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Abstract

Smart meters have begun to replace traditional energy meters across the
world. These meters will be able to give near real-time energy usage to
consumers, industry and suppliers, the benefits of this are marketed as; eas-
ier energy management, saving money and reducing emissions. However by
themselves smart meters are unlikely to be able to achieve this as only a small
sub-set of users are likely to remain engaged with their smart meter long
term. Non-intrusive Load Monitoring (NILM) aims to provide a method to
explain to consumers in more detail about their energy usage without need
for their input or attention, be it explaining which appliances are causing
high energy consumption within the home or in an industrial setting, ex-
plaining appliance/machinery usage to maximise scheduling with time of use
tariffs. We demonstrate the steps and methodology to produce meaningful
and explainable results which could as part of an energy suppliers service to
provide enhanced billing information, similar to some credit card statements,
showing a breakdown of appliance usage and statistics. This thesis provides
steps from data collection to results and visualisation as part of a complete
NILM workload. We demonstrate data management, pre-processing, appli-
ance modelling for analysis of individual appliances, neural network model
creation and evaluation for both commercial and residential premises, the
need for transfer learning to work at scale, and the explainability of the
networks and results, necessary to provide accurate information and ensure
customers can understand any errors they might see from a NILM system.
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Preface

Initially the concept of load monitoring was inherently an invasive one, with
a need to individually monitor each appliance with it’s own hardware. This
was challenged when Hart [54] proposed the idea of monitoring the entire
building and identifying appliance signatures from the aggregate power sig-
nal, described as NILM. As data has become more more widely available
with many more open source datasets, there has been renewed interest in
non-invasive load monitoring. This was accelerated further by the huge im-
provements in Graphical Processing Units (GPUs) which meant that training
large deep neural networks became significantly easier and with this a huge
increase in the application and development of neural networks. The use of
neural networks being applied for the process of NILM was cemented with
Jack Kelly’s paper [77].
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Chapter 1

Introduction

The ‘Smart Home’ aims to fully connect the household with appliances and
the house with the wider world. The definition of ‘smart’ is loose covering
anything from smart fridges to thermostats, each one providing its own subset
of ‘smart’ features. The one unifying part of the smart revolution is data
collection, processing and feedback. Starting in the mid-90’s the Internet-
of-Things has been gaining pace rapidly, connecting nearly every device via
WiFi, Bluetooth, and other protocols. Ideally devices could provide their
own energy monitoring features, however the IoT market focused more on
small convenience based devices like remote power switching and convenience
applications and is only now introducing energy monitoring features [101].

A key component of the ideal smart home is the ‘smart meter’, an elec-
tricity (or gas) meter which is able to communicate with firstly the energy
supplier and secondly to other services and devices. The United Kingdom
(UK) version of a smart meter is defined in the Smart Metering Equipment
Technical Specification (SMETS) and will be the benchmark in this thesis for
smart meter capability. [114] ‘Dumb’ meters which rely on user reported val-
ues are usable only as a means of correcting billing after the fact and require
manual confirmation by suppliers to confirm consumer readings periodically,
requiring a on-site visit, one of their most intrusive features.
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Smart meters which report hourly or monthly readings directly to suppli-
ers can be used initially for correct billing but additionally for a host of other
metrics not previously available, such as accurate forecasting for bill estima-
tion with data also being made available to infrastructure providers [60]. The
UK implementation would require users to opt in to have their data moni-
tored at higher rates, and likely would require a separate hardware/software
as the meter’s as specified are designed firstly for very low frequency readings
to suppliers (see SMETS2 [114]). Once these higher level processes are in
place smart meters can allow for even more in depth energy management,
other finer detail such as usage patterns and demand management can be
implemented and made available to consumers.

On a larger scale, smart meters and the foundation of the smart grid.
Being able to track consumer demand enables a host of tools and features to
energy providers and grid operators. Demand management is a vital tool for
developing countries and where there are deficits in power generation. Smart
meters allow for dynamic pricing which is beneficial as the customers who
can benefit the most are generally considered fuel poor. To enable these more
advanced features the data rate has to be higher than monthly, smart meters
generally will have the ability to record the households aggregate at a rate
higher than 15 minutes, down to 1 second [114]. This higher data rate allows
external programs and hardware to analyse the signal and provide feedback.
At these higher data rates comes the ability to extract individual appliance
consumption, a process known as NILM, where the aggregate is broken down
to its constituent appliances. This allows more granular feedback to the con-
sumer, estimating individual appliance load estimation without the need for
additional sub-metering, real efficiency values via data driven life cycle ap-
pliance modelling, informing flexibility in appliance use for more effective
demand management, and other applications whereby appliance-level con-
sumption is needed, including anomaly detection.

This thesis looks at the challenges and solutions to intrusive and non-

2



intrusive load monitoring, appliance modelling and load prediction. Firstly
looking at how data collection and preparation is handled and the challenges
associated with scaling systems assuming massive uptake, secondly the ap-
plication of NILM to detect appliance usage, thirdly appliance modelling,
which has many wide ranging uses from assisting with prediction to com-
mercial studies and consumption prediction focusing on the needs of utilities
and micro-grids when it comes to supply and demand management. Finally
it looks at the explainability of these systems, so that business to consumers
can gain insight and help to improve their understanding.

Now that smart meter data is being gathered in many countries, ap-
plications can now be created such as NILM (see [152] and [132] and ref-
erences therein), consumption forecasting [38], demand response [81], and
load scheduling & energy saving feedback [131]. Currently, there are many
smart meter datasets with individual appliance monitoring openly accessi-
ble from different countries, providing domestic consumption patterns for
geographically specific locations, UK [78, 107], Switzerland [10], India [8],
Germany [143], China [87]. The models proposed in this thesis can facilitate
the usage of these existing datasets to study sustainability in geographically
spread households, e.g., by quantifying energy wastage and usage.

1.1 Research Motivation and Aims

The motivation of this research was the exploration of the potential of smart
meters and the practical non-billing applications that they could enable.
The question about how to monitor and store data securely, what can be
analysed and what data can be presented meaningfully to consumers or power
companies. The benefits of smart meters are only just beginning to be fully
recognised by power companies and attempts to centralise the data by the
UK government are still to be defined. Currently smart meters (in the UK)
are limited to sampling rates below 1Hz, in the range of minutes [114].
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Due to this the low cost of additional sensing to enable investigation into
higher frequency NILM (1 - 10 second range) helps to generate analysis and
modelling which is far more beneficial and promotes the uptake of NILM and
it’s associated applications. This leads to the following questions:

R.Q.1: What data best encapsulates the average UK household and how
do consumers interact with the introduction of smart meter enabled
technologies?

R.Q.2: What insights can the analysis of consumption data enable in the
context of real world appliance usage for both consumers and suppliers
for energy savings?

R.Q.3: How can real world consumer data be used to generate consumption
models based on limited operational knowledge, and how can this be
leveraged by industry for better environmental impact reporting?

R.Q.4: How can neural networks be used to create fast and accurate and gen-
eralised NILM models for residential and commercial properties, what
advantages do different approaches have and can they be used across
the world to reduce the need for additional datasets and monitoring?

R.Q.5: How can the outputs of NILM be explained? Neural networks are
generally considered black boxes, and explaining their operation and
output to less technical parties is of importance due to the legal re-
quirement when used in commerical applications that could affect a
user either through billing or automated decisions.

Chapter 3 elaborates answering R.Q.1:, where the REFIT dataset is in-
troduced and explains its creation and curation as well as its many benefits
in comparison with others datasets. Chapter 4 looks to answer R.Q.2: by
investigating the data collected from the REFIT dataset and apply it to real
world scenarios, in this case investigating participants change of appliance in

4



an attempt to be more energy efficient. R.Q.3: was answered in collaboration
with Nestec S.A. (trading as Nestlé) and is discussed in Chapter 5. Following
the work done as part of R.Q.2:, Nestlé reached out to propose an industrial
application of the work that would help them with product development,
specifically Life Cycle Assessment (LCA) which look at the carbon footprint
of appliance usage as part of a large process e.g. food preparation. In Chap-
ter 6 covers both R.Q.4: & R.Q.5:, looking both at the implementation of
a Gated Recurrent Unit (GRU) network with a comparative Convolutional
Neural Network (CNN) network both trained identically to produce outputs
for consumption and on/off values. This early work on a neural network
NILM implementation is then followed by work on answering R.Q.5: how
to understand the output of NILM networks. The intermediate layers of a
network contain the encoded values of the input, extracting these from the
trained network layers can help to explain the networks ‘thought’ process.
The extraction of these values is then plotted in a heatmap to better explain
the network process.

1.2 Contribution of Thesis

This research is based around the complete NILM process; from data collec-
tion, processing, dissemination, and process explainability.

In summary the main contributions of this thesis are as follows:

The collection and curation of one of the most extensive open source
residential power datasets in the EU, with a wide variety of occupancy
and appliance types. Described in Chapter 3.

Analysis of the REFIT dataset, time of use analysis, consumption pat-
terns, and comparison across houses throughout seasons. Described in
Chapter 4.
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Proposal of data driven modelling methodology, taking into account
real usage and user bias. The modelling was designed to improve on
old lab based models which required a large number of variables and
were designed specifically for use in LCA, the proposed method greatly
simplifies and improves upon previous models, described in Chapter 5.

Proposing a neural network model which addressed both classification
and regression for NILM. Incorporating both metrics in the same model
helped to reduce complexity, and model training was done with no
synthetic data. Demonstration of model transferability across distinct
datasets namely REDD (USA) and REFIT (UK). Previously NILM
results had only shown transferability across houses within the same
dataset. Finally proposal of graphical plots capable of showing sequence
to point network attention using a sliding occlusion window to aide
explainability. Contribution described in Chapter 6.

1.3 Organisation of Thesis

Firstly Chapter 2 contains a full literature review across the different top-
ics (data collection, life cycle assessments, and neural networks) covered in
this research. Chapter 3 reviews the creation and curation of the REFIT
dataset and how it provided a unique combination of features making it ex-
tremely valuable to the NILM community. Providing the methodology, post-
processing steps taken and the data availability. The dataset was also made
accessible to meet FAIR guidelines and the post processing resulted in two
datasets: raw and cleaned. Chapter 4 introduces the requirement to keep ap-
pliance modelling up to date and the ability of smart meters to provide data
which could be used to better understand the usage and energy efficiently
of large populations, including the ability to predict future usage patterns.
Chapter 5 further investigates appliance modelling and its relevance to in-
dustry groups via the life cycle assessment, a requirement for many products
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where the state-of-the-art has not been updated or requires lab based work
to calculate. We aim to simplify these older models to simple variables which
produce more accurate results. Chapter 6 looks at non-intrusive load mon-
itoring conducted via the use of deep learning. Firstly looking at model
transferability between highly distinct datasets and secondly making use of
attention via occlusion to aide in explainability for non technical users.

1.4 Publications

Journals

1. David Murray, Lina Stankovic, Vladimir Stankovic, and Namy Daniela
Espinoza-Orias. 2018. Appliance electrical consumption modelling at
scale using smart meter data. Journal of Cleaner Production, Volume
187, 2018, Pages 237-249,

2. David Murray, Lina Stankovic, and Vladimir Stankovic. 2017. An
electrical load measurements dataset of United Kingdom households
from a two-year longitudinal study. Sci Data 4, 160122 (2017).

3. David Murray, Jing Liao, Lina Stankovic, and Vladimir Stankovic. Un-
derstanding usage patterns of electric kettle and energy saving poten-
tial. Applied Energy, Volume 171, 2016, Pages 231-242.

Conference Proceedings

1. David Murray, Lina Stankovic, and Vladimir Stankovic. 2021. Trans-
parent AI: explainability of deep learning based load disaggregation. In
Proceedings of the 8th ACM International Conference on Systems for
Energy-Efficient Buildings, Cities, and Transportation (BuildSys ’21).
Association for Computing Machinery, New York, NY, USA, 268-271.
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2. David Murray, Lina Stankovic, and Vladimir Stankovic. 2020. Ex-
plainable NILM Networks. In Proceedings of the 5th International
Workshop on Non-Intrusive Load Monitoring (NILM’20). Association
for Computing Machinery, New York, NY, USA, 64-69.

3. David Murray, Lina Stankovic, Vladimir Stankovic, Srdjan Lulic, and
Srdjan Sladojevic. 2019. Transferability of neural networks approaches
for low-rate energy disaggregation. International Conference on Acous-
tics, Speech, and Signal Processing, Brighton, United Kingdom.

4. David Murray, Jing Liao, Lina Stankovic, and Vladimir Stankovic.
2015. How to make efficient use of kettles: understanding usage pat-
terns. Proceedings of the 8th International Conference on Energy Effi-
ciency in Domestic Appliances and Lighting: EEDAL’15 27 Aug 2015,
p. 1-13.

5. David Murray, Jing Liao, Lina Stankovic, and Vladimir Stankovic.
2015. A data management platform for personalised real-time energy
feedback. Proceedings of the 8th International Conference on Energy
Efficiency in Domestic Appliances and Lighting: EEDAL’15

6. Tom Hargreaves, Richard Hauxwell-Baldwin, Mike Coleman, Charlie
Wilson, Lina Stankovic, Vladimir Stankovic, David Murray, Jing Liao,
Tom Kane, Steven Firth, and Tarek Hassan. 2015. Smart homes,
control and energy management: How do smart home technologies in-
fluence control over energy use and domestic life? European Council for
an Energy Efficient Economy (ECEEE) 2015 Summer Study on Energy
Efficiency

7. Tom Kane, Val Mitchell, Jing Liao, Lina Stankovic, Steven Firth,
Stuart Cockbill, Charlie Wilson, David Murray, Farid Fouchal, An-
drew May, Vanda Dimitriou, Vladimir Stankovic, and Tarek Hassan.
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2015. Supporting Retrofit Decisions using Smart Meter Data: A Multi-
Disciplinary Approach. European Council for an Energy Efficient Econ-
omy (ECEEE) 2015 Summer Study on Energy Efficiency

8. David Murray, Bochao Zhao, Georgia Elafoudi, Jing Liao, Lina Stankovic,
and Vladimir Stankovic. 2014. Combined network coding and paillier
homomorphic encryption for ensuring consumer data privacy in smart
grid networks. Algebra, Codes and Networks 2014 - Bordeaux, France.

1.5 Author’s Contribution to Publications

Journals

1. Appliance model research, development and testing of proposed gener-
alised appliance consumption models for use in LCA’s, paper writing,
industry specific knowledge provided by N.D. Espinoza-Orias, supervi-
sory input (paper writing) from Lina Stankovic and Vladimir Stankovic.
Referenced in Chapter 6.

2. Dataset management, processing, curation, and distribution. Techni-
cal write up of curation process and background. Supervisory input
(administration and paper writing) from Lina Stankovic and Vladimir
Stankovic. Referenced in Chapter 3.

3. Appliance consumption research, development and testing of proposed
model and paper writing, with supervisory input (background research,
paper writing) from other three authors (Jing Liao, Lina Stankovic and
Vladimir Stankovic). Referenced in Chapter 4

Conference Proceedings

1. Research and design of machine learning model capable of producing
encoded time series heatmaps for explainability, paper writing. Super-
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visory input (paper writing, background research) from Lina Stankovic
and Vladimir Stankovic. Referenced in Chapter 6.

2. Research and design of attention layer within previously created model,
paper writing. Supervisory input (paper writing) from Lina Stankovic
and Vladimir Stankovic. Referenced in Chapter 6.

3. Research, design, and testing of proposed GRU model, and paper writ-
ing. Second author contributed CNN model design. Equal contri-
bution with second author of dataset processing and analysis. Su-
pervisory input (paper writing) from Lina Stankovic, and Vladimir
Stankovic. Background research input from Srdjan Sladojevic. Refer-
enced in Chapter 6.

4. Appliance consumption research, development and testing of proposed
model and paper writing, with supervisory input (background research,
paper writing) from other three authors (Jing Liao, Lina Stankovic and
Vladimir Stankovic). Referenced in Chapter 4

5. Dataset curation and analysis, paper writing. Additional data analysis
from second author Jing Liao. Supervisory input (administration and
paper writing) from Lina Stankovic and Vladimir Stankovic. Refer-
enced in Chapter 3.

6. Supporting author providing data collection and post processing advice
for appliance activity.

7. Supporting author providing data collection and post processing advice
for household consumption.

8. Design and implementation of a encryption model for smart meter data
anonymisation, paper writing. Secondary background and advice by
authors; Bochao Zhao, Georgia Elafoudi, and Jing Liao. Supervisory
input (background research and paper writing).

10



Chapter 2

Literature Review

Background

The idea of the ‘smart home’ has featured in literature since the 1950’s in
these early days the technology was far from what we think of today. The
current smart home in commercial literature focuses on the idea that appli-
ances will be handle everything for the occupant, setting the temperature,
controlling blinds, lights, music, hoovering, etc. All of which are designed to
reduce the need for interaction from the occupants via routines, voice com-
mands, mobile apps. In literature the focus is on the background systems
and methodologies that makes this possible via, data collection, real time
monitoring, sensing and the backend data processing and machine learning.

NILM is the concept of monitoring only household aggregate and from the
consumption patterns estimating appliance energy usage. This idea was first
introduced by George Hart, in his paper titled “Nonintrusive Appliance Load
Monitoring” [54]. This thesis explores multiple aspects related to NILM from
data collection & management, to visualisation and end user engagement.
The literature review is broken down chronologically and reflects the content
and focus of each chapter, firstly collection, through to modelling, prediction,
NILM, and finally visualisation and explainability.
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Data Collection

Until smart meters and smart devices are present in all homes, which can
self report electrical consumption, there is a need for commercial or bespoke
hardware and software. This is crucial to aiding in the creation of NILM al-
gorithms, as with all algorithms, data is needed. Data collection is however
a difficult and long process, which requires willing participants, and impor-
tantly reliable ones. Participation can also result in a bias towards certain
groups within society, those who are technologically inclined, interested in
research, and those willing to put up with some disruption to their lives.
There is also a issue that even if smart meters are present in the majority
of homes, getting access to this data, at frequencies that can be meaning-
fully used for research may prove to be difficult if not impossible due to data
protection laws as well as data access from suppliers or governments.

If no smart meter is available, a monitoring device is required, many of
which have propitiatory software and hardware requirements. The market is
also very volatile as it is targeted at an audience which craves accuracy and
ease of use. Many of the original offerings quickly became obsolete or lacked
any sort of continued support or a sustainable business model, which made
the choosing of a meter for a data collection project all the more important.
For example Jack Kelly avoided using a commercial offering instead opting
to build his own meter to create his dataset UK-DALE [78]. More recently
metering offerings have inhibited the ability to extract raw data, in most
cases hiding this behind an app or requiring technical knowledge to extract
it from a webpage or via packet inspection e.g. TP-Link Smart Home App
Kasa [139] reports values but they have to be extracted via Python.

A number of open source datasets exist currently with new ones being
added, in some cases new datasets are continuations of a previous dataset
but with new data covering a longer period of time, or the same houses
but recorded with a new sampling rate or additional appliances/features as
technology becomes available. More recently synthetic datasets have started
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to be made available, these are either curated collections of data created
by a model or the model itself which is either trained or can be trained to
mimic household usage given training data. Synthetic datasets or generators
which can successfully mimic real houses are ideal for research purposes as
they remove the largest obstacle in many projects which is the recruitment
and retention of participants, as the creation of datasets for non-intrusive
modelling is inherently intrusive. [82]

Table 3.1 contains a number of datasets and highlights a number of
their features, the complexity of the dataset generally affects key areas such
as frequency, data type, and duration. The higher frequency typically the
shorter the duration for example.

The frequency of the data collected will greatly affect the type of de-
liverables a dataset can achieve, hourly would for example only suit usage
patterns and predicted consumption, whereas high frequency e.g. 1Hz would
support investigation into specific appliances usage. See [67] for one of the
most up to date reviews of NILM datasets, describing 42 publicly available
real and synthetic datasets. In addition to synthetic datasets, the models
which can create these datasets are also being made available and important
step in being able to understand and reproduce any results created using
these datasets, the CREST model by Richardson [124] is one such example.

Appliance Modelling

Appliance load modelling involves estimating for a given appliance, the con-
sumption based on a number of known factors. Initially there is a requirement
to gather data from a range of appliances, this includes power consumption
and specific settings. Knowing the setting is the most labour intensive part of
recording data. It requires either the research team to run the appliance on
every setting or for the household owner to note the setting used, the second
being far more prone to incorrect data entry or apathy. Appliance modelling
can be used in a number of ways, by manufacturers to better estimate usage
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patterns, consumption and commonly used features. By regulators to better
understand how to regulate the market, and by power generator/distribution
entities to better estimate the expected load.

The food industry is one of the world’s largest contributors to carbon
emissions, due to energy consumption throughout the food life cycle. In this
thesis I focus on the residential consumption phase of the food LCA, i.e.,
energy consumption during home cooking. The LCA covers every aspect of
energy consumption from the creation of raw ingredients to transport, etc.
Specifically, while much effort has been placed on improving appliance en-
ergy efficiency, appliance models used in various applications, including the
food LCA, are not updated regularly. This process is hindered by the fact
that the cooking appliance models are either very cumbersome, requiring
knowledge of parameters which are difficult to obtain or dependent on man-
ufacturers’ data which do not always reflect variable cooking behaviour of the
general public. In [105] we proposed a methodology for generating accurate
appliance models from energy consumption data, obtained by smart meters
that are becoming widely available worldwide, without detailed knowledge of
additional parameters such as food being prepared, mass of food, etc. Fur-
thermore, the proposed models, due to the nature of smart meter data, are
built incorporating actual usage patterns reflecting specific cooking practice.
We validate our results from large, geographically spread energy datasets
and demonstrate, as a case study, the impact of up-to-date models in the
consumption phase of food LCA.

The food industry worldwide accounts for a significant fraction of carbon
emissions. For example, in the United Kingdom (UK) alone, the food in-
dustry is responsible for about 14% of the energy consumption of the entire
industry sector, equivalent to 7 million tonnes of carbon emissions per year
[121]. The food LCA estimates material and energy input and output at all
stages of the food product’s life cycle − from acquisition of raw materials,
production, processing, and packaging, to consumer use, and waste/recycling.
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For many food products, including ready meals, domestic cooking takes up
a significant fraction of the total energy consumption of the product’s LCA
[41, 130, 138] Although the energy consumption of domestic cooking in de-
veloped countries has decreased by 31% from 1991 to 2008 [138], mainly
due to improved energy efficiency of cooking appliances, cooking and bev-
erage preparation in domestic settings still consume a substantial amount
of energy, or approximately 7 MegaJoule(MJ)/Kilogram(kg) [39, 53]. For
example, according to [25], in the United States, domestic cooking accounts
for 8-16% (equivalent to 6.9×108 Giga Joule per year) of the total national
annual energy consumption [58]. Similarly, the report on Energy Consump-
tion and Efficiency Trends in the European Union (EU) [13] estimates the
energy consumption for ovens and hobs in private households in the EU-27
to be approximately 60 Tera-Watt hour (TWh) and states that for cook-
ing appliances, there is still potential for energy savings. The situation is
worse in many developing countries, where cooking consumes up to 90% of
the overall residential energy consumption [1,31], and it is mainly based on
non-renewable energy.

Jungbluth [70] provides an early inventory of data for cooking at home
using various appliances, so that food LCA studies can accurately quantify
the food preparation stage. Sensitivity analysis of efficiency (ratio of energy
input to energy output) shows that the type of vessels used, type of elec-
trical appliance used (grill, oven, microwave oven, cast iron plate, induction
stove), and the preparation method, have a large influence, resulting in the
conclusion that there are large differences between efficiencies. Lakshmi et
al. [86] tested different methods to cook rice in a microwave with different
power levels, including the influence of soaking the rice prior to cooking. It
was concluded that an electric rice-cooker is more energy efficient despite a
longer cooking time compared to the microwave, but microwave cooking is
as energy efficient as using a pressure cooker. A similar study on energy
efficiency of cooking rice is presented in Das et al. [30], but only an electric
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rice cooker and a pressure cooker are tested.
Zufia and Arana [155] carried out the LCA of an industrially cooked dish,

namely cooked tuna with tomato sauce, to assess the environmental impact
of the production and distribution. However, the electricity consumed at
home by a microwave for heating the ready meal is not considered. Calderón
et al. [18] model the microwave consumption using its power rating, and
focus on LCA of a canned ready meal, a stew product based on cooked pulses
and pork meat cuts, highlighting subsystems with the highest environmental
loads, concluding that 11% of the total energy consumption in the product
life cycle is attributed to the domestic level. More recently, in [17], envi-
ronmental burdens of the same dish at four production scales is considered,
including canned food (reheated at home), the restaurant (cooked and heated
in a traditional way and served), and the home-made dish with electricity
consumption at household level estimated from electrical appliance specifi-
cations.

Oberascher et al. [113] highlight the variability of behaviour of consumers
in using electrical appliances at the domestic level and provides empirical
data on electricity consumption for a number of cooking processes, including
heating water, baking potatoes and boiling eggs, concluding that the energy
consumption of the microwave for heating water is lower than stove with a
pot with and without a lid, but higher than kettle. Experiments conducted
by Vattenfall [142] show that using the most energy efficient appliance in
the kitchen for a specific cooking job is undoubtedly an effective way of
lowering energy consumption. However, Fechner shows differences of up to
50% in energy consumption when six chefs all cooked the same meal with
the same equipment (cited as per [146]), which agrees with the findings of
DeMerchant [32]. Kemna expects no further energy-saving potential possible
for electric ovens from 2010 to 2020 from a purely technical design point of
view; however, with a change to more sustainable consumer behaviour, the
additional potential for energy savings is expected to be about 10% [79].
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The literature survey above demonstrates a clear need to capture the
effect of different cooking styles, and consequently variable appliance usage,
and explore the impact of the consumer phase, particularly at domestic level,
in food LCA studies. This requires wider studies that can only be enabled
via accurate and scalable models for computing the energy aspect of end-user
cooking at home, and not relying on appliance manufacturer’s specifications
to estimate the consumption.

To this end, in [130], general models for quantifying energy consumption
related to the food preparation in private households are proposed, including
frying, boiling, oven roasting and microwave cooking. This is achieved via
appliance load modelling, through exhaustive tests in laboratory conditions
using different appliances and cooking settings. However, the models gener-
ated require a large number of variables to be known, such as type of food,
its mass, the evaporation mass of food, which is not possible at scale. Sim-
ilarly, the modelling of the combined oven in a restaurant setting, proposed
recently in [16], also includes a large number of parameters which are not
approachable at scale. Industrial scale applications already have a number of
studies conducted, which model industrial versions of household appliances,
such as modelling the cooking properties of industrial bread ovens [116].
These, however, are very specific to the industry in question and therefore
non transferable methodologies are applied.

This work is inspired by some of the work done over a decade ago [130],
and the appliance modelling performed, albeit in a different context, e.g.,
[99] where lines of best fit are applied for each setting of washing machines
and [47] that use online survey, in-home study and laboratory experiments
to assess the energy consumption of refrigerators. The state-of-the-art mi-
crowave (MW) energy consumption model in [130] requires knowledge of the
food being cooked as well as water content, which is infeasible to collect at
scale. A similar microwave model is used in [86]. We note that other studies,
such as [17, 18, 86, 113], rely on heuristic measurements in laboratory con-
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ditions, or focus on preparation of particular dishes, or rely on power rating
of the appliances and cooking recipes with the risky, and sometimes wrong
assumption, that they will be followed correctly. The model for an oven,
validated in [130] using 23-59 litre ovens and data supplied by The Swedish
Consumer Agency (http://www.konsumentverket.se) which had oven vol-
umes ranging between 18-65 litres, requires a large number of variables to
be known to estimate consumption again showing that at scale outside of a
laboratory these models are not applicable.

This work proposes a methodology for generating general appliance mod-
els in a scalable manner to quantify energy consumption related to the usage
of cooking appliances at domestic level. Specifically, our research hypothesis
is that only smart meter data, comprising active power measurements with
at least 60 second sampling in a similar format to the UK SMETS version
2 [114], is sufficient for building accurate major cooking appliance models.
To prove our hypothesis, we draw upon load profiling, appliance mining and
user activities assessment methodologies related to energy demand literature
[104, 132]. For example, in [104], smart meter data is used to assess en-
ergy efficiency and sustainability of electric kettle usage. In [132], energy
demand of different energy consuming domestic activities such as cooking
and laundering is quantified. Load profiles of 11 major domestic appliances
is studied in [120] showing that the majority of cooking load profiles are
single state even when there may be large variation during the operation of
the appliance.

While the proposed methodology is generic to all cooking appliances, for
ease of understanding, the methodology is illustrated on two electric cooking
appliances with wide ownership in most countries, namely the electric oven
and microwave. According to [64], almost 70% of households with ovens in
England have electric ovens and just under 30% have gas ovens. Thus, in our
study we chose to focus only on electrical appliances as they have a market
dominance and the eventual move away from fossil fuels should increase the
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ownership of electrical appliances.
The appliance models proposed have a two-fold advantage over existing

models: (i) models reflect current, more energy efficient and wider capacity
appliances and (ii) models are not reliant on parameters that are difficult to
estimate by non-specialists in large field studies. The proposed models are
validated with existing literature, as well as on large electrical measurements
datasets where electrical consumption of the two appliances in question was
recorded. Furthermore, in order to demonstrate applicability and impact on
food LCA, a case study is provided where figures for the microwave oven and
electric oven are calculated for frozen ready meals and compared with recent
LCA for the same food [129].

Non-intrusive Load Prediction

NILM has been researched for over 30 years [54] and has become an active
area of research again recently due to ambitious energy efficiency goals, smart
homes/buildings, and large-scale smart metering deployment programmes
worldwide.

Different approaches have been proposed for NILM, using various signal
processing and machine learning techniques (reviews can be found in [148,
154]). Approaches proposed include include Hidden Markov Models (HMM)-
based methods and their variants (see, e.g., [51, 117]), signal processing
methods, such as dynamic time warping [22, 43, 89], single-channel source
separation [84], graph signal processing [55,152], decision trees [89], support
vector machines with K-means [3], genetic algorithms [42, 150] and neural
networks [126].

The recent increase in the availability of load data [78,84,107] for model
training, has ignited data-driven approaches, such as Deep Neural Network
(DNN) using both CNN, and recurrent neural network (RNN) architectures
[7,35,77,80]. Currently, DNN-based NILM relies on creating a new network
for each house and each appliance. Some approaches use a single model
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to predict the output of several appliances, although these are more recent
developments due to the complexity of training. With the availability of a
sufficient and good training datasets, these networks perform well as they are
highly targeted, but if NILM is to become widespread and scalable, networks
will need to be trained on a wide range of electrical load signatures. As
such, the challenge is to design a single network to accurately disaggregate
any appliance across multiple ‘unseen’ houses, i.e., houses not present in
the training dataset a.k.a transfer learning. Transfer learning is extremely
difficult due to the vast amount of different make and models of appliance,
this is made even more challenging by changes to appliance operation to meet
new any new energy efficiency standards that might come into law, or a new
technology will fundamentally change how the appliance operates completely
changing it’s consumption signature. The introduction of heat pump tumble
dryers is an example of this. [11]

Though the previous DNN-based approaches demonstrated competitive
results [7,35,46,56,77,80,149] , they do not fully exploit the DNN potential.
Indeed, the approaches of [77] and [35] are limited by generation of syn-
thetic activations, which do not necessarily capture ‘noise’ well, here defined
as unknown simultaneous appliance use, usually present in the dataset. In
Maucnh’s papers [94,95], an long short-term memory (LSTM) & DNN-HMM
approach was used to rebuild the appliance signal but due to the difference
in aggregate and sub-metered sampling rates in the REDD dataset, syn-
thetic data was used exclusively in both papers, created by summing all
sub-meters to create a synthetic ‘aggregate’; this limits the amount of noise
as appliances not sub-metered would be excluded. [80] uses real “noisy"
dataset, but requires thousands of epochs to generate accurate results, which
is not a feasible approach for online disaggregation, while the architecture
of [7] contains large number (i.e., 44) layers designed only for identification
of appliance state, without generating disaggregation or load consumption
estimations.
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Auto-encoders have become one of the go-to network designs when in-
vestigating NILM, the ability to rebuild the appliance signal is significant
both in state detection and more accurate load prediction. Auto-encoders
can contain a number of the layers previously mentioned but generally fol-
low a specific hour glass shape rather than specific layer types. There have
also been differences in approach when it comes to output. Sequence-to-
Sequence, where the appliance signal is recreated in it’s entirety from an
input window, and Sequence-to-Point where only a single output value is
generated per window. These two approaches have different benefits, S2S
means that less processing would need to take place across a dataset but de-
pending on the step value could mean that full appliance activations would
not be fully captured (dependent on the appliance and the window length).
Sequence to point on the other hand moves across the appliance activation
and although the result may fluctuate more as the model is making more pre-
dictions, with post-processing it is possible to better construct an appliance
than if a sequence to sequence did not correctly predict.

Another issue with NILM literature is that there is many ways of assessing
the quality of the results. Generally the most commonly accepted methods
are by the use of MAE, however due to the nature of some appliances the
usage over a long period may only be less than a percent of the recorded
time. [52] Even a kettle which is used multiple times a day would only be
on for around 1-5 minutes at a time. This means that MAE becomes a poor
indicator of quality, if the model were only to predict zero the average error
would be very close to 0. To combat this a number of NILM specific metrics
have been devised, in the following paper they discuss the merits and issues
associated with these metrics [118], this paper also makes use of [98] which
uses a number of the metrics and ranks them in order of of usefulness, with
Match Rate scoring the best, even then there is a caveat that the metric
has to be used in a way which makes it meaningful between heavy and light
users, and across different time scales.
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Metric Description Equation Energy

RE Relative error [98] indicates quality of energy estimation relative to ground-truth.
∑N

i=1
Ei−Êi

Êi

RMSE Root mean square error [9, 61, 98]. The RMSE reports based on how spread-out errors are, and is the most commonly used as it reports in the same unit as the data. 1−
√

1
N

∑N
i=1(Ei − Êi)2Ē

AE Average error [61, 98] indicates if estimation is above or below the expected. 1
N

∑N
i=1∆Ei

r2 R-Squared [61,96,97,98] 1−
∑N

i=1
(Ei−Êi)

2

(Ei−Ēi)2

EE Energy Error [9, 98] the ratio of the absolute difference between estimated and true energy, and the total amount of true energy.
∑N

i=1 |Êi−Ei|∑N
i=1 Ei

MR Considered the best NILM metric by [98], varying between 1 (strong match) and tending towards 0 for a poor match)
∑N

i=1 min{Ei,Êi}∑N
i=1 max{Ei,Êi}

Fraction of Energy Explained [50,54]
∑N

i=1 Êi∑N
i=1 Ei

Et Metered energy at time interval t

Ē Average metered energy over the dataset

Êt Estimated energy at instant t

∆Et Error between NILM and metered data at instant t

Table 2.1
Methods used to determine the ability of NILM algorithms energy estimation capabilities.
A subset of the full table which can be found in Pereira [118].

The quality of NILM metrics however does not represent the quality of the
NILM model. In many cases the test data will be part of the open dataset but
the authors will not specify the time period used or quantify the complexity
of the time period used, an example might be a very strong test score but the
data only contains couple of very different appliance signatures. So a good
result may be obtained on very clean data and score very well on the metrics
but this would not be representative of data during a busier time of the
day where the same model may produce poor results. This is fundamental
to explaining a ‘good’ NILM model and acknowledging false positives are
important as this is the main issue that affects consumer trust, more than
false negatives where the expectation is that the result will improve.

Recently attempts to improve the description of data has been made by
Klemenjak [83]. In this paper a metric which describes the noisiness of the
data is described as noise-to-aggregate ratio (NAR). This is an important
metric to be used in conjunction with others on standardised test sets. The
ability of a network to score well in a noisy test environment will help to show
it’s ability to generalise and therefore perform better in transfer learning and
widespread deployment.

To help show the objective performance of a given NILM model it would
be worth using specific benchmark time periods where there are a number
of known appliances, a realistic amount of noise and so on. This would then
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be made available as a dataset, with which all models are compared against.
Currently papers where comparisons are made using the same model designs
but are unlikely to be trained in the same way as the original authors did,
unless they made their model weights available which very few have.

This thesis looks at the application of sequence to point models and their
transferability across datasets, making use of both normal and synthetic
datasets. I describe the challenges of multi-state appliances, and the dif-
ficulties with universal NILM models which are capable of detecting multiple
appliances (similar to image classifiers which can handle 10’s to 1000’s of
classes [85]).
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Chapter 3

Data Collection & Curation

3.1 Introduction

This chapter looks at the challenges of collecting smart home data from
households which do not have smart metering installed and dealing with is-
sues such as erroneous & missing data which can occur with off the shelf
solutions (specifically if they rely on external servers e.g. TP-Link energy
monitoring smart plugs [139]). As discussed in the literature review, a num-
ber of datasets have been created with focus on 1 characteristic over others,
such as extremely high sampling frequency, but sacrificing duration e.g. a
number of hours/days, or scale, e.g. containing only a single house. This can
be seen in Table 3.1.

The approach taken to create the REFIT dataset means that observa-
tion frequency, duration and sample size are all well balanced resulting in a
dataset which contains significantly more information than others, remain-
ing generally useful rather than specifically useful. Households involved are
also varied, giving an overview of middle class English households over a two
year period. This gives the REFIT dataset an advantage over other datasets
when training neural networks, the range of appliances and frequency of use,
along with challenging and noisy conditions means that networks can be
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Dataset Location Duration, Year No. Energy Sensors Data Recorded Readings
Houses Freq.

ACS-F1 [49] CHE 2*1 hour sessions, 2013 N/A 100 App. (10 types) V, I, f, P, Q, Φ 10 secs
ACS-F2 [125] CHE 2*1 hour sessions, 2013 N/A 225 App. (15 types) V, I, f, P, Q, Φ 10 secs
AMPds [92] CAN 1 year, 2012 1 21 App. V, I, f, pf, P, Q, S, E 1 min
AMPds2 [91] CAN 2 years, 2012 1 21 App. V, I, f, pf, P, Q, S, E 1 min
BLUED [4] USA 8 days, 2011 1 Agg. V, I 12 kHz
DRED [141] NED 6 months, 2015 1 Agg., 12 App. P 1 Hz
ECO [10] CHE 8 months, 2012 6 Agg., 6-10 App. V, I, P, Q, Φ 1 Hz
GREEND [103] AUT, ITA 1 year, 2013 9 9 App. P 1 Hz
HES [153] GBR 1 month (255 houses), 251 Agg., 1-10 Sub., P 10 min

1 year (26 houses), 2010 13-51 App.
iAWE [8] IND 73 days, 2013 1 Agg., 10 App. Agg. V, I, f, P, Q, S, E, Φ 1 Hz

App. V, I, f, P, S, E, Φ
IHEPCDS [57] FRA 4 years, 2006 1 Agg., 3 Sub. Agg. P, Q 1 min

Sub. E
REDD [84] USA 3-19 days, 2011 6 Agg., 9-24 App. Agg. V, P Agg. 15 kHz

App. P App. 3 secs
REFIT GBR 2 years, 2013 20 Agg., 9 App. P 8 secs
Smart* [6] USA 3 months, 2012 3 House A. Agg., 26 Sub., Agg. V, f, P, S Agg. 1 Hz

55 App. Sub. V, f, P, S Sub. 1 Hz
House B, C. Agg., 21 Sub. App. P App. 2.5 secs

Tracebase [123] DEU 1883 days, 2012 onwards 15 158 App. (43 types) P 1 Hz
UK-DALE [78] GBR 655 days, 2012 5 Agg., 5-54 App. Agg. V, I Agg. 16 kHz

App. P App. 6 secs
AMBAL [15] Synth Res N/A 14 App. App. P App. 1 Hz
SmartSim [20] Synth Res 7 days N/A 25 App. App. P App. 1 Hz
SHED [59] Synth Com 14 days N/A 66 App. App. P App. 0.033 Hz
SynD [82] Synth Res 180 days N/A 21 App. App. P App. 5 Hz

Table 3.1
Household Power/Appliance Open Access Datasets
Agg. = Aggregate, App. = Appliance, Sub. = Power circuit, e.g., the fuse which all
appliances in a single room are connected to.
Types is in relation to appliance groups in situations where only appliances were monitored.
Active Power (P), Reactive Power (Q), Apparent Power (S), Energy (E), Frequency (f),
Power Factor (pf), Phase Angle (Φ), Voltage (V) and Current (I).
ACS-F1 and ACS-F2 datasets contain appliance signatures obtained in a laboratory setting
instead of real homes.
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trained to generalise well, meaning that they can provide meaningful results
across a range of households and appliances. The time scale included also
means that data can take into account the change of seasons, and therefore
seasonal usage patterns that other datasets may not capture. Through ap-
pliance identification, and demonstration of clean continuous data we show
that the REFIT dataset is a useful resource for researchers looking to model
energy appliance energy consumption or usage patterns. Additionally the
REFIT makes for a challenging benchmark dataset for both academic and
commercial entities due to the large number of appliances contained in each
household [83]. The content of this chapter is taken from the paper on ‘An
electrical load measurements dataset of United Kingdom households from a
two-year longitudinal study’ [107] which as of writing has been cited over 160
times.

3.2 Methodology

The following section contains the steps needed to create a dataset similar
to REFIT. Focusing on the reasoning behind what was included and the
methods used to present the finalised dataset.

3.2.1 Selection

The first step in the creation of any real world dataset is recruitment. The
participants in the REFIT study were recruited via email and leaflet drops.
In total, 57 households replied with basic information about their house-
hold. [73] Final selection was based on the householder’s familiarity with
information and communication technology (ICT) as well as a mix of house-
hold occupancy, including retired couples, working couples and families with
children ranging from infants to young adults. Some houses were excluded
for a number of reasons, mainly related to connectivity, such as utility me-
ters being underground meaning that signal acquisition would be difficult,
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or absence of a broadband connection [72]. Occupancy and physical charac-
teristics of each house relevant to electricity consumption is shown in Table
3.2. Ethics approval was granted by Ethics Approvals (Human Participants),
Sub-committee, Research Office, Loughborough University and all partici-
pants gave informed consent and understood how their data would be used.
This selection process does mean that there is an inherent bias towards mid-
dle class households due to the exclusion criteria described in [73], as well as
as those likely to respond to this type of recruitment are people who would
regularly seek out new technology and engage with it are likely to be tech
savvy. The physical requirement of accessible metering also excluded smaller
terraced houses typical in the study area, meaning that larger households
with higher incomes and a larger number of appliances, specifically technol-
ogy and pet related appliances would be included which added to the amount
of background noise. [73]
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House Occupancy Dwelling Age No. of Appliances Dwelling Type Size

1 2 1975-1980 35 Detached 4 bed
2 4 - 15 Semi-detached 3 bed
3 2 1988 27 Detached 3 bed
4 2 1850-1899 33 Detached 4 bed
5 4 1878 44 Mid-terrace 4 bed
6 2 2005 49 Detached 4 bed
7 4 1965-1974 25 Detached 3 bed
8 2 1966 35 Detached 2 bed
9 2 1919-1944 24 Detached 3 bed
10 4 1919-1944 31 Detached 3 bed
11 1 1945-1964 25 Detached 3 bed
12 3 1991-1995 26 Detached 3 bed
13 4 post 2002 28 Detached 4 bed
15 1 1965-1974 19 Semi-detached 3 bed
16 6 1981-1990 48 Detached 5 bed
17 3 mid 60s 22 Detached 3 bed
18 2 1965-1974 34 Detached 3 bed
19 4 1945-1964 26 Semi-detached 3 bed
20 2 1965-1974 39 Detached 3 bed
21 4 1981-1990 23 Detached 3 bed

Table 3.2
Additional information about the houses involved in the study. Occupancy column shows
the number of people living in the house during the monitoring period. Number of Appli-
ances shows the total number of electrical appliances in the house based on the conducted
house survey. Size is given as number of bedrooms as this is a more common representa-
tion of dwelling size in the UK.

In each house, nine appliances were selected to be monitored via individ-
ual plug meters. In some cases an extension cord, increased the number of
appliances that were recorded on a single plug meter. Appliance selection
was motivated by the completed Household Electricity Survey (HES) [153], a
large study conducted by the UK’s Department of Environment and Climate
Change (DECC). Since the HES study focused on collecting a large amount
of data about consumer attitudes towards energy consuming practices and
energy demand, the study prioritised appliances with relatively high electri-
cal consumption and/or frequent use to be monitored.
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With respect to the monitoring priorities from HES (see Appendix II of
the HES report [153]), the main appliances from the energy demand point of
view are cold appliances (refrigerators, freezers, fridge-freezers, etc.), cook-
ing appliances (microwaves, kettles, etc.), ICT (computers, screens, printers,
consoles, etc.), utility room appliances (washing machines, tumble dryers,
dishwashers), while low priority items include mobile phone chargers, hair
straighteners and similar small items which may not be used regularly or
moved frequently.

In the REFIT study, this HES prioritisation list was used as a guide
when selecting appliances to monitor, unless study participants explicitly
requested monitoring unusual appliances, such as a vivarium or pond pump.
Table 3.3 lists all appliances monitored in each house. Column 4 in Table 3.2
shows the total number of electrical appliances in each house according to the
house survey obtained at the beginning of the study. Note that all REFIT
study houses used gas central heating and hot water systems as primary
source of fuel and there were no other HVAC systems present (although
some houses made use of mobile space heaters during winter months), in the
UK this is highly typical but does mean that the dataset lacks a number of
key consuming appliances that would be found in the rest of the world such
as air conditioning, immersion water heaters, and heat pumps [2]. Several
houses did have solar panel installations, which provided instantaneous power
in which excess was sold back to the power grid. At the time of the study
domestic battery storage was uncommon.
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House Number
Appliance 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21 Total

Television ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 2✗ 2✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 21
Hi-Fi ✗ ✗ ✗ ✗ 4
Fridge-Freezer ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 2✗ ✗ ✗ ✗ 14
Fridge ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 7
Freezer 2✗ ✗ ✗ ✗ 2✗ ✗ 2✗ ✗ ✗ ✗ ✗ 13
Microwave ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 16
Cooker Hood ✗ 1
Kettle ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 16
Toaster ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 8
Misc Kitchen 2✗ ✗ ✗ 4
Washing Machine ✗ ✗ ✗ 2✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 20
Washer Dryer ✗ ✗ 2
Tumble Dryer ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 10
Dishwasher ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 15
Computer ✗ ✗ ✗ 2✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 13
Router ✗ 1
Electric Heater ✗ ✗ 2✗ 4
Lamp ✗ 1
Misc ✗ ✗ 2✗ 4

Table 3.3
Monitored appliances in each house organised as shown in HES Appendix II [153]. The
total number of appliances of the same type monitored are shown in the final column.
Small/unique appliances are grouped into ‘Misc’ or ‘Misc Kitchen’ as they may only appear
in one house.
Misc. Appliances include: House 21 - Pond Pump & Vivarium, House 16 - Dehumidifier,
House 17 - Bedroom Plug.
Misc. Kitchen: House 10 - Mixer & Blender, House 19 - Bread Maker, House 21 - Mixer.

3.2.2 Monitoring Set-up

Figure 3.1 shows the schematic of the data collection platform. To ensure
reliability, scalability and performance, all equipment used in the REFIT
study was commercial off-the-shelf hardware available for purchase at the
beginning of the study. Off-the-shelf hardware had the benefit of already
being tested, with support available for issues, and importantly an accessible
API with which the team was able to access the data without action being
required by the participants.
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Fig. 3.1. REFIT remote real-time data collection schematic.

Energy sensors (nine in each house) wirelessly sent readings every 8 sec-
onds to an energy aggregator, which was connected to a communications
gateway. The gateway, connected to the broadband router, forwarded read-
ings to a web portal. From the web portal, the data was requested by a
server at Strathclyde and stored in a MySQL database.

The overall platform is designed to be as similar as possible to a typical
smart meter installation [114] in terms of data collection and in-home pres-
ence. Indeed, the used aggregator comes with an IHD that displays usage
information and basic historical statistics similar to what will be available
after smart meter roll-out [114]. However, we note that individual appli-
ance monitors (IAMs) will not be part of the smart meter installation [114]
and it will be up to the utility supplier if one is provided or not, but they
are helpful to correlate use times and power usage, design, model, test and
validate analytical approaches.
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In the following, we describe each component of the monitoring platform.

Household Aggregate

The most important measurement in each house is the household aggregate
energy consumption as this will imitate what smart meters will be able to
provide. The household aggregate was measured by a CurrentCost trans-
mitter (specifications: [26]), which contains a single phase current clamp and
a transmission module which wirelessly transmits readings every 8 seconds
using Radio Frequency (RF) 433MHz to the energy aggregator. These were
installed in all of the houses within the study in a single phase configuration
which is the most common in households within the United Kingdom. The
aggregator used was a CurrentCost EnviR module that also contains an IHD,
this was hidden from the study participants for a period of time, to study
the effectiveness of the information the IHD provided.

CurrentCost monitoring equipment has been used successfully in many
previous trials, e.g., in trials [23,66,74,78,122,136,137], which is why it was
chosen over other options available on the market around the time the study
started. It should be noted that the sensor (a split-core current transformer)
does not measure mains voltage, thus there may be variation in the calculated
active power. The manufacturer did not give any details with regards to the
internal workings of their sensors, however testing quantifies their relative
error of around 6% [78]. The value of 6% aligns with the UK’s declared
voltage tolerance which is -6% to +10%.
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Fig. 3.2. Current Cost in home display & hub

Of the 20 households recruited, six homes had solar panels installed. In
three cases rewiring was done to remove the effect of solar panel generation
(Houses 1, 6 & 7). In the other three (Houses 3, 11 & 21) rewiring was not
possible and the aggregate of these houses was recorded as is with solar in-
terference as the sensor used to measure aggregate energy consumption was
unable to distinguish the direction of power flow, solar panels appeared as ad-
ditional power consumption resulting in a bell-curve-shaped power consump-
tion increase during the day with significant noise due to weather changes,
such as clouds passing overhead.

Individual Appliance Monitors (IAM)

Each house was supplied with 9 CurrentCost IAMs, which is the maximum
number supported by the associated EnviR module without the likelihood
of causing data loss from transmission collisions. Each IAM provided the
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power consumption (in Watts) for each appliance which was connected, at a
sampling rate of 8 seconds. All IAM readings were collected via the EnviR
aggregator which was then connected to the communications gateway.

Similarly to the household aggregate, the IAMs only monitor the current
and not the voltage which means there may be a variation in the supply
voltage which introduces an error in the reading. By default, all of the
installed load monitoring devices had the voltage pre-set to 240V, suitable
for the UK where mains voltage is rated at 230V +10% to -6%.

IAMs were only capable of broadcasting their readings, which results in
the readings not being synchronised with the aggregate readings (discussed
in this GitHub [76], the type of plug used was the ‘CC_TX’). The timestamp
assigned to data was the UNIX timestamp when the data was received at
the Strathclyde server. Since a data request grabs data from the aggregator,
which is the aggregate and last broadcasts from all the IAMs, the timestamp
is the sampling time of the aggregate reading. Thus, all of the IAMs re-
ceived at timestamp n+1 will be lagging the aggregate reading by up to the
time since the last sample (n), that is, the offset between IAM I and Aggre-
gate A readings will always satisfy n < offset < n+1, where n and n+1 are
two consecutive sampling time of aggregate reading. See Subsections Code
Availability and Known Issues. Figure 3.3 shows a time representation of
the readings from the Current Cost system. Note that each sampling time
period is of 8sec length.

n n + 1 n + 2A(n) A(n+1) A(n+2)
I1(n+1) I1(n+2) I1(n+3)

I2(n+1) I2(n+2)
I8(n) I8(n+1) I8(n+2)

I9(n+1) I9(n+2)

Fig. 3.3. Each circle represents a reading taken. Each line represents a sensor,
A being the aggregate and I1 representing IAM1 and so on. The numbers in
the bracket represent sample number.
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The appliances monitored were recorded during initial installation and
households were advised not to unplug or move monitors during the moni-
toring period without notifying the REFIT project team. Any changes in the
appliance monitored by an IAM that occurred during the trial are recorded
in detail in the ReadMe file included with the dataset. An example of this
would be House 10, which moved IAM 2 from a Freezer to a Toaster on
25/06/2014.

3.2.3 Energy Aggregator

The EnviR aggregator with an IHD came bundled with the CurrentCost
transmitter used for measuring the household aggregate. The EnviR [27] ties
all of the CurrentCost devices together acting an an energy aggregator. Its
display provides information about all of the CurrentCost devices which were
installed with a simple interface using buttons as navigation. Together with
the transmitter for aggregate measurements this pairing best represented the
combination of smart meter and IHD that would be supplied as part of the
UK roll out (the supply on an IHD was supplier dependant [33]). The EnviR
communicated via a USB cable to the communications gateway allowing data
to be recorded remotely.

Communications Gateway

The communications gateway used in the REFIT project for electrical mea-
surements was the Vera3 smart home controller [145]. All sensors reported
data wirelessly to the EnviR which then forwarded information to Vera3 us-
ing a USB connection. Finally, Vera3 sent the data to the cloud, which was
an on-line dashboard available via the Vera Control (formally MiCasaVerde
[44]) on-line portal [144]. Vera3 has a number of interfaces to enable ad-
ditional monitoring with the following technologies: WiFi, USB, LAN, and
Z-Wave. In the REFIT study, Vera3 was connected to a home broadband
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router via its LAN interface, to EnviR via the USB interface, and to ad-
ditional sensors (measuring temperature, humidity, light intensity) via the
Z-Wave interface.

Web Portal & Data Collection

Data collected through the communications gateway was available on the web
portal via an application programming interface (API). The API requests are
available remotely and all REFIT houses were linked to a single web portal
account with a user account for each household (so that household could
benefit from basic energy feedback available via the web portal) as well as
an administration account. The list of available requests can be found at
[28, 29]. Responses are given by default in the JavaScript Object Notation
(JSON) formatting language.

The simplest set-up was to make a call for each sensor in a house individu-
ally. However, there are several issues with this configuration: (1) the number
of requests being sent from the same account ID will be over 200, i.e., every
8 seconds (20 houses × 10 requests per house), (2) if the CurrentCost is reset
or connections to IAMs lost, different ID numbers could be assigned to these
IAMs. To eliminate this possibility our python scripts requested only sensor
values which had changed and used the sensor’s universally unique identifier,
this was a feature of the CurrentCost API. This method was more robust
as only 20 API calls were made every 8 seconds. Furthermore, this reduced
bandwidth and storage requirements but does introduce the synchronisation
issue as mentioned in section 3.2.2.

Server & Database

Requests for new data were issued to the web portal and the replies were
recorded on the MySQL server hosted at the University of Strathclyde, Glas-
gow UK, with the following specification:
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DELL PowerEdge R320 with an Intel® Xeon® E5-2407 and 16 gigabytes
of RAM, running on Linux Debian V8.3 with MySQL 5.5.47.

Checking the connectivity of houses was done via a web page which dis-
played time passed from the last insert for each house by the Readings.py
script. Any home which had not updated recently would show a large time
difference and that home was then be contacted to check if the any of the
in-home kit (aggregate sensor, IAMs, aggregator, gateway) had been inad-
vertently moved or unplugged. A similar page was constructed which showed
all IAMs.

Initially code had been written in the Perl programming language, which
was subsequently replaced with Python code due to Python’s readability and
versatility.

3.2.4 Code Availability

The code used to collect and check data and monitor the collection process
is available at https:\github.com/David-Murray/REFIT. The code runs
using Python 3 on a Debian server. The time-based job scheduler CRON,
available on most Unix distributions, is used to run some segments of code
at particular time intervals. The following python scripts are available:

HouseUpdater.py : This python script was responsible for keeping the
information about the houses monitored up to date including the server
address which API should be made to; this was run hourly via CRON.

SensorUpdater.py : This python script kept the list of sensors within the
houses up to date; this would also record when the sensor was last checked
which helped to show any sensors that were no longer available.

ReadingsTaskMaster.py : A python script which generated child processes
for each house (see Readings.py); once each house’s script was running it
would check for new houses that had been added/changed or had come
back on-line and would restart their Readings.py script if required.
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Readings.py : A python script that would run continuously querying and
inserting sensor values into the database every 8 seconds. The reading time
was determined by the time at which the server received the response from
the API call. As IAMs were only able to broadcast their readings every 8
seconds they will not be synchronised with the reading of the aggregate.
This means that the time associated with a record may have IAM readings
up to 7 seconds old.

3.2.5 Known Issues

• CurrentCost IAMs: Occasionally, IAMs reported readings much greater
than the maximum load for standard household appliances, i.e., 4000
Watts (W), due to sensor malfunctioning. These readings were removed
from the raw data.

• CurrentCost IAMs: Reporting time synchronisation - although data
was recorded at set intervals for all devices, the time between when
IAMs reported a reading will not be in synchronisation to the current
second and therefore may show a mismatch to the aggregate e.g. the
aggregate reading was less than an individual appliances reading.

• Houses’ 3, 11 & 21 aggregate readings are affected by solar panel gen-
eration as re-wiring was not possible.

• In some cases the step change in values will differ between IAM and Ag-
gregate, as the CurrentCost system did not monitor other variables to
adjust for voltage or phase angle, this is caused by inductive and capac-
itive loads. The difference should be accounted for with the knowledge
of the monitoring errors from both Aggregate and IAM sensors.
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3.3 Data Records

The REFIT Electrical Load Measurements’ Dataset is available in the form
of CSV files. Each house has one associated CSV file containing all aggregate
and IAM measurements for the entire monitoring period.

The data has been cleaned by correcting the date/time due to British
Summer Time (BST), removing IAM spikes of greater than 4000 W, and
forward filling gaps of less than 2 minutes with previous values or, if the gap
is larger than 2 minutes, filling with zeros, and moving data streams where
appliances had been switched between plugs so there is a continuous record
of each appliance (see Algorithm 1).

Data: Time, Power

Result: Forward fill NaN values of time gaps less than <2 minutes
Start;
for n← 2 to length(Power) do

if time(n)-time(n-1) < 120 seconds then
power(n) = power(n− 1);

else
power(n) = 0;

end

end
Algorithm 1: Pseudocode for removing Not-a-Number (NaN) values in
data.

Datetime is in the format
Year(YYYY)-Month(MM)-Day(DD) hours(HH):minutes(mm):seconds(SS).
The CSV files have the following columns:

• DateTime [YYYY-MM-DD HH:mm:SS]

• UNIX Timestamp

• Aggregate [W]
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• IAMs 1-9 [W].

A ReadMe TXT file is also included to provide additional information
about the dataset. This includes a list of the appliances (including make &
model where known) attached to each IAM as they were set-up by the REFIT
team and subsequent changes that were discovered via visits to households,
by being informed that an appliance had been removed/replaced or by visual
inspection followed by querying the household. The format of the ReadMe
file is the following:

• Introduction to the dataset

• Licensing information

• Naming scheme

• File formats

• Appliance list per house including changes made during the monitoring
period and make and model where known.

The data availability for all REFIT houses can be seen in Figure 3.4.
The gaps indicate periods when the data was unavailable. The vertical right
edge of Figure 3.4 shows uptime per house, calculated by summing the time
between gaps that are greater than one hour, and normalising this by the
total monitoring duration for each house. The average uptime across all
houses was 88%, with House 2 having the lowest at 76% and House 18 the
highest at 94%.
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Fig. 3.4. REFIT Data Availability. Gaps in the line represents an area where
data was unavailable for more than a quarter of a day.

The raw dataset is available on University of Strathclyde’s PURE data
repository at Raw:
http://dx.doi.org/10.15129/31da3ece-f902-4e95-a093-e0a9536983c4 (Data
Citation 1). The cleaned dataset, where IAMs which had appliances swapped
between them, have been correctly stitched together to create a continuous data
stream, is also available at Cleaned:
http://dx.doi.org/10.15129/9ab14b0e-19ac-4279-938f-27f643078cec (Data
Citation 2). for those wishing to analyse cleaned, labelled electrical measurements
immediately.

3.4 Technical Validation

Over the course of the study there were 119,495,879 timestamped readings taken
from all houses combined, with each timestamp referring to 9 appliances and an
aggregate per house - leading to 1,194,958,790 readings in total. Of these, 6.4%
were Not a Number (NaN) values, which represent an unchanging reading or the
IAM failing to respond to requests. NaN values are still available in the Raw Data
version of the dataset. In the Cleaned Data version, a notes column has been added
per house to indicate when the sum of recorded IAM readings is larger than the
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aggregate for the corresponding sample. These are described in the ReadMe file
supplied with the dataset.

All the IAM streams have been visually checked to assess the validity of the
signatures which are recorded. In all cases the ReadMe file associated with the
dataset accurately reflects the known appliances which were plugged in. In some
cases additional signatures may appear as households have removed an appliance
for a very short period of time, e.g., replacing a toaster for an infrequently used
kitchen appliance.

The quality of some appliance readings is affected by the location or interference
from other devices. This is more notable on appliances further from the energy
aggregator as well as IAM plugs located behind devices such as washing machines
and other white goods. This was detected via visual inspection against the same
appliance during a similar regular usage. For example, washing machines during a
spin cycle are characterised by frequent changes in power; in some cases, the power
will remain static (originally NaN values which have been forward filled) for a long
period of time due to a connection loss that caused a lack of updates.

Note, however, that infrequently used devices will have many NaN values only
due to not being used for large periods of time, e.g., electric heaters which are
typically not used during summer but left plugged in.

All IAMs exhibited erroneous spikes, some more frequently than others. There
was however no correlation between appliance monitored and the number of errors
which occurred. It should be noted that these errors represent less than 0.004%
of total IAM readings and that across all houses there was an average of only 215
errors per IAM (over the entire 2-year monitoring period).

Previously we mentioned that IAMs did not report values synchronously, as
manifested by a lead with respect to the aggregate. Indeed, most IAMs should
lead the aggregate by 2 or 3 readings at most. As shown in Figure 3.5, typically,
this issue will not affect the analysis as appliance switching on and off events can
clearly be observed in the aggregate readings with a delay of up to 1-2 readings.
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Fig. 3.5. Power demand for House 10 during the evening of April 22nd 2015.
The gap between the stacked IAM plot and the aggregate represents the
power consumed by other appliances not monitored by IAMs.

Meter readings were taken from several houses during installation and at sub-
sequent visits by the REFIT project team. A comparison between the reading
taken from the utility meter and the measured power by our platform is shown
in Table 3.4. In some cases the monitored values may be higher than expected
due to spikes which occurred in the aggregate. Also, as readings were only taken
once every 8 seconds it is possible that the estimated consumption which is based
on a reading multiplied by time difference to the next reading was under or over
estimated. We found that the houses without solar interference (from solar panel
installs which caused issue with the aggregate sensor) had generally less than 12%
difference to the utility meter estimated consumption.
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House Dates Metered [kWh] Monitored [kWh]
8 29/09/2014 - 15/10/2014 226 240
8 15/10/2014 - 27/01/2015 1785 1810
8 27/01/2015 - 05/03/2015 657 695
10 15/10/2014 - 24/03/2015 2799 2676
13 04/10/2014 - 26/11/2014 640 583
17 13/11/2014 - 02/12/2014 178 192
18 15/10/2014 - 18/11/2014 333 323
18 18/11/2014 - 16/12/2014 316 345
19 02/12/2014 - 11/12/2014 79 73

Table 3.4
Recorded Meter Consumption. Metered represents the difference in readings between the
two dates which was recorded by the utility installed meter for the house. Monitored is
the value calculated using the recorded data from the REFIT study.

Table 3.5 shows the % of total household consumption captured by sub-metering.
It can be seen that up to 55% of consumed energy can be attributed to appliances
directly monitored via appliance plugs. We note that the fact that some large con-
sumers, such as the electric ovens and electric showers were not monitored, resulted
in a relatively low % of energy consumption captured by plugs in some houses.

House Number
1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17 18 19 20 21

% Captured by sub-metering 35 33 N/A 48 48 40 46 22 38 43 N/A 36 48 36 37 45 55 35 46 N/A

Table 3.5
The amount of power captured by the IAM plugs compared to the total consumption over
the monitoring period. N/A value in shown for houses with solar panels.

In studies aimed at conducting NILM or appliance modelling, it is important
to capture a large number of appliance uses. We have analysed the entire IAM
dataset to record the number of uses for different appliance types. To estimate the
number of uses per appliance, edge detection was used to help build up a pattern
of usage.

In Table 3.6 we show the number of use events captured for 15 types of ap-
pliances. Note that in some cases appliances may have been monitored but used
rarely. In the table, Number of Uses represents a start and end event recorded

44



for an appliance; in the case of fridges this is a cooling cycle, e.g., from the motor
starting till motor winds down to a stop. For some appliances, this number may
not represent the total number of uses recorded by the REFIT study as the edge
detection used was not accurate enough to classify uses in appliances where multi-
ple devices were monitored on the same IAM, which was sometimes the case with
ICT equipment (a computer, printer and monitor will be connected to the same
IAM using a power strip) and Television site (Television, DVD Player, TV set-up-
box were monitored together). Number of Appliances shows the total number of
appliances across all REFIT households. The Pond Pump and Vivarium stayed
on almost constantly, with a fixed load, throughout the study and are therefore
classified as continuous use.

Appliance Type # of Uses Consumption (kWh) # of Appliances
Fridge Freezers 121,752 20020 13
Fridge 53,163 1310 7
Freezers 133,967 5486 13
Washing Machines 6865 3994 21
Dishwashers 4250 6827 14
Tumble Dryers 2372 4210 10
Kettle 40,092 3298 16
Microwave 12,946 1208 16
Toaster 5364 257 9
ICT Equipment 4176 3104 13
Television Site 11274 5995 21
Electric Heater 503 1023 4
Bread Maker 206 56 1
Pond Pump Continuous 282 1
Vivarium Continuous 208 1

Table 3.6
The amount of data collected per appliance type across all the REFIT households.

3.5 Summary

This chapter describes the creation and management of the REFIT dataset. It con-
tained a combination of features previously not made available in public datasets.
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The use of IAM’s made it ideal for NILM applications, as well as appliance mod-
elling. The time period covered allowed for seasonal trends to be calculated and
implementation of new regimes effects to be monitored. At the time of publication
the REFIT dataset was considered the largest and best resolution datasets pub-
licly available. It provided data for a large number of follow up papers in a number
of different fields. The data from the REFIT dataset is used heavily within the
following chapters and provides an invaluable base for this thesis.
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Chapter 4

Visualisation & Understanding
Patterns of Use

4.1 Introduction

Appliance modelling is a key activity enabled by NILM datasets. Appliance usage
as defined in energy labels is static and based on general assumptions around
usage, for example a washing machine would be used 3 times a week, and used
on a setting that consumes a certain amount of kWh. This gives a reasonable
guide when comparing two similar appliances against each other, but does not
take into account personal usage. Personal usage may change the experience of
the appliance and making use of specific features may either increase of decrease
consumption massively. Therefore understanding appliance usage is an important
part of appliance modelling, and helps understand how the user interacts. The
content of this chapter is taken from the paper on ‘Understanding usage patterns
of electric kettle and energy saving potential’ [104].

Many empirical studies on consumer attitudes and interactions with energy
consuming appliances have been reported [12, 119, 133]. Interestingly, despite the
fact that the humble but ubiquitous and widely used kettle has a non-negligible
influence on electricity demand [68], modelling and forecasting methods to under-
stand and predict demand, as well as calculating energy-wasteful usage, have not

47



been analysed in detail so far for this appliance. Earlier studies on kettle efficiency
are led by energy charities or government where the emphasis is on assessing over-
boil, minimum water volumes, and daily/monthly/annual costs based on average
estimates [140].

The kettle is one of the most (inefficiently) used appliances in the UK as well as
the appliance with the highest rates of ownership (according to UK’s Department
for Environment, Food and Rural Affairs’ 2006 report [121] 97% of UK households
own a kettle). Indeed, more than nine in ten people (95%) use the kettle every
day, with 40% doing this five times a day or more. In a survey of 86,000 homes
in the UK, by the Energy Saving Trust [140], it was found that three-quarters
of British households admit to overfilling their kettle when boiling water and are
subsequently wasting GBP68 million each year.

Though a relatively low consumer when compared to an electric heater or wash-
ing machine, the kettle can significantly influence electricity generation and power
distribution network, mainly due to the so-called TV pick-up effect, that man-
ifests itself through significant and synchronised usage of appliances during TV
programme breaks. This is especially a problem in the UK where individual pro-
grammes often attract a massive audience, and householders use commercial breaks
for boiling water, using microwaves, opening the refrigerator door, etc. Hence, un-
derstanding domestic routines related to kettle usage are important for demand
response measures.

Kettles are not currently subject to any efficiency labelling guidelines; this
means that the consumer may not understand that a lower power rated kettle
will take much longer to boil than a high rated one, but would consume the same
amount of energy. The time to boil might help encourage energy efficient behaviour
as the occupant is aware that the kettle will take much longer to boil if it is
overfilled. Eco kettles have also become available, featuring insulated housing which
can help reduce consumption by maintaining a higher water temperature between
usage (The UK brand Vektra is currently the most well known insulated kettle).
However, 86% of people do not choose kettles based on their features, but on looks
to match a kitchen design/already owned products [100].

To the best of our knowledge, there has been no in-depth study which accu-
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rately measures, in a longitudinal study, kettle consumption and analyses patterns
of consumption, personalised costs based on household composition and overboil-
ing. This may be due to the challenge of measuring fill water volumes (since it is
impractical to measure and record water volume for every kettle use), as well as
individual electricity consumption in order to carry out an in-depth analysis.

This overcomes the above problem by measuring the individual kettle con-
sumption (kWh) and estimating the water volume from this measurement using
mathematical modelling. In particular, using measurements with different kettle
types, a mathematical model is built that relates the water volume of a kettle, its
consumed power and water temperature. We verify the proposed models using four
kettles: two standard and two smart kettles (where temperature and keep warm
modes are available).

In order to demonstrate how we can effectively use load data, which could be
obtained via disaggregation from smart meters or individual appliance monitors
(widely available on the market) or from smart appliances themselves, we launched
a field trial comprising 14 UK houses, monitored over a period of two years as part
of the REFIT study. The timestamped kettle power consumption was collected
via a plug monitor that measures active power every 6-8 sec [106]. The monitored
houses are of different occupancy and age groups (e.g., retirees, working couples,
families with children and single occupants), some energy conscious and others not.

Equipped with the collected power consumption information and time of use
information, together with the kettle model, we revealed households behaviour
in terms of water overboiling and energy wasting. Additionally, time-use analysis
enabled us to capture established routines and usage synchronicity across the mon-
itored households as well as seasonal effects. Finally, having observed that kettle
usage patterns follow fairly distinct routines, we study demand predictability (by
adapting recognised prediction tools, namely Support Vector Machine (SVM) [24]
and Adaptive Neuro Fuzzy Inference System (ANFIS) [69]), and show that kettle
energy consumption can accurately be predicted on a daily and weekly basis.

In summary, the key contributions of this chapter are:

• Generic mathematical model that relates water volume, consumed power,
and water temperature, obtained heuristically using three different kettle
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types, that improves previously proposed models.

• Understanding kettle use through the lens of household composition, time of
use, seasonal effects and overboiling.

• In depth analysis of kettle usage patterns in terms of established routines
and synchronicity.

• Identifying households‚ routines w.r.t kettle usage, we propose a kettle en-
ergy demand prediction model that accurately predicts future kettle energy
consumption.

4.2 Usage Analysis

Presented is the observations from monitoring kettle usage over a period of two
years in 14 UK households as part of the REFIT project (Chapter 3). The houses
in the study were selected to achieve a good cross section of middle-high income
British households, from the Loughborough area. Each of the 20 houses monitored
had up to 9 appliances, aggregate, gas and environmental data monitored. We
chose a subset of 14 households, since their kettles were directly monitored by
IAMs, recording consumption data in Watts (W) at a 6-8 second intervals. See [106]
for more details about energy monitoring platform. Each house has been given a
unique ID by which it will be referred to throughout e.g. (House 1, House 2,
...). This data is available publicly at DOI [10.15129/31da3ece-f902-4e95-a093-
e0a9536983c4].

Based on the collected energy consumption data, we look at both time of use
information and energy consumption data trying to identify distinct usage patterns,
household routines and possibly synchronicity between households.

4.2.1 Time of Use

Fig. 4.1 shows kettle usage, presented as rose charts, aggregated from 14 monitored
houses, for four different months across the years 2014-2015. In each plot, the
bins represent the number of times kettles were used in the houses during the
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specified one-hour period. Across the year the difference in usage can be seen:
Autumn/Winter months have a higher usage, as expected, due to colder weather.
Peaks at 7am and 5pm are prominent in most months, signalling the pre-departure
and post-arrival usage around the average UK workday. December (Fig. 4.1b) has
less prominent peaks, which could be due to a number of factors, time-off work
(i.e., holiday season), guests and additional cooking activities.
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Fig. 4.1. Total number of uses per hour per month in all 14 monitored houses.

We aim to show that, within a house, patterns of kettle use are maintained
throughout the year, embedded as the household’s steady routines, where only
the number of kettle uses differ − less in summer months and more in winter.
Looking at data across the households, there are two main usage patterns that
can be observed: working and retiree households. While both types of household
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occupants will likely have morning and evening peaks in usage, the difference can
be observed during normal work hours.
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Fig. 4.2. Total number of kettle uses per hour in House 20 over a continuous
period of 11 months.

Fig. 4.2 shows results for one particular house (House 20) for the 11-month
period July 2014 - June 2015 broken down as workday and weekend. Weekday
usage has four well defined peaks: 7am, 1pm, 5pm and 9pm. This follows the
schedule of common office hours in the UK and can help determine occupancy
levels within the house; in this case, the peak at 1pm can be attributed to the
young adult living at home returning from university for lunch. The weekend has
3 significant peaks: at 7am, 8am and 9pm. This new morning pattern shows that
the three occupants have a different routine over the weekend. The night time
use at 9pm suggests there is a clearly defined sleeping pattern as uses after 9pm
are almost non-existent. This latter observation is useful for social scientists to
understand activities in the home.
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House 9
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Fig. 4.3. Total number of kettle uses per hour in Houses 9 (Dec13-Jun15)
and 11, (Jun14-Jun15).

Fig. 4.3 shows temporal usage patterns for Houses 9 and 11. House 9 has a
more regular pattern in relation to today‚s general working lifestyle - a large peak
at 6/7am signifies the waking time of at least one occupant and a secondary peak
at 4/5pm signifies their return home after work. This is expected as the occupants
of House 9 are a couple with no children; hence, usage throughout the day is at a
minimum and can be accounted for by weekend and holiday periods.

House 11 has the usage pattern of a “night owl” (Fig. 4.3b). Indeed, usage
is unusually low during the most expected hours of usage (7-9am); instead, the
usage usually starts at midday and continues over the afternoon till late night with
a final spike at midnight dropping of as 2am passes. The low usage throughout
the day, suggests that the occupants are at home and do not have any ingrained
daily schedule or work commitments. This more unusual pattern can therefore
be attributed to there being a single retired occupant in the property who has a
nocturnal sleeping pattern. This is confirmed by discussions with the householder.
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Fig. 4.4. Seasonal kettle usage for all 14 houses. The result for each house
is represented with a unique colour. Variations within a house and across all
houses is evident. As expected, kettle usage increases during winter months.

The effect of seasons on kettle usage can be visualised in Fig. 4.4. During
the study period the expected trend of increased usage as winter approaches has
proved correct with an upward trend from July to December. The slight decrease
in August is attributed to a number of households going on holiday.

4.2.2 Electricity Consumption

A major factor in consumption is the occupancy of the household. Table 4.1
shows the kettle consumption for each house over the month of December 2014.
It can be seen that consumption as well as kWh per use, varies significantly even
in households with a similar occupation. It can be seen that kWh per use also
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varies. Noticeably, some houses have a much higher kWh per use than others. For
example, Houses 9 and 12 are close to 0.1 kWh per use (a relatively high value)
requiring a deeper investigation into their usage habits, to identify why they fill
the kettle significantly more than other households.

Table 4.1
The number of occupants, total electrical consumption, and kettle electrical consumption
for all 14 monitored houses.

House Occupancy kWh Total kWh Kettle Total Monthly Cost [GBP] kWh per Single Kettle Use % of aggregate use

3 2 621.45 14.83 1.96 0.062 2%
2 4(2) 471.17 18.28 2.41 0.072 4%
4 2R 270.59 6.87 0.90 0.068 3%
5 4(2) 676.58 19.41 2.56 0.073 3%
6 2 324.74 15.04 1.98 0.060 5%
7 4(2) 514.88 8.69 1.14 0.075 2%
8 2R 571.73 16.09 2.12 0.067 3%
9 2 537.10 23.24 3.07 0.098 4%
11 1 152.51 12.02 1.58 0.072 8%
12 3 305.78 19.07 2.52 0.097 6%
13 4(2) 317.26 6.09 0.80 0.088 2%
17 3(1) 324.57 21.01 2.77 0.062 6%
19 4(2) 216.38 9.00 1.19 0.057 4%
20 3 291.55 11.65 1.54 0.067 4%

4(2) means there are 4 occupants including 2 minors. R refers to retired occupants. The consumption results are given for
December 2014. Total monthly cost assumes 0.13GBP per 1kWh1.

1Standard tariff for Loughborough area https://www.scottishpower.co.uk/tariff
-information.process?execution=e1s3
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Fig. 4.5. Household consumption plotted against the number of kettle uses
together with the fitted line. The bottom figure shows the difference to the
best fit line.

Fig. 4.5 shows the energy consumption of each household plotted against the
number of times the kettle was switched on i.e., the number of uses. It can be seen
that a clear linear trend is apparent, where 10 houses fall below this fitted line and 3
are above it. The houses that fall below the line of the best fit are prime candidates
to help understand efficient kettle usage, to help save both water and power. On
the other hand, Houses 9 and 12 far exceed the mean consumption for their number
of uses and investigating these houses may help show where improvements can be
made. With respect to the Energy Saving Trust’s findings [140] we could expect 3-4
houses of the 14 not to overfill the kettle; it can be seen that, House6 and House19
studied appear to have kettle usage habits which do not excessively overfill.

4.2.3 Standard vs. Eco Kettle

Household 3 changed its kettle during the study (Winter 2013 - Spring 2015) in-
troducing a vacuum(eco) kettle as an energy saving measure. The vacuum kettle
keeps water hot for longer, thus potentially reducing the number of uses. We can
therefore look at their usage before and after the change to show the advantage/dis-
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advantage of this new kettle.
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Fig. 4.6. Standard and eco kettle usage in House 3 over the month of De-
cember 2013 and 2014, respectively.

The consumption pattern between the standard and vacuum kettle can be seen
in Fig. 4.6. The standard kettle usage was much higher at 7am compared to the
vacuum kettle. This can be attributed to the fact the vacuum kettle will be used
once with a large amount of water and retain that heat throughout the hour. This
pattern can also be seen at 3pm in 2013 when there were uses in the following
two hours. In 2014, the following two hours have significantly less usage; the
hour immediately after has a much smaller, and the following hour slightly more,
possibly attributed to reheats where the water is not considered hot enough for the
drink being prepared.

Table 4.2
Kettle usage in House 3 in December 2013 (using standard kettle) and December 2014
(using eco kettle).

Year Uses Consumption (Kilo Joules) kWh Cost (13.52p/kWh)

2013–December [standard] 241 63,253 17.57 2.38
2014–December [eco] 199 45,075 12.52 1.69

From Table 4.2, it can be seen that the eco-kettle has a significantly fewer
number of uses and therefore the associated cost has been reduced by close to
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GBP0.70 in the comparative months of December. Over the period of a year this
could mean a possibility for saving around GBP8.00. This represents close to a 50%
saving based on the figure found on CarbonFootprint.com. This helps demonstrate
that a desire to become more eco-friendly is possible by making little changes to
appliances. The initial cost of the eco kettle, however, is around GBP80, therefore
there is a significant period of time before the kettle will be cost effective.
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Fig. 4.7. Consumption due to kettle in House 3. Note, no data was available
in Feb’13.

The vacuum kettle was introduced in April 2014 and was removed in January
2015. From Fig. 4.7, it can be seen that after its introduction, consumption reduces.
However, this can also be attributed to the seasonal flux in usage as the weather is
hotter. August 2014 onwards shows an almost stable trend in usage with a peak in
December’14. In late January’15 the kettle is replaced with the previous (standard)
kettle that was in use. It can be seen that February-March’15 have higher peaks;
however, this then returns to lower than previous levels in April-May’15.

4.2.4 Feedback

The residents of House 3 were given a breakdown of usage, along with textual expla-
nation of the findings. A survey was completed prior to delivery of the consumption
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breakdown to assess the residents thoughts. The survey revealed a number of traits
about the household. The residents were committed to being eco-friendly and were
positive about buying other products aimed at consumption reduction. They be-
lieved that they had changed their habits significantly as they actively incorporate
the vacuum kettle into their routine.

As shown above, this can be seen in the comparisons made, in both usage and
water consumption which led to a more economical usage style. They also made a
note of the fact that they try to avoid re-heating water and this is backed by the
fact that only 7% of their kettle usage is within a 5-minute window of a previous
usage. Shortly after the time period included in this work, the household stopped
using this vacuum kettle due to a fault which once fixed never made it back into
daily usage. Interestingly, this was not due to any effects on performance, but due
to the noise the kettle made, which was annoying to the occupants. The feedback,
however, was well received and the residents believed that this would be of benefit,
and expressed that a monthly breakdown of appliance usage would be beneficial
toward supporting their efforts towards being eco-friendly.

4.3 Energy waste prediction via modelling

In this section we describe the proposed mathematical modelling method used to
predict water volume based on measured consumed power and use it to estimate
energy waste due to overfilling and re-boiling the kettle.

4.3.1 Mathematical Modelling

The objectives of mathematical modelling are: (i) to determine whether there exists
one generic model or equation that can estimate the water volume of a standard
or smart kettle using consumed power data only with high accuracy, (ii) assess its
relative accuracy compared to the ‘specific heat’ model described in [111], where the
kettle is treated as a classic heating problem, and (iii) determine whether separate
models for standard and smart kettles yield higher relative estimation accuracy.

In [111], volume, temperature and consumed power are related as:
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W =
α

β ∗∆T
(4.1)

where W denotes water volume (in millilitres), α is consumed power in kiloJoules
(kJ), β is the specific heat capacity of water (4.19 kJ/kg.◦C) and ∆T the change
in temperature (degrees Celsius).

We perform experiments using four non-faulty kettles, namely 2 standard ket-
tles and 2 smart kettles, measuring the following parameters: consumed power
in kWh, water volume, starting water temperature, finishing water temperature
(< 100 ◦C). A standard kettle is defined as a kettle that boils water to 100 ◦C with
no additional ‘boil’ temperatures and no ‘keep warm’ or additional functionalities.
A smart kettle would included additional heating temperatures 70 - 100 ◦C and/or
a keep warm functionality.

280 experiments were carried out, 140 with standard kettles and 140 with smart
kettles. 5/7 of the data was used for training the model and the remaining 2/7 used
for validation of the model. As a result, three kettle models were developed using
surface fitting with the data obtained from the experiments, namely: (1) generic
kettle model, combing smart kettle and standard kettle together, (2) standard
kettle model, built with standard kettle data only, (3) smart kettle model, built
with smart kettle experimental data only.

Due to the simplicity of a kettle driven by a heating element, and the fact that
the boil time is nearly linear with respect to the volume of water, we assume initially
that a linear function would be suitable to model the relationship between water
volume and consumed power, taking starting temperature into account. Fig. 4.8
shows that this assumption generally holds true, for both the standard and smart
kettles, as well as for the model combining both standard and smart kettles.
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Fig. 4.8. Consumption comparison of the three kettle models using linear
interpolation method.

Fig. 4.8 presents the results of linear modelling for all three kettle models,
showing the relationship between water volume in millilitres (mL), consumed power
in kWh and ∆T in degrees Celsius. From the relative curvature of the plane, one
can see that the three models are not identical. We therefore assess best fit using
the following classic linear methods: polynomial linear, locally weighted linear
regression, and the linear interpolation methods. The accuracy of the models is
assessed by the root-mean square error (RMSE) between the actual water volume
and the estimated water volume, across 80 experiments for the generic kettle model
and across 40 experiments for the standard and smart kettles, respectively. The
results are shown in Table 4.3.

Table 4.3
RMSE in millilitre for the three kettle models and using Eq. (4.1).

Linear Interpolation Polynomial Locally Weighted Eq.(4.1)

Generic 120.79 94.79 147.67 173.24
Standard 217.32 53.69 153.85 136.75
Smart 74.40 72.64 133.78 203.28
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Fig. 4.9. Consumption comparison of the three kettle models using the poly-
nomial linear interpolation method. The true measurements are shown as
blue dots.

Note from the table that the RMSE of Eq.4.1 [111] is consistently higher than
all other linear models evaluated. The polynomial linear interpolation method
provides the lowest RMSE. As expected, the general kettle model performs worse.
Thus, the generic model should be used only if estimating the water volume of a
kettle, whose type is unknown.

The polynomial linear interpolation method works best for all three proposed
models. It is defined as:

W (L) = p0 − p1∆T + (p2 ∗ P ), (4.2)

where the value of the coefficients p0, p1 and p2 are shown in Table 4.4, P is
consumed power in kWh, W is water volume in litres and ∆T is the change in
temperature. Fig. 4.9 shows the obtained results: the surface model good fit with
the true measurements.
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Table 4.4
Kettle models coefficients for the polynomial linear interpolation given by (4.2).

Generic Standard Smart

p0 1025 1244 905
p1 15.95 22.09 14.01
p2 12.34 14.54 11.82

4.3.2 Energy wasted due to overfilling and reboiling

Equipped with the previous model, we can estimate the amount of wasted energy
due to overboiling and re-boiling the kettle using only the collected power mea-
surements. All houses in the study had standard kettles at the time readings were
taken, apart from House 3, as discussed in Section 4.2.3.
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Fig. 4.10. Probability density function of kettle consumption and water vol-
ume per use for 5 houses. The negative volume scale represents re-boils.

Fig. 4.10 shows statistical distribution of energy consumption and water volume
estimated in the kettle per use for 5 houses. Obviously, different households have
different preferred levels of water per boil, and consequently, consume differently
per single kettle use. It can be seen from Fig. 4.10a that each house has its own
distinct fill patterns. Indeed, Houses 6 and 19 have a similar water-filling pattern: a
very narrow boil range between 0.05-0.075 kWh; House 19 has a higher percentage
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of re-boils (hence, the second 0.025 kWh peak). The other end of the spectrum is
House 12, peaking at more than 0.1 kWh with a wide bell curve on each side. This
suggests that this house is the least efficient house in the survey group. House 9 has
two peaks of relative magnitude, 0.05-0.075kWh and 0.125 kWh, respectively. This
wide range of consumption per usage suggests that the kettle is filled with little
thought as to the purpose. House 5 is between the two extrema − no significant
peak, but the probability after 0.1kWh falls of at an equivalent rate to Houses 6
and 19 suggesting a slightly more economical usage with comparison to Houses 9
and 12.

It can be seen from Fig. 4.10b that House 6, which has been shown to be an
economical kettle user, has a much lower number of uses where the water level
has been above 1 Litre and the usage peaks at just under 0.5 Litres. Similarly,
House 9 has been shown to be one of the less economical users (Table 4.1). Two
distinct peaks are visible, one at -500 and 1250 with a slow tail off. The negative
volume scale represents re-boils, i.e., when the occupant uses the kettle before the
water has cooled to room temperature. House 19 which has the highest reboil peak
has 37% of all recorded uses estimated as re-boils consuming 15.14kWh. House 12
which has a much larger number of uses has the lowest peak where 22% of uses are
re-boils accounting for 10.77kWh of consumption.

From Fig. 4.10, we can estimate how much energy could be saved assuming
that the household cuts down on overfilling their kettle, as well as re-boils and
assume a minimum of 500mL (many kettles minimum fill) and a range of 250-
300mL per additional occupant for each household. As an example, for House 9
which has 2 occupants, working from the assumption that a usage is minimum
500mL, for two people ideal water volume will be around 550mL. Over the entire
study period, House 9 had a recorded 3220 uses of which 1978 were above 1000mL.
This accounts for a consumption of 271.31kWh of a total 312.36kWh. Based on
their kettle performance, the average kWh cost for 525-575mL is 0.08kWh. If all
of the uses above 550mL were reduced to 550mL a saving of 110.57kWh could
have been made over the 18 months monitored for House 9, or 73.71kWh per
year. Similarly House 12 which has 3 occupants should be around 825mL. House
12 has 1874 recorded usages with 790 of those usages being greater than 825mL.
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This accounts for 105.54kWh of a total 163.92kWh recorded over the study period.
Reducing these overboils to the maximum 825mL could result in a saving of around,
26.23kWh or 20.98kWh per year.

Table 4.5
Energy savings in GBP that could be made by the reduction of filling levels. Consumption
is given in kWh. Second column represent the number of months the house was moni-
tored. Volume refers to the optimal volume estimated based on the number of occupants.
Consumption above the volume is the energy consumption due to filling the kettle over
the optimal volume level. Savings denotes the total savings in GBP assuming 0.13GBP
per 1kWh, if kettle would have always been filled upto the optimal volume level.

House Months Recorded Kettle Consumption (kWh) Volume(mL) Consumption Above Volume (kWh) Savings per Year (kWh) Savings per Year (GBP)

2 20 255.32 825 126.76 15.32 1.99
3 20 251.16 550 171.06 28.85 3.75
4 20 135.86 550 45.02 6.29 0.82
5 21 314.66 825 148.85 17.32 2.25
6 19 273.60 550 122.75 16.67 2.17
7 20 109.84 825 42.21 5.17 0.67
8 18 245.68 550 171.83 23.41 3.04
9 18 312.36 550 271.31 73.71 9.58
11 12 182.02 500 83.78 29.99 3.90
12 15 163.92 825 105.54 20.98 2.73
13 16 103.24 825 62.32 7.37 0.96
17 15 183.63 550 98.98 16.99 2.21
19 15 108.27 825 26.64 3.56 0.46
20 15 136.11 825 19.66 1.64 0.21

Table 4.5 shows each household’s total electricity consumption for the kettle
across the entire survey period, the volume that would be expected for the number
of occupants (assuming that occupants under 18 consume half the fill volume of
an adult) and the potential savings. It can be seen that most households’ con-
sumption above this level accounts for, in many cases, more than half of the total
consumption. Savings per year are calculated using a mean consumption value
for the volume range that has been estimated for each household, and then all
occurrences above the volume limit have been set to this calculated kWh average.
The resulting value is the difference between the consumption above volume limit
and the consumption that could be achieved if filling to this limit; this value is
then calculated into yearly savings based on the number of months the house was
monitored.
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4.4 Demand Prediction

As shown in Section 4.2, kettle usage patterns are part of established domestic
daily routines (e.g., a high likeliness of usage early in the morning), and hence it
is natural to assume that they can be accurately analytically predicted. Presented
in this section are the findings on kettle use and energy demand predictability
additionally predicting kettle demand, has not been studied before.

The ability to predict individual appliance demand could potentially help im-
prove overall household’s demand prediction. Moreover, appliance demand predic-
tion is useful in time-use studies to understand routines and practices in the home.
To predict usage patterns we look at two different methods, namely Support Vec-
tor Machines (SVM) and adaptive network-based fuzzy inference system (ANFIS)
established previously for predicting power demand. As one of the most powerful
binary classifiers, SVM is suited to predicting kettle uses (kettle is used vs. kettle
is not used). On the other hand, ANFIS is more suited to predicting load demand
due to kettle.

4.4.1 SVM-based prediction

SVM has been used for load prediction in numerous papers [36, 71, 88]. SVMs are
simple supervised learning mechanisms used as a way of classifying information
that can easily be adapted for use as a time series predictor.

We develop an SVM-based predictor for predicting if kettle will be used within
a given hour in the future. Let X =

{
x(t− n), · · · , x(t)

}
, be a vector of binary

variables indicating kettle usage within n consecutive hours in the past, where
x(t− i) takes value 1 is the kettle was used i hours ago, or 0 otherwise. Then, the
task is to predict the value of x(t+1), that is, if the kettle will be used in the next
hour. To do that, we input to the SVM training module, the vector

input =
{
x(t− 26), · · · x(t− 22), x(t− 2), · · · , x(t) , weekDay

}
.

target =
{
x(t+ 1)

}
.
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Note that, we use the three previous hours from the current time t (where
t contains the previous hours consumption) for prediction as well as five hours
during the previous day. Binary variable weekDay is set to 1 if it is a weekday and
0 otherwise, so that only weekdays are used for predicting usage over a weekday
and vice versa.

We took two approaches to SVM classification, running a binary classifier for
each hour and one across all hours. Table 4.6 shows the predictions for the period
2015-01-Jan to 2015-01-Jul trained with the data from 2014-12-Dec to 2014-31-
Dec using data from all hours in one classifier which uses the Iterative Single Data
Algorithm (ISDA) solver [75] (MATLAB implementation). The number of hours
where the kettle is not used will always far exceed those where it is, therefore, there
are very few positive predictions using this method.

Table 4.6
SVM performance using a single SVM classifier. TP (True Positive), FP (False Positive),
TN (True Negative), FN (False Negative), Correct = TP+TN.

House Correct TP FP TN FN Correct (%)

2 117 1 2 116 26 80
3 108 0 0 108 37 74
4 129 0 0 129 16 88
5 118 2 2 116 25 81
6 104 4 7 100 34 71
7 134 0 0 134 11 92
8 117 9 13 108 15 80
9 111 0 3 111 31 76
11 94 14 18 80 33 64
12 110 1 10 109 25 75
13 145 0 0 145 0 100
17 110 0 0 110 35 75
19 121 0 0 121 24 83
20 117 6 3 111 25 80

Secondly, we look at the effectiveness of training 24 SVM’s, one for each hour of
the day. Table 4.7 shows the results of ISDA solver using the radial basis function
(RBF) kernel which produces the best results.
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Table 4.7
SVM performance using a hourly SVM classifiers.

House Correct TP FP TN FN Correct (%)

2 105 16 29 89 11 72
3 104 9 13 95 28 71
4 132 6 3 126 10 91
5 91 10 37 81 17 62
6 113 16 10 97 22 77
7 127 1 8 126 10 87
8 105 5 21 100 19 72
9 108 14 20 94 17 74
11 98 0 0 98 47 67
12 109 8 18 101 18 75
13 145 0 0 145 0 100
17 112 10 8 102 25 77
19 119 0 2 119 24 82
20 114 12 12 102 19 78

It can be seen that SVM prediction heavily favours “Not Used" predictions over
“Used" due to the much higher number of occurrences of zeros, this is common with
many appliances in NILM, where for the vast majority of time they will be in an
off or in a standby state. However, in hours of peak usage, e.g., mornings between
6am-9am “Used" will almost always be predicted. Balancing data can also be
problematic, either reducing the amount of data available considerably or making
models more prone to predicting one appliance as another resulting in many more
false positives.

4.4.2 ANFIS-based prediction

The adaptive network-based fuzzy inference system (ANFIS) is a type of artificial
neural network that is based on the Takagi-Sugeno fuzzy inference system [69],
suitable for time-series prediction. Previous papers have focused at load prediction
such as [62] which looks at hourly prediction of large scale power system load. Ying
[147] looks at a number of prediction algorithms including ANFIS for regional load
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prediction on a yearly basis for regional load in Taiwan concluding that ANFIS
is the most effective of the models trialled. In Ozturk [115], ANFIS is applied to
predict residential customer load profiles for a number of appliances use two models
per appliance one for time of use and another for operating duration.

ANFIS-Hourly Prediction

Using ANFIS, we investigate kettle consumption prediction on a daily and hourly
basis. Similarly to the SVM case, we define Y =

[
y(1), · · · , y(t)

]
, as a vector of

random variables indicating energy consumption due to kettle usage within consec-
utive hours. Then, to predict the value of y(t+1) we built an ANFIS model taking
as input

[
y(t− 25), y(t− 24), y(t− 23), y(t− 1), y(t)

]
, which was heuristi-

cally found to lead to the highest prediction accuracy.
One can see that the ANFIS model is built using the previous hour and the

same time the previous day since these usage patterns influence the following hour
the most. Built-in MATLAB Fuzzy C-means clustering [14] was used to generate
a fuzzy interference system, which provided better results than grid partitioning.
Clustering was done with the Sugeno-Type Fuzzy Inference method [135].
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Fig. 4.11. ANFIS-based prediction for House 20. Error is ε = y− ŷ, e.g. over
prediction is negative

Fig. 4.11 shows the obtained results for House 20. In some cases, there is a
large error close to 0.2kWh predicted in a single hour. Negative predictions are set
to zero as they effectively predict no usage. Fig. 4.12 shows the number of uses
against the RMSE for each hour. It can be seen that 7am has a significantly lower
RMSE due to a high number of predictable uses in the morning; additionally, 8am
is likely being affected by the the previous hour as additional usage is based on a
number of factors such as an occupant being late to rise, time of year or wanting
another drink. Other examples are that 1pm has a high number of uses, however
it also has a relatively high RMSE due to occasional uses at lunch time.
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Fig. 4.12. Uses during hour (Blue) and average prediction RMSE per hour
(Red) over the month of January

ANFIS-daily Prediction

Next, we investigate the accuracy of a daily prediction model. This model uses an
input vector of:

[
isweekend(t), y(t− 7), y(t− 6), y(t− 2), y(t− 1), y(t)

]
to predict

y(t+1), where y(t− i) denotes kettle consumption i days ago. Note that to predict
kettle consumption in kWh for the next day, we use the consumption of the current
day, one, two, six and seven days ago to capture established weekly routines. The
results for House 20 can be seen in Fig. 4.13.
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Fig. 4.13. Daily consumption comparison for House 20 over January 2015.

Table 4.8
RMSE of different training months

XXXXXXXXXXXXTested
Trained Jan Feb Mar Apr May

Jan 0.13 0.07 0.12 0.15
Feb 0.00 0.06 0.06 0.00
Mar 0.05 0.02 0.01 0.14
Apr 0.13 0.01 0.13 0.13
May 0.04 0.10 0.04 0.06

Table 4.8 shows the results for the same house over 5 months. It can be seen
from the table that some months better represent a households general pattern with
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comparison to others although this can be greatly affected by external factors, e.g.
holidays. The results show that even within a single house multiple models may be
required to account for variations in occupant behaviour based on larger changes
such as the seasons.

Table 4.9 shows RMSE for the hourly and daily models for the 14 houses in the
study, obtained using the ANFIS method. Prediction accuracy varies per house-
hold. Some households have very low error rates around work periods; however,
higher errors tend to occur during unexpected hours, e.g., 4pm just before the
expected return from work.

Table 4.9
Prediction RMSE for kettle energy consumption obtained using the proposed ANFIS-based
prediction.

House Hourly (kWh) Daily (kWh)

2 0.054 0.0294
3 0.042 0.0114
4 0.025 0.0025
5 0.050 0.0558
6 0.050 0.1537
7 0.029 0.1158
8 0.043 0.0180
9 0.058 0.0783
11 0.055 0.1982
12 0.020 0.0662
13 0.040 0.0450
17 0.069 0.3681
19 0.043 0.1709
20 0.032 0.0230

4.5 Summary

This chapter presents a number of approaches to understanding, modelling and
forecasting kettle usage in households purely from individual kettle load data. Time
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of use analysis shows well defined patterns of use with respect to weekdays during
standard “office hours", pattern variation depending on type of occupancy and
general daily schedule, and seasonal variation.

Our analysis shows that kettle usage patterns are semi-regular with clear peak
times (morning, evening around dinner) and sporadic usage otherwise during the
day. Usage patterns are correlated to working patterns, family size, and age group:
working couples will likely have no or only few uses between the hours of 9am and
5pm, while retired couples would have more sporadic usage of kettle. This pattern
motivated us to use prediction tools, such as SVM and ANFIS, to forecast kettle
demand hourly and weekly with accurate results.

Additionally, we show quantitatively, in-line with previous studies, that a signif-
icant percentage of households do overfill their kettle. Our study aimed to improve
on previous which had consisted of self reported questionnaires, due to the tech-
nical challenges of in depth measurement. However, a bigger factor is reheating
water soon after it has boiled. In these cases households that appear not to overfill,
based on the number of occupants, waste energy on reheating or reboiling.

The habit of reheating is prevalent across many of the households, which can be
addressed by informing them that their habit of refilling/reheating is detrimental
to being economical. This process of reheating could also be contributed to a lack
of communication or forgetfulness: if a person is unaware the kettle has been boiled
recently or has left it for a period of time there is a tendency to reheat. Analysis of
the kettle usage data suggests that most people perform a reheat soon after it has
boiled, in some cases less than 5 minutes after boiling. Options to improve on this
could be as simple as audio queue’s from the kettle similar to a microwave, or more
in depth such as disallowing reboiling above a certain temperature threshold.
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Chapter 5

Appliance Modelling

5.1 Introduction

As a follow up to the previous chapter (and the reception of the associated pa-
per [104], cited over 50 times), modelling of additional new appliances using new
real world data was seen as advantageous. Nestec S.A. (commercially known as
Nestlé) reached out to us to help update their appliance models making use of the
data collection and procedures we had created prior. Large companies are required
to complete a LCA for any new product they want to bring to market. The LCA
is the complete product story, taking into account the gathering of raw materials,
their transport, product manufacture, product usage and finally disposal. Compa-
nies rely on models to estimate the consumption of every part of the process, the
models can range from highly complex (See Eq. 5.1) to very simplistic e.g. trucks
consume x tonnes of carbon per y distance. Therefore developing models which
are accurate but simple to implement provide great value, these up to date real
world models allow companies to improve their current assessments and enable
regulators to better understand real world usage and consumption when creating
energy labelling schemes or devising testing procedures [68]. The content of this
chapter is taken from the paper on ‘Appliance electrical consumption modelling at
scale using smart meter data’ [110].
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5.2 Methodology

The aim is to provide models which can be easily applied to numerous existing
smart meter energy datasets (see [107] for partial list) or used in large longitudinal
consumer and energy studies, where information may be lacking with regards to
specialised knowledge such as cooking settings, food temperature, appliance makes
and models. The research hypothesis is that by using only smart meter energy
data we can build accurate energy consumption models of major cooking appli-
ances. To prove this hypothesis we first conducted a small field study to collect
data for building mathematical energy consumption models, and then, validate the
developed models using state-of-the-art models that use many parameters, difficult
to collect in practice.

Fig. 5.1. Proposed methodology.

The methodology, from data acquisition to mathematical modelling, is sum-
marised in Fig. 5.1. The input required is either total household energy consump-
tion, which can be obtained directly from a household smart energy meter, or
energy consumption of the appliance of interest, that can be measured using com-
mercial plug meters [107]. Note that collected energy measurements are not readily
usable for appliance modelling, requiring (1) Data pre-processing to filter out out-
liers, erroneous samples and noise, synchronise samples, and fill-in missing values;
(2) Signature detection via edge detection or other NILM techniques [152] to iso-
late individual appliance power loads from the total household consumption (unless
plug energy monitors are used at appliance level); (3) to acquire a relatively ‘clean’
or usable set of load signatures, signature validation is performed by using expert
knowledge or an appliance database, to confirm that the signature belongs to a
particular appliance of interest and remove signatures that were wrongly detected
by NILM. The applied appliance modelling procedure is similar to that of [104].
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5.2.1 Data Acquisition

Electrical consumption data for building the proposed appliance models, was col-
lected during a field trial. Four households were recruited and monitored using a
combination of Raspberry Pi (https://www.raspberrypi.org/) and the off-the-shelf
Smappee (http://www.smappee.com/uk/home) real-time energy monitor. Mea-
surements were taken at 1 second intervals, for up to 120 days. At the beginning of
the study, all four households filled an Appliance Usage Survey containing informa-
tion about appliance ownership and general patterns of appliance usage, again for
the purposes of signature validation. The survey confirmed that all houses owned
a microwave and all but one was likely to use it daily; ovens are most likely to be
used in the afternoon and evenings.

In addition, for the purposes of validation, time diaries were also kept by house-
hold participants, including recording the start time of each appliance use along
with settings of the appliance in use. Recorded start times in time diaries are in
general accurate to around 1-2 minutes of the actual usage time. It was found that
the recording of the recipe or type of food prepared using an electrical appliance
did not affect the energy consumption in a significant way and thus did not affect
the appliance consumption models.

5.2.2 Data Pre-processing

The first step is making sure the measurements are suitable for use by filtering out
outliers and erroneous measurements, including spikes, following a similar method-
ology to [107].

The second step is synchronisation of readings. The raw data did not have a
uniform sampling rate and therefore isolating appliance signatures becomes more
complex when varying time frequencies are involved. Re-sampling timestamped
data to one second intervals helps to achieve this uniformity; each sample is rounded
to the nearest second (either up or down, to remove the millisecond component).
Once this is completed, forward filling using the previous sample fills any gaps which
have arisen. Forward filling however should be limited (2 seconds = 0.0016kWh
at 3000W) to avoid skewing electrical signatures significantly. These methods are
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generic regardless of the data source.

5.2.3 Signature Detection and Validation

Smart meters measure only the household’s total energy consumption. To use
smart meter data for appliance load modelling, it is necessary to isolate appliance
usage, which is commonly done via NILM [152]. For this study, we develop a
simple, supervised, edge-detection based method given in Algorithm 2.

The input to the algorithm are smart meter active power readings collected
at time t, powt in Watts (W), which are used to calculate edges, as ∆powt =

powt−powt−1, defined as difference in power value between sequential timestamps.
An edge could be either a rising or a falling edge: a RisingEdge is a positive change
in power (e.g., when an appliance is switched on or goes to a high consuming state)
and a FallingEdge is a negative change in power (e.g., an appliance going to a low
consuming state or is switched off).

The appliance metadata are data gathered from time diaries and individual
appliance monitoring (IAM); these include instantaneous maximum and minimum
observed power draw for the appliance of interest (powmin and powmax) and time
durations (durmin and durmax), and the number of states. Since the power draw of
the appliances of interest oscillates between high power state (e.g., heating state)
and low power state (maintaining the heat), to avoid picking up low power state
as switching off the appliance (that is, as a FallingEdge), we also estimate switch-
ing_time as the time between an appliance going to a low power state (where it
may appear to be off) before returning to a high powered state.

After all candidate RisingEdge and FallingEdge are detected, each RisingEdge
is matched with the closest in time FallingEdge if the time duration between these
two edges is within the acceptable limits, that is, between durmin and durmax,
minimum and maximum appliance operation time duration observed from the
Appliance metadata. Next, by comparing the time difference between the ris-
ing and falling edges with switching_time, a check is performed to ensure that the
FallingEdge is not due to appliance transitioning to a low power state.
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Input : Data(Time(t), Power(powt)), Appliance Metadata
Load Appliance Metadata:
Minimum & Maximum Time Duration (durmin; durmax) ;
Minimum & Maximum Power (powmin; powmax);
switching_time;
Output: Time Duration tsecs & Energy Consumption Eapp

RisingEdge = {}, FallingEdge = {}, Edges = {}, Signature = {} ;
for (t, powt) in Data do

Calculate: ∆powt = powt − powt−1 ;
Store: RisingEdge{(t, |∆powt|)} IF powmin ≤ ∆powt ≤ powmax;
Store: FallingEdge{(t, |∆powt|)} IF -powmax ≤ ∆powt ≤ -powmin;

end
i=0;
for tRE in RisingEdge do

for tFE in FallingEdge do
if durmin ≤ tFE − tRE ≤ durmax then

Store: Edges{(tRE ,∆powRE), (tFE ,∆powFE)};
Calculate:
Eappi = (∆powRE +∆powFE)× (tFE − tRE)/(2× 106) ;

i = i+ 1 ;

end

end

end
for (tRE , tFE) in Edges do

if |tFE − tRE+1| ≤ switching_time then
(tFE ,∆powFE) = (tFE+1,∆powFE+1) ;
Calculate: EappFE = EappFE + EappFE+1 ;
if tFE+1 − tRE ≤ durmax then

Store: Signature{(tFE ,∆powFE , tRE ,∆powRE , EappFE )} ;
end

end

end
for (tFE , tRE) in Signature do

Calculate Duration as: tsecs[sec]=tFE-tRE ;
end

Algorithm 2: Signature Detection Pseudocode. The appliance values,
max and minimum powers etc, were optimised empirically. A table of
these is available within the code respository. The Matlab code is available
at https://github.com/David-Murray/Matlab-Appliance_EdgeDetec
tion.
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The proposed edge detection algorithm is limited by multiple simultaneous ap-
pliance uses and appliances with similar-valued consumption and duration. More
sophisticated NILM methods can be used to provide higher disaggregation accu-
racy [56,78,152].

Algorithm 2 is run separately for each appliance of interest within the same
houses smart meter data, and it returns the time duration and energy consumption
of each detected appliance-of-interest use. To ensure that none of these detected
uses comes from another appliance with similar load, or with multiple appliances
being switched on/off at the same time, for each paired output Rising/Falling edge,
we check with time diary or IAM measurements, if available, or validate it against
known appliance signatures, e.g. Altrabalsi’s signature dataset [3], to check if they
fall within a valid range of values (e.g., similar consumption, duration, time of
day). This is done to ensure that incorrectly disaggregated signatures are not used
for the modelling stage.

All correct, labelled appliance signatures, namely the duration tsecs[sec] and
energy consumption (Eapp[MJ ]) per use, are then fed to the Appliance Modelling
stage in Section 5.3 where app refers to the appliance being modelled, e.g., MiW
for microwave.

5.3 Appliance Modelling

In this section, we perform curve fitting on the processed and cleaned energy mea-
surements, namely time duration and energy consumption, to construct generalised
models of appliance consumption based only on information gathered from smart
energy meters as described in Section 5.2 and are widely available in numerous ex-
isting smart meter datasets that have been made public (see Table 1 in [107]). Note
that other parameters such as temperature, food weight etc., which are difficult to
gather during a large-scale longitudinal energy and consumer studies, are excluded.
Resulting mathematical models for the microwave and the oven are presented next.
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5.3.1 Existing Energy Consumption Models

We review the existing models for microwave and electric ovens for quantifying
energy consumption related to food preparation in the domestic sector. Both
appliances have some functionality overlap, but use completely different heating
methods.

The state-of-the-art microwave (MiW) energy consumption model [130] requires
knowledge of the food being cooked as well as water content, infeasible to collect
at scale. It is given by:

EMiW [MJ ] = (mfood × Telev × cp + (mevap × eew))/etotmw, (5.1)

where the following parameters are required:

mfood = mass of product (in grams [g])

telev = difference in food temperature (in Celsius degrees [oC])

cp = heat capacity of the food product [MJ/(g×oC)]

mevap = mass of water evaporated [g]

eew = 2.26×10−3 [MJ / g water evaporated]

etotmw = esupport × etrans × emagn × emwcoup

esupport = 0.95 (efficiency for fan & lamp & controls)

etrans = 0.86 (efficiency for transformation)

emagn = 0.73 (efficiency for the magnetron)

emwcoup = 0.57 + 3.8×10−4 ×mfood (for 200 < mfood < 1000g)

emwcoup = 0.95(for mfood > 1000g).

A similar microwave model is used in [86]. We note that other studies, briefly
reviewed in the Introduction, such as [17,18,86,113], rely on heuristic measurements
in laboratory conditions, or focus on preparation of particular dishes, or rely on
power rating of the appliances and cooking recipes with the risky, and sometimes
wrong assumption, that they will be followed.

The model for oven, validated in [130] using 23-59 litre ovens and data supplied
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by The Swedish Consumer Agency (http://www.konsumentverket.se) which had
oven volumes ranging between 18-65 litres, is given by:

EOV EN (MJ) = Ehu × V × T + Emt × V × T × t

+ Ehp ×mtot ×∆T + 2.26×10−3 ×mwevap

+ 3.34×10−4 ×mfrozen.

(5.2)

The model requires the following input parameters:

Ehu = 2.0 ∗ 10−4

Energy for heating one litre of oven volume. [(MJ/(litre×oC))]

V = volume of the oven in [litres]

T = temperature the oven is heated to (−20oC start temp)[oC]

Emt = 4.2 ∗ 10−6

Energy for maintaining a certain oven temperature in

one litre for one minute [MJ/(litre×minutes)]

t = time for cooking (excluding preheating) [minutes]

mtot = mass of product [g]

mwevap = mass of water evaporated [g]

mfrozen = mass of the product if frozen [g]

ehp = heat capacity of the food product [MJ/(kg×oC)].

Obviously, many of these parameters cannot be easily collected during a field
study, since collecting some of these parameters requires information on devices not
widely available, such as scales, thermometer, heat capacity of foods etc. Further-
more, the collection is often timely, cumbersome, expensive and cannot be expected
to be conducted at scale by untrained volunteers in field studies. Thus, to the best
of our knowledge, scalable appliance consumption models, suitable to estimate ac-
curate energy consumption that captures varied cooking styles in a longitudinal
study, is missing.
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5.3.2 Microwave Consumption Model

The microwave’s power consumption over time is pulsed as microwaves are typically
run at either 100% power, or variations on this at 20% intervals (20, 40, 60, 80%).
To develop a model, the time duration (tsecs) and energy consumption (EMiW )
values were obtained using the Signature Detection algorithm (i.e., Algorithm 2)
as explained in Section 5.2.3. The other two parameters used in the model are:
powerwatts, that is, the rated magnetron power of the microwave, obtained from
the appliance manual or information labels of the respective microwaves, which is
fixed for each microwave; and settingpercentage, which denotes the power setting of
the microwave (e.g., 60% of powerwatts), as set by the consumer per run and, for
the purpose of model development, was obtained from time diaries.

Following curve fitting on the output of Section 5.2.3, which isolated 584 valid
microwave signatures, the following mathematical linear model for the consumed
energy is obtained:

EMiW (MJ) = (0.0010899× tsecs) + (powerwatts × 5.8681×10−6). (5.3)

It should be noted that the above microwave model is limited by the avail-
ability of consumption data, and thus it is inadvertently biased towards the tested
microwaves, which ranged between 700W and 900W. Reduced power band settings,
e.g., 80% of 700W (560W), will be estimated well while, 60% of 700W will be over
estimated. To reduce errors of predicting lower powered microwaves and, as such
give a better overall range, 700W uses were weighted appropriately to help improve
model predictions. This resulted in a more accurate quadratic microwave model,
given in equation below:
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EMiW (MJ)Quadratic = (0.0015893× powerwatts)

+ (−1.4823× settingpercentage)

+ (0.0001032× tsecs)

+ (0.0020663× (powerwatts × settingpercentage))

+ (−9.9386e− 08× (powerwatts × tsecs))

+ (0.0012324× (settingpercentage × tsecs))

+ (−2.237e− 06× (power2watts))

+ (0.018915× (setting2percentage))

+ (−5.1134e− 07× (t2secs)).

(5.4)

Compared to the previous linear model, this quadratic model incorporates the
power percentage setting (settingpercentage) of the microwave as a variable (e.g.,
60%, 80%). Note that, in contrast to previous models (see Section 5.3.1), the model
predicts the amount of consumed energy EMiW based purely on the duration tsecs,
power rating powerWatts (which is a fixed parameter for each microwave, e.g., 900,
800W, etc.), and settingpercentage of the microwave, which can be easily recorded.
Alternatively, the model can predict microwave setting, based on the measured
EMiW and tsecs, that is, purely from the Algorithm 2’s output.

We use Normalized Root Mean Square Error (NRMSE) as a measure of the
error. NRMSE was chosen as large errors are more heavily weighted than Mean
Absolute Error (MAE); this is desirable, as a lower NRMSE shows that the model is
less prone to inaccurate estimations and therefore when performing LCA or yearly
consumption estimates the model is proven to be a reliable guide. The NRMSE
captures the error in the models predicted consumption against the actual measured
consumption, and was calculated as:

NRMSE =
1

1
N

∑N
i=1Eappmeasuredi

√∑N
i=1(Eappmodeli

− Eappmeasuredi
)2

N
(5.5)
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where Eappmodeli
and Eappmeasuredi

denote the energy consumption estimated
by the model and measured, during the i-th use, respectively, of the appliance in
question (microwave or oven), and N is the number of appliance uses detected in
the dataset.

Firstly the proposed models is validated visually by comparing the predicted
energy consumption values from the model with actual energy consumption values,
as shown in Figure 5.2. Six distinct power settings were used in the time diaries
gathered, resulting in powerwatts × settingpercentage consumption bands of 900W,
800W, 700W, 560W, 420W, and 280W of which, there were 28, 6, 148, 185, 208,
9 uses, respectively. The normalised root mean squared error (NRMSE), calcu-
lated using Eq(5.5), for these 6 settings is 0.44, 0.15, 0.002, 0.04, 0.05, and 0.04,
respectively.

It can be seen from Figure 5.2, that the Predictions from the quadratic model
show a very good fit with the actual measurements for all power settings, including
the 900W setting that shows the highest NRMSE. Therefore, we conclude that the
NRMSE between actual measurements and predicted values from the model of the
microwave of around 0.5 is acceptable.
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Fig. 5.2. Edge detected microwave consumption (actual) vs predicted values
using the proposed quadratic model Eq. 5.4.
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Furthermore, Table 5.1 shows how the model output compares to that of the
state of the art [130], described in Section 5.3.1. As in [130], the ratio, measured
as the predicted energy usage from the model divided by the measured energy
usage, is used for assessing the accuracy, i.e., the results closer to 1 indicate better
prediction. The better performing method is highlighted in green.

Microwave Power Duration (mins/secs) Son. Model Prediction Proposed Model Proposed Model (Quad) Son. Measured Ratio Son. Ratio Proposed Ratio Proposed (Quad)
750 3/5 0.23 0.21 0.23 0.22 1.05 0.95 1.09
750 3/5 0.20 0.21 0.23 0.22 0.91 0.95 1.09
800 2/53 0.25 0.19 0.23 0.22 1.14 0.86 1.05
700 3/18 0.25 0.22 0.23 0.22 1.14 1 1.05
750 4/30 0.37 0.30 0.32 0.32 1.16 0.94 1.00
750 4/30 0.28 0.30 0.32 0.32 0.88 0.94 1.00
800 3/0 0.28 0.20 0.23 0.22 1.27 0.90 1.09
700 4/0 0.28 0.27 0.27 0.25 1.12 1.08 1.08

Table 5.1
Comparison of the model prediction of Sonesson [130] (abbreviated to Son.) and the
proposed linear Eq. 5.3 & quadratic model Eq. 5.4 using the values recorded by [130]
given in [MJ].

We can see that the proposed quadratic model is more accurate than the pro-
posed linear model and benchmark model of [130]. This confirms that knowledge of
the food being prepared does not impact the consumption phase of the microwave
in a significant manner.

In [18], it claimed that an 800W rated microwave at 100% for approx 8 minutes
consumes 0.1kWh (0.36 MJ). Using the linear model the same microwave would
be expected to consume 0.1394kWh (0.5 MJ), and the quadratic model would be
consuming 0.1919kWh (0.69 MJ).

5.3.3 Oven Consumption Model

Oven-baking is still one of the most used cooking practices in Europe, with electric
ovens present in most homes [16, 130]. The oven’s used in this work are electric
fan ovens. The oven operates in two stages: (i) preheating/restoring heat, when
the oven typically draws a constant power load, and (ii) maintaining heat. The
set temperature, type and amount of food being baked, affects only the time the
oven will be in each of the two states. Within this section, to build a model,
the time duration (tsecs) and energy consumption (EOven) were obtained from the
edge detection algorithm (i.e., Algorithm 2) as described in Section 5.2.3; the set
temperature (tempOven) of the oven has been obtained from time diaries, or if this
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is not available, estimated based on the initial preheating duration, which is close
to linear for each oven.

Most cooking recipes require the oven to be pre-heated to a set temperature.
During this phase, the oven door is usually kept shut meaning that the time to
reach temperature will be linear with the assumption that the oven is in good
working order and condition. The cooking phase may consist of door openings as
food is introduced and later checked or taken out. When the door is opened the
oven will lose temperature and require another heating stage to return to the set
temperature. Different oven settings produce different signatures; however, they
still retain the general heating/maintenance cycle with adjusted timings. In the
models we assume that the door is not opened frequently or unnecessarily and that
only one dish is added for the cooking stage. Note that the model is limited by the
available oven data, that is, we expect that the model will not accurately represent
very large (≥ 80 litres) or very small ovens (≤ 50 litres).

In developing a scalable model for the oven load, we start from the Sones-
son model given by Eq.(5.2) and attempt to remove dependency of the model on
parameters that are difficult to acquire.

First, using the data collected from smart meters (see Subsection 3.1) we es-
timate two static parameters of Eq.(5.2) - Ehu and Emt. As the values reported
in [130] were set back in 2003, the obtained estimates differ from Eq.(5.2) due to
the newer and more energy efficient oven designs. This situation further motivates
the proposal for appliance modelling methodologies that can be updated regularly,
without significant effort and cost.

In the field study, the 58-litre oven is the oldest and worst performing from an
energy point of view. The average energy values given by Eq.(5.2) for V = 58 litre
oven, for energy needed for heating and maintaining the heat, respectively, are
Ehu = 2.0×10−4 [MJ/(litre×oC)] and Emt = 4.3×10−6 [MJ/(litre×minutes)].
The experiments show that this value should be lowered to around
1.1055×10−4[MJ/(litre×oC)] for Ehu. The recommendation is to increase slightly
the Emt value from Eq.( 5.2) to 1.7288×10−5[MJ/(litre×minutes)] due to the
increase in the size of oven cavities. Table 5.2 summarises the mean and variance
of the values obtained from the models from the detailed field study of two ovens,
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where the combined average is the recommended value for Ehu and Emt.

Volume (Litre) Ehu Emt

Mean Variance Mean Variance
58 1.2905×10−04 1.6243×10−10 2.1575×10−05 2.3426×10−11

74 8.0806×10−05 1.6753×10−10 1.0398×10−05 1.0288×10−11

Combined Avg. 1.1055×10−04 1.7288×10−05

Table 5.2
Experimentally obtained values for the energy needed for heating and maintaining the
heat, for the two ovens in the study from Eq. 5.2

Table 5.2 is an update to the model of [130] described in Section 5.3.1; however
the large number of variables that need to be known hamper using the model in
large-scale studies. Instead, we propose the following scalable model, if the oven
volume is unknown:

EOven[MJ ] = (0.0037372×tempOven[
oC]) + (0.0011084×tsecs[s]). (5.6)

The difference in the volume of the oven causes variations resulting in an
NRMSE between predicted and actual values of 0.25, as calculated by Eq.(5.5).
We conclude that volume is important for estimating power consumption, espe-
cially with the current large variation in oven volumes on the market. A revised
model that incorporates time duration, set temperature and oven volume is given
by the following equation:

EOven[MJ ] =

(−0.064859×V [Litre])

+ (0.028626×tempOven[
oC])

+ (0.00094777×tsecs[sec]).

(5.7)

With the addition of the Volume (V ) component, Eq. (5.7) has a reduced
NRMSE of 0.19 when compared to Eq.(5.6). Fig. 5.3 shows the validation results
for the energy consumption vs. operation time for the two ovens, this time showing
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a much better agreement between the predicted values from the revised model from
Eq.(5.7) and the actual measured values. Therefore, we define an acceptable value
for NRMSE between actual measurements and predicted values from the model of
the oven to be around 0.3.

Fig. 5.3. Predicted oven model traces against actual oven consumption.

5.4 Summary

The models presented in this chapter show an advance and improvement over
models widely used by industry. These models require significantly less information
to get a reasonable consumption estimate for given parameters, additionally they
by design include user specific habits as the data is taken from real world usage
rather than ideal lab conditions. The methodology means that updating the models
is also less intensive than previous state of the art, and would be easy to carry
out especially by a large company or industry partner. The comparison against
the currently used examples shows the need for this work, and for continuous
refreshing of the models given the previous were updated around 20 years ago
and do not take into account massive improvements in design, manufacturing, and
energy efficiency.
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Chapter 6

Load Disaggregation

6.1 Introduction

The content of this chapter is taken from the paper on ‘Transferability of neural
networks approaches for low-rate energy disaggregation’ [109] and ‘Transparent AI:
explainability of deep learning based load disaggregation’ [108].

Energy disaggregation of appliances using NILM represents a set of signal and
information processing methods used for appliance-level information extraction out
of a meter’s total or aggregate load. Large-scale deployments of smart meters
worldwide and the availability of large amounts of data, motivates the shift from
traditional source separation and Hidden Markov Model-based NILM towards data-
driven NILM methods. Furthermore, we address the potential for scalable NILM
roll-out by tackling disaggregation complexity as well as disaggregation on houses
which have not been ’seen’ before by the network, e.g., during training. We focus
on low rate NILM (with active power meter measurements sampled between 1-60
seconds), this represents the best case scenario in terms of performance against
processing/data cost (high frequency data (>10kHz PLAID dataset [45] or UK-
DALE [78]) provides minimal improvements in performance [93]) and present two
different neural network architectures, one, based on convolutional neural network,
and another based on gated recurrent unit, both of which classify the state and
estimate the average power consumption of targeted appliances. Our proposed
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designs are driven by the need to have a well-trained generalised network which
would be able to produce accurate results on a house that is not present in the
training set, i.e., transferability. Performance results of the designed networks show
excellent generalization ability and improvement compared to the state of the art.

Table 2 in [63] summarises the state-of the-art DNN-based NILM methods.
Though prior work considered transferability across houses within the same dataset
(e.g., [77] [35]), few at the time had considered cross dataset evaluation, [65] was one
exception (using curve fitting and DBSCAN to generate a generic model for each
appliance), i.e., transferability across datasets. Transferability has become much
more common, and the UK-DALE & REFIT dataset are the two most popular
test sets. Transferability is particularly challenging due to the large variation in
sampling rates, appliances, usage patterns, climate, age (different energy labels)
and electrical specifications (e.g., voltage, phase) across datasets. Cross-dataset
transferability is very much needed in order to be able to use the developed models
at scale and for practical commercial usage.

The main contributions are:
(a) showing that a single neural network can be trained to accurately target at

once both NILM problems (which have been addressed separately or unevenly so
far), that is, to identify occurrences AND estimate the contribution to the total load
of a specific appliance. Our approach addresses these problems inseparably with
flow of information from the classification part of the network to the load estimation
part. This is in contrast to previous work that focused on binary classification of
appliance state (ex. [7,35,80]) or estimation of appliance load mainly (ex. [77,149]).

(b) The proposed architectures are designed to facilitate successful transfer
learning between very distinct datasets.

(c) Our proposed networks represent a significant reduction in complexity (the
number of trainable parameters) compared to previous approaches [7,35,77,80,149],
even though our proposed networks are tested on arguably more challenging real
datasets.

(d) We do not make use of synthetic data and perform both training and testing
on balanced data to avoid the issue of bias due to lack of appliance activations,
which is a feature of many NILM datasets.
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In order to demonstrate transferability, three datasets are used, namely UK
REFIT [107] and UK-DALE [78], which are known to have similar appliances, as
well as the US based REDD [84], whose appliances are different in terms of electrical
signatures compared to UK appliances. The difference in voltage between UK and
US affects how appliances operate, specifically appliances with a heating element
in the UK are usually 2000-3000 Watts in power, where a similar US product would
be around 1500W.

6.2 Proposed Network Architectures

/
We introduce two networks, both of which are suited to processing temporal

data: (1) a GRU architecture, as shown in Figure 6.1, and (2) a CNN architecture,
as shown in Figure 6.2. Both architectures remain purposely simple with a two-
branch layout, with the side branch considering state prediction and feeding it back
to the main branch to assist with consumption estimation.

It is worth noting that prior work has generally focused on either state or
consumption estimation, using a single-branch network [7, 80, 149], or attempting
to rebuild the signal hence generating both state and consumption as an output [77]
[35] [46] [56]. In the latter, an autoencoder network is used where the network takes
in an aggregate window and attempts to rebuild the target appliance signal only;
these network types require a large amount of labelled data and generally make
use of synthetic data. In addition, each of our networks differs from the literature,
by training on fewer epochs or by having many less trainable parameters.

The GRU is a variant of the LSTM unit, especially designed for time series data
to handle the vanishing gradient problem of networks. As such, they are designed,
as LSTM, to ‘remember’ patterns within data, but are more computationally effi-
cient. GRUs have fewer parameters and thus may train faster or need less data to
generalize. Therefore, a GRU is more suited to online learning and processing than
the LSTM unit. The specific variation used in this section is the original version,
proposed in [21], using an NVidia CUDA Deep Neural Network library (CuDNN)
accelerated version and implemented in Keras (CuDNNGRU). The GRU network
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Fig. 6.1. Proposed GRU Network Architecture.

contains 4,861 parameters, out of which 4,757 are trainable and 104 non-trainable,
i.e., hyper-parameters.

The proposed CNN consists of Conv1D (Keras) layers. 1D convolutional layers
takes sub-samples (kernel_size) of the input window and steps through the time
series building up a feature map for the input, this is done a number of times
based on the number of filters the layer has (denoted by ‘units’ in Fig. 6.2) see
Fig.6.3. The more of these layers that are connected the deeper and more com-
plex the representations can be under the correct conditions. The CNN network
contains 28,696,641 parameters, out of which 28,696,385 are trainable, and 256
non-trainable, hyper-parameters.

In both proposed networks, we make use of the ReLU function [112] as the
network activation. This activation is monotonic and half rectified, that is, any
negative values are assigned to zero. This has the advantage of not generating van-
ishing gradients, exploding gradients or saturation. Vanishing gradients are caused
when the backpropagation algorithm calculates smaller and smaller gradients, as
it works back through the network (output to input), as such the weights of the
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Fig. 6.2. CNN Network Architecture proposed by Srdjan Lulic for compari-
son.

higher layers (closer to the input) are never updated. Exploding gradients are
the opposite, where the gradients become larger resulting in large weight updates
causing the network to become unstable. However, ReLU activations can cause
dead neurons; we therefore use drop out to help mitigate the effect of dead neurons
which may have been generated during training. Dead neurons refer to neurons
where their weights become 0 and can cause training to stall. Drop out can help
mitigate the effect of dead neurons; by artificially severing the connections between
neurons and the lower layers of the network (from input to output), these neurons
are no longer considered during training.

Both proposed networks also use sigmoid activations for the state prediction
and linear activations for the power estimation. The sigmoid function is used as
it only outputs between 0 and 1, thus ideal for the probability that the appliance
is on or off; in our networks, we assume a value greater than 0.5 to be on and
anything below to be off. Linear activations can be any value and therefore are the
best when estimating power. Both networks are implemented using the TensorFlow
wrapper library Keras using Python3.
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Fig. 6.3. 1D Convolution

6.3 Training of Proposed Networks

We train the proposed networks using both REDD and REFIT datasets, both
containing sub-metered data. Note that sampling rates in these two datasets are
different. To account for this, we pre-processed all data down to 1 second (using
forward filling), then back to uniform 8 second intervals. Data was standardised by
subtracting the mean, then dividing by the standard deviation across each window.

We train on a number of houses, except House 2, in both REDD and REFIT
datasets, for the entire duration of the respective datasets. Testing is then per-
formed on unseen House 2 in REDD and House 2 in REFIT, as well as UK-DALE
House 1. The latter was used as it was monitored for the longest period of time.
Details of houses used for training each appliance model are shown in Table 6.1.

An example of a typical day within each of the datasets is shown in Figure 6.4.
It can be seen that the aggregate of the REDD dataset typically has very few
appliance activations and a low noise level. On the other hand, the REFIT and UK-
DALE datasets are similar in complexity with both having multiple large appliance
activations with a complex low consumption noise level at below 500 watts. [82]

Four models are trained, one for each target appliance: dishwasher (DW), re-
frigerator (FR), microwave (MiW) and washing machine (WM). As each appliance
has a different duty cycle, windows were chosen to capture a significant portion of
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Table 6.1
Appliances and Houses Used

REDD REFIT
Appliance Houses Houses Window Size (samples) On State (Watts)
MiW 1, 2, 3 2, 6, 8, 17 90 (12 mins) > 100
DW 1, 2, 3, 4 2, 3, 6, 9 300 (40 mins) > 25
FR 1, 2, 3, 6 2, 5, 9, 15, 21 800 (1.78 hours) > 80
WM 2, 3, 10, 11, 17 300 (40 mins) > 25

a single activation, shown in Table 6.1 along with the watt thresholds, obtained
using training data, and are used to decide if the appliance is deemed to be on,
i.e., if the threshold was exceeded.

From the paper [91] the noise-to-aggregate ratio (NAR) of a house is the amount
of consumption which is not attributed to individual appliance monitors. A NAR
of 25% would mean that 25% of the aggregate consumption is not sub-metered.
This can be applied on an appliance by appliance basis to highlight the complexity
of disaggregation. A high NAR would be more difficult due to a large amount of
unknown consumption, while a lower ratio would show that there is fewer other
appliances within the household. Fig. 6.5 shows the NAR ratio for the appliances
most commonly used to show disaggregation results.

Input data was balanced to avoid a training bias within the networks, by lim-
iting the majority class to that of the minority class (in nearly every appliance the
minority class (appliance state) is off, apart from possibly refrigerator). Limiting
the majority class was done by selecting samples at random until the classes were
balanced. Validation data was then generated from randomly sampling from 10%
of balanced training data. Each network was trained to 10 epochs with early stop-
ping monitoring “Validation Loss"; if this failed to improve after 2 epochs the best
performing network weights were used. Both networks used binary cross entropy
as the loss function for state classification, for consumption the CNN uses mean
square error (MSE) and the GRU logcosh. The CNN uses the stochastic gradient
descent (SGD) optimiser and the GRU uses RMSprop.

Four performance metrics are used, F1-score (state prediction), Accuracy, Root
MSE (RMSE) & Mean Absolute Error (MAE) (consumption estimation), which
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frequently appear in literature:

F1 =
2 · precision · recall
precision+ recall

(6.1)

Accuracy = (1−
∑∞

n=1 |et|
2 ∗

∑∞
n=1 true

) ∗ 100 [%] (6.2)

RMSE =

√
Σn
i=1

(
et

)2

n
[ Watts], (6.3)

MAE =
1

n

n∑
t=1

|et|[ Watts], (6.4)

where n is the number of samples and

precision = True Positives
True Positives+False Positives ,

recall = True Positives
True Positives+False Negatives ,

et = predicted load− actual load,
true = actual load.

The testing data was also balanced to avoid artificially improving scores; that is,
in NILM datasets there is a higher likelihood that an appliance will be in an off
state than it will be on (fridges and freezer being the exception). For example,
a microwave may only be used once or twice per day or around 0.14% of a day.
Therefore with unbalanced testing data, a network that only predicts the microwave
in the off state will score well assuming that the microwave is used infrequently.
Therefore, balancing the test data clearly shows the network is working well if it
has an F1-score above 0.5.

Before assessing transferability across datasets, we establish baseline perfor-
mance by training and testing on the same dataset. Tables 6.2 and 6.3 show
the results of testing of each network on unseen House 2 from within the same
dataset, i.e., electrical load measurements from Houses 2 of REDD and REFIT
datasets were not used at all for training. The tables show that GRU tends to
perform appliance state prediction marginally better (as shown by F1-score), while
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F1-Score Accuracy [%] RMSE [W] MAE [W]
Appliance CNN GRU CNN GRU CNN GRU CNN GRU
Microwave 0.95 0.95 76.4% 55.7% 165.73 252.17 68.02 127.79
Dishwasher 0.71 0.74 71.4% 76.3% 185.72 136.79 119.35 98.90
Refrigerator 0.67 0.67 83.5% 53.9% 16.17 31.15 10.14 28.31

Table 6.2
Testing on “unseen" House 2, after training the networks on all other REDD houses.

F1-Score Accuracy [%] RMSE [W] MAE [W]
Appliance CNN GRU CNN GRU CNN GRU CNN GRU
Microwave 0.82 0.87 68.7% 65.6% 88.75 107.57 35.49 39.08
Dishwasher 0.82 0.82 82.9% 84.8% 200.98 211.78 82.74 73.53
Refrigerator 0.93 0.85 76.9% 64.1% 14.77 23.94 8.56 13.30
Washing Mac 0.79 0.86 71.8% 68.9% 176.22 190.05 71.99 79.33

Table 6.3
Testing on “unseen" REFIT House 2, after training the networks on all other REFIT
houses.

CNN performs slightly better for appliance consumption (as shown by Accuracy,
RMSE and MAE). However, overall, both networks perform in a similar man-
ner and demonstrate very good performance when training and testing on unseen
houses on the same dataset, when compared against a modern federated learning
approach [151]. We thus show that the proposed methodology transfers well for
unseen houses from within the same dataset.

6.4 Results

In this section, we demonstrate our networks’ ability to transfer across datasets.
This real-world test shows the ability of the network to handle completely unknown
appliances, duty cycles and consumption - see, for example, Figure 6.6.

We first present the results when the models are trained using only REFIT
houses (as per Table6.1), and tested on House 2 from the REDD dataset. This is
shown in Table 6.4. Compared to Table 6.2, we can observe a drop in performance
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for MiW and DW, due to a difference in make/models of appliances between UK
houses and the US house. Similar conclusions can be made from Table 6.5, where
we show results when the models are trained using only REDD houses and tested
on one REFIT house.

Note that in Table 6.5, the accuracy of Fridge is missing due to the window
size selection; that is, with this window size, in the REDD dataset, there is always
a fridge that is on, which means transferability between REDD to REFIT is biased
to predicting the fridge always being on. This can be seen in Fig. 6.6, where
the REDD fridge has a considerably smaller duty cycle than in the REFIT and
UK-DALE datasets. This can be remedied by choosing a smaller window size;
however in real-world applications this would only become apparent after testing,
and multiple fridge networks may have to be generated.

Table 6.6 shows the results of training on REFIT houses and testing on unseen
UK-DALE House 1. The UK-DALE dataset is similar to the REFIT dataset as
it is also UK based, therefore has similar appliance types. This is reflected in the
scoring metrics, as it has minimal performance drop compared to Table 6.3.

When comparing state prediction and consumption estimation performance of
the proposed CNN and GRU networks across all results, we observe that they both
perform similarly.

Though the metrics used are similar to those in the NILM literature, we cannot
directly compare our consumption estimation results with the literature because the
network outputs are different, additionally there are no commonly agreed bench-
mark data, so testing data selection even with in the same house is also not directly
comparable. In [77] for example, the network output generates a single value which
is then stitched together to recreate the original appliance window without the ag-
gregate; as such the MAE value is the error at each individual point in time, not
the error of the estimated consumption over the entire window as in our work.
However, as an indication of classification performance, [77] achieves F1 scores of
0.26 for MiW, 0.74 for DW and 0.87 for FR when training on UK-DALE and test-
ing on an unseen house also in the UK-DALE dataset. Our cross-dataset results in
Table 6.6 show superior F1 performance for MiW and FR. Comparing results for
House 2 REDD, i.e., Tables 6.2 and 6.4, our best F1 scores show similar results
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F1-Score Accuracy [%] RMSE [W] MAE [W]
Appliance CNN GRU CNN GRU CNN GRU CNN GRU
Microwave 0.41 0.49 64.1% 54.7% 120.01 103.71 90.96 39.26
Dishwasher 0.44 0.57 50.2% 39.6% 305.22 284.34 183.27 222.34
Refrigerator 1.00 0.98 76.0% 65.5% 44.44 59.92 38.42 55.11

Table 6.4
Training on REFIT houses only and testing on unseen House 2 from REDD.

F1-Score Accuracy RMSE [W] MAE [W]
Appliance CNN GRU CNN GRU CNN GRU CNN GRU
Microwave 0.70 0.78 47.9% 50.8% 114.89 100.17 59.20 55.82
Dishwasher 0.80 0.62 62.8% 54.0% 431.61 386.91 179.83 222.43
Refrigerator 0.67 0.67 – – 68.97 56.57 63.73 53.37

Table 6.5
Training on REDD houses only and testing on unseen House 2 from REFIT.

F1-Score Accuracy RMSE [W] MAE [W]
Appliance CNN GRU CNN GRU CNN GRU CNN GRU
Microwave 0.79 0.7 77.3% 65.11% 66.96 144.46 41.30 63.70
Dishwasher 0.21 0.46 44.1% 52.09% 43.09 44.62 29.08 24.97
Refrigerator 1 0.69 82.0% 73.08% 14.38 19.56 11.15 16.69

Table 6.6
Training on REFIT houses only and testing on unseen UK-DALE House 1.

with respect to Nascimento [35] best scores for MiW (0.95), better for FR (1 vs
0.94) but slightly worse for DW (0.74 vs 0.82).

6.5 Neural Network Explainability

Recent years have seen significant research in defining, at a high level, how infer-
ence models can be designed to be explainable to end-users, in the case of NILM
consumers or companies which have bought a NILM model to enhance their cus-
tomer offering. Explainability leads to trust in data-driven AI systems ensuring
that complex machine learning (ML) models underpinning these systems are un-
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derstandable to the end user and decisions or recommendations are transparent.
Despite a large number of publications from different disciplines, including many
tutorial and feature articles [37, 48, 102], most explainable AI implementations fo-
cus on technology designs, e.g., for the purpose of removing the bugs in the code
or improving the models [19], while other potential users of the technology are
neglected. Furthermore, the bulk of the literature tends to focus on explainability
of image processing [127] and natural language processing, while raw time-series
sensor signals processing, e.g. energy measurements, is almost non-existent.

We focus on the explainability of deep-learning based NILM [54] of electri-
cal smart meter data that provides feedback to householders or building man-
agers about energy consumption of individual appliances [152] [34]. We demon-
strate, using the popular sequence2point deep learning NILM architecture [34],
how heatmaps can be used to explain NILM outputs.

We refer to a model being interpretable if it is possible to mathematically pre-
dict its output, and interpretability as the ability to support user comprehension
of the model decision making process and predictions. Making ML models inter-
pretable has become a hot topic of research, industry and policy makers [5,37,90].
We refer to explainability as the ability to explain the underlying model and its
reasoning with accurate and user comprehensible explanations. Explainability is
essential when assessing effects of biases in the data, degrees of fairness and other
ethical implications of research, since the methods need to be replicated and tested
in a new environment (using different, potentially biased dataset), and its decisions
need to be mathematically tractable [37].

There have been only few attempts to explain time-series data models [128],
where it is challenging to relate decisions to raw signals, and hence explanations
have mainly been related to quantifying the importance of each feature; however,
with deep learning models that take raw signals and integrate the feature engi-
neering steps, this is often impossible. Similarly, there have been no attempts to
explain NILM specifically besides [108], which targeted tech developers by visual-
ising trained network weights at the early layers.

NILM or load disaggregation refers to estimating individual appliance load
contributing to the metered household aggregate energy consumption without sub-
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metering. NILM can be seen as a single-channel source separation problem, where
individual appliance load needs to be estimated from the total aggregate load, i.e.,
p(t) =

∑
j pj(t)+n(t), where p(t) denotes the total power measured at time instant

t, pj(t) is the power consumption of the j-th load, and n(t) is the noise that includes
measurement noise and unknown loads. NILM has been widely tackled in the
literature as an event detection problem, assigning an appliance to a given aggregate
load. More recently, NILM is an event estimation or regression problem, where a
model is built based on labelled appliance load data in training, then estimates load
directly from the aggregate testing data. Numerous approaches for NILM have been
used previously, and a review can be found in [152]. To illustrate explainability tools
for NILM, we use a sequence2point network of D’Incecco [34] that is a widely used
for benchmarking deep learning based NILM work. We note that the approaches
presented apply to other architectures also. The architecture of [34, 149], is a
novel sequence2point approach for NILM, based on CNN that extracts meaningful
latent features with appliance transfer learning and cross-domain transfer learning.
A sliding window of the aggregate is mapped into a single middle value point of the
targeted appliance, this way predicting the appliance consumption value for each
sample in time. [34] presents results showing excellent performance of the proposed
approach for a range of appliances on three datasets.

6.6 Explainability of NILM

We illustrate how NILM deep learning models can be interpreted and explained
using the washing machine, considered a challenging appliance to disaggregate,
due to multiple consumption states, with power values similar to numerous other
appliances. To explain how the model makes decisions, we occlude (null values) part
of the raw input and slide the occlusion window across the data. This highlights
the features learned by the model, occluding a non-important section should result
in little to no change in the networks output but occluding an important section
e.g. the change in appliance state, we can highlight what is important and this
can then explain why appliances may be missed, for example if another appliance
was running at the same time causing the state change of the target appliance
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to be ‘hidden’. For each window position, we estimate the model’s singular point
output. This is used to generate a heat map as shown in Figure 6.7 (bottom). This
methodology makes no changes to the network’s internals unlike methods such as
Attention Networks which require the addition new methods/layers.

In Figure 6.7 (top) we show an example of the input aggregate signal, target
signal (washing machine), and predicted (non-occluded) signal. The horizontal
axis shows sample number and vertical, consumed power. In this case we show
a true positive result on the ECO dataset [10], the model being trained on the
REFIT dataset [107]. The occlusion window blocks 50 consecutive samples and is
stepped across the input window from index 0 to 549. This is then used to generate
the heat map in Figure 6.7 (bottom). For a fixed sample point (horizontal axis),
vertically, the values in the map correspond to the network output for different
starting positions of the occluding window (from 0 to 549).

The heat map should be read diagonally to keep the occluded window stationary
as the network target moves along the x-axis. The occluding window starting at
x=0, y=0, would move diagonally down and left to stay at the same point as each
window is passed to the network, due to the network targeting the centre point
of the window. The heat map is aligned with the top plot along the x-axis to
better indicate where the target point is, with the colour representing consumption
estimation at a given point. The horizontal bar across the centre of the heat map
represents where the centre point of the input sequence window is occluded, e.g.,
samples 249 to 299. When this occurs the network struggles to predict, as the
input sample corresponding to target sample is null. Importantly, this leaves the
model vulnerable should errors occur around the window centre, and makes a case
for explaining how data is filled/processed to end users.

The ellipses in the heat map represent three key features. Ellipse 1 shows what
we consider the main feature of the washing machine, the heating element turn
on, around sample 705700; when this is occluded (top plot area 1) the predicted
load drops significantly. Shown in Ellipse 2, the lowest load estimate occurs when
this feature is fully occluded highlighting its importance, it represents the last
stage of the washing machine cycle, the draining cycle (shaded area 2 on the top
plot), when occluded the network looses confidence in it’s estimation massively
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reducing the heating element wattage estimation. The third ellipse highlights the
spin cycle. In this case, the occluded section, which is not fully captured by ellipse
3 (and corresponding top plot shaded area), shows distinct band of blue which
begins shortly after the washing machine heating element has turned off, but not
immediately, indicating that the model is expecting a certain duration of spin cycle.

In Figure 6.8, we show an example that illustrates the limitation of the trained
model to handle overlapping activations, where a number of appliances are used
simultaneously. In this example, another appliance usage occurs at the end of
the washing machine heating cycle (sample 575500). When occluding this area,
we expect a truer estimate of the previous load. Indeed, the result is a much
higher network prediction, shown by ellipse 1 in the heat map. Ellipse 2 shows
the importance of the draining cycle in order to detect washing machine uses. If
this segment is even partially occluded, the estimated consumption drops to near
0. Additionally, there is another appliance which overlaps this feature (Sample
575700, end of area 2 on the top plot); this, along with the second overlapping
appliance, helps us to explain why the network likely missed this activation. Finally,
occlusion 3 (in the top plot) corresponds to the false detection of the spin cycle that
in Figure 6.8 has a number of unknown appliance uses causing network confusion.
Ellipse 3 in the heat map plot shows a false positive occurring if the end of the
second appliance is occluded, e.g., the network thinks that a second heating cycle
is in progress. This false positive (along the y axis of the heatmap (moving the
occlusion window) the network does not detect this activation unless the state
change of the unknown appliance is occluded) shows the trained network can be
confused by similar consumption made up of multiple appliances overlapping.

Heat maps provide a model agnostic way to visually interpret time series results,
working with both sequence-to-sequence and sequence-to-point style networks. De-
pending on the complexity of the input and target signals, the number of learned
features will become apparent when occluding the input signal. Depending on the
size of the target signal, the size of the occluding signal can highlight features,
and shrinking the occluding window can show what the model considers the most
impactful features. This methodology could also be used to discover adversarial
examples in which outputs are vastly influenced by the change of a single point
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in the input window e.g. a single value affected by noise could cause the network
to fail to predict consumption correctly [134]. The visualisation of stacked plots,
allows those not familiar with the field to understand features which are considered
important, and could help to create a “stress testing" set of tricky examples to be
used for trained model benchmarking.

Figures 6.7 and 6.8 also report the MAE, SAE and NDE performance measures
for these particular uses as defined in [34]. The values of all three metrics are lower
for Figure 6.7 compared to those of Figure 6.8, which is expected since the former
is a TP sample whilst the latter is a FN. However, these measures do not clearly
have a range of values that are comparable.

While interpretability explains the decisions made by the model, it is often fo-
cused on technical explanations (e.g. feature importance without visualisation) and
not understandable by the end user, e.g., a householder trying to understand their
appliance consumption estimate in regards to their electricity bill. In Dwivedi [40]
a large number of methods are discussed along with their pitfalls. Thus we provide
explainability by attempting to explain the measures in relation to the top plot
in Figure 6.8 which is data they can understand (their consumption), with the
heatmap. Clearly, the predicted consumption of the appliance is under-estimated
compared to the actual. The MAE is the only metric that captures this wide dif-
ference in reconstructing the signal, compared to the other two metrics but does
not necessarily explain the underestimation, which would not provide a realistic
consumption to the end-user trying to understand the real consumption of their
appliance. Over the entire dataset, however, MAE is less explainable as the MAE
value becomes lower due to the fact that appliances spend a significant period
turned off. Therefore, we wish to highlight that these metrics, commonly used
for evaluating the performance of deep learning approaches in the recent NILM
literature [118], are not truly explainable since they are not necessarily intuitive.

6.7 Summary

We address one of the biggest NILM challenges that is yet to be demonstrated and
hence limiting commercial take-up: scalability. This is reflected in performance vs
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complexity trade-off of NILM solutions and the ability to disaggregate appliance
loads, which have previously not been seen (or trained) by the NILM solution,
i.e., transferability. Driven by the increasing availability of smart meter data, we
thus design and propose two data-driven deep learning based architectures that
perform appliance state prediction and classification estimation inseparably, and
can generalize well across datasets. We show the ability of our trained CNN-
and GRU-based networks to accurately predict state and consumption across 3
publicly available datasets, commonly used in the literature. We show that our
proposed trained networks have the ability to transfer well across datasets with
minimal performance drop, compared to the baseline when we train and test on
the same dataset, albeit on an unseen household within the same dataset. Both
GRU- and CNN-based networks show similar performance but the GRU-based
network has fewer trainable parameters and is thus less complex than the CNN-
based network. Secondly, explainability is key to NILM becoming more widely used
in customer facing products. The ability to understand why a model is reacting a
certain way to data, firstly helps to reassure a consumer about the validity of the
model and secondly allows for a more targeted investigation into either improving
training or adding additional post processing. We propose heatmaps as the best
solution allowing for the visualisation of many sequence to point traces within a
small diagram and to aide explainability requiring little explanation to consumers,
where the model output data can be seen in line with understandable household
consumption data without the need for explanation of the models internal layer
structure.
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Fig. 6.4. Aggregate load measurements for a typical day for Houses 2 in RE-
FIT and REDD datasets and House 1 UK-DALE, showing relatively higher
noise levels for UK REFIT and UK-DALE houses.
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Fig. 6.5. Aggregate load measurements for a typical day for Houses 2 in RE-
FIT and REDD datasets and House 1 UK-DALE, showing relatively higher
noise levels for UK REFIT and UK-DALE houses.

Fig. 6.6. Typical appliance signatures for MiW, DW and FR across REDD,
REFIT and UK-DALE datasets.
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Fig. 6.7. The heat map generated for the Washing Machine in the ECO
dataset, house 1. The model is trained using the entire REFIT dataset. The
obtained performance measures for this sample are: MAE:292.73, SAE:0.62,
NDE:0.45. The occlusion area numbers (top) and ellipse numbers (bottom)
are explained more in the text.
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Fig. 6.8. The heat map generated for the Washing Machine in the ECO
dataset, house 1. The model is trained using the entire REFIT dataset. The
obtained measures for this sample are: MAE:383.18, SAE:0.83, NDE:0.79.
The occlusion area numbers (top) and ellipse numbers (bottom) are explained
more in the text.
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Chapter 7

Conclusion

Summary

NILM is a field which is extremely challenging, no two houses will be the same,
nor will the usage of two identical appliances by different users.

In chapter 1, the REFIT dataset is described. The REFIT dataset was very
well received and the associated Nature Scientific Data journal paper has over 200
citations [107]. It combines a number of the most desirable features in a NILM
dataset, namely duration, sampling frequency and scale. It provides the framework
on which all the work in this thesis is based on.

In chapter 2, making use of the REFIT dataset a focus on individual appliances
was considered, at the time there was little longitudinal work on appliances. The
2 year study period of the REFIT dataset enabled this, and allowed for seasonal
trends to be explored as well as changes in attitude and appliances. This enabled
the in depth analysis of the real world benefits of changing to a more energy efficient
appliance using real world data rather than lab based efficiency claims.

In chapter 3, expanding on the previous work, and working with industry,
the modelling of appliance consumption for use in Life Cycle Analysis reports
proved to be an extremely beneficial to Nestec S.A.. The industry standards were
based on old lab data and making use of the REFIT dataset, and some targeted
appliance monitoring, updated models were created. These new models provided
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better results than the previous state of the art while requiring significantly less
variables and which take into account real appliance usage.

Finally in chapter 4, NILM is introduced. Making use of neural networks a
number of methods were proposed making use of CNN and GRU layers, these
were demonstrated to show transferability to similar datasets, and were compared
against the latest papers at the time. Secondly a newer network is presented, this
network has a sequence to point architecture. This work provided a novel way of
explaining the output of a NILM network in a visual way, by displaying the network
input (time series) and extracting the features of importance within the input using
occluded windows and mapping them into a heatmap. The proposed method allows
the user to identify at what point the network begins to correctly identify the
appliance within the sliding window. This is extremely useful for understanding
window size choice and curation of training sets, with NILM larger training sets
are typically not useful as the network either specialises or reverts to extreme
generalisation (0 watts for nearly every appliance apart from cold appliances).

Future Work

Future NILM work would involve more rigorous benchmarking. Currently nearly
every paper suffers from a number of issues (also guilty): Metrics are usually not
suitable for long term data, for example over a year predicting a kettle at 0 watts
would give a great result for a number of metrics as the kettle is going to be
off for 98% of the time. Data selection is usually skewed to provide better results,
either few activations which are correctly identified or low noise areas of data which
would be considered easier. Multiple appliance output, every model is looked at
individually while this makes sense academically, NILM is a highly commerical
problem and misidentifying one appliance as another is a major issue, requiring
explainability or being able to decide which model is correct.

A new direction would be a generalised network which was capable of out-
putting labelling for any number of appliances, similar to larger image based net-
works capable of multi-labelling or more recently the massive improvements in
large language models such as ChatGPT. This would then be expanded to include
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regression values. Finally NILM could be combined with time of use and a more in
depth user understanding to help plan appliance usage to best take advantage of
either stored power from solar batteries or from time of use based electricity tariffs,
this is already prevalent in South Africa where load shedding (sections of the coun-
try endure rolling blackouts due to power demand above generation capacity) is
already common and is likely to become more prevalent as global warming, ageing
infrastructure and fossil fuel scarcity becomes more widespread.
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