.05 seconds of simulation

(b) Configuration of cylinder at 0.10 and 0.15 seconds into the

simulation
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(c) Final configuration of the cylinder at 0.20 seconds

Figure 5.1: A summarized Abaqus model of the inflated cylinder deformation

and the wrinkling formation. Within this research, parametric studies are

done to examine each of the stated variables in regards to the response of

the inflatable beam. Within this study, the coherence among the transverse

loading and deflection and the beam end cap are presented.

In figure 5.2, the necessity of the wrinkling subroutine is depicted. With-

out the integration of this subroutine, the results achieved from the Abaqus

model would hold no merit as they would deviate from a real world scenario

and the laws of physics. In essence, without the wrinkling subroutine, the

inflatable beam barely folds or collapses during deformation as it would in an

actual experimental apparatus; hence, the simulated model without the sub-

routine appears much more stiff in comparison to the simulated model with

the wrinkling subroutine. With the integrated wrinkling subroutine, the model

complies with the wrinkling deformation of a membrane.

The elastic modulus of the membrane material is also a key variable in the

beam behaviour during the Abaqus analysis and this can be seen in figure
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Figure 5.2: Graphical representation of the buckling of the membrane model

with and without the wrinkling subroutine
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Figure 5.3: Correlation of the elastic modulus of the membrane model versus

the beam deflection at a given displacement load
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Figure 5.4: Impact of the membrane material thickness in regards to the beam

defection under the same given load

5.3. As the modulus of the material escalates, the beam structure becomes

inflexible in the course of linear deformation. The relative thickness of the

membrane material i.e. Kapton DuPoint also assists in the beam stiffness,

just like material modulus presented in figure 5.4. The dominant factor in the

beams behavioural response and load carrying capacity is the internal pressure.

Figure 5.5 displays the amount of load the inflated beam can withstand while

its internal pressure is altered. While the linear deformation slope showcased

in the figure is acutely raised, the maximum load, which can be sustained by

the inflated beam is decidedly elevated.

The results obtained from Abaqus finite element software were further pro-

cessed into a dimensionless load-deflection form and are showcased in figure

5.6. As a validation for comparison, the load-deflection relationship of the
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Figure 5.5: Depiction of the deflection load versus an altered internal pressure

until membrane failure

Euler beam theory is showcased in figure 5.6 together with the Abaqus FEA

solution, and results derived by Comer & Levy [75], Yoo [91] [92] and Zhu

[80] as given on the figure. This clearly depicts the dimensionless correlation

between published work, showcasing the accuracy of our derived model.

This dimensionless data clearly demonstrates that this dimensionless load-

deflection relationship can be approximated into a best fit single curve. Com-

pared with the Euler theory, the deflection is linearly dependant on the external

load and agrees very well with the Euler theory upto a value of 0.2. Beyond

that value, the load-deflection relationship becomes non-linear due to the onset

of wrinkling of the beam membrane until the external load reaches the theo-

retical collapse moment of the beam theory. In this post wrinkle phase, the

solution based on the Euler beam theory with non-linear moment-curvature

model gives an upper bound of the load capacity of the partially wrinkled in-

flatable membrane. This is primarily because the Comer & Levy’s non-linear

moment-curvature model neglected the cross-section ovalization of the wrin-

kled beam.
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Figure 5.6: Comparison of FEM dimensionless load-deflection relationships

between current study and previous documented results [75] [80] [83] [91] [92]

The comparisons also show that the Abaqus finite element method solution

predicts a lower bound of load capacity in the post-wrinkle stage of the in-

flatable beam in comparison with the theoretical solution of Comer & Levy.

This may be because the membrane finite element solution accounts for the

cross-section ovalization effect of the inflatable beam, which is neglected by

the Euler beam theory.

The initial wrinkle can be seen in the Abaqus finite element solution while

is hardly noticeable in previous documented results stated and the transition

from the non-wrinkle to wrinkle state occurs gradually. The critical point of

wrinkle is deduced by monitoring the slope change of the load-deflection curve

or by visual inspection of the Abaqus simulation.



5.4 Post-Inflation for Wrinkling Control 170

5.4 Post-Inflation for Wrinkling Control

In this section, we investigate the pressure force needed to bring the deformed

inflated beam back to its approximate initial upright configuration by applying

an additional internal inflation pressure to the beam. It should be noted that

with this secondary inflation, the beam returns to its upright configuration but

is further deformed as the beam is enlarged and the membrane is stretched.

This secondary deformation increases the strain at the edges and brings the

material close to its rupture biting point. Although the beam reaches rupture

point, it can still act as a vital support boom to the inflatable space structure

until maintenance has been arranged for repair or replacement.

5.4.1 Simulation Method

As with the previous cylinder simulation, this simulation phase was also mod-

elled in Abaqus and the final stage of the deformed cylinder from Section

3 was used as the starting stage for this simulation. All initial model pa-

rameters were kept constant. Secondary inflation was added to the cylinder

by increasing the various gas pressures within the *FLUID CAVITY option

and applying a secondary *FLUID INFLATOR ACTIVATION command. It

should be noted that the deformation phase and the post-inflation phase of

the cylinder were modelled in two separate Abaqus simulations. This was due

to the constraint in Abaqus of solely applying one *FLUID CAVITY option

within any given simulation. This is due to a number of reasons for our model,

primarily, for every fluid cavity an associated cavity reference node must be

stated. Alongside the fluid cavity name, the reference node is used to identify

the fluid cavity. The fluid cavity may be referenced by fluid exchange and

inflater definitions. These reference nodes should not be connected to any
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elements within the model. During the deformation of the inflated cylinder,

the membrane undergoes a complex deformation, this deformation changes the

position of the reference cavity node drastically. Due to this, we are unable to

use the same cavity reference node and another cavity reference node must be

selected concurrently, creating a new model simulation for simplicity.

The *FLUID INFLATOR ACTIVATION option is used to activate the fluid

inflator definitions. The fluid inflator definitions can be used for:

1 Inflating a fluid cavity to simulate actual inflators used for air-bag sup-

plemental restraint systems.

2 Inflating a fluid cavity with an ideal gas mixture different from that

present in the fluid cavity.

This option is used to increase the underlying pressure within the cylinder.

This pressure overcomes the deformation force and the cylinder starts to re-

turn to it’s approximate initial configuration i.e. approximate horizontal con-

figuration.

5.4.2 Simulation Model

As used in the ’deformation of an inflated cylinder’ section, we will use the

same membrane element attributes for this model. The inflated beam is mod-

elled by using M3D4 membrane elements with an initial resulting pre-stress

and undergoing wrinkling deflection. The wrinkling deflection of the final

configuration of an pre-stressed inflated beam under acute loading i.e. final

configuration of the beam from the previous section’s simulation FEA model.
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The relative properties of the DuPoint Kapton membrane used and geometric

dimensions of the beam can be seen in table 5.1.

The full graphical illustration depicting the progression of the inflated cylinder

from initial configuration to each phase of progression in 0.05 second intervals

is shown.

5.4.3 Simulation Analysis

As stated previously, the bending stiffness can be used to calculate the beam

configuration and the structural performance of the inflated structure. Using

the beam deflection, beam loading and post-inflation pressure, we can calculate

the bending stiffness and the membranes deflection configuration. It can be

concluded from the output data file that the wrinkled region is mitigated as

the membrane beam is post-inflated. This is due to the beams deflection being

mitigated, resulting in the decreasing of wrinkles and enhancing the structural

performance of the beam.

It should be noted that the due to the increase in pressure, the membrane is

pushed to its limits and becomes fragile at the seams of the enclosed caps. This

can be due to less flexure in this region when compared with the rest of the

membrane. Therefore, the deflection is effectively diminished once the acute

load is compensated for by the post-inflation pressure. As stated previously,

the amount of inflation pressure needed to restore the deflected beam depends

not only on the internal pressure, but also on the membrane material, material

properties, internal pressure, thickness and the wrinkling formation.

In this section, we discuss the above stated variables in relation to the response

of the inflated deflected beam when subjected to post-inflation pressure of a
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(a) The bending and buckling of the cylinder from initial configuration to

0.05 seconds into analysis

(b) The configuration of the cylinder at 0.10 and 0.15 seconds of the bending

and buckling analysis
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(c) The configuration of the cylinder at 0.20 and 0.25 seconds of the bending

and buckling analysis

Figure 5.7: Representation of the six phases at 0.05 second increments within

the bending and buckling analysis

given amount. From the graphical depiction represented in figure 5.9, it can

be shown that the inflated membrane reaches localized instability during the

post-inflation phase. This is due to the post-inflation pressure overcoming the

bending & buckling load and, the resulting pressure creates an instability at

the unconstrained end of the cylinder. This instability is slowly dispersed,

leading the inflated cylinder to reach an equilibrium balanced configuration.

From figure 5.11, we can see the relative magnitude of the instability within

the post-inflated membrane cylinder. This scale of magnitude is repeated in

every simulation of varied cylindrical attributes, implying this spring-back of

the unconstrained region of the cylinder is inevitable. It was noticed that

with lower pressures of post-inflation led to smaller magnitudes of spring-

back and the corresponding instability value. This could lead to a negligible

instability which can be ignored by this study, and bearing that this study is

only concerned with the cylinder overcoming the bending & buckling load and
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(a) The configuration of the cylinder at 0.30 and 0.35 seconds of the bending

and buckling analysis

(b) The configuration of the cylinder at 0.40 and 0.45 seconds of the bending

and buckling analysis
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(c) The configuration of the cylinder at 0.50 of the bending and buckling

phase while at 0.55 seconds, the analysis shifts into the post-inflation phase

Figure 5.8: Representation of the final phases of the bending and buckling

analysis while the last frame depicts the start of the post-inflation phase

(a) The configuration of the cylinder at 0.60 and 0.65 seconds of the post-

inflation analysis phase



5.4 Post-Inflation for Wrinkling Control 177

(b) The configuration of the cylinder at 0.70 and 0.75 seconds of the post-

inflation analysis phase

(c) The configuration of the cylinder at 0.80 and 0.85 seconds of the post-

inflation analysis phase where the cylinder overshoots the initial configura-

tion and bends on the opposite side of loading

Figure 5.9: Illustration of the post-inflation phase of the inflated cylinder sub-

jected to bending and buckling. The final frame also depicts the over compen-

sation of loading
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(a) Depiction of the third & second last (0.90 seconds & 0.95 seconds) stages

of the analysis. Here, the instability of the cylinder is apparent with it weav-

ing like a pendulum circumed to atmospheric frictional resistence

(b) Representation of the final two phases at 1.00 and 1.05 second interval.

The remaining instability within the cylinder reaches critical point disper-

sion, resulting in an equilibrium balanced configuration

Figure 5.10: Illustration of the post-inflation phase of the inflated cylinder

subjected to bending and buckling. The final frame also depicts the over com-

pensation of loading and the dispersion of the instability forces on the inflated

cylinder
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Figure 5.11: Displaying the magnitude of the cylindrical instability within the

post-inflation analysis

returning to its approximate initial configuration.

From figure 5.12, the modulus of the material increases as the inflation pressure

within the membrane cylinder increases. This can be contributed to the beam

becoming increasingly stiff and rigid as the membrane reaches rupture point

and, the bending & buckling force is overcome. As the membrane cylinder has

no more flexure, the overcompensation of the post-inflation pressure leads to

the instability within the membrane. Another variable which is intrinsically

linked to the membranes young’s modulus is membrane thickness. As the

modulus of the material increases and the membrane is post-inflated to rupture

point, the membrane is also stretched, leading to a decrease in thickness of the

membrane and a larger radius of the cylindrical caps. Another depiction of how

the membrane thickness affects the post-inflation pressure of the membrane

can be seen in figure 5.13. Figure 5.13 represents the decreasing magnitude of

membrane thickness with increasing post-inflation pressure on the membrane

cylinder. Therefore, once the deflection is overcome, the material thickness is

decreased with the stretching of the membrane material.
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Figure 5.12: Depiction of how the beams Young’s Modulus effects the rate of

post-inflation of the bent and buckled cylinder

Figure 5.13: Graph showing the correlation with varied membrane thickness

against post-inflation pressure and deflection
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5.5 Potential Applications

This Abaqus model with the incorporated subroutine can be used to model any

membrane or shell structure subjected to any type of internal or external forces.

This tested approach could be used to simulate and model future applications

of inflatable space structures, such as inflatable booms & reflectors, solar sails

etc., to understand the stresses and strains that may act on the structure when

being launched or deployed. This simple model could be used as a secondary

test during the design and analysis phase before initial conceptual prototype

design.

This model is not limited to space applications but can also be used in a variety

of other applications. Such as being used to model inflatable habitats for living,

storage or instrumentation protection from the external environment on Earth

or any other planet. Currently this model has been used by Ben Board from

the Isle or Wight to invent a life-saving inflatable tube that can be inflated

to rescue people drowning at sea. This inflatable tube, named CentiFloat,

designed by the Unique Group is designed to be deployed from a rescue ship

to sea via inflation. It is fitted with grab handles for people to grip on and be

towed to safety. This CentiFloat is presented in figure 5.14. Future proposals

of inflatable membrane structures are to be used as a space habitat for the

colonization of the Moon. This can be used for astronauts to practice living,

working and completing science experiments before taking longer and riskier

trips to Mars. The Moon is a natural first step in space exploration as it is

nearby and the closest floating body in outer space.
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Figure 5.14: Image of the CentiFloat being used by the Migrant Offshore Aid

Station (image courtesy of the Huffington Post)

5.6 Discussions & Conclusions

In this chapter, a novel approach has been provided in modelling via Abaqus

simulation, the inflation, bending, buckling and post-inflation of a cylindrical

membrane structure throughout the entire phase transition of each configu-

ration. We have discussed briefly, a summary of research carried out in this

subject and any theories or methodologies that are incorporated in our study.

Each simulation is broken into three separate parts: simulation method, sim-

ulation model and simulation analysis. The simulation method describes the

Abaqus methodology and the steps taken to achieve a successful working finite

element model within Abaqus. The simulation model describes the theory be-

hind the model, the model properties and any characteristics associated with

the membrane model. Finally, the simulation analysis describes the results and

conclusions derived from the analysis. All relevant information is illustrated

by graphical representation. A modified VUMAT subroutine was incorporated
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within both models, so that the simulation could successfully model the in-

tricate membrane wrinkling behaviour during deformation. The comparison

with and without this VUMAT subroutine is depicted and the necessity of

incorporating this can be seen.

A brief description has been given where this model can be used and imple-

mented for potential applications. A real life example of where it has been

used, out-with the context of this PhD research has been showcased. I believe

this is only a portion of examples where this model can be integrated, and this

can however be used in much wider applications such as biomedical engineer-

ing. Currently, The Department of Biomedical Engineering at the University

of Strathclyde is researching on using inflatable membrane tubes as potential

grafts for arteries and veins within the human anatomy.



Chapter 6

Thesis Conclusions

This research study presented herewith for the degree of Doctorate of Philoso-

phy has investigated new innovative wrinkling models for membrane materials,

taking into account model competency, accuracy, simulation expenditure and

the rate of convergence. These deduced wrinkling models can be modified to

be applied to a wide range of scenarios allowing for detailed visual inspection

in it’s entirety. The relativistic pressure effects have been considered within

our study by assimilating additional stiffness terms within the constitutive

equations which are caused either by the variation of the membrane surface

normals, altering cavity pressure or the deformation of the membrane. To

account the membrane material dynamics and contact issues for inflatable

membranes undergoing large deformation, a user-defined material VUMAT

subroutine has been integrated alongside the Abaqus finite element simulation

software. This integration results in an accurate, reliable and stable formula

which gives much more realistic solutions when compared to the conventional

treatment of membrane material and contact problems.

184
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6.1 Research Overview

In previous years there has been little study using simulation software for the

conceptualization of inflatable membrane space structures with most of the

documented literature focusing on theoretical numerical calculations. This

research advanced the prior understanding of wrinkling within inflated mem-

branes by using complex structures subjected to deformation loads.

A comprehensive computational framework for the numerical analysis of the

interaction between acting forces on the membrane and the membrane struc-

ture dynamics is given. In regards to membrane deformations, the correlation

amid the membrane wrinkling and structural forces has been investigated, re-

sulting in a dynamic wrinkling problem which has been modelled by using a

finite element software program Abaqus.

Using the Abaqus FEA simulation, key consideration was given in modelling

the geometric non-linearity behaviour of the membrane. By utilizing the exist-

ing continuum mechanics expression for the virtual internal work in curvilinear

coordinates, a modified formulation has been derived to showcase the transi-

tion phase of the deformation of the membrane structure from initial analysis

to final equilibrium path.

A critical feature of the new formulation is the addition of the pre-stressed

forces on the membrane structure. The novel approach developed, established

on the alteration of the material stiffness matrix to integrate the effects of

wrinkling and deformation, can be utilized to calculate the behaviour of the

membrane within a finite element simulation. In the wrinkling model, the

state of the membrane element taut, wrinkled or slack is characterized by a

mixed wrinkle criterion at each incremental analysis step. Once the membrane

element has been identified as wrinkled, the iterative scheme looks for the
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wrinkled orientation angle and the precise stress distribution, including only

uni-axial tension in the wrinkle direction, is then deduced.

The wrinkling model has been verified and validated by contrasting the simu-

lated conclusions with documented results for the instance of a time-independent

membrane subjected to deformation loads. Utilizing the time integration

method, a time-dependant pseudo-elastic stiffness matrix was represented and

therefore, rather than calculating the convolution integral all through the

Abaqus simulation, the behaviour of the membrane structure is derived by

the superposition of a series of incremental steps in basic finite element soft-

ware.

A three-dimensional FEM which integrates the wrinkling and friction-less con-

tact has been developed to simulate the membrane models. The loading of

the inflated structures is given by a non-uniform differential inflation pressure

with a continual gradient adjacent to height. The resultant solution inte-

grates a user defined subroutine to account for elastic wrinkling deformation

that administers a combined stress-strain criterion. Frictionless contact has

been prescribed within the model to prohibit the penetration of the membrane

structure through itself.

The simulated models created accomplish the purpose of exceptional sub-grid

performance in relation to accuracy, competency, computing hardware and

software expense, complexity and successful convergence rate. The numerical

algorithm has been created in general context and can be adopted for a large

variety of material models.
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6.2 Research Conclusions

Within the given research, three models were given in three chapters, namely

the rectangular membrane model, smart adaptive structure model and the

inflatable beam model. We will discuss the derived conclusions from each

model in this section while speak about the originality of the research within

a subsequent section:

6.2.1 Rectangular Membrane Model

The first studied model within this research was the rectangular membrane

model whereby the primary initial conditions and governing equations were

established to base all subsequent research on. These base equations are crit-

ical to create the fundamental governing equations that membrane structures

abide to in physical reality. In order to understand the accuracy of our initial

conditions, two separate simulations were designed, executed and compared

to previous documented work. This comparison allowed the accuracy of the

rectangular Kapton membrane undergoing axial and shear loading to be given.

The Finite Element analysis solutions deduced using continuum membrane el-

ements within Abaqus and the variation in natural frequency is observed. In

the simulation, we remove the initial imperfection from our model to eliminate

the influence of the imperfections on the post-wrinkling characteristics by using

the commands available within Abaqus and by applying an initial pre-stress.

The relevant modes due to this initial pre-stress are found. The analysis of

wrinkling problems of the wrinkle prediction of rectangular membranes un-

der variation of thickness, element type, mesh density, length-to-width aspect

ratio, tensile and shear loading has been studied.
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Loading Highest % Lowest %

Axial 29.0 1.01

Shear 0.08 0.01

Table 6.1: Table representing the highest and lowest eigenvalue (1st mode)

percentile differences between the derived Abaqus results and results published

by Satish Kumar [36]

The unconventional membrane theory was not adopted for this research due

to the membrane theory underestimating the magnitude of the loading at

impending wrinkling. Membrane theory predicts that the wrinkled regions

are those under compression and also that an infinite number of wrinkle lines

appear in the wrinkled regions. However, the wrinkles extend the length of

the membrane and the shapes and sizes of the wrinkled regions are different

from those of the regions under width compression. Therefore, the effects of the

small flexural stiffness on the prediction of the critical non-linear component of

the edge loading that causes wrinkling, on the number and the direction of the

wrinkle lines, and on the sizes and shapes of the wrinkled regions are significant

and cannot be neglected. Due to this, a iterative displacement approach is

adopted within Abaqus FEA based on the Newton-Raphson method alongside

a modified approach to the membrane theory is utilized to achieve successful

results.

In order to validate the Abaqus axial and shear loading Kapton membrane

simulation model by replicating the model published and documented by Satish

Kumar [36]. The lowest and highest percentile disparity between the Abaqus

simulation results derived and results published by Satish Kumar are stated

in table 6.1.

Only one value given in table 6.1 falls out with the accepted tolerances of
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this research. Successive simulation models were run to mitigate any input

errors but this difference could not be explained and was attributed to an

anomaly. The remaining disparity values can be accounted for the integration

of the iterative membrane properties (IMP) subroutine to predict the mem-

brane dynamics within the Abaqus simulation. The IMP subroutine leads to

the mixed wrinkling criterion being calculated incrementally at each phase of

the simulation process as opposed to a set value assigned at the start of the

simulation.

6.2.2 Smart Adaptive Structure Model

The conceptual design of a solar based power station satellite is established on

a geostationary based platform with a ground station where the energy can be

transmitted for storage and distribution for use. The space part is comprised of

a stiff structure made up of hexagonal cells which have solar panels on the top

and power transmitters at the bottom. These hexagonal cells are connected

to neighbouring cells via micro-pumps enabling pressure transfer between the

cells to change the global shape of the structure.

An alternative approach for large space structures is given by using self inflat-

ing adaptive membranes. With the passive residual air inflation method and

the biologically inspired automation, a simple smart inflatable structure is con-

structed. Abaqus simulations were created of single cell and multiple cells and

validated with experimental vacuum tests. Two separate inflation simulations

were designed: one for the structure to be flat and the second for the structure

to deploy from a deployment box and both simulations were compared for the

final configuration of the inflated structure. This comparison illustrated that

the desired configuration can be achieved regardless of the packaging shape.
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The deployment was further investigated by comparing the simulations to a

REXUS experiment which launched in Spring 2014.

Abaqus simulations for the double cell and cell array structure were mod-

elled to showcase visual validation between the experimental vacuum chamber

results conducted. The solutions achieved from Abaqus demonstrated valid-

ity on the size and shape of the final cell configuration, further verifying our

previous statement. A disparity can be seen in the multiple cell array and

this has been concluded to be due to the limitations of the Abaqus software

and computer power when tackling problems with dense non-linearity due to

membrane wrinkling.

A customized design code was written to model the dynamic structure accu-

rately within the inflation simulations. The code incorporated each inflated

cell as a point mass which experiences bending, tension and torsion springs

between them. The executed simulations illustrated that the structure can

alter its focal point and orientation depending on the location of the sun in

relation to the structure to ensure sufficient energy is redirected towards the

solar power assembly. particularly, decreasing the storage volume by folding

up the deflated structure within the deployment box and the robust deploy-

ment of the concentrator should increase the cost and risk of launching a large

structure into space.

6.2.3 Inflated Beam Model

The inflatable beam model is comprised of two key simulations: the bending

& buckling of the inflated beam and the post-inflation of the bent & buckled

beam. Abaqus software was used to simulate the inflatable beam during each

configuration utilizing the integration of a modified VUMAT subroutine.
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To understand the membrane dynamics during deformation when wrinkling,

the numerical subroutine based on the Miller-Hedgepeth membrane theory

is created. In order to comprehend the behaviour of the non-linear inflated

membrane, bending of a range of beams with different lengths and radii is

investigated. And secondly, the beam is re-inflated after the deformation to

bring the beam back to its initial configuration. This study allows the wrin-

kling progression and deformation arrangement within the inflated cylinder to

be examined. To identify the relative non-linear behaviours of the inflatable

cylinder, number of simulations are carried out at different cylindrical radii, in-

ternal pressure, elastic modulus, material thickness and displacement loading.

To validate the Abaqus simulation model with previous documented literature,

a dimensionless formulation has been created and a relativistic comparison has

been made to showcase good agreement with current work.

From the deformation simulation of the inflated cylinder, it was concluded that

the progression of wrinkles degrades the structural performance of the beam.

Specifically, the deflection dramatically escalates when subjected to an acute

load once wrinkling occurs on the membrane surface. As the modulus of the

material increases, the beam structure becomes inflexible in the course of linear

deformation. The membrane thickness also assists in the beam stiffness which

acts similarly to the elastic modulus of the membrane. The dominant factor for

the beams behavioural response observed within the simulations is the internal

pressure. These derived solutions are deduced into a dimensionless form which

is compared to previously documented and published results to showcase the

validity of the presented model. The dimensionless data showcases in clarity

that the dimensionless load-deflection relationship can be approximated into

a best fit single curve. Compared with the Euler beam theory, the deflection

is linearly dependant on the external load and correlates well with the Euler

theory until the value of 0.2. Albeit beyond this value, the load-deflection
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relationship becomes non-linear due to onset of wrinkling until the applied

load reaches the theoretical collapse moment of the beam theory.

From the post-inflation for wrinkling control of the deflected beam, it can be

stated that the membrane wrinkled region is mitigated as the beam is post-

inflated. This is due to the beams deflection being mitigated, resulting in the

decreasing of wrinkles and enhancing the structural performance of the beam.

It should be taken into account that as the beam is post-inflated, the membrane

is pushed to its rupture breaking point at the end caps and enclosed seams

due to less flexure within this region when compared to rest of the membrane.

6.3 Originality of Research

The research carried out during this Doctorate has led to several original pieces

of work which has enhanced the knowledge within this field significantly. The

work given in this section will present the main points of the work conducted.

1 A novel patent pending smart adaptive space structure to harness solar

energy to be re-used as a potential source of green energy on the ground.

The solar energy smart cell structure constitutes two structural parts:

the solar & transmission assembly and a deployable concentrator. The

deployable concentrator is created of inflatable smart cells coated with

a reflective material to redirect and focus the Sun’s energy onto the

geostationary space solar panel & transmission assembly.

2 Design of the new cell structures for the adaptive smart cell to be shaped

to the user specification after deployment. The deployable concentrator

comprises of numerous inflated cells which are interconnected by micro-

pumps. The micro-pumps allow air change between two neighbouring
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cells, therefore, changing the volume between these neighbouring cells.

Changing the connecting actuators locally will translate the global shape

of the structure into any given shape.

3 A simulation model depicting the post-inflation of a deformed inflated

membrane beam structure to restore it to its initial configuration. This

research is vital for understanding the limitations of post-inflation of

a deformed beam as this approach could be used for restoring support

booms after the onset of bending and buckling.

4 Utilizing Abaqus for the simulation design of membrane elements using

the fluid cavity inflation method and the internal layer method. Abaqus

is not the conventional approach for inflation simulations. However,

with the integration of a custom programming scripting and exploiting

the fluid cavity (*control volume) method alongside the internal element

layer (*skin), Abaqus was used successfully to attain accurate and robust

results.

6.4 Relevance of the Abaqus Simulations

This thesis is robustly based on methodological and modelling of membrane

structures using Abaqus finite element analysis software. With using modelling

software as the basis of this research, the question arises, how and to what

extent, the methods given here can be used in the real world of engineering.

It has been documented previously that an engineer only needs a minimum of

three points to model a structure.

1 Information on the surrounding environment.
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2 Information on the correlation amidst the environment and the forces

acting on the structure.

3 Information on the structural behaviour resulting from the acting forces.

The software created within this thesis encompasses bullet point 2, although,

constraints arise from the dynamic behaviour of the membrane. The strength

of the simulation lies in the integration bullet point 3, as the correlation be-

tween the structure and environment can be modelled explicitly, and the effect

of the structural behaviour can be integrated. The surrounding environment,

as stated in bullet point 1, can also be implemented within the model using

initial conditions and pre-programmed material characteristics. This proves

the importance and relevance of the Abaqus simulation.

6.5 Discussion and Outlook

The software introduced within this research is an important tool for any

experienced engineer, to design an inflatable membrane structure subjected

to any internal or external forces. Within the constraints of the model, any

structural integrity, deformation or configuration can be analysed, completely

taking into consideration the interaction. Hence, the modelling methodology

demonstrated is an encouraging addition to and the improvement of existing

methods of analytical, sub-analytical, or experimental procedures in membrane

modelling.

The flexibility of the software environment can be improved within Abaqus to

include atmospheric or weather conditions, which have already been done in

open-source solvers such as OpenFOAM. All post-processing for the simula-

tions were carried out in Matlab by exporting relative results, it would make
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visualization easier and less chance of human error, if this was available within

Abaqus.

This research has led to two conference papers and two journal paper submis-

sions. These models comply with relative theories leading to accurate simu-

lated results of structures subjected to various internal and external forces.
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Appendix A

Appendix One

Input files for the programs for a rectangular Kapton membrane subjected

axial loading and shear loading.

A.1 Axial Loading Input File

*Heading

Stretching the aluminium foil using a symmetric boundary condition on one

edge

** Job name: Kapton Axial Loading Model name: Model-1

** Generated by: Abaqus/CAE 6.13-2

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=”Kapton Sheet”

197
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*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=”Kapton Sheet-1”, part=”Kapton Sheet”

*Node

1, 0., 0., 0.

2, 0.5, 0., 0.

3, 1., 0., 0.

4, 1.5, 0., 0.

5, 2., 0., 0.

6, 2.5, 0., 0.

***

**

*

**

***

1269, 19., 15., 0.

1270, 19.5, 15., 0.

1271, 20., 15., 0.

*Element, type=M3D4R

1, 1, 2, 43, 42

2, 2, 3, 44, 43

3, 3, 4, 45, 44

***

**
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*

**

***

1198, 1227, 1228, 1269, 1268

1199, 1228, 1229, 1270, 1269

1200, 1229, 1230, 1271, 1270

*Nset, nset=Complete, generate

1, 1271, 1

*Elset, elset=Complete, generate

1, 1200, 1

** Section: Shell Membrane

*Membrane Section, elset=Complete, material=Kapton

5e-05,

*End Instance

**

*Nset, nset=”Displaced Edge”, instance=”Kapton Sheet-1”, generate

41, 1271, 41

*Elset, elset=”Displaced Edge”, instance=”Kapton Sheet-1”, generate

40, 1200, 40

*Nset, nset=”Fixed Edge”, instance=”Kapton Sheet-1”, generate

1, 1231, 41

*Elset, elset=”Fixed Edge”, instance=”Kapton Sheet-1”, generate

1, 1161, 40

*Nset, nset=Set-9, instance=”Kapton Sheet-1”, generate

1, 1231, 41

*Elset, elset=Set-9, instance=”Kapton Sheet-1”, generate

1, 1161, 40

*Nset, nset=PickedSet16, internal, instance=”Kapton Sheet-1”, generate

1, 1231, 41
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*Elset, elset=PickedSet16, internal, instance=”Kapton Sheet-1”, generate

1, 1161, 40

*Elset, elset=Surf-1-E2, internal, instance=”Kapton Sheet-1”, generate

40, 1200, 40

*Surface, type=ELEMENT, name=Surf-1

Surf-1-E2, E2

*End Assembly

*Amplitude, name=”Equally Spaced”, definition=EQUALLY SPACED, fixed

interval=1.

0., 1.

**

** MATERIALS

**

** A polymide film of DuPoint Kapton

*Material, name=Kapton

*Density

1420.,

*Elastic

2.5e+09, 0.34

*Plastic

1.45e+08, 0.

1.52e+08, 0.0608

**

** BOUNDARY CONDITIONS

**

** Name: Fixed Edge Type: Symmetry/Antisymmetry/Encastre

*Boundary

Set-9, ENCASTRE

**
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** STEP: Displacement

**

*Step, name=Displacement, nlgeom=YES

Displacing RHS of membrane

*Dynamic, Explicit

, 1.

*Bulk Viscosity

0.06, 1.2

**

** BOUNDARY CONDITIONS

**

** Name: Displacement Type: Displacement/Rotation

*Boundary, amplitude=”Equally Spaced”

”Displaced Edge”, 1, 1, 1.75

”Displaced Edge”, 6, 6

**

** OUTPUT REQUESTS

**

*Restart, write, number interval=1, time marks=NO

**

** FIELD OUTPUT: F-Output-1

**

*Output, field, variable=PRESELECT

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history, variable=PRESELECT

*End Step



A.2 Shear Loading Input File 202

A.2 Shear Loading Input File

*Heading

** Job name: Shear Model name: ShearModel

** Generated by: Abaqus/CAE 6.13-2

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=ShearModel

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=ShearModel-1, part=ShearModel

*Node

1, 0.200000003, 0.100000001, 0.

2, 0.165000007, 0.100000001, 0.

3, 0.129999995, 0.100000001, 0.

***

**

*

**

***

75, -0.0799999982, -0.100000001, 0.

76, -0.115000002, -0.100000001, 0.
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77, -0.150000006, -0.100000001, 0.

*Element, type=M3D4R

1, 1, 2, 13, 12

2, 2, 3, 14, 13

3, 3, 4, 15, 14

***

**

*

**

***

58, 63, 64, 75, 74

59, 64, 65, 76, 75

60, 65, 66, 77, 76

*Nset, nset=Complete, generate

1, 77, 1

*Elset, elset=Complete, generate

1, 60, 1

** Section: ShellMembrane

*Membrane Section, elset=Complete, material=Kapton

5e-05,

*End Instance

**

*Nset, nset=Fixed, instance=ShearModel-1, generate

67, 77, 1

*Elset, elset=Fixed, instance=ShearModel-1, generate

51, 60, 1

*Nset, nset=”Lower Left Node”, instance=ShearModel-1

77,

*Elset, elset=Mid, instance=ShearModel-1, generate
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11, 50, 1

*Nset, nset=”Middle Node”, instance=ShearModel-1

39,

*Nset, nset=Shear, instance=ShearModel-1, generate

1, 11, 1

*Elset, elset=Shear, instance=ShearModel-1, generate

1, 10, 1

*Nset, nset=”Upper Right Node”, instance=ShearModel-1

1,

*Elset, elset=Bottom-SNEG, internal, instance=ShearModel-1, generate

1, 60, 1

*Surface, type=ELEMENT, name=Bottom

Bottom-SNEG, SNEG

*Elset, elset=Mid, internal, instance=ShearModel-1, generate

11, 50, 1

*Surface, type=ELEMENT, name=Mid

Mid,

*Elset, elset=Top-SPOS, internal, instance=ShearModel-1, generate

1, 60, 1

*Surface, type=ELEMENT, name=Top

Top-SPOS, SPOS

*End Assembly

*Amplitude, name=Smooth, definition=SMOOTH STEP

0., 0., 0.5, 0.5, 1., 1.

**

** MATERIALS

**

*Material, name=Kapton

*Density
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1420.,

*Elastic

1.42e+09, 0.34

**

** INTERACTION PROPERTIES

**

*Surface Interaction, name=IntProp-1

**

** BOUNDARY CONDITIONS

**

** Name: Fixed Type: Symmetry/Antisymmetry/Encastre

*Boundary

Fixed, PINNED

**

** STEP: ShearLoad

**

*Step, name=ShearLoad, nlgeom=YES

*Dynamic, Explicit

, 1.

*Bulk Viscosity

0.06, 1.2

**

** BOUNDARY CONDITIONS

**

** Name: ShearLoading Type: Displacement/Rotation

*Boundary, amplitude=Smooth

Shear, 1, 1, 0.1

Shear, 2, 2

**
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** INTERACTIONS

**

** Interaction: General-Contact

*Contact, op=NEW

*Contact Inclusions, ALL EXTERIOR

*Contact Property Assignment

, , IntProp-1

**

** OUTPUT REQUESTS

**

*Restart, write, number interval=1, time marks=NO

**

** FIELD OUTPUT: F-Output-1

**

*Output, field

*Node Output

A, RF, U, V

*Element Output, directions=YES

E, EVF, LE, PE, PEEQ, PEEQVAVG, PEVAVG, S, SVAVG

*Contact Output

CSTRESS,

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history, variable=PRESELECT

*End Step
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Appendix Two

Input execution files for the adaptive structures program. The first program is

for the single cell Abaqus program and the second for the multi-cell LS-Dyna

program.

B.1 Single Smart Cell Abaqus Input File

*Heading

** Job name: Airbag Model name: Airbag

** Generated by: Abaqus/CAE 6.13-2

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=PART-1

*Node

207
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1, 320., 0., 0.

2, 319.3685, 0., -20.0936565

3, 317.476532, 0., -40.1080055

***

**

*

**

***

3850, 0.0145595493, -0.0001682695, -0.000832545164

3851, 0.0155301858, -0.000112179667, -0.000888048147

3852, 0.0165008232, -5.60898334e-05, -0.000943551189

*Element, type=M3D4R

1, 129, 130, 113, 112

2, 130, 131, 114, 113

3, 131, 132, 115, 114

***

**

*

**

***

2776, 19.9969769, -4.83975649, 20.2555809

2777, 9.99697685, -4.83975649, 30.2555809

2778, 19.9969769, -4.83975649, 30.2555809

*Element, type=M3D4

1, 239, 242, 244, 238

2, 238, 244, 245, 237

3, 237, 245, 232, 233

***

**
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*

**

***

2648, 2620, 2652, 2650, 2621

2649, 2637, 2636, 2646, 2652

2650, 2652, 2646, 2645, 2650

*Elset, elset=CHAMBER, generate

1, 2650, 1

** Section: Section-1-CHAMBER

*Membrane Section, elset=CHAMBER, material=FABRIC

0.35,

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=PART-1-1, part=PART-1

*End Instance

**

*Nset, nset=CHAMBER, instance=PART-1-1

1, 2714

*Nset, nset=Fixed, instance=PART-1-1

2163,

*Nset, nset=Fixed-Bot, instance=PART-1-1

2655,

*Nset, nset=Plate, instance=PART-1-1

2086, 2087, 2090, 2091, 2101, 2102, 2194, 2195, 2196, 2197, 2254, 2255, 2260,
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2261, 2262, 2263

2374, 2375, 2452, 2453, 2460, 2461, 2462, 2463, 2566, 2567, 2568, 2575, 2576,

2578, 2579, 2580

2654, 2655, 2657, 2702

*Elset, elset=-CHAMBER-SURFACE, internal, instance=PART-1-1

1,

*Elset, elset=-CONTACT-AIRBAGTOPLATE, internal, instance=PART-1-1

1, 1325

*Elset, elset=-CONTACT-PLATETOAIRBAG, internal, instance=PART-1-1

1,

*Elset, elset=-SURFACE-BOT, internal, instance=PART-1-1

1, 1326, 2650

*Elset, elset=-SURFACE-TOP, internal, instance=PART-1-1

1, 1325

*Elset, elset=-CHAMBER-SURFACE-, internal, instance=PART-1-1, gener-

ate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE

-CHAMBER-SURFACE-,

*Elset, elset=-CHAMBER-SURFACE-1-SNEG, internal, instance=PART-1-

1, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-1

-CHAMBER-SURFACE-1-SNEG, SNEG

*Elset, elset=-CHAMBER-EXT-SKIN-SURF-SNEG, internal, instance=PART-

1-1, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-EXT-SKIN-SURF

-CHAMBER-EXT-SKIN-SURF-SNEG, SNEG
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*Elset, elset=-SURFACE-BOT-SNEG, internal, instance=PART-1-1

1, 1326, 2650

*Surface, type=ELEMENT, name=SURFACE-BOT

-SURFACE-BOT-SNEG, SNEG

*Elset, elset=-SURFACE-TOP-SNEG, internal, instance=PART-1-1

1, 1325

*Surface, type=ELEMENT, name=SURFACE-TOP

-SURFACE-TOP-SNEG, SNEG

*End Assembly

*Amplitude, name=AMP-DAMPING-1-VBF

0., 0., 0.25, 0.5, 0.5, 0.75, 0.75, 1. 1., 1.

*Amplitude, name=AMP-DAMPING-2-VBF

0., 0., 0.0009999999, 0., 0.001, 100., 0.009999999, 100. 0.01, 0.

*Amplitude, name=RAMPSTRESS, time=TOTAL TIME, definition=SMOOTH

STEP

0., 0., 0.0025, 1., 1., 1.

*Filter, name=FILTER-1000HZ, type=BUTTERWORTH

1000.

**

** MATERIALS

**

** ———————– M A T E R I A L D A T A ———————-

** -

*Material, name=FABRIC

*Damping, beta=1e-06

*Density

1.42,

*Elastic

2.5e+09, 0.34
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**

** INTERACTION PROPERTIES

**

*Fluid Behavior, name=AIR

*Molecular Weight

2.897e-05

*Capacity, type=POLYNOMIAL

28110., 1.967, 0.004802, 0., 0.

*Fluid Behavior, name=AR

*Molecular Weight

3.995e-05

*Capacity, type=POLYNOMIAL

20785.,0.,0.,0.,0.

*Fluid Behavior, name=CO2

*Molecular Weight

4.401e-05

*Capacity, type=POLYNOMIAL

25999., 43.5, -0.0148, 0., 0.

*Surface Interaction, name=DEFAULT

*Surface Interaction, name=GENERAL-CONTACT

*Friction

0.,

*Fluid Behavior, name=H2O

*Molecular Weight

1.802e-05

*Capacity, type=POLYNOMIAL

32200., 1.9, 0.0106, 0., 0.

*Fluid Behavior, name=HE

*Molecular Weight
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4.003e-06

*Capacity, type=POLYNOMIAL

20785.,0.,0.,0.,0.

*Fluid Behavior, name=N2

*Molecular Weight

2.801e-05

*Capacity, type=POLYNOMIAL

27296., 5.23, 0., 0., 0.

*Fluid Behavior, name=N2O

*Molecular Weight

4.401e-05

*Capacity, type=POLYNOMIAL

25188., 52.1, -0.02, 0., 0.

*Fluid Behavior, name=O2

*Molecular Weight

3.2e-05

*Capacity, type=POLYNOMIAL

25723., 12.98, -0.00386, 0., 0.

**

** PHYSICAL CONSTANTS

**

*Physical Constants, absolute zero=0., universal gas=8314.41

**

** BOUNDARY CONDITIONS

**

** Name: Disp-BC-1 Type: Symmetry/Antisymmetry/Encastre

*Boundary

Plate, ENCASTRE

** —————————————————————-
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**

** STEP: Inflation

**

*Step, name=Inflation, nlgeom=YES

Step-1

*Dynamic, Explicit, element by element, scale factor=0.8

, 0.5001

*Bulk Viscosity

0.06, 1.2

** Mass Scaling: Semi-Automatic

** Whole Model

*Variable Mass Scaling, dt=1e-06, type=below min, frequency=10

**

** LOADS

**

** Name: Load-1 Type: Pressure

*Dsload, amplitude=AMP-DAMPING-1-VBF

CHAMBER-SURFACE-1, P, 500000.

**

** OUTPUT REQUESTS

**

*Restart, write, number interval=2, time marks=NO

**

** FIELD OUTPUT: F-Output-1

**

*Output, field

*Node Output

A, AR, AT, RF, U, UR, UT, V

VR, VT
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*Element Output, directions=YES

EFABRIC, ERV, LE, MISESMAX, NE, PEEQ, PEEQMAX, PEQC, S, SFAB-

RIC

*Contact Output

CFORCE, CSTRESS, CTHICK

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history

*Energy Output

ALLAE, ALLCD, ALLCW, ALLDC, ALLDMD, ALLFD, ALLIE, ALLKE,

ALLMW, ALLPD, ALLPW, ALLSE, ALLVD, ALLWK,

ETOTAL

*End Step

B.2 Double Smart Cell Abaqus Input File

*Heading ** Job name: Double-Airbag Model name: Double-Airbag

** Generated by: Abaqus/CAE 6.13-2

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=PART-1

*Node

1, 320., 0., 0.

2, 319.3685, 0., -20.0936565

3, 317.476532, 0., -40.1080055
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***

**

*

**

***

2776, 19.9969769, -4.83975649, 20.2555809

2777, 9.99697685, -4.83975649, 30.2555809

2778, 19.9969769, -4.83975649, 30.2555809

*Element, type=M3D4

1, 239, 242, 244, 238

2, 238, 244, 245, 237

3, 237, 245, 232, 233

***

**

*

**

***

2648, 2620, 2652, 2650, 2621

2649, 2637, 2636, 2646, 2652

2650, 2652, 2646, 2645, 2650

*Elset, elset=CHAMBER, generate

1, 2650, 1

** Section: Section-1-CHAMBER

*Membrane Section, elset=CHAMBER, material=FABRIC

0.35,

*End Part

**

*Part, name=PART-2

*Node
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1, 320., 0., 0.

2, 319.3685, 0., -20.0936565

3, 317.476532, 0., -40.1080055

***

**

*

**

***

2776, 19.9969769, -4.83975649, 20.2555809

2777, 9.99697685, -4.83975649, 30.2555809

2778, 19.9969769, -4.83975649, 30.2555809

*Element, type=M3D4

1, 239, 242, 244, 238

2, 238, 244, 245, 237

3, 237, 245, 232, 233

***

**

*

**

***

*Elset, elset=CHAMBER, generate

1, 2650, 1

** Section: Section-1-CHAMBER

*Membrane Section, elset=CHAMBER, material=FABRIC

0.35,

*End Part

**

**

** ASSEMBLY
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**

*Assembly, name=Assembly

**

*Instance, name=PART-1-1, part=PART-1

0., -1., 0.

*End Instance

**

*Instance, name=PART-2-1, part=PART-2

-9.36057660671164e-14, -19.5, -4.79600788710216e-14

-9.36057660671164e-14, -19.5, -4.79600788710216e-14, 0.729024887084867, -

19.5,

0.684487223625135, 180.

*End Instance

**

*Nset, nset=CHAMBER, instance=PART-1-1

1, 2714

*Nset, nset=CHAMBER-PART2, instance=PART-2-1

1, 2714

*Nset, nset=Fixed, instance=PART-1-1

2163,

*Nset, nset=Fixed-PART2, instance=PART-2-1

2163,

*Nset, nset=Fixed-Bot, instance=PART-1-1

2655,

*Nset, nset=Fixed-Bot-PART2, instance=PART-2-1

2655,

*Nset, nset=Plate, instance=PART-1-1

2086, 2087, 2090, 2091, 2101, 2102, 2194, 2195, 2196, 2197, 2254, 2255, 2260,

2261, 2262, 2263
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2374, 2375, 2452, 2453, 2460, 2461, 2462, 2463, 2566, 2567, 2568, 2575, 2576,

2578, 2579, 2580

2654, 2655, 2657, 2702

*Nset, nset=Plate-PART2, instance=PART-2-1

2260, 2262, 2568, 2575, 2655, 2664, 2672, 2674, 2682, 2698, 2700, 2702, 2706,

2708, 2710, 2712

2714, 2716, 2717, 2719, 2724, 2727, 2729, 2731, 2736, 2740, 2741, 2743, 2745,

2747, 2756, 2757

2760, 2766, 2775, 2778

*Elset, elset=-CHAMBER-SURFACE, internal, instance=PART-1-1

1,

*Elset, elset=-CONTACT-AIRBAGTOPLATE, internal, instance=PART-1-1

1, 1325

*Elset, elset=-CONTACT-PLATETOAIRBAG, internal, instance=PART-1-1

1,

*Elset, elset=-SURFACE-BOT, internal, instance=PART-1-1

1, 1326, 2650

*Elset, elset=-SURFACE-TOP, internal, instance=PART-1-1

1, 1325

*Elset, elset=-CHAMBER-SURFACE-, internal, instance=PART-1-1, gener-

ate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE

-CHAMBER-SURFACE-,

*Elset, elset=-CHAMBER-SURFACE-1-SNEG, internal, instance=PART-1-

1, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-1

-CHAMBER-SURFACE-1-SNEG, SNEG
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*Elset, elset=-CHAMBER-SURFACE-1-PART2-SNEG, internal, instance=PART-

2-1, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-1-PART2

-CHAMBER-SURFACE-1-PART2-SNEG, SNEG

*Elset, elset=-CHAMBER-SURFACE-PART2-SPOS, internal, instance=PART-

2-1, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-PART2

-CHAMBER-SURFACE-PART2-SPOS, SPOS

*Elset, elset=-CHAMBER-EXT-SKIN-SURF-SNEG, internal, instance=PART-

1-1, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-EXT-SKIN-SURF

-CHAMBER-EXT-SKIN-SURF-SNEG, SNEG

*Elset, elset=-SURFACE-BOT-SNEG, internal, instance=PART-1-1

1, 1326, 2650

*Surface, type=ELEMENT, name=SURFACE-BOT

-SURFACE-BOT-SNEG, SNEG

*Elset, elset=-SURFACE-BOT-PART2-SNEG, internal, instance=PART-2-1

1350, 2648

*Surface, type=ELEMENT, name=SURFACE-BOT-PART2

-SURFACE-BOT-PART2-SNEG, SNEG

*Elset, elset=-SURFACE-TOP-SNEG, internal, instance=PART-1-1

1, 1325

*Surface, type=ELEMENT, name=SURFACE-TOP

-SURFACE-TOP-SNEG, SNEG

*Elset, elset=-SURFACE-TOP-PART2-SPOS, internal, instance=PART-2-1

25,
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*Elset, elset=-SURFACE-TOP-PART2-SNEG, internal, instance=PART-2-1

2130,

*Surface, type=ELEMENT, name=SURFACE-TOP-PART2

-SURFACE-TOP-PART2-SPOS, SPOS

-SURFACE-TOP-PART2-SNEG, SNEG

*End Assembly

*Amplitude, name=AMP-DAMPING-1-VBF

0., 0., 0.2, 0.5, 0.4, 0.75,

0.6, 1. 0.8, 1., 1., 1.

*Amplitude, name=AMP-DAMPING-2-VBF

0., 0., 0.0009999999, 0., 0.001, 100.,

0.009999999, 100. 0.01, 0.

*Amplitude, name=RAMPSTRESS, time=TOTAL TIME, definition=SMOOTH

STEP

0., 0., 0.0025, 1., 1., 1.

*Filter, name=FILTER-1000HZ, type=BUTTERWORTH

1000.

**

** MATERIALS

**

** ———————– M A T E R I A L D A T A ———————-

** -

*Material, name=FABRIC

*Damping, beta=1e-06

*Density

1.42,

*Elastic

2.5e+09, 0.34

**
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** INTERACTION PROPERTIES

**

*Fluid Behavior, name=AIR

*Molecular Weight

2.897e-05

*Capacity, type=POLYNOMIAL

28110., 1.967, 0.004802, 0., 0.

*Fluid Behavior, name=AR

*Molecular Weight

3.995e-05

*Capacity, type=POLYNOMIAL

20785.,0.,0.,0.,0.

*Fluid Behavior, name=CO2

*Molecular Weight

4.401e-05

*Capacity, type=POLYNOMIAL

25999., 43.5, -0.0148, 0., 0.

*Surface Interaction, name=DEFAULT

*Surface Interaction, name=GENERAL-CONTACT

*Friction

0.,

*Fluid Behavior, name=H2O

*Molecular Weight

1.802e-05

*Capacity, type=POLYNOMIAL

32200., 1.9, 0.0106, 0., 0.

*Fluid Behavior, name=HE

*Molecular Weight

4.003e-06
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*Capacity, type=POLYNOMIAL

20785.,0.,0.,0.,0.

*Fluid Behavior, name=N2

*Molecular Weight

2.801e-05

*Capacity, type=POLYNOMIAL

27296., 5.23, 0., 0., 0.

*Fluid Behavior, name=N2O

*Molecular Weight

4.401e-05

*Capacity, type=POLYNOMIAL

25188., 52.1, -0.02, 0., 0.

*Fluid Behavior, name=O2

*Molecular Weight

3.2e-05

*Capacity, type=POLYNOMIAL

25723., 12.98, -0.00386, 0., 0.

**

** PHYSICAL CONSTANTS

**

*Physical Constants, absolute zero=0., universal gas=8314.41

**

** BOUNDARY CONDITIONS

**

** Name: Disp-BC-1 Type: Symmetry/Antisymmetry/Encastre

*Boundary

Plate, PINNED

** Name: Plate-PART2 Type: Symmetry/Antisymmetry/Encastre

*Boundary
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Plate-PART2, PINNED

** —————————————————————-

**

** STEP: Inflation

**

*Step, name=Inflation, nlgeom=YES

Step-1

*Dynamic, Explicit, element by element, scale factor=0.8

, 1.

*Bulk Viscosity

0.06, 1.2

** Mass Scaling: Semi-Automatic

** Whole Model

*Variable Mass Scaling, dt=1e-06, type=below min, frequency=10

**

** LOADS

**

** Name: Load-1 Type: Pressure

*Dsload, amplitude=AMP-DAMPING-1-VBF

CHAMBER-SURFACE-1, P, 305000.

** Name: Load-2 Type: Pressure

*Dsload, amplitude=AMP-DAMPING-1-VBF

CHAMBER-SURFACE-1-PART2, P, 305000.

**

** INTERACTIONS

**

** Interaction: Int-2

*Contact, op=NEW

*Contact Inclusions, ALL EXTERIOR
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*Contact Property Assignment

, , GENERAL-CONTACT

CHAMBER-SURFACE-1 , CHAMBER-SURFACE-1-PART2 , GENERAL-

CONTACT

**

** OUTPUT REQUESTS

**

*Restart, write, number interval=2, time marks=NO

**

** FIELD OUTPUT: F-Output-1

**

*Output, field

*Node Output

A, AR, AT, RF, U, UR, UT, V

VR, VT

*Element Output, directions=YES

EFABRIC, ENER, ERV, LE, MFL, MISESMAX, NE, PEEQ, PEEQMAX,

PEQC, RD, S, SFABRIC, STH

*Contact Output

CFORCE, CSTRESS, CTHICK

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history

*Energy Output

ALLAE, ALLCD, ALLCW, ALLDC, ALLDMD, ALLFD, ALLIE, ALLKE,

ALLMW, ALLPD, ALLPW, ALLSE, ALLVD, ALLWK,

ETOTAL

*End Step
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B.3 Smart Cell Array Input File within Abaqus

*Heading

** Job name: Airbag-Array Model name: Airbag-Array

** Generated by: Abaqus/CAE 6.13-2

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=PART-1

*Node

1, 320., 0., 0.

2, 319.3685, 0., -20.0936565

3, 317.476532, 0., -40.1080055

***

**

*

**

***

2776, 19.9969769, -4.83975649, 20.2555809

2777, 9.99697685, -4.83975649, 30.2555809

2778, 19.9969769, -4.83975649, 30.2555809

*Element, type=M3D4

1, 239, 242, 244, 238

2, 238, 244, 245, 237

3, 237, 245, 232, 233

***

**

*
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**

***

2648, 2620, 2652, 2650, 2621

2649, 2637, 2636, 2646, 2652

2650, 2652, 2646, 2645, 2650

*Elset, elset=CHAMBER, generate

1, 2650, 1

** Section: Section-1-CHAMBER

*Membrane Section, elset=CHAMBER, material=FABRIC

0.35,

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=PART-1-1, part=PART-1

*End Instance

**

*Instance, name=PART-1-2, part=PART-1

640., 0., 0.

*End Instance

**

*Instance, name=PART-1-3, part=PART-1

1280., 0., 0.

*End Instance

**

*Instance, name=PART-1-4, part=PART-1
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1920., 0., 0.

*End Instance

**

*Instance, name=PART-1-5, part=PART-1

2560., 0., 0.

*End Instance

**

*Instance, name=PART-1-6, part=PART-1

-0.0345600000000559, 0., -640.

*End Instance

**

*Instance, name=PART-1-7, part=PART-1

639.96544, 0., -640.

*End Instance

**

*Instance, name=PART-1-8, part=PART-1

1279.96544, 0., -640.

*End Instance

**

*Instance, name=PART-1-9, part=PART-1

1919.96544, 0., -640.

*End Instance

**

*Instance, name=PART-1-10, part=PART-1

2559.96544, 0., -640.

*End Instance

**

*Nset, nset=CHAMBER, instance=PART-1-1

1, 2714
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*Nset, nset=CHAMBER-PART2, instance=PART-1-2

1, 2453

*Nset, nset=CHAMBER-PART3, instance=PART-1-3

1, 2453

*Nset, nset=CHAMBER-PART4, instance=PART-1-4

1, 2453

*Nset, nset=CHAMBER-PART5, instance=PART-1-5

1, 2453

*Nset, nset=CHAMBER-PART6, instance=PART-1-6

1, 2453

*Nset, nset=CHAMBER-PART7, instance=PART-1-7

1, 2453

*Nset, nset=CHAMBER-PART8, instance=PART-1-8

1, 2453

*Nset, nset=CHAMBER-PART9, instance=PART-1-9

1, 2453

*Nset, nset=CHAMBER-PART10, instance=PART-1-10

1, 2453

*Nset, nset=Fixed, instance=PART-1-1

2163,

*Nset, nset=Fixed-PART2, instance=PART-1-2

2163,

*Nset, nset=Fixed-PART3, instance=PART-1-3

2163,

*Nset, nset=Fixed-PART4, instance=PART-1-4

2163,

*Nset, nset=Fixed-PART5, instance=PART-1-5

2163,

*Nset, nset=Fixed-PART6, instance=PART-1-6
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2163,

*Nset, nset=Fixed-PART7, instance=PART-1-7

2163,

*Nset, nset=Fixed-PART8, instance=PART-1-8

2163,

*Nset, nset=Fixed-PART9, instance=PART-1-9

2163,

*Nset, nset=Fixed-PART10, instance=PART-1-10

2163,

*Nset, nset=Fixed-Bot, instance=PART-1-1

2655,

*Nset, nset=Fixed-Bot-PART2, instance=PART-1-2

2655,

*Nset, nset=Fixed-Bot-PART3, instance=PART-1-3

2655,

*Nset, nset=Fixed-Bot-PART4, instance=PART-1-4

2655,

*Nset, nset=Fixed-Bot-PART5, instance=PART-1-5

2655,

*Nset, nset=Fixed-Bot-PART6, instance=PART-1-6

2655,

*Nset, nset=Fixed-Bot-PART7, instance=PART-1-7

2655,

*Nset, nset=Fixed-Bot-PART8, instance=PART-1-8

2655,

*Nset, nset=Fixed-Bot-PART9, instance=PART-1-9

2655,

*Nset, nset=Fixed-Bot-PART10, instance=PART-1-10

2655,
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*Nset, nset=Plate, instance=PART-1-1

2086, 2087, 2090, 2091, 2101, 2102, 2194, 2195, 2196, 2197, 2254, 2255, 2260,

2261, 2262, 2263

2374, 2375, 2452, 2453, 2460, 2461, 2462, 2463, 2566, 2567, 2568, 2575, 2576,

2578, 2579, 2580

2654, 2655, 2657, 2702

*Nset, nset=Plate-PART2, instance=PART-1-2

2086, 2087, 2090, 2091, 2102, 2103, 2188, 2189, 2194, 2195, 2196, 2197, 2251,

2252, 2253, 2254

2255, 2260, 2261, 2262, 2263, 2375, 2460, 2461, 2462, 2463, 2566, 2567, 2575,

2576, 2578, 2654

2657, 2702, 2734, 2775

*Nset, nset=Plate-PART3, instance=PART-1-3

2086, 2087, 2090, 2091, 2101, 2102, 2194, 2195, 2196, 2197, 2254, 2255, 2260,

2261, 2262, 2263

2374, 2375, 2452, 2453, 2460, 2461, 2462, 2463, 2566, 2567, 2568, 2575, 2576,

2578, 2579, 2580

2654, 2655, 2702, 2716

*Nset, nset=Plate-PART4, instance=PART-1-4

2086, 2087, 2090, 2091, 2101, 2102, 2194, 2195, 2196, 2197, 2254, 2255, 2260,

2261, 2262, 2263

2374, 2375, 2452, 2453, 2460, 2461, 2462, 2463, 2566, 2567, 2568, 2575, 2576,

2578, 2579, 2580

2654, 2655, 2657, 2702

*Nset, nset=Plate-PART5, instance=PART-1-5

2086, 2087, 2090, 2091, 2101, 2102, 2194, 2195, 2196, 2197, 2254, 2255, 2260,

2261, 2262, 2263

2374, 2375, 2452, 2453, 2460, 2461, 2462, 2463, 2566, 2567, 2568, 2575, 2576,

2578, 2579, 2580
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2654, 2655, 2657, 2702

*Nset, nset=Plate-PART6, instance=PART-1-6

2086, 2087, 2090, 2091, 2101, 2102, 2194, 2195, 2196, 2197, 2254, 2255, 2260,

2261, 2262, 2263

2374, 2375, 2452, 2453, 2460, 2461, 2462, 2463, 2566, 2567, 2568, 2575, 2576,

2578, 2579, 2580

2654, 2655, 2702, 2716

*Nset, nset=Plate-PART7, instance=PART-1-7

2086, 2087, 2090, 2091, 2101, 2102, 2194, 2195, 2196, 2197, 2254, 2255, 2260,

2261, 2262, 2263

2374, 2375, 2452, 2453, 2460, 2461, 2462, 2463, 2566, 2567, 2568, 2575, 2576,

2578, 2579, 2580

2654, 2655, 2657, 2702

*Nset, nset=Plate-PART8, instance=PART-1-8

2086, 2087, 2090, 2091, 2101, 2102, 2194, 2195, 2196, 2197, 2254, 2255, 2260,

2261, 2262, 2263

2374, 2375, 2452, 2453, 2460, 2461, 2462, 2463, 2566, 2567, 2568, 2575, 2576,

2578, 2579, 2580

2654, 2655, 2657, 2702

*Nset, nset=Plate-PART9, instance=PART-1-9

2086, 2087, 2090, 2091, 2101, 2102, 2194, 2195, 2196, 2197, 2254, 2255, 2260,

2261, 2262, 2263

2374, 2375, 2452, 2453, 2460, 2461, 2462, 2463, 2566, 2567, 2568, 2575, 2576,

2578, 2579, 2580

2654, 2655, 2657, 2702

*Nset, nset=Plate-PART10, instance=PART-1-10

2086, 2087, 2090, 2091, 2101, 2102, 2194, 2195, 2196, 2197, 2254, 2255, 2260,

2261, 2262, 2263

2374, 2375, 2452, 2453, 2460, 2461, 2462, 2463, 2566, 2567, 2568, 2575, 2576,
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2578, 2579, 2580

2654, 2655, 2657, 2702

*Elset, elset=-CHAMBER-SURFACE, internal, instance=PART-1-1

1,

*Elset, elset=-CONTACT-AIRBAGTOPLATE, internal, instance=PART-1-1

1, 1325

*Elset, elset=-CONTACT-PLATETOAIRBAG, internal, instance=PART-1-1

1,

*Elset, elset=-SURFACE-BOT, internal, instance=PART-1-1

1, 1326, 2650

*Elset, elset=-SURFACE-TOP, internal, instance=PART-1-1

1, 1325

*Elset, elset=-CHAMBER-SURFACE-, internal, instance=PART-1-1, gener-

ate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE

-CHAMBER-SURFACE-,

*Elset, elset=-CHAMBER-SURFACE-1-SNEG, internal, instance=PART-1-

1, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-1

-CHAMBER-SURFACE-1-SNEG, SNEG

*Elset, elset=-CHAMBER-SURFACE-1-PART2-SNEG, internal, instance=PART-

1-2, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-1-PART2

-CHAMBER-SURFACE-1-PART2-SNEG, SNEG

*Elset, elset=-CHAMBER-SURFACE-1-PART3-SNEG, internal, instance=PART-

1-3, generate
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1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-1-PART3

-CHAMBER-SURFACE-1-PART3-SNEG, SNEG

*Elset, elset=-CHAMBER-SURFACE-1-PART4-SNEG, internal, instance=PART-

1-4, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-1-PART4

-CHAMBER-SURFACE-1-PART4-SNEG, SNEG

*Elset, elset=-CHAMBER-SURFACE-1-PART5-SNEG, internal, instance=PART-

1-5, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-1-PART5

-CHAMBER-SURFACE-1-PART5-SNEG, SNEG

*Elset, elset=-CHAMBER-SURFACE-1-PART6-SNEG, internal, instance=PART-

1-6, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-1-PART6

-CHAMBER-SURFACE-1-PART6-SNEG, SNEG

*Elset, elset=-CHAMBER-SURFACE-1-PART7-SNEG, internal, instance=PART-

1-7, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-1-PART7

-CHAMBER-SURFACE-1-PART7-SNEG, SNEG

*Elset, elset=-CHAMBER-SURFACE-1-PART8-SNEG, internal, instance=PART-

1-8, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-1-PART8

-CHAMBER-SURFACE-1-PART8-SNEG, SNEG

*Elset, elset=-CHAMBER-SURFACE-1-PART9-SNEG, internal, instance=PART-
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1-9, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-1-PART9

-CHAMBER-SURFACE-1-PART9-SNEG, SNEG

*Elset, elset=-CHAMBER-SURFACE-1-PART10-SNEG, internal, instance=PART-

1-10, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-1-PART10

-CHAMBER-SURFACE-1-PART10-SNEG, SNEG

*Elset, elset=-CHAMBER-SURFACE-PART2-SPOS, internal, instance=PART-

1-2, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-PART2

-CHAMBER-SURFACE-PART2-SPOS, SPOS

*Elset, elset=-CHAMBER-SURFACE-PART3-SPOS, internal, instance=PART-

1-3, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-PART3

-CHAMBER-SURFACE-PART3-SPOS, SPOS

*Elset, elset=-CHAMBER-SURFACE-PART4-SPOS, internal, instance=PART-

1-4, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-PART4

-CHAMBER-SURFACE-PART4-SPOS, SPOS

*Elset, elset=-CHAMBER-SURFACE-PART5-SPOS, internal, instance=PART-

1-5, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-PART5

-CHAMBER-SURFACE-PART5-SPOS, SPOS
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*Elset, elset=-CHAMBER-SURFACE-PART6-SPOS, internal, instance=PART-

1-6, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-PART6

-CHAMBER-SURFACE-PART6-SPOS, SPOS

*Elset, elset=-CHAMBER-SURFACE-PART7-SPOS, internal, instance=PART-

1-7, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-PART7

-CHAMBER-SURFACE-PART7-SPOS, SPOS

*Elset, elset=-CHAMBER-SURFACE-PART8-SPOS, internal, instance=PART-

1-8, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-PART8

-CHAMBER-SURFACE-PART8-SPOS, SPOS

*Elset, elset=-CHAMBER-SURFACE-PART9-SPOS, internal, instance=PART-

1-9, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-PART9

-CHAMBER-SURFACE-PART9-SPOS, SPOS

*Elset, elset=-CHAMBER-SURFACE-PART10-SPOS, internal, instance=PART-

1-10, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-SURFACE-PART10

-CHAMBER-SURFACE-PART10-SPOS, SPOS

*Elset, elset=-CHAMBER-EXT-SKIN-SURF-SNEG, internal, instance=PART-

1-1, generate

1, 2650, 1

*Surface, type=ELEMENT, name=CHAMBER-EXT-SKIN-SURF
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-CHAMBER-EXT-SKIN-SURF-SNEG, SNEG

*Elset, elset=-SURFACE-BOT-SNEG, internal, instance=PART-1-1

1, 1326, 2650

*Surface, type=ELEMENT, name=SURFACE-BOT

-SURFACE-BOT-SNEG, SNEG

*Elset, elset=-SURFACE-TOP-SNEG, internal, instance=PART-1-1

1, 1325

*Surface, type=ELEMENT, name=SURFACE-TOP

-SURFACE-TOP-SNEG, SNEG

*End Assembly

*Amplitude, name=AMP-DAMPING-1-VBF

0., 0., 0.25, 0.5, 0.5, 0.75,

0.75, 1. 1., 1.

*Amplitude, name=AMP-DAMPING-2-VBF

0., 0., 0.0009999999, 0., 0.001, 100.,

0.009999999, 100. 0.01, 0.

*Amplitude, name=RAMPSTRESS, time=TOTAL TIME, definition=SMOOTH

STEP

0., 0., 0.0025, 1.,

1., 1.

*Filter, name=FILTER-1000HZ, type=BUTTERWORTH

1000.

**

** MATERIALS

**

** ———————– M A T E R I A L D A T A ———————-

** -

*Material, name=FABRIC

*Damping, beta=1e-06
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*Density

1.42,

*Elastic

2.5e+09, 0.34

**

** INTERACTION PROPERTIES

**

*Fluid Behavior, name=AIR

*Molecular Weight

2.897e-05

*Capacity, type=POLYNOMIAL

28110., 1.967, 0.004802, 0., 0.

*Fluid Behavior, name=AR

*Molecular Weight

3.995e-05

*Capacity, type=POLYNOMIAL

20785.,0.,0.,0.,0.

*Fluid Behavior, name=CO2

*Molecular Weight

4.401e-05

*Capacity, type=POLYNOMIAL

25999., 43.5, -0.0148, 0., 0.

*Surface Interaction, name=DEFAULT

*Surface Interaction, name=GENERAL-CONTACT

*Friction

0.,

*Fluid Behavior, name=H2O

*Molecular Weight

1.802e-05
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*Capacity, type=POLYNOMIAL

32200., 1.9, 0.0106, 0., 0.

*Fluid Behavior, name=HE

*Molecular Weight

4.003e-06

*Capacity, type=POLYNOMIAL

20785.,0.,0.,0.,0.

*Fluid Behavior, name=N2

*Molecular Weight

2.801e-05

*Capacity, type=POLYNOMIAL

27296., 5.23, 0., 0., 0.

*Fluid Behavior, name=N2O

*Molecular Weight

4.401e-05

*Capacity, type=POLYNOMIAL

25188., 52.1, -0.02, 0., 0.

*Fluid Behavior, name=O2

*Molecular Weight

3.2e-05

*Capacity, type=POLYNOMIAL

25723., 12.98, -0.00386, 0., 0.

**

** PHYSICAL CONSTANTS

**

*Physical Constants, absolute zero=0., universal gas=8314.41

**

** BOUNDARY CONDITIONS

**
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** Name: Disp-BC-1 Type: Symmetry/Antisymmetry/Encastre

*Boundary

Plate, ENCASTRE

** Name: Disp-BC-2 Type: Symmetry/Antisymmetry/Encastre

*Boundary

Plate-PART2, ENCASTRE

** Name: Disp-BC-3 Type: Symmetry/Antisymmetry/Encastre

*Boundary

Plate-PART3, ENCASTRE

** Name: Disp-BC-4 Type: Symmetry/Antisymmetry/Encastre

*Boundary

Plate-PART4, ENCASTRE

** Name: Disp-BC-5 Type: Symmetry/Antisymmetry/Encastre

*Boundary

Plate-PART5, ENCASTRE

** Name: Disp-BC-6 Type: Symmetry/Antisymmetry/Encastre

*Boundary

Plate-PART6, ENCASTRE

** Name: Disp-BC-7 Type: Symmetry/Antisymmetry/Encastre

*Boundary

Plate-PART7, ENCASTRE

** Name: Disp-BC-8 Type: Symmetry/Antisymmetry/Encastre

*Boundary

Plate-PART8, ENCASTRE

** Name: Disp-BC-9 Type: Symmetry/Antisymmetry/Encastre

*Boundary

Plate-PART9, ENCASTRE

** Name: Disp-BC-10 Type: Symmetry/Antisymmetry/Encastre

*Boundary
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Plate-PART10, ENCASTRE

** —————————————————————-

**

** STEP: Inflation

**

*Step, name=Inflation, nlgeom=YES

Step-1

*Dynamic, Explicit, element by element, scale factor=0.8

, 0.5001

*Bulk Viscosity

0.06, 1.2

** Mass Scaling: Semi-Automatic

** Whole Model

*Variable Mass Scaling, dt=1e-06, type=below min, frequency=10

**

** LOADS

**

** Name: Load-1 Type: Pressure

*Dsload, amplitude=AMP-DAMPING-1-VBF

CHAMBER-SURFACE-1, P, 500000.

** Name: Load-2 Type: Pressure

*Dsload, amplitude=AMP-DAMPING-1-VBF

CHAMBER-SURFACE-1-PART2, P, 500000.

** Name: Load-3 Type: Pressure

*Dsload, amplitude=AMP-DAMPING-1-VBF

CHAMBER-SURFACE-1-PART3, P, 500000.

** Name: Load-4 Type: Pressure

*Dsload, amplitude=AMP-DAMPING-1-VBF

CHAMBER-SURFACE-1-PART4, P, 500000.
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** Name: Load-5 Type: Pressure

*Dsload, amplitude=AMP-DAMPING-1-VBF

CHAMBER-SURFACE-1-PART5, P, 500000.

** Name: Load-6 Type: Pressure

*Dsload, amplitude=AMP-DAMPING-1-VBF

CHAMBER-SURFACE-1-PART6, P, 500000.

** Name: Load-7 Type: Pressure

*Dsload, amplitude=AMP-DAMPING-1-VBF

CHAMBER-SURFACE-1-PART7, P, 500000.

** Name: Load-8 Type: Pressure

*Dsload, amplitude=AMP-DAMPING-1-VBF

CHAMBER-SURFACE-1-PART8, P, 500000.

** Name: Load-9 Type: Pressure

*Dsload, amplitude=AMP-DAMPING-1-VBF

CHAMBER-SURFACE-1-PART9, P, 500000.

** Name: Load-10 Type: Pressure

*Dsload, amplitude=AMP-DAMPING-1-VBF

CHAMBER-SURFACE-1-PART10, P, 500000.

**

** INTERACTIONS

**

** Interaction: Cell1 - Cell2

*Contact Pair, interaction=GENERAL-CONTACT, mechanical constraint=KINEMATIC,

cpset=”Cell1 - Cell2”

CHAMBER-SURFACE, CHAMBER-SURFACE-PART2

** Interaction: Cell1 - Cell6

*Contact Pair, interaction=GENERAL-CONTACT, mechanical constraint=KINEMATIC,

cpset=”Cell1 - Cell6”

CHAMBER-SURFACE, CHAMBER-SURFACE-PART6
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** Interaction: Cell2 - Cell 7

*Contact Pair, interaction=GENERAL-CONTACT, mechanical constraint=KINEMATIC,

cpset=”Cell2 - Cell 7”

CHAMBER-SURFACE-PART2, CHAMBER-SURFACE-PART7

** Interaction: Cell2 - Cell3

*Contact Pair, interaction=GENERAL-CONTACT, mechanical constraint=KINEMATIC,

cpset=”Cell2 - Cell3”

CHAMBER-SURFACE-PART2, CHAMBER-SURFACE-PART3

** Interaction: Cell3 - Cell4

*Contact Pair, interaction=GENERAL-CONTACT, mechanical constraint=KINEMATIC,

cpset=”Cell3 - Cell4”

CHAMBER-SURFACE-PART3, CHAMBER-SURFACE-PART4

** Interaction: Cell3 - Cell8

*Contact Pair, interaction=GENERAL-CONTACT, mechanical constraint=KINEMATIC,

cpset=”Cell3 - Cell8”

CHAMBER-SURFACE-PART3, CHAMBER-SURFACE-PART8

** Interaction: Cell4 - Cell5

*Contact Pair, interaction=GENERAL-CONTACT, mechanical constraint=KINEMATIC,

cpset=”Cell4 - Cell5”

CHAMBER-SURFACE-PART4, CHAMBER-SURFACE-PART5

** Interaction: Cell4 - Cell9

*Contact Pair, interaction=GENERAL-CONTACT, mechanical constraint=KINEMATIC,

cpset=”Cell4 - Cell9”

CHAMBER-SURFACE-PART4, CHAMBER-SURFACE-PART9

** Interaction: Cell5 - Cell10

*Contact Pair, interaction=GENERAL-CONTACT, mechanical constraint=KINEMATIC,

cpset=”Cell5 - Cell10”

CHAMBER-SURFACE-PART5, CHAMBER-SURFACE-PART10

** Interaction: Cell6 - Cell7
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*Contact Pair, interaction=GENERAL-CONTACT, mechanical constraint=KINEMATIC,

cpset=”Cell6 - Cell7”

CHAMBER-SURFACE-PART6, CHAMBER-SURFACE-PART7

** Interaction: Cell7 - Cell8

*Contact Pair, interaction=GENERAL-CONTACT, mechanical constraint=KINEMATIC,

cpset=”Cell7 - Cell8”

CHAMBER-SURFACE-PART7, CHAMBER-SURFACE-PART8

** Interaction: Cell8 - Cell9

*Contact Pair, interaction=GENERAL-CONTACT, mechanical constraint=KINEMATIC,

cpset=”Cell8 - Cell9”

CHAMBER-SURFACE-PART8, CHAMBER-SURFACE-PART9

** Interaction: Cell9 - Cell10

*Contact Pair, interaction=GENERAL-CONTACT, mechanical constraint=KINEMATIC,

cpset=”Cell9 - Cell10”

CHAMBER-SURFACE-PART9, CHAMBER-SURFACE-PART10

**

** OUTPUT REQUESTS

**

*Restart, write, number interval=2, time marks=NO

**

** FIELD OUTPUT: F-Output-1

**

*Output, field

*Node Output

A, AR, AT, RF, U, UR, UT, V

VR, VT

*Element Output, directions=YES

EFABRIC, ERV, LE, MISESMAX, NE, PEEQ, PEEQMAX, PEQC, S, SFAB-

RIC
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*Contact Output

CFORCE, CSTRESS, CTHICK

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history

*Energy Output

ALLAE, ALLCD, ALLCW, ALLDC, ALLDMD, ALLFD, ALLIE, ALLKE,

ALLMW, ALLPD, ALLPW, ALLSE, ALLVD, ALLWK,

ETOTAL

*End Step



Appendix C

Appendix Three

Abaqus input files for the following:

1. Bending and buckling of the inflated cylinder without the Fluid Activa-

tion Method

2. Bending and buckling of the inflated cylinder with the Fluid Activation

Method

3. Modified UMAT Fortran subroutine

4. post-inflation of the bent and buckled cylinder with the UMAT subrou-

tine

246
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C.1 Bending and buckling of the inflated cylin-

der without the Fluid Activation Method

*Heading

** Job name: BeamVumat Model name: Beam Bending Model

** Generated by: Abaqus/CAE 6.13-2

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=Complete

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Complete, part=Complete

*Node

1, 0.0599999987, 0., 0.

2, 0.0599999987, 0., 0.649999976

3, 0.0575695783, 0.0169039536, 0.

***

**

*

**

***
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946, 0.0575695783, 0.0169039536, 0.598684192

947, 0.0575695783, 0.0169039536, 0.615789473

948, 0.0575695783, 0.0169039536, 0.632894754

*Element, type=M3D4R

1, 46, 47, 49, 48

2, 47, 1, 23, 49

3, 48, 49, 51, 50

***

**

*

**

***

130, 90, 129, 131

131, 90, 131, 133

132, 90, 133, 91

*Nset, nset=Beam

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32

33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 135, 136, 137, 138

***

**

*

**

***

907, 908, 909, 910, 911, 912, 913, 914, 915, 916, 917, 918, 919, 920, 921, 922

923, 924, 925, 926, 927, 928, 929, 930, 931, 932, 933, 934, 935, 936, 937, 938

939, 940, 941, 942, 943, 944, 945, 946, 947, 948

*Elset, elset=Beam, generate

133, 968, 1
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*Nset, nset=CapOne

2, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38

39, 40, 41, 42, 43, 44, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99

100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115

116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131

132, 133, 134

*Elset, elset=CapOne, generate

67, 132, 1

*Nset, nset=CapTwo

1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

18, 19, 20, 21, 22, 23, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54

55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70

71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86

87, 88, 89

*Elset, elset=CapTwo, generate

1, 66, 1

*Nset, nset=Complete, generate

1, 948, 1

*Elset, elset=Complete, generate

1, 968, 1

** Section: ShellMembrane

*Membrane Section, elset=Complete, material=”Kapton HN”

5e-05,

*End Instance

**

*Node

1, 0., -3.67394048e-18, 0.649999976

*Node

2, 0., 3.67394048e-18, 0.
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*Nset, nset=CavityNode, instance=Complete

45,

*Nset, nset=Fixed, instance=Complete

1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

18, 19, 20, 21, 22, 23

*Nset, nset=FixedBase, instance=Complete

1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

18, 19, 20, 21, 22, 23, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54

55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70

71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86

87, 88, 89

*Elset, elset=FixedBase, instance=Complete, generate

1, 66, 1

*Nset, nset=RF

1,

*Nset, nset=TopCircum, instance=Complete

2, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38

39, 40, 41, 42, 43, 44

*Elset, elset=TopCircum, instance=Complete

68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98

100, 102, 104, 106, 108, 110, 170, 208, 246, 284, 322, 360, 398, 436, 474, 512

550, 588, 626, 664, 702, 740, 778, 816, 854, 892, 930, 968

*Elset, elset=-Complete-, internal, instance=Complete, generate

1, 968, 1

*Surface, type=ELEMENT, name=Complete

-Complete-,

*Elset, elset=-Inside-SNEG, internal, instance=Complete, generate

1, 968, 1

*Surface, type=ELEMENT, name=Inside
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-Inside-SNEG, SNEG

** Constraint: Constraint-1

*Rigid Body, ref node=RF, tie nset=TopCircum, position=CENTER OF MASS

*End Assembly

*Amplitude, name=Amp-1, definition=SMOOTH STEP

0., 0., 0.1, 0.1, 0.5, 0.5, 1., 1.

**

** MATERIALS

**

*Material, name=”Kapton HN”

*Density

1420.,

*Elastic

1.42e+09, 0.34

**

** INTERACTION PROPERTIES

**

*Surface Interaction, name=ContactProp

**

** BOUNDARY CONDITIONS

**

** Name: Fixed Type: Symmetry/Antisymmetry/Encastre

*Boundary

Fixed, ENCASTRE

**

** INTERACTIONS

**

** Interaction: GeneralContact

*Contact, op=NEW
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*Contact Inclusions, ALL EXTERIOR

*Contact Property Assignment

, , ContactProp

**

** STEP: Step-1

**

*Step, name=Step-1, nlgeom=YES

*Dynamic, Explicit

, 1.

*Bulk Viscosity

0.06, 1.2

**

** BOUNDARY CONDITIONS

**

** Name: BC-1 Type: Displacement/Rotation

*Boundary, amplitude=Amp-1

RF, 4, 4, 1.5787

**

** OUTPUT REQUESTS

**

*Restart, write, number interval=1, time marks=NO

**

** FIELD OUTPUT: F-Output-1

**

*Output, field, variable=PRESELECT

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history, variable=PRESELECT
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*End Step

C.2 Bending and buckling of the inflated cylin-

der with the Fluid Activation Method

*Heading

** Job name: CylinBuck Model

** Generated by: Abaqus/CAE 6.11-2

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*Part, name=Complete

*Node

1, 0.129903123, -0.0433883741, 0.

2, 0.134670913, -0.0521435216, 0.

3, 0.140286759, -0.0603804402, 0.

***

**

*

**

***

7497, 0.319503069, 0.00995678455, 0.970000029

7498, 0.319503069, 0.00995678455, 0.980000019

7499, 0.319503069, 0.00995678455, 0.99000001

*Element, type=M4D4

1, 128, 129, 138, 137
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2, 129, 130, 139, 138

3, 130, 131, 140, 139

***

**

*

**

***

7558, 1359, 1360, 7498, 7497

7559, 1360, 1361, 7499, 7498

7560, 1361, 112, 114, 7499

*Element, type=M3R3

568, 127, 128, 137

569, 127, 137, 146

570, 127, 146, 155

***

**

*

**

***

1258, 695, 1236, 1245

1259, 695, 1245, 1254

1260, 695, 1254, 696

**

*Node

8000, 220.E-03, 0., 0.5

*NSET, Nset=CavityNode

8000

**

*Elset, elset=-PickedSet2, internal, generate
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1, 7560, 1

*Elset, elset=-PickedSet5, internal, generate

1, 7560, 1

*Elset, elset=-Inside-SPOS, internal, generate

1, 7560, 1

*Surface, type=ELEMENT, name=Inside

-Inside-SPOS, SPOS

** Section: Shell Homogeneous

*Shell Section, elset=-PickedSet2, material=Kapton HN

5e-05, 5

*End Part

**

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Complete, part=Complete

-0.22, 0., 0.

**

** FLUID INFORMATION

**

*FLUID CAVITY, name=Cavity, Ambient Pressure=1.013250e05, REFNODE=CavityNode,

Ambient

Temperature=2.950000e02, SURFACE=Inside, MINIMUM VOLUME=INITIAL

VOLUME, BEHAVIOR=AIR, ADIABATIC

**

** GAS SPECIES DATA
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**

** FLUID CAVITY BEHAVIOUR DEFINITIONS

**

** GAS SPECIES: ’Air’

**

*Fluid behavior, Name=Air

**

*MOLECULAR WEIGHT

0.0289

**

*CAPACITY, TYPE=POLYNOMIAL

28.110, 1.967e-3, -1.966e-9, 0.0

**

** GAS SPECIES: ’O2’

**

*Fluid behavior, Name=O2

**

*Capacity, Type=POLYNOMIAL

2.572300e+04, 1.298000e+01, -3.860000e-03, 0.000000e+00, 0.000000e+00

**

*Molecular weight

3.200000e-05,

**

** GAS SPECIES: ’CO2’

**

*Fluid behavior, Name=CO2

**

*Capacity, Type=POLYNOMIAL

2.599900e+04, 4.350000e+01, -1.480000e-02, 0.000000e+00, 0.000000e+00
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**

*Molecular weight

4.401000e-05,

**

** GAS SPECIES: ’N2’

**

*Fluid behavior, Name=N2

**

*Capacity, Type=POLYNOMIAL 2.729600e+04, 5.230000e+00, 0.000000e+00,

0.000000e+00, 0.000000e+00

**

*Molecular weight

2.801000e-05,

**

** GAS SPECIES: ’HE’

**

*Fluid behavior, Name=HE

**

*Capacity, Type=POLYNOMIAL

2.078500e+04, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00

**

*Molecular weight

4.003000e-06,

**

** GAS SPECIES: ’N2O’

**

*Fluid behavior, Name=N2O

**

*Capacity, Type=POLYNOMIAL
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2.518800e+04, 5.210000e+01, -2.000000e-02, 0.000000e+00, 0.000000e+00

**

*Molecular weight

4.401000e-05,

**

** GAS SPECIES: ’AR’

**

*Fluid behavior, Name=AR

**

*Capacity, Type=POLYNOMIAL

2.078500e+04, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00

**

*Molecular weight

3.995000e-05,

**

**

*FLUID INFLATOR, NAME=CavityInflation, PROPERTY=CavityInflationProperty

CavityNode

*

**

*FLUID INFLATOR PROPERTY, Name=CavityInflationProperty, TYPE=TEMPERATURE

AND MASS

**

0.000000e+00, 0.000000e+00, 0.000000e+00

1.000000e-04, 0.000000e+00, 0.000000e+00

2.000000e-04, 0.000000e+00, 0.000000e+00

***

**

*
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**

***

3.990000e-02, 1.665000e+02, 1.875000e-05

4.000000e-02, 1.665000e+02, 1.875000e-14

1.000000e+00, 1.665000e+02, 0.000000e+00

**

**

*FLUID INFLATOR MIXTURE, Number species=6, Type=MOLAR FRAC-

TION

O2, CO2, AR, N2, HE, N2O

**

0.000000e+00, 1.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,

0.000000e+00

1.000000e-04, 1.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,

0.000000e+00

2.000000e-04, 1.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,

0.000000e+00

***

**

*

**

***

3.980000e-02, 2.400000e-02, 7.800000e-02, 6.284000e-01, 4.820000e-02, 8.980000e-

02, 1.316000e-01

3.990000e-02, 2.400000e-02, 7.810000e-02, 6.283000e-01, 4.820000e-02, 8.980000e-

02, 1.316000e-01

1.000000e+00, 2.400000e-02, 7.810000e-02, 6.283000e-01, 4.820000e-02, 8.980000e-

02, 1.316000e-01

**
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*End Instance

**

*Node

1, 0., 0., 1.

*Nset, nset=-PickedSet37, internal

1,

*Nset, nset=-PickedSet39, internal

1,

*Node

8000, 220.E-03, 0., 0.5

*NSET, Nset=CavityNode, instance=Complete

8000

*Nset, nset=-PickedSet36, internal, instance=Complete

1, 2, 3, 4, 9, 10, 11, 15, 16, 19, 20, 21, 25, 26, 27, 28

33, 34, 35, 39, 40, 41, 45, 46, 47, 51, 52, 53, 57, 58, 59, 63

64, 65, 69, 70, 71, 75, 76, 77, 81, 82, 83, 84, 89, 90, 91, 92

***

**

*

**

***

1224, 1225, 1226, 1227, 1228, 1229, 1230, 1231, 1232, 1233, 1234, 1235, 1236,

1237, 1238, 1239

1240, 1241, 1242, 1243, 1244, 1245, 1246, 1247, 1248, 1249, 1250, 1251, 1252,

1253, 1254, 1255

1256, 1257, 1258, 1259, 1260, 1261, 1262

*Nset, nset=RF, instance=Complete

127,

*Nset, nset=-PickedSet40, internal, instance=Complete
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5, 6, 7, 8, 12, 13, 14, 17, 18, 22, 23, 24, 29, 30, 31, 32

36, 37, 38, 42, 43, 44, 48, 49, 50, 54, 55, 56, 60, 61, 62, 66

67, 68, 72, 73, 74, 78, 79, 80, 85, 86, 87, 88, 93, 94, 95, 96

100, 101, 102, 106, 107, 108, 112, 113, 114, 118, 119, 120, 124, 125, 126

*Nset, nset=-PickedSet43, internal, instance=Complete

8000,

*Elset, elset=–PickedSurf41-SPOS, internal, instance=Complete, generate

1261, 7560, 1

*Surface, type=ELEMENT, name=-PickedSurf41, internal

–PickedSurf41-SPOS, SPOS

*Elset, elset=–PickedSurf42-SPOS, internal, instance=Complete, generate

1261, 7560, 1

*Surface, type=ELEMENT, name=-PickedSurf42, internal

–PickedSurf42-SPOS, SPOS

**

**

** Constraint: Rigid *Rigid Body, ref node=-PickedSet39, tie nset=-PickedSet40

*End Assembly

**

*PHYSICAL CONSTANTS, UNIVERSAL GAS CONSTANT=8.31434, AB-

SOLUTE ZERO=-293.15

**

**

*Amplitude, name=Pressure, Definition=SMOOTH STEP

0.0, 0.0

0.25, 25.0

0.5,50.0

0.75,100.0

1, 200.0
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**

*Amplitude, name=AMP-INFLATOR, Definition=SMOOTH STEP

0.0, 0.0, 0.25, 25.0, 0.5, 50.0, 1, 100.0

**

*Amplitude, name=Smooth Step, Definition=SMOOTH STEP

0., 0., 0.1, 0.5, 0.2, 1.0

**

**

** MATERIALS

**

** A du point Kapton HN membrane

*Material, name=”Kapton HN”

*Density

1420.,

*Elastic

1.42e+09, 0.34

**

**

** INITIAL FLUID CONDITIONS

**

*INITIAL CONDITIONS, TYPE=FLUID PRESSURE

Complete.CavityNode, 0.0

*INITIAL CONDITIONS, TYPE=TEMPERATURE

Complete.CavityNode, 2.95e+02

**

**

** BOUNDARY CONDITIONS

**

** Name: BC-3 Type: Displacement/Rotation
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*Boundary

-PickedSet43, 3, 3

** Name: Fixed Base Type: Symmetry/Antisymmetry/Encastre

*Boundary

-PickedSet36, ENCASTRE

**

**

** STEP: Bending

**

*Step, name=Bending

*Dynamic, Explicit

, 1.

*Bulk Viscosity

0.06, 1.2

**

** BOUNDARY CONDITIONS

**

** Name: Bending Type: Displacement/Rotation

*Boundary, amplitude=Smooth Step

-PickedSet37, 5, 5, 1.57078

**

**

** FLUID INFLATION

**

*FLUID INFLATOR ACTIVATION, Inflation time amplitude=AMP-INFLATOR

Complete.CavityInflation

*Boundary, amplitude=Pressure

CavityNode, 8, 8, 100.

**
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**

**

** OUTPUT REQUESTS

**

*Restart, write, number interval=1, time marks=NO

**

** FIELD OUTPUT: F-Output-1

**

*Output, field, variable=PRESELECT

**

** HISTORY OUTPUT: H-Output-1

**

*Output, history, variable=PRESELECT

*End Step

C.3 UMAT Fortran subroutine

*USER SUBROUTINES

subroutine vumat(

C Read only (unmodifiable)variables -

1 nblock, ndir, nshr, nstatev, nfieldv, nprops, lanneal,

2 stepTime, totalTime, dt, cmname, coordMp, charLength,

3 props, density, strainInc, relSpinInc,

4 tempOld, stretchOld, defgradOld, fieldOld,

5 stressOld, stateOld, enerInternOld, enerInelasOld,

6 tempNew, stretchNew, defgradNew, fieldNew,

C Write only (modifiable) variables -

7 stressNew, stateNew, enerInternNew, enerInelasNew )
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C

include ’vaba-param.inc’

C

dimension props(nprops), density(nblock), coordMp(nblock,*),

1 charLength(nblock), strainInc(nblock,ndir+nshr),

2 relSpinInc(nblock,nshr), tempOld(nblock),

3 stretchOld(nblock,ndir+nshr),

4 defgradOld(nblock,ndir+nshr+nshr),

5 fieldOld(nblock,nfieldv), stressOld(nblock,ndir+nshr),

6 stateOld(nblock,nstatev), enerInternOld(nblock),

7 enerInelasOld(nblock), tempNew(nblock),

8 stretchNew(nblock,ndir+nshr),

8 defgradNew(nblock,ndir+nshr+nshr),

9 fieldNew(nblock,nfieldv),

1 stressNew(nblock,ndir+nshr), stateNew(nblock,nstatev),

2 enerInternNew(nblock), enerInelasNew(nblock)

C

character*80 cmname

real DDSDDE(nblock,ndir+nshr,ndir+nshr)

real PSIG(nblock,ndir),PEPS(nblock,ndir)

real E,NU

Integer i,j,k,times,IFLAG,STATE,SWITCH

C

C open(1,file=’C:’,status=’replace’) C MATERIAL PROPERTIES FOR ISOTROPIC

MEMBRANE

IF (nprops .EQ. 3) THEN

E=PROPS(1)

NU=PROPS(2)
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SWITCH=PROPS(3)

C MATERIAL PROPERTIES FOR TENDON

ELSE IF (nprops .EQ. 2) THEN

E=PROPS(1)

SWITCH=PROPS(2)

END IF

do 100 i=1,nblock

C

IF (ndir .EQ. 1) THEN

do j=1,nstatev-1

stateNew(i,j)=stateOld(i,j)+strainInc(i,j)

end do

stateNew(i,4)=stateNew(i,4)+strainInc(i,4)

stateNew(i,nstatev)=stateOld(i,nstatev)+1

times=stateNew(i,nstatev)

C Write (6,’(A,I,A,I)’),’i=’,i,’times=’,times

C WRITE (6,’(/A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3)’),

C ’stateO11=’,stateOld(i,1),’stateO22=’,stateOld(i,2),’stateO33=’,

C stateOld(i,3),’stateO12=’,stateOld(i,4)

C WRITE (6,’(/A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3)’),

C ’strainInc11=’,strainInc(i,1),’strainInc22=’,strainInc(i,2),

C ’strainInc=’,strainInc(i,3),’stateO12=’,strainInc(i,4)

C WRITE (6,’(/A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3)’),

C ’state11=’,stateNew(i,1),’state22=’,stateNew(i,2),’state33=’,
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C stateNew(i,3),’state12=’,stateNew(i,4)

C CALCULATE CURRENT STRESS VALUES

C stressNew(i,1)=E*stateNew(i,1)

stressNew(i,1)=E*stateNew(i,1)

IF (times .GT. SWITCH) THEN

if (stateNew(i,1)¡=0) then

stressNew(i,1)=0

endif

endif

ELSEIF (ndir .EQ. 3) THEN

do j=1,nstatev-1

stateNew(i,j)=stateOld(i,j)+strainInc(i,j)

end do

stateNew(i,4)=stateNew(i,4)+strainInc(i,4)

stateNew(i,nstatev)=stateOld(i,nstatev)+1

times=stateNew(i,nstatev)

C Write (6,’(A,I,A,I)’),’i=’,i,’times=’,times

C WRITE (6,’(/A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3)’),

C ’stateO11=’,stateOld(i,1),’stateO22=’,stateOld(i,2),’stateO33=’,

C stateOld(i,3),’stateO12=’,stateOld(i,4)

C WRITE (6,’(/A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3)’),

C ’strainInc11=’,strainInc(i,1),’strainInc22=’,strainInc(i,2),

C ’strainInc=’,strainInc(i,3),’stateO12=’,strainInc(i,4)
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C WRITE (6,’(/A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3)’),

C ’state11=’,stateNew(i,1),’state22=’,stateNew(i,2),’state33=’,

C stateNew(i,3),’state12=’,stateNew(i,4)

C FORM INITIAL STIFFNESS MATRIX

do j=1,ndir+nshr

do k=1,ndir+nshr

DDSDDE(i,j,k)=0

end do

end do

C FORM TAUT STIFFNESS MATRIX

DDSDDE(i,1,1)=E/(1.0-NU*NU)

DDSDDE(i,1,2)=E*NU/(1.0-NU*NU)

DDSDDE(i,2,1)=DDSDDE(i,1,2)

DDSDDE(i,2,2)=DDSDDE(i,1,1)

DDSDDE(i,4,4)=E/(2.0*(1.0+NU))

C CALCULATE CURRENT STRESS VALUES

stressNew(i,1)=DDSDDE(i,1,1)*stateNew(i,1)+DDSDDE(i,1,2)

*stateNew(i,2)+DDSDDE(i,1,3)*stateNew(i,3)+DDSDDE(i,1,4)

*stateNew(i,4)

stressNew(i,2)=DDSDDE(i,2,1)*stateNew(i,1)+DDSDDE(i,2,2)

*stateNew(i,2)+DDSDDE(i,2,3)*stateNew(i,3)+DDSDDE(i,2,4)
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*stateNew(i,4)

stressNew(i,3)=DDSDDE(i,3,1)*stateNew(i,1)+DDSDDE(i,3,2)

*stateNew(i,2)+DDSDDE(i,3,3)*stateNew(i,3)+DDSDDE(i,3,4)

*stateNew(i,4)

stressNew(i,4)=DDSDDE(i,4,1)*stateNew(i,1)+DDSDDE(i,4,2)

*stateNew(i,2)+DDSDDE(i,4,3)*stateNew(i,3)+DDSDDE(i,4,4)

*stateNew(i,4)

C WRITE (6,’(/A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3)’),

C ’stress11=’,stressNew(i,1),’stress22=’,stressNew(i,2),’stress33=’,

C stressNew(i,3),’stress12=’,stressNew(i,4)

C CALCULATE PRINCIPAL STRESS

PSIG(i,1)=(stressNew(i,1)+stressNew(i,2))/2+sqrt(stressNew(i,4)

*stressNew(i,4)+(stressNew(i,1)-stressNew(i,2))

*(stressNew(i,1)-stressNew(i,2))/4)

PSIG(i,2)=(stressNew(i,1)+stressNew(i,2))/2-sqrt(stressNew(i,4)

*stressNew(i,4)+(stressNew(i,1)-stressNew(i,2))

*(stressNew(i,1)-stressNew(i,2))/4)

PSIG(i,3)=0

C WRITE (6,’(/A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3,2X)’),

C ’PSIG(i,1)=’,PSIG(i,1),’PSIG(i,2)=’,PSIG(i,2),’PSIG(i,3)=’,
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C PSIG(i,3)

C CALCULATE PRINCIPAL STRAIN

PEPS(i,1)=(stateNew(i,1)+stateNew(i,2))/2+sqrt(stateNew(i,4)

*stateNew(i,4)/4+(stateNew(i,1)-stateNew(i,2))

*(stateNew(i,1)-stateNew(i,2))/4)

PEPS(i,2)=(stateNew(i,1)+stateNew(i,2))/2-sqrt(stateNew(i,4)

*stateNew(i,4)/4+(stateNew(i,1)-stateNew(i,2))

*(stateNew(i,1)-stateNew(i,2))/4)

PEPS(i,3)=0

IFLAG=0

STATE=1

C insert

C DETERMINE WHEN FIRST ITERATION STARTS (ZEROTH ITERA-

TION WHEN NO STRAIN)

j=1

DO WHILE ((IFLAG.EQ.0).AND.(j.LE.ndir+nshr))

IF (stateNew(i,j).NE.0.0) IFLAG=1

j=j+1

END DO

C SKIP STATE TESTS FOR ZEROTH ITERATION

IF (IFLAG.EQ.1) THEN
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IF (times.GT. SWITCH) THEN

C DETERMINE ELEMENT STATE (TAUT, SLACK, OR WRINKLED)

IF (PSIG(i,2).GT.0.0) THEN

C SET STRESS VALUES TO CURRENT VALUES (TAUT)

STATE=1

ELSE

IF (PEPS(i,1).GT.0.0) THEN

C FORM WRINKLED STIFFNESS MATRIX

Q=(stateNew(i,4))/(PEPS(i,1)-PEPS(i,2))

P=(stateNew(i,1)-stateNew(i,2))/(PEPS(i,1)-PEPS(i,2))

DO j=1,ndir+nshr

DO k=1,ndir+nshr

DDSDDE(i,j,k)=0.0

END DO

END DO

DDSDDE(i,1,1)=E*(1.0+P)/2.0

DDSDDE(i,1,4)=Q*E/4.0

DDSDDE(i,2,2)=E*(1.0-P)/2.0

DDSDDE(i,2,4)=DDSDDE(i,1,4)

DDSDDE(i,4,1)=DDSDDE(i,1,4)

DDSDDE(i,4,2)=DDSDDE(i,2,4)

DDSDDE(i,4,4)=E/4.0

STATE=0

ELSE

C FORM SLACK STIFFNESS MATRIX
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DO j=1,ndir+nshr

DO k=1,ndir+nshr

DDSDDE(i,j,k)=0.0

END DO

END DO

STATE=-1

END IF

END IF

END IF

END IF

C RECALCULATE CURRENT STRESS VALUES

stressNew(i,1)=DDSDDE(i,1,1)*stateNew(i,1)+DDSDDE(i,1,2)

*stateNew(i,2)+DDSDDE(i,1,3)*stateNew(i,3)+DDSDDE(i,1,4)

*stateNew(i,4)

stressNew(i,2)=DDSDDE(i,2,1)*stateNew(i,1)+DDSDDE(i,2,2)

*stateNew(i,2)+DDSDDE(i,2,3)*stateNew(i,3)+DDSDDE(i,2,4)

*stateNew(i,4)

stressNew(i,3)=DDSDDE(i,3,1)*stateNew(i,1)+DDSDDE(i,3,2)

*stateNew(i,2)+DDSDDE(i,3,3)*stateNew(i,3)+DDSDDE(i,3,4)

*stateNew(i,4)

stressNew(i,4)=DDSDDE(i,4,1)*stateNew(i,1)+DDSDDE(i,4,2)

*stateNew(i,2)+DDSDDE(i,4,3)*stateNew(i,3)+DDSDDE(i,4,4)

*stateNew(i,4)

C RECALCULATE PRINCIPAL STRESS
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PSIG(i,1)=(stressNew(i,1)+stressNew(i,2))/2+sqrt(stressNew(i,4)

*stressNew(i,4)+(stressNew(i,1)-stressNew(i,2))

*(stressNew(i,1)-stressNew(i,2))/4)

PSIG(i,2)=(stressNew(i,1)+stressNew(i,2))/2-sqrt(stressNew(i,4)

*stressNew(i,4)+(stressNew(i,1)-stressNew(i,2))

*(stressNew(i,1)-stressNew(i,2))/4)

PSIG(i,3)=0

C Insert

C WRITE (6,’(/A,E15.3E3,A,F8.2)’),’E=’,E,’NU=’,NU

C write (6,’(/A,I)’),’State=’,state

C WRITE (1,’(/A,I,A,I)’),’NDIR=’,NDIR,’NSHR=’,NSHR

C WRITE (6,’(/A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3,2X,A,E10.3E3)’),

C ’stress11=’,stressNew(i,1),’stress22=’,stressNew(i,2),’stress33=’,

C stressNew(i,3),’stress12=’,stressNew(i,4)

C write(6,’(//)’)

END IF

100 continue

C

C close(1)

return

end
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subroutine vdload (

C Read only (unmodifiable)variables -

1nblock, ndim, stepTime, totalTime,

2amplitude, curCoords, velocity, dirCos, jltyp, sname,

C Write only (modifiable) variable -

3value )

C

include ’vaba-param.inc’

C

dimension curCoords(nblock,ndim), velocity(nblock,ndim),

1 dirCos(nblock,ndim,ndim), value(nblock)

character*80 sname

C

do 100 km = 1, nblock

value(km)=(10.+0*curCoords(km,1))*amplitude

100 continue

C write (6,’(/A,I,/A,I)’),’stepTime=’,stepTime,’totalTime’,totalTime

return

end
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C.4 Post-inflation of the bent and buckled cylin-

der with the UMAT subroutine

*Heading

** Job name: Job-1 Model name: 06-Beam-0-65

** Generated by: Abaqus/CAE 6.11-2

*Preprint, echo=NO, model=NO, history=NO, contact=NO

**

** PARTS

**

*PART, NAME=Complete

*Node

1, 0.337500006, 0., 0.649999976

2, 0.337500006, 0., 0.

3, 0.335683852, 0.0149572287, 0.649999976

***

**

*

**

***

1300, 0.290170968, -0.00373930717, 0.649999976

1301, 0.305341929, -0.00747861434, 0.649999976

1302, 0.320512891, -0.011217922, 0.649999976

*Element, type=M3D4R

1, 2, 53, 95, 28

2, 53, 54, 96, 95

3, 54, 55, 97, 96

***
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**

*

**

***

1298, 1300, 1301, 1226, 1225

1299, 1301, 1302, 1227, 1226

1300, 1302, 27, 1, 1227

*Element, type=M3D3

1197, 1145, 1146, 1149

1198, 1145, 1149, 1152

1199, 1145, 1152, 1155

***

**

*

**

***

1324, 1224, 1294, 1297

1325, 1224, 1297, 1300

1326, 1224, 1300, 1225

*Nset, nset=-PickedSet2-3, internal

1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 1224, 1225, 1226, 1227, 1228, 1229

1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1242,

1243, 1244, 1245

1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258,

1259, 1260, 1261

1262, 1263, 1264, 1265, 1266, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274,

1275, 1276, 1277

1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290,
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1291, 1292, 1293

1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302

*Elset, elset=-PickedSet2-3, internal, generate

1223, 1326, 1

*Nset, nset=-PickedSet3-4, internal

1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 1224, 1225, 1226, 1227, 1228, 1229

1230, 1231, 1232, 1233, 1234, 1235, 1236, 1237, 1238, 1239, 1240, 1241, 1242,

1243, 1244, 1245

1246, 1247, 1248, 1249, 1250, 1251, 1252, 1253, 1254, 1255, 1256, 1257, 1258,

1259, 1260, 1261

1262, 1263, 1264, 1265, 1266, 1267, 1268, 1269, 1270, 1271, 1272, 1273, 1274,

1275, 1276, 1277

1278, 1279, 1280, 1281, 1282, 1283, 1284, 1285, 1286, 1287, 1288, 1289, 1290,

1291, 1292, 1293

1294, 1295, 1296, 1297, 1298, 1299, 1300, 1301, 1302

*Elset, elset=-PickedSet3-4, internal, generate

1223, 1326, 1

*Nset, nset=-PickedSet2-4, internal

2, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42

43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 1145, 1146, 1147, 1148, 1149, 1150

1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163,

1164, 1165, 1166

1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179,

1180, 1181, 1182

1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195,

1196, 1197, 1198

1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211,

1212, 1213, 1214
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1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223

*Elset, elset=-PickedSet2-4, internal, generate

1119, 1222, 1

*Nset, nset=-PickedSet3-5, internal

2, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42

43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 1145, 1146, 1147, 1148, 1149, 1150

1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163,

1164, 1165, 1166

1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179,

1180, 1181, 1182

1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195,

1196, 1197, 1198

1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211,

1212, 1213, 1214

1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223

*Elset, elset=-PickedSet3-5, internal, generate

1119, 1222, 1

*Nset, nset=-PickedSet2-2, internal, generate

1, 1144, 1

*Elset, elset=-PickedSet2-2, internal, generate

1, 1118, 1

*Nset, nset=-PickedSet3-3, internal, generate

1, 1144, 1

*Elset, elset=-PickedSet3-3, internal, generate

1, 1118, 1

*Elset, elset=-Inside-SNEG, internal, generate

1, 1326, 1

*Node

8000, 0.275000006, 3.82702141e-18, 0.325
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*Nset, Nset=CavityNode

8000

*Surface, type=ELEMENT, name=Inside

-Inside-SNEG, SNEG

**

**

** SHELL SECTION

**

** Section: Shell Membrane

*MEMBRANE SECTION, elset=-PickedSet2-2, material=”Kapton HN”

5e-05,

** Section: Shell Membrane

*MEMBRANE SECTION, elset=-PickedSet2-4, material=”Kapton HN”

5e-05,

** Section: Shell Membrane

*MEMBRANE SECTION, elset=-PickedSet2-3, material=”Kapton HN”

5e-05,

**

**

*END PART

**

** ASSEMBLY

**

*Assembly, name=Assembly

**

*Instance, name=Complete, part=Complete

-0.22, 0., 0.

**

**
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** FLUID INFORMATION

**

*FLUID CAVITY, Name=Cavity, Ambient Pressure=1.013250e05, REFN-

ODE=CavityNode, Ambient

Temperature=2.950000e02, Surface=Inside, MINIMUM VOLUME=INITIAL

VOLUME, BEHAVIOR=AIR, ADIABATIC

**

**

** GAS SPECIES DATA

**

** FLUID CAVITY BEHAVIOUR DEFINITIONS

**

** GAS SPECIES: ’Air’

**

*FLUID BEHAVIOR, Name=Air

**

*MOLECULAR WEIGHT

0.0289

**

*CAPACITY, TYPE=POLYNOMIAL

28.110, 1.967e-3, -1.966e-9, 0.0

**

** GAS SPECIES: ’O2’

**

*FLUID BEHAVIOR, Name=O2

**

*CAPACITY, Type=POLYNOMIAL

2.572300e+04, 1.298000e+01, -3.860000e-03, 0.000000e+00, 0.000000e+00
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**

*MOLECULAR WEIGHT

3.200000e-05,

**

** GAS SPECIES: ’CO2’

**

*FLUID BEHAVIOR, Name=CO2

**

*CAPACITY, Type=POLYNOMIAL

2.599900e+04, 4.350000e+01, -1.480000e-02, 0.000000e+00, 0.000000e+00

**

*MOLECULAR WEIGHT

4.401000e-05,

**

** GAS SPECIES: ’N2’

**

*FLUID BEHAVIOR, Name=N2

**

*CAPACITY, Type=POLYNOMIAL

2.729600e+04, 5.230000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00

**

*MOLECULAR WEIGHT

2.801000e-05,

**

** GAS SPECIES: ’HE’

**

*FLUID BEHAVIOR, Name=HE

**

*CAPACITY, Type=POLYNOMIAL
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2.078500e+04, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00

**

*MOLECULAR WEIGHT

4.003000e-06,

**

** GAS SPECIES: ’N2O’

**

*FLUID BEHAVIOR, Name=N2O

**

*CAPACITY, Type=POLYNOMIAL

2.518800e+04, 5.210000e+01, -2.000000e-02, 0.000000e+00, 0.000000e+00

**

*MOLECULAR WEIGHT

4.401000e-05,

**

** GAS SPECIES: ’AR’

**

*FLUID BEHAVIOR, Name=AR

**

*CAPACITY, Type=POLYNOMIAL

2.078500e+04, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00

**

*MOLECULAR WEIGHT

3.995000e-05,

**

**

*FLUID INFLATOR, Name=CavityInflation, PROPERTY=CavityInflationProperty

CavityNode

**
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**

*FLUID INFLATOR PROPERTY, Name=CavityInflationProperty, TYPE=TEMPERATURE

AND MASS

**

0.000000e+00, 0.000000e+00, 0.000000e+00

1.000000e-04, 0.000000e+00, 0.000000e+00

2.000000e-04, 0.000000e+00, 0.000000e+00

***

**

*

**

***

3.990000e-02, 1.665000e+02, 1.875000e-05

4.000000e-02, 1.665000e+02, 1.875000e-14

1.000000e+00, 1.665000e+02, 0.000000e+00

**

**

*FLUID INFLATOR MIXTURE, Number species=6, Type=MOLAR FRAC-

TION

O2, CO2, AR, N2, HE, N2O

**

0.000000e+00, 1.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,

0.000000e+00

1.000000e-04, 1.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,

0.000000e+00

2.000000e-04, 1.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00, 0.000000e+00,

0.000000e+00

3.980000e-02, 2.400000e-02, 7.800000e-02, 6.284000e-01, 4.820000e-02, 8.980000e-

02, 1.316000e-01
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3.990000e-02, 2.400000e-02, 7.810000e-02, 6.283000e-01, 4.820000e-02, 8.980000e-

02, 1.316000e-01

1.000000e+00, 2.400000e-02, 7.810000e-02, 6.283000e-01, 4.820000e-02, 8.980000e-

02, 1.316000e-01

**

*End Instance

**

*Node

1, 0.275000006, 3.82702141e-18, 0.649999976

*Node

8000, 0.275000006, 3.82702141e-18, 0.325

*Nset, Nset=CavityNode, instance=complete

8000

*Nset, nset=Fixed, instance=Complete

2, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42

43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 1145, 1146, 1147, 1148, 1149, 1150

1151, 1152, 1153, 1154, 1155, 1156, 1157, 1158, 1159, 1160, 1161, 1162, 1163,

1164, 1165, 1166

1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174, 1175, 1176, 1177, 1178, 1179,

1180, 1181, 1182

1183, 1184, 1185, 1186, 1187, 1188, 1189, 1190, 1191, 1192, 1193, 1194, 1195,

1196, 1197, 1198

1199, 1200, 1201, 1202, 1203, 1204, 1205, 1206, 1207, 1208, 1209, 1210, 1211,

1212, 1213, 1214

1215, 1216, 1217, 1218, 1219, 1220, 1221, 1222, 1223

*Elset, elset=Fixed, instance=Complete, generate

1119, 1222, 1

*Nset, nset=”Top Circum”, instance=Complete

1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17
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18, 19, 20, 21, 22, 23, 24, 25, 26, 27

*Elset, elset=”Top Circum”, instance=Complete

43, 86, 129, 172, 215, 258, 301, 344, 387, 430, 473, 516, 559, 602, 645, 688

731, 774, 817, 860, 903, 946, 989, 1032, 1075, 1118, 1225, 1228, 1231, 1234,

1237, 1240

1243, 1246, 1249, 1252, 1255, 1258, 1261, 1264, 1267, 1270, 1273, 1276, 1279,

1282, 1285, 1288

1291, 1294, 1297, 1300

*Nset, nset=RF, internal

1,

*Nset, nset=-PickedSet28, internal, instance=Complete

1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17

18, 19, 20, 21, 22, 23, 24, 25, 26, 27

*Elset, elset=-PickedSet28, internal, instance=Complete

43, 86, 129, 172, 215, 258, 301, 344, 387, 430, 473, 516, 559, 602, 645, 688

731, 774, 817, 860, 903, 946, 989, 1032, 1075, 1118, 1225, 1228, 1231, 1234,

1237, 1240

1243, 1246, 1249, 1252, 1255, 1258, 1261, 1264, 1267, 1270, 1273, 1276, 1279,

1282, 1285, 1288

1291, 1294, 1297, 1300

*Elset, elset=-Inside-SNEG, internal, instance=Complete, generate

1, 1326, 1

*Surface, type=ELEMENT, name=Inside

-Inside-SNEG, SNEG

**

**

** CONSTRAINTS

**

** Constraint: Constraint-1
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*RIGID BODY, ref node=RF, tie nset=-PickedSet28, position=CENTER OF

MASS

*End Assembly

**

*PHYSICAL CONSTANTS, UNIVERSAL GAS CONSTANT=8.31434, AB-

SOLUTE ZERO=-293.15

**

**

** AMPLITUDES

**

*AMPLITUDE, name=Pressure, Definition=SMOOTH STEP

0.0, 0.0

0.25, 25.0

0.5,50.0

0.75,100.0

1, 200.0

**

*AMPLITUDE, name=Amp-Inflator, Definition=SMOOTH STEP

0.0, 0.0, 0.25, 25.0, 0.5, 50.0, 1, 100.0

**

*AMPLITUDE, name=Smooth-Step, Definition=SMOOTH STEP

0., 0., 0.1, 0.5, 0.2, 1.0

**

**

** MATERIALS

**

*MATERIAL, name=”Kapton HN”

*DENSITY
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1420.,

*ELASTIC

1.42e+09, 0.34

**

**

** INITIAL FLUID CONDITIONS

**

*INITIAL CONDITIONS, TYPE=FLUID PRESSURE

Complete.CavityNode, 0.0

*INITIAL CONDITIONS, TYPE=TEMPERATURE

Complete.CavityNode, 2.95e+02

**

**

** BOUNDARY CONDITIONS

**

** Name: Fixed Base Type: Symmetry/Antisymmetry/Encastre

*BOUNDARY

FIXED, ENCASTRE

**

**

** STEP: INITIAL INFLATION

**

*STEP, name=”Initial Inflation”

The pressurization of the beam

*DYNAMIC, Explicit

, 1.

*BULK VISCOSITY

0.06, 1.2

**
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** LOADS

**

** Name: Initial Pressure Type: Pressure

*DSLOAD

Inside, P, 0.1

**

** OUTPUT REQUESTS

**

*RESTART, write, number interval=1, time marks=NO

**

** FIELD OUTPUT: F-Output-1

**

*OUTPUT, field, time interval=1e-100

*NODE Output

A, RF, U, UR, UT, V

*ELEMENT Output, directions=YES

LE, P, PE, S

*CONTACT Output

CSTRESS,

**

** HISTORY OUTPUT: H-Output-1

**

*OUTPUT, history, variable=PRESELECT

*END STEP

**

**

** STEP: BENDING

**

*STEP, name=Bending
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*DYNAMIC, Explicit

, 1.

*BULK VISCOSITY

0.06, 1.2

**

** BOUNDARY CONDITIONS

**

** Name: Constraint: Fixed End

*BOUNDARY, OP=MOD

Fixed, ENCASTRE

**

**

** Name: Initial Pressure Type: Pressure

*DSLOAD

Inside, P, 0.1

**

** Name: Bending Type: Displacement/Rotation

*BOUNDARY, amplitude=Smooth-Step

RF, 5, 5, 1.57078

**

**

** OUTPUT REQUESTS

**

*RESTART, write, number interval=1, time marks=NO

**

** FIELD OUTPUT: F-Output-1

**

*OUTPUT, field, time interval=1e-100

*NODE Output
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A, RF, U, UR, UT, V

*ELEMENT Output, directions=YES

LE, P, PE, S

*CONTACT Output

CSTRESS,

**

** HISTORY OUTPUT: H-Output-1

**

*OUTPUT, history, variable=PRESELECT

*END STEP

**

**

** STEP: POST INFLATION

**

*STEP, name=Inflation

*DYNAMIC, Explicit

, 1.

*BULK VISCOSITY

0.06, 1.2

**

**

** BOUNDARY CONDITIONS MODIFIED

**

** Name: Constraint: Fixed End

*BOUNDARY, OP=NEW

Fixed, ENCASTRE

**

** ** Name: Bending Type: Displacement/Rotation

** *BOUNDARY, OP=NEW, Amplitude=Smooth-Step
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** RF, 5, 5, 0

**

** Name: Initial Pressure Type: Pressure

*DSLOAD

Inside, P, 0.1

**

** FLUID INFLATION

**

*FLUID INFLATOR ACTIVATION, Inflation time amplitude=Amp-Inflator

Complete.CavityInflation

*BOUNDARY, OP=NEW, amplitude=Pressure

CavityNode, 8, 8, 10.

**

** OUTPUT REQUESTS

**

*RESTART, write, number interval=1, time marks=NO

**

** FIELD OUTPUT: F-Output-1

**

*OUTPUT, field, time interval=1e-100

*NODE Output

A, RF, U, UR, UT, V

*ELEMENT Output, directions=YES

LE, P, PE, S

*CONTACT Output

CSTRESS,

**

** HISTORY OUTPUT: H-Output-1

**
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*OUTPUT, history, variable=PRESELECT

*END STEP
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