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Abstract

The present investigation has been devoted to the modeling of the ice-structure inter-

actions by using the state-of-the-art technique, peridynamics. Peridynamics is a new

continuum mechanics formulation originally developed at Sandia National Laborato-

ries, USA and very suitable for failure analysis of structures due to its mathematical

structure. Structures can vary from thin-walled structures such as ship hulls or airplane

fuselage to bridges and wind-turbines. Furthermore by using peridynamics structural

failure can be observed as compressive, tensile, bending or buckling failure and ma-

terials can be classified as elastic, viscoelastic or plastic. Peridynamic equation is in

integro-differential equation form rather than a partial differential equation as in the

classical continuum mechanics which allows the continuous usage of these equations

without specially treating the discontinuities. Although relatively new, it is success-

fully verified and utilized for modelling both metallic and composite structures. Hence,

it is an excellent candidate to investigate complex problems such as the ice-structure

interaction modelling. Furthermore, in a general sense, it may bring a new dimension

to the analysis of marine structures especially in the area of arctic engineering. Fur-

thermore, peridynamic solver was developed including 2D and 3D geometry definitions

together with peridynamic mesh. Several different solvers were implemented, such as

explicit solver, adaptive dynamic relaxation and direct solver. In order to reduce the

computational time, several family search algorithms (such as brute-force search, region

partitioning algorithm, K-d tree and R-tree algorithms) were tested and implemented

together with parallelization of most time consuming parts of code. Finally, several

numerical studies were considered in order to demonstrate ice-structure interaction via

peridynamic analysis. Where those numerical studies range from 2D and 3D Bond



Based peridynamic models used for analysis of ice splitting loads for in-plane failure

and impact analysis between cylindrical (offshore structures) and conical (ship’s bow)

rigid bodies and ice sheet. Furthermore advanced peridynamic model for Mindlin plate

resting on Winkler foundation was developed in order to test for out-of-plane failure of

an ice sheet.
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Chapter 1

Introduction

Due to predicted oil and gas reserves Arctic is considered to become as important

as Middle East in the near future. Around 30% of the world’s undiscovered gas and

13% of the worlds undiscovered oil are expected to be stored in the North Arctic Circle,

Bird et al. (2008). Furthermore, as the ice-covered region size is decreasing as a result

of the climate change, sailing routes from Western Europe via Arctic to East Asia can

be a reality and reduce the distance of traditional routes by one-third. If this happens,

the Arctic can be one of the world’s busiest sailing areas.

Despite of its advantages, utilization of the Arctic region for sailing brings new

challenges due to its harsh environment. Therefore, ship structures must be designed

to withstand ice loads in case of a collision between a ship and ice takes place. Such

incidents can cause significant damage on the structure which can yield flooding and

sinking of the ship. After the Titanic disaster, collisions between ships and medium or

big size icebergs have been rare due to high-tech radar and satellite systems. However,

it is still difficult to detect small size icebergs and collisions with such small size icebergs

can still cause severe damage. From mid 1800 till late 2000 there have been around

23 ships that sunk as a result of collision with an iceberg, with the last one being MS

Explorer in 2007. On the other hand there have been numerous collisions with smaller

icebergs that usually result in less damage, Hill (2009).

Although experimental studies can give invaluable information about ship-ice inter-

actions, full scale tests are very costly to perform. Therefore, computer simulations can
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be a good alternative. Ice-structure interaction modelling is a very challenging process.

First of all, ice material response depends on many different factors including applied-

stress, strain-rate, temperature, grain-size, salinity, porosity and confining pressure.

Furthermore, macro-scale modeling may not be sufficient to capture the full physical

behaviour because the micro-scale effects may have a significant effect on macroscopic

material behaviour. Hence, it is necessary to utilize a multi-scale methodology.

In order to capture the macro-scale behaviour of ice, well-known Finite Element

Method (FEM) has been used in various previous studies. Within FEM framework,

various techniques can be used to model crack propagation such as cohesive zone models

(CZM) and extended finite element method (XFEM). However, a universally accepted

CZM failure model is not currently available and the crack propagation may have mesh

dependency. Although, the mesh dependency problem can be overcome by XFEM,

enrichment process may lead to an algebraic system with billions of unknowns which

is difficult to solve numerically. This stems from the primary problem that is related

to the need of embedding an initial crack a priory into the FE mesh to trigger crack

propagation. In order to insert cracks at appropriate locations raises the need for an

expert user. This can be solved by determining critical region(s) which are more likely

to fail on which than XFEM nodal enrichment needs to be applied. This means that

without an expert user, enriching nodes of the entire domain of a FE mesh becomes a

standard practice, which in turn results in more run-time and reduced computational

efficiency, Elruby et al. (2018). Furthermore, FEM is based on classical continuum

mechanics which does not have a length scale parameter and is incapable of capturing

phenomenon at the micro-scale. Hence, other techniques should be utilized at the

micro-scale and linked to FEM simulation. However, it is not straightforward to obtain

a smooth transition between different approaches at different scales.

By taking into account all these challenging issues, a state-of-the-art technique,

peridynamics will be utilized for ice-structure interaction modelling. Peridynamics is a

non-local continuum mechanics formulation which is very suitable for failure analysis

of materials due its mathematical structure. Cracks can occur naturally in the formu-

lation and there is no need to impose an external crack growth law, such as McClintock
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equation where an upper limit of crack growth is based on the cyclic crack tip open-

ing displacement or Paris-Erdogan Equation which models the relationship between

the velocity of crack propagation and an abstract quantity called the range of stress

intensity, which describes the magnitude of the stress at the crack tip. Furthermore,

due to its non-local character, it can capture the phenomenon at multiple scales. Since

same type of equations will be used at different scales, a smooth transition is expected.

This means that standard peridynamic multiscale method for analysing defects has the

following procedure where each level is a separate model with its own horizon. Each

level interacts only with levels immediately above and below it. Smallest level/horizon

is defined at the crack tip and other levels occupy bigger and bigger region with larger

horizons. Equation of motion is applied only within each level. Higher levels provide

boundary conditions on lower levels. Lower levels provide coarsened material properties

(including damage) to higher levels. This means that in principle, a large number of

levels can be used, all coupled in the same way.

The main aim of this proposed PhD study is to bring a new dimension contrary to

the existing analytical and numerical modelling tools used for ice-structure interaction

modelling. Specific objectives of the proposed study and the work program can be

listed as:

• Development of a basic peridynamic code suitable for the problem of interest

• Perform a validation study against benchmark problems

• Implement contact analysis capability within the peridynamic code to represent

ice-structure interaction.

• Perform a validation study for the contact analysis

• Compare the results against available data found in the literature including ex-

perimental, analytical and numerical studies

• Investigate ways to reduce the computational time by using shared memory mul-

tiprocessing
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Chapter 2 starts with short overview of crystallographic structure of hexagonal Ih

ice which is also called ordinary ice as it is basis for all ice on earth, followed by brief

discussion on formation of land based glacial ice and sea ice. Furthermore, formation

of first-year and multi-year ice is also discussed. This is followed by description of

fundamental mechanical properties and behaviour of both columnar and granular ice.

Subjects discussed are the elastic properties of ice, uniaxial strength, shear strength

and fracture toughness.

Chapter 3 contains a short review of peridynamic theory. In this review strain

energy formulation is explained which leads to development of peridynamic equation of

motion. This is followed by detailed explanation of two basic peridynamic formulations

- bond based and ordinary state based. At the end damage is introduced into the

perdiynamic framework.

Chapter 4 gives an in depth review of VOPDSolver that was developed as a part of

this PhD study. VOPDSolver is an object oriented peridynamic solver that has abil-

ity to define complex geometrical models, apply different loading conditions, perform

spatial searches and conduct impact analysis. First geometry and mesh definitions are

presented. In geometry section overview of classes for 2D and 3D objects are presented.

Mesh Definition section includes explanation of algorithms necessary for mesh defini-

tion, such as ray casting method for 2D and point to plane distance algorithm for 3D

mesh. Furthermore, detailed description of family search algorithms is addressed, such

as brute-force search, region partitioning algorithms and variety of tree data structures.

Different solver methods are explained - dynamic solver and static/quasi-static solver,

together with their parallel execution using openMP. At the end impact algorithms are

introduced.

Chapter 5 contains examples that show the utilization of VOPDSolver in order to

study ice-structure interactions. First study is by Vazic et al. (2017) where an in-depth

analysis of interaction between macrocrack and parallel microcracks is presented. Sec-

ond study is on Mindlin plate resting on Winkler foundation (Vazic et al. (2019c))

which shows applicability of Winkler foundation when modeling fluid-structure inter-

actions applied to a peridynamic formulation of a Mindlin plate. Next study is on
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in-plane and out-of-plane failure of an ice floe, where it is shown that peridynamics

can be used to obtain good agreement with experiments for in-plane failure splitting

load and prove Kerr’s relation (Kerr (1976)) for out-of-plane failure of semi-infinite

plate. Furthermore, study on ice floe fracture patterns for 2D and 3D models was done

(Vazic et al. (2019b)). Next a study on interaction between a lighthouse and an ice

floe was conducted where it was shown that peridynamics can give a good prediction of

ice loads on offshore structures. Finally, a study on family member search algorithms

(Vazic et al. (2019a) was done in order to find most suitable algorithm which will have

the biggest influence on decreasing computational time needed for family search.
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Ice Material Basics

2.1 Introduction

Term that describes parts of Earth’s surface where water is frozen is called cryosphere.

Ice has an important role in the global climate, especially regarding to water cycle. Ice

can be found in the form of ice sheet, ice caps, ice fields or glaciers on land, ice sheets on

lakes and as sea ice in oceans. There are 18 known solid crystalline forms of ice at or-

dinary pressures. The stable phase is called ice I, with two closely related low-pressure

variants: hexagonal ice Ih and cubic ice Ic. Ice Ih is termed ordinary ice and it’s the

basis for all natural snow and ice on Earth. Ih ice has six-fold symmetry reflected in

the shape of snow-flakes. On the other hand ice Ic is a metastable ice crystal that

is made by depositing water vapor at ambient pressure with temperatures lower than

130◦C. Throughout this chapter we are only going to deal with hexagonal Ih ice as it

is the basis for naturally-occurring morphological forms - snow, firn (multi-year snow),

freshwater ice and sea ice.

When dealing with marine environment, only two different ice types can be found,

that is, sea ice and land based glacier ice in the form of icebergs (Sand (2008)). Sea

ice is formed by cooling and freezing of sea water, whereas icebergs are fragments of

land based glacial ice formed by large accumulation of snow which, through years of

compression and freezing, turns into ice. In-depth discussion on growth, structure, and

properties of sea ice can be found in Weeks and Ackley (1986) and Schulson and Duval
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(2009). Thermal and mechanical history will determine micro-structure of ice that can

be found in the marine environment. This will then have a strong influence on physical

and mechanical properties of ice.

2.2 Crystallographic Structure of Hexagonal Ih Ice

One of the interesting characteristics of Ih ice is its density. Ordinary Ih ice is less

dense than its melt. This means that ice floats on the surface of lakes and seas. If

ice was more dense than its melt it would sank like as most solids do, this would then

create a situation where natural water bodies would completely freeze up to their sea

beds. This situation wouldn’t be conducive to the development of marine life in either

temperate or polar regions.

Molecular structure of ice is based on tetrahedral geometry of water molecule which

leads to a highly ordered but loose structure, where each oxygen atom is surrounded by

four hydrogen atoms. This tetrahedral coordination of the oxygen atoms will produce

a crystal structure with hexagonal symmetry, a fact that will affect many of the large

scale characteristics of ice (Weeks and Ackley (1986)). Because of a loose structure of

ice, its density is less than in liquid state, where the ordered structure is partially broken

down and the distance between water molecules is smaller on average. Hexagonal ice

crystals form hexagonal plates and columns where the top and bottom faces are called

basal planes see (Figure 2.1). The normal to the basal plane is referred to as the c-axis.

Looking at the hexagonal crystal structure of Ih ice one can see that the basic ice

crystal growth form will be the hexagonal prism. Perfectly formed crystal of ice in this

form would be difficult to deform as every possible bond in the crystal lattice have been

made. In practice, however, the crystal lattice is formed with numerous faults, such as,

point defect or line defects. Point defects are atomic-sized features that form within

the ice lattice as:

Vacancies - empty molecular site

Interstitials - formed when a molecule becomes dislocated within the open space

of the Ih crystal lattice
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Figure 2.1: Left: Crystal structure of hexagonal crystalline Ih ice - red spheres
represent oxygen atoms and black bars represent hydrogen atoms. Right: A schematic

image of hexagonal ice defining main crystal faces and axis.

Solutes - impurities incorporated within the solid matrix, such as, brine pockets

within sea ice

Ionic and Bjerrum Defects - violations of the Bernal-Fowler ice rules results

in protonic defects

Line defects are dislocations within the crystal lattice which are created during the

thermal-mechanical processes of ice crystal growth. These line defects are fundamental

to plasticity and strength of ice. In addition to point and line defects, ice can have

planar and volumetric defects. Planar defects relevant to fracture and creep are grain

boundaries and free surfaces. Most common volumetric defects are pores, which are

formed as the result of rejecting oxygen and nitrogen from water (Schulson and Duval

(2009)).

2.3 Land Based Glacial Ice

Glacier is a persistent body of dense ice that is made up from compressed fallen

snow. Glaciers form where the accumulation of snow and ice exceeds ablation (process
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Figure 2.2: The Margerie Glacier at Glacier Bay National Park in Alaska

*(https://www.nps.gov/glba/learn/kidsyouth/
glaciers-of-glacier-bay-national-park.htm)

opposite to accumulation - melting and sublimation) over many years, often centuries.

What makes glaciers unique is their ability to flow due to stresses induced by their

weight.

Main process behind densification of seasonal snow and its transformation into

glaciers is sintering. Sintering by definition is a process of compacting and forming a

solid mass of material either by heat or pressure without changing its physical phase.

In case of glaciers sintering process is not only driven by excess of surface free energies

in the system (heat) but also through external pressure. There are three distinct

stages of densification of snow at polar glaciers. Those three stages are divided by

two critical densities (Maeno and Ebinuma (1983)). At the beginning (first stage)

snow will mainly densify through mechanical destruction and packing of snow crystals

until the first critical density is reached, ρ = 500kg/m3 (relative density ρr = 0.60).

During second stage main mechanisms of densification are plastic deformation and

9
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Figure 2.3: Density-pressure relationships at Byrd and Mizuho Stations in Antarctica.
The pressure is the load due to the overburden snow, Maeno and Ebinuma (1983)

recrystallization until second critical density is reached, ρ = 820 − 840kg/m3 (ρr =

0.89 − 0.92). Third and final stage is characterized by shrinkage of entrapped air

bubbles until final/theoretical density of ice is reached, ρ = 917kg/m3. These three

stages can be shown on the pressure/density diagram measured in Byrd and Mizuho

Stations in Antarctica, (see Figure 2.3)

2.4 Sea Ice

Sea ice is created when seawater freezes which is approximately at −1.9◦C. As

it was mentioned before ice floats because it is one of few substances where the solid

phase is less dense than its liquid phase. About 7% of the Earth’s surface is occupied

by sea ice and about 12% of the world’s oceans. Antarctic and Arctic polar ice packs

encapsulate most of the world’s sea ice. Surface of polar packs will undergo significant

yearly cycling, which extensively affect Arctic ecology, including the ocean’s ecosystems
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(Wadhams (2003)).

Sea ice due to dynamic nature of marine environment (winds, currents and temper-

ature fluctuations) can be found in variety of types and features. Furthermore sea ice

can be classified based on age as:

New ice - recently frozen water

Nilas - sea ice crust up to 0.1 m

Young ice - transition phase between nilas and first-year ice, from 0.1 to 0.3 m

First-year ice - thicker than young ice but has less than one year growth, from

0.3 to 2 m

Multi-year ice - ice that has survived at least one melting season (older than one

year)

2.4.1 First-Year Ice

The way the first-year ice forms depends on the sea state, among other factors. This

means that ice can be formed in calm or rough waters. When in calm sea conditions

first crystals are formed as tiny discs (d < 2 − 3mm) with vertical c-axis that are

growing outwards laterally. As crystals are growing they become unstable and start to

break, creating a mixture of ice crystals called frazil or grease ice. As conditions are

calm frazil ice crystals will freeze together in order to form a continuous thin sheet of

thin nilas ice. As soon as nilas ice is formed, ice growth changes directions and now

water molecules freeze on to the bottom of the existing ice sheet. This process is called

congelation growth, which yields young ice and subsequently first-year ice.

On the other hand if sea conditions are rough, such as Greenland or Bering Seas

where strong sea currents and waves will form a very dense suspension of frazil ice rather

than allow for nilas ice to form. This dense mixture of ice crystals and sea water will go

trough cycles of compression which will in the end create small coherent discs of slush

that become more solid as the freeze continues. At the end those discs become known

as pancake ice, see Figure 2.4. Size of the pancake ice is relatively small at the edge of
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Figure 2.4: Pancake ice in the Barents Sea at the onset of winter. The size of the
largest pancakes shown in this figure is roughly one meter, Notz (2005)

the ice field, but grows in diameter and thickness as the distance from the edge becomes

larger. At certain point pancake ice will reach 3-5 m in diameter and up to 0.7 m in

thickness. At larger distances from the edge of the ice field where sea becomes calmer,

individual pancakes will start to coalesce together and form large ice floes that will at

the end become continuous sheet of first-year ice known as consolidated pancake ice.

Major difference between ice formed in calm and rough conditions is that consolidated

pancake ice has very rough and jagged surfaces (bottom and top) compared to relatively

smooth surface of first year ice formed in calm conditions. Schematic representation

of a cross-section of first-year sea ice can be seen in Figure 2.5. Primary ice in Figure

2.5 is created when continuous sheet of nilas ice is formed and individual ice crystals

that are in contact with sea water start to grow downwards. It was mentioned before

that individual ice crystals have vertical c-axis when going from frazil to nilas ice, but

now freezing process is easier for crystals with horizontal c-axes, which grow at the

expense of other ice crystals. If growth of ice crystals is highly influenced by variable

sea currents there will be no predominant orientation of c-axis in horizontal plane.

Next layer, transition zone, serves as transition to secondary ice composed of long

vertical columnar crystals. Columnar structure is a key identifier for ice that grows

thermodynamically by freezing onto an ice bottom, which is so called congelation ice.

Inside secondary ice brine drainage channels are visible, which are created as the ice-

water interface - skeleton layer advances downwards and brine is rejected from the
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Figure 2.5: Schematic representation of a cross-section of first-year sea ice, Sand
(2008)

growing ice sheet. On top of the primary ice there can be a layer of superimposed ice

that forms by flooding through ice cracks, refreezing of melted ice or compacting and

forming ice from fallen snow.

2.4.2 Multi-Year Ice

Multi-year ice is normally defined as ice which has survived one or more summer

seasons of partial melt. Growth will continue until the ice thickness reaches a critical

point of about 3 metres. At this point thickness will oscillate throughout annual cycles

as the summer melt matches winter growth (Wadhams (2003)). Formation process of

multiyear ice is shown on Figure 2.6. Once young/first-year ice is formed it starts to

raft caused by dynamic sea conditions - currents and/or waves (Figure 2.6a and 2.6b).

First-year ice will grow until reaching a thickness of about 2 m. As summer temperature

rises the overlying snow layer begins to melt (in the Arctic this happens during mid-

June until early July) and forms a network of meltwater pools on the surface of the ice.

As the summer progresses melt pools will become bigger and some will eventually drain
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Figure 2.6: Forming of multi-year ice, Sand (2008)

off into the sea. This happens either over the side of ice floes, through existing cracks,

or by drilling a thaw hole right through the ice, see Figure 2.6c. What is left over from

first-year ice during the second winter will refreeze and consolidate, see Figure 2.6d.

This is now called second-year ice. This ice will continue to melt and refreeze over the

years and it will become what is known as multi-year ice, see Figure 2.6e.

2.5 Mechanical Properties of Ice

2.5.1 Introduction

Due to complex environmental conditions (temperature, salinity, sea currents, con-

finement and c-axis orientation among others) sea ice exhibits a wide range of mechani-

cal properties, such as: elasticity, viscoelasticity, viscoplasticity, creep rupture and brit-

tle failure, Schulson (2001). Furthermore sea ice can be described as inhomogeneous,
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anisotropic, and nonlinear viscous material. In general properties and behaviour of ice

can be classified into two groups - short and long term behaviour. Short term behaviour

group encompasses ice that exhibits brittle behaviour and long term group represents

ice that displays ductile behaviour. When studying ice properties that are most de-

scriptive of short term behaviour, one needs to examine ice strength characteristics

(compressive, tensile, flexural, shear and adhesive) in conjunction with elastic modulus

and Poisson’s ratio. Long term behaviour is characterized with the same properties

but coupled together with time and stress/strain rate. Above mentioned properties are

to certain extent dependent on ice grain size, temperature, strain rate, volume/size, c-

axis orientation, porosity and brine content and confinement, Sand (2008) and Petrovic

(2003).

Temperature - decreasing temperature will increase ice strength in both tension

and compression. Note that effects are more prominent in compression.

Strain rate - compressive strength is dependent on strain rate while tensile strength

is strain rate insensitive. Sea ice under tensile load exhibits ductile behavior at

low strain rates and brittle behavior at intermediate/high strain rates, while un-

der compressive load ice exhibits ductile behavior at low/intermediate strain rates

and brittle behavior at high strain rates

Grain size - tensile strength decreases with increasing ice grain size. This relation-

ship is well defined by Hall-Petch definition σy = σ0 + kdn. Where σy is the yield

stress, σ0 is a material constant defining resistance of the lattice to dislocation

motion, k is material specific strengthening coefficient and d is the average grain

diameter.

Effect of volume/size - with increase in ice specimen size, tensile strength is

decreasing.

2.5.2 Elastic Properties

Young’s modulus of ice is one of the most studied properties. There are two main

types of tests that can be used to assess the Young’s modulus; static test such as uniaxial
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test under constant strain rate and dynamic test such as high frequency vibrational

methods. Problem with measuring Young’s modulus of ice by uniaxial test under

constant strain rate is that ice shows strong viscoelastic behaviour at temperatures

and strain rates usually used for these types of static tests. This means that when

load is applied, deformation is measured only after adequate time has passed, which

exaggerates viscoelastic effects. Although with good test data, static test should be able

to approximate Young’s modulus, there is still significant scatter of elastic modulus

ranging from 0.3 GPa to 10 GPa. On the other hand a much simpler approach to

studying Young’s modulus together with its variations with temperature, salinity, air

content and so on is to use dynamic tests such as above mentioned high frequency

vibrational methods. In vibrational methods displacements are extremely small so

that inelastic effects can be neglected. Such methods can involve propagation of waves

in small laboratory specimens or large natural ice masses or torsional oscillations of

beams. Use of dynamic methods compared to static methods gives less scatter in

measured elastic modulus, which is ranging from 6 GPa to 10 GPa, Schulson and

Duval (2009) and Mellor (1986).

One of the main parameters that will influence elastic properties of ice is the ori-

entation of ice crystals. According to Schulson and Duval (2009) ice elastic properties

can be classified into two main categories; randomly oriented polycrystals and poly-

crystals with growth textures. As the name says, randomly oriented polycrystal ice

has randomly oriented grains that yield isotropic properties. This kind of ice is usually

called fine-grained granular ice and can be made by consolidated snow or in extremely

wind-blown calm waters. According to Gammon et al. (1983) four sets of elastic moduli

from four different ice types (artificial, glacial, sea and lake ice) were weigheted and

averaged in order to produce a single set of elastic properties, see Table 2.1.

As it was mentioned in previous section crystalographic structure of ice sheets below

primary ice (see Figure 2.5) can take different forms depending on conditions, such as

sea state, temperature, currents and wind. According to classification by Michel and

Ramseier (1971), microstructure of floating ice sheets can be categorized as S1, S2

and S3 class. S1 ice usually develops under calm conditions when small number of
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Table 2.1: Polycrystalline Ih ice (Isotropic) average values at −16◦C, Gammon et al.
(1983)

Property Units Value

Young’s modulus, E Nm−2 9.33× 109

Compressibility, K N−1m2 112.4× 10−12

Bulk modulus, B Nm−2 8.90× 109

Shear modulus, G Nm−2 3.52× 109

Poisson’s ratio, υ n/a 0.325

nucleation sites are available, which results in ice with very large crystals whose c-

axes are predominantly vertical. S2 ice or columnar-grained ice has randomly oriented

c-axes predominantly within the horizontal plane, although as depth increases and

crystal become larger, crystals with vertical c-axis will start to edge out those with a

more horizontal one. S3 ice defines ice whose c-axes are mostly within horizontal plane

of the ice sheet and pointing to a particular direction within that plane (direction can

be influenced by strong sea currents), Cole (2001).

Table 2.2: Calculated Young’s and shear modulus of homogeneous orthotropic sheets
of ice at −16◦C, Schulson and Duval (2009)

Young’s modulus, E ×109N/m2 Shear modulus, G ×109N/m2

E1 E2 E3 G12 G13 G23

S1 9.71 9.71 11.8 3.42 3.01 3.01

S2 9.58a 9.58a 9.71 3.61b 3.21b 3.21b

S3 11.8 9.71 9.71 3.01 3.01 3.42

a VoigtReuss average, Nanthikesan and Sunder (1994)
b Average shear modulus in X1 −X2 plane, Nanthikesan and Sunder (1994)

Calculated results for elastic properties of homogeneous orthotropic ice sheet are

given in Table 2.2 and Table 2.3. Properties in the tables are given with respect to a

rectangular coordinate system. Here X1 and X2 are defined in the horizontal plane of

the sheet and X3 is in line with the vertical direction.

For non-saline ice temperature doesn’t have a strong effect but for saline ice E will
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Table 2.3: Calculated Poisson’s ratio of homogeneous orthotropic sheets of ice at
−16◦C, Schulson and Duval (2009)

Poisson’s ratio

υ12 υ21 υ13 υ31 υ23 υ32

S1 0.415 0.415 0.224 0.274 0.224 0.274

S2 0.327a 0.327a 0.344a 0.320a 0.344a 0.320a

S3 0.274 0.224 0.274 0.224 0.415 0.415

a Estimated from range of Poisson’s ratio for monocrystal

increase nonlinearly with decrease in temperature. Although temperature dependence

of Young’s modulus is nonlinear, for a limited temperature range (0◦C to −50◦C) value

of any fundamental constant such as Young’s modulus E can be estimated by the

following relationship, Gammon et al. (1983):

E(T ) = E(Tr)[1± a(T − Tr)] (2.1)

where Tr is the reference temperature at which Young modulus was measured, a =

1.42× 10−3K−1 and + sign is for compliance and - sign is for stiffness.

Furthermore the value of Young’s modulus varies significantly with porosity in sea

ice. Porosity of sea ice comes from air bubbles and brine cells. Volume of air bubbles

isn’t sensitive to temperature change as is the volume of brine cells, which will adjust

their volume in order not to change phase as temperature changes. Because most of

the studies on mechanical properties of ice take into account only brine volume and

not air bubble volume, brine porosity is used when examining most data sets instead of

total porosity. In general, Young’s modulus of a granular isotropic Eg ice has a linear

relation with porosity and can be expressed as follows:

Eg = E0

(
1− υp

υ0

)
(2.2)

where E0 is elastic modulus of ice without any inclusions (value for Table 2.1 can be
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Figure 2.7: Standard setup for uniaxial compression test on sea ice, Timco and Weeks
(2010)

used as a reference value), υp is porosity of ice and υ0 is reference value of the porosity.

2.5.3 Uniaxial Strength

Two most fundamental ice properties are tensile and compressive strength of ice,

which are an integral part of complex processes such as ice bending under ships (failure

under tension scenario) or ice sheets pushed by currents against each other (failure

under compression scenario). In order to better understand such complex processes in

ice-structure interactions or interactions between ice floes, an in-depth understanding

of uniaxial behaviour of sea ice is needed. For uniaxial compression strength analysis,

most common test used is uniaxial unconfined compressive strength test. This test is

usually done on cylindrical and prismatic specimens, see Figure 2.7. On the other hand

best method for determining uniaxial tensile strength of ice is direct tension testing, as
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Figure 2.8: Saline-ice specimen with end caps, Cole et al. (1985)

it yields data that is easier to interpret. For ductile materials uniaxial tensile testing

is a straightforward process, but for brittle materials (such as ice under high loading

rates) a tiny stress concentration can cause premature failure and give wrong results.

In that case special care is needed when preparing specimens, such as mounting special

end caps on the specimens which will upon freezing become integral part of the sample,

see 2.8.

2.5.3.1 Uniaxial tensile strength

As it was mentioned above, tensile strength is a fundamental property of sea ice

and in case of mechanistic studies uniaxial strength becomes the main point of interest.

In general sense tensile strength specifies maximum tensile stress that the ice specimen

can endure before complete failure. Ice predominantly breaks in tension while under

bending, such as, bending under ships or bending when interacting with an offshore
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structure, calving of icebergs or buckling when forming pressure ridges, Schulson and

Duval (2009).

Polycrystalline granular ice of typical grain size between 1 to 10 mm fails by trans-

granular cleavage at applied stress between 0.5 MPa and 2 MPa. There are several

factors that affect tensile failure, such as temperature, grain size, strain rate and poros-

ity (brine + gas). From all of the mentioned factors the one that has the least impact

on tensile failure is the strain rate. This is at least true for quasi-static strain rates that

range between 10−7 s−1 and 10−1 s−1 where strain rate essentially has no impact on

failure. This is however not so true for strain rates in dynamic range where ice seems

to display strain-rate hardening. For example Lange and Ahrens (1983) showed that

ice at strain rates of ∼ 104 s−1 has a tensile strength of ∼ 17 MPa. Strain rate will also

affect ductile and brittle failure of ice, this means that granular ice with 1 mm grain

size at −10◦C transitions from ductile to brittle failure at strain rate of 10−7 s−1 .

Temperature compared to strain rate has a larger impact on tensile strength. Com-

pared to fresh-water ice, sea water ice displays greater thermal sensitivity. Menge and

Jones (1993) have done tensile tests on first-year columnar sea ice over a range of

temperatures from −20◦C to −3◦C and strain rates between 10−5 s−1 to 10−3 s−1.

Furthermore, they have compared their results to research done by Dykins (1970) and

Kuehn et al. (1990). What was immediately evident is that temperature has a strong

influence on a cross-column strength of columnar-grained sea ice, infact the increase

was about a factor of four: ∼ 0.2 MPa at −2.5◦C to ∼ 0.9 MPa at −20◦C, see Table

2.4.

As it can be seen from the Table 2.4 first-year ice is extremely dependent on tem-

perature, due to the influence of temperature on porosity/brine pockets volume within

salt-water ice. As the temperature decreases, the equilibrium volume fraction of brine

decreases until NaClH2O eutectic is reached at −21.2◦C. Dependency on temperature

is further reinforced because the brine inclusions in a platelet-like manner are arranged

along lines that coincide with the plane of failure.

From all above mentioned factors, grain size is the most important factor when it

comes to tensile strength of ice. According to Schulson and Duval (2009) there is a
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Table 2.4: The tensile strength of columnar-grained first-year sea ice loaded uniaxially
across the columns

Temperature ◦C Rate s−1 Tensile Strength MPa

-20 1.0−3 0.78± 0.14
-20 1.0−5 0.73± 0.07
-10 1.0−3 0.63± 0.12
-10 1.0−5 0.56± 0.06
-5 1.0−3 0.47± 0.13
-5 1.0−5 0.45± 0.06
-3 1.0−3 0.32± 0.06
-3 1.0−5 0.21± 0.09

large body of research that shows a strong inverse correlation between grains size d

and tensile strength σt, which states that increase in d will result in decrease in σt.

Some of the studies that prove this relationship can be found in Hawkes and Mellor

(1972) and Schulson et al. (1984). In the study by Schulson et al. (1984) standardized

measurements on cylindrical-shaped specimens of granular fresh-water ice were done at

−5◦C, −10◦C and −20◦C with the grain size ranging from 0.8 to 9.4 mm. This paper

first proved that by increasing the grain size, tensile strength will decrease. Secondly

it also established that there is a critical grain size marks ductile-to-brittle transition.

Critical grain size was measured between 1.5 and 1.9 mm. For grains larger than critical

size tensile failure are governed by crack nucleation and for grains smaller then critical

size tensile failure are controlled by crack propagation. This means that critical grain

size defines the point where crack nucleation stress becomes equal to crack propagation

stress. According to Schulson et al. (1984) for lower strain rates (10−7 s−1) uniaxial

tensile strength can be expressed as Orwan form:

σt = Kd−
1
2 (2.3)

where K is measure of fracture toughness of granular ice and d is the grain size. At

higher strain rates (10−3 s−1) the function takes the Hall-Petch form:

σt = σ0 + ktd
− 1

2 (2.4)
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where σ0 and kt are measures of frictional resistance to dislocation glide and the ef-

fectiveness with which grain boundaries impede slip and d is grain size as in Equation

2.3. As it was stated by Schulson and Duval (2009) Equations 2.3 and 2.4 need to

be used with certain amount of caution. Although these equations should be general,

parameters are probably still affected by the type of ice that was used when obtaining

the values - randomly orientated granular fresh-water ice without cracks. The concept

of critical grain size dc suggests that for finely grained ice (d < dc) nucleated cracks

are more stable so that ice can support stress greater than stress needed to nucleate

the first crack. For more coarsely grained ice (d > dc) nucleated cracks are unstable so

fracture starts immediately. The critical grain size dc is obtained by equating Equations

2.3 and 2.4 as follows:

dc =

(
K − kt
σ0

)2

(2.5)

Temperature and porosity are mutually connected parameters, where change in

temperature will affect the equilibrium volume fraction of brine. Furthermore, Menge

and Jones (1993) showed that there is a nonlinear decrease in tensile strength with

increasing porosity (brine+gas). Figure 2.9 shows tensile strength as a function of

porosity for horizontally loaded first year sea ice. By neglecting relatively small effect

of strain rate, following function for tensile strength can be extrapolated;

σt = 4.278υ−0.6455
t (2.6)

where υt is function of total porosity. In general salt-water ice is much more compli-

cated material than fresh-water ice. This is because of its microstructure, since c-axis

orientation and grain size can be controlled, but other factors such as porosity are

much more difficult to regulate. With this in mind alternative conclusions could be

made, such as size and spacing of inclusion could be more important than grain size.

Also crack nucleation could be irrelevant for limiting tensile strength, because brine

pockets may act like cracks. Because of this, providing definite conclusions from sea-

water ice testing is much more difficult than for fresh-water ice. This means that clear

conclusions are difficult to make.
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Figure 2.9: Tensile strength as a function of porosity for horizontally loaded first year
sea ice, Timco and Weeks (2010)

2.5.3.2 Uniaxial compressive strength

The compressive strength of sea ice is also one of the fundamental properties. Stud-

ies of both small and large-scale sea ice failure have concluded that ice often fails in

compression. There are variety of scenarios where compressive failure happens, such as

ice floe impacting an offshore structure or formation of large pressure ridges. Because of

its importance, a large body of in-depth studies were done. As it was mentioned before,

one of the most common test used in the studies was uniaxial unconfined compressive

strength test as it is relatively easy to set up and the data is very easy to interpret. As

with tensile strength, compressive strength of ice is also affected to a certain degree by a

variety of factors. These factors can be intrinsic, such as temperature, salinity, density,

ice type, crystal size and orientation or part of test setup, rate of loading, confinement

conditions, sample size, stiffness of the test machine, sample preparation techniques
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and loading direction - which is measured relative to the orientation of columnar grains

(Timco and Weeks (2010)).

When subjected to the compressive load, ice will exhibit two kinds of inelastic be-

haviour - ductile and brittle behaviour, see Figure 2.10. Transition from ductile to

brittle and vice versa occurs gradually rather than abruptly. Main reason behind grad-

ual transition between ductile and brittle behaviour is because inelastic deformation is

defined by a mixture of creep by dislocation slip and cracking. Moving closer to tran-

sition point ε̇D/B, ratio of creep and cracking is changing from dominant creep rupture

in ductile range to crack nucleation and crack propagation in brittle range.

Ductile behaviour is characterized by strain-rate hardening owned to grain boundary

sliding and dislocation glide and climb within grains - secondary creep, see Figure

2.10. According to Michel (1978b) at lower strain rates stress-strain curve will level

off and at higher strain rates it will reach maximum stress instantly followed by strain

softening. Strain softening is due to internal cracking and dynamic recrystallization,

which is characterized by ice that is initially transparent and then becoming milky-

white in appearance due to non-propagating, grain-sized microcracks. Furthermore,

plastic strain in excess of 0.1 can be reached without macroscopic collapse. Strain-rate

hardening can be expressed by the following expression (Schulson and Duval (2009)):

σ ∼ ε̇1/n where n ∼ 3 (2.7)

In addition, ductile behaviour is also characterized by thermal softening (maximum

stress increases with decreasing temperature) and it is sensitive to salinity and porosity

(maximum stress decreases with increasing salinity/porosity). On the other hand stress

values exhibit little dependence on grain size. Compared to ductile behaviour, brittle

behaviour is defined by a stress-strain curve that rises linearly and terminates suddenly

after reaching inelastic strain of < 0.003 due to onset of a mechanical instability. Ice

exhibits brittle behaviour at rates above ≈ 10−4−10−3 s−1. In brittle regime ice will fail

differently depending on level of confinement. If ice is unconfined it will fail via multiple

splitting along the direction of loading and by faulting or spalling if it is confined. The
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Figure 2.10: Transition between ductile and brittle failure of ice under compressive
load, Sand (2008)

terminal stress or failure strength is a function of temperature, strain rate, grain size

and confinement. Terminal stress will decrease with increasing temperature by a factor

of ∼ 2.5 with temperature going from −50◦C to −10◦C, with increasing strain rate

by a factor of ∼ 1.4 with strain rate going from 10−3 to 10−1 s−1 and with increasing

grain size by a factor of ∼ 3 with grain sizes from 1 to 10 mm. When compared to

uniaxial tensile strength of ice, brittle compressive strength seems to be unaffected by

the salinity/porosity, at least at −10◦C.

Brittle compressive failure is a multi-step process that is controlled by crack nu-

cleation and crack propagation. It begins with crack nucleation at grain boundaries

due to dislocation pile-up. As the stress increases, other cracks nucleated throughout

the body. As soon as the shear traction induced by the far-field stress is great enough

to overcome frictional resistance, most favorably oriented cracks begin to slide which

leads to formation of wing cracks. With further load increase wing cracks start to grow

mostly trans-granularly and start to interact with each other. Final failure generally

occurs as large number of cracks coalesce and wing cracks propagate all the way to the

free edges of the specimen and form a longitudinal split.

As it can be seen form the Figure 2.10 that compressive strength reaches its maxi-

mum value at the ductile-to-brittle transition point. This happens as a consequence of

both strain-rate hardening in the ductile regime and strain-rate softening during the
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Figure 2.11: Beginning stages in the development of wing cracks under compressive
loading. (a) Initial low stress develops tensile zones around the tips of the inclined

cracks. (b) By increasing stress wing cracks initiate at the inclined crack tips. This is
due to frictional sliding across inclined crack. (c) At even bigger stress, the wing

cracks propagate and separate their faces due to further sliding, Schulson and Duval
(2009)

brittle regime.

Examining 283 compressive strength test results, Timco and Frederking (1990, 1991)

have developed a model for determining strength of sea ice sheets. Examined tests

included the following variables: temperature, ice salinity, bulk ice density, grain struc-

ture, loading direction, number of tests and test results. From there they have derived

several equations as a function of grain structure. Uniaxial compressive strength for

horizontally loaded columnar ice was derived as following:

σc = 37(ε̇)0.22

[
1−

√
υT
270

]
(2.8)

for vertically loaded columnar ice as:

σc = 160(ε̇)0.22

[
1−

√
υT
200

]
(2.9)
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and for granular ice as:

σc = 49(ε̇)0.22

[
1−

√
υT
280

]
(2.10)

where υT is the total porosity (sum of brine and air porosity). Above derived equations

are relevant for strain rates between 10−7 s−1 to 2 × 10−4 s−1 and give an explicit

correlation between grain type, loading direction, loading strain rate and total porosity,

and implicitly to ice salinity, temperature and density.

2.5.4 Shear strength

When analyzing ice-structure interactions, ice is usually subjected to a complex

stress condition. This means that ice cover is often under biaxial stress conditions

composed from tensile and compressive stress or shear stress. Thus, together with

uniaxial compressive and tensile strength of ice, shear strength is also a fundamental

property of ice. Compared to uniaxial tensile and compressive tests, shear testing is

more difficult to setup/execute and interpret due to generating stress fields that cannot

be quantified in a simple manner. When conducting shear testing one is assuming that

the only stress condition generated is uniform shear stress, but in reality additional

normal stress is also generated on the plane of failure, whose value is impossible to be

determined. To this day primary methods for determining shear strength are torsion,

direct shear and punching test.

Throughout the literature there have been relatively few measurements of the shear

strength and the ones that exist show shear strength as a function of temperature,

salinity, density, and for columnar sea ice the shear strength is additionally dependent

on loading direction measured relative to the columnar grains. Although tests have

shown that there is a direct correlation between strain rate and compressive strength,

the same correlation can’t be established with certainty for shear strength. Butkovich

(1956) used double shear device on cylindrical specimens made out of firs year ice with

approximately 6% salinity. Specimens were loaded perpendicular to the long axis of

the columnar grains. Obtained average shear strength was 1.6 MPa for temperatures

between−5◦C to−7◦C and 2.3 MPa for temperatures between−10◦C to−13◦C. On the
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Figure 2.12: Asymmetric four-point loading apparatus together with shear force and
bending moment diagrams, Frederking and Timco (1986)

other hand Paige and Lee (1967) and Dykins (1971) carried single shear experiments on

similar sized cylindrical specimens but with loading oriented in such a way that failure

plane developed along specimens length parallel to the columnar grains. Furthermore,

a relief hole was drilled in the central section in order to reduce confinement effects.

Paige and Lee (1967) used specimens from natural sea ice and obtained shear strength

between 0.5 MPa and 1.2 MPa with a significant dependence on brine volume. While

Dykins (1971) used artificially-grown columnar-grained saline ice and obtained shear

strength between 0.1 MPa and 0.25 MPa. In all three cases experiments show large

discrepancies despite using ice with similar salinity and temperature. This can be

attributed to the normal stresses that develops on the failure plane as a consequence

of single and double shear test devices.
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Table 2.5: Shear strength of columnar-grained sea ice. Grain orientation is measured
relative to shear plane Frederking and Timco (1986).

Grain orientation Temperature Density Total porosity Shear Strength
◦C kg/m3 ppt MPa

vertical -2 830 136 0.715
horizontal -2 830 136 0.560
vertical -12 850 83 0.645
horizontal -12 850 83 0.760

With this in mind Frederking and Timco (1986, 1984) have carried out shear tests

by utilizing an asymmetric 4-point bending system on sea ice specimens as illustrated

in Figure 2.12. By using asymmetric 4-point bending system loads were applied in a

manner so that a high shear stress state is created in the mid-section of the beam. For

the granular ice they have estimated an average shear strength of 0.55 MPa ± 0.12

MPa with test temperatures at −13◦C ± 2◦C and salinity of 4.2% ± 0.5. Frederking

and Timco (1986) measured the shear strength of columnar sea ice for two different

specimen orientations. First test case was horizontal shear where the shear plane is

perpendicular to the long axis of the columnar grains. Second test case was vertical

shear where the shear plane is parallel to long axis of the columnar grains. Results for

the shear strength of columnar grained sea ice is summarized in Table 2.5. Furthermore,

Frederking and Timco (1986) used Paige and Lee (1967) results in combination with

their own results in order to extrapolate vertical shear strength σs as a function of total

porosity υT as follows:

σs = 1.5

(
1−

√
υT
390

)
(2.11)

In general, shear strength isn’t commonly used as it is governed by tensile strength

of sea ice. Furthermore, most engineering scenarios include higher loading rates with

compressive strength being higher than the tensile strength. Hence, ice subjected to

shear condition will fail in tension rather than in shear.
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2.5.5 Fracture Toughness

Basic idea behind fracture mechanics is to establish a quantitative description of

the transition from a virgin material into a fractured and fragmented material via crack

growth. Most basic fracture mechanism occurs in brittle solids, with development of

critical stress at which the crack becomes unstable and propagates. Crack tip stress

field σij can be described as a function of the stress intensity factor K - ratio of true

stress at the crack tip and the average applied stress:

σij = f(K, r, θ) = Kfij(r, θ) (2.12)

where r and θ are polar coordinates with the origin at the tip. By increasing applied

stress, value of K will increase until it reaches critical value Kc at which fracture

occurs. Depending on the loading conditions there can be three distinct critical stress

intensity factors that corresponds to three modes of crack propagation, see Figure 2.14.

KIc refers to stress normal to the crack plane condition (mode I), KIIc where stress

is applied in such manner so that the crack faces move over each other perpendicular

to the crack front (mode II) and KIIIc refers to stress applied parallel to the crack

front (mode III). When considering crack propagation it is also beneficial to consider

energy release rate G - rate of energy release per unit length of crack advance. Under

plane-strain conditions K2
Ic and G are related as:

G = K2
Ic

(
1− ν2

E

)
(2.13)

or in plane-stress as:

G =
K2
Ic

E
(2.14)

Griffith (1921) derived critical stress required for crack propagation by equating

energy release rate G with rate of increase for specific surface energy γs as:

σc =

(
2Eγs
πc

)1/2

(2.15)
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Figure 2.13: Three modes of crack propagation

Figure 2.14: Left image: Four-point-bend configuration and Right image:
Three-point-bend configuration

or for plane-stress

σc =

(
2Eγs

(1− ν2)πc

)1/2

(2.16)

where c is crack length. Fracture toughness of ice is usually measured by using 4-

point or 3-point beam configuration, see Figure 2.14. Beams will have a notch cut

in the centre that has a very small tip (usually created by using a razor). Length of

the notch is approximately one-third of beam’s thickness. In order to calculate the

fracture toughness two values are usually used - load at failure or COD (crack opening

displacement) of the notch, Timco and Weeks (2010).

Fracture toughness of ice mostly depends on the loading rate and crystallographic

structure of ice, with less variation due to temperature, grain size and porosity. In
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Figure 2.15: Plane-strain fracture toughness vs. temperature, Schulson and Duval
(2009)

Figure 2.15 plane-strain fracture toughness vs. temperature is shown from multiple

studies and one can see that most of the data is clustered around KIc = 100 kPa m1/2

with considerable scattering. With this in mind it is hard to detect clear effects of

temperature on fracture toughness.

Nixon and Schulson (1988) found that increase in grain size will decrease the fracture

toughness, through the relationship:

KIc = KIo + φd−1/2 (2.17)

where d is the grain size in mm, KIo = 58.3 kPa m1/2 and φ = 42.4 kPa m1/2. In

general porosity will reduce the stiffness of ice, which was observed by Rist et al.

(1999). Furthermore, Rist et al. (2002) found the linear relationship between porosity
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p and fracture toughness if one assumes p < 0.4 as:

KIc(p) = KIc(1− p) (2.18)
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Peridynamic Theory

3.1 Introduction

The peridynamic theory (PD) was introduced by Silling (2000). PD theory deals

with the motion of a material point that interacts with all points within its range

(see Figure 3.1). Peridynamic theory uses displacements rather than displacement

derivatives in its formulation. Hence, as opposed to classical continuum mechanics

formulation which uses partial differential equations, peridynamic theory is based on

integral equations which are valid at fracture surfaces. It is basically the re-formulation

of classical continuum mechanics (CCM) equations using integro-differential equations,

in which derivatives only come into picture with time derivatives of displacements. Both

theories assume that a domain, V, can be discretized into many infinitesimal volumes,

i.e. material points and their interactions. In CCM, the material point at position

x only interacts with its nearest neighbors whereas in PD theory it can interact with

material points x’ which are not only limited to the nearest neighbors of x. The former

local interactions are in the form of traction vectors, T as opposed to the nonlocal force

densities, t and t’ in PD theory. In CCM, the traction vectors are expressed in the

form of stress tensor, σ and its equation of motion can be expressed as

ρ(x)ü(x, t) = ∇ · σ + b(x, t) (3.1)
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where ∇· indicates a divergence, u and b are the displacement and body load vectors,

respectively. Moreover, ü stands for acceleration vector, ρ and t denote the density of

the material and time and, respectively. On the other hand, Peridynamic theory has

the following form of equation of motion

ρ(x)ü(x, t) =

∫
Hx

(t(x′ − x,u′ − u)− t′(x− x′,u− u′))dVx′ + b(x, t) (3.2)

where integration region or horizon Hx includes all interactions between the main mate-

rial point x and its family members x’. When comparing first term on RHS of Equation

3.1 and Equation 3.2 we can see that divergence of a stress tensor σ which is a vector

valued function is mirrored by an integral over a force density vector t. The range of

interactions, generally called as bonds, are limited with the horizon radius, δ around

the material point x. The force density, t arises from the relative displacements of all

material points, x’ with respect to material point x within the horizon of the material

point x. In the original form of PD theory, which is named as bond-based PD theory,

it is assumed that the force densities have the same magnitude and this assumption

causes a restriction on material constants which lead to one material constant instead

of two constants for isotropic materials. PD theory has attracted attention of many

researchers from all over the world. The reason for this is mainly the capability of

PD theory for modeling discontinuities over a domain. Many researchers succeeded to

solve many challenging and diverse problems involving discontinuities using peridynam-

ics especially after the publication of successive papers by Silling and Askari (2005) and

Macek and Silling (2007). The former concentrated on numerical implementation part

of the bond-based PD theory and the latter is its demonstration by using commercial

FE software, Abaqus.

Following the introduction of most general forms of PD theory by Silling et al.

(2007), which are so called ordinary and non-ordinary state based theories, the inter-

est on PD theory has been dramatically increased, since the limitation on material

constants was removed and it paved the way of modeling more challenging problems

such as plastic deformation Madenci and Oterkus (2016). Moreover, the application of
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Figure 3.1: The material point x interacts with other material points inside its
horizon Hx

peridynamics has also been extended to other fields such as thermal diffusion Oterkus

et al. (2014), electric flow Oterkus et al. (2013) and hydrogen diffusion De Meo et al.

(2016). The book by Madenci and Oterkus (2014) presents the numerical implementa-

tion areas of PD theory including complex laminated composite materials. Moreover, a

recent book by Madenci et al. (2019) brings a new aspect on solving many formidable

differential equations by using PD differential operator.

The Peridynamic equation of motion is usually solved by using meshless discretiza-

tion methods as explained in the Section 4.4. Furthermore, Emmrich and Weckner

(2007) compared all of the solution methods including the finite element (FE) method

for a one-dimensional PD problem which does not contain any discontinuities. In that

case, the FE method has the best accuracy amongst the others. However, it requires

more computational time to solve the matrix equations. Besides, the meshless methods

are the most convenient ones for PD problems with discontinuities. The solution does

not involve any jump terms as in the CCM theory because the governing equation of

PD theory is derivative-free. For this reason, most of the researchers (Madenci and

Oterkus (2014); Macek and Silling (2007)) prefer meshless midpoint rule for numerical

implementation of PD theory. It is simple and easily applicable when discontinuities

exist in the body. Therefore, the peridynamic equation of motion given in Eq. (3.2)
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can be written in a discrete form as

ρ(xi)ü(xi, t) =

Ni∑
j=1

(t(xj − xi,uj − ui)− t′(xi − xj ,ui − uj))Vj

+ b(xi, t) (3.3)

where Ni is the number of material points inside the horizon of the material point at

xi and Vj is the volume of the material point at xj .

The most general in-house PD code mainly contains the following steps:

1st step - Constructing material points: The body is composed of many small

finite volumes and the center of each volume is represented by a material point

located at the center of the volume. In this step, the material points are created

while determining their locations in a global coordinate system.

2nd step - Family member search: Family member points, which reside inside the

horizon of each main material point, are determined and the family member array

is created.

3rd step - Surface correction: The horizon is usually truncated near the boundaries

of a surface and this results in reduction of material point stiffness. Hence, the

stiffness of material points near the free surfaces is corrected (see Chapter 4 of

ref. Madenci and Oterkus (2014)).For more information about different surface

correction approaches available in the literature please see Le and Bobaru (2018).

4th step - Time integration: The PD equations are solved dynamically or stati-

cally.

3.2 Basics of Peridynamic Theory

In peridynamic theory continuum is defined by infinitely many material points (par-

ticles), where each particle interacts with the surrounding points. In undeformed state
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Figure 3.2: The material point x interacts with other material points inside its
horizon Hx

each particle is defined with respect to the Cartesian system by: initial position xk

(k = 1,2,..,), incremental volume Vk, and mass density ρ. The deformed state of the

material point is described by position vector yk that is the result of external loading.

The motion of a material point is the result of forces acting upon the material point.

External loading can be in the form of the body load bk, displacement uk, or velocity

vk. According to Silling (2000), motion of the material point xk, is calculated as an

collective contribution from other points within its influence zone. Influence zone or

the horizon can be infinitely large, but is presumed that effects vanish beyond certain

range. Although horizon is a very important parameter, research on how to choose

this parameter has been rather limited and mainly depends on suggestions made in the

influential paper written by Silling and Askari (2005). They suggested to use a horizon

size equivalent to three times of the grid spacing between material points based on the

experiences of these researchers for their simulations. Influence range or horizon radius

is defined by δ and influence region or horizon is denoted by Hx (see Figure 3.2).

As it can be seen from Figure 3.2, the material point xk is influenced by the collective

deformation of all material points inside its horizon Hx. The same can be stated for
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the material point xj . The deformed position yk and yj is acquired by applying their

displacements uk and uj , respectively, to the initial position xk and xj . The stretch

between material points xk and xj is defined as:

skj =
|η + ξ| − |ξ|

|ξ|
(3.4)

where ξ and η are the relative position in reference configuration and the relative

displacement. They can be expressed as ξ = xj − xk and η = uj − uk. In the

deformed configuration each bond between material points will experience a gain in

energy, which is called micropotential. Scalar-valued micropotential wkj depends on

the material properties and the stretch between point xk and other material points

in its family (denoted by m = 1..∞), while wjk depends on the material properties

and the stretch between point xj and other material points in its family (denoted by

n = 1..∞). This would than mean that wkj 6= wjk.

wkj = wkj(y1 − yk, y2 − yk, ....ym−1 − yk, ym − yk) where m = 1...∞

wjk = wjk(y1 − yj , y2 − yj , ....yn−1 − yj , yn − yj) where n = 1...∞
(3.5)

where yk is the deformed position vector of point xk and ym is the deformed position

vector of the material point that is inside of the horizon of xk. Similarly, yj is the

deformed position vector of point xj and yn is the deformed position vector of the

material point that is inside of the horizon of xj .

The strain energy density, Wk of material point xk can be expressed as a summation

of micropotentials, wkj , arising from the interaction of material point xk and other

material points, xj , within its horizon as

Wk =
1

2

∞∑
j=1

1

2
(wkj(ym − yk) + wjk(yn − yj))Vj (3.6)

where wkj = 0 for k = j. According to Silling and Askari (2005), factor 1
2 before the

summation comes from the fact that each endpoint of a bond owns only half the energy

in the bond. Furthermore the factor 1
2 under the summation comes from the fact that
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micropotential of a bond can be assumed as the average of wkj and wjk.

Definition of the strain energy density for a point xk was a first step towards defining

equation of motion in peridynamic terms. Equation of motion of xk can be derived

through application of principle of virtual work. This approach can be summarized by

Hamilton’s principle (see Equation 3.7) which states that the development in time for

a mechanical system is such that the integral of the difference between the kinetic and

the potential energy is stationary. The difference between kinetic and the potential

energy is defined as Lagrangian (L).

δ

∫ t1

t0

Ldt = 0 (3.7)

Hamilton’s principle is satisfied by Lagrange’s equations of the second kind or the

Euler-Lagrange equations of motion for material point xk

d

dt

(
∂L

∂u̇k

)
− ∂L

∂uk
= 0 (3.8)

As it was mentioned above Lagrangian is defined as difference between total poten-

tial and kinetic energy.

L = T − U (3.9)

In peridynamic case body’s total potential and kinetic energy are defined by sum of

kinetic and potential energies of all material points. Thus, total potential energy can

be defined as:

U =

∞∑
k=1

WkVk −
∞∑
k=1

(bkuk)Vk (3.10)

and total kinetic energy as

T =
∞∑
k=1

1

2
ρku̇ku̇kVk (3.11)

Strain energy density, Wk, in Equation 3.10 can be substituted by strain energy

density of material point xk for Equation 3.6 and thus total potential energy can be
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rewritten in more appropriate form

U =

∞∑
k=1

1

2

{ ∞∑
j=1

1

2

[
wkj(ym − yk) + wjk(yn − yj)

]
Vj − (bkuk)

}
Vk (3.12)

Once total potential and kinetic energy of the body is defined, Lagrangian can be

obtained by substituting Equation 3.10 and Equation 3.11 into Equation 3.9.

L =
∞∑
k=1

1

2
ρku̇ku̇kVk−

∞∑
k=1

1

2

{ ∞∑
j=1

1

2

[
wkj(ym−yk)+wjk(yn−yj)

]
Vj−(bkuk)

}
Vk (3.13)

In order simplify the solution of Euler-Lagrange equation of motion for material point

xk (see Equation 3.8), Lagrangian needs to be written in an expanded form by showing

only the terms associated with the material point xk

L = ...+
1

2
ρku̇ku̇kVk −

∞∑
j=1

1

2

[
wkj(ym− yk) +wjk(yn− yj)

]
Vk − (bkuk)Vk + ... (3.14)

Using this form of Lagrangian, first term on LHS of Equation 3.8 can be easily deter-

mined
d

dt

(
∂L

∂u̇k

)
= ρkükVk (3.15)

In contrast to the first term on LHS of Equation 3.8 second term is slightly harder to

solve as it requires careful application of the chain rule. If more in-depth explanation

is needed, reader can refer to Madenci and Oterkus (2014) book.

∂L

∂u k
=

[ ∞∑
j=1

1

2

( ∞∑
m=1

∂wkm
∂(yj − yk)

Vm

)
∂(yj − yk)

∂uk
+

∞∑
j=1

1

2

( ∞∑
n=1

∂wnk
∂(yk − yj)

Vn

)
∂(yk − yj)

∂uk
− bk

]
Vk

(3.16)

As it can be seen from the Equation 3.16 there are additional summation terms
∑∞

m=1

and
∑∞

n=1. These terms come from the fact that wkm and wnk are functions of all

bonds/interactions in their respective families. By substituting LHS terms in Equation

3.8 with Equation 3.15 and Equation 3.16 and rewriting it in a slightly more under-
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standable form a standard equation of motion can be obtained:

ρkük =

∞∑
j=1

1

2

( ∞∑
m=1

∂wkm
∂(yj − yk)

Vm

)
−
∞∑
j=1

1

2

( ∞∑
n=1

∂wnk
∂(yk − yj)

Vn

)
+ bk (3.17)

According to Madenci and Oterkus (2014),
∑∞

m=1
∂wkm

∂(yj−yk)Vm represents the force den-

sity that material point xj exerts on material point xk and
∑∞

n=1
∂wnk

∂(yk−yj)Vn represents

the force density that material point xk exerts on material point xj . By introducing

force density vectors, Equation 3.17 is transformed into a standard nonordinary form

of peridynamic equation of motion, see Figure 3.3

ρ(xk)ük =

∞∑
j=1

(
tkj(uj − uk,xj − xk, t)− tjk(uk − uj ,xk − xj , t)

)
Vj + bk (3.18)

where force density vector tkj is expressed as

tkj(uj − uk,xj − xk, t) =
1

2

1

Vj

( ∞∑
m=1

∂wkm
∂(yj − yk)

Vm

)
(3.19)

and force density vector tjk as

tjk(uk − uj ,xk − xj , t) =
1

2

1

Vj

( ∞∑
n=1

∂wnk
∂(yk − yj)

Vn

)
(3.20)

Equations 3.19 and 3.20 can be expressed by means of strain energy densities of

material points k and j, which will be of great help when going into ordinary and bond

based peridynamics

tkj =
1

Vj

∂

(
1
2

∑
mwkmVm

)
∂(yj − yk)

=
1

Vj

∂Wk

∂(yj − yk)
(3.21)

tjk =
1

Vj

∂

(
1
2

∑
nwnkVn

)
∂(yk − yj)

=
1

Vj

∂Wj

∂(yk − yj)
(3.22)
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Figure 3.3: Nonordinary State Based Peridynamics

3.2.1 Ordinary State Based Peridynamics

Ordinary state based peridynamic formulation was first introduced by Silling et al.

(2007) which was preceded by much simpler formulation called bond based (Silling

(2000)) which will be explained in the following Chapter 3.2.2. As shown in Figure 3.4,

the force density vectors have unequal magnitudes while being parallel and opposite to

each other and according to Madenci and Oterkus (2014) also satisfy the requirement

for balance of angular momentum. Thus, they can be defined as follows

tkj =
1

2
A

yj − yk
|yj − yk|

(3.23)

and

tjk =
1

2
B

yk − yj
|yk − yj |

= −1

2
B

yj − yk
|yj − yk|

(3.24)

Parameters A and B in the Equation 3.23 and 3.24 are parameters dependent on

material type, deformation field, and the horizon. As it was mentioned above the

term ordinary state based was first introduced by Silling et al. (2007). Furthermore

according to Silling et al. (2007) ordinary state based formulation of the force density

vectors permits decoupled distortional and volumetric deformations and it enables the
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Figure 3.4: Ordinary State Based Peridynamics

enforcement of plastic incompressibility. Parameters A and B can be determined by

using the relationship from Equation 3.21 and 3.22, although now these equations need

to be written in a more appropriate form,

tkj =
1

Vj

∂Wk

∂(|yj − yk|)
yj − yk
|yj − yk|

(3.25)

and

tjk =
1

Vj

∂Wj

∂(|yk − yj |)
yk − yj
|yk − yj |

(3.26)

where
yj−yk
|yj−yk| and

yk−yj
|yk−yj | represent unit vector or direction of force density vector.

Comparing Equation 3.23 and 3.24 with Equation 3.25 and 3.26 it can bee seen that

parameters A and B can be determined if appropriate form of strain energy density

is defined, Wk and Wj . According to Madenci and Oterkus (2014), for isotropic and

elastic material, the explicit form of the strain energy density can be expressed as

Wk = aΘ2
k−a2ΘkTk+a3T

2
k +b

N∑
j=1

ωkj

((
|yj−yk|−|xj−xk|

)
−αTk|xj−xk|

)2

Vj (3.27)
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and

Wj = aΘ2
j−a2ΘjTj+a3T

2
j +b

N∑
j=1

ωjk

((
|yk−yj |−|xk−xj |

)
−αTj |xk−xj |

)2

Vj (3.28)

In Equation 3.27 ωkj = ω(|xj −xk|) is the nondimensional influence or weight function

that determines the influence of family points on the main material point k. Weight

function ω is usually defined as

ωkj =
δ

|xj − xk|
(3.29)

Furthermore Tk and α represent temperature at material point k and coefficient of

thermal expansion. The same can be stated for material point j in Equation 3.28. Θk

and Θj are the dilatation terms and they have the following expression

Θk = d

N∑
m=1

wkm(skm − αTk)
ym − yk
|ym − yk|

(xm − xk)Vm + 3αTk (3.30)

and

Θj = d
N∑
n=1

wjn(sjn − αTj)
yn − yj
|yn − yj |

(xn − xk)Vn + 3αTj (3.31)

where skm is the stretch definition of a bond in peridynamic theory and is expressed as

skm =
|ym − yk| − |xm − xk|

|xm − xk|
(3.32)

Expression for sjn is the same with only different indexes. In above equations

peridynamic parameter d ensures that Θk and Θj remain nondimensional. Furthermore

peridynamic material parameters, a, a2, a3, and b, in Equations 3.26 and 3.27 can be

related to the material constants from classical continuum mechanics by considering

simple loading conditions. In-depth explanation of the procedure can be found in

Madenci and Oterkus (2014), where material parameters are expressed for 1D, 2D and
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3D structures as

a =
1

2

(
κ− 5µ

3

)
, a2 = 6αa, a3 = 9α2a, b =

15µ

2πδ5
d =

9

4πδ4
for 3D

a =
1

2
(κ− 2µ), a2 = 4αa, a3 = 4α2a, b =

6µ

πhδ4
d =

2

πhδ3
for 2D

a = a2 = a3 = 0, b =
E

2Aδ3
d =

1

2δ2A
for 1D

(3.33)

where A is cross-sectional area and h is thickness. After combining Equation 3.25,

3.27 and 3.30 and performing differentiation, parameter A in the force density vector

(Equation 3.23 can be rewritten in terms of peridynamic material parameters as

A = 4wkj

[
d
yj − yk
|yj − yk|

xj − xk
|xj − xk|

(
αΘk −

1

2
a2Tk

)
+b
((
|yj − yk| − |xj − xk|

)
− αTk|xj − xk|

)] (3.34)

Exact same procedure can be applied for parameter B by combining Equation 3.26,3.28

and 3.31 and can be expressed as

B = 4wjk

[
d
yk − yj
|yk − yj |

xk − xj
|xk − xj |

(
αΘj −

1

2
a2Tj

)
+b
((
|yk − yj | − |xk − xj |

)
− αTj |xk − xj |

)] (3.35)

Now force density vectors tkj and tjk can be rewritten as

tkj = 2δ

[
d

Λkj
|xj − xk|

(
aΘk −

1

2
a2Tk

)
+ b(skj − αTk)

]
yj − yk
|yj − yk|

(3.36)

and

tjk = 2δ

[
d

Λjk
|xk − xj |

(
aΘj −

1

2
a2Tj

)
+ b(sjk − αTk)

]
yj − yk
|yj − yk|

(3.37)

where parameter Λkj , is defined as

Λkj =

(
yj − yk
|yj − yk|

)
·

(
xj − xk
|xj − xk|

)
(3.38)
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Figure 3.5: Bond Based Peridynamics

3.2.2 Bond Based Peridynamics

Bond based peridynamics is a special case formulated by Silling (2000), where force

density vectors are not only parallel to the relative position vector in the deformed state

as in ordinary state based peridynamcs, but are also equal in magnitude (see Figure

3.5). These assumptions mean that force density vector can be expressed in the form

tkj =
1

2
C

yj − yk
|yj − yk|

=
1

2
fkj (3.39)

and

tjk =
1

2
C

yk − yj
|yk − yj |

= −1

2
C

yj − yk
|yj − yk|

= −1

2
fkj (3.40)

similarly to the ordinary state based, parameter C in Equation 3.39 and 3.40 is a

parameter that depends on the material type, stretch between xk and xj , and the

horizon. Also fkj is known as the pairwise force function.

In order to satisfy above mentioned assumptions for the force density vectors, every

bond needs to be independent from influence of other bonds, meaning that micropo-

tential of a bond only depends on deformation from the family points. This leads to
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the following expression of a micropotential

wkj = wkj(yj − yk)

wjk = wjk(yk − yj)
(3.41)

Because definition of micropotentials is different from Equation 3.5, this means that

new equation of motion needs to be formulated. To do this same procedure as before

needs to be followed. Lagrangian needs to be written in an expanded form by showing

only the terms associated with the material point xk

L = ...+
1

2
ρku̇ku̇kVk −

∞∑
j=1

1

2

[
wkj(yj − yk) +wjk(yk − yj)

]
Vk − (bkuk)Vk + ... (3.42)

Using this form of Lagrangian, first term on LHS of Equation 3.8 can be easily deter-

mined
d

dt

(
∂L

∂u̇k

)
= ρkükVk (3.43)

Second term on LHS of Equation 3.8 is now much easier to solve because bond microp-

otentials only depend on deformation from family points

∂L

∂uk
=

[
1

2

∞∑
j=1

∂wkj
∂(yj − yk)

∂(yj − yk)

∂uk
Vj+

1

2

∞∑
j=1

∂wjk
∂(yk − yj)

∂(yk − yj)

∂uk
Vj − bk

]
Vk

(3.44)

After sorting out Equation 3.44, simplified equation of motion for a material point k

can be expressed as

ρkük =
1

2

∞∑
j=1

∂wkj
∂(yj − yk)

Vj −
1

2

∞∑
j=1

∂wjk
∂(yk − yj)

Vj − bk (3.45)

Comparing to the Equation 3.21 and 3.22 it’s apparent that force density vectors in

case of bond based peridynamics are equal and opposite to each other and are defined
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as

tkj =
1

2

∂wkj
∂(yj − yk)

tjk =
1

2

∂wjk
∂(yk − yj)

= −1

2

∂wjk
∂(yj − yk)

(3.46)

From the Equation 3.46 it can be seen that following equality holds

tkj = −tjk and fkj = 2tkj (3.47)

and proves the assumption made in Equation 3.39 and 3.40. Substituting Equation

3.47 into 3.18 leads to familiar equation of motion proposed by Silling (2000)

ρkük =

∞∑
j=1

fkjVj + bk (3.48)

In order to determine parameter C in Equation 3.39 and 3.40, following comparison

to the parameters A and B from ordinary state based formulation can be made. It is

clear that A and B need to be equal to each other in order to satisfy Equation 3.39

and 3.40. Therefore, the terms associated with Θk and Θj in Equation 3.34 and 3.35

must vanish, thus requiring that material parameters a and d to become 0. In that

case parameter C will become

C = 4bωkj

[
(|yj − yk| − |xj − xk|)− αTk|xj − xk|

]
(3.49)

Now pairwise function fkj can be expressed as

fkj = 4bδ(skj − αTk)
yj − yk
|yj − yk|

(3.50)

For bond based peridynamics most used parameter is the bond constant, c and it can

be defined as

c = 4bδ (3.51)

Substituting Equation 3.51 into Equation 3.50 will result in pairwise force function
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Figure 3.6: Bond force as a function of bond stretch

introduced by Silling and Askari (2005)

fkj = c(skj − αTk)
yj − yk
|yj − yk|

(3.52)

Bond constant c can be obtained by using Equation 3.51 and 3.33

c =
30µ

πδ4
with υ =

1

4
for 3D

c =
24µ

πhδ3
with υ =

1

3
for 2D

c =
2E

Aδ2
for 1D

(3.53)

3.2.3 Introducing damage into Peridynamics

The most straightforward way to introduce failure into a peridynamic model is to

allow bonds to fail after the stretch s in the bond reaches a critical limit, s0. Once the

bond is broken, it is broken forever which means that the model is history dependent. In

order to illustrate the mechanisms behind peridynamic failure, a prototype microelastic

brittle material (PMB) can be used (Silling and Askari (2005)). PMB is defined as

f(y(t),x
′ − x) = g(s(t,x

′ − x))µ(t,x
′ − x) (3.54)
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Linear form of force stretch relationship, is shown in Figure 3.6, where g(s) is the linear

scalar-valued function given by

g(s) = cs ∀s (3.55)

where c is a constant and µ is a history-dependent scalar-valued function that can have

only two values, 1 or 0

µ(t,x
′ − x) =


0 if s

(
t
′
,x
′ − x

)
> s0 for all 0 ≤ t′ ≤ t

1 otherwise

(3.56)

In case of bond based theory, history dependent failure parameter is introduced into

the pairwise force function as

f = µcs
y
′ − y

|y′ − y|
(3.57)

Similar approach is done for ordinary state based theory, where history dependent

failure parameter is introduced into the force density vector as

tkj = 2δ
[
ad

Λ

|xj − xk|
Θk + bµ(xj − xk)skj

] yj − yk
|yj − yk|

(3.58)

For a more detailed explanation reader can refer to the book by Madenci and Oterkus

(2014). After defining failure for each bond, next step is to define local damage for

a material point x which will in return indicate crack formation in the body. Local

damage is simply the weighted ratio of the number of broken interactions to the initial

number of interactions and can be expressed as

φ(x, t) = 1−
∫
H µ(x

′ − x, t)dV
′∫

H dV
′ (3.59)

As it can be inferred from the Equation 3.59 local damage can range from 0 to 1. If

local damage is 1 it means that all bonds are broken and if it is 0 it means that none

of the bonds are broken.

Until now critical stretch s0 wasn’t defined. The way in which critical stretch

is calculated is to equate critical energy release rate G0 and total work required to
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Figure 3.7: Interaction between points which cross the fracture surface

eliminate all interactions across the newly created fracture surface, see Figure 3.7. Total

work or total strain energy density for ordinary state based theory can be expressed as

W0 = s2
c

K+∑
k=1

J−∑
j=1

[
2δb|xj− − xk+ |+ ad2δ2

( K−∑
i=1

Vi +
J+∑
i=1

Vi

)]
Vk+Vj− (3.60)

Similar expression can be established for bond based peridynamics, where now b = c
4δ

and ad = 0

W0 = s2
c

K+∑
k=1

J−∑
j=1

(1

2
c|xj− − xk+ |

)
Vk+Vj− (3.61)

Critical energy release rate G0 required to break all the bonds is then found from

G0 =
s2
c

∑K+

k=1

∑J−

j=1

(
1
2c|xj− − xk+ |

)
Vk+Vj−

A
(3.62)

where A is the fracture area. Integral form of critical energy release rate for bond
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Figure 3.8: Integration domain of the micropotentials crossing a fracture surface

based peridynamics in three-dimensions was derived by Silling and Askari (2005) as

G0 =

∫ δ

0

(∫ 2π

0

∫ δ

z

∫ cos−1( z
ξ

)

0

(
1

2
cξs2

0ξ
2

)
sinφdφdξdθ

)
dz (3.63)

In essence this integral represents summation of the work required to break all of the

bonds between points xk+ and xj− , as shown in Figure 3.8. For in depth explanation

reader can refer to Madenci and Oterkus (2014). After evaluating Equation 3.63, critical

energy release rate for total separation of the two halves of the body can be expressed
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as

G0 =


s20cπδ

5

10 for 3D

s20chδ
4

4 for 2D

(3.64)

Now critical stretch can be easily expressed from Equation 3.64 as

s0 =


√

10G0
cπδ5

for 3D√
4G0
chδ4

for 2D

(3.65)
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Peridynamic Solver -

VOPDSolver

4.1 Introduction

One of the reasons behind development of VOPDSolver (Vazic Oterkus Peridy-

namic Solver) was a need for a suitable programing framework in order to develop and

test peridynamic codes. Up to now there are only a few peridynamic solvers (such as

Peridigm or LAMMPS) that are capable of defining and solving complex tasks. Usually

what happens when working on new perdynamic code is development of basic peridy-

namic framework. This basic framework includes simple 2D or 3D geometry and mesh

development, such as a square or rectangular plate, round disc, cube or sphere. Where

all of these geometrical objects are easily represented and mesh is defined by using

basic trigonometry. Also simple brute force family search is usually used, which isn’t

suitable for large problems. Furthermore geometrically simple boundary conditions are

applied and all of the supporting data is hard-coded. All of the above mentioned steps

create on-off codes that aren’t reusable when something is changed or at very least a

lot of reprogramming is needed for code to work properly.

With this in mind VOPDSolver was created using object oriented architecture and

C++ language. All the development was done in Microsoft Visual Studio IDE, target-
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ing Microsoft Windows operating system. VOPDSolver has ability to define complex

geometrical structures and also because it’s object oriented it allows straightforward im-

plementation of new geometrical classes. Each 2D and 3D object can be used to create

peridynamc mesh (cloud of points/particles bounded by the PD body). As compared

to basic peridynamic codes, VOPDSolver implements several family search algorithms:

Brute-force search, Region partitioning algorithm, K-d Tree and Boost R Tree. Fur-

thermore VOPDSolver has are several solvers which are dependant on the peridynamic

theory - Bond Based Solver or Ordinary State Based Solver. Also further solver dis-

tinction is made based on problem definition - Dynamic Solver or Static/Quasi-static

Solvers.

All of the above mentioned parts of VOPDSolver together with class definitions for

different types of materials, boundary/loading conditions and correction factors and

time loop parallelization makes VOPDSolver capable of dealing with complex static,

dynamic or even impact problems. In the following sections more detailed explanation

will be given for geometry and mesh classes, family search algorithms and solver types.

4.2 Geometry and Mesh

Before delving deeper into Geometry Class and Mesh Class definitions, peridynamic

body and mesh definition in context of VOPDSovler needs a closer examination. Peri-

dynamic body is a geometrical object discretised by number of particles, each describing

some amount of volume. On the other hand peridynamic mesh is a cloud of points/par-

ticles bounded by the PD body. This shouldn’t be conflated with finite element mesh or

finite element mesh generation. In finite element case, mesh generation is a procedure

where mesh algorithm generates a polygonal or polyhedral mesh that approximates a

geometric domain.

Currently there are only a few peridynamic solvers (such as Peridigm or LAMMPS)

that are capable of defining and solving complex tasks. One of the problems is geometry

and mesh definition which becomes cumbersome as models move away from simple 2D

& 3D problems (such as plate or cube). In order define, discreticize and solve complex
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Figure 4.1: Rough peridynamic mesh of a ship hull cross section; a) 2D and b) 3D

peridynamic bodies, such as ship hull cross-section, airplane fuselage etc. (see Figure

4.1), VOPDSolver has variety of geometry classes that are capable of dealing with

such problems. Because of the peculiarities of peridynamic mesh which was mentioned

before, VOPDSolver geometrical objects are acting as bounding boxes. This can be

easily illustrated on a 2D example of a square plate (see Figure 4.2). Mesh generation

takes a few simple steps. First step is to generate an initial cloud of points that is larger

than the object being discreticized (in this case a plate Figure 4.2a). Second step is to

superimpose the plate on top of the mesh of points (Figure 4.2b) and last step is to

determine points that are inside the plate (Figure 4.2c). Once that is done the plate is

fully discreticized. Points that are not inside the plate are saved for later use as they

could become a part of boundary condition points.

4.2.1 Geometry Definition

VOPDGeomtry classes contain definitions for variety of 2D & 3D geometric shapes,

such as polygon, polyhedron, sphere, ellipse etc. Furthermore each geometry class

contains mesh and material properties, as this is a common way to organize structural

analysis code.
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Figure 4.2: 2D peridynamic mesh generation

Figure 4.3: VOPDGeometry 2D class diagram

It can be seen from the Figure 4.3 and 4.4 that each geometry class inherits an

abstract class called VOPDGeometry. This class contains all of the shared methods

and properties that each derived geometry class needs to inherit. Those properties and

methods are, for example, ability to add material, mesh, load, cut and paste boolean

operations, definition of crack etc. Each derived class will implement these methods

according to their own needs.

In order to generate peridynamic mesh as it is shown in Figure 4.2, each geometry

class needs to implement a method that will determine the position of the point with

respect to the object boundaries - is the point inside or outside of the body. For 1D

objects such as lines and arcs, a simple line discretization is used as there is no need

to determine if the point is inside or outside of the body. For 2D bodies a ray casting

algorithm is used and for 3D bodies a simple point to plane distance algorithm is
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Figure 4.4: VOPDGeometry 3D class diagram

applied. Specifics of each algorithm will be explained in the following sections.

4.2.2 Mesh Definition

As it was mentioned before, in peridynamic theory a body is discretized by a finite

number of material points/particles and each particle connects to other particles within

a range called a material’s horizon (Freimanis and Paeglitis (2017)). Those material

points or the peridynamic mesh in VODPSolver is stored in a tree like structure, called

spatial trees, except for the 1D mesh. For 1D peridynamic mesh, material points will

be stored into a simple array in either ascending or descending order. Reason behind

not using spatial trees for one dimensional spatial data is that those algorithms are

developed for higher dimensional objects. Currently in VOPDSolver, K-d Tree and R-

Tree are the spatial tree algorithms that are used for storing and querying peridynamic

points. Main reason behind using spatial tree structures in VOPDSolver is necessity

for fast and efficient family search. Furthermore spatial tree structures can be used

for any other queries that can arise during peridynamic analysis, such as calculating

short-range repulsive forces. Developed and used family search algorithms such as K-d
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Tree and R-Tree are further explained in the following sections.

Currently in VOPDSolver, 1D, 2D, and 3D mesh classes are developed and imple-

mented. As it can be seen from the Figure 4.5 each mesh class inherits an abstract

class called VOPDMesh. This class contains all of the shared methods and properties

that each derived mesh class needs to inherit. Those properties and methods are, for

example, ability to add constraints, initial conditions, and different types of loads. Each

derived class will implement these methods according to their own needs.

4.2.2.1 2D PD Mesh - Ray Casting Method

Ray casting algorithm for solving Point-in polygon (PIP) problem is known and

used since early-1960s. In computational geometry PIP is a problem where for a given

point in the plane the algorithm needs to find out if the point is inside, outside or on

the boundary of a polygon. Basic idea behind Ray casting algorithm is to test how

many times a ray, starting from an arbitrary point and moving in any fixed direction,

intersects the edges of the polygon. There are three possible outcomes (see Figure 4.6)

• point is outside of the polygon - the ray will intersect its edge an even number of

times

• point is inside of the polygon - the ray will intersect the edge an odd number of

times

• point is on the edge of the polygon - in this case algorithm will fail

When the algorithm is implemented on a computer which has a finite precision

arithmetic, the results may be incorrect due to rounding errors - if the point lies very

close to the boundary or on the boundary (depending on the precision). Usually this

isn’t a concern, as speed is much more important than complete accuracy in most

applications. However, in computational mechanics solver such as in Peridynamics this

can potentially become a large problem. Therefore in order to create formally correct

Peridynamic program, one would have to introduce a numerical tolerance ε and test

whether PD material point lies within ε of the polygon edge, in which case the algorithm
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Figure 4.5: VOPDMesh class diagram
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Figure 4.6: Basic idea behind Ray Casting Algorithm

should consistently include or exclude peridynamic material point from the mesh. This

approach will introduce a certain numerical error that can be mitigated by increasing

peridynamic mesh density.

4.2.2.2 3D PD Mesh - Point To Plane Distance Algorithm

Compared to the 2D Ray casting algorithm 3D Ray casting or Ray tracing algorithm

is several times more complex and represents a monumental effort for implementation.

One could be tempted to use a slightly less complex way, so called Cartesian coordinate

transform, but this approach is usually used for certain special cases, such as, if the

boundary is a perfect cube. This algorithm is also called Axis Aligned Cube where

one can simply check if X, Y, Z coordinates of the point in consideration lie in the

minimum and maximum of the X, Y, Z coordinates of the cube. There are many

commercial libraries that use Ray tracing such as Blender 3D, but this was not an

option as licensing was a limitation, and more simple approach was needed. To this

end, a simple point to plane distance algorithm was used to determine if a the material

point is inside or outside of the object. This kind of algorithm has a certain usage

limitation, on account that can be only used for a convex polyhedron with N faces (see

Figure 4.7). If the body is a concave object than this algorithm will not be able to

determine position of the point.
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Figure 4.7: Polyhedron

Logic behind point to plane algorithm can be defined by following steps. First step

is to define a polyhedron; polyhedron is a 3D body that has many faces (see Figure

4.7) and each face has a face plane in which the face lies in. For each face plane an

outward normal vector is defined, which points outside of the polygon. A point to

face plane distance defines a geometry vector, if the distance vector has an opposite

direction with the outward normal vector, then the point is in ”inside half space” of

the face plane, otherwise, it is in ”outside half space” of the face plane. A peridynamic

point is determined to be inside of the polyhedron if the point is in ”inside half space”

for all faces of the polyhedron (see Figure 4.8).

Figure 4.8: Determining if the PD point is inside or outside the polyhedron

As it was mentioned above, the distance vector is compared to the outward normal

vector that is pointing outside of the polyhedron. Normal vector to the face plane is

defined by the vector product of two vectors that lie in the plane. Next step is to
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define that normal vector in such a way so it is pointing outwards from the polyhedron.

In order to define outward normal vector for all the faces of the polyhedron following

algorithm is defined as

• For any 3 vertices from N polyhedron vertices construct a triangle plane

• Generate normal vector n as a vector production of 2 edge vectors u and v from

the 3 vertices P0, P1 and P2 that define the triangle. The vertice P0(x0, y0, z0)

is the common beginning point of the 2 edge vectors

• Calculate the face plane with equation

A ∗ x+B ∗ y + C ∗ z +D = 0 where D = −(A ∗ x0 +B ∗ y0 + C ∗ z0) (4.1)

• Next step is to determine if the triangle plane is a face plane by checking if

all other vertice points are in the same half space of the triangle plane. The

downside is that this condition requires the convex assumption, which reduces

usability of this method for only convex polyhedrons. For concave polyhedrons,

using this relatively simple method will make it impossible to distinguish between

a polyhedron’s real face and a polyhedron’s inner triangle

• Find all other vertices that are in the same face plane and append them to the

initial vertices

• Running this schema on all other remaining vertices the algorithm will find all

faces with their outward normal vectors and their complete vertices.

One of the apparent problems with this algorithm is that this approach isnt ex-

tremely fast because in the worst case scenario - PD point is inside the polyhedron,

time complexity will be O(Nf), where Nf is number of faces. Never the less this algo-

rithm is sufficient for generating relatively highly complex 3D polyhedron objects.
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Figure 4.9: Inner triangle vs polyhedron face

4.2.3 Voronoi Tesselation for Peridynamic Mesh

When dealing with structural analysis on a micro level, material structure becomes

important. This means that in peridynamic analysis polycrystalline structure of the

material in question needs to be taken into a consideration. In this case Voronoi

tesselation is used to represent crystallographic structure.

The Voronoi tesselation is named after Ukrainian mathematician Georgy Voronoy.

Voronoi tesselation can be also found under different names, such as, Voronoi diagram,

Voronoi decomposition, Voronoi partition or Dirichlet tessellation. In general Voronoi

diagram is a partition of a plane into regions close to each of a given set of objects. In

the simplest case, these objects are a finite set of points in the plane where for each

point corresponding region consists of all the locations closer to it than to any of the

other points (see Figure 4.10). These regions are called Voronoi cells, where each cell

can only be a convex polygon. This means that the boundaries are defined by straight

line segments and all corners have internal angles less than 180◦.

Distance metric for Voronoi cell definition in engineering application is usually Eu-

clidean distance. But that doesn’t have to be the case for other disciplines, since some

will use for example Manhattan distance when determining Voronoi cells. In case of

VOPDSolver, Euclidean distance is the preferred option. Furthermore, when defin-

ing Voronoi cells in order to represent for example polycrystalline structure, standard
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Figure 4.10: 2D Voronoi tesselation

Voronoi diagram procedure isn’t necessary. This is because peridynamic mesh is com-

posed of material points, which means that only step needed to be done is definition

of random seeds (points representing crystals in a polycrystalline structure) and then

finding closest material points for each seed point via Euclidean distance, see Figure

4.11. In essence this means that standard Voronoi cell is defined by a seed, edges

and vertices and in case of peridynamic Voron cell it is defined only by the seed and

closest material points to that seed which is the end result that is needed in order to

simulate polycrystalline structure. In other words we would have the same result if we

created standard Voronoi cells and than tried to find which material points belong to

which Voronoi cell. This way the procedure is less computationally expensive and the

accuracy is the same.
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Figure 4.11: 3D Peridynamic mesh with Voronoi tesselation

4.3 Family Search

When it comes to efficiency of PD codes, apart from the time integration step,

the most time consuming part is the family member search algorithm. The time-

consumption is very dependent on the horizon size, δ of a material point. If PD domain

is going to be solved statically, the stiffness matrix must be constructed by considering

family members of each material point. Stiffness matrix created in this manner will

have higher density when compared to finite element (FE) implementation of CCM.

Constructing such a populated global stiffness matrix can be very time-consuming

and this process, if not done in a most possible efficient way, can seriously impede

the in-house PD code’s efficiency. Furthermore, commonly used mesh-free methods in

peridynamics experience serious issues with accuracy and convergence due to rough

approximation of the contribution of family nodes close to the horizon boundary (Sele-

son and Littlewood (2016)). This means that when creating efficient and accurate PD

codes, one needs to take into account not only family search or surface corrections, but

also accurate computation of volumes near the boundary of the horizon.

The family search is basically a ranged query process where the goal is to find the

members which reside inside the horizon of each material point. Although it may not

be always necessary, family members of a material point need to be updated. This

usually happens if adaptive search is needed.
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Another factor that can influence family search is the way in which surface correction

factors are calculated. As explained in Le and Bobaru (2018), there are several surface

effect correction methods such as volume method, force density method, energy method,

force normalization method, and fictitious nodes method. Most of these methods don’t

influence the family search process as they don’t add any additional spatial data into

the peridynamic model and mainly modify either the bond stiffness or the force state for

bonds near the boundaries of the surface. Only exception is the fictitious nodes method

where a layer of extra nodes (fictitious nodes) are added around surface boundaries so

that every real node has a full horizon. In order for this approach to work, the size of the

layer of fictitious nodes needs to be at least equal to one horizon size around the original

PD domain. This extra layer of points will naturally increase the number of PD points

that need to be searched and increase the family search time. According to Le and

Bobaru (2018), although this approach practically eliminates PD surface effects, it has

certain limitations especially when dealing with non-straight boundaries since family

members definition becomes rapidly complex. On the other hand, peridynamic models

with irregular and non-uniform discretized solution domains can also influence family

search process (Chen (2019)). Irregular mesh can have a large impact on gridding

algorithms (Verlet list, cell-linked lists or Partitioning algorithm) as it will increase

unnecessary distance computations between points.

In literature, there are few studies on family member search algorithms related

with Peridynamics. Diyaroglu (2016) introduced an efficient way of searching family

members of each material point by utilizing localized squares for 2-dimensional (2D)

and cubes for 3-dimensional (3D) configurations. Liu et al. (2018) also showed a similar

family search algorithm named Family-member search with link list which utilizes an

equidistant grid of squares holding certain number of points.

On the other hand, there is an extensive body of work on near-neighbour search

algorithms in molecular dynamics. Methods that are predominantly investigated are

Verlet List and cell-linked list. Domı́nguez et al. (2011) investigated the efficiency of

these methods and proposed a novel neighbour search algorithm based on a dynamic

updating of the Verlet List. In a study by Viccione et al. (2008), numerical sensitiv-
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ity analysis of Verlet List and cell-linked list efficiency was conducted. In this work,

efficiency was studied as a function of Verlet List size and cell dimensions. Another

interesting study was done by Howard et al. (2016) where a novel approach based on

linear bounding volume hierarchies (LBVHs) for near-neighbour search was introduced.

In essence, bounding volume hierarchies (BVHs) are tree structures and mainly used

in collision detection and ray tracing. They are very similar to R-tree structures that

are investigated in this paper. Furthermore, these authors compared the LBVHs to

the state-of- the-art algorithm based on stenciled cell lists and found that LBVHs out-

performed the stenciled cell lists for systems with moderate or large size disparity and

dilute or semi-dilute fractions of large particles (conditions typical in colloidal systems).

The fundamental family search algorithms available in the literature from weak to

robust are investigated in this section including brute-force search, region partitioning

and tree data structures. In the VOPDSolver following algorithms are implemented:

Brute-force search, Region partitioning algorithm, K-d Tree and Boost R Tree. From

these algorithms only K-d tree is regularly used for family search.

4.3.1 Brute-force search

The most straightforward algorithm for family member search is the so called brute-

force search or exhaustive search algorithm in which all possible candidates, so called

material points, are systematically enumerated. Thus, all material points, which are

active in the domain, are looped over and they are checked if they satisfy a certain

criterion. The criterion in this case is whether the member material point is in the

range of horizon size, δ, i.e. |x(j ) − x(i)| < δ. As shown in Figure 4.12, if the reference

length between two material points x(i) and x(j ) or the size of a bond is bigger than the

specified horizon size, the material point is skipped and other points inside the domain

are checked for family members of the main material point x(i).

It is a very simple search algorithm to implement and it always determines the

correct family members of a material point. Hence, all researchers without any effort

can use it to solve the problems of small size, which does not consume substantial

time in family search part. The computational cost is proportional to the number of
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Figure 4.12: Brute-force search algorithm for the material points, x(i)

candidate material points and it tends to grow very quickly as the size of the problem

increases, which causes combinatorial explosion. Combinatorial explosion occurs in

computing environment in the following sense; if a system has n Boolean variables,

which gives two possible states (true and false), the system will have 2n possible states.

If the system has n variables that can have M possible states, the system will have

M n possible states. Thus, the brute-force algorithm has the worst case complexity of

O(nn), where n is the number of material points and O(.) represents amount of time

to run the algorithm or so-called time complexity.

4.3.2 Region Partitioning

The region-partitioning algorithm proposed by Diyaroglu (2016) is elaborated in

this section. In this technique, the solution domain is divided into square grids as

shown in Figure 4.13. Instead of searching for the entire solution domain as in brute-

force search algorithm, only the main grid, which keeps the main material point x and

the neighboring grids are searched for its family member points, x’. It is very easy

to implement and the gain in speed is substantial compared to the basic brute search.

However, the oddly shaped bodies would decrease the efficiency of this algorithm. Since

the grid shapes can only be in square or cubic forms, the extra time would be spent
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for the points outside the main region. These points, which are outside the problem

domain, must be deactivated later as shown in Figure 4.13.

Figure 4.13: Material points inside the domain of interest with square grids

Note that Mattson and Rice (1999) proposed an approach similar to Diyaroglu

(2016) to deal with near-neighbour calculations for molecular simulation techniques

such as molecular dynamics or Monte Carlo. In their work, they tried to make im-

provement on conventional cell-linked list method as they divide the domain into a

grid of cells populated by atoms and near-neighbour search was done over main cell

and its neighbouring cells. In their work, they proposed a modified cell-linked list

method which should substantially decrease unnecessary internuclear distance compu-

tations (neighbouring cells contain more atoms than necessary).

A rectangular problem domain with PD material points inside the square grids is

shown in Figure 4.14. The size of square grids, which partition the problem domain,

is determined based on the size of the horizon, δ and in this example case δ = 3∆ in

which ∆ denotes the discretization size (distance between the material points). Region

partitioning algorithm can be broken down into two sections including construction

of material points and family member search parts. In the first section, each square

region is constructed with 6 points along x and y directions except for the end regions.

The region numbers are shown in red color. Thus, the family members of each main

material point can only reside in its own and neighboring regions. The following scalars

and arrays can be constructed accordingly;
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ncl : Number of columns along x axis

nrw : Number of rows along y axis

lstncl : Number of points in the last column along x - axis

lstnrw : Number of points in the last row along y - axis

nrgn: Total number of regions

region: An array which gives the first material point’s number at each region.

For a rectangular domain shown in Figure 4.14, these scalars and arrays are defined as;

ncl = 5, nrw = 4, lstncl = 1, lstnrw = 2, nrgn = 20

region (1) = 1, region (6) = 40, region (11) = 79, region (16) = 118

region (2) = 10, region (7) = 49, region (12) = 88, region (17) = 124

region (3) = 19, region (8) = 58, region (13) = 97, region (18) = 130

region (4) = 28, region (9) = 67, region (14) = 106, region (19) = 136

region (5) = 37, region (10) = 76, region (15) = 115, region (20) = 142

Figure 4.14: Partitioned rectangular problem domain
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In the second section, the family members of each main material point are deter-

mined. Thus, the following arrays can be generated;

nfmem: Total number of family members for each main material point

fmem: Family member point numbers for each main material point

indx : Index array which defines the main material point’s location in the fmem

array

In order to create these arrays in a most efficient way and reduce the search time

dramatically, the advantage of region partitioning completed in the first section is

utilized. First, the main region’s number and its neighboring regions numbers are

defined and they are searched for family member points of the main point. For instance,

if the region 14 is chosen as the main region, the search for the family members is only

performed inside the neighboring regions of 8, 9, 10, 13, 15, 18, 19 and 20. Figure

4.15, shows the family member material point search for the main material point 109.

The regions are enumerated locally with a blue color. At this level, the following

scalars/arrays can be created;

fpoint : The first point’s number (106) inside the main region.

lpoint : The last point’s number (114) inside the main region.

neighrw(1:9): The number of material points along x axis at each locally num-

bered region;

neighrw(1) = 3, neighrw(4) = 3, neighrw(6) = 3, neighrw(8) = 1

neighrw(2) = 3, neighrw(5) = 1, neighrw(7) = 3, neighrw(9) = 3

neighrw(3) = 1

neighcl(1:9): The number of material points along y - axis at each locally num-

bered region;

neighcl(1) = 2, neighcl(4) = 3, neighcl(6) = 3, neighcl(8) = 3
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neighcl(2) = 2, neighcl(5) = 3, neighcl(7) = 3, neighcl(9) = 3

neighcl(3) = 2

Figure 4.15: The neighboring regions for the material point 109

Thus, the family members of the main material point 109 inside the main region 14

are determined. This search algorithm can further be improved by using pink colored

rectangle shown in Figure 4.15. The regions along x - and y-axes are numbered in the

base of three as depicted in pink color. By doing so, the family member search is only

allowed to be done in rectangular region with 7x7 points. Please see Appendix A for

family search algorithm for 3-Dimensional configurations.

Although this approach gives significant amount of boost and speed in family search

process, it is crude and inflexible way to organize and query the spatial data. This

approach works fine for highly symmetrical meshes and straight boundaries, where

the majority of the portioned regions have the optimal number of points defined by

the horizon size. However, it suffers for highly irregular meshes. Furthermore, the

partitioning is dependent on horizon size and any change in horizon size necessitates the

repartitioning of the problem domain. These observations are self-evident when having

a closer look at the algorithm, which divides the solution domain into a square grid and

the family search is only done for the main region that holds the main material point
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and its neighbouring grids. When using this approach, partitioning algorithm works

on the assumption that it needs to search only the immediate neighbouring grids as it

expects that all the family points are contained within them. This assumption comes

from the fact that the mesh has an equidistant spacing between material points which

isn’t the case for irregular meshes. Moreover, as it was mentioned earlier, partitioning

depends on the horizon size, which means that if the horizon size is changed, the

partitioning needs to be updated. Updating could be done by two approaches; either

number of points in each region needs to be changed or if the number of points is kept

constant, then number of neighbouring regions needs to be adjusted.

4.3.3 Tree data structures

The storage and queries of peridynamic points can be achieved with many data

structures. The most basic data structure is a simple array. An array is a static

data structure, which can be randomly accessed and it is easy to implement as in

brute-force search algorithm. On the other hand, the linked-list data structures are in

essence a linear collection of data elements and each element points to the next which

are dynamic in nature and are ideal for frequent operations such as adding, deleting,

and updating. The main drawbacks of linked-list structures compared to static arrays

are the high memory consumption and the sequentially accessed data. Other data

structures including stacks, queues and hash table are specialized for complex problems.

The main disadvantage of using array or linked-list data structures to store material

points is the time necessary to search for a specific point or set of points, i.e. family

members. Since static arrays and linked-list structures are linear, the query time is

proportional to the size of data set. This can be nicely visualized if we imagine the

data set with a size of n. The number of comparisons required to find an item in the

worst case scenario is O(n). Therefore, efficient data structures are needed to store and

search the data.

The evolved form of linked data structure (linked-list, vector, stack and queue) is

a tree (Figure 4.16), which represents collection of nodes and their relations (parent-

child relationship). As compared to other linear (sequential) data structures, a tree is
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in non-linear or hierarchical form. A tree is either empty or comprising a root node

with zero or more subtrees called children. A rooted tree form is the main interest of

the current study and it has the following properties:

• One node is distinguished as the root which is node 1.

• Each node may have zero or more children.

• Every node (exterior to root) is connected with directed edge from exactly one

to other node and its direction is parent to children.

Figure 4.16: General concept of a tree structure

In Figure 4.16, node 1 is a parent (root node) and nodes 2, 3, and 4 are its children

or sub-trees. On the other hand, node 2 is a parent to nodes 5, 6, and 7. Each node can

have arbitrary number of children. Nodes with no children are called leaves, or external

nodes. In Figure 4.16, nodes 3, 5, 7, 9, and 10 are the leaves and other nodes are called

as internal nodes. Internal nodes have at least one child. Nodes with the same parent

are called siblings. In Figure 4.16, nodes 2, 3, and 4 are siblings. The depth of a node

is the length of the path from root to the node. For instance, the depth of node 9 is

3. The height of a node is the length of the path from node to the deepest leaf. The

height of node 1 is 3. The height of a tree is equal to height of a root. The size of a

node is equal to the number of nodes available in the subtree of that node (including

itself). The size of node 2 is 5.
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4.3.3.1 Binary Tree

Binary tree is a specialized case of general tree structure where each node has at

most two children called the left and right child. If each node has exactly zero or two

children, it is named as full binary tree. In a full tree, there are no nodes with exactly

one child. A complete binary tree is completely filled from left to right with a possible

exception of the bottom level. Figure 4.17 shows full- and complete-tree structures. A

complete-tree with a height of h has between 2h and 2(h+1) − 1.

Figure 4.17: Two types of binary tree; a) full- and b) complete-tree structures

Figure 4.18: Balanced versus unbalanced binary tree; a) balanced- and b) unbalanced

Other types of binary tree are the balanced and unbalanced binary tree structures

(Figure 4.18). The height of balanced-tree differs at most one from its left to the right.

A balanced binary tree is also known as an AVL (Adelson Velskii Landis) tree which

is developed by Adelson et al. (1962).

78



Chapter 4. Peridynamic Solver - VOPDSolver

4.3.3.2 Binary Search Trees

A Binary Search Tree (BST) is a data structure which can be traversed/searched

according to an order. A binary tree is actually a binary search tree (BST) if and only

if it is in an ordered sequence. The idea of a BST is the data stored in an order so that

it can be retrieved very efficiently. The nodes can be sorted as shown in (Figure 4.19)

and in the following way:

• Each node contains one unique key (value used to compare nodes in case of PD

this would be x,y, z position).

• The keys in the left subtree are less than the key in its parent node (L subtree).

• The keys in the right subtree are greater than the key in its parent node (R

subtree).

• Duplicating node keys are not allowed.

Figure 4.19: Binary Search Tree (BST) with left and right subtrees

If BST is built in a balanced form, log time access is required for each element.

In other words, algorithm needs to do at worst log2(n) comparisons in order to find a

specific node. An arbitrary BST with a height of h has total possible number of nodes

equal to 2h+1 − 1. In order to find a particular node only one comparison needs to

be performed at each level, or a maximum of h+1 in total. This is because each node

can only have two children and only one of them satisfies the search condition. If the

number of nodes, n in a tree is known, the number of comparisons to fully traverse the
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tree can be calculated as

2h+1 − 1 = n (4.2)

which leads to

h = log2(n)− 1 = O(log2(n)) (4.3)

Thus, a balanced binary search tree with n nodes has a maximum order of log2(n)

levels meaning that at most log2(n) comparisons are needed to find a particular node.

The main problem of achieving O(log2(n)) is the necessity of balanced-tree form and it

is not a trivial task. One of the ways to achieve the balanced-tree form is to distribute

the data randomly. The probability of forming balanced-tree structure would be high.

However, if the data has already a pattern (sorted list of peridynamic points), a simple

FIFO (first in first out) insertion into a binary search tree will result in growing tree

either to the right or to the left side of the root node. This kind of unbalanced binary

search tree is no more efficient than the regular linked-list. To this end, a great care

needs to be taken in order to keep the tree as balanced as possible. There are many

techniques for balancing tree structures as given in refs. Bayer (1972) and Guibas and

Sedgewick (1978).

4.3.3.3 Spatial search trees

Spatial data or geospatial data is the information of a physical object which can be

represented with numerical values in a geographic coordinate system. In peridynamic

sense, this corresponds to material points with their volumes and positions in a coordi-

nate system. The Geographic Information Systems (GIS) or other specialized software

applications can be used to access, visualize, manipulate and analyze geospatial data.

Spatial data has two fundamental query types: nearest neighbors and range queries.

Both serve as a building block for many geometric and GIS problems. Solving both

problems (big data problems within a realistic time span) at a scale requires defining

a spatial index. Spatial indices are used to optimize the spatial queries. Conventional
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index types (binary search tree) do not efficiently handle the spatial queries; for in-

stance, the query of the distance between two material points if they reside within the

spatial area of interest. Some of the efficient spatial index methods such as R-tree and

K-d tree searches can overcome this deficiency.

Data changes are usually less frequent than the queries, which means that incurring

an initial time cost of processing data into an index is a fair price to pay for instant

searches afterwards. This is especially true for most of the PD simulations in which

initial family members do not change during the analysis.

Figure 4.20: First two levels of R-tree

Almost all spatial data structures share the same principle to enable efficient search;

branch and bound. This means arranging data in a tree-like structure and discarding

branches if they do not fit our search criteria. The well-known spatial trees are R-

tree and K-d tree. R-tree has tree data structures used for spatial access methods as

proposed by Guttman (1984). The R-tree access method organizes any-dimensional

data in a tree-shaped structure called an R-tree index. The index uses a bounding box

which is in a rectilinear shape such that it contains the bounded objects (in case of

PDs, the objects are the material points). Bounding boxes can enclose the data objects

or other bounding boxes. In Figure 4.20, an R-tree with two levels of bounding boxes is

shown. There are nine red boxes at the upper level and each red bounding box contains

nine purple bounding boxes as the lower level. Grey points represent the peridynamic

points sorted into this R-tree.
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On the other hand, Bentley (1975) introduced K-d tree which is similar to R-tree.

In this method, the points are sorted into two halves (around a median point) either

left and right, or top and bottom, alternating between x and y, or x, y, and z or any

other n-dimensions split at each level. Figure 4.21 shows the two initial splits with a

red line along x-axis and subsequent splits along y-axis depicted as purple line.

Figure 4.21: First two levels of K-d tree

Compared to R-tree, K-d tree search usually only contains points (not the rectan-

gles) and it cannot handle the adding and removing points. However, it is easier to

implement and it is usually very fast. Both R-tree and K-d tree searches share the

principle of partitioning data into axis-aligned tree nodes. Since PD mesh is defined

with material points which are in essence spatial data, selection of K-d or R- trees rep-

resents a logical choice when it comes to family search. In following sections, in-depth

reviews of K-d tree and R-tree algorithms developed in BOOST libraries are provided

and their implementation to PD codes are demonstrated.

4.3.3.4 R-tree search

R-tree is a hierarchical data structure based on B+ tree. B+ tree is a binary

tree but the parent node can have more than two child nodes. R-tree is used for

dynamic organization of a set of d-dimensional geometric objects (PD points can either

be in 2-Dimensional or 3-Dimensional forms) and they can be represented by minimum

bounding d-dimensional rectangles (MBRs). Each node of R-tree corresponds to the
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MBR that bounds its children.

It must be pointed out that the MBRs surrounding different nodes may overlap

with each other. Furthermore, MBR can include (in a geometrical sense) many nodes,

but it can be associated with only one of them. This means that a spatial search

may visit many nodes before confirming the existence of a given MBR. This also can

lead to false alarms when representing geometric object with their MBRs. To avoid

these kinds of mistakes, the candidate objects must be examined. For example, Figure

4.22 illustrates the case where two peridynamic material points and their horizons (red

circles) which are not intersecting but their MBRs do. Therefore, R-tree represents a

filtering mechanism for reduction of extremely costly direct examination of geometric

objects.

Figure 4.22: Intersecting MBRs, where peridynamic family member points are only in
MBR A

An R-tree is defined by its order (n, N) and it has the following characteristics:

• Each leaf node (unless it is the root) can host up to N entries (peridynamic

points), whereas the minimum allowed number of entries is n ≤ N/2. Each entry

has the form of (mbrID, oID), where mbrID represents the identifier of MBR that

spatially contains the object and oID is the objects identifier (peridynamic point).

• Each internal node can store between n ≤ N/2 and N entries (MBRs). Each
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entry is of the form (mbrID, p), where p is a pointer to the child of the node and

mbrID is the MBR that spatially contains the MBRs contained by child p.

• The minimum allowed number of entries in the root node is 2, unless it is a leaf.

When the node is a leaf, it can contain zero or single entry because leaf nodes

represent the end of a tree.

• All leaves of the R-tree are at the same level.

Figure 4.23: MBRs data and their inner nodes

R-tree is a height-balanced tree with all leaves are at the same level. Since, R-trees

are dynamic data structures, the global re-organization does not require to handle

insertions or deletions. It is one of the main advantages of R-tree compared to K-d tree

and AVL tree. Figure 4.23 shows a set of MBRs with some data geometric objects.

This can represent PD points. The MBRs are from number 1 to 32 and they are stored

at the leaf level of R-tree. Five MBRs (A, B, C, D, and E) organize the aforementioned

rectangles (where each contains 9 peridynamic points) into an internal node of R-tree.

Assuming N = 10 and n = 5, Figure 4.24 depicts corresponding MBRs.

4.3.3.4.1 K-d tree search A K-d tree, or k-dimensional tree, is a binary data

structure, which stores k-dimensional data, for organizing number of points in a space

with k dimensions (Bentley (1975)). Each level of K-d tree splits all children with spe-

cific dimension. Each level of the tree is compared against one dimension. This means
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Figure 4.24: MBRs data and their inner nodes

that every node has 2 children each corresponding to an outcome of the comparison of

two records based on a certain key which can be chosen as ”discriminator”. In a similar

manner with standard binary tree, the K-d tree subdivides the data at each recursive

level of the tree. Unlike standard binary tree, which uses only one key for all tree levels,

the K-d tree uses k keys and it cycles through these keys for every successive tree level.

In order to build 2 dimensional K-d tree (2-d tree) which comprises (x, y) coordinates,

the keys would be cycled as x, y, x, y and so on for all the successive levels of K-d tree

(Brown (2014)).

Figure 4.25 demonstrates the working mechanism of K-d tree. An array of points is

inserted (first node in the array is a root node) to the system which eventually produces

unbalanced tree. The array is given as;

Ar = [(8,9), (5,11), (15,10), (10,7), (5,3), (2,6), (12,4), (1,7)]

The first cutting plane is in the x direction (blue line) and the next cutting plane is

in the y direction (red line) and so on. This process is repeated until the leaf level is

reached meaning that there are no more points to insert.

4.3.3.5 Balanced K-d tree search

When building a K-d tree, due to the use of different keys at successive levels of

the tree it is not possible to employ rebalancing techniques. Building K-d tree data

structure would cause unbalanced structures. The reason of this is the use of different

keys at successive levels of tree data. Moreover, it is not possible to employ rebalancing

techniques. Rebalancing techniques are used to build self-balancing AVL tree (Adelson-
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Figure 4.25: 2-d tree

Velskii and Landis), where if the height of two child subtrees of any node differ by more

than one. In that case, rebalancing is performed to restore the height. Another self-

balancing tree is the so called the red-black tree (Bayer (1972), Guibas and Sedgewick

(1978)), where each node of the binary tree has an extra bit. This bit is often interpreted

as the color (red or black) of a node. These color bits are then used to ensure that the

tree remains approximately balanced during the insertions and deletions. Since it’s not

possible to employ rebalancing techniques, the typical approach to building a balanced

K-d tree is to find the median of the data for each recursive subdivision of the data.

Bentley (1975) showed that if the median of n elements is found in O(n) time, it would

be possible to build a depth-balanced K-d tree in O(n log (n)) time. In order to find

the median of n elements, sorting algorithm needs to be applied to the data. Most

widely used sorting algorithms are Quicksort, Merge Sort, and Heapsort. Quicksort

(Hoare (1962)) is a divide and conquer algorithm. It picks an element as pivot and

partitions the given array around the picked pivot. In the best case scenario, Quicksort

finds the median in O(nlog(n)) time and in the worst case scenario the time increases

up to O(n2 ). Merge Sort (Goldstine and von Neumann (1963)) is also a divide and

conquer algorithm. The idea behind the Merge Sort is to divide the unsorted list into

n sub-lists. Each sub-list contains one element and a list of one element is considered

as sorted. Afterwards, Merge Sort repeatedly merges sub-lists to produce a new sorted

sub-lists until there is only one sub-list remaining. On the other hand, Heap sort is a

comparison based sorting technique based on Binary Heap data structure. It is similar
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to selection sort which finds the maximum element. Merge sort and Heapsort find the

median in the best case of O(n log n), which leads to O(n log2 n) time for a balanced

K-d tree (Wald and Havran (2006)).

An alternative approach to building a balanced K-d tree would be the presorting

data prior to building a tree (Brown (2014)). The algorithms developed by Brown

(2014) are implemented in our in-house PD solver. The PD points are presorted in each

of k dimension prior to building K-d tree. Thus, it maintains the order of these k sorts

when building a balanced K-d tree. This in return achieves a worst-case complexity of

O(kn log n).

Basic concepts of balanced K-d tree algorithm can be explained with the following

simple example. A small sample of spatial data is considered. This data can be viewed

as a set of PD points from which a K-d Tree is created. The data set consists of 15

(x, y, z) tuples (PD points) which are stored into a list of elements numbered from 0

through 14 as shown in Figure 4.26. First step is to presort the PD points using merge

sort. The points are sorted via super keys; x:y:z, y:z:x, and z:x:y which represent cyclic

permutations of x, y, and z. The points are not sorted independently through x, y,

and z coordinates but each part of the super key (x, y, and z) has a certain level of

significance. Hence, for example, the super key y:z:x is composed from y as a primary

key, z as a secondary key and x as a tertiary key. This means that during the merge sort,

if the two points have identical primary keys, then they are compared using secondary

key, and if their secondary keys are identical, they are compared using the tertiary key.

In case of all the three keys are the same with two identical points, one of the points

is removed. In order to have initial array of points untouched and to save on memory

consumption, the merge sort does not work with initial array of PD points. Instead, it

reorders three index arrays whose elements point to array indices. The initial order of

indices produced by merge sort is shown in Figure 4.26 (see xyz, yzx and zxy columns

under Initial Indices). The next step is to partition the points in x direction, which

is the first splitting dimension, by using x:y:z super key. There, the partition location

is specified by the median element of the xyz -index array under Initial Indices. The

partition results are shown in Figure 4.26 under Initial Indices column in which the
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Figure 4.26: Data slicing for 3-d tree

partitioning does not reorder the array of PD points. Instead, it reorders the yzx -

and zxy-index arrays. Please note that xyz -index array requires no partitioning as it is

already sorted in x direction and this was done when Initial Indices arrays were created.

However, the yzx - and zxy-index arrays require partitioning in x direction by using the

x:y:z super key defined by median point 7:2:6. The partitioning of yzx index array is

achieved as follows:

1. The elements of yzx-index array are compared to super key (median element of

index array - 7:2:6)

2. They are copied either in upper half if they are less than the x value or in lower

half if they are bigger than the x value from xyz super key.

3. The same procedure is repeated for zxy-index array.

The columns of After First Split reveal that the index value of 5 is absent from the

index arrays since it represents the partitioning value. It also becomes the root of

nascent K-d tree, as shown in Figure 4.27. The same procedure is also repeated for
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Figure 4.27: A K-d tree built from (x, y, z ) tuples

y direction, and the partitioned values (see column After Second Split in Figure 4.26)

are removed and stored as children nodes of the root node. This recursive process is

repeated until index array comprises of only one, two or three elements. In the case of

only one point is left after the final split, it is automatically stored as a new node of

K-d Tree. If there are two or three points left, these points are already sorted in the

index array. So, the determination of which point referencing a new node and which

point referencing from children is trivial.

4.3.3.6 Boost R Tree Algorithm

R-tree is currently the only spatial index implemented in Boost.Geometry.Index

library which is a part of overall Boost library (Libraries (2009)). The intended use

of Boost.Geometry.Index is to gather data structures defined as spatial indexes which

can be used to accelerate searching for objects in multidimensional spaces. In general,

spatial indexes store representations of geometric objects which allows the end user to

search for objects occupying some space or object close to some point in a space.

R-tree is a tree data structure used for spatial queries and it is first proposed by

Guttman (1984). Since all objects lie within a bounding rectangle, a query, that doesn’t

intersect the bounding rectangle, also cannot intersect any of the objects contained in

the bounding rectangle. Similar to B-tree, R-tree is also a self-balanced search tree.

The key part of balancing algorithm is the node splitting algorithm (Greene (1989)
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and Beckmann et al. (1990)). Each algorithm produces different splits such that the

internal structure of a tree may become different for each one of them. This means that

more complex algorithms can better analyze the elements and produce less overlapping

nodes. The tree with less overlapping nodes is more efficient in a search process because

less nodes must be traversed in order to find desired objects. The downside of higher

complexity algorithms is that analysis takes more time. In general, faster inserting

results in slower querying and vice versa. Performance of R-tree is contingent on

balancing algorithm, parameters and the data inserted into a container.

Most trees with searching algorithms (e.g. intersection, spatial search, nearest

neighbor search) are rather simple. The key idea is to use the bounding boxes to

decide whether or not to search inside a subtree. This means that most of the nodes

in a tree are traversed during the search. R-trees are suitable for large data sets and

databases, where the nodes can be paged to memory as needed and the whole tree

cannot be kept in the main memory.

Table 4.1: Example structures of trees created by different algorithms and their
operations times*

Linear Quadratic R* -tree Packing
algorithm algorithm algorithm

Example structure
1M Values inserts 1.76s 2.47s 6.19s 1.67s
100k spatial queries 2.21s 0.51s 0.12s 0.07s
100k knn queries 6.37s 2.09s 0.64s 0.52s

*(https://www.boost.org/doc/libs/1_55_0/libs/geometry/doc/html/geometry/

spatial_indexes/introduction.html)

The main problem with an R-tree is that the rectangles do not encompass too

much empty space and do not overlap too much (fewer subtrees need to be processed

during the search). On the other hand, they are balanced (leaf nodes have the same

height). Most of the research and improvements of R-trees are aimed at improving
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the tree building process and they are defined by two main objectives; 1- Building an

efficient tree from scratch (bulk-loading) and 2- Performing changes on an existing tree

(insertion and deletion). Boost R-tree implements several building algorithms which

are linear algorithm, quadratic algorithm, R*-tree algorithm and packing algorithm

(bulk loading algorithm). As can be seen from Table 4.1, packing algorithm is faster

when building the R-tree and also R-trees with better internal structure gives faster

spatial and k nearest neighbors (knn) queries.

4.4 Solver methods

In previous sections initial steps of peridynamic analysis were presented. Geometry

was defined and afterwards mesh was generated. Once that was done, family search

was initiated and additional data was supplied such as material type and boundary

conditions. Next step is to solve the problem. In VOPDSolver there are several solvers

which are dependant on the type of peridynamic theory - Bond Based or Ordinary

State Based. Furthermore solver type also depends on problem definition which can be

dynamic, static or quasi-static.

In Figure 4.28 a simple flowchart for solver selection is described. In this flowchart

it can be seen that first decision is dependant on the type of peridynamic theory.

This is because there are significant differences between these two theories that should

be dealt before proceeding forward, such as, peridynamic constants, surface correction

factors, time step, mass vector, stiffness matrix and time loop structure. After selecting

appropriate peridynamic theory, next step is to define if the problem at hand is of

dynamic nature or static/quasi-static nature. This means that for dynamic problems,

Explicit solver will be applied and for static/quasi-static problems, Direct or ADR

solver will be used. Direct solver will be used for small to medium sized problems and

ADR will be used for extremely large problems. In the following sections each of the

solvers is explained in detail.
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Figure 4.28: Solver selection flowchart

4.4.1 Dynamic Solver

By examining peridynamic equation of motion (Equation 3.18) it’s obvious that

the equation itself is in dynamic form, thus time integration can be performed by

using explicit forward and backward difference technique (Silling (2004)). Peridynamic

equation of motion for the explicit time integration scheme can be rewritten for the nth

time step as

ρkü
n
k =

∑
j

(
tnkj − tnjk

)
Vj + bnk and n = 0, 1, 2, 3, ... (4.4)

where n is the time steps (n = 0 represents beginning of the analysis). After solving

Equation 4.4 by summing force density vectors for each family member and finding
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the unknown acceleration term ünk , velocity and displacement of the material point k

for the next time step can be determined by employing explicit forward and backward

difference techniques. First, velocity is calculated with forward difference technique

u̇n+1
k = ünk∆t+ u̇nk (4.5)

Next step is to calculate displacement of the material point k at time step n + 1 by

using backward difference technique

un+1
k = u̇n+1

k ∆t+ unk (4.6)

The same procedure is repeated for every other material point. In explicit time inte-

gration, time step size must be very small otherwise the explicit scheme will become

unstable. Stable time step size for explicit scheme was derived by Silling and Askari

(2005) and further explained by Madenci and Oterkus (2014) as

∆t <

√√√√√√
2ρk∑

j

[
2adδ

(
dδ

∑
l

(
1
|ξlk|

+ 1
|ξlj |

)
Vl

)
1
|ξkj |

+ 4bδ
|ξkj |

]
Vj

· sFac (4.7)

Furthermore safety factor sFac < 1 is recommended in order to make the analysis more

stable when dealing with nonlinearities in the structure.

4.4.2 Static and Quasi-static Solver

As it was mentioned in the previous Section 4.4.1 , peridynamic equation of motion

is in dynamic form, but that doesn’t mean it is not possible to solve static or quasi-static

problems. There are two most common ways of solving static problems, one is solving

peridynamic equation of motion by using Adaptive Dynamic Relaxation Underwood

(1983). Other way is to rewrite equation of motion into a linear system of equations

and solve them directly.
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4.4.2.1 ADR - Adaptive Dynamic Relaxation

Dynamic relaxation (DR) is an explicit iterative method used for obtaining static

solution of discretised continuum mechanics problem. There are several reasons behind

popularity of DR method. First DR method is very useful for solving highly nonlinear

problems (both geometric and material nonlinearities). Second, because the method is

explicitly iterative there is no need for solving large system of equations. Furthermore,

all quantities maybe treated as vectors, which will result in low memory composition

when implementing DR into a computational code.

In order for DR to reach steady state solution an artificial mass dependent damping

term is introduced in the equation of motion. This will in return reduce the oscillations

in the transient response and by doing so converge towards the static solution.

MÜ(X, t) + CU̇(X, t) + P(U(X, t)) = F(t) (4.8)

where M is artificial mass, C is artificial damping and P is a vector of internal forces.

For linear problems P is usually in the form of

P(U(X, t)) = KU(X, t) (4.9)

where K is a stiffness matrix and U is vector of displacements. In case of dynamic

relaxation, damping matrix C has the form

C = cM (4.10)

In Equation 4.10 c is the damping coefficient. In order to obtain the static solution

of the equation of motion one needs to select appropriate damping coefficient c, time

increment, and mass matrix M such that

P(U) = F or KU = F (4.11)

Unknown vector of displacements U is determined by explicit time integration
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scheme after certain number of iterations. In order not to overshoot the solution,

which can be a large problem for certain problems (snap-trough buckling and plastic

deformation) one needs to find the most effective damping coefficient to obtain the con-

vergence. For this purpose Underwood (1983) introduced Adaptive Relaxation Method

(ADR), where adaptive means that damping coefficient is determined at each time step.

When applying ADR to peridynamic equation of motion Madenci and Oterkus (2014)

rewrote the equation by adding new fictitious inertia and damping terms as follows

DÜ(X, t) + cDU̇(X, t) = F(U,U
′
,X,X

′
) (4.12)

where D is the fictitious density matrix and c is the damping coefficient. Values of D

and c are determined through application of the Greschgorin’s theorem. Vector F is

made of peridynamic interactions and body forces, as

Fk =

N∑
j=1

(
tkj − tjk

)
Vj + bk (4.13)

For detailed explanation of peridynamic application of ADR methods reader can

refer to Madenci and Oterkus (2014). Main advantage of ADR is the explicit nature

that requires no need for solving large system of equations (direct solution). But if the

problem at hand isn’t too large, which in peridynamic sense means relatively coarse

discretization and convergence of the static solution takes too many time steps, then

direct solution could be a better option. Furthermore determining minimal number

of iterations needed to reach steady state solution can be a tedious process and also

minimal number of iterations is problem specific variable - it can’t be used for other

problems.

4.4.2.2 Direct Solution

Dealing with static or quasi static loading assumes that there are no inertial forces,

acceleration is equal to zero. In case of quasi-static loading there is some acceleration

when applying the load but it is very small and can be neglected, which means that
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there are dynamic effects but they are extremely small and the system can be assumed

to be static. In peridynamic terms this means acceleration ü can be omitted from

equation of motion. In case of bond based peridyanmic theory, equation of motions

can be formulated as ∑
j

fkjVj + bk = 0 (4.14)

In order to solve Equation 4.14 for every point in the body, it needs to be rewritten

in matrix form. This means that the peridynamic force function needs to be expressed

in terms of the second-order micromodulus tensor C as

f = C(ξ)η (4.15)

where

C(ξ) =
∂f

∂η
(0, ξ) (4.16)

after solving Equation 4.16 and substituting C in Equation 4.15 leads to matrix form

of peridyamic equation of motion

∑
j

Ckjukj + bk = 0 (4.17)

where u = [ux, uy, uz, u
′
x, u

′
yu
′
z]
T , b = [bx, by, bz]

T and C is a local stiffness matrix for

a single bond (for 3 DOF it has a size of 3x6). For an in-depth explanation of above

procedure reader can refer to Silling (2000) and Bobaru et al. (2009). After summation

over the entire body, standard equation of motion in matrix form is obtained

KU = B (4.18)

in which K, U and B are the global stiffness, the displacement and the body load

matrices of a body. Solving the Equation 4.18 is now a straightforward process by

determining the inverse of stiffness matrix K

U = K−1B (4.19)
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Although finding K−1 looks like an easy job, it can become an exhausting process

when dealing with complex structures. To this end there are well-known and effective

numerical methods for finding an inverse of a matrix, such as

1. Gaussian elimination

2. LU decomposition

3. Cholesky decomposition

4. QR decomposition

5. Bruhat decomposition

Problem with above numerical methods is that in order for them to work in most

optimal way one needs to spend substantial development time. On the other hand there

are many third party libraries that do this exact job very efficiently. VOPDSolver is

currently using Eigen C++ library for solving inverse problems. Furthermore according

to Bobaru et al. (2009) an ill-conditioned stiffness matrix may be created due to the

horizon size and the number of material points which can impede the process. Another

problem that is especially apparent in peridynamics is the density of the stiffness matrix.

In peridynamics stiffness matrix K isn’t as sparse as it is for FEM problems. This is

because each row of stiffness matrix representing one material point has values for every

DOF of every family point. This becomes even more obvious when number of family

points increases due to larger horizon and/or going from 2D to 3D case.

4.4.2.2.1 Eigen C++ Library Eigen is a C++ template library for linear alge-

bra: matrices, vectors, numerical solvers, and related algorithms. It supports all ma-

trix sizes, from small fixed-size matrices to arbitrarily large dense matrices, and even

sparse matrices. Furthermore it supports various matrix decompositions and geometry

features. Eigen is very fast because fixed-size matrices are fully optimized: dynamic

memory allocation is avoided, and the loops are unrolled when that makes sense and

for large matrices, special attention is paid to cache-friendliness.
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#include <Eigen\Sparse>

#include <Eigen/SparseLU>

VectorXd U(n), B(n);

SparseMatrix<double> K;

SparseLU<SparseMatrix<double>, COLAMDOrdering<int> > solver;

// fill K and U;

// Compute the ordering permutation vector from the structural pattern

of K

solver.analyzePattern(K);

// Compute the numerical factorization

solver.factorize(K);

//Use the factors to solve the linear system

U = solver.solve(B);

Figure 4.29: Using Eigen C++ library to solve linear system of equations

In VOPDSolver Eigen SparseLU solver is currently used because it is optimized for

small and large problems with irregular sparsity patterns which suits peridynamics.

Figure 4.29 shows code snipet that demonstrates how to solve a problem KU = B by

using Eigen C++ library.

4.4.3 Parallel Execution

In order to speed up the codes researchers have long been using parallelization

techniques. Programs can run parallel on standard desktop machines or in high perfor-

mance computing (HPC) facilities. Furthermore parallelization can be done by using

either central processing units (CPUs) or graphical processing units (GPUs). CPU

and GPU parallelization can also be combined in order to solve large and complicated

problems.

Any peridynamic code can be parallelized as long as it’s solution method doesn’t

include matrices. In case of VOPDSolver that means Explicit and ADR solvers are

parallelized. To be more exact SPMD (single program, multiple data) technique is used.

In SPMD tasks are split up and run simultaneously on multiple processors with different

input in order to obtain results faster. This means that in SPMD multiple autonomous

processors simultaneously execute the same program at independent points. Part of

the code that is parallelzied is the calculation and summation of force density vector
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#include <omp.h>

//find number of processors

SYSTEM_INFO sysinfo;

GetSystemInfo( &sysinfo );

int numCPU = sysinfo.dwNumberOfProcessors;

//split the loop into numCP-1 threads

#pragma omp parallel num_threads(numCPU-1)

{

//set thread priority

SetThreadPriority(GetCurrentThread(), THREAD_PRIORITY_HIGHEST);

#pragma omp for

for(int iNode = 0; iNode < totalNumOfPoints; iNode++)

{

//run the code for all material points (totalNumOfPoints)

}

}

Figure 4.30: Example of for loop parallelization with openMP

for each material point.

In VOPDSolver only CPU parallelization is used by implementing openMP (Open

Multi-Processing). OpenMP is an application programming interface (API) that sup-

ports multi-platform shared memory multiprocessing programming in C++ on many

platforms, instruction set architectures and operating systems. Figure 4.30 shows code

snipet that demonstrates how to use openMP to parallelize for loop in the peridynamic

code. It has to be mentioned that speed increase isn’t linear. This means that if the

computer has 4 processors with 2 threads each - 8 threads in total, speed increase want

be 8 times. Code speedup test was done on the a Intel Core i7-3770 CPU @ 3.4GHz

machine with 16 GB of internal memory which has 8 threads and the speedup was

around factor 5.

4.5 Impact Definition

Impact modeling in peridynamics was first introduced by Silling and Askari (2004)

where they presented multiple impact problems - Charpy V-notch test, accumulated

damage in concrete due to multiple impacts, and crack fragmentation of a glass plate.
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(a) Time t (b) Time t + ∆t (c) Time t + ∆t

Figure 4.31: Rigid impactor and deformable body interaction (Madenci and Oterkus
(2014))

Further work on impact modeling was done by Oterkus et al. (2012) where they pre-

sented impact damage of a reinforced panel under compression after impact due to a

rigid penetrator. Theoretical overview of damage modeling framework was presented

by Madenci and Oterkus (2014) where the impact can be modeled depending on the

type of impactor. Impactors can be either flexible or rigid, where rigid impactors are

not deformable at any instant and flexible impactors are deformable and governed by

the peridynamic equation of motion.

Rigid impactor framework is currently implemented in VOPDSolver and will be

explained in the rest of this section. In rigid framework target body is deformable and

governed by peridynamic equation of motion while impactor is rigid. At first sign of

contact between impactor and target there will be an initial penetration of target body

into the impactor and vice versa. For physical reality to be satisfied material points

from the target body need to be expelled just outside of the impactor. New location

of the material point is always perpendicular to the closest surface of the impactor see

Figure 4.31.

Once the point xk is expelled outside the impactor new velocity in its new location
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at the next time step, t+ ∆t, can be computed as

vt+∆t
k =

ut+∆t
k − utk

∆t
(4.20)

where ut+∆t
k is new displacement vector due to change in location at time step t+ ∆t,

with ∆t being time increment value. Displacement before contact at time step t is utk.

Force experienced by the impactor at t + ∆t exerted from material point xk can be

computed as

Ft+∆t
k = −1× ρk

vt+∆t
k − vt+∆t

k

∆t
Vk (4.21)

where vt+∆t
k is velocity before relocating the material point xk at time step t+∆t, with

ρk and Vk being density and volume. In order to calculate overall impact force on the

rigid impactor it is necessary to sum all of the contributions from every material points

as

Ft+∆t =
∑
k

Ft+∆t
k λt+∆t

k (4.22)

where

λt+∆t
k =


1 inside impactor

0 outside impactor

(4.23)

4.5.0.1 Impact examples

In this section several examples are presented. First two problems are validation

examples from Madenci and Oterkus (2014), where impact of two identical flexible

bars is 3D problem and rigid disk impacting on a rectangular plate is a 2D example.

Both examples are compared to FEA results using ANSYS. Third problem is lighthouse

example from Bjerkas et al. (2009).

Impact of Two Identical Flexible Bars

Detailed results and problem description can be found in Madenci and Oterkus (2014),

following is just the basic problem description:

Geometric Parameters

Length of the identical bars: L = 0.05 m
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Figure 4.32: Impact of two identical flexible bars - displacement predictions in the
x-direction at the centers (±0.025, 0.0, 0.0) of the left and right bars as time

progresses for peridynamics and FEA

Width of the identical bars: W = 0.01 m

Thickness of the identical bars: h = 0.01 m

Material Properties

Youngs modulus: E = 75 GPa

Poissons ratio: = 0.25

Mass density: = 2700 kg/m3

Initial Conditions

Initial condition of the bars: u̇x = ±10 m/s

As it can be seen from the Figure 4.32 peridynamic results are in good agreement with

FEA analysis. Furthermore, if compared to Figure 10.3 from Madenci and Oterkus

(2014) it can be seen that results are identical.

A Rigid Disk Impacting on a Rectangular Plate

Detailed results and problem description can be found in Madenci and Oterkus (2014),

following is just the basic problem description:
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Geometric Parameters

Length of the identical bars: L = 0.2 m

Width of the identical bars: W = 0.1 m

Thickness of the identical bars: h = 0.009 m

Material Properties

Youngs modulus: E = 191 GPa

Poissons ratio: = 1/3

Mass density: = 8000 kg/m3

Impactor Properties

Diameter of the impactor: D = 0.05 m

Thickness of the impactor: H = 0.009 m

Initial velocity of the impactor: v = 32 m/s

Mass of the impactor: m = 1:57 kg

In Figure 4.33a, deformed peridynamic model is shown which has a good agreement with

physical reality. Furthermore, comparing Figure 4.33b to Figure 10.7a from Madenci

and Oterkus (2014) a good agreement between both peridynamic results and FEA anal-

ysis can be observed.
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(a) Deformed periydnamic model

(b) Peridynamic displacement prediction in the y-direction at a time step of 2000
along the central x-axis

Figure 4.33: A rigid disk impacting on a rectangular plate peridynamic model
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Examples

5.1 Introduction

This chapter contains a detailed overview of problems that were examined in order

to show that peridynamic theory and VOPDSolver that was subsequentially developed

can be utilised to solve complex fracture and impact problems. Most of these exam-

ples will deal with ice structure interactions which are the reason behind this PhD

thesis. Furthermore certain number of problems will be examined in order to give an-

swers related to reduction of computational burden due to complexities of ice structure

interactions and peridynamics itself.

With this in mind first example in this chapter will be Dynamic propagation of a

macrocrack interacting with parallel small cracks. The reason behind this study was

to show that peridynamics can be used to solve complex fracture problems and that

VOPDSolver can model those problems with ease. This was important for future re-

search on ice structure interactions which are both hard to model and complicated to

solve. In this study, the effect of small cracks on the dynamic propagation of a macro-

crack is investigated by using a new continuum mechanics formulation, peridynamics.

Various combinations of small cracks with different number, location and density are

considered. Depending on the location, density and number of small cracks, the propa-

gation speed of macrocrack differs. Some combinations of small cracks slows down the

propagation of a macrocrack by 34%. Presented results show that this analysis can be
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useful for the design of new microstructurally toughened materials.

Next example is Peridynamic Model for a Mindlin Plate Resting on A Winkler

Elastic Foundation which become a cornerstone for future static analysis of ice struc-

ture interactions. In this study, a peridynamic model is presented for a Mindlin plate

resting on a Winkler elastic foundation. Winkler foundation was introduced in or-

der to introduce simplified effects of an ice sheet floating on water. In this study it

will be shown that, although Winkler foundation is relatively coarse simplification of

fluid structure interaction it is still extremely capable in capturing realistic fracture be-

haviour. In order to achieve static and quasi-static loading conditions, direct solution of

the peridynamic equations is utilised by directly assigning inertia terms to zero rather

than using widely adapted adaptive dynamic relaxation approach. The formulation is

verified by comparing against a finite element solution for transverse loading condition

without considering damage and comparing against a previous study for pure bend-

ing of a Mindlin plate with a central crack made of polymethyl methacrylate material

having negligibly small elastic foundation stiffness. Finally, the fracture behaviour of a

pre-cracked Mindlin plate rested on a Winkler foundation subjected to transverse load-

ing representing a floating ice floe interacting with sloping structures. Similar fracture

patterns observed in field observations were successfully captured by peridynamics.

Following two examples are to a certain extent continuation of Peridynamic Model

for a Mindlin Plate Resting on A Winkler Elastic Foundation. First study is In-Plane

and Out-Of Plane Failure of an Ice Sheet Using Peridynamics where ice sheet failure

modes are examined. This is important especially with designs for offshore struc-

tures/icebreakers or predicting ice cover’s bearing capacity for transportation, where it

is essential to determine the most important failure modes of ice. Structural proper-

ties, ice material properties, ice-structure interaction processes, and ice sheet geometries

have significant effect on failure modes. In this paper two most frequently observed

failure modes are studied; splitting failure mode for in-plane failure of finite ice sheet

and out-of-plane failure of semi-infinite ice sheet. Peridynamic theory was used to

determine the load necessary for in-plane failure of a finite ice sheet. Moreover, the

relationship between radial crack initiation load and measured out-of-plane failure load
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for a semi-infinite ice sheet is established. To achieve this, two peridynamic models are

developed. First model is a 2 dimensional bond based peridynamic model of a plate

with initial crack used for the in-plane case. Second model is based on a Mindlin plate

resting on a Winkler elastic foundation formulation for out-of-plane case. Numerical

results obtained using peridynamics are compared against experimental results and a

good agreement between the two approaches is obtained confirming capability of peri-

dynamics for predicting in-plane and out-of-plane failure of ice sheets. Second study

is Peridynamic Approach for Modelling Ice-Structure Interactions where it is going to

be shown that peridynamics can be used to establish correct failure pattern for ice

structure interactions both in 2D and 3D. Furthermore this study will showcase that

VOPDSolver is capable of modelling complex three dimensional impact interactions

and solve large problems within reasonable time due to use of parallelization. Having

said that, ice-structure interaction modelling is still a very challenging process since

ice material response depends on variety of factors including applied load, strain rate,

temperature, and salinity. One of the most significant and widely studied ice problems

from mechanical standpoint is out-of-plane failure of an ice floe. Out-of-plane failure

process is very important since it occurs in different applications including ice covers

bearing capacity for transportation, and bending failure of level ice interacting with a

sloping structure. Therefore, it is important to perform a detailed structural analysis

of ice fracture response under out of plane bending conditions in order to better under-

stand its behaviour. As a new continuum mechanics formulation, peridynamics, can be

very useful when dealing with fractures due to its various advantages with respect to

some other traditional techniques including linear elastic fracture mechanics, cohesive

zone model and extended finite element method. Hence, in this study, peridynamic

analysis of ice plate under out of plane bending load for 2D and 3D cases is studied.

Both models are qualitative in nature as only fracture patterns were observed. For

the 2D analysis, peridynamic Mindlin plate on the elastic foundation was developed

in order to study ice behavior under out of plane loading with the respect to the ice

flow size. By changing the size of the plate, crack propagation patterns should be influ-

enced, which will in return allow us to see if finite ice flow of a certain size can represent
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semi-infinite ice flow. For the 3D example a standard peridynamic structural model

with rudimentary buoyancy body load representing the fluid base which is interacting

with a conical rigid body, was used, in order to recreate real life loading conditions (ice

breaker going through the ice) and subsequently produce fracture patterns that can be

seen in the literature.

Next study is Ice-structure Interaction Applied to the Lighthouse Example where

interaction between vertical cylindric structures and ice sheet is examined. Floating ice

sheets interacting with rigid vertical structures such as oil platforms represent a sig-

nificant problem when designing arctic offshore structures. These structures regularly

experience high ice loads for prolonged periods of time since ice sheets fail by crushing.

Currently estimation of ice loads on vertical structures is still done by utilizing em-

pirical methods derived from case studies in model-scale or by measuring full-scale ice

loading events. As with all estimation methods there is some doubt as to how applica-

ble are those methods when we have varying boundary conditions, ice properties, ice

sheet thickness or drift speed. This means that even today, most reliable way of testing

a new design is to do a model-scale test to verify the exerted ice loads to structures and

that is a time consuming task. With this in mind peridynamic was used to estimate

ice loads and predict failure patters. In this study we will show that simple 2D bond

based peridynamic model is capable not only to predict reasonable loads but also show

realistic fracture behaviour of an ice sheet.

Last example in this PhD thesis will be Family Member Search Algorithms for

Peridynamic Analysis where different family search algorithms that are currently im-

plemented in VOPDSolver will be examined. With that being said, family search

process is one of the most time-consuming parts of a peridynamic analysis. Especially

for problems which require continuous update of family members inside the horizon of a

material point, the time spent to search for family members becomes crucial. Hence, ef-

ficient algorithms are required to reduce the computational time. In this study, various

family member search algorithms suitable for peridynamic simulations are presented

including brute-force search, region partitioning, and tree data structures. By consider-

ing problem cases for different number of material points, computational time between
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different algorithms is compared and the most efficient algorithm is determined.

5.2 Dynamic propagation of a macrocrack interacting with

parallel small cracks

5.2.1 Introduction

Small cracks can have significant effect on the dynamic propagation behaviour of

macrocracks if they are within the range of the macrocrack’s influence domain. The

location of small cracks and their orientation with respect to the tip of a macrocrack

are important, since the stress intensity of the macrocrack tip changes accordingly.

Numerical tools can be useful to investigate such an interesting and important problem.

Numerical prediction of crack growth in computational mechanics has been and

it still is a considerable problem that can’t be easily solved by conventional numer-

ical methods such as cohesive elements (Hillerborg et al. (1976), Xu and Needleman

(1994)) and extended finite element method (XFEM) (Sukumar et al. (2000), Moës

and Belytschko (2002)). XFEM require damage criterion and careful stress tracking

around the crack tip in order to decide if crack is going to branch or not. On the other

hand, mesh dependency is a problem for cohesive elements. All of the above problems

are making it difficult to correctly simulate crack propagation and especially multiple

crack propagation/interaction (Ha and Bobaru (2010)). Meshfree methods can be a

good alternative to finite element method and has been applied to dynamic fracture and

fragmentation (Benz and Asphaug (1995), Rabczuk and Belytschko (2007)). Moreover,

Cracking Particle Method (CPM) (Rabczuk and Belytschko (2004)) was introduced for

complex fracture patterns such as crack branching and coalescence. Another promis-

ing approach for fracture modelling is lattice methods which represent a medium as a

connection of interacting nodes or particles (Griffiths and Mustoe (2001), O’Brien and

Bean (2011), Pazdniakou and Adler (2012), Morrison et al. (2015)).

In this study, it is shown that using a new continuum mechanics formulation, peri-

dynamics, as an alternative method, it is possible to correctly model and simulate

dynamic fracture, in particular multiple small cracks interacting with a macrocrack in

109



Chapter 5. Examples

brittle materials. Peridynamics (Silling (2000), Silling and Askari (2005), Silling et al.

(2007)) doesn’t need failure criteria for crack propagation as in XFEM or cohesive FEM

methods, it is something that is contained within the peridynamic methodology and is

achieved through a simple bond based failure criterion that is derived from material’s

energy release rate. Moreover, multiple cracks can easily be analysed since cracks are

not treated as special objects in the formulation. Peridynamics has been successfully

used to analyze different material systems and geometrical configurations (Diyaroglu

et al. (2015), Oterkus and Madenci (2015), Perré et al. (2016), Oterkus and Madenci

(2012), Oterkus et al. (2010)). An extensive literature survey on peridynamics is given

in Madenci and Oterkus (2014).

5.2.2 Problem Definition

A rectangular plate with dimensions of 0.05 m by 0.05 m is considered as shown in

Figure 5.1. Material is chosen as PMMA. Plate contains a macrocrack that interacts

with multiple small cracks. In the case of bond based peridynamics, there is a constraint

on Poisson’s ratio as 1/3 for 2-Dimensional problems due to the assumption of pairwise

forces between material points which is slightly lower than the actual Poisson’s ratio of

PMMA. However, for dynamic fracture problems, Poisson’s ratio can have insignificant

influence on speed and direction of crack propagation, Ha and Bobaru (2010).

In this study, the plate is considered under tension loading and it is subjected to a

high velocity boundary condition of 5 m/s. Several types of small crack configurations

are considered; single small crack collinear to the main crack, two symmetrical small

cracks, horizontal and transverse array of small cracks, to investigate the effect of small

cracks on the macrocrack behaviour by calculating the crack propagation speed.

5.2.3 Numerical Results

Peridynamic model used for this study is defined with a fixed horizon size of δ =

3∆x, where ∆x is the spacing between material points and it is specified as 0.0001

m. Therefore, a total number of 250000 material points exist in the model. Boundary

region is equal to horizon size, δ and thickness of the plate is specified as h = ∆x (Figure
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Figure 5.1: Problem definition

5.2). Critical stretch is set to s0 = 0.030857. The time step is chosen as ∆t = 4× 10−8

s and the number of time steps is 2000.

Figure 5.2: Peridynamic model and its discretization

Finally, the length of a small crack is defined as

lsmallcrack << Lmacrocrack → lsmallcrack = lmacrocrack/50 (5.1)

5.2.3.1 Macrocrack Propagation

In the first example, the crack propagation of a macrocrack is investigated without

considering small cracks in the model in order to compare with those cases including

small cracks. It is observed that the macrocrack started to propagate around a time

111



Chapter 5. Examples

step of 500 and reached the end of the plate after 1700 time steps. The crack speed

is calculated by comparing the crack length at 4× 10−5 s with the initial crack length

(Figure 5.3) as

vcp =
δl

dt
= 480 m/s (5.2)

5.2.3.2 One Small Crack Collinear to a Macrocrack

In the second example, a single small crack is aligned with the macrocrack as shown

in Figure 5.4 (Wang et al. (2016), Rubinstein (1985)).

Figure 5.4: Collinear small crack in front of a macrocrack

The macrocrack propagation speed is calculated for different ratios of a/b as given in

Table 5.1. The minimum crack propogation speed is obtained for the highest a/b ratio

which corresponds to furthest small crack. By comparing with the only macrocrack

case, the collinear small crack causes an increase in macrocrack propagation speed.

However, no effect on initiation time is observed, i.e., all the cases have the same

initiation time as benchmark case - 500 time steps. The effect of a/b ratios on the

crack shapes can be seen in Figure 5.5.

Table 5.1: Macrocrack propagation speed at 4× 10−5 s

a/b = 0.2 a/b = 0.4 a/b = 0.6 a/b = 0.8

vcp (m/s) 562.5 562.5 557.5 515
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(a)

(b)

Figure 5.3: Macrocrack propagation without considering small cracks, (a) 4× 10−5 s,
(b) 6.8× 10−5 s
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(a) (b)

(c) (d)

Figure 5.5: Macrocrack propagation for different values of a/b (a) a/b = 0.2, (b) a/b
= 0.4, (c) a/b = 0.6, (d) a/b = 0.8 at 6.4× 10−5 s
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5.2.3.3 Two Parallel Small Cracks

In the third example, two symmetric small cracks are positioned on both sides of

the macrocrack (Figure 5.6).

Figure 5.6: Two parallel small cracks

The macrocrack propagation speed is calculated for varying h/l and s/l values. It

is found that for s/l = 2, the influence of the small cracks on the speed of macrocrack

propagation is insignificant and the shape of the crack path is very similar to that of a

single macrocrack (Figure 5.7).

Moreover, h/l ratio has the least influence on the overall macrocrack propagation

as shown in Table 5.2. The minimum crack speed is obtained for h/l = 1.25 and s/l =

0 (Figure 5.8). It is worth noting that for s/l = 0 and s/l = 2, the crack propagation is

observed in small cracks only. This behaviour is also observed by Wang et al. (2016).

They observed that for h/l = 0.75 and 1, the influence of the stress intensity factor of

small cracks is greater than the macrocrack. A similar behaviour is also observed for

h/l = 1.25

Table 5.2: Macrocrack propagation speed at 4× 10−5 s

s/l = -2 s/l = 0 s/l = 2

h/l = 0.75 480 m/s 356.25 m/s 356.25 m/s
h/l = 1 480 m/s 356.25 m/s 356.25 m/s
h/l = 1.25 480 m/s 356.25 m/s 356.25 m/s

5.2.3.4 Multiple Small Cracks Interacting with the Macrocrack

For the last example, interactions between macrocrack and multiple small cracks

are investigated. First, a set of horizontal cracks (see Figure 5.9) for h/l = 1 and h/l
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(a) (b)

(c) (d)

Figure 5.7: Comparison of a single macrocrack and macrocrack with two parallel
small cracks (a) macrocrack without a small crack, (b) h/l = 0.75, s/l = 2, (c) h/l =

1, s/l = 2, (d) h/l = 1.25, s/l = 2 at 6× 10−5 s
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(a) (b)

(c)

Figure 5.8: Crack propagation for h/l = 1.25 (a) s/l = -2, (b) s/l = 0 and (c) s/l = 2
at 4× 10−5 s
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Table 5.3: Overall crack propagation length of horizontal small cracks at 4× 10−5 s

s/l = -2 s/l = 0 s/l = 2

x (m) 0.00975 0.00985 0.01075

= 2.5 are investigated. It is observed that H/l should be greater than 2 in order to

exclude the effect between adjacent columns of small cracks (Wang et al. (2016)).

Figure 5.9: Set of horizontal small cracks

The crack propagation speed is calculated for different ratios of s/l as given in Table

5.3. It is found that the present small crack configuration stopped the macrocrack

propagation. However, the present configuration has no influence on crack initiation

time and a very low influence on the overall crack propagation length (Table 5.3 and

Figure 5.10).
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(a) (b)

(c)

Figure 5.10: Crack propagation of horizontal small cracks (a) s/l = -2, (b) s/l = 0
and (c) s/l = 2 at 4× 10−5 s

Moreover, the effect of multiple small cracks in the vertical direction is investigated

(Figure 5.11) for h/l = 1 and s/l = 2, 0 and 2.
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Figure 5.11: Set of vertical small cracks

The crack propagation speed is calculated for different ratios of s/l as given in Table

5.4. It is found that the crack propagation speed is reduced by 34% for s/l = 0 com-

pared to a single macrocrack case (Table 5.4). The results show good correlation with

conclusions from Wang et al. (2016) where they observed relatively high amplification

decrease for h/l = 1 (Figure 5.12).

Table 5.4: Crack propagation speed of vertical small cracks at 4× 10−5 s

s/l = -2 s/l = 0 s/l = 2

vcp (m/s) 480 316.66 333.33
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(a) (b)

(c)

Figure 5.12: Crack propagation of vertical small cracks (a) s/l = -2, (b) s/l = 0 and
(c) s/l = 2 at 4× 10−5 s

Finally, the superior capability of peridynamics for fracture prediction is demon-

strated by considering a significantly large number of small cracks. In the first case,

thirty-two small cracks are considered as shown in Figure 5.13. The second case in-

cludes eighty small cracks as depicted in Figure 5.15. Corresponding fracture patterns

for these two cases are presented in Figures 5.14 and 5.16, respectively. In both cases, it
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can be seen that small cracks behind the macrocrack tip does not effect crack propaga-

tion. Furthermore, only small cracks ahead of the macrocrack tip close to the centerline

influences the crack propagation pattern and causes crack branching behavior.

Figure 5.13: Set of vertical small cracks
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(a)

(b)

Figure 5.14: (a) Initial configuration and (b) crack propagation in a set with
thirty-two small cracks
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Figure 5.15: Set of eighty small cracks
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(a)

(b)

Figure 5.16: (a) Initial configuration and (b) crack propagation in a set with eighty
small cracks
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5.2.4 Conclusion

In this study, quantitative comparison of effects of small cracks on dynamic macroc-

rack propagation is obtained by using periydnamics. Several small crack configurations

are considered including single small crack collinear to the main crack, two symmetrical

small cracks, and horizontal and transverse array of small cracks. The results show ex-

pected behaviour when compared to similar cases found in the literature. Which means

that certain combinations of small cracks can slow down the crack propagation trough

the effect of crack shielding and amplification. Finally, two cases including significantly

large number of small cracks are demonstrated. These cases show the good capabilities

of peridynamics in capturing sophisticated fracture patterns where significantly large

number of cracks present. Moreover, presented results also show that this analysis can

be useful for the design of new microstructurally toughened materials.

5.3 Peridynamic Model for a Mindlin Plate Resting on A

Winkler Elastic Foundation

5.3.1 Indroduction

In many engineering applications including marine, civil and transport engineering,

analysis of structures resting on an elastic foundation is an important problem of inter-

est (Attar et al. (2014)). To represent the elastic foundation, Winkler and Pasternak

formulations are widely utilised. In Winkler formulation, the elastic foundation is rep-

resented by distribution of springs to resist the lateral deflection of the structure resting

on the elastic foundation. On the other hand, Pasternak formulation can capture the

shear interaction between springs (Attar et al. (2014)).

Although there are numerous studies in the literature considering elastic foundation

problem, only few of them investigated the behaviour of an existing crack inside a

structure resting on an elastic foundation. Amongst these, Matysiak and Pauk (2003)

performed stress analysis near a crack tip in an elastic layer resting on a Winkler

foundation by using the method of Fourier transforms and dual integral equations.
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Farjoo et al. (2012) investigated rolling contact fatigue cracks in railway tracks and

used a simplified finite element model (FEM) and extended finite element method

(XFEM). They observed that elastic foundation leads to an additional bending stress

which increases the crack growth rate significantly. In another study, Attar et al.

(2014) investigated the free vibration of a shear deformable beam with multiple open

edge cracks using lattice spring model. Finally, Nobili et al. (2014) presented a full-

field solution for the linear elasto-static problem of a homogeneous infinite Kirchhoff

plate with a semi-infinite rectilinear crack resting on a two-parameter elastic foundation.

They calculated stress intensity factors for both symmetric and skew-symmetric loading

conditions.

In this study, an alternative approach, peridynamics (Silling (2000)), is used for the

analysis of a Mindlin plate resting on a Winkler type elastic foundation. Peridynamics

was originally introduced to overcome the limitations of classical continuum mechan-

ics. The equations of motion in peridynamics are in the form of integro-differential

equations and they do not contain any spatial derivatives. Therefore, these equations

are valid regardless of discontinuities. Peridynamics has been successfully used to anal-

yse different material systems and geometrical configurations (Madenci and Oterkus

(2016), Madenci and Oterkus (2017), Oterkus and Madenci (2012), Oterkus et al.

(2010), Oterkus et al. (2017), Oterkus and Madenci (2017), Ha and Bobaru (2010),

Foster et al. (2010) and Dipasquale et al. (2014)). An extensive literature survey on

peridynamics is given in Madenci and Oterkus (2014) and Javili et al. (2019). Afore-

mentioned benefits of peridynamics have attracted interest in solving solid mechanics

problems particularly those involving damage and fracture. Majority of such attempts

deal with full 3D models or 2D plane stress/plane strain models. There are relatively

few peridynamic models considering structures resisting transverse deformation with

one dimension (e.g. the thickness) significantly smaller than the other two (e.g. air-

craft fuselage, ship hull, pressure vessel etc.) including Silling and Bobaru (2005) for

2D membranes, Taylor and Steigmann (2015), O’Grady and Foster (2014), Diyaroglu

et al. (2015) and Reddy et al. (2013) for plates and flat shells, and Chowdhury et al.

(2016) for shells. This study is an extension of Mindlin plate formulation developed by
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Figure 5.17: Initial and deformed configuration of a Mindlin plate (Diyaroglu et al.
(2015))

Diyaroglu et al. (2015). A similar approach was presented by Di Paola et al. (2009)

for nonlocal modeling of a beam on an elastic foundation. The current formulation

is capable of analysing Mindlin plates resting on an elastic Winkler foundation with

damage prediction capability. Moreover, the direct solution approach (Bobaru et al.

(2009), Breitenfeld et al. (2014)) is presented to obtain the solution in static conditions

rather than using widely adapted Adaptive Dynamic Relaxation (ADR) scheme (Kilic

and Madenci (2010)). Finally, several verification and demonstration cases including

a Mindlin plate with or without an initial crack subjected to transverse loading or

pure bending loading conditions are presented to validate the current formulation and

demonstrate its capabilities.

5.3.2 Peridynamic Mindlin Plate Formulation

Peridynamic formulation presented in the previous section is for material points

having translational degrees of freedom only. If rotational degrees of freedom are desired

to be included to represent Mindlin plate formulation in peridynamics, appropriate

changes to the original PD formulation should be made as explained in Diyaroglu et al.

(2015). In Mindlin plate formulation, each material point has three degrees of freedom

including transverse deflection, w and rotation of planes around x-axis, φy and y-axis,

φx (see Figure 5.17).

As presented in Diyaroglu et al. (2015), the transverse shear angle and curvature
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can be respectively expressed in peridynamic form as:

ϕkj =
wj − wk
ξjk

−
(φx(j)cosθ + φy(j)sinθ) + (φx(k)cosθ + φy(k)sinθ)

2
(5.3)

and

κkj =

(
φx(j) − φx(k)

|ξjk|

)
cosθ +

(
φy(j) − φy(k)

|ξjk|

)
sinθ (5.4)

where θ is the peridynamic bond orientation with respect to x -axis. Moreover, the

peridynamic equations of motion for the material point k can be derived using the

principle of virtual work as:

ρhẅk = cs

N∑
j=1

φkjVj + b̂x(k) (5.5)

ρ
h3

12
φ̈x(k) = cb

N∑
j=1

κkjcosθVj +
1

2
cs

N∑
j=1

|ξjk|φkjcosθVj + b̃x(k) (5.6)

ρ
h3

12
φ̈y(k) = cb

N∑
j=1

κkjsinθVj +
1

2
cs

N∑
j=1

|ξjk|φkjsinθVj + b̃y(k) (5.7)

Using transverse shear angle and curvature equations given in Equation 5.3 and Equa-

tion 5.4, Equations 5.5 - 5.7 can be rewritten as

ρhẅk = cs

N∑
j=1

(
wj − wk
ξjk

−
(
φx(j) + φx(k)

)
|ξjk|

cosθ−
(
φy(j) − φy(k)

)
|ξjk|

sinθ

)
Vj + b̂x(k) (5.8)

ρ
h3

12
φ̈x(k) = cb

N∑
j=1

[(
φx(j) − φx(k)

|ξjk|

)
cosθ +

(
φy(j) − φy(k)

|ξjk|

)
sinθ

]
cosθVj+

1

2
cs

N∑
j=1

|ξjk|

[
wj − wk
ξjk

−
(
φx(j) + φx(k)

)
|ξjk|

cosθ−

(
φy(j) − φy(k)

)
|ξjk|

sinθ

]
cosθVj + b̃x(k)

(5.9)
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ρ
h3

12
φ̈y(k) = cb

N∑
j=1

[(
φx(j) − φx(k)

|ξjk|

)
cosθ +

(
φy(j) − φy(k)

|ξjk|

)
sinθ

]
sinθVj+

1

2
cs

N∑
j=1

|ξjk|

[
wj − wk
ξjk

−
(
φx(j) + φx(k)

)
|ξjk|

cosθ−

(
φy(j) − φy(k)

)
|ξjk|

sinθ

]
sinθVj + b̃y(k)

(5.10)

where

cs =
9E

4πδ3
k2
s (5.11)

cb =
E

πδ

(
3h2

4δ2
+

27

80
k2
s

)
(5.12)

and ks represents the shear correction factor. To describe mode-I and mode-III types

of fracture modes, Diyaroglu et al. (2015) defined critical curvature and critical shear

angle parameters, respectively, as:

κc =

√
4GIc
cbhδ4

(5.13)

φc =

√
4GIIIc
cshδ4

(5.14)

where GIc and GIIIc represent mode-I and mode-III critical energy release rates, re-

spectively.

5.3.3 Direct Solution of the Peridynamic Mindlin Plate Formulation

In peridynamics, static solution can be obtained by using Adaptive Dynamic Re-

laxation (ADR) (Kilic and Madenci (2010)) or Direct approach (Bobaru et al. (2009)).

In ADR, an artificial damping is introduced to the system and the solution converges

to static solution after certain number of iterations. In the direct approach, the in-

ertia term is specified to zero and a matrix solution is required. Therefore, the PD

force function can be expressed in terms of the second-order micromodulus tensor C

as (Silling (2000))

f = C(ξ)η (5.15)
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where

C(ξ) =
∂f

∂η
(0, ξ) (5.16)

In the case of PD Mindlin plate formulation, micromodulus tensor, C can be defined

as Jacobian matrix which is a matrix of all first-order partial derivatives of a vector-

valued function. Therefore, for the force vector function f which is a function of shear

angle ϕ and curvature κ, the micromodulus tensor can be defined as:

C =


∂fz
∂ϕ

∂fz
∂κ

∂mφx
∂ϕ

∂mφx
∂κ

∂mφy
∂ϕ

∂mφy
∂κ

 (5.17)

where fz, mφx and mφy represent force or moment functions between material points

arising from transverse shear deformation and bending. Utilizing peridynamic equa-

tions given in Equations 5.5 - 5.7, force and moment functions can be obtained as:

fz = csϕ (5.18)

mφx = cbκcosθ +
cs
2
|ξ|ϕcosθ (5.19)

mφy = cbκsinθ +
cs
2
|ξ|ϕsinθ (5.20)

Therefore, using Equation 5.17 micromodulus tensor C takes the form of

C =


cs 0

cs
2 |ξ|ϕcosθ cbcosθ

cs
2 |ξ|ϕsinθ cbsinθ

 (5.21)

Substituting Equation 5.21 into Equation 5.15 results in


fz

mφx

mφy

 =


cs 0

cs
2 |ξ|ϕcosθ cbcosθ

cs
2 |ξ|ϕsinθ cbsinθ


ϕκ
 (5.22)

131



Chapter 5. Examples

The force and moment functions between material points j and k can be rewritten by

substituting Equation 5.3 and Equation 5.4 into Equation 5.22 as:


fz(kj)

mφx(kj)

mφy(kj)

 =


cs 0

cs
2 |ξjk|ϕcosθ cbcosθ

cs
2 |ξjk|ϕsinθ cbsinθ



wj−wk
ξjk

− (φx(j)cosθ+φy(j)sinθ)+(φx(k)cosθ+φy(k)sinθ)

2(
φx(j)−φx(k)
|ξjk|

)
cosθ +

(
φy(j)−φy(k)
|ξjk|

)
sinθ


(5.23)

After reorganising Equation 5.23, the following matrix expression of force and moment

functions can be obtained as:
fz(kj)

mφx(kj)

mφy(kj)

 =



cs
|ξjk|

cs
2 cosθ

cs
2 sinθ

cs
2 cosθ

(
cs
4 |ξjk|+

cb
|ξjk|

)
cos2θ

(
cs
4 |ξjk|+

cb
|ξjk|

)
cosθsinθ

cs
2 sinθ

(
cs
4 |ξjk|+

cb
|ξjk|

)
cosθsinθ

(
cs
4 |ξjk|+

cb
|ξjk|

)
sin2θ

− cs
|ξjk|

cs
2 cosθ

cs
2 sinθ

− cs
2 cosθ

(
cs
4 |ξjk| −

cb
|ξjk|

)
cos2θ

(
cs
4 |ξjk| −

cb
|ξjk|

)
cosθsinθ

− cs
2 sinθ

(
cs
4 |ξjk| −

cb
|ξjk|

)
cosθsinθ

(
cs
4 |ξjk| −

cb
|ξjk|

)
sin2θ




wk

φx(k)

φy(k)

wj

φx(j)

φy(j)



(5.24)
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For static and quasi - static problems, the acceleration terms ẅ, φ̈x and φ̈y can be

omitted from the equation of motion as:

N∑
j=1

fkjVj + bk = 0 (5.25)

where fkj = [fz(kj)mφx(kj)mφy(kj)]
T and bk = [̂bk b̃x(k)b̃y(k)]

T . Substituting force/mo-

ment functions given in Equation 5.24 into Equation 5.25 leads to

N∑
j=1



cs
|ξjk|

cs
2 cosθ

cs
2 sinθ

cs
2 cosθ

(
cs
4 |ξjk|+

cb
|ξjk|

)
cos2θ

(
cs
4 |ξjk|+

cb
|ξjk|

)
cosθsinθ

cs
2 sinθ

(
cs
4 |ξjk|+

cb
|ξjk|

)
cosθsinθ

(
cs
4 |ξjk|+

cb
|ξjk|

)
sin2θ

− cs
|ξjk|

cs
2 cosθ

cs
2 sinθ

− cs
2 cosθ

(
cs
4 |ξjk| −

cb
|ξjk|

)
cos2θ

(
cs
4 |ξjk| −

cb
|ξjk|

)
cosθsinθ

− cs
2 sinθ

(
cs
4 |ξjk| −

cb
|ξjk|

)
cosθsinθ

(
cs
4 |ξjk| −

cb
|ξjk|

)
sin2θ




wk

φx(k)

φy(k)

wj

φx(j)

φy(j)


Vj + bk = 0

(5.26)

5.3.4 Peridynamic Mindlin Plate Resting on An Elastic Foundation

In this study, Winkler foundation is considered as the elastic foundation and cou-

pled with PD Mindlin formulation presented in Section 5.3.3. Winkler foundation was

originally introduced by Winkler for modelling the soil-structure interactions. Winkler

method assumes that vertical translation of the soil, w, at a point depends only upon

the contact pressure, p, acting at that point in the idealized elastic foundation and a
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Figure 5.18: Mindlin plate on a Winkler foundation

proportionality constant, k as

p = kw (5.27)

The proportionality constant, k, is commonly referred to as the modulus of subgrade

reaction or the coefficient of subgrade reaction. This model was first used to analyse the

deflections and resultant stresses in railroad tracks. In the following years, it has been

applied to many different soil/fluid-structure interaction problems, and it is known as

die Winkler model.

In order to combine Winkler foundation with PD Mindlin plate matrix formulation,

Winkler foundation formulation can be written in matrix form as:


kh
Vj

0 0 −kh
Vj

0 0

0 0 0 0 0 0

0 0 0 0 0 0





wk

φx(k)

φy(k)

wj

φx(j)

φy(j)


+ bk = 0 (5.28)

where k is the spring stiffness and h is thickness of the plate. It is assumed that Winkler

foundation only affects transverse deflection.
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5.3.5 Numerical Results

As part of the numerical results, simple static loading conditions are considered first

to compare the PD predictions with the Finite Element Analysis (FEA) results using

ANSYS, a commercial FEA software. Next, a plate with a central crack under pure

bending resting on a Winkler foundation with very small spring stiffness is considered

as a validation case to compare against results obtained in Diyaroglu et al. (2015).

Then, fracture behaviour of a pre-cracked ice sheet floating on water under transverse

loading condition is investigated.

5.3.5.1 Mindlin Plate Rested on a Winkler Foundation Subjected to Trans-

verse Loading

In the first example, a Mindlin plate rested on a Winkler foundation under half

circular edge pressure is considered (see Figure 5.19). This problem was first introduced

by Lu et al. (2015b) to simulate displacement distribution for a finite size ice floe

interacting with sloping structures.

As it was stated by Lu et al. (2015b), there is no analytical closed-form solution to

calculate the deflection and stress distribution of a finite plate with free edges under

evenly distributed edge pressure within a half circular area. Therefore, a numerical

solution is adopted in order to verify PD results. The length of the square plate is L

= 0.43 m with a thickness of h = 0.01 m. The radius of the loading area is R = 0.2L.

The Young’s modulus of the plate is specified as E = 5.5 GPa. Only a single row of

material points (collocation) points in the thickness direction is necessary to discretize

the domain. The distance between material points is ∆x = 0.00215 m. The loading is

applied to a single row of material points at the half circular area as a resultant body

load of b̂ = 86.12 N/m2 for the transverse loading. The Winkler foundation modulus

to represent the fluid base is k = ρwg = 1025(kg/m3) · 9.81(m/s2) = 10055.25 Pa/m,

with ρw and g being the fluid density and gravitational acceleration, respectively.

The peridynamic solutions for transverse displacement and rotations are compared

with finite element solutions obtained by using ANSYS shell element, which is suitable

for thick/thin shell structures. As depicted in Figures 5.20-5.21 and Figures 5.22-5.23,
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Figure 5.19: Peridynamic discretization of Mindlin plate subjected to the transverse
loading (shaded area)

PD and FE solutions are in good agreement with each other and this verifies that the

PD direct solution correctly captures the deformation behaviour of the Mindlin plate

rested on an elastic foundation.

Figure 5.20: FEA results for displacement w
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(a)

(b)

Figure 5.21: FEA results for and rotations (a) φx and (b) φy
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Figure 5.22: Peridynamic Mindlin plate results for displacement w
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(a)

(b)

Figure 5.23: Peridynamic Mindlin plate results for rotations (b) φx and (c) φy
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5.3.5.2 Pre-cracked Mindlin Plate Rested on a Winkler Foundation Sub-

jected to Pure Bending Conditions

In the second example, a verification study is considered as in Diyaroglu et al. (2015)

to investigate the behaviour of a pre-existing crack in a Mindlin plate. A square plate

with an initial central crack aligned with the y-axis is considered as shown in Fig. 8.

The length and width of the square plate are L = W = 1 m with a thickness of h = 0.1

m. Plate thickness to crack length is h/2a = 0.5 where 2a is the initial crack length.

The Young’s modulus of the plate is specified as E = 3.227 GPa and shear modulus

is G = 1.21 GPa. The distance between material points is ∆x = 0.01 m. The horizon

size is chosen as δ = 3.015 · ∆x. The stiffness of the Winkler foundation is set to

be very small value, k = 10−9 N/m, in order to represent the original example of

Diyaroglu et al. (2015) which is free from elastic foundation. The material is chosen

as polymethyl-methacrylate (PMMA), which shows brittle fracture behaviour. Mode-

I fracture toughness of this material is given as 1.33 MPa
√

m (Ayatollahi and Aliha

(2009)). In order to show simple mode-I crack growth, a bending moment loading is

applied to a single row of points at horizontal boundary regions of the plate. Small

increments of resultant body load of ∆b̃x = 0.05 N/m are induced in order to obtain a

stable crack growth. Crack starts to grow approximately at b̃x = 284 N/m as shown in

Figure 5.25 and a similar crack pattern is obtained as in Diyaroglu et al. (2015).
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(a)

(b)

Figure 5.24: (a) Pre-cracked Mindlin plate under pure bending condition, (b)
Peridynamic discretization of pre-cracked Mindlin plate resting on an elastic Winkler

foundation
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Figure 5.25: Crack propagation for PMMA pre-cracked plate resting on a Winkler
foundation

5.3.6 Conclusion

In this study, a new peridynamic model is presented for a Mindlin plate resting on

a Winkler type elastic foundation. The formulation is validated by comparing against

FEA results for a transverse loading condition for a plate without a crack. For a pure

bending loading condition applied to a plate with a central crack free from elastic

foundation provided a similar crack pattern that was obtained in an earlier study.

5.4 In-Plane and Out-Of Plane Failure of an Ice Sheet

Using Peridynamics

5.4.1 Introduction

Modelling ice-structure interaction is a very difficult process. First of all, many

different factors such as strain-rate, temperature, applied-stress, salinity, grain-size,

confining pressure and porosity have significant influence on ice mate-rial response.

Furthermore, macro-scale modeling may not be sufficient to capture the full physical

behavior because the microscale effects may have a significant effect on macroscopic

material behavior. Hence, it is necessary to utilize a multiscale methodology. To repre-

sent the macroscopic ice behavior accurately, Finite Element Method (FEM) has been

widely used in the literature. Within FEM framework, various techniques can be used

142



Chapter 5. Examples

to model crack propagation including extended finite element method (XFEM) and

cohesive zone model (CZM). However, a universally accepted CZM failure model is not

currently available and the crack propagation may have mesh dependency. Although,

the mesh dependency problem can be overcome by XFEM, enrichment process may

lead to an algebraic system with a large number of unknowns which is difficult to solve

numerically. Furthermore, since FEM is based on classical continuum mechanics, its

formulation do not contain a length scale parameter. Hence, FEM is incapable of cap-

turing phenomenon at the micro-scale. Hence, other techniques should be utilized at

the micro-scale and linked to FEM simulation. However, it is not straightforward to

obtain a smooth transition between different approaches at different scales. By tak-

ing into account all these challenging issues, a new continuum mechanics formulation,

peridynamics, can be used for modelling ice failure. Peridynamics is classified as a

non-local continuum mechanics formulation and it does not contain spatial derivatives

in its formulation. Hence, it is very suitable to predict crack initiation and propagation

occurring within the material as the material is subjected to some external loading

condition. Furthermore, due to its non-local character, it can capture the phenomenon

at multiple scales.

There exists significant number of studies in the literature focusing on in-splitting

failure of ice sheets. Moreover, there is a large volume of experimental studies done

in the field or multiple lab tests. Timco (1987) has done a series of indentation and

penetration tests on a floating sheet of ice. During these tests, splitting of an ice sheet

was identified and named as “radial cracks”. Although this was an extensive study,

it still lacked information on the size and geometry of the ice sheet since most of the

effort was focused on indentation rate and aspect ratio. Similarly, Grape et al. (1992)

investigated the influence of lateral confinement on failure patterns and indentation

pressure. Most of the aforementioned studies when used for splitting problems were

obscured by many ambiguities, until Dempsey et al. (1999) conducted a series of in-

situ fracture tests on edge-cracked square plates (sized from 0.5-80 m) together with

nonlinear fracture mechanics (NLFM) analysis. This study provides a clear picture on

splitting loads and the scale effect on fracture toughness and ice strength. Another
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paper that is very important is by Lu et al. (2015a) where the authors conducted

an extensive research on splitting failure of an ice sheet together with conducting an

exhaustive overview of different methods used to calculate the splitting loads, such as,

LEFM, Cohesive Zone, and Plastic limit theory.

On the other hand, out-of-plane failure of an ice sheet has also been studied exten-

sively in the literature either experimentally or theoretically including Ashton (1986),

Kerr (1976), Langhorne et al. (1999), Michel (1978a), Sodhi (1995) and Squire et al.

(2012). The focus of this research has been mainly related to the interaction of sloping

structures and ice in ice infested waters. In arctic marine environment offshore struc-

tures and ships have specific design. For offshore structures those are usually sloped

pylons and for ships/icebreakers specific shape of the bow. The reason behind sloping

geometry is to introduce a vertical load on the edge of the incoming ice floe in order

to force the ice into a bending failure mode. Bending failure mode induced in such a

way can be described as some type of out-of-plane failure mode. For all intents and

purposes, numerical ice sheet models are usually represented as an infinitely long thin

plate resting on a Winkler elastic foundation.

In this study, two specific examples are investigated; in-plane failure and out-of-

plane failure of an ice sheet subjected to an edge load. These two cases can be derived

from the same real life example; an ice sheet interacting with a sloping structure. As

it was described by Lu et al. (2015b) only initial contact between the ice sheet and the

sloping structure is taken into account (see Fig 1). When ship’s hull interacts with an ice

sheet a complex stress condition will develop which can be represented by four different

load components as shown in Figure 5.26. Loads in y direction are ones inducing the

in-plane failure of an ice sheet. The load component along z-direction is responsible

for the out-of-plane failure of ice sheet. The in-plane compressive stress within the

ice sheet increases due to the load component along x-direction. Although ice failure

condition and the fracture patterns will be affected by loads in all three directions,

interactions between loads are ignored and they are decoupled into an in-plane and

out-of-plane problem. Hence, in this study a simplified decoupling approach is utilized

by constraining the in-plane failure problem to only Fy load and out-of-plane failure
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Figure 5.26: Contact and load description

problem to Fz load. For the in-plane failure problem, a 2 dimensional bond based

peridynamic model is implemented and for out-of-plane failure problem, 2 dimensional

plate is modeled as a Mindlin plate resting on a Winkler elastic foundation. The idea

behind this study is to use peridynamic theory to predict ice splitting load for in-plane

fracture of finite ice sheet. Moreover, the relationship between radial crack initiation

load and measured out-of-plane failure load corresponding to the eventual failure of the

ice sheet is established.

5.4.2 2D Bond Based Peridynamic Model for In-Plane Failure of an

Ice Sheet

As mentioned earlier, in-plane splitting failure of an ice sheet has been extensively

studied in the literature. There is a large volume of experimental studies done in

the field or multiple laboratory tests. Amongst these studies, experiments that dealt

directly with splitting of the ice sheet were only done by Dempsey et al. (1999). In their

in-situ fracture tests, a series of edge-cracked square plates (sized from 0.5-80 m) were

torn apart by using a hydraulically driven flatjack. Moreover, they studied the effect

of ice sheet size on fracture properties (such as the fracture toughness, traction and

separation law for ice, and evolution of the failure process zone) using known histories

of load-displacement information and relevant crack opening displacement. The idea

behind this analysis stems from Lu et al. (2015a) where the main goal is to obtain the

ice splitting load utilizing analytical and numerical methods and compare the results

with the experimental results of Dempsey et al. (1999). Difference between Lu et al.
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(2015a) and this study is in methods used for comparison with the experimental data.

They used several methods, such as CZM + weight function, LEFM + weight function,

Plastic limit theory etc., where in this study 2D Bond Based Peridynamic model was

applied.

Figure 5.27: Illustration of the model utilized to study in-plane failure of ice plate

Plate geometry and crack size are defined in Figure 5.27. Parameters used to

generate peridynamic model for this study is given in Table 5.5, with a fixed horizon

size of δ = 3∆x, where ∆x is the distance between material points. Ice is modelled as

an isotropic material with Young’s modulus of E = 5 GPa with ice thickness of h = 1.8

m. For this example sea ice is considered as a brittle material. Mode-I fracture energy

of sea ice is given as 15 J/m2.

Table 5.5: Test model dimensions and peridynamic inputs

L = 3
[
m
]

L = 10
[
m
]

L = 30
[
m
]

L = 80
[
m
]

A
[
m
]

0.3 3 9 24
dx
[
m
]

0.015 0.05 0.15 0.4
dt
[
s
]

1 1 1 1
Num. PD points 40000 40000 40000 40000
σload

[
kPa/s

]
12.965 7.101 4.1 2.511

Loading rate was obtained the same way as it was done by Lu et al. (2015a). In
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this study, point load was assumed as the loading with a loading rate equivalent to the

loading rate of the flatjack. From Figure 6 in paper by Mulmule and Dempsey (1999),

the loading rate of the flatjack can be obtained as 0.41 kPa/s for a size of 3030 m2

ice sheet. It is also assumed that as the size of the ice sheet decreases, loading rate

increases. In other words, the smallest ice sheet will have the fastest loading rate (in

our case 3 m). This leads us to the following relationship:

σ̇test3 = σ̇test30 ×
√

30/3 = 1.2965[kPa/s] (5.29)

In our case loading rate was increased by a factor of 10 as it can be seen from Table

5.5. This was done in order to decrease computational time.

100 101 102
100

101

102

L
[
m
]

F
Y L
t

[ kPa
]

PD results

Experiments Dempsey et al. (1999)

Figure 5.28: Splitting load comparison between PD results and experiments

As it can be seen from the Figure 5.28 results obtained for the splitting load of

the ice plate from the 2D Bond Based Model have a relatively good agreement with

the experimental data. Furthermore, peridynamic results agree well when compared to

LFEM + weight function and CZM + weight function results from Lu et al. (2015a),

shown in Figure 14.

147



Chapter 5. Examples

5.4.3 Peridynamic Mindlin Plate on Winkler Foundation Model for

Out-Of-Plane Failure of an Ice Sheet

This out-of-plane failure case was originally considered by Lu et al. (2015b), where

the ice plate interacting with the conical body is simplified by representing the ice

sheet with a thin plate resting on an Winkler elastic foundation subjected to an evenly

distributed edge pressure inside a half circular area. In their study, Lu et al. (2015b)

tried to determine the size of the ice sheet which can be considered either a finite size

ice sheet or a semi-infinite ice sheet. The distinction between finite and semi-infinite

sheet sizes was classified by following definition:

1. finite size ice floes are broken by radial crack initiation and propagation

2. semi-infinite ice floe is broken by sequentially forming radial and circumferential

cracks where following relationship holds (originally from Equation 77 of Kerr

(1976)) F testZ,B,semi ≈ 1.6FZ,R0,semi.

• F testZ,B,semi is measured breakthrough load corresponding to the eventual out-

of-plane bending failure of a semi-infinite ice floe

• FZ,R0,semi is maximum load required to initiate the radial crack in an ice

floe (see Lu et al. (2015b))

Authors were able to establish the difference between size of finite and semi-finite ice

sheet by studying only finite size ice sheet which they theoretically formulated and

then solved it numerically. What they didn’t show were actual fracture patterns for

the different size ice sheets and also didn’t establish the relationship between maximum

load required to initiate the radial crack and measured out-of-plane bending failure load

for a semi-infinite ice sheet. Fracture patterns have been studied in a separate paper,

see Vazic et al. (2019b). In our work we have tried to capture the relationship described

by Kerr (1976) analyzing several different ice sheet sizes.

In Lu et al. (2015b) the ice plate was modelled by using Kirchhoff’s plate bending

theory and elastic foundation was defined with Winkler foundation model, where the

Kirchhoff’s plate bending theory was solved with Finite Element Method (FEM). For
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Figure 5.29: Model outline for out-of-plain failure of ice sheet

the finite size ice sheet, Lu et al. (2015b) defined two length scales including the char-

acteristic length l (given in Equation 5.30) and the physical length L, where physical

length is defined as L = n × l with n being a non-dimensional factor. Hence, the

characteristic length can be written as:

l =
4

√
D

k
(5.30)

where D is the flexural rigidity of the plate defined as

D =
Et3

12(1− ν2)
(5.31)

and k is the foundation modulus (defined in Equation 5.32) for the fluid base, with ρw

and g being the fluid density and gravitational acceleration, respectively.

k = ρwg (5.32)

This study is based on Mindlin plate formulation developed by Diyaroglu et al.

(2015) and Mindlin plate resting on Winkler foundation developed by Vazic et al.

(2019c). The formulation is capable of analyzing Mindlin plates resting on an elastic

Winkler foundation with damage prediction capability. Moreover, the direct solution

approach (Bobaru et al. (2009)) is used to obtain the solution in static conditions

rather than using widely adapted Adaptive Dynamic Relaxation (ADR) scheme (Kilic

and Madenci (2010)).
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According to Lu et al. (2015b) and compared to Nevel’s solution (Nevel (1965))

normalized radial crack initiation load is approaching solution of a semi-infinite plate

when the ice sheet size is L ≥ 4l. Effectively, this implies that square finite ice sheet

can be approximated as a semi-infinite ice sheet when its physical size is 4 times bigger

than its characteristic length l. For our analysis this means that plates bigger than 4l

should mirror the relationship established by Kerr [6] - F testZ,B,semi ≈ 1.6FZ,R0,semi

Within our example, we have considered several semi-infinite ice sheet lengths. Ice

sheet length is defined by non-dimensional factor n = 5,7,9,12,15 where L = n × l.

Load area radius representing the sloping structure load is set to R = 0.2l = 0.086 m.

The thickness of the plate is h = 0.01 m (Figure 5.29).

Ice is modelled as an isotropic material with Young’s modulus of E = 5.5 GPa

and shear modulus of G = 2.0625 GPa. The distance between material points is

∆x = 0.01935 m. The horizon size is chosen as δ = 3∆x. Winkler foundation stiffness

k is set to k = 1.0055 N/m which roughly approximates water behavior. For this

example sea ice is considered as a brittle material. Mode-I fracture toughness of sea ice

is given as 0.06 MPa
√
m (Schulson and Duval (2009)). To the authors knowledge there

is no available value for Mode-III fracture toughness of sea ice in the current literature.

We assumed Mode-III toughness to be 7 times greater than Mode-I by comparing the

ratios with other brittle materials such as PMMA.

In order to establish initial damage so that crack propagation can occur and also

satisfy “first crack condition” (so that we can measure radial crack initiation load,

FZ,R0,semi) we broke 5% of bonds with the highest Von Mises stress. This percentage

was chosen because if more than 5% of bonds are broken, unstable fracture is observed

and if less than 5% of bonds are broken, crushing behavior is observed, which is followed

by unstable fracture. Initial load is set to 0 and then small increments of resultant body

load ∆b̂z = 0.1 N/m2 are induced to obtain a stable crack growth.

It can be clearly seen from the Figure 5.30 that if the ice sheet length increases and

by doing so better approximates semi-infinite behavior, the results are approaching

the relation established by Kerr (1976). This means that peridynamic Mindlin plate

on Winkler foundation model not only captures correct fracture patterns presented in
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Vazic et al. (2019b) but also is able show correct relation between measured out-of-

plane bending failure load for a semi-infinite ice sheet F testZ,B,semi and maximum load

needed to initiate the radial crack in an ice sheet FZ,R0,semi

4 8 12 14 16
1

1.5

2

2.5

n

F
te
s
t

Z
,B
,s
e
m
i

F
Z
,R

0
,s
e
m
i

PD results

Kerr (1976) relation

Figure 5.30: Comparison between Kerr’s relation and PD results for different size
semi-infinite plates

5.4.4 Conclusion

In this study, two different peridynamic models for ice fracture are presented. First

model is a 2 dimensional Bond Based model which is used to calculate in-plane splitting

loads for several differently sized ice plates, where it was shown that the model has a

good agreement with the experimental data. Second model is Mindlin plate resting on

a Winkler type elastic foundation used to prove the relation established by Kerr (1976).

As it can be seen from the results Mindlin plate model is able to establish such relation

if the plate length approaches semi-infinite ice sheet size.
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5.5 Peridynamic Approach for Modelling Ice-Structure

Interactions

5.5.1 Introduction

Despite of its advantages, utilization of the Arctic region for sailing brings new chal-

lenges due to its harsh environment. Therefore, ship structures must be designed to

withstand ice loads in case of a collision between a ship and ice takes place. Although

experimental studies can give invaluable information about ship-ice interactions, full

scale tests are very costly to perform. Therefore, computer simulations can be a good

alternative. As it was mentioned in the previous Section 5.4 ice-structure interaction

modelling is a very challenging process, where ice material response depends on many

different factors and micro-scale effects may have a significant effect on macroscopic

material behaviour. Hence, it is necessary to utilize a multi-scale methodology. How-

ever, multi-scale approach is not straightforward process as it is difficult to obtain a

smooth transition between different scales. With this in mind peridynamics will be

utilized for ice fracture modelling as it was done in the previous study.

Out-of-plane failure of an ice floe has been an important research topic for decades.

The main focus of this study is related to the interaction of sloping structures and

ice floe (e.g., icebreakers, fixed and floating offshore structures) in ice infested waters.

When comparing ice floe’s failure processes and failure pattern for different problems,

such as the “ice-sloping structure interaction problem” and “ice cover’s bearing capacity

problem”, many similarities can be observed (Kerr (1976)). In both cases, a two stage

fracture of an ice floe was observed. The first stage is the so-called radial cracking

of the ice floe (i.e., radial cracks emanating from the vertically loaded area) and the

second stage is the formation of circumferential cracks some distance away from the

vertically loaded area.

In this study, peridynamic modeling of an ice floe interacting with sloping structure

is presented as a 2D and 3D model. The two stage fracture of an ice floe is investigated

by considering a 2D plate modeled as a Mindlin plate on a Winkler foundation and

a 3D model based on a bond based peridynamic model with a rudimentary buoyancy
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represented as a body load. First model was originally considered by Lu et al. (2015b),

where the ice plate interacting with the conical body is simplified by representing the

ice floe with a thin plate resting on an elastic foundation under an evenly distributed

edge pressure within a half circular area. The idea behind Lu et al. (2015b) paper was

to answer the following question: “how small/large should an ice floe be to be treated

as a finite size/semi-infinite ice floe”. Second model is more similar to the real life

example as the conical rigid boy is a relatively good approximation of the ship’s bow,

but this model is a purely qualitative example as we are only trying to show fracture

patterns that can be found in the literature and to show peridynamic capabilities when

dealing with impact problems. There is no analysis of forces exerted by ice onto the

rigid body nor are there any analyses of stresses with in the ice sheet. The idea behind

these studies is development of in-depth ice structure interaction model that can be

beneficial for future re-search that will better describe mechanisms related to ice failure

and subsequently enable design of the more optimal structures for polar environments.

5.5.2 2D Bond Based Peridynamic Mindlin Plate on Winkler Foun-

dation

This case study is a continuation of the problem from the Section 5.4 where the ice

plate interacting with the conical body is simplified by representing the ice floe with a

thin plate resting on an elastic foundation under an evenly distributed edge pres-sure

within a half circular area. As it was mentioned in the previous Section, Lu et al.

(2015b) tried to answer the following question: ”how small/large should an ice floe be

to be treated as a finite size/semi-infinite ice floe“. The distinction between finite and

semi-infinite floe sizes can be classified as:

• finite size ice floes are broken by radial crack initiation and propagation

• a semi-infinite ice floe is broken by sequentially forming radial and circumferential

cracks

Authors were able to establish the difference between size of finite and semi-finite

ice floe, by studying only finite size ice flow which they theoretically formulated and
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then solved it numerically. What they didn’t show were actual fracture patterns for the

different size ice floes. In our work we have tried to capture different fracture patterns

depending on the floe size in order to distinguish between the finite and semi-infinite

ice floes.

As in the previous example, we have considered several finite ice floe lengths. Ice

floe length is defined by non-dimensional factor n = 1,4,5,6,7,9 where L = n× l. Load

area radius representing the sloping structure load is set to R = 0.2*l = 0.086 m. The

thickness of the plate is h = 0.01 m (Figure 5.32).

Figure 5.31: Illustration of the model utilised to study ice floe failure

Ice is modelled as an isotropic material with Young’s modulus of E = 5.5 GPa

and shear modulus of G = 2.0625 GPa. The distance between material points is ∆x =

0.01935 m. The horizon size is chosen as δ = 3.015∆x. Winkler foundation stiffness k is

set to k = 1.0055 N/m which roughly approximates water behaviour. For this example

sea ice is considered as a brittle material. Mode-I fracture toughness of sea ice is given

as 0.06 MPa
√

m (Schulson and Duval (2009)). We assumed Mode-III toughness to be

7 times greater than Mode-I by comparing the ratios to other brittle materials such as

PMMA.

As in the previous Section 5.4, 5% of bonds with the highest Von Mises stress were

broken in order to establish initial damage so that crack propagation can occur. Initial

load is set to 0 and then small increments of resultant body load ∆b̂z = 0.1 N/m are

induced in order to obtain a stable crack growth.

According to Lu et al. (2015b) and compared Nevel’s (Nevel (1965)) solution to

demonstrate that the normalised radial crack initiation load decreases rapidly towards
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the solutions of a semi-infinite plate when the floe size L ≤ 4l. In practice, this implies

that for a square finite ice floe with its physical size 4 times bigger than its characteristic

length l, it can be approximated as a semi-infinite ice floe. For our analysis this means

that plates bigger than 4×l should show fracture behaviour identical to those of a semi-

inifinte plate as it is stated by Kerr (1976): “Observations in the field indicate that the

failure mechanism of a semi-infinite plate subjected to a force P at the free edge proceeds

as follows: First a radial crack forms, which starts under the load and propagates normal

to the free boundary. This is followed by the formation of a circumferential crack that

causes final failure.” This is clearly shown in Figure 5.32. Furthermore, for a small

size ice floe, in addition to the energy needed to arouse sufficient flexural deformation,

another type of deformation (e.g., rigid body rotation) is also present because of the

free boundaries. This behaviour can be clearly seen in Figure 5.33, where there is no

crack propagation and instead only plate rotation is present.

5.5.3 3D Bond Based Peridynamic Model with Rigid Body Impact

Load

The main idea behind this model is to represent idealised real life ice structure

interaction where the rigid conical body is interacting with a deformable ice plate.

Furthermore, we’ve wanted to test our peridynamic code on very large models in order

to see the effects of parallelization on the computational time. The ice plate is based

on a 3D bond based peridynamic model for isotropic material. The model is solved

by using explicit peridynamic solution. Model parameters for ice, plate and conical

body are shown in Table 5.6, Lubbad and Løset (2011). The distance between material

points is ∆x = 0.11 m, time step size is dt = 3.21*10−4 s and number of time steps is n

= 100000. Buoyancy is represented by a rudimentary body load that is calculated by

using Archimedes’ law (calculated at the initial time step) and the plate is constrained

in x and y directions at the left and right edges.

As this is a large model with 629265 material points and 47155770 bonds, we had

to use a parallel implementation of our peridynamic code which yields a total run time

of 11 h 54 m or 0.42 s per time step. Comparing to sequential code, we obtained a
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Figure 5.32: Ice failure for n = 4,5,6,7, and 9

total time reduction of a factor of 5. Note that there is no initial damage in the model.

Expected fracture behaviour is given in the experimental study by Lubbad and Løset
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Figure 5.33: Plate rotation for L = 1× l

Figure 5.34: 3D Model

(2011) (see Figure 5.35).

Figure 5.35: Ice fracture behaviour

As shown in Figures 5.36 - 5.38, our model is able to capture the behaviour of

semi-infinite ice plate, observed by Kerr (1976) and Lubbad and Løset (2011). This
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Table 5.6: Problem setup parameters

Problem parameters

Ice thickness 0.33 m

Ice width 50 m

Cone waterline width 6.8 m

Cone angle 61.4◦

Cone height 4.54 m

Cone height above water 1.7 m

Interaction speed 1.202 m/s

Young’s modulus of ice 0.35 GPa

Fracture energy 15 J/m2

behaviour can be described as: first a radial crack starts to propagate which is followed

by a circumferential crack that will then lead to complete loss of bearing capacity.

Figure 5.36: Ice fracture at time step of 30000
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Figure 5.37: Ice fracture at time step of 36000

Figure 5.38: Ice fracture at time step of 40000

5.5.4 Conclusion

In this study, peridynamic analysis of the out-of-plane failure of ice is presented

with two different models. First model is a 2D model using peridynamic Mindlin plate

formulation with water environment represented by Winkler foundation. Second model

is a 3D model using peridynamic bond based formulation with water environment rep-

resented by a rudimentary body load calculated by Archimedes’ law at initial time step.

Both models provide promising results by capturing experimentally observed phenom-

ena where ice under out of plane loading fails by circumferential crack propagating from

a radial crack. Furthermore, the distinction between finite and semi-infinite floe sizes

are classified by the following definitions:

• finite size ice floes are broken by radial crack initiation and propagation
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• a semi-infinite ice floe is broken by sequentially forming radial and circumfer-ential

cracks

was successfully captured, showing that peridynamic definition of Mindlin plate to-

gether with Winkler foundation representation is good enough for future investigations.

5.6 Ice-structure Interaction Applied to the Lighthouse

Example

5.6.1 Introduction

Floating ice sheets interacting with rigid vertical structures such as oil platforms

represent a significant problem when designing arctic offshore structures. These struc-

tures regularly experience high ice loads for prolonged periods of time since ice sheets

fail by crushing.

Currently estimation of ice loads on vertical structures is still done by utilizing

empirical methods derived from case studies in model-scale or by measuring full-scale ice

loading events. As with all estimation methods there is some doubt as to how applicable

are those methods when we have varying boundary conditions, ice properties, ice sheet

thickness or drift speed. This means that even today, most reliable way of testing a new

design is to do a model-scale test to verify the exerted ice loads to structures and that

is a time consuming task. This lead to the need for the development of novel numerical

methods which could estimate ice loads on structures independent from the boundary

conditions, ice properties, ice thickness etc. (Bjerkas et al. (2009)).

One of the biggest issues with numerical ice models is that prevailing mode of ice

failure when ice sheet is interacting with a rigid vertical structure is fracture failures.

Fracture occurs not only in the contact zone where the prevailing mechanism is crush-

ing but also globally as spalling, buckling, radial and circumferential cracking (Timco

(1987)). It can be observed that crack development and propagation has a large influ-

ence on the exerted ice forces, which is usually seen as ice load peaks of short duration.

In order to develop model a real life ice-structure interaction model the Norstroms-
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Figure 5.39: Norströmsgrund lighthouse (Bjerkas et al. (2009))

grund lighthouse example was used, which is extensively discussed in the literature. In

this study peridynamic method is applied in order to calculate ice forces on vertical

structures. It will be shown that by using peridynamics as an alternative method, it

is possible to produce reliable results alongside a qualitatively comparable crack pat-

terns. There are numerous measured events on the Norströmsgrund lighthouse trough

the Measurements on Structures in Ice project STRICE (2001-2003). Only a single

ice event was considered, which will serve as a basis for comparison to the numerical

method presented in this study. Obtained results show that peridynamic formulation

is able to capture many of the qualitative observations and also shows comparable ice

loads on the lighthouse captured by the real-life measurements (Bjerkas et al. (2009)).

5.6.2 Problem Description

Ice-structure interaction is an important problem when dealing with structures de-

signed for arctic environment that is especially evident for rigid vertical structures such

as arctic offshore structures.

For the last several decades the lighthouse Norströmsgrund (Figure 5.39), located

in the subarctic Gulf of Bothnia, has served for a full-scale ice load experiment. For

this study data from the project STRICE (2001-2003) was used, obtained from Bjerkas
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Figure 5.40: Lighthouse Norstrmsgrund full-scale measurement set-up (Bjerkas et al.
(2009), Bjerk̊as (2006))

et al. (2009). Figure 5.40 shows an overview of the experimental setup at Norstrmsgrund

during the STRICE project. The structure is made of reinforced concrete where the

waterline diameter of the basic structure is 7.2 m. The lighthouse had ice load panels

in the waterline, covering 167◦ of the perimeter from North towards East, where panels

had an area of 1.5 x 1.2 m. Load panel heading towards East was segmented into a

matrix of eight sub-segments. Sampling frequency was from 1 Hz to 100 Hz, where

frequency was varied dependent on the panel coverage (Bjerkas et al. (2009)).

Event from the morning of March 30th 2003 was selected for peridynamic analyses.

The data can be found in Table 1. In this paper the effects of material nonlinearities

and friction between ice/structure and ice/water are not taken into account as this

requires further development of our current numerical model. The ice is treated as a

granular isotropic ice. The effects of loading rate and strain rate on the deformation

characteristics for this kind of ice have shown that for unconfined tests under high

strain rates (ε̇ > 10−3 s-1) ice behaves in a brittle manner (Ralston (1978).
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Table 5.7: Event from the morning of March 30th 2003 (Bjerkas et al. (2009))

Values

Start 08:46:30

Stop 08:48:00

Ice thickness 0.69 m

Drift speed 0.15 m/s

Drift direction (from) East

Air temperature −7.8◦C

Max acceleration 0.29 m/s2

Mean inclination 22 m abs 515 µrad

Ice condition Level ice

Ice load sampling 30 Hz

5.6.3 2D Bond Based Peridynamic Model of the Ice Sheet and the

Lighthouse

Figure 5.41: Parametrization of the lighthouse model
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The lighthouse base diameter is D = 7.2 m and ice speed is set to 0.15 m/s. Because

the vibrations aren’t considered, the lighthouse is modelled as a rigid body. Level ice

is a rectangular ice sheet and its length, width and thickness are L = 36 m, W = 36

m and T = 0.69 m, respectively. The edges of the ice sheet, except the one interacting

with the lighthouse, are fixed. The configuration of the numerical setup is shown in

Figure 5.41. Ice is considered as isotropic and elastic with the following properties

shown in Table 5.8.

Table 5.8: Material properties for ice

Values

Elastic modulus, E 10 GPa

Mass density, ρ 910 kg/m3

Poisson’s ratio, ν 0.3

Strain energy release rate 144 J/m2

The ice sheet is based on a 2D bond based peridynamic model. The model is

solved by using explicit peridynamic solution. The horizon size is chosen as δ = 3∆x.

The distance between material points is ∆x = 0.23 m, which gives us 24249 material

points. According to the principle of time stability, the size of the time step is ∆t

= 8.0475 × 10−5 s. The critical stretch is s0 = 1.707 × 10−4. It was presumed that

the lighthouse is immersed into the level ice sheet in order for the lighthouse to have

maximum contact with the ice shelf. Furthermore, ice shelf was fully constrained from

three sides expect for the edge in contact with the lighthouse.

Figure 5.42 shows the development of the crushing zone and crack development in

the ice sheet. The coloration shows damage where higher number means more damage

(0 - no damage and 1 - total damage). The cracks are seen to start growing from the

ice-structure contact zone, where after reaching a free surface their progress is arrested.

Figure 5.43 shows the integrated surface load on the Norstrmsgrund lighthouse,

hence, these loads are equivalent to the global ice loads to the lighthouse model con-

veyed from the moving ice sheet. As can be seen, the global loads to the structure
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(a) t = 0.8 s (b) t = 1.6 s (c) t = 3.2 s

Figure 5.42: Lighthouse Norströmsgrund full-scale measurement set-up (Bjerkas et al.
(2009), Bjerk̊as (2006))

gradually (establishing the contact) increase with time. The peak load coincides with

the maximum energy that the ice sheet can sustain. After this point global load is seen

to decrease. Furthermore, by comparing results from Figure 5.43 with results obtained

by Bjerkas et al. (2009) in Figure 5.44 it can be seen that results from peridynamic

simulation have a relatively good agreement with results from FEM analysis for the

first 8 seconds.

5.6.4 Conclusion

A peridynamic model of the Norströmsgrund lighthouse and an approaching level ice

sheet has been developed. A continuous ice crushing event from the Bjerkas et al. (2009)

was adopted and simulated by peridynamics. This study reveals a very interesting

aspect of the ice-lighthouse interaction behaviour. First chorusing zone in front of the

lighthouse is developed which is then followed by fracture initiation/propagation in the

level ice sheet. Furthermore, results for horizontal global ice force for the first 8 seconds

of interaction when compared to FEM results obtained by Bjerkas et al. (2009) show

relatively good agreement.
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Figure 5.43: Simulated horizontal global ice force on the lighthouse

Figure 5.44: Simulated horizontal global ice force on the lighthouse compared to
measured loads (Bjerkas et al. (2009))
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5.7 Family Member Search Algorithms for Peridynamic

Analysis

5.7.1 Introduction

Peridynamic equation of motion is usually solved numerically by using meshless

approaches. Family search process is one of the most time consuming parts of a peri-

dynamic analysis. Especially for problems which require continuous update of family

members inside the horizon of a material point, the time spent to search for family

members becomes crucial. Hence, efficient algorithms are required to reduce the com-

putational time. In this study, various family member search algorithms suitable for

peridynamic simulations are presented including brute-force search, region partitioning

and tree data structures. By considering problem cases for different number of mate-

rial points, computational time between different algorithms is compared and the most

efficient algorithm is determined.

5.7.2 Comparative Performance of Search Algorithms

In order to compare performance between Brute force search algorithm, Region par-

titioning search algorithm, Balanced K-d tree, and Boost R-tree with packing algorithm

several example cases were considered. Multiple cubic 3-Dimensional PD meshes were

created, ranging from 27000 to 8000000 points. Maximum number of family points for

the 3D mesh with a horizon of 3∆ is 122. The configuration of the machine used for

testing is: Intel(R) Core(TM) i7-4510U @ 2.0GHz, 8GB RAM, MS Windows 10 x64.

In Table 5.9 timings for family search are presented. Figure 5.45 presents the data from

Table 5.9 except the Brute force search since those times aren’t comparable with the

rest of the algorithms. In Table 5.10 and Figure 5.47, times for building the K-d&R

tree structure are shown. Because the Brute force and Region partitioning algorithm

don’t require any specific structure except for an array of points, there was no need to

include them in Table 5.10 and Figure 5.47.

As it can be seen from Table 5.9, Brute Search is the worst performing algorithm

as it would be expected. This should indicate that the Brute Search algorithm should
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Table 5.9: Family search time comparison

Number of Brute force Region partitioning Balanced Boost R-tree with
PD points search algorithm search algorithm K-d tree packing algorithm

27000 8.428s 0.156s 0.339s 0.289s
64000 57.561s 0.328s 0.776s 0.648s
125000 218.537s 0.797s 1.58s 1.353s
216000 641.56s 1.094s 2.763s 2.393s
343000 1544.48s 1.531s 4.382s 3.841s
512000 3211.89s 2.016s 6.581s 6.229s
729000 6266.8s 2.348s 9.692s 8.421s
1000000 11460.5s 4.28s 13.507s 11.364s
8000000 590930.51s 80.4s 112.498s 94.343s
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Figure 5.45: Time comparison for different family search algorithms

only be used when doing initial testing of the PD algorithm on relatively small mesh

and not as a strategy for complex problems. Comparing the rest of the algorithms, it

can be seen that Region partitioning search algorithm performed best. This is further

supported when different horizon sizes are used as it can be seen from Figure 5.46 where

all tree algorithms are tested for two different horizon sizes H = 3∆ and 6∆. Number

of family points for horizon sizes 3∆ and 6∆ is 122 and 924, respectively. All of these

benefits come with several caveats. First of all, this algorithm is not scalable. As it can

be seen from Table 5.9, both R and K-d tree have more or less linear increase of family
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search time between 1,000,000 and 8,000,000 point’s but Region partitioning algorithm

doesn’t. Moreover, Region partitioning algorithm is built to fit a specific purpose,

which is family search of very regular meshes, preferably rectangular or cubic shaped.

Secondly, all of the arrays are either statically allocated or dynamically allocated, but

with a purely defined sizes; for example in Region partitioning algorithm size of the

family members array for a 3-Dimensional configuration and horizon size of 3∆ is

defined as number of points 150 (max size of family members for one point is 122 for

this specific horizon). Although this can be easily changed, we would still allocate more

memory space than necessary as not all points will have max number of family points

(points close to edges of the mesh). Thirdly, if the horizon size changes or horizon shape

is not a circle/sphere, user would need to thoroughly rewrite the algorithm which is

not easy as the code itself is very complex. This algorithm could be also used for initial

testing of the PD algorithm that would require large but symmetrical meshes where

use of third party libraries is not possible.
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Figure 5.46: Time comparison for different horizon sizes H = n∆ for 1000000 points

Comparing Balanced K-d tree to the Boost R-tree with packing algorithm, it is

obvious from the timings that Boost R-tree performs better. R-tree performs better in

building the tree structure and family search (Table 5.10 and Figure 5.47). Furthermore,

one of the problems with Balanced K-d tree is relatively high memory consumption
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Table 5.10: Times necessary for building the tree structure

Number of Balanced Boost R-tree with
PD points K-d tree packing algorithm

27000 0.046s 0.014s
64000 0.095s 0.026s
125000 0.186s 0.049s
216000 0.339s 0.1s
343000 0.54s 0.158s
512000 0.782s 0.225s
729000 1.251s 0.327s
1000000 1.62s 0.411s
8000000 17.252s 4.12s

when building the tree structure, compared to the Boost R-tree. The reason behind

this is the need for constant sorting of points after each split in order to keep the

tree balanced. This makes Boost R-tree more memory friendly for extremely large

meshes. Moreover, with the Boost R-tree, it is easy to change the shape of the horizon

as the user can overload the geometry definition of the bounding box with different

shapes when doing spatial queries. Only possible negative side for the Boost R-tree is

dependence on third party development and maintenance of the necessary libraries. In

conclusion, Boost R-tree seems currently the best option if there is a need for highly

scalable, relatively fast and versatile spatial query algorithm.

5.7.3 Conclusion

In this study, four different family search algorithms were considered including

brute-force search, region partitioning search, balanced K-d tree and boost R-tree with

packing algorithm. By varying the number of material points inside the solution do-

main, computational time spent for family member search was determined. According

to the results, brute-force search is the worst performing algorithm and it should be

used for small number of material points and testing purposes. Although region par-

titioning search algorithm performed very well, it is limited to large and symmetrical

meshes. Finally, it was concluded that Boost R-tree is the best option amongst all four

different algorithms considered in this study.
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Figure 5.47: Time comparison for building the tree structure between Balanced K-d
tree and Boost R-tree with packing algorithm
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Conclusion

It can be seen from previous chapters that Peridynamic (PD) theory has consider-

able capabilities when it comes to simulating discontinuities, such as cracks, porosity or

material interfaces. The main advantage of PD is non-classical (non-local) continuum

mechanics formulation, which is very suitable for failure analysis of materials due its

mathematical structure. Cracks can occur naturally in the formulation and there is

no need to impose an external crack growth law. Furthermore, due to its non-local

character, it can capture the phenomenon at multiple scales. Since same type of equa-

tions will be used at different scales, a smooth transition is expected. These inherent

properties of PD made it applicable in almost every field of solid mechanics research.

With this in mind, idea behind this study is to introduce PD into the research field

of ice mechanics coupled with marine structures. The main achievements that can be

drawn for the present study are:

• Peridynamic solver was developed by using object oriented architecture that al-

lows for easy implementation of new features. The main aim behind solver de-

velopment was to enable easier modeling of complex ice-structure interaction

problems.

• Within the PD solver complete geometry and mesh libraries were developed that

enable easy modeling and meshing of complex structures.

• Several state of the art family search algorithms were implemented. Together
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with family search algorithms, parallelization of peridynamic code was done in

order to reduce computational time.

• Furthermore, rigid body impact library was developed with the aim to solve

complex ice-structure interaction problems.

• Mindlin plate resting on Winkler foundation model was developed in order to

simulate ice floe in marine environment. The main advantage of this model is

its ability to simulate ice floe that is vertically loaded which in return represents

realistic model of ice-structure interaction, such as ship colliding with ice sheet.

• Multiple studies were published with an aim to prove that peridynamics is a

viable method for solving impact problems

6.0.1 Future Work

Although VOPDSolver was developed within object orientated architecture with

loose structure in order to enable future development it still needs to be upgraded to

a new version. This is because a lot of new parts were added that weren’t taken into

account in the initial development. With this in mind as a future work VOPDSolver

needs an extensive overhaul from logical and architectural point of view. First thing

that needs to be done is to take main parts of the solver, such as geometry, mesh,

solvers, loading and constraints and create separate standalone libraries. This will

enable even easier future development and maintenance. After this rudimentary user

interface needs to be developed. Furthermore, input routines need to be developed to

enable transfer of models from 3rd party software, such as Ansys, AutoCad or Abaqus

in order to reuse these models for peridynamic analysis.

Winkler’s idealization represents the fluid or soil medium as a system of identical

but mutually independent, closely spaced, discrete, linearly elastic springs. Due to

this idealization, deformation of foundation due to applied load is confined to loaded

regions only. If such a foundation is subjected to a partially distributed surface load-

ing, the springs will not be affected beyond the loaded region. This means that model

essentially suffers from a complete lack of continuity in the supporting medium. With
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this in mind next step should be to extend the formulation to the Pasternak model

which assumes existence of shear interaction among the spring elements. This can be

accomplished by connecting the ends of the springs to a beam or plate that only under-

goes transverse shear deformation. The continuity in this model is characterized by the

consideration of the shear layer. Next step should be development of PD fluid model

and coupling it with the effects of solid PD model. This can be done as an extension of

the work by Demmie and Silling (2007), where they were able to successfully capture

gas-solid interaction.Gas-solid interaction could then be extended to the fluid-structure

interaction which would be a great improvement from the current Winkler’s foundation

approximation.

Finally, future efforts should be aimed at introducing physics informed neural net-

work (PINN) into peridynamic framework. Idea behind PINN algorithms is to solve

governing partial differential equations (PDE) by minimize its residual (Anitescu et al.

(2019)). Although current PINN approach avoids “classical” discretization methods

such as FEM or PD as it is using a collocation strategy to discretize the domain it is

still a very interesting area that needs further studies.
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Hillerborg, A., M. Modéer, and P.-E. Petersson

1976. Analysis of crack formation and crack growth in concrete by means of fracture

mechanics and finite elements. Cement and concrete research, 6(6):773–781.

180



Bibliography

Hoare, C. A.

1962. Quicksort. The Computer Journal, 5(1):10–16.

Howard, M. P., J. A. Anderson, A. Nikoubashman, S. C. Glotzer, and A. Z. Pana-

giotopoulos

2016. Efficient neighbor list calculation for molecular simulation of colloidal systems

using graphics processing units. Computer Physics Communications, 203:45–52.

Javili, A., R. Morasata, E. Oterkus, and S. Oterkus

2019. Peridynamics review. Mathematics and Mechanics of Solids, 24(11):3714–3739.

Kerr, A. D.

1976. The bearing capacity of floating ice plates subjected to static or quasi-static

loads. Journal of glaciology, 17(76):229–268.

Kilic, B. and E. Madenci

2010. An adaptive dynamic relaxation method for quasi-static simulations using the

peridynamic theory. Theoretical and Applied Fracture Mechanics, 53(3):194–204.

Kuehn, G., R. Lee, W. Nixon, and E. Schulson

1990. The structure and tensile behavior of first-year sea ice and laboratory-grown

saline ice.

Lange, M. A. and T. J. Ahrens

1983. The dynamic tensile strength of ice and ice-silicate mixtures. Journal of

Geophysical Research: Solid Earth, 88(B2):1197–1208.

Langhorne, P., K. Stone, and C. Smith

1999. The bearing capacity of saline ice sheets: centrifugal modelling. Canadian

geotechnical journal, 36(3):467–481.

Le, Q. and F. Bobaru

2018. Surface corrections for peridynamic models in elasticity and fracture. Compu-

tational Mechanics, 61(4):499–518.

181



Bibliography

Libraries, B. C.

2009. Spatial indexes introduction.

Liu, R., Y. Xue, X. Lu, and W. Cheng

2018. Simulation of ship navigation in ice rubble based on peridynamics. Ocean

Engineering, 148:286–298.

Lu, W., R. Lubbad, and S. Løset

2015a. In-plane fracture of an ice floe: A theoretical study on the splitting failure

mode. Cold Regions Science and Technology, 110:77–101.

Lu, W., R. Lubbad, and S. Løset

2015b. Out-of-plane failure of an ice floe: radial-crack-initiation-controlled fracture.

Cold Regions Science and Technology, 119:183–203.

Lubbad, R. and S. Løset

2011. A numerical model for real-time simulation of ship–ice interaction. Cold Regions

Science and Technology, 65(2):111–127.

Macek, R. W. and S. A. Silling

2007. Peridynamics via finite element analysis. Finite Elements in Analysis and

Design, 43(15):1169–1178.

Madenci, E., A. Barut, and M. Dorduncu

2019. Peridynamic differential operator for numerical analysis. Springer.

Madenci, E. and E. Oterkus

2014. Peridynamic theory. In Peridynamic Theory and Its Applications, Pp. 19–43.

Springer.

Madenci, E. and S. Oterkus

2016. Ordinary state-based peridynamics for plastic deformation according to von

mises yield criteria with isotropic hardening. Journal of the Mechanics and Physics

of Solids, 86:192–219.

182



Bibliography

Madenci, E. and S. Oterkus

2017. Ordinary state-based peridynamics for thermoviscoelastic deformation. Engi-

neering Fracture Mechanics, 175:31–45.

Maeno, N. and T. Ebinuma

1983. Pressure sintering of ice and its implication to the densification of snow at

polar glaciers and ice sheets. The Journal of Physical Chemistry, 87(21):4103–4110.

Mattson, W. and B. M. Rice

1999. Near-neighbor calculations using a modified cell-linked list method. Computer

Physics Communications, 119(2-3):135–148.

Matysiak, S. and V. Pauk

2003. Edge crack in an elastic layer resting on winkler foundation. Engineering

fracture mechanics, 70(17):2353–2361.

Mellor, M.

1986. Mechanical behavior of sea ice. In The geophysics of sea ice, Pp. 165–281.

Springer.

Menge, J. R. and K. Jones

1993. The tensile strength of first-year sea ice. Journal of Glaciology, 39(133):609–

618.

Michel, B.

1978a. Ice mechanics.

Michel, B.

1978b. The strength of polycrystalline ice. Canadian Journal of Civil Engineering,

5(3):285–300.

Michel, B. and R. Ramseier

1971. Classification of river and lake ice. Canadian Geotechnical Journal, 8(1):36–45.

183



Bibliography
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