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Abstract

Future manned space exploration sets a focus on the long-term goal of

landing humans on a foreign planet in particular on Mars. Translating this

ambitious plan into practice is a major challenge, and beforehand several

milestones have to be achieved. One major objective in the years ahead

will be a return to the vicinity of the Moon with robotic exploration mis-

sions and crewed space vehicles. Not only is returning to the Moon an

inspiring challenge but also and more importantly a return to the Moon

opens the possibility to prove new technologies, gain scientific knowledge,

and identify key requirements for further endeavours. As a consequence it is

possible that traditional mission scenarios considering the use of low lunar

orbits or transfer arcs to the surface are replaced by new mission scenar-

ios exploiting the potentialities of the collinear Earth-Moon libration point

orbits. In addition, solutions considering multiple coordinated spacecraft

with disaggregated payloads are becoming more and more interesting for a

variety of space missions. The cooperation between spacecraft will increase

redundancy and will enable new navigation and remote sensing solutions

that can hardly be achieved with single monolithic spacecraft. A key ele-

ment of missions considering the collaborative interaction among groups of

spacecraft is the ability to transfer them between orbits. This might include

rendezvous and docking for on-orbit assembling. In this context, the vision

is to have a transport system in the Earth-Moon environment that allows

transferring components from the Earth to the Moon and assembling large

infrastructures in the vicinity of the Moon. This infrastructure serves as

stepping stone or gateway to the exploration of the solar system. A funda-

mental understanding of existing orbits and transfer possibilities becomes

critical for exploring and accessing the vicinity of the Moon. A transport

system in this described context offers regular access to all orbits between

the Earth and the Moon, which includes transfers from the Earth to the

Moon, transfers among orbits in the proximity of the Moon and transfers

from the Moon to interplanetary space. From a mission design point of
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view it is paramount to understand the intricate interaction between the

Earth’s and the Moon’s gravity field. Projects also benefit from the unique

dynamical environment prevailing at the libration point regions enabling

to choose from a huge variety of operational orbits with greatly varying

parameters. The utilisation of quasi-periodic orbits increase the flexibil-

ity in planning future missions, reduces the complexity of long-term space

missions by enabling larger windows for manoeuvre execution for orbital

transfers. Furthermore, properties of operational orbits might be changed

by manoeuvres enabling to achieve mission objectives. Based on this as-

sumption a variety of problems are addressed in this work. Numerical tools

are presented to study and assess quasi-periodic bounded orbits in the vicin-

ity of the Moon, in particular libration point and distant periodic orbits.

On the basis of a description of quasi-periodic orbits, mission analysis as-

pects studied are the identification of suitable operational orbits, transfer

opportunities among those orbits, and the handling of quasi-periodic orbits

in a high-fidelity dynamical model. A method is presented to systemat-

ically compute any type of transfer either for changing properties of the

operational orbit or to re-phase spacecraft along the orbit. The proposed

orbital transfers utilise hyperbolic invariant manifolds of orbits that exist in

a three-body regime. Parameters have been identified that have a substan-

tial impact on the existent range of orbits and figure of merits are presented

for reference scenarios that comprises the elements of an exploration mission

travelling to L2 libration point orbits in the proximity of the Moon.
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Nomenclature

Throughout this work scalar quantities are denoted as italic letters (a) or (A). Vectors

are featured as italic and bold lower-case letters (a). Matrices are termed with italic

bold capital letters (A).

t Time

G Universal gravitational constant

Ln Libration point n

mn Mass of body n

rn Radius of body n

rn Radius vector of body n

µn Gravitational parameter of body n

ω Angular velocity of the rotating frame

ω Frequency vector of a quasi-periodic orbit

U Pseudo potential function

Uij Partial derivatives of the pseudo potential function

an Eigenvectors

H Hamiltonian

pn Partial derivatives of the momentum

C Jacobian integral

E Total orbital energy

l∗ Characteristic length

m∗ Characteristic mass

t∗ Characteristic time

Qri Euler rotation matrix

I Identity matrix

Θ State transition matrix
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A2 Unstable component of the linear Lissajous motion

θ Quasi-periodic phase angles

s Singular state vector on a quasi-periodic orbit

p Arranged vector containing multiple torus states

u Parametric state vector function

α, β Quasi-periodic phase angles, similar to θ

D Fourier transform matrix

k Fourier coefficient vector

R Rotation matrix

N, M Discretisation parameters

nmax Number of harmonics

s Stepping parameter

ψs, ψu Stable and unstable directions

l Selection of the hyperbolic invariant manifold branch
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CHAPTER 1

Introduction

Advanced orbital transportation capabilities and co-operation between spacecraft are

key enabling technologies to achieve future complex and ambitious objectives in space

science and exploration. These capabilities include transfers from the proximity of the

Earth to the proximity of the Moon and transfers among orbits in the proximity of

the Moon. Utilising them enable the exploration of the solar system in a much more

cost-effective way than what is done today. Considered scenarios for the following years

include a return to the Moon and missions to Near Earth Objects (Chesley et al. [2002])

and other asteroids with the purpose of harvesting materials (Adamo et al. [2010]) or

protecting our planet from an impact. The Moon serves as a gateway to the explo-

ration of the solar system and a test-bed to validate new technologies, gain scientific

knowledge, and identify key developments for further endeavours. Therefore, instead

of landing on the surface of the Moon, it is desirable that an orbit about one of the

collinear Earth-Moon libration points will be the next destination. Another capabil-

ity is to provide regular access with low propellant expenditures to operational orbits

enabling re-phasing of spacecraft, regular in-space operations, rendezvous, and dock-

ing manoeuvres. This may include multi-spacecraft missions demanding rendezvous

scenarios e.g. for in orbit-assemblies.

A return to the Moon will result in important breakthroughs in understanding the

Earth-Moon system and in gaining knowledge in fundamental science across multiple

disciplines. From a mission design point of view, a key enabling technology is the dy-

namic interaction between the gravity field of nearby celestial bodies. This interaction

enables new mission concepts that were never tested nor explored in the years of the first

lunar landing. In this context orbital transfers can benefit from hyperbolic invariant

manifolds that exist in a three-body regime. The dynamical behaviour and the strategic

location of libration points make them ideal locations for future exploration endeav-
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Chapter 1 Introduction

ours and scientific missions, such as space telescopes, space stations, and other traffic

management activities (Catlin and McLaughlin [2007]). An orbital staging location in

the vicinity of L1 or L2 would provide a platform for science and logistic purposes, and

multi-destination flexible exploration strategies can be derived. Libration points are

also ideal locations, for assembly, loitering and staging. A spacecraft can be placed in

orbit around one of the libration points to serve as a gateway station in order to store

required propellant and cargo. By docking another spacraft to this gateway station,

cargo and propellant can be distributed to other spacecraft before heading off to inter-

planetary space. Furthermore, the Earth and the Moon’s surface are easily accessible

without severe launch window constraints or entering an orbit around the Moon can

be simplified once the libration point regions are an intermediate step from travelling

from Earth to the Moon. A currently discussed proposal is a lunar surface robotic

missions which is technologically feasible within a realistic budget and would benefit

from design aspects considering the libration points. A major step in the return to the

Moon will be a sample return mission to a location at the South pole, a geographically

and scientifically interesting region with a combination of craters permanently in the

dark and peaks always in sunlight. The knowledge and competencies learned in a lunar

environment are potentially adaptable to farther destinations in interplanetary space

such as Mars, Near Earth Objects and outer planets or beyond. The motivation for the

analysis of quasi-periodic in the Earth-Moon system is triggered by the need to include

the unique properties of the libration point regions in the design of missions aiming to

explore farther destinations.

The libration point regions are spaces where the balance of forces offers a dynamical

environment where small perturbations have a large effect on the motion of spacecraft

and the evolution of their operational orbits. This sensitivity allows for low propellant

orbital and station-keeping manoeuvres. Transport phenomena among Earth-Moon

libration points have been proven in the past (Ozimek and Howell [2010]) and play

an important role in the aforementioned transportation infrastructure. Key dynamical

structures associated with libration points are periodic and quasi-periodic orbits and

hyperbolic invariant manifolds that allow travelling through space at minimal cost

(Gómez and Masdemont [2000]).

One design aspect is the identification of nominal orbits. There are the classical non-

keplerian libration point orbits, e.g. lissajous, halo and lyapunov orbits. Another class

are distant periodic orbits (DPO). These orbits are, seen from an Earth-centric reference

frame, in resonance with the Earth motion about the Sun (Hirani and Russell [2006]).

Unfortunately, quasi-periodic orbits lack of a description by Keplerian elements. This

is due to the fact that these are solutions exist in a three-body regime and no analytical
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solution as for the two-body is problem is available. This prohibits the derivation of

Keplerian elements. Libration point orbits are usually described by six-dimensional

state vectors. This shortfall is addressed in this work by the introduction of parametric

functions representing quasi-periodic orbits. Novel in this work is the definition of a well

defined set of parameters, in particular amplitudes, frequencies and phase definitions.

1.1 Current state of research

The challenge in designing missions with operational orbits around one of the libration

points comes from the location in space and the instability of these points. Different

operational libration point orbits have been studied in the past. The family of halo

orbits were the first periodic set identified with a direct application to enable commu-

nication from behind the Moon. Barden and Howell [1998] investigated libration point

regions in the circular restricted three-body problem with a focus on the determination

of the natural behaviour at the centre manifold. Unique for these orbits is the set of

asymptotic trajectories that approach or depart the orbit, which are the hyperbolic

invariant manifolds. Numerical methods are utilised to generate periodic and quasi-

periodic orbits within the vicinity of libration points, see Canalias Vila [2007]. More

complex quasi-periodic orbits and proposed numerical procedures for their generation

and continuation were studied by Kolemen et al. [2011] and Kolemen [2008]. Multiple

Poincaré maps were used to approximate invariant circles. Olikara [2016] proposed a

different approach in obtaining quasi-periodic solutions. Howell and Pernicka presented

a numerical shooting approach and Gómez et al. [2010] later developed a scheme for

computing quasi-periodic orbits by utilising Fourier coefficients to approximate invari-

ant circles. The fundamentals about invariant tori can be found in Schilder [2002].

Transfers of spacecraft from one orbit to another have been studied extensively for

many years and is directly associated with optimality being either defined as mini-

mum propellant costs, a minimum transfer time, or other parameters. The analysis

and design of transfer orbits using invariant manifolds associated with periodic orbits

around the libration points have been a topic of many publications. Transfers between

libration point orbits of the same energy level utilising invariant manifolds are pre-

sented in Gómez et al. [2004]. Other works by Davis [2009], Canalias Vila [2007] and

Marsden and Ross [2005] study orbital transfers in this dynamical regime employing

invariant manifolds. The introduction of pseudo-manifolds by Davis et al. [2011] con-

siders larger offsets constructing the manifold branches and their impact on the transfer

design. A technique using invariant manifolds for near Earth objects retrieval missions
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is presented by Yárnoz et al. [2013]. The utilisation of invariant manifolds for trans-

fers between libration point orbits and distant retrograde orbit has been studied by

Mingotti et al. [2010]. Another way of constructing transfers between orbits without

the use of invariant manifolds, are two-manoeuvre transfers where the first manoeu-

vre is performed at departure, and the second one at arrival, see Gómez et al. [2004].

Recently, the use of Earth-Moon libration points as staging nodes for further human

expeditions were studied by Alessi [2010].

Regardless of the selection of operational orbits, station-keeping is required to maintain

the spacecraft on the desired path. Station-keeping strategies have been studied for

several dynamical frameworks and missions in the past by Gómez et al. [2001], Infeld

[2005], and Pavlak [2010]. Methods using theoretical knowledge based on modal Flo-

quet theory have been explored by Farrés and Jorba [2014]. With these techniques, the

motion can be described by centre components, stable and unstable modes. The cancel-

lation of the unstable components is used to maintain a spacecraft at a libration point

orbit. A similar methodology is already applied in the past utilising a linearisation

of the equations of motion (Hechler [2002]). For periodic orbits dominant manoeuvre

directions can be determined by the eigenvectors of the monodromy matrix, see Simo

et al. [1987]. Guidelines related to station-keeping methods are given by Lo et al. [2000]

and Pavlak and Howell [2012].

Relative spacecraft formations and configurations have been studied from the beginning

of space projects but the focus changed from proximity manoeuvring for e.g. staging two

spacecraft within the Apollo programme to, in recent years, larger telescopes building

a large aperture by having sensor and collector on different spacecraft. Howell and

Pernicka [1993] derived natural regions where the geometry of spacecraft formations is

maintained. Coping with multiple satellites achieving specific geometries is a significant

technical challenge as described by Tolbert [2009]. The first multi-spacecraft formations

were proposed by Howell [2004] to demonstrate that quasi-periodic trajectories evolving

on invariant tori can be utilised for such purpose. Further analyses considered natural

and non-natural arcs for formation applications. Héritier and Howell [2011] explore

quasi-periodic Lissajous trajectories near a given reference orbit in the vicinity the Sun-

Earth libration point L2 for the placement of large formations of spacecraft, see Héritier

and Howell [2012], Marchand [2004], and Héritier [2012]. Examples are astronomical

apertures in telescope assemblies with a reflector and collector on different spacecraft

to assure a physical distance. In particular potential telescope configurations benefit

from apertures created by long distances between spacecraft.
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1.2 Research objectives

Current research conducted focus on different approaches to calculate quasi-periodic

orbits. However, what is missing is a suitable method to describe the entity of state

vectors belonging to one quasi-periodic solution. To fill in this gap, the main objective

is to introduce a parametric function that is in a following step utilised to calculate

orbital transfers among quasi-periodic orbits. One high-level objective of this work is

to systematically describe the properties such as amplitudes and frequencies of quasi-

periodic orbits including libration point and distant periodic orbits existing within

the vicinity of the Moon and to identify for which parameters solutions exist. The

assessment of properties of bounded motion near the equilibrium points, which includes

periodic and quasi-periodic orbits, is difficult as no Keplerian elements can be defined.

A characterisation of quasi-periodic orbits and their asymptotic trajectories is done

by using time-dependent phases and amplitudes, which originates from the dynamical

description of quasi-periodic orbits as invariant tori. When reducing the orbits to a

Poincaré section or to a stroboscopic map, a quasi-periodic trajectory is described by a

so-called invariant curve. This is a contrarily approach compared to periodic orbits that

can be described by fixed points. In this work, the proposed method to determine quasi-

periodic orbits utilises stroboscopic maps in combination with complex two-dimensional

truncated Fourier series. This method allows to be used for different families of quasi-

periodic solutions.

A parametric representation of quasi-periodic orbits by state vectors in angular phase

space builds the foundation. On this basis, mission analysis aspects studied are the

identification of suitable operational orbits, transfer opportunities among those orbits,

station keeping and the identification of suitable formation flying trajectories. These

ideas have the goal to systematising the computation of any type of mission involving

quasi-periodic orbits and orbital transfers. The previously studied quasi-periodic orbits

exist in the restricted dynamical description of the three-body problem. The dynamical

instabilities of most of these orbits disrupt exact solutions known from the restricted

problem. Therefore, a numerical method is proposed to construct quasi-periodic orbits

in a high-fidelity dynamical model.

A major contribution of this dissertation includes the introduction of lunar orbital

transfer manoeuvres for a variety of purposes from changing parameters of operational

orbits, such as their amplitudes, to identifying manoeuvre sequences resulting in pro-

pellant savings. The specific focus is on transfers from one quasi-periodic orbit to
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another. In a more generic way, spacecraft manoeuvres are introduced with the ob-

jective of transferring a spacecraft from one orbit to another taking into account the

lowest possible propellant expenses, phasing conditions, and transfer times.

1.3 Conception of this work

Methodologically, first of all, Chap. 2 presents the Moon as a destination highlighting

future exploration scenarios and unique characteristics of the lunar vicinity. In Chap.

3 state of the art methods and basic principles of n-body dynamics are introduced and

important issues related to the dynamical framework are discussed.

The primary goal of Chap. 4 is to introduce new and innovative methods for designing

spacecraft trajectories with a focus on quasi-periodic motion. A numerical method is

presented to obtain the parametric representation of quasi-periodic orbits. Orbits are

then generated for the Lagrange point L1 and L2 in the Earth-Moon system.

Chap. 5 addresses the problem of station-keeping and handling of quasi-periodic orbits

in an accurate dynamic model based on planetary ephemeris data. Fortunately, quasi-

periodic solutions also exist in high-fidelity dynamical models and a methodology is

proposed to transfer solutions from the circular restricted three-body problem to this

model. Additionally, frequent manoeuvres are demanded in order to keep a spacecraft

on orbit for several revolutions. Strategies to maintain these unique orbits are proposed

and its applicability is discussed.

Chap. 6 builds up on results of the previous chapters to finally design orbital trans-

fers. A method is proposed that is necessary to design orbital transfers and to assess

realistic ∆v requirements. First guesses are obtained by a differential evolution algo-

rithm. In a second step, accurate solutions and continous trajectories are obtained by

a gradient-based optimisation method. Examples of transfers with minimised propel-

lant consumption are presented for the circular restricted three-body problem and in

an high-fidelity dynamical model. Single-manoeuvre transfers reveal to be efficient in

their performance and simple in realisation. This work aims to draw up recommen-

dations for future missions, which includes guidelines for manoeuvre scheduling and

station-keeping strategies.

PhD co-funding agreement

This research project was co-funded under a Networking and Partnership Initiative

(NPI) provided by the European Space Agency (ESA) and the University of Strath-

clyde. A common initial statement of work was defined to examine mid- and large-scale
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spacecraft formations near Langragian points. The research proposal covered many as-
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CHAPTER 2

Destination Moon

The Moon is our closest companion visible throughout day and night, revealing only

slightly more than half of its surface to an observer on Earth. Some part of its sur-

face is lit by light from the Sun, whereas the dark part of the crescent-shaped Moon

seen from Earth is lit by faint reflected light. The mean distance from Earth varies

from about three-hundred sixty thousand to four-hundred thousand kilometres at the

extreme perigee and apogee points depending on the location of the Moon with respect

to Earth and the Sun. Centuries ago, explorers already knew how to make use of the

phases of the Moon for navigating across sea and land. With the view on future space

travel, a return to the lunar environment is a major milestone towards the exploration

to farther planets and beyond.

‘The fact that humans have walked on the Moon, and will again, should not

diminish but enhance the sense of wonder. In the modern perspective, seek-

ing a lunar foothold for science and technology could be a natural step after

establishing bases in the harsh but splendid landscapes of Antarctica. ∗’

This inspiration bridges the gap between scientific results and the broader vision of

space exploration. It is a challenging process to prepare, build and operate exploration

missions. The process is on the one hand influenced by Agencies and political aspects,

and on the other hand detailed scientific knowledge is hidden in every decision and is

the driving factor for the majority of projects.

2.1 Science and inspiration of past missions

The technological feasibility of lunar spacecraft missions have been proven decades ago

with the first Surveyor missions to explore the lunar surroundings. Early missions to

∗Science and Lunar Sample Return, Workshop outcomes and recommendations, ESA Report, 2014
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(a) (b)

Figure 2.1: Past exploration and science missions to the Moon (a) Apollo 15 (Credit:

NASA), (b) the Artemis mission exploiting the properties of multi-body dy-

namics (Credit: NASA).

the Moon, Apollo and Surveyor from the American space programme to the Lunochod

spacecraft from the Russian programme (Nayler [1971]), achieved great results and

the picture of our close companion changed fundamentally, see Fig. 2.1a. The term

‘marble Earth’ was coined with the first pictures from Earth as seen from a Moon’s

perspective. The first view of the far side of the Moon resulted from lunar exploration

in the 1960s. Space exploration beyond Low Earth Orbit is an expensive endeavour and

only the main space-faring countries, the United States, Russia and Europe through

the European Space Agency can lead and pave the way for exploration programmes.

The first missions to the Moon distinguished themselves by a monolithic approach and

a reuse of orbital equipment once launch into space was never part of the program nor

intended. In the following years other concepts have been studied and realised. The

European Space Agency was involved in the endeavour to return to the Moon with the

SMART-1 spacecraft proving low-thrust propulsion (Racca et al. [2002]).

It was probably Arthur C. Clarke in 1961 that describes the utilisation of the first and

second Earth-Moon libration points in the book ‘A Fall of Moondust’. He describes

a habitat that can be utilised for various purposes. Ten years later in 1971 Robert

Farquhar studied and proposed a detailed architecture for extended human operations

at collinear Earth-Moon libration points after a major contribution three years before by

describing the halo orbit family (Farquhar et al. [1972] and Farquhar [1971]). Farquhar

already mentioned aspects of long-duration habitats, on-orbit depots and tugs, and the

benefits of a control of robotic systems on the lunar surface from this remote location.

Dunham and Farquhar [2003] described a plan to use the Sun-Earth libration point as

the primary hub for future human space activities in the Earth neighbourhood. The

Japan Aerospace Exploration Agency (JAXA) has started investigating a deep-space

port built in the vicinity of the L2,Sun Lagrange point in the Sun-Earth system.
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The first libration point targeted by a spacecraft mission was L1,Sun in the Sun-Earth

system. It hosts the 1995 launched, and still in operation, Solar and Heliospheric Ob-

servatory (SOHO), a joint mission of NASA and the European Space Agency (Domingo

and Poland [1992]). The Earth-Moon Libration Orbiter ARTEMIS (an acronym for

‘Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interac-

tion with the Sun’) was the first to operate at the libration points L1 and L2 in the

Earth-Moon system proving concepts being studied on paper before, see Fig. 2.1b.

This includes navigating aspects and station-keeping operations. ARTEMIS used in

their measurements two spacecraft from another NASA Heliophysics mission that are

in orbit since 2007.

The Chinese Space Programme known as Chang’E also focus on a lunar return. Re-

markable objectives and achievements of the programme are the utilisation of properties

of the Earth-Moon libration points and the carefully selected step by step exploitation

of these properties utilising orbiters, landers and rovers. The first spacecraft within

the programme was launched in 2007 and the second satellite Chang’E-2 followed in

October 2010. Mission phases are a direct cis-lunar transfer by a rocket, a cis-lunar

transfer trajectory, and a lunar capture phase to enter a 100 km altitude circular polar

lunar orbit. In April 2011, the satellite mission had come to the end of its half-year

design life and had achieved all scheduled engineering and scientific goals. A mission

extension of transferring Chang’E-2 to the Sun-Earth L2 libration point was put for-

ward to further expand the lunar and deep-space exploration. The latest spacecraft

within the programme Chang’E 5-T1, designed to test the lunar return spacecraft, was

launched in October 2014.

2.2 The uniqueness of the libration point regions

In the 18th century the mathematicians Leonhard Euler and Joseph-Louis Lagrange

identified gravitational equilibrium points in a specific rotating reference frame asso-

ciated with the three-body problem. Euler discovered the collinear libration points,

whereas Lagrange identified the triangular configurations. The location of these points

with respect to Moon and Earth is a unique characteristic and huge advantage com-

pared to e.g. Low Lunar Orbits.

A spacecraft placed in a bounded orbit around one of the libration points can maintain

the same position with respect to the two bodies, whereas a direct placement of a

spacecraft at one of the libration points is not desirable or even not feasible. The main

reason for this is the large manoeuvre required to decelerate the spacecraft to zero and

the high cost of station-keeping to maintain the spacecraft at its location. The collinear
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Figure 2.2: Effective potential identifying the location of the libration points, here for a

mass parameter equivalent to the one of the Earth-Moon system.

libration points L1, L2 and L3 have similar properties, the gravity of the Moon either

increases or decreases the orbital period of a particle at those locations in a way that it

moves with the same speed as the secondary around the primary. An interesting aspect

of the triangular libration points L4 and L5 is the stability of their orbits that can

be exploited in spacecraft missions reducing the station-keeping budget. A downfall

is that thousands of bodies populate this region of the solar system and the risk of

collisions prevent scientist to consider those triangular points for exploration studies

although their inherent stability. Various groups of periodic and quasi-periodic orbits

exist with the libration point regions, some circling around one of the points, others

move around the Moon and cross the libration points. These orbits enable access to the

surface of the Moon, and it is feasible to observe the Moon at close distance without

landing. Furthermore, libration point and distant retrograde orbits require less ∆v

than low lunar orbits to maintain them. This behaviour, in particular, is beneficial for

spacecraft missions that rely on regular orbital manoeuvres and transfers. Operational

orbits near the collinear libration points offer interesting opportunities and using them

might enable many space mission scenarios. What the gravity assist manoeuvre is for

interplanetary mission is the shallow gravity gradient is for libration points missions.

Fig. 2.2 shows the contour plot of the effective potential. The effective potential energy

is an expression combining multiple effects into a single potential. In classical mechanics

it is defined as the sum of the centrifugal potential energy and the potential energy of

a dynamical system. The saddle points define the locations of the libration points,

where the centripetal acceleration of the spacecraft balances the gravitational forces.
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A spacecraft escaping one of the equilibrium points either falls in the gravity well of

the Moon or the Earth.

2.3 A view on future exploration endeavours and scenarios

The Moon is an important exploration destination for the European Space Agency,

who is working to secure roles in future exploration missions ∗. Current and future

programmatic approaches for a future in-orbit infrastructure for human and robotic

space exploration programmes, to near Earth objects and asteroid retrieval missions

favour the Moon as basis. However, before or even instead of landing on the Moon, it

is more likely that an orbit about one of the collinear Earth-Moon libration points will

be the next destination. The motivation for the analysis of lunar orbital manoeuvres

in Earth-Moon system is the involvement of the European Space Agency in the design

of the Multi-Purpose Crew Vehicle, providing the required capabilities for reaching

operational orbit in the lunar vicinity. The Multi-Purpose Crew Vehicle is providing

the crew transportation and exploration infrastructure, and concepts are required for

crew and cargo access and storing beyond Earth orbit in conjunction with payloads

delivery.

Huge progress is made with the Chinese Chang’E programme, it is ongoing and up to

now it will conclude with the landing on the surface of the Moon and a sample return

mission. The past missions are previously mention in Sec. 2.1 and future missions

within the programme will build up on them. The next step is the launch of Chang’E-5

expected to be in 2017 aboard a Long March 5 rocket. The spacecraft design includes

a lunar lander with the capability of retrieving up to 2 kg of lunar samples and return-

ing them to the Earth. Chang’E-6 is expected to launch in 2020. The technological

milestones and achievements of each Chang’E spacecraft are listed in the following:

• The Chang’E-2 extended mission to the Sun-Earth libration point with a flyby

at the Toutatis asteroid. First satellite travelling from a lunar orbit to the L2

libration point.

• Chang’E-3 will perform an unmanned lunar soft-landing and rover mission, crucial

to the Chang’E-3 mission. The first Chinese lunar soft-landing and rover mission.

• Launch of Chang’E-5 expected to be in 2017. Capable of retrieving lunar samples

and bringing them to Earth.

• Chang’E-6 is expected to launch in 2020.

∗Science and Lunar Sample Return, Workshop outcomes and recommendations, ESA Report, 2014
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Another challenge in the future is to identify the technology required to enable mis-

sions that have been cancelled in the past. Several multi-spacecraft space missions

have been studied that include formation flying aspects, they all never left the design

phase. In particular telescope assemblies flying in spacecraft formation e.g. TPF, LISA

(Danzmann et al. [1996]), and STEREO (Kaiser et al. [2008]) assessed opportunities

to have operational orbits within the libration point regions. The libration point offer

unique properties in order to control large baseline formations, the trajectories ideally

follow natural spacecraft paths. Most of the projects are on hold, e.g. Spectrum-M

(Millimetron) as mentioned in Smirnov et al. [2012] and Kardashev et al. [2007], and

may be considered again in future projects.

In the coming years there will be research conducted at lunar polar regions and other

unexplored regions on the lunar surface. Once the Earth view fades on the far side of

the Moon, scientific experiments can be conducted without background noise from the

Earth.

‘A sustainable infrastructure is required, similar to Antarctic missions, a

place where people come together. Onto next destinations, an infrastruc-

ture in vicinity of the Moon enables the step into next destinations in our

cosmos. ∗’

In the future missions to the Moon will be one step towards more ambitious projects

such as the protection of the Earth from Near Earth objects and observing distant stars.

Other concepts go further and include the utilisation of in-situ resources like hydrogen-

containing regolith or oxygen from iron oxide. Another resource is water that could

be processed at the lunar poles and serve as propellant for human missions beyond

the Earth-Moon system, as well as provide radiation shielding for crew members. Such

concepts will reduce the amount of mass needed to be launched from the Earth’s surface,

see Spudis and Lavoie [2010] and Spudis [2011].

∗Science and Lunar Sample Return, Workshop outcomes and recommendations, ESA Report, 2014
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CHAPTER 3

Review of the dynamics in a three-body regime

The design process of a space mission in the early study phase consists of defining and

consolidating science requirements and conducting preliminary trade-off studies. Later

on in the process, more and more details are included to the design and definition of

the overall system and subsystems. The first step of this process is the modelling of the

dynamics. This thesis is concerned with the dynamics in the proximity of the Moon

and the Earth-Moon system. The major forces in this region are the gravity of the

Earth and the Moon.

3.1 Derivation of equations of motion

The classical Newtonian approach portrays the environment by accounting each plane-

tary body as point mass and evaluating the resulting forces acting on a body in space.

High fidelity models, including all forces, provide a very accurate description of the

motion of a body, but make the study of the properties and governing laws of the

dynamical system rather complicated. Reduced models provide a powerful tool to de-

rive results of general validity and first guess solutions. The three-body problem arose

from the work of Newton and facilitates the problem of three bodies orbiting in many

ways leading to time-invariant equations of motion. It is important to find the right

balance between a model being precise enough to represent the environment and on

the other side simple enough to generalise the results. Whenever applicable the fa-

cilitated dynamical model is applied, the high-fidelity dynamical model based on the

classical Newtonian approach is utilised whenever it is required to accurately picture

the dynamical environment and resolve effects caused by e.g. variations in distance

between the Earth and the Moon. For references to previous works on this topic, see

Renk [2008]. Libration point orbits and Earth-Moon transfers are studied in this work

applying the classical Newtonian equations of motion.
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Peturbed two-body motion in the Earth system

This dynamical model is founded in the heliocentric MEE2000 inertial reference frame,

see Sec. 3.2. In this model, the Earth is the central body, and gravities of other planets

are added as third-body perturbations. The actual dynamical equations are

r̈ =
µEarth
r3
Earth

±
∑

n=[Sun, Moon]

µn

(
rn − r
|rn − r|3

− rn
|rn|3

)
, (3.1)

where µn is the standard gravitational parameters for the planets and rn the corre-

sponding position vector, here in an Earth-centred coordinate system. The position

and velocity of the planets accounted in this model are given by the DE421 ephemeris

data from the Jet Propulsion Laboratory (Folkner et al. [2008]). In this thesis the

DE421 ephemeris model is utilised to prove the existence of quasi-periodic motion

similar to those identified in the circular restricted three-body problem and to more

accurately predict station-keeping costs. The dominating accelerations in the libration

point regions stem from the central body and from third-body perturbations. Each

contribution to the acceleration is illustrated in Fig. 3.1. In this example, the contribu-

tion to the overall acceleration of the Sun in minor. The initial conditions correspond

to a periodic halo orbit around L2 that stays in the vicinity of the Moon for about 38

days and finally escapes towards the Sun. The escape phase is identified by a fading

influence of the acceleration contribution of the Moon. Here, the Moon affects the

spacecraft with a period of 12− 14 days, which is the distance between the peaks. The

solid line represents the acceleration level with all perturbing effects removed except

for the two-body gravity field. Further details on third-body interactions are found in

Bosanac et al. [2013].
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Figure 3.1: Contribution to the overall acceleration from the central body (CB) Earth

and the third-body perturbations (TB) from Moon and Sun.
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Circular restricted three-body problem

Although the motion of a spacecraft in a multi-body regime can be analysed from the

equations of motion given by Newtonian mechanics adding up the gravitational forces

of each celestial body, here, the starting point is the reduced model of the circular

restricted three-body problem. This model gives a relatively comprehensive picture of

the motion around the libration points.

The model describes a spacecraft moving under the gravitational forces of a primary

and a secondary body. The motion of m1 and m2 is given by the two-body problem.

It is restricted in the sense that the particle has no mass, and circular indicates that

the motion of the secondary with respect to the primary is idealised as a circular orbit.

The motion of the spacecraft is described in a rotating, so-called synodic, coordinate

frame centred in the barycentre (centre of mass) of the primary and secondary body

with a rotating x axis. The primary and secondary body are at rest in this frame.

The reference system rotates at a constant angular frequency of the bodies about the

barycentre. The position of the centre of mass can be determined from initial conditions

because of the constant angular velocity. For the sake of simplicity the mass unit is

chosen such that

G∗ = µ1 + µ2 = 1, (3.2)

where µ1 and µ2 are the gravitational parameters of the primary and secondary body

in the circular restricted three-body problem. The universal gravitational constant G∗

s/c

m2 = µ

m1 = 1− µ

x

y

s/c

m2 = µ

x

y

Figure 3.2: Description of the synodic reference frame utilised for the circular restricted

three-body problem.
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Chapter 3 Review of the dynamics in a three-body regime

is equal to one. Fig. 3.2 shows the geometry and the relation of both coordinate frames.

In the rotating reference frame, if one accounts only for gravity and centrifugal force,

the following balance holds true in the inertial reference frame

G
m1m2

R2
ps

= m1D1ω
2 = m2D2ω

2, (3.3)

where

D1 = r12
m2

m1 +m2
and D2 = r12

m1

m2 +m1
. (3.4)

The distance between the primary and secondary body is defined as r12, the angular

velocity of the rotating frame is ω =
√
Gm1+m2

R3
12

. The equations of motions for the

third body with m3 in the inertial frame are

ζ̈ = µ1
ζ1 − ζ
r3

1

+ µ2
ζ2 − ζ
r3

2

(3.5)

η̈ = µ1
η1 − η
r3

1

+ µ2
η2 − η
r3

2

(3.6)

ξ̈ = µ1
ξ1 − ξ
r3

1

+ µ2
ξ2 − ξ
r3

2

. (3.7)

The relation between the inertial and rotating reference frame is

ζη
ξ

 =

cos(t) − sin(t) 0
sin(t) cos(t) 0

0 0 1

xy
z

 . (3.8)

The conservation of angular momentum allows the computation of the angular velocity

from initial conditions. The second-order differential equations of motion are derived

in the Euler-Lagrange form as

ẍ = 2ẏ + x− 1− µ
r3

1

(x+ µ)− µ

r3
2

(x− 1 + µ) (3.9)

ÿ = −2ẋ+ y − 1− µ
r3

1

y − µ

r3
2

y (3.10)

z̈ = −1− µ
r3

1

z − µ

r3
2

z, (3.11)

where r2
1 = (x−µ)2 +y2 +z2 represents the distance from the spacecraft to the primary,

and r2
2 = (x+ 1− µ)2 + y2 + z2 to the secondary body.
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Chapter 3 Review of the dynamics in a three-body regime

Up to this point the system was written as a set of second-order differential equations.

In this reference system, the forces that act on a particle are the two gravitational

attractions, the centrifugal force and the Coriolis force. It is often useful to express the

equations of motion as a vector field, which is easily done by rewriting the equations.

A pseudo potential function is derived from Eq. 3.9-3.11, which is defined as

U =
1− µ
r1

+
µ

r2
+

1

2
(x2 + y2), (3.12)

where 1
2(x2 + y2) is the centrifugal and 1−µ

r1
+ µ

r2
the gravitational component. The

function U is visualised in Fig. 2.2.

The Hamiltonian function is written as

H =
1

2

{
(px + y)2 + (py − x)2 + p2

z

}
− 1

2
(x2 + y2) +

1− µ
r1
− µ

r2
+
µ(1− µ)

2
, (3.13)

where px = ẋ− y, py = ẋ+ x and pz = ż are partial derivatives of the momenta.

The Eq. 3.9-3.11 define the motion of the spacecraft in a rotating coordinate system

that is normalised, therefore dimensionless. The non-dimensional orbital period is

normalised to 2π by the factor t∗, which is the inverse of the mean motion of the

primaries. The factor for distance quantities is the characteristic length l∗, which is

the distance between the primaries. The factor for mass is the characteristic mass

m∗, which is the total mass of the system. The notation for units throughout this

work is as follows: length unit LU , time unit TU , and the mass unit MU . Although

only the Earth/Moon and in some parts the Sun/Earth+Moon three-body problem is

considered, for completeness the parameters for a variety of systems are stated in Tab.

3.1.

The total energy, angular momentum and the linear momentum are conserved, but

the lack of sufficient integrals of motion prohibits a general analytical solution of the

dynamical system. One integral of motion for the circular restricted three-body problem

is the Jacobian constant C, which connects the relative speed of the third body to the

location constraint by the potential energy. The quantity is directly related to the

conserved energy defined by

C

2
= −E =

1

2
(ẋ2 + ẏ2)−

{
1

2
(x2 + y2) +

1− µ
r1
− µ

r2

}
. (3.14)

Note that the Jacobi integral is minus twice the total energy per unit mass in the

rotating frame of reference. In Eq. 3.14 the first term from left to right is the kinetic

energy, the centrifugal energy, and the gravitational potential energy. Since the first two
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Chapter 3 Review of the dynamics in a three-body regime

Primary

body

Secondary

body

µ l∗ [km] t∗ [s] m∗ [kg]

ms
mp+ms

dp−s

(
l∗3

Gm∗

)−1/2
mp +ms

Earth Luna 0.0123 3.84 · 105 3.774 · 105 6.047 · 1024

Sun Earth+Luna 3.0404 · 10−6 1.4960 · 108 5.0228 · 106 1.9889 · 1030

Jupiter Europa 7.8072 · 10−5 1.07 · 106 9.8332 · 104 1.8983 · 1027

Table 3.1: Summary of the gravitational parameter µ and characteristic values for differ-

ent relevant three-body systems.

can be derived from potentials and the last one is perpendicular to the trajectory, they

are all conservative, so the energy measured in this system of reference is a constant

of motion. The Jacobi value has no unit, but an energy equivalent may be given. An

example is: C = 3.12 is equal to a total energy of E = −1.56 = −1.6176 kJ
kg [m

2

s2
].

The Jacobi constant is later on used to classify periodic and quasi-periodic trajectories.

From the Jacobi integral one can derive the so-called zero velocity curves by setting

the kinetic component to zero. The corresponding equation is

C = −2 · E = x2 + y2 + 2

{
1− µ
r1

+
µ

r2

}
. (3.15)

The Jacobi constant is valuable in gaining information about regions in which a space-

craft can be found. The station-keeping methodology proposed in this work benefits

from this definition.
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Chapter 3 Review of the dynamics in a three-body regime

Location of the libration points

One initial analysis of a dynamical system is to solve for the equilibrium points and

investigate the nature of the phase space near these solutions. The full three-body

problem in an inertial reference system has no equilibrium points, but in its simplified

form as circular restricted three-body problem five equilibrium points can be identi-

fied. The libration points are characterised by a zero velocity and a no acceleration

environment. Their position can be identified by local maxima of the pseudo-potential

function U , see Fig. 2.2 for a visualisation. The locations are determined by setting the

partial derivatives of U equal to zero. The following equation

x− (1− µ)(x+ µ)

|x+ µ|3
− µ(x− (1− µ))

|x− (1− µ)|3
= 0 (3.16)

leads to the location of the three collinear libration points assuming y = 0 for the

collinear equilibrium points with its three solutions at xL2 > 1− µ > xL1 > −µ > xL3 .

Fig. 3.3 illustrates a planar view of the rotating reference frame. In literature, this

region is referred to the bottleneck region, the name originates from the definition of

zero velocity curves. The black lines represents zero velocity curves each indicating the

boundary for a certain energy level between reachable and forbidden regions.

x [LU]
0 0.2 0.4 0.6 0.8 1 1.2

y 
[L

U
]

-0.2

-0.1

0

0.1

0.2

Figure 3.3: Bottleneck region with the Moon, the libration point L1 and L2. Stable (blue)

and unstable (red) manifold branches are shown for a periodic Northern halo

orbit.
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Chapter 3 Review of the dynamics in a three-body regime

Linear Lissajous motion

Another case to be considered is when the equations of motion are linearised about

one of the libration points. A new reference frame with the same axis definition as

the synodic frame introduced above is applicable. Only the new origin at one of the

equilibrium points differs. Here, the equations are given for the second libration point

L2. The linearised equations of motion have the form

ẍ = 2ẏ + (1 + 2c2)x

ÿ = −2ẋ+ (c2 − 1)y

z̈ = −c2z

(3.17)

with

c2 =
1

γ3
2

(µ+ (1− µ)
γ3

2

(1− γ3
2)3

, (3.18)

where γ2 is the distance from the libration point L2 to the closer body (either the

primary or secondary one). The constant value c2 only depends on the mass parameter

and the location of the Lagrange point. Note that the expression for c2 is only valid for

the Lagrange point L2. The linearised system is characterised by a coupled motion in

the x-y plane and a decoupled one in the z direction, as seen in Eq. 3.17. An analytic

solution to the linear equation of motion is known, see Richardson [1980]. The periodic

part of the analytic solution is written with the help of the amplitudes Ax, Ay, and Az

and the phases θ1 and θ2 as

t [d]
0 1 2 3 4 5 6 7 8

x 
[k

m
]

#10 4

-3

-2

-1

0

1

2
CRTBP
Linear lissajous

Figure 3.4: Example of the drift between the linearised dynamics around the libration

point L2 and the circular restricted three-body problem.
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x = A1e
λt +A2e

−λt +Ax cos(ω2t+ θ2)

y = cA1e
λt − cA2e

−λt + κAx sin(ω2t+ θ2)

z = Az cos(ω1t+ θ1)

(3.19)

with

λ2 =
c2 − 2 +

√
9c2

2 − 8c2

2
ω2

1 = c2 ω2
2 =

2− c2 +
√

9c2
2 − 8c2

2
(3.20)

and c = λ−1−2c2
2λ , κ = ω2−1−2c2

2ω2
(Richardson [1980]). The amplitudes establish the over-

all dimensions, while the angular quantities establish a given location on the orbit. The

equation of motions contain an oscillatory part and hyperbolic exponential parts. The

hyperbolic exponential parts comprise of an exponential part with a positive exponent,

and a part with a negative exponent. The in-plane phases and amplitudes relate to

the motion in the x-y plane, whereas the out-of-plane parameters describe the motion

in z direction. The integral of motion A1 and A2 are related to the unstable and sta-

ble component. This components decays exponentially to zero, if A1 is zero and a A2

component exists. When selecting initial condition vectors, the unstable component in

the integral A1 is set to zero in order to not move along an unstable manifold.

A comparison of the linearised motion versus the circular restricted three-body problem

is shown for an example trajectory in Fig. 3.4. Evaluating the delta between the two

solutions for multiple initial state vectors belonging to different sized orbits showed that

for small orbital amplitudes the linearised equations deliver acceptable results, whereas

for large orbital amplitudes the solution diverge after a few days.

Summary

The benefit of the introduction of the time-invariant dynamical model in Eq. 3.9-3.11 is

the possibility to use dynamical system theory for the study of the system, e.g. Poincaré

and stroboscopic maps, see Sec. 3.3. Another advantage is the described coordinate

frame removing the basic rotation of the Moon around the Earth. This enables to

investigate orbits that are close to the Moon but heavily influenced by the gravity of

the Earth. In this thesis solutions are mainly derived form the circular restricted three-

body problem. In some cases the solutions are recomputed in a high-fidelity dynamical

model.

For studies presented in this work, the equations of motion are integrated numerically

by a finite difference method employing an explicit seventh-order Dormand and Prince
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Chapter 3 Review of the dynamics in a three-body regime

method with step-size adaptation (Dormand and Prince [1980]). This method provides

the required numerical stability and an error estimation by step size adaptation for

this problem. The equation of motions previously introduced are smooth ordinary

differential equations and the integration scheme is computationally fast and achieves

a good accuracy.

3.2 A matter of perspective

A prerequisite for the mathematical description of the state of a dynamical system

is the definition of appropriate reference frames. The previously introduced dynami-

cal systems were formulated in different reference frames. The high-fidelity model is

founded in the MEE2000 system, which is an inertial reference frame, here with its

origin at the Earth centre. In case of the CRTBP, it is a non-inertial reference frame

exhibiting fictitious forces, which are the centrifugal force and the Coriolis force. For a

non-uniformly rotation about the centre, the fictitious Euler force exists. The introduc-

tion of the rotation frame further enables the search for periodic orbits, therefore it is

a unique tool to picture the phase space of the circular restricted three-body problem.

The same way it offers insight into the problem, an inertial view is required as it finally

offers the geometry e.g. an observer sees a spacecraft orbiting on such an orbit from

Earth. The relation between positions and velocities in both frames is defined as

{
xi = Qrix

rd12 + ribc
ẋi = Qriẋ

r d12
t∗ + (k̇Qri + d12Q̇ri)x

r + ẋibc,
(3.21)

where xi and vi are inertial quantities, and xr and vr are relative position and velocity

vectors. The Euler rotation matrix Qri represents the rotation of the Moon around

the Earth. The coordinates are finally shifted, by adding the translation elements ribc

and ẋibc. Aside from the barycentre, other possible origins of the reference frames are

rL1, rL2, or rMoon. To account for variations in the rotation rate (k̇Qri + d12Q̇ri) are

required. The terms d12 and
dps
t∗ are required due to the normalisation of position and

velocity quantities. The values of k̇ and Q̇ri are obtained by numerical differentiation

by

k̇ =
∆k

∆t
=
d+

12 − d
−
12

∆t
, (3.22)

and

Q̇ri =
∆Qri

∆t
=
Q+
ri −Q

−
ri

∆t
. (3.23)
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Figure 3.5: Trajectory in the (a) rotating reference frame, and (b) in the inertial reference

frame. Ticks along trajectory represent equal time steps. Trajectory of the

Moon plotted in light red.

The rotation matrix Qri = [ê1, ê2, ê3] is assembled by

ê1 =
R

|R|
, ê2 =

ω

|ω|
, ê3 =

ê1 × ê3

|ê1 × ê3|
(3.24)

Note also that the transformation from the synodic reference frame to an inertial frame

is simplified, if variations in the distance between the primary and secondary, and in

the angular motion are neglected. With this assumption the components Q̇ri and k̇ are

zero and the transformation is simplified to

{
xi = Q̂rixrl

∗ − xip
ẋi = Q̂riẋrl

∗/t∗ + ω × xi − ẋip,
(3.25)

where here Q̂ri represents an Euler rotation around the z axis. The rotating and inertial

coordinate frame are instantaneously aligned for t = 0.

In most of the cases, if the motion is modelled in the circular restricted three-body prob-

lem, trajectories are expressed in natural units. Different dynamical models, reference

frames and units are used throughout the thesis:

• Dynamics: CRTBP or EPHEM

• Reference frame: index r for rotating (synodic) frame, index i for inertial frame

• Units: dimensionless, SI-units (natural).

The rotation frame is applicable when the focus is on bounded orbits in the proximity

of the Moon. The inertial frame MEE2000 finds application when time dependencies
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Chapter 3 Review of the dynamics in a three-body regime

and variations and general precise system knowledge is required. The time system as

applied in this work is the Universial Time (UT1) or ephemeris time. The time frame

UT1 considers the Earth’s axial rotation and differs from the Greenwich Mean Time

(GMT).

For a better understanding of both reference frames, Fig. 3.5 shows the same trajectory

in a rotating and inertial reference frames, the location of the primary and secondary

body are highlighted (blue). Additionally, the libration points L1 and L2 are repre-

sented by dots (red). The ticks along the trajectory indicate equal time steps with a

one day interval.

3.3 Dynamical behaviour

Analytic solutions are rare for ordinary differential equations (ODE) and numerical

methods are applied to solve the system to a specific accuracy. The dynamical system

theory provides a solid framework to understand the dynamics, orbital motion and

other phenomena in the autonomous description of the restricted three-body problem.

Certain characteristics such as stability, equilibria or periodicity can be derived.

3.3.1 Continuous flows - State transition matrix

Starting with an autonomous ordinary differential equation, with a right hand side f

as

ẋ(t) = f(t,x). (3.26)

A solution of this equation depending on initial conditions is called the flow of the

differential equation. It is defined as

ρ(t,x0). (3.27)

For a n-dimensional non-linear system a linear differential equation can be derived

about an equilibrium point using Taylor expansions and ignoring higher-order terms.

The linear variational equations in its general form are

δx(t) = ρ(t,x0 + ∂x0)− ρ(t,x0), (3.28)

where δx(t) are variations with respect to a reference orbit. The equation can be

formulated as
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d

dt

∂ρ(t,x0)

∂x0
=


03 I3

U1,1 U1,2 U1,3 0 2 0
U2,1 U2,2 U2,3 −2 0 0
U3,1 U3,2 U3,3 0 0 0


∂ρ(t,x0)

∂x0
, (3.29)

where I is the identity matrix, and Uij are the second partial derivatives of the potential

function U with respect to i and j building a symmetric sub-matrix. The result is a

state vector with a dimension of 42 consisting of the six-dimensional state vector (6

elements) and the first variation matrix with 36 elements. It is defined as

 ẋ = f(t,x)

Φ̇ =
∂f

∂x
Φ

x(t0) = x0

Φ(t0) = I,
(3.30)

where Φ is the state transition matrix, x0 the initial state vector, and I the identity

matrix. The state transition matrix Φ(t, t0) is a linear map from the initial state at t0

to a time t correlating a variation δx of an initial state xi to states downstream the

flow.

A special form of the state transition matrix is the Monodromy matrix, which is a state

transition matrix for a time equal to the period of a periodic orbit. Later in this thesis

a method is proposed to derive a matrix with similar properties for a quasi-periodic

orbit, see Chap. 4. The Monodromy matrix M of a periodic orbit is essentially a linear

discrete map of a fix point. From this discrete mapping the characteristics of the local

geometry of the phase space can be determined from the eigenvalues of the matrix M

and their eigenvectors. These characteristics not only apply to the fix point but also

to the corresponding periodic orbit.

Since the dynamical system has a Hamiltonian character andM is a symplectic matrix,

the eigenvalues of this matrix occur in quadruples. The eigenvalue that are different

from one describe the characteristics and stability of the fix point. The eigenvalues λi

indicate the stability of the equilibrium point. They exhibit the following structure:

If λ = ejφ the fix point is elliptic, in the other case for λ = 2 it is parabolic. One

real-valued reciprocal pair λ1, λ
−1
1 and one complex-valued reciprocal pair λ2, λ

−1
2 of

eigenvalues exists, if the fix point is a hyperbolic equilibrium point and the correspond-

ing orbit possesses stable and unstable manifolds. One very small and large eigenvalues

building a real-valued reciprocal pair always means instability. These values indicate

the stable and unstable directions of the hyperbolic invariant manifolds. The conjugate

complex-valued eigenvalues λ = ejφ represent circles on the imaginary plane and they
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Figure 3.6: (a) Poincaré map with consecutive plane crossings of a trajectory. (b) Stro-

boscopic map created by states returning at a time t.

remain close to the centre orbit at any time. The local approximation of the stable

and unstable manifolds is derived from the eigenvectors. In the case of complex char-

acteristic roots, stability holds only, if all roots have unit modulus one, which means

the roots lie on the unit circle.

3.3.2 Discrete maps

The flow of a nth-order continuous-time system can be reduced to a map representation

of a discrete-time system by a classical technique due to Poincaré. A Poincaré map

is a return map in phase space on a lower dimensional subspace usually defined by a

plane (Scheeres [1999]). This map is the link between a continuous- and a discrete-time

system. The stability of a fixed point on a Poincaré map indicates the stability of the

related periodic orbit. An extension to Poincaré maps are stroboscopic maps, where

the underlying flow of a continuous-time system is observed at periodic intervals. This

finds its application in the determination of quasi-periodic orbits in the extend of this

work. Fig. 3.6 shows the difference between a Poincaré and a stroboscopic map with

consecutive plane crossings of a trajectory belonging to a quasi-periodic orbit. The

Poincaré map lies in the x-y plane, whereas the stroboscopic map is represented by a

three-dimensional curve.

3.3.3 The invariant manifold

An invariant manifold describes a subspace (Jorba and Masdemont [1999]) that is cre-

ated by a perturbation around an invariant subspace of an equilibrium. Describing
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Figure 3.7: (a) Periodic orbit (black) with trajectories departing on positive (blue) and

negative (red) branches of (a) a stable and (b) an unstable hyperbolic mani-

fold.

them with the help of a trajectory, a particular manifold may be described as the col-

lectivity of trajectories building a surface. During the evolution of the dynamics the

trajectories do not leave this particular surface. In general, centre modes are indicative

of the existence of additional bounded solutions in the vicinity of the reference orbit.

For instance, modes associated with the complex eigenvalues span a two-dimensional

subspace giving rise to quasi-periodic solutions. The hyperbolic invariant manifold is

formed by trajectories asymptotically approaching or departing other invariant mani-

folds. These are called stable and unstable manifolds, respectively. Stable and unstable

manifolds are associated to unstable periodic orbits. The unstable manifold is the set

of all trajectories that results, if an orbit is perturbed in the direction of the unstable
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Figure 3.8: Illustration of invariant manifold escape routes, (a) in the rotating frame, and

(b) in an inertial view.
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eigenvector. The stable manifold is a set of trajectories leading a particle to the cor-

responding orbit. Each manifold has two branches, a positive one and negative one,

depending on the sign of the perturbation. As a trajectory of a stable or unstable

hyperbolic invariant manifold enables a spacecraft to enter or depart a libration point

orbit. Major contributions in the field of designing orbital transfer arcs are due to the

stable and unstable manifolds associated with periodic and quasi-periodic orbits.

The computation of the stable and unstable manifolds associated with a particular

orbit can be accomplished numerically in a straightforward manner. The calculation

of a trajectory of a stable or unstable manifold starts with taking a state on the orbit

and creating an initial guess by perturbing it. An infinitesimal offset is applied and

integrating backward or forward in time results in the desired trajectories. The initial

guess for the stable and unstable manifold is achieved by

xs = x±∆xs

xu = x±∆xu,
(3.31)

where ∆xs is an offset in the direction of the eigenvector υ1, and ∆xu in the direction of

υ2, respectively. Suggested values for its length in the Earth-Moon system is 10−6 LU

(approximately 0.38 km).

Trajectories of the stable and unstable hyperbolic invariant manifolds are visualised

in Fig. 3.7a and Fig. 3.7b showing the manifold spreads out to the inner and outer

region towards the secondary body. The entity of an invariant manifold tube can be

determined and visualised by propagating various states along the orbit. Fig. 3.8a and

Fig. 3.8b show the trajectory of a spacecraft initially travelling around the Moon with

an escape towards the Earth. The path of a spacecraft is perturbed as it passes by the

secondary and is bound within the zero velocity surface. The spacecraft performs two

passes around the primary before escaping towards the interior region.
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3.4 The region around L1 and L2

The CRTBP possesses five equilibrium points named (L1 − L5), which are also called

Lagrange or libration points. L1 and L2 are the closest points to the secondary body. In

the framework of the circular restricted three-body problem the linear six-dimensional

phase space around the collinear libration points can mathematically be described by

a centre-centre-saddle structure. This structure enables the classification of different

periodic orbits that exist within the four-dimensional centre manifold. For the following

work it is convenient to distinguish between distant periodic orbits (dpo) and libration

point orbits (lpo), the different families of existing orbits in both classes are described

in the following. A numerical scheme has been implemented from scratch for this study

in order to calculate the periodic orbits in this chapter. Existing symmetries have been

exploited and the continuation were the orbital period Tp, the corresponding frequency

ω1, and the Jacobian constant J .

3.4.1 Distant periodic and periodic libration point orbits

Periodic orbits are characterised by returns to a fix point once one orbital revolution is

conducted. The time between the returns defines the orbital period Tp. In the circular

restricted three-body problem these orbits are determined by numerically solving a

boundary-value problem. The continuation of one-parameter families is realised by the

Jacobian constant C. Another option is to take the orbital period Tp as continuation

parameter, which has the disadvantage of a non-monotonous behaviour, which requires

to change sign of the step size within the process. Several types of periodic orbits

exist for a range of the Jacobian or other orbital identifiers. Some of them are two-

dimensional (planar) others are three-dimensional (spatial).

Libration point orbits cannot be described by Keplerian elements. The term libration

implies an oscillating motion. Hence, it seems logical to introduce amplitudes and

frequencies to characterise the size of such an orbit. As a first guess, the amplitudes

are usually in the order of the distance from L1 or L2 to the Moon. For periodic orbits

the frequency ω1 = 2π
Tp

can be defined. It is usually between 1.5 and 2.5 for libration

point orbits, as it is approximately the half the orbital period of the motion of the

Moon around the Earth.

Libration point orbits

Each libration point gives raise to a set of periodic libration point orbits. Namely,

horizontal and vertical Lyapunov orbits, Northern and Southern halo orbits. Halo
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Figure 3.9: Axiometric view of periodic libration point orbits around L2 in the rotating

reference frame in natural units. This includes families of Northern halo,

vertical and horizontal Lyapunov orbits.

orbits bifurcate from the horizontal Lyapunov orbits as the energy increases and non-

linear terms become dominant. The Northern and Southern family of halo orbits are

distinguishable by their direction of motion and the naming stems from the fact that

the main part of the orbits is either South or North of the ecliptic, which is the x-y

plane in the synodic reference frame. Fig. 3.9 shows an axiometric view of the families

of periodic orbits in the Earth-Moon system. The y-z view reveals the geometry of

the orbits as they would appear from Earth when keeping the Earth-Moon line in the

centre.

Periodic orbits can be grouped in one-parameter families. Either the Jacobian constant,

a frequency, or the orbital period can be used to uniquely describe a periodic orbit.

The orbital periods vary from 12.87 to 14.8 days for the northern halo orbits at the
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Figure 3.10: Orbital amplitudes Ax, Ay, and Az for (a) vertical Lyapunov orbits and (b)

Northern halo orbits around the L2 Earth-Moon libration point.

31



Chapter 3 Review of the dynamics in a three-body regime

C [-]
3 3.05 3.1 3.15

;
 [-

]

0.1

0.2

0.3

0.4

0.5

0.6

(a)

C [-]
3.05 3.1 3.15

;
 [-

]

0.5

1

1.5

2

2.5

3

(b)

C [-]
3 3.05 3.1 3.15

!
 [-

]

1.4

1.5

1.6

1.7

!
1

!
2

(c)

C [-]
3.05 3.1 3.15

!
 [-

]

1.5

2

2.5 !
1

!
2

(d)

Figure 3.11: Dependency of the rotation number on the Jacobian value and the system

frequency ω1 (a) + (c) for vertical Lyapunov orbits and (b) + (d) for North-

ern halo orbits around the L2 Earth-Moon libration point.

libration point L2, for the vertical Lyapunov orbits, there is a variation between 15.45

and 17.03 days. Here, the notation ↑ and ↓ is introduced to describe the behaviour of the

named quantities from, when the orbital period increases. The behaviour throughout

the orbital set is C ↑, tp ↑, Az ↓ for halo Northern halo orbits, C ↑, tp ↓, Az ↓ for vertical

Lyapunov orbits and C ↑, tp ↓, Az ↓ for horizontal Lyapunov orbits, where C is the

Jacobian constant, tp the orbital period and Ai the amplitudes in the direction given

by the index. The orbits with large amplitudes possess a lower Jacobian constant than

the smaller ones, this is the case for all three classes.

The orbital amplitudes throughout the periodic solutions can be seen from Fig. 3.10a

and Fig. 3.10b. The frequencies and the rotation number for the orbital families are

shown in Fig. 3.11. Here, the rotation number is defined as ρ = 2π
ω1

. The behaviour of

the system frequency ω1 differs within the family.
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Chapter 3 Review of the dynamics in a three-body regime

Distant periodic orbits

The second class of periodic solutions are distant retrograde orbits, which only repre-

sents one class of distant periodic orbits. Distant retrograde orbits were proposed for

missions to Europa, a moon of Jupiter, while their use for the Earth-Moon system just

recently appeared (Lam and Whiffen [2005]). Those orbits exist due to a resonance

between a primary and secondary body. Most distant periodic orbits are stable and

evidence for this is found in a stability analysis of the linearised problem by studying

the eigenvalues of the Monodromy matrix. It can be shown that distant periodic orbits

provide the largest known region of stable orbits amongst all families in the circular re-

stricted three-body problem (Ming and Shijie [2009], Hirani and Russell [2006]). Those

orbits share some characteristics with highly ecliptic Earth orbits and libration point

orbits. They are sufficiently high up in the gravitational well of the Earth-Moon system

and provide at the same time some benefits of libration point orbits.

Fig. 3.12 shows a planar view of two types of distant retrograde orbit orbiting about

the two collinear libration points L1 and L2. The 1-period retrograde orbits refer

to a periodic orbit symmetric about the rotating x-z plane, this results in crossing

the rotating x axis twice for every period. On the contrary, there are also periodic

orbits that are 2-period or larger. Apart from the 1-period, the focus here is set to

3-period offering unique properties. Given that a 1-period retrograde orbit exists at

a particular energy level, a corresponding 3-period that close after three revolutions

around the Moon also exists. Some characteristics are shared, others only exist for a

certain period doubling.
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Figure 3.12: Planar view of distant periodic orbits around L1 and L2 in the rotating

reference frame in natural units. Family of (a) 1-period and (b) 3-period

distant retrograde orbits.
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Figure 3.13: Initial (a) positions and (b) velocities for the 1-period and 3-period retro-

grade orbit families. The transition between Keplerian and distant periodic

orbits is evident by the maximal point of the velocity.

In contrast with 1-period retrograde orbits, 3-period ones are linearly unstable. As

unstable orbits have associated stable and unstable manifolds, stable distant periodic

orbit only possess an associated centre manifold.

The orbital velocity on a distant retrograde orbit increases with its amplitude. This is

contrary to Keplerian orbits where the orbital velocity decreases with a rising distance

of circular orbits. Fig. 3.13b shows the y component of the velocity of the orbits. All

other velocity components are zero as the trajectory crosses the x axis perpendicularly,

therefore ẋ = 0, with a positive y velocity ẏ > 0. There is a transition between the

distant retrograde orbits and pure Keplerian orbits, they are indicated as maximal

(turning point) in Fig. 3.13b. The transition between 1-period distant periodic and low

lunar orbit take place at a Jacobian value of C = 2.984. The 1-period and 3-period

distant retrograde orbit intersect when C = 2.847 and C = 2.955, this points can be
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Figure 3.14: Orbital amplitudes for the (a) 1-period and (b) 3-period retrograde orbit

families around the Moon in the Earth-Moon three-body problem.
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Figure 3.15: Rotation number of (a) 1-period and (b) 3-period retrograde orbits. Fre-

quencies of (c) 1-period and (d) 3-period retrograde orbits.

seen as period-tripling bifurcations as depicted in Fig. 3.13a and Fig. 3.13b.

The orbital amplitudes Ax, Ay, and Az throughout the families are shown in Fig. 3.14.

Az is zero as only planar solutions are investigated. The orbital amplitudes grow with

increasing orbital periods as they pass through the resonance with the Moon. The

dependency of the rotation number and associated frequencies on the Jacobian value

is seen in Fig. 3.15. The behaviour throughout the orbital set is C ↑, tp ↑, Az ↓ for

1-period and C ↑, tp ↓, Az ↓ for 3-period distant retrograde orbits, where C is the

Jacobian constant, tp the orbital period and Ai the amplitudes in the direction given

by the index i. The orbits with large amplitudes possess a lower Jacobian constant

than the smaller ones, this is the case for all three classes. The orbital periods drop

with increasing values of C, they go through 1 : 3, 2 : 3 and 1 : 1 resonance with the

Moon, see Fig. 3.15d. The 1-period retrograde orbit family bifurcate from the 1 : 1

resonance and disappear when approaching the 2 : 3 resonance. The distant periodic

orbits have a range from 26.7 to 2.05 days. Periodic orbits and the behaviour around

the centre modes are summarised here in detail as they are the starting point for the

investigation of quasi-periodic solutions.
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CHAPTER 4

Parametric representation of quasi-periodic orbits

The previous chapter outlined equilibrium points and periodic orbits as existing solu-

tions of the equations of motion, see Eq. 3.9-3.11. In this chapter the focus is par-

ticularly on a third type of solution, the quasi-periodic orbit or so-called invariant

torus. Starting with the description of quasi-periodic motion, a method is proposed to

obtain quasi-periodic orbits utilising Fourier series with complex coefficients, strobo-

scopic maps, invariant curves, and a multiple shooting method. Results are presented as

parametric functions containing state vectors, each representing a single quasi-periodic

solution. A variety of quasi-periodic orbit families in the Earth-Moon system and their

properties are computed.

4.1 Invariant tori and quasi-periodic motion

Invariant tori are fundamental solutions of the equations of motion in Eq. 3.9-3.11. The

focus is set to the following general p-dimensional invariant tori:

• Equilibrium points with p = 0

• Periodic orbits with p = 1

• Quasi-periodic orbits with p ≥ 2

Equilibrium points and periodic orbits can be regarded as special cases of invariant tori

with p < 2. A quasi-periodic solution is described as the motion on a two-dimensional

torus (2-torus) that is associated with two unique internal frequencies. Mathemati-

cally, invariant tori originate from small perturbations of the Hamiltonian. A detailed

description of invariant tori and their existence is found in literature (Schilder [2002]).

For an invariant torus with p = 2, the surface is densely covered by a trajectory

assuming that the trajectory is propagated for t =∞. It is helpful to regard the torus
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Chapter 4 Parametric representation of quasi-periodic orbits

as an invariant object or for visualisation purposes as a geometric object. Geometrically,

a two-dimensional invariant torus can be described as a toroidal surface covering all

trajectories for a particular set of parameters with all starting conditions during the

dynamical evolution.

Invariant tori posses an important property, which is a global coordinate transfor-

mation. This property is used to localise the dynamical system about the invariant

manifold. The first step towards generating quasi-periodic orbits is the introduction of

angular quantities. The definition of the angle vector is

θ = (α, β) , (4.1)

where α and β are the two phase angles. The torus states are visualised in Fig. 4.1.

The states are defined at discrete equidistant angles for each θi,j as

si,j =
(
xi,j , yi,j , zi,j , vxi,j , vyi,j , vzi,j

)
. (4.2)

The corresponding torus function is introduced as

u (α, β) , (4.3)

where u is a six-dimensional state vector in cartesian coordinates representing position

and velocity elements. The torus function maps the torus onto a square in an area

[0, 2π)2 in parameter space. The torus is then described by this torus function u (θ),

which parametrises the state vectors on the torus using phase angles. The torus function

u is a map in R6.

Two further condition must be met: (a) the dynamics must be restricted to the torus

surface, and (b) a constant vector field of motion must be satisfied. The constant

vector field can be defined by a parallel flow over the entire surface. The corresponding

constant vector field is

{
ṡ = f0(s,θ)

θ̇ = ω.
(4.4)

The motion on the torus must be consistent with the vector field f0. An invariant

condition must hold over the entire two-dimensional surface of the tori, which can be

derived as
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Figure 4.1: Visualisation of the motion on a torus with a two-dimensional frequency base.

The black circle represents a cross section of the torus.

ω1
∂u

∂α
(θ) + ω2

∂u

∂β
(θ) = f(u(θ)). (4.5)

The solution is an invariant torus, if both conditions are met. All trajectories of this

flow are quasi-periodic functions of time and their properties strongly depend on the

arithmetical properties of the frequency base. The parallel flow on an invariant torus

with the frequency base ω is non-resonant, if the basic frequencies are rationally in-

dependent (no non-trivial linear combination with integers is equal to zero). In this

case the torus is densely covered by the quasi-periodic solution. The torus collapses,

if the frequencies are rationally dependent (integer k exists that solves the equation

k1ω1 + k2ω2 = 0).

The two parameters, which are frequencies, are defined as

ω = (ω1, ω2) . (4.6)

The period Ti corresponding to the frequency ωi needed for one rotation is

Ti =
2π

ωi
. (4.7)

The rotation number of a torus is defined as

ρ = ω2T1 = 2π
ω2

ω1
. (4.8)
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The rotation number represents the average movement in the ω2 direction when one

revolution is done in ω1 direction. The values of ρ is defined in a mathematical positive

direction. This knowledge of the natural flow is very useful for trajectory and formation

design. The motion is directly linked to the frequency base of the torus, and can be

described by a particle that is longitudinally moving about the generating periodic

orbit with the frequency ω1, while rotating with frequency ω2, see Fig. 4.2. The first

frequency is associated with the orbital period of the generating periodic orbit. Quasi-

periodic orbits envelop a base periodic orbit.

ω1

ω2

Figure 4.2: Visualisation of the motion on a torus with a two-dimensional frequency base.

The black circle represents a cross section of the torus.

A transformation into angular torus coordinates (α, β) enables the introduction of a

parametric representation of quasi-periodic trajectories. Furthermore, utilising the

parametric representation the location of a spacecraft on the orbit is uniquely de-

fined by two phase angles α and β, see Fig. 4.1. The angles are similar to the true

anomaly known from the Keplerian motion, they increase in the direction of motion

and vary between 0 and 2π. The study of quasi-periodic orbits, e.g. the transfer design,

benefits from a parametric description of trajectories and their associated manifolds,

which simplifies the description of departure and arrival conditions along an orbit. The

introduction of a parametric representation of quasi-periodic orbits enables the identi-

fication of a single orbit by its Jacobian constant C and the two frequencies ω1 and ω2.

To fully specify the location of a spacecraft on a quasi-periodic orbit, four parameters

are required: the Jacobian value, the rotation number and two phase angles.

4.2 Calculation method for quasi-periodic orbits

With the preliminaries on quasi-periodic orbits at hand, a computation method to

determine u for quasi-periodic orbits arising from periodic orbits is proposed and step-

wise introduced. The computation aims to identify an approximation of the state vector

function u described by a Fourier series representation on a two-dimensional angular
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grid. The fundamental elements of the method are described in the preceding section,

followed by the initial guess generation and the continuation process to generate orbital

families.

When discretising the function u, points are chosen for a set of angular parameters in

an interval. The first step is to find a convenient discretisation of the angles and the

function u. Consequently, the angular phase definitions are

A = (θ1,1,θ1,2, · · ·θ1,M , θ2,1, θ2,2 · · · , θM,N )T . (4.9)

where θi,j =
{

2πi
N , 2πj

M

}
. The matrix A shows the indexing for a unique element on the

torus. The index is used to identify a geometric location on the torus. The definition

of the six-dimensional state vectors follows the angles.

Concatenating the state vectors to a single vector yields a (N ·M) × 6-dimensional

vector, which is defined as

P = (x1,1,x1,2, · · ·x1,M , x2,1, x2,2 · · · , xN,M )T . (4.10)

A transformation of the matrix P is introduced further use the state vectors. It is

defined as

p = P · I. (4.11)

The resulting vector has a dimension of (6 ·N ·M)× 1. The discrete Fourier transform

matrix can be described for a 6-dimensional vector. A transformation can be applied

to shift the matrix Q to one with the following structure

qi,j = qi,j · I6, (4.12)

where I6 is an identity matrix multiplying the element qi,j for each of the six-dimensional

state vector. Utilising this diagonal matrix the following matrix defines the required

transformation

P =


q1,1 q1,2 · · · q1,n

q2,1 q2,2 · · · q2,n
...

...
. . .

...
qm,1 qm,2 · · · qm,n

 , (4.13)
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where P is a (6 ·m)× (6 · n) matrix. The operation in Eq. 4.13 must be applied to the

following matrices: Q, R, and P .

The invariance condition must hold over the entire two-dimensional torus surface (Schilder

[2002]). Several methods are mentioned in literature to solve this equation (Kolemen

et al. [2011]). In this work, the method is based on two-dimensional truncated Fourier

series of u. In this particular case a solution of the invariance condition is not re-

quired, and the condition is enforced by a rotation operator. The flow f0 is reduced by

converting the flow to a stroboscopic map, which is associated with a time T = 1
ω1M

.

With all the preliminaries explained, this includes the introduction of the definition of

state vectors and the arrangement of the corresponding vectors, the calculation method

is introduced for two different discretisation schemes:

• Discretisation with N = M , immediately leads to the fully described function

u (at discretised states). Disadvantage are large memory requirement for fine

discretisations. This methodology utilises the two-dimensional Fourier represen-

tation. The benefit in calculating the full two-dimensional function u and not,

as in many other methods a unique invariant curve is the precise knowledge of

additional orbital parameters such as the orbital amplitudes.

• Discretisation with N < M , representing a multiple shooting approach working

with the one-dimensional Fourier representation.

The process is described a priori, the following steps are required:

1. Take an initial guess of the function u defining the entire quasi-periodic orbit and

create the quantities P and p, see Eq. 4.10 and Eq. 4.11.

2. Propagate p forwards for a specified time. The rotation operator allows evaluating

the invariance condition that must be satisfied for a quasi-periodic solution.

3. Utilise an iterative Quasi-Newton method to satisfy a mapping condition. Within

this process certain constraints are implemented to assure a unique solution.

4. Determination of the full function u once a converged solution is determined.

5. Continue the orbital families by either an iso-energetic stepping or a grid-based

method.

One-dimensional and two-dimensional Fourier series

Since the function u is 2π periodic in the angular variables α and β, it is natural to

discretise it using Fourier series. The idea of a Fourier series representation is the
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approximation of u by a sum of decomposed simple periodic sine and cosine functions.

For the one-dimensional case the discrete Fourier transform f and its inverse f̃ are

defined as

f(αn) =

N/2∑
n=−N/2

cne
−iαnn, (4.14)

f̃(αn) =
1√
N

+

N/2∑
n=−N/2

kne
iαnn, (4.15)

where N is the number of harmonics, defined on a domain [−N
2 ,

N
2 ], kn are the Fourier

coefficients, with each being a complex number representing both amplitude and phase

of a sinusoidal component of function xn. The Fourier coefficients kn build up the

vector k1.

For the one-dimensional case the discrete Fourier transform matrix D is defined as

p1 = D(α) · k1 , where dn = e−iαnn, (4.16)

k1 = D−1(α) · p1 , where d−1
n =

1√
N

+ eiαnn, (4.17)

where p1 is a vector containing the equi-distant samples of a function.

For the two-dimensional case the equations are

f(αn, βn) =

N/2∑
n=−N/2

M/2∑
m=−M/2

kn,me
−iαnn−iβmm, (4.18)

f̃(αn, βm) =
1√
NM

+

N/2∑
n=−N/2

M/2∑
m=−M/2

kn,me
iαnn+iβmm, (4.19)

where kn,m are the elements of a matrix K2 containing the Fourier coefficients. The

transform k2 = K2 · I builds the corresponding vector. The summation of the discrete

truncated Fourier transform is a geometrical progression and can be expressed in a

compact form. This matrix transforms Fourier coefficients into coordinate variables.

The introduction of the discrete Fourier transform matrix is the first step towards the

calculation of quasi-periodic orbits.

For the two-dimensional case, the discrete Fourier transform matrix D that transforms

Fourier coefficients to coordinate variables is defined as
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k2 = D(α, β) · p2 , where dn,m = e−iαnn−iβmm (4.20)

p2 = D−1(α, β) · k2 , where d−1
n,m =

1√
N

+ eiαnn+iβmm. (4.21)

In the two-dimensional case p2 is a vector containing the equi-distant samples of a

function. It is important to note that computation variables are the state variables

rather than the Fourier coefficients.

The rotation operator

An important part of the method is the introduction of a rotation operator. The rotation

operator is defined in the form of a rotation matrix. A rotation of the Fourier coefficient,

consequently of the corresponding state vectors, can be applied by a matrix operation.

A rotation is equivalent to a propagation, if the invariance condition holds true and

the appropriate shift is applied. For the two-dimensional case the rotation matrix R is

derived in the following. Starting with the rotation of the Fourier coefficients by

ks = Q−1(α) · k , where q−1
n = e−iαn. (4.22)

(4.23)

For the two-dimensional case the rotation matrix is defined as

ks = Q−1(α, β) · k , where q−1
n,m = e−iαn−iβm. (4.24)

Four steps are required to derive a real-valued rotation matrix. The rotation is equiva-

lent to the propagation of the equations of motion up to a given time, if the invariance

condition is satisfied. This is the required time to be equivalent to the rotation in both,

the α and β direction. The first transformation (matrix manipulation) is introduced

to shift the complex Fourier coefficients with

ks = Q · k, (4.25)

where k is a vector of complex Fourier coefficients. ks is a vector containing the shifted

Fourier coefficients. The shifted Fourier coefficients in Eq. 4.25 can be transformed

backwards to shifted states ps by
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ps = D(α) · ks. (4.26)

Combining the two previous steps, a real-valued rotation matrix R is can be introduced

as

R = D−1 ·Q ·D. (4.27)

The rotation operator is applied as

R(−ρ) = D−1 ·Q(−ρ) ·D. (4.28)

The arranged state vector is now directly rotated by applyingR to p, which is expressed

as

ps = R · p. (4.29)

The rotation operator is a powerful tool and the advantage is that as applied to set of

state vectors is that it hides the underlying complex Fourier coefficients.

4.2.1 Methodology for a discretisation with N = M

For N = M the torus function u is fully described by the two-dimensional Fourier

series. The discretisation is already introduced in the previous section.

Problem definition

Additional to the state vectors defined by u, two properties ω1 and ω2 must be specified

to uniquely define the orbit, for more detailed aspect see Sec. 4.1. Several different

pairs of parameters may be used for the unique identification of a single quasi-periodic

solution. The two values chosen here are the z component of the position of the

state that represents the origin of the parametrisation, and the y component of the

velocity of this state, respectively. Two constraints define a member within the family

of possible solutions, another two constraints are required to fix the orientation of the

phase definition as this is arbitrary chosen. To assure uniqueness of the origin, the y

component and the ẋ component are set to zero, this fully defines the origin within

the parametric function. It would be theoretically possible to remove the two latter

constraints by removing the values from the initial state vector list, but for clarification
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it is easier to introduce the additional constraints. The solution vector contains the

following elements

q = (p, ω1, ω2)T . (4.30)

The problem is formulated by

g1..n−4(q) = p−R(∆t · ω1, ∆t · ω2)pp (4.31)

gn−3(q) = y1,1 − c1 (4.32)

gn−2(q) = (x2 + y2 +
2(1− µ)

r1
− 2µ

r2
+ µ(1− µ)− ẋ2 − ż2)− c2 (4.33)

gn−1(q) = y1,1 (4.34)

gn(q) = vx1,1 . (4.35)

Propagation and invariance condition

The state vector ps representing the function u is propagated for the time that lies

between the discretised steps. The state vectors ps are propagated forward in time and

the results are stored in the projection variables that are defined as follows

pp = Φ∆t(ps), (4.36)

where pp is a vector containing the mapped states. The notation for the flow of the

dynamical equations from a given initial state vector here in assembled form containing

several single states, propagated for the time interval ∆t = 2π
N

1
ω1

, is Φt(p). Note that

at this state there is no information about the phase angle available for vector pp. The

backwards transformation from ps and pp into Fourier coefficients is defined by matrix

R. The error function F is defined as

F (ps, ω1, ω2) = ps −R(∆t · ω1, ∆t · ω2)pp

= ps −R(∆t · ω1, ∆t · ω2)φ∆t(ps) = 0,
(4.37)

where R is the rotation operator and ps and pp the state vectors. The error function

yields zero, if the invariance condition is satisfied. This means for a two-dimensional

function u represented by the Fourier approximation that the propagation is equivalent

to a rotation of the field corresponding to the two frequencies and the time of propaga-

tion. The application of the rotation operator to the state vectors and the utilisation

to compensate the effect of a propagation is an aspect that is novel in this work. The
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objective is to compute the closed curve ps and the two frequencies in a way that the

error function is zero g(ps, ω1, ω2) = 0.

Newton loop and constraints

At the beginning of the process the state vector ps and both frequencies ω1 and ω2

are unknown. The objective of the following iterative process is to determine accurate

values for ps such that ps is identical to pp under the mapR. This iterative procedure is

mathematically identical to a root finding problem. The algorithm iteratively adjusts

the frequency vector in order to transform the set of points at each section into a

continuous curve. The algorithm continues iterating until a set of constraints is satisfied.

One advantage of this formulation is that it can be solved numerically by a Newton

method. The method leads to quadratically convergent solutions assuming a good

initial guess is provided. How to find the initial guess is described in a later step. The

iteration condition for the Newton method can be written as

g(q0) +Dg(q0)(q1 − q0) = 0, (4.38)

where g is the vector and Dg is the gradient of this function with respect to q0. This

condition is iterated until it converges to a sufficient value close to zero. Before the

Newton iteration can be applied to the root finding problem, the derivative Dg must

be defined.

4.2.2 Methodology for a discretisation with N < M

The previously introduced method is computational time consuming and a variant of

the algorithm is implemented being faster and relying on a one-dimensional Fourier

series approximation supported by a multiple shooting method. Possible is N = 1, but

to overcome difficulties caused by the unstable behaviour of the flow, N > 1 reduces

the propagation times, which is similar to a multiple shooting method. For N = M the

torus function u is fully described by the two-dimensional Fourier series. In the case

that only certain invariant curves are modelled for N < M , two-dimensional Fourier

series are not applicable and each invariant curve is modelled by a one-dimensional

Fourier series. The discretisation is already introduced, see Sec. 4.2. Only the differ-

ences to the methods for N = M are highlighted here.
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Problem definition

In the case that only certain invariant curves are modelled for N < M , two-dimensional

Fourier series are not applicable and each invariant curve is modelled by a one-dimensional

Fourier series. At the beginning of the process the state vector ps and both frequencies

are unknown. The chosen values are accurate, if all states ps are identical with pp un-

der the map R. This condition is mathematical identical with a root finding problem.

The algorithm iteratively adjusts the frequency vector in order to transform the set

of points at each section into a continuous curve. The algorithm continues iterating

until a set of constraints is satisfied. The objective is to find the closed curves p1
s, p

2
s,

and p3
s, and the two frequencies such that the error function is zero, g(ps, ω1, ω2) = 0.

Overall, the system is formulated as

g1..m(q) = p1
s −R(∆t · ω1, ∆t · ω2)p1

p , for all ps (4.39)

gm+1..2m(q) = p2
s −R(∆t · ω1, ∆t · ω2)p2

p , for all ps (4.40)

g2m+1..3m(q) = p3
s −R(∆t · ω1, ∆t · ω2)p3

p , for all ps (4.41)

gn−3(q) = y1,1 − c1 (4.42)

gn−2(q) = (x2 + y2 +
2(1− µ)

r1
− 2µ

r2
+ µ(1− µ)− ẋ2 − ż2)− c2 (4.43)

gn−1(q) = y1,1 (4.44)

gn(q) = vx1,1 . (4.45)

The condition in Eq. 4.38 may be written with the new vectors in Eq. 4.39 - Eq.

4.45. The constructed linear system appears to be overdetermined, but for the circular

restricted three-body problem, which is a Hamiltonian system, a solution exist. Before

the Newton iteration can be applied to the root finding problem, the derivative Dg

must be defined.

Propagation and invariance condition

The state vector ps representing the function u is propagated for the time that lies

between the discretised steps. The state vectors ps are propagated forward in time and

the results are stored in the projection variables that are defined as follows

pp = Φ2 π
N
ω1

(ps), (4.46)
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where pp is a vector containing the mapped states. Φt(x) is the notation for the flow

of the dynamical equations from a given initial state vector, here, in assembled form

containing several single states, propagated for the time interval ∆t = 2π
N ω1. The

following assembled vector p is defined as

p =
(
p1
s, p

2
s, p

3
s, ω1, ω2

)T
. (4.47)

Note that at this state there is no information about the phase angle available for vector

pp.

4.2.3 Initial frequencies and Fourier coefficients

A suitable way in finding an initial guess for the function u and for the frequencies

ω1 and ω2 is to start from a periodic orbit. This guess can be partially derived from

properties of the generating periodic orbit and their linear stability, which is obtained

from its Monodromy matrix. The argument of the complex eigenvalues of this matrix

λn = cosφ+ i sinφ defines the rotation of the flow. The quantity φ is the angular shift

on the invariant curve between the outgoing and returning trajectory. The eigenvalues

λn of Monodromy matrices for a set of periodic orbits are depicted in Fig. 4.3. Fig.

4.3a shows the real valued eigenvalues and Fig. 4.3b the complex ones. The value of

the complex eigenvalue is used to create an initial guess for the frequency ω2.

The initial guess for the two frequencies ω̂1 and ω̂2 is derived from φ and from the

orbital period of the generating orbit. It is defined as

(ω̂1, ω̂2) =

(
2π

tp
,
±φ+ 2πi

tp

)
, (4.48)
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Figure 4.3: Eigenvalue structure of the Monodromy matrix of a periodic orbit. (a) Real

eigenvalues and (b) complex ones.
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Figure 4.4: Initial guess for the state vector p (a) for a discretisation with M = 3 and

N = 40 and (b) with M = N = 30. The periodic base orbit is a Northern

halo orbit with an orbital period of Tp = 11.86 d.

where here i is zero and φ has a positive value. With these quantities the rotation

number ρ̂ is determined. This initial guess is valid for solutions that are close to the

periodic orbit. Another option is to determine the system frequencies by means of

Fourier spectral methods, such as a Laskar Frequency map analysis and quasi-periodic

decompositions, see Laskar [2003].

The complex eigenvectors an span a plane on which the initial guess for the state vector

function u(0,β) is defined. The first part of the function u is derived from the complex

eigenvectors an as

u(0,β) = uperiodic(0) + ε {cos(β)Re(an(α))− sin(β)Im(an(α))} , (4.49)

where uperiodic(0) is the the state vector of the periodic orbit. The rest of the function u

is determined by propagating the state vectors of u(0,θ2) with the following description

{
pp = Φπ

4
ω1
ps

βp = βs + ω22π/ω1

⇔ Φt(t, t0,x0) : x(t0)→ x(t). (4.50)

Fig. 4.4 shows the initial state vector p obtained by the Eq. 4.50.
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4.2.4 Continuation

Once a converged solution is found and the function u has been obtained, one can

compute further orbits starting from this previous solution. This procedure is called

continuation. For periodic orbits the process is simple as the orbits belong to a one-

parameter family. A one-parameter continuation scheme in either the Jacobian value

C or the orbital period Tp is implemented to isolate family members. Quasi-periodic

orbits are derived in two-parameter families, which requires a different approach. Two

continuation schemes are introduced here to achieve different goals: one for generat-

ing iso-energetic orbit families and one for the evaluation of quasi-periodic solutions

over a two-parameter grid. This allows either to do the continuation by varying both

parameters or keeping one and changing the other.

4.2.4.1 Evaluation of iso-energetic series

Iso-energetic orbit series are obtained by fixing the orbital energy and conducting a

one-parameter continuation with one of the parameters ω1, ω2 or a combination of

it. Strict iso-energetic quasi-periodic orbit families enable a comparison with Poincaré

maps, which represent a reduced two-dimensional view of existing orbits.

The first continuation method is explained in the following paragraph. The first com-

puted solution with its parameters Ci, ρi builds the starting point, see Fig. 4.5. For

the next three solutions, the Jacobian Ci+1 = Ci is fixed and ρi+1 is attenuated. A

small step size is used to achieve converged in the next step. Other parameters such as

the states p are not extrapolated due to missing data in the first continuation steps.

From the fourth solution onwards, a third-order polynomial fit is used to extrapolate

the state vectors of u, therefore p. The result of a linear extrapolation or later a

ρi

ρi+1

ρi+2

ρi+3

Figure 4.5: Visualisation of the iso-energetic continuation scheme.
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Figure 4.6: (a) The frequency ω1 plotted as a function of the area confined by the invariant

curve. (b) Same relation for ω2.

polynomial fit serves as initial guess for the next computation run. This process is

continued until no new solution can be found. In this case the step size for the previous

extrapolation is reduced and the computation restarted. The family continuation is

stopped once the step size is smaller than a pre-defined value. Stopping reasons are

either a collapse of the torus near resonances or when the number of harmonics are

not sufficient to accurately define the state vectors of the function u. The downside of

continuing quasi-periodic orbits in a single-parameter is that the guess generation for

the consecutive step must be sufficient enough to overcome resonance gaps.

First results of the iso-energetic continuation scheme are discussed in the following.

Each point represents an individual calculated quasi-periodic orbit. Orbits with the

same Jacobian constant are connected by a line segment. Fig. 4.6a and Fig. 4.6b show

!
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Figure 4.7: (a) Relation between ω1 and ω2, and (b) the values for z and ẏ.
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the dependency of the frequencies on the area confined by the invariant curve. Fig.

4.7a shows the relation between ω1 and ω2, whereas Fig. 4.7b reveals the spacing on

the z-ẏ plane.

4.2.4.2 Adaptive grid evaluation on z-ẏ plane

The previously introduced continuation method generated iso-energetic orbit families

with no constraints on the frequencies. The disadvantage is that a converged solution

cannot be found, if the two frequencies approach a resonance. The consequence is

that the continuation stops as no previous solution can be utilised for the next step.

To overcome this disadvantage, a two-parameter adaptive grid continuation process is

proposed.

A two-dimensional grid is introduced to determine pairs of ω1 and ω2. The boundaries

of the computational domain for the two-parameter range is restricted to a rectangular

domain. The computational scheme requires only a first converged solution for a quasi-

periodic orbit. For surrounding solutions, the Jacobian Ci+1,j+1 = Ci,j is fixed. The

other parameters such as the states p are not extrapolated. A solution is calculated

for each of the grid points, with the parameter set Ci,j , ωi+1, j+1
1 , and ωi+1, j+1

2 , see

Fig. 4.8. Once a solution failed, the grid is locally refined and for each newly created

parameter set a solution is tried to obtain.

ωi, j

ωi+1, j+1

ωi, j−1 ωi+2, j

ωi+1, j−1

Figure 4.8: Visualisation of the adaptive grid continuation scheme on the ω1-ω2 plane.
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Figure 4.9: Iso-energetic quasi-periodic orbit family around a vertical lyapunov orbit eval-

uated in five iterative steps utilising the grid adaptation scheme. Each grey

dot represents an individual solution. (a) + (b) Results of the first iteration,

(c) + (d) third iteration, and (e) + (f) for the fifth iteration.

A huge benefit is that each individual solution is calculated on the basis of its neigh-

bour without interpolation. This continuation method in two-parameters enables to
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surround gaps, where no solution exists, from all directions. Therefore, it is likely to

reach the entire solution space. In order to prove the performance of the continuation

algorithm a set of quasi-periodic orbits around Northern halo orbit are calculated, see

Fig. 4.9. Numerical results have been obtained for five grids. The step size has a large

impact on the maximal extent of the existence of orbits as one solution is based on the

other. For a too large step size the initial guess is not sufficient enough to compute

consecutive quasi-periodic orbits.

4.2.5 Stability properties of quasi-periodic orbits

A linear approximation of the flow around a quasi-periodic orbit provides linear stability

information. This information is analysed by studying the eigenstructure, i.e. eigen-

vectors and eigenvalues of a constructed matrix M̃ that possesses similar properties as

the Monodromy matrix M . The required stability properties are: the stability index

λ, the orientation of the subspace defined by the complex eigenvectors, and the stable

and unstable direction vectors. The general stable or unstable behaviour of an orbit is

not investigated here. The analysis performed here focuses on the stability information

for a quasi-periodic orbit that is derived from the eigenvectors of the Monodromy ma-

trix. For a periodic orbit the definition of the Monodromy matrix is straightforward,

the variational equations are propagated forward in time with t = Tp creating a linear

map, see Sec. 3.3.2.

For quasi-periodic orbits the variational equations can be propagated forward for t =

2πρ, but as the returns occur on an invariant curve the created linear map does not

directly provide stability information. Therefore, an intermediate step is required to

cancel the rotation caused by the dynamics of the invariant torus. The stability cal-

culation is partially a by-product of the previous described iterative calculation of the

torus parametrisation. A block diagonal matrix SM is introduced as

SM =


Φ1 0 · · · 0
0 Φ2 · · · 0
...

...
. . .

...
0 0 · · · ΦM

 , (4.51)

where Φi are the state transition matrices. The application of the rotation operator

enables the definition of a matrix M̃ as

M̃ = R(−ρ)SM , (4.52)
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where R(−ρ) is the rotation operator and M̃ the new matrix for a quasi-periodic orbit

with similar properties to the one of the Monodromy matrix. The eigenvalues and

eigenvectors of M̃ contain the required stability information. Finally, a Monodromy

matrix is calculated for a non-periodic orbit, the cancellation of the rotation is ensuring

that the stability properties are comparable to the ones for a period orbit. Once the

stability directions are determined for the first closed curve, the set is complemented

by integration with the following definitions


ψui,j = λ−αi/2πΦ2π/ω1αi(ui,j)

ψsi,j = λαi/2πΦ2π/ω1αi(ui,j)

βp = βs + ω22π/ω1

⇔ Φt(t, t0, x0) : x(t0)→ x(t), (4.53)

where ψui,j is the directional vectors towards the unstable direction, and ψsi,j for the

stable direction, respectively. The solutions are stored together with the parametric

function for a quasi-periodic orbit. Fig. 4.10 shows a quasi-periodic orbit with the

directional components calculated by Eq. 4.53.

Stability properties and directions

Both functions ψu and ψs are six-dimensional vectors containing directional informa-

tion on the stable and unstable directions. These directions are defined by the angles

between the velocity component of the eigenvectors and the x axis of the rotating co-

ordinate frame. The directions are often derived from the linear Lissajous motion. The

(a) (b)

Figure 4.10: Representation of the eigenvectors defining the (a) stable and (b) unstable

directions. The grey dots represent a quasi-periodic orbit about the L2

libration point at discrete positions with the following properties: C =

3.1188, ω = (1.8175, 1.7383).
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angle between the stable and unstable direction is 90 deg. At a first approximation for

the Earth-Moon L1 point, the stable direction angle is −65.31 deg and the unstable

one 24.69 deg, see ?. In the majority of the studies the angles are only defined in the

x-y plane with no component in z direction.

The defined angles are shown in Fig. 4.10 for a quasi-periodic orbit within in the

vertical Lyapunov family (C = 3.0283). The information gained is not only important

for the calculation of the stable and unstable manifold directions, but for e.g. thruster

alignment during early spacecraft mission design.

4.3 Parametric functions

For various design aspects of space mission utilising quasi-periodic orbits it is important

to have a parametric description of trajectories and their associated manifolds. Instead

of storing a single point on a quasi-periodic orbit representing the entire trajectory,

a better representation of a quasi-periodic orbits is the state vector function u. A

compressed parameterisation using coefficients of the Fourier expansion gained in the

orbit generation process is stored instead of the individual state vectors u. This com-

pressed parametrisation provides a simple tool for mission analysis purposes to create

trajectories. The benefits is that state vectors can be determined independent on the

discretisation of u. They are written as

u(α, β) =

N/2∑
n=−N/2

M/2∑
m=−M/2

kn,me
−iαmn−iβmm,

u̇(α, β) =
1√
NM

+

N/2∑
n=−N/2

M/2∑
m=−M/2

kn,me
iαnn+iβmm.

(4.54)

The parametric representation of quasi-periodic orbits enables the identification of a

single orbit by the Jacobian constant C and two frequencies ω1 and ω2. Furthermore,

utilising the compressed parametrisation, the location of a spacecraft on the orbit is

uniquely defined by the phase angles α and β. Three possible representations of a

quasi-periodic orbit are shown in Fig. 4.11. A single trajectory is plotted in Fig. 4.11a.

In Fig. 4.11b, the compressed parametrisation is used to evaluate the state vectors on

a grid of 50× 50 elements. Fig. 4.11c shows a mesh representing the torus surface.

With the help of the function u, trajectories may be generated for arbitrary time spans

with the following expression
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x(t) = u(α0 + ω1t, β0 + ω2t), (4.55)

where α0 and β0 are the initial phases. A trajectory generated in this manner is suitable

to initiate the transition to an ephemeris model using a process such as multiple shoot-

ing. Since the function u can be evaluated efficiently once it is computed, quasi-periodic

orbits from various starting points can be generated with minimal computational effort.

Another representation of a quasi-periodic solution is to visualise the function u in

angular coordinates in the α-β plane. Fig. 4.12a shows the z components of the function

u. Fig. 4.12b shows characteristics representing a single quasi-periodic orbit and the

phases change along the propagation.

4.4 Sensitivity analysis

Before applying the proposed method, it is required to determine appropriate values

for nmax and s, which is realised by providing a sensitivity analysis. The convergence

behaviours and the quality of the solutions is studied for different values in the following

section.
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Figure 4.11: Visualisation of three possible representations of a quasi-periodic orbit. (a)

A single trajectory. (b) The entity of all state vectors of the orbit. (c) A

mesh representing the surface of the torus.
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Figure 4.12: (a) Torus function u plotted in two-dimensional angular phase space. (b)

Characteristics representing a quasi-periodic orbit in angular coordinates.

Number of harmonics nmax

The number of Fourier coefficients nmax in the truncated series is one of the main

drivers in the continuation process. This value has the largest impact on the maximal

extension of the orbit family. The values N and M are directly depended on the number

of harmonics, this results form the problem statement. For the sensitivity analysis the

case N > M with N = 3 is used for the orbit generation, where N defines the number

of steps in the multiple-shooting method. This is the minimal number recommended

to get a converged solution.

Fig. 4.13 show results for three different values of nmax. The lines represent the bound-
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Figure 4.13: Sensitivity of the grid continuation on the number of Fourier coefficients.

(a) Maximal extent on the z-vy plane. (b) Results on the C-ρ plane.
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aries of the regions with calculated solutions. To find out whether the borders are

caused by the number of harmonics, results are shown for nmax = 40 and nmax = 60.

Stepping parameter s

The grid size continuation parameter s affects the calculated solutions. The in-plane

stepping on the z-vy plane defines the distance that lies between the family members.

Three value for s are selected to find out whether further solutions can be found once

smaller steps between the solutions are allowed. The maps in Fig. 4.14 shows the

regions with existing solutions where the generation stopped depending on the stepping

parameter s. A uniform mesh has the disadvantage once the orbits pass close to the

secondary body with fast changing dynamics with the same step size, either it is too

fine for some part or too coarse for others. In some cases, if the initial solution that

triggers the grid continuation is in a region that required very small step sizes, the

process fails due to a too coarse grid for the first iteration step.

4.5 Extent and boundaries of quasi-periodic orbit families

Various quasi-periodic orbits are computed in the vicinity of the Lagrange points L1 and

L2 in the Earth-Moon system. The quasi-periodic orbit families emerge from periodic

vertical Lyapunov, Northern and Southern halo orbit and families of the 1-period and

3-period distant retrograde orbits. Tab. 4.1 introduces the notation of types of quasi-

periodic orbits along with properties of the two-parameter continuation process.
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Figure 4.14: Sensitivity analysis for three different stepping parameters s. (a) Maximal

extent on the z-vy plane. (b) Results on the C-ρ plane.
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Name p-type z ẏ

min max min max

ro1 distant retrograde 1-period orbits 0.001 2.0 −2.2 1.0

ro3 distant retrograde 3-period orbits 0.001 2.0 −2.2 1.0

l2nh L2 Northern halo orbits 0.001 0.3 −0.28 0.1

l2vl L2 vertical Lyapunov orbits 0.001 0.35 −0.03 0.2

Table 4.1: Notation of the types of quasi-periodic orbit families. Summary of the bound-

ing boxes for the two-parameter continuation process.

The bounded rectangular domain in z and ẏ is restricted to values from zmin < z < zmax

and ẏmin < ẏ < ẏmax, see first two rows in Tab. 4.1.

4.5.1 Quasi-periodic distant retrograde orbits

Results of the family generation for quasi-periodic orbits originating from 1-period and

3-period distant retrograde orbits in the circular restricted three-body problem are

presented. Five iteration steps are calculated for the grid continuation process assuring

that the convergence of neighbour quasi-periodic orbits is achieved. A total of 5000

orbits are calculated for the 1-period case and 6000 orbits for the 3-period case. The

z value is an indication for the Az amplitude, as all quasi-periodic distant retrograde

orbits are symmetric about the x-y plane.
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Figure 4.15: Results of the mesh continuation methods for 1-period quasi-periodic distant

retrograde orbits. (a) Results shown on the C-ρ plane. (b) Representation

of all orbit on the z-vy plane.

60



Chapter 4 Parametric representation of quasi-periodic orbits

C [-]
0.05 0.1 0.15 0.2 0.25

;
 [-

]

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

(a)

z [LU]
2.65 2.7 2.75 2.8 2.85

v
y
 [L

U
/T

U
]

0.5

1

1.5

2

2.5

(b)

Figure 4.16: Results of the mesh continuation methods for 3-period quasi-periodic distant

retrograde orbits. (a) Results shown on the C-ρ plane. (b) Representation

of all orbit on the z-vy plane.
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Figure 4.17: Amplitudes for (a+c) 1-period and (b+d) 3-period quasi-periodic distant

retrograde orbits.
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Figure 4.18: Selection of 1-period quasi-periodic distant retrograde orbits in the synodic

reference frame. For all three solutions C = 3.15. (a) ω = (10.88, 9.96), (b)

ω = (10.77, 9.84), and (c) ω = (10.56, 9.62).

The results are presented for the 1-period quasi-periodic distant retrograde orbits in

Fig. 4.15a and Fig. 4.15b, drawing the z and ẏ values describing the full state of each

orbit at the construction point u(0, 0) with z = 0, z > 0 and ż > 0. The results for

the 3-period quasi-periodic distant retrograde orbits are presented in Fig. 4.16a and

Fig. 4.16b. The phases start at this point from zero. The boundaries represent the

rising line from periodic orbits into quasi-periodic solutions and on the other side the

maximal extent. The stability parameters, the energy level and the frequencies are not

presented in this figure. For this purpose another figure is introduced combining those

parameters.

The amplitudes for the calculated quasi-periodic orbits are summarised in Fig. 4.17.

Sample trajectories for both cases are visualised in Fig. 4.18 and Fig. 4.19. The orbital

parameters of the solution can be found in the description of the figures.
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Figure 4.19: Selection of 3-period quasi-periodic distant retrograde orbits in the synodic

reference frame. For all three solutions C = 2.55. (a) ω = (0.3530, 0.3283),

(b) ω = (0.3533, 0.3258), and (c) ω = (0.3537, 0.3193).

4.5.2 Quasi-periodic libration point orbits

Results of the family generation for quasi-periodic orbits originating from periodic

libration point orbits are presented in this section. Results are shown for the libration

point L2, but the method can be applied in the same way to the L1 or other libration

points. Five iteration steps for the grid continuation process are sufficient to assure

that the convergence of neighbour quasi-periodic orbits is achieved. A total of 5000

quasi-halo orbits around a Northern halo are calculated. Another 6000 lissajous orbits

around the vertical Lyapunov orbit are presented. The z value is an indication of the

Az amplitude, as all quasi-periodic libration point orbits are symmetric about the x-z

plane.

In Fig. 4.20 and Fig. 4.21 the region covered by quasi-periodic orbits is illustrated.

The existence is restricted by the orbital period of the generating periodic orbit and
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Figure 4.20: Results of the mesh continuation method for quasi-periodic solutions around

periodic vertical Lyapunov orbits. (a) Results shown on the C ρ-plane. (b)

Representation of all orbit on the z ẏ- plane.

the corresponding ω2 as the argument of the complex eigenvalue of the Monodromy

matrix. The amplitudes of all calculated solutions are summarised in Fig. 4.22. The

orbits here are sorted by ascending orbital amplitudes in x direction.

Some trajectories for both cases are visualised in Fig. 4.23 and Fig. 4.24. The orbital

parameters of the solution can be found in the description of the figures.
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Figure 4.21: Results of the mesh continuation method for quasi-periodic solutions around

periodic Northern halo orbits. (a) Results shown on the ρ-C plane. (b)

Representation of all orbit on the z-ẏ plane.
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Figure 4.22: Amplitudes Ax, Ay, and Az for quasi-periodic solutions. Results with as-

cending amplitudes (a) Az, and (b) Ax for quasi-halo orbits. Amplitudes

(c) Az,and (d) Ax for lissajous orbits.
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Figure 4.23: Selection of quasi-periodic orbits around periodic Northern halo orbits in

the synodic reference frame. For all three solutions C = 3.0641. (a) ω =

(1.9910, 1.4378), (b) ω = (1.9745, 1.4453), and (c) ω = (1.9411, 1.4613).
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Figure 4.24: Selection of quasi-periodic orbits around periodic vertical Lyapunov orbits

in the synodic reference frame. For all three solutions C = 3.0175. (a) ω =

(1.5533, 1.3967), (b) ω = (1.5519, 1.4025), and (c) ω = (1.5485, 1.4128).
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4.6 Summary

This chapter presents a method developed to efficiently compute quasi-periodic orbits.

The calculation method enabled a characterisation of each solution either by geometric

properties or by properties that are related to the inner structure of the quasi-periodic

solution. These properties are the amplitudes Ax, Ay, Az, phase angles α, β, and

the frequencies ω1 and ω2. Their evolution across quasi-periodic orbit families was

explained. The derivation of an initial guess to initiate the calculations was explained

in detail. A parametric function was introduced to represent quasi-periodic orbits.

A similar concept is the use of the analytical solution to the linear lissajous motion

in Canalias Vila [2007], but with a limited application to orbits with small orbital

amplitudes. Two continuation methods were introduced to expand a single solution

into a family of orbits. The first one was for the generation of iso-energetic orbit

families. The second one was a novel grid-based two-parameter continuation with the

advantage to picture the entire solution space and find solutions close to resonances of

the two frequencies. Another advantage of a grid-based continuation on the z-ẏ plane

with a focus on application is an equal spacing for e.g. transfer relevant parameters

of the orbit is achieved. In a last section, quasi-periodic solutions were obtained for a

variety of periodic orbits. The parametric representation of the quasi-periodic orbits is

of particular interest for further applications. The next chapters utilise the proposed

parametrisation of quasi-periodic orbits for the calculation of orbital transfers, and to

study formation flying aspects. Furthermore, a method to cope with quasi-periodic

orbits in a more sophisticated dynamical model is proposed.
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CHAPTER 5

Station-keeping for quasi-periodic orbits

The dynamically sensitive behaviour of most libration points and distant retrograde or-

bits prohibits the propagation of multiple orbital revolutions. A technique is required

to compensate for perturbations either introduced by gravitational forces or numerical

errors in numerical propagations. This chapter presents a novel methodology to main-

tain quasi-periodic orbits over long time spans. The objective of this methodology is

to identify station-keeping manoeuvres in a way that orbital properties are maintained

throughout manoeuvre execution. The station-keeping methodology is explained and

applied to periodic and quasi-periodic trajectories coming from dynamical models with

different accuracy.

Effects of the large orbital eccentricity of the Moon and the perturbations of the Earth

destroy orbits that can be identified in the circular restricted three-body problem. For a

periodic orbit the identifying parameter is the Jacobi constant, for quasi-periodic orbits

there is an additional parameter required, either the frequency ω2 or the rotational

number ρ. The requirement imposed on the algorithm is that those orbital properties

are preserved by the station-keeping manoeuvres, when an orbit is propagated for an

arbitrary length of time.

5.1 Determination of the orbital lifetime and its maximisation

Before the station-keeping procedure is explained, the focus is set on the basic idea

of the algorithm, which is the determination and implementation of manoeuvres that

increase the lifetime of an orbit. The objective is to find manoeuvres that maximise

the time the trajectory remains within a given region around a libration point. For

orbits with larger amplitudes, when the limits of the given region include the secondary

body the spacecraft must not fall into the primary. For this purpose an exclusion zone
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Figure 5.1: Planar view of the bottleneck region with a visualisation of the boundaries

(blue) set manually depending on the orbital amplitudes to evaluate the or-

bital lifetime. The grey lines indicate zero velocity curves. A trajectory of an

halo orbit is shown in black.

is added around the secondary body, see Eq. 5.1. The forbidden region defined by the

zero velocity curves enables the introduction of limits that are purely defined by the

x component of the state vector. The numerical integration stops when the trajectory

passes through the boundaries defined by


x < xL2 + δ1

x > xL2 − δ1

δ2 <
√

(x1 − x1,M )2 + (x2 − x2,M )2 + (x3 − x3,M )2,

(5.1)

where δ1 is the maximal amplitude in x direction of the exclusion zone and δ2 = 10−4 LU

builds a sphere around the Moon. These boundaries are visualised in Fig. 5.1. The

position vector of the Moon xM is defined in the synodic reference frame. Assuming

that the initial state is already within these limits and on the x-y plane in the synodic

reference frame, the state can be perturbed in a way that the orbital lifetime changes.

The starting point for the evaluation of the orbital lifetime is a state vector on the

x-y plane in positive direction. In order to determine the correction manoeuvre, the

trajectory is propagated forward from the initial state. The time until this event is

defined as Tmax. The value T+
max refers to a forward, T−

max to a backward propagation,

respectively.
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Station-keeping maneouvres

In order to extend the lifetime of an orbit, either the velocity, the position or both

can be changed. The implementation of a velocity change is straightforward, whereas

changing the position would leave a discontinuity in the trajectory. To cope with this

problem a position change is implemented by two velocity changes, the first one to vary

the position of a point half a revolution post maneouvre, where the second manoeuvre

is applied. The starting point for the station-keeping method is a pre-calculated state

vector x0 = (x, y, z, ẋ, ẏ, ż).

An optimisation method is utilised to find an optimal ∆v applied at the x-y plane

crossing to maximise the mean orbital lifetime mean(T+
max, T

−
max). This only leads to

feasible solutions, if the position vector is accurate. One major difference to the bisec-

tion method (Hechler [2002]) is the determination of the mean time mean(T+
max, T

−
max)

allows to find a balancing between stable and unstable manifold branches. Finding the

optimal manoeuvre is closely related to the invariant manifolds, in particular to the

centre manifold as this describes the part of the phase space that is neither affected by

the attraction of the stable manifold nor the repulsion of the unstable one.

Achieving this point of the state space assures to maintain the properties of the orbit.

For all cases the vector elements x and y are fixed, and an optimal ∆v is applied

at the x-y plane crossing point to maximise the orbital lifetime Tmax post manoeuvre.

Restricting the station-keeping manoeuvre to the in-plane direction and allowing it only

at the crossing of the x-y plane reduces the number of parameters to be optimised.
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The initial state assuming z = 0 is fully defined by

x1 = x

x2 = y

x3 = 0

x4 = ẋ+ ∆vx

x5 = ẏ + ∆vy

x6 =

√
C + x2 + y2 +

2(1− µ)

r1
− 2µ

r2
,

(5.2)

where x is the new state vector. The magnitude of the manoeuvre is determined by

the l2-norm ∆v =
√

∆v2
x + ∆v2

y . Both parameters ∆vx and ∆vx are determined by

solving the optimisation problem described in the next section.

Maximisation of the orbital lifetime

A differential evolution algorithm for non-linear functions is used to maximise the

orbital lifetime due to multiple local maxima. The differential evolution algorithm

has two parameters that can be set, the differential weight F = [0, 2] and CR =

[0, 1] representing the crossover probability. For details about differential evolution

algorithms, see Storn and Price [1997]. The optimisation parameters and the domain

of the optimisation variables are listed in Tab. 5.1. The optimisation problem is stated

as

maximise
∆vx,∆vy

J(∆vx,∆vy), (5.3)

where ∆vx and ∆vy are the optimisation parameters. Eq. 5.3 is solved subject to the

constraints defined in Eq. 5.1.

Name constant range min. value range max. value

Generations 200

Population 40

CR 0.5

F 0.8

∆vx −10−4 LU
TU 10−4 LU

TU

∆vy −10−4 LU
TU 10−4 LU

TU

Table 5.1: Optimisation parameters and the domain of the optimisation variables for the

maximisation of the orbital lifetime.
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Figure 5.2: (a) + (c) Individual ∆v-pairs evaluated during the optimisation process. (b)

+ (d) Corresponding manoeuvre directions. (a) + (b) Results for a forward

propagation with T+
m and (b) with a backwards propagation with T−

m .

Different objective functions are considered, which are:

1. Orbital lifetime J1 = max(T+
max) post manoeuvre.

2. Mean lifetime J1 = mean(T+
max, T

−
max).

3. For a multi-objective optimisation J1 = max(T+
max) and J2 = min(∆v).

The quantities T+
max and T−

max are evaluated by

fT+
max

= Φ+τmax (x (∆vx,∆vy)) , (5.4)

where Φ±τmax denotes the propagation. The optimisation of each objective function

yields an optimal station-keeping manoeuvre. For the multi-objective case a solution

on the Pareto front is chosen that represents a trade-off between the orbital lifetime and

the manoeuvre magnitude. During the optimisation process a constant Jacobi value C
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is assured by adjusting the ∆vz component, see Eq. 3.14. More specific details on the

objective function and constraints will be provided in the following as they might vary

from one scenario to the other.

Two optimisation runs show the correlation between ∆vx and ∆vy, one is conducted

for a forward and the other one for a backward propagation, indicating the stable and

unstable manoeuvre directions, respectively. Fig. 5.2 highlights the results. Fig. 5.2a

and 5.2c show individual evaluated ∆v pairs in the population during the differential

evolution process. The colour code indicates the orbital lifetime. The ∆vx-∆vy plots

show the correlation between manoeuvre components and orbital lifetimes. The best

10 % of the solutions are taken to produce the Tmax-θ plots in Fig. 5.2b and 5.2d, where

θ is the optimal maneouvre direction.

The relation between manoeuvre directions, magnitudes and their corresponding orbital

lifetimes Tmax are further studied as they represent a major step towards the design

of the station-keeping algorithm. An initial state vector belonging to a periodic orbit,

which is the outcome of the solved two-point boundary value problem, is used.

Remarkable is the smooth behaviour for the manoeuvre direction θ, whereas the orbital

lifetime indicates a chaotic pattern. A reason for this is the fact that the location where

the trajectory escapes moves along the boundary planes. In some cases the is also the

switching between the two boundaries as introduced in Eq. 5.1 is visible.

5.2 Station-keeping applied to the circular restricted three-body problem

The determination of the optimal manoeuvre to extend the orbital lifetime is equivalent

to finding the next downstream centre manifold. Targeting the next downstream centre

manifold implies that no stable or unstable component is introduced and the spacecraft

evolves on the same orbit as prior to the manoeuvre. It is significant for a station-

keeping algorithm that on the one side orbital properties are maintained and on the

other side that no pre-calculated reference trajectory is required.

5.2.1 Trajectory extension

In mission design it is desirable to extend the lifetime of an existing orbit to fulfil pri-

mary and secondary mission requirements. An unstable libration point orbit usually es-

capes after one to three revolutions and leaves the desired path on one of the hyperbolic

invariant manifolds. Therefore, a method is implemented in the following to extend

the orbital lifetime by utilising the previously introduced station-keeping manoeuvres.

Out of all investigated objective functions, the optimisation with J = mean(T+
m , T

−
m)
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has been proven to be the most effective approach for the identification of the centre

manifold. The extension of the lifetime maintains the spacecraft in the vicinity of the

original orbit.

The fundamental idea of increasing the orbital lifetime is explained in the previous

section. The algorithmic formulation of the procedure to create quasi-periodic orbit

families consists of the following steps:

1. Take a point fn along the nominal orbit.

2. Optimise and apply station-keeping manoeuvre to extend the trajectory for two

x-y plane crossings.

3. The optimal manoeuvre is determined and executed and the trajectory with the

state vector fn+1 is propagated for a full revolution (two x-y plane crossings).

Once a return point is identified it is used as starting condition for the next

manoeuvre evaluation.

4. Take this new state vector and continue with step 2 and 3 until the required

orbital lifetime is achieved.

In the following station-keeping costs are computed for periodic and quasi-periodic

cases following the proposed approach. In general, the station-keeping algorithm is

applicable to all libration point and distant retrograde orbits that possess an invariant

hyperbolic manifold. The numerical algorithm is purely used to continue and extend

the orbital lifetime of orbits. Applying this algorithm in a dynamical regime modelled

by the circular restricted three-body problem accounting neither for uncertainties nor

a navigation budget leads to very small manoeuvres that simply compensate numerical

errors introduced by the propagation scheme.

Example for a periodic orbit

The performance of the method is validated on a periodic orbit with a Jacobian value

of C = 3.0641. Fig. 5.3a shows the x-y plane with several returns locations where the

manoeuvres take place. The bold markers present returning locations after each station-

keeping manoeuvre. The grey (dotted) rings present the centre manifold structure for

this particular periodic orbit. The trajectories associated to those rings correspond to

quasi-periodic solutions with the same Jacobian as the periodic orbit. The representa-

tion of the centre manifold by those curves is widely used and enables a reduction of

the parameters for a better visualisation on the x-y plane. The resulting halo orbit is

plotted in Fig. 5.3b.
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For the periodic case the station-keeping error can be easily evaluated as the trajectory

returns to the same point on the x-y plane. A first study evaluates the manoeuvre

magnitude and direction of the station-keeping strategy that is applied every second

crossing of the x-y plane. The manoeuvre history is shown in Fig. 5.4a. The velocity

increments are all in the range of a few mm
s up to cm

s . The optimisation shows that all

station-keeping manoeuvre are conducted in the same direction (or 180 deg shifted),

see the value of θ in Fig. 5.4b. The maintenance effort in terms of ∆v is determined

for halo orbits with an orbital period between 13.3 to 14.8 days. A total of 30 station-

keeping manoeuvres are evaluated leading to an orbital lifetime of about a year. To

be noted that the manoeuvre direction θ is aligned with the direction of the stable

mode eigenvectors of the orbit. This is not surprising as station-keeping methods

incorporating Floquet analysis utilise manoeuvres that are aligned with the unstable
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Figure 5.3: (a) Return map on the ...created during the station-keeping process. Initial

state belongs to a periodic Northern halo orbit with C = 3.0641. (b) Extended

trajectory for a lifetime of about 400 days.
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Figure 5.4: Station-keeping manoeuvre history for the orbit in Fig. 5.3. The (a) magni-

tude and (b) in-plane direction is given for each manoeuvre.
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Figure 5.5: Trajectory extension for a quasi-periodic quasi-halo orbit with C = 3.1180.

(a) Return map on the x-y plane for an initial state on a periodic orbit and

(b) the trajectory. Station-keeping manoeuvres are visualised by their (c)

magnitude and (d) direction.

mode aiming for a cancellation of the unstable component.

Example for a quasi-periodic orbit

The station-keeping method for quasi-periodic orbits is the same as for the periodic

example shown above. The periodic and quasi-periodic case differ only in the return

map on the x-y plane which is now described as invariant curve instead of a point

as for the periodic case. This means that the optimal-station keeping direction varies

depending on the return direction on the invariant curve. Fig. 5.5 and Fig. 5.6 show

the locations of the crossings on the x-y plane. For this purpose multiple crossing are

evaluated to extend the orbit for a one year lifetime.

The station-keeping is applied to two families of quasi-periodic orbits with an energy
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Figure 5.6: Trajectory extension for a quasi-periodic lissajous orbit with C = 3.1411.

(a) Return map on the x-y plane for an initial state on a periodic orbit and

(b) the trajectory. Station-keeping manoeuvres are visualised by their (c)

magnitude and (d) direction.

E = −C
2 = −1.559. Quasi-periodic orbit families share the same orbital energy but

differ in the rotation number ρ. The manoeuvre magnitude is below 0.1 mm
s for all

cases having only the purpose to cancel out the numerical error. Fig. 5.5a shows

the locations of the crossings on the x-y plane. The bold markers are the returning

points after each station-keeping manoeuvre. The grey (dotted) rings present the centre

manifold structure around the initial state vector. The maintenance effort in terms of

∆v is determined for the quasi-periodic orbit with C = 3.1180. Here, multiple station-

keeping manoeuvres are implemented leading to an orbital lifetime of about one year.

For two cases the corresponding trajectories are plotted in Fig. 5.5b and Fig. 5.6b.
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5.2.2 Extension algorithm for orbital families

In the circular restricted three-body problem, quasi-periodic orbits occur in families,

and for a certain value of the Jacobian there are a variety of orbits. These families

of quasi-periodic orbits might be described by a Poincaré section at the x-y plane. In

Chap. 4 a method is introduced to compute the families of the quasi-periodic orbits.

In the following an algorithm is described to generate families of quasi-periodic orbits

without calculating the invariant curves and assuring the invariance condition.

The previously introduced station-keeping method allows for a calculation of consec-

utive crossings on the x-y plane. Assuming that sufficient crossings are evaluated the

invariant curve is accuracy modelled giving a picture of the orbit. Once a single solution

is identified, a hopping strategy is required to get the initial condition for the next run

leading to the introduction of a continuation parameter.

The extension algorithm consists of the following steps:

1. Take a point fn along the nominal orbit.

2. Optimise and apply station-keeping manoeuvre to extend the trajectory for two

x-y plane crossings.

3. The state vector fn+1 at this crossing is the next centre manifold location.

4. Take this new state vector and continue with step 2 and 3 until enough points

are calculated to picture the invariant curve.

5. Attenuate the state vector f , = fn + (∆x,∆y, 0, 0, 0, 0) and continue with step 2

to 4.

6. The extension algorithm is either stopped once the optimisation fails to converge

converge in step 2 or the desired extent of the orbital family is achieved.

The novelty here is the simplicity of the algorithm to generate quasi-periodic orbit

families in different dynamical frameworks without extensively implementing the matrix

operations as introduced in Chap. 4. This algorithm is a major contribution of this

work and can be applied to any orbit in the three-body problem. The only requirement

as for the station-keeping is that the orbits possess centre components and an unstable

behaviour.

Fig. 5.7 shows the results of the continuation process for a family of quasi-halo and

Lissajous orbits. Each dot in the figure corresponds to a x-y plane crossing. Circular

patterns can be recognised, if multiple return are determined. Each of these circular

sets belong to one quasi-periodic solution.
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Figure 5.7: Continuation of quasi-periodic orbit families. (b) Solution for a family of

quasi-periodic Northern halo orbits. (b) Solution for a family of vertical

Lyapunov orbits.

5.3 Application to the full planetary ephemeris problem

Previously, the orbit generation was studied for an autonomous dynamical system.

Advantage of the circular restricted three-body problem is that there is no dependency

on the epoch nor on variations of the distance between Earth and Moon. This is

not the case once an accurate position and velocity of the planets are considered in

the dynamical modelling. To cope with this new circumstances, the station-keeping

process is redefined to apply it to a time-depended and more accurate dynamical model.

The strategy is to control the unstable character by means of discrete thrust impulses

remains identical.

5.3.1 Station-keeping methodology

The station-keeping in the full planetary model is straightforward, the difference to the

algorithm introduced in Sec. 5.2.2 is the handling of the boundary conditions within the

propagation. A coordinate transformation is required as the positions and velocities

are required in the rotating reference frame where the boundaries are defined. Starting

from an initial state that lies on the x-y plane at a given epoch the transformation of

coordinates is applied, the optimal manoeuvre is calculated.

The trajectory is integrated in the heliocentric MEE2000 frame. After each integration

step, the position of the spacecraft is transformed into the rotating reference frame and

the boundary conditions are evaluated. The boundary condition constrains the final

distance from L2 and prevents the trajectory from escaping.
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In the previous section for each station-keeping manoeuvre the direction and magnitude

were coming from optimisation. The results showed a constant well defined value for

the optimal manoeuvre direction. This result allows one to exclude this information in

the optimisation, leaving the magnitude as only parameter. The key outcome of this

study is the identification of an optimal manoeuvre direction that pushes the space-

craft towards the invariant stable or unstable manifolds. For the determination of this

optimal manoeuvre directions, the manoeuvre magnitude is set to 10−3 LU . Forward

(unstable) or backward (stable) propagation is required in the lifetime assessment.

Three options are considered to handle the directional orientation of the velocity incre-

ment, which are:

1. An analytic linear direction obtained from the linear Lissajous motion.

2. A mean manoeuvre direction ψ.

3. A precise varying direction for quasi-periodic orbits.

Evaluation of the manoeuvre directions

The optimisation results in this study for the halo orbit family are shown for an escape

towards the stable (red) and unstable (blue) hyperbolic manifold, see Fig. 5.9 and Fig.

5.10. The results plotted with thin markers correspond to the x and y components

of the position vectors determined by Floquet subspaces (Gómez et al. [1998]). The

discrepancies between the Floquet mode approach and the station-keeping algorithm

proposed in this chapter increase with growing orbital amplitudes. The explanation for

this is the linearisation that is required for the Floquet approach. Fig. 5.8 highlights

the identified dominant manoeuvre direction for the halo orbit family with parameters.
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Figure 5.8: Parametric evaluation of the relation between the manoeuvre magnitude and

direction.
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Figure 5.9: Comparison of optimal manoeuvre directions with results obtained from Flo-

quet subspaces, evaluated for the Northern halo orbit family for an escape

towards the stable (red) and unstable (blue) hyperbolic manifold.
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Floquet subspaces, evaluated for the vertical Lyapunov orbit family for an

escape towards the stable (red) and unstable (blue) hyperbolic manifold.
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Optimisation with a pre-defined manoeuvre direction

The evaluation of the precise direction and magnitude of the station-keeping manoeuvre

is time consuming, therefore the direction is pre-defined as the direction is predictable

once the desired orbital properties are known. A differential evolution algorithm is used

to search for solutions with minimum norm of the ∆v manoeuvre. The parameters for

the differential evolution algorithm are summarised in Tab. 5.2. The optimisation

problem is stated as

maximise
∆v

J(∆v), (5.5)

where the manoeuvre magnitude ∆v is the only optimisation parameters. Eq. 5.5 is

solved subject to the constraints defined in Eq. 5.1.

The initial state vector is assembled similar to Eq. 5.2 but accounting for the direction

and magnitude instead of Cartesian vectors. Different objective functions are consid-

ered, which are:

1. The orbital lifetime J = max(T+
max).

2. The mean lifetime J = mean(T+
max, T

−
max).

3. For a multi-objective optimisation J1 = max(T+
max) and J2 = min(∆v).

The quantities T+
max and T−

max are propagated and evaluated

fT+
max

= Φ±τmax (x (∆v)) , (5.6)

where Φ±τmax denotes the propagation. The objective functions are assessed yielding

the optimal station-keeping manoeuvres, for the multi-objective case a solution on the

Pareto front is chosen representing a trade-off between the orbital lifetime and the

manoeuvre magnitude.

Name constant range min. value range max. value

Generations 200

Population 20

CR 0.5

F 0.8

∆v −10−4 LU
TU 10−4 LU

TU

Table 5.2: Optimisation parameters for the maximisation of the orbital lifetime.
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Comparison of the different station-keeping strategies

The three different station-keeping strategies are applied to a quasi-periodic orbit. The

results of the station-keeping process in the general case are very similar to the ones

for the circular restricted three-body problem. The station-keeping is applied to one

quasi-periodic orbit with an energy of E = −C/2 = −1.5313. The velocity corrections

on each correction point are shown Fig. 5.11. Applying a precise manoeuvre direction

depending on the return angle leads to similar manoeuvre magnitudes. When applying

a mean manoeuvre direction the range of the magnitude is larger.
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Figure 5.11: Station-keeping costs for three different strategies for the evaluation of the

manoeuvre direction. (a) Mean manoeuvre direction. (b) Precise direction

varying depending on the return angle.
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5.4 Summary

This chapter presented a method to generate quasi-periodic orbits in the framework of

an ephemeris based dynamical model by maintaining the orbit for long durations. This

method used manoeuvres to compensate for perturbations either introduced by grav-

itational forces or errors in numerical propagations. The advantage of this proposed

method was that there is no need to evaluate the finite arithmetic as developed in

Chap. 4. A similar methodology is already applied in the past utilising a linearisation

of the equations of motion (Hechler [2002]). For periodic orbits dominant manoeuvre

directions can be determined by the eigenvectors of the monodromy matrix, see Simo

et al. [1987]. The method proposed in this thesis takes this idea and expands it by tak-

ing into account amplitudes and frequencies of quasi-periodic motion. The presented

method is a powerful tool to generate quasi-periodic orbit families in different dynami-

cal frameworks without extensively implementing the matrix operations introduced in

Chap. 4. Another constraint that was introduced is to identify station-keeping ma-

noeuvres in such a way that orbital properties are maintained. The only requirement

as for the station-keeping was that the orbits possess centre components and an un-

stable behaviour. Apart from the determination of quasi-periodic orbit families, the

algorithm can be applied to develop station-keeping algorithms. First studies show that

the station-keeping budget is significantly reduced once the direction of manoeuvres is

taken into account. Under the assumption that the orbital parameters are known, a

pre-defined manoeuvre direction can be determined. This enables an optimisation with

a single parameter, the manoeuvre magnitude. A study showed that the assumption of

a mean manoeuvre direction is valid and reduces the computational costs significantly.
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CHAPTER 6

Transfer options between quasi-periodic orbits

The preceding chapters treated fundamental aspects of quasi-periodic motion and tech-

niques were proposed to create quasi-periodic orbits in different dynamical frameworks.

Since libration point and distant retrograde orbits reside together in the lunar vicinity

and each orbit possesses characteristic properties, transfers among them are of special

interest. A method for the construction of optimal orbital transfers from one orbit

to another is proposed in this chapter. Since the circular restricted three-body prob-

lem provides useful tools for the design of transfers this formulation of the dynamics

is utilised, but results are presented for the full ephemeris model, too. Orbit-to-orbit

transfers are optimised for several scenarios and parameters influencing the solution,

e.g. transfer costs, are investigated.

6.1 Orbit-to-orbit transfer and manoeuvre design

Transfers are now studied among a wide range of orbits whose properties were assessed

in Chap. 4. The focus is set on transfers that utilise the hyperbolic invariant manifold,

with the benefit that the transfer comprise of an individual manoeuvre at departure

and an asymptotic approach to the final orbit. The idea is to construct transfers by

connecting the initial and final orbit by coast phases along the unstable and stable

invariant manifold branches, therefore utilising the same effects as used for low energy

transfers from Earth. The arrival and departure conditions are determined by the

introduced phase angles, two are required per orbit. An additional parameter is the

transfer time τ along the stable and unstable invariant manifold. The parametric

representation of quasi-periodic orbits in Chap. 4 enables to use predefined locations

on departure or arrival orbits depending on the phases α and β as in other studies

(Yárnoz et al. [2013], Marsden and Ross [2005]).

85



Chapter 6 Transfer options between quasi-periodic orbits

x [LU]

1.2
1.1-0.1

0

y [LU]

0.1

0.1

0

-0.1

z 
[L

U
]

(a)

x [LU]

1.2

1.1
-0.1

0

y [LU]

0.1

0.1

0.05

0

-0.05

-0.1

z 
[L

U
]

(b)

Figure 6.1: The transfer trajectories in the synodic reference frame connect the final

(black) and initial (grey) orbit. (a) For a single-manoeuvre transfer utilising

the coasting phase along the stable manifold to the final orbit. (b) For a

single-manoeuvre transfer utilising both, the coasting phase (red) along the

stable and unstable manifold to the final orbit.

Transfers from either periodic or quasi-periodic orbits to other orbits of this type are

investigated. Those transfers are relevant from a mission design perspective, used

to change the operational orbit or re-phase spacecraft on their orbit. Depending on

the combination of initial and final orbit, the transfer changes the properties of the

trajectories. Only the location of the spacecraft along its path is changes, if final and

initial orbit are the same. Compared to other studies (Gómez et al. [2004], Davis [2009])

there is no constrained posed on the Jacobian constant of the initial and final orbit.

When introducing orbit-to-orbit transfers the following options exist:

• One-manoeuvre transfers utilising stable hyperbolic invariant manifolds to arrive

at the final orbit. The result is that a manoeuvre is conducted at time t, and

after the velocity change the spacecraft continues its path along a stable manifold

leading to the target orbit, see Fig. 6.1a.

• One-manoeuvre transfers utilising unstable hyperbolic invariant manifolds to leave

the initial orbit. The conducted manoeuvre sets the spacecraft onto a stable hy-

perbolic invariant manifold to arrive at the final orbit, see Fig. 6.1b.

A method is proposed in the following for both types of transfers. Before utilising the

unique properties of unstable quasi-periodic orbits to design orbit-to-orbit transfers, the

accessibility of the libration point and lunar regions from Earth orbit is investigated.

The proposed methods thoroughly and reliably explores the space of orbit-to-orbit

transfers.
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Figure 6.2: Transfer trajectory in the rotating reference frame. The transfer trajectory

(red) connects the initial (black) orbit with the targeted one (grey).
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Figure 6.3: Transfer trajectory in the inertial reference frame. The transfer trajectory

(red) connects the initial (black) orbit with the targeted one (blue). Trajec-

tory of the Moon is plotted (light red) for a better orientation.

Fig. 6.2 and Fig. 6.3 show the trajectories in the inertial and rotating reference frame

of such a transfer. This method offers lower ∆v expenses for the transfer compared

to two-impulse transfer arcs. The benefit of one-manoeuvre transfers is on the one

side the complexity of operations and at the same time this technique will reduce the

associated costs. The spacecraft will be transferred to another orbit of interest of the

mission.

The following sections outlines the procedure that combines the parametric representa-

tion of the orbit with the ones of the manifolds. The orbits and their stable manifolds

are represented by discrete parametric functions.
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6.1.1 Accessibility of libration point regions from Low Earth Orbit

The comparison of orbit-to-orbit transfers requires a common origin, which, here, is an

Earth departure from a Low Earth Orbit (LEO). The transfer optimisation is conducted

in the full ephemeris model accounting for the launch dependencies on the actual ge-

ometry of the orbit epoch and phases. The Earth departure from LEO is defined with

an apogee and perigee altitude ha = hp = 400 km, with an inclination fixed at 51.7 deg.

At the appropriate time, the spacecraft performs a major manoeuvre of about 3.2 km
s .

This injects the spacecraft onto a transfer trajectory. The construction point for quasi-

periodic orbits is ideally used as target location in the vicinity of the Moon. At this

location the motion is perpendicular to the x-z plane and the ẏ component is zero.

The most obvious way to transfer from Earth to the lunar vicinity is to use a classical

Hohmann like direct transfer or pro-grade and retro-grade gravity assisted transfers.

The insertion would then occur tangentially at the x-z plane crossing providing a low

∆v opportunity. The arrival phases are studied in detail for a range of quasi-halo

orbits. Fig. 6.6 shows the variations in the transfer ∆v caused by the arrival phase

of the orbit and the departure epoch. The time of flight increased from 5 to 7 days.

Another form include flyby geometries at the Moon to reduce the transfer costs. For

the flyby geometries at the Moon the minimal flyby distance above the surface of the

Moon is 100 km. The flyby method offers remarkable energy savings compared to the

direct Hohmann like approach. Fig. 6.4 and Fig. 6.5 present direct and flyby transfer

geometries for selected arrival orbits.

Due to the variation in the distance from the Earth to the Moon there are small
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Figure 6.4: (a) Direct and (b) flyby transfers from Low Earth Orbit (LEO) to distant

retrograde orbits (grey trajectories). The transfer arcs are shown in red.
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Figure 6.5: (a) Direct and (b) flyby transfers from Low Earth Orbit (LEO) to libration

point orbits (grey). The transfer arcs are shown in red.

differences between the dynamical ephemeris model and the circular restricted three-

body problem. This causes an impact of the departure epoch on the transfer costs.

Only very simple transfers are highlighted here, a more detailed description is available

in literature, see Renk [2008].
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Figure 6.6: (a) Dependency of the transfer ∆v on the launch epoch. (b) Impact of orbital

phasing upon arrival on the transfer ∆v.
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6.1.2 Exclusion of lunar flybys

Orbits around L1 and L2 are close to the Moon and a spacecraft theoretically could use

a considerable change of the velocity and energy of the spacecraft introduced by a lunar

flyby. This behaviour is excluded in the following transfers. Numerically the exclusion

is realised during propagation by a sphere around the Moon as stopping condition. In

most of the cases, the exclusion radius is defined as r = 0.001LU .

6.1.3 Identification of feasible transfer parameter sets

The use of the hyperbolic invariant manifold increases the number of parameters to

be determined by the optimisation process. This causes a heavier computational effort

than in the case of periodic orbits, but on the other side it gives additional possibilities

for the transfer. Additional phases allow for a wide range of possibilities to connect the

two orbits. The parameters strongly depend on each other and islands of local minima

exist. Therefore, it is critical to identify and carefully select the initial conditions.

A differential evolution method is used to identify the initial conditions. In order to

get a continuous transfer trajectory, the determined initial conditions are refined by a

gradient-based optimisation method.

The location of the spacecraft at arrival and departure are evaluated with the help of

the parametric function u. This enables the use of α and β as optimisation variables

without numerical integration of the final trajectory. The initial and target locations of

the spacecraft on a quasi-periodic trajectory are represented by four angular coordinates

αi, βi, αf and βf . The following two functions are used to calculate feasible regions

of the five-dimensional solution space. The function subject to minimisation for the

transfer case with one transfer arc along the unstable manifold is

f1 = u
(
αi, βi

)
−Φ−τ1

(
u
(
αf , βf

)
+ εψ

(
αf , βf

))
, (6.1)

where u is the parametric function for the orbit, ε defines the offset to initiate the path

onto the manifold branches, see Eq. 3.31. The time that is required to reach a particular

location on the manifold relative to the original orbit is defined as τ1. The vector field

Φ−τ1 denotes the backward propagation along the stable invariant manifold.

The function for the case with two transfer arcs, with one on the stable and the other

one on the unstable manifold branch, is defined as

f2 = Φτ1

(
u
(
αi, βi

)
+ εψ

(
αi, βi

))
−Φ−τ2

(
u
(
αf , βf

)
+ εψ

(
αf , βf

))
. (6.2)
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The distance δx =
√
f12 + f22 + f32 is an indicator for the feasibility of the solution,

and the velocity offset ∆v =
√
f42 + f52 + f62 is a first approximation of the expected

∆v budget. The results obtained by the initial search might contain a gap between

the transfer arcs. As long as this gap is within some limits, it is later removed in the

optimisation using a gradient-based method. The main task of this first step is the

identification of feasible transfer sets for the phases and transfer times that serve as

initial guess. The aim is to find a favourable insertion point on the quasi-periodic orbit

satisfying all constraints.

Before the optimisation is initialised a consolidated guess is required for the phases

and transfer times. This is achieved by a differential evolution algorithm. The transfer

construction process starts with the determination of feasible parameter combinations.

Instead of using numerical propagation, state vectors on the quasi-periodic orbit are

obtained by using the analytic function u that describes a quasi-periodic orbit, see Eq.

4.3.

The optimisation problem is stated as

minimise
αi,βi,αf ,βf ,τ,l

J(αi, βi, αf , βf , τ1, l), (6.3)

where αi and βi are the phase angles on the initial orbit. The phase angles of the target

orbit are αf and βf . The transfer time along hyperbolic invariant manifold branch is

defined as τ1. The value l ∈ {−1, 1} is a switch function to specify the hyperbolic

invariant manifold branch. The domain of the optimisation variables is defined in Tab.

6.1.

Two options for the cost function and constraint handling are considered:

1. Minimisation of the distance δx with no constraint imposed on the ∆v.

2. Multi-objective optimisation with J1 = ∆v and J2 = δx.

The entire set of feasible transfers, with their parameter sets (αi, βi, αf , βf , τ1, l, δx,∆v)

are evaluated. The corresponding values for f1 and f2 are calculated. The results are

shown in Fig. 6.7 and Fig. 6.8 for a scenario with the function f1. The corresponding

∆v for the transfers are plotted in Fig. 6.8a and Fig. 6.8b. A first filter constraints the

position and velocity offset to 3000 km and 200 m
s threshold. With this filter solutions

are selected that potentially converge at the optimisation step. The next step is to

identify similar islands within the parameter sets. In order to find the optimal time for

such a transfer, the optimal final phases on the quasi-periodic orbit after the transfer

are evaluated, see Fig. 6.8b.
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Name constant range min. value range max. value

Generations 200

Population 20

CR 0.5

F 0.8

αi 0 2π

βi 0 2π

αf 0 2π

βf 0 2π

τ1, τ2 0 10

l −1 1

Table 6.1: Optimisation parameters for the determination of orbital transfers among

quasi-periodic orbits.

This pre-optimisation and filtering gives reasonably good approximations of the feasible

parameters that are used in the optimisation. Note that the use of the parametric

functions u(α, β) and u(α, β, τ1) are only approximations intended for the pruning of

the infeasible sets and retaining the feasible ones.
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Figure 6.7: Results of the initialisation with initial and final orbit parameter sets. Each

black dot corresponds to an evaluated set. Filtered feasible transfer sets (red)

with corresponding (a) position and (b) velocity offsets.
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Figure 6.8: Results of the initialisation with initial and final orbit parameter sets. Each

dot corresponds to an evaluated set. (a) Dependency of the transfer time and

the ∆v. (b) Dependency of the initial (red) and final (black) phases on the

∆v.

6.1.4 Formulation of the transfer optimisation

Once a feasible transfer set is identified, a gradient-based optimisation is finally used

to construct a continuous transfer arc. The problem is formulated as a matching of a

forward and a backward propagated arc with the initial and final phases generated by

the guess generation. The manoeuvre is indirectly defined as the velocity offset at the

end of both transfer arcs. The cost function is the magnitude of the first manoeuvre

to set the spacecraft onto the transfer trajectory.

The optimisation problem can be stated as follows:

1. Determine an initial and final orbit.

2. Find a location on the orbits such that a departing stable manifold branch con-

nects reaches the final orbit. This is achieved with the method proposed in Sec.

6.1.3.

3. Vary the initial and final phases, and the transfer time such that an optimal ∆v

is found, and a continuous transfer arc is created.

The optimisation problem is stated as

minimise
αi,βi,αf ,βf ,τ,l

J(αi, βi, αf , βf , τ, l), (6.4)

where αi and βi are the phase angles on the initial orbit. The phase angles of the target

orbit are αf and βf . The value τ defines the transfer time along hyperbolic invariant
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Figure 6.9: The transfer trajectories in the synodic reference frame connect the final

(grey) and initial (black) orbit for a single-manoeuvre transfer utilising the

coasting phase (red) along the stable manifold to the final orbit. (a) Con-

verged and (b) non-converged solution.
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Figure 6.10: The transfer trajectories in the synodic reference frame connect the final

(grey) and initial (black) orbit for a single-manoeuvre transfer utilising both,

the coasting phase (red) along the stable and unstable manifold to the final

orbit. (a) The initial non-converged and (b) the converged solution.

manifold branch. The value l ∈ {−1, 1} is a switch function to specify the hyperbolic

invariant manifold branch. The domain of the optimisation variables is defined in Tab.

6.1.

The cost function considers the ∆v.

The outcome of the optimisation are locally optimal transfers, with associated arrival

and departure conditions, the transfer time, and ∆v expenses. Fig. 6.10a shows the

unmatched trajectory, whereas the Fig. 6.10b highlights the converged solution.
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The main purpose of the proposed method is to find the appropriate phase conditions

for the departure and arrival location. The minimal cost transfer is only found, if the

departure as well as the arrival phasing conditions are free parameters.

The method delivers orbital transfers within the region of the libration points with-

out accepting flybys at the secondary body (Moon). Other scenarios are possible but

not studied in this work, possible applications range from heteroclinic and homoclinic

connections to the design of transfer arcs from the primary and secondary body to the

orbit that is investigated.

6.1.5 Employing the full planetary dynamics

The study of transfers in the circular restricted three-body problem is the first step

towards finding transfers in a full dynamical model. The orbit-to-orbit transfers are

based on the dynamics of the circular restricted three-body problem. This is due to the

fact that the time-independent property allows for a generalisation of the trajectories

and invariant manifolds. In a final step the trajectories are transferred into an inertial

reference frame and used in a patching process to find a continuous trajectory when

the full dynamics is acting.

The computation scheme implemented in the previous section is employed to translate

the transfer trajectories into a more precise model. The positions and velocities are

mapped to inertial coordinates, taking the circular restricted three-body problem as

initial guess, the aim is to find the a corresponding natural orbit in the full ephemeris

model that has similar properties. For the numerical construction of transfer scenarios,

0.05

y [LU]

0
-0.051.2

1.15

0.1

0.05

0

-0.05

-0.1

1.1

x [LU]

z 
[L

U
]

Figure 6.11: Overlay of the transfer trajectory calculated in the simplified dynamical

model (black) and the accurate solution (red). Transfer trajectory from

Lissajous to a periodic halo orbit as seen from Earth in the rotating frame

(∆v = 127.18 m
s ).
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employing full planetary dynamics, a patching is envisioned. The transition from the

simplified dynamical model to the full planetary dynamics follows a two step approach.

A first guess generation is obtained by a patching process aiming to find a very close

solution the full transfer trajectory. Merely patching constraints are employed at this

stage and no other constraints.

The following steps are required:

• The resulting trajectory is split into subintervals, and the time and states are

defined at each point.

• Each state is then propagated for a time interval ti+1−ti and when each trajectory

segment matches with the consecutive one, a solution is found.

The matching conditions will not be fulfilled for the initial guess and in order to have

trajectories without discontinuities a Newton procedure is employed to reduce the error.

In the case of no additional constraints a minimum norm solution is found. Fig. 6.11

shows the trajectory in both dynamical systems.
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6.2 Results

The method previously introduced is applied to a wide range of arrival and departure

orbit combinations out of the family of orbits around the Earth-Moon far-side libration

point L2 and optimised transfers are presented. The dependency of the solution on the

arrival and departure conditions and transfer times is studied.

The transfers converged during the optimisation, although they may not represent the

global minimum in terms of the total ∆v expenses. A transfer trajectory with lower

costs may be achieved by allowing Moon flybys or propagating the manifolds for a

longer duration.

6.2.1 One-manoeuvre transfers among quasi-periodic orbits

Trajectories will now be constructed to transfer spacecraft from halo orbits to their

quasi-periodic extensions with larger out-of-plane and in-plane amplitudes. The exten-

sion orbits have the same Jacobian constant as the periodic halo orbit. The z amplitude

of the initial orbits varies from 2.65 · 104 km to 8.32 · 104 km. Three transfer scenarios

are discussed. For all three cases the transfer trajectories are plotted together with the

arrival and departure orbits in Fig. 6.12. The optimised transfer trajectories are shown

in the Earth-Moon rotating frame including the paths of the spacecraft before and

after the transfer. The transfer arcs from the manoeuvre execution onwards until the

asymptotic arrival at the final orbit are highlighted, the final trajectory and the initial
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Figure 6.12: Transfers from an initial orbit (black) to an arrival orbit (grey). Transfer

trajectories are shown in red. Parameters of the arrival and departure orbit

and properties of the transfer trajectories are found in the text. The costs

range from (a) ∆v = 38.93 m
s and (b) ∆v = 77.08 m

s to (c) ∆v = 107.86 m
s .
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one. The transfer duration for each case in Fig. 6.12 is (a) tf = 21.86, (b) tf = 24.06,

and (c) tf = 23.52 days. The costs range from ∆v = 38.93 m
s , and ∆v = 77.08 m

s to

∆v = 107.86 m
s .

Fig. 6.13 shows the ∆v requirement to increase the in-plane and out-of-plane amplitudes

from a halo orbit to their quasi-periodic orbits with the same Jacobian constant C. A

quasi-periodic orbit with C = 3.057 and ω = (1.57, 1.47) is chosen and the transfers

are evaluated to orbits throughout the rest of the orbit family. Transfers do not exist

for all cases, for some cases the stable invariant manifold branches do not intersect

with the initial orbit and no solution can be determined. In those cases two-impulse

transfers are required. With the selection of a set of quasi-periodic orbits, the design

space can be accessed and transfers evaluated.
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Figure 6.13: Costs of amplitude changes among quasi-periodic orbits. Summary of the

∆v requirement to change (a) Ax, (b) Ay and (c) Az.

98



Chapter 6 Transfer options between quasi-periodic orbits

6.3 Scenarios

The design of future European contributions to the exploration space transportation

infrastructure will benefit from the flexible design of reference missions involving weakly

bound destination orbits like distant periodic and libration point orbits. The flexibility

of quasi-periodic orbits its amplitude as well as the transfer options open the possibility

to combine the mission elements in order to adjust the system to the capabilities of

the spacecraft and the objectives of the mission. It is straightforward to apply the

knowledge gained in the previous sections to scenarios with the aim to obtain parametric

analyses, figures of merit and establish realistic ∆v budgets. The notation of each orbit

in the scenarios is gi(α, β), where the index i indicates different orbital parameters.

The elements of the journey and operations in the lunar vicinity are outlined here:

• Direct and linked transfer trajectories are addressed in the first scenario in Sec.

6.3.1. The journey starts with a transfer to an orbit around the libration point

L2, as outlined in Sec. 6.1.1 this can be accomplished easily by direct transfers

or via lunar flybys. The mission objective is to enter a libration point orbit and

loop around the libration point.

• In Sec. 6.3.2, the mission objective is to rendezvous with an uncrewed vehicle that

has been placed in an halo orbit.

• The mission objective is to operate an uncrewed vehicle on the surface of the back

side of the Moon, see Sec. 6.3.3.

• In Sec. 6.3.4, the mission objective is to create an outpost in a L2 orbit serving

as transportation node to support missions to and from lunar orbit and e.g. to

the lunar surface.

6.3.1 Linked transfer combinations from Earth

The first scenario aims to find transfer combinations that offer cheaper access to certain

orbits than directly from Low Earth Orbit. The conceptual idea of manoeuvring from

one orbit to the other with a one-manoeuvre strategy is explained previously, see Sec. 6.

Apart from the obvious in finding an orbital transfer consisting of a Low Earth Orbit

to Earth-Moon L2 transfer plus intermediate orbit to orbit transfers with a cheaper

∆v than a direct Earth to final orbit transfer, the flexibility in splitting a transfer in

several arcs offer potentialities and possibly increases e.g. launch windows and ground

station visibilities.
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Figure 6.14: Visualisation of three different transfer scenarios. The orbit gLEO represents

the origin being a Low Earth Orbit. Options are a direct, 1-stage, and 2-

stage transfer.

The schematic picture in Fig. 6.14 shows three solutions to arrive at a target orbit

gLEO. The first one is a direct insertion with ∆v1, the second solution results in a

∆v = ∆v2 + ∆v3 with one intermediate stage at Earth-Moon L2 orbits g1. The third

solutions utilises two intermediate stages at g2 and g3 with a ∆v = ∆v4 + ∆v5 + ∆v6.

Note, that the direct transfer option excludes flybys and do not guarantee optimal and

cost efficient transfers.

The first step is the evaluation of the transfer costs for each orbit from Low Earth Orbit.

Due to the exponential rising combinations and its associated high computational effort,

a pre-selection of orbits is favoured. Here, a small set of 100 potential orbits is selected,

which includes quasi-periodic Lissajous orbits. The resulting ∆v requirement is as seen

in Fig. 6.15. The rotation number of the selected orbits is plotted on the abscissa as

an orbit identifier.

Fig. 6.16 enables one to choose transfers leading to an overall transfer scenario from

an origin to a target orbit. The two start and end point of the solid line segments
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Figure 6.15: Costs associated with a direct transfers from LEO to the Earth-Moon libra-

tion point (L2) orbits and its dependency on the orbital parameter ρ.
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Figure 6.16: Orbit to orbit transfers (the hashtag is the transfer identifier) between se-

lected orbits, orbit identifier is ρ. The transfers are sorted in ascending order

according to the ∆v demand. The number next to the diamonds is the ∆v

in m
s .

represent the orbital properties of the initial and final quasi-periodic orbit. Each line

segment possesses a label indicating the ∆v of the transfer in m
s . The diamonds show

the original orbit and the location where the manoeuvre is applied. The dot connected

with a line segment indicates the target orbit, which is reached asymptotically. The

length of the line segment does not represent the length of the transfer, but the change

of the orbital parameters. Fig. 6.17 shows the ∆v demand for transfer combinations

with one orbit-to-orbit transfer within the overall sequence.

For this particular selection of 100 orbits, the results yields no one-stage transfer com-

bination is cheaper than launching from Low Earth Orbit directly into the final orbit.

In some cases a transfer costs less ∆v, if an intermediate orbit is targeted. The same

parameter study can be conducted to find transfers between different types of orbit,

e.g. a Lissajous and a Northern halo orbit.
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Figure 6.17: 1-stage combinations for a transfer from Low Earth orbit to selected Earth-

Moon L2 Lissajous orbits.

6.3.2 Spacecraft deployment and separation into different orbits

The distribution of spacecraft from a halo orbit onto a quasi-periodic is studied. When

focusing on launch scenarios, an efficient way has to be found to separate the satellites

either during transfer or once they are inserted into orbit around the Lagrangian point.

A single launch with a later deployment enables an increased operational flexibility

in terms of launch windows and phasing requirements. Apart from such a separation

scenario, transfers to nearby orbits become relevant for formation deployment. Those

transfers are designed in the same way as in this scenario.

The scenario assumes two spacecraft launched and injected into a halo orbit g1 with

an orbital period of T = 3.36TU (14.59 d). The objective is to distribute them on a

quasi-periodic orbit g2 in such a way that the phase difference in the ω2 direction is

210 deg. This scenario is visualised in Fig. 6.18.

In order to find the optimal time for the two transfer manoeuvres, the optimal final

t

orb

g1(α0, β0) g2(α1, β1)

g2(α2, β2)

∆v1

∆v2

Figure 6.18: Visualisation of the deployment of spacecraft, g1 is the common orbit be-

fore separation and the final orbits and phasing is given by g2(α1, β1) and

g2(α2, β2).
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Figure 6.19: Results of a parametric study of transfer options among quasi-periodic or-

bits, here the orbital parameters are: initial orbit ω = (1.7844, 1.7058), final

orbit ω = (1.7823, 1.7000). (a) Initial phase pairs and (b) final phases.

phases on the quasi-periodic orbit after the transfer are evaluated. For the scenario a

feasible transfer solution is highlighted in Fig. 6.19.

Two transfer options are chosen from the feasible transfers in Fig. 6.19. The manoeuvre

phase angles are (3.538 rad, 4.865 rad) and (2.845 rad, 4.623 rad). The time when the

manoeuvres are executed is, for both solutions, ti = 2.799TU . Both spacecraft are

transferred at the same time, but the time they reach the final orbit is t1f = 2.70 for

the first spacecraft and t2f = 1.73 for the second one. The resulting phase difference of

the spacecraft on its new orbit is ∆α = 0.019 rad and ∆β = 3.665 rad. Fig. 6.20 shows

the trajectory of the spacecraft. The two transfer arcs to the quasi-periodic orbits and
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Figure 6.20: Transfer trajectory, initial and final orbit for the separation scenario.
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the final trajectories are highlighted.

The deployment phase lasts several days. The two satellites are manoeuvred to reach

their final positions on the same orbit but with a phase difference.

6.3.3 Adjusting orbital amplitudes of a Lissajous orbit

The separation sequence left us with two spacecraft moving on the same orbit with a

phase difference of (3.538 rad, 4.865 rad). Since specific mission performance specifica-

tions require a Lissajous orbit for the first spacecraft. The seconds spacecraft is parked

in its original orbit. Investigations are performed into the relationship between orbital

amplitudes and the required ∆v. The study is conducted for various amplitude values.

Mission specifications demand precise geometric constraints on the operational orbit.

Here, orbital transfers are performed to adjust orbital amplitudes. Starting from a

Lissajous orbit with Ay = Az = 5000 km transfers leaving towards periodic halo and

rectilinear orbits are studied. Furthermore, arrivals at the Lissajous orbit are investi-

gated to complement the accessibility study. This scenario is visualised in Fig. 6.21.

The trajectory of the Lissajous orbit is presented in Fig. 6.22.

Fig. 6.23 and Fig. 6.24 show the transfer costs for a variety of quasi-periodic orbits.

The costs depend on the amplitudes, here the dependency is shown for Ax and Ay.
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Figure 6.21: Visualisation of different orbit-to-orbit transfers aiming to adjust orbital

amplitudes of a Lissajous orbit. The initial orbit is notated as g1, whereas

g2 to g4 possess the targeted orbital amplitudes.
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Figure 6.22: Original L2 Lissajous orbit as basis for the accessibility study with C =

3.1248 and ω = (1.7459, 1.6208).
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Figure 6.23: Transfer costs associated to adjusting orbital amplitudes for L2 Northern

halo orbits. (a) Dependency on Ay and (b) on Az.
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Figure 6.24: Transfer costs associated to adjusting orbital amplitudes for L2 Lissajous

orbits. (a) Dependency on Ay and (b) on Az.

6.3.4 Accessibility study for a Lissajous orbit with Ay = Az = 5000 km

In the following transfers are studied originating at the Lissajous orbit with the axis

oriented amplitudes Ay = Az = 5000 km. This orbit might be a suitable choice to do

certain in-orbit measurements, but a transfer to another orbit might be required to e.g.

include polar regions in successive observations. This emphasises the usefulness and

applicability of orbit-to-orbit transfers. The trajectory of the Lissajous orbit is the one

already presented in Fig. 6.22. The scenario is visualised in Fig. 6.25.

The first results presented here are transfers leaving the Lissajous orbit towards a

range of periodic halo orbits. The range is defined by the orbital amplitude Az =

1100−1600 km. Notable is, at relatively small amplitude Lissajous orbits no halo orbit

exists with the same orbital energy, which has the consequence of large transfer costs

as feasible transfers are more likely to exist between similar energies.
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Figure 6.25: Visualisation of orbit-to-orbit transfers. g1 represents the initial orbit and

g2 to g4 accessible target orbits.
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Figure 6.26: Transfer options from the initial orbit utilising the 1-manoeuvre method

from a Lissajous orbit with Ay = Az = 5000 km to L2 quasi-periodic North-

ern halo orbits with 2.4 · 104 km > Ax > 0.6 · 104 km.
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Figure 6.27: Transfer options from the initial orbit utilising the 1-manoeuvre method

from a Lissajous orbit with Ay = Az = 5000 km to quasi-periodic L2 Lis-

sajous orbits with 2.4 · 104 km > Ax > 0.6 · 104 km.

Fig. 6.26 shows the resulting ∆v for transfers from the Lissajous orbit to a range of

small vertical Lyapunov orbits (rectilinear motion) with 2.4·104 km > Ax > 0.6·104 km

to the Lissajous orbit. The size of the dots in the figure indicates the magnitude of

the maneouvre relative to the other solutions. Fig. 6.27 highlights transfers from the

same Lissajous orbit to quasi-periodic Lissajous ones. Representative solutions are

transitioned to an accurate ephemeris model, the transfer costs are given for both

dynamical models.
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6.3.5 In-orbit rendezvous - a phasing problem

In a previous section optimal manoeuvres from one orbit to another were investigated.

Apart from a propellant-optimal solution other transfer arcs exist that might require

a higher transfer ∆v, but increase flexibility in scheduling manoeuvres. It might be

required to phase the spacecraft for a following rendezvous manoeuvre. It is important

to reconfigure spacecraft in such a way that a on-orbit rendezvous is achieved for docking

activities. In the past, phasing manoeuvres are used to fulfil mission requirements, e.g

for the implementation of eclipse avoidance strategies as quasi-periodic Lissajous suffer

of longer eclipse periods compared to halo orbits.

In contrast to the amplitude changes of a quasi-periodic orbit, phase changes maintain

the geometric properties of a quasi-periodic orbit. The manoeuvre only affects the

position of an orbiting spacecraft along the trajectory. This implies that the orbit

before and after a successful transfer is described by the same parameter function u,

see Chap. 4.

A scenario with two spacecraft travelling, only with a phase difference, on the same

quasi-periodic orbit is studied, see Fig. 6.28. The initial orbits are g1 and g2. A pair of

spacecraft is inserted onto the same quasi-periodic orbit with initial phases of α1 = 1.63

and β1 = 0.40 and α2 = 3.10 and β2 = 0.78. The objective is that both spacecraft meet

at a time t at a common location. To provide a parametric analysis on phase changes

along a quasi-periodic trajectory, the manifold connections are evaluated, see Fig. 6.29.

Both spacecraft follow their nominal path until t = 1.45 days with an initial separation

of 2.2 · 104 km. One spacecraft conducts a manoeuvre at t = 1.45 and the other one

continues on its nominal path. Both spacecraft rendezvous 13.55 days later and follow

the quasi-periodic orbit. The ∆v requirement for the rendezvous is 83.38 m
s . Fig. 6.30

shows the trajectory of both spacecraft.

t

orb

g1(α, β)

g2(α, β)

g3(α, β)∆v1

∆v2

Figure 6.28: Visualisation of a rendezvous scenario. The initial orbits are g1 and g2,

whereas the rendezvous location lies on orbit g3.
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Figure 6.29: Results of a parametric study of transfer options among quasi-periodic orbit,

here the orbital parameters are (ω1 = 2.01 and ω2 = 1.40). (a) Initial phase

pairs and (b) final phases.
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Figure 6.30: Transfer trajectory, initial and final orbit for the rendezvous scenario.
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6.4 Discussion and conclusions

This chapter outlined a method for the construction of orbit-to-orbit spacecraft trans-

fers by utilising quasi-periodic orbits and their invariant manifolds. The orbit-to-orbit

transfers were introduced as a simple strategy to change orbital parameters of opera-

tional orbits for spacecraft missions. The optimisation approach combined a differential

evolution algorithm with a gradient-based method. The formulation of the dynamics

was used in the form of the circular restricted three-body problem, but results are also

presented for the full ephemeris model. Transfers were optimised for several scenarios

and transfer costs are investigated. The method proposed in this thesis enables to find

energy efficient transfers between quasi-periodic orbits. Compared to work in other

publications (Gómez et al. [2004], Davis [2009], Canalias Vila [2007], and Marsden and

Ross [2005]) no focus is set on a certain energy level. This method is applicable to

find transfers between quasi-periodic solutions, figure of merits can be derived showing

the feasibility to transfer spacecraft between a set of orbits. The applicability of the

proposed method has been shown by applying it to spacecraft rendezvous and separa-

tion scenarios. This method offered lower ∆v expenses for the transfers compared to

two-impulse transfer arcs. The total cost of the optimal transfer using invariant mani-

folds was less expensive than the cost of the transfer that did not employ manifolds. It

may be possible to lower the transfer cost by allowing for longer manifold propagation.

Given longer times of flight, the manifolds may come into better alignment.
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CHAPTER 7

Conclusions and future directions

This final chapter concludes the dissertation, presents a summary of this thesis work,

and provides an outlook on future work.

7.1 Conclusions

The central research question is how quasi-periodic orbits can support future space

missions. Starting from a description of quasi-periodic orbits, this thesis work iden-

tified suitable operational orbits, transfer opportunities among those orbits that are

potentially useful for next generation of space missions. In this thesis, techniques for

the design of quasi-periodic orbits are proposed relying on the simplifications of the

circular restricted three-body problem. When appropriate, a more accurate dynamical

model was employed to prove new techniques and their applicability. This disserta-

tion lays the foundation to study and utilise quasi-periodic trajectories for future space

projects. The following research questions were derived from the central one:

1. How can quasi-periodic orbits be calculated and their parameters be evaluated?

2. How to apply station-keeping to quasi-periodic orbits?

3. What is an appropriate method to design orbital transfers?

To address the first research question, a computation method is proposed, which is suit-

able for the calculation of quasi-periodic orbits, together with their invariant manifold

structure and linear stability characteristics. A better understanding of quasi-periodic

motion is given by a parametric function u and the introduction of amplitudes Ax, Ay,

Az, frequencies ω1 and ω2, and corresponding phases α and β.

The station-keeping has been investigated for different scenarios in order to address

the second research question. The proposed station-keeping algorithm is based on
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an orbital lifetime analysis combined a maximisation of the orbital lifetime, which is

achieved by a differential evolution algorithm. The orbital lifetime optimisation exploits

the natural interaction between the centre and hyperbolic invariant manifolds. It is

demonstrated that the combination of a life-time analysis and evolutionary optimisation

is a robust method to design station-keeping manoeuvres. It is fast in implementation

and flexible in the application to a variety of orbits. For orbits with small amplitudes,

the results of the proposed method are comparable to the modal control that can be

derived from Floquet modes. When non-linearities are more consistent, with growing

amplitudes, the optimisation approach performs better than Floquet. A detailed study

will be required to account for navigation and manoeuvring uncertainties. This station-

keeping approach is transferable into a non-autonomous high-fidelity dynamical model.

Furthermore, the method can be used to generate families of orbits by introducing a

simple family continuation scheme.

To focus on the third research question, a method is proposed to construct transfers be-

tween quasi-periodic orbits utilising a parametric representation of the orbit and their

manifolds. The dynamic behaviour of the libration point regions allows one to create

transfers performed by an individual manoeuvre. The transfer trajectories are charac-

terised by the transfer times, initial and final phase shifts and the ∆v requirement. The

proposed methods utilises a differential evolution method to identify feasible parameter

sets, in particular identifying the orbital properties and the initial phases of the space-

craft. A gradient-based optimisation method in finally used to create the continuous

transfer arc. This refinement of the trajectory has the objective of computing an orbit

continuous both in position and velocity. This method is applicable to find transfers

between quasi-periodic solutions, figure of merits can be derived showing the feasibility

to transfer spacecraft between a set of orbits.

This hybrid optimisation approach combining a differential evolution algorithm with a

gradient-based method provides good results for the highly complex problem of finding

the appropriate parameters of such transfers. These transfers are beneficial to increase

the in-plane and out-of-plane amplitudes of an orbit, the associated cost range from

a few meter per seconds to 150 m
s . The cost of the transfers are almost proportional

to the amplitude increase in the z direction. The capability to manoeuvre among

quasi-periodic orbits was developed and tested on several scenarios.

The work in this thesis shows what can be achieved with quasi-periodic orbits. The

parametric representation of a quasi-periodic orbit is valuable to characterise the orbits

and incoorporate this description in further studies, e.g. transfers, spacecraft formation

and mission concepts studies in general.
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7.2 Future directions

The main issue to investigate in further studies are ascent and decent trajectories and

how these trajectories connect to quasi-periodic orbits. The method for the transfer

design can be extended to find heteroclinic and homoclinic connections or transfer

arcs to the primary and secondary body. There are many areas that are of value to

be investigated regarding the control of long lifetime science orbits. The most logical

extension of the science orbits designed in this thesis is to incorporate precise navigation

and detailed models of all of the forces acting on the system. In this work the focus

is set to a Earth Moon vicinity, however, the same methods are applicable to different

central bodies. In this case, parametric studies of existing orbits and transfers can be

valuable.
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