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Abstract. 

This thesis presents the results of research into a universal theory for quality 

techniques. 

The unique contribution that is made is twofold: 

• A new quality metric is proposed. 

• An integrating perspective to quality engineering is introduced through 

the application of information theory. 

The quality metric is designed as an information distance, measuring the 

difference between two probability density functions. The two distribu

tions are the actual outcome of a running process and the expected outcome, 

i.e. the target distribution. 

The target distribution makes it possible to integrate the quality losses into 

the metric. The metric may be adapted to the state of knowledge of the pro

cess studied. 

The new quality metric is applicable to any process, be it a product process 

or an administration process. The information distance metric makes the 

analysis procedures uniform for all types of quality characteristics. 

A function based process documentation makes information theory gener

ally applicable to quality engineering. 

The function description makes it possible to visualize poor quality as a sur

plus of information. All quality techniques aim at minimizing the informa

tion content in the system. Quality engineering in general may be expressed 

as an activity to stop surplus information flow reaching the process result. 

There is a natural focus on noise, i.e. influencing factors that are out of con

trol of the user, affecting the systems. This focus is in robust design devel

oped through a process performance perspective rather than an experimen-



tal design perspective. An effort addressing a product process subject to 

improvement has to be discriminated from an effort addressing the efficien

cy of the experimentation process used to study the product process. 

The present work is of pioneering character. Thus it opens a new area of re

search. Areas of further research are indicated. 

Keyword: Quality, Robust design, Information theory, Design, 

Information distance, SPC, Total design. 
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1. Introduction 

1.1. From product control to process control. 

As a background we will first give some historical remarks on the develop

ment of a statistical viewpoint of the quality issue. Then there will be some 

comments on the usual evolution of quality technique applications within 

organizations. 

In the early ages of industrialization manufacturing processes were not par

ticularly capable. Production was not run in a long series. This was due to 

interaction between poor process capability and market development. The 

situation made a 100% product control, i.e. inspection, necessary and feasi

ble. As the market developed demand was stronger than supply. Thus the 

market was not a competitive one. Quality was not a priority area. 

Mass production which was introduced by Henry Ford and others, put em

phasis on reliable manufacturing processes. Still the market was not com

petitive. However the power of application of statistical methods was real

ized during the twenties (Ill), (108). At that time the fundamentals of many 

of the tools used in quality engineering today were developed (109), (105), 

(106), (107). 

During World War 11 quality, in terms close to what we use today, was first 

introduced. The first really competitive "market" warfare, was experi

enced. Quality techniques became top secret military information (110), 

(104), (103). Still quality had not yet got the wide interpretation which we 

use today. The main emphasis was on reliability; that is, loosely interpreted 

as the activity of a product to reliably supply the function it had when it was 

shipped, whether or not that function was the customer need was not a 

prime issue. More strictly, the reliability of a product is now defined as the 

probability that the product continues to meet its specifications, (27). 

Within the program for rebuilding of Japan after World War 11, Juran and 

Deming were invited to lecture in Japan, (94). At that time, or shortly be-
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fore, modem quality definitions were introduced (l 0 l). In Western coun

tries inspection was still the main quality tool in use. At that time in the early 

fifties Japanese quality performance was generally very poor. However 

they took some very important decisions to adopt the philosophy of Juran 

and Deming. As a consequence of that they achieved a much better quality 

improvement rate than Western countries. 

The philosophy of Juran and Deming included a focus on quality losses. In 

the early fifties a Japanese, Genichi Taguchi, introduced the concept of a 

quality loss function, L(y). The early history of the development of the loss 

function may be found in the book, "introduction to quality engineer

ing.",(93). In that function y is the performance measure. Taguchi regarded 

the losses to be the sum of all costs that the product caused the society due to 

poor function. L(y) was further considered to be a continuous function. This 

concept together with a statistical approach created a new insight into the 

nature of quality. 

With the improvement of the quality performance came problems in the ap

plication of product control. The costs of inspection were much higher than 

the value of the quality improvement it contributed. 

Montgomery, (47), gives a nice description of the evolution of applications 

of different quality engineering tools as an organization is maturing in 

terms of quality awareness. Further Grant et ai.,(7l), have an interesting 

discussion on statistical quality control that has a relevance in this context. 

Statistical quality control is said to be the application of statistical methods 

to control quality. Statistical process control is most often referred to as the 

application of control charts as an analysis tool to observations of the out

come of a process. This is in a sense a posteriori procedure. In this thesis the 

use of the acronym SPC is almost exclusively used to refer to this interpreta

tion. There is however, a further evolution as the charts are applied to criti

cal parameters controlling the process. This latter interpretation is more re

lated to the results of robust engineering efforts for the production process. 
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Looking at the evolution of the application of statistical quality control 

tools the first thing to happen as inspection gets outdated, is the introduction 

of Statistical Process Control, SPC, according to Shewhart (109), (105). 

This is usually done as an extension of product inspection. The prerequi

sites for application of control charts to process parameters are usually not 

present. That is to say, the detailed know ledge of the processes are not avail

able. 

The quality loss function implies a continuous improvement strategy. As it 

accounts for many different losses (See Chapter 3.) it also points to different 

processes to be controlled to minimize quality losses. Accordingly the next 

step in the evolution is to try to control the design process. This involves the 

introduction of different quality improvement tools. 

An important quality improvement tool within design is robust design (93), 

(64). Robust design is a systematic method to exploit the nonlinear relations 

existing between design factors and system functions. These relations are 

exploited such that the influence of noise factors on the system functions is 

minimized. In the robust design procedure according to Taguchi, interac

tions between noise factors and design factors are analyzed extensively 

(75). This will be discussed more in detail in Chapter, 4. 

Another important tool is design review. This tool is impossible to apply 

effectively without a drastic improvement of specifications. Specifications 

as seen hitherto have been very weak and sweeping. Design reviews call for 

a quantified specification (63). In his book Total Design Professor Pugh, 

(63), puts a very strong focus on the quality level of the product develop

ment specification, PDS. Design reviews have the character of product in

spection in the design process. 

Further progress of process control took the shape of Total Quality Control, 

TQC (94). Within TQC, quality planning is a major task. One of the first 

tools for quality planning was Quality Function Deployment, QFD (61), 
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(46). In its original version QFD did not explicitly incorporate different 

quality tools. However to be able to do the QFD matrices correctly different 

quality tools have to be applied. Thus QFD may be regarded as a planning 

tool for the application of quality tools. 

Looking at QFD this way, we may see that the application of the quality 

tools has to be made with a holistic view. In Western countries we may re

mind ourselves about the different waves of single quality tools (75). We 

have seen quality circles. value analysis (VA). value engineering (VE). 

(99), statistical process control (SPC), failure mode and effect analysis 

(FMEA), design reviews, design for manufacturing (DFM), etc. We have to 

conclude that these waves did not solve the problem. 

Sontow et. al., (15), have an extension to the original QFD. Details about 

this extension are found in Chapter 8. This work makes the interrelationship 

between different quality tools very clear. The research presented in this re

port draws on the fact these interrelationships are made visible. The quality 

tools all have the same effect, i.e. minimizing information content. It is also 

made clear that they may not be applied in an arbitrary order. 

It may for instance be argued whether FMEA can be applied early or not. In 

actual effect it is often applied in later stages. However as will be discussed 

later we would like to apply FMEA early. FTA is a good starting point for a 

FMEA. Sontow et. al., (15), give an interesting extension of the FMEA 

methodology. This makes FMEA more applicable in early development 

process stages. The results of robust design exercises will give the knowl

edge needed to apply control charts to process controlling parameters. 

In a special report in IEEE Spectrum. (52), a comprehensive listing and de

scription of tools necessary for concurrent engineering is given. It gives a 

focus on the statistical nature of quality. Accordingly methods applied have 

to have a statistical base. Further there is no single method to cure all prob

lems. 
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1.2. Problem identification 

In this section we will outline some relevant problems in the application of 

quality engineering tools. This will be the basis for the aims statement in 

Chapter 2. 

The Japanese have shown that: if the different quality tools discussed in 

Chapter 1. are applied together they can make a great contribution. Above 

all the most important single factor is the awareness and engagement of all 

staff in quality improvement efforts, (10). In Western countries the applica

tion of the different tools have come and gone one by one, (75). Instead of a 

search for a unifying theoretical base the arguments have gone along the 

lines of superiority of one of the tools over the other, (44), (45), (42). As an 

example we may consider the arguments around the robust design proce

dure according to Taguchi. A major criticism of the Taguchi SIN-ratio met

ric is given by Box, (69). He demonstrates the deficiencies with some care

fully designed samples of data. That way he shows that the ability to 

discriminate different performance levels may at times be very poor. The 

alternative presented is the response surface technique. This latter tech

nique engages itself more with the efficiency of experimentation than with 

relation to the variability which is the source of poor quality. 

The quality issue is often confused with experimental design in the area of 

robust design. Discussion is often centered around experimental perfor

mance, because the variability issue is getting little or no attention. 

Within the application of each of the different tools, different quality met

rics have been designed. They are of different foundation and are involved 

to a greater or lesser degree. Robust design is a good example of this, 

(64),(80),(42). Phadke and Taguchi make some efforts to tie the metrics 

used to the concept of quality loss. Still it is somewhat involved and not 

straight forward. 
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Overall the area of metrics used in robust design is an area of great interest at 

the present time. Many researchers devote their time to this problem. A 

good overview of a procedure for statistical modeling is given by Nair et. al. 

(90). This procedure does not really consider the main idea of robust design, 

i.e. minimizing the influence of noise. The focus is instead on the effects on 

the sample average. An interesting discussion over the amount of exper

imentation involved with the Taguchi strategy for robust design is given by 

Shoemaker et. al. (54). Their main focus is on the number of experiments. 

However they do consider the robust design idea. They argue for a response 

surface strategy to identify how to evaluate variation decreasing control 

factors. This is of course a feasible method but it is involved. The complex

ity of the analysis is increasing exponentially as the system complexity is 

increasing. This makes the approach less accessible for users in general. In 

an article, (89), Box et. al. address the same problem with the number of 

experiments needed. The results are very specialized and not generally 

applicable. In general we may comment that quality is tightly related to 

variation. A metric not taking into account the variation is of minor interest. 

TQM activities are often difficult to evaluate as no quality metric usually 

exists for management activities. Quality systems like IS09000 are widely 

accepted as a quality tool. However they are often applied due to external 

pressure rather than internal push. This is due to the lack of arguments for 

the benefits. 

In summary the problems that are the focus of this thesis are: 

- Quality metrics do not have a common foundation. 

- Quality metrics are very difficult to design for different quality 

techniques, i.e. TQM. 

- Quality tools are considered as individual tools rather than as a 

coherent and comprehensive toolbox. 
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As a consequence we may state some characteristics of a quality metric: 

• It should be as generally applicable as possible with different quality 

techniques. 

• It should have a mono tonic correspondence with the quality level for the 

process studied. The quality level should in this context be based on qual

ity losses. Ideally it should be comparable between processes. At the 

least it should be comparable through a sequence of modifications of one 

and the same process, studied. 

• It should have a foundation in the statistical nature of quality. 

• It should have a dynamic characteristic to show quality level improve

ments even if the process is far off target. 

• It should be able to reflect the state of the art in the area of interest. 
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2. Aims 

The overall objective of the research presented in this thesis is to develop 

the means to generate a real shift in quality level in design. The key issue is 

to develop some integrating factor common to most available quality tools. 

The work started with the intent to study different attitudes towards applica

tion of design of experiments within quality engineering. The initial studies 

showed that the differences were a matter of different adaptation of design 

of experiments to robust design. Further, some controversies exist in the 

area of quality metrics, (98), (79), (80). These controversies have caused 

objectives in the area of robust design to be confused. Researchers have 

even tried to find an introduction procedure for robust design. These proce

dures are aimed at preventing these controversies to stop the introduction of 

the robust design tool. ( See Goh, (38), (20)) 

It was thus realized that the focus had to be widened to the overall objective 

given above. To achieve that three different aims were established: 

- to show that a useful quality metric may be designed using a 

concept of information distance. . 

- to show that the proposed metric is applicable throughout most 

TQC-activities and that they contribute to performance of 

TQM- activities. 

- to show that an information theoretical viewpoint forms an 

integrating and theoretical base for most quality techniques. 

This will be done through several tasks. 

First we need to establish a common understanding of what is quality. This 

is done through a discussion over quality costs in Chapter 3. There we will 

also find a discussion on quality loss functions. This ties quality costs to 

quality metrics. 
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As said above the origin of this thesis was in robust engineering. The work 

still has a focus on robust design using the design of experiments. The basis 

for the proposal lies in this quality tool. The applicability is explored 

through TQM. To this end we need to clarify what is robust design using 

designed experiments. This is done in Chapter 4. 

The leading idea of this thesis is the application of information theory to 

give a unifying perspective on quality engineering. Accordingly we need to 

introduce some basic concepts of information theory. In Chapter 5., infor

mation theory basics with relation to quality evaluation are discussed. 

A quality metric based on information distance will be outlined in Chapter 

6. An application procedure will be shown. The procedure will show very 

strong connections between the quality metric and the quality losses. 

The metric will be demonstrated in applications to quality engineering ex

amples within the area of robust design, in Chapter 7. 

In Chapter 8. product development processes are analyzed. A concept of 

flow of information surplus is applied. This gives as a natural result what 

were previously empirically founded quality techniques, i.e. complexity 

numbers, modularization. 

Thus we can see the product development process as a matter of refinement 

of information. Accordingly a concept of information flow is applicable to 

the product development process as well as to the product or the production 

process. 

The same information flow technique may be applied to on-line quality 

control. Thus the information distance quality metric is introduced to SPC 

applications. This is done in Chapter 9. 
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3. Quality costs. 

One of the main points in the modem philosophy of quality is the relation 

between quality and costs. Taguchi has defined poor quality as the sum of 

all costs due to malfunction of the product or process. All costs refers to all 

different aspects of system impact. In this section we will review different 

type of costs in different parts of the product delivery cycle. A short summa

ry of these aspects may be found in Reference (47). The same reference has 

a summary of quality costs and is repeated in Table 1. 

PREVENTION COSTS APPRAISAL COSTS 

Quality planning and engineering Inspection and test of incoming 
material 

New products review Product inspection and test 

Product/process design Materials and services consumed 

Process control Maintaining accuracy of test 
equipment 

Burn-in 

Training 

quality data acquisition and analy-
SIS 

INTERNAL FAILURE COSTS EXTERNAL FAILURE COSTS 

Scrap Complaint adjustment 

Rework Returned product/material 

Retest Warranty charges 

Failure analysis Liability costs 

Downtime Indirect costs 

Yield loss 

Downgrading (Off -speccing) 

Table J Quality costs, (47) 
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Burati et. al. (41), makes an interesting summary of quality deviation in dif

ferent steps of design and construction within civil engineering. The infor

mation breakdown there resembles the approach taken below. A relation to 

the product delivery process gives an insight to the quality cost generators. 

Chen et. al. (36), analyzes the quality cost distributions in the product deliv

ery process from an accounting perspective. This gives a good summary to 

support the discussion below. 

Quality in the cost sense is always related to product functions. These func

tions are those requested by the customer. Quality costs are not always di

rectly visible. The visibility is low for costs of being late to market, costs of 

bad will etc. The visibility is intermediate for excessive production costs 

due to poor product and process concepts. The visibility is high for quality 

costs concerning rework, scrap and warranty. A general estimate is that the 

costs with low visibility are by far the greatest. Brown et. al., (112), report 

the invisible quality costs to be 3 or 4 times the visible quality costs. Further 

discussions on this subject are found in Iuran's Quality Control Handbook, 

(78). 

Mechanisms which impair quality cost in different business activities can 

be listed as: Customer needs assessment, Product specification, Product 

definition, Manufacturing process, Assembly process, Product delivery 

and Customer product usage. These are discussed below. In later chapters 

these quality costs will be related to information flow in different levels of 

the business activity of a corporation. This is a somewhat unusual approach. 

The above summaries are more traditional. The reason for the present 

breakdown is an attempt to track the introduction as well as the extraction of 

excessive information into the processes. Accordingly we see a close rela

tion to the activities of the total design procedure. 

3.1. Customer needs assessment. 

In this context the marketing activity has two main objectives. The first is to 

supply the correct information about customer needs to the rest of the orga-
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nization. The second is to sell the products made by the organization, (63). 

In most organizations marketing and selling are different activities. Here 

we put both in the same bin to emphasize the cyclic nature of the process. 

The first task involves analyzing customer needs and the level of competi

tion. The information gathered must be in a form which is digestible and 

requested by the rest of the company. At the same time it must contain the 

real voice of the customer. These demands call for a variety of competences 

engaged in the marketing activity. We need to get the information not only 

in pure commercial terms but also in technical terms of product develop

ment usage etc. The consequences of poor performance in this respect are 

far reaching. The first and most evident is the development costs that are 

spent inefficiently, trying to develop a product not requested. Secondly, the 

business activity gets into a spiral of negative expectations. As a reputation 

of poorly performing products is build up, the customers do not expect 

products from this company that fulfil their needs. Eventually so much mar

ket share is lost that the long term existence of the business is questioned. 

The wrong information assembled here allows the development process to 

add its own speculation over the customer needs. This usually introduces a 

large amount of excessive information. 

The second task, to sell, is to reassess the needs of the customer. Thus, the 

selling effort is a process to identify a customer need or problem that an of

fered product (or duty) represents a solution to. If there is a good system to 

keep track of the voice of the customer then the product line will fulfil the 

needs of the customer. Even so there may be a sales staff not sufficiently 

trained to offer the right product to the present need. This will either end up 

with a dissatisfied customer or a specialized customer adapted redesign. Ei

ther way quality losses will develop, either by the customer or by the man

ufacturer. In the last case high losses may in the long run deVelop even by 

the customer. That may happen as the customer tries to get a non-standard 

product updated or repaired, (11). 
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The wrong product sold to a customer allows a lot of excessive information 

into the process, no matter whether the product is over capable or lacks ca

pability. In either case unstructured information gets into the process. In the 

first case there are unused resources, i.e. waste. In the second case there will 

be efforts to try to get the product to perform what it was not designed to do. 

This will cause failures, i.e. waste. 

The marketing activity has to be organized such that the customer needs are 

continuously updated. Further the business process has to be integrated 

such that the relevant information about customer needs penetrate through 

the entire company. 

3.2. Design. 

Quality costs within design are of two kinds. These are, working on the 

wrong problem and working with the wrong tools, i.e. product specification 

and product definition. 

3.2.1. Product specification. 

Working on the wrong problem is a matter of specification and comprehen

sion of the specification. The costs incurred are redesign and a loss of proto

type hardware. Further, the staff is less productive trying to solve what they 

mayor may not believe to be a problem for a second time. Productivity is 

also decreased by miscomprehension of the specification. Even though the 

right problem is specified there may be slightly different comprehensions 

of the problem among the staff members. This will lead to discussions and 

avoidable mistakes downstream. These quality hazards call for a rigorous 

organization of the design teams and their working process, (43), (76). As 

the specification is usually not very stringent the concepts vary along the 

project. Laboratory resources have to be reserved early. The same goes for 

ordering of prototype hardware. Without this, it is possible to end up with 

tests being carried out on a prototype of an outdated concept. Effects of fo

cusing on the wrong problem may also be seen after the launch of a new 
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product. An excessive number of redesigns for customer adaptation is an 

example of often overlooked quality costs. Redesigns also appear due to the 

fact that some customer needs were simply not considered in the specifica

tion. This may also be seen in the late stages of the product development 

process, before launch. At this stage the number of design changes should 

go drastically down. However in many companies the number of changes 

increases as launch date is approached, (14). 

We note how a loose specification allows excess information to enter into 

the process. It may be either through speculations of what may be the real 

specification or through late notice of new customer needs. 

3.2.2. Product definition. 

Working with the wrong tools is a matter of design process organization and 

staff training. Organizational problems refer to issues such as controversies 

existing between the design office and the laboratory for physical tests. In 

many organizations the habits of laboratory and of design are very strong. 

For reasons of habit simulations may be made by physical test rather than 

numerical tests or vise versa, (10). Of course this may also happen for rea

sons of inadequate training of staff. These kinds of deficiencies lead to solu

tions based on too little knowledge of the system. Reliability problems, 

maintenance problems and production problems can be seen as a result, if 

staff members have inadequate knowledge of technology andlor proce

dures. In a situation like that they try to compensate with guesses. Again 

excess information is being fed into the system. 

The consequences discussed above are related to direct quality costs. In ad

dition to this indirect quality costs will also be generated. One such cost is 

the loss due to late market entry. Another quality cost is customer badwill as 

an unreliable product is experienced. Some issues of this kind are discussed 

by Ashley, (37), as he discusses the benefit of applying Taguchi techniques 

to early design stages. 
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3.3. Production 

Quality costs in production may be structured in several ways. One way 

may be to divide costs into those that are impaired by production process 

deficiencies and those that are impaired by product documentation defi

ciencies. Quality costs in production can also be divided into costs of mate

riallost, quality assessment cost, direct production costs spent on failures 

and loss of production capacity, (77), (47). However we chose to break 

quality costs in line with the phases of production, i.e. manufacturing and 

assembly. It is thought that thereby it is easier to identify the cost generating 

parts of the process. 

3.3.1. Manufacturing. 

In manufacturing quality costs derive from several different sources. First 

we have the cost for quality assessment. The assessment is made in relation 

to the function of the final product under production. The product function 

is in this context described in the product documentation generated during 

the design activity. The function described in the documentation mayor 

may not be optimal in relation to the original product function given in the 

product specification. A trivial example here is unnecessarily tight toler

ances such as fit, surface roughness, etc. These tolerances set with little re

lation to the product function impair quality cost through excessive produc

tion costs, i.e. quality loss. 

The quality assessment results can find that some objects are not complying 

with the specification. These objects are either scrapped or reworked. 

Scrapping leads to a loss of material. It also leads to a loss of all the direct 

production costs spent on these objects. The rework is an excessive use of 

production resources. We may also note that all efforts spent on failing ob

jects are resources taken from a limited production resource. Thus we lose 

the corresponding part of the production capacity. 

Among the objects being passed in the quality assessment, some are still not 

good. Either they are not discovered as being out of specification, or the 
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specifications are not properly set to screen out all problems. Either way 

these objects will cause problems downstream, i.e. assembly and usage. 

Even when the objects are really good they can impair quality costs. As dis

cussed above, we have the costs of quality assessment and excessive use of 

production resources. Tied to the latter is of course a loss of production ca

pacity. 

The discussion above is related to a situation where the production process 

and the product design are fairly well matched together. This is not always 

the case. That is to say that the design process does not take much notice of 

the different limitations of the production process. In situations like that 

there will be excessive tool wear, machinery breakdown and excessive 

maintenance. Production cycle times will be longer. Not the least important 

factor in this area is the ruined motivation of production staff. In summary 

we get an inefficient use of production resources. 

The excess of information in this area is obvious. One may argue that there 

is actually too little information as the product documentation is usually not 

comprehensive. However this deficiency is compensated with a lot of infor

mation entered as the process is running out of control. 

3.3.2. Assembly. 

What has been said about quality costs in manufacture is to a large extent 

valid also in assembly. During assembly however it becomes very evident 

that the results from previous steps in the process influence the production 

costs. Looking into the details of quality costs in assembly we will note 

clear differences and comment on smaller deviations. 

Although material loss is usually less frequent in assembly, quality asses

sment costs are still applicable. However the assessment costs may be mini

mized through a properly designed statistical process control in upstream 

stages and a careful product specification process, (101). As the material 

loss is lower in assembly the loss of direct production costs spent on failing 
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products are less. Poor manufacturing performance as well as poor recogni

tion of design for assembly may however cause excessive use of production 

resources. This accounts for both direct production costs and cycle time. 

The latter is especially important in this stage as capital bound in the prod

uct is high. Capital costs are thus impacting with particular strength. On top 

of this production capacity is lost. 

3.4. Customer usage. 

Quality losses in connection with customer usage may be differentiated in 

three ways; losses to the producing company, losses direct to the customer 

and losses to society. 

Losses to the company are of several kinds. First there are customer claims 

over product performance which the customer does not find corresponds to 

expectations, even though the product is performing at its best. This may be 

a function of either over selling, a poor product specification or a product 

development result that does not fulfil the specification. This results in an 

overload in the sales organization. 

Secondly there are customer claims that are a result of a product function 

breakdown. These claims result in company warranty costs. Obviously the 

company loses goodwill and in the long run market share from both of these 

types of claims. This latter part of quality losses are usually those that are 

recognized. In the light of what has been said in this chapter it is obvious 

that this is a minor part of quality losses. 

The customer is subject to several losses. The downtime of the product rep

resents a loss of earnings. In this context earnings come either from profes

sional use or the benefits by private use. Getting the product up and running 

again costs the customer both directly and indirectly; direct costs are the re

pair costs; indirect costs are replacement costs during downtime. In this 

category there are also costs to get the product to a service center or service 

personnel coming to the product installation site. Where a malfunction 
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causes accidents the customer may also suffer from costs for damage to 

third party. Further the customer may suffer loss of income due to illness 

caused. 

The most evident cost to society is the environmental impact that the prod

uct may have. There are also other costs such as disabilities from accidents 

caused by the product. A good insight to this may be found by looking at 

regulations and their development around product systems pressure vessels 

and electric transmissions. 

3.S. On quality loss functions. 

In the above sections we have identified a lot of different categories of qual

ity losses. The sources of these losses are also identified to some extent. In 

general losses may be cast into costs to different parties. This has also been 

done even though it has more been in terms of putting equivalence between 

losses and costs. Taguchi was among the first to draw on this as he was 

building a quality improvement strategy, (16). 

Taguchi defined poor quality as the sum of all costs to society due to mal

function of the product. In this definition he puts equivalence between loss 

and cost. He introduced the quality loss function. The function he intro

duced was very simple, L(y) = k ( y _ m)2. 

In the equation above and the equations below in this chapter, the following 

conventions have been used: 

L is the quality loss due to poor quality, caused by one individual of 

a system performing at level y instead of the target level m. 

y is a performance measure for the product function considered 

m target value 

k is the proportionality constant in the loss function. 

Q is the average loss in the population. 

n is the population size or the population size at each instance of 

signal factor M. 
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I number of levels used for the signal factor M 

i is a counting index. 

] is a counting index. 

Yi is the quality performance measure for member number i in the 

population. 

Mj is the signal factor value at instance number j. 

p is the fraction defective. 

J.1 is population average. 

0' is population standard deviation 

There are many studies made showing that such a target value exists. For 

instance in the report (97) regarding color density of television screens, it 

was found that at a certain color density level the customer complaints over 

color density were a minimum. A further illustration can be the level of 

comfort at different possible room temperatures which is requested from an 

audience. Plotting the accumulated numbers of persons feeling discomfort 

with a feeling of the temperature being too hot at different temperatures, 

raising the temperature step by step from below, one graph is generated. 

Then lowering the temperature step by step from above and accumulating 

the number of persons feeling uncomfortable due to the temperature being 

too Iow produces a second graph. If the two graphs are summed together a 

graph with a minimum is generated. Often the minimum is located at 20° C. 

At this temperature there are of course some people not feeling comfort

able. However it is the minimum number at this temperature and at any oth

er temperature there would be a higher number of people feeling uncom

fortable. Accordingly an air conditioning machine controlling the 

temperature to the optimum would still generate some loss as there are peo

ple not feeling comfortable. Loss is then not zero but minimum. The same 

reasoning may be applied for the color density discussed above. There are 

often different mechanisms generating loss at either end of the spectrum. 

At the target value the loss is minimum. Whether this minimum is equal to 

zero or greater is of minor interest. It is a matter of definition of quality 
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costs. At the present stage of the presentation we may regard this minimum 

value as a reference value, zero. Hence we may conclude that the loss func

tion given above is the first non zero term in a Taylor expansion of the gen

eral loss function around the target value. Accordingly we know that the 

above expression is valid at least close to the target value. 

The costs impaired affect different parties, the company, the customer and 

the society. At the end those costs end up as a burden to the customer. How

ever in a quality improvement process it is rewarding to keep cost catego

ries apart. It may for instance be very difficult to apply the loss function in a 

general overall sense. Most people applying quality loss function use scrap

ping costs or warranty costs. We know however that this is a large under-es

timate of the quality costs. These costs, scrapping or warranty, are distinc

tive costs recognized by the organization. Even so it may be hard to apply. 

There is a need to follow up the quality costs differentiated in accordance 

with a product system structure. In turn this system structure has to be re

lated to a product function structure. The malfunction of different product 

functions is the primary source of losses. Accordingly the product function 

structure is needed to break down the overall quality losses. With such data 

the loss function methodology can be applied stringently. This is to say real 

economical calculations in connection with financing etc. can be used. 

Some Japanese companies may have already achieved this. Most Western 

companies, which are concerned with quality loss, use loss functions in a 

comparative or prioritizing manner. An interesting and formalized way of 

applying the loss function methodology is given by Kraslawski et. al., (31). 

They work with an adaptive process control system based on the quality 

loss function and fuzzy logic. 

From the above sections we find that external costs, i.e. related to customer 

and society, may be an order of magnitude larger than the internal costs. 

The external costs are generally related to the function of the product itself. 

However an external cost may be identified due to environmental impact of 
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the production process. This has often been considered as an external cost, 

carried by society. Recently environmental legislation has been changed. 

Accordingl y the cost for environmental impact of the production process is 

gradually being turned to the producing company. 

Internal costs are to some small extent related to product function, i.e. war

ranty costs. The remaining internal costs are related to the function of the 

internal processes. There are four related internal processes, the product de

velopment process, the production process development process, the pro

duction process and the marketing process. 

To track the quality costs in these processes the ideal performance of these 

processes must be known. These costs are usually not considered using a 

loss function approach. As has been said above a strict application of loss 

function methodology requires a good function description. This is usually 

not available for three of the internal processes referred to above. The pro

duction process is often described with function terminology. Accordingly 

Taguchi has designed a on-line quality control procedure based on loss 

function methodology, (65). The remaining three processes are lacking the 

prerequisites for loss function methodology. These three processes are usu

ally not well described such that the losses in the processes may be quanti

fied. Furthermore only recently has a process-oriented description style 

been adopted. With that at hand a breakdown of losses per subprocess may 

be carried out. 

Efficiency of experimentation is an issue in the experimentation process, a 

subprocess of the product development process. The metric of quality level 

is an issue of the product development process itself. Efficiency of the ex

perimentation process is subordinated to the product development process 

efficiency. Thus these two issues may be separated to a large extent. 

Modern quality assurance systems rely heavily on process descriptions, 

(81), (82), (83), (84), (85). Thus function structures will eventually be 
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available even for the remaining processes. Several researchers have been 

engaged in such descriptions for those processes. Different process descrip

tions have been presented. The concept of Total design has been advocated 

by Pugh (76). A similar approach is given by Pahl & Beitz, (74) . The proce

dure of QFD has also won a great deal of attention during the last decade, 

(61). It has been elaborated first into EQFD, by Pugh & Clausing (49) and 

later into RCFA, by Sontow & Clausing (15) . Further discussions on this 

subject will be given in chapter 8. 

3.6. Taguchi loss function and signal to noise ratio 

The quality loss function as proposed by Taguchi emphasizes variability. 

This is because it is a continuous function with a global minimum. The vari

ability in this context is measured as variance around the target value and 

not only around population mean. The loss function as referenced above 

gives the loss for individuals. As we are mainly working with populations in 

the quality improvement work we would like to carry this function over in 

terms of average loss, for the different types of quality characteristics (64). 

Some quality characteristics e.g. wear are such that the less there is the bet

ter it is. The target value is zero. Those are called "Smaller is better". The 

loss function (average loss) for a population in this case is given by: 

Q = k[kI Y;] 
1=1 

Taguchi proposed taking the decibel value of this average loss as a quality 

metric. The constant k was taken out of the formula as relative improvement 

was studied. Decibel value was argued to improve additivity of factor ef

fects in quality improvement activities. The negative of the decibel value 

was called the signal to noise ratio, SIN. Hence SIN for smaller is better is: 
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"Nominal is best" is a type of quality characteristic where a distinctive opti

mum target value m exists. The room temperature example discussed above 

is a good example. This is a very common type of characteristic. The aver

age loss for a population with mean J.! and standard deviation a is: 

When improving a characteristic of the type nominal is best there are two 

types of action to take. First the mean J.! may be adjusted to target m. There

after standard deviation may be decreased. The adjustment also affects the 

standard deviation. If mean is adjusted with a factor m/J.! the standard devi

ation becomes amlJ.!. Hence the average loss for nominal is best after ad

justment is: 

Again taking the negative of the decibel value of the average loss disregard

ing the constant factor the expression for SIN is: 

The handling of these kinds of characteristics usually involves a two step 

procedure, average adjustment and variation minimization. This recogni

tion has lead to the introduction of a special class of performance measures, 

performance measures independent of adjustments, PerMia. With such 

measures the two steps can be performed independently. Alternatively use a 

one step procedure for process improvement. The proposals in this thesis is 

along this latter line. 

Some quality characteristics are of the type that the higher the value the bet

ter it is. The target value is infinity. In reality it is very hard to find character-
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istics that are like that. Sometimes strength may be argued to be of that kind. 

This type is usually called "Larger is better". Taguchi used the inverse of 

that characteristic y, to form the loss function. The average for a population 

is then: 

Q = k[k I \] 
j = I Y, 

The negative of the decibel value gives the SIN-ratio: 

SIN = - 10LoglO[k i \] 
j = I Y, 

Dynamic characteristics are measures where the input signal factor (see 

Figure I in chapter 4.) may vary and control the function signal according

ly. In this case the loss is a function of the deviation from the ideal perform

ance, Yj = Mj. This loss may be expressed as: 

For the dynamic system the ideal performance (target performance) is Y = 
M. With linear regression a function ~ = ~M may be fitted to the observed 

data Yij- To minimize the average loss from the population Yij is to adjust ~ to 

be equal to 1.0 and thereafter to minimize the standard deviation (je to form 

the line y = M. In analogy with what was done for nominal is best the SIN

ratio expression may be derived as: 

The above discussion is based on a linear regression. It is noted that it is a 

matter of a least square deviation exercise. It may also be the case that the 
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ideal response is a nonlinear function ~(M). In that case the analysis be

comes very involved, a task for a specialist. 

With a characteristic of the type "Fraction defective" you have two possible 

outcomes, acceptable or defective. For this kind of characteristic the argu

ments to design a SIN-ratio expression may be cast in the following way. If 

the fraction defective is p then you need to produce 1/(1-p) units to pro

duce one accepted unit. The production cost for the ( 1/(1-p) -1) excessive 

units is lost. Thus the average loss per accepted unit is proportional to pl(1-

p). Hence: 

The negative of average loss gives an expression for the SIN-ratio: 

It is noted that the reasoning for the last expression accounts for losses due 

to production costs. This may be alright if the system of prime interest is a 

production system. We will however come back to this as we later will dis

cuss information content. Then we will consider acceptable results in gen

eral rather than strictly results from a production process. 

Table 2 which summarizes the SIN-ratio expressions shows that for each 

different type of quality characteristic there is a separate formula for the SI 

N-ratio. For further details refer to Phadke, (64). 

In later sections we will revert to the relation between quality metric and 

average quality losses. The new metric proposed in this thesis will present a 

unification in the way to analyze the different cases. 
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Problem type Adjustment SIN-ratio expression 
(comments) 

Smaller is better None -lOLogJO((L; yj2)ln) 

Nominal is best Scaling 10 Log] 0 (Jl-:l/ cr-z) 

Larger is better . None -lOLogJO(('L; (1IYi2J)ln) 

Fraction defective None -lOLogJO(pl( l-p)) 

Ordered categorical (U se accumulating anal-
ysis, see chapter 5. ) 

Continuous-Continuous Scaling lOLogJO(~2/cr2) 
dynamic 

Digital - Continuous Divide the problem into 
dynamic two separate problems of 

C-C or Nominal the best 
type . 

. . . 

. . . 
Table 2 SIN-Ratio formulas for some Different problem types. 
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4. Robust design 

In Chapter 1. the concept of robust design was introduced briefly. A more 

detailed discussion of the philosophy will be given in the present chapter. In 

this section we will outline and comment on the procedure for robust design 

according to Dr Taguchi. He categorizes the different quality measures 

which can be used with the SIN-ratio metrics discussed in Chapter 3 .. A re

view of the different categories is given below. A procedure description 

relevant for traditional experimental design exercise would differ particu

larly in steps a., c., e., g. and h. according to Table 3. The emphasis in tradi

tional experimental design is on analysis efficiency while the emphasis in 

the robust design procedure is on system functions. In section 13.1. we will 

reproduce an application from Bell Labs. Comments on this example is giv

en in section 4.2. In chapter 8. the robust design procedure will be put into 

the context of an information flow approach to quality engineering. In that 

context the reasoning for the different steps of the procedure becomes more 

clear. 

Below a procedure for application of robust design is described. It is impor

tant to recognize that the procedure definitely calls for the work to be orga

nized in a working group. The working group represent the present state of 

know ledge in the company of the problem area. 

4.1. Robust design procedure 

The procedure is divided into a number of different steps as summarized in 

Table 3. 

This structured summary has been compiled by the author on the basis of 

the presentation by Phadke, (64). 
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Step Description 

a. Quantifying system functions. 

b. System factor listing. 

c. Categorizing system factors. 

d. Design space and factor levels. 

e. Experimentation planning. 

f. Experimentation. 

g. Analysis. 

h. Verification. 

Table 3 Robust design procedure. 

a. Quantifying system functions. 

Robust design is a quality improvement exercise. Quality is always related 

to a function of a system. The function has to be quantified for us to be able 

to judge the quality of the system. 

The first step in the procedure is thus to decide what to measure. To be able 

to do this a function description of the system is needed. This could be made 

in accordance with the function analysis procedure proposed by Akiyama, 

(48). With the function description at hand, different measures to quantify 

the final function may be proposed. Thereafter a choice of the most efficient 

measure is made. The most efficient measure would be that with the most 

information content. We will later return to how to determine the informa

tion content of a signal (or measure). In general we will here state that con

tinuous valued data contains more information than does categorized data. 

We conclude that the measures have to be classified. Further we note that 

the more information we get in the chosen measure the fewer the replica

tions needed for each experiment. 
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In his book "System of experimental design.", (80), Taguchi makes a list

ing of different measure categories. These are summarized in Table 4 be

low. Some indications are also given as to what analysis tool to use. 

Category Relevant analysis 

Simple discrete values SIN-ratios 
(simple enumerative values). 

Simple continuous values. SIN-ratios 

Fixed marginal enumerative values. Accumulating analysis 
Frequency analysis 

Multi-fractional values. Accumulating analysis 
Frequency analysis 

Multi-enumerative values. Accumulating analysis 
Frequency analysis 

Multi-variable values. Accumulating analysis 

Dynamic characteristics. SIN-ratios 

Table 4 Quality measure categories. 

(1) Simple discrete values (simple enumerative values). 

This refers to data that could be counted such as 1, 2, and so on, and could be 

for example the number of items sold, or number of particles. Analysis tools 

are usually SIN-ratios as discussed above. It has been shown that the SIN

ratio has a different definition depending on the appearance of the charac

teristic. It may be Smaller is better, Nominal is best, or Larger is better. 

(2) Simple continuous values. 

This term refers to continuous values such as weight, length, time, hard

ness, etc. The number of items sold in a day is discrete but the average num

ber of items sold in a day is a continuous variable. As long as we stick to 

single values at each instant it does not matter from an analysis point of 

view whether the values are continuous or discrete. The same analysis tools 

are used. 
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(3) Fixed marginal enumerative values. 

This is the case when a fixed number (known) of observations (data) are in 

some way classified into a limited number of classes. One may distinguish 

several different appearances of this kind of data. 

i) Ranked data are the kind of data often created in a process of judgement 

by humans, i.e. grading as good, fair, normal, poor and unacceptable. 

ii) Off-scaled data are the kind of data created when classifying continuous 

data by stratification in a non-proportional way. In a fatigue test we may 

classify life as follows, I) samples flawed from start, II) samples lasting I -

100 hours, Ill) samples lasting 101 - 500 hours, IV) samples lasting more 

than 500 hours. 

iii) Gauge values are generated when stratifying continuous data on the ba

sis of size in a proportional fashion. End classes may be unlimited as in the 

off-scale data example above. 

iv) Ordered Data, this could be compared with ranked data but on a floating 

scale whereas ranked data are on a fixed scale. This kind of data is generated 

in the different evaluations in a beauty contest. If possible it is much better 

to use ranked data. This could be achieved through the use of one reference 

observation. 

v) Pure categorical values; this is classified data where order between 

classes is of no importance. As an example of this kind of data consider the 

guesses in the game Paper-Stone-Scissors. 

Data grouped according to (i), (ii), (iii) and (iv) are analyzed using accumu

lating analysis. Data according to (v) can be analyzed with frequency analy

sis. The analysis tools are not tied to the loss function in a straightforward 

way. Any attempt that may be tried to construct such a relation will be a 

challenge to the imagination. 

(4) Multi-fractional values. 

Multi-fractional values are very close to Fixed marginal enumerative data. 

Here the total number of observations is unknown, i.e. infinite. Hence in-
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stead of the number of individual observations in each class, the fraction of 

observations falling into each class is used. The data from a thickness gaug

ing procedure of a steel mill can be used as an example. If these data are 

stratified, the fraction of observations falling into each interval gives the 

multi fractional values. The example outlined here gives ordered classes. 

Of course data may be considered to be multi fractional even though the 

classes are not ordered. For example in a household budget spending may 

be divided into fractions of spending in three classes 1) food, 2) other essen

tial items and 3) miscellaneous expenses. In this case classes are not ordered 

and analysis is carried out using frequency analysis. With ordered classes 

accumulating analysis is used. A relation to the loss function may not be 

easy to design. 

(5) Multi-enumerative values. 

This is a case where a number of grades, i.e. ordered classes, exist. A certain 

number of observations are classified into these grades. The number of ob

servations are unknown beforehand but countable. An example is the num

ber of small defects, medium defects and large defects on a manufactured 

sample. The analysis type used is accumulating analysis. Classes that are 

not ordered may also be encounter. If in the example above you use defect 

type instead of defect size is used, frequency analysis instead of accumulat

ing analysis is applied. Analysis tools are not founded on a common base. 

(6) Multi-variable values. 

This is very similar to the multi-enumerative values; the difference being 

that you have continuous valued data. As an example you may take the har

vest of apples from a tree. The apples may be graded as first, second, third 

and fourth grade. Out of a harvest of 50 kg you may get 12 kg first grade, 18 

kg s.econd grade, 20 kg third grade and 10 kg fourth grade. These data (Le. 

12, 18, 20 ,10) are multi-variable values. Accumulating analysis is used. 

The base for this analysis is as pointed out above not tied to loss function or 

any common foundation. 
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(7) Dynamic characteristics. 

For systems having a varying signal factor the function may still be catego

rized as above, see Figure 1. The difference here is that SIN has to be formu

lated with consideration of the whole range of system usage. The base for 

this SIN-ratio is in regression analysis. The connection to the loss function 

is fairly clear. Linear or non-linear regression is used depending on whether 

a linear characteristic of the system is wanted or not. 

In the application of the Taguchi procedure it has come to be very common 

that the system is optimized to get a linear response relation. The relation 

may be written y = 0.0 + ~o M. Here y is the function system signal and M is 

the input signal. 0.0 and ~o are intercept and proportionality constants re

spectively in the relation. Using the minimum square deviation approach, 

expressions for the optimum values for no and ~o may be derived. The data 

used in these expressions are the raw data for each control factor setup. 

When analyzing experiments carried out for this kind of system character

istics response tables have to be calculated for SIN, 0.0 and ~o. The optimi

zation is then a trade off choice of control factor levels to get maximum SIN 

and the closest possible agreement for the response relation, see Phadke 

(64). 

b. System factor listing. 

The second step is to list the different factors that are influencing the func

tion of the system. As a guidance in this work there is the function descrip

tion derived as above. An efficient way to organize the factor listing is the 

Ishikawa diagrams (94). A brainstorming activity with the objective to 

bring the relevant factors forward may be appropriate here. It is important to 

save this listing together with the priorities set later in the process. This list

ing is a source of information when the result of the experiment is that the 

present knowledge in the company is not good enough. This situation will 

be commented on further under the heading Verification. 
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A general system subject of study for robust design may be illustrated as a 

process flow shown in Figure 1. 

c. Categorizing system factors. 

NOISE FACTORS 

SYSTEM 
SIGNAL FACTORS 

CONTROL FACTORS 

FUNCTION, 
OBJECTIVE 

Figure 1 General dynamic system description 

In the third step you have to categorize the different factors are categorized 

as control factors, signal factors or noise factors, see Figure 1. A very good 

discussion on this way of observing the system is given by LeOn et. al., 

(88). 

Control factors are those factors, over which there is full control of a prod

uct or process by a designer. They may for example, be dimensions on a 

drawing or heat treatment prescribed. Signal factors are those factors that 

the user of a system uses to vary the function of the system. Sometimes the 

term design factors is used for these factors. This kind of factor may be ex

emplified by the steering angle on the steering wheel in the steering system 

of a car. There may not always be signal factors present. When signal fac

tors are present we call the system dynamic. Notice the difference between 

the term dynamic here within the area of robust engineering on the one hand 

and in control engineering on the other hand. 

Finally there are noise factors. These are factors that are not controlled. The 

reason why the noise factor could not be controlled may be purely economi

cal. It is common, but not necessary, to split the noise factors into three 
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groups: environmental noise factors, variation between individuals (Le. 

production variations for example) and deterioration. Examples in the first 

group are ambient temperature, and humidity of air. The second group may 

be represented by production capabilities. I.e. the deviation of a control fac

tor from the specified target value may be considered as noise. Deteriora

tion is more obvious. It is wear and tear. 

d. Design space and factor levels. 

When the different factors have been listed and categorized we need to de

cide what values these variables may take. Thus the fourth step is to set up 

the boundary of the design space and decide how accurately it should be 

searched. At this stage it is also very important that the different factors are 

prioritized. In the scope of application of robust design the boundary mayor 

may not be the ultimate limits. I.e. by improvement of an existing design or 

process the risk of total failure during experimentation may put more strict 

limits than would otherwise be the case. 

As the first estimate of boundaries is established the level of knowledge 

concerning the effect of each of the factors can be evaluated. Factors that 

are well known may be treated with mbre factor levels than those which are 

less well known. Thus, the more levels there are, the more information is 

obtained. In this process decisions on the different factor levels for each fac

tor is taken. 

With regard to the different functions considered for the system under study 

the different factors may interact. The level of interaction among design 

factors has to be evaluated in detail. According to Taguchi those interac

tions that are certain to exist should be taken into the experimental design. 

Otherwise, less likely interactions should be left out. The term "certain to 

exist" is used to indicate the general agreement in the working group. 

Interactions amongst noise factors are considered but never taken into the 

planning. The reason for this is that we are not interested in detailed knowl-
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edge of noise factors. The prime interest is to get the noise factor effects low. 

To illustrate that, consider the effect on maximum power from an internal 

combustion engine from a 5 degree centigrade shift of the ambient tempera

ture. To what use is a knowledge of an effect of 3 units shift in the maximum 

power if the ambient temperature cannot be controlled. The engine system 

may not benefit from this knowledge. 

The only time when interactions amongst noise factors may be of interest is 

when compound noise factors are designed. Compound factors are exper

imentation factors that are a mixture of several physical factors and can be 

an efficient means to reduce the experimentation while still achieving the 

robustness. Interactions between noise factors and control factors are the 

heart of robust design. They are handled by the use of an inner and an outer 

array. (See Figure 2) 

Referring to Figure 1 the robust design study of such a system is carried out 

using two combined experimentation plans laid out as shown in Figure 2. 

The two experimentation plans are given as the inner array for control fac

tors and the outer array for noise factors. Thus for each setup of control fac

tor levels one system function result is observed for each setup of noise fac

tor levels. Accordingly the interactions between control factors and noise 

factors is studied extensively. The outer array design is focused on getting 

the most possible influence of noise into the experimental results. That way 

the maximum effect of control factor settings on noise influence may be 

analyzed. The outer array design may be rationalized using compound fac

tors as sketched above. A further discussion on compound factors is given 

below. 

Figure 2 represents one way of taking care of the central issue in robust de

sign. Minimization of sensitivity to noise is made through intensive expo

sure to noise during experimentation, using orthogonal arrays. Alternative 

ways may be used, as long as the central issue is respected. In reference (18) 

a comparative study between Monte Carlo simulations and the concept 

53 



with orthogonal arrays is made. They found the concept with orthogonal 

arrays sound and the same conclusion was drawn for the use of SN-ratios. 

Similar investigations were done by auo et. al. (26) and Liou et. al., (24). 

r-, 
0 

Outer 1 

s 
e arrav 

Control 

E 
X 

Raw ~N 
p Inner 

data 
n array 
0 

Figure 2 Experiment plan with inner and outer array. 

Freeny and Nair, (39), introduced an interesting way of handling noise fac

tors even though they are not controlled under experimentation. The mathe

matics of this approach is however very involved. In addition it does not 

give a direct connection to quality losses. This may be achieved by a proper 

choice of quality metric. That issue is not considered in this thesis. 

Nedler et. al., (55) and Pregibon, (96) have been investigating generalized 

linear models to produce a metric for quality. When it comes down to a 

mathematical, statistical rigor that is often applied on a trial and error base. 

I.e. there is no general procedure available to design a metric for each case 

application. The response surface modeling approach has recently also 

been advocated by McGovern, (7), (8) and Hamada, (25). This way of de

signing analysis tools is hard to distribute in a large community of average 

mathematically skilled users. A common framework which is more generic 

is needed. Alternatively the involved parts have to be embedded in a com

puterized support system where the complexity becomes transparent to the 

user. 
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Sandvik, (42), and Myers et. al. (40), argues in favor of including the noise 

factors in the same matrix as the control factors. This technique is more effi

cient if the level of interaction between the noise factors and the control fac

tors is low. In such a case however the potential of robust design is low. In a 

situation where there is a high level of interaction the design needs to be 

adapted, resulting in an expanding matrix. It is with a high level of interac

tion that robust design has a major potential. This approach is a useful alter

native but it is also more demanding on the user. 

In many areas this discussion over efficiency is no longer so important. By 

computer simulations it is often possible to incorporate massive noise ex

posure at low additional cost. Welch et. al. (58), illustrates this situation 

through a simulation of a VLSI circuit design. They applies a quality loss 

function metric. 

In the area of electronic circuit design the simulation tools incorporating 

noise exposure seem to develop rapidly. Liu et. al. (59) describe a compre

hensive package for design and simulation. Even other areas such as pro

duction planning are subject to computer simulations using Taguchi strate

gies, (22), (23). 

To complete this step, a priority list over the different design factors is made 

up. When setting priorities between the different factors the relation be

tween factor and function measure should be considered. This relation, 

should according to Taguchi be of an energy character in a broad sense. This 

is very hard to grasp for many applications. Phadke discusses this in Chap

ter 6 of his book Quality Engineering using Robust Design, (64). He brings 

up the issue of mono tonicity ofthe quality characteristics used. Monotonic

ity in this context has also been studied by Wilde, (28). The author believes 

that what is meant is an information relation. We will come back to this in 

later chapters. 

e. Experimentation planning. 
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In the f(fth step a decision has to be taken about the size of the experimenta

tion plan. With the priorities at hand a first proposal of an experimentation 

plan is made. Control factors are fitted into an inner orthogonal array. The 

assignments of control factors to columns of orthogonal arrays may be done 

in either way according to Box, (98), or Taguchi, (80). Some researchers try 

to get those two alternatives closer together than they already are, (21). 

The noise factors are fitted into an outer orthogonal array. This outer array is 

to control the number of repetitions of each control factor setting governed 

by the inner array. Further the outer array ensures a big enough influence of 

noise on the experimental results. A good way to keep the number of experi

ments down is to generate compound noise factors. I.e. a single noise factor 

combination that gives extreme noise stress to the system function is put 

into one (or two) compound noise factors. These compound factors may 

typically have three, four or five levels. You should at this point be very ob

servant to the treatment of the noise factors in the outer array. It is as you see 

very ruff due to the fact that we are not particularly interested in the interac

tions amongst the noise factors themselves. This is so because in actual use 

of the system studied the designer can not control the noise factors. In the 

case of development experimentation you try to use controlled levels of the 

noise factors to be able to analyze the effect of control factor settings on 

their influence. 

If the first experimentation plan does not fit into the economical limits pres

ent, it may be necessary to reassess the number of factor levels, the factor 

priorities and to make a new plan. 

f. Experimentation. 

The sixth step is to carry out the experiments and keep a careful log of re

sults and factor settings. Preferably special data collection forms are used. 

g. Analysis. 
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Analysis and prediction is the seventh step of the procedure. The data col

lected during experimentation are analyzed. An analysis method is chosen 

according to the category of measure used for the system function. (See dis

cussions about the first step of the procedure and references (80), (64).) The 

anal ysis results are summarized in a recommended optimal setting of de

sign factor levels. The optimality takes into account a trade off between dif

ferent system functions. Further a prediction of system function perform

ance is made. 

h. Verification. 

The most important step is the eighth step. A verification experiment is car

ried out with the recommended design factor levels. This experiment is rep

licated using the noise factors in the same way as the total plan. The result of 

this experiment is analyzed and compared with the prediction. In case of 

confirmation the design model proposed in the plan is confirmed. In other 

cases if the knowledge of the present system is not complete within the or

ganization, factor listing and priorities have to be reassessed. 

4.2. A robust engineering example 

Appendix A an example of an application of robust engineering in produc

tion process development is given. The example is given as an illustration 

of robust engineering according to Taguchi as it is applied in many indus

tries today. 

The example is taken from Bell Labs, (64). It is an example of a process im

provement in the manufacturing ofVLSI chips. This example includes sev

eral different characteristics such as the number of surface defects and the 

thickness deposition rate. The part of the example that we consider is that 

one that deals with the number of surface defects. 

The control factors for the manufacturing process used in the experiment 

are: 
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Table 5 Control factors. 

Factor 

A. Deposition temperature (CO) 

B. Deposition pressure (mtorr) 

C. Nitrogen flow (sccm) 

D. Silane flow (sccm) 

E. Settling time (min) 

F. Cleaning method 

The control factors are assigned to the inner array. The noise factors are 

treated as compound factors in this example. The different noise factor lev

els are position of an individual wafer in the furnace and position of a cut 

chip on an individual wafer. This compounds the variation in gas flow, gas 

temperature and gas concentration. Thus the outer array is more or less col

lapsed into a row of observations. 

The example illustrates several different ways to analyze experiments us

ing different quality characteristics. It demonstrates the difficulties to find a 

consistent uniform quality metric. The accumulating analysis results are 

close to the results from the SIN-ratio analysis. However it is shown that the 

accumulating analysis is in some situations subject to subjective judge

ments. According to the recommended analysis procedure (see above) ac

cumulating analysis and SIN-ratio are equally preferred procedures, for 

this kind of data, "number of defects". 

The example also demonstrates the procedure of robust engineering. In par

ticular the way that noises are handled are shown quite clearly. The way of 

compounding noises is often overlooked by researchers in their criticism of 

the amount of experiments involved, (42). The discussion about noises in 

connection with the example in reference (64), illustrates the difficulty with 

the concept of energy relations between system factors and system func

tions as proposed by Taguchi. There is a need for a general foundation that 

generates a better perception of these relations. 
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The recommendation for process setting from the robust design exercise in 

the example at hand, is a trade off between different relevant characteris

tics. This is a common situation. Looking at the recommendation of analy

sis methods there is no common quality metric. This is a problem as you 

come to a trade off situation. As the results from different quality character

istics are judged using different metric the trade off is very subjective. At 

this time it is worth noting that the traditional experimental design, (98), 

does not either give any assistance in this respect. 

The data from this example will be used in chapter 7. to show the first appli

cation of a new quality metric. 

We conclude some observations from this example: 

1. Accumulating analysis includes a subjective 
judgement 

2. Trade off between characteristics with different 
analysis methods is very hard. 

3. A clear conection between the used analysis methods 
and the quality loss is not available. 

59 



5. Information basics in quality engineering. 

In the previous sections we have discussed some tools used in quality engi

neering. Some of the controversies particularly around robust engineering 

have been brought up. In that area the quality metric used by Taguchi, i.e. 

SN-ratio, has been particularly a focus for criticism. This and the following 

Chapter will give a deeper analysis of one of the approaches to generate a 

consistent quality metric. That approach, information theory, was indicated 

by Taguchi (80). This section will be engaged with basic observations in 

this field together with some illustrative examples compiled by the author. 

5.1. Information 

What is information? In general information is associated with something 

read in a book or a newspaper. That is of course true but it is not a very pre

cise definition. The question posed is a very hard one to answer. Some phil

osophical discussions are found in two books of Bateson, (87), (51). Bate

son says, "information is a reference that makes a difference". The terms in 

which information are presented varies between different domains. For ex

ample in digital computing a series of" 1 " and "0" is a representation while 

in a play with two dices, the pair of numbers showing the number of eyes on 

the faces of the dices are another representation. 

Looking at a digital signal we may subjectively reason about the amount of 

information in a signal. We consider two cases. The first case is character

ized by the probability of a "1" being 1.0. The second case is characterized 

by the probability of a "0" being 1.0. In both of these cases it is true that if we 

know the value of one bit we with certainty know the value of the next bit. 

Accordingly after the first observation nothing new is to be found by further 

observations. 

Now we look at a case where the probability of" 1" and "0" are the same and 

equal to 0.5. Then we know nothing about the value of the next bit from the 

knowledge of the value of the present bit. Accordingly we learn something 
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new with each observation. This case represents a situation of maximum 

information for a system with two possible outcomes. 

Next consider a play with two dice. We make observations of the pair of 

numbers indicating the number of eyes on each individual dice. We get 36 

different unique pairs of numbers that all have the probability 1136 to ap

pear. Thus we have no possibility to judge in advance of a throw which two 

numbers will appear next. In a number system, i.e. like the binary, a certain 

number, nd, of digits is needed to describe the number of possible outcomes 

of our play of dices. This number nd is proportional to [n( 36). 

Shannon, (102), introduced the number E = -p In(p) - (1 - p) In( 1 - p) as a 

measure of information in a binary signal, see Figure 3. 

E = - p In(p) -( I-p) In( I-p) 

E 

0.0 1.0 p 

Figure 3 Entropy of a binary signal, with the probability p for a bit to be 
"}". 

n 

In general that number is written E = - I Pi In(p j) for a signal or obser
j= 1 

vation with n possible outcomes. The number E is called entropy (or infor-

mation). The number Pi is the probability of getting outcome number i. 

Applying that expression to our play of dice above gives 
36 

Epair = I i6 In(i6) = In(36). From that result we may conclude that 
(i= 1) 
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the information in the case of number pairs in our play with dice is the num

ber of digits you need in a number system to describe the number of possible 

outcomes. 

Why should that complicated formula be used if just the logarithm of the 

number of possible outcomes could be used? There has to be something 

more to it. 

To get some more reasoning for the more complex expression with proba

bilities we look a little more on our play of dice. Let us make some restric

tion on the observations. We do not observe the different pairs of numbers 

as individuals. Instead we take as our observation the sum of the two num

bers in a pair. This restrict our outcomes to single numbers i.e. {2, 3,4,5,6, 

7,8,9,10,11, 12}. As different pair of numbers may give the same sum, the 

probabilities of the eleven different outcomes are not equal. In fact they are 

{ I 2 3 4 5 6 5 4 3 2 I} Th" E - 2270 'f 
36' 36' 36' 36' 36' 36' 36' 36' 36' 36' 36' IS gIves us ~um -. I we 

evaluate the general Shannon entropy from the previous page, using the 

eleven probabilities above. In comparison we have Epair = 3.584. We note 

that our restriction on the observations has lowered the information by !lE = 

1.314. 

Our restriction is a structure that we apply to our observations. From the 

reasoning above we may conclude that this structure represent an informa

tion !lE = 1.314. Further we observe that the structure is documented as a 

probability density function. For a system we see that the less structure the 

higher the information content in the system. 

Once again going back to our discussion on the binary signal we introduce a 

known pattern in the appearance of the "I" and "0". It may be that there is 

always 5 "1" and then 5 "0", repeating itself in a never ending series. We 

still have equal probability of" 1" or "0" but the information in the signal is 

less with regard to the situation where there was no known pattern. This is 

due to the fact that we stand a better chance of guessing the next bit once we 
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know the present, as we are aware of the pattern. This pattern is an other 

example of added structure. 

Our discussion leads us to the statement : 

* Information content of a system is size and lack of structure. 

Interesting discussions on this may be found in the references (72),(86) and 

(100). The author has found the following visualization useful. The more 

effort that is needed to find some item in a body of material, the more infor

mation there is in the material. 

Now let us bring up some aspects on information location. In reference (68) 

Wearn comments on information as a reduction of uncertainty. This is a 

very common pitfall. Reduction of uncertainty is in effect reduction of in

formation. We can see that the comprehension of what is information is es

sential. What Weam aims at is that if the information inherent in a system is 

moved to the mind of the observer then the observer becomes less uncertain 

about the system. This is a learning or cognitive process which is the spe

ciality of Wearn. The location of information is obviously of importance. 

Issues like this have been discussed by Brillouin, (100). 

Norman has a very interesting discussion on location of information in con

nection with user interfaces, in the book Psychology of everyday things. 

(70). A comparison of the driver environment of a modern car and the key

pad for access of all features of a modem telephone is very illustrative. A 

common user exposed to a new car is capable of accessing most features 

after just a couple of minutes, without the aid of a manual. The same is not 

applicable for a modern telephone system. This show how information is 

shown to the user. Even though information theoretical terminology is not 

used the discussion is just about what Brillouin brings up. This is an inter

esting application of information theory in product development and quali

ty engineering. We will come back to this in chapter 8. 

Throughout this report we are looking into quality techniques resulting in a 

reduction of information in the system. The minimizing information level is 
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one that allows the system to operate in just the desired way and nothing 

else. 

In the discussion above we have assumed the observation space to be dis

crete. Hence we have worked with a discrete probability density function. 

Of course the same arguments can be made with a continuous observation 

space. We may illustrate the observation space with a continuous stochastic 

variable x. Then we have a probability density functionp(x). The informa-

tion E is then written as E = - f p(x)ln(p(x))dx. Integration is carried 

out over the entire observation space. From theoretical aspects the formula

tion over continuous observation space is of some interest. In application 

discrete observation space will however be created in some way or another. 

We shall see later that information on continuous observation space is 

somewhat different from information on discrete observation space. This 

will give certain consequences for the formulation of our quality metric. 

In next section we will discuss quality in terms of information. 

5.2. Poor quality - a surplus of information. 

Consider a steering system of a truck. We may look at this system in terms of 

Figure l.(i.e. the general dynamic system description from a robust engi

neering perspective). The turning angle of the steering wheel is the input 

signal. The turning radius of the truck is the function signal. The input sig

nal contains all the information that the user wants to see in the function sig

nal. 

From the previous section we know that the information in the input signal 

may be found from the probability density function of the steering angle. 

Obviously we would like to see the same information in the probability den

sity function for the turning radius of the truck. We know from experience 

that this will not be the case. 
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The reason for the difference in information is that one steering wheel angle 

gives different turning radii depending on the conditions. The conditions 

for the turning maneuvers may be weather conditions, road surface condi

tion, tyre conditions etc. These conditions are of course nothing that a de

signer may put very much restraints on. From the probability density func

tions for the different factors representing these conditions we may 

calculate the information content of these factors. In relation to Figure 1 we 

may identify the condition factors above as noise factors. 

The information of the noise factors is entering into the system. By influ

ence on the system performance the noise information finds its way to the 

function signal of the system. We can see that the system function gets less 

determinate. In other words the structure of the system function signal is 

decreasing. Accordingly the system function signal contains more informa

tion than expected. 

Assume that we have two different steering system designs with different 

susceptibility to noise factor influence on the system function signal. The 

difference may be differing values of the design factors, i.e. the control fac

tors as identified in Figure 1. We would judge the one system with the low

er susceptibility as representing better quality. This system would also 

show a closer agreement between the information of the input signal and the 

information of the system function signal. 

Accordingly we conclude that poor quality is equivalent to an excess of in

formation. Further this added information is entering the system as noise. 

5.3. Information and quality evaluation. 

In this section we will be engaged with some basic observations of proper

ties of the information concept with respect to quality evaluation. 

In reference (64) a paper feeding system of a copying machine, see Figure 4 

was discussed. In this section we will discuss alternative quality character-
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istics for this system. This was done also in the given reference but we will 

use information arguments. 

Force 

Paper stack 

Guide 

Figure 4 Simple sketch of a paper feeding system in a copying machine. 

To be able to chose usable quality characteristics a function description of 

the system is needed. Figure 5 shows an example of a function description 

of a paper feeding system. We will concentrate on the function "feed one 

sheet". Failure to deliver this function either means feeding no sheet or 

feeding more than one sheet. 

Feed one t-
Feed paper Y sheet 
consistently i\, 

Transpor r-
sheet 

Figure 5 Function family tree of a paper feeding system. 

Above we have seen that information content may be a useful quality mea

sure. Let us evaluate two different quality characteristics. They will be de

scribed as they are analyzed. 

The first quality characteristic to be considered is "fraction defective feed

ings", p, Figure 6. Two performance levels PI = 0.0001 and PIJ = 0.00001 

are evaluated. Fraction defective represents a two class probability density 

function. The probabilities are p and (1-p). We may calculate the informa

tion of each level of operation according to the formulae in section 5.1. 
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We will get El = 1.021xlO-3andEIl = 1.251xl0-4 respectively. As perform

ance level 11 obviously represents better quality we would expect lower in

formation content in the signal from that case. This is also what we get. The 

difference is El - Ell = 8.96xI0-4. This observation agrees well with our 

previous discussion on poor quality as a surplus of information. Whether 

the dynamic in the signal is sufficient or not is an issue that we will come 

back to. Before we do that we will re-evaluate the system using another 

quality characteristic. 

100 

75 
o I 

• 11 
50 

25 

0 
Fault OK 

Figure 6 Diagram over two performance levels as shown by ''fraction de

fective". 

The second quality characteristic is constructed from the detailed knowl

edge of the design. As indicated above we have two failure modes for the 

function studied. That is, feeding no sheets and feeding two or more sheets. 

In relation to Figure 4 there are two threshold values for the feeding roller 

pressure force, F. The feeding roller pressure force is of course a subfunc

tion of the main function feed one paper. There is one threshold for each 

failure mode, Figure 7. 
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Force 
Threshold force 
for feeding F2 - - -,- - -
two sheets T 

Threshold force 
for feeding F 1 
a single sheet 

Operating 
window 

__ t __ _ 

Feeding single 
sheet 

Feeding two 
sheets 

Figure 7 Operating window for roller pressure force. 

The space between F 1 and F2 makes up an operating window. Putting the 

operating force Fo in the center of the operating window and keeping the 

variation of Fo, F 1 and F2 as low as possible makes the design robust. We 

will get density functions for the thresholds and the operating force as 

shown in Figure 8. 

, 
• • • , 

• • • • • • • • • • • • • • • • • • • 

Fo 

• • • • • • • • • • • • • • • • • • • • • • • • • • , , 

Legend: 

•• ••• F 1, F2 density functions. 

Fo density function 
performance level I 
Fo density function 
performance level 11 

Figure 8 Two quality performance levels as shown by roller pressureforce. 

The overlap between the Fo density function and the two threshold density 

functions represents the probability of failure. From Figure 8 we may see 

that three different robust engineering strategies are possible; I, keep varia

tions of thresholds down; 2, keep variation of operating force down; 3, a 

combination of 1 and 2. Figure 8 illustrates strategy 2. The two perform-
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ance levels shown are the same as used for the "fraction defecti ve character

istic, i.e. probability of failure being 0.0001 and 0.00001 respectively. 

Normal probability density functions are used. Again using the formulae of 

section 5.1. we may calculate the information in the signal from each quali

ty level. Continuous density functions are used. We get Eel = 4.452 Eell = 

4.143. We observe once again that the performance level with the lower 

failure rate, i.e. higher quality, is producing a function signal with lower in

formation content. 

Further we observe the difference Eel - Ecll =0.309. Considering the quo-

. b Eel_Eell 34 h I tlent etween EeI- Eell and El- Ell we get Ir = E _ E = 5. T e at-
I 11 

ter characteristic gives 345 times more information representing the same 

difference in quality level. 

This difference in information between the different characteristics have 

two different reasons. The first is that a given design of quality characteris

tic can only represent a limited amount of information. In section 5.1. we 

saw examples of this. In our play of dice we had first a characteristic (num

ber pairs) with a density function with 36 classes. The maximum informa

tion we get when all probabilities of the different classes are equal. In this 

case it corresponds to E36max = In( 36) = 3.584. After our restriction we have 

only 11 classes left. Hence Ellmm: = In( 11) = 2.400. The actual information 

level that we got in the restrained case was Esum = 2.270 which is lower than 

Ell max' Our restraint brings structure to the original set of outcomes in two 

ways. First it brings the number of classes down and then it brings structure 

to the eleven classes by a density function. We conclude that the maximum 

limit of information of a discrete valued characteristic is In( N) where N is 

the number of classes. 

The second reason for the information differences found above is very simi

lar to the first. It is found as we try to derive the continuous probability func-
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tion formulation of information as a limiting case of the discrete probability 

formulation. Trying to do that the continuous formulation will be found to 

be indeterminate by an arbitrary constant, see Shannon (102). The arbitrary 

constant is like the indeterminacy of the potential energy in mechanical en

gineering, i.e. an arbitrary choice of reference level gives you whatever po

tential energy number you want. 

Before we come to any conclusions on the above discussion note that the 

information measure has the properties wanted, i.e. better quality implies 

lower information content. It is a monotonic relation. Further we know 

from robust engineering that a characteristic with more classes is better than 

one with fewer classes. The first statement is however true only within rea

sonable limits from an acceptable quality level. In our example we wanted 

to have all outcomes in one class, successful single sheet feeds. Thus the 

less information the better. In an example with pattern recognition on a 

photograph we may regard the color density function as a target probability 

function. That pattern represents the expected information. More informa

tion or less information in the photograph makes it harder to recognize the 

pattern. 

We see that Figure 3, i.e. the Shannon information for a binary signal, is still 

valid for the two class characteristics discussed above in this section. Note 

that a system design consistently giving failures gives a system function 

signal with zero information. This observation is interesting as we try relate 

information content to quality level. A feeder system consistently giving 

good feedings also gives a system function signal with zero information. 

We need a mean to discriminate between the two system states. 

In the next chapter we will see that a target distribution for an information 

distance evaluation does present such a mean. 
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6. A new quality metric 

6.1. Information distance as a quality metric. 

To design a quality measure based on information we need to have some

thing that does not suffer from the indeterminacy of the continuous formula

tion. Further we need to direct the measure to what we want. Thus we wish 

to avoid getting an indication of good quality for something which is injust 

the opposite end of the spectrum. We recall the situation with the Shannon 

entropy for a binary signal in section 5.1. , Figure 3. 

On the basis of the above deficiencies, entropy or information has hitherto 

been disapproved of as a quality measure. Taguchi also argues this from 

practical reasons in terms of involved calculations, (80). The deficiencies 

could be handled however by using the differential measure of information 

using a fixed a priori probability density function, a target probability densi

ty function. The involved calculations are still valid as long as calculations 

are made by hand. The author believes this to be an irrelevant remark as the 

necessary calculations may easily be done on a pocket calculator. The au

thor is in favor of an information theoretically based quality metric. Analy

sis of the results from a designed experiment contains two parts. Weighing 

the levels of a control factor against each other and evaluating the signifi

cance of the different factors against each other. The latter is done by analy

sis of variance, ANOVA. This part is not effected by the proposed new met

ric. The choice the best control factor levels is done using the new quality 

metric. The evaluations necessary for an information theoretically based 

quality metric is only a fraction of what it takes to do the ANOVA. 

However over recent years researchers are directing attention to the possi

bility of using information metrics for quality. A very rigorous approach is 

made by Suh, (34). Suh proposes a very simple quality metric based on an 

analysis of the SN-ratio by Taguchi and the theory of information. This met

ric is given as a demonstration and it takes little account of anything else 
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other than gross deviations. It does not have a clear connection to quality 

costs. However Suh is clearly advocating the relation between quality and 

information. An interesting study that tries to improve on the SIN-ratio con

cept is presented by de Doer et. al., (56). After evaluation of several differ

ent adaptations of SIN-ratios originating from the quality loss function they 

propose a robustness coefficient. based on an evaluation of the overlap be

tween the predicted output probability density distribution function and an 

expected or demanded tolerance interval around the target value. This value 

is based on pure mathematical statistics and does not draw on the physical 

process going on in the object under study. It is thus difficult to include a 

priori knowledge. Actually this measure comes quite close to the one pro

posed by Nam Suh, as stated above. 

A very interesting investigation on quality metric or performance measures 

has been carried out by Leon et. al. (35). Their alternative metrics are eva

luated on theoretical merits. SN-ratios as well as others are considered. Re

lations to quality costs are discussed. Leon et. al., (88), also give a very in

teresting discussion on Performance Measures Independent of 

Adjustments, PerMIA. Box, (69), emphasis the need for PerMIA too The 

SIN-ratio due to Taguchi is not a PerMIA. Information metrics in terms of 

entropy are not discussed in those papers. Carroll et. al., (57), give a very 

interesting investigation on PerM lA that is coming close to the metric pro

posed in this thesis. 

In many areas information content has been successfully used to develop 

new technology and to advance the level of understanding. One such area is 

environmental monitoring as proposed by Wu et. al. (33). Another area is 

image recognition. In the terminology introduced above one would regard 

the searched pattern as the input signal. The actual picture where the pattern 

is to be found is the response signal. The difference between pattern and pic

ture is the noise introduced via the picture reproduction system, (66),(86). 

This difference may also be regarded as added information. Special mea

sures using differential information have been designed and used for this 
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purpose, (66). In case the noise level is very high special adaptations of the 

information distance measure has to be made. At low noise levels the infor

mation distance as discussed below may be used as is. The a priori density 

function is then the searched pattern. The pattern is represented as a density 

distribution. This is compared with the density distribution for the picture. 

When the two density distributions are identical the differential information 

IS zero. 

We may regard the etching process in the printed circuit board production as 

an image reproduction process. Thus for this application the reasoning 

above is directly applicable. The differential information could be used as a 

quality measure. Quality is 100% when the differential information is zero. 

• 

... q(x) · , · ' · .. • , 
• , 
• , 
• , 
• • • , , , , 

x 

Figure 9 Information distance quantify difference between density func

ti(ms q(x) and p(x). 

Differential information could be written in different forms. One is the Kull

back-Leibler distance, (86),(66), 

DKL( P:Q) = ~ Pi In(p/qj) or 

DKL(P:Q) = J p(x) In(p(x)/q(x)) dx 

where Q, ( q(x) ), is the a priori density function and P, (p(x) ), the actual 

density function, see Figure 9. This however has some drawbacks. Particu-
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larly this is true for continuous stochastic variables. One example is the val

ues of x for which p(x) or q(x) are zero. 

The a priori density function can be determined as the user has full control 

over that function. If the a priori density function is truly zero for some val

ues x those values are impossible values and cannot be an outcome of the 

system function. The word impossible will be more understandable as we 

later talk about how to design the a priori or the target density function. The 

actual or observed density function, p(x) is harder to handle. As it is based 

on a truncated population some x-values may be assigned zero probability 

even though it is a possible value. The problem in this case is that a computer 

implementation becomes more involved as limiting expressions for p(x) 

In(p(x))have to be introduced as p(x) approaches zero. In case that is not 

done overflow problems will appear. 

Within information theory there are more general measures of differential 

information. These are often called information distances, (66). For our pur

poses one such class is particularly usable. This class stated as 

D(P:Q) = ~ (J+Pi )f((J+qi)I(J+Pi» or 

D(P:Q) = f (J+p(x»)f((1+q(x»)I(1+p(x») dx. 

The functionf(.) is a general twice differential convex function. We propose 

to usef(x)=xln(x). The added constant "1" may in fact be very arbitrary. 

However in combination with the particular choice of f( x) the value" 1" is 

very appropriate. That means the we get zero contribution for x-values 

where p(x)or q(x) is zero. 

Further we propose to make the measure symmetric in terms of density 

functions. A symmetric measure is introduced mainly for the sake of ease of 

use, i.e. minimizing the risk to misplace the two density functions in the for

mula. Hence our measure is 
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D(P:Q) = 4 ((1+Pi )In((1+Pi)/(1+qi))+(l+qi ) In((1+qi)/(1+Pi))) or 

D(P:Q) = J (((1+p(x)) [n(( 1 +p(x))/( 1 +q(x)))+( 1 +q(x)) 

f(( 1 +q(x))/( 1 +p(x)))) dx . 

In these expressions Pi, qi, p(x) and q(x) may be defined over a multidimen

sional stochastic variable x. For example the copper pattern on a, printed 

circuit board, PCB, can be defined as a density function of the position (x,y) 

on the PCB. 

In the case of a discrete valued stochastic variable the above definition pres

ents no problem. In the case of a continuous variable there are some prob

lems in limiting cases. It may be noted that in real applications all variables 

will be handled as discrete variables. However the limiting cases give some 

good information about the nature of quality. 

Limiting cases also represent strong arguments for the choice of distance 

definition. The present choice has some good properties in the limits as 

compared to the KulIback-Leibler distance. For example the former has a 

limiting value as the actual probability distribution goes to extremes with a 

given target distribution. Under the same conditions the Kullback-Leibler 

distance, DKL, is increasing over any limit. See the following sections. 

6.2. Information distance evaluated. 

In this section we will evaluate the proposed information distance for some 

different cases. We will discuss the different properties disclosed in these 

exerCIses. 

6.2.1. Smaller is better 

6.2.1.1. a) Uniform probability density 

The target probability density is assumed to be uniform in the interval (O,a). 

The response probability density function is assumed to be uniform in the 
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interval (O,b). The information distance is plotted in Figure 10. Three differ

ent values for a, ( 0.95, 1.0, 1.05) is used. The distance comes to zero as b 

equals a. We note the fact that the distance is increasing as b becomes less 

than a. This is correct in terms of information distance but may be a little 

awkward in the light of quality. If we are at low cost, achieving a sharper 

probability density function than the target probability density function this 

should be judged to be high quality. Else the measure is contradictory. This 

situation puts emphasis on the choice of target probability density function 

to represent world class quality level. Properly handled this would not be a 

big problem in practice. 

Information 

distance 
D(p~:~) ________________________________ ~ 

,---------------~ Density function~ 
• • 
• 

o ab· ---------------, a=0.95 
a=1.00 
a=1.05 

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 
b 

Figure J 0 Information distance between Uniform probability density func

tions Uni(O,a) and Uni(O,b) as a function of the parameters a and b. 

With the target distribution parameter, a, kept constant the proposed infor

mation distance approaches D = In( 1 + !) as the actual distribution pa

rameter b approaches 00. As b approaches 0.0 D does not have a limiting 

value. In the light of the practical case this not particularly worrying. We 

often see a uncontrolled cost increase as we try to get a response to be on one 
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single target value with 100% probability. In comparison the DKL, (Kull

back-Leibler distance) does not have any corresponding limiting values. 

6.2.1.2. b) Exponential probability density function 

The target probability density function in this case is Q(x) = q e-qx . The 

probability density function of the actual response is P(x) = p e-px. The in

formation distance for q = 1.0 and varying values of p is plotted in Figure 11. 

Information 

distance 
D(p:q-r) _________________ --. 

,-.-.-----------~ 
I Density ~C~?nS I 

-- P(x) 

o x ---------------
q=1.00 

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 
p 

Figure 11 Information distance between exponential probability density 

functions Q(x) = q e-qxand P(x) = p e-px. 

Once again we see that the distance increases as the response comes closer 

to zero than the target. Still we have a minimum at p = q. With a good choice 

of target density function this will be satisfactory. In this context a good 

choice of target probability density function is one that reflects world class 

quality level. In that scenario an increasing information distance as the actu

al probability density function goes sharper than target reflects overspend

ing. The quality level is not justified by the cost i takes to achieve it. 
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As the parameter p of the actual distribution approaches 0 or 00 the distance 

approaches, D = ~ln(l + q) - 1 + In(l + q). As a comparison the KL-

distance is written D KL = ~ + P - 2. This expression does not approach 

any limiting value. 

6.2.2. Nominal is best 

6.2.2.1. a) Uniform probability density function 

In the case of nominal is best the target density function may be assumed to 

be a uniform density function in the interval (a I ,a2). The response density 

function may be of different shape. Two different cases are represented in 

Figure 12 and Figure 13 respectively. The response is assumed to be uni

form in the interval (bl,b2) 

Information 

distance 
D(p:q) 

Density function~ 

-0.25 

I 
I 

I x I : 

o at bl a2 b2: ---------------, 

-0.15 -0.05 

.--------------~ I I 

: a2-a I =b2-b 1 =0.1: 
I I .. -------------_. 

\ 
0.05 0.15 0.25 

x 

Figure J 2 Information distance between two equal uniform probability 

density functions as a function of the offset x between them. 

In the first case the width of the two intervals (a I ,a2) and Cb I ,b2) is the same. 

The response is offset by the distance x from the target. The information dis-
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tance as a function of the offset x is shown in Figure 12. We note that the 

information distance is zero when the offset is zero. When the offset be

comes so big that there is no overlap between the two density functions the 

information distance remains constant no matter how big the offset x (as

suming the width of (bI,b2) being constant). This limiting value is 

D = 21n(1 + a 1 a ). 
2 1 

This latter property is interesting. It puts some light on what is a target densi

ty function. In the present case, every response within the interval (a I ,a2) is 

as good. Any response outside this interval is of no value. This is very well 

demonstrated with the information distance remaining constant when all re

sponses fall outside (a I ,a2), irrespective of the value of (bI +b2)/2. 

The second case is one where the target and the response density functions 

are centered around the same point. The information distance as a function 

of x, half the difference in width between the density functions, is shown in 

Figure 13. The variable x is positive when (b},b2) is wider than (a.,a2). 

Information 

distance 
D(p:q) 

r-------------------------------------------~ 

\ 
\. 

\ 
Density function~ 

I 

xl 

__ 9 __ ~ t ? J _ £!~ _ ~~ ! 

,./..-" 
// 

.. """-

~ ......... ----..... -...... ---.-...... ---. 

---_ .... 

.-.-----.~ 
I I 

: a2-a l=0.1: 
I I a.. _______ " 

-0.045 -0.025 -0.005 0.015 0.035 0.055 0.075 0.095 
x 

Figure J 3 Information distance between two uniform probability density 

functions Uni(a1,a2) and Uni(b1,b2) with equal mean value. 

79 



We note that the information distance is minimum (zero) as the two density 

functions coincide. As the response density function becomes very sharp 

the information distance increases. 

With the target distribution parameters a 1 and a2 constant the proposed in

formation distance approaches D = In(1 + a 1 a ) as the actual distribu-
2 1 

tion parameter (b2 - b t) approaches 00. As (b2 - bt) approaches 0.0 D does 

not have a limiting value. The DKL does not have any corresponding limit

ing values. 

In case of "nominal is best" and "larger is better" the exponential distribu

tion can not be used. Evaluations for this case can then not be made. 

6.3. Comments on the proposed information distances. 

In the proposed formulae for information distance probability distributions, 

p(x), always appear as (1 +p(x)). Because of this there is no contribution to 

the distance from a distribution p(x) or q(x) in an interval where the distribu

tion has a zero value. In a process state where only waste is produced we will 

have no overlap between the two distributions p(x) and q(x). Thus the infor

mation distance has a limiting value built up of two independent terms. 

DUm;r = I q(x)ln(l + q(x))dx + I p(x)ln(1 + p(x))dx 

Another extreme situation is where the actual distribution shows no con

centration patterns whatsoever. This case could be illustrated with the expo

nential distribution limiting cases in section 6.2.1.2. above. There a limiting 

value exists. 

As the actual probability density distribution gets sharper (Le. shows more 

concentration) than the target probability density distribution we get anoth

er limiting case. It appears that at this limit a limiting value does not exist 
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even for the proposed information distance. The quality losses at this ex

treme are often dominated with internal losses. Thus the company is over

spending to achieve a performance better than expected, by the customer, 

i.e. a performance level far beyond the limit where the customer experi

ences an added value. For this there may appear losses at a magnitude that 

does not relate to the process performance at all. Accordingly the interpreta

tion is that it is reasonable that the information distance may show very high 

values at this extreme. This will put the focus on unbalance of attention be

tween different product processes. This is the same as saying that customer 

losses due to concurrent product processes are orders of magnitude larger. 

6.4. Target probability density function. 

The target density function is the best that would be expected from the out

put of the system. The response values corresponding to a very low proba

bility intensity are values that are really not wanted even though they may 

appear under very special circumstances. From this point of view it may be 

seen that the target density function is related to the loss function. Response 

values that incur great losses to the company are also values that appear with 

a very low probability intensity. 

The quality categories, smaller is better and nominal is best may be repre

sented by a Kronecker b(x-xo)-function as the target density function. 

When this is done it is also said that anything else but the value Xo is of no 

value to the system user. This is seldom the case. The information distance 

introduced above tends to be infinite as the target density function goes to

wards b(x-xo). This then reflects that no values but Xo can be accepted. 

A similar situation appears for a target density function represented by a 

rectangular pulse in the x-interval (a,b). This target density function tells us 

that values for x outside this interval are of no value. That is to say that a 

value for x = b + ~ is as bad as b + I O~. In terms of the above information 

distance, the distance is the same for either value of x. 

81 



None of the above cases are practical as they are almost never achievable. 

Instead a suitable target density function has to be chosen. 

#.~ 

8(x-xo) 

I VPI(X) , , , , , , , , , , 
I \ 
I \ 

Xo x 

Figure 14 Special target probability density functions. 

In cases where we are striving to achieve a 8(x-xo) type of target it should be 

smoothed out like PI (x) in Figure 14. A similar procedure is valid for a rect

angular box type target density function like P2(X) in Figure 14. That density 

function will get smooth edges as indicated by the density function P3(X). 

This procedure is very similar to a smoothing strategy used in some optimi

zation algorithms. For example the penalty function technique may illus

trate this, (95). An application in the area of quality engineering is demon

strated by Styblinski, (6). This shows how an optimization process may be 

tuned into the present stage of performance in terms of both positioning and 

dynamics. 

6.4.1. Static characteristics. 

A suitable target density function should be chosen such that performance 

becomes world class or such that quality losses come to acceptable levels in 

comparison with the present level of quality in the company. 

The target density function is then designed with the aid of the quality loss 

function. To illustrate this we look at some examples. 
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For the categories smaller is better and larger is better, see Figure 15, a log

normal density function may be used for x and l/x respectively as x is sup

posed to be non-negative. Some guidance for the choice of density function 

may be found in reference, (66). Using the loss function L(x) = k x2 or L(x) 

= klx2, the average loss per piece becomes k«j2+~2) or k(cr2 + ~2)3/~8, re

spectively. Here (j and J.! is respectively representing sample standard devi

ation and sample mean 

• • • • • • • • • • • • • • • • 

L(x) 

, 
x 

• • • • • • • • • • • • • • • • • • 
, 
,/p(x) 

• , 
x 

Figure 15 Loss function and target probability density function, "smaller 

is better" and" larger is better". 

An exponential density function with parameter 1I~ may be used as a target 

density function for smaller is better. The average loss is then 2k~2. A uni

form density function in the interval (O,a) may also used as a target probabil

ity density function for smaller is better. This gives the average loss k a2/3. 

In this case however the target probability density function properties as dis

cussed in the previous section have to be considered. 

Nominal is best has the loss function L(x) = k (x-m)2, where m is the target 

value. If x is normally distributed the average loss is k«~ - m)2 + cr2), see 

Figure 16. With a uniform density function for x in the interval (m-al2, 

m+a/2) the average loss is ka2/l2. Again, the target density function proper

ties need to be considered. 
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L(x) ,.. 
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m x 

Figure 16 Loss function and target probability density junction, "nominal 

is best". 

By setting the target on average loss to world class, the parameters for the 

target distributions may be set according to the expressions given above. In 

this way the state of the art in the actual technology is directly tied into the 

development process. Assessment of the loss is very essential to this way of 

working. This puts emphasis on analysis of system function and system 

structure. 

6.4.2. Dynamic characteristics. 

The concepts from static quality characteristics may be readily transferred 

to dynamic quality characteristics. The loss function translates into a valley 

type function with its bottom following the ideal system function descrip

tion in the s-F plane as shown in Figure 17. The cross section of the valley is 

the parabola that we have seen for "nominal is best" type characteristics. 

The target function signal probability density function is a ridge type func

tion. The locus ofthe maximum probability intensity is projected directly on 

to the ideal system function description in the s-F plane. The cross section 

of the target function signal density function may be a normal probability 

density function. The average ofthis normal probability density function is 

obviously for every Si, coinciding with the ideal system function perform-
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ance at si. The standard deviati<;m a(s) is determined in an analogous way by 

evaluation of the overall loss according to the loss function. 

L(F,s) 
I 

I 
I 
I 

Ideal system function 

r-----------------~ I 
,s: input signal 
: F: function signal: 
I I 

: L: loss function : .. _----------------, 
S 

Figure 17 Loss function illustration for a dynamic characteristic. 

In the general continuous valued case the procedure of determining a(s) is a 

matter of nonlinear regression. In most practical cases however there will be 

only a limited number of discrete values, SI, s2, s3, .... 

6.4.3. Information distance normalization 

To create a quality measure applicable through the universe of processes a 

general normalization is needed. This is a task outside the scope of this the

sis. However some fundamentals on the way towards that goal may be 

treated or discussed here. First of all we restrict ourselves to a sequence of 

improvement exercises to one and the same process observing the same 

function. Further we keep the target distribution function for this process 

function the same. The target function kept the same also tells us that the 

discretisation, i.e. the number of classes and the width of classes are kept 

constant. 

Under this assumption the maximum assessable information is the same. As 

we alter our process under study, we address this same maximum amount of 
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information. This means that comparison between process evaluations i.e. 

information distances from sequentially performed process improvement 

exercises are valid and relevant. Thus a process state that gives a smaller 

information distance than another is better. 

Next we look into the possibility to quantify,quality absolutely. For most ap

plications it is possible to identify some state where it is only producing 

waste. I.e. everything put into the process is turned into waste. That waste 

and the value of the adverse effects that the process results have on the envi

ronment represent an upper limit, Lmax, for the quality loss connected to this 

process. In this state there is no overlap between the target probability dis

tribution function and the actual process function probability distribution 

function. With the proposed information distance evaluation there exists a 

limiting value, DUmit, for the information distance D corresponding to this 

case. 

Thus we have Do corresponding to the acceptable (world class) loss level, 

Lwn and DUmit corresponding to maximum loss, Lmax.In this way we have 

defined two fixed points for a scale linking information distance and the 

quality losses. Whether or not this scale is a linear scale or not is not proven 

in the general case. A special case is seen in section 6.2.2.1. From the first 

part of that section it may be judged that the scale for this special case may 

be linear. However this is dependent on the loss function being a box-type 

function as the target in that example. In the general case the loss function 

and the target probability distribution have a dual relationship. This sug

gests that to be able to put up an expression for the shape of the scale a valid 

expression for the loss function is needed. In most cases this expression is 

not known. Accordingly Taguchi has proposed a quadratic expression as a 

first approximation, (93). The argument for this expression goes along the 

lines of the actual performance not being unreasonably far from target. 

For the limiting expression of information distance for exponential proba

bility density function given in section 6.2.1.2. a linear relation may be de-
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rived between D and the distribution parameter q. This relation is valid for 

small values of q. In section 6.4.1. the parameter q, i.e. 1/11, is related to the 

average loss corresponding to the target probability density distribution. 

As said above the quadratic loss function is only valid in the neighborhood 

of the target. Further we note from above that a linearization does exist. 

Thus we propose a linearization of the information distance around the tar

get distribution. We have set out a target probability density function to rep

resent world class loss level. This corresponds to zero information distance. 

That is our first fixed point for our information distance scale. Next we use 

expressions like those in section 6.4.1. to calculate an actual performance 

probability density function Puf (x),corresponding to r+ 1 times the losses at 

world class performance level. Then the information distance between that 

calculated performance probability density function, Puf (x), and the target 

probability density function is calculated. This gives us the second fixed 

point, Du!. for our linearized scale. At this point the excessive loss is rtimes 

the acceptable loss at world class performance level. 

We thus define the normalized linear information distance as Dnorm = r g 
uf 

. D is the distance as evaluated using the formulae from section 6.1. Du! is 

the calculated information at the upper fixed point as defined above. r is an 

integer defining the loss level at the upper fixed point as defined above. 

With this scale the Dnorm represents the size of the excessive loss in units of 

the acceptable loss at world class performance level. Thus Dllorm = 3.5 says 

that the excessive loss is 3.5 times the acceptable loss. 

6.5. Robust design using the new quality metric. 

In chapter 4. the standard procedure for robust design according to Taguchi 

was described. The eight step procedure had the following headings: 

• Quantifying system function 

• System factor listing 
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• Categorizing system factors 

• Design space and factor levels 

• Experimentation planning 

• Experimentation and data acquisition 

• Data analysis, optimization and prediction 

• Verification 

This section will be engaged with the changes to the robust design proce

dure due to the new information distance metric. Looking at the metric lay

out above we note that the existence of a target probability density function 

is a prerequisite for the application. It is also obvious that the establishing of 

a target density function is a TQM activity. The target density function rep

resents the long run quality target. Robust design is an activity to improve 

the system performance such that the target density function is approached. 

6.5.1. System function evaluation. 

In the previous sections the theory of the information metric was presented. 

It has been formulated for both discrete and continuous valued system func

tion signals. The continuous valued cases are of interest in applications of 

theory development. In practice however the discrete case is almost always 

used. In fact the author does not know of any application with continuous 

formulation. 

Above we have been talking about the choice of quality characteristics. Ta

guchi has argued against attribute data and in favour of continuous data. 

Consider an attribute characteristic using two classes, good and bad. From 

our discussion on information we may observe that the maximum informa

tion of a two class probability density function is In(2). As we increase the 

number of classes to, N, we get the maximum possible information In(N). 

From this we conclude that the Taguchi comment is sensible and the more 

classes the better. 

In terms of optimization ofthe experimentation there is an optimum number 

of classes. On one hand we want the most information. On the other hand we 
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want sensible sample density functions to an affordable experimentation 

cost. From the knowledge point of view we may adapt the class design to the 

present level of knowledge. I.e. if we know a lot we may have many and 

narrow classes. The experimentation cost aspect asks for few classes as that 

requires less observations in each sample. 

Now as we know that the number of classes is related to the knowledge or 

information we may use that knowledge to chose amongst quality charac

teristics. The general rule is to chose quality characteristics that makes it 

easy to create many classes. That is an indication on the characteristic being 

rich in information. As a general rule we will search for characteristics that 

are rich in information. 

The target density function given in general terms from the TQM activity 

may very well be presented as a continuous valued probability density func

tion. The main properties of the target density function are that it represents 

the sharpness of the target and the value of improvement for the system 

function. For each single application, that continuous valued probability 

density function is adapted to the present design of classes. 

6.5.1.1. Static characteristics. 

In chapter 4. different groups of characteristics were discussed. They were: 

Simple discrete values (simple enumerative values), Simple continuous 

values, Fixed marginal enumerative values, Multi-fractional values, Mul

ti-enumerative values, and Multi-variable values. Each group was as

signed a preferred analysis method. Using the information distance metric 

as outlined above the same analysis method would be used through out all 

groups. This makes the group assignments obsolete. Instead we may con

centrate on the design of classes. We observe that continuous valued charac

teristics will really be treated as classified data. This is achieved by dividing 

the value space into intervals or strata. Each interval represents one class. 

Irrespecti ve of whether the classes are ordered or not the classes are given a 
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sequence number. This sequence is then strictly adhered to. From that infor

mation cumulative classes from one end to the other are designed. Thus cu

mulative class I: sequence class 1, cumulative class 11: sequence class 1 and 

2, cumulative class III : sequence class 1, 2 and 3, etc are generated. The 

cumulative classes are needed to be able to make the predictions required. 

The predictions are made using the Logit-transform. In the accumulating 

analysis according to Taguchi the cumulative classes for the subjective 

judgements made for factor level settings are also needed. 

Having chosen the appropriate quality characteristic and designed the rele

vant classes, we proceed with the target probability density function adapta

tion. It is easily shown that the information distance metric may discrimi

nate the different test cases given by Box, (69), in his criticism of the 

SIN-Ratio. The discrimination could be to any level of accuracy. 

As the target density function is set the previous robust design procedure is 

followed up to the analysis phase. The experimentation layout and the pri

mary evaluation structure is shown in Figure 18. 

IN 
0 

Outer I 

s array 
e 

I :nnfroi 

E Raw data 
x Inner Raw Classified 
p array into 

n data distribution 
0 classes. 

# 1 22 1 ... X#1 X#2 X#3 ••• n#l n#2 n#3· 

Figure J 8 A standard experimentation layoutfor information metric appli

cation. 

The raw data X#i for each experiment # are classified into the same classes j 

as is used for the target probability densities,;. Thus the frequency numbers 
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n#j are generated. On the basis of these frequency numbers the response 

table is calculated in accordance with the experimental plan. 

Levels 11 Factors ... f . .. 
. . . 

k Pjk/, .. ·, Pjkj ... • 

... 

Table 6 Response table with relative frequencies for control factors, f and 

levels k. 

By dividing the frequency numbers in the response table with the total num

ber of observations for all control factor set-ups #, that assemble factor level 

k, the relative frequencies,PJ are created. (See Table 6). Using the formulae 

proposed in section 6.1. the information distances DfllPjkJ' ~) are calcu

lated. 

The objective of the robust design activity is to minimize the information 

distance. Hence the results in the response table are utilized to choose the 

optimum levels of the control factors to give a minimum information dis

tance. For each control factor, f, the level k which has the lowest information 

distance is chosen. 

If Dnorm is usedin this analysis the actual level of improvement in excessive 

loss is assessed. 

6.5.1.2. Dynamic characteristics. 

Dynamic characteristics have not yet been studied in real applications, us

ing the procedure outlined in this report. Hence there will not be any appli

cation discussed below. In principle however there is no difference between 

static and dynamic type quality characteristics using the proposed proce

dure. 

In our discussion we will refer to section 6.4.2. and Figure 17 where the tar

get density distribution is discussed. When handling a dynamic characteris-
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tic experimentally as many signal factor levels as judged necessary is cho

sen. Practically this will document itself as a repetition of the two rightmost 

columns of "rooms" in Figure 18, one for each level of the signal factor. The 

target density function will be a multidimensional function. 

In an application with one signal factor and one system function, there is one 

set of system function value intervals, defining classes to the density func

tion, for each signal factor level. The number of classes may vary for each 

signal factor level. The common approach will however be to use the same 

number of classes for each signal factor level. The major effort in the appli

cation to dynamic type characteristics will be in the design of the target den

sity function and the class definition intervals. Apart from the level of quali

ty this will also influence the sensitivity of the experimentation. 

The evaluation will be performed in just the same way as for static charac

teristics the only difference being that the total number of classes is the sum 

of classes at each signal factor level. The frequency numbers for each class 

is assembled in the same way as before and the relative frequency is calcu

lated based on the total number of observations. The information distance is 

calculated using the total number of classes. 

In this way there is a response table with information distances generated as 

in the case of static characteristics. 

6.5.2. Prediction. 

With respect to prediction the traditional robust design procedure relies on 

an additivity property in the quality characteristic itself. One of the differ

ences between Taguchi's version and the Fisher-Box version of experimen

tation is to be found here. Whereas Taguchi puts emphasis on the work be

fore the actual experimentation Fisher-Box put emphasis on the analysis 

after the experimentation. The former tries to achieve additivity through a 

good choice of control factors and characteristics. The latter tries to validate 

a va} id model, additi ve or otherwise, through statistical rigor in the analysis. 
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This is of course very appealing from a mathematician's point of view. 

However most practical engineers have a stronger ability in the domain of 

system performance for the studied product. 

In the proposed procedure we always get a response table in terms of infor

mation distance in addition to the frequency response table. The prediction 

activity may be run either way, according to Taguchi or Fisher-Box. The 

author has a preference to the Taguchi way as the domain knowledge is 

more important than knowledge of statistics. 

The prediction activity is done using the Logit-transform on cumulative fre

quencies corresponding to the control factor levels chosen from the re

sponse table. The prediction will give the cumulative frequencies PCOj. for 

the optimum conditions. Through analysis of variance it will also be possi

ble to get the confidence limits for the cumulative frequencies. See refer

ence (80). The ANOVA is performed using the frequency data just as it has 

always been done for classified data. 

It is important to emphasize what has been pointed out above. The informa

tion distance is a metric to evaluate the performance level of the product pro

cess. The ANOVA on the other hand is is a tool to evaluate the efficiency 

and quality of the experiment. It is not a tool to choose the factor levels giv

ing the best product process performance level. 

The level of improvement is evaluated using the information distance 

Do(POj, lj). Here POj is the relative frequencies corresponding to the cumu

lative frequencies PCOj. 

For dynamic characteristics the procedure is the same. I.e. create a sequence 

of all classes and work with the cumulative frequencies. 

We observe that what we have achieved by the introduction of information 

distance is a generalization and a formalization of the accumulation analysis 

according to Taguchi, (80). The formalization is that judgement for the best 
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control factor level is made from the information distance rather than a sub

jective judgement as proposed by Taguchi. The generalization is explained 

in the following way. 

In accumulating analysis the cumulative frequencies corresponding to each 

control factor level are calculated. The cumulative frequencies are an esti

mate of the probability distribution function. The judgement used to chose 

the best control factor level is to chose that level that corresponds to the cu

mulative frequency that approaches 1.0 fastest. In this way it is possible to 

handle, smaller is better and larger is better, type characteristics in a reason

able way. Nominal is best is not as easily handled. 

Looking at the probability distribution function what is wanted is a function 

rising from 0.0 to 1.0 as fast as possible to represent world class, as dis

cussed above. The target density function is in the continuous case the de

rivative of the target probability distribution function. Thus the target densi

ty function represents the steepness and the location of the rise in the 

probability distribution function. 

In this way we may consider the proposed procedure a generalization of ac

cumulating analysis that is able to handle, smaller is better, lager is better, 

nominal is best and dynamic type characteristics in just the same way 

throughout. 

It has been said above that the Logit-transform is used for the prediction of 

the probability distribution function. It is always applied to the distribution 

function (i.e. the cumulative frequencies) to get a stable performance of that 

prediction procedure. If non-cumulative classes had been used the predic

tion in different classes would be uncoupled and the resulting probability 

density function could add up to an accumulated probability larger than 1.0. 

Looking at the prediction in one class the Logit-transform may be analyzed 

by applying the information concept. 
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Figure 19 A information breakdown of the Logit-transform. 

First we introduce a slight redefinition of the Logit-transform. 

We call it o,n.We write Qln = - In 1 ; p . 

Th· b . n E + In(1 - p) 
IS may e rewntten as ~~In = - p . 

Here E is the Shannon information for a two class, i.e. binary, signal, 

E = - pln(p) - (1 - p)ln(1 - p). 

The two terms of the o,n expression are illustrated in Figure 19. Going back 

to our discussion in section 5.1. we recognize that E represent structure of 

the data represented in the presently analyzed class. A high value of E is rep

resenting a low level of structure. Next we take a look at the term -In( 1-p). 

Let p represent the probability of the outcome being what we want to get. 

Then if we want to learn anything more about the outcomes represented by 

the probability ( 1-p) we need to resolve the information to a corresponding 

degree of accuracy. What is the corresponding degree of accuracy? The 

number of observations needed to get any relevant number of observations 

of "( 1-p )"-outcomes are of the order 1 1 . We remember again from sec-
-p 

tion 5.1. that the information in such a number of observation is proportional 

to In 1 1 = - In(1 - p). This is exactly the second term. Thus we may 
-p 

95 



say the amount of information we need to interrogate in order to learn any

thing new is given by the second term. 

The factor p may be interpreted as an uncertainty over what we know about 

the outcome that we want to get, i.e. the data represented by the probability 

p. Looking at E we want it to be low. This is the case both for p close to 0.0 

and 1.0. However as p is close to 0.0 we know very little about the outcome 

we want to get. As p is close to 1.0 the situation is the opposite. This is repre-

sented by the factor p. The term - ~ is negative as p is close to 0.0. This 

represents a lack of information to say anything with any certainty for the 

outcome we want to get. Any new observation will at this point, with a high 

probability be of"( l-p)" group. Thus we will learn more about that group 

of data to say whether it may be anything of value or not. 

Now we may consider the!'!tn to be a measure of the amount of information 

to be interrogated to improve our knowledge of the out come we want. Of 

course we want this number to be as high as possible. I.e. if our knowledge is 

low very little is needed to get us more knowledged and vice versa. 

The prediction procedure using Logit-transform may in this light be de

scribed in the following way: 

The grand average of the analyzed cumulative class represents the present 

level of knowledge in terms of additional information to be interrogated for 

improvement. For each design factor, that factor level that will increase the 

information needed to be interrogated the most is chosen. Compare the actu

al calculations performed at the end of section 13.1. in the appendix A . 

The author has also noted that !'!tn is the negative of the derivative with re

spect to p of the Shannon information in the present class: Qtn = - ~~ . 

Analyzing this novel formulae that has not been observed before we see: As 

we want to increase p we have to decrease E. That is the same as striving for 
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big values of ~n. We can say that the E-price for change in p should be 

high. That is the principle of prediction using Logit transform. This also 

agrees with the principles of maximum entropy discussed by Kapur, (66). 

6.5.3. Verification. 

The result from the prediction activity is a probability distribution function. 

In the long run that distribution function will be verified by production re

sults. The verification activity in the robust design procedure is an addition

al experimentation run. The setup of that experimentation run is the opti

mum control factor levels generating the minimum information distance 

according to our analysis of the designed experiment plan. 

In the verification we use the distribution function from the prediction. An 

ANOVA presents a possibility to calculate a confidence interval for the 

probability distribution function for the characteristic studied. This will be 

demonstrated in the following applications. 

6.6. Summary of the new metric contributions. 

In the present chapter a new quality metric has been introduced. It has been 

demonstrated that it is unlike any other metrics tieing TQM activities like 

benchmarking into the metric through the target distribution. It has been 

shown that while traditional quality engineering is designing unique metrics 

for different applications the new quality metric is applicable throughout all 

applications. The target probability density function is designed from prod

uct process focus. This gives a natural focus on product process perfor

mance rather than statistical rigor of ex perimentation by design of the target 

function. The new metric relies on frequency table results. Thus the devel

opment activity of the experimentation efficiency could be focused on one 

form of data production. 

Further the new metric is designed from the basis of information theory. 

This has lead the way to the tight connection between quality engineering 
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and information theory. A novel interpretation of the Logit-transform from 

this perspective has been presented. Further application of the information 

theoretical perspective that give new interpretations will be presented in lat

er chapters. 
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7. Robust design application of new quality 
metric 

In the following sections the application of the proposed procedure to some 

examples will be illustrated and discussed. The first is the example from 

Phadke, (64). This will be followed by some applications from manufactur

ing of major plastic appliances, such as sewage pipes. 

7.1. Etching process for silicone chips. 

In section 5.5 of the book Quality engineering using robust design, (64), 

Phadke demonstrates a special technique, accumulating analysis, to ana

lyze ordered categorical data. The same set of raw data has also been ana

lyzed using the traditional analysis in the same reference. These analyses 

are reproduced in appendix A . 

The example of appendix A is an application of robust engineering in pro

duction process development. The example is used to illustrate the applica

tion of the new quality metric. 

The example is a process improvement in the manufacturing ofVLSI chips. 

This example includes several different characteristics such as the number 

of surface defects and the thickness deposition rate. The part of the example 

that we consider is that one that deals with the number of surface defects. 

The control factors for the manufacturing process used in the experiment are 

listed in Table 7 below. 

The control factors are assigned to the inner array. The noise factors are 

treated as compound factors in this example. The different noise factor lev

els are position of an individual wafer in the furnace and position of a cut 

chip on an individual wafer. This compounds the variation in gas flow, gas 

temperature and gas concentration. Thus the outer array is more or less col

lapsed into a row of observations. 
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Table 7 Control factors. 

Factor 

A. Deposition temperature (CO) 

B. Deposition pressure (mtorr) 

C. Nitrogen flow (sccm) 

D. Silane flow (seem) 

E. Settling time (min) 

F. Cleaning method 

This set of raw data has been used to show the properties of the new proce

dure. Two cases have been analyzed using two different target probability 

density functions. The class definition used in the present analysis is the 

same as in reference (64), Table 8. 

Table 8 Categories used in ordered categorical data analysis of defects. 

Category Observation Cumulative 

number category (defects) category (defects) 

I 0-3 0-3 

11 4-30 0-30 

11 31 - 300 0-300 

IV 301 - 1000 0-1000 

V > 1000 0-00 

The first probability density function is, probability 1.0 for class I and zero 

for class 11 through V. The second target density function is binomial 

Bin(5.0.05). The response tables in terms of information distance are shown 

in Table 11 and Table 12 respectively. 

The analysis by Phadke gives from a visual inspection of the charts in figure 

5.5 page 125, of reference (64), the following optimum choice AI, BJ, C3, 

D2 (0 I). El / E2, F2. The analysis with SIN-ratio in chapter 4, of reference 

(64), gives AI, BI, CJ, D I, E2, F2. In a trade off between different system 
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function the optimum choice becomes A), B2, Cl, D3, E2, F2. (See appendix 

A.) 

The ANOVA is carried out using the accumulated frequency number data. 

See reference (80). 

Table 9 ANOVA-table for 5 class data 

ANOVA for 5 class data 

Factor dof Square Sum Variance F-ratio 

A 8 133.6 16.69 716. 

B 8 104.3 13.04 559. 

C 8 24.6 3.08 114. 

D 8 15.4 1.93 83. 

E 8 10.0 1.25 54. 

F 8 33.5 4.19 180. 

Error 110 2.6 0.02 

Total 158 324 

Table J 0 Predictions for optimum combination, on 5 class data. 

Predictions for 5 class data 

Total class probabilities 

0.303 10.469 10.642 1°·778 11.000 

Logit-transform prediction (Al,BI,CI, DI,EI,F2) 

3.66 p2.02 124.54 135.88 I 
Predicted class probabilities 

0.6992 10.9402 1°·9965 1°·99997 jI.OOOO 

Upper class limits 

3 130 pOD 1
1000 loo 

We note from Table 10, that with a probability of 0.778 we will get fewer 

than 1000 surface defects judged from the overall data. The predicted opti-
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1 to factor level 2 as the binomial distribution parameter goes from 0.000 1 to 

0.1. This compares well with the graphs for the cumulative probabilities 

found in Appendix, A. The cumulative graphs corresponding to level 1 and 

2 respectively are quite different. Accordingly we are not surprised that they 

come close to different target distributions. We further note that the signifi

cance ofthe factor effects are good (see Table 9). Still there may be an ambi

guity left in the choice between two factor levels out of three. 

From the above discussion we may see that the procedure of factor level 

choice based on information distance is more stringent than the visual in

spection proposed earlier for accumulating analysis. On the other hand we 

see that the choice of target distribution really makes a difference. Accord

ingly with the information distance procedure we get a method to consis

tently control where we are heading with our improvement efforts. 

Table 13 Response table. Target probability density function Bin( 5, 0.1) 

Factor Level 1 Level 2 Level 3 Opti-
mum 

A 0.05 0.29 0.40 At 

B 0.04 0.13 0.50 Bl 
C 0.15 0.27 0.17 C3 (Ct) 

D 0.17 0.18 0.24 D( (D2) 

E 0.14 0.15 0.25 El (E2) 

F 0.24 0.11 0.29 F2 

To investigate the importance ofthe target density function further we made 

another study of the surface defects problem using 11 classes for our density 

function. 

We note that the 11 classes data agrees well with the 5 classes data. Further 

we see that the statistics are very good. We get enough observations in all 

classes. Obviously we get more information with 11 classes that do we with 

5 classes. 
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Table 14 ANOVA-tablefor 11 class data 

ANOVA for 11 classes data 

Factor dof Square Sum Variance F-ratio 

A 20 309.4 15.47 25.70 

B 20 225.8 11.29 18.75 -
C 20 57.2 2.86 4.75 

D 20 33.5 1.67 2.78 

E 20 18.7 0.93 1.55 

F 20 78.5 3.92 6.52 

Error 1490 897.0 0.60 

Total 1610 1620 

Table 15 Predictions for optimum combination, on 11 class data. 

Predictions on 11 class data 

1.000 

Upper class limits 

o 9999 

Phadke makes a prediction for the optimum choice given in Table 16. A pre

diction of the probability distribution function was made and verified by 

Phadke. That verified distribution function was used to calculate the infor

mation distance with respect to the two target density functions given in this 

section, i.e. Bin(5,0.000l) and Bin(5,0.05). The information distances for 

the optimum choice of factor levels is 0.05 and 0.03 respectively. 
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Table 16 Response table. Target probability density function Bin( 11, 

0.0001) 

Factor Level I Level 2 Level 3 Opti-
mum 

A 0.45 0.79 0.80 At 

B 0.49 0.65 0.84 Bt 

C 0.58 0.74 0.62 Cl 

D 0.57 0.74 0.62 D2 

E 0.65 0.61 0.65 El 

F 0.57 0.59 0.81 FI (F2) 

From this we see that the accumulating analysis procedure ends up in a 

choice which is c1oserto the binomial density function. Bin(S,O.OS) than is it 

to the density function (l.0. 0.0, 0.0, 0.0, 0.0). (Bin(S,O.OOOI)). In this exer

cise the starting combination was A2. B2. et. D3. EJ, Ft. The response for 

this set up has the information distance to our two target density functions 

0.55 and 0.33 respectively. 

We observe the procedure of prediction used. It is a two step approach. First 

we use the response table as above to make the optimum factor level choice. 

This is the application of the new metric. As would be expected the metric 

to evaluate the quality level is used. Then we take the probability data re

sponse as analyzed by Phadke. With that data using the Logit-transform a 

prediction is made for the probability distribution function. From the pre

dicted probability distribution function the predicted information distance 

may be calculated. Evaluating the predicted quality level. 

7.2. Rotation casting of plastic well. 

This application was carried out at the company UPONOR AB in Fristad, 

Sweden. The application is one where large appliances such as sewage 

wells and other plastic containers are produced. The process used is called 

rotation casting. It is run in such a way that the plastic powder compound is 
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charged in an appropriate amount into a hot mould. The mould is then ro

tated in several directions and around several rotation axes to get the com

pound powder to penetrate into every vicinity of the mould. 

As the powder hits the walls of the mould it melts and a plastic skin is 

formed. Depending on different parameters the wall thickness around the 

well varies and the finished product deviates from the design intent. A spe

cial study was made to investigate the wall thickness distributions, (19). 

In short the process at UPONOR is as follows: 

- The plastic compound is charged into the mould. 

- The mould is placed in an apparatus with two rotation arms. 

- The apparatus with the moulds is placed in an oven. 

- The mould is spun around the two arms. 

- The apparatus is removed from the oven. 

- The mould is cooled down using two cooling systems, air and water mist. 

- The plastic well is removed from the mould and openings are cut in the 

well. 

In this process the following parameters were identified and used: 

A Temperature of oven, 3 levels. 

B Time in oven, 3 levels. 

C Rotation speed of arm 1, 2 levels. 

D Rotation speed of arm 2, 2 levels. 

E Time of rotation, 2 levels. 

F Time of air cooling, 2 levels. 

G Time of water mist cooling, 2 levels. 

H Internal air pressure during cooling 2 levels. 

The following interactions were studied: 

AxF Oven temperature x time of air cooling. 

AxG Oven temperature x time of water mist cooling. 
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ExC Rotation time x rotation speed of arm I. 

ExD Rotation time x rotation speed of arm 2. 

This experiment was planned into a L32 orthogonal array. Factors A and B 

were handled by column merging and dummy treatment. 

The wall thickness of the well was measured at 20 points. Thus there are 20 

data items for each control factor set up. To evaluate the 32 different runs 

with an information distance approach a target distribution was designed, 

Table 17. This distribution was compiled of two binomial distributions over 

5 classes. The binomial distribution parameter was set to 0.0001. To account 

for the target value 8.5 mm the classes were centered around that value. The 

nearest classes are 1 mm wide. 

Table 17 Target density function and class definition for 8.5 mm target 

thickness. 

Class Upper 
probability class 

limit 
(mm) 

5.E-17 O. 
2.E-12 6.3 

3.E-08 7.3 

0.0002 7.5 

0.4998 8.5 

0.4998 9.5 

0.0002 9.7 

3.E-08 10.7 

2.E-12 14.4 

5.E-17 36.0 

The evaluation was performed as described in section 6.5. In addition to that 

an Anova was carried out. The Anova is summarized in Table 18. There the 

significance level of the different factors may also be seen. 
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Information distance per factor level and interaction levels are summarized 

in Table 19 and Table 20. All factor levels but for factor Band H were de

cided on the basis of interactions. In Table 21 predictions and verifications 

are given. The original exercise was evaluated using SN-ratio metric. It 

turned out that the exercise did not give any improvement to the process as 

compared to the running conditions. This judgement is based on the infor

mation distance evaluated, Table 21, column "Info dist.". 

Table 18 ANOVA-tablefor 10 class data, with 8.5 mm target thickness. 

ANOVA for 8.5 mm target thickness 

Factor dof Square Variance F-ratio Significance 
Sum level 

A 18 37.2 2.06 2.l5 0.995 

B 18 42.7 2.37 2.46 0.995 

C 9 25.3 2.81 2.92 0.995 

D 9 59.9 6.66 6.92 0.995 

E* 9 8.8 0.97 

F 9 14.5 1.62 1.68 0.90 

G* 9 12.0 1.34 

H* 9 10.7 1.19 

ExC 9 15.4 1.72 1.78 0.90 

ExD* 9 12.1 1.34 

AxF* 27 29.5 1.09 

AxG 27 54.7 2.03 2.11 0.995 

Error 1 99 187.8 1.90 

Error2 5490 5249.4 0.96 

Pooled 5526 5312.9 0.96 

Total 5571 5760.0 

* Pooled effects 

However the evaluation using information distance gave optimum factor 

levels resulting in some improvement. Primarily this is believed to be due to 

the significant factors Band Fbeing off target from the SN-ratio evaluation. 
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In the original report (19) a discussion was made over a change of average 

thickness from 8.5 mm to 9.5 mm. As the process was running at 8.5 mm 

more material has to be added to the moulds to achieve that. This kind of 

information has to be taken into account when designing the target distribu

tions. However it may also be seen that some shrinkage effects that could 

give some variation to the average thickness. 

To be able to study this a new target density function was set up. It was made 

in the same way as the 8.5 mm target thickness. Class limits were changed to 

have a centering around 9.5 mm. The class probabilities were the same. 

Table 19 Response table. Information distance per factor level 

Factors \ Levels 1 2 3 

A 0.155 0.115 0.145 

B 0.137 0.129 0.166 

C 0.147 0.140 

D 0.177 0.112 

E 0.147 0.132 

F 0.131 0.132 

G 0.136 0.143 

H 0.130 0.148 

Table 20 Response table. Information distance per interaction levels. 

AIFI 0.142 AIGl 0.136 EICl 0.164 EIDl 0.184 

AIF2 0.182 AIG2 0.182 E2Cl 0.133 E2Dl 0.171 

A2FI 0.123 A2GI 0.117 EIC2 0.139 EID2 0.120 

A2F2 0.115 A2G2 0.115 E2C2 0.142 E2D2 0.106 

A3Fl 0.137 A3Gl 0.147 

A3F2 0.154 A3G2 0.145 

Bold characters in Table 19 and Table 20 indicate optimum choices offactor levels. According

ly we get optimum combination A2B2CID2E2F2G2HI. 
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The information distances calculated for 9.5 mm target thickness are given 

in Table 22 and Table 23. We note that the optimum factor levels come out 

quite differently. In the prediction activities we also get some difficulties as 

the main data will be concentrated in very few classes. In this way we do not 

get a lot of information out of the data. The density function has to be de

signed to extract as much information as possible from the data. This was 

not done in this case. We also note that the physics behind is giving difficul

ties as there really needs to be more raw material in the mould. 

Table 21 Predictionsforoptimum combination, on 8.5 mm target thickness. 

Logit transform predicted A2B2C I D2E2F2G2H I as evaluated with infor- Info 
mation distance. dist. 

- 1-7.641-5.431-3.5712.41 11o.99111.81J24.951- 1- -
Predicted class probabilities (accumulated) 

0.00010.14710.22310.30510.635 jO.926 jO.938 10.997 11.000 11.000 

Predicted class probabilities 

0.00010.14710.07610.08210.330 10.29110.01210.059 jO.0031o·000 0.087 

Process probabilities before process improvement exercise 
A3B2-3C2D2E2F I G 1-2H2 

0.00010.15010.10010.00010.20010.45010.05010.050 jO.OOO jO.OOO 0.104 

Verification I of SN evaluation A2B)C2D2E2F)G)H) 

0.000 10.000 10.250 10.000 10.100 10.250 10.150 10.250 1 0.00010.000 0.302 

Verification2 of SN evaluation A2BIC2D2E2FIGIH2 

0.00010.10010.15010.00010.10010.50010.05010.100 10.00010.000 0.166 

Finally we note that the significance level needs to be taken into consider

ation as the prediction activity is performed. Non significant factors entered 

into the predictions may give rise to impossible results. 

In the next example we will study the effect of applying the factor discrimi

nation procedure proposed by Taguchi, (80). Some comments over this is

sue will also be given in chapter 10. 
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Table 22 Response table. Information distance per factor level, 9.5 mm tar

get thickness. 

Factors \ Levels 1 2 3 

A 0.201 0.234 0.229 

B 0.197 0.247 0.260 

C 0.275 0.182 

D 0.221 0.236 

E 0.220 0.226 

F 0.212 0.233 

G 0.211 0.234 

H 0.217 0.229 

Table 23 Response table. Information distance per interaction levels, 9.5 

mm target thickness. 

AIFl 0.157 AIGl 0.179 EICl 0.271 EIDl 0.229 

AIF2 0.259 AIG2 0.234 E2Cl 0.283 E2DI 0.217 

A2FI 0.200 A2Gl 0.238 EIC2 0.182 EID2 0.221 

A2F2 0.272 A2G2 0.232 E2C2 0.183 E2D2 0.253 

A3Fl 0.251 A3Gl 0.216 

A3F2 0.209 A3G2 0.243 

Bold characters in Table 22 and Table 23 indicate optimum choices of factor levels. According
ly we get optimum combination A\B\C2D IE2F\G\II\. 

7.3. IIot forming of joining sleeve of plastic sewage pipe. 

UPONOR AB manufactures sewage pipes from PVC. The joining system 

of such pipes comprises an expanded sleeve in one end of each pipe. By en

tering the straight end of a pipe into the expanded end of another pipe ajoint 

is made. The joints are sealed with rubber gaskets located in a special 

groove formed in the sleeve. The pipes themselves are manufactured by ex

trusion. The sleeves are manufactured in a separate process after that the ex

truded pipe has been cut into standard lengths. 
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This sleeve forming process has been studied with the following factors in

cluded in the study. 

• Cooling delay 

• Expanding kernel temperature 

• Heating duration 

• Heating temperature 

• Cooling water temperature 

• Forming duration 

• Distance between pipe end and 

furnace bottom. Measured along 

the longitudinal axis of the pipe. 

• Cooling water application 

grove length. 

o. seconds, 10. seconds 

55. °c, 70. °c, 85. °C. 

14. min. 18. min. 22. min. 

230. oC, 210. °C, 190. °C. 

10.oC,20.oC,30.oC. 

4. min. 8. min. 12. min. 

10 mm, 30 mm, 50 mm. 

50 mm, 100 mm, 200 mm. 

Those factors are referenced as A through H respectively in the text below. 

The factors were assigned to an LI8 array. Factor A was assigned to column 

1, factor B was assigned to column 2 and so on. 

Several different properties of the manufactured sleeves were evaluated. 

Crack volume and groove diameter (gasket location), ware studied in detail. 

7.3.1. Crack volume evaluation. 

When the sleeves are formed the pipe material may crack if the process is 

not properly run. This tendency was evaluated by measuring the crack vol

ume as the sleeves were cut apart. Three cuts were cut in each sleeve. Three 

sleeves were evaluated for each control factor setting. The volume in each 

cut was noted. Thus we get 9 observations for each control factor setting. 

This property is of the type smaller is better. Accordingly the target density 

function was designed to handle that, see Table 24. 
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Table 24 Target density function and class definition. 

Class Upper 
probability class 

limit 
(mm) 

0.9994 l.1 

0.006 2.5 

l.SE-07 18.5 

2.E-ll 179.7 

l.SE-15 1015.2 

6.E-20 2964.2 

1.E-24 00 

Table 25 Response table. Information distance per factor level 

Factors \ Levels 1 2 3 

A 0.061 0.102 -
B 0.212 0.018 0.067 

C 0.005 0.182 0.120 

D 0.098 0.168 0.016 

E 0.110 0.060 0.075 

F 0.046 0.102 0.096 

G 0.027 0.056 0.205 

H 0.055 0.076 0.109 

Table 26 Response table. Information distance per interaction levels. 

AIBl 0.233 A2BI 0.237 

AIB2 0.073 A2B2 5.4E-07 

AIB3 5.4E-07 A2B3 0.278 

Bold characters in Table 25 and Table 26 indicate optimum choices of factor levels. According
ly we get optimum combination A2B2C\D3E2F\G\H\. 

The information distance was evaluated as given in Table 25 and Table 26. 

The optimum level of factor A and B was set by the interaction data. Note 
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that the interaction data gives two equally valid choices. From trade-off rea

sons A2B2 was chosen. 

Table 27 summarizes the ANOVA ofthis case. It is seen that the interaction 

effect between A and B is dominating the variation. When trying to make a 

prediction it was found that either A2B2 or Al B3 100% zero crack volume. 

For this situation the Logit-transform does not work and we have to accept 

the findings from the factor effect analysis. I.e. the factor effect analysis is 

our prediction. 

Table 27 ANOVA-table for 7 classes data 

ANOVA for crack volume 

Factor dof Square Variance F-ratio Significance 
Sum level 

A 6 32.7 5.46 9.98 0.999 

B 12 86.4 7.20 13.2 0.999 

C 12 92.1 7.68 14.0 0.999 

D 12 68.7 5.73 10.5 0.999 

E 12 20.7 1.73 3.16 0.999 

F 12 11.5 0.96 1.76 0.95 

G 12 71.5 5.96 10.9 0.999 

H 12 10.5 0.87 1.59 0.95 

AxB 12 105.6 8.80 16.1 0.999 

Error 864 472.2 0.55 

Total 966 972 

The traditional SN-ratio analysis, (13), gave A2B2CtD3E3F2G2Ht as the 

optimum combination. It is seen that the information distance analysis gives 

a discrepancy for factors E, F and G. From Table 25 it may be seen that dif

ferences for factors E and G are not dramatic. For factor F however the in

formation distance analysis give a strong indication of a optimum factor lev

el other than that from the SIN-analysis. In the SN-ratio analysis the factor 

F was less significant and the choice was made from previous practice. We 
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note that the main factors of importance is factors A and B. It makes the 

choice of factor levels of the other factors less important. 

7.3.2. Groove diameter evaluation. 

For each of the three sleeves being cut the groove diameter was measured. 

Thus we get three data items for each control factor setting. This is a very 

small number and it is interesting to see how this corresponds to the number 

of classes in the density function. Some discussion about this kind of prob

lem is found later in this report as the application to SPC is being analyzed. 

Accordingl y this property has been evaluated for two different density func

tions. The first has 7 classes and the second has 11 classes. The density func

tions were designed on classes around the nominal diameter as shown in 

Table 28 and Table 33. For the seven class density function two four class 

binomial functions were used. The different class probabilities were calcu

lated using binomial probabilities with the parameter PI = 0.0001 and P2 = 

0.9999 respectively. These two binomial density functions overlapped in 

class number 4 in Table 28, where they accumulated. The density function 

in Table 33 was created in a similar way. 

Table 28 7 classes target density function and class definition. 

Upper class limit Class probability 

<1>0-0.3 5.E-I3 

<1>0-0.1 1.5E-8 

<1>0-0.02 0.00015 

<1>0+0.02 0.9997 

<1>0+0.1 0.00015 

cI>0+0.3 I.5E-8 
00 5.E-I3 

The information distance factor response tables for the 7 class density func

tion are given in Table 29 and Table 30. 
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Table 29 Response table. Information distance per interaction levels_ 

AIBI 1.270 A2BI 1.0896 

AIB2 1.386 A2B2 1.0896 

AIB3 1.270 A2B3 1.129 

Table 30 Response table. Information distance per factor level, 7 classes 

density function. 

Factors \ Levels I 2 3 

A 1.305 1.078 -
B 1.164 1.213 1.169 

C 1.169 1.169 1.213 

D 1.169 1.074 1.324 

E 1.324 1.164 1.074 

F 0.960 1.386 1.386 

G 1.164 1.224 1.169 

H 1.270 1.213 1.104 

Bold characters in Table 30 and Table 29 indicate optimum choices of factor levels. According
ly we get optimum combination A2BICID2E3FIGIH3-

Comparing Table 31 and Table 36 it may be seen that the significance level 

is decreasing somewhat when the number of classes is increased. One may 

speculate about the relevance of performing the Anova on accumulated fre

quency numbers as proposed by Taguchi in reference (80). A very signifi

cant factor in a downstream class will contaminate the information in up

stream classes. 
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Table 3 J ANOVA-table for 7 class data 

ANOVA for groove diameter 

Factor dof Square Variance F-ratio Significance 
Sum level 

A 6 36.9 6.1 20.5 0.999 

B 12 9.8 0.8 2.7 0.995 

C 12 9.8 0.8 2.7 0.995 

D 12 20.6 1.7 5.8 0.999 

E 12 24.0 2.0 6.7 0.999 

F 12 90.2 7.5 25.1 0.999 

G 12 9.8 0.8 2.7 0.995 

H 12 48.6 4.1 13.6 0.999 

AxB 12 9.8 0.8 2.7 0.995 

Error 216 64.6 0.3 

Total 318 324. 

Table 32 Predictions for optimum combination, 7 classes density function. 

Logit transform predicted A2BICID2E3FIGIlh, Info 
A2XB I as evaluated with information distance. dist. 

- 1- p.82 p.82 17.82 J 14.56 1-
Predicted class probabilities (accumulated) 

0.00010.000 \0.858\0.858\0.858\0.96611.000 

Predicted class probabilities 

0.000 10.000 \ 0.858\ 0.000 \ 0.000 \ 0.1 0810.034 

Process probabilities before process improve-
ment exercise 
A3B2-3C2D2E2F I G 1-2H2 

0.000 \ 0.111 10.000 \ 0.111 \ 0.278\ 0.222\ 0.278 

Verification 1 of SN evaluation 
A2B2C I D3E3F2G2H I (crack volume optimum) 

0.000 10.000 10.000 \ 0.000 10.000 \ 0.143\ 0.857 

Total class probabilities 

0.09310.000 \ 0.01910.000 \ 0.00010.09310.796 
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In Table 37 there are also some results given over predictions using only 

those factors contributing more than 5% to the total sum of squares. The rel

ative contribution is calculated using factor effects with the error sources 

subtracted, proposed by Taguchi, (80). We can see from these results that the 

predictions are consistent. The spurious effects created when using all fac

tors in the prediction are due to the fact that the prediction is to a large extent 

based on error. 

Table 33 11 classes target density function and class definition. 

Upper class limit Class probability 

ct>o-O.3 5.E-13 

ct>o-O.l 1.4E-8 

ct>o-O.02 0.00015 

<1>0+0.02 0.9995 

<1>0+0.1 0.00035 

<1>0+0.2 1.E-7 

<1>0+0.3 1.7E-l1 

ct>o+O.S 1.7E-15 

<1>0+0.7 l.E-19 

<1>0+0.9 3.5E-24 
00 S.E-29 

The information distance factor response tables for the 11 classes density 

function are given in Table 34 and Table 35. 

118 



Table 34 Response table. Information distance per factor level. 11 classes 

density function. 

Factors \ Levels 1 2 3 

A 0.922 0.879 -
B 0.914 0.945 0.925 

C 0.892 0.911 0.895 

D 0.900 0.897 0.948 

E 0.992 0.875 0.844 

F 0.881 0.961 1.083 

G 0.920 0.927 0.918 

H 0.931 0.866 1.021 

Table 35 Response table. Information distance per interaction levels. 

AIBl 0.957 A2Bl 0.901 

AIB2 0.996 A2B2 0.936 

AIB3 0.957 A2B3 0.975 

Bold characters in Table 34 and Table 35 indicate optimum choices of factor levels. According

ly we get optimum combination A2BICID2E3FIG3112. 

When comparing 7 classes results with 11 classes results we note that the 

factor response for factors G and 11 change. This is because we get more 

information about changes appearing far from the target when we are using 

the 11 classes density function. 

As we get poor statistics we ought to redesign the classes. The majority of 

observations are in the higher classes. We actually note the same problem as 

with the wall thickness of the well in the previous example. There we got 

problems as we got more classes with no observations as we moved the tar

get to 9.5 mm instead of 8.5 mm. Wall thickness 9.5 mm (target) was ex

ceeding the overall average thickness, which was between 8.5 mm and 9.0 

mm. accordingly we got severe interactions as the material supplied was 

less than needed to achieve the target. It may be a worthwhile exercise to 
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investigate possibility that the reason for the spurious effects is that there are 

interactions between the design factors. 

Table 36 ANOVA-table for 11 class data 

ANOVA for grove diameter 

Factor dof Square Sum Variance F-ratio Significance level 

A 10 43.5 4.4 12.0 0.999 

B 20 26.0 1.3 3.6 0.999 

C 20 14.3 0.7 2.0 0.99 

D 20 25.6 1.3 3.5 0.999 

E 20 34.9 1.7 4.8 0.999 

F 20 165.3 8.3 22.7 0.999 

G 20 23.2 1.2 3.2 0.999 

H 20 61.9 3.1 8.5 0.999 

AxB 20 14.1 0.7 1.9 0.99 

Error 360 131.1 0.4 

Total 530 540. 

Both 7 and 11 classes analysis show however a good agreement with the 

SN-ratio analysis over factor effects, (13). The verification run was accord

ing to crack volume optimization and other production preferences. Ac

cordingly we get little information about the groove diameter data. We note 

however that the diameter is varying less but is off target <1>0' The prediction 

of the optimum factor setting for groove diameter is indicating a result 

which is more on target. This is only an indication as the prediction as said 

above needs to be deVeloped further. 
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Table 37 Predictions for optimum combination, 11 classes density function. 

Logit transform predicted A2B2CID2E2F2G2Hl as evaluated with informa
tion distance. 

Predicted class probabilities 

Logit transform predicted A2E3F 1 H2 as evaluated with information dis
tance. Only factors contributing more than 5% to the Sum of Squares. 

Predicted class probabilities (accumulated) 

Predicted class probabilities 

Total class probabilities 

* These predicted results are obviously faulty values (negative probabili

ties). This is an indication that our statistics is poor. Compare the discussion 

above. 
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8. Information approach to quality 
engineering. 

Quality engineering has over time had a strong emphasis on variation. This 

is true at least in the later stages in the product delivery process. It has also 

been recognized that the major causes of this variation are to be found in the 

earlier stages of the same process. In these stages the variation concept is 

not as easily identified. Information and information flow in that part of the 

process has for long been the subject of many studies. Those studies have 

however not been targeted directly towards quality improvements. This 

section is aimed at demonstrating how the infonnation concept is suited to 

describe the quality engineering process in a unified way. Ways to measure 

quality of the product delivery process as well as the product and produc

tion processes designed will be discussed. 

8.1. Added information - noise. 

In this section we will discuss how the noise influences are documented as 

added information in the processes. Consider a general system as illustrated 

in Figure 1. Ideally the information found in the signal factor should be the 

same as the information found in the function of the system. The control 

factors contribute no information as per definition. Then if we have a differ

ence between the information in the signal factor and the function this infor

mation has to come from the noise factors. 

Assume the signal factor to be normally distributed, N(J..lJ,al). This signal 

represents the information El=(In(27tea12»/2. Let liS further assume that 

the noise is normally distributed, N{J,12,(2)' Let us further assume that 112 = 

O. Now if the system is simple the distribution of the function may be 

N(J..ll,..ja1 2+ai). Accordingly the function information IS 

Er-(In(27te( <J1 2+(22»)/2. Whether the resulting function distribution is ex

actly as above depends on the characteristics ofthe system. We note howev

er the important point that the influence of noise is documented in the sys-
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tern function as an increase of information. Another point of interest is that 

information content itself is not a useful measure of quality level. Quality is, 

as we have seen above, a function of variation around a target. The informa

tion content of a signal does not take any account of average distance from 

the target. The information distance as proposed in this thesis does allow for 

both a shift of mean and a variation around mean. 

Noise entering into the system represents an increase of information in the 

system function. It also represents an increased information distance from 

the target. Thus it represents as expected a degradation of quality. 

The viewpoint of information flow is supported by other researchers. 

Singpurwalla, (32), investigates the Taguchi philosophy for the product de

livery process, (93), in the framework of decision making under uncertain

ty. In this paper Singpurwalla is touching upon the issues discussed in this 

chapter. In general the approach is sound. The author has however another 

perception of the contributions of Taguchi. Of course the analysis of Sing

purwalla is correct from the perspective that he sets. The author believes 

that decision making is just a part of the contribution of Taguchi. Singpur

walla discusses decision making in general terms with no specific metric 

recommended. SN-ratios are said to be one metric acceptable in limited 

cases. The uncertainty that Singpurwalla introduces is obviously noise in

fluencing the process. The amount of uncertainty left after each decision is 

noise that managed to get into the information flow as the filtering, i.e. deci

sion making process, was applied. 

Along the corse of the product delivery process noise is an influence all the 

way. It may be either from external sources or noises present internally, i.e. 

not yet removed from the information being processed. This was realized 

by Pugh, (63), as he designed the Total Design model. The concept selec

tion process is one filtering process in that model. Another is the product 

delivery specification. That acts as a filter to external noises. Accordingly it 

could be used as a means to measure quality. This will be discussed later. 
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8.2. Quality engineering. 

Having introduced some thoughts about noise, i.e. excessive information 

flowing in the structures of the designs and the product delivery process we 

will look into some interpretations and consequences of this concept. 

In Figure 20 a schematic of a complex system is shown. Noise factors affect 

the system by the addition of their information content. In Figure 20 this 

information entry is shown as entering into different subsystems. This in

formation is unwanted as opposed to the information entering the system 

through the signal factors. As has been said above the information content 

in the function should be the same as that found in the signal factors. The 

difference that may be found is a measure of poor quality. In robust engi

neering we call a system, with all factors shown in Figure 1 present, a dy

namic system. A system with no signal factor is called a static system, (64), 

(93). 

We may at this instance again note the difference from a dynamic system in 

the context of control engineering. A dynamic system in a quality engineer

ing context mayor may not be a dynamic system in a control engineering 

context; it could well be a static system in control engineering context. 

From a control engineering point of view a system is dynamic if it contains 

energy accumulating devices, (50). In this thesis the word dynamic is used 

with a robust design interpretation. 

For dynamic systems the target distribution is assembled from the signal 

distributions. In case of a static system the target distribution is designed 

from other sources, i.e. through bench marking, etc .. In effect this designed 

distribution becomes the signal factor of the product delivery process, i.e. 

the design intent. In the vocabulary of Pugh, (63), this is the product deliv

ery specification. Also for dynamic systems you should take benchmarking 

information is taken into account when designing the target distribution. 

124 



From the above it may be concluded that quality engineering is a matter of 

stopping the noise informations flowing from their entry points to the sys

tem function. 

This way of defining quality engineering gives an interesting background 

to different methods used. Consider the system illustrated in Figure 20. In

formation entering into the system at Cl may take three different paths to 

the function. Thus the complexity number introduced by Pugh, (63), is a 

relevant quality tool. As the complexity number is reduced the number of 

transmission paths for noise are also reduced. That way the task of stopping 

the flow of noise information, is made easier. The complexity number is a 

good way of analyzing the information content in the system design. This 

also ties directly back to the design axioms by Suh, (62). 

Function 
) 

Input 

Noise input 
(added information) 

\ 
Figure 20 Information flow in a complex system. 

The complexity number is defined as er= (lv'NtNpN j)/f. Nt is the number of 

types of subsystems or parts. Np is the total number of subsystems or parts. 

Nj is the number of interfaces between subsystems or parts. Finally f is the 

number of functions that the system is performing. It is very important that 

the complexity number is evaluated on a consistent system level. Consider 

a car. At a high system level there are the types of subsystems car body, 
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powertrain and chassis. If in this context the number of fasteners between 

car body and chassis are brought up the analysis is failing. This is because 

the number of fasteners refers to a lower system level. It is in the complexity 

of the interface between chassis and car body. Thus there is a mix of infor

mation which is not consistent. Below we will show that the complexity 

number is a convenient measure of information content in the design. The 

system in Figure 20 has Cc= 10.1, derived from Np = 12, Nt = 5 and Ni = 17. 

Thus it is rather complicated and the information content is rather high, 

compared with the systems in Figure 21. 

One of the design axioms of Suh concerns the minimum amount of infor

mation in a design. In that perspective it is interesting to investigate the 

meaning of the complexity number. From statistical physics, (92), we may 

recall that the entropy for a gas may be considered a function of probable 

states. 

Let us now assume that we have N different components to build a particu

lar system. We may then chose different ways to produce the system by dis

tributing the components over different categories. In our case we have the 

categories, number of types of subsystems, total number of subsystems and 

the number of interfaces between subsystems. A particular design may then 

be characterized by the numbers N" Np and Ni. The probability of a compo

nent being type, part or interface may then be calculated as Nt/N, NplN and 

N/N respectively. The entropy for this design may then be derived as : 

This information is bounded upwards by: 

E8 = - [~ln(~) + ~ln(~) + ~ln( ~)). see appendix A. 
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Ell may be rewritten as 

En - - (~ InCN,) + tln(Np) + ~ In(Ni )) + InN or 

En - InC + InN where C=3~N;NtNp. 

From this observation we may conclude that the complexity number is re

lated to the information of the system. In fact from practical calculations it 

may be seen that In C = In ~ + Ed, see Appendix C . Judging from the 

results in that Appendix this expression is valid to within 10% for practical

ly achievable systems. Thus we see that a minimization of the complexity 

number is the same as a minimization of the system size and the structural 

information, Ed. 

Consider a system containing I parts. The simplest system within that cate

gory has N;=I - I, }It=1 and Np=l. The most complex system 
I 

Ni = I (j - 1), Nt=1 and Np=l. Those systems are illustrated for 1 = 5 in 
}=2 

Figure 21. Further information on limiting cases for the numbers N;. Nt and 

~J may be found in Table 55 of Appendix C . 

a. C=2.71 
b. C=6.30 

Figure 2 J The simplest and the most complex system containing five sub· 

systems. 

We can see that the complexity number is very tightly related to information 

content of the system at the system level under study. It is important to keep 
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track of the system level. In case system levels are mixed, results will still be 

generated but they do not reflect the information. The complexity number 

should be applied hierarchically throughout the system levels. Details of an 

interface may also be considered as a system level. Thus it is possible to use 

the complexity number as an analysis tool for interface design. In this case 

new categories instead of parts, types and interfaces probably need to be in

troduced. From the information theoretical basis another complexity num

ber valid for this application may be deduced. We will look at that next. 

In parallel with the above discussion a complexity number for a situation 

with four categories instead of three may be designed. This definition is 

C4 = 4..j Nw NxNyNz. Nw,Nx,Ny and Nz represents the number of components in 

each of the four categories, whichever they may be. N = Nw+Nx+Ny+Nz 
represents the total number of components. The information analysis of the 

C4 measure gives the following relation In C4 = In ~ + Ed4 . Where 

E [
Nx (Nx) N

y 
(Ny) NZl (Nz) NWl (Nw)] ~d4 = - N ln N + N In N + N n N + N n N 

The denominator 16 is not clearly defined theoretically. It seems though 

that the square of the number of categories is a good choice, judging from 

the evaluations in Appendix C . Accordingly denominator 9 is valid for 

three categories and 25 would have been appropriate for five categories. 

These relations may be documented as is done for three categories in appen

dix C . The beauty of the complexity numher in relation to a strict informa

tion analysis is the ease of use. 

The information theoretical approach also shows that a modularization 

strategy within product design, (9), is a quality technique. As we minimize 

the complexity number we minimize the information in the system in accor

dance with the design axiom by Nam Suh (62),(1 ),(2). The same kind of 

reasoning based on entropy is also introduced by I Iitchins, (29). We have 

also seen that we minimize the number of possible flow paths for noises. 
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Thus modularization implies careful design of interfaces between modules. 

Those interfaces are parts of the flow paths for the noises. They actually act 

as noise filters and have to be designed as such. 

8.3. The RFCA procedure. 

So far we have discussed how the concept of information may be used to 

develop (the more general complexity number given above) quality engi

neering tools and to analyze the nature of quality (poor quality added infor

mation). Now we will address the issue how the product delivery process 

itself is an information filtering process. 

Sontow and Clausing, (15), have revised the enhanced QFD procedure, 

(49), to integrate further quality engineering tools. They propose the name 

Requirements and Failure Cause Analysis, RFCA, for the new procedure. 

The original QFD procedure encompassed four phases. It did not distin

guish between product and process development. This was achieved in the 

enhanced QFD procedure, EQFD. EQFD relies heavily on the system struc

ture for the product to be developed. Concurrent engineering was a prereq

uisite for EQFD. 

The main improvement in EQFD was the integration of system structure 

into the planning matrices. The resulting procedure was improved upon fur

ther as function analysis was introduced. 

Function analysis was not explicitly pointed out as a component in the orig

inal QFD. It was however usually applied in the needs or voice of the cus

tomer section of the first matrix. A structured function analysis was elabo

rated such that a tight bond with the system structure was developed. The 

user function structure is broken down into subsystem function structure. In 

this process a concept selection exercise is conducted at each system level 

to generate the next lower system level. The prioritizing process from QFD 

is performed at each system level, first amongst subsystems and then for 
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individual subsystems. The latter activity is performed for high priority 

subsystems only. In this way one of the major drawbacks with the QFD is 

eliminated. Matrices of a size 100* 100 need never be seen. 

As the system structure gets into EQFD it is natural to get the production 

process into the procedure. Subsystem structure is of course tightly con

nected with assembly processes. Accordingly you get an assembly process 

planning is tied into the total system planning matrix. As the system struc

ture is refined the system planning matrices are accompanied by production 

planning matrices. In this way concurrent engineering is supported and fa

cilitated by EQFD. 

The next step in the evolution of QFD-like processes was to integrate Fail

ure Mode and Effect Analysis, FMEA, into the procedure. Through this 

step another important drawback was eliminated. This was to support noise 

analysis according to robust design in the procedure. The FMEA table is 

modified to a fault matrix. In this matrix failure modes are characterized as 

a combination of function and noise. The significance of each function in 

relation to system function is rated. Further the significance of each fault as 

characterized above is graded. This gives a possibility to grade different 

noises afflicting the system. 

The produced noise grading is fed into the concept selection matrix as eval

uation criteria. With this last addition the RFCA procedure is produced. The 

layout of planning matrices in RFCA, even though somewhat complex, 

shows the way noises may flow through a design. 

QFD which is the base from which RFCA is derived is actually a way of 

putting structure to information. The information handled is all information 

influencing the product delivery process. Of course RFCA is dealing with 

this information in an even more structured way. We now recall the example 

with the play of dice in section 5.1. When we put the restriction to the evalu

ation of the number pairs, i.e. to only evaluate the sum of the two numbers, 
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we took information out of the data. In just the same way the structure that 

RFCA is giving the information influencing the product delivery process is 

taking information out of that original lot of information. The RFCA proce

dure is nicely mapping onto the different steps of the product delivery pro

cess. In every step structure is added. Accordingly it is shown that the prod

uct delivery process is a process where information is consistently taken 

out of the information being processed. Eventually the design preferred is 

arrived at. According to Suh, (62), that design is the one with the least infor

mation content. This is consistent with the effect of the RFCA as described 

above. 

8.4. TQl\1 and information flow. 

Figure 20 was presented to illustrate a product system. However it may as 

well be a product development system, i.e. the Total design process, (63). 

The signal factors in this system are the company visions. In the system 

most noise entry points are found in the product specification. Leaving one 

of the headings in the specification checklist, (63), unattended is the same 

as leaving a door open to noise entry. The noise may in this case be a variety 

of opinions among designers about what is the design intent. This leads to 

poor designs and an inefficient process. Noise may also be diffuse organiza

tional rules, etc. Needless to say the function signal of this process is the set 

of products developed and the resources actually consumed to do it. 

DETAIL DESIGN .... ~CONCEPT DESIGN 
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Figure 22 Information flow in the product development process. 

Figure 22 illustrates the main information flow in the product development 

process in a somewhat different way. The different activities given in the 

boxes of the diagram is due to Pugh, (63). The process starts with a market 

activity, and enters into a specification activity. From there the conceptual 

design is started to establish the foundation for the detailed design and pro

duction activity. Then the market activity of selling and assembling infor

mation for the next project is begun. Meanwhile there is information ex

change between the activities. Figure 22 illustrates the cyclic nature of the 

product development process. 

The weight of the arrows of the internal flows is supposed to illustrate the 

amount of information flowing. Arrows drawn with dash and double dot 

represent information entering into the process from exterior sources other 

than the market. That may for example be experiences from the different 

persons involved as pointed out above. The dashed arrows illustrate the in

formation extracted and found excessive in the process. This is in agree

ment with the design axioms put up by Suh, (62). 

~ __ ~ __ ~B~l~)~sjun~e~s~s~Sut~re~aUrn~ ____ ~~ 

"""--___ .L.A..Io....Inu..Ja.ul..;J...y~s j~SL...loS..L.Itl...Lre~a ....... mu...L-__ ~ 
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Figure 23 Business process breakdown 

We may see all companies as information processing systems. The infor

mation processing has several levels, Figure 23, that are hidden in the total 

design model. Three main information streams can be identified: the busi

ness stream, the product development stream and the analysis stream. The 

business stream is actually the everyday activity of selling, producing and 

delivering. A sub-process of the business stream is the product develop

ment stream. This process is engaged with improvement of the product and 

production processes active in the business stream. The interface between 

the business stream and the product development stream is the product de

sign specification as outlined in total design. In the same way the analysis 

stream is a sub-process of the product development stream. The interface 

between the product development stream and the analysis stream is an anal

ysis specification. This specification may be outlined very much in the 

same way as the product development specification. 

These specifications serve very well as a basis to develop a target distribu

tion to apply the quality metric proposed in this thesis. The distribution of 

the quantification of the specification and the timeliness in delivery is mea

surable. Comparing this target distribution to the actual outcome in the pro

cess gives a possibility to quantify the quality of the process. Staffing along 

the process may also be regarded as a density function for which a target and 

an actual outcome will exist. This is another possibility to measure the qual

ity of the process. 

The total design model mainly engages itsel f with the product development 

stream. The RFCA covers also the analysis stream. It does take into account 

the noises affecting the product being developed. It does not take into ac

count the noises affecting the product development process itself. Those 

latter noises are as said above addressed by the total design model, even 

though it is not spelled out explicitly.The RFCA model really works with 

information flow. Thus it is a good basis for further refinements of informa-
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tion flow analysis. TQM procedures evolving over the last decades address 

the business stream. The TQM procedure is usually qualitative and metrics 

for quality measurements are nonexistent. The new metric proposed in this 

thesis presents a possibility to quantify process quality, as demonstrated 

above. 

What is important is that a function description ofthe system to be assessed 

for quality level has to exist. Once the function description exists, an infor

mation measure to use may be found. The modern quality systems like ISO 

9000 call for function descriptions at all organizational levels. The Euro

pean excellence model, (4), is even more process oriented. This makes the 

potential for information metrics very good. 

As we have the function description of our system broken down to different 

subsystems we can identify target distributions for different performance 

measures at all subsystem interfaces. Measuring information distances at 

each of these interfaces gives us a way to trace the flow of added informa

tion. In this way we can see the contribution of different noise sources to the 

system function deterioration. 

Frequency of change 
to the specification. 

__ Actual - .... ' ..... ......... Time -----------
Market Specification Concept Detail Production Market 

design 

Figure 24 Frequency 0/ change distribution/unctions demonstrating pro

cess efficiency. 
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For product and process development process performance we may use the 

product specification as a measuring tool. The number of changes in the 

specification is a measure of this performance. The distribution of product 

specification changes may be targeted and used to measure information dis

tance, see Figure 24. 

In Figure 25 some examples of evaluations of are given. We may regard the 

sample distributions given there as approximations to the distributions re

ferred to by Fox. (14). as he describes differences between Japanese and 

Western industrial processes. His description gives a good qualitative pic

ture. With the proposed metric we are able to work with quantifications for 

the process performance. The TQM activities are directed towards estima

tion of process losses. That gives us the possibility to quantify the informa

tion metric in the same way as has been discussed for product quality met

rics earlier in this thesis, (section 6.4.3.). As regards the losses in the 

product development process a very nice discussion is given by Clausing in 

a recent book, (5). 

Probability density 

Project 
start 

Production start 

Legend 

Target: 
...... 

Alternate ----processes: ___ _ 

--

Info. 
distance 

0.000 
0.153 
0.342 
0.429 
0.825 

Figure 25 Product development process performance evaluated by ap

plication (~f information distance metric. 
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The density of functions exemplified in Figure 24 is valid for a posteriori 

estimation only. To be able to make estimates during the running process 

these density functions may be truncated to the present time. The informa

tion distance is then calculated on the basis of the truncated target and actual 

density functions of changes to the specification. 

8.5. Robust design planning. 

When we talk about robust design planning we talk about robust design us

ing designed experiments. The normal procedures outlined for this kind of 

exercise focuses only on the individual subsystem under study, (See chapter 

4.). From the above discussion we see that this may be too restricted. We 

know that quality engineering is a matter of blocking noise flow paths. The 

outline shown in the RFCA-procedure includes a good example of a robust 

design planning activity for systems with a higher level of complexity. 

The robust design exercises should take into account noises in the product 

development process as well as in the product system. Product system 

noises should include the noises entering directly into the subsystem as well 

as the noises entering via the interfaces. Noises of the product development 

process document themselves as variations in subsystem layout and per

formance, (60). 

From this discussion we conclude that down to the system level under con

sideration the information flow has to be analyzed in detail. Further factors 

at the same system level have to be used. This is also a consequence of the 

function design axiom by Suh, (34). 

The robust design exercise has to be preceded by system analysis. This 

analysis has to give as a result the product noise factors and the develop

ment process noise factors. The latter will be in the shape of interface speci

fications including targets and possible limits of variation. The process, 

from this point on, is normal as given in any of the textbooks on robust de

sign, (73). However the system level has to be recognized. Discussions and 
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recommendations along the same lines from other view points have been 

given by Ramberg et. al., (30). 

In the light of the discussion over noise flow paths in the last section we can 

see that the robust design exercises will contribute to the mapping of the 

flow of added information. From this perspective the importance of the sys

tem level becomes obvious. Figure 20 shows that the usage of lower level 

control factors increases the complexity of the robust design exercise. This 

is due to the fact that each of the boxes in that figure may itself be such an 

involved structure of sub-subsystems. Hence the likelihood of interactions 

and other complications appearing is of course increasing. We can see that 

noises from the same source may enter into the overall system function at 

different points and through different paths. The complications arising 

from this is easily understood. 

The system analysis from an information theoretical point of view as dis

cussed above gives a solid base for steps 1 through 3 and step 6 in the proce

dure outlined in Chapter 4. In the same chapter the issue of quality measure 

was discussed. With reference to Chapter 5., the quality measure should be 

the one with the largest information content. That quality measure should 

be one that can be analyzed with the highest number of classes as was dis

cussed in connection with the information distance analysis of Chapter 5. 

When assessing the relations between system function and control factors 

the information flow should be used as guidance. 

The analysis of the results of the application of designed experiments is of 

course carried out using the new quality metric, information distance. This 

analysis is the same irrespective of what quality measure was used in the 

experiment data acquisition. The prediction is an optimization exercise, as 

discussed in Chapter 5. 

In this way the system function and the information flow is always the 

prime objective of the robust exercises. Through the loss function, the tar-
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get distributions and benchmarking the results are tied directly back into the 

business stream. 

8.6. Information approach in summary 

In this chapter it has been shown that different quality tools introduced in 

practice earlier, on a common sense basis can be motivated from an infor

mation theoretical point of view. The progression from QFD to RFCA has 

been analyzed in a perspective of information processing. System analysis 

is widened to include product and process system. In that way the informa

tion distance metric has been shown to be applicable and useful even in 

TQM activities. 

The complexity number as introduced from empirical reasoning has been 

shown to reflect information content in a system. A concept of information 

flow has been introduced to analyze the quality aspects of a system. 

Through that methodology it has been possible to argue that modular design 

is a quality improving strategy. Finally the information flow approach has 

been found to give a basis for the preparatory steps in the robust design pro

cedure. 

With the addition of on-line quality control methods to be discussed in the 

next chapter, information theory has been shown to be a foundation for 

quality engineering. 
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9. SPC as an application of information theory. 

In this chapter we will discuss the possible application of the information 

distance metric in the area of process control. We do that to show how the 

new information theoretical approach can be used to integrate the different 

areas of quality engineering. 

First some general discussion about the noise flow in production systems is 

made. Then a summary of the traditional SPC is given. Finally some dem

onstrations of the implementation of information distance based SPC are 

made. 

9.1. Noise flow in production systems. 

From an information theoretical point of view a production system is no dif

ferent from any other process. We have earlier discussed the product devel

opment process. The observations made there are relevant also for produc

tion processes. There is a flow of information in the process. 

The main flow is the production intent. That is, what to do, how much to do, 

and when to do it. This information comes to the process as sale orders. This 

information is broken down into the bill of materials with the assistance of 

the design documentation and the production system planning to give a pro

duction plan. In this way we can envision a system layout as in Figure 26 for 

the production process. 

Production Environment factors 

Drawing Dimensions 

l\lachining 

process 

Machining Settings 

Machined Di
mensIOns 

Figure 26 A machining process shown as a general dynamic sy:'item 
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The input signal is the production intent as discussed above. The function 

signal is the actual products being produced. The control factors are ob

viously the different parameters controllable in the production process it

self. It may the cutting speed of a milling machine or curing time of an elas

tomer injection molding machine, etc. The noise factors are environmental 

influences, control factor variations and system wear, i.e. tooling wear. 

Figure 26 is of course an over-simplified view. The illustration in 

Figure 20 is a better representation. In a breakdown like that we may recog

nize that the function signal of one subsystem is the input signal of another 

subsystem. Process control is a matter of monitoring the performance of 

these intermediate signals. When planning the monitoring system a good 

knowledge of the performance at the relevant system level is required, (47), 

(17). The basic idea of the SPC is to observe that the system is in statistical 

control. 

The variations monitored in the different signals represents the amount of 

noise penetrating through the subsystems to the function. Under normal cir

cumstances the variation will be of stable magnitude. A systematic change 

will indicate either a change in the noise filtering performance of the sub

system or an excessive increase in the noise level exposed to the system. 

We observe from the above discussion that the noise may enter into a sub

system either as external noise as indicated in Figure 20 or via the input sig

nal as contamination. The planning of a production control system totally 

relies on the existence of a good process description. A good process de

scription is as we know a consequence of a correct implementation of ISO 

9000. 

9.2. SPC the traditional way. 

W. A. Shewhart, (105), was the first to introduce the concept of statistical 

control charts into quality control. This was done before World War 11. A 

widespread application did however not come into place until the 1960 and 
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thereafter. It has one main objective; to monitor the stability of a process in 

statistical control. 

The observed statistic is plotted in a diagram, Figure 27, with a time axis. 

On the basis of the anticipated distribution function for the control statistic 

control limits, upper (VeL) and lower (LCL) are calculated. It is very com

mon that these limits are calculated such that the probability of an observa

tion in the interval between the limits are 997 %0. This corresponds to ±3cr 
for a normally distributed stochastic variable. The calculations are usually 

performed assuming normal distribution. When choosing the control statis

tic certain care is exercised to assure the normality of the distribution func

tion. 

Sometimes a set of warning limits are also calculated. On the basis of the set 

control and warning limits, different analysis functions are constructed, 

(71), (67). The evaluation of these analysis functions generates a number of 

different alarms. The alarms mayor may not be tied to different failure 

mode characteristics, (67). The original Shewhart chart was built on statis

tically independent observations. Decision rules used individual observa

tions. As decision rules were enhanced several observations were taken into 

account. Thus the different decisions became statistically dependent as 

they were based partly on the same data. Some special control charts have 

been developed that are based on statistically dependent data. Two such 

charts are briefly discussed in section 9.2.2 .. 
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Figure 27 Control chart as used in SPC. 

9.2.1. X- and R-Charts. 

It is common to use at least two control charts together; one for local mean 

and one for spread. The chart used for local mean is usually called x-chart. 

This chart is used to trace position. As the distribution of the observed vari

able is usually not known, the average of several observations rather than 

the individual observations is plotted. Hence the name x-chart. By using 

the average the applicability of a normal distribution may be claimed to be 

more relevant. This is of course motivated by the central limit theorem, 

(71). The correctness of this claim is very much dependent on the size of the 

group of observations used for averaging. A common compromise is to use 

5 observations in each group. 

The spread of the observations is usually monitored by the range, R, of each 

group of observation. Here again we see the motivation for the name of this 

chart. However the sample standard deviation, s, may also be used as the 

plotted variable. The range is however much easier to calculate. The predic

tive quality of Rand s are the same. The group size to some extent in

fluences the absolute quality of prediction. Accordingly range predictivity 

is a parameter in the group size decision process. 

The start up of an SPC monitoring process is essentially the determination 

of control limits and central line (CL in Figure 27). The data necessary to do 
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this is the grand average of the first plotted instances (something like 20 in

stances) in the x- and the R-charts. In addition to this we obviously need an 

assumption about the distribution applicable as discussed above. 

In this way we get two charts like the one shown in Figure 27. The control 

statistic in either one of them being x and R respectively. We further note 

that the lower control limit. LCL of the R-chart is of limited value as R is 

non negative. Hence it is usually set to zero. 

9.2.2. MOSUM and CUSUM. 

Some applications exist where a traditional x-chart is too sensitive. Such a 

situation may be a control chart for a chemical component charged into a 

chemical process plant. One outlying observation may not give a drastic ef

fect on the process result as a mixing between batches is present in the pro

cess. In this case an average over the last batches charged is a better predic

tor of what will happen with the process result. 

A special chart sometimes called MOSUM has been designed to handle this 

situation. In the simplest form it involves plotting the average over the no 

last groups rather than each individual group. This obviously will smooth 

out the rapid variations while a persistent shift will accumulate. There are 

other more complicated forms applying an exponential weighting function. 

(47). Control limits are calculated and applied in very much the same way 

for this type of chart as for traditional charts. 

In other situations the traditional charts are insensitive to small drift in the 

mean value of the process. This results in a value of ARL which is too high. 

Another special chart called CUSUM (Cumulative sum) has been designed 

for this case. 

In a CUSUM chart a cumulative sum of the deviation from a process target 

is plotted for each observation. The process target must be very carefully 

chosen. It may be the center line applicable to a traditional x-chart. In this 
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kind of chart a consistent shift in mean will document itself as an average 

slope of the plotted graph. 

The control limits of this kind of chart is then a so called V-mask. As the 

name indicates it has the shape of a V. The V is laying down with the vertex 

in the last plotted point. The legs pointing backwards up and backwards 

down respectively. The angle of the legs towards the horizontal are chosen 

such as to give appropriate alarms. Alarms are given as the plotted graph 

cuts the legs of the V-mask too few instances, i.e. plotting intervals, away 

from the last plotted point. 

Several modifications to the shape of the V-mask are common. The moti

vations for the modifications are of course different alarming properties de

sired. 

9.3. SPC using information metric. 

As we have seen in the previous sections there has been a trend to tailor spe

cial charts for special requirements. In this section we will introduce a spe

cial class of charts based on the information distance metric. This class of 

charts has the property of adjustability to a desired decision model. As has 

been demonstrated above, each different type of traditional chart requires a 

non negligible amount of special expertise. The proposed class of charts 

will be require and the same knowledge for different applications. Further 

the tailoring or adaptation to the current case is the benchmarking and pro

cess loss identifications that is used in the procedure to set up the target den

sity distribution function. That is done any how in a properly organized 

TQM oriented business. Hopefully this will put focus on the application 

rather than on the tool. 

9.3.1. Conceptualizing information distance SPC 

In chapter 6. an information metric for quality was discussed in detail. The 

metric proposed was information distance. In this section we will demon-

144 



strate and discuss how this metric can be applied to an SPC monitoring pro

cess. In principle we will have a control chart as illustrated in Figure 28 . 

Information 
Distance Upper 
________________________________ Control 

\, Accumulated distance 
" distribution function 

Observed distance 

Figure 28 Information distance control chart. 

Limit 

Time 

The procedure to plot this chart is very similar to the one used for x-chart. A 

number of observations are made and grouped. The probability distribution 

function for the group of observations is calculated. This probability distri

bution function will be over classes. Using the same terminology as in chap

ter 6. this calculated probability distribution function is compared to a tar

get probability distribution function. The comparison is made as an 

information distance. To be able to do this the two distribution functions 

have to have identical class definitions. 

The target distribution function may be chosen in the same way as dis

cussed in chapter 6. i.e. on the basis of benchmarking activities. There is 

however also another possibility; that is to make a choice that is very similar 

to the discussion in section 9.2.1. above. This means to accumulate a distri

bution function for the present process as the monitoring is started. Which 

way the choice is made depends on what is to be achieved by the monitoring 

process. 

A third basis of choice of target distribution function is obvious from 

Figure 26. The SPC activity is an activity to monitor that the performance 
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of the product verified in the development process is really achieved and 

maintained in production. Thus the results of robust design activities are 

really forming the target distribution function. With this choice we get a 

very concrete integrating effect of the proposed quality metric. At the same 

time as we monitor the statistical stability we keep track of the process be

ing on target in relation to results produced during the process develop

ment. 

Information distance is taking into account position and spread at the same 

time. This was discussed in chapter 6. According to that discussion the tar

get distribution function can be used to put emphasis more on position than 

on spread or vice verse. We note that by using a control chart based on infor

mation distance we may manage with one chart what we need two charts to 

do using traditional charts. Further we note that a careful choice of target 

distribution handles the trade off between position and spread. With the tra

ditional control charts this trade off, whenever it has to be made, has to be 

left ~p to the end user. 

With the target distribution generated partly from a benchmarking activity 

the monitoring process will also give an indication of the absolute quality 

level. This is not handled at all with the traditional approach.When the tar

get distribution is chosen to be the accumulated one ( as is sometimes rec

ommended in traditional SPC) you just get what you get in terms of trade off 

between position and spread. 

As discussed earlier the information distance will grow large as the process 

probability distribution function becomes narrower than the target distribu

tion function. This is not a problem for two reasons. Firstly most changing 

processes that are not deliberately planned changes in production systems 

are degrading processes. In the rare cases that we get converging changing 

processes which are not planned changes we still benefit from getting an 

alarm to learn what has happened out of our control, and to improve the pro

duction system. 
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Information distance is not as easy to calculate as the local mean or the 

group range. Still, it is not prohibitively difficult. In any case this is not a big 

problem today as measurement systems are more and more being comput

erized. Evaluations will then be transparent for the user. The biggest prob

lem in the implementation is to evaluate the control limit. Depending on the 

knowledge of the distribution function of the property being observed 

Monte Carlo simulations may be used to generate the control limit. 

There are further parameters generating the alarming properties of an infor

mation distance SPC. These are the number of classes used in the target dis

tribution function and the number of observations in each group. The influ

ence of these parameters will be demonstrated in the simulations 

documented in the next section. 

9.3.2. l\lonte Carlo simulated properties of Information distance src 

As a demonstration, a Monte Carlo simulation is made assuming the ob

served property to be exponentially distributed with the distribution param

eter being equal to 1.0 . This is then the base for the target distribution. 

Hence the simulation may be said to be using the accumulated target distri

bution function as discussed above. 

The simulation is performed in two steps. First the control limit is generated 

as the value of information distance above which the probability to get an 

estimated information distance is 0.003. This corresponds to the alarm level 

of three standard deviations used for traditional SPC. 

This control limit simulation is made using the process exponential distri

bution transformed to classes as a target distribution. The number of classes 

is varied as is the number of observations in each group. The observations in 

each group are generated and the corresponding distribution function is cal

culated. From this data the information distance between the target distribu

tion function and the observation group distribution function is calculated. 

The observation generation is made using the continuous exponential dis-

147 



tribution function. In each simulation 100,000 groups have been generated 

and evaluated. 

The control limit generated will be a function of the number of classes and 

the number of observations in each group. 

For each set of combination of number of classes and number of observa

tions in the groups Average Run Length curves have been calculated in the 

second step of the simulation. The AR~urves are generated by shifting 

the mean of the exponential process distribution. With these shifted means 

the information distances between the observations group distribution 

function and original target distribution function are calculated. The proba

bility of these informations distances being greater than the 0.003 probabil

ity limit is observed. Again 100,000 groups are generated for each point on 

the ARL-curve. The results of the simulations are summarized in appendix 

D. 
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Figure 29 Comparisons of ARLnumber for traditional control charts sim

ple information distance charts. 
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A similar simulation has also been made of the traditional control charts x 
and R. The results of these simulations are also given in appendix D . The 

ARL-curves for the traditional SPC charts and two of the best Information 

distance SPC charts are shown in Figure 29. 

From Figure 29 we conclude that we get the expected alarm property of the 

information distance charts. The average run lengths are a little longer than 

those from the traditional charts. As the information distance chart ARL 

curves are consistently higher they can be shifted downwards simply by al

tering the alarm limit. 

The characteristic shape of the curves may be altered in several different 

ways. One way is demonstrated in Figure 29, i.e. by the choice of number of 

classes and the sample size. In the above simulations we have used equidis

tant class width plus a tail class. Other class width distributions may of 

course also used to yield other decision properties. Another way to mani pu

late the shape is the choice of target probability distribution function. Indi

cations of this may be seen in the discussions in chapter 6. It is concluded 

that with the information distance-SPC it is possible to design virtually the 

kind of ARL-curve wanted. 

9.4. Information distance SPC summary 

Above it has been shown that the information distance metric may be used 

to design a control chart applicable to different processes. In previous chap

ters we have shown the relevance of the information distance metric to most 

processes in industrial or pure administrative businesses. Accordingly the 

presented new chart may be widely applied. It will use the same administra

tion and knowledge of the chart required wherever it is applied. 

When applied it will be tying in the upstream benchmarking and other TQ~1 

activity results into the evaluations with the chart. As the new chart will be 

possible to design along different requirements on trade-off between loca

tion and spread, trade-offs are made centrally and consistently. 
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The traditional charts monitor statistical stability. The new chart does the 

same but in addition monitors quality level with respect to the set target den

sity distribution function. 
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10. Discussion. 

In this section we will discuss some of the observation reported above. 

Some merits and shortcomings of different concepts proposed will be 

brought up. Finally some recommendations for further research will be 

made. 

10.1. Information distance metric. 

In previous sections a quality metric has been proposed and has been used 

in different applications. All issues connected with quality have a proba

blistic nature. The proposed metric emphasizes the statistical approach. 

That is a strength but it may at first be considered a weakness. To get a good 

judgement more observations are needed. In connection to the discussion 

about SPC and information distance it was however shown that the predic

tivity of information distance was fair even with a rather small amount of 

statistical material. It is obvious that some care has to be exercised in choos

ing the sample size. That is of course true whichever method used, but with 

the proposed method it is rather more important. 

In section 4.1. we made a listing of different quality characteristics. There 

was also an indication of different analysis methods, i.e. metrics, suitable 

for each one. With the proposed quality characteristic the analysis will be 

the same in all cases. That is valid even for dynamic characteristics. In the 

latter area we get a particular benefit as it is not necessary to go into details 

about statistical regression and other aspects of mathematical rigor. How

ever to understand or develop a formulae for the SN-ratio of a dynamic 

characteristic requires considerable skills in regression. 

In the reported applications we have seen that the absolute magnitude of the 

metric varies with the number of classes used in the density function. This is 

of course a weakness. However it reflects the amount of information that is 

being assessed. With other quality metrics there are also different magni

tudes depending on what is chosen to be observed. This was clearly shown 
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in the discussion about the paper feeding mechanism in section, 5.3. For 

other metrics there is only the expectation to measure relative levels of 

quality. With infonnation distance you have the potential to measure abso

lute level of quality. The absolute level of quality needs a globally valid nor

malization strategy. This problem is not yet resolved. In section 6.4.3. some 

ideas on normalization was discussed. Below some further suggestions for 

normalization is given. 

The actual choice of formulation of information distance belongs to a gen

eral class of distance definitions: 

D(P:Q) = I't (( a+bpi )In(( a+bpi)/( a+bqi))+( a+bq; ) In(( a+bqj)/( a+bpi)))" 

a+bqj>O; a+bpi>O, (See reference (66» 

In chapter 5. a=b=1.0 was justified by simplicity in computer implementa

tions. However by choosing those values there is minimum contribution to 

the distance as either Pi or qi is zero. The distance is also limited from above 

and from below. It is always bigger than 0.0 and less than 41n(2). The upper 

value is valid for extreme density functions. Thus it is not appropriate for 

realistic density functions qj. The use of 4In(2) is possible as nonnalizing 

factor. However that will not take the actual density function qi into ac

count. Thus coupling of the metric to the actual quality loss is lost. This way 

of normalization would not be a first choice according to the point of view 

of the author. 

From the discussion about target density function, a smooth density func

tion taking into account the quality losses was argued for. Losses are set to 

reflect world class performance. The argument for a smooth density func

tion was to get the good dynamic in the quality system. Now let w be the 

information distance between the target density function qj amI the ideal 

performance. The latter is a density function with probability 1.0 in one 

class and 0.0 in all other classes. The unit probability class should be cen

tered around the discrete target value. A proposal for normalization may be 
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to divide the information distance between the performance density func

tion, Pi. and the target density function, qi. by w. That way distance will al

ways be in fractions of w which is informative. The same class definitions 

for all three probability density functions discussed in this example is nec

essary to tie the normalization back to the loss level. 

The choice of normalization is not straightforward. The property discussed 

above about the metric giving an indication of the amount of information 

assessed is a valuable property. It gives the user an awareness of the effi

ciency of the characteristic used. It is of interest to consider even the non

normalized information distance to some extent. In particular this is true as 

different characteristics are evaluated for use. 

In our discussion we have compared this approach with alternative metrics 

from other researchers. None of them has had universal applicability. Very 

few have had a strong connection to the observable effects of poor quality, 

i.e. loss to society. Through the target density function and benchmarking, 

the proposed metric has such a connection. 

10.2. Robust design and experimentation 

In the reported applications we have seen some problems with the predic

tion procedure. In some places negative class probability was predicted. 

The prediction procedure adopted is the one given by Taguchi in reference 

(80). In the actual case, Table 37, the number of classes was high and sever

al classes had missing observations. Accordingly the statistics of the data is 

poor. We also observe that with fewer classes the analysis of the same exam

ple works alright. 

The analysis of variance for the two data analyses referred to above does not 

give good information as to what may be the problem. We note that signifi

cance levels are marginally lower from Table 36 than from Table 31. The 

data in those tables are calculated using accumulated results. Further it is an 

overall assessment. We may very well experience that one factor is very 
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dominant and significant in a few classes but not in other classes. When us

ing accumulated data these kinds of effects are easily hidden. When making 

a prediction only significant factors should be considered. Following the 

above reasoning predictions of some classes are made with non significant 

factors. Some researchers, (53), have also raised some questions over the 

relevance for the ANOVA of accumulated classes. This area needs to be 

considered further. 

A prediction exercise based on the relative contribution to total variance 

gives other conditions for predictions. Disregarding factors contributing 

less than 5% gives that with 7 classes data factors A, D, E, F H should be 

considered. For 11 classes data factors A, E, F and H should be considered. 

The reason for the effect of one single factor being significant at different 

levels through the different classes should also be considered. It may be that 

the prediction difficulties experienced due to these circumstances is an in

dication that interactions outside the experimentation model is present. The 

prediction part of the data analysis needs to be investigated in further depth. 

It may be possible to find an analysis tool to disclose model errors. 

As regards the prediction method used a more rigorous analysis was made 

in section 6.5.2. That investigation gave as a novel result the prediction 

principle governing the Logit transform. In particular the Logit transform 

was found to be the derivative of the Shannon entropy with respect to the 

class probability p. We also note that the situation where the Logit-trans

form is normally used is onc where the goal is to get p as close to unity as 

possible. That is also inherent to our investigation. However the prediction 

principle is interesting. In the general case with a target distribution the pre

diction principle is not really valid. Instead of striving to unity, there is a 

specific value for each class probability. The entropy pricing for fractions 

of p is no longer relevant. Rather, the entropy pricing for fractions of infor

mation distance may be valid. That may be a useful track to follow in order 

to develop a suitable prediction procedure. 
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In the applications, we have seen that the design of the target distribution is 

of vital importance for several reasons. Firstly, there is the statistical validi

ty for prediction as discussed above. Secondly, there is the ability to extract 

information of the available observations. Thirdly, there is the relevance to 

world class performance. 

The basic target density function may preferably be continuous and para

meterized. This is for reasons that it is then conveniently tied to the bench

marking results via the loss function. In that way it is nicely controlled to 

reflect world class performance. In real applications the target density func

tion is usually discretized. This discretisation may be manipulated by the 

parametrization of the basic target density function. 

A manipulation making the basic target density function a little sharper may 

be incorporated as a standard evaluation procedure. When introducing the 

new metric we saw that an actual density function sharper than the target 

density function gives a positive distance. A proper application of the target 

density function should with a high probability indicate an overspending 

for sharper than target. A good evaluation package should of course spell 

out that this is happening. This may be accomplished by evaluation of the 

incremental change of information distance as the target density function is 

made slightly sharper. If the information distance is decreasing as you make 

the target density function becomes sharper the actual density function is 

sharper than target. At that stage whether there is overspending or the result 

is being achieved at low cost needs to be assessed. In the latter case new 

standards of performance are being set. 

The ability of the target density function to extract information in the avail

able material is essentially a matter of class definitions. Two different situa

tions may be identified. Firstly there is a situation where the actual perform

ance is far off from target. In that case classes need to be assigned to get 

good dynamic for gross changes towards compliance with the target. Sec

ondly, there is the situation where the actual performance is on average , 
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close to the target. Then of course the class definition should be more re

fined around the center of the target density function. 

The basic target density function is the same all the time. Depending on the 

actual density function for performance characteristics under consideration 

the discretization is varied as discussed above. 

10.3. TQM 

TQM may be regarded as a toolbox including all quality engineering tools. 

From a traditional viewpoint there is certainly nothing else but the toolbox 

and the objective, quality, to keep the tools together. However in the present 

report starting with the new metric information theory is introduced. It has 

been shown that the quality tools in the light of information theory may be 

considered as a means to filter out unwanted information from a process. 

In Chapter 9. the application of information distance in the scope of statisti

cal process control was demonstrated. This concept was based on the con

ceptual idea of the manufacturing system as a information processing sys

tem as shown by Figure 1. 

In Chapter 8. the product development process was illustrated in the same 

way. The reasoning in this context gave a more solid foundation (towards 

information theory) to the empirically derived complexity number tool. 

Next we went on to the Total Design formalism and argued that this process 

was nothing else but to systematically refine the minimum information 

needed to make a product. For example Pugh called the product develop

ment specification, a design boundary. This is very true as the more the 

specification is quantified the more the variations during the design process 

are decreased. 

A tentative quality measure for the product development process was pro

posed. With the information theoretical viewpoint it is conceptually easy to 

design quality measures for the product development process. The difficul-
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ty in pursuing the application is to define the target distribution. Here again 

the benchmarking tool is relevant. Over the last years it has become com

mon to benchmark the product development process between companies. 

Through the demonstrations discussed above we have seen that there is a 

common property of all quality tools. That property is an information re

finement. The basic science concerning quality engineering is information 

theory. For years, since at least the pioneering work by Shannon, this has 

been realized by communication engineers. As this report puts the general 

quality engineering in the same framework it is possible for quality engi

neering to draw on the achievements within communication engineering. 

The new metric requires a function or process description of the system. 

This is a big strength of the proposed procedure. It puts the focus on organi

zation of information in early stages of development. This organization 

does not of course come about by itself. The information structuring does 

call for resource allocation in those stages. Many researchers have for long 

emphasized the importance of this kind resource allocation, (14). In real life 

this has however rarely happened. The information theoretical approach 

may give further support to a reallocation of resources within the develop

ment processes. 

10.4. Further research 

From the discussion above it is clear that this report is just the start of a new 

approach to quality engineering. Accordingly more research is needed. Be

low we will discuss some of the more relevant areas of research. 

The first area is one concerned with target density functions. The dynamic 

of the quality metric in relation to the discretization of the target density 

function is of prime importance to the application. Further the benchmark

ing activity needs to be adapted to give a relevant target density function. 

The RFCA procedure relies on a recognition of the system levels in the 

product design. In effect the base of the RFCA is a function description of 
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the product. The different functions identified are actually being used as 

characteristics in the robust design activities. An area of research is the pro

cedure to systematically break down the quality losses through the system 

levels to allocate appropriate loss levels to each function. This is a prerequi

site for a proper design of the target density function. 

The application of quality assessment using information distance in organi

zational processes is a large area where research is needed. The modem 

quality standards, i.e. ISO 9000, (81), or TQM models, (4), ask as said 

above for function descriptions of the company processes. Through these 

identified functions, quality characteristics may be designed. The efficien

cy of quali ty evaluation using information distance for these characteristics 

is a very interesting area of further investigation. 

In Chapter 8. the information theory approach has been applied to system 

complexity. It is a strong belief of the author that a continued application of 

the information theoretical concept to DFX (Design For Xxxx) activities 

will be very rewarding. One entry point into this area may be the costing 

strategies as outlined by Pugh, (63). This will then draw on a widening of 

the complexity number. Another entry point is the modularization of design 

as outlined by Erixon et. al., (12). Of particular interest is the impact of 

module interface design on quality, as discussed briefly in chapter 8. 

Within the area of robust design an investigation into prediction strategies 

would be worthwhile. At present the Logit-transform is used (up till now) 

out of empirical reasons from a long application within robust design. It is 

working reasonably well but we have seen some spurious things in the 

applications above. With an information theoretical approach a revised pro

cedure may be designed. Some suggestions have already been made. 

Finally it should be of interest to investigate the quality metric, information 

distance. itself. What properties does it have in different aspects. One of the 

more important is the issue of normalization. In what way can the amount of 
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information indication be conserved at the same time as you make a global 

quality standard is made? 
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11. Conclusions. 

The present research set out to show the relevance of information theory as 

a basic theory for quality engineering. In the preceding chapters this has 

been done. 

First a new metric was designed. A particular formulation of information 

distance was used. This was shown to have good quality evaluation proper

ties. This has been done in both robust design applications and SPC simula

tions. 

Further the applicability of the new quality metric has been demonstrated in 

both product and process quality evaluation. Processes considered include, 

development and manufacturing. The basis for applicability is a function 

based description. This assures applicability throughout all targeted orga

nized activities. 

Secondly the information theory has been shown to be a valid common base 

for quality engineering. Thus it has been shown that the information theory 

is an integrating factor for all quality related activities. 

Poor quality has been identified to be a flow of surplus information in the 

system under consideration. Thus quality engineering tools have been in

terpreted as filters letting through only the information wanted in the sys

tem function. This is also completely in line with the modem system engi

neering theories. 

Accordingly we may conclude that the task of a designer is information 

processing. A statement that is not that much appreciated amongst design

ers but nevertheless it is true. 

161 



12. References. 

(I)N.,P., Suh,"Axiomatic Design of Mechanical Systems.",Trans. of The 

ASME, 117, June 1995, pp 2 - 10. 

(2)N.,P., Suh,"Designing-in of Quality Through Axiomatic De

sign .. " ,IEEE Trans. on Reliability, 44, No 2, June 1995, pp 256 - 264. 

(3)B. Svensson, "Poor Quality -a Surplus of information.". Procedings of 

Productmodeller-95, pp 349 - 362. Linkoping, Sweden, April, 1995. 

(4)E., C., Foley:'Winning European Quality:', European Foundation for 

Quality Management, 1994. 

(5)0. Clausing, "Total quality development: a step-by-step guide to 

world-class concurrent engineering.", ASME Press, 506p. 1994. 

(6)M. A. Styblinski. " Generalized Formulation of Yield. Variability. Min

Max and Taguchi Circuit Optimization Problems:·. Microelectronic 

Reliability. 34. 1994:1. pp 31 - 37. 

(7)J. L. McGovern, " A Critique of the Taguchi Approach - Part I: A Pre

sentation of Some Deficiencies and How these Limits Its Efficiency 

and Validity.", Journals of Coatings Technology. 66. March 1994:830, 

pp 65 -70. 

(8)J. L. McGovern, " A Critique of the Taguchi Approach - Part 11: An Al

ternative that is more Efficient. tt, Journals of Coatings Technology, 

66, April 1994:831. pp 55 - 61. 

(9) G. Erixon, A. Erlandsson, A. v. Yxkull, B. M. Ostergrcn, "Modulindela 

produkten.", Forlags AB Industrilitteratur, Stockholm, 1994. (In 

Swedish) 

(10) P. D. T. Q'Connor, "The practice of engineering management:", John 

Wiley & Sons Ltd, Chichester, England, 1994. 

(11) P. Karlsson, "Assessment of customer value in the truck market.". In

ternal report to Volvo Truck Corp., Gotheburg. Sweden, 1994. 

162 



(12) G. Erixon, A. Erlandsson, A.v. Yxkull, B. M. 6stergren. "Modularize 

the Product.", Swedish Manufacturing Industry Publishing Company 

AB, Stockholm, Sweden. 1994. 

(13 )M. Petzall, "Process improvement for PVC-pipe processing.", Internal 

repport to UPON OR AB, Fristad, Sweden, 1994, (In Swedish). 

(14) 1. Fox, "Quality Through Design: The key to successful product deliv

ery.", McGraw-Hill, Maidenhed, UK, 1993 

(15) K. Sontow, D. P. Clausing, "Integration of Quality Function Deploy

ment with Further Methods of Quality Planning.", LMP-93-005 

(Working paper), Massachussetts Institute of Technology, Cam

bridge, Massachussetts, USA, 1993. 

(16) J. Krottmaier, "Optimizing Engineering designs.", McGraw-Hill Pub

lishing Company, London, 1993 

(17)L. E. Shirland, "Statistical Quality Control with Microcomputer Appli

cations.", John WHey & Sons, Inc., New York, 1993 

(18)F. Mistree, U. Lautenschlager, S. O. Erikstad, J. K. Allen, "Simulation 

Reduction Using the Taguchi Method.", NASA Contract Report 4542, 

University of Houston, Houston, Texas, Oct, 1993. 

(19)A. Vedin, J. Backman, "Robust-design av rotationsgjutningsprocess.", 

Diploma work at The University of Boras, Boras, Sweden, 1993, (In 

Swedish). 

(20)T. N. Goh, "Taguchi Methods: Some Technical, Cultural and Pedagog

ical Perspectives.", Quality and Reliability Engineering International, 

9, 1993, pp 185 - 202. 

(21)G. K. Robinson, "Improving Taguchis Packaging of Fractional Facto

rial Designs.", Journal of quality Technology, 25, January 1993: 1, pp 

1-11. 

163 



(22)G. Abdul-Nour, "On Some Factors Affecting The lust-In-Time Pro

duction System Output Variability: A Simulation Study Using Tagu

chi Techniques.", Computers and Industrial Engineering, 25, 

1993: 1-4, pp 461 - 464. 

(23)G. Abdul-Nour, "The Customer Service Level as Affected by Machine 

Unreliability in a JIT Production System Environment: A Simulation 

Study Using Taguchi Techniques.", Institute of Industrial Engineers 

2nd Industrial Engineering Research Conference Proceedings, 1993, 

pp 415 - 419 

(24)Y. H. A. Liou. P. P. Lin. R. R. Lindeke. H. D. Chiang. "Tolerance Speci

fication of Robot Kinematic Parameters Using an Experimental De

sign Technique - The Taguchi Method.", Robotics and Computer In

tegrated Manufacturing, 10, 1993:3, pp 199 - 207. 

(25)M. Hamada, "Reliability Improvement Via Taguchi's Robust De

sign.", Quality and Reliability Engineering International, 9, 1993, pp 

7 - 13. 

(26)K. N. OUo, E. K. Antonsson, "Extension to the Taguchi Method of 

Product Design.", Journal of Mechanical Design, 115, March 1993: I, 

pp 5 - 13. 

(27)1. P. Bentley," An Introduction to Reliability and Quality Engineer

ing.", Longman Scientific & Technical, Longman Group UK Ltd, 

Harlow, 1993. 

(28)0.1. Wilde,"Monotonicity Analysis of Taguchi's Robust Circuit De

sign Problem.",Transaction of the ASME, Vo1114, Dec 1992, pp 616 

- 619. 

(29)0. K. Hitchins, "Putting Systems to \Vork.", John Wiley & Sons. Ltd., 

Chichester, UK, 1992 

164 



(30)J. S. Ramberg, 1. J. Pignatiello Jr., S. M. Sanchez, "A Critique and En

hancement of The Taguchi Method.", ASQC Quality Congress Trans

actions - Nashville, 1992, pp 491 - 498, 

(31)A. Kraslawski, T. Koiranen, L. Nystrom, C. Gourdon, "Concurrent En

gineering: Fuzzy Simulation and Similarity in Quality in Quality Loss 

Function Development and Applications.", Computers & Chemical 

Engineering, 16, 1992, pp 361 - 368. 

(32)N. D. Singpurwalla, "A Bayesian Perspective on Taguchi's Approach 

to Quality Engineering and Tolerance Design.", lIE Transactions, 24, 

November 1992:5, pp 18 - 32. 

(33)S. Wu, J. V. Zidek, # An Entropy-based Analysis of data from selected 

NADPINTNNetworkSites For 1983 -1986.", Atmospheric Environ

ment, 26A, 1992: 11, pp 2089 - 2103. 

(34)N. Suh, "Design Axioms and Quality Control.", Robotics & Com

puter-Integrated Manufacturing, 9, 1992:4/5, pp 367 - 376. 

(35)R. V. Le6n, C. F. J. Wu, "A Theory of Performance measures In Param

eter Design.", Statistica Sinica, 2, 1992, pp 335 - 358. 

(36)Y.-S. Chen, K. Tang, "A Pictorial Approach to Poor-Quality Cost 

Management.", lEE Transaction on Engineering Management, 39, 

May 1992:2, pp 149 - 157. 

(37)S. Ashley, "Applying Taguchi's Quality Engineering to Technology 

Development.", Mechanical Engineering, July 1992, pp 58 - 60. 

(38)T. N. Goh, "An Organizational Approach to Product Quality via Statis

tical Experimantal Design." ,International Journal of Production Eco

nomics, 27, 1992, pp 167 - 173. 

(39)A.E. Freeny, V. N. Nair, "Robust parameter design with uncontrolled 

noise variables.", Statistica Sinica, 2, (1992), pp 313 - 334. 

165 



(40)R. H. Myers, A. I. Khuri, G. Vining, "Respons surface alternatives to 

Taguchi robust parameter design approach." The American Statisti

cian, 46, May 1992:2, pp 131 - 139. 

(41)1. L. Burati 1r,1. J. Farrington, W. B. Ledbetter, "Causes of Quality De

viations in design and Construction.", Journal of Construction Engi

neering and Management., 118, 1992: 1, pp 34 - 49. 

(42)P. Sandvik-Wiklund, "Some contributions to industrial design of ex

periments.", LiU-Tek-Lic-1992:07, Linkoping University, Sweden, 

1992. 

(43) I. E. Morely, D.-M. Hosking, "Total Design- Teamworking .... Design 

division, University of Strathclyde, Glasgow, 1992. 

(44) B. Pease, "What's All This Taguchi Stuff, Anyhow?". Electronic De

sign. June 25, 1992, pp 83 - 84 

(45) B. Pease, "What's All This Taguchi Stuff. Anyhow? (part 11)". Elec

tronic Design. June 10, 1993, pp 85 - 92 

(46) R. Andersson. "QFD A system for efficient product development. ... 

Studentlitteratur, Lund. Sweden. 1991. (In Swedish) 

(47) D. C. Montgomery, "Introduction to Statistical Quality Control.". John 

Wiley & Sons Inc., New York, 1991. 

(48) K. Akiyama. "Function analysis: Systematic improvement of quality 

and performance.", Productivity press Inc .• 1991 

(49) D. P. Clausing, S. Pugh, "Enhanced Quality Function Deployment. ... 

pp 15 - 25. Proceedings Vol. 1. Design Productivity International 

Conference, Honolulu, Hawaii, 1991. 

(50) L. Ljung, T. Glad, "Modellbygge och simulcring.", Studentlitteratur. 

Lund, Sweden, 1991. (In Swedish) 

(51 )G. Bateson, "Further steps to an ecology of mind.". Cornelia & Bessie 

Book. New York. 1991. 

1()6 



(52)A. Rosenblatt, G.F Watson, "Concurrent Engineering - Special re

port.", IEEE Spectrum, July 1991, pp 22 - 37. 

(53)M. Hamada, C. F. 1. Wu, "Analysis of Censored data from Highly Frac

tionated Experiments.", Technometrics, 33, Ferbruary 1991: 1, pp 25 -

38. 

(54 )A. C. Shoemaker, K.-L. Tsui, C. F. 1. Wu, "Economical Experimenta

tion Methods for Robust Design.", Thechnometrics, 33, November 

1991:4, pp415 -427. 

(55)J. A. Nedler, Y. Lee, "Generalized Linear :Models for the Analysis of 

Taguchi-type Experiments.", Applied Stochastic Models and Data 

Analysis, 7, 1991, pp 107 - 120. 

(56)1. H. de Boer, A. K. Smilde, D. A. Doombos, "Introduction of a Robust

ness coefficient in Optimization Procedures: Implementation in Mix

ture Design Problems. Part Ill: Validation and Comparison With Com

peting Criteria.", Chemometrics and Intelligent Laboratory Systems, 

15, 1991, pp 13 - 28. 

(57)R. 1. Carroll, P. Hall, "Nonparametric Estimation of Optimal Perform

ance Criteria in Quality Engineering.", The Annals of Statistics, 18, 

1990: 1, pp 181 - 302. 

(58)W. J. Welch, T.-K. Yu, S. M. Kang, 1. Sacks, "Computer Experiments 

for Quality Control by Parameter Design.", Journal of Quality Tech

nology, 22, 1anuary 1990:1, pp 15 - 22. 

(59)L. Liu, W. A. Nazaret, R. G. Beale, "Computer-Aided Design for Qual

ity (CADQ).", AT&TTechnical Journal, MaylJune 1990, pp46-60. 

(60) B. Svensson, "Integrating analysis tools through the use of Taguchi 

methods.", Proceedings of the 1 st international conference on inte

grated technology management, pp 42 - 53, IFS-conferences, Lon

don, 1990. 

167 



(61) Y, Akao (editor), "Quality Function Deployment. Integrating Custom

er Requirements into Product Design.". Productivity Press. Portland. 

Oregon. 1990. 

(62) N. P. Suh, "The Principles of Design", Oxford University Press. New 

York, 1990 

(63) S. Pugh, "Total design.", Addison-Wessley, Wokingham,England, 

1990. 

(64) M. S. Phadke, "Quality engineering using robust design.", Prentice

Hall, 1989. 

(65) G. Taguchi, E. A. Elsayed, T. Hsiang, "Quality Engineering in Produc

tion Systems.", McGraw-Hill Publishing Company, New York, 1989. 

(66)1. N. Kapur, "Maximum entropy models in science and engineering.", 

John Wiley & Son Inc, New York. 1989. 

(67)M. Owen, "SPC and Continuous Improvement.". IFS Publicationsl 

Springer-Verlag, Berlin, 1989. 

(68)Y. Wearn, "Cognitive aspects of computer supported tasks.", John 

WHey & Sons Ltd, Chichester, England, 1989. 

(69)G. Box, "Signal-ta-Noise Ratios, Performance Criteria, and Transfor

mations.", Technimetrics, 30, February 1988: 1, pp 1 - 40. 

(70)D. A. Norman, "Psychology of everyday things.", Basic Books Inc., 

New York, 1988. 

(71 )E. L. Grant, R. S. Leavenworlh, "Statistical Quality Control, 6th cd.", 

McGraw-Hill Book Company Inc., San Franscisco, 1988. 

(72)K. Lindgren, "Physics and information theory.", Dissertation, Division 

of Physics Chalmers University of Technology, Gothenburg, Sweden, 

1988. 

168 



(73) P. J. Ross, "Taguchi Techniques for Quality Engineering.", McGraw

Hill Book Company Inc., San Franscisco, 1988. 

(74) G. Pahl, W. Beitz, "Engineering design, a systematic approach.", 

Springer Verlag, 1988. 

(75) L. A. Ealey, "Quality by Design, Taguchi Methods and U.S. Industry.", 

ASI Press, Dearbom, Michigan, 1988. 

(76) S. Pugh,l. E. Morely, "Total Design - Towards a Theory of Total De

sign.", Design division, University of Strathclyde, Glasgow, 1988. 

(77) L. Sandblom, "Quality Control.", Studentlitteratur, Lund, Sweden, 

1988. (In Swedish) 

(78) J .M. Juran, "Quality Control Handbook, Fourth Edition" McGraw

Hill, New York, 1988. 

(79) J.1. Pignatiello Jr, "An Overview of the Strategy and Tactics of Tagu

chi.", lIE Transaction, Vo120, Nr 3, pp 247 - 254. Sept 1988. 

(80) G. Taguchi, "System of experimental design", Voll &2, Unipub Kraus 

International Publications, New York, 1987 

(81) ISO-9000, Quality management and quality assurance standards -

Guidelines for selection and use., 1987. 

(82) ISO-9001, Quality systems - Model for quality assurance in design/ 

development, production, installation and servicing., 1987 

(83) ISO-9002, Quality systems - Model for quality assurance in produc

tion and installation., 1987 

(84) ISO-9003, Quality systems - Model for quality assurance in final in

spection and test., 1987 

(85) ISO-9003, Quality management and quality system elements - Guide

lines., 1987 

169 



(86)K.-E. Eriksson, K. Lindgren, B. A. Mansson, "Structure, context, com

plexity, organization.", Singapore World Science Corp, 1987. 

(87)G.Bateson, "Steps to an ecology of mind.", Aronson Coperation, 

Northvale, New Jersey, 1987. (Chandler publications for health 

sciences) 

(88)R. V. Le6n, A. C. Shoemaker, R. N. Kacker, "Perfonnance Measures 

Independent of Adjustment.", Technometrics, 29, August 1987:3, pp 

253 - 285. 

(89)0. E. P. Box, R. D. Meyer, " Dispersion Effects From Fractional De

signs.", Technometrics, 28, February 1986: 1, pp 19 - 27. 

(90)V.N. Nair, D. Pregbon, "A data analysis strategy for quality engineer

ing experiments.", AT&T Thechnical Journal, 65, May/June 1986:3, 

pp 73 - 84. 

(9l)P. W. Atkins, "Physical Chemistry.", Oxford University Press, Oxford. 

1986. 

(92) P. W. Atkins, "Physical chemistry.", 3rd-edition, Oxford University 

Press. Oxford, 1986. 

(93) G. Taguchi, "Introduction to quality engineering.", Asian Productivity 

Organization, 1986. 

(94) K. Ishikawa, "What is Total Quality Control? The Japanese Way.", 

Prentice Hall, Eaglewood Cliffs, N.J., 1985. 

(95)P. E. Gill, W. Murray, M. Wright, "Practical Optimization.", Academic 

Press, London, 1982. 

(96)D. Pregibon, "Godeness of Link Tests for Generalized Linear mod

els.", Applied Statistics, 29, 1980: I, pp 15 - 24. 

(97) The Asahi, Japanese language newspaper, April 15 1979. (As refer

enced by Phadke in (64).) 

170 



(98) G. E. P. Box, W. G. Hunter, J. S. Hunter, "Statistics for experimenters.", 

John Wiley & Sons, Inc. , New York, 1978. 

(99) N. Lundqvist, R. Fridlund, "Value Analysis.", 2nd edition, Swedish 

Manufacturing Industry Publishing Company AB, Stockholm, Swed

en, 1972. (In Swedish) 

(IOO)L. Brillouin, "Science and information theory.", Academic Press NY, 

1962. 

(101) J.M. Juran, "Quality Control Handbook." McGraw-Hill. New York, 

1951. 

(l02)C. E. Shannon, "A mathematical theory of communication.Part I 

-IV.", The Bell system technical journal.. Vol. XXVII. No. 3. pp 379-

423; 623 - 656, 1948. 

(103) A. Wald. "Sequential analysis.". John Wiley &Sons, New York. 1947 

(104) H.E Dodge, H.G. Roming, "Single sampling and double sampling in

spection tables.", The Bell System Technical Journal, No 20, pp. 1 -

61, 1941. 

(105) W.A. Shewhart, "Statistical Method. From the Viewpoint of Quality 

Control.", Graduate School of the Department of Argiculture. Wash

ington D.C., 1939. 

(106) R. A. Fisher, "Statistical methods for research workers.", Oliver and 

Boyd, 1935. 

(107) R. A. Fisher. The design of experiment., Oliver and Boyd. 1935. 

(108) R. Becker, H. Plaut, I. Runge. "Anwendungen der Mathematischen 

Statistik auf Problem der Massfabrikation.", Springcr-Verlag, 1931. 

(In German) 

(109) W.A. Shewhart, "Economic Control of Quality of Manufactured 

product.", Van Norstrand, New York, 1931. 

171 



(110) H.P. Dodge, H.G. Roming, "A method of sampling inspection.",The 

Bell System Technical Journal, No 8, pp. 613 - 631, 1929. 

(111) K.H. Daeves, "The utilization of statistics. A New and valuable aid in 

industrial research and in the evaluation of test data.", Testing, ~1arch, 

pp 173 - 189, 1924. 

(112)P. X. Brown, R. W. Kane, "Quality cost and Profit Performance.", 

ASQC Technical Conference Transactions, Milwaukee, pp 505 - 514. 

172 



13. Appendices. 

13.1. Appendix A. A Robust Engineering Example. 

For reference purpose we give a short summary of a robust engineering ex

ample presented by Phadke, (64). 

By manufacturing of very large scale integrated (VLSI) circuits there are 

many process steps. One example of these are the polysilicon deposition 

process. This step has been subject of a robust design study. The process is 

performed in a reduced pressure reactor. The reactor consists of a quartz 

tube which is heated by a 3-zone furnace. Silane and nitrogen gases are in

troduced at one end and pumped out at the other. The silane pyrolizes, and a 

poly silicon layer is deposited on top of the oxide layer on the silicone wa

fers. The wafers are mounted in quartz carriers. Two carriers, each carrying 

25 wafers, are placed inside the reactor at a time so that poly silicon is depos

ited simultaneously on 50 wafers. 

At the start of the study there were two main problems with this process: 1) 

too many surface defects were encountered, and 2) too large a thickness 

variation within wafers and among wafers. These two deficiencies caused a 

lot of scrap down stream in the process. It was decided to use the number of 

surface defects, polysilicon layer thickness and deposition rate as function 

characteristics. 

Next the noise factors influencing the process have to be considered. As dis

cussed above it is not always necessary to use an orthogonal array for the 

noise factors. The important point is to assure that there is a large amount of 

noise influencing the observed results of the experiments. The nonuniform 

thickness and the surface defects are caused by the variations in the parame

ters involved in the chemical reactions associated with the deposition pro

cess. As the silane gas decomposes during its way through the reactor we 

have a concentration gradient along the length of the reactor. As the wafers 

themselves are obstacles to the gas flow there is a nonuniform flow pattern 
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for the gases at different wafers. The gas flow also causes a temperature 

variation in the reactor. Further there may be other noises such as, topogra

phy of the wafer surface before polysilicon deposition, variation in pump

ing speed and variation in gas supply. In the experimentation it was decided 

to evaluate wafer number 3,23 and 48 (out of the fifty) along the reactor. In 

addition each wafer was evaluated in three different positions, top, middle 

and bottom. These steps were judged to capture the significant noises active 

in the process. 

To finalize the planning activity we look into the choice of control factors. 

The general practice is to adapt the number of factor and factor levels to the 

level of knowledge of the process under study. In the present case the 

knowledge level was reasonable. Accordingly fewer factors and more lev

els for each factor were chosen. Six factors and three levels as shown in 

Table 38 were used. The two last factors may need further comment. It is 

important to establish thermal and pressure equilibrium inside the reactor 

before the reaction is allowed to start. This equilibrium is establish during a 

time allowance (settling time) between reactor charging and gas flow start. 

Before charging in the reactor, the wafers may be cleaned to reduce the 

number of surface defects. Three different cleaning methods were tested. 

Table 38 Design factors and their levels. 

Factor Levels* 

I 2 3 

A. Deposition temperature (CO) To-25 To To+25 

B. Deposition pressure (mtorr) Po-200 ~ Po+200 

C. Nitrogen flow (sccm) No No-150 No-75 

D. Silane flow (sccm) So-lOO So-50 ~ 

E. Settling time (min) to to+8 to+16 

F. Cleaning method ~ CM2 CM3 

*Operating levels before improvements are identified by underscore 
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The interactions among the control factors were not very well understood. 

Accordingly no interaction was accounted for in the experimentation plan. 

The six control factors were allocated to the columns of a LIs matrix as is 

shown in Table 39 . 

Table 39 Ll8 orthogonal array indicating factors assigned to different col

umns. 

Expt. Column numbers and factor assignments * 

no. I 2 3 4 5 6 7 8 
e A B C D E e F 

1 1 1 1 1 1 1 1 1 

2 1 1 2 2 2 2 2 2 

3 1 1 3 3 3 3 3 3 

4 1 2 1 1 2 2 3 3 

5 1 2 2 2 3 3 1 1 

6 1 2 3 3 1 1 2 2 

7 1 3 1 2 1 3 2 3 

8 1 3 2 3 2 1 3 1 

9 1 3 3 1 3 2 1 2 

10 2 1 1 3 3 2 2 1 

11 2 1 2 1 1 3 3 2 

12 2 1 3 2 2 1 1 3 

13 2 2 1 2 3 1 3 2 

14 2 2 2 3 1 2 1 3 

15 2 2 3 1 2 3 2 1 

16 2 3 1 3 2 3 1 2 

17 2 3 2 1 3 1 2 3 

18 2 3 3 2 1 2 3 1 

* Empty columns are identified bye. Effects analyzed in those columns are 

indicating model ~rrors. 
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The detailed specifications of the 18 different experiments to be carried out 

are given in Table 40. 

Table 40 Experimenters log 

Expt. Tempera- Pressure Nitrogen Silane Settling Cleaning 
no. ture time Method 

1 To-25 Po-200 No So-lOO to None 

2 To-25 Po No-150 So-50 to+8 CM2 

3 To-25 Po+200 No-75 So to+16 CM3 

4 To Po-200 No So-50 to+8 CM3 

5 To Po No-ISO So to+16 None 

6 To Po+200 No-75 So-lOO to CM2 

7 To+25 Po-200 No-150 So-lOO to+16 CM3 

8 To+25 Po No-75 So-50 to None 

9 To+25 Po+200 No So to+8 CM2 

10 To-25 Po-200 No-75 So to+8 None 

11 To-25 Po No So-lOO to+16 CM2 

12 To-25 Po+200 No-I50 So-50 to CM3 

13 To Po-200 No-I50 So to CM2 

14 To Po No-75 So-lOO to+8 CM3 

15 To Po+200 No So-50 to+16 None 

16 To+25 Po-200 No-75 So-50 to+16 C~h 

17 To+25 Po No So to CM3 

18 To+25 Po+200 No-150 So-lOO to+8 None 

As the experiments were performed data over the three different character

istics were collected and assembled as shown in Table 41 and Table 42. 
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Table 41 Surface defect data (Defects/unit area) 

Expt. Test wafer 1 Test wafer 2 Test wafer 3 
No. Top Center Bottom Top Cent er Bottom Top Center Bottom 
1 1 0 1 2 0 0 1 1 0 
2 1 2 8 180 5 0 126 3 1 
3 3 35 106 360 38 135 315 50 180 
4 6 15 6 17 20 16 15 40 18 
5 1720 1980 2000 487 810 400 2020 360 13 
6 135 360 1620 2430 207 2 2500 270 35 
7 360 810 1215 1620 117 30 1800 720 315 
8 270 2730 5000 360 1 2 9999 225 1 
9 5000 1000 1000 3000 1000 1000 3000 2800 2000 
10 3 0 0 3 0 0 1 0 1 
11 1 0 1 5 0 0 1 0 1 
12 3 1620 90 216 5 4 270 8 3 

13 1 25 270 810 16 1 225 3 0 
14 3 21 162 90 6 1 63 15 39 
15 450 1200 1800 2530 2080 2080 1890 180 25 
16 5 6 40 54 0 8 14 1 1 
17 1200 3500 3500 1000 3 1 9999 600 8 
18 8000 2500 3500 5000 1000 1000 5000 2000 2000 
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Table 42 Thickness and deposition rate data. 

Ex. Thickness (A) De-
No. Test wafer 1 Test wafer 2 Test wafer 3 pos. 

Top Center Bottom Top Center Bottom Top Center Bottom Rate* 

1 2029 1975 1961 1975 1934 1907 1952 1941 1949 14.5 
2 5375 5191 5242 5201 5254 5309 5323 5307 5091 36.6 
3 5989 5894 5874 6152 5910 5886 6077 5943 5962 41.4 
4 2118 2109 2099 2140 2125 2108 2149 2130 2111 36.1 
5 4102 4152 4174 4556 4504 4560 5031 5040 5032 73.0 
6 3022 2932 2913 2833 2837 2828 2934 2875 2841 49.5 
7 3030 3042 3028 3486 3333 3389 3709 3671 3687 76.6 

8 4707 4472 4336 4407 4156 4094 5073 4898 4599 105.4 
9 3859 3822 3850 3871 3922 3904 4110 4067 4110 115.0 
10 3227 3205 3242 3468 3450 3420 3599 3591 3535 24.8 
11 2521 2499 2499 2576 2537 2512 2551 2552 2570 20.0 
12 5921 5766 5844 5780 5695 5814 5691 5777 5743 39.0 
13 2792 2752 2716 2684 2635 2606 2765 2786 2773 53.1 
14 2863 2835 2859 2829 2864 2839 2891 2844 2841 45.7 
15 3218 3149 3124 3261 3205 3223 3241 3189 3197 54.8 
16 3020 3008 3016 3072 3151 3139 3235 3162 3140 76.8 
17 4277 4150 3992 3888 3681 3572 4593 4298 4219 105.3 
18 3125 3119 3127 3567 3563 3520 4120 4088 4138 91.4 

First an ordinary signal to noise ratio, (SN-ratio) analysis was performed. 

The intermediate results are summarized in Table 43 . The first line of that 
table is derived as follows: 
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Number of surface defects a "Smaller the better" type of characteristic, 

n = - IOIOglO[~ JIJ/~j) = 

(
(12 + 02 + 12) + (22 + 02 + 02) + (12 + 12 + 02») 

- 10log to 9 = 

- 1010gto(~) = 0.51 

Polysislicon layer thickness, a "Nominal is best" type of characteristic, 

3 3 

/1 = ~ I I r ij = 
i=lj=l 

~ «2029 + 1975 + 1961) + (1975 + 1934 + 1907) + (1952 + 1941 + 1949» = 

1958.1 A 

3 3 

a
2 = ~ I I (r ij - /1)2 = 

j = Ij = t 

~(2029 - 1958.1)2 + ... + (1949 - 1958.1)2) = 1151.36(.1)2 

f.J.2 
1'1' = 10loglO2' -

a 
1958. }2 

10logto1l51.36 = 35.22dB 

Deposition rate, a "Larger the better" type of characteristic. Not properly 

treated as you have only one data observation per control factor setting, 

rI" = 10loglO,2 = 20log to ' = 20 log 10(14.5) = 23.23 dBam 

here, is the deposition rate. The remaining 17 lines were calculated in the 

same way. The different characteristics were then analyzed for factor ef

fects. The analysis comprised of both average factor level responses and the 

analysis of variance (ANOVA). 
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Table 43 Data summary by experiment. 

Experiment Surface Thickness Deposition 
Condition Defects Rate 

Expt. Matrix * 11 J.l 11' 11" 
No. eABCDEeF (dB) (A) (dB) (dB) 

1 1 1 1 1 1 111 0.51 1958 35.22 23.23 

2 11222222 -37.30 5255 35.74 31.27 

3 11333333 -45.17 5965 36.02 32.34 

4 12112233 -25.76 2121 42.25 31.15 

5 12223311 -62.54 4572 21.43 37.27 

6 12331122 -62.23 2891 32.91 33.89 

7 13121323 -59.88 3375 21.39 37.68 

8 13232131 -71.69 4527 22.84 40.46 

9 13313212 -68.15 3946 30.60 41.21 

10 21133221 -3.47 3415 26.85 27.89 

11 21211332 -5.08 2535 38.80 26.02 

12 21322113 -54.85 5781 38.06 31.82 

13 22123132 -49.38 2723 32.07 34.50 

14 22231213 -36.54 2852 43.34 33.20 

15 22312321 -64.18 3201 37.44 34.76 

16 23132312 -27.31 3105 31.86 37.71 

17 23213123 -71.51 4074 22.01 40.45 

18 23321231 -72.00 3596 18.42 39.22 

The analysis results are summarized in Table 44, Table 45 and Table 46. 

The task of selecting optimal factor level settings is now a little difficult as 

there needs to be a trade-off between the different characteristics. The main 

analysis results for all characteristics are therefore summarized in Table 47. 
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Table 44 Analysis of surface defects data· 

Factor Average 1'\ bfi factor level Degree Sum of Mean 
(b ) of squares square 

1 2 3 freedom 

A. Temperature -24.23 -~O.IO -61.76 2 4427 4414 

B. Pressure -27.55 -47.44 -61.10 2 3416 1708 

C. Nitrogen -32.03 -55.99 -61.10 2 1030 515 

D. Silane -39.20 -46.85 -~Q.04 2 372 186 

E. Settling time -~1.~2 -40.54 -44.03 2 378 189 

F. Cleaning method -45.56 -41.58 -48.95 2 164 0 82 

Error 5 405 0 81 

Total 17 10192 

(Error) (7) (569) (81) 

* Overall mean h = -45.36 dB. Underscore indicates starting level. 
o Indicates the sum of squares added together to form the pooled error sum of squares 
shown in parentheses. Pooling is a procedure where you treat, factors with a variance 
less than the average error variance, as errors. 

Table 45 Analysis of thickness data· 

Factor Average 1'\' b~ factor level Degree Sum of Mean 
ebB of squares square 

1 2 3 freedom 

A. Temperature 35.12 34.21 24.52 2 440 220 

B. Pressure 31.61 3Q.70 32.24 2 7 0 3.5 

C. Nitrogen 34.32 27.86 32.30 2 134 67 

D. Silane 31.68 34.70 28.11 2 128 64 

E. Settling time 3Q.52 32.87 31.16 2 18 0 9 

F. Cleaning method 27.04 33.67 33.85 2 181 90.5 

Error 5 96 0 19.2 

Total 17 1004 59.1 

(Error) (9) (121) (13.4) 

* Overall mean 11' ~ 31.52 dB. Underscore indicates starting level. 
o Indicates the sum of squares added together to form the pooled error sum of squares 
shown in parentheses. 
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Table 46 Analysis of deposition rate data· 

Factor Average 11" by factor lev- Degree Sum of Mean 
el (bBam) of squares squar 

e 

1 2 3 freedom 

A. Temperature 28.76 34.13 39.46 2 343.1 171.5 

B. Pressure 32.03 34.18 35.54 2 41.0 20.5 

C. Nitrogen 32.81 35.29 34.25 2 18.7 9.4 

D. Silane 32.21 34.53 35.61 2 36.3 18.1 

E. Settling time 34.06 33.99 34.30 2 0.3 0 0.2 

F. Cleaning method 33.81 34.10 34.44 2 1.2 0 0.6 

Error 5 1.3 0 0.26 

Total 17 441.9 25.9 

(Error) (9) (2.8) (0.31) 

... Overall mean 11" = 34.12 dBam. Underscore indicates starting level. 

o Indicates the sum of squares added together to form the pooled error sum of squares 
shown in parentheses. 

The deposition temperature has the largest effect on all three characteris

tics. A 25 Co reduction of temperature, compared to the starting level, re

sults in a 26 dB improvement of, the number of defects. characteristics. The 

same level change does give a negligible effect on thickness and a 5.4 dB 

reduction of deposition rate. Thus we get a 20-fold reduction in number of 

defects and a 2-fold reduction of the deposition rate. 

The deposition pressure has the next largest effect on surface defects and 

deposition rate. A 200 mtorr reduction of the pressure results in a 10-fold 

reduction of surface defects and 37 percent reduction of deposition rate. 

The effect on thickness variation is very small. 

Nitrogen flow rate has a moderate effect on all three characteristics. The 

starting level for this factor gives the highest SN-ratios for surface defects 

and thickness variation. An indication of further improvement by increase 
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of the flow rate of this dilutant gas is noted for future experiments. A reduc

tion of the flow rate may increase the deposition rate slightly. 

Table 47 Summary of factor effects. 

Surface Thickness Deposition 
defects rate 

Factor Level " F 11' F 11" F 

(dB) (dB) (dB am) 

A. Temperature At: To-25 -24.23 35.12 28.76 553 
A2: To -50.10 27 34.91 16 34.13 
A3: To+25 -61.76 24.52 39.46 

B. Pressure Bt: Po-200 -27.55 31.61 32.03 
B2: Po -47.44 21 30.70 - 34.78 66 
B3: Po+200 -61.10 32.24 35.54 

C. Nitrogen Ct: No -39.03 34.39 32.81 
C2: No-150 -55.99 6.4 27.86 5.0 35.29 30 
C3: No-75 -41.07 32.30 34.25 

D. Silane Dt: So-lOO -39.20 31.68 32.21 
D2: So-50 -46.85 2.3 34.70 4.8 34.53 58 
D3: So -50.04 28.17 35.61 

E. Settling time Et: to -51.52 30.52 34.06 
E2: to+8 -40.54 2.3 32.87 - 33.99 -
E3: to+16 -44.03 31.16 34.30 

F. Cleaning method Ft: None -45.56 27.04 33.81 
F2: CM2 -41.58 - 33.67 6.8 34.10 -
F3: CM3 -48.95 33.85 34.44 

-45.36 31.52 34.12 

Silane flow rate has a moderate effect on all characteristics. The best re

sponse for thickness variation is when the flow rate is reduced by 50 sccm. 

This may also give a small reduction in the number of defects. Deposition 

rate is slightly reduced by a reduction in silane flow rate. 

By an 8 minutes increase of the settling time, surface defects may be im

proved by 10 dB. A further increase of settling time gi ves an increased num

ber of defects as compared with the 8 minutes level. The thickness variation 
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performance is also at its best as the settling time is increased by 8 minutes. 

However the performance change is within the standard deviation of the er

ror. Deposition rate is not affected by settling time. 

Cleaning method has no effect on deposition rate. The effect on surface de

fects is within the standard deviation of the' error. Thickness variation may 

give 6 dB improvement by application of a cleaning method irrespective of 

which one. 

Table 48 Predictions using the additive model. 

Starting condition Optimum condition 

Contribution 0 (dB) Contribution 0 (dB) 

Factor Setting Surface Thick- Depo- Setting Surface Thick- Depo-
defects ness sition defects ness sition 

rate. rate. 

A* A2 -4.74 3.39 0.01 Al 21.13 3.60 -5.36 

B B2 -2.08 0.00 0.66 B2 -2.08 0.00 0.66 

C Ct 6.33 2.87 -1.31 Cl 6.33 2.87 -1.31 

D D3 -4.68 -3.35 1.49 D3 -4.68 -3.37 1.49 
E* El -6.16 0.00 0.00 E2 4.82 0.00 0.00 
F* Ft 0.00 -4.48 0.00 F2 0.00 2.15 0.00 

Overall -45.36 31.52 34.12 -45.36 31.52 34.12 
mean 

Total -56.69 29.95 34.97 -19.84 36.79 29.60 

*Indicates the factors whose levels are changed from the starting to optimum conditions. 

o By contribution we mean the deviation from the overall mean caused by the particular 
factor level. 

The optimum setting of settling time and cleaning method is obvious from 

these observations. Level 2 is chosen. By the choice of appropriate levels 

for the remaining factors a trade off between productivity and quality loss 

has to be made. It was decided to take the quality loss benefit of the tempera

ture factor. Level 1 was then chosen for temperature. The remaining factors 

were kept at their starting level. The final choice was then At B2C t D3E2F2. 
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On the basis of these factor levels a performance prediction was made for 

the optimum setting. The prediction is shown in Table 48. The last line of 

that table gives the actual predictions while the other lines summarizes the 

contributions ofthe individual factors. In accordance with the Taguchi pro

cedure a verification run was made. The results from this verification run 

are given in Table 49. The agreement achieved is good. We can thus con

clude that the additive model assumed is justified. One remark has to be 

added at this point. The optimum settings as discussed above do not consid

er the target value of the thickness characteristics. 

Table 49 Results of verification experiment 

Starting Con- Optimum Improvement 
ditions condition 

Surface rms 600/cm2 7/cm2 

defects 11 -55.6 dB -16.9 dB 38.7 dB 

Thickness std. dev.* 0.028 0.013 

11' 31.1 dB 37.7 dB 6.6 dB 

Deposition rate 60 A/min 35 Almin 

rate 11" 35.6 dBam 30.9 dBam -4.7 dBam 

·Standard deviation of thickness is expressed as a fraction of the mean thickness. 

For instance the average response of thickness for AI, A2 and A3 is 4151, 

3060 and 3770 respectively. Considering that the target value is 3600 and 

that the difference in deposition rate effect between temperature and pres

sure is substantial the trade off may come out completely different. Taking 

this into account the optimum choice may well be A2 and B I. 

The data for the surface defect characteristics were also analyzed as ordered 

categorical data. The data were assessed in classes as shown in Table 50. 
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Table 50 Categories used in ordered categorical data analysis of defects. 

Category Observation Cumulative 

number category (defects) category (defects) 

I 0-3 0-3 

II 4-30 0-30 

II 31 - 300 0-300 

IV 301 - 1000 0-1000 

V > 1000 0-00 

The analysis used was accumulating data. For that reason cumulative 

classes were also assigned. Smaller is better or larger is better type charac

teristics may be treated by accumulation towards either end of the range of 

the ordered classes, (80). The last cumulative class will contain all observa

tions. Thus this cumulative class is of no further interest. 
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Table 51 Categorized data for surface defects. 

Expt. N umber of observations Number of observations 
by categories by cumulative categories 

No. I II III IV V I 11 III IV V 

I 9 0 0 0 0 9 9 9 9 9 

2 5 2 2 0 0 5 7 9 9 9 

3 1 0 6 2 0 1 1 7 9 9 

4 0 8 1 0 0 0 8 9 9 9 

5 0 1 0 4 4 0 1 1 4 9 

6 1 0 4 1 3 1 1 5 6 9 

7 0 1 1 4 3 0 1 2 6 9 

8 3 0 2 1 3 3 3 5 6 9 

9 0 0 0 4 5 0 0 0 4 9 

10 9 0 0 0 0 9 9 9 9 9 

11 8 1 0 0 0 8 9 9 9 9 

12 2 3 3 0 1 2 5 8 8 9 

13 4 2 2 1 0 4 6 8 9 9 

14 2 3 4 0 0 2 5 9 9 9 

15 0 1 1 1 6 0 1 2 3 9 

16 3 4 2 0 0 3 7 9 9 9 

17 2 1 0 2 4 2 3 3 5 9 

18 0 0 0 2 7 0 0 0 2 9 

Total 49 27 28 22 36 49 76 104 126 162 

The observations for surface defects presented in terms of the above classes 

may be seen in Table 51. When analyzing data like this, work is with the 

cumulative classes only. In the present case classes I through IV will be 

looked at. Each of the classes is analyzed as if it had been a single character

istic. Hence we get a response table for each class. Notice that the response 

table for the last class CV) is trivial. 

The response table calculated in this way is found in Table 52. There is also 

a response table where the responses have been normalized to the trivial 
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fifth class, giving probabilities. The normalized response tables have been 

plotted in Figure 30. 

Table 52 Categorized data for surface defects. 

Number of Probabilities for the 
observations cumulative categories. 
by cumulative 
categories. 

Factor Level I II III IV V I 11 III IV 
A. Temperature At: To-25 34 40 51 53 54 0.63 0.74 0.94 0.98 

A2: To 7 22 34 41 54 0.13 0.41 0.63 0.76 
A3: To+25 8 14 19 32 54 0.15 0.26 0.35 0.59 

B. Pressure Bt: Po-200 25 40 46 51 54 0.46 0.74 0.85 0.94 
B2: Po 20 28 36 43 54 0.37 0.52 0.67 0.80 
B3: Po+200 4 8 22 32 54 0.07 0.15 0.41 0.59 

C. Nitrogen Ct: No 19 30 32 39 54 0.35 0.56 0.59 0.72 
C2: No-150 11 20 28 39 54 0.20 0.37 0.52 0.72 
C3: No-75 19 26 44 48 54 0.35 0.48 0.81 0.89 

D. Silane Dt: So-lOO 20 25 34 41 54 0.37 0.46 0.63 0.76 
D2: So-50 13 31 42 44 54 0.24 0.57 0.78 0.81 
D3: So 16 20 28 41 54 0.30 0.37 0.52 0.76 

E. Settling time El: 10 21 27 38 43 54 0.39 0.50 0.70 0.80 
E2: 10+8 16 29 36 42 54 0.30 0.54 0.67 0.78 
E3: to+16 12 20 30 41 54 0.22 0.37 0.56 0.76 

F. Cleaning method Ft: None 21 23 26 34 54 0.39 0.43 0.48 0.63 
F2: CM2 21 30 40 46 54 0.39 0.56 0.74 0.85 
F3: CM2 7 23 38 46 54 0.13 0.43 0.70 0.85 

The optimum choice of factor levels from this analysis is made on the basis 

of these plots. The choices A I ,B I and F2 are obvious. There is no strong 

preference for choices of levels for factors C and D. C3 and D2 may be 

argued for. For the factor E the levels El and E2 are equally good. 
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Figure 30 Line plots o/the/actor effects/or the categorized sUrface defect 

data. 

When making predictions for O. - 1. data, like the probability data above, 

Taguchi recommends the use of the omega-transform, (80). The omega-

transform is expressed as: w(P) = 10 loglo 1 ~ p wherep is a probability 

value. The prediction is made for each column of cumulative probability 

categories. For the optimum setting AIB2CID3E2F2, using the values in 

Table 52 we get: 

w A IB 2CP3E2F2 = W p.(1) + (w A 1(1) - W P.(I)) + (W Bl(1) - W P.(I)) + (W F2(1) - r 

= w(0.30) + (w(0.63) - w(0.30» + (w(0.37) - w(0.30» + (w(0.39) -
- - 3,68 + (2.31 + 3.68) + (- 2.31 + 3.68) + (- 1.94 + 3.68) 
= 5.42 dB 
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Table 53 Predicted probabilities for the cumulative classes. 

Number of Probabilities for the 
Control observations cumulative categories. 
Factor by cumulative 
Setting categories. 

I 11 III IV V I 11 III IV V 
Optimum 5.42 6.98 14.53 19.45 00 0.78 0.83 0.97 0.99 
AtB2CtD3E2F2 

Starting -3.68 -1.41 0.04 2.34 00 0.23 0.42 0.50 0.63 
A2B2CID3EIFl 

The transform value 5.42 dB corresponds to a probability p = 0.78. The re

maining columns are predicted in the same way. The prediction says that 

with a probability of 0.78 we will get 3 surface defects or less, with a proba

bility of 0.83 we will get 30 surface defects or less. In the same way we find 

that in the starting condition we will get 1000 or less surface defects with a 

probability of 0.63. These predicted results are plotted in Figure 31. The 

outcome of the verification experiment as shown in Table 49 agrees well 

with these results. 

I 11 III IV V 
Cumulative classes 

Le~end 

A Optimum setting 

+ Starting setting 

Figure 3 J Predicted probabilities for the cumulative classes. 
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13.2. Appendix B . Information bounds. 

Consider a discrete valued stochastic variable X with the value space 

{x 1 ,x2, ... , xk, ... , xn}· A discrete distribution {Pt ,P2, ... , Pk, ... , Pn} is con

nected to the value space. Assume that Xi is ordered such that the Pi an in

creasing series. If all values, Xi, were equally probable all Pi would be equal 

to lIn. 

The information content in the variable X may be calculated as : 
n 

Ed = - 2:)Pi ln pi) 
i= t 

We would like to show that this information is bounded upwards by: 

EB = - i(~ IOPi) 
i= 1 

Consider the difference: 

Let k be the highest index i for which Pi ~ lIn, then: 

Now find two small numbers ()t and ()2 such that 

If Pk is truly less than lIn we have 

k n ? (k - Pi) = m and I (k - p j) = - m 
1=\ i=k+l 
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Hence 

The two small numbers 01 and 02 may be chosen arbitrarily small and O} 

may even be zero. As In(z) is monotonically increasing and negative in the 

interval 0.0 < z < 1.0 we can conclude that EB - Ed is greater than zero. In 

case Pk is identically equal to 1In the summations above would still be of the 

same magnitude and of opposite signs. Thus the inequality is still true. 

Finally we note that Ed is maximum as all Pi is equal to lIn. See reference 

(66). In that case EB - EJ is equal to zero. Accordingly it has been shown 

that EB is an upper bound for Eel. 
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13.3. Appendix C . Complexity and information. 

Table 54 Raw data for complexity versus information relations 

Nj,N"Np Nj,N"Np Nj,N"Np C In(C) N Ect In(9CJN) EctII n(9ClN) 

I I 5 1.71 0.54 7 0.80 0.79 1.0'· 

I 2 4 2.00 0.69 7 0.96 0.94 1.01· 

I 3 3 2.08 0.73 7 1.00 0.98 1.02 

2 2 3 2.28 0.83 7 1.08 1.08 1.00 

I I 6 1.82 0.60 8 0.74 0.72 1.03· 

I 2 5 2.15 0.77 8 0.90 0.89 1.02· 

I 3 4 2.29 0.83 8 0.97 0.95 1.03 

2 2 4 2.52 0.92 8 1.04 1.04 1.00· 

2 3 3 2.62 0.96 8 1.08 1.08 1.00 

I I 7 1.91 0.65 9 0.68 1.05· 

1 2 6 2.29 0.83 9 0.85 1.02· 

I 3 5 2.47 0.90 9 0.94 1.04· 

I 4 4 2.52 0.92 9 0.96 1..04· 

2 2 5 2.71 1.00 9 1.00 1.00· 

2 3 4 2.88 1.06 9 1.06 1.00 

3 3 3 3.00 1.10 9 1.10 1.00 

1 I 8 2.00 0.69 10 0.64 0.59 1.(1)-

1 2 7 2.41 0.88 10 0.80 0.77 1.04-

1 3 6 2.62 0.96 10 0.90 0.86 1.05-

I 4 5 2.71 1.00 10 0.94 0.89 1.06 

2 2 6 2.88 1.06 10 0.95 0.95 1.00-

2 3 5 2.92 1.13 10 1.03 1.03 1.00-

2 4 4 3.04 1.16 10 1.05 1.05 I.O() 

3 3 4 3.30 1.19 10 1.09 1.09 1.<Xl 

I I 9 2.m~ 0.73 It 0.60 0.53 1.13-

I 2 8 2.52 0.92 11 0.76 n.n 1.05-

I 3 7 2.76 l.01 11 0.86 0 .. 81 1.00-

I 4 6 2.88 1.06 1I 0.92 O.Ko 1.07 

I 5 5 2.92 1.07 I1 0.93 O.K7 1.07 

2 2 7 3.04 1.11 It 0.1) I 0.1) I I.(X)-

2 3 6 3.30 1.19 11 0.91) l).l)l) I.(X)-

2 4 5 3.42 1.23 It 1.04 1.04 1.01 

3 3 5 3.56 1.27 It 1.07 1.07 1.00 

3 4 4 3.63 1.2l) It 1.0l) 1.09 1.00 

I I 10 2.15 0.77 12 0.57 0.48 1.18 

I 2 9 2.62 0.96 12 0.72 0.68 1.07 

I 3 8 2.88 1.00 12 0.82 0.77 1.07 
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Nj,Nr.Np Nj,N"Np Nj,N"Np C In(C) N Ed In(9C1N) Edlln(9ClN) 

1 4 7 3.04 1.11 12 0.89 0.82 1.08 

1 5 6 3.11 1.13 12 0.92 0.85 1.09 

2 2 8 3.17 1.16 12 0.87 0.87 1.00 

2 3 7 3,48 1.25 12 0.96 0.96 1.00 

2 4 6 3.63 1.29 12 1.01 1.00 1.01 

2 5 5 3.68 1.30 12 1.03 1.02 1.01 

3 3 6 3.78 1.33 12 1.04 1.04 1.00 

3 4 5 3.91 1.36 12 1.08 1.08 1.00 

4 4 4 4.00 1.39 12 l.l0 1.10 1.00 

1 1 13 2.35 0.85 15 0,49 0.34 1,41· 

1 2 12 2.88 1.06 15 0.63 0.55 l.l4· 

I 3 11 3.21 1.17 15 0.73 0.65 1.11-

1 4 10 3.42 1.23 15 0.80 0.72 1.12· 

2 2 11 3.53 1.26 15 0.76 0.75 1.02· 

1 5 9 3.46 1.27 15 0.85 0.76 1.13--

1 6 8 3.63 1.29 15 0.88 0.78 1.13--

1 7 7 3.66 1.30 15 0.89 0.79 1.13 

2 3 10 3.91 1.36 15 0.86 0.85 1.01· 

2 4 9 4.16 1.43 IS 0.93 0.91 1.01· 

2 5 8 4.31 1.46 15 0.97 0.95 1.02 

3 3 9 4.33 1.46 15 0.95 0.95 1.00· 

2 6 7 4.38 1.48 15 0.99 0.97 1.03 

3 4 8 4.57 1.52 15 1.01 1.01 1.00· 

3 5 7 4.72 1.55 IS 1.04 1.04 1.00 

3 6 6 4.76 1.56 15 1.05 I.OS 1.00· 

4 4 7 4.82 1.57 15 1.()6 1.06 1.00· 

4 5 6 4.93 1.60 15 1.09 1.09 1.00 

5 5 5 5.00 1.61 15 1.10 1.10 1.00 

1 I 16 2.52 0.92 18 0.43 0.23 1.84· 

1 2 15 3.11 1.13 18 0.56 0.44 1.26· 

I 3 14 3.48 1.25 IS 0.65 0.55 I.IS· 

I 4 13 3.73 1.32 18 0.73 0.62 1.11· 

2 2 14 3.83 1.34 18 0.68 0.65 1.05· 

1 5 12 3.91 1.36 18 0.71) 0.67 1.17· 

1 6 11 4.04 1.40 18 0.83 0.70 US" 

1 7 10 4.12 1,42 18 0.85 0.72 US·· 

1 8 9 4.16 1.43 18 0.87 0.73 1.18--

2 3 13 4.27 1.45 18 0.78 0.76 1.02· 

2 4 12 4.58 1.52 18 0.85 0.83 1.02· 

3 3 12 4.76 1.56 18 (l.B7 (l.87 1.00· 
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Ni.Nr.Np Ni.NbNp Ni.Nt.Np C In(C) N Ed In(9C/N) ~ln(9ClN) 

2 5 11 4.79 1.57 18 0.90 0.87 1.03· 

2 6 10 4.93 1.60 18 0.94 0.90 1.04 

2 7 9 5.01 1.61 18 0.96 0.92 1.04 

2 8 8 5.04 1.62 18 0.96 0.92 1.04 

3 4 11 5.09 1.63 18 0.93 0.93 1.00· 

3 5 10 5.31 1.67 18 0.98 0.98 1.00 

4 4 10 5.43 1.69 18 1.00 1.00 1.00· 

3 6 9 5.45 1.70 18 1.01 1.00 1.01 

3 7 8 5.52 1.71 18 1.03 1.01 1.01 

4 5 9 5.65 1.73 18 1.04 1.04 1.00 

4 6 8 5.77 1.75 18 1.06 1.06 1.00 

4 7 7 5.81 1.76 18 1.07 1.07 1.00 

5 5 8 5.85 1.77 18 1.07 1.07 1.00 

5 6 7 5.94 1.78 18 1.09 1.09 1.00 

6 6 6 6 1.79 18 1.10 1.10 1.00 

* signifies combinations ofNj,Nt and Np that are not possible to appear i the 

creation of a real system. 

** signifies systems that are very highly interconnected and hardly an ex

ample of a realistic system. 

The heading of column 1, 2 and 3 in Table 54 is meant to illustrate that the 

figures indicate either of the numbers Nj,Nt and Np whichever may be ap

propriate. 
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Table 55 Limiting specifications of systems Ni.Nt and Np• 

Np Ntn NtM Nim NiM Nm NM 

2 1 2 1 1 4 5 
3 1 3 2 3 6 9 
4 1 4 3 6 8 14 
5 1 5 4 10 10 20 
6 1 6 5 15 12 27 
7 1 7 6 21 14 35 
8 1 8 7 28 16 44 

9 1 9 8 36 18 54 
10 1 10 9 45 20 65 
11 1 11 10 55 22 77 
12 1 12 11 66 14 90 

13 1 13 12 78 26 104 
14 1 14 13 91 28 119 
15 1 15 14 105 30 135 
16 1 16 15 120 32 152 
17 1 17 16 136 34 170 
18 1 18 17 153 36 189 
19 1 19 18 171 38 209 
20 1 20 19 190 40 230 

N p number of parts 

Nim minimum number of interfaces in a realistic system 

NiM maximum number of interfaces in a realistic system 

N tm minimum number of types of parts 

NtM maximum number of types of parts 

Nm minimum number of components, Np + Nim + Ntm 

NM maximum number of components, Np + NiM + NtM 
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13.4. Appendix D . Simulation data for Information distance SPC 

Table 56 ARL-curves for information distance SPC charts. 

Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

3 3 1.232 0.0 333.3 0.337 

0.10 114.8 0.368 

0.25 66.0 0.412 

0.42 39.2 0.458 

0.62 25.3 0.503 

0.84 16.9 0.550 

1.10 12.1 0.600 

1.39 8.9 0.642 

1.72 6.9 0.687 

2.09 5.4 0.731 

2.52 4.4 0.773 

3.00 3.7 0.813 

3 4 1.035 0.0 333.3 0.293 

0.10 196.1 0.324 

0.25 139.9 0.367 

0.42 94.5 0.412 

0.62 64.2 0.458 

0.84 39.7 0.505 

1.10 26.7 0.553 

1.39 18.0 0.600 

1.72 12.9 0.647 

2.09 9.5 0.693 

2.52 7.2 0.738 

3.00 5.7 781 

197 



Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

3 5 1.001 0.0 333.3 0.267 

0.10 199.2 0.297 

0.25 107.8 0.339 

0.42 58.5 0.384 

0.62 33.4 0.431 

0.84 20.5 0.478 

1.10 13.3 0.527 

1.39 9.2 0.575 

1.72 6.7 0.624 

2.09 5.1 0.671 

2.52 4.0 0.717 

3.00 3.3 0.761 

3 6 0.902 0.0 333.3 0.249 

0.10 202.8 0.279 

0.25 104.0 0.321 

0.42 59.1 0.365 

0.62 34.8 0.412 

0.84 21.0 0.460 

1.10 13.9 0.509 

1.39 9.5 0.558 

1.72 7.0 0.608 

2.09 5.3 0.656 

2.52 4.2 0.703 

3.00 3.4 0.748 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

3 7 0.843 0.0 333.3 0.236 

0.10 191.6 0.265 

0.25 95.01 0.308 

0.42 50.5 0.352 

0.62 28.7 0.398 

0.84 16.8 0.447 

1.10 10.9 0.496 

1.39 7.4 0.546 

1.72 5.4 0.596 

2.09 4.0 0.645 

2.52 3.2 0.692 

3.00 2.6 0.739 

3 8 0.821 0.0 333.3 0.236 

0.10 206.2 0.256 

0.25 121.5 0.297 

0.42 64.5 0.342 

0.62 33.4 0.388 

0.84 19.9 0.437 

1.10 13.2 0.487 

1.39 8.7 0.537 

1.72 6.2 0.587 

2.09 4.6 0.637 

2.52 3.6 0.685 

3.00 2.9 0.732 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

3 9 0.766 0.0 333.3 0.219 

0.10 177.3 0.248 

0.25 92.1 0.289 

0.42 46.9 0.334 

0.62 26.9 0.381 

0.84 15.8 0.429 

1.10 10.2 0.479 

1.39 6.8 0.530 

1.72 4.9 0.580 

2.09 3.6 0.630 

2.52 2.9 0.679 

3.00 2.3 0.726 

4 3 1.090 0.0 333.3 0.276 

0.10 190.1 0.302 

0.25 136.4 0.338 

0.42 85.5 0.376 

0.62 56.6 0.414 

0.84 37.3 0.455 

1.10 25.0 0.494 

1.39 17.3 0.536 

1.72 12.5 0.577 

2.09 9.3 0.617 

2.52 7.1 0.657 

3.00 5.7 0.696 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

4 4 0.884 0.0 333.3 0.231 

0.10 200.0 0.256 

0.25 177.1 0.291 

0.42 66.9 0.327 

0.62 41.1 0.366 

0.84 27.4 0.406 

1.10 18.6 0.447 

1.39 12.7 0.489 

1.72 9.2 0.531 

2.09 6.9 0.574 

2.52 5.3 0.616 

3.00 4.2 0.658 

4 5 0.794 0.0 333.3 0.2<» 

0.10 229.4 0.228 

0.25 136.1 0.261 

0.42 76.2 0.298 

0.62 44.4 0.336 

0.84 27.3 0.375 

1.10 17.1 0.418 

1.39 11.4 0.460 

1.72 8.1 0.504 

2.09 5.9 0.548 

2.52 4.6 0.548 

3.00 3.7 0.592 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

4 6 0.748 0.0 333.3 0.185 

0.10 226.8 0.209 

0.25 133.9 0.242 

- 0.42 73.0 0.277 

0.62 41.2 0.315 

0.84 24.1 0.355 

1.10 14.9 0.397 

1.39 9.6 0.440 

1.72 6.6 0.485 

2.09 4.8 0.530 

2.52 3.7 0.575 

3.00 2.9 0.619 

4 7 0.679 0.0 333.3 0.172 

0.10 193.4 0.195 

0.25 116.7 0.228 

0.42 64.4 0.263 

0.62 35.7 0.301 

0.84 20.5 0.341 

1.10 12.4 0.383 

1.39 8.1 0.427 

1.72 5.6 0.472 

2.09 4.1 0.517 

2.52 3.2 0.562 

3.00 2.5 0.608 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

4 8 0.647 0.0 333.3 0.162 

0.10 21l.4 0.185 

0.25 125.3 0.217 

0.42 75.4 0.252 

0.62 37.6 0.290 

0.84 20.2 0.330 

1.10 12.5 0.372 

1.39 8.0 0.416 

1.72 5.5 0.461 

2.09 4.1 0.507 

2.52 3.1 0.553 

3.00 2.5 0.599 

4 9 0.607 0.0 333.3 0.154 

0.10 194.2 0.177 

0.25 99.6 0.209 

0.42 54.7 0.243 

0.62 29.5 0.281 

0.84 17.0 0.321 

1.10 10.6 0.364 

1.39 6.9 0.408 

1.72 4.7 0.453 

2.09 3.5 0.500 

2.52 2.7 0.546 

3.00 2.2 0.592 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

5 3 0.987 0.0 333.3 0.238 

0.10 243.3 0.259 

0.25 205.8 0.290 

0.42 150.6 0.322 

0.62 105.7 0.355 

0.84 73.6 0.389 

1.10 50.3 0.423 

1.39 33.3 0.460 

1.72 22.8 0.496 

2.09 15.9 0.533 

2.52 11.5 0.570 

3.00 8.7 0.606 

5 4 0.781 0.0 333.3 0.193 

0.10 199.6 0.213 

0.25 147.1 0.242 

0.42 74.0 0.272 

0.62 46.6 0.304 

0.84 29.6 0.337 

1.10 19.6 0.372 

1.39 13.0 0.409 

1.72 9.1 0.447 

2.09 6.6 0.485 

2.52 5.0 0.524 

3.00 4.0 0.563 
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Class count Sample size Tail border Process ARL lnfo distance 
mean offset mean 

5 5 0.680 0.0 333.3 0.165 

0.10 243.3 0.184 

0.25 166,7 0.212 

0.42 97.8 0.241 

0.62 60.3 0.273 

0.84 37.9 0.306 

1.10 23.9 0.341 

1.39 15.7 0.378 

1.72 10.7 0.416 

2.09 7.6 0.456 

2.52 5.7 0.496 

3.00 4.4 0.537 

5 6 0.638 0.0 333.3 0.147 

0.10 263.9 0.165 

0.25 161.8 0.192 

0.42 98.4 0.220 

0.62 59.2 0.251 

0.84 35.2 0.284 

1.10 21.4 0.319 

1.39 13.3 0.357 

1.72 8.9 0.396 

2.09 6.3 0.436 

2.52 4.6 0.477 

3.00 3.6 0.519 

205 



Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

5 7 0.572 0.0 333.3 0.133 

0.10 208.8 0.151 

0.25 140.1 0.177 

0.42 81.5 0.205 

0.62 46.4 0.236 

0.84 26.2 0.269 

1.10 15.9 0.304 

1.39 9.8 0.341 

1.72 6.5 0.381 

2.09 4.7 0.421 

2.52 3.5 0.463 

3.00 2.7 0.506 

5 8 0.542 0.0 333.3 0.123 

0.10 316.5 0.141 

0.25 170.6 0.166 

0.42 104.8 0.194 

0.62 49.6 0.224 

0.84 26.7 0.257 

1.10 16.4 0.292 

1.39 9.6 0.330 

1.72 6.2 0.369 

2.09 4.4 0.411 

2.52 3.3 0.453 

3.00 2.5 0.496 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

5 9 0.502 0.0 333.3 0.115 

0.10 226.2 0.132 

0.25 120.8 0.157 

0.42 64.1 0.185 

0.62 36.9 0.215 

0.84 20.1 0.248 

1.10 12.2 0.283 

1.39 7.6 0.321 

1.72 5.1 0.361 

2.09 3.6 0.402 

2.52 2.7 0.445 

3.00 2.2 0.488 

6 3 0.904 0.0 333.3 0.214 

0.10 261.8 0.232 

0.25 235.3 0.258 

0.42 188.0 0.286 

0.62 158.2 0.313 

0.84 126.3 0.343 

1.10 89.4 0.373 

1.39 59.0 0.405 

1.72 39.8 0.437 

2.09 27.2 0.470 

2.52 18.4 O.5Q.t 

3.00 13.2 0.538 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

6 4 0.684 0.0 333.3 0.169 

0.10 196.1 0.185 

0.25 150.4 0.209 

0.42 96.1 0.235 

0.62 64.3 0.262 

0.84 45.3 0.291 

1.10 30.7 0.321 

1.39 20.5 0.352 

1.72 13.9 0.385 

2.09 9,8 0.419 

2.52 7.1 0.455 

3.00 5.3 0.491 

6 5 0.602 0.0 333.3 0.141 

0.10 248.8 0.157 

0.25 166.9 0.179 

0.42 100.9 0.204 

0.62 59.2 0.230 

0.84 36.3 0.258 

1.10 22.8 0.288 

1.39 14.5 0.319 

1.72 9.6 0.352 

2.09 6.7 0.388 

2.52 4.9 0.424 

3.00 3.7 0.462 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

6 6 0.553 0.0 333.3 0.123 

0.10 273.2 0.137 

0.25 174.8 0.159 

0.42 118.2 0.183 

0.62 73.2 0.208 

0.84 44.1 0.236 

1.10 26.2 0.265 

1.39 15.8 0.297 

1.72 10.2 0.331 

2.09 7.0 0.366 

2.52 4.9 0.403 

3.00 3.7 0.442 

6 7 0.490 0.0 333.3 0.109 

0.10 219.8 0.123 

0.25 142.0 0.145 

0.42 90.2 0.168 

0.62 54.5 0.192 

0.84 30.8 0.220 

1.10 18.2 0.249 

1.39 11.3 0.281 

1.72 7.3 0.315 

2.09 5.1 0.351 

2.52 3.7 0.388 

3.00 2.8 0.428 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

6 8 0.461 0.0 333.3 0.099 

0.10 316.5 0.113 

0.25 160.3 0.133 

0.42 109.5 0.156 

0.62 57.7 0.181 

0.84 29.6 0.208 

1.10 18.3 0.237 

1.39 10.9 0.269 

1.72 7.0 0.303 

2.09 4.8 0.339 

2.52 3.4 0.377 

3.00 2.6 0.417 

6 9 0.422 0.0 333.3 0.091 

0.10 216.0 0.105 

0.25 124.4 0.125 

0.42 66.8 0.147 

0.62 39.3 0.171 

0.84 22.6 0.198 

1.10 13.4 0.228 

1.39 8.3 0.259 

1.72 5.5 0.293 

2.09 3.9 0.330 

2.52 2.9 0.368 

3.00 2.2 0.408 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

7 5 0.538 0.0 333.3 0.127 

0.10 238.1 0.140 

0.25 159.7 0.158 

0.42 96.8 0.179 

0.62 65.4 0.201 

0.84 41.7 0.225 

1.10 27.1 0.250 

1.39 17.2 0.277 

1.72 11.3 0.306 

2.09 7.8 0.337 

2.52 5.6 0.369 

3.00 4.2 0.404 

7 6 0.490 0.0 333.3 0.108 

0.10 264.6 0.120 

0.25 175.4 0.137 

0.42 118.7 0.158 

0.62 80.5 0.179 

0.84 47.4 0.202 

1.10 29.0 0.227 

1.39 17.6 0.254 

1.72 11.3 0.283 

2.09 7.6 0.314 

2.52 5.3 0.348 

3.00 3.9 0.382 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

7 7 0.431 0.0 333.3 0.095 

0.10 226.2 0.106 

0.25 150.2 0.123 

0.42 94.1 0.142 

0.62 60.4 0.163 

0.84 34.5 0.186 

1.10 20.9 0.211 

1.39 12.9 0.238 

1.72 8.3 0.267 

2.09 5.7 0.298 

2.52 4.1 0.331 

3.00 3.1 0.367 

7 8 0.414 0.0 333.3 0.085 

0.10 383.1 0.096 

0.25 196.5 0.112 

0.42 146.4 0.131 

0.62 83.5 0.151 

0.84 42.8 0.174 

1.10 24.8 0.198 

1.39 14.2 0.225 

1.72 8.8 0.254 

2.09 5.8 0.286 

2.52 4.1 0.320 

3.00 3.0 0.355 

212 



Class count Sample size Tail border Process ARL lnfo distance 
mean offset mean 

7 9 0.366 0.0 333.3 0.077 

0.10 229.9 0.087 

0.25 135.7 0.103 

0.42 78.2 0.122 

0.62 46.5 0.142 

0.84 27.2 0.164 

1.10 16.2 0.188 

1.39 9.9 0.215 

1.72 6.4 0.244 

2.09 4.4 0.276 

2.52 3.2 0.310 

3.00 2.4 0.346 

7 10 0.333 0.0 333.3 0.071 

0.10 207.9 0.081 

0.25 108.9 0.096 

0.42 61.2 0.114 

0.62 35.2 0.134 

0.84 20.5 0.156 

1.10 12.6 0.181 

1.39 7.8 0.207 

1.72 5.2 0.237 

2.09 3.6 0.268 

2.52 2.6 0.303 

3.00 2.0 0.339 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

7 11 0.296 0.0 333.3 0.066 

0.10 197.6 0.075 

0.25 93.2 0.091 

0.42 50.9 0.108 

0.62 28.2 0.128 

0.84 16.1 0.150 

1.10 9.6 0.174 

1.39 5.9 0.201 

1.72 4.0 0.230 

2.09 2.8 0.262 

2.52 2.1 0.296 

3.00 1.7 0.333 

8 5 0.494 0.0 333.3 0.119 

0.10 267.4 0.129 

0.25 183.5 0.144 

0.42 113.0 0.162 

0.62 74.2 0.181 

0.84 51.0 0.201 

1.10 33.3 0.223 

1.39 21.5 0.246 

1.72 14.2 0.271 

2.09 9.6 0.299 

2.52 6.7 0.327 

3.00 4.9 0.358 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

8 6 0.445 0.0 333.3 0.100 

0.10 284.9 0.110 

0.25 198.0 0.124 

0.42 126.1 0.141 

0.62 88.6 0.159 

0.84 53.8 0.178 

1.10 33.7 0.200 

1.39 20.5 0.223 

1.72 13.1 0.248 

2.09 8.6 0.275 

2.52 5.9 0.304 

3.00 5.3 0.336 

8 7 0.388 0.0 333.3 0.087 

0.10 235.3 0.096 

0.25 153.4 0.109 

0.42 99.3 0.125 

0.62 63.6 0.143 

0.84 39.6 0.162 

1.10 23.7 0.183 

1.39 14.9 0.206 

1.72 9.4 0.231 

2.09 6.3 0.258 

2.52 4.5 0.288 

3.00 3.3 0.320 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

8 8 0.370 0.0 333.3 0.077 

0.10 375.9 0.85 

0.25 187.6 0.098 

0.42 167.2 0.114 

0.62 90.4 0.131 

0.84 48.3 0.150 

1.10 30.9 0.170 

1.39 16.8 0.193 

1.72 10.4 0.218 

2.09 6.7 0.246 

2.52 4.6 0.275 

3.00 3.3 0.308 

8 9 0.328 0.0 333.3 0.069 

0.10 256.4 0.077 

0.25 156.5 0.090 

0.42 99.4 0.105 

0.62 56.9 0.121 

0.84 34.7 0.140 

1.10 20.3 0.160 

1.39 12.1 0.183 

1.72 7.7 0.208 

2.09 5.1 0.236 

2.52 3.6 0.266 

3.00 2.6 0.298 
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Class count Sample size Tail border Process ARL lnfo distance 
mean offset mean 

8 10 0.293 0.0 333.3 0.063 

0.10 215.5 0.070 

0.25 116.7 0.083 

0.42 67.5 0.097 

0.62 39.4 0.114 

0.84 23.2 0.132 

1.10 14.3 0.152 

1.39 8.9 0.175 

1.72 5.8 0.200 

2.09 3.9 0.227 

2.52 2.8 0.258 

3.00 2.1 0.290 

8 11 0.262 0.0 333.3 0.058 

0.10 204.9 0.065 

0.25 97.3 0.077 

0.42 55.5 0.091 

0.62 31.0 0.107 

0.84 18.1 0.126 

1.10 11.2 0.146 

1.39 7.0 0.168 

1.72 4.6 0.193 

2.09 3.2 0.221 

2.52 2.3 0.251 

3.00 1.8 0.284 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

9 5 0.444 0.0 333.3 0.115 
\ 0.10 230.4 0.123 

0.25 153.6 0.135 

0.42 95.4 0.150 

0.62 65.4 0.166 

0.84 44.2 0.184 

1.10 30.1 0.203 

1.39 20.3 0.223 

1.72 13.7 0.246 

2.09 9.3 0.269 

2.52 6.7 0.295 

3.00 4.9 0.322 

9 6 0.416 0.0 333.3 0.096 

0.10 260.4 0.103 

0.25 176.1 0.115 

0.42 144.1 0.129 

0.62 100.1 0.144 

0.84 66.8 0.161 

1.10 43.8 0.180 

1.39 27.2 0.200 

1.72 17.5 0.222 

2.09 11.2 0.245 

2.52 7.5 0.271 

3.00 5.2 0.299 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

9 7 0.355 0.0 333.3 0.083 

0.10 238.7 0.089 

0.25 155.5 0.100 

0.42 105.9 0.114 

0.62 68.8 0.128 

0.84 43.1 0.145 

1.10 27.9 0.163 

1.39 17.4 0.183 

1.72 11.0 0.204 

2.09 7.3 0.228 

2.52 5.0 0.254 

3.00 3.6 0.283 

9 8 0.336 0.0 333.3 0.073 

0.10 350.9 0.079 

0.25 179.2 0.089 

0.42 157.7 0.102 

0.62 108.1 0.116 

0.84 56.1 0.132 

1.10 36.4 0.150 

1.39 19.9 0.170 

1.72 12.2 0.191 

2.09 8.1 0.215 

2.52 5.3 0.241 

3.00 3.6 0.270 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

9 9 0.296 0.0 333.3 0.065 

0.10 248.8 0.071 

0.25 157.5 0.081 

0.42 107.0 0.093 

0.62 62.0 0.107 

0.84 40.0 0.123 

1.10 23.4 0.140 

1.39 14.1 0.160 

1.72 8.8 0.181 

2.09 5.8 0.205 

2.52 4.0 0.231 

3.00 2.8 0.260 

9 10 0.265 0.0 333.3 0.059 

0.10 237.5 0.074 

0.25 130.5 0.074 

0.42 78.1 0.886 

0.62 46.7 0.099 

0.84 27.5 -.115 

1.10 16.9 0.132 

1.39 10.5 0.151 

1.72 6.7 0.173 

2.09 4.5 0.197 

2.52 3.2 0.223 

3.00 2.4 0.252 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

9 11 0.239 0.0 333.3 0.054 

0.10 223.2 0.059 

0.25 108.6 0.068 

0.42 63.9 0.080 

0.62 36.9 0.093 

0.84 21.9 0.108 

1.10 13.5 0.125 

1.39 8.4 0.145 

1.72 5.5 0.166 

2.09 3.7 0.190 

2.52 2.7 0.216 

3.00 2.0 0.245 

10 5 0.425 0.0 333.3 0.113 

0.10 268.1 0.119 

0.25 188.3 0.130 

0.42 119.0 0.142 

0.62 83.2 0.156 

0.84 58.0 0.172 

1.10 41.4 0.188 

1.39 27.7 0.206 

1.72 18.8 0.226 

2.09 12.5 0.247 

2.52 8.5 0.269 

3.00 6.1 0.294 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

10 6 0.396 0.0 333.3 0.095 

0.10 289.0 0.100 

0.25 217.4 0.109 

0.42 167.8 0.121 

0.62 125.2 0.134 

0.84 84.9 0.149 

1.10 58.9 0.165 

1.39 37.1 0.183 

1.72 24.9 0.202 

2.09 15.6 0.222 

2.52 10.2 0.245 

3.00 6.7 0.270 

10 7 0.338 0.0 333.3 0.082 

0.10 304.9 0.086 

0.25 188.7 0.095 

0.42 133.5 0.106 

0.62 91.7 0.118 

0.84 59.0 0.132 

1.10 38.6 0.148 

1.39 24.1 0.165 

1.72 15.1 0.184 

2.09 9,7 0.205 

2.52 6.5 0.228 

3.00 4.5 0.253 
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Class count Sample size Tail border Process ARL lnfo distance 
mean offset mean 

10 8 0.306 0.0 333.3 0.072 

0.10 375.9 0.076 

0.25 183.5 0.084 

0.42 158.0 0.09-1 

0.62 102.4 0.106 

0.84 54.8 0.120 

1.10 38.6 0.135 

1.39 20.6 0.152 

1.72 13.2 0.171 

2.09 8.7 0.191 

2.52 5.7 0.215 

3.00 3.9 0.240 

10 9 0.274 0.0 333.3 0.Q6.t 

0.10 263.9 0.068 

0.25 163.1 0.075 

0.42 118.9 0.085 

0.62 71.2 0.097 

0.84 47.8 0.110 

1.10 28.6 0.125 

1.39 17.2 0.142 

1.72 10.7 0.160 

2.09 6.9 0.181 

2.52 4.7 0.2<'» 

3.00 3.3 0.230 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mc!an 

10 10 0.249 0.0 333.3 O.OSS 

0.10 273.2 0.061 

0.25 161.0 0.068 

0.42 102.8 0.07S 

0.62 62.4 0.OS9 

0.84 38.0 0.102 

1.10 22.7 0.117 

1.39 13.7 0.13.t 

1.72 8.6 0.152 

2.09 5.6 0.173 

2.52 3.9 0.196 

3.00 2.8 0.222 

10 11 0.222 0.0 333.3 0.052 

0.10 259.7 0.056 

0.25 131.9 0.063 

0.42 77.6 0.072 

0.62 46.3 0.083 

0.84 27.8 0.096 

1.10 17.2 0.110 

1.39 10.5 0.127 

1.72 6.7 O.I.tS 

2.09 4.5 0.166 

2.52 3.1 0.1 S9 

3.00 2.3 0.215 
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Class count Sample size Tail border Process ARL lnfo distance 
mean offset mean 

11 5 0.408 0.0 333.3 0.114 

0.10 251.3 0.118 

0.25 184.2 0.126 

0.42 129.2 0.137 

0.62 89.9 0.149 

0.84 66.4 0.163 

1.10 48.4 0.177 

1.39 33.7 0.193 

1.72 23.3 0.210 

2.09 15.7 0.229 

2.52 10.6 0.249 

3.00 7.4 0.271 

11 6 0.374 0.0 333.3 0.095 

0.10 300.3 0.099 

0.25 223.7 0.106 

0.42 180.8 0.116 

0.62 133.0 0.127 

0.84 94.0 0.140 

1.10 68.4 0.154 

1.39 44.3 0.169 

1.72 29.6 0.186 

2.09 19.1 0.205 

2.52 12.4 0.225 

3.00 8.0 0.247 
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Class count Sample size Tail border Process ARL Info distance 
mean offset mean 

11 7 0.321 0.0 333.3 0.O~23 

0.10 286.5 0.0~52 

0.25 187.6 0.092 

0.42 146.8 0.100 

0.62 102.0 0.111 

0.84 70.2 0.123 

1.10 47.3 0.137 

1.39 30.2 0.152 

1.72 19.2 0.169 

2.09 12.1 0.~1 

2.52 8.0 0.207 

3.00 5.4 0.2~9 

11 8 0.288 0.0 333.3 0.072 

0.10 325.7 0.075 

0.25 194.9 0.081 

0.42 165.6 0.089 

0.62 113.8 0.099 

0.84 62.8 0.111 

1.10 47.1 0.124 

1.39 25.5 0.13l) 

1.72 16.6 0.155 

2.09 10.5 0.173 

2.52 6.8 0.194 

3.00 4.6 0.216 
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Class count Sample size Tail border Process ARL Info distam.'e 
mean offset mean 

11 9 0.269 0.0 333.3 0.Q6.t 

0.10 327.9 0.067 

0.25 239.2 0.072 

0.42 173.9 O.OSO 

0.62 11S.3 0.089 

0.84 74.3 0.101 

1.10 47.9 0.114 

1.39 2S.2 0.129 

1.72 16.S 0.145 

2.09 10.2 0.163 

2.52 6.6 0.183 

3.00 4.4 0.206 

11 10 0.234 0.0 333.3 0.058 

0.10 267.4 0.060 

0.25 170.6 0.065 

0.42 117.1 0.073 

0.62 74.3 0.OS2 

0.S4 46.2 o.t1n 
1.10 28 0.106 

1.39 17.8 0.1~0 

1.72 11.0 0.136 

2.09 6.9 0.154 

2.52 4.7 0.174 

3.00 3.2 0.197 
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Class count Sample size Tail border Process ARL Info distarn.-e 
mean offset mean 

11 11 0.216 0.0 333.3 0.053 

0.10 264.6 0.055 

0.25 168.9 0.059 

0.42 116.7 0'(l67 

0.62 73.4 0.076 

0.84 43.9 0.OS7 

1.10 26.7 0.099 

1.39 16.1 0.113 

1.72 9.8 0.129 

2.09 6.1 0.1.t7 

2.52 4.1 0.161 

3.00 2.9 O.IW 
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Table 57 x-chart ARL numbers as a function of sample size for exponentially distrih

uted process with distribution parameter A. = 1.0. 

Sample 3 4 5 6 7 8 9 lU 11 
size and 
tail limit 2.47 2.31 2.24 2.13 2.04 2.02 t.~ UN U,S 

Mean 
offset 

0.0 333.3 333.3 333.3 333.3 333.3 333.3 333.3 333.3 333.3 

0.1 157.7 128.9 156.5 133.9 120.5 144.9 120.0 103.2 10-&.1 

0.25 67.0 58.7 56.0 45.7 41.0 43.9 35.4 31.0 ZlS.1 

0.42 32.2 27.1 23.5 19.0 16.4 16.6 13.6 ll.lJ 10.1 

0.62 17.2 13.0 12.0 9.5 8.0 7.7 6.4 5.7 5.' 

0.84 lD.2 7.7 6.8 5.5 4.6 4.4 3.6 3.3 2.9 

1.\0 6.6 5.1 4.3 3.5 2.9 2.8 2.4 2.1 l.O 

1.39 4.6 3.4 3.0 2.4 2.1 2.0 1.7 1.6 1.5 

1.72 3.4 2.6 2.2 1.9 1.7 1.6 1.4 l.3 U 

2.09 2.6 2.1 1.8 1.5 1.4 1.3 1.2 1.2 I.l 

2.52 2.1 1.7 1.5 1.3 1.2 1.2 1.1 1.1 1.1 

3.0 1.8 1.5 1.3 1.2 1.1 1.1 1.1 1.0 1.0 

Table 58 R-chart ARL numbers as a function of sample size for exponentially distrib.

uted process with distribution parameter A. = 1.0. 

Sample 3 4 5 6 7 8 9 10 11 
size and 
tail limit 6.49 6.95 7.16 7.37 7.51 7.65 7.85 1U)~ H17 

Mean 
offset 

0.6 333.3 333.3 333.3 333.3 333.3 333.3 333.3 3.\.H H.U 

0.1 184.2 179.9 167.5 163.9 155.8 151.5 162.3 161.1'1 ,~ .. S 

0.25 92.0 88.0 75.1 73.3 67.7 65.1 M.I 6~.1 tlhl 

0.42 48 44.7 39.4 36.0 33.4 31.0 31.6 3~U :., tl 

0.62 27.6 24.7 21.3 19.6 17.9 16.7 16.6 Itd IS Z 

0.84 17.1 14.8 12.6 11.2 10.2 9.5 9.3 'i. I 11 .. 

LlD 11.3 9.4 7.9 7.1 6.4 6.0 5.3 5.~ \~ , . 
1.39 7.8 6.5 5.4 4.8 4.3 4.0 3.8 3.7 .\ .. 
1.72 5.7 4.7 3.9 3.4 3.1 2.8 2.1 2f1 2" 
2.09 4.4 3.5 2.9 2.6 2.4 2.2 2.1 2U I ., 

2.52 3.4 2.8 2.3 2.1 1.9 1.8 1.1 I.b U 
3.0 2.8 2.3 1.9 1.7 1.6 1.5 1.4 I. .. L\ 
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