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Abstract 

i 

 

Abstract 

 

Stiffened plated structures such as ships and box girder bridges, result in 

connection details that contain sharp internal corners. Many failures in ship 

structure have been found to be associated with fatigue crack propagation at the 

side shell connections between longitudinal and transverse structure. According 

to elastic stress analysis, these sharp corners are geometric singularities that 

have an infinite stress in the corner.  

A further complication of stiffened structures is that a crack may grow 

through intersections, e.g. of plates and stiffeners and changes of plate thickness 

before it causes a catastrophic structural failure. In this thesis, a new approach is 

developed to simplify the analysis of these issues. The singular stress 

contribution is, as usual, characterised by Y, the non-dimensional the stress 

intensity factor but within this method simplified analysis is used to calculate 

the Y values. The method combines a ratio of non-singular linearized ligament 

stresses to estimate the effect of large changes in crack length and changes in 

plate thickness with an empirical methods to estimate the local effect as the 

crack grows through a change of thickness. The method does not require an 

analysis of the actual singularity, so saving analysis time and, importantly, 

giving the engineer some feeling for the result and the possibility of a “back of 

the envelope” calculation for the SIF or Y. 

This work is based on running finite element analyses, to determine the 

Stress Intensity Factor and Y and using the results to test the empirical or 

analytical methods.  
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The derived methods are useful both for assessment of existing structures 

and for design application. Comparing the results from the application of this 

new methodology with the FE method and existing fatigue analysis guidance, 

the new method is very much quicker and easier to apply. It is though less 

accurate than FE analysis and so is most appropriate for, (1) preliminary 

assessment, (2) reliability assessment where many structural and defect 

variations are to be considered and (3) for checking whether a more detailed 

analysis is producing sensible results. 

For design calculations often a stress concentration factor or SCF is 

needed that can be used with an S-N curve. The actual predicted peak stress and 

hence SCF will, for finite element analysis, depend on the element size and will 

normally increase as the element size decreases. The existing guidance on 

determining an appropriate stress value for fatigue analysis of a sharp corner is 

commonly in terms of linearly extrapolating finite element calculated surface 

stresses from a number of plate thicknesses t away from the singularity to the 

corner. A simpler approach, developed for planar plates with sharp corners, 

assesses the stress on the basis of the dimensions of the corner. This thesis 

includes checks on the applicability, to more complicated 3-d geometry, of these 

previous recommendations for the assessment of corner singularities. 
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Chapter 1 Introduction 

 

1.1 Background 

The connections between the longitudinal stiffeners and the transverse 

web frames have for long time been regarded as weak points in the fatigue 

strength of a traditional marine structure design and there is difficulties to 

estimate fatigue life of these connections. The cause of structural failure can be 

due to negligence during design, construction or manufacturing. Poor 

workmanship, unsuitable materials and errors in stress analysis are examples 

that contribute to failure. Traditional failure criteria, that compare extreme load 

to strength, cannot adequately explain many structural failures that occur at 

stress levels lower than the ultimate strength of the material. 

Fatigue, due to cyclic loading, is responsible for a great proportion of 

cracks occurring in ships and offshore structures. Consequently, fatigue failure 

of structural details is an important concern in operation of ships, both in the 

maintenance of existing vessels and in the design of new vessels. Research into 

fatigue started in the year of 1837 (Schütz, 1996), when Wilhelm Albert 

publishes the first article on fatigue and continues to this day. Fatigue alone can 

result in a structural failure but often it weakens the structure and leads to a 

failure by fracture caused by a combination of reduced remaining structure to 

resist the load and the remaining structural material failing at a load lower than 

the yield load as a result of the structure behaving in a more brittle way as a 

result of the presence of the crack. 

A further contribution to failure may be the application of a new design or 

material, which produces an undesirable result. This type of failure is more 

difficult to prevent. One of the most notorious failures was due to the 
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introduction of a new design is the brittle fracture of the World War II Liberty 

ships. The Liberty ships were the first ships to have an all-welded hull. They 

could be fabricated faster and cheaper than earlier riveted designs but many of 

the ships sustained serious fractures as a result of the design change that made 

fatigue cracks more likely, reduced the steel toughness so encouraging brittle 

fracture and, by replacing the multiple riveted plates with continuous welded 

steel removed some crack arresting characteristic of the previous riveted 

construction. Now almost all steel ships are welded but sufficient knowledge 

was gained from the failures to generally avoid similar serious extensive 

problems, but fatigue cracks and occasional failures continued to occur (Manan, 

2008). 

Other examples of engineering structures that have fatigue and fracture 

problems are offshore platforms, railway track, aeroplanes and bridges. 

To predict the combination of fatigue and fracture, a fracture mechanics 

theory was therefore introduced, as opposed to the use of the traditional fracture 

criteria. Fracture research began in the early 1920s by Griffith (Griffith, 1920). 

He applied the first law of thermodynamics to formulate a fracture theory based 

on a simple energy balance. According to the theory, a flaw crack becomes 

unstable and thus fracture occurs when the strain energy change that results 

from an increment of crack growth is sufficient to overcome the surface energy 

of the material. 

Design by fracture mechanics requires knowledge of a critical crack size 

and a parameter which characterizes the tendency of a crack to grow. Such a 

parameter should be able to relate analysis results or laboratory test results to 

structural performance. Thus the response of a structure with cracks can be 

predicted from analysis in conjunction with laboratory test data. An important 

parameter is the stress intensity factor (SIF) and related non-dimensional 

Geometry Factor or “Y” value. The SIF is determined in terms of crack size, 

structural geometry and loading conditions. From the laboratory tests, fracture 
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toughness can be defined as the ability of the material to resist fracture in the 

presence of cracks. In a similar way laboratory tests determine the yield strength 

of a material which measures the resistance of the material to yield (Manan, 

2008). The fracture mechanics method takes into account, at a crack tip, the 

theoretical stress singularity (a stress which becomes infinite at the corner). 

During the 1970s and 80’s, new grades of steel with improved weld-ability 

and increased tensile strength were used for ships and other structures. 

Unfortunately the fatigue resistance of these steels was no better than the lower 

strength steels but the higher design stresses that were allowed reduced the 

fatigue lives and led to considerable fatigue problems with ships which had 

previously not been specifically checked for fatigue at the design stage  

(Boardman, 1990). 

Another development that was important for fatigue design was the advent 

of floating production, storage and offloading (FPSO) ships for oil and gas field 

development. These vessels are moored offshore and operated on location for 

the production life of an oil and gas field, typically up to 20 years 

(RONGRONG, 2007). Docking for inspection and repair is very costly for an 

FPSO, and design is thus aimed at uninterrupted operation.  

Although metal fatigue has been studied for more than 170 years, many 

problems still remain unsolved due to the complexity of the subject. Fatigue 

refers to the failure of materials under repeated actions of stress fluctuations. 

The loads responsible for fatigue are generally not large enough to cause 

material yielding. Instead, failure occurs after a certain number of load or stress 

fluctuations. Several factors contribute to this marked reduction in fatigue 

strength: the notches caused by various discontinuities in geometry, residual 

stresses, deleterious microstructures in the Heat Affected Zone and internal weld 

defects such as extrusions, porosity and lack of fusion. 
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Fatigue strength assessment is mandated to evaluate and develop 

procedures for estimating the fatigue strength and providing recommendations. 

Unfortunately, the codified approaches developed so far have limitations, 

particularly when dealing with structural details with sharp internal corners 

which theoretically have a stress singularity for a linear elastic material. At the 

present time, independent estimations of fatigue life and fatigue crack 

propagation rates are made based using fatigue S-N curves and the fracture 

mechanics method, respectively. The development of finite element analyses, 

together with high-speed computers, allows more rational approaches for ship 

structural analyses but combining the results of finite element analysis and S-N 

curves or fracture mechanics is often difficult and the approximate assessment 

of some. 

S-N approach and Fracture Mechanics (FM) approaches both use Finite 

Element Analysis (FEA), but complicated to set up and interpret. The 3
~

2 2

t t  

method with linear stress fit is the effective option to interpret FEA results for S-

N calculations. 

There are several ways of using finite element methods in the fatigue 

design of steel structures: the local stress concepts such as the hot spot stress 

approach and the effective notch stress approach which are used with S-N 

curves and crack propagation analysis using fracture mechanics. The application 

range of these methods has extended greatly during the last decades. The 

geometrical complexities and irregularities as well as load transfer conditions in 

steel structures can cause difficulties to estimate correctly the load effects on the 

fatigue strength of structure components because often there is a theoretically 

singular stress even in the uncracked structure, which is approximated in some 

uncertain and mesh dependent way by the finite element analysis. In the case of 

large steel structures with complex details, such as welded joint components in 

orthotropic stiffener decks, an initial estimation of the fatigue life of the welded 

details may be obtained by applying S-N assessment method to the nominal 
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A I


 ) stresses. A refined local stress assessment method, which takes into 

account of the stress raising effects due to the geometry and loading conditions, 

might provide a more accurate overall estimate of the behaviour of the structure 

but for fatigue assessment the selection of mesh size and the choice of 

extrapolation method from locations close but away from the singular point of 

interest both have a large effect on the calculated fatigue life and the available 

guidance (e.g. DNV (DNV, 2015) or BS7608 (Standard, 2014) is limited. 

Furthermore there is a lack of methods that fall between the initial estimation 

and fully detailed FE modelling methods.  

When fracture mechanics crack growth analysis is applied then finite 

elements that include the singularity may be used to calculate the SIF values 

from which the fatigue life can be estimated using e.g. BS7910. BS7910 is a 

British Standard code of practice for the assessment of flaws using fracture 

mechanics principles to guide the methods for assessing the acceptability of 

flaws in metallic structures. It is particularly relevant wherever structural 

integrity is important e.g. pipelines, shipbuilding, turbines, engines, vehicle 

manufacturing and pressure vessels and equipment. The technique is also 

referred to as an engineering critical assessment (ECA) or damage tolerance, 

and is complementary to other methods of weld quality assurance (BS, 2000). 

This method avoids the problem of deciding what stresses to use for the fatigue 

analysis as the singular stresses are represented within the analysis. However the 

meshes required for the analysis may be very fine, and hence time consuming to 

run, and many different analyses with different crack lengths are required in 

order to estimate the fatigue life. 

For checking detailed FEA results for making preliminary assessments of 

structured details and for reliability modelling (often part of inspection 

planning), where large numbers of analyses are required, it is useful to be able to 

estimate the Stress Intensity Factor (SIF) or Geometric Factor (Y) values. 

Presently, for practical stiffened plating details, approximate estimation methods 
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hardly exist. However some interesting work leading to simplified estimation of 

SIFs at sharp corners has been done by Lou (Lou, 2013). 

 

1.2 Motivation and Aims 

According to statistics, more than 80% mechanical fracture accidents were 

caused by metal fatigue (Shen, 2015) and in the welding marine structures, more 

than 90% fracture accidents were caused by fatigue failure (Gürgen et al., 2016). 

Fatigue and fracture are the main failure modes of ship and marine structures. 

Therefore, it is the key things of the safety states estimation to make sure the 

marine structures can be operated safely. The fatigue can be generated in many 

circumstances, the material damage, loading from out-of-plane, erosion 

environment, geometric discontinuities, flaws on the structures and the residual 

stress, from which the residual stress will stimulate high level of residual stress 

with structural deformation and geometric discontinuities will cause the 

singularities, furthermore the stress concentration, from where crack initiating 

and propagating.  

In the view of complex of microscopic fatigue, it’s not easy to predict the 

failure in appropriate theoretical or numerical method, therefore nowadays, 

many fatigue approaches are on basis of macroscopic aspects, such as S-N curve 

approach, fracture mechanics approach and reliability analysis methods. 

The overall scope of the study aims to develop a program for estimation of 

stress intensity factor in marine structures so that decision making during initial 

design and the through life management can be better planned, leading to the 

structures which can be kept adequately safe during their design life time. 

There is a need for simplified approach to check whether or not detailed 

FEA fracture mechanics results are sensible and the simplification could be 
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applied with reliability analysis where very large numbers of analyses are 

required, followed by estimation of reliability life. 

Some work, mainly on cruciform plates, has already been done by Xu, 

Lou and Barltrop (Xu et al., 2013). This work extends that to T sections and the 

estimation of the stress intensity factor for thickness changes and at plate 

junctions, how they are modified for different geometry size, and their overall 

effect on the structural fatigue life of the hull of marine structure. 

The objectives of the current research are to study and find approximate 

physical or empirical SIF estimation methods for: 

1)  Cracks growing towards a change if plate thickness. 

2)  Cracks growing towards a T-connection. 

3)  Cracks growing in actual ship details. 

4)  The effect of parallel uncracked structure which, as the cracks grow, 

increasingly supports the cracked location. 

The approximate methods should ideally have a physical basis and allow 

the estimation of SIFs from small to large cracks, so that a fatigue life can be 

estimated. 

 To understand the distribution of stress intensity factors along such 

crack fronts with a finite element analysis program and study the 

fatigue propagation of through cracks in plates subjected to pure 

tension and bending loadings. 

 To estimate numerically the stress intensity factor values for many 

crack geometries and loading cases of a welding model with single or 

triple stiffeners by using fracture mechanics i.e. LEFM approach and 

simplify the solution for complex structures through numerical 

simulation. 
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 To understand the effects of crack propagating in a constant thickness 

plate towards an edge, which is relatively simple but a useful starting 

point for understanding a crack propagating in a plate with a 

thickness change. 

 To understand crack propagation in a stiffener towards a plate, and, 

importantly, when the crack grows into the plate. 

 

1.3 Outline contents of each chapter 

 

 Chapter 2 reviews some basic concepts and common problems and 

approaches to fatigue assessment, including S-N curves and linear 

elastic fracture mechanics (LEFM).  

 Chapter 3 analyses a crack growing across a constant thickness plate 

and demonstrates that a simple analysis provides a (surprisingly) 

accurate assessment of the Y values. 

 Chapter 4 extends the Chapter 3 analysis to a plate with a thickness 

change at right angles to the crack.  

 Chapter 5 extended the method to a plate with a flat bar stiffener and 

the crack growing from the stiffener outstand and into the plate.  

 Chapter 6 further extends the method to a connection between a plate, 

longitudinally stiffened by an angle stiffener, and a transverse frame 

with a flat bar stiffener.  

 Chapter 7 considers three stiffeners connected side by side to the 

transverse frame with only the middle stiffener cracking.  

 Chapter 8 returns to the single stiffener but now includes the plate 

bending effect. 

 Chapter 9 presents the stresses on various lines through the single 

stiffener and estimates SCFs. 
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 Chapter 10 contains conclusions and recommendations 

 Chapter 11 Bibliography 

 The Appendices contain some validation of the ANSYS estimation of 

SIF values and an early attempt at quantifying the effect of a 

thickness change. 
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Chapter 2 Literature Review 

 

2.1 Cracks in Ships 

2.1.1 Liberty Ships 

From the construction of the welded steel ‘Liberty’ ships, there have been 

many accidents in which the load-bearing capacity of steel ships was reduced or 

even completely lost due to the cracking damage. In addition to the failure of the 

welded components, the crack may even cause the fracture of the whole 

structure. Figure 2-1 shows the failure of component. 

 

Figure 2-1 Fatigue failure of welded components (Shen, 2015) 

 

For early steel ships, the plates were all connected by riveting and this 

prevented cracks growing from one plate to another. But welding leaves flaws, 



Chapter 2   Literature Review 

11 

adversely changes the material properties and adds stress in steel hulls, which 

can have serious consequences. Probably the best well-known examples of ship 

fatigue and fracture failures are in the Liberty cargo ships built during World 

War II (Lou, 2013). The American government decided to use the method of 

“welding” than the conventionally followed method of “riveting” for ship 

building (Taneja, 2016). The ships were called “Liberty ships”.  

Between 1941 and 1945, Virtual Shipyard of the United States built about 

2700 Liberty cargo ships, presented in Figure 2-2, 800 “Victory” ships, 320 oil 

tankers and other series of ships. In all, there are more than 5,200 ships, with a 

total cost of about $83 billion (Shen, 2015). These ships were the first all-

welded ships. 

In addition to increasing the speed of construction, the use of welding also 

decreases construction costs. The number of skilled labourers required carrying 

out welding on the ship’s hull and the deck were thought to be significantly 

lesser than the numbers required to carry out using riveting. Some of the early 

ships experienced structural damage when cracks developed in their decks and 

hulls. Three of them catastrophically split in half when cracks formed, grew to 

critical lengths, and then rapidly propagated completely around the ships girths.  

  

Figure 2-2 Liberty Cargo Ships (J, 2008) 
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The use of welding technology and poor metal material properties was 

leading to a large number of Liberty ships to break. There were 238 ships 

completely scrapped due to long-length cracks in several places, while 19 ships 

sank due to crack propagation during service. The average cost of these series 

ships was $1.6 million for each ship. The accidents were caused due to the lack 

of fracture toughness of the welded joint (Tipper, 1948). The accident 

highlighted the importance the importance of fracture toughness and marked the 

“birth of fracture mechanics” (Taneja, 2016). It was found that a large number 

of cracks occurred in the stress concentration area, such as the hatchway, and 

their rapid growth eventually led to brittle fracture, see Figure 2-3. 

 

Figure 2-3 Tanker breaking accident (“Liberty tanker”, 1943) (J, 2008) 

 

Generally, early Liberty Ship suffered hull and deck cracks. One common 

type of crack nucleated at the square corner of a hatch which coincided with a 

welded seam, both the corner and the weld acted as stress concentrators and 

small fatigue cracks probably become unstable and fractured (Arshad, 2015). It 
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is suspected that the shipyards often used inexperienced workers and new 

welding techniques to produce large numbers of ships in great haste. The 

primarily welded hull construction then allowed cracks to run for large distances 

unimpeded. It was believed that the unskilled welding caused micro-cracks in 

the weld itself, thus, resulting stress concentrations which contributed to the 

brittle fracture of the Liberty ships (Zhang, 2016). 

Further work discovered that if the environmental temperature fell below a 

critical point, the mechanism of failure changed from ductile to brittle, and thus 

the hull could fracture relatively easily (Academy, 1996). 

Unfortunately, cracks in welded structures may propagate unimpeded for 

large distances, which can lead to catastrophic failure. However, when structures 

are riveted, a crack ceases to propagate once it reaches the edge of a steel sheet 

(Callister and Rethwisch, 2018). 

For most of ships, it should be noted that the most common type of cracks 

was one which began at the square corner of the opening hatch coincided with a 

weld. Thus, both the weld and stress concentrations acted as localised areas of 

high stresses. 

The reasons of the failure of the Liberty ships could be summarized as, 

a)  The material used did not have sufficient fracture toughness especially 

at lower temperatures. 

b)  The standard of the welded joints was in general poor due to 

inexperienced welders; which meant there were micro cracks in the welds. 

c)  The all-welded construction eliminated crack arresting plate boundaries 

which are present in riveted joints (Taneja, 2016). 

The measures taken to correct those problems included (Arshad, 2015), 
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1) Lowering the ductile-to-brittle temperature of the steel to an 

acceptable level by improving steel quality, e.g., reducing sulphur and 

phosphorus impurity contents. 

2) Rounding off hatch corners by welding a curved reinforcement strip 

on each corner. (Corners of windows and doors for all of today’s 

marine and aircraft structures are rounded.) 

3) Installing crack-arresting devices such as riveted straps and strong 

weld seams to stop propagating cracks. The remedial measure 

adopted was to use rivetted steel arrestor plates in areas of higher 

stress concentration thus arresting crack growth. In fact, Victory ship 

was an upgrade in ship design had arrestor plates to maintain a less 

stiff and stronger ship design that was better able to deal with fatigue. 

4) Improving welding practices and establishing welding codes. 

 

The studies on the Liberty Ship lead to recommendation for steel 

manufacture and material selection to reduce the fatigue fracture risk, although, 

with better steels, fast crack growth is now not so much of a problem but it can 

still occur.  

 

2.1.2 Problem of Shell-Stiffener Connection 

The TAPS (Trans-Alaska Pipeline Service) trade ships are a particularly 

well known example of ships that have had serious fatigue problems, generally 

and at their connections between the side shell and transverse structure. These 

are the U.S. flagged vessels that run up and down the West Coast bringing crude 

oil from the Trans- Alaska Pipeline south to refineries in California and Puget 

Sound (BATE, 1999). (The 800 miles pipeline, which is operated by Alyeska 

Pipeline Service Company, carries crude oil from Alaska's North Slope to the 

ice-free Port of Valdez in Prince William Sound.) From Valdez, the oil is loaded 

into waiting tankers. Many of these tankers were built in the 1970s and 
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approximately half were single-hulled vessels (BATE, 1999). As these tankers 

faced retirement, service companies wrestled with how to deal keeping them 

safe and with double-hull regulations and anticipated lower production levels in 

the Alaska oil fields. 

In the US Coast Guard’s Structural Casualty Study of 1988 (Hughesi and 

Franklin, 1993), the TAPS tankers were identified as a population of ships with 

apparently inadequate fatigue resistance. The study reported that during the 

period 1984 to 1988, 59% of documented structural failures in US flag vessels 

over 10,000 tons occurred in the 13% of the population that served the TAPS 

route (1988). An investigation of the TAPS tankers reported at least 16 Class 1 

fractures, several of which led to “significant pollution incidences” (Sipes et al., 

1991). A Class 1 fracture was redefined to include any fracture in the oil or 

watertight boundary of a vessel’s hull. The Class 1 structural failure includes 

internal fractures that are 10 feet or longer in length and the definition was also 

clarified to distinguish them from structural damage. 

The oil tankers that operate on the TAPS route have exhibited a large 

number of structural fatigue cracks. These cracks can be attributed to the 

increase in use of high strength in tanker construction and to the harsh operating 

environment in the Gulf of Alaska (Franklin, 1993). The TAPS tankers have 

been examined in several studies on the subject of fatigue cracking.  

Findings by the TAPS Study Group were based on an evaluation of the 

data that was assimilated from 200 Coast Guard vessel files, information 

contained in the Marine Safety Information System (MSIS), and data from the 

operators (Sipes et al., 1991). The analysis indicated that significant and 

potentially serious failures could occur on TAPS vessels at any time of the year. 

Generally, the more harsh the environment the more serious the event, i.e., all 

four Class 1 events were documented between October and March. Analyses in 

MSIS showed vessels with cargo blocks constructed of a combination of mild 

and high tensile steel (HTS) or solely of high tensile steel experienced 
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disproportionately higher numbers of structural failures than vessels built solely 

of mild steel. For single hull vessels, regardless of the type of steel, comprised 

62.3% of those studied and accounted for nearly 80% of the failure events and 

for vessels built to full scantlings regardless of type of steel, suffered the same 

proportion of failures as vessels built to reduced scantlings (Sipes et al., 1991). 

Data in MSIS showed that the 69 vessels subject to this Study comprised 

28 separate vessel classes. The six vessels in the Atigun Pass Class, whose 

fractures were described in the deck, the bottom and in side shell longitudinal, 

accounted for 26.3% of the failure events (Franklin, 1993). The first SOHIO 

tanker, the Atigun Pass, was launched at Avondale on June 4, 1977, and two 

more quickly followed (1977). The vessel MOBIL ARCTIC (Not in Atigun Pass 

Class) accounted for 8 of the failure events, making a total of 24 (34.8%) vessels 

accounting for 72.9% of the documented failure events. The Atigun Pass Class 

vessels have experienced the most frequent occurrence of cracking, including 

two of the four documented Class 1 events reviewed by the TAPS Study Group 

(Sipes et al., 1991). These vessels experienced active cracking for which 

effective detail retrofits were not found to be possible. The vessels in the 

America Sun Class, for which the majority of cracks were found in ether the 

bottom structures or at “rat holes” (small cut-outs) in various unspecified details, 

accounted for 12.8% of the documented events, and experienced active cracking 

for which repair solutions were pursued. Much of the past cracking has been 

attributed to poor initial design and construction, for which effective repair have 

been made. The MOBIL ARCTIC had several Class 2 fractures, for which the 

failures were less than 10 feet in length. The vessel was built with numerous 

structural deficiencies including misalignments of support members by as much 

as 3 inches, poor transitions and missing brackets. Deficiencies did not become 

apparent until after a fracture has occurred (Sipes et al., 1991).  

The primary concern of most companies is the poor design of details, i.e., 

the transition pieces such as brackets that connect the main transverse and 
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longitudinal strength members were structural discontinuities exist. A vessel 

with poorly designed details is likely to be subject to a high incidence of 

cracking regardless of the specific environmental conditions. Analysis should 

not necessarily be aimed at increasing the strength scantlings of the vessel, but 

in reducing stress concentrations and in providing a better load path for the 

stresses.  

In February 1990, the BROOKS RANGE experienced two fractures in the 

centre cargo tank, one in the base metal adjacent to the transverse erection butt 

joint near the centre vertical keel and the other outboard of the first crack in the 

weld erection joint in way of a longitudinal limber hole. In January 1990, the 

THOMPSON PASS had numerous side shell fractures in the starboard cargo 

tank, including an 8 inch crack. In July 1989, 3 individual fractures totalling 17 

feet in length appeared along the toe of a transverse field-erection weld in the 

bottom plating of centre cargo tank (Sipes et al., 1991). 

Regardless of how well designed a vessel maybe, or how thoroughly a 

detail is analysed and engineered for a particular arrangement, the poor welding 

technique or a poor weld will negate the best of detail designs and possibly lead 

to a structural failure. 

There was a general accordance among the TAPS operators that modern 

vessels, built around 1970-1990, which contain High Tensile Steels (HTS) have 

more problems than the older vessels constructed solely of mild steel. 

Particularly for vessels in the Atigun Pass class, the entire cargo block section 

consists of HTS. It was suggested that HTS has no place on large vessels 

because the technology employed in actual design and construction of these 

ships is not adequate to produce HTS vessels that will not have cracking 

problems. Many of the structural details used in larger vessels have been 

designed from historical experience and fabrication preferences, and without 

any specific analyses requirements or guidance contained in classification 

society rules (Sipes et al., 1991). It was the general consensus among the 
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operators that studies have shown that details that had proven satisfactory for 

older vintage mild steel construction are not necessarily satisfactory for newer 

vessel designs particularly those with High Tensile Steels. Some structural 

details on these larger vessels have proven to be inadequate and subject to 

failure. 

One common detail that has been subject to failure on older vessels is lap 

joints. Fractures in lap joints are common in the transverse web structures in 

wing tanks. Generally, operators repaired fractured lap joints with butt-welded 

joints when possible (Sipes et al., 1991). Some operators have spent, 

considerable resources to analyse details and have been successful in producing 

effective modification and repair solutions. 

ABS discussed comparisons of wave data for the California to Alaska 

route, the Alaska to Yokohama route, and the New York to Rotterdam route. A 

most probable extreme wave height of approximately 33 feet, based upon data 

for the North Atlantic, was chosen as a norm for the comparison. While the 

wave severity for the New York to Rotterdam route nearly matched 33 feet, the 

wave severity for the Alaska to Yokohama route was approximately 39 feet, and 

that for the California to Alaska route approximately 40 feet (Sipes et al., 1991). 

This data supports the view that the environmental climate in the Gulf of Alaska 

can be considered more of a problem for tankers on the TAPS route than those 

in North Atlantic service. Ships in the North Atlantic service also have more 

routing options to avoid storms, whereas vessels in the TAPS trade do not. 

Poorly designed details, poor weld workmanship, and fatigue appears to 

be the major causes of structural failures, especially in association with the use 

of high tensile steel. Corrosion is also another primary type of structural 

degradation that can lead to structural failures. Coating maintenance can be an 

effective way to slow corrosion and, hence stress corrosion cracking when 

employed in strict maintenance (Sipes et al., 1991). 
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To assess the possibility of cracks in the joint connection of ships, fatigue 

failure has to be investigated. This type of failure is still complicated to predict 

and when the various locations where it can occur, even on one ship joint 

connection, are considered it leads to a complicated and time consuming 

phenomenon to assess. 

 

2.2 Design and assessment for fatigue and fracture 

For several decades, fatigue design procedures have been established for 

bridges, pressure vessels, etc., with fatigue strength criteria, S-N curves based 

on small scale testing of planar welded joints (Gurney, 1979) (Maddox, 1975). It 

becomes evident that offshore structures in this harsh environment had to be 

designed against fatigue with explicit procedures during the development of oil 

and gas fields in the North Sea in the early 1970’s. In addition, the traditional 

approach to the fatigue analysis of notched structural components has been 

based on the classical S-N curve. The S-N curve is the most common way to 

present fatigue test data and design curves, as illustrated in Figure 2-4. 
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Figure 2-4 S-N curves of a plate, a plate with a hole and a plate with 
longitudinal gussets under tensile stress (Schijve, 2009) 

 

S-N curves are not generally useful for more complicated design 

assessments, particularly when crack inspection frequency or structural 

reliability under fatigue decay with inspections is required to be considered 

during the design. For these analyses fracture mechanics fatigue calculations, 

which consider the time history of crack growth, are more helpful than S-N 

calculations. Fracture mechanics also allows the estimation of the crack size that 

will fail under any particular loading. Fracture mechanics is discussed in Section 

2.4. S-N curves are discussed in Section 2.3.  

 

2.3 S-N curves 

Most offshore and ship structures are welded steel, and always bear 

alternating environmental loadings. Therefore, fatigue failure is considered as 

one of the major failure modes in structure engineering (Pradana et al., 2017) 
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(Fricke and Kahl, 2005). There are several well-founded fatigue design 

specifications (DNV1998, DNV2000) for welded connections in steel that 

should prove to be suitable to some extent. However, a feature of such 

specifications which is increasingly regarded as a disadvantage is that they are 

based on the use of the nominal applied stress. This proves to be a problem in 

the design of some structural configurations because of the difficulty of defining 

nominal stresses. The same problem frequently arises when stress information is 

obtained by finite element analysis (FEA). In view of this, there is growing 

interest in the use of hot-spot stresses for fatigue design (Maddox, 2001). 

Common fatigue assessment methods include nominal stress method, hot 

spot stress method and notch stress method (Fricke, 2003). Nominal stress 

method can be conveniently applied to the fatigue calculation of various typical 

joints, but ignore the stress discontinuity effect caused by the connection 

structure, which will cause large errors in the analysis of complex welded joints. 

Hot Spot stress takes the maximum structural stress or geometric stress as the 

reference value for stress extraction, analyzes the stress concentration effect of 

structural geometric changes on welded structures, but ignores the non-linear 

stress caused by notches or cracks. Hot Spot stress method can express the 

fatigue strength of different types of welded joints through a basic S-N curve, 

which is convenient for engineering application and popularization (Shen et al., 

2020a). Hot Spot stress was recommended to determine the stress at the corner 

in the traditional classification society specifications. For example, some 

classification societies suggested to use the surface stress values at 0.5t and 1.5t 

from the corner for linear extrapolation to obtain the stress value at corner (Shen 

et al., 2020b). 

Fatigue resistance data for design are usually expressed in terms of S-N 

curves, relating nominal applied cyclic stress range S and the corresponding 

number of cycles N needed to cause failure. S-N curve methods are useful for 

assessing the fatigue lives of welded joints, therefore they are intended for 
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application at the design stage. For S-N curve approach, the stress distribution 

calculation is required, so that either the stress concentration or a nominal stress 

can be estimated. The Hot-Spot stress method is an extension of the S-N curve 

approach in that it makes use of S-N curves obtained from tests on actual 

welded joints (Maddox, 2003). 

 

2.3.1 Stress Concentration Factor (SCF) Assessment based on 

S-N Curve classes 

All the fatigue design specifications present a series of S–N curves for 

particular weld details, with a classification scheme linking a description of the 

welded joint with the appropriate design curve. The classification usually 

depends on the joint type, geometry, loading direction and mode of fatigue 

failure (Maddox, 2003). The S–N curves are derived from linear regression 

analysis of log S  versus log N  fatigue data to establish mean curves and 

statistical lower bound, usually mean -2 standard deviations of log N . 

The equation of the S-N curve has the form, 

 mS N A   (2.1) 

where A and m are constants.  m is often 3. A is a constant that depends on 

the structural detail and the required probability of failure in lab tests. For a 

typical ships detail and 2.3% failure probability (-2 standard deviation) and an 

‘F’ attachment classification, 1 20 .6 3 1 0A    in MPa units (Barltrop, 2014). 

In codes and standards (Hobbacher, 1996a), it is now common to define S-N 

curves by the stress at 62 1 0  cycles. 

The S-N curves are modified for the thickness of the structural 

components (generally increased thickness reduces the allowable fatigue stress).  
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S-N curves are also modified for the corrosive marine environment and 

the presence or lack of coatings and electrical corrosion protection systems 

(DNVGL-RP-0416, March 2016). Corrosion reduces thickness, so increasing 

stress but also reduces the allowable fatiguing stress. 

S-N curves for welded structures generally assume that the welds are in 

areas of large local tensile ‘residual’ stresses as a result of welding. Very 

occasionally an allowance is made for the reduction of residual stress over the 

lifetime of the structure. 

Example S-N curves for welded joints are illustrated in Figure 2-5. Some 

structural details are presented in Figure 2-6. 

 

Figure 2-5 Example of design S–N curves for welded joints (Standard, 

2014) 

 

The fatigue cracks often initiate from the weld toe in the plate with welded 

details. Figure 2-6 gives diagrams that illustrate the geometrical features and 
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potential crack location for the loading direction shown which determines the 

class of nominal stress and hot spot stress. 

 

Figure 2-6 Loading details on welded attachment (BS7608, 2014) 

 

Detail classifications are given for assessment based on applied nominal 

stress. For example, for the location of potential crack initiation at weld toe and 

with the length of attachment plate larger than 150mm, the fatigue class is F2 

and the cycles to failure for any applied stress range can be directly read from 

the curve or, more usually, calculated from the formula that defines the curve. 

For some details there may not be an appropriate S-N curve and rules might 

specify an SCF to use with a particular S-N curve. In this case the methodology 

becomes similar to the Hot-spot stress approach. 

 

2.3.2 Hot-spot stress fatigue calculation 

Hot Spot stress takes the hot spot position as the reference value for stress 

extraction to analyze the stress concentration effect of structural geometric 

changes on welded structures (Hobbacher, 2016). Considering the reference 

stress can directly obtained by the strain gauge in engineering, Hot Spot stress 

method was conveniently applied and widely recommended (Niemi et al., 2006). 
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The Hot Spot stress approach has been widely used in engineering designs 

at present (Fricke and Petershagen, 1992). This approach utilizes more accurate 

stress analysis or different types of welded joints; therefore, it has higher 

precision and more extensive applicability (Niemi et al., 2006). On the other 

hand, it does not consider the local stress concentration caused by the weld toe 

itself and, hence, avoids the difficulty of determining the local geometry of the 

weld toe, as required in the notch stress approach. Therefore, the Hot Spot stress 

approach has been the most favorable option due to both accuracy and 

applicability in engineering designs. The traditional approach to derive the Hot 

Spot stress is using linear or quadratic extrapolation of surface stresses measured 

at two or three reference points in front of the weld toe (Hobbacher, 1996b) 

(Fricke, 2002). 

When an assessment of the concentrated stress in a detail is made, e.g. by 

using finite element analysis then, to avoid double counting the stress 

concentration effect, it is appropriate to use this with the basic S-N curve for a 

butt weld instead of the S-N curve for that class of detail. This requires the 

workmanship standards to be similar for the actual weld and the reference butt 

weld. The S-N class for a butt weld is D (Standard, 2014). The S values 

corresponding to a D curve at 62 1 0  is 90MPa. However, the estimation of 

hot-spot stresses from finite element analysis is often not straightforward 

because commonly used structural connections have sharp corners which imply 

theoretical infinite stresses and therefore infinite SCFs. These localized infinite 

stresses do not imply a zero fatigue life and the finite element analysis will in 

practice usually only provide an approximation to an infinite stress so the results 

of the analysis need careful interpretation. Codes of practice have introduced 

methods for interpreting the results of finite element analyses in these situations. 

Common recommendations (BS7608, 2014) are to calculate the stresses, where t 

is the plate thickness, from t and 0.4t to the corner, 1.5t and 0.5t to the corner, as 

shown in Figure 2-7. 
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Figure 2-7 Different thickness based methods of extrapolating of surface 

stresses to a corner hot-spot 

 

It is not clear that the extrapolation positions should depend on the 

thickness of the plate, however it does mean that the SCF calculated for 

geometrically similar specimen sizes will be the same. BS7608 (2014) notes 

alternative extrapolation methods, e.g. from fixed distances of 15mm and 5mm 

to the weld, or to simply use the stress at 5mm from the weld. 

It is also possible to use the stresses through the thickness of the plate t to 

calculate the SCF. BS7608 (2014) describes a method, based on Dong (Dong, 

2001), where the SCF is based on the linearized  stress over the plate depth.  

A further method uses the stress 1mm below the corner as the basis for the 

SCF. 

Empirically Maddox (Maddox, 2001) shows the methods do generally 

give reasonable results, but suggests consideration should be given to applying 

the different methods with different S-N curves.  

It is clear that different methods will result in significantly different SCFs 

and as none of the methods are theoretically based it is difficult to confidently 

apply them to new situations for which they have not been tested or calibrated. 

Stress 

0.4t   t   
             

0.5t   1.5t t 

Estimated SCF 
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2.3.3 Relationship between hot-spot SCF and weld 

classification approach 

For the attachment example, corresponding to an F2 class, given above, 

the fatigue strength ‘S’ defined at 62 1 0  cycles is 60MPa, as presented in 

Figure 2-8. This strength is the nominal (average across the loaded plate) stress. 

The curve is a minus 2 standard deviation curve, corresponding to a 2.3% failure 

probability with the specified stress and number of cycles.  

The S-N curve for butt weld is a D curve, for which, the strength ‘S’ at 

62 10  cycles is 90MPa.  

Arguably, the difference between these specimens is the local SCF in the 

F2 specimen.  Therefore the SCF implied by the F2 curve is: 

 90
1.5

60

MPa
SCF

MPa
   (2.2) 



Chapter 2   Literature Review 

28 

 

Figure 2-8 D curve and F2 curve by stress at 62 1 0  cycles 

(BS7608:2014 Figure 10) 

 

2.3.4 Structural stress fatigue approach 

2.3.4.1 Fatigue design based on rules, standards, codes and 

guidelines for ships 

Fatigue analyses performed according to current rules and guidelines from 

the several classification societies are individually considered below. The 

fatigue assessment requires a broader consideration of the problem than the 

details considered in this thesis. 

The primary objective of various Class rules, regulations and codes 

applicable to ship and offshore structures is to ensure that the design and 

analysis process results in the construction of the ship and offshore structures 
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that can resist both extreme loads and cyclic operating loads. ISSC (Garbatov et 

al., 2018) presented the fatigue analysis procedures from LR, DNV, ABS, and 

BV, within a comparative study of the fatigue assessment of a pad detail on a 

tanker, bulk cargo ship and an FPSO: 

The Lloyd's Register Rules and Regulations for the Classification of Ships 

(Register, 2016a) indicate that the fatigue performance of the hull structure is to 

be assessed in accordance with the applicable ShipRight Fatigue Design 

Assessment (FDA) procedures (Register, June 2015).  

The FDA procedures adopt a unit load approach to estimate the total stress 

response by combining the results of discrete unit load cases and the applied 

loads. The unit cases include hull girder global loadings, external hydrodynamic 

wave pressure loads, and internal cargo/water ballast inertia pressure loads. All 

these loads are further computed for any loading condition and sea state 

resulting from the hydrodynamic analysis and voyage simulation. The 

distribution and magnitude of internal inertia pressure loads are determined by 

simplified expressions for each ship motion. 

The ShipRight Fatigue Design Assessment procedure (Register, June 2015) 

applies to oil tankers, LNG and LPG carriers, bulk and ore carriers and container 

ships and requires three possible levels of assessments: 

FDA Level 1 (Register, 2009): the proposed joint configurations at critical 

areas are compared with the structural design configurations specified in the 

Structural Detail Design Guide, which can offer an improved fatigue life 

performance. 

FDA Level 2 (Register, 2015) (Register, 2016b): this is a spectral direct 

calculation procedure based on parametric databases to compute the wave-

induced loads and motions and simplified structural models which utilize LR's 

software. This procedure is intended for the analysis of secondary stiffener 

connections. 
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FDA Level 3 (Register, 2016d): this is a full spectral direct calculation 

procedure based on first principles computational methods, such as 

hydrodynamic load and ship motion analysis to determine the wave-induced 

loads and motions, and finite element analysis to determine the structural 

response. It is intended mainly for the analysis of primary structural details. 

Both FDA Level 2 and FDA Level 3 adopt a hot spot stress approach in 

conjunction with the Palmgren-Miner cumulative damage rule. The LR hot spot 

reference design S-N curve represents the fatigue strength of the welded 

material in air, including the stress concentration due to the local notch at the 

weld toe. It consists of two slopes modified as per the Haibach correction at the 

107-stress cycle and a reduction factor for corrosive operational environments 

(Garbatov et al., 2018). Additional stress concentration factors to account for 

construction tolerances and plate thickness effects may be applied (Register, 

2016d). The mean stress correction is included to reduce the overall stress range 

when the stress cycle is in compression. 

DNV and GL merged and their combined fatigue regulation came into 

force in January 2016 (Garbatov et al., 2018). It has been improved to be 

applicable also for other ship types, e.g. also for small and slender ships. The 

fatigue capacity part is also aligned with Common Structural Rules (CSR) that 

are agreed by a group of classification societies, but very much based on what 

has already been used by DNV and GL. 

DNV was using the hot-spot stress approach and GL used the nominal 

stress approach with a stress concentration factor K. A revised thickness and size 

effect has been introduced where not only the base plate thickness is considered 

but also the length of transverse attachments, cruciform joints, and butt welds.  

For consideration of corrosion a simplification has been made, the effect 

of which is however small. Other rules and standards use separate S-N curves 

for corrosive environments. But as measured corrosion progress scatters very 
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much in practice, the related damage contribution is taken as based on the S-N 

curve in the air and then multiplied by 2.0. The amount of time to be considered 

in a corrosive environment is defined based on compartment type and content 

and ranges between 0 and 5 years. For target lifetimes above 25 years, the 

formulation for the predicted lifetime is made independent of the target lifetime, 

assuming a regular maintenance regime. 

The mean stress effect, which can be important when details are exposed 

to compression, is handled similarly to how it has been in DNV and in GL. The 

pronounced effect of residual stresses and its shakedown on the mean stress 

effect, as it is considered in CSR for bulk carrier and tanker, is not relevant for 

typical loading conditions of other ship types and accordingly not applied in 

DNV-GL rules. For container ships, more ship specific and more sophisticated 

considerations are possible according to DNV GL class guideline for fatigue and 

ultimate strength assessment of container ships (DNV, 2017a). 

Bureau Veritas Rules concerning fatigue for steel ships involve a part 

dedicated to loads including fatigue loads defined in the framework of design 

load scenarios. In each scenario, Hot Spot Stress ranges are calculated according 

to a specified spectral approach. As dedicated to a structure where the operator 

specifications are generally very detailed this Classification rule is more focused 

on the objectives of the assessment including for fatigue than aiming to provide 

a comprehensive procedure to assess the structure (BV, 2016a). Within the 

objectives, different loads are involved due to waves, inertia, vortex shedding, 

and slamming. Fatigue life is addressed involving linear cumulating of damage 

or alternatively fracture mechanics. An assessment based on a fracture 

mechanics approach has been introduced to assess the validity of inspection 

planning. Fracture mechanics is applicable from flaw detection up to fracture 

criterion in terms of a Failure Assessment Diagram.  

Fatigue strength corresponding to a cathodic protection condition for 

welded assemblies is involved. The effect of weld improvement (e.g. grinding to 
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improve the weld shape) is considered by using S-N curves with a lower slope 

and higher fatigue limit. The capacity of remaining fatigue life evaluation is 

addressed with fracture mechanics crack propagation analysis. 

The stresses and S-N curve are based on the notch stress approach by the 

BV rules. (Veritas, 1998) (Veritas, 2000). Parametrical S-N curves may also be 

used to fit the results from component fatigue tests. 

A comparative study between the rules of classification and FE 

extrapolation was performed as part of the work of Committee III.2 “Fatigue 

and Fracture”, of the International Ship and Offshore Structures Congress (ISSC) 

during the working period 2015–2018. It was shown that the calculated fatigue 

lives varied considerably between 1.8 and 20.7 years on the Panamax container 

ship studied, so there is clearly more work needed to properly define fatigue 

analysis methodology.  

 

2.3.4.2 S-N fatigue assessment summary 

In the view of the low fatigue performance of widely used welded joints, 

design stresses in welded structures are frequently governed by fatigue 

consideration and the majority of service failures are attributed to fatigue. There 

is the necessity for careful consideration of potential fatigue failure at the design 

stage, and for clear design guidance. 

Even though this approach is empirical its widespread acceptance by 

codes of practice indicates it works reasonably well – at least it now requires 

fatigue to be considered at the design stage. However there are uncertainties in 

the application of the methodology with finite element analysis and the selection 

of the appropriate S-N class when finite element analysis is not being used. 

Some insights and improvements to the methodology can then be made by using 

fracture mechanics to better understand the particular problem. 
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There are particular challenges for ship structures with respect to fatigue 

design. Welded details in ships are complicated in several respects. The loading 

on ship structures is continuingly varying and the geometry of the welded 

connections can be very complex. The combined effect of these load 

components for fatigue strength assessment is not clear (RONGRONG, 2007).  

 

2.4 Fracture Mechanics 

S–N curves are useful for determining the number of load cycles-to-failure 

for a material, but they do not provide information on the rate of crack 

propagation at any time or the combination of the size of crack and applied 

stress that is likely to cause the material to suddenly fracture.  

Fracture mechanics can help answer these questions, it has been around 

for a century and thus is relatively new (Anderson, 2017).  

An important concept in fracture mechanics is the Stress Intensity Factor 

or SIF, which is usually give the symbol K. K is (approximately) proportional to 

stress and the square root of the crack length:  

 K Y a    (2.3) 

Where  

  is the applied stress (which is conventionally calculated at some 

distance from the crack); 

a is the crack size (usually the crack length away from the surface for a 

surface piercing crack or half the crack length for a crack that does not pierce 

the surface.  
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Y is a geometry factor (see Section 2.4.2). For simple cases of small cracks 

in simple geometry where the SCF is 1 Y may be approximately 1. However for 

more complicated geometry (such as the connection details considered in this 

thesis) the Y value may vary considerably as the crack grows. 

For simple geometry and loading K may be calculated analytically but for 

many practical problems numerical analysis, typically the finite element method, 

is used to calculate K. This thesis provides simplified methods for estimating K 

or Y. 

K can be used to calculate both fatigue crack growth and critical 

conditions likely to cause fracture. 

For fatigue crack growth calculation the range of stress intensity, usually 

written as ΔK is calculated for the particular crack size and stress range. 

The crack growth per cycle (da/dN) of applied stress intensity factor range 

(ΔK) is given by the Paris Erdogen Law (Paris and Erdogan, 1963). 

 mda
C K

dN
   (2.4) 

Because the ΔK value changes with crack length this equation has to be 

integrated , analytically or numerically, to determine the number of cycles for 

the crack to grow from an initial to a final size. 

For sudden fracture the maximum applied K value, including built in 

stresses such as from welding, is used. For brittle material the applied K is 

compared with an experimentally determined critical K value. For more ductile 

behaviour the interaction with material yield needs to be considered and this is 

often done using a Failure Assessment Diagram or FAD as shown in Figure 2-9. 

Kr is related to the applied K divided by the critical K value for the material 

when it responds in a brittle manner. Lr is the applied load divided by the load 

that would result in a plastic failure in the remaining material at the cracked 
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section. Kr and Lr are calculated and plotted on the FAD. If the point plots 

above or to the right of the FAD then failure is predicted. If the point plots 

within the FAD failure is not predicted, though whether the structure is ‘Safe’ or 

not actually depends on the safety factors used in the calculation and the 

consequences of failure. 

 

Figure 2-9 A failure assessment diagram (Qian, 2016) 

 

An alternative method of dealing with the linear elastic or non-linear 

elastic behaviour, which can be used as an approximation to elastic-plastic 

behaviour is to use the ‘J-integral’. This has not been used in this thesis although 

when the material is behaving elastically it is the equivalent of G, discussed in 

Section 2.4.4 and it is also used as a method of calculating K values within a 

finite element analysis. 

This thesis is primarily about the calculation of SIFs or K or the non-

dimensional Y values. The predicted SIFs could be used for fatigue crack growth 

or fracture calculations. 
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2.4.1 The stress field associated with the SIF 

The literature treats here types of crack loading, termed mode I, II and III 

(Roylance, 2001a), as shown in Figure 2-10. 

 

Figure 2-10 Fracture Modes 

 

Mode I is a normal-opening mode and mode II and III are shear sliding 

modes. (This thesis is primarily concerned with Mode 1 cracks.) 

In a polar coordinate axis with the origin at the crack tip as shown in 

Figure 2-11, it can be shown that the stress field in any linear elastic cracked 

body is given by 

    , ,, , other terms
2

I II IIII II III
ij ij

K
f

r
 


    (2.5) 

where ij  represents the stresses acting on a material element at a distance 

r from the crack tip and at an angle   from the crack plane and  ijf   is 

known trigonometric functions of   depending on Modes I, II and III. As r 

approaches zero, the leading term approaches infinity but the other terms remain 

constant or approach zero (Manan, 2008). The stress near the crack tip varies 
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with 1

r
 regardless of the configuration of the cracked body. It describes a 

stress singularity as stress is asymptotic to r equal to zero for Equation (2.5). 

 

Figure 2-11 Coordinate system and stress component ahead of crack tip 

 

The semi-inverse method shows the opening-mode stress to be (Anderson, 

2017): 
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  (2.8) 

On the crack plane where   equals zero, the stresses in the X and Y 

direction are equal, thus, 

 
2

I
xx yy

K

r
 


    (2.9) 
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 Stresses away from the crack tip zone are governed by the remote 

boundary conditions and approach a constant value,   . 

 

Figure 2-12 Stress normal to the crack plane in Mode I when 0   

(Wang, 1996) 

 

2.4.2 Geometry Correction Factor Y 

Generally K is a function of the loading condition, crack size and shape, 

and other geometrical parameters. K is linearly related to stress and 

characteristic crack dimension. Normally K is defined as  

 0K Y a     (2.10) 

where 0  is the remotely applied stress, a is the crack length and Y is the 

geometric factor which is a dimensionless constant that depends on crack 

geometry and mode of loading. The geometry correction factor Y usually 

referred to as non-dimensional SIF, is the most common form of representation 

for SIF solutions. 
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For the specific case of a central crack of width 2a in a large sheet, the SIF 

values is IK a  . And for an edge crack of length a in the edge of a large 

sheet 1.12IK a    (Roylance, 2001b).  

 

2.4.3 Published results for SIFs or Y values 

A lot of solutions for Y or K have been published. Some expressions for KI 

for some simple geometries are given in Table 2-1. Many other SIF values (and 

plastic capacity for use in the FAD calculation) are available in compendia of 

SIFs and in standards such as BS7608(2019).  

Type of Crack SIF, KI 

Centre crack, length 2a, in an 

infinite plate 
a   

Edge crack, length a in a semi-

infinite plate 
1.12 a   

Central penny-shaped crack, radius 

a, in infinite body 
2

a
  

Centre crack, length 2a in plate of 

width W 
tan

a
W

W

 
   
 

 

Two symmetrical edge cracks, each 

length a, in plate of total width W 

2
tan 0.1sin

a a
W

W W

 

             
 

Table 2-1 Stress Intensity Factors for several common geometries 

(Roylance, 2001a) 
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Within this thesis finite element solutions of SIF are used extensively to 

find simplified methods for estimating SIFs. The finite element methods needed 

validation and for that purpose some published SIF solutions were useful: 

1) SIF solutions given by Fett (1998), for an edge cracked plate, constant 

thickness plate validated the analyses that, in this thesis, were extended 

to a plate with a crack growing through change in thickness and to a 

crack growing through a T section.  

2) A paper by Hasebe & Ueda (HASEBE and UEDA, 1981) presents Y 

values in a semi-infinite plate with a crack growing from a step in the 

plate edge. This provided a useful comparison with the approximate 

assumption of Xu, Lou and Barltrop (2013) described in Section 2.4.7 

that is used for the assessment of SCFs in various side shell connection 

arrangements in Chapter 6.  

 

2.4.4 Energy release rate G 

As an alternative to fracture occurring at a critical value of K a theory was 

developed on the basis of fracture occurring when a small length of crack 

growth released more strain energy (G) from the structure than the energy that 

was needed to break that small length of structure. It was found that the energy 

release rate is proportional to K2 and that the K and G methods are equivalent to 

one another. In this thesis K is used rather than G (although for some work 

where K2 is important G might have been a more convenient choice).  

 

2.4.5 SIF Weight Function Method 

The Weight Function Method (WFM) originally developed by Bueckner 

(Bueckner, 1987), is a useful procedure that separates the calculation of the SIF 

into two parts: 
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1) The calculation of the SIF from a localized force per unit thickness of 

the crack applied to any particular part of the crack surface (this SIF is 

the weight function h(a,x) that, for a particular geometry, depends on 

the distance along the crack,  x, and the length of the crack  a. 

2) The calculation of the stress σ(x) along the line of the crack but in the 

uncracked structure. 

The SIF for the actual applied force is obtained by integrating the product 

of the stress from 2) and the weighting function from 1). 

The method relies on the equivalence of  

i) The overall applied stress distribution applied just above and 

below the section containing the crack and  

ii) that part of the distribution that is aligned with the crack being 

applied directly to the crack faces.  

 

This equivalence is explained in Figure 2-13 where: 

a) Shows the applied stress (red) opening a crack and 

resulting in an SIF = K. 

b) Shows an additional stress field (white) that will just close 

the crack – this must be the opposite of the applied stress 

applied to the crack faces as that will balance the stress 

applied to the edge of the specimen that is aligned with 

the crack.  Because the crack is closed the SIF is now 0 

and the additional stress field has resulted in an SIF of -K 

c) Therefore if the additional stress field from b) alone is 

reversed it will result in an SIF of K, equal to that of the 

stress applied in a) but only onto the crack faces. 
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Figure 2-13 The Weight Function method for calculating Stress Intensity 

Factors  

 

According to the weight function concept, 

    
0

,
a

IK x h a x dx   (2.11) 

The weight function  ,h x a  does not depend on the particular stress 

distribution, but only on the geometry of component. One possibility to derive 

the weight function is the evaluation of numerically determined crack opening 

profiles which may be obtained by FE computations. Providing the weight 

functions and stress distributions in the uncracked body are known, the SIF can 

be calculated for any complex stress pattern.  

The WFM should give exact solution providing the correct  ,h a x  is 

available and many different weight functions of either closed-form or 

approximate are available for simple configurations, i.e. centre crack or edge 

crack (Wu and Carlsson, 1991). 

For the case of a two-dimensional problem of a cracked sheet containing a 

crack of length 2a subjected to localized forces P  acting at points on the 

a) b) c) 
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crack surface and normal to the crack faces, the SIF is calculated by Equation 

(2.12) (Bao et al., 2010) (Shah, 1976). 

  
1

2

I

P a x P
K G x

a xa a 
     

 (2.12) 

The Green’s function  G x  is an earlier approach that is similar to the 

weight function method (Sih et al., 1962). In order to apply the method, it is 

necessary to know the appropriate Green’s function and the distribution of stress 

along the crack site in the un-cracked solid. Once these are known, the technique 

will give exact solutions.  

If a pressure  p x  acts normal to the crack faces, a x a   , there is 

 

   

   

   

1

1
    

    ,

a

I a

a

a

a

a

K p x G x dx
a

p x G x dx
a

p x g a x dx























 (2.13) 

The Green’s function  G x , for this particular problem is  

    1 1
,

a x
g a x G x

a xa a 


 


 (2.14) 

Equation (2.13) is consentaneous with Equation (2.11). It is weight 

function for an infinite width with centre crack of length 2a (Shah, 1976), see 

Figure 2-14. 
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Figure 2-14 Configurations of infinite sheet with centre crack 

 

For edge crack in a semi-infinite sheet, see Figure 2-15, the approximate 

form is used to express weight function by Equation (2.15) (Sih, 1973). 

  
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

 
             

   

 (2.15) 

 

Figure 2-15 Configurations of infinite sheet with edge crack 

 

A simple weight function used in this thesis is for a semi-infinite crack in 

an infinite body. This (for a pair of opposing forces) has the form: 

   2

2

P
h c

c
  (2.16) 
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Where c is the distance from the crack tip to the position of the force P. 

Note that care is needed with weight functions as the formulae provided in 

references sometimes relate to opposed force applied on both sides of the crack 

and sometimes to the force on one side only.  

 

2.4.6 Critical Distance Method 

Critical Distance Theories of Fracture defines failure criteria based on the 

stresses within a critical region surrounding the stress concentration, the size 

depending on the material (Neuber, 1958). This theory has seen an extensive 

development, providing answers to different scientific and engineering problems 

(Taylor, 2008) (Cicero et al., 2011) (Cicero et al., 2012). This theory is actually 

a group of methodologies that have in common the use of the material toughness 

and a length parameter, that is critical distance, L, that depends on the material. 

The theories are particularly applicable to small notches and cracks that are of 

the same order or smaller than the critical distance. 

For brittle failure situations in cracked components, in which linear-elastic 

behaviour is dominant, fracture mechanics establishes that fracture occurs when 

the applied stress intensity factor (K) is equal to the material fracture toughness 

matK , 

 matK K  (2.17) 

The critical distance follows the Equation (2.18). 

 

2

0

1 matK
L

 
 

  
 

 (2.18) 
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where matK  is the material fracture toughness and 0  is characteristic 

strength parameter, known as the inherent strength, which may or may not 

correspond to the plain-specimen strength (in static or cyclic loading).   

For fatigue a critical distance may be defined using the threshold SIF and 

the fatigue limit stress (the limiting K and stress below which no cracking is 

observed in constant stress amplitude tests). 

Taylor (Taylor, 2011) summarizes some useful conclusions that can be 

drawn from critical distance analysis: 

“1) Defects which are much smaller in size than the critical distance L can 

be assumed to be harmless, having no effect on the failure loads for the failure 

mechanism under consideration. Defects much larger than L can be treated 

using standard techniques such as LEFM for cracks or the stress concentration 

factor Kt for notches. A dimensionless number obtained by divided the linear 

size of the defect by L is thus useful in assessing defects. 

2) Notches (and other stress concentration features in components) which 

have root radii smaller than L can be regarded as cracks. Features with root radii 

much larger than L exert the full effect of their Kt factor. A dimensionless 

number obtained by dividing the root radius by L is thus useful in assessing the 

effect of stress concentrations. 

3) If the size of the body (defined by a relevant linear dimension) is 

similar to or less than L, the normal TCD methods cannot be used, and the 

failure behaviour can be expected to differ from that of larger bodies. Thus a 

dimensionless number consisting of the body size divided by L will be useful. 

4) If the critical stress so as used in the linear elastic TCD is greater than 

the plain-specimen strength of the material (in the cyclic or static loading modes 

as appropriate) then a notch having a Kt factor equal to or less than the ratio of 
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critical stress to material strength will be harmless. Thus this ratio is a useful 

dimensionless number.” 

There are four different versions of the Critical Distance Method (CDM) 

will be considered: 

(a)  The Point Method is the simplest methodology, and it affirms that 

fracture takes place when the stress at a distance of L/2 from the notch tip is 

equal to the inherent strength 0 . Therefore the resultant fracture criterion is,  

 02

L    
 

 (2.19) 

(b)  The Line Method, assumes that fracture occurs when the average 

stress along a certain distance, 2L, reaches the inherent strength 0 . 

Consequently, it follows, 

  
2

00

1

2

L
r dr

L
   (2.20) 

(c)  The Imaginary Crack Method (ICM) in which an imaginary crack of 

length L is placed at the notch root and LEFM conditions assumed. 

(d)  Finite Fracture Mechanics (FFM) in which fracture conditions are 

derived by assuming a finite increment of crack growth, equal to 2L (Taylor, 

2008). 

Modifications are required to the standard fracture mechanics approach if 

the crack concerned is a short crack, because short cracks tend to grow more 

quickly, and have lower threshold values, than longer cracks. The subject has 

been extensively researched, but no universally-acceptable solution has been 

reached as yet. Equation (2.21) (Taylor, 1996) involves a modification of the 

standard fracture mechanics equation to include a factor ae, that is, 
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 IK a ae     

 (2.21) 

Critical distance methods have not been used in this thesis but it appears 

that they could be useful for analysing and better understanding ship details with 

small cracks or no cracks in sharp corners. 

 

2.4.7 Additional Crack Size Method for Notches 

A method described by (Xu, 2007) and Xu, Lou and Barltrop (2013) 

involves an equation that is identical to Equation (2.21). The interpretation of 

‘ae’ in this work (and in this thesis) is of an increased effective defect size 

caused by a sharp notch or corner singularity.  

The work can conveniently be split into two parts: 

1) The calculation of a length as and power p that are scale and decay 

factors for the stresses in the vicinity of the notch/corner singularity. 

2) The calculation of a length ae: an additional crack size that represents 

the effect of the notch/corner on the SIF. 

ae and as were found, empirically, to be closely related. ae and as are 

discussed in the following sections. 

 

2.4.7.1 Estimation of stress field near cracks and sharp 

corners and characteristic size as 

Williams (Williams, 1952) stated that, in the context of the elasticity 

theory, the asymptotic stress state near a sharp corner is singular and its degree 

of singularity is a function of the angle of the corner. Close to the singularity, 

the stress has the form, 
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p
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x

 




 



 (2.22) 

where p presents for different corner angles, is shown in Figure 2-16. x is 

the distance from the corner and as is a characteristic size of the singularity with 

units of length. 

 

Figure 2-16 Variation of p (Singularity Power) at different corner angle 

(Xu and Barltrop, 2007b) 

 

as is an important parameter related to the geometry that, for a simple 

attachment or cruciform, is determined by the height (H) and length (L) of the 

attached plate, normally called unloaded plate, shown in Figure 2-18. 

At distances larger than 
10

as  from the singularity, a more complicated 

formula than Equation (2.22) is required to fit the stresses, which do not decay 

to zero. 

Paris and Sih (1965) quote the following formula for the stress field ahead 

of a finite crack in an infinite plate: 
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    0
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x a
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x a x




 

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 (2.23) 

For a corner singularity, an equation which has the required characteristics 

near the singularity, decays to the correct applied stress value and is equal to 

Equation (2.23) for the case of p = 0.5 is (Barltrop and Xu, 2011), 

    0

1 1
1

22

p
q qq

p p p

as x
x

x as x



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

  
    
  
  

 (2.24) 

where,  3 0 .5q p   

0  is the nominal stress, 

For a crack the angle is 0o and p= 0.5 and the stress decreases at x(m) 

from the crack tip in proportion to 1/x0.5. At 90o, p is 0.455 and at 45o, p= 0.326. 

For a straight edge the angle is 180o and, as expected, the singularity disappears 

with p= 0, implying a constant stress. Stress plots for different corner angles are 

shown in Figure 2-17. 

 

Figure 2-17 Stress decay away from singularity for different p (with

0 100MPa  ) (Xu and Barltrop, 2007a) 
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For cruciform plates or attachments to the edge of plates, as can be 

obtained (approximately) from the specimen dimensions on the basis of curve 

fitting by Xu, Lou and Barltrop (Xu et al., 2013), see Equation (2.25). 

 smallest of ,
25 2

L H
as

   
 

 (2.25) 

L is the length of the bracket, and H is its height. The thickness of to plate 

equals with tp (to = tp), see Figure 2-18. 

 

 

Figure 2-18 Simple plate with attachment leading to corner stress 

singularity (Xu and Barltrop, 2009) 

 

For different thicknesses of the plate and outstand (to   tp), as was found 

to be the minimum of 
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 (2.26) 
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2.4.8 Stress intensity for different crack sizes near a sharp 

corner and the effective additional crack size ae 

Xu, Lou and Barltrop (Xu et al., 2013) explain an interesting behaviour of 

the SIF that helps with its simple estimation – when the crack is larger than 

about as the SIF, instead of requiring a complicated formula for Y as a function 

of the crack size a, can be approximated by the simple equation with constant Y 

and ae. 

 K Y a ae          (2.27) 

This equation appears to be the same as Equation (2.21) but it is simply 

representing the ordinary SIF, whereas Equation (2.21) is representing 

fundamentally different behaviour of small cracks. 

For small cracks (a < qt as ) the ae value increases from 0 to the full as 

value as the crack size increases from 0 to qt as  and equation 2.23 needs to be 

modified, e.g. Xu et al.(2013) by: 

  
1

1
1

1 qt qta ae qt as a
qt


 

      
 

 (2.28) 

This formula defines a curve of a raised to power that, on a graph of a+ae 

against a, goes through the origin and is a tangent to the line a + as at qt as , 

as shown in Figure 2-19 
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Figure 2-19 Power curve to represent reduction in ae for small cracks 

 

ae can be calculated from known SIF values and a fixed reference Y value 

(e.g. 1.12 for an edge crack): 

 
2

1 K
a ae

Y 
     

 (2.29) 

Hasebe & Ueda (HASEBE and UEDA, 1981) have presented the 

geometry factor (Y ) results for a semi-infinite plate with a step in the edge. This 

work was not studied previously by Xu , Lou and Barltrop (2013) and the results 

are plotted as a+ae values (dimensioned here to a crack growing from a 0.1m 

step) against the actual crack size a in Figure 2-20 left. Here: 

i. The green dotted line is simply a = a, which is the result that 

would be expected if there were no step. 

ii. The red, solid, curve is the a + ae value calculated from Hasebe 

and Ueda’s Y values. 

iii. The blue, dashed, curve is the a + ae curve calculated simply from 

ae = as  

where as = 
2

H  = step height/2 

a+ae 

a 

as 

qt as  
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The ae value is well predicted as about half the step height. These results 

are investigated further in Chapter 6. 

 

Figure 2-20 Left:   a + ae values calculated from Hasebe & Ueda’s (1981) 

Y value; 
Right: (a + ae)2 values which are proportional to the SIF, K [Equation (2.29)] 

 

2.4.9 Calculation of SCF for fatigue life estimation from as 

Give the singular stress field and a suitable weighting function the crack 

growth behaviour can be calculated using Paris’ Law.  

Xu et al (2013) used an approximate weighting function to represent the 

sharp corner that was taken as the average of the weighting functions for: 

1 a crack growing from the edge of a semi-infinite plate and 

2 a semi-infinite crack growing in an infinite plate. 

 

This was argued to be an approximation to the actual weighting function. 

The crack is assumed to propagate along the direction perpendicular to the 

loads, to start at the sharp corner. 

Xu et al. (2013) then calculated the cycles to grow a crack from 0.15mm 

to 25mm in the singular stress field with a nominal stress range of 10MPa. They 
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compared the results, for the same range of crack growth, but with a uniform 

applied stress range of the same nominal stress of 10MPa. The stress 

concentration factor (Figure 2-21) was calculated as the cube root of the inverse 

ratio of the cycles to failure in the two calculations. 

 

Figure 2-21 E curve SCF for different as values from Xu et al (2013) 

 

Figure 2-22 is the Figure 2-21, E class curve adapted for a D class S-N 

curve and also shows a simple formula SCFp, that closely follows the numerical 

results: 
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 (2.30) 
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Figure 2-22 D curve SCF for different as values from Xu et al (2013) 

 

For the related problem of the connection to the corner of an angle 

stiffener the same formula, with an as value allowing for the relative thicknesses 

of the attachment and the sum of the thicknesses of the flange and web was 

expected to result in good estimates of the SCF. However, for the small cracks 

in the angle stiffener connection that are relevant to an S-N curve calculation, 

where ae is much smaller than as (as in Figure 2-19), the Figure 2-22 curve was 

not found to give a good estimate and in Figure 60 of Barltrop & Xu (2011) 

there is an indication that a better estimate of the SCF for this case can be 

obtained by multiplying the effect of an SCF of 1.4 and an as value of 

connection length/190 instead of connection length/25. 

That results in the following revised formula for the SCF (SCFr): 
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0.48
25

1901.4 0.55 0.9
as

SCFr
mm

  
    

 
 

 (2.31) 

 

2.4.10 Calculating K Values Using FEM 

The numerical calculation of K in the finite element method (FEM) can be 

done using displacement matching methods and various energy based method. A 

displacement extrapolation and an energy based method are implemented in 

commercial FE software packages, e.g. ANSYS Workbench and ABAQUS.  

 

2.4.10.1 Energy based method for calculation of J in ANSYS 

The J-integral is defined as “a certain integral evaluated along a contour 

traversing a region around the crack tip” (Hellen, 2001). The J-integral concept 

applied for both 2D and 3D crack tips. Under certain conditions e.g. LEFM and 

small scale yielding, the result of the J-integral can be considered equal to the 

energy release rate (Yoda, 1980). This equality is really important as it gives the 

possibility to calculate the J-integral value through a FEM software and then 

derive the Stress Intensity Factor from it. 

The J-integral method is not suitable for evaluating SIF due to weld 

residual stresses because the J-integral is no longer path-independent in the 

presence of thermal strains, path dependent plastic strains, body forces within 

the integration area, and pressure on the crack surface (Seifi, 2012).  

The displacement extrapolation method discussed below, not the J integral 

method, was used in this work. 

 



Chapter 2   Literature Review 

58 

2.4.10.2 Displacement extrapolation method for calculation 

of K in ANSYS 

According to the LEFM, the crack tip displacement field in the load 

direction for a 2D problem is presented in Equation (2.32) (Anderson, 2017), 
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              

              

 (2.32) 

where 3

1








  for plane stress (this is relevant for the thin plates 

analysed in this thesis) and 3 4    for plane strain, 

G is shear modulus, and as for isotropic materials it is connected with the 

equation 
 2 1

E
G





,  

yu , r,  are defined in crack tip coordinate, see Figure 2-23. 

 

Figure 2-23 Coordinate at crack tip and path for displacement 

extrapolation (Bao et al., 2010) 
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The SIFs can be calculated from the FE solution according to the 

displacement extrapolation procedure using Equation (2.33) 

 
2

2
1

y
I

uG
K

r




 


 (2.33) 

where yu  is the displacement between the corresponding nodes located 

on the upper and lower crack surfaces. r  is the node coordinate. Away from 

the crack tip, yu

r


 can be fitted by a linear function of r in Equation (2.34), 

 yu
r

r
 


    (2.34) 

If the node is located infinitely close to the crack tip, there is 

 0lim y
r

u

r



  (2.35) 

Therefore,  

 2
2

1I

G
K







 (2.36) 

The displacement extrapolation is implemented in ANSYS code using the 

“KCALC” command can be called in the general postprocessor after defining 

the path and either the plane stress or the plane strain state for the 2D problem. 

A refined mesh is used in the region around the crack tip to capture the rapidly 

varying stress and deformation fields (Ahmed and Alshamma, 2016). 

Singularity elements at the crack tip mesh result in more accurate SIF 

calculation for linear elastic problems. The embedded procedure in the ANSYS 

software package uses the absolute value of the displacement when evaluating 

the SIF so the SIF values will always be positive or zero. (Also if the SIF is 
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evaluated by the J-integral approach, the value will also be positive or zero (Bao 

et al., 2010)). 

 

2.5 Summary 

The fatigue literature review above demonstrates both existing 

experienced and mature results and new ideas. It is not surprising that different 

approaches exist for fatigue analysis. However there is no universally correct or 

best method. The circumstances of any considered particular case determine the 

choice of approaches. 

The nominal stress- S-N class approach (by Gurney, British Standard 

BS7910) is considered as robust with regarding to it is statistical foundation. 

However, it is only valid for details similar to those tested so it cannot represent 

all structural details and it does not provide guidance on crack growth rates. 

Finite Element Analyses are often performed to evaluate the hot-spot 

stress but the results depend on the mesh size, the elements used and the 

interpretation of the calculated stress pattern. The method described by Maddox 

(Maddox, 2001) varies depending on the particular codes used because of 

uncertainty in the extrapolation procedures used to interpret the stress results. 

The Fracture Mechanics approach is quick if there are published solutions 

e.g. by Fett (1998) but these have the disadvantage that there are a very large 

number of possible geometrical forms so often there is no available published 

solution.  

Finite element analysis to determine the SIF, K, is generally applicable but 

it is often time consuming to set up the required analyses for a particular 

industrial application, such as the side shell connections that were one of the 

parts that cracked in the TAPS trade ships. 
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There are different approaches for fracture mechanics assessment of K or 

SIF values. However these require the crack to be modelled with very fine 

meshes around the crack tip and for fatigue, many different crack sizes need to 

be modelled, resulting in time consuming analyses. 

Simplified estimation of SIFs are useful for practical engineering initial 

estimation and checking the results of more accurate analysis for these, more 

complicated, welded structures. Stress intensity factors are most often 

approximated using two-dimensional analysis from previous literature. However 

the literature does not provide insights into the behaviour of cracks emanating 

from corners, crossing thickness changes or growing through stiffeners and into 

plates. 

Mathematically simple expressions to determine SIFs will simplify the 

calculations process and time dramatically. If the error between the FEM and the 

simplified approach is sufficiently small, it will help with the process of 

estimating the stress intensity factor for complex welding components. A 

simplified method that provides approximate SIF results could be utilized for 

rough calculations to decide whether more accurate calculations are required 

and, with some calibration, in reliability calculations where many thousands of 

computations required and for approximate checking of results of more accurate 

calculations. 

 

2.6 The work reported in this thesis 

This PhD started with the intention of comparing the reliability of 

different structural details that had the same fatigue life. That required the 

assessment of SIF values and finally that part of the work became the subject of 

the PhD. So this thesis is aimed at the direct estimation of the SIF. However as 

the stress field is also estimated the work will also assist with S-N based fatigue 
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analysis. An understanding of the stress field can also be used by the analyst to 

help choose the mesh size in finite element analysis and, with suitable weight 

functions, can be used for fracture mechanics based assessment without the need 

for analysing the cracked structure. In particular this thesis will extend the 

previous work and produce simplified formulae for SIFs or Y values and SCFs 

for cracks growing through changes of plate thickness and through typical side 

shell connection details. 

The analysis of a longitudinal to transverse stiffener connection is 

researched in several simpler stages that are reported chapter by chapter: 

 Chapter 3 analyses a crack growing across a constant thickness plate 

and demonstrates that a simple analysis based on the ratio of the: 

o remaining ligament linear ( a aP M y

A I


 ) crack tip stress 

from the applied loading] to the similarly calculated  

o [( s sP M y

A I


 ) crack tip stress from the semi-infinite plate 

singular stress field, truncated to the extent of the ligament] 

provides a (surprisingly) accurate assessment of the Y 

values. 

 Chapter 4 extends the Chapter 3 analysis to a plate with a thickness 

change at right angles to the crack. (The same semi-infinite stress 

pattern is used irrespective of the thickness change but the resultant 

force and moment Ps and Ms) differ as a result of the different 

thicknesses. It was also necessary to introduce terms to account for 

the step change in the Y value at the thickness change. The method 

continued to work well, although the difference between the simple 

formula and the FEA was larger than for the constant thickness plate. 

 Chapter 5 extended the method to a plate with a flat bar stiffener and 

the crack growing from the stiffener outstand and into the plate. The 
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extension is relatively minor, it simply affects the levers for the 

moment calculation for both the applied load and the reference 

singular stress. 

 Chapter 6 further extends the method to a connection between a plate, 

longitudinally stiffened by an angle stiffener, and a transverse frame 

with a flat bar stiffener. The crack grows from the angle stiffener 

corner both into the stiffener flange and down the stiffener web. In 

this chapter only membrane stresses and SIFs or Y values are 

considered. The changes to the previous calculation are that  

o the applied loading affects the whole of the remaining 

ligament (including the uncracked flange), whereas  

o the singular load is only applied to and resisted by the 

uncracked part of the stiffener web and plate. 

o the singularity caused by the right angled corner between 

the stiffeners is accounted for by an estimated as and 

resulting crack size dependent ae.  

Results are obtained for both tension and bending loads applied to the 

shell plate and stiffener. The results continue to be useful, although 

each additional complication reduces the overall accuracy. The 

singularity at the connection of a flat plate and angle appears to be 

significantly different to the singularity associated with a coplanar 

attachment to a flat plate. 

 Chapter 7 considers three stiffeners connected side by side to the 

transverse frame with only the middle stiffener cracking. It was 

necessary to introduce an analysis of the redistribution effect as the 

middle stiffener loses stiffness relative to the outer stiffeners. 

 Chapter 8 returns to the single stiffener but now includes the plate 

bending effect which becomes dominant once the longitudinal (shell) 

stiffener has cracked through. It shows that a simple assessment of the 
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plate bending SIF works reasonably well for this, web completely 

cracked, case. 

 Chapter 9 presents the stresses on various lines through the single 

stiffener. The stresses confirm that the singularities at the intersection 

of the stiffeners are significantly different to the singularity at a 

coplanar attachment, with a much lower power law exponent. 

Nevertheless estimating as from the connection length results in a 

reasonable estimate of the stress concentration factor in comparison 

with, conventionally, linearly extrapolating the stress. 

 Chapter 10 presents conclusions and recommendations 

 The Appendices contain some validation of the ANSYS estimation of 

SIF values. 
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Chapter 3 A crack growing through a constant 

thicknesses plate 

  

3.1 Introduction 

This chapter analyses, using ANSYS FEA to predict the SIF for the well 

known case of an edge crack with different length/plate width (in the direction 

of the crack) values. After validating the FEA results against published SIF 

solutions a novel alternative method of estimating the SIFs based on the 

linearized stress in the remaining ligament is presented. This method is used in 

later chapters to estimate SIFs in more complicated geometry. 

 

3.2 FEA of plate thickness change 

3.2.1 Element types 

Finite element analysis for a range of thickness ratios were performed 

using ANSYS with ANSYS type 8-node Shell 93 elements around the crack, 

adapted to 6-nodes with singular properties at the crack tip. Away from the 

crack, where stress gradients were relatively small, the 4-node element type 

Shell 63 was used. This allowed a quicker solution with less mesh coarsening 

than if Shell 93 elements had been used everywhere. Comparisons with 

published results showed this modelling method to be satisfactory in this case. 
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3.2.2 Meshing 

In the geometry of a single edge crack, it is possible to utilize standard 

mesh generation tools to produce a crack tip surrounded by the required singular 

elements. Around the node at the crack tip a circular area is meshed by a 

designated number of triangular singular elements with quarter point nodes. 

Immediately beyond that mid-node element meshing using 8 node Shell93 is 

created automatically by the programs.  

The remainder of the mesh was generated using the ANSYS APDL input 

meshing functions. 

 

3.2.3 Constraints 

For one side of loading, there are X, Y and Z direction constraints at one 

keypoint and X, Y direction constraints at the opposite keypoint. For the other 

side of loading, there is only Y-direction constraint at the middle of line. 

 

3.2.4 Material properties 

The Youngs modulus is 210GPa.  

The Poisson’s Ratio is defined as 0.3. 

 

3.2.5 Loading 

The membrane stress loading is 81.0 10  Pascal applied along two, 

opposite, sides of the structure. 
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3.2.6 SIF calculation 

The SIFs were calculated using the Linear Elastic Fracture Mechanics 

(LEFM) solution method., which is based on the deflections of the crack 

surfaces.  

 

3.2.7 The model 

The mesh details of the model and the application of boundary conditions 

are shown in Figure 3-1.  

 

Figure 3-1 Mesh Details and Boundary Conditions Support  
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The mesh details around crack tip is shown in Figure 3-2. 

 

Figure 3-2 Mesh Details around Crack Tip  

 

3.3 Estimation of the Y values for a constant thickness 

3.3.1 Validation of FEA against Fett’s published work for a 

constant thickness plate 

The values of Ft’ factor can be validated against Fett, (1998) with the 

Geometric function for tension,  
3

21 /tF Y a W    and Y values in Table 3-1. 

Note Fett uses the terminology Ft for the Y value and Ft’ for the Y value 
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multipled by  
3

21 /a W . The values of Y and Ft’ from FEA method against 

a/W for t2 = t1 are presented in Table 3-2. 

Y values against a/W 

Crack 

Length 
t2 = 3mm t2 = 6mm t2 = 12mm t2 = 24mm t2 = 48mm 

a = 100mm 1.549 1.448 1.366 1.292 1.222 

a = 200mm 3.071 2.562 2.123 1.731 1.398 

a = 250mm 6.874 4.484 2.795 1.744 1.144 

a = 300mm 14.657 7.562 4.034 2.281 1.411 

a = 350mm 22.165 11.636 6.378 3.751 2.439 

a = 400mm 41.124 21.814 12.161 7.333 4.92 

a = 450mm 124.491 66.547 37.572 23.084 15.839 

Table 3-1 Non-dimensional factor Y values against a/W for different t2 

thicknesses (Results obtained from FEA) 
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Crack Length 

Y Factor from FEA 

IK
Y

a 


 
 

Ft’  Factor from FEA 

  1.5
' 1 /tF Y a W    

a = 100mm 

(a/W=0.2) 
1.366 0.977 

a = 200mm 

(a/W=0.4) 
2.123 0.987 

a = 250mm 

(a/W=0.5) 
2.795 0.988 

a = 300mm 

(a/W=0.6) 
4.034 1.02 

a = 350mm 

(a/W=0.7) 
6.378 1.048 

a = 400mm 

(a/W=0.8) 
12.161 1.088 

a = 450mm 

(a/W=0.9) 
37.572 1.188 

Table 3-2 Y and Ft’ values for t2=12mm plate with FEA method 
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The values for Ft’ factor under pure tension loadings for the rectangular 

plate with an edge crack are present in Fett (Fett, 1998). The ratio of H/W is 2.0 

(H = 1000mm and W = 500mm), see Figure 3-3 and Figure 4-2 and the Ft’ 

factors against a/W at H/W = 2.0 are able to be obtained using Linear 

Interpolation method from other H/W values, see Table 3-3. 

The area of two sides of the Model in the condition of t2=12mm is the 

thickness times the width of plate (  0.012 0.25+0.25 m2) and the forces on two 

sides of the model should be the stress multiplies the side area 

( 71 0 0 .0 1 2 0 .5  N) based on Table 3-4. 

 

Figure 3-3 Crack in rectangular plates under tension loading (Fett, 1998) 
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Crack Length Ft’  Factor from Fett 
Ft’  Factor from 

FEA 

a = 100mm 

(a/W=0.2) 
0.98 0.977 

a = 200mm 

(a/W=0.4) 
0.981 0.987 

a = 250mm 

(a/W=0.5) 
0.998 0.988 

a = 300mm 

(a/W=0.6) 
1.02 1.02 

a = 350mm 

(a/W=0.7) 
1.044 1.048 

a = 400mm 

(a/W=0.8) 
1.068 1.088 

a = 450mm 

(a/W=0.9) 
1.095 1.188 

Table 3-3 Comparing Ft’ factors with FEA against Fett’s results 
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Figure 3-4 shows the result of Ft’ values from two methods are in good 

agreement for the t1 = t2 = 12mm model. 

 

Figure 3-4 Comparisons of Ft’ values with FE method and Fett work 

 

On the basis of the Geometric Function for tension formula from Fett 

work,  
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Finally the geometric correction factor Y is obtained from Equation (3.1), 

see Table 3-4. The values of non-dimensional form Y from the two methods are 

very close with the difference of -1.03% for a 250mm crack and 7.84% for a 

450mm crack (where the crack has nearly severed the 500mm plate). See Figure 

3-5, Figure 3-6 and Table 3-4. 
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Crack Length 
Y  Factor from 

Fett 

Y  Factor from 

FEA 
FEA Fett

Fett

Y Y

Y

 
 
 

% 

a = 100mm 

(a/W=0.2) 
1.37 1.366 -0.29% 

a = 200mm 

(a/W=0.4) 
2.111 2.123 0.56% 

a = 250mm 

(a/W=0.5) 
2.824 2.795 -1.03% 

a = 300mm 

(a/W=0.6) 
4.033 4.034 0.02% 

a = 350mm 

(a/W=0.7) 
6.352 6.378 0.41% 

a = 400mm 

(a/W=0.8) 
11.944 12.161 1.78% 

a = 450mm 

(a/W=0.9) 
34.627 37.572 7.84% 

Table 3-4 Comparing Y factors with FEA against Fett’s results 
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Figure 3-5 The errors between Fett, (1998) and FEA: FEA Fett

Fett

Y Y

Y

 
 
 

% 

 

Figure 3-5 and Figure 3-6 show similar errors between Fett and FEA as 

between the simplified method and FEA. 
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Figure 3-6 Comparisons of Y values with FE method and Fett, (1998) 

 

According to the comparisons in the Table 3-4, it can be seen that the 

results of Y and Ft’ values from Fett approach and FEA method are very close. 

The results from FEA approach are therefore validated based on Fett, (1998). 

 

3.3.2 Empirical estimation of the Y values for a constant 

thickness finite length cracked plate subject to tension 

The geometric factor value Y is 1.12, inversely dependent on the radial 

distance from crack tip for initial crack (small crack, a/W = 0.01). The crack size 

a is set up from 10mm to 990mm for the calculations, see Table 3-5. 
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Crack Length a (in mm unit) 

10 100 200 300 400 500 600 700 800 900 990 

Table 3-5 Crack lengths in 1000mm width plate 

 

For particular a/W, the stresses on ligament is shown from step 1) to step 

9). 

1)  The singular stress distribution in Figure 3-7 for a crack in an infinite 

plate is determined and assumed to apply over the finite plate size. 

 

Figure 3-7 Singular stress on ligament ( si ) (Stress: Pa) 

 

2)  The mean ligament stress in step 1) is calculated and subtracted from 

step 1) so that the singular stress distribution now has a zero mean value in 

Figure 3-8. 
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Figure 3-8 Average Stress on ligament from singular stress ( si ) (Stress: 

Pa) 

 

3)  The moment about the ligament’s centroid and the associated ligament 

stresses are calculated and subtracted from the result of step 2). The resulting of 

stress distribution now has zero force and zero moment, see Figure 3-9. 

 

 

Figure 3-9 Bending stress from singular stress ( bmsi ) (Stress: Pa) 
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4)  The original singular stress is characterized by the mean stress 

distribution plus the moment stress distribution and in particular by the sum of 

those values at the crack tip, Figure 3-10. 

 

Figure 3-10 Average + Bending stress from singular stress ( si bmsi  ) 

(Stress: Pa) 

 

5)  The applied stress on the plate is now integrated to determine a force 

and moment relative to the centre of area of the remaining ligament. 

6)  A uniform ligament stress is calculated for the applied force in Figure 

3-11. 
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Figure 3-11 Axial stress from applied load ( a ) (Stress: Pa) 

 

7)  Using engineer’s bending theory, a linearly varying ligament stress is 

calculated for the applied moment, in Figure 3-12. 

 

Figure 3-12 Bending stress on ligament from applied load ( bma ) (Stress: 

Pa) 

 

8)  These are combined and stress representing the applied load is taken as 

the stress from step 6) and plus the stress from step 7) at the crack tip, see Figure 

3-13. 
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Figure 3-13 Axial and bending stress on ligament ( a bma  ) (Stress: Pa) 

 

9)  The Y value is calculated as 1.12 the stress representing the applied 

load (in Figure 3-10)/the stress representing the singular stress (in Figure 3-13). 

Steps 1) to 9) are repeated for each crack size and the graph of Y value 

against a/W results. This is shown in Figure 3-14 along with the results from 

Fett work (Fett, 1998). 

When considering the stress correction ratio alone at the crack tip in the 

ligament, there is, 

nominal axial stress + bending stress from applied load
Ratior = 

infinite plate formua nominal stress + bending stress from singular stress

          = a bma

si bmsi





 
 




 

Estimation of Y values around crack tip is using the ratio of underlying 

mean stress plus the bending stress, 

 1.12Ynr Ratior   (3.2) 



Chapter 3   A crack growing through a constant thickness plate 

83 

 

Figure 3-14 Comparison Y values between approximate method and Fett 

(Fett, 1998) results 

 

3.4 An alternative assessment of the SIF in a finite 

width plate subject to an axial force and moment 

3.4.1 Introduction 

To enable the simple estimation of Y values for more complicated 

structured, a method of simply estimating the Y values for a finite length cracked 

plate was developed.  

The method is based on applying engineer’s bending theory to the 

remaining ligament for the plate in Figure 3-15. The ligament length b = w-a 

and the variation of a represents the crack length. The total width of the plate w 

= 1 m and since it is assumed that the plate is semi-infinite, the plate is infinite 

long and has finite width. The loading applied on both sides of the plate is the 

uniform stress, 1Pa. 
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Figure 3-15 Edge crack subject to tension (Applied tension 0 1Pa  ) 

 

3.4.2 Details of the approximate method for calculating SIFs 

in a finite width plate 

Conventionally the SIF of a crack is written as  

 0K Y a      (3.3) 

Where 0  is a reference stress calculated on the uncracked structure and 

this is often the most convenient stress to use within the fracture calculation. 



Chapter 3   A crack growing through a constant thickness plate 

85 

However, for finite plate widths (where the width is in the direction of the 

crack) it is interesting to use an alternative method of estimating K using a 

linearized crack tip stress calculated from the mean applied stress and linear 

bending stress at the crack tip, in conjunction with the stress field formula for a 

finite (through thickness) crack in an infinite plate quoted by Paris and Sih 

(Paris and Sih, 1965). This resulted in surprisingly accurate SIF values for 

cracks in wide finite width plates subject to axial tension or bending. 

The Paris and Sih formula for a through thickness crack in an infinite plate 

subject to a constant stress is,  

    0

2 2

x a
x

x a x




 


  
 (3.4) 

 

3.4.2.1 Singular stress distribution based on Paris and Sih 

(1965) 

For this work an edge crack in a semi-infinite is of interest and the above 

formula is empirically but simply modified, two methods were used as discussed 

in Section 3.4.2.1 and Section 3.4.2.2. 

a) The stress at the crack tip (where x is much smaller than a) is 1.12 

times the Paris and Sih value (because the Y value for an edge crack is 

1.12 times that for an internal crack).  

b) The stress at distance (x is much larger than a) decays to the applied 

stress 0 . 

The modified stress distribution, which has these characteristic, for an 

edge crack in a semi-infinite plate is: 
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    0

2 1
2

1.12

x a
x

x a x




 


   

 (3.5) 

 

3.4.2.2 Other singular stress fields fitted to small cracks in 

semi-infinite plate 

To determine the sensitivity to the assumed singular stress field the 

following alternatives were also used within the approximate methodology for 

estimating Y values and the final results were compared with Fett (Fett, 1998). 

   01.12

2
x

x






 

 (3.6) 

   01.12
max ,

2
a

a
x

x

  


   
     

 (3.7) 

    0

2

1.12

2

x a
x

x a x




  


  
 (3.8) 

The first alternative gave very poor results for small a/w. The second 

alternative was a lot better but underestimated Y values at a/w of about 0.2. The 

third alternative gave results similar to the method described in 3.4.2.1 but were 

not as good, so it was concluded that the results are sensitive to the singular 

stress distribution that is used and that the distribution given in 3.4.2.1 was 

suitable. 

 

3.4.3 The approximate method 

The method first of all applies the modified Paris and Sih formula to the 

plate of finite width: w. It is argued that if this stress pattern were applied the 
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plate would have the expected SIF of 1.12 except perhaps for large a/w just 

before the crack breaks through.  

Figure 3-16 shows stresses for a 1m width plate that has half cracked 

through i.e. a/w = 0.5, so the remaining ‘ligament’ is half the plate width. The 

crack is shown in dark blue.  

Figure 3-16a shows, for a unit applied stress 0 , the modified Paris and 

Sih ligament stress as a solid red line. It is simply truncated at the end of the 

plate where a/w =1. Also shown, as a blue dotted line, is a linear stress profile 

that has the same force and moment about the centre of the remaining ligament. 

The linear stress profile has a stress of si  at the crack tip. 

Figure 3-16b shows, in red, an applied unit stress of 0 (= 1Pa) across the 

whole plate. Within the ligament this can be represented (shown as a dotted blue 

line) by a linear stress profile that has the same force and bending moment 

relative to the centre of the remaining ligament. The linear stress, representing 

the applied load effect on the ligament, at the crack tip is a . 

For 0  = 1Pa applied stress the mean stress on the ligament is 2Pa and the 

bending stress is 6Pa. The bending stress is large owing to, at a/w = 0.5, the 

eccentricity between the centre of the applied load (at a/w = 0.5) and the centre 

of the ligament (at a/w = 0.75). 
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a) Modified Paris and Sih    b) Actual applied load,  

Figure 3-16 Stress distributions and linear equivalent stresses for a/w = 0.5 

(Stress: Pa) 

  

Interestingly 1.12 a

si

Y



   is a good predictor of Fett’s (Fett, 1998) results 

for the Y values for a uniform applied stress as shown in Figure 3-17. The error 

is shown in Figure 3-18; the maximum error is about 3%.  

 

σsi 

Crack 

  σa 
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Figure 3-17 Comparison of approximate method and Fett (1998) for 

applied axial stress. 

 

Figure 3-18 Estimated / Fett axial load Y value 
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3.4.4 Application of the method to a plate subject to in-plane 

bending 

The method can easily be applied to a bending case as well. The Modified 

Paris and Sih part is unchanged but the linearized crack tip stress is different, it 

is simply 
2

1

m
a

a
w

 
  
 

 where m  is the maximum bending stress of, 1Pa, 

applied the plate edge.  

The formula 1.12 a

si

Y



  , then also predicts Fett’s (1998) bending Y 

value results across the range of a

w
 as shown in Figure 3-19, with a maximum 

error of 6.5%, as shown in Figure 3-20. 

 

Figure 3-19 Comparison of approximate formula method 

 1.12 /a siY      and Fett (1998) for applied bending stress. 
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Figure 3-20 Approximate formula method / Fett in-plane bending Y value 

  

The error for the bending case is larger than for the axial tension case 

although it decreases to zero at a/w = 0.8. It is possible that this is because the 

reference singular stress is also largely bending at a/w = 0.8, whilst the crack 

length/plate width is not excessive. This suggests that an improved formula 

might treat the ligament axial force and ligament bending moments slightly 

differently but, as the present assumptions work quite well, that has not been 

investigated further. 

 

3.5 Conclusion 

It is interesting that the linearized stress at the crack tip in a finite width 

plate and a linearized stress associated with a semi-infinite plate can be used to 

estimate SIFs for both tension and bending cases applied to a finite width plate.  
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Choosing the reference stress as a linearized stress in the ligament is an 

unconventional way of calculating stress intensity factors and the results are 

only approximate but, if the method can be applied to more complicated 

geometry, it has the benefits for ‘back of the envelope calculations’, checking 

more complicated analyses and use in reliability analysis that the PhD is 

attempting to find. In the next chapters the method will be applied to a flat plate 

with a thickness change, a T section (plate and flat stiffener) and a connection 

between a plate stiffened by an angle stiffener and a transverse stiffened 

structure. 
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Chapter 4 Cracks growing through a change 
of plate thickness 

  

4.1 Introduction 

In most published work on stress intensity factors (SIFs), the crack grows 

in a constant thickness plate, however it is very common that a crack grows into 

a different thickness plate, see Figure 4-1. Also at a junction of plates in 

different planes a crack meets a change in stiffness which will have some 

similarity with a change in thickness; this is studied, for a T section, in Chapter 

5. 

 

Figure 4-1 Crack growing into different thickness plates 

 

For this chapter the model configuration studied is as in Figure 4-2, which 

shows an oblique view of the plates. The thickness of t1 is defined as 12mm. The 
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thicknesses of t2 are defined as 48mm, 24mm, 12mm, 6mm and 3mm separately. 

The width of each plate is 250mm. “ac” represents the real crack size for I-shape 

plate with thickness change. The thickness change occurs at a crack length of ac 

= 250mm, in the calculations in this section this length is given the symbol at 

and is used to non-dimensionalize the crack length. 

The lengths of the plates are both 2000mm, with the crack at the centre of 

the length. 

Except for the thickness change, the modelling was as for the constant 

thickness plate in Chapter 3: The Young’s modulus and Poisson’s ratio are 

210GPa and 0.3 respectively. The tension stresses applied on the 500mm long 

sides of the model are both 10MPa. For one side of membrane loading, there is 

X, Y and Z direction constrains at one keypoint and X, Y direction constrains at 

the opposite keypoint. For the other side of loading, there is only Y-direction 

constrain at the middle of line. Small cracks are completely in the t1 plate. When 

the crack size is larger than 250mm, it means the cracks are growing into the t2 

plate. The crack lengths adopted in the model to calculate SIF values were 

initially 100mm, 200mm, 250mm, 300mm, 350mm, 400mm and 450mm. Later 

more crack size were analysed to better understand the crack behaviour around 

the thickness change.  

t1 [mm] t2 [mm] 

12 

48 

24 

12 

6 

3 

Table 4-1 Thickness data 
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Figure 4-2 View of plates and (through thickness) crack 

 

Stress Intensity Factors, considering step increases in crack length, have 

been calculated using FEA, for 2-D model with a refined mesh in ANSYS using 

shell elements (SHELL93) or 3-D model with solid elements (SOLID95) of 

ANSYS.  

The SIF is based on the deflection of nodes on the crack faces, as 

described in Section 2.4.10.2. The nodes used in the SIF calculation are always 

in the same plate thickness as the crack tip. This requires a very fine mesh when 

a crack has just penetrated into the second plate thickness. 
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Figure 4-3 Crack growing through t1 plate 
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Figure 4-4 Crack propagating through t2 plate  
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4.2 Flat plate with thickness change, results 

 

Figure 4-5 SIF values for crack growing in different thickness plates  

 

Figure 4-5 shows the Y value for the different t2/t1 thickness ratios plotted 

against crack length / first plate width. It can be seen that in the constant 

thickness, t2=12mm curve (green colour), the Y corresponds to the case analysed 

the previous chapter. With a thinner t2 plate, at any crack length, there are higher 

Y values and vice versa.  

To better understand the SIF values near the thickness change, more 

analyses are required and these are introduced in Section 4.4. 
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4.3 Estimation of SIF values for crack growing through 

a change in thickness 

 It was desired to obtain a formula that would reasonably represent the 

results that had been obtained for the crack growing into a change of thickness.  

Three formulae were developed, as described in Appendix C (method 1) and in 

the following parts of this Section (methods 2 and 3). The third method gave the 

best fit to the data and appears to be a reasonable basis for estimating the effect 

of thickness changes in different ratios of plate thickness to plate width than 

have been considered here. 

 

4.3.1 Estimation of SIF values for crack growing through a 

change in thickness: Second empirical method 

This part introduces a better empirical estimation of Y values for a crack 

growing towards or through a change in the plate thickness. Using the model 

with a thickness change, the FEA results for the Y values are shown again in 

Figure 4-6, where, at the thickness change as ac/at=1. It should be noted that 

owing to the method used to estimate K and Y values the results are more easily 

obtained for cracks just reaching the thickness change than just passing the 

thickness change. The results plotted for ac/at = 1 are for a crack with the crack 

tip in the plate of thickness t1.  

It is to be expected, that there is in fact a discontinuity as the crack passes 

the thickness change at ac/at = 1. This is also suggested by the trends of Y 

curves, sketched as dashed lines in Figure 4-6.  
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Figure 4-6 The trends of Y curves at different t1 and t2 thicknesses with the 
step change at ac/at = 1 shown by the dashed lines (Calculated value for ac/at = 

1 is only valid for ac/at<1. Y values for more ac/at values were calculated later 

and are shown in Figure 4-11) 

 

If the Y values, from Figure 4-6, for the plate with a thickness change is 

divided by the Y values for a constant thickness plate (t1/t2=1), the results are as 

shown in Figure 4-7. Figure 4-7 shows that there is an approximately 

exponential decay in the ratio of Y values either side of the change in thickness.  
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Figure 4-7 Y-value (Y) for a plate with a thickness change divided by Y-

value in a constant thickness (12mm) plate (Yc) for the same crack length from 
Figure 3-17  (Note this does not show the extrapolation to the cases where the 

crack has just penetrated the changed thickness) 

 

An approximate fit for Y/Yc curves by trial and error can be approximated 

to be as Ye, 

For ac<at: 

  
1

0.67 3 1
1

2

1 1

ac

att
Ye ac e

t

     
   

  
     
   

 (4.1) 

0 0.5 1 1.5
0

1

2

3

4

t1/t2=4
t1/t2=2
t1/t2=1
t1/t2=0.5
t1/t2=0.25

ac/at

Y
 v

al
ue

s/
Y

 v
al

ue
s 

fo
r 

co
ns

ta
nt

 th
ic

kn
es

s
3.31

0.42



Chapter 4   Cracks growing through a change of plate thickness 

102 

And for ac>at: 

  
0.4

0.95 0.35 1
1

2

1 1

ac

att
Ye ac e

t

      
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  
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   

 (4.2) 

A comparison of the approximate fit Ye(ac) and the FEA results is shown 

in Figure 4-8. Approximate and FEA of Y values/Y-constant thickness values for 

a crack as, in thickness t1, it approaches and passes a change in the plate 

thickness to t2. 
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Figure 4-8 Approximately of Ye (dashed lines) and FEA (solid lines) of 

Y/Y-constant thickness values (Y/Yc) for a crack from t1 to t2 (Note the 

approximate values allow for the step in the Y value at the change in thickness 
using Ye [Equations (4.1) and (4.2)], that was not calculated for ac/at just greater 

than 1 in the FEA) 

 

The comparison of the estimated [    Ye ac Yc ac ] and FEA values for Y 

values themselves are also shown, with a vertical log axis, in Figure 4-9.  Yc ac

is the curve about Y values for the case of 1 2 12t t   mm. 
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Figure 4-9 Approximate (dashed lines) and FEA (solid lines) of Y values 

for a crack from t1 to t2, log vertical axis (Note approximate values are 

extrapolated back to the step in the Y value at the change in thickness, using the 

function Ye [Equations (4.1) and (4.2)], that was not calculated for ac/at just 
greater than 1 in the FEA) 

 

It was clear that more analyses were needed around ac/at = 1.  
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4.4 Investigation of Y values for more crack lengths 

around W/2 

For plate thickness changes at W/2 (a = at = 250mm) and for the different 

t1/t2 the SIFs are investigated around W/2 to see whether there is a smooth 

change or a jump (that was expected) in the Y value as crack length changes 

from less than W/2 to more than W/2. 

Figure 4-10 shows the changes of SIF values for plate thicknesses change 

and Figure 4-11 presents the Y changes for crack lengths around W/2. It is seen 

that for t2=t1 plate thickness, the Y curve is very smooth for crack length around 

250mm (Orange Curve). For the ratio of t2/t1=4 (Red Curve) and t2/t1=2 (Blue 

Curve) thicknesses, the Y curves decrease after the thickness change. However, 

the ratio of t2/t1=0.5 (Pink Curve) and t2/t1=0.25 (Cyan Curve) thicknesses, Y 

curves increase when the crack length is bigger than W/2 because for these two 

curves, the thickness with t2 plate is much smaller than t1 plate. 

Note that the method used for calculating the SIF values, based on the 

deformations of the crack surfaces, is only reasonable when the deformations 

used in the calculation are in the same thickness of plate, so the SIF values for 

crack sizes of less than W/2 are easily calculated but SIF values when the crack 

is slightly larger than W/2 are estimated by extrapolation as superimposed on 

Figure 4-10. 
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Figure 4-10 SIF values for crack lengths around W/2 for different t2 

thicknesses 
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Figure 4-11 Y values for crack lengths around at 

Note values for a/at in thickness t2 have been extrapolated from the values 

ac/at = 1.04 and 1.08 

 

From Figure 4-11, it can be concluded that the values of Y are in inverse 

proportion to the plate thickness t2. 

Plotting the Y values results just before the crack reaches the thickness 

change (at=250mm) against the ratio of thickness, the Y values are quite 

accurately estimated by 
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values ( 2 1/ 1t t  ) for the same crack length, as shown in Figure 4-12. 
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Figure 4-12 Ratio of Y value for changing in thickness to Y value for 

constant thickness just before crack reaches the thickness change 

 

Just after the crack has entered the change of thickness, the Y values 

change and a reasonable approximation is found to be 
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, see Figure 

4-13.  

It can be regarded as if the plate thickness doubles, the Y values, in 

comparison with a constant thickness plate roughly halves.  
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Figure 4-13 Ratio of Y values for the crack just after it enters the thickness 

change 

 

With these extra analysis results, by trial and error, an approximate fit for 

Y values was found to be, 

For ac<at: 
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Whilst this formula was better than the first empirical formula it still 

needed improving. 

The thickness change is now accounted for by including the actual 

thickness t1 and t2, in the calculation method described for the flat plate in 

Section 4.4. Considering the crack size near the thickness change (ac=250mm), 

as in Figure 4-8 and Figure 4-9, this gave the results of Y/Yc shown in Figure 

4-14 and Figure 4-15 with the Y scale being linear and logarithmic respectively. 

 

Figure 4-14 Comparison of approximate and FEA results for Y/Yc for edge 
cracked plate with thickness change from t1 to t2 

 

The results of Y for different t2 thickness are shown in Figure 4-15. 
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Figure 4-15 Comparison of approximate Y and FEA results for Y for edge 

plate with thickness change from t1 to t2 

 

The results have the correct trends but the empirical equations still need to 

be improved. It appears that a better fit could be obtained if different formulae 

were derived for t1/t2 >1 and t1/t2<1, but that has not been done in this work. 
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4.4.1 Estimation of SIF values for crack growing through a 

change in thickness Third empirical method 

The previous Method 2, for estimating the Y values as a crack crossed a 

plate with a thickness change, used the Y results for a constant thickness plate 

(Yc) and multiplied them by a factor (Ye) that corrected for the effect of the step 

in the thickness.  

Method 3 returns to the relatively simple empirical derivation of the Y 

values for a constant thickness plate (using the ratio of linearized remaining 

ligament stress to linearized singular stress in a semi-infinite plate, as described 

in Chapter 3) and applies the method to the plate with the thickness change.  

From the applied loading, the stress at the crack tip is again calculated, 

assuming linear stress distributions through the remaining ligament of the 

cracked section, but now acting on the actual cross section by using the actual 

area and first and second moments of area section properties allowing for the 

thickness change. 

The singular stress is calculated using the same equation [Equation (3.5)] 

as in Chapter 3 (with Y = 1) but it is now applied to the actual local thickness. 

Whilst this is difficult to justify, it is not unreasonable because when the crack is 

in t1 the transverse-to-crack deformations in the plate with thickness t2 should be 

the same as for a constant thickness plate having the same stress. When the 

crack tip is in t2 the stresses applied normal to the crack tip will be correct.  

Although the transverse stresses applied in-line with the crack tip are the 

same in the two methods, Poisson’s ratio effects will be different so that stresses 

parallel to the crack tip will not be the same as in the constant thickness or semi-

infinite case.  
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It was not obvious that the method would work but it gave results that 

were quite close to the FEA results. Figure 4-16 shows the results multiplied by 

1.04 to get the best average fit. There is still a need for further correction of the 

results particularly in the vicinity of the thickness change, where the method 

results in a change of slope, that is almost a step, but it does not result in an 

actual step that is expected and is evident in the FEA results. 

 

Figure 4-16 Y from simple linearized stress ratio calculation based on 

actual thicknesses 

 

By plotting the ratio of the FEA results / Linear structural analysis results 
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correction equations were fitted. Separate fits were made for ac<at, ac>at, t2<t1 

and t2>t1. 

For ac > at the correction is simply an exponential decay to 1. 

For ac < at there the form of the correction also involves a linear term. 

The corrections are shown in Figure 4-17 and Figure 4-18. 

 

Figure 4-17 Ratios of FE to Linear stress variation calculation t2/t1 <1 and 

empirical correction [  1Ye ac ] [Equation (4.5)] 
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Figure 4-18 Ratios of FE to Linear stress variation calculation t2/t1>1 and 

empirical correction [  2Ye ac ] [Equation (4.6)]  

 

The correction equations are: 
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With the exponential thickness change correction [Equation (4.5) and 

Equation (4.6)] applied the comparison of the corrected simplified method and 

the FEA is shown in Figure 4-19 with, 

 

Figure 4-19 Estimation of Y values for thickness changes, using linearized 
stresses of the remaining ligament with actual thicknesses and empirical 

correction equations [Equation (4.5) and Equation (4.6)]. 
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likely to be large here as a result of the highly stressed area at the crack tip in the 

semi-infinite case being outside the finite size of the case of interest and 

Poisson’s ratio effects again being different. Note that these results are 

compared with FEA results whereas in the previous chapter the ligament stress 

method results were compared with Fetts results. Fetts results and the FEA 

diverged as the crack approached the far face. This method fitted Fett, (1998) in 

that region better than its fit to the FEA. That results in the larger error, as the 

crack approaches the far face, than in the constant thickness results presented in 

the pevious chapter. 

 

Figure 4-20 Ratio of FEA results / simple method (Applied ligament 

linearized stress/semi infinite linearized singular stress, with Equation (4.5) and 
(4.6) correction) results 
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4.5 Conclusion 

The second and third methods in this chapter estimation to estimate Y 

values based on the ratio of the linearized stress in the remaining ligament from 

the applied load to the linearized stress at the crack tip from the semi-infinite 

plate singular stress pattern results in a good first estimates of the variation of Y 

as a crack moves across a plate made up of two thicknesses of material. 

The third simplified method of estimating the Y values, based on 

linearized applied and singular stresses on the remaining ligament and using the 

actual structural thicknesses provides the best simplified method results. It is 

also potentially more versatile for dealing with more complicated structural 

arrangements. It still requires an emprical correction at the thickness change. 

The second method, based on linearized applied and singular stresses on 

the remaining ligament but using constant structural thicknesses and correcting 

for the thickness changes separately also provided good results. It has the 

advantage that the calculations required for the singular stress distribution could 

be done once and then referred to for later analyses. This might be useful when 

reliability analysis is being performed and the most efficient calculation is 

needed to save time. 

The first method of trying to represent the change in plate thickness by an 

artificial crack length did not provide useful or accurate results. 

Therefore, in this thesis the third method will be applied to the next stage 

of the work: the T section or plate stiffened panel. 
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Chapter 5 Crack growing through “T-shape” 

connections 

 

To provide insight into the behaviour of a “T” connection, an analysis is 

performed with a crack growing from the stiffener into the shell plate as shown 

in Figure 5-1. To allow comparisons with the constant plate thickness flat plate 

in Chapter 4, the shell plate thickness is, initially, taken as half the thickness, i.e. 

t2h=t2/2. The thickness of t2h is reduced to half size to obtain results that might 

more easily be compared with the flat plate case. This is based on imagining the 

shell plate folded back on itself as shown in Figure 5-2. (The new thicknesses of 

t2h plates would be 24mm, 12mm, 6mm, 3mm and 1.5mm respectively).  

Model details are shown in Figure 5-3 to Figure 5-7. 

 

Figure 5-1 Real T-shape structure  
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Figure 5-2 Real T structure and equivalent plate for I-shape structure 

 

 

Figure 5-3 Crack growing through t1 plate 
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Figure 5-4 Crack propagating through t2h plate 

 

Figure 5-3 shows crack growing through t1 plate, for which the crack size 

a is smaller than at. Figure 5-4 presents crack growing through t2h plate with 

crack length a is bigger than at, but smaller than 2at, for which the t1 plate is 

completely cracked. 

The model set-up ad properties are similar to the flat plate described in 

Chapter 3. The boundary conditions applied on the T-connection is one end is 

fixed support and the other end is pure tension loading in positive direction of 

X-axis, see Figure 5-5. The membrane stress loading on the two ends of the 

structure is 10MPa. 
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Figure 5-5 General applied loads and supports of T-connection model 

 

The Mesh Details around crack tip is shown in Figure 5-6.  
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Figure 5-6 Mesh details around the crack tip  

 

5.1 Empirical estimation of the Y values for a flat 

stiffener attached to a panel 

The SIF results for the crack growing in a flat plate with a thickness 

change from t1 to t2 are anticipated to provide some guidance for the membrane 

SIF of a simple stiffened panel with a crack growing from the stiffener outstand 

edge towards the plate. For comparison with the plate with a thickness change 

from t1 to t2 the stiffener of thickness t1 is attached to a panel of thickness t2/2. 

This is based on the idea of the plate being folded back on itself as shown in 

Figure 5-2. It was anticipated that the lateral restraint provided to the crack 

would be similar, though not identical, for the T and the equivalent flat plate. 
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Under uniform stress on the T section load, a bending moment is 

generated in the remaining ligament in the plane of the crack, as for the flat plate. 

There is no bending moment in the stiffened panel away from the crack. 

Note, when the crack breaks through from the stiffener into the plate, as a 

result of the eccentricity of the load applied to the stiffener relative to the plate, 

there will be considerable local plate bending. However the very important SIFs 

associated with that bending are not included in the finite element or theoretical 

analysis presented in this Chapter. (They are included in the solid element FEA 

SIF results and the simplified method in Chapter 8.) 

The membrane Y value appears to be difficult to calculate approximately 

but, as for the flat plate, the surprisingly simple method, based on nominal 

stresses for the cracked, instead of the conventional, for fracture mechanics, 

uncracked section was found to give good results, although the method was not 

as accurate as for the flat plate. 

In summary, the approximate method: 

1)  Uses the solution for the stress for a finite crack in an infinite plate 

(Seif and Kabir, 2016) (Paris and Sih, 1965). This is applied to the remaining 

ligament and the resulting axial force and moment on the remaining ligament 

are calculated. From this the sum of the axial stress and engineers’ bending 

stress at the crack tip on the remaining ligament that is consistent with the 

infinite plate solution and a Y value of 1.12 for an edge crack on the semi-

infinite plate. Note the plate is considered as unfolded for the singular stress 

distribution but folded for the calculation of the moments and bending stresses, 

see Figure 5-2. 

2)  Calculate the axial + bending stress in the ligament from the actual 

applied loads. 
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3)  Estimate the Y value as the result from step 1) divided by the result 

from step 2). 

This then allows the modelling of a stiffened plate with a crack growing 

down the stiffener and calculates the stress from plate-stiffener intersection, see 

Figure 5-7. As the panel is folded back at the “at” (plate junction) position, it is 

necessary to investigate the situation of crack length slightly smaller and bigger 

than “at” length. The crack length near the “at” position is set up as 490mm and 

510mm, see Table 5-1. The total thickness of stiffener plus panel is W=1000mm. 

Therefore the ligament length b=W-a. The width “W”,  is the width of stiffener 

plus half of shell plate: W = ds+B/2. 

Crack Length a (in mm unit) 

10 100 200 300 400 490 510 600 700 800 900 990 

Table 5-1 Crack lengths in stiffener model 
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Figure 5-7 Edge crack subject to tension in T-shape model (Applied 

tension 1a Pa  ) 

 

The singular stresses from infinite plate theory. Stress in ligament for a 

crack in an infinite width plate, the works from Paris and Sih (Paris and Sih, 

1965) or Seif and Kabir (Seif and Kabir, 2016) allows for edge crack. After 

correction to ensure equilibrium, this is assumed to apply to membrane stresses 

in the folded plate as well. 
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5.2 Results for a T section with t2 = t1 / 2 

On the basis of the above discussion the case for t2 = t1 / 2 is shown below. 

Figure 5-8 shows, on the left the distribution of stress, according to engineers’ 

bending theory, resulting from the actual applied load; on the right is shown the 

stress distribution resulting from a crack in a semi-infinite plate. The stresses are 

only acting on the remaining ligament of the cracked section (i.e., the blue and 

not the red part). The linear stress distribution has the equivalent force and 

moment about the centre of remaining ligament (in blue part) with Paris and Sih 

ligament stress. 

 

Figure 5-8 Stresses from applied external loads acting on remaining 

ligament a  (left side) and semi-infinite plate singularity i  (right side) 

 

These stresses are shown in more detail, for the crack extending 20% of 

the stiffener depth, for the singular stress distribution, in Figure 5-9 to Figure 

5-11 and for the applied unit stress loading in Figure 5-12 to Figure 5-13. In 

these figures the plate – stiffener intersection is at 1 on the horizontal axis. 0 to 1 

corresponds to the stiffener and 1 to 2 to the plate (where the stresses in the 

flange are symmetric so stresses only in one flange are shown). 

The cracked semi-infinite plate singular stress distribution, truncated at the 

edge of the shell plate is shown in Figure 5-9.  

Crack 

Semi-infinite plate 
stress distribution  

Applied loading  
linear stress 
distribution 
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Figure 5-10 shows the mean stress for the singular stress distribution (i.e. 

the constant stress that results in the same force as the singular stress 

distribution). The mean singular stress is unity on a semi-infinite plate but 

because only the part of the distribution from the crack tip to the far end of the 

shell plate is considered the mean of the singular stress distribution for the 

stiffened plate is greater than 1. 

Figure 5-11 shows the linear bending stress that has the same moment as 

the singular stress distribution after the mean stress has been subtracted.  

 

Figure 5-9 Stress from singularity before linearization ( si ) (Stress: Pa) 

plotted against (non-dimensional) distance through the remaining ligament 
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Figure 5-10 Mean stress from singular stress on cracked section ( si ) 

(Stress: Pa) 

 

Figure 5-11 Bending stress from singular stress on cracked section ( bmsi ) 

(Stress: Pa) 

 

Figure 5-12 shows the mean stress on the cracked section ligament for an 

applied unit stress on the end of the stiffened plate. This is higher than the unit 

applied stress at the end of the stiffened plate as a result of the crack that reduces 

the sectional area.  
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Figure 5-13 shows the bending stress on the cracked section caused by the 

applied unit stress on the uncracked end of the stiffened plate. The moment is 

caused by the eccentricity of the load relative to the centroid of the cracked 

section. The bending stress is calculated from engineers’ bending theory. 

 

Figure 5-12 Mean stress from applied load on cracked section ( a ) (Stress: 

Pa) 

 

 

Figure 5-13 Bending stress from applied load on cracked section ( bma ) 

(Stress: Pa) 
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Y calculation method is to consider the stress correction ratio multiplied 

by 1.12. The stress ratio in the ligament is,  

(        ) from applied nominal stress on T section  
Ratioh = 

(        ) equivalent to the singular ligament s

mean ligament stress linear bending ligament stress

mean ligament stress linear bending ligament stress


 tress 

          = calculatedat thecrack tipa bma

si bmsi





 
 





 

Calculate the Y values using ratio of underlying mean stress plus the 

bending stress at crack tip. 

 1.12Ynh Ratioh   (5.1) 

Comparison of approximate formula, Equation (5.1) with FEA results is 

shown in Figure 5-14.  

 

Figure 5-14 Approximate analysis of the T section [using Equation (5.1)] 
compared with FEA results (t2/t1=0.5) 
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Comparison of the FEA and formula results shows a reasonable agreement 

for the two points for a/ds < 1. The method underestimates the Y values for a/ds > 

1.  

In the calculations for Figure 5-14 it was assumed that the remaining web 

and full width of the shell plate act as a T section beam to resist the moment 

caused by the eccentric forces on the cracked section. 

The resistance is divided between 

1) The web acting with the membrane effect of the shell plate as a flange 

2) The bending stiffness of the shell plate based on 
3

12

B t
p


  (where p is 

the proportion of the width of the plate that is effective) 

The moment resisted by the web and flange membrane stresses and the 

moment resisted by the shell plate bending are in proportion to their cross 

sectional stiffnesses based on their second moments of area. However because 

the crack is localized and, according to the simple theory, there are step changes 

in these stiffnesses, the actual stiffnesses that determine the load sharing will 

differ from the simple assumption. This is primarily important as the crack is 

about to break through from the web to the flange, i.e. as a/ds approaches 1. 

Investigation of a/ds approaching 1 shows that the SIF is very dependent 

on the assumptions about the relative effective bending stiffness of the shell 

plate and the cracked stiffener web with the shell plate acting as a flange. If the 

effective width is 20% of the overall plate width, then the results change to those 

shown in Figure 5-15. Figure 5-16 shows results for the effective bending width 

being 60% of the full plate width. (If the shell plate was infinitely thin then the 

Y value would correspond to the case of a crack growing through a finite width 

plate and would become infinite.) 
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Figure 5-15 Approximate analysis of the T section compared with FEA 

results (t2/t1=0.5), effective width of shell plate in bending = 0.2 B  
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Figure 5-16 Approximate analysis of the T section compared with FEA 

results (t2/t1=0.5), effective width of shell plate in bending = 0.6 B  

 

As the stresses are changing rapidly around a/ds = 1 it is helpful to plot 

more approximate formula points. The results near a/ds = 1 are shown in more 

detail in Figure 5-17. The calculated peak Y value occurs at about a/ds = 0.98. 

The Y value then reduces because the applied loads are taken by shell plate 

bending which results only in a small membrane SIF.  
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Figure 5-17 Approximate analysis of the T section compared with FEA 

results region around a/ds = 1 (t2/t1=0.5), effective width of shell plate in 

bending = 0.6 B  

 

5.3 Crack Growing in a T connection with different 

ratios of, stiffener to shell plate thickness 

The model topology used in the previous section was rerun with different 

values of t2h/t1, as shown in Table 5-2. The shell plate thicknesses are half the 

values used for the flat pate (t2h) to allow comparison with the flat plate results, 

as discussed at the beginning of this chapter. 
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t1h [mm] t2h [mm] 2t2h/t1h t2h/t1h 

12 

48/2 4 2 

24/2 2 1 

12/2 1 0.5 

6/2 0.5 0.25 

3/2 0.25 0.125 

Table 5-2 Thickness data 

 

Each thickness ratio was analysed for cracks growing through the stiffener 

web and plate, as for the t2/t1 =0.5 case analysed above. The exponential 

correction terms derived for the flat plate were applied but with 2 tp  (i.e. 22 t ) 

used in place of tp, to recognize the effect of the shell plate extending on each 

side of the stiffener web. 

Figure 5-18 shows the membrane or centre plane Y values for the five 

thickness ratios with 0.6 of the plate widths used in the calculation of the shell 

plate bending stiffness. The approximate analysis results are shown as solid 

lines and the FEA results as points. 

Note:  

1. The Y values increase dramatically as cracks approach the 

connection of the stiffener to the web. As the shell plate thickness tends to zero 

the Y value would become infinite, as for a crack about to break through the far 

side of a finite plate.  

2. Once the crack has broken into the shell plate the membrane Y 

value becomes very small, however in reality the forces are now resisted by 
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plate bending and the bending SIF and Y values would be large. Bending is not 

considered in this chapter but is studied in Section 8.2. 

3. The Y values for as a/ds approaches 1 are under-estimated, for t2 

< t1 and overestimated for t2 > t1. 

 

Figure 5-18 Y values for different shell plate / stiffener thickness 

 

The effect of web to shell plate thickness ratio is most likely caused by the 

bending moment taken by the web and shell plate as a beam and the bending 

moment taken by the shell plate in bending not being subject to a step change 
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from the uncracked section but being dependent on the material either side of 

the crack plane as well as on the crack plane itself, as indicated in Figure 5-19 

(i.e. engineers’ bending theory, which assumes a prismatic section, is 

insufficient here).  

Indeed a simple (but incorrect) analysis could argue that the system 

comprises an uncracked section, an infinitesimally short cracked section and 

another uncracked section. If analysed in this way the stiffness of the cracked 

section would not affect the overall stiffness of the cracked stiffened plate.  

The above analysis is wrong because the crack affects the stiffness over a 

finite length, not just over its own length. The shell plate will be less stiff than 

the engineers’ bending theory predicts because, for a crack nearly reaching the 

shell plate, the very localized plate bending at the web will spread to a larger 

length of plate further away from the web. The stiffener web stiffness will also 

not suddenly change from the full uncracked section to the cracked section 

stiffness, because the stress flow will be modified either side of the crack, and 

will appear less stiff as a result.  

 

Figure 5-19 Local behaviour of shell plate in bending and web stresses 
concentrating in the remaining ligament 
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Simply analysing the above effects is difficult but it is reasonable that a 

relative stiffness correction, based on the relative thickness should be applied. 

This correction was applied as a shell plate bending effective width factor 

(although as discussed above it would seem that more accurately it is a relative 

stiffness effect). The correction that was found to work reasonably well was: 

 

1.2

2

1

Effective Width 0.8
t

B
t

 
   

 
 (5.2) 

where B is the shell plate width. The results are shown in Figure 5-20. 

 

Figure 5-20 Y values with additional shell-plate/web relative thickness 

correction (Y in log-scale) 
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Comparison of the simple approximate method, with the thickness ratio 

correction, and the FEA results shows that the simple method appears to capture 

the important behaviour. The error between the results is show in Figure 5-21, 

 

Figure 5-21 Ratio of Y values Approx/FEA result 

 

The comparison appears to be poor as a/ds approaches 1 and poorer than 

suggested by Figure 5-20. This is because the FEA and approximate methods do 

not predict the maximum Y values at exactly the same a/ds and Y is changing 

very rapidly in that region. For t2<t1/2 Figure 5-20 shows that the error between 

the maxima as a/ds approaches 1 is actually less than 20%. For t2≥t1/2 there are 
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not enough FEA analysis results to compare the maxima (however the next 

section provides more detailed analyses for a stiffener with t2 = t1).  

Away from the stiffener plate connection, the approximate method, based 

on: 

1) The simply calculated linear ligament stress at the crack tip 

2) An adjustment for thickness change 

3) An adjustment for shell plate local bending to remaining T section 

relative stiffness gives results that are within 20% of the FEA value. 

This is too large a difference for using the approximate results in place 

of more detailed FEA but would be sufficiently accurate to provide a 

useful check on the results of a more complicated analysis, for roughly 

estimating likely behaviour and, with some calibration, the method 

could be used for reliability analysis. So the T section results appear to 

meet the objectives of the work, as set out in the introduction and in the 

next section the method is applied to a connection detail that is typically 

found ship hull structure.  
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Chapter 6 Study of longitudinal stiffener 

connection to transverse structure with shell 

elements and membrane-only fracture mechanics 
elements 

 

6.1 Single stiffener model 

This structural analysis is of a connective detail with these dimensions 

shown in Figure 6-2. A crack is grown from the initial position at the 

intersection of the plate and frame stiffeners, in two directions: through the 

stiffener flange and through the stiffener web to the shell plate.  

The Y values for the crack tip in the flange are a little smaller than for the 

crack tip in the web see, Figure 6-6 and Figure 6-7; as a simplifying 

approximation it was assumed that the crack extended symmetrically from the 

initial position so that the length in the flange equalled the length in the web 

until the flange cracked through. 
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Figure 6-1 Illustration of stiffener structure on ship connection (Lou, 2013) 
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Figure 6-2 Illustration of longitudinal cracked and shell web cracked 

(Thickness t =12mm) 

 

The analyses are performed initially with a shell elements (Shell 63) and 

membrane fracture mechanics elements around the crack tip as shown in Figure 

6-3 to Figure 6-5 (later analyses use solid elements in Chapter 8). There are 

symmetric boundary conditions applied on the front and back sides of structure 

and the Y-direction fixed loading applied on top side, see Figure 6-3.  
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Figure 6-3 Applied symmetric Boundary Conditions and loadings (10MPa) 
(Note: U-Fixed support means there is no displacement in Y direction, which is 

the movement in Y direction has been fixed) 

 

The stiffener on the cracked side of the connection is not restrained at the 

loaded end (it is effectively a cantilever, and the symmetry boundary conditions 

along the side of the plate will not cause or resist a bending moment in the 

stiffener between the load and the crack). So as the stiffener cracks through the 

applied bending moment that results from the eccentricity of the load relative to 

the centroid of the remaining ligament of material on the cracked section can be 

calculated from simple statics. Whilst this is not representative of a real structure 

it is useful for trying to understand the behaviour of the connection detail. The 

simplified analysis methodology could be adapted to account for different 
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boundary conditions, although this might require some further ‘beam analysis’ 

as the more realistic boundary conditions would result in a statically 

indeterminate structure. 

 

Figure 6-4 Details of mesh, fixed support, and applied loadings (10MPa) 
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Figure 6-5 Mesh details around crack tip (Stiffener Model) 

 

The Y curve on single stiffener cracked structure is shown in Figure 6-6. 

The Y value drops very dramatically when the crack length is bigger than 

250mm, because the shell panel bending effect on Y is not included in this 

results (the effect is included in the solid element analysis in Chapter 8). The 

tendency of Y is similar to the T-shape model but, 

1) At small crack sizes Y is larger because it influenced by the singularity 

introduced by the right-angled corner between the frame stiffener and the shell 

plate stiffener.  

2) There is a noticeable kink at bf/ds = 1, where the stiffener flange breaks. 
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3) The membrane Y value, just after the stiffener web cracks through (at 

a/ds = 1), drops to about 1 more gradually. This has not been investigated 

further but may be a result of the loading that was originally on the stiffener 

flange. 

 

Figure 6-6 Membrane Y curve for crack in web and shell plate of single 

stiffener structure under tension loading 
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Figure 6-7 Membrane Y curve for crack in flange of single stiffener 

structure under tension loading 

 

6.2 Simplified numerical model 

6.2.1 Method based on the T section analysis 

Figure 6-8 shows membrane Y values calculated using an extended 

method described for the T section method and the FEA results for the single 

stiffener structure. Only the Y values for the crack growing through the web and 

shell plate have been calculated here. 
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Figure 6-8 Comparison of Y values between stiffener simple method 
(including ae) and FEA 

 

The extensions to the T section method are: 

1) The additional corner singularity caused by the right angle intersection 

of the longitudinal and frame stiffeners is represented by an additional 

effective crack length “ae  value” (Lou, 2013) of the connection length 

(600mm) /25 = 24mm. 

Then  K Y a ae       

Y = value calculated without the singularity effect of the frame 

stiffener, 

a = actual crack size, 
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ae = additional effective crack size which increases from 0 to as over 

2as as described in Section 2.4.8., 

as = connection length/25 = 0.6m/25 = 24mm. Note that a better fit to 

the FE results was obtained without allowing for the effect of 

considering the shell stiffener flange folded down and effectively 

increasing the web thickness. Because all the plates have the same 

thickness this would have reduced the as value by 
1

2
 to 17mm. 

 

Figure 6-9 Graphical descriptions of some parameters 

 

Although ae affects Y over the whole range of a, the important effect is 

where ae is significant in comparison with a i.e. for smaller cracks, as shown in 

Figure 6-10. 
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The simple method for Y calculations with ae is 
 

IK
Y

a ae 


  
, and 

comparatively simple method without ae is IK
Y

a 


 
. 

The calculation of ae is discussed in more detail in Section 6.2.2. 

 

Figure 6-10 Comparison of Y values with and without ae values to account 

for the singularity introduced by the frame stiffener to plate stiffener right angle 

connection 

 

2) The effect of the flange was accounted for by: 

a. Including the flange section when calculating the applied 

stresses and assuming, as in the FEA, that the flange cracks 

propagated at the same speed as the web cracks (so that the 
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flange cracked completely when the web crack was 90mm 

long). 

b. Using a Y value for the reference singular stress distribution of 

1 before the flange cracks through and 1.12 after it cracks 

through. This roughly accounts for the crack effectively 

becoming an edge crack when the flange breaks through. 

The combined effect is seen, in Figure 6-8 at bf/ds = 1, the kink 

where the flange breaks is modelled reasonable well by the simple 

method. 

After the flange breaks through the simple model follows the FEA results 

until shortly before the crack, at 250mm, breaks through to the shell plate. 

Around the breakthrough Y is not very accurate, particularly in the precise crack 

length associated with the maximum Y value. There is also some difference 

between the solid element model and the shell model in this region, with Y in the 

solid element model being more sharply peaked and slightly higher than in the 

shell model.  

Immediately after the crack breaks through from the web to the plate the 

trend in Y is not predicted correctly. The FEA results show the Y value dropping 

sharply but then rounding off to about 1, whereas the simple method shows a 

sharper drop to below 1. Here the T section predictions were better than for the 

connection detail. It is not obvious why there is a difference here, although I 

practice plate bending will dominate the membrane effect once the crack has 

broken through to the shell pate, as discussed in Chapter 7. 

This area, around the crack breakthrough into the plate, clearly requires 

more work. And in reality the crack will not break through in the simplified way, 

with the line of the crack tip assumed normal to the plate surface, in the FEA 

and in the simplified method. 
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Above a/ds = 1.2 the membrane Y values are underestimated by the simple 

model. 

Overall, particularly before the crack breaks through into the plate, the 

comparison of the simplified model and FEA results is surprisingly good. 

 

6.2.2 Modelling the intersection of the shell and frame 

stiffeners 

6.2.2.1 Comparisons of simplified formulae and ae with 

Hasebe and Ueda (1981) 

As discussed in Section 2.4.7 a right angled corner results in a singularity, 

even without a crack, and a simple method needs to take into account the 

interaction between the geometric corner singularity and the crack singularity. 

There are two convenient solutions that are relevant to approximating 

problem, shown as A) in Figure 6-8: 

B) A crack propagating from the edge of a semi-infinite plate with a stress 

field representing a corner 

C) A semi-infinite crack growing in an infinite plate with a stress field 

representing a corner 
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Figure 6-11 Approximation of corner crack by semi-infinite plate and 
infinite plate cracks 

 

The stress field is defined as described in Section 2.4.7.1. 
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Figure 6-12 Result of approximation of corner crack by semi-infinite plate 
and infinite plate cracks (step height = 0.1m, as ≈ 0.05m) 

 

Figure 6-12 compares the results of simplified models and the Hasebe 

results (solid red line). 

When the crack is large the formulation of Hasebe and Ueda (1981) tend 

to the blue curve in Figure 6-12 (semi-infinite plate with both faces of the crack 

subject to stress Figure 6-11A), 

 1.1215IK a     (6.1) 
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When the crack is small the crack tends to the red dashed curve inFigure 

6-11This corresponds to:  

1

2
  (semi-infinite crack one face stressed, Figure 6-12C) + Figure 

6-11(semi-infinite plate one faces stressed, Figure 6-11B ).  

Note that the 1

2
 indicates that the overall contribution of the semi-infinite 

crack, when the crack is small, is equivalent to half the stress on one face. This 

was an interesting result – it was guessed that the result might be the simple 

addition of C) and B). Note that there is not a unique solution to the contribution 

of the two parts as there are proportions of two values to add together to match 

the Hasebe and Ueda (1981) result and, for instance, multiplying both cases C 

and B by 0.35 would also give a good fit when the crack is small. 

Whilst this provides an interesting insight into the behaviour of a step or 

right angled connection the alternative simple method of reducing ae to 0 as the 

crack size tends to zero is much simpler and is used here. Xu., Lou and Barltrop 

(Xu et al., 2013) proposed a power formula for the reduction. This, for a qt value 

of 2 (value of a/as where ae = as), is plotted with the Hasebe and Ueda (1981) 

in Figure 6-13. Note that the Xu et al.(2013) power formula is not a particularly 

good fit. An exponential formula: 

  0.4
61 caae e as         

 (6.2) 

was found to give a better fit to the Hasebe and Ueda (1981) but lacked 

the advantage of a well defined cut-off for the small crack effect (it had been 

hoped that a simple [a+constant ae] solution could be used as this would allow a 

closed-form crack growth calculation to be used, which speeded up reliability 

calculations (Barltrop (2020) private communication). 
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Figure 6-13 Behaviour of ae/as at small a/as 

 

6.2.2.2 Calculation of ae compatible with finite element 

results and simplified analysis method 

The ae value is calculate using the FEA Y values (Yfea) and the simple 

method excluding ae values (Ysf), see Figure 6-10.  
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 (6.3) 

The result is shown by the red circles in Figure 6-14. An as value of 

24mm appeared to be a reasonable estimate. The larger and smaller ae values 

either side of the flange cracking through are probably related to the flange 

cracking through. as = 24mm is the frame stiffener connection length (600mm) 
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divided by 25. From Xu et al. (2013) and considering the stiffener flange folded 

down to the web it seemed reasonable to consider the frame stiffener as having 

half the thickness of the combined web and flange. This would result in the 

estimate for as being 
600 12

17
25 2 12

mm mm
mm

mm
 


 however the fit to the Y 

values of using as = 24mm was better.  

The power formula, exponential [Equation (6.2)] and a linear 

approximation [Equation (6.3)] are given for comparison. Although the bi-linear 

fit appears quite good it significantly under-estimates the SIF values at low a/as, 

which is where the effect of ae is most important. The power formula, with qt = 

2, and as = 24mm was found to give a good fit at small a/as [Equation (2.28)] 

and produced a reasonable fit to the Y values at larger a/as, as shown in Figure 

6-14. 

 

Figure 6-14 ae calculated from FEA with simple method and power and 

exponential approximations to Hasebe and Ueda (1981) results (non-

dimensionalized by as = 24mm) 
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It is not clear whether the difference between the ae values that fit the 

Hasebe results and those that fit the connection FEA results are physically 

significant, for example the higher than expected as value could be a result of 

the stiffener flange being less effective as a result of its finite width that is much 

smaller than the connection length of the frame stiffener, or just a result of the 

approximate, ligament linear-stress, method that is fitted to the FEA results.  

More fundamentally the behaviour of the intersection of the frame 

stiffener with the shell stiffener flange and web may be quite different to the 

cruciform plate for which the ae method was derived. Figure 6-15 shows the ae 

value from the FEA compared with the power formula and the exponential 

formula but with as = 17mm. There is some indication that the as method may 

be valid for a/as<0.4 but that there is another effect that becomes important after 

that. 

For small cracks up to about 25mm (in this case about equal to as) that 

may be considered to define the fatigue life an alternative fit has been noted 

(Barltrop and Xu, 2011). This is discussed in Section 6.2.5 and is used in 

Chapter 9. 



Chapter 6   Study of longitudinal stiffener connection to transverse structure with shell 

elements and membrane-only fracture mechanics elements 

161 

 

Figure 6-15 ae calculated from FEA with simple method and power and 

exponential approximations to Hasebe’s results (non-dimensionalized by as = 
17mm) 

 

To understand the behaviour of the crack at the stiffener intersection finite 

element analyses with different plate thickness ratios and different flange widths 

might help, however that would extend the work of this PhD too much so 

instead, I the following sections, two further cases are considered:  

1. with the transverse frame removed 

2. with the shell stiffener flange removed 
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6.2.3 Effect of flange and transverse frame on Y values 

To better understand the effect of the various parts of the connection on 

the Y values in the stiffener web, analyses were repeated with: 

a) The transverse frame removed but with the connections remaining in 

place. 

b) The flange removed (with the transverse frame reinstated). 

Analyses were performed up until the flange broke through. 

 

6.2.3.1 Effect of transverse frame on Y values 

 

Figure 6-16 FE analysis with frame and flange 

 

Results with the transverse frame removed are shown in Figure 6-17 
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Figure 6-17 FE analysis with transverse frame removed 

 

These analyses demonstrate that (as expected) the transverse frame does 

not affect the Y value for the connection subject to axial load. 

 

6.2.3.2 Effect of shell stiffener flange on Y values 

FEA results without the flange are shown and compared with the simple 

method using as = 24mm, exponential equation, in Figure 6-18. For this case the 

expected value of as, from Xu et al (2013) is the connection length /25 = 24mm. 

0 0.1 0.2 0.3
1

2

3

4

5

Y without transverse frame

Y

a

ds



Chapter 6   Study of longitudinal stiffener connection to transverse structure with shell 

elements and membrane-only fracture mechanics elements 

164 

 

Figure 6-18 FE analysis and simplified method with flange removed 

 

With no flange the initial Y value (which, for fatigue, will be the most 

important) is increased, in comparison with the case with a flange, but the 

increase in Y as the flange breaks through is avoided. 

Using the FEA results in conjunction with the simple model, with as=0 

the ae values required to match the results are calculated and shown in Figure 

6-19. 
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Figure 6-19 Flange removed ae values 

 

Figure 6-19 shows that ae is only moderately well predicted by as = 

connection length/25 and the exponential formula. It appears that this is a useful 

first approximation but that more work is needed if the effect of the right angle 

in structural connections is to be adequately estimated using simple formulae.  

 

6.2.4 Single stiffener shell model subject to stiffener bending 

A bending case was also run in ANSYS. The results are shown in Figure 

6-20. 
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Figure 6-20 Y comparison for bending moment and tension loading on 
single stiffener 

 

It is noticed that the membrane Y from the bending moment case does not, 

as expected, drop to zero immediately the plate stiffener cracks through to the 

plate at a/ds = 1. A drop to zero is expected because there is a net moment to the 

plate with no net axial force.  

The non-zero Y value for a/ds>1, is probably caused by a distribution of 

membrane stress in the plate which totals a zero force but is not the zero stress 

that a simplified analysis would suggest. The bending case is not considered 

further in this thesis. 

The results are compared with the simple method in Figure 6-21.  

0 1 2 3
0.01

0.1

1

10

100

Y value - Tension
Y value  - Bending

a/ds

Y



Chapter 6   Study of longitudinal stiffener connection to transverse structure with shell 

elements and membrane-only fracture mechanics elements 

167 

The modification to the simple method, from the tension case, involved 

simplifying the code by replacing the combination of applied force and eccentric 

bending moment, that increased as the crack grew down the web, with the 

constant applied bending moment on the remaining ligament. 

 

Figure 6-21 Membrane Y comparison for bending moment case as = 

24mm 

 

The agreement is good after the flange has broken and until the crack 

breaks through into the plate where the reasons discussed above the bending Y 

values would become dominant but are not calculated here. The as value of 

24mm gives a first approximation to the Y values for small cracks. The 

methodology is therefore shown to work well for a bending moment as well as 

for tension applied to the shell stiffener.  
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6.2.5 SIFs for small cracks 

For design purposes an S-N calculation with an SCF is usually the most 

convenient way of demonstrating sufficient fatigue strength. In laboratory 

experiments there is not a single criteria for deciding the end of life of a 

specimen being tested but with small specimens the end of life is usually clear 

e.g. as a marked loss of stiffness or a visible large crack. Very arbitrarily the 

fatigue life of the large structural details, analysed here, may be taken to 

correspond to the time to grow a crack from an initial size of 0.15mm to a final 

size of 25mm.  

The SCF has been related to the stress distribution as value which can 

itself be related to the fracture mechanics ae value and Y value.  

Barltrop and Xu (2011) note that the as value for a simple cruciform 

outstand (or a step in the edge of a plate) can be calculated from as = minimum 

of H/2 or L/25 where H is the height of the outstand and L is its length. For 

small cracks less than as in size, a reduction factor has to be applied as the as 

value overestimates SIFs in that region.  It was hoped that the outstand 

calculation method would also usefully apply to connections between 

longitudinal and transverse stiffened plates (as analysed in this section). 

However Barltrop and Xu found that, for small cracks, the outstand formula did 

not give satisfactory results and that a better method used an as of L/190 in 

conjunction with an SCF of 1.4. The connection detail analysed in this work is 

similar to that analysed by Barltrop and Xu so it is not surprising that a similar 

conclusion is drawn here, as shown in Figure 6-22. Where the apparent 
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Figure 6-22 Apparent crack size (a+ae) for small cracks relevant to typical 

design fatigue life calcuation 

 

This combination of SCF and as is used in Chapter 9 to estimate an overall 

SCF that can be used in S-N fatigue analysis. 

 

6.3 Conclusion for estimation of Y values in connections 

The simple analysis, without allowing for the corner singularity at the 

transverse frame to shell stiffener connection, works well for crack sizes larger 

than the flange width (although the applicability limit should probably be in 

terms of the frame stiffener depth or as). For smaller crack sizes the simple 

analysis under-predicts the Y value. This is where the ae effect and the way in 

which ae increases from 0 to its full value of as can allow for the corner 

singularity and is dominant. The formula by Xu et al (2013) that was derived for 
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a flat cruciform plate only gives a first approximation to this case of the frame 

stiffener connecting a flange and web plate. This needs further investigation but 

is not considered further in this thesis. It should also be noted that this 

calculation is related to a simplified geometry. Where the corner singularity is 

most important there is also in reality the complication of the three dimensional 

geometry of the intersection of frame stiffener and shell stiffener with finite 

plate thicknesses and weld profile all affecting the SIFs. 

Nevertheless the simplified method corrected by a simply calculated as 

value and additional crack size, ae, does give a useful estimate of Y. 
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Chapter 7 Study of three longitudinal stiffener 
connections to transverse structure with shell 

elements and membrane-only fracture mechanics 

elements 

 

This analysis was performed to study the beneficial effect of load 

redistribution to stiffeners, adjacent to the cracked stiffener and the reduction in 

SIFs that result.  

 

7.1 Finite element analysis of the three stiffener model 

The dimensions of the model are shown in Figure 7-1. Note there is only a 

crack in the central stiffener. 
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Figure 7-1 Dimensions and Thickness (t=12mm) of triple stiffeners model 

 

The boundary conditions and loading applied (10MPa) on the triple 

stiffeners are as shown from Figure 7-2 to Figure 7-4. There are symmetric 

boundary conditions applied along the front and back sides of structure and the 

Y-direction fixed loading applied on top side, see Figure 7-2. 
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Figure 7-2 Applied symmetric Boundary Conditions and loadings (10MPa) 
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Figure 7-3 Details of mesh, supports, and applied loadings (10MPa) for 
three stiffeners model 
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Figure 7-4 Mesh Details around crack tip 

 

The results are shown in Figure 7-5, along with the previous results for a 

single stiffener. 

Until the stiffener flange cracks through a/ds = 0.36 the triple and single 

stiffener results are essentially the same. For larger cracks the benefit of the 

support from the adjacent stiffeners are clear; reducing the maximum Y value 

from 41.8 to 12.2.  

After the web has cracked through, the membrane Y values in the shell late 

are also lower in the triple stiffener structure and the sudden increase as the 

crack approaches the plate edge, after a/ds = 2 in the single stiffener model, does 

not occur as the plate edge is further away.  
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Figure 7-5 Y for crack on triple and single stiffener under tension loading 

 

7.2 Simplified analysis of the three stiffener model 

A common situation will be that only one stiffener of a group of parallel 

stiffeners has seriously cracked. The one cracked stiffener will be supported, to 

some extent, by the shell plating spanning transversely across to the adjacent 

stiffeners, as shown in Figure 7-6. The relative stiffness of this transverse 

support to the stiffness of the cracked stiffener section becomes important. 
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Figure 7-6 Shell plate bending supporting a cracked stiffener 

 

The support to the stiffener provided by the plate is calculated:  

For the stiffener the cracked section 2nd moment of area is Ir and the 

effective length of the cracked section, is taken as h. 

Then the moment (Ms) rotation relationship in the vicinity of the crack is: 

 
r

Ms
h

E I
  


 (7.1) 

And for a large crack in the stiffener web, with the rotation assumed 

concentrated in this length h around the crack the displacement 0  of the end of 

the stiffener, at Lc from the crack is: 
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 0
r

Ms
Lc h Lc

E I
     


 (7.2) 

or, 

 
0

rE I
Ms

h Lc


 


 (7.3) 

For the shell plate spanning as an encastre beam between the uncracked 

stiffeners (in practice it will be less rigidly fixed than encastre but this is a useful 

starting point). 

Consider a transverse strip of plate of transverse length 2B and elemental 

length dx supporting the shell plate stiffener at distance x from the crack. The 

moment (Mt) induced in the stiffener for a displacement 0  at the end of the 

stiffener is: 

 
 

0
3

192

2

pE I x
M x dx

LcB

  
      (7.4) 

Integrating with respect to x over the length of the cantilever (Lc) 

 
 

3
20

03 3

192 8

32

p p
t

E I E ILc
M Lc

Lc BB

 
   

       (7.5) 

Therefore, the overall stiffener-moment to end-deflection relationship is: 

 

2
2

0 03 3

8 8pr
r p

E IE I E E Lc h Lc
M Lc I I

h Lc B h Lc B E
 

                                
(7.6) 
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3

8r p

E Lc
M I I h

h Lc B

             
 (7.7) 

Or the effective stiffener 2nd moment of area is, 

 
3

8r p

Lc
I I h

B
      
 

 (7.8) 

to fit the above method to the FE analysis results h was found to be about 

80mm or about 6.5tp. 

The results are shown in Figure 7-7, 

 

Figure 7-7 Comparison of K values from simplified model and FEA with 

moment redistribution through plating to side stiffeners 
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The redistribution of the bending moment gives good results until the 

crack breaks through the shell plate, after that, and until a crack length 

corresponding to nearly complete cracking of the shell plate the simplified 

method overestimates the Y value because: 

1) The method does not account for the compression induced in the shell 

plate by the bending of the adjacent stiffeners as they support the 

cracked stiffener. However an approximate investigation, based on the 

moment shed to the adjacent stiffeners and the resulting compression 

induced in the plate, showed that it could only explain about half the 

overestimate of Y after the stiffener web had cracked through.   

 

2)  No account has been taken of the redistribution of the applied axial 

force to the outer longitudinals. There was not an obvious way of 

estimating the axial redistribution effect. It was found that a reasonable 

fit for a/ds >1 was obtained by assuming that, after the stiffener was 

cracked through, 15% of the cracked stiffener axial force was 

redistributed to the adjacent stiffened plate and that the area of the 

cracked stiffened plate included 10% of the area of the adjacent 

stiffener and plate, so overall about 25% of the axial force was 

redistributed, compared with 32 % of the area of one stiffener and its 

associated plate, or 11% of the overall area, being lost as the crack 

breaks through into the shell plate. (Splitting the redistribution effect 

in this way was found to give the best fit to the FE analysis and 

avoided the increase in the Y value as the crack reached the now 

artificial plate edge half way between the stiffeners.) 

 

However the estimated Y value now, incorrectly, drops rapidly as the 

crack is about to break through to the edge of the central stiffened panel. This is 

a result of the simplified analysis being based on a single stiffener and 
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associated plate with increased area accounting for some of the redistribution of 

the applied load but the singular stress pattern being applied to the cracked area 

of the single stiffener and associated plate. It may be better to account for the 

larger area in both the applied stress and singular stress calculation, it would 

need to be considered if the crack was to be modelled as it approached the 

adjacent stiffeners but that has not been pursued further in this thesis. 

The improved result is shown in Figure 7-8.  

 

Figure 7-8 Comparison of K values from simplified model and FEA with 

moment and axial force redistribution 
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For practical purposes the assumption that the membrane Y value = 1 is 

conservative but probably satisfactory once the crack breaks through into the 

plate. 

The bending Y value is an order of magnitude higher and is discussed in 

Chapter 8. 

 

7.3 Conclusion of three stiffener simplified modelling 

The simplified method for the assessment of a crack at a connection 

between a single longitudinal stiffener and transverse supporting structure has 

been extended to allow the assessment of three parallel stiffeners with the 

central stiffener cracked. 

Before the crack breaks through to the shell plating, the most important 

effect that is taken into account is the redistribution of the stiffener bending 

moment that results from the eccentricity of the load as applied to the cracked 

structure. 

Redistribution of axial load and the effect of the moment generated in the 

uncracked stiffeners on the Y values were found to be important after the crack 

had grown into the shell plating. 

Overall, with the extensions to allow for moment and force redistribution, 

the method continues to work well, especially up till the crack breaks through 

the web into the shell plate. 
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Chapter 8 Study of a longitudinal stiffener 

connection to transverse structure with solid 

elements and solid fracture mechanics elements 

 

8.1 The solid model 

This model had the same dimensions as the shell connection model 

described in Chapter 6 but, for the shell plate, uses solid elements instead of 

shell elements.  

Shells are a mathematical simplification of solids which are thin in 

comparison with their other dimensions. In Finite Element Analysis, shell 

elements can often provide sufficient accuracy. Unfortunately, for the 

calculation of SIFs associated with plate bending, there is not a suitable shell 

element in ANSYS. The flat plate fracture mechanics elements and associated 

SIF calculation methodology only consider membrane axial stress/deflection 

and do not include bending effects. Whereas this may be sufficient for some 

structures or for some small defects, the bending related SIF will become 

important in the T section and connection analyses as soon as the plate bends 

significantly, roughly when the crack has propagated through the stiffener and 

into the plate. 

Solid elements overcome this problem as there are associated elements 

that can be used for the calculation of the plate surface SIFs that are affected by 

both membrane and bending stress. The analyses presented in this section 

therefore use solid elements including solid fracture mechanics elements and 

related methodology to allow bending as well as membrane effects to be 

considered by calculating SIFs on the element’s structural faces as well as on the 
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centre of the elements. The solid element model of the stiffener is shown in 

Figure 8-1. Thickness, boundary conditions are as for the shell model shown in 

Figure 8-2 to Figure 8-4. The applied stress was 100MPa whereas for the shell 

model 10MPa was used. (The actual stress does not matter as the results are 

presented as Y values.) 

 

Figure 8-1 Single Stiffener model with solid elements modelling the shell 

plate 
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Figure 8-2 Dimensions and Thickness (t=12mm) of solid elements model 

 

The boundary conditions and loading applied on the single stiffener with 

solid element type are as shown in Figure 8-3. There are symmetric boundary 

conditions applied along the front and back sides of structure and the Y-

direction fixed loading applied on top side. 
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Figure 8-3 Applied boundary conditions and loading (100MPa) on solid 
elements 

 

As for the shell model, the stiffener on the cracked side of the connection 

is not restrained at the loaded end and the symmetry boundary conditions along 

the side of the plate will not cause or resist a bending moment in the stiffener 

between the load and the crack. Therefore, as the stiffener cracks through the 

applied bending moment that results from the eccentricity of the load relative to 

the centroid of the remaining ligament of material on the cracked section can be 

calculated from simple statics. 
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Figure 8-4 Details of mesh, support, and applied loadings (100MPa) on 

solid elements model 

 

Figure 8-5 shows the Y results for shell model and middle plane in the 

solid model are, for a/ds > 0.3 in good agreement. For a/ds<0.3 the shell 

element SIFs are about 15% greater than the solid element mid plane values. 

This is probably caused by the difference between the thin shell ‘zero thickness 

geometry’ and the actual geometry which is modelled with the solid elements. 

However this difference is likely to be acceptable for practical purposes, 

especially as the simpler shell model is conservative in comparison with solid 

model which is expected to be the more accurate. Overall this demonstrates that 

shell element modelling is satisfactory providing only the membrane SIFs are 

important.  
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Figure 8-5 Comparisons of Y values for shell model and middle plane with 

solid model  

 

For this structure and load that is the case until the crack breaks through 

into the plate. After the crack breaks into the shell plate the bending effect is 

clearly dominant, as shown in Figure 8-6.  
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Figure 8-6 Absolute Y values for different planes in solid model and shell 

model type (see Figure 8-7 for definition of surfaces) 
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Figure 8-7 Description of Y on Upper/Middle/Lower Surface of Solid 

Model 

 

Using solid elements the SIFs and hence Y values can be calculated along 

the crack tip from one plate surface to the other. In Figure 8-6, the results for the 

two plate surfaces are shown. Whilst the crack is in the stiffener Y shows 

negligible difference at the two crack surfaces.  

Once the crack breaks through into the shell plate a very large Y, 

associated with plate bending occurs. This is because the shell has to bend to 

maintain the equilibrium. The SIFs and hence the calculated Y values output by 

ANSYS are always positive but, arguably, should be positive on the stiffener 

side of the shell plate and a negative SIF on the opposite side.  

Note that the analysis performed is linear, so on the tension side of the 

crack the crack faces separate. However on the compression side the surfaces 
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are predicted to overlap. This clearly cannot happen in practice but a non-linear 

analysis would be required to model the crack closing and the surfaces not 

overlapping. An analysis of this type for a simple plate is included in Appendix 

B but the method has not been applied to a stiffener connection in this work.  

There is likely to be some transverse bending in the stiffener flange and 

web as a result of the asymmetry of the stiffener flange, however that affect will 

be more important when there is a moment applied to the stiffener and appears 

to be small in this case. 

For the crack sizes after the breakthrough to the shell plate, the average 

value of the ratio between upper SIFs (bending + membrane stresses) and 

middle SIFs (membrane only) is, after allowing for the correct sign of the SIF, 

in the interval 12 to 17.5, see Figure 8-8.  

 

Figure 8-8 Ratio between bending Y values and average Y values 

(Bending Y value is (Y1-Y2)/2, where Y1 and Y2 are the opposite surface Y values) 
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8.2 Prediction of the bending SIFs in the plate after the 

stiffener has broken 

It has already been shown that good estimates of SIFs or Y values can be 

obtained until the stiffener is close to cracking through. The estimation of SIFs 

after stiffener the cracking through, when the crack is crossing the shell plate 

and resulting in a lot of bending is now investigated.  

This case is not usually interesting at the design stage because the design 

fatigue limit state will be reached with smaller cracks. It is, however, of interest 

when performing structural reliability analysis and considering the failure 

probability associated with overall hull girder failure or leakage of fuel/cargo 

which may result from this type and extent of cracking. If there was sufficient 

information available to properly understand the state of a ship casualty, it 

would also be of interest when assessing how the casualty is breaking up. Whilst, 

even in the recent past, that detailed information would not usually have been 

available, drones are capable of providing more information and so these types 

of calculation may become relevant when deciding how to deal with a casualty. 
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Figure 8-9 Connection with the stiffener just completely cracked 

 

Owing to the loading and stiffness effects after the stiffener breaks (Figure 

8-9), the prediction of the bending SIFs is difficult. However, for the linear case, 

where material overlap in the compressive part of the crack is permitted, a 

relatively simple formula, based on SIF solutions (Paris and Sih, 1965) 

Equations (8.1), that was empirically fitted to the bending SIF from ANSYS: 
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(8.1) 

Where 
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a = crack length measured from the web flange intersection 

as = empirical additional crack length (25mm) 

ds = stiffener depth (250mm) 

W = plate width (720mm) 

b = applied average bending stress on shell plate surface 

f = empirical factor on the moment that is uniformly distributed over the 

plate width = 0.6  

1-f = empirical factor on moment concentrated at the middle of the plate / 

crack = 0.4 

fr = empirical factor = 0.5 

p = empirical power to increase K as it approaches the plate edge 

There is no guarantee that this formula will work with other dimensions of 

stiffener and plate but it is interesting that to approximately fit the ANSYS 

calculated SIFs it was helpful to apportion (using f and 1-f) solutions for 

moments both distributed uniformly over the plate and concentrated at the centre 

of the shell plate i.e. in line with the stiffener which, at its broken end, might be 

expected to result in a local concentration of applied moment. 

The overall empirical factor fr may account for the stiffeners either side of 

the cut preventing bending in the plate and reducing the amount of strain energy 

stored in the plate but this has not been demonstrated in this work. 

The factor p, which would be 1 for a simple edge crack.  
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The result, including the simplified formula membrane stress, is shown in 

Figure 8-10. 

 

Figure 8-10 Y values, including plate bending (linear scale) 
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Figure 8-11 Y values, including plate bending (log scale) 

 

Even though the empirical estimate contains three empirical coefficients, it 

is not highly accurate but it does demonstrate the observed behaviour, probably 

includes some of the physical behaviour and could lead to a better estimating 

formula. Note that the method used is linear and does not account for crack 

closure, which should reduce the plate bending Y values. 
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8.3 Conclusions for simplified modelling of connection 

with plate bending included 

The solid element and shell element models predicted very similar Y 

values when the crack was confined to the stiffener but the shell elements and 

related membrane-only fracture mechanics elements could not include the effect 

of the plate bending stress once the crack penetrated the shell plating and the 

stiffener was broken.  

The solid element model was able to handle the crack extending into the 

shell plating. However the linear model used did not account for partial crack 

closure and this is likely to have overestimated the Y values.  

The methodology for predicting the membrane Y values, derived in 

Chapter 6, was satisfactory for predicting the centre plane Y values of the solid 

model. 

A physically based but nevertheless highly empirical formula was derived 

to approximate the bending Y values, excluding crack closure, when the crack is 

in the shell plate. 
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Chapter 9 Comparison of Stress 

Concentration Factors calculated using stress 
extrapolation and singularity strength estimation 

 

The ship component analysed is shown in Figure 9-1. The crack starts in 

the stiffener outstand at the flange web junction. The numerical results were 

obtained using ANSYS. The unit system was defined consistently as length-m, 

time-s, mass-kg, force-N and stress-Pa, 2D elements (Shell63) were used as 

bending effects were expected to be small until the crack broke through from the 

stiffener into the plate. Around the structural connections there were very fine 

densities of mesh.  

 

Figure 9-1 Principal fine mesh model of the ship components 
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9.1 SCF Assessment from LEFM 

The nominal stress range for the location where the fatigue assessment is 

being conducted may need to be modified to account for local conditions that 

affect the local stress at that location. The ratio of the local to nominal stress is 

definition of the Stress Concentration Factor (SCF). Depending on specific 

situations, different SCF may apply to different nominal stress components and 

while it is most common to encounter SCF values larger than 1.0, therefore 

signifying an amplification of the nominal stress, there are situations where a 

value of less than 1.0 validly exists. 

Weld defects, cold laps and undercuts of varying size and shape, are often 

present at the weld toe in welded joints. As illustrated previously, weld defects 

were found in the majority of the batches analyzed and together with the 

variation in local weld geometry, this will increase the scatter in the fatigue data. 

The hot-spot stress is the structural stress at the weld toe. It is usually 

necessary to determine it by extrapolation from the stress distribution 

approaching the weld. The hot-spot stress method is to use the S-N curve 

approach obtain the results from tests on actual welded joints. Nominal stress is 

easy to define in simple laboratory specimens. However in real structures, the 

presence of gross structural discontinuities, non-uniform stress distributions and 

through-thickness stress gradients can be complex that the nominal stress is no 

longer obvious. Experimental and numerical (e.g. FEA) stress analysis methods 

are capable of providing detailed information about the stresses arising near 

welded joints. Stresses are dropping as the distance from the corner is getting 

bigger, at the end it will drop even lower than the nominal stress. This is because 

close to the corner, stresses increases due to the stress concentration caused by 
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the corner, within a small distance the stresses are much higher than the nominal 

stress.  

The SCF prediction methodology is illustrated in the method of a crack 

propagating from an initial size (0.25mm) to a size corresponding to design 

failure of the component and several definitions are possible for the final crack 

growing through the plate width seemed reasonable, considering the thickness of 

the ship hull plates applied in practice.  

At the moment the most common method to get the SCF is the linear 

extrapolation method. The hot-spot stress at the corner is obtained by linear 

extrapolating the stresses at 1

2
t and 3

2
t away from the corner. 

 

Figure 9-2 Stress distribution approaching a welded joint and the 

definition of the hot-spot stress (Maddox, 2003) 

 

Normally cracks occur at the connection weld areas. To define the 

maximum stresses in the connection weld areas, the SCF (or Kt) is considered. 

This coefficient takes into account the existence of irregularities and 
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discontinuities in the structure which leads to a higher stress in this area than the 

nominal stress. 

 max

0

SCF



  (9.1) 

0  is the nominal stress for the fracture mechanics calculations 

max  is the maximum stress at the discontinuity 

 

The sharp corners are singularities and it means these sharp corners have 

an infinite stress. However FEA method will generally not predict an infinite 

stress and the actual predicted peak stress will depend on the element size and 

will generally increase as the element size decreases (as shown in Figure 9-2).  

The existing guidance on determination of sharp corner stresses is in terms 

of linear extrapolating stresses based on a number of plate thickness t away from 

the singularity to the corner; for example, some Classification Societies 

recommend the linear extrapolation from 0.5t and 1.5t, See Figure 9-3.  

A simple analysis might suggest that the infinite stress would result in a 

structure with inadequate ultimate and fatigue strength but that is not the case 

because materials can resist localized high stresses. Indeed when a structure 

contains a crack it also has infinite stresses at crack tip according to the linear 

theory and fracture mechanics methods are normally applied in fatigue crack 

growth of cracked structures (Xu and Barltrop, 2007a). 
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Figure 9-3 Typical existing guidance on determining sharp corner stresses 
(Maddox, 2001) 

 

9.2 Comparison of the different models  

For the 2-D models with right angled and 135 degree corner, there is 

previous work has given the method for the estimation of as to calculate the 

stress distribution without doing the FEM analysis on structures. However, in 

reality, 3-D models are more generally used in real engineering structures. 

Therefore it would be interesting to focus on to investigate the stress distribution 

at 3-D model corners and try to find the stress concentration factors for different 

3-D structures with FEM Analysis and estimate the stress singularity at the 

sharp corners, see Figure 9-4 and Table 9-1.  
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             Model 1 

         Lc = 600mm 

 

Model 2 

         Lc = 600mm 

 

Model 3 

Lc =300mm-60mm = 240mm 

 

Model 4 

Lc = 300mm-60mm = 240mm 

 

            Model 5 

     Lc = 600mm-60mm 

 

            Model 6 

          Lc= 900mm 

 

Table 9-1 Different models of the single stiffener structure 
showing connection length: Lc 



Chapter 9   Comparison of Stress Concentration Factors calculated using stress 

extrapolation and singularity strength estimation 

204 

 

Figure 9-4 Structure parts definition in 3-D coordinates 

 

The stresses along Y and Z axis on the coloured lines (X, Y and Z) will be 

calculated and saved in the FEA, they are called as stress lines, see Figure 9-5. 

The SCF values will be calculated based on the stress lines. The two Y lines (in 

blue) start from the bracket corner and vertical stiffener corner separately in 

Model 1. The tension and bending moment cases focus on the X-direction 

stresses on Line Y. 
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Figure 9-5 Localization of the stress lines (X, Y and Z direction) 

 

9.3 Results and Analysis 

The comparisons of displacement plots for Mode 1 under different loading 

cases are given in Figure 9-6, Figure 9-7 and Figure 9-8. 
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Figure 9-6 Displacement Plot under Tension Loading 
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Figure 9-7 Displacement Plot under Pure Bending Loading 
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Figure 9-8 Displacement Plot under Tension and Bending Combined 

Loading 

 

For Model 1, the stress contour plots for each corner under tension loading 

are shown below with a zoom-in picture showing the stress concentration at 

each corner. It can be seen that the maximum stress and minimum stress (in 

negative signal) at the bracket corner and vertical stiffener corner, occur 

separately. 



Chapter 9   Comparison of Stress Concentration Factors calculated using stress 

extrapolation and singularity strength estimation 

209 

 

Figure 9-9 Stress Concentration at bracket corner in Model 1 (Max Stress) 
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Figure 9-10 Stress Concentration at vertical stiffener corner in Model 1 

(Min Stress) 

 

The stress distribution curves at each corner on different Y lines under 

tension are given in Figure 9-11. Because Model 2 is supported symmetrically 

structure with its bulkhead, the two stress distribution curves for Y lines in 

Model 2 are nearly coincide. Based on Figure 9-11, it can be seen that the stress 

from Model 6 Left and Model 6 Right are the highest showing higher stress 

concentration and stresses from Model 3 and Model 4 giving the lowest stresses 

with the same loading, comparing with other models. Stress concentrations in 

Model 1, Model 2 and Model 5 are very close and slightly less than the stresses 

from Model 6. 
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Figure 9-11 Stresses on Line Y (Stress Line on longitudinal stiffener) 

under tension loading nominal stress= 100MPa 
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Figure 9-12 Stresses on Line Y under Bending Moment 
 (nominal flange stress = 100MPa) 

 

It is interesting to compare the shape of the tension curves with the 

theoretical curve [Equation (2.24)] for a notch, 
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This is done in Figure 9-13, where the black curve with solid diamonds 

shows the shape of the power = 0.455 stress distribution which was expected for 

a right angled corner. It is found that a power of 0.25 is a better (though not 

good) fit. This suggests that the stress concentration effect is less than for a 

coplanar attachment (0.25 corresponds to a coplanar attachment with an angle 

greater than 135 degrees whereas 0.455 corresponds to a 90 degree angle).  

 

Figure 9-13 Stresses on Line Y under Tension, compared with 

1) expected decay for a corner (p =0.455) and  

2) better (though not good) fit (p = 0.25) 
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Figure 9-14 Stresses on Line Z (on Flange) under Tension, compared with 

1) expected decay for a corner (p =0.455) and  

2) better (though not good) fit (p = 0.25) 

 

This confirms the findings of the SIF based calculation that the connection 

between the angle shell stiffener and the frame stiffener is behaving differently 

to a coplanar attachment to the edge of a plate. 

In the next section the estimation of SCFs, for the connection is 

considered. 
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9.4 SCFs from stress extrapolation 

The Hot-Spot stresses at the crack corner and the SCF values, obtained by 

extrapolation from points 3t/2 and t/2 away from the corner, to the corner for 

each model with tension loading, showing in Table 9-2 (The position of Right 

side and Left side is based on description in Table 9-1). 

Model 1-Right 1-Left 2 3 4 5 6-Left 
6-

Right 

 /2t MPa  149.1 146.0 147.0 124.2 119.6 145.6 172.1 170.3 

 3 /2t MPa  118.4 111.0 117.0 104.3 101.0 116.4 133.4 133.4 

 hst MPa  164.5 163.5 162.0 134.1 128.9 160.3 191.5 189.1 

SCF 1.645 1.635 1.62 1.341 1.289 1.603 1.915 1.891 

Table 9-2 Hot-Spot Stress and SCF for each Model under Tension 

Loading 
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Model 1-Right 1-Left 2 3 4 5 6-Left 
6-

Right 

 /2t MPa  148.0 145.5 146.1 125.3 81.55 144.9 167.5 169.0 

 3 /2t MPa  120.2 119.1 119.0 107.6 70.7 118.5 132.8 132.8 

 hsb MPa  161.8 158.8 159.6 134.2 86.97 158.1 185.2 187.1 

SCF with 

nominal 

Flange 

Stress 

1.618 1.588 1.596 1.342 0.87 1.581 1.852 1.871 

Table 9-3 Hot-spot Stress for each Model under Bending Moment 

(nominal flange stress = 100MPa) 

 

The SCF results in Table 9-2 and Table 9-3, are compared with values 

determined from the dimensions and as = connection length/25 
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9.5 Estimation of stress concentration factors SCFs 

For the different stiffener configurations studied in this chapter, the SCFs 

estimated from the stress distributions, using 3

2
t, 1

2
t extrapolation to the 

corner, on lines parallel to the shell stiffener and normal to the shell stiffener 

were given in Section 9.4. 

The SCFs are now simply estimated from the as values (shown in Table 

9-1) using the formulae given in Section 2.4.7.1. 
0.5

25

L tfs
as

tw tf

  
      

as 

discussed there, the SCFp formula was derived for a simple cruciform and the 

SCFr formula was an adaption for an angle stiffener connection (that was based 

on the assessment of the SIFs at small crack sizes).  
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 (9.4) 

The results from the FEA are compared with the two SCF prediction 

formulae in Figure 9-15. 
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Figure 9-15 FEA SCF results (SCFfe) extrapolated on transverse (y) line 

compared with predictions from the cruciform formula (SCFp) and the revised 

stiffener connection formula (SCFr) 

 

The results show an over prediction of the FEA SCF values by 1.7 to 1.88 

for the cruciform SCF formula, which is not surprising as the stress 

concentration was seen in the previous section to be less than for a cruciform. 

Using the revised formula that is more applicable to this detail and based on 

parameters that fit SIF results from Barltrop and Xu (2011) the method still 

overestimates the SCF but only by 1.2 to 1.26. 

Considering the very different methods used for the SCF calculations: 

1. extrapolation of stresses from the FEA compared with 
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2. estimation of the as value from the dimensions combined with a 

formula based on Paris Law crack growth calculations 

The stiffener connection formula is providing interesting results and with 

some work, considering different relative thicknesses and stiffener depths and 

flange widths a practical formula could probably be derived.  

 

9.6 Conclusions related to stresses and SCFs in stiffener 

connection 

The stress concentration and decay in an angle shell stiffener web, that has 

a right angled connection to a frame plate stiffener, are quite different in size 

and nature to a coplanar edge attachment with a right angled corner. This was 

unexpected and at present is not explained. 

However the connection length can be used to calculate an as value in a 

similar way to the calculation for an edge connection. That as then, for the cases 

considered here, where the shell stiffener is unchanged but the connection to the 

frame stiffener changes, can predict the SCF using a simple formula. The more 

general case, where the dimensions of the stiffener change, has not been studied 

here but it seems likely that a general formula could be derived for the general 

case. 
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Chapter 10 Conclusions and Recommendations 

 

10.1 Introduction 

The main objective of the thesis is to study the behaviour of a crack 

propagating through a longitudinal shell stiffener to transverse frame stiffener 

connection and into the shell plate. Of particular interest are the effects on the 

SIF: 

1. at changes of plate thickness,  

2. as the crack grows through the stiffener flange and web, 

3. as the crack grows into the shell plating, 

4. the localized effect of the right angled corner at the intersection of the 

stiffeners had been studied by others but this work showed that there is 

more work required for those local areas.  

 

The intention was to develop simplified methods as a means to determine 

SIFs and also SCFs. 

Whilst the methodologies that have been derived can still be improved, 

they are expected to make a useful contribution for the following purposes: 

a. Providing some insights into the stress patterns which is 

important for analysts setting up finite element analyses (where 

complicated stress variation may only be able to be represented by linear 

variation in each element and too coarse a mesh will not be able to follow 

the true stress variation. 

b. Approximately check more detailed Finite Element Analysis.  
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c. Making quick assessments of SIFs for preliminary and ‘back of 

the envelope’ checking purposes. 

d. Reliability modelling, where quick solutions for the effects of 

different geometry in different parts of a structure and the effect of 

corrosion on thicknesses are needed and with some calibration from 

limited number of analyses in the important failure regions that affect 

reliability may be accepted. 

 

This chapter draws the main conclusions from the work undertaken to 

highlight the significant achievements. The chapter also proposes work in order 

to improve and better understand the methodology, so that it can be applied 

confidently to reliability analysis, structural fatigue life and fracture assessment. 

 

10.2 General Conclusions 

The method presented here provides an effective approximate method for 

estimating the SIF at changes of plate thickness and for cracks growing at a 

longitudinal stiffener to transverse stiffener connection into a plate. The method 

can be applied for screening (selecting locations for more detailed analysis) and 

approximate checking of detailed finite element (FE) analysis.   

Understanding the nature of the effect of crack growing into different plate 

thicknesses should also help the FE analyst set up a better model because the 

analyst will have an advance idea of the likely model behaviour and the 

approximation involved in analysing one of several parallel stiffeners when only 

one may, in the first place, be cracked. 

Some general observations are: 

a) Using a simple analysis, Y values can be determined surprisingly well, 

for cracks growing in finite size flat plates (compared with Fett (Fett, 
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1998) and FEA) and through longitudinal to transverse stiffener 

connections (compared with FEA). 

b) The simple analysis uses the ratio of linearized remaining ligament 

stresses that result from: 

a. the actual applied loading and  

b. the load corresponding to the cracked semi-infinite plate singular 

stress distribution ((Paris and Sih, 1965) or, more recently, Seif 

and Kabir (Seif and Kabir, 2016)) applied to the remaining 

ligament and simply truncated to the size of the ligament. Note: 

i. When, as for the stiffened plate, the remaining ligament is 

not coplanar the singular stress distribution simply 

follows the semi-infinite plate values calculated as if the 

plating was unfolded to a flat plate. 

ii. When there is a thickness change the singular stress 

distribution (not for instance the force per unit length) is 

applied either side of the thickness change. 

iii. The calculated axial and moment load does allow for the 

actual (unfolded) geometry of the plate. 

c) When there is a thickness change normal to the crack propagation 

direction, the SIF reduces when there is thicker plate ahead of the crack 

tip and vice versa. The effect needs to be superimposed on the 

calculation from List a) and takes the form of an exponentially decaying 

correction on both sides of the thickness change that results in a step 

change of SIF at the thickness change. Because SIFs are quantities that 

are effectively per unit plate thickness a step change in inverse 

proportion to the plate thicknesses might have been expected but the 

actual change appears to be closer to the inverse ratio of the square roots 

of the thicknesses (perhaps because the SIF is determined by the stresses 

in the vicinity of the crack tip and not just the crack tip). 
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d) In a simple, single stiffener or connection, the membrane SIF values 

drop dramatically after the stiffener crack extends into the plate. This is 

because the applied loading is now resisted by plate bending and so the 

bending SIF becomes dominant. 

e) There are similarities between the membrane behaviour a plate with a 

thickness change from t1 to t2 and a stiffener-plate T-connection with a 

crack growing from the stiffener of thickness t1 into a plate of thickness 

t2/2. However the constants in the formulae are different. This shows the 

thickness correction formulae are not universal and that more work is 

needed here to better understand that effect. 

f) The additional SIFs caused by plate bending can be estimated from a 

plate bending solutions. Note that in practice crack closure on the 

compression side during bending (and axial force) is likely to be 

important. 

g) Shortly before a crack grows from a stiffener web into the plate the 

relative membrane stiffness of the remaining ligament and the bending 

stiffness of the plate are important and can be taken into account 

approximately, as shown in this thesis. 

h) When, as in the usual case, there are multiple stiffeners side by side and 

a crack is only growing through one stiffener the lateral support from the 

adjacent, intact, stiffeners needs to be taken into account and again some 

guidance is provided for assessing this support effect. 

i) Existing guidance (Xu et al., 2013) using structural dimensions to 

determine ‘as’ for estimating the effect of right angled corners on SIFs 

overstimates the SIFs for small cracks and SCFs (for crack growth to 

25mm) at the right angled connection between a longitudinal angle 

stiffener and a transverse stiffener. However, whilst still using the same 

‘as’ calculation a modification to the small crack SIF given by Barltrop 

and Xu (Barltrop and Xu, 2011) not only provides a better fit to the SIF 

but allows a better formula for estimating the SCF. 

 



Chapter 10   Conclusions and Recommendations 

224 

Overall, the methods provide a useful way of estimating Y values or SIFs 

in stiffened plating. However more work is required, particularly related to 

finding a universal method that will account for thickness change.  

 

10.3 My Contributions from this study 

The research has made the following contributions which should be useful 

to practicing engineers as well as leading to observations that will be of interest 

to fracture mechanics academics: 

1. An alternative and unconventional formula for calculating the SIF in a 

cracked finite width plate subject to in plane tension and in-plane 

bending has been developed in terms of the stresses on the remaining 

ligament. 

2. Formulae for SIFs as a crack grows through, and normal to, a change 

in plate thickness have been developed. 

3. Simple analysis methods for cracks growing through the outstand of a 

plate stiffener to the plate connection have been developed, as an 

extension to the method in 1.  

4. Simple analysis methods for cracks growing from a connection 

between longitudinal and transverse structure have been developed as 

an extension to 1 and 3. 

5. 1. to 4. have been modelled using shell and solid FEA and a 

considerable data base of results produced. 

6. SIFs from the FEA have been compared with those from the simple 

analysis methods.  

7. SCFs in stiffened connections with different connection details have 

been predicted using conventional extrapolation methods and from 

predicted singularity strengths based on the dimensions of the 

connections. 
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10.4 Proposals for future research 

Although this research has extended previous work e.g. by Lou, Xu and 

Barltrop (Xu et al., 2013) and has made substantial progress related to SIF and 

SCF calculation in ship details there is still a lot of work that could be done that 

is not only relevant to ship structures but to other stiffened plated structures such 

as steel bridges and pressure vessels.  

1. Why does the ligament stress method work – it seems reasonable but 

can it be given a sound theoretical basis? 

2. Why is the formula for as and SCFs different for longitudinal – 

transverse structure connections than for simple steps on the edge of a 

plate? Is this the result of the flange or the constraint from the 

perpendicular plating? 

3. Can methods be developed to represent, in a simple way, the 3-D, 

finite thickness behaviour of a crack growing into an intersection of 

plates? 

4. This work has been based around, mainly statically determinate, 

behaviour of a cantilevering stiffener. Methods need to be developed 

to model continuous stiffness and the longitudinal load redistribution 

that will occur as a stiffener cracks. 

5. Work needs to be done to simply model the effects of out of plane 

loads caused by pressure fluctuations on the hull which have, in the 

past, caused serious fatigue problems. This loading can also result in 

cracks that grow through connections in a direction through the frame 

stiffener that is parallel to the longitudinal shell stiffener. This type of 

cracking should be investigated. 

6. Other locations in longitudinal – transverse structure connections, such 

as the numerous ratholes should be investigated. 
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7. Other types of detail, such as corners in transverse frames, transverse 

corners in holds of bulk carriers, transverse connections without 

transverse stiffeners should be investigated.  

8. Residual stresses in these connections will affect fatigue and fracture 

and methods of assessment should be derived. 

9. All the methods should be calibrated for use within structural 

reliability analysis where environmental factors: salt environment and 

coatings/coating decay and thickness loss warrant further investigation 

and their interaction with stress levels (as material is lost) and changes 

in material properties need to be properly understood. 

10. After further development the method needs to be reviewed to 

determine whether it is suitable for use within reliability modelling or 

whether alternatives, such as running a limited number of detailed 

finite element analyses and interpolating/extrapolating from them, 

provide a more efficient and/or more accurate analysis. 
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Appendix A Validation of ANSYS using Fett 
(1998) 

 

A.1 Introduction 

The fracture behaviour of cracked structures is dominated by the near-tip 

stress field. In fracture mechanics most interest is focused on stress intensity 

factor, which describe the singular stress field ahead of a crack tip and govern 

fracture of a specimen when a critical stress intensity factor is reached. 

In a large numbers cases of stress intensity factor solutions were given, 

methods for the determination of weight functions were reported and numerical 

results for a number of crack geometries were compiled 

 

A.2 Stress intensity factor 

For the determination of stress intensity factors the Boundary Collocation 

Method (BCM) and the weight function procedure can be applied. The stress 

intensity factor K is a measure of the singular stress term occurring near the tip 

of a crack and defined by 

  ,
2

ij ij

K
f r

a
 


  (A.1) 

where r and  are polar coordinates with the origin at the crack tip. 

K is the stress intensity factor.  
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For the loading modes considered in this report, the stress intensity factor 

KI and KII are expressed as 

 I I

a
K aF

W
      

 
 (A.2) 

 II II

a
K aF

W
      

 
 (A.3) 

where a is the crack length and W is the width of the component. The 

value of a/W represents the relative crack depth  .  and     are 

characteristic stresses in the component, e.g. the outer fibre stress in a bending 

bar. 

FI and FII are called the “geometric function”, sometimes also the “shape 

function”. FI and FII are functions of the ratio of crack length to the specimen’s 

width as well as the type of load applied. F depends on the crack or component 

geometry as well as on the special load 

 

A.3 The rectangular plate with an edge crack 

The stress intensity factor for pure tension is, 

 K a Y     (A.4) 
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Figure A-1 Crack in rectangular plates under pure tension (Fett, 1998) 

 

Fett listed the geometric factors values in different rectangular plate 

dimensions (Fett, 1998). I will validate Fett work with my FEA models 

corresponding to various crack length rates and different plate geometric sizes. 

The tension loading applied on both sides of rectangular plate is 108 Pascal. 
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 H/W=1.5 1.25 1.00 0.75 0.5 0.4 0.3 0.25 

0   1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 

0.1 1.0170 1.0172 1.0174 1.0182 1.0352 1.0649 1.1455 1.2431 

0.2 0.9800 0.9799 0.9798 0.9877 1.0649 1.1625 1.3619 1.5358 

0.3 0.9722 0.9723 0.9729 0.9840 1.0821 1.2134 1.4892 1.7225 

0.4 0.9813 0.9813 0.9819 0.9915 1.0819 1.2106 1.5061 1.7819 

0.5 0.9985 0.9986 0.9989 1.0055 1.0649 1.1667 1.4298 1.7013 

0.6 1.0203 1.0203 1.0204 1.0221 1.0496 1.1073 1.2898 1.5061 

0.7 1.0440 1.0441 1.0441 1.0442 1.0522 1.0691 1.1498 1.2685 

0.8 1.0683 1.0683 1.0683 1.0690 1.0691 1.0734 1.0861 1.1201 

1.0 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 

Table A-1 The values of Geometric function  3/2
1 /Y a W  for tension 

 

From Table A-1,   represents the ratio of crack depth and plate width 

(a/W) and H/W means the ratio of component height to the component width. 
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At base of Table A-1, the values of Geometric Function,  3/2
1 /Y a W 

in different crack depths and H/W ratios, the values of Geometric Factor Y is 

available for calculation. See Table A-2 and Figure A-2 
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 H/W=1.5 1.25 1.00 0.75 0.5 0.4 0.3 0.25 

0   1.121 1.121 1.121 1.121 1.121 1.121 1.121 1.121 

0.1 1.191 1.191 1.192 1.193 1.212 1.247 1.342 1.456 

0.2 1.37 1.369 1.369 1.38 1.488 1.625 1.903 2.146 

0.3 1.66 1.66 1.661 1.68 1.848 2.072 2.543 2.941 

0.4 2.111 2.111 2.113 2.133 2.328 2.605 3.241 3.834 

0.5 2.824 2.824 2.825 2.844 3.012 3.3 4.044 4.812 

0.6 4.033 4.033 4.033 4.04 4.149 4.377 5.098 5.953 

0.7 6.354 6.354 6.354 6.355 6.403 6.506 6.997 7.72 

0.8 11.944 11.944 11.944 11.952 11.953 12.001 12.143 12.523 

0.9 34.624 34.624 34.624 34.635 34.636 34.704 34.905 35.443 

1.0 4429 4429 4429 4429 4429 4429 4430 4433 

Table A-2 the values of Geometric factor Y under tension 
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Figure A-2 the values of Y for various H/W in Fett work 

 

A.4 The SIF values through FEA methods 

The stress intensity factor values in 108 Pa pure tension for H/W=1.5, 1.25, 

1.00 and 0.75 components are, 
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  

KI with FEA approach 

1.5 1.25 1.00 0.75 

0.0 0.31238E+07 0.31240E+07 0.31238E+07 0.31239E+07 

0.1 0.33259E+08 0.33259E+08 0.33264E+08 0.33364E+08 

0.2 0.54083E+08 0.54084E+08 0.54114E+08 0.54593E+08 

0.3 0.80506E+08 0.80507E+08 0.80569E+08 0.81522E+08 

0.4 0.11851E+09 0.11851E+09 0.11858E+09 0.11976E+09 

0.5 0.17799E+09 0.17799E+09 0.17804E+09 0.17895E+09 

0.6 0.28070E+09 0.28070E+09 0.28069E+09 0.28091E+09 

0.7 0.48630E+09 0.48630E+09 0.48625E+09 0.48572E+09 

0.8 0.10218E+10 0.10218E+10 0.10217E+10 0.10209E+10 

0.9 0.36017E+10 0.36018E+10 0.36018E+10 0.36011E+10 

1.0 0.48163E+12 0.48017E+12 0.47300E+12 0.47309E+12 

Table A-3 SIF values for components with H/W=1.5, 1.25, 1.00 and 0.75 

through FEA 



Appendix A   Validation of ANSYS using Fett (1998) 

243 

 

The stress intensity factor values in 108Pa pure tension for H/W=0.5, 0.4, 

0.3 and 0.25 components are, 
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  

KI under FEA approach 

0.5 0.4 0.3 0.25 

0.0 0.31243E+07 0.31241E+07 0.31241E+07 0.31242E+07 

0.1 0.34376E+08 0.35761E+08 0.38619E+08 0.41348E+08 

0.2 0.58891E+08 0.64504E+08 0.75731E+08 0.85470E+08 

0.3 0.89789E+08 0.10085E+09 0.12358E+09 0.14340E+09 

0.4 0.13049E+09 0.14625E+09 0.18182E+09 0.21435E+09 

0.5 0.18902E+09 0.20651E+09 0.25236E+09 0.29829E+09 

0.6 0.28657E+09 0.30042E+09 0.34626E+09 0.39998E+09 

0.7 0.48422E+09 0.48775E+09 0.51385E+09 0.55626E+09 

0.8 0.10128E+10 0.10019E+10 0.98462E+09 0.98109E+09 

0.9 0.35915E+10 0.35717E+10 0.35074E+10 0.34293E+10 

1.0 0.47316E+12 0.47273E+12 0.47331E+12 0.47318E+12 

Table A-4 SIF values for components with H/W=0.5, 0.4, 0.3 and 0.25 

through FEA 
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Figure A-3 SIF values for various H/W ratios in Y-Log scale from FEA 

methods 

 

Based on Equation (A.4), there is expression for Y from known SIF values 

(K) 

 
K

Y
a 

   (A.5) 

The values of Y from K with FEA methods can be found in Table A-5. 
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 H/W=1.5 1.25 1.00 0.75 0.5 0.4 0.3 0.25 

0   1.115 1.115 1.115 1.115 1.115 1.115 1.115 1.115 

0.1 1.187 1.187 1.187 1.191 1.227 1.276 1.378 1.475 

0.2 1.365 1.365 1.365 1.377 1.486 1.628 1.911 2.157 

0.3 1.659 1.659 1.66 1.679 1.85 2.078 2.546 2.954 

0.4 2.114 2.114 2.116 2.137 2.328 2.609 3.244 3.824 

0.5 2.84 2.84 2.841 2.856 3.016 3.295 4.027 4.76 

0.6 4.089 4.089 4.089 4.092 4.175 4.376 5.044 5.827 

0.7 6.559 6.559 6.558 6.551 6.531 6.578 6.93 7.502 

0.8 12.891 12.891 12.889 12.879 12.777 12.64 12.422 12.377 

0.9 42.839 42.84 42.84 42.832 42.718 42.482 41.718 40.789 

1.0 5435 5418 5337 5338 5339 5334 5341 5339 

Table A-5 the values of Geometric factor Y from Finite Element Analysis 
methods 
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Figure A-4 Y values for various H/W ratios from FEA methods 

 

Comparing the Y values with FEA and Fett paper, it is found that the 

results from two approaches are in good agreement, see Figure A-5. 
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Figure A-5 Comparison of Y values with FEA and Fett work 

 

A.5 The SIF results through Fett approach 

The SIF values through Fett approach can be calculated on the basis of Ft 

values and Equation (A.4), see Table A-6 and Table A-7.  
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  

KI under Fett method 

1.5 1.25 1.00 0.75 

0.0 0.3143E+07 0.3143E+07 0.3143E+07 0.3143E+07 

0.1 0.3338E+08 0.3339E+08 0.3339E+08 0.3342E+08 

0.2 0.5428E+08 0.5428E+08 0.5427E+08 0.5471E+08 

0.3 0.8058E+08 0.8059E+08 0.8064E+08 0.8156E+08 

0.4 0.1183E+09 0.1183E+09 0.1184E+09 0.1196E+09 

0.5 0.177E+09 0.177E+09 0.1771E+09 0.1782E+09 

0.6 0.2769E+09 0.2769E+09 0.2769E+09 0.2773E+09 

0.7 0.4711E+09 0.4711E+09 0.4711E+09 0.4712E+09 

0.8 0.9468E+09 0.9468E+09 0.9468E+09 0.9474E+09 

0.9 0.2911E+10 0.2911E+10 0.2911E+10 0.2912E+10 

1.0 0.3925E+12 0.3925E+12 0.3925E+12 0.3925E+12 

Table A-6 SIF values for components with H/W=1.5, 1.25, 1.00 and 0.75 

through Fett 
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  

KI under Fett Method 

0.5 0.4 0.3 0.25 

0.0 0.3143E+07 0.3143E+07 0.3143E+07 0.3143E+07 

0.1 0.3398E+08 0.3495E+08 0.376E+08 0.408E+08 

0.2 0.5898E+08 0.6439E+08 0.7543E+08 0.8507E+08 

0.3 0.8969E+08 0.1006E+09 0.1234E+09 0.1428E+09 

0.4 0.1305E+09 0.146E+09 0.1816E+09 0.2149E+09 

0.5 0.1887E+09 0.2068E+09 0.2534E+09 0.3015E+09 

0.6 0.2848E+09 0.3005E+09 0.350E+09 0.4087E+09 

0.7 0.4748E+09 0.4824E+09 0.5188E+09 0.5724E+09 

0.8 0.9475E+09 0.9513E+09 0.9625E+09 0.9927E+09 

0.9 0.2912E+10 0.2918E+09 0.2935E+10 0.298E+10 

1.0 0.3925E+12 0.3925E+12 0.3926E+12 0.3929E+12 

Table A-7 SIF values for components with H/W=0.5, 0.4, 0.3 and 0.25 

through Fett 
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Figure A-6 SIF values for various H/W ratios from Fett work 

 

Comparing the SIF values between FEA approach and Fett work. The SIF 

results from FEA method are close approximate to Fett work for all H/W ratios, 

see Figure A-7. 
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Figure A-7 Comparison of SIF values with FEA and Fett work 

 

A.6 Conclusion 

Different mode-I stress intensity factor values have been compared based 

on single plate model subject to tension loading.  

The comparisons in Figure A-5 and Figure A-7 shows the SIF results are 

almost identical between the FEA methods and Fett work. The Ft results from 

Fett paper can be utilised for the I-Shape Model SIF estimations in single 

stiffener and triple stiffener models with pure tension loadings.  
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Appendix B Validation of ANSYS plate bending 
calculation using solid elements (with and without 

crack closure) 

 

B.1 Three Dimensional Analysis 

The  width W of the plate is 130mm and its height H is 90 mm, the 

thickness t should be much less than W and the length of the crack on the plate is 

a 25mm. The Young’s modulus and Poisson’s ratio is set at 205GPa and 0.3 

respectively. The thicknesses are simulated for t=10mm and 20mm under the 

illustrated geometries of edge cracks and in these cases, W/t=13 and 6.5 

respectively.  

There are number of elements used in the crack tip for each thickness to 

get the stress intensity factor at the different geometric position, see Table B-1. 

Displacement correlation is used to determine stress intensity factor and the 

orientations of the local coordinates at the crack tip is shown in Figure B-6. 

T(mm) Elements numbers on the crack front 

10 20 

20 40 

Table B-1 Elements Number on the front crack 
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The stress intensity factor is normalized as 

 
K

Y
a 





 (B.1) 

  is the characteristic stress (nominal stress) and a is the crack length 

The non-dimensional solution to a single edge cracked plate under 

extension loading is,  

 
2 3 4

0 1.122 0.231 10.550 21.710 30.382a

a a a a
Y

W W W W
                  
       

(B.2) 

with accuracy of 0.5% for any dimension 0.6
a

W
 (Janssen et al., 2004). 

The normalised stress intensity factor for the double edge cracked plate is, 

 

2 3 4

0

1.122 1.122 0.820 3.768 3.040

2
1

b

a a a a
W W W W

Y
a

W

                 
       


(B.3) 

which is accurate to 0.5% for any dimension a

W
. See Table B-2, 

 Geometry 0Y  

a Single Edge Cracked 1.35 

b Double Edge Cracked 1.15 

Table B-2 Normalised stress intensity factor for extension loaded, Y0 
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When the crack faces are allowed to overlap (no contact considered), the 

stress intensity factor across the plate thickness is linear and is skew-symmetric 

about the mid-plane, as expected. When this effect is considered, the stress 

intensity factor in the crack tip shows a gradient through the thickness of the 

plate in the tension region and then reduces to zero for the surfaces part in 

contact, the compression region. 

Normally the maximum stress intensity factor for a cracked plate under 

bending is around 45-50 percent of stress intensity factor in the cracked plate 

under an extension loading. Obviously it can be seen that the crack-face constant 

has significant effect on the stress intensity factors (K values). See Table B-3, 

 Geometry 
maxY  

0

maxY / Y  

a Single Edge Cracked 0.58 0.43 

b Double Edge Cracked 0.56 0.49 

Table B-3 The ratio between Ymax and Y0 

 

For the same plate thickness, the contact region in the crack tip is 

coincident for all geometries and it corresponds to about 20% of the cack front 

length. There is a region of non-linear stress intensity factor in the transition 

between the opening crack and closed crack because of the non-linear behaviour 

of the contact. 
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The comparison of the stress intensity factors for various geometries with 

t=10mm and t=20mm are shown in Figure B-2 and Figure B-3 separately. These 

results were obtained for the no contact case.  

In-plane-bending moment means the plate bends in its own plane such as a 

shear wall with horizontal and vertical forces which are applied to its plane and 

thus produce in plane bending moments. In plane bending moments do not cause 

the plate to bend it a way that make a stomach for the plate. 

Out-of-plane bending moments are those which are caused by out of plane 

forces such as a building slab. The forces on the building slab are out of plane 

and thus they produce out-of-plane bending moments or in other words they 

make the slab concave down, see Figure B-1. In this work, I applied the out-of-

plane bending moments for analysis. 

 

Figure B-1 In-Plane and Out-Plane lateral forces on plate 



Appendix B   Validation of ANSYS plate bending calculation using solid elements (with 

and without crack closure) 

257 

 

Figure B-2 Normalized geometry factor along the crack front (t=10mm) 
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Figure B-3 Normalized geometry factor along the crack front (t=20mm) 

 

In finite element analysis (FEA), mesh size is a critical issue. It closely 

relates to the accuracy, computing time and efforts required for meshing of finite 

element models, which determines their complexity level. The accuracy of FEA 

results and required computing time are determined by the finite element size, 

which is normally named as mesh density. According to FEA theory, the FE 

models with fine mesh (small element size) yields highly accurate results but 

may take longer computing time. On the other hand, those FE models with 

coarse mesh (large element size) may lead to less accurate results but smaller 

computing time. Also, small element size will increase the FE model’s 

complexity which is only used when high accuracy is required. Large element 

size, however, will reduce the FE model’s size and is extensively used in 
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simplified models in order to provide a quick and rough estimation of designs. It 

is being showed the normalized stress intensity factor (SIF) along the crack front 

in different mesh size (0.8mm and 2mm mesh density) in Figure B-4 and Figure 

B-5, which proves the diverse mesh size will not making big different results for 

both no contact region plates (in Figure B-4) and part contact region plates (in 

Figure B-5). 

For the stiffener calculations in Chapter 3, 0.8mm mesh size will be 

adopted for the parts around crack tip and 2.0 mm mesh size will be suitable for 

general finite element analysis to improve the accuracy and save calculation 

time concurrently. 

 

Figure B-4 Normalized SIF for no contact region plates with different 
mesh sizes 
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Figure B-5 Normalized SIF for 6mm contact region plates with different 

mesh sizes 

 

The comparison of the stress intensity factors for various geometries with 

t=10mm and t=20mm are shown in Figure 2 and Figure 3 separately. These 

results were obtained for the no contact case. For these two thicknesses, the 

contact region is around 30% of the whole thickness. That is for 10mm 

thickness case the contact part is 3mm and for 20mm thickness case, the contact 

part is about 6mm. From Figure B-2 and Figure B-3, Z/T represents the 

geometric position of crack tips are located and the number of  means the ratio 

of the crack tips position (in z axis) divided by the whole plate thickness (t), see 

Figure B-6. 
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Figure B-6 Coordinate around the crack tip 

 

Figure B-7 Normalized geometry factor along the crack front in contact 

case (t=10mm) 
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Figure B-8 Normalized geometry factor along the crack front in contact 

case (t=20mm) 

 

Comparing the FEA method and the out-of-plane method, the magnitudes 

of maximum Geometry Factor values are close for the two methods in 10mm 

and 20mm thickness cases. When the contact effect is considered, the stress 

intensity factor in the crack tip shows a gradient through the thickness of the 

plate in the tension region and reduces to zero where the surfaces are in contact, 

i.e. in the compression region.  

The comparison of the stress intensity factors for various geometries with 

t=10mm and t=20mm are shown in Figure B-9. These results were obtained for 

contact and no contact case. 
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Figure B-9 Normalized Geometry Factor along the crack front in contact 
and not contact cases (t=10mm) 
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Figure B-10 Normalized Geometry Factor along the crack front in contact 

and not contact cases (t=20mm) 

 

The comparison of the geometry factor for a single edge cracked plate 

with various thicknesses is presented in Figure B-11 and Figure B-12. As noted 

in these two figures, the crack opening depends on the thickness. The opening 

part of the crack front for t=20mm is smaller than the opening part for t=10mm 

thickness plate. The magnitude of maximum stress intensity factor for t=10mm 
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Figure B-11 Geometry Factor for various thicknesses along the contacted 

crack 

 

For the no contact cases, The Y factor for t=10mm thickness plate is 

slightly smaller than t=20mm which proves that there would be no much 

differences of SIF values if increasing the plate thickness from 10mm to 20mm. 
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Figure B-12 Geometry Factor for various thicknesses along the non-

contacted crack 

 

B.2 Three-dimensional Analysis under tension 

loading 

For a single edge cracked plate under tension loading, the uniform tensile 

stress, 1 00, 0 00 P a  , were used to determine the crack tip SIF values under 

tension, see Figure B-13. 
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  ,
2

I
ij ij

K
f r

a
 


  (B.2) 

Stress intensity factor is effected by the specimen’s three dimensional size 

and the most important, the crack length a. 

Stress intensity factor for pure tension loading, see Figure B-13, is 

expressed as  

  /I IK a F a W     (B.3) 

  /II IIK a F a W     (B.4) 

where a is the crack length, W is the width of the component and ,   is 

the characteristic stresses in the component. FI  and FII are functions of the ratio 

of the crack length to the specimen’s width as well as of the type of load applied. 

 

Figure B-13 The regular plate with an edge crack 
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Table B-4 shows the values of facto  3/2
1 /IF a W  for different plate 

dimensional size and crack length.   is the ratio of crack size and plate width, 

a/W. H/W represents the ratio of plate height and plate width. For my model, the 

values of a/W and   are 0.35 and 0.2 respectively. The value of factor 

 3/2
1 /IF a W  should be in the range of between 1.1625and 1.3619. 
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 H/W=1.5 1.25 1.00 0.75 0.5 0.4 0.3 0.25 

0   1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 

0.1 1.0170 1.0172 1.0174 1.0182 1.0352 1.0649 1.1455 1.2431 

0.2 0.9800 0.9799 0.9798 0.9877 1.0649 1.1625 1.3619 1.5358 

0.3 0.9722 0.9723 0.9729 0.9840 1.0821 1.2134 1.4892 1.7225 

0.4 0.9813 0.9813 0.9819 0.9915 1.0819 1.2106 1.5061 1.7819 

0.5 0.9985 0.9986 0.9989 1.0055 1.0649 1.1667 1.4298 1.7013 

0.6 1.0203 1.0203 1.0204 1.0221 1.0496 1.1073 1.2898 1.5061 

0.7 1.0440 1.0441 1.0441 1.0442 1.0522 1.0691 1.1498 1.2685 

0.8 1.0683 1.0683 1.0683 1.0690 1.0691 1.0734 1.0861 1.1201 

1.0 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 1.1215 

Table B-4 Geometric function for tension loading 
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The values of normalised geometry factor Y along the crack front for 

20mm thickness no contact plate (t=20mm) in pure tension loading conditions 

are distributed around 1.2, see Figure B-14. 

 

Figure B-14 Geometry Factor in no contact cases in 20mm thickness 

 

The values of normalised geometry factor Y along the crack front for 
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Figure B-15 Geometry Factor in no contact cases in 10mm thickness 
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Figure B-16 Comparisons of Geometry Factors in two thicknesses plates 

 

B.3 Model with Finite Element method 

The stress field near the crack tip is singular so that the crack tip stress 

component tends to infinity. Near the crack tip stress and 1/x (x is the distance 

from the crack tip) are proportional. When using ANSYS modelling, in order to 

reflect this feature, it often uses “fourth node” for processing. The midpoint of 
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Figure B-17 crack plate calculation model 

 

Figure B-18 SIF values for the same model with solid element and shell 

element 
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Figure B-18 shows the SIFs calculated for a simple cracked plate with 

solid elements and shell elements. The SIF value in shell element (KI=41156) is 

close to the values for the upper and lower surface (KI=41288) in solid element. 

The meshing procedure used for the solid elements started by placing the 

2-D mesh elements on the plate surfaces, see Figure B-19, forming the solid 

mesh between them, using the VSWEEP command in ANSYS to get the meshes 

for the whole structure, and then deleting the 2-D elements. 

 

Figure B-19 Meshes on source area and target area 
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Relatively simple two-dimensional model can be used directly SHELL93 

automatic meshing procedure to obtain grid for area entity. In this three-

dimensional analysis, it is normally to use the VSWEEP command in ANSYS to 

get the meshes for the whole volume. In the boundary condition stage, the first 

step is to constrain all of the left side nodes (x = -45/1000) in X, Y, Z and ROTX, 

ROTY, ROTZ directions. The next step is to apply the uniform tensile stress, 

100, 000Pa   in X positive direction (red arrows) along every element 

located in the right side (x = 45/1000) of this plate to determine the tension 

loadings, see Figure B-20. 

The first use of KSCON command in PREP7 specifies the concentration 

keypoint around element to define which area mesh will be skewed. During 

meshing, elements are initially generated circumferentially about, and radially 

away, from the keypoint. Lines attached to the keypoint are given appropriate 

divisions and spacing ratios. Only one concentration keypoint per unmeshed 

area is allowed. The second use of CSKP command is to define a local 

coordinate system by three key point locations, which the origin of this 

coordinate system is located at the crack tip. To locate the origin, to locate the 

positive X-axis, and to define the positive X-Y plane, this local system becomes 

the active coordinate system. In the post-processing module POST1, the crack 

stress intensity factor (KI) can use displacement interpolation (KCALC order) 

method to calculate. 
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Figure B-20 Boundary Conditions and Tension Loading details 

 

B.4 Solid Element Conclusions 

The achievement of this chapter is to check the accuracy of SIF 

calculations with ANSYS for the thickness in plates and to find out the mesh 

size for the plate of simple cracking model is suitable in the stiffener 

calculations.  

Plates with a pre-existing “through-the-thickness” crack were studied 

under the action of a remote bending moment. The dependence of the contact 

region in the crack tip was investigated, as well as the bending effect on the 

stress intensity factor. 
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Two sets of numerical analyses were performed in two different FEA 

methods. One set uses a single cracked geometry for two different thicknesses 

under pure bending moment and the second set uses the same cracked geometry 

under extension loading. The contact region length is around 30% of the 

thickness for 10mm and 20mm cases.  

Results from the two different FEA methods show the similar SIF results. 

It proves the SIF across the plate thickness is linear and is skew-symmetric 

about the mid-line of the plate in no contact cases, as expected. When the 

contact part effects considered, the SIF at the crack tip shows a gradient line 

through the thickness of the plate in the bending moment and then reduces to 

zero where the surfaces are close to contact parts. 

In the Tension loading, it shows the SIF values are not in big variation 

through the thickness, therefore it can be assumed to be constant value through 

the thickness for a finite thickness plate. The Geometry Factor (Yt) values in 3-D 

cracked plate are both assumed as 1.2 for thickness 10mm and 20mm.  
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Appendix C Estimation of SIF values for crack 

growing through a change in thickness: First 

empirical method 

 

Previous work by Xu et al.(Xu et al., 2013) showed that a crack growing 

from a corner could be approximated by an edge crack plate but with an 

additional length of crack that represented the effect of the corner. In this section, 

the possibility of representing the thickness change by a modified crack length is 

investigated, if this worked it might have led to a convenient analytical crack 

growth solution. However, whilst the results are presented here for interest, it 

was not found to be a useful approach and alternative empirical approximations, 

presented in the following sections were found to be a better approaches. 

Figure C-1 shows the results, obtained from FEA, of SIF values for 

different thicknesses t2. In each case t1 = 12mm. 

It is to be expected, that there is in fact a discontinuity as the crack passes 

the thickness change at a/at = 1. (This is also suggested by the trends of Y 

curves, sketched as dashed lines in Figure 4-6.) However at this stage of the 

work that discontinuity was ignored. 
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Figure C-1 SIF values for crack growing in different thicknesses plates in 

flat plate model 

 

Figure C-2, shows the method that was tried to calculate equivalent crack 

lengths. The blue curve is the constant thickness curve, the red curve is for t2 = 

48mm (t2/t1 = 4). The points A and B have the same SIF and reading down the 

equivalent crack length on the t2=12mm case for the t2=48mm case is found.  

The point A means for the SIF value corresponding to 300mm crack 

length on t2=48mm cracking plate, the equivalent crack size on t2=12mm crack 

plate is approximately 165.861mm and therefore the equivalent crack length 

ratio is 165.861

300
 = 0.5529. The same situation for point B, the SIF value 

corresponding to 400mm crack length on t2=48mm cracking plate, the 
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equivalent crack size on t2=12mm cracking plate is about 328.843mm and the 

equivalent crack length ratio is directly 328.843

400
 = 0.8221. The remaining 

equivalent crack lengths are calculated for the other plate thicknesses. 

 

Figure C-2 Estimating equivalent length of crack for the same SIF value  

 

Figure C-3 shows (horizontally) the equivalent, t1 = 12mm, crack length 

for different plate thicknesses. For constant plate thickness, t2 = 12mm, the 

equivalent total crack length is the same as the actual crack length, when t2 is 

less than t1 the equivalent crack length is reduced and vice versa.  
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Figure C-3 comparing the equivalent crack length for five thicknesses 

 

Figure C-4 shows the ratio of equivalent crack length to actual crack 

length for each point in Figure C-3.  
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Figure C-4 Equivalent crack length ratios for five thicknesses 

 

Unfortunately the equivalent crack length did not give a simple result. 

Excluding the 450mm cracks, the curves in Figure C-4 were 

approximately fitted using a (1 + normal distribution) equation (simply because 

of the bell shape).  
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This led to an estimation formula in the form of 

1 , ,
250 250

ac ac
F Q f           
   

, where Q is a function of 1

2

t

t
 and 

, ,
250

ac
f   
 
 

 is the normal distribution function with the real expectation 

value 1.1   and the standard deviation   is 0.4. The factor of 
250

ac  is a scale 

factor that is in the range 0 to 2 and has a value of 1 when the crack tip is at the 

thickness change. 

The results were: 
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  (C.1) 

The approximate estimation curve and the FEA data points are shown, for 

different t2/t1 in Figure C-5 to Figure C-8.  
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Figure C-5 Estimation of crack length ratio when t2/t1=4 
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Figure C-6 Estimation of crack length ratio when t2/t1=2 
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Figure C-7 Estimation of crack length ratio when t2/t1=0.5 

 

Figure C-8 Estimation of crack length ratio when t2/t1=0.25 
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The equivalent crack growth approach did not lead to a simple method and 

the simple equation fit to the results was poor, so the method was abandoned. 
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