
–
D
R
A
F
T

–
J
u
n
e
4,

20
25

– Uses of Continual Learning Techniques in Generalised

Few-Shot Object Detection

MPhil Thesis

Alessandro Lekkas Department of Computer and Information Sciences

University of Strathclyde, Glasgow

June 4, 2025

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

This thesis is the result of the author’s original research. It has been

composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by University of Strathclyde

Regulation 3.50. Due acknowledgement must always be made of the use of

any material contained in, or derived from, this thesis.

i

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Abstract

The best large-scale deep learning models require massive amounts of training data. For

some tasks, collecting such data may be unfeasible, due to logistical or legal reasons.

Few-Shot Learning has emerged as a field of study to maximise performance based

on very few samples. In Generalised Few-Shot Learning, a model has to learn new

few-shot classes while recalling earlier large-scale training classes. In this work, we

review the tools and techniques used in Few-Shot Learning before exploring the parallels

between Generalised Few-Shot Object Detection (G-FSOD) and Continual Learning

(CL) methods. We focus on the manipulation of gradient descent since it has been

recently proposed for G-FSOD. We show that gradient methods appear to be no better

than existing techniques, and point out that potentially beneficial insights on sampling

from the Continual Learning world have yet to be employed. We hope this work will

provide a blueprint for further study of both G-FSOD and CL as interconnected fields.

ii

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Contents

Abstract ii

List of Figures viii

List of Tables xii

Acknowledgements xvi

1 Introduction 1

I 7

2 Few-Shot Classification 8

2.1 Dataset Augmentation . 8

2.1.1 Generative Adversarial Networks 9

2.1.2 Variational Autoencoders . 11

2.2 Classic Methods . 13

2.2.1 Boosting . 13

2.2.2 Transfer Learning . 14

2.3 Metric Learning . 15

2.3.1 Siamese Networks . 15

2.3.2 Contrastive Learning . 16

2.3.3 Matching Networks . 18

2.3.4 Prototypical Networks . 18

iii

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Contents

2.3.5 DeepEMD . 20

2.4 Meta-Learning . 21

2.4.1 Optimisation Methods . 21

2.4.2 Relation Networks and Meta-Learning 23

2.4.3 Other Combinations . 24

2.5 Network Architecture Enhancements . 25

2.5.1 Network Architecture Search (NAS) 25

2.5.2 Knowledge Distillation . 26

2.6 Reducing Supervision . 28

2.6.1 Transductive Learning . 30

2.7 Benchmarks . 32

2.7.1 Cross-Domain Transfer . 33

2.8 Summary of Results . 35

2.8.1 Discussion . 36

2.9 Conclusions . 37

3 Few Shot Object Detection 38

3.1 Benchmarks . 38

3.1.1 Datasets . 39

3.1.2 Metrics . 40

3.2 Architectures . 42

3.2.1 R-CNN . 42

3.2.2 YOLO . 43

3.2.3 Few-Shot Architectures . 44

3.3 Meta-Learning . 45

3.3.1 Few-Shot Feature Reweighting 45

3.3.2 Subsequent works . 46

3.4 Fine-tuning . 47

3.4.1 Early Methods . 47

3.4.2 Two-stage Finetuning Approach 48

3.4.3 DeFRCN . 49

iv

–
D
R
A
F
T

–
J
u
n
e
4
,
2
0
2
5
–

Contents

3.5 Other Approaches . 50

3.5.1 Contrastive and Class Separation Methods 50

3.5.2 Distillation methods . 52

3.5.3 Retentive R-CNN . 54

3.6 Transformer-based methods . 54

3.6.1 Transformers and Object Detection 55

3.6.2 Transformers and Few-Shot Object Detection 56

3.7 Reliability of Benchmark Data . 57

3.7.1 Label Quality . 57

3.7.2 Information Leakage . 58

3.8 Results . 58

3.9 Discussion . 60

3.9.1 Architecture . 61

3.10 Conclusions . 62

4 Continual Learning 63

4.1 Benchmarks . 64

4.1.1 Datasets . 64

4.1.2 Metrics . 65

4.2 Network Expansion . 66

4.3 Weight Regularisation . 68

4.3.1 Gradient Manipulation for Weight Regularisation 69

4.4 Replay Methods . 70

4.4.1 Experience Replay . 70

4.4.2 Generative Replay . 72

4.4.3 Sampling and Replay . 72

4.4.4 Gradient Manipulation with Replay 73

4.5 Summary of Results . 75

4.5.1 Discussion . 76

4.6 Conclusions . 78

v

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Contents

5 Commonalities Between Fields 79

5.1 Considerations on Base Sample Storage 79

5.2 Similarities between Generalised-FSOD and other Continual Learning

approaches . 80

5.2.1 Network Expansion . 80

5.2.2 Neural Collapse . 81

5.2.3 Brain-Inspired Replay . 82

5.2.4 Neuroscience and Neural Network Replay 83

5.3 Conclusions . 84

II 88

6 Methodology 90

6.1 Rationale for Gradient Correction . 90

6.2 Training Procedure . 91

6.2.1 Experience Replay . 92

6.3 Summary of Gradient Correction Methods 92

6.3.1 A-GEM . 93

6.3.2 CFA . 93

6.3.3 MEGA-I . 94

6.3.4 MEGA-II . 95

6.3.5 CAG . 95

6.4 Other methods . 96

6.4.1 CFA With Loss . 96

6.4.2 Averaging . 97

6.5 Rationale for Sampling: G-FSOD and Experience Replay 97

6.6 Summary of Sampling Strategies . 98

6.6.1 Prototype Distance . 99

6.6.2 Prototype Distance Ratio . 100

6.6.3 Histograms vs Top-K (Variation) 101

vi

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Contents

6.6.4 Mini-Batch Distribution (Variation) 102

7 Experiments 103

7.1 Experimental Plan . 103

7.2 Experimental Setup . 104

7.3 Experimental Notes . 105

7.3.1 Causes of Result Variance . 106

7.3.2 Note on Confidence Intervals . 107

7.4 Performance of Gradient Correction Methods 109

7.5 Performance of Sampling Strategies . 113

7.5.1 COCO . 113

7.5.2 VOC . 114

7.5.3 Ablation Study . 116

8 Conclusions 118

8.1 Contributions . 118

8.1.1 Literature review . 118

8.1.2 Parallels between Generalised Fine-Tuning and Class-Incremental

Learning . 119

8.1.3 Gradient correction methods are ineffective 119

8.1.4 Sampling strategies improve base performance on G-FSOD . . . 119

8.1.5 Another look at current benchmarks 120

8.2 Future Work . 120

8.2.1 Active Learning and G-FSOD . 120

8.2.2 Sampling strategies . 121

8.2.3 Resource Requirements . 122

A Full Results 123

A.1 Ablation Experiment: Gradient Averaging 123

A.2 Additional Results for Gradient Methods (COCO) 124

A.3 Complete Results for Gradient Methods (VOC) 124

vii

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Contents

A.4 Complete Results for Sampling Methods (VOC) 126

Bibliography 128

viii

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

List of Figures

2.1 Summarised GAN architecture diagram 9

2.2 A basic Autoencoder architecture, adapted from Yang et al. 2019 [Yang

et al., 2019] . 11

2.3 A Variational Autoencoder architecture, from Yang et al. 2019 [Yang

et al., 2019] . 12

2.4 Prototypical networks in few-shot learning, using an existing support set.

A sample x’s class is determined by its proximity to learned centroids

Ci. [Snell et al., 2017] . 19

2.5 DeepEMD network diagram from Zhang et al. [Zhang et al., 2020] . . . 20

2.6 The working of Model-Agnostic Meta Learning (MAML), illustration

from the original paper [Finn et al., 2017]. θ denotes the initial param-

eters, and LT the loss gathered over testing of random meta-training

tasks Ti . 22

2.7 Diagram of Relation Network for FSL image classification from [Sung

et al., 2018] . 24

2.8 Network Architecture Search diagram from Santra et al. [Santra et al.,

2021] . 26

2.9 Knowledge Distillation diagram from Feng et al. [Feng et al., 2023] . . . 27

2.10 Diagram illustrating jigsaw pretext task from Norooz et al. [Noroozi and

Favaro, 2016] . 29

ix

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
List of Figures

3.1 Number of categories per image in COCO vs in other datasets. Diagram

from the original COCO paper [Lin et al., 2014]. SUN [Xiao et al., 2010]

and ImageNet are classification datasets, which were included simply

because COCO could be used for classification as well as detection. . . 40

3.2 IoU illustrated. The green area is the ground truth, the orange area the

prediction, the blue one the intersection. 41

3.3 Fast R-CNN by R. Girshick (2014) [Girshick et al., 2014] 43

3.4 You Only Look Once by J. Redmon [Redmon et al., 2016] 44

3.5 FSRW diagram by Kang et al. [Kang et al., 2019]. Note the shared

classifier-regressor from YOLO and the additional reweighting module. . 46

3.6 DeFRCN diagram by Qiao et al. [Qiao et al., 2021], with GDL denoting

gradient-decoupling layers, PCB the prototypical calibration block, and

yellow boxes denoting trainable modules. 49

3.7 Min-max margin diagram by Li et al. [Li et al., 2021a] 51

3.8 Neural Collapse diagram from Kothapali et al. [Kothapalli, 2022] The

blue balls represent final layer activations, red vectors the final layer

classifier. 53

3.9 Retentive R-CNN diagram by Fan et al. [Fan et al., 2021] 54

3.10 End-to-End Object Detection with Transformers diagram Carion et al.

[Carion et al., 2020] . 55

3.11 Example of ’redshank’ from ImageNet vs ’bird’ from the VOC novel

training set (first subset) . 58

4.1 An illustration of a Progressive Neural Network [Rusu et al., 2016], where

h columns are added to the right for each new task and a is a new set

of weights for lateral connections between tasks. Diagram by Luo et

al. [Luo et al., 2020] . 67

4.2 Simplified rendering of the A-GEM algorithm, with gnovel as the current

task gradient and gbase as the gradient on samples from all previous

tasks. The result is gproj . 74

x

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
List of Figures

4.3 Illustration of Constrained Fine-tuning Approach by Guirguis et al. [Guir-

guis et al., 2022]. Novel gradient shown in red, base gradient in black.

If gbase ⊥ gnovel > 0, CFA will project gbase onto gnovel and vice versa,

then average their projections. Otherwise it simply averages gbase and

gnovel. 75

5.1 Usage of related concepts across the fields Continual Learning and G-

FSOD. Solid lines indicate known connections between the fields at the

time of writing. 81

6.1 Illustration of sample ranking methods: Prototype Distance (left) versus

Prototype Distance Ratio (right). r denotes the ratio between prototype

distances to a given sample. 100

6.2 Most important instances for class “Bike” as captured by ProtoDist Ra-

tio (Left) vs ProtoDist (right). Simple ProtoDist picked an instance

whose features substantially overlap with “Person” due to the annota-

tions, but is close to “Bike” as well. By contrast, ProtoDist Ratio picked

an instance that does not lend itself to confusion: the overlapping classes

(“monitor” and “potted plant”) have distant prototypes. 101

6.3 Bottom-K sampling (above) simply picks the samples which minimise

the chosen metric, while Histogram sampling (below) takes one item

from each bin, starting from the first and wrapping back around until

the shot quota is reached. 102

7.1 5-shot results on VOC set 1, with Averaged referring to 10-split averaged

metrics from TFA and FSRW referring to original Split 0 alone. 107

7.2 Gradient correction methods with memory replay: G-FSOD results on

10 COCO data splits. DeFRCN was used as the base method in every

row. 110

xi

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
List of Figures

7.3 Average final accuracy across tasks for different CL methods on CI-

FAR100, with various memory budgets (logarithmic). We can see that

while CFA improves upon A-GEM and does not suffer from high vari-

ance, it does not outperform simple ER in a class-incremental setting. . 111

7.4 Sampling methods with memory replay: G-FSOD base/novel AP on

5-shot COCO, averaged over 10 data splits. DeFRCN was used as the

base method in every row.The old sampling method is named “Original”,

unranked with class priority is “Random” and PD stands for Prototype

Distance. 115

7.5 Sampling methods with memory replay: G-FSOD base/novel AP on 5-

shot VOC-1, averaged over 10 data splits. DeFRCN was used as the

base method in every row. 116

xii

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

List of Tables

2.1 Accuracy table of classification methods surveyed in this chapter, some

of whom from Tian et al. [Tian et al., 2020] 35

3.1 Novel Average Precision on COCO, FSRW data split. Method types are

FT=FineTuned CNN, ML=Meta-Learned CNN, TH=Transformer Hybrid 59

3.2 Generalised FSOD results on 10 COCO data splits: base/novel Aver-

age Precision. Asterisk (*) indicates experiment was only performed on

split 0, while question mark (?) indicates no Confidence Interval was

published. Any confidence intervals are calculated at 95%. 60

4.1 Final accuracy on 10-Task CIFAR100, collated by Van De Ven et al.

[van de Ven et al., 2022]. Joint refers to training the model from scratch

on data from all classes, for a simple baseline that is similar to Prabhu

et al.’s [Prabhu et al., 2020]. We have highlighted the top 2 methods in

each setting. 77

7.1 Effect of mini-batch size b on VOC mAP (Class Split 1), where b is the

global batch size (16) divided by number of GPUs 107

7.2 Gradient correction methods: G-FSOD base/novel AP (Average Preci-

sion) on 10 VOC data splits for class split VOC-1. 110

7.3 Gradient correction methods with memory replay: G-FSOD results on

10 COCO data splits. DeFRCN was used as the base method in every

row. 111

xiii

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
List of Tables

7.4 Final class accuracy on 10-task CIFAR100 in a class-incremental setting,

20 samples per class, averaged over 10 seeds. 112

7.5 Final class accuracy on few-shot fine-tuning scenario, with abundant

Task-1 samples, 10 memory samples and 10 few-shot samples on Task-2.

Results were averaged over 10 seeds. 113

7.6 Gradient correction methods with regularisation: G-FSOD results on 10

COCO data splits. DeFRCN was used as the base method in every row. 113

7.7 Replay Sampling Strategies: G-FSOD base/novel AP on COCO,

averaged over 10 data splits. The baseline labelled as “Original” uses

the same random sampling and instance limit as TFA. (∗=paper’s results)114

7.8 Study of Replay Strategies: G-FSOD base/novel AP on VOC Split

1, averaged over 10 data splits. The DeFRCN baseline labelled as

“Original” uses the same random sampling and instance limit as TFA.

(∗=paper’s results) . 115

7.9 Ablation Study: G-FSOD base/novel AP on VOC Split 1 with 5

shots, averaged over 10 data splits. 117

A.1 Gradient methods: G-FSOD results on 10 VOC data splits. V anilla

indicates the default DeFRCN training process. 124

A.2 Gradient methods: 30-shot G-FSOD results on 10 COCO data splits.

DeFRCN was used as the base method in every row. 124

A.3 Gradient methods: G-FSOD results on 10 VOC data splits for class split

VOC-1. 125

A.4 Gradient methods: G-FSOD results on 10 VOC data splits, for class

split VOC-2 . 125

A.5 Gradient methods: G-FSOD results on 10 VOC data splits, for class

split VOC-3 . 126

A.6 Study of Replay Strategies: G-FSOD base/novel AP on VOC Split

1, averaged over 10 data splits. The DeFRCN baseline labelled as

“Original” uses the same random sampling and instance limit as TFA.

(∗=paper’s results) . 126

xiv

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
List of Tables

A.7 Study of Replay Strategies: G-FSOD base/novel AP on VOC Split 2,

averaged over 10 data splits. 127

A.8 Study of Replay Strategies: G-FSOD base/novel AP on VOC Split 3,

averaged over 10 data splits. 127

xv

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Acknowledgements

I would like to thank my first supervisor, Prof Marc Roper for guiding me through

the program, the experimental side and regularly reviewing my thesis. I am also very

grateful to my second supervisor, Dr Andrew Abel for helping me with the thesis and

working on the submission of the insights from this work for publication. Special thanks

to my family and friends for their moral support.

In addition, this project would not have been possible in its current form without

the computing resources provided by the ARCHIE-WeST project and funded by the

University of Strathclyde.

xvi

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Chapter 1

Introduction

Research Problem

The most popular Deep Learning models to solve image tasks are normally trained

on millions of data samples. However, while general image recognition models such as

ResNet [He et al., 2016] and DenseNet [Huang et al., 2016] can be trained on datasets

containing thousands or millions of images, some problems relating to specific domains

only provide low amounts of data for training.

This lack of data can be due to logistical reasons making the collection of a large

number of samples impossible, or legal reasons such as anonymity requirements. The

application of the usual architectures is thus hampered, since the resulting model may

not converge at all, and the distribution of a small dataset may not represent real-world

conditions.

As the size of a training set increases, the probability of training a bad classifier

decreases. This was mathematically proven by Anselm Blumer [Blumer et al., 1987].

His work states the probability that a poorly trained classifier, whose accuracy is the

same as random chance, can be correct with m training samples is less than r(1− ϵ)m

. In this formula ϵ denotes the true error rate, r the number of hypotheses and m the

number of data points. It follows that when m is a very low number, this theoretical

bound becomes relatively high, making the achievement of good results in a test setting

particularly challenging.

1

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 1. Introduction

Additionally, the bound mentioned above is not a guarantee [Domingos, 2012],

since the probability of the classifier itself being a bad one depends on the number

of dimensions, which is often doubly exponential. This phenomenon was named the

“curse of dimensionality” [Richard Bellman, 1957]. This is more so true for image

processing, where the number of pixels can be considered the number of dimensions

[Domingos, 2012], similarly to how columns are considered dimensions in tabular data.

Compressing those dimensions into a space where it’s computationally feasible to learn

high-level feature representations is vital for a learner, but it relies on correlations

between dimensions (or pixels) which are harder to find with few samples.

On the empirical side, a study by Luo et al. [Luo et al., 2019] quantified the impact

of the size of generic datasets on the performance of ResNet, showing a sharp accu-

racy drop when dataset size was reduced by a factor of 5. For an applicative example,

Dawson et al. [Dawson et al., 2023] used different geological datasets for a similar ex-

periment across popular CNN architectures, confirming that smaller datasets perform

worse in a test setting due to overfitting.

Few Shot Learning

The field known as Few-Shot Learning (FSL) seeks to train models on a very modest

number of samples. While a few-shot model’s performance may not match the one of a

model trained on massive amounts of data, it is possible to significantly improve their

performance with respect to standard baselines.

One of the main approaches taken in FSL is to adapt common information from

similar domains. Transfer Learning is practice of pre-training a model on a large

standard dataset, and fine-tuning it on a novel one in a shorter training cycle. While

transfer learning by itself may not be enough to solve the lack of novel data [Bernico

et al., 2019], given it requires a slightly similar pre-training domain, it is usually applied

in conjunction with other techniques.

A well known way to make the best out of existing data is Meta-Learning, or

learning how to learn [Vilalta and Drissi, 2002]. It aims to train a “meta” model that

2

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 1. Introduction

observes the training of downstream models on unrelated, data-abundant tasks. The

meta model then employs that knowledge to guide the training of a few-shot model, by

having the starting weights be the reusable functions it learned, and picking appropriate

hyper-parameters.

Lastly, overfitting is an ever-present concern when data is scarce. Some methods

focus on the use of distance metrics to separate class representations instead of just

linear layers. This is known as Metric learning [Suárez et al., 2021].

Few-Shot Learning experiments make use of little data, so they’re often described

as N -way, K-shot tasks [Vinyals et al., 2016], where N is the number of classes and K

the number of samples of class. For object recognition and detection tasks, common

values of K are 1, 5 and 10. More information on few-shot classification is available in

Section 2.7: Benchmarks.

It is also possible to perform classification when K = 0: this is known as Zero-

Shot Learning. In the absence of examples, classification requires additional semantic

content, and is thus considered out of scope for this paper.

In a Generalised Few-Shot setting, the model has to learn a new few-shot dataset

without decreasing performance on the original large-scale data. This can be of use in

a number of practical applications, such as wanting to detect specific vehicles while still

being able to detect a car. This is the specific case we’ll be focusing on in the context

of FSL.

Continual Learning

Another problem that standard models and optimisers cannot cope with is that some

real-life settings continuously generate data points belonging to new classes, such as

user recommendations [Portugal et al., 2018] or continuous remote sensing [Li et al.,

2020a]. This task is known as Continual Learning (CL). Running simple fine-tuning on

the new data will give rise to a problem known as catastrophic forgetting, where the

model will perform worse on older data to improve on the latest data. This is usually

caused by overfitting on novel data, or interference between novel and previous data.

Catastrophic Forgetting relates to a problem known as the stability-plasticity dilemma,

3

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 1. Introduction

wherein prioritising the stability of performance on base data will harm its performance

on novel data, and vice versa.

The task of generalised fine-tuning is close to Continual Learning, as old data may

not be available, but it is different from CL as there are only two sets of classes: the

base ones with abundant data and the novel few-shot ones.

Objectives

This project explores machine learning methods that work in a few shot learning set-

ting, and investigates the integration of Continual Learning techniques used to prevent

overfitting to improve transfer for Generalized Few-Shot Learning methods.

We ask the following research questions:

• Do methods from the field of Continual Learning improve fine-tuning performance

in the Generalised Few Shot Learning setting?

• Can we perform such an improvement in a way that’s easily adaptable and model-

agnostic, by focusing on methods that manipulate gradient descent?

We constrain ourselves to enhancing training regimes, avoiding additional resource

requirements during deployment.

Contributions

Our work contains several key contributions. First, we provide a comprehensive overview

of the literature in the field of Few-Shot Learning, and discuss how some Generalised

FSL methods relate to Continual Learning principles.

Next, we show that gradient correction methods do not improve performance, and

can harm it unless the gradients are averaged due to the learning objectives not being

separate.

We then perform various experiments on base set sampling, including the removal

of the sample limit and mini-batch balancing. We identify that selecting base samples

depending on their absolute distance to their respective prototype yields a base AP

4

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 1. Introduction

improvement, but using the ratio of distances to the correct prototype can yield a

further improvement.

We conclude with the recommendation that G-FSOD research should further inves-

tigate sampling strategies from the Continual Learning field.

Structure

Chapter 1 - Introduction currently providing a short summary of the problem,

related tasks and research objectives.

- Part I. This part of the thesis is a survey of ongoing development of methods

in the field of Few-Shot Learning, starting from classification methods, relating their

advances to the FSOD task, and discussing the relationship between Continual Learning

methods and G-FSOD methods. We provide some suggestions for future research.

Chapter 2 - Classification focuses on Few-Shot Classification. This is because

many methods which we explore later were introduced in this context. We also detail

how some domain-agnostic methods have been used in a few-shot setting.

Chapter 3 - Few-Shot Object Detection is an overview of Object Detection

techniques and the adaptations which have been investigated for a few-shot setting.

Chapter 4 - Continual Learning outlines various continual learning tasks and

details the various methods proposed to solve them, with a focus on gradient methods.

It also shows how Class-Incremental Learning benchmarks share many similarities with

standard fine-tuning tasks.

Chapter 5 - Commonalities Between Fields outlines some parallels between

advances in Continual Learning and Generalised Few-Shot Object Detection which we

consider important.

- Part II. In this part we discuss our rationale and experimental plan. After

conducting experiments on gradient correction and sampling methods, We display our

results, analyse them and draw overall conclusions.

Chapter 6 - Methodology outlines the methods chosen to fulfil the objectives

mentioned above: evaluate the effectiveness of known gradient manipulation methods

and sampling strategies as well as our own variations.

5

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 1. Introduction

Chapter 7 - Experiments lists the conditions and the results of our experiments,

then discusses why some of the results contradict an earlier study while reinforcing

another.

Chapter 8 - Conclusions summarises our findings and contributions to the field,

while charting some possible avenues to explore.

6

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Part I

7

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Chapter 2

Few-Shot Classification

In this chapter we provide an overview of related research from the Few-Shot Classifi-

cation setting. While the main task explored in this work is Few-Shot Object Detection

(Chapter 3), many of the methods applied to FSOD were originally introduced for the

task of image classification. This chapter explores the insights behind them, as well as

potential advantages and disadvantages.

We start by exploring the most intuitive option: creating new samples for the

network to train on in Dataset Augmentation. We cover relatively simple general-

purpose methods in Classic Methods. The way we categorise most recent research

is similar to the one used by Antonelli et al. [Antonelli et al., 2022], which groups

approaches based on the distinction between metric based methods and meta-learning

based methods. The former deals with overfitting by learning how to cluster samples

based on a certain metric, and the latter learns a general-purpose classifier that can be

easily fine-tuned. Finally, we investigate some field-agnostic methods that can be used

to modify all existing architectures and evaluate the impact of self-supervision.

2.1 Dataset Augmentation

Several methods have been devised to deal with the issue of low dataset size. One of

the most intuitive ones is to simply introduce more data by modifying the training

samples, also known as data augmentation. Algorithmic methods such as rotation and

8

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

cropping have been used for large-scale architectures since AlexNet [Krizhevsky et al.,

2012]. They improve networks’ ability to generalise object detection with regards to

simple image transforms, such as changes in position, rotation and colour patterns, but

are not enough to solve data scarcity on their own. The downside is high correlation

between training data samples does not help the model learn a broad distribution,

and can in fact lead to overfitting on small sample sizes [Shorten and Khoshgoftaar,

2019]. Furthermore, the training time usually increases with each augmentation method

employed, and it may provide diminishing returns.

2.1.1 Generative Adversarial Networks

Another data augmentation approach is to train a Generative Adversarial Network

(GAN) [Goodfellow et al., 2014a] to generate extra samples for the training set. While

GANs are generally used on large datasets, there have been a few advances towards

applying them to a few-shot scenario, generating new samples from a few input images.

Figure 2.1: Summarised GAN architecture diagram

Figure 2.1 shows the functioning of the original GAN architecture, whereby a dis-

criminator network outputs whether an image created by a generator network is real

or synthetic. Springenberg [Springenberg, 2015] improved upon this architecture by

9

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

having the discriminator act as a classifier: instead of just outputting a truth score it

would also output the category a sample belonged to.

Antoniou et al. [Antoniou et al., 2017] were the first to train a GAN to augment

data for another network, and explored its use in a few-shot setting. Ali-Gombe et

al. [Ali-Gombe et al., 2018] built on some of these insights to train a few-shot fine-

grained classifier. Few-Shot GAN [Robb et al., 2020] achieved convergence by using

pre-training and restricting fine-tuning to a small number of trainable parameters rep-

resenting independent features. FIGR [Clouâtre and Demers, 2019] instead applied a

paradigm called Reptile to the task, which will be later discussed in the Meta-Learning

section (2.4) together with MetaGAN [ZHANG et al., 2018].

However, GANs can easily run into problems when generating new training data.

A GAN may simply fail to converge and produce useless data. Another common failure

mode is a GAN producing the same kind of output instead of properly modelling the

distribution of existing data. This is known as mode collapse. A GAN will have

difficulty interpolating relevant latent features based on just a few shots, and it may

instead memorise the samples, causing it to display abrupt transitions, as explored by

Radford et al. [Radford et al., 2015] in their seminal paper on GAN-based unsupervised

learning. Current research often focuses on trying to transfer relationships between

features across domains to avoid this problem.

Even if a GAN manages to overcome mode collapse, it still does not necessarily

solve the problem of the downstream classification model not generalising outside the

training and testing sets, since such extra samples generated from a small dataset are

unlikely to match test conditions. Finally, most of the papers cited in this section

have been tested on fairly uniform datasets such as MNIST [LeCun et al., 1998] and

SVHN [Netzer et al., 2011] instead of more varied ImageNet-derived ones which would

be closer to a real-world use case. So far, methods other than GANs may be better

suited for few-shot learning, which will be explored in the following sections.

10

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

2.1.2 Variational Autoencoders

An alternative to GANs for sample generation is a Variational Autoencoder (VAE). An

autoencoder is a simple approach that consists of two sequences of network layers: an

encoder, and a decoder. The encoder shaped like a bottleneck, and it filters the input

down to a few significant variables in a low-dimensional space. The decoder is tasked

with reconstructing the output from those variables. The output is then compared to

the original input, and usually the Mean Square Error between them will inform the

weight update step. See Figure 2.2 for an illustration.

Figure 2.2: A basic Autoencoder architecture, adapted from Yang et al. 2019 [Yang
et al., 2019]

This architecture is very popular for compressing data [Berahmand et al., 2024]

since it can return a simplified version of an input, but it is not good enough for data

generation, since it is simply attempting to replicate the original input, which will lead

to overfitting.

By contrast, a Variational Autoencoder saves statistics about the input distribution

such as mean and standard deviation to regularise the latent space, and randomly

samples latent variables to recreate the output. This adds a degree of diversity in the

output which helps generate extra data samples. Refer to Figure 2.3 to see how a VAE

network operates.

The few-shot setting makes data generation with VAEs still a challenge, since there

are so few samples to establish a distribution from, and generating new images might

create spurious features for the classifier to train on. Schonfel et al. [Schonfeld et al.,

11

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

Figure 2.3: A Variational Autoencoder architecture, from Yang et al. 2019 [Yang et al.,
2019]

2019] tackled this by generating low-dimensional features instead. Some of the inputs

were from a large base training set to generate those features for novel ones. They

tested their results in Generalised Zero-Shot and Few-Shot Learning, surpassing previ-

ous GAN-based approaches. Xu et al. [Xu and Le, 2022] improved upon their work by

picking the most representative samples from base classes, before generating the new

features. This was done by selecting the samples that generated the most common

features, assuming such features followed a Gaussian distribution.

Part of the reason why VAEs are generally superior to GANs in a few-shot feature

augmentation context is likely due to their different objectives: a GAN has to reduce

loss for the discriminator to create realistic images, while a VAE has to reconstruct

them by modeling data distribution, and its resulting features are interpolated. Thus,

while images or features generated by a VAE may not match the expectations of a

human eye, they are less likely to cause the mode collapse mentioned in the previous

section 2.1.1.

Variational autoencoders are a valuable tool in FSL, although they require time for

training the autoencoder and generating the extra samples, and the generated samples

may not always be representative of their classes when some of the base features are

from a different domain.

12

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

2.2 Classic Methods

In this section we discuss some more traditional methods. They have not been devised

for FSL but we find they can be a good starting point for the FSL problem.

2.2.1 Boosting

Another way to improve generalisation is to use an ensemble of “weak learners” creating

different feature maps from different subsets of the training data, whose combined

predictions tend to prove more accurate than those of a single model. Combining

such learners in parallel and merging their predictions as the final step is known as

bagging [Breiman, 1996], while combining learners in a sequential manner, with each

subsequent “weak” predictor correcting the previous one’s output is known as boosting

[Freund et al., 1999].

While ensemble learning is often used with traditional analysis methods, there have

been studies to integrate it with Convolutional Neural Networks. This technique can

make use of transfer learning as well, since the underlying individual CNNs can be

initialised with pre-trained weights. For example, Taherkhan et al. [Taherkhani et al.,

2020] and Ren et al. [Xudie Ren et al., 2017] combined popular boosting algorithms

to perform classification tasks. The method itself is quite versatile, having been used

for counting objects [Walach and Wolf, 2016], and for few-shot instance segmentation

[Nguyen and Todorovic, 2019] with good results in their respective fields.

However, some of these papers used their own CNN [Taherkhani et al., 2020] or

similar works [Xudie Ren et al., 2017] as a baseline, to show any CNN-based method

can be improved by boosting, rather than trying to compete with the state of the art

in large models. Additionally, surveys in the field, while very useful, often focus on

large-scale rather than few-shot settings [Rahman et al., 2021].

One of the exceptions to this is Zhang et al. [Zhang et al., 2021], who in 2021 used

boosting in a few-shot learning context on challenging datasets, albeit their work has

flown under the radar at the time of this writing. They combined a CNN with two CV

algorithms, Histogram of Oriented Gradient [Dalal and Triggs, 2005] and Local Binary

13

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

Pattern [Ojala et al., 2002] for boosting. Their intuition was that, although CNNs have

trouble learning features from a handful of examples, algorithmic methods can still

be relied upon to improve feature detection. They achieved impressive performance,

demonstrated with various baselines from the FSL field.

Boosting methods require more computational resources, not just at training time

but in deployment as well. If inference time is to be kept constant, then the individ-

ual component models have to run in parallel, increasing memory and computation

requirements. Conversely, running the models sequentially and holding the results for

each stage will require less memory but increase inference time.

When boosting provides better results its usage should be evaluated for a cost-

benefit analysis. It can be a useful paradigm but we did not make use of it, since one

of the aims of this project is to avoid additional resource requirements in deployment.

2.2.2 Transfer Learning

Transfer Learning involves two phases: pre-training and fine-tuning. First, in the pre-

training phase, the model is trained on a massive generic dataset such as ImageNet [Jia

Deng et al., 2009]. Then, in the fine-tuning phase, the last layer which determines the

output is removed or modified, some of the initial layers may be frozen to preserve

low-level features, and the model is trained on the actual dataset for the task at hand.

Its helpfulness in the context of few-shot learning derives from the original model

having already learned low-level features such as edges, but it will not incorporate

domain-specific data, and high-level features will not be transferable unless the domain

of the original model was to some degree similar to the target one. More information

about what constitutes “similarity” is available in Section 2.7 - Benchmarks.

The work by Dawson et al [Dawson et al., 2023], previously mentioned in the In-

troduction (Chapter 1), found that transfer learning methods are still very prone to

overfitting on small datasets (1-10k data points) when results were compared with a

larger dataset of 104k data points.

While transfer learning by itself is not enough to solve the FSL research problem,

it can be combined with other techniques to speed up training. A review paper [Song

14

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

et al., 2022] mentions the limitations of domain transfer but points out its usefulness

when integrated with other methods.

Using pretrained weights in FSL is a common practice, so many FSL works use

well-known backbones such as ResNet [He et al., 2016] and VGGNet [Simonyan and

Zisserman, 2014] When the novelty of a work is not just predicated on a custom CNN

structure, some authors [Tian et al., 2022] [Nguyen and Todorovic, 2019] run their

experiments on top of different pre-trained convolutional backbones, to include fair

comparisons with previous works.

2.3 Metric Learning

Metric learning aims to find distance metrics to separate instances of different classes

and aggregate instances of the same class, to enhance the performance of similarity-

based algorithms [Suárez et al., 2021] . This section explores metric learning methods

that have been used in a few-shot settings.

2.3.1 Siamese Networks

In a Siamese Network, introduced by Bromley et al. [Bromley et al., 1993] in 1993: two

sub-networks are trained with different inputs but share their weights, meaning they

have fewer parameters to learn. It is quite proficient at identifying class similarities

from a low number of samples, though it generally requires more training time than a

single network. The reason Siamese Networks qualify as metric learning is that they

use loss functions tailored for them, most commonly contrastive loss [Hadsell et al.,

2006] [Chopra et al., 2005] and triplet loss. [Schroff et al., 2015]

Contrastive loss uses two image inputs and calculates their distance, if it is smaller

than a certain margin images are treated as belonging to the same class, otherwise as

different classes and the prediction is penalised.

Triplet loss uses three images: an “anchor” (the input), a “positive” one (labelled

as belonging to the same class) and a “negative” one (labelled as belonging to a different

class). The function minimises the difference between the input and positive one, while

15

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

maximising the difference between the input and the negative one.

The usage of a Siamese Network in the context of few-shot learning was investigated

by Koch et al. [Koch, 2015], reporting a significant performance boost, albeit their

experiments were run on relatively simple datasets such as MNIST [LeCun et al., 1998]

and OmniGlot [Lake et al., 2015]. Further discussion of datasets is available in Section

2.7 - Benchmarks.

Bootstrap Your Own Latent (BYOL) [Grill et al., 2020] used Siamese Networks

and metric learning to adapt learned features without using positive-negative pairs.

It managed to achieve good results by only using a small subset of labeled data for

ImageNet, and without having to retrain the network for new data. Their approach

used one branch of the network as a predictor for the other.

Siamese Networks can develop an undesirable behaviour: when two images fed to

the network at the same time are too similar, the network may learn the same exact

representation for both. This “collapse” was investigated by Chen et al. [Chen and

He, 2020], who developed a Siamese model simpler than BYOL which it shares some

similarities with, such as not using positive-negative pairs and having a target and

prediction branch, but it relies on a stop-gradient operation to prevent the prediction

target branch from adopting the same solution as the predictor.

However, it is important to remember while the two works above provide a useful

way of learning with relatively few labeled samples, their experiments used subsets of

data which are still in the order of hundreds or thousands of images, rather than ten

or less.

2.3.2 Contrastive Learning

Contrastive Learning is a field that focuses on the creation and application of proper

contrastive loss functions. As mentioned in section 2.3.1, contrastive loss relies on

maximising intra-class distance and minimising inter-class distance. Since Contrastive

Learning networks rely on a distance metric, they are classified as a form of metric

learning.

One of the earliest contrastive functions is Noise Contrastive Estimation (NCE)

16

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

[Gutmann and Hyvärinen, 2010]. It attempts to solve the task of estimating the proba-

bility a sample is a “positive” one by presenting it as a linear regression task, where the

goal is to estimate the parameters of the probability distribution function. It functions

effectively as a binary classifier to establish whether a chosen sample is “real” (positive)

or “noise”.

It was originally devised for language processing. Since comparing a sample against

all possible words in the vocabulary was not feasible, it uses random negative sampling,

which provides a good enough approximation of the training set’s properties.

InfoNCE [van den Oord et al., 2018] is a newer loss function for contrastive learn-

ing. While similar to NCE, in that it tries to find a “real” sample in a pool of “noise”,

it generalises previous insights by turning it into a custom cross-entropy loss whose

value depends on the similarities between data.

This makes InfoNCE particularly apt for unsupervised computer vision problems, as

demonstrated by He et al. [He et al., 2020]. Building on the insight of other unsupervised

methods, they treat images as a dictionary and train an encoder network to perform

image based look-ups without supervision by minimising InfoNCE loss. To stop the

encoder from changing too quickly and failing, they use a momentum function, which

works well in smoothing encoder outputs.

SimCLR [Chen et al., 2020] adopted a simpler approach, as per the name (CLR

stands for Contrastive Learning of visual Representations). The authors have the net-

work look at randomly augmented views of the same images and minimising a loss

function similar to InfoNCE (NT-Xent) which includes a temperature hyperparameter.

The positive pairs derived from the same images are pulled closer in the representation

space and the negative ones pushed further away. SimCLR achieved very good results

against ImageNet with only 1% of labeled data, but it was not tested in a stricter

few-shot setting with 5 or 10 samples.

One drawback of NCE is it considers all of the negative samples drawn to be the

same “noise”, without considering any relationships they might have. Recent research

[Kalantidis et al., 2020] has proven that investigating strategies to pick “hard” negative

samples improves learning and requires less memory for sample dictionaries.

17

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

Contrastive Learning methods are used in tasks other than classification, which is

why we mention them again in Chapter 3. While contrastive learning may not suffice to

adapt known methods to solve FSL, since it usually changes just the loss formulation,

it can be used together with other approaches.

2.3.3 Matching Networks

Proposed by Vinyals et al. [Vinyals et al., 2016], this method is based on the idea

of a weighted, fully differentiable nearest-neighbours classifier. The motivation is to

solve the need for large numbers of parameters, and thus training data, by integrating

non-parametric methods, in this case a kNN-like algorithm.

During training, the network learns through an LSTM the functions to retrieve the

most important embeddings, as a form of attention. During inference, an input sample

is compared with every sample in the training set. The functions learned by the neural

network create final embeddings, the embeddings are compared using cosine distance

to check their similarity, and the labels are predicted via SoftMax. According to the

authors, part of the importance of their method to few-shot learning is that this process

can be applied to unseen classes without changes to the network itself.

One downside is that, since it needs to compare every input to all support samples, it

does not scale well with dataset size. Although few-shot learning datasets are relatively

small, this would be a constraint in deployments where computing power is limited.

The paper also helped introduce the concept of episodic training in FSL. In each

episode, a subset of classes is picked from the training set, each with a handful of

examples split into training (support) and test (query) sets. The network then learns

to solve a large number of these sub-problems or “episodes”. This could be seen as a

form of Meta Learning, or learning how to learn, more information on which is available

in Section 2.4 - Meta Learning.

2.3.4 Prototypical Networks

Prototypical Networks [Snell et al., 2017] compute a centroid vector for each class, called

a “prototype”, that represents a cluster of samples. Incoming input data is classified

18

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

based on the distance between prototypes. While this may be reminiscent of traditional

clustering algorithms, there are some key differences. The prototypes are more than just

a “mean” vector, such as in k-means. Rather, they are learned through a deep neural

network, which learns to map points to their corresponding prototypes. To learn the

distance functions, networks use differentiable, convex functions (Bregman divergences)

for regular exponential families to estimate distance between data points and centroids.

Additionally, the input for learning the prototypes is provided via random sub-sampled

batches, which means the samples don’t have to be present in memory like in k-means

clustering.

Figure 2.4: Prototypical networks in few-shot learning, using an existing support set.
A sample x’s class is determined by its proximity to learned centroids Ci. [Snell et al.,
2017]

According to the authors, when each class’ train set contains only one shot (one-

shot learning), Prototypical Networks and Matching Networks become equivalent, since

there is only one support sample per class. However, with multiple data points per class

(i.e. few-shot rather than one-shot) prototypical networks are computationally much

more efficient than matching networks, since the input sample is only compared to the

centroids rather than every sample in the support set. A good visualisation of this

was provided by the authors of the paper in Figure 2.4. The method can be used for

supervised as well as unsupervised learning (see Section 2.6: Unsupervised Learning).

Prototypical learning can also be combined with contrastive learning, as shown

by Li et al. in their 2020 paper, [Li et al., 2020b], albeit in a large-scale learning

context. Each image was assigned to different centroids, and a contrastive loss function

19

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

(ProtoNCE) employed to minimise distance to the most representative centroid while

maximising distance with the others.

While the performance of prototypical networks on their own has been surpassed,

the integration of prototypes is still a good addition to the toolkit of few-shot learning

practitioners, and it has been employed in one of the baselines this work compares

against, as explained in Chapter 3 - Few Shot Object Detection.

2.3.5 DeepEMD

Earth Mover’s Distance [Rubner et al., 2000] is a general similarity metric built in the

context of image processing research. It treats the matching of different distributions

with signatures of varying sizes as a transportation problem, using the analogy of a

shoveler moving dirt from piles to holes. The DeepEMD network introduced by Zhang

et al. [Zhang et al., 2020] makes use of EMD as an image similarity metric, rather than

cosine or euclidean distance.

Figure 2.5: DeepEMD network diagram from Zhang et al. [Zhang et al., 2020]

While the DeepEMD backbone in Figure 2.5 above is reminiscent of Siamese Net-

works, it is not the same since, rather than just duplicating weights, it uses a cross-

reference mechanism that takes statistics of weights into account to devalue high-

variance background regions or non-correlated object parts. Their accuracy was im-

proved by the usage of a “Structured” FC layer with normalised weights, which learns

vector prototypes for each class to be later compared by EMD.

20

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

DeepEMD achieved competitive results in the context of few shot classification,

making it another baseline for few-shot learning methods that make use of metrics. It

uses Meta-Learning as part of its training loop, which we discuss in Section 2.4.

2.4 Meta-Learning

A branch of data science that is promising in the field of FSL is meta-learning: a model

can learn how to solve specific tasks by solving a generic set of training tasks as the

first step, then applying that knowledge to solve previously unseen tasks with a test

set. It usually operates on two levels, a “base” learner which is simply trained on actual

data, and a “meta” learner that holds general knowledge about learning derived from

the “base” one [Vilalta and Drissi, 2002].

Meta-learning is different from transfer learning. Instead of reusing a previously

trained network to learn different weights, it aims to train a completely new network

with parameters learned from training for other tasks, such as weight initialisations,

learning rate and gradient updates. In addition, while pre-training focuses on trans-

ferring features across domains for a single task such as classification, meta-learning

networks train the “base” learner on a number of different pretext tasks. [Song et al.,

2022]. In the rest of this section, we offer a short history of meta-learning and how it

has been applied to the few-shot setting.

2.4.1 Optimisation Methods

Learning how to learn, how it was first described, was first investigated in the 1990s

[Vilalta and Drissi, 2002], but meta-learning with image processing techniques including

CNNs scaled poorly until the use of GPUs for experiments became widespread and

supporting infrastructure matured.

One of the first modern meta-learning works used Neural Turing Machines, a re-

current architecture for Turing Machines, for retrieving general knowledge information

[Santoro et al., 2016]. Training a meta-learner via a conceptually simpler Long Short-

Term Memory (LSTM) network was explored by Andrychowicz et al. [Andrychowicz

21

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

et al., 2016]. The authors used the parameters of the base learner such as the gradient

as the input for the LSTM cell, with the base learner’s updated state as the output.

By training the LSTM’s update function while training a base model on multiple tasks,

they were able to create a meta-learner that could generalise for unseen tasks.

The first work to adapt the method for a few-shot setting was by Ravi et al. in 2017

[Ravi and Larochelle, 2017]. In this work they also observed that standard gradient-

based descent resembles the cell state update in LSTM by changing the form of some

parameters. This proved useful as it made it possible to envision meta-learning without

LSTM.

Model Agnostic Meta Learning (MAML) [Finn et al., 2017] aims to learn the initial

weights for a base model by training on a random set of meta-tasks, so it can be

easily fine-tuned with a relatively small number of gradient updates (See Figure 2.6).

As described, the test error from the meta-tasks serves as the training error for the

meta-learner.

Figure 2.6: The working of Model-Agnostic Meta Learning (MAML), illustration from
the original paper [Finn et al., 2017]. θ denotes the initial parameters, and LT the loss
gathered over testing of random meta-training tasks Ti

Model-Agnostic refers to it not being dependent on any particular network archi-

tecture, since the meta-optimisation uses Stochastic Gradient Descent. This approach

makes it malleable for learning on small data sets without overfitting, and it has proven

better than regular transfer learning on benchmark datasets.

It was suggested by Raghu et al. [Raghu et al., 2019] that MAML’s effectiveness

lies in feature reuse, rather than just rapid learning. According to their findings, the

outer optimisation loop of the meta-learner does not necessarily find settings that make

22

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

specialisation easier, rather it leads to parameter values that correspond to reusable

features. They proved this empirically by freezing the last layers of the sub-network

that learns the specific task, and observing that performance was almost unaffected:

the meta-initialisation provided good features already.

Since then, a number of improvements have emerged over MAML. Meta-SGD [Li

et al., 2017] uses SGD just like MAML, but learns the update direction and learning

rate as well, rather than just the parameter initialisation. In the original MAML paper,

they mentioned that doing backpropagation twice across the base and meta network

is slow. Reptile [Nichol et al., 2018] is a simpler algorithm that uses a first-order

approximation instead, by just moving the inputs for the meta-learner slightly closer to

the minima obtained across various meta-tasks. While MAML typically uses shallow

networks to generalise better, thus limiting its effectiveness, [Sun et al., 2019] employed

deeper neural networks by having the meta-network learn how to scale and shift model

weights for different tasks.

Additionally, MAML evaluates multiple test images in a batch sharing a few statis-

tics, which makes a comparison with the other methods not entirely fair, given the

standard problem is to predict labels for one image at a time. More information on

this distinction is available in Section 2.6.1 - Transductive Learning.

2.4.2 Relation Networks and Meta-Learning

The idea of relation networks was first proposed by [Santoro et al., 2017]. The network

learned a function fθ to encode image feature maps and a function gθ which would

produce a relation score from the concatenated feature maps. Unlike older pipeline

methods, the network is trained fully end-to-end.

While this intuition was applied to visual reasoning in a question-answer architec-

ture for relating objects in the same image, which included a LSTM language processing

module, the image processing step was vital to some subsequent works in the field of

FSL.

In Sung et al.’s work [Sung et al., 2018], this relational image processing architecture

was applied to few-shot image classification (see Figure 2.7). One possible downside of

23

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

Figure 2.7: Diagram of Relation Network for FSL image classification from [Sung et al.,
2018]

this architecture is the added complexity during training as opposed to simple metric-

based methods and thus the possibility of diminishing returns compared to simpler

methods (see Section 2.8 for a performance comparison).

In the Latent Embedding Optimization method [Rusu et al., 2019], the authors

focused on the meta-learning optimisation of the network, by training it to generate

parameters via an encoder-decoder architecture combined with a relational network.

Meta-learning on these compressed features achieved better results than both MAML

and Relation Networks.

2.4.3 Other Combinations

Since Meta-learning is more of a paradigm rather than a specific optimisation or archi-

tecture, it can be utilised with other specialised approaches. A non-typical combination

involves training GANs with meta-learning to generate more training data. One

such work is Data Augmentation GAN (DAGAN) [Antoniou et al., 2017], although a

subsequent paper named MetaGAN [Zhang et al., 2018] claims that by treating gener-

ated data the same as the original training one it risks mode collapse (see 2.1.1). The

two papers are hard to compare as MetaGAN evaluated performance on top of differ-

24

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

ent base methods, while DAGAN did not test on miniImageNet. As for the method,

MetaGAN trained a discriminator to recognise the class of a sample as well as its real-

ness, treating generated data separately from genuine data. Additionally, their method

allowed sampling of unsupervised tasks for meta-training. Both meta-learning GANs

mentioned here can be integrated with any other FSL classification approaches such as

Matching Networks or Relation Networks.

Meta-learning has been used with Boosting (see Section 2.2.1) as well. Diversity

with Cooperation [Dvornik et al., 2019] combined meta-learning and prototypes with

an ensemble strategy of deep networks. At the end classifier outputs were averaged,

which outperformed the simple voting typical of boosting methods.

Although combining methods often improves performance, the caveats associated

with their component methods remain the same: boosting methods require extra re-

sources, and generative methods require extra training time, which may provide dimin-

ishing returns.

2.5 Network Architecture Enhancements

In this section, we discuss extended training methods that rely on modifying the ar-

chitecture of the network itself. These have the advantage of being independently

applicable to any method. Reviewing such enhancements will help us determine their

impact in the works we’ll be comparing, and whether our original view on deployment

resources may be too constraining.

2.5.1 Network Architecture Search (NAS)

While the standard way to create networks is to hand-code the layers, in NAS, an

algorithm or model tries to pick the optimal layer sizes and various other configurations

based on a search strategy, the network is trained and evaluated and its results fed back

into the searcher, as shown in Figure 2.8.

However, searching for an optimal architecture from scratch for any task is resource-

intensive. To help solve this, meta-learning has been applied to NAS as well. In M-

25

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

Figure 2.8: Network Architecture Search diagram from Santra et al. [Santra et al.,
2021]

NAS [Wang et al., 2020a] and Meta-NAS [Elsken et al., 2019], a network performs

meta-training on a number of dummy tasks and learns meta-weights that adapt to a

new task in just a few steps to obtain an optimal architecture. Both works achieved

better results than baselines such as MAML. However, it can take a long time to find

the best parameter combinations compared to other approaches.

Furthermore, according to Li et al. [Li and Talwalkar, 2020], random search with

early stopping can perform better than neural architecture search.

2.5.2 Knowledge Distillation

Knowledge Distillation (KD) is a training method where a “student” network tries to

keep its outputs as close as possible to the outputs of a “teacher” network. This is done

by adding a new term to the loss, often the MSE or the KL divergence between their

outputs [Kim et al., 2021]. This method was originally devised with the goal of model

compression by Bucila et al. in 2006. [Bucilǎ et al., 2006], to shrink the parameters of

a larger model (the teacher) into a smaller (student) network. It was formalized as an

approach by Hinton et al. in 2015 [Hinton et al., 2015]

An overview of the process is shown in Figure 2.9, whose authors [Feng et al., 2023]

used KD to facilitate deployment on low-resource embedded platforms. We can see

from the diagram that the use of two models during training is similar to Siamese

Networks (previously discussed in Section 2.3.1). However, while SiamNets use shared

26

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

Figure 2.9: Knowledge Distillation diagram from Feng et al. [Feng et al., 2023]

weights and different inputs to achieve close outputs, Knowledge Distillation has a

student network learn from the teacher using the same inputs.

When the teacher and student network architectures are the same, it is known as

Self-Distillation (SD). In this case distillation is not used for shrinking the network but

to improve baseline performance. While this process seems rather counter-intuitive,

Allen-Zhu and Li [Allen-Zhu and Li, 2020] conclude that the SD’s peformance boost

is due to the network learning different representations thanks to random initialisation

and consolidating them into a single model. SD has been frequently used in Few Shot

Learning, and has seen use in Few-Shot Object Detection as well, as we’ll discuss in

Chapter 3.

A successful application of Self-Distillation was in the popular meta-learning few-

shot classification baseline “A Good Embedding Is All You Need” [Tian et al., 2020].

At first, the authors used the union of all possible meta-training tasks during the pre-

training phase, instead of sampling them, and learned feature embeddings via ResNet.

They proceeded to use those embeddings to train a linear classifier. Surprisingly, they

found that using logistic regression as a final (base) learner was highly competitive with

state of the art meta-learning algorithms. When combined with Self-Distillation over

a number of iterations (termed “generations”), their method outperformed all prior

works, demonstrating how easily it can improve such a simple baseline.

Self-Distillation can form a baseline or be employed with other methods. While it

27

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

requires lengthier training, it does not require additional deployment resources. Given

our time constraints we will not make use of it, although experiments in this direction

might be a good extension to this work.

2.6 Reducing Supervision

Most of the methods described so far were primarily conceived in a supervised learn-

ing setting, albeit some such as ProtoNets [Snell et al., 2017] can be applied without

supervision. In Unsupervised Learning, there is no ground truth fed to the model:

the model has to learn to cluster together representations of the data.

Fei-Fei et al. [Fei-Fei et al., 2003] is a notable early example of one-shot learning

using unsupervised learning. They used algorithmic feature detection followed by a

Variational Bayesian method for approximating a probability distribution function in

order to classify object categories. Their experiments were applied to a small number

of examples (1 to 5) as well as larger sets for completeness.

Probability function estimators and clustering algorithms are generally framed as

unsupervised learning. As previously discussed in Chapter 1, dimensionality reduction

methods are needed to compress representations into a manageable space. This begs

the question of how to let a network learn high-level features without any human

supervision. The usual technique for this is called Self-Supervised Learning (SSL)

[Raina et al., 2007].

In SSL, training is performed via a neural network, and this network is pre-trained

on ad-hoc pretext tasks before the main “downstream” training. These tasks can

be applied to the original dataset or completely new data, and they don’t require

human annotation, just like the downstream task: the labels are generated together

with transformations on the data. One example pretext task would be predicting the

rotation of an image [Gidaris et al., 2018]. Another popular task is the jigsaw puzzle:

the image’s patches are scrambled, and the network has to put them back together, as

shown in Figure 2.10 [Noroozi and Favaro, 2016]. These tasks help the network learn

about general features such as rotation and shapes.

The use of pretext tasks may sound similar to meta-training, but it features a major

28

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

Figure 2.10: Diagram illustrating jigsaw pretext task from Norooz et al. [Noroozi and
Favaro, 2016]

difference. While meta-training tasks are randomly sampled, their labels usually require

human annotation. Some work has been proposed for making use of automatically

constructed tasks [Hsu et al., 2019] to merge the two approaches. In contrast, labels

for SSL tasks are always generated from transformations and such.

However, learned feature representations can be being overly dependent on the

chosen pretext tasks. Misra I. and Maaten, L. [Misra and Maaten, 2020] proposed

Pretext-Invariant Representation Learning (PIRL), which predicts image representa-

tions similar to the transformed ones but different from each other, in a fashion similar

to contrastive learning.

The work of Gidaris et al. [Gidaris et al., 2019] concatenated a self-supervised

learning stage with well-known metric learning methods, testing it on as ProtoNets,

which use Euclidean distance, and cosine-distance classifiers. They also had their own

take on the pre-training jigsaw task, introducing a task to predict the location of image

patches only relative to each other, rather than in the whole image.

According to their experiments, chaining SSL with cosine classifiers beat most of

the state of the art methods, save for A Good Embedding Is All You Need [Tian et al.,

2020] and DeepEMD [Zhang et al., 2020].

Since Unsupervised Learning often requires the exploration of similarity metrics,

and thus Contrastive Learning, it would be unfair not to mention UniSiam [Lu et al.,

2022]. In this paper, the use of self-supervised contrastive learning is investigated for

few-shot classification, aiming to maximise mutual information between augmented

29

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

views of the same image. Following previous work that finds InfoNCE is biased when

it comes to estimating mutual information, they propose another estimator for pre-

training, integrate Knowledge Distillation [Hinton et al., 2015] and the final classifica-

tion result is found to be fairly competitive with state of the art methods.

Self-supervision entails longer training time, but such methods are generally supe-

rior in performance to traditional methods. What’s more, it can be applied to few-shot

transfer learning as shown by Yu et al. in TransMatch [Yu et al., 2020b]. Since it can

be limited to the fine-tuning stage, a meta-learning approach is not required.

While method comparisons are not always straightforward, one of the most per-

formant methods is a modular combination of the methods explored so far: “Ensem-

ble Augmented-Shot Y-shaped Learning” [Bendou et al., 2022] makes use of a self-

supervised pre-training task (predicting object rotation), as well as prototypes for data

pre-processing and the classifier. The feature extractor can be optionally improved by

building an ensemble of ResNet12 backbones and reducing their parameters by pooling

to decrease resource requirements and avoid an unfair advantage over other methods.

It is one of the best methods surveyed so far, although at a cost of higher training time.

A summary of the performance of each approach explored so far is available under

Results (Section 2.8). The next sections explore why some historically included methods

have been excluded from comparisons, as they use a different evaluation setting (Section

2.6.1), and how performance is compared for FSL methods (Section 2.7).

2.6.1 Transductive Learning

Most of the supervised and unsupervised approaches explored in the previous sections

would fall under Inductive Learning: a model learns from a training set, then tries to

predict labels on a test set. On the other hand, Transductive Learning makes use of

an unlabeled test set as well to help model distribution. Although this deviates from

the common practice of keeping test sets separate, it can work in scenarios where data

to be tested is known in advance.

It is a reasonable compromise when the main obstacle to obtaining training data

is the lack of labels, since it can leverage feature distribution across the entire set to

30

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

generate “pseudo-labels” on unseen data. These are intermediate labels generated

by the network in a training cycle, which do not necessarily correspond to the final

predictions and they must be considered separately from actual ground-truth labels.

One of the first Transductive Learning works for a few shot setting was by Liu et

al. in 2019 [Liu et al., 2019]. In this paper, feature embeddings are constructed over

the entire set (train and test), and a Graph Neural Network is used to propagate labels

from the support samples to the unlabeled query samples.

An alternative to label propagation is embedding propagation, where the feature

embeddings are interpolated across the training and unlabeled test set [Rodŕıguez et al.,

2020]. In “A baseline for few-shot image classification” [Dhillon et al., 2019], The

authors simply fine-tune a pre-trained network using features from both the support

and query set to provide a simple baseline approach, and the results for this approach

are not distant from the state of the art.

“An Embarrassingly Simple Approach to Semi-Supervised Few-Shot Learning” in-

troduced MUSIC [Wei et al., 2022], a method based upon applying negative pseudo-

labels to samples over a number of iterations, thus learning a classifier by exclusion.

The number of iterations depends on the number of classes. The intuition behind it is

that negative labels can be easier to learn than positive ones.

Another interesting development which starts from relatively simple components

was contributed by Liu et al. [Liu Jinlu, 2020], who pointed out that when the few

available examples have a narrow distribution, the prototypes in a ProtoNet tend to

be heavily biased. They set about rectifying this bias by propagating pseudo-labels

to unlabeled samples, and achieved state-of-the-art results for their time. Their work

uses cosine rather than Euclidean similarity as a metric. Transductive Learning and

label propagation can be complemented by a meta-learning approach to pre-initialise

the weights, as shown by Dong et al. and Liu et al. [Dong et al., 2022] and [Liu et al.,

2022].

One flaw of previously mentioned transductive learning research is that the samples

are assumed to come from a normal distribution rather than a potentially skewed one.

In “Realistic Evaluation of Transductive Few-Shot Learning” [Veilleux et al., 2021] ,

31

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

the authors use a Dirichlet distribution for sampling benchmark data and re-ran most

previous authors’ experiments. Their results show a significant drop in performance

across transductive methods. What’s more, in a useful contribution to the rest of the

Few-Shot Classification field, it shows MAML and derivative works are impacted as

well, because they expect test data to arrive in batches and perform normalisation on

it.

It was for this very reason we chose not to include MAML and derived methods

in the results table, as it would not be a comparison performed in the same setting.

Inductive metric and meta-learning methods are immune to this effect, as shown by

their tests on ProtoNet, since their networks were not led to make assumptions about

the distribution of the data. The loss function used by the authors can improve results

on DeepEMD as well.

While Transductive Learning is an interesting paradigm, it has the disadvantage

of not being suited to continuous inference: since a transductive method requires the

entire test set upfront, it has to be re-run from scratch upon addition of new test

samples.

2.7 Benchmarks

Development in every field of Machine Learning is helped by a set of objective bench-

marks for evaluation. While the usual large-scale benchmark datasets such as ImageNet

or MS-COCO are too large for few-shot evaluation, there are options available that have

fewer images per class without compromising class distribution.

Some of the traditional datasets such as MNIST (handwritten digits) [LeCun et al.,

1998] and SVHN (street view house numbers) [Netzer et al., 2011] are far too specialised

and easy to learn, so they are no longer in mainstream use by papers that attempt

to challenge the current state-of-the-art. The same goes for OmniGlot [Lake et al.,

2015], a dataset of handwritten characters from different alphabets. OmniGlot is not

a challenging dataset given its limited scope [Triantafillou et al., 2020], with most

methods achieving over 90 % accuracy, so it is not a particularly useful benchmark.

Most of the benchmarks currently in use are down-sampled versions of large-scale

32

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

datasets. During each training episode, 5 random classes are chosen from the dataset,

and only a handful of images are available per class (usually 1, 5 or 10). The test results

are averaged over 600 such splits of 5 classes each.

One of the most popular and challenging benchmarks is Mini-ImageNet [Vinyals

et al., 2016], which is a much reduced version of ImageNet consisting of 50k training

and 10k test images, divided into 100 classes. Tiered-ImageNet [Ren et al., 2018] is a

different ImageNet split that groups classes together in a hierarchical manner.

Another classification benchmark, CIFAR-FS [Bertinetto et al., 2019] is a randomly

sampled subset of the generic dataset CIFAR-100 [Krizhevsky et al.,]. Finally, CUB-

200-2011 [Welinder et al., 2010] is a commonly down-sampled dataset used for fine-

grained classification: the subjects of the photos are birds, and the benchmarked model

has to learn to tell different species apart.

2.7.1 Cross-Domain Transfer

Some of the generic benchmark datasets mentioned in the previous section such as mini-

ImageNet partly suffer from similarity between classes, which can hurt performance in

a real-world domain-specific setting. Meta-Dataset [Triantafillou et al., 2020] samples

data from previous datasets such as ImageNet, MS-COCO, CUB-200, OmniGlot and

many other domain-specific ones such as the VGG Flower Dataset [Nilsback and Zis-

serman, 2008] to provide networks with a broad variety of samples across domains.

Meta-Dataset [Triantafillou et al., 2020] introduced a merged dataset drawn from

multiple known benchmark datasets. Although a key step towards datasets that facili-

tate domain generalisation, some issues remained. An early study [Chen et al., 2019b]

found that when performing domain transfer from miniImageNet to the CUB-200-2011

dataset, using simpler methods such as ProtoNets or their own baseline had an ad-

vantage over meta-learning optimisation methods. “A Broader Study of Cross-Domain

Few-Shot Learning” [Guo et al., 2020a], is a work meant to discover why this is the

case.

The authors of the study point out that the existing benchmark datasets mostly

represent natural scenes and incorporate perspective, which may not be the case in a

33

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

real world domain-specific dataset. They proceed to rank dataset similarity based on

three criteria: perspective distortion, semantic data content and colour depth. Their

data comprises images from datasets where these aspects vary substantially, such as

x-rays [Wang et al., 2017] and satellite data [Helber et al., 2019]. Their also work

evaluates common FSL methods and confirms that ProtoNets [Snell et al., 2017] often

outperform more complex methods such as Relation Networks when evaluated against

domain-specific datasets.

Cross-Domain adaptation is still an area of current research, since the change in

distribution affects most approaches investigated so far. This includes the pseudo-

labeling methods explored in the previous section [Li et al., 2023a].

Authors of applicative papers will often make use of networks pre-trained on relevant

datasets, such as large satellite imagery datasets [Sun et al., 2021b] for remote sensing

applications, so while enhancing the potential for domain transfer is important, it may

not be paramount in the real world depending on the task.

34

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

2.8 Summary of Results

We have condensed the accuracy of most methods summarised so far in Table 2.1

below. Only those that attempted the mini-ImageNet benchmark are included, as it is

a reasonably hard problem and commonly used in the field.

Transductive methods have been excluded since they may not represent real-world

conditions, as discussed in Section 2.6.1 - Transductive Learning. While some surveys

[Song et al., 2022] include both inductive and transductive methods, we believe this

is not a fair comparison, as inductive methods do not have access to the distribution

statistics of test data.

When papers included test results using different backbones, we chose the ones with

the closest depth to previous works, in order to close the gap between test settings.

miniImageNet miniImageNet

Model Backbone 1-shot 5-shot

Matching Networks [Vinyals et al., 2016] 64-ch. conv x4 43.6 ± 0.8 55.3 ± 0.7

Prototypical Networks [Snell et al., 2017] 64-ch. conv x4 49.4 ± 0.8 68.2 ± 0.7

Relation Networks [Sung et al., 2018] custom 50.4 ± 0.8 65.3 ± 0.70M
et
ri
c

MetaGAN+RN [ZHANG et al., 2018] custom 52.7 ± 0.6 68.6 ± 0.7

R-SVAE [Xu and Le, 2022] ResNet12 74.8 ± 0.2 83.3 ± 0.4

G
en

er
a
ti
v
e

M-NAS [Wang et al., 2020a] Searched, 28K params 51.4 ± 1.4 -

MetaNAS [Elsken et al., 2019] Searched, 1.1M params 61.7 ± 0.3 78.8 ± 0.2N
A
S

DiversityCooperation [Dvornik et al., 2019] ResNet18 59.5 ± 0.6 76.9 ± 0.5

Meta-Transfer Learning [Sun et al., 2019] ResNet12 61.2 ± 1.8 75.5 ± 0.8

LEO [Rusu et al., 2019] WideResNet28 61.8 ± 0.1 77.6 ± 0.1

A Good Embedding (SD) [Tian et al., 2020] ResNet12 64.8 ± 0.6 82.1 ± 0.4

M
is
ce
ll
a
n
eo
u
s

UniSiam (SD) [Lu et al., 2022] ResNet18 64.1 ± 0.4 82.3 ± 0.2

TransMatch [Yu et al., 2020b] ResNet18 62.9 ± 1.1 82.2 ± 0.6

DeepEMD+Boosting [Zhang et al., 2021] ResNet12 67.1 ± 0.8 83.1 ± 0.7

DeepEMD+Sampling [Zhang et al., 2020] ResNet12 68.8 ± 0.3 84.1 ± 0.5

EASY [Bendou et al., 2022] ResNet12 70.6 ± 0.2 85.7 ± 0.1

Table 2.1: Accuracy table of classification methods surveyed in this chapter, some of whom
from Tian et al. [Tian et al., 2020]

35

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

We chose to separate the results of generative methods and Neural Architecture

Search based methods, since the former rely on data generation and the latter generate

custom backbones. However, it is clear that both are not intrinsically superior to other

few-shot classification works.

Looking at the Backbone column, it is clear that deeper architectures are not nec-

essarily the main factor in performance: the best methods, R-SVAE [Xu and Le, 2022]

and EASY [Bendou et al., 2022], both relied on a simple ResNet12 backbone. We also

note that, although the best methods for 1 and 5 shots are different, good performance

with a number of shots correlates with good performance on the others.

2.8.1 Discussion

Since Few Shot Learning is a relatively novel field, a wide array of approaches have been

investigated to solve the problem. That said, when researcher follow complex threads

and discard simple baselines it may cause them to overlook more efficient methods [Liao

et al., 2021]. One example was “A Good Embedding Is All You Need” [Tian et al.,

2020], in which using a merged set of meta-training tasks and a simple linear classifier

proved better than much more complex methods.

The usage of SSL pre-training could be instrumental in improving the performance

of existing FSL classification methods, as shown by the results for UniSiam [Lu et al.,

2022], TransMatch [Yu et al., 2020b] and EASY [Bendou et al., 2022] in Table 2.1.

However, it is important to keep the compared settings as close as possible. As

an example, in Su et al. [Su et al., 2020], SSL was prospected as an improvement for

ProtoNets. Their work found significant improvements in downstream classification

task accuracy, but their work used an image size of 224x224 pixels while the original

ProtoNets used smaller inputs (84x84). A reproducibility report [Ashok and Aekula,

2022] revealed that using the same image size as the original did not help boosting the

accuracy of the existing method.

The image sizes for the results we chose in Table 2.1 are 84x84, same as ProtoNets,

or very close to that.

While some of the methods mentioned in this chapter are no longer state of the art,

36

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 2. Few-Shot Classification

they still inform newer methods, and when employed in conjunction can improve them.

2.9 Conclusions

We have reviewed the most common approaches to few-shot learning invented in the

classification context. Our findings may be summarised as follows:

• The most complex methods and architectures do not necessarily translate into

better results.

• The earliest Metric Learning methods such as ProtoNets still play a part in newer

methods such as EASY.

• Meta-Learning is a valuable tool and the most common in the field of FSC, but

combining different methods yields better results. As shown by TransMatch and

EASY, Transfer Learning and Unsupervised Learning are equally important.

• Generative methods can be helpful, but Variational AutoEncoders are cheaper

and better performing than Generative Adversarial Networks since they’re not

restrained by the needs of human consumption.

• Some of the previous methods such as MAML should be considered separately

due to the assumption that test data will be presented in batches (known as

Transductive Learning).

Some of the methods mentioned in this chapter will resurface in Chapter 3, Few

Shot Object Detection.

37

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Chapter 3

Few Shot Object Detection

Many of the previously discussed methods in the field of Few Shot Classification, such

as meta-learning [Kang et al., 2019] and distillation [Ma et al., 2023], have also been

employed in Few Shot Object Detection. However, there are important differences

dictated by the end goal.

In object detection, there may be more than one class instance for each image, and

the need for localisation precludes simply treating the entire image as a vector without

storing any additional information. Additionally, given the possibility of multiple ob-

jects in the same image, a model should be able to produce variable length output. [Liu

et al., 2023].

While these requirements make the task more challenging than classification, object

detection opens up new possibilities for real-world applications.

This chapter aims to provide an overview of Object Detection benchmarks and

techniques, and how they have been adapted to solve Few-Shot Object Detection tasks.

3.1 Benchmarks

This section details the most common benchmarks for Few-Shot Object Detection. This

is important as not only the methods, but the benchmarks themselves have evolved

over the past decade, both in large scale and few-shot settings, so this might shed some

clarity on the performance measures cited in this chapter.

38

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

3.1.1 Datasets

One of the earliest benchmark datasets for object detection was PASCAL Visual Object

Classes (VOC) [Everingham et al., 2010]. Its associated research challenge ran from

2005 to 2012, during which the dataset and annotations underwent refinement. The

last iteration (2012) consists of 11.5k images with annotations for 20 classes.

For few-shot applications, the standard way to use VOC is to split it into 15 “base”

classes with abundant data and 5 few-shot “novel” ones. To avoid bias against certain

classes, FSOD method are usually evaluated against 3 different base/novel class splits.

The VOC dataset is still widely used, although new and more challenging datasets

have been built since then. The most widely known one is Microsoft Common Objects

in Context (COCO), created for both classification and object detection. Containing

200k annotated images, it is a more extensive and diverse dataset than VOC. It contains

80 classes representing “things” with defined shapes and 11 background classes such as

“sky”.

FSOD works evaluating against COCO use the 80 classes with defined objects, split

into 60 base classes and 20 novel ones. Since the number of classes and labeled samples

is higher than VOC, no other class subdivisions are used.

As shown in Figure 3.1, COCO has another advantage over VOC: while the VOC

dataset contains many images with a single object, making it less resilient to interference

from the background or objects belonging to other classes, COCO tends to contain more

than one type of object per image, making for a more challenging yet far more realistic

setting.

A recent paper [Tong and Wu, 2023] analysed both benchmark datasets in the

context of small object detection. They found that both benchmark datasets include

labeling errors, such as missing annotations or wrong ones, which can have a noticeable

impact on performance. However, to ensure consistency with previous works, we used

the same benchmarks.

In the field of Few-Shot Classification, hundreds of tests on different splits are

performed and their results averaged, in order to avoid new methods overfitting to the

specifics of a given data split. While Few-Shot Object Detection is a more complex

39

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

Figure 3.1: Number of categories per image in COCO vs in other datasets. Diagram
from the original COCO paper [Lin et al., 2014]. SUN [Xiao et al., 2010] and ImageNet
are classification datasets, which were included simply because COCO could be used
for classification as well as detection.

task with multiple outputs, where picking split classes at random would cause too much

variance [Sun et al., 2021a], when the evaluation subset is fixed there is still a risk of

rewarding adaptations that suit a specific subset. In the first FSOD works, models

were evaluated on the same data split [Kang et al., 2019], but the work of Wang et

al. [Wang et al., 2020b] introduced a number of new data splits. Today, methods are

evaluated on 10 different fixed splits from that work on both COCO and VOC. VOC is

still evaluated on 3 different class splits as well, meaning that for each number of shots

30 experiments are performed on VOC and 10 on COCO.

3.1.2 Metrics

Since the output of an object detection network is not a single class, but a variable

length array of regions with respective classes, accuracy is not a viable metric. Inter-

section over Union (IoU) is a fundamental localisation metric, which simply denotes

the area of a proposal which intersects the true labeled box, divided by the area union

of both boxes. This rewards a network for reaching closer to the ground truth and

avoids excessive penalties for having slightly different boundaries. The area under the

40

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

precision-recall curve for the task is evaluated at different IoU thresholds, since they

will impact the shape of the curve: a threshold of 0.5 will find more positives but also

generate more false positives when compared to a IoU of 0.95. This concept is illus-

trated in Figure 3.2: the prediction overlaps only 53% of the combined ground truth

and prediction boxes, so while an IoU threshold of 50% will ensure it is considered in

the evaluation, a threshold of 60% will exclude it.

Figure 3.2: IoU illustrated. The green area is the ground truth, the orange area the
prediction, the blue one the intersection.

In the series of Pascal VOC challenges [Everingham et al., 2010], average precision

was evaluated over 11 recall thresholds in increments of 0.1, from 0 up to and including

1. The IoU threshold was fixed at 0.5 yielding what was termed Average Precision (AP).

The mean of AP across all classes is known as mean Average Precision (mAP).

However, this metric was already considered dated by 2018 [Redmon and Farhadi,

2018], due to the fact a fixed IoU threshold of 0.5 tends to reward improper placement

of boxes.

This flaw led to a more refined metric for the COCO challenge [Lin et al., 2014]. For

COCO, the old VOC mAP metric was modified to account for the intersection area

of predicted and labeled boxes (IoU). Instead of being evaluated at 0.5 IoU, Average

Precision is evaluated across 10 IoU thresholds, from 0.5 to 0.95 with an interval of 0.05.

According to the authors, this rewards models with better localisation capabilities.

Practically, the mAP of a method is usually reported, calculated according to the

41

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

challenge, together with the basic VOC AP at 0.5 IoU and 0.75 IoU, to help readers

visualise how well a network can cope with localisation requirements. In the case of

Generalised Object Detection, the results usually include a breakdown of the metrics

mentioned (mAP, AP0.50, AP0.75) for both base classes and novel classes to show how

well a model can retain performance on base classes while learning new ones.

3.2 Architectures

Few-Shot Object Detection works usually start from the same network architectures as

standard Object Detection [Liu et al., 2023] and modify them for the task at hand. For

the purposes of background research, this section will explore the two most commonly

adapted architectures: R-CNN [Girshick et al., 2014] and YOLO [Redmon et al., 2016].

3.2.1 R-CNN

Object detection as a task comprises two tasks: object localisation within an image

and object classification. The traditional way is to solve it in two stages: filtering

regions which are likely contain an object, and classifying them. That is the approach

taken by the original R-CNN [Girshick et al., 2014]. It first extracted regions with a

selective search algorithm, like in previous works [Uijlings et al., 2013], used a CNN to

extract features from each region, then had Support Vector Machines [Burges, 1998]

classify them. This approach yielded better results than previous algorithm-based

methods [Lowe, 2004] but it was still quite slow, taking 13s per test image on their

original setup.

Fast R-CNN, building upon R-CNN, did not run the CNN on every region, but

across all regions, pooling them. It also used a SoftMax classification layer instead of

SVMs. It was a substantial improvement in terms of speed and average precision. The

original Fast R-CNN architecture is shown in Figure 3.3.

Faster R-CNN [Ren et al., 2017] (FRCN) used a CNN to generate the Regions

of Interest, termed a Region Proposal Network (RPN), eliminating the efficiencies of

Selective Search. Most of the convolutional weights of the feature extractor are shared

42

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

Figure 3.3: Fast R-CNN by R. Girshick (2014) [Girshick et al., 2014]

with the RPN. This architecture is still often used as a baseline. Another important

contribution was Non-Maximum Suppression [Hosang et al., 2017], a method which

discards overlapping predictions based on their “confidence” score, or how certain the

network is of a prediction. Doing this step through a neural network rather than

algorithmically increased performance further.

However, despite the high average precision of methods in this family, it is less

common when speed is of the essence: since the feature extraction backbone and the

RPN have to run sequentially, even Faster R-CNN is quite slow compared to other

approaches.

3.2.2 YOLO

Unlike the R-CNN family of models, the You Only Look Once (YOLO) [Redmon et al.,

2016] method is a single stage method: it combines both region proposal and classifica-

tion into a single network, processing the entire image in a single step. The conceptual

diagram in Figure 3.4 shows the bounding box regression and classification being per-

formed at the same time.

While much faster, single-stage methods used to be less accurate than R-CNN and

its enhancements. This changed over time as new versions of YOLO were researched.

YOLOv2 [Redmon and Farhadi, 2017] used an entirely convolutional network, instead

43

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

Figure 3.4: You Only Look Once by J. Redmon [Redmon et al., 2016]

of fully connected layers, which helped preserve spatial information. YOLOv3 [Redmon

and Farhadi, 2018] had three separate convolutional branches after the initial backbone,

called a Feature Pyramid Network (FPN). The convolutions of those branches had

different filter sizes to better detect objects of different scales.

Research in the YOLO family of networks also spurred improvements in augmen-

tation strategies, one of the most notable ones being “mosaic” augmentation, where

four different images are stitched together, which reduces the risk of overfitting when

performing the task of background separation. After many iterations, the current

YOLOv7 [Wang et al., 2023] can match the performance of two-stage R-CNN-like

methods while achieving a lower inference time. However, adoption has been slow in

the few-shot line of research, for reasons we’ll explore in the next section.

3.2.3 Few-Shot Architectures

In one of the latest surveys on FSOD [Liu et al., 2023], most of the papers cited rely on

Faster R-CNN, with just a few using YOLO, even though YOLO-based methods are

fairly common in the wider field of Object Detection. During this research, we had to

take notice of the fact that recent YOLO-based works often lack few-shot benchmark

comparisons or publicly available code, while comparisons between open-source Faster

R-CNN based methods are easier to perform. Most YOLO-based works in this field have

relied on an early meta-learning work [Kang et al., 2019] which used YOLOv2. One

44

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

likely reason is that the pressure to publish leads researchers towards existing few-shot

codebases and frameworks, which are skewed towards Faster R-CNN. Furthermore, the

separation between region proposal and detection has likely helped researchers engineer

targeted few-shot improvements. One such improvement is discussed in Section 3.4.3.

The survey mentioned [Liu et al., 2023] also makes the point that adapting architectures

from large-scale models may not be enough, and thus building an architecture meant

specifically for few-shot scenarios could be a helpful avenue of future research.

3.3 Meta-Learning

Meta-Learning, having been developed and proven popular on few-shot classification

tasks (Section 2.4), has been adopted in the field of Few-Shot Object Detection as well.

While our work is not based on a meta-learning approach, it is worth discussing some

related developments since they will be part of the final performance comparisons.

3.3.1 Few-Shot Feature Reweighting

The first meta-learning method for FSOD was “Few-shot Feature Reweighting” (FSRW)

by Kang et al. [Kang et al., 2019]. It relies on two components: a meta-feature learner

and a reweighting module. During the meta-training phase, base classes are divided

into multiple pre-training sets of support and query images, according to the episodic

meta-learning paradigm we mentioned in Section 2.3.3. The network learns to extract

generic features and then re-weigh their importance based on a few support samples

and a query sample. Finally, in the meta-testing phase, the network is trained this way

on the real novel few-shot data. The architecture is shown in Figure 3.5.

This work was a marked improvement over näıve fine-tuning, and it still remains

of the few to be based on YOLO. It also introduced the very first few-shot data splits

for VOC and COCO, used for meta-testing. So, while since superseded, this work left

a blueprint for subsequent meta-learning methods to follow.

45

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

Figure 3.5: FSRW diagram by Kang et al. [Kang et al., 2019]. Note the shared classifier-
regressor from YOLO and the additional reweighting module.

3.3.2 Subsequent works

Soon after FSRW, a meta-learning work with a similar setup was “Meta R-CNN” by

Yan et al. [Yan et al., 2019]. They recognised that the detection setting presented

an additional challenge due to the need to discard background features, so instead

of performing meta-learning over full image features, they performed it over Region

of Interest features, which in Faster R-CNN are extracted by the Region Proposal

Network. This achieved a substantial improvement over FSRW.

Most works still tend to limit changes to the original Faster R-CNN architecture.

One of the exceptions was “Meta Faster R-CNN” [Han et al., 2022a], not to be confused

with Meta R-CNN. They tackled the RPN, which outputs region proposal coordinates

as well as an “objectness” score or likelihood that they contain an object. They changed

it to use prototype-based matching instead of just a linear layer for the “objectness”

score. They also trained two detection heads, one for the base classes and one for the

novel ones, to keep base class from interfering with the novel ones in the classifier. They

improved upon both FSRW and Meta R-CNN.

Variational Feature Aggregation (VFA) [Han et al., 2023] reprises the same concept

of image feature aggregation as FSRW from a different perspective. VFA aggregates

features without distinguishing between classes, then uses a Variational Auto-Encoder

pre-trained on base classes to pick important features for novel classes. The use of

VAEs in this context has been covered in Chapter 2.1.2. When compared to the state

46

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

of the art methods, including fine-tuning methods, VFA achieved the best performance

on VOC but weaker performance on COCO.

While meta-learning has been an important avenue of research in the field of FSOD,

it has not produced the best performing methods. A direct comparison is available in

Section 3.8 - Results. The next sections will discuss alternative methods.

3.4 Fine-tuning

From what we’ve seen in Chapter 2 - Classification, network fine-tuning by itself is often

not enough to overcome data scarcity, and it is usually paired with an additional pre-

training phase involving Meta-Learning or Self-Supervised Learning. In the Few Shot

Object Detection field, localising objects requires contextual and spatial information

which is not necessarily bound to specific classes: this is particularly evident in the

Faster R-CNN architecture we summarised in Section 3.2, which uses a class-agnostic

Region Proposal Network. Therefore, there exists a large body of work dedicated solely

to improving fine-tuning performance for a single comprehensive training episode as

usual, without the use of Meta-Learning.

3.4.1 Early Methods

One of the first works which focused on improving transfer learning in FSOD without

making use of meta-learning was “LSTD: a Low-Shot Transfer Detector for object de-

tection” [Chen et al., 2018]. Starting from Faster R-CNN, they made various changes to

the architecture. One of their improvements was to share the weights for localisation re-

gression across all classes, a strategy employed by an older family of detection networks

called Single Shot Detector [Liu et al., 2016]. Starting from the same pre-initialised

weights for novel classes meant they were less likely to overfit the feature output of the

few samples. They also changed the classifier to be entirely convolutional, running over

Region of Interest features instead of a fully connected layer as in Faster R-CNN.

However, while the performance of LSTD was better than simply fine-tuning Faster

R-CNN, the changes the authors made to the architecture were not picked up by later

47

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

works, which preferred to start from a clean slate and examine each performance factor

separately. Additionally, since their evaluation protocol was not used by later works,

we will not include it in the final comparison of results.

In “Multi-scale Positive Sample Refinement” (MSPR) [Wu et al., 2020] the authors

focused on the difference in the distribution of object scales between models trained

on large datasets and few-shot datasets. Detection networks are likely to miss samples

which appear at different scales than the novel few-shot set, so MSPR used branches

with different convolution sizes to process features at multiple scales. The work was

based on Faster R-CNN and achieved an improvement over FSRW, which was based

on YOLOv2, but the idea of a branching Feature Pyramid Network (FPN) with differ-

ent convolution sizes also appeared in YOLOv3 in a large-scale standard context (see

Section 3.2.2). Works based on later Yolo versions [Ouyang et al., 2023] incorporate

it by default. However, when comparing any proposed method to previous Faster R-

CNN based works, a FPN is often considered an extension rather than a constituent

component [Qiao et al., 2021].

3.4.2 Two-stage Finetuning Approach

In “Frustratingly Simple Few-Shot Object Detection” [Wang et al., 2020b], the authors

created a baseline called Two-stage Finetuning Approach (TFA). The network is first

trained on a large dataset consisting of base classes, then most of the network including

the feature extractor and RPN is frozen. The last parts of the RCNN network, which are

the box regressor and classifier, are fine-tuned on a smaller few-shot dataset consisting

of novel samples mixed with base ones.

This simple baseline out-performed many contemporary meta-learning methods as

well as LSTD, and while the method has since been superseded, it provided a good

baseline and yet another reminder that the most complex methods aren’t necessarily the

most effective. The freezing of the feature-extracting backbone limited the network’s

potential to learn novel classes, and this was addressed in a later work named DeFRCN

[Qiao et al., 2021], which we’ll discuss in Section 3.4.3.

TFA also improved the existing evaluation protocol, introducing more few-shot data

48

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

splits to reduce variance between runs and thus making comparisons more meaningful.

TFA also started the practice of reporting base class AP instead of just few-shot novel

class AP, thus paving the way for Generalised Few-Shot Detection.

3.4.3 DeFRCN

The authors of Decoupled Faster R-CNN (DeFRCN) [Qiao et al., 2021] examined the

usual Faster R-CNN architecture and pointed out that the RPN is class-agnostic, as

opposed to the classifier, but while their tasks are different both their gradients flow

into the convolutional backbone, which creates a conflict. They decoupled the RPN

(hence the name) by stopping RPN gradients from being propagated to the backbone.

This improved classifier regularisation by decoupling classification and box prediction.

The backbone and RPN are trainable, instead of being frozen as in TFA.

The authors also employed a prototype-based method as an add-on called Proto-

typical Calibration Block (PCB): the existing novel samples were passed through a

ResNet backbone, and the resulting features combined with the predicted ones at in-

ference time, which slightly increased the mAP of novel classes in all scenarios. The

changes to the network are shown in Figure 3.6.

Figure 3.6: DeFRCN diagram by Qiao et al. [Qiao et al., 2021], with GDL denoting
gradient-decoupling layers, PCB the prototypical calibration block, and yellow boxes
denoting trainable modules.

As a note, even though PCBs are created from all the novel training samples, they

only need one test sample and are thus not considered transductive learning.

DeFRCN has proven to be a versatile baseline for other works [Ma et al., 2023]

[Guirguis et al., 2022], since it doesn’t affect the loss function or training regime, leaving

49

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

room for further improvements. It inherits the same fine-tuning process as TFA of

mixing base and novel samples in the last stage, as well as the same evaluation protocol

over at least 10 data subsets, which makes comparisons reliable. These reasons are why

we’ve decided to use DeFRCN as a starting point for our work on CL training regimes.

One of the works which used DeFRCN as a baseline was by Lin et al. [Lin et al.,

2023]. It’s a data augmentation approach which crops novel instances and pastes them

onto base images. It was inspired by other augmentation methods such as YOLOv4’s

mosaic, but it requires multiple stages. Since some base images might contain unlabeled

instances, they are sent by a vision-language model for checking, and the space in which

the crops might be pasted is taken into account. The result is a net improvement over

the baseline.

DeFRCN was also used as a baseline for Constraint-based Finetuning Approach

(CFA) [Guirguis et al., 2022], a gradient manipulation method devised to avoid catas-

trophic forgetting of base classes in a Generalised FSOD setting. We will discuss

gradient correction methods extensively in Chapter 4 - Continual Learning.

3.5 Other Approaches

This section discusses various methods adopted in FSOD which can be seen as orthog-

onal to the previously discussed fine-tuning or meta-learning approaches.

3.5.1 Contrastive and Class Separation Methods

Margins are known as the distance between a class decision boundary and the closest

data points. This is a concept which we’ve touched upon in Section 2.3.2 - Contrastive

Learning. The aim behind increasing margins is to keep class representations as far

apart from each other as possible to improve performance on unseen samples, which

are unlikely to follow the exact same distribution as the seen ones.

An important work in this part of the field was “Few-Shot Contrastive proposal

Encoding” (FSCE) [Sun et al., 2021a]. They added another branch to the detector

to measure the similarity of object proposal encodings. This then added a new loss

50

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

term to the network which encouraged keeping closer representations of objects from

the same category within a mini-batch, while separating objects from other classes.

FSCE adapted the contrastive learning formulation to the detection setting by com-

paring proposals only if their IoU is greater than a certain threshold, to discard irrele-

vant comparisons. Although no longer competitive, this method achieved better results

than TFA.

Another notable contribution to FSOD, and a contemporary to FSCE was “Class-

Margin Equilibrium” (CME) [Li et al., 2021a]. This paper also uses an additional

contrastive branch. It focused on both on the need for maximising margins, as well as

the need for a minimum margin in the loss, to keep the class representations compact

so they could make room for novel classes. Balancing these two loss objectives is the

main part of their strategy. The contrast between these two objectives is intuitively

shown in Figure 3.7.

Figure 3.7: Min-max margin diagram by Li et al. [Li et al., 2021a]

CME training has another improvement to increase contrast between samples: since

it is based on FSRW, it has access to a meta-learned support image “mask” which

highlights relevant features. The top 15% of pixels in this mask are set to 0 to stop the

network from relying too much on the same features, which can be seen as a form of

dropout.

CME achieved better results than both FSCE and TFA on the COCO dataset,

a benchmark more challenging than VOC. While CME is no longer state of the art,

it performed better than its contemporaries and it could work with both YOLO and

51

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

Faster R-CNN architectures.

Adapting contrastive learning to FSOD is still an active area of research. “Positive

Sample Improvement” (PSI) [Ouyang et al., 2023] adopts a number of data augmenta-

tions as well as what could be described as a contrastive loss to aggregate samples with

same-class labels and separate differently labeled ones, including a hyperparameter to

control the degree of separation. This work is also valuable since it adopted YOLOv4

as a baseline, showing the possibilities in focusing on improving a single-stage detection

architecture.

“Swapping Assignments between Views” (SwAV) [Caron et al., 2020] uses the same

contrastive learning principles as SimCLR (see Section 2.3.2) to reward consistency

between multiple augmentations of the same image. Ultimately, the DeFRCN authors

ran additional tests with various backbones including a SwAV-trained one. While

SwAV requires lengthy self-supervised pre-training, they found it could be used with

DeFRCN’s Prototypical Calibration Block to improve performance further [Qiao et al.,

2021].

3.5.2 Distillation methods

Knowledge Distillation is the practice of transferring knowledge from a teacher model

to a student model, which we talked about in Section 2.5.2. We also mentioned Self-

Distillation (SD), where student and teacher are the same model with different random

initial weights.

Self-Distillation is one of the main components of “Discriminative Geometry-Aware

Learning” (DiGeo) [Ma et al., 2023]. The first innovation of the paper was to use a

property known as “Neural Collapse”, which is the natural tendency of a fine-tuned

network to form an Equiangular Tight Frame towards the end of training [Kothapalli,

2022]. This means all classes become equally distant prototype vectors in the last layer

of a classifier, with the final output being determined by which is the closest vector.

See Figure 3.8 for an example.

This trend has been exploited in recent works including DiGeo to keep class rep-

resentations apart, usually through modified loss functions. The objective of Neural

52

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

Figure 3.8: Neural Collapse diagram from Kothapali et al. [Kothapalli, 2022] The blue
balls represent final layer activations, red vectors the final layer classifier.

Collapse is similar to that of contrastive learning (see Section 2.3.2), but less computa-

tionally expensive since it does not have to rely on pair-wise comparisons of samples,

but rather samples to class prototypes, which will have to be equidistant.

Instead of having a base-training and novel fine-tuning step, DiGeo trains the net-

work from scratch on the full set, while increasing the probability of picking novel

samples to avoid forgetting them. The class margins for the ETF are adjusted through

self-distillation to reduce variance. When applied on top of DeFRCN, the DiGeo strat-

egy manages to raise base class performance without hurting novel class performance,

earning it a top spot in the task of Generalised FSOD. While applicative works often

choose methods that only require changes in the fine-tuning step to speed up training,

this full-step method is certainly worth considering.

Another interesting application of the distillation principle was “Multi-Faceted Dis-

tillation of Base-Novel Commonality” [Wu et al., 2022a]. This method measures the

similarity between novel samples and a shifting subset of base ones. Classification and

localisation related similarities are stored separately, as well as the variance of class

features. Just like classic distillation, a new term is added to the loss which depends

on the distribution of the output logits, here compared between the novel classes and

the most similar base ones.

Multi-faceted Distillation is based on DeFRCN but the same principle can be ap-

plied to other methods. It achieved an improvement in novel class results over the

baseline, although we should note that the presence of a large domain shift between

base and novel sets could hamper this strategy.

53

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

3.5.3 Retentive R-CNN

Retentive R-CNN [Fan et al., 2021] seeks to solve the Generalised FSOD problem, that

is to keep base class performance intact while learning few-shot novel classes. The

authors studied TFA and found that the RPN rather than being class-agnostic was

biased towards base classes. The resulting method to fix this is essentially an ensemble

method. The original network, trained on base classes is frozen. Another branch of the

RPN is created to be fine-tuned on novel classes. The region proposals are combined

during the Non-Maximum Suppression stage. The proposals are then passed to separate

classification and regression heads, and outputs are jointly evaluated in the last layers

of the network. The resulting architecture is shown in Figure 3.9.

Figure 3.9: Retentive R-CNN diagram by Fan et al. [Fan et al., 2021]

This approach has been adopted as an optional add-on in various works such as

DeFRCN [Qiao et al., 2021], yielding a consistent performance boost if the objective

includes detecting base classes. However, the number of trainable parameters as well

as the inference time increases substantially when compared to the usual single branch

network approach. Since this clashes with one of our original objectives (see Section

1), we will not make use of ensemble methods such as this one.

3.6 Transformer-based methods

Transformers are an architecture consisting of an encoder-decoder network. The en-

coder typically processes the image to extract important features, compressing the

54

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

input into a more manageable representation, while the decoder turns them into a de-

sired output, in this case spatial information. Transformers are usually pre-trained on

a self-supervised task, such as the jigsaw puzzle task we encountered in Section 2.6.

3.6.1 Transformers and Object Detection

Transformers have been successfully adapted to the Object Detection task in “Detec-

tion Transformers” (DETR) [Carion et al., 2020]. Figure 3.10 provides a high-level

overview of DETR. The initial features are extracted by a CNN backbone, as usual.

However, the detector works differently to the approaches we’ve reviewed so far. The

encoder turns features into “queries”, which attempt to look for objects. An atten-

tion mechanism highlights the important embeddings in context, and the query results

are matched with the labels. We remark that while region predictions are similar to

the Faster R-CNN ones, they are treated differently. The network does not perform

Non-Maximum Suppression to remove irrelevant matches: rather, it uses a the Hun-

garian cost-assignment algorithm to match the predictions to the labels. After they’re

matched, loss is calculated via IoU and L1 distance (sum of absolute differences) for

classification and localisation.

Figure 3.10: End-to-End Object Detection with Transformers diagram Carion et al.
[Carion et al., 2020]

However, transformers need a extremely long training phase, and they tend to overfit

on scarce data to their large number of parameters. Due to these factors, a number

of hybrid methods have been developed which combine CNN feature extraction with

transformer-based detection in few-shot learning.

55

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

3.6.2 Transformers and Few-Shot Object Detection

One of the first methods to adapt DETR for a low-data setting was “Unsupervised

Pretraining DETR” [Dai et al., 2021], which used a CNN backbone to extract features,

froze the backbone and trained transformers to turn the features into detection targets.

They emphasized that for the transformers to work, the backbone must be frozen and

image patches should be assigned to multiple queries, since multiple objects can be

contained in an image. UP-DETR proved that less data-hungry transformers were

possible in an Object Detection context, but it was not squarely aimed at a few-shot

setting.

DETReg [Bar et al., 2022] followed up by using different unsupervised pre-training

tasks: an object localisation task and one to predict object embeddings from another

network. The authors also used a shallower backbone compared to CNN methods such

as TFA or DeFRCN to minimize overfitting. While the performance on 1-5 shots was

somewhat worse than previous fine-tuning methods, it performed much better on 30

shots.

One of the advantages of transformers is their versatile embeddings, which means

they do not necessarily require fine-tuning (see Fully Cross Transformer for an example)

[Han et al., 2022b], albeit regular fine-tuning methods such as DeFRCN still yield better

performance.

We will not be using transformer-based backbones, in order to ensure fair compar-

isons with previous fully CNN based methods. It will also help us stay well on track

with one of our initial objectives: to minimise deployment requirements. Networks

with CNN backbones tend to be smaller, and we believe that models which don’t take

up excessive resources can increase the potential of such models for edge deployment

and large-scale adoption. We have also excluded large vision-transformer foundational

models such as DINO [Caron et al., 2021] from our evaluation since we consider them

out of scope for this work: their number of parameters is at least an order of magnitude

higher than the methods we’ve discussed so far.

56

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

3.7 Reliability of Benchmark Data

The issue of mislabeling is well known, with vision datasets as far back as MNIST

[LeCun et al., 1998] being affected [Zhang, 2017]. FSOD methods are usually evaluated

against few-shot splits of the VOC and COCO datasets. Given both datasets also suffer

from this problem, a number of methods have been devised to mitigate this problem.

In this section, we also discuss the problem of pre-training leakage.

3.7.1 Label Quality

Labeling a detection dataset is a laborious task, so some objects might not be assigned

a bounding box and classification label. While a minority of missing labels may not

seem like a problem, it is harmful to the performance of a detection network: when

a label is missing, the object might be sampled in a “negative” region proposal, as in

part of the background, thus sending the wrong signal to the network.

To solve this, Gao et al. created an add-on method based on DeFRCN called

Decoupling Classifier [Gao et al., 2022a]. The classifier is split into two parallel heads,

one for positive samples and one for negative ones. Their method was successful in

reducing the performance drop caused by missing labels. As pointed out in the open

review of the paper [Gao et al., 2022b], the method deals with a data problem by

changing the model, but it is a worthy contribution to this line of research.

In “Classification Refinement and Distractor Retreatment” (CRDR) [Li et al.,

2021b], the authors use the pre-trained base class detector to find a subset of the

base set that lacks “distractors”, their term for unlabeled instances. The samples the

detector is most confident about are retained and used to fine-tune the network. One of

their other improvements is a “Few-Shot Correction Network” module that can make

Faster R-CNN better at detecting edge objects, since CNN backbones are trained on

ImageNet classification and thus biased towards objects being present in the center of

the image [Szabo and Horvath, 2022]. It would be interesting to see how data aug-

mentations such as mosaic compare to CRDR method with respect to correcting the

issue.

57

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

3.7.2 Information Leakage

Data leakage is commonly defined as the presence of training data samples in the test

set, which deviates from a real-world setting and erroneously increases performance.

A less studied issue is the leakage of information between tasks: FSOD backbones

are always pre-trained on ImageNet, but some of the few-shot novel classes in VOC

and COCO are also present in ImageNet. This means the backbone is already biased

towards collecting their features (such as in Figure 3.11), which is hardly representative

of a real-world setting when it comes to specialised domains.

Figure 3.11: Example of ’redshank’ from ImageNet vs ’bird’ from the VOC novel train-
ing set (first subset)

The only work which tackles this in FSOD is “Semantic Relation Reasoning” [Zhu

et al., 2021]. The authors re-trained the ImageNet backbone from scratch with some

of the similar classes removed, such as “ox” due to its closeness to VOC’s “cow” and

“pelican” for VOC’s “bird”. This caused a performance drop in those classes. Their

method creates class embeddings from a large corpus of text, then trains the object

detector to match those embeddings. This work would be classed as multi-modal, given

it requires complex text, which is why we haven’t included it in the results, but we are

glad to see this interest in more robust assumptions.

3.8 Results

We have collated the authors’ published results from the most significant papers men-

tioned in this review of Few-Shot Object Detection.

The first set of results collated from this review is in Table 3.1. This uses the first

58

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

data split developed by the FSRW authors. It is known as “seed 0” in later works

which incorporated it as part of the wider range of comparisons. We use these results

for comparisons with legacy methods, since this single data split is affected by variance.

We have excluded methods that rely on extracting novel instances from the base

dataset [Cao et al., 2022], since this means they cannot work in some real-world settings

where there is no overlap between the base and novel set. We also excluded methods

that rely on multi-modal information such as text, since that information may not

always be available, as well as methods that deal with issues in the benchmarks them-

selves [Gao et al., 2022a] to err on the side of caution.

We did not include a column for the architecture, since in the vast majority of

works a Faster R-CNN network with a pre-trained ResNet-101 backbone was used. We

indicate any works that differ in this respect through the Model Name.

Model Name 10-shot 30-shot Method Type

Faster R-CNN (FT-basic) [Yan et al., 2019] 6.5 11.1 -

Faster R-CNN (FT-full) [Wang et al., 2020b] 9.2 12.5 -

YOLOv4 (FT-full) [Ouyang et al., 2023] 10.2 15.6 -

FSRW (YOLOv2) [Kang et al., 2019] 5.6 9.1 ML

Meta R-CNN [Yan et al., 2019] 8.7 12.4 ML

CME [Li et al., 2021a] 15.1 16.9 ML

VFA [Han et al., 2023] 16.2 18.9 ML

MSPR [Wu et al., 2020] 9.8 14.1 FT

TFA w/cos [Wang et al., 2020b] 10.0 13.7 FT

FSCE [Sun et al., 2021a] 11.9 16.4 FT

PSI (YOLOv4) [Ouyang et al., 2023] 13.4 18.8 FT

DeFRCN [Qiao et al., 2021] 18.5 22.6 FT

DeFRCN+CropPaste [Lin et al., 2023] 20.3 23.1 FT

DETRreg [Bar et al., 2022] 13.7 22.6 TH

FCT [Han et al., 2022b] 17.1 21.4 TH

Table 3.1: Novel Average Precision on COCO, FSRW data split. Method types are
FT=FineTuned CNN, ML=Meta-Learned CNN, TH=Transformer Hybrid

59

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

It is rarer to find works that deal with the Generalised FSOD setting, which is

concerned with both base and novel class performance. Since most of them used the

10-split setting, we picked those results as a reference in Table 3.2.

5-shot 10-shot 30-shot

Model bAP nAP bAP nAP bAP nAP

Faster R-CNN [Yan et al., 2019] 17.6 ± 0.9 4.6 ± 0.5 16.1 ± 1.0 5.5 ± 0.9 15.6 ± 1.0 7.4 ± 1.1

TFA w/cos [Wang et al., 2020b] 32.3 ± 0.6 7.0 ± 0.7 32.4 ± 0.6 9.1 ± 0.5 4.2 ± 0.4 12.1 ± 0.4

TFA+R. R-CNN [Fan et al., 2021] 39.3 ± ? 7.7 ± ? 39.2 ± ? 9.5 ± ? 39.3 ± ? 12.4 ± ?

VFA [Han et al., 2023] - - 30.9 ± ?* 16.8 ± ?* - 18.4 ± ?*

DeFRCN [Qiao et al., 2021] 32.6 ± 0.3 13.6 ± 0.7 34.0 ± 0.2 16.8 ± 0.6 34.8 ± 0.1 21.2 ± 0.4

DeFRCN+CFA [Guirguis et al., 2022] 32.8 ± 0.2 15.2 ± 0.5 34.0 ± 0.2 18.8 ± 0.4 34.6 ± 0.1 23.0 ± 0.3

DiGeo [Wang et al., 2020b] - - 39.2 ± ?* 10.3 ± ?* 39.4 ± ?* 14.2 ± ?*

DeFRCN+DiGeo [Wang et al., 2020b] - - 35.1 ± ?* 17.1 ± ?* - -

Table 3.2: Generalised FSOD results on 10 COCO data splits: base/novel Average
Precision. Asterisk (*) indicates experiment was only performed on split 0, while
question mark (?) indicates no Confidence Interval was published. Any confidence
intervals are calculated at 95%.

We only reported results on COCO since it’s the most challenging benchmark, and

because in the case of VOC some papers only reported selective metrics from their

results such as nAP50 or AP50, making head-on comparisons impossible. The final

results in Chapter 7 include some additional metrics as reproduced by us.

3.9 Discussion

While compiling this table, we encountered a few challenges in making sure FSOD

methods received a fair comparison. Even recent works still sometimes publish only

the results they obtained from the old FSRW split, making it hard to switch to the more

robust protocol introduced by TFA. While some authors ran the seed 0 benchmarks

multiple times to reduce variance across runs, they did not include the standard 95%

confidence interval. Additionally, while repeating the same experiment reduces variance

caused by random initialisation it does not account for the quirks of the data split:

the FSRW one is generally more conducive to better performance, likely owing to the

60

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

representativeness of its samples [Wang et al., 2020b]. To better understand how results

can be significantly swayed by protocol as well as other factors, we included a study in

Chapter 7 - Experiments.

Hyperparameters also play a factor, since better tuning may lead to better results:

Table 3.1 shows a remarkable difference in basic Faster R-CNN performance can be

achieved by training the network until the loss asymptote is reached (FT-basic vs FT-

full).

In the same table, we can see that while methods based on meta-learning have

come a long way, they still do not perform as well as the top fine-tuning based method,

DeFRCN. At the same time, transformer-hybrid methods, which use a convolutional

backbone with a transformer detector, still have a way to go but research in that

direction is ongoing.

The sub-field of Generalised FSOD is narrower, with some methods focusing primar-

ily on maintaining base class performance and mostly succeeding, and others providing

better novel class performance. The choice of method for an applicative work would

be determined by the balance of priorities, as well as how willing a team would be to

adopt more complex training strategies such as DiGeo, which requires full training, the

combination of Retentive R-CNN with other works, or CFA which doubles the training

time for DeFRCN.

3.9.1 Architecture

We can see that almost all CNN methods have used Faster R-CNN as a base to modify

for their work, while YOLO has fallen by the wayside. There appear to be a variety of

reasons: first is the speed vs performance tradeoff long associated with that family of

networks, even though that may no longer be the case with the latest versions [Wang

et al., 2023]. Additionally, since time is often short in academia, authors may be

tempted to use the released source code of existing influential works (such as TFA)

when it is available, which will create a network effect. Further investigation on which

methods can work with single-shot architectures would be useful, in order to achieve

real-time processing speeds: it is very rare for a FSOD paper to include inference time

61

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 3. Few Shot Object Detection

among their results.

3.10 Conclusions

After reviewing various approaches to FSOD, and discussing some of the task’s pecu-

liarities, here are some of the most important insights from this chapter:

• Most works use Faster R-CNN as a basis and add their own adaptations, but

some (e.g. Crop-Paste [Lin et al., 2023]) have been inspired by later innovations

in the field of detection.

• Methods that focus on fine-tuning achieve better performance than meta-learning,

but given the leap in performance compared to early methods there seems to be

room for improvement in meta-learning as well.

• Transformer-based and hybrid methods are worse than methods that allow fine-

tuning, if you exclude foundational models which should be in their own league

owing to their requirements

• Benchmarks have become more robust since the early days of the field, but adop-

tion is still an issue. Research would also benefit from benchmarks which focus

on classes which are very rare in real life as well, to avoid inadvertedly relying on

information leakage.

The next chapter discusses various continual learning methods, and how they relate

to the Generalised FSOD setting we mentioned.

62

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Chapter 4

Continual Learning

Incremental or Continual Learning is a branch of machine learning tasked with learning

from data which is not static, but can be expanded over time in batches. When data

is ingested one by one rather than in batches, it is referred to as online learning rather

than incremental learning. We are not going to consider that specific sub-field, since

our work deals with batched training.

Van de Ven et al. [van de Ven et al., 2022] describe different types of incremen-

tal learning objectives as task-incremental, domain-incremental and class-incremental.

Task-incremental learning is about designing models that adapt to novel tasks, domain-

incremental is for adapting for different domains, and class-incremental is about adding

novel classes after it was trained.

The key difference between task-incremental and class-incremental learning lies in

how tasks are separated. As an example, in a task-incremental setting on the MNIST

[LeCun et al., 1998] dataset the network has to distinguish between pairs of digits such

as 1/2, 3/4 until 9. On the contrary, in a class-incremental setting the network learns

to discriminate between digits 1 to 10.

Following this designation, the focus of our work falls under “class-incremental”

learning, where new classes are added after the first training episode, but the network

has to be able to discern between all of them without additional hints by the end of

training. This is similar to a Generalised Fine-tuning setting from Chapter 3 where

both novel and base classes have to be detected. In this chapter, we will focus on

63

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

methods which have either been devised with the class-incremental setting in mind, or

have been compared in such a setting.

We will not delve into methods which modify the hyper-parameters of the optimiser

such as Stable-SGD [Mirzadeh et al., 2020], since following the second research question

from Chapter 1 - Introduction we aim to study the purported benefits of gradient

manipulation methods under equal conditions, and in a model-agnostic way.

4.1 Benchmarks

Continual Learning datasets are generally split into multiple “tasks”, with each task

containing a subset of classes from the main set. In class-incremental batch learning,

tasks are seen by the network sequentially in a succession of training sessions.

4.1.1 Datasets

One of the most widely used benchmarks is Permuted MNIST [Goodfellow et al., 2014b]

an incremental MNIST split in which a fixed random proportion of pixels is changed.

This benchmark can still be included for comparison to previous works, but it is re-

garded as an ineffective one due to the simplicity of the underlying dataset [Schwarz

et al., 2018].

Other common benchmarks include splitting the generic CIFAR10 dataset incre-

mentally, or CIFAR100 which includes the same data but uses finer-grained class an-

notations [Krizhevsky et al.,].

Later works [Saha et al., 2021] [Chaudhry et al., 2019b] make use of incremental

splits of mainstream datasets such as Caltech-UCSD Birds (CUB) [Welinder et al.,

2010] and mini-ImageNet [Vinyals et al., 2016]. We already introduced most of the

datasets in this section including CUB and mini-ImageNet in Chapter 2 - Few Shot

Classification.

However, there are problems when adapting a static dataset into an incremental one.

Particularly since the classes in subsequent tasks don’t necessarily have anything in

common, it is possible to obtain competitive performance by simply training a network

64

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

from scratch on chunks of data from all classes, as shown by Prabhu et al. [Prabhu

et al., 2020]. Datasets which map classes to multiple attributes which overlap between

one another are more resilient to such trivial solutions. An example of such a dataset

is Split AWA, an incremental version of the early “Animals with Attributes” [Lampert

et al., 2009] dataset. A more recent example is Lin et al.’s “Continual LEArning

on Real-World Imagery” benchmark [Lin et al., 2021]. This benchmark is better at

testing a network’s Forward Transfer and Backward Transfer, since data samples change

gradually and they were captured at different points in time.

The uptake of such benchmarks with smoother transitions has been inconsistent

across the field, with most works focusing on performance on Permuted MNIST and

CIFAR100 [van de Ven et al., 2022]. Some new works have adopted incremental versions

of miniImageNet and CUB [Masana et al., 2022] since they have higher complexity.

In our view the previous CL benchmarks, due to aforementioned abrupt class tran-

sitions [Lin et al., 2021], are quite similar to a Generalised Fine-Tuning setting, with

a key difference: fine-tuning is composed of a base and a novel task, rather than an

arbitrary number of tasks such as 5, 10 or 20. This is why when discussing the im-

portance and effectiveness of CL methods, we will prioritise the previous well-known

benchmarks such as CIFAR and mini-ImageNet.

4.1.2 Metrics

The set of metrics agreed for Continual Learning is generally consistent across works.

The most important metric is Average Accuracy (AA). This has been defined in

two ways [Zhou et al., 2022]:

• Final/Last-Task Average Accuracy (AB) is simply the average of all task accu-

racies at the end of the last training session.

• The mean of the Average Accuracy captured after every task, to capture perfor-

mance across all tasks rather than only after the final one.

Other metrics include:

65

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

• Backwards Transfer (BWT) is the effect learning a new task has on older

tasks. Negative backwards transfer is also known as Forgetting and fairly common

in evaluations.

• Forward Transfer (FWT) is how well a network can perform future tasks

based on the previously learned ones, also known as zero-shot learning.

When using integer task descriptors (i.e. 1 to 10) rather than more complex struc-

tures that allow for linking information across abrupt class transitions, forward transfer

is impossible for class-incremental learning [Lopez-Paz and Ranzato, 2017] but useful

in other areas of CL such as task-incremental learning or online learning.

We will be focusing on Average Accuracy (last task) and Backwards Transfer for

the purposes of this research, since we do not make use of additional information in

fine-tuning targets.

4.2 Network Expansion

When a network has to learn new tasks using the same weights, some of those weights

are going to be inevitably overwritten. One solution is to allocate new weights every

time a task has to be learned to minimize interference between tasks. This was lever-

aged by Rusu et al. in “Progressive Neural Networks” (ProgNN) [Rusu et al., 2016].

A new sub-module is allocated for each task, and the weights of previous tasks are

frozen. However, the features learned from previous tasks are still accessible via new

weight connections to maximise feature transfer between tasks. See Figure 4.1 for an

illustration.

Since the principle behind ProgNN is quite versatile, they have been applied to

reinforcement learning tasks as well as incremental classification tasks [Rusu et al.,

2016]. That said, a drawback is the vastly increased network size, for both the new

modules and lateral intra-module connections.

A proposed improvement was “Dynamically Expandable Networks” [Yoon et al.,

2017], which selectively retrains important neurons and prunes redundant weights. It

also adds new neurons to the network after a task only when loss falls under a certain

66

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

Figure 4.1: An illustration of a Progressive Neural Network [Rusu et al., 2016], where
h columns are added to the right for each new task and a is a new set of weights for
lateral connections between tasks. Diagram by Luo et al. [Luo et al., 2020]

threshold. While network capacity is still 50% more than the base network, the authors

improved performance while reducing overhead compared to ProgNN.

Other approaches to restraining network module size include “PackNet” [Mallya

and Lazebnik, 2018], which focused on pruning old weights before retraining to keep

the same capacity, and later “Compacting, Picking and Growing” [Hung et al., 2019],

which learned a mask for important weights and used iterative pruning after each task

instead of weight sharing. “Feature Boosting” (FOSTER) used Knowledge Distillation

after the expansion phase, a technique we already mentioned in Section 2.5.2.

A related approach is to train an ensemble of networks and specialising each one to

avoid wasting computational power. This entails solving a similar problem of bounding

the size of the combined networks. As an example, BatchEnsemble [Wen et al., 2020]

was an interesting contribution, where the combined ensemble weights were expressed

as the naive multiplication of a slow-changing matrix W and a fast-changing rank-one

matrix F. The predictions of all ensemble members are averaged during inference.

In “Class-Incremental Learning with Strong Pre-trained Models” [Wu et al., 2022b],

67

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

the authors use an evaluation protocol which assumes most of the data is in the initial

task, which is often the case in the real world. This protocol where a higher proportion

of classes are initially learned has already been explored in model expansion methods

[Zhou et al., 2022]. The authors hypothesize that a strong initial model can be adapted

to other tasks with few changes and for each task, part of the backbone’s initial weights

are copied to a new model and fine-tuned on a new task. The classifiers are merged using

confidence scores as well as concatenation. Their model performs quite well compared

to other approaches in that setting, especially when there isn’t a large domain shift

between tasks.

A recent method, “Ensemble of Selectively Trained Experts” (SEED) [Rypeść et al.,

2024] creates an ensemble of networks, but rather than training them all at once, it

selects only one model to fine-tune on each task. The resulting model is an “expert”

model since it focuses on a single task. The selection step is done in an initial training

step for each task, and the chosen expert is the one where the new classes overlap the

least with the old ones, measured with KL divergence. It achieved good performance on

existing benchmarks while keeping the parameter count low by using a shallow feature

extractor and sharing some of its layers between models. As acknowledged by the

authors, shared parameters potentially hamper generalisation ability if the new classes

are markedly different from the previous ones.

The network expansion area of Continual Learning is fairly complex, with research

ongoing on how to best model a network architecture that can expand while keeping

the memory cost reasonable. It should be noted that methods such as Progressive

Networks do not seem to perform well on tasks without abundant samples [Chaudhry

et al., 2019a].

4.3 Weight Regularisation

A way to stop catastrophic forgetting is to protect weights learned on previous tasks

from major changes. As we’ve seen in Section 4.2, this can be done by freezing the im-

portant ones and pruning the rest. This kind of training is time and resource intensive,

so regularisation methods seek to achieve the same aim by regularising weights during

68

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

training.

Elastic Weight Consolidation (EWC) [Kirkpatrick et al., 2017] protects previous

task weights by issuing on each iteration a loss penalty, which is proportional to the

deviation from previously learned task weights. This method was an important first

step in this research direction. In Synaptic Intelligence (SI) [Zenke et al., 2017], the

network’s weights are not just scalar values, but they also track past values and keep a

running estimate of their importance. The importance is computed during training as

opposed to after each task as in EWC. Despite using a different strategy, this method

performed similarly to EWC.

Hard Attention to the Task (HAT) [Serra et al., 2018] learns attention masks for

each layer and applies them during training to protect previous task weights. It’s a

more direct approach than EWC, which uses a loss penalty. It might hamper parameter

sharing between tasks, but it performed better than EWC in a task-incremental setting.

“Learning without Forgetting” (LwF) [Li and Hoiem, 2017] trains a classifier for

each task and uses Knowledge Distillation: while learning a new task, it adds a loss

term to keep the output logits related to old tasks close to what they were before

learning a new task.

We note that most of these importance estimation methods introduce new hyper-

parameters: for example, EWC has a λ parameter that regulates the importance of

weight deviations on loss, and LwF has a λ parameter to balance logit distillation loss

and new-task loss.

4.3.1 Gradient Manipulation for Weight Regularisation

Various regularisation methods have been studied which impact the direction of gradi-

ent descent rather than directly affecting the weights or changing the loss terms.

One of the first was Orthogonal Gradient Descent [Farajtabar et al., 2020], which

stored gradient directions after learning every task, and projected new task gradients

orthogonally to the previous ones. This method had the drawback of excessive memory

requirements.

Gradient Projection Memory (GPM) [Saha et al., 2021] uses Scalar Value Decom-

69

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

position (SVD) to determine the most significant network activations and stores them

in memory at the start. Then, on every training iteration, the gradient is projected

orthogonally to those to reduce interference. This change made it much more efficient

in terms of computation and memory management than OGD.

While GPM divides categorizes the subspace of previous tasks as important vs non-

important and always projects orthogonally to that subspace, a newer work by Yang

et al. [Yang et al., 2023b] stores multiple subspaces with varying degrees of importance

to relax that constraint and improve learning on new tasks. This means the method

does not necessarily perform a strict orthogonal projection on previous spaces, making

it possible to better learn new tasks.

While regularisation-based methods have proven valuable in task-incremental learn-

ing, class-incremental learning is more complex than task-incremental learning due to

abrupt class transitions. Regularisation-based methods usually struggle or fail on class-

incremental tasks [van de Ven et al., 2022], so their usefulness might be limited for our

broader fine-tuning objective. We come back to this point in Chapter 7.

4.4 Replay Methods

In task and class sequential CL benchmarks, the network is trained in succession on each

task or class subset, and the previous dataset may be unavailable. All replay methods

have one thing in common: they store a small subset of samples from previous tasks in

an “episodic memory” and feed them into the network alongside new ones. This class

of methods tends to perform better in class-incremental learning than regularisation

methods.

4.4.1 Experience Replay

The first CL method to use replay was “Incremental Classifier And Representation

Learning” (iCarl) [Rebuffi et al., 2017]. iCarl employs a special strategy for selecting

samples to store: it creates a pool of samples per class, averages their features into a

prototype and selects samples based on their similarity to this average. This ensures the

70

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

examples in memory are representative of their class. The loss is calculated on a mix of

novel and memory samples, with the total number of samples being distributed among

all known classes. The output logits are saved at the end of each task. Another loss

term is added for Knowledge Distillation, penalising drift from the old logits to preserve

their distribution. iCarl’s inference is also based on the nearest mean of exemplars seen,

similarly to the Prototypical Networks [Snell et al., 2017] we explored in Chapter 2. This

work was a key contribution and it is still included in class-incremental comparisons as

a relatively strong baseline.

Riemer et al. [Riemer et al., 2019] combined plain sample replay with meta-learning

using a meta-trainer similar to Reptile, which we discussed in Chapter 2 - Section 2.4,

and achieved improved class-incremental performance over iCarl, albeit at the cost of

a longer training procedure.

Tiny Episodic Memories (TEM) [Chaudhry et al., 2019b] found that decreasing

the number of samples held in memory did not cause overfitting, but rather improved

generalisation compared to previous baselines, which is relevant to our overarching

few-shot use case. The authors also were the first to present previous literature in the

context of Experience Replay as a learning paradigm for Continual Learning.

Dark Experience Replay (DER) [Buzzega et al., 2020] calculates loss on new data

and adds a distillation component (Backwards Consistency), but the old logits are

evaluated on every iteration instead of the end of every task like in iCarl. Their second

proposed algorithm, named DER++, calculates loss on a batch of new data as well as

a batch of memory data, with the distillation component still present. DER++ was

one of the top performing algorithms in class-incremental learning.

Experience Replay has been successfully used in related fields as well, such as Re-

inforcement Learning: Rolnick et al. [Rolnick et al., 2019] paired simple experience

replay with logit Knowledge Distillation on various game benchmarks. We discuss the

similarities between the Experience Replay and Generalised Few-Shot Object Detection

approaches in detail in Section 6.5.

71

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

4.4.2 Generative Replay

Storing previous task data can be cumbersome and a privacy risk, as we explore in

Section 5.1. This is why a related area of investigation in CL is to to generate old

data instead of storing it. The first work to propose this was Shin et al.’s Generative

Replay [Shin et al., 2017], which trained a GAN on previous task samples. While a

notable contribution, it was only tested on Permuted MNIST, and training a GAN is

no easy task as discussed in Section 2.1.1, so most subsequent approaches focused on

lighter methods. “Generative feature replay for class-incremental learning” [Liu et al.,

2020] (GFR) trained a generator after every task to replay features rather than entire

images, while confirming that GANs were not the best approach. Brain-Inspired Replay

(BI-R) used a VAE (see Chapter 2 - Section 2.1.2) to replay features to the network,

with one VAE head for each class. Another method proposed by the same authors as

BI-R was Generative Classifiers [Van De Ven et al., 2021], which created a VAE for

each class and had the network infer which model it came from.

While these methods are effective in a task-incremental setting, the picture is differ-

ent for a class-incremental one. GFR is better than iCarl, which is promising, however

the evaluation setting is different from the original. It would also be good to compare

it directly to other ER methods. As for Brain-Inspired Replay, it is competitive with

ER but only when combined with Synaptic Intelligence. Generative Classifiers is a

contender for the state of the art in class-incremental learning, albeit at an increased

computational cost due to the training of one VAE for each class and subsequent gen-

eration.

4.4.3 Sampling and Replay

Both G-FSOD and Experience Replay use a small, fixed subset of the original data for

their memory set, but the memory set in G-FSOD is randomly drawn. In contrast,

CL works often explore how to create the memory set in an optimal fashion. As we’ve

mentioned, iCarl [Rebuffi et al., 2017] uses all images seen by the network to build

prototypes by averaging their features, then uses the images which best approximate

each prototype to build the memory set.

72

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

Later, in one of their experiments, Castro et al. [Castro et al., 2018] found no

improvement when ranking the images according to prototype distance, similarly to

iCarl, then sampling them equally from split histogram bins.

Tee et al. [Tee and Zhang, 2023] calculated a confidence score and a similarity matrix

of all samples across all classes as measures of difficulty, then used those measures for

ranking. They reported that an even spread of samples presented in order of easy to

difficult significantly improves average accuracy on classification benchmarks.

The methods we focus on process data in batches, but it is worthy to note that

Online Continual Learning can also make use of algorithms to determine the best

replay set, a process known as known as Coreset Selection [Aljundi et al., 2019] [Yoon

et al., 2022]. These methods usually rely on gradients calculated on previous samples.

We delve into gradient manipulation in the section below.

4.4.4 Gradient Manipulation with Replay

Episodic Replay has been used in conjunction with gradient manipulation as well, trying

to improve generalisation by steering the direction of the gradient during each training

step. These methods hinge on two variables: the gradient derived from a batch of novel

data and the one derived from a memory batch. The first method to set this paradigm

was Gradient Episodic Memory (GEM) [Lopez-Paz and Ranzato, 2017]. The essence

of GEM is an orthogonal constraint on the novel gradient: when the angle between the

novel gradient and the base gradient is higher than 90°, the novel gradient is projected

orthogonally to the base one. This operation is also known as a rejection. Since a set of

data to replay is kept for every task, there are many base gradients, which means GEM

has to solve a quadratic programming problem, The main drawback of this methods is

the vastly increased computation time on each iteration.

Orthogonal constraints have been used in Multi-Task Learning as well. The multi-

task setting entails learning two different tasks at the same time from scratch, as

opposed to sequentially as in CL. As an example, the method known as “PCGrad” [Yu

et al., 2020a] in that field uses the exact same projection as GEM, although it is

performed between randomly ordered pairs of task-specific gradients, instead of just on

73

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

the current task. Not all gradient methods necessarily require orthogonal constraints.

Another gradient method in Multi-Task Learning is Conflict-Averse Gradient Descent

(CAG) [Liu et al., 2021a], which finds the best update vector within a hypersphere

centered around the average of the gradients.

In the CL field, GEM is considered an unwieldy method due to computation time

and memory usage, so Averaged Gradient Episodic Memory (A-GEM) stores a joint

memory of all past tasks to create a single “base” gradient, then uses the same orthog-

onal constraint and projection as GEM. This solved the problem of computation while

improving performance. An illustration is provided in Figure 4.2.

Figure 4.2: Simplified rendering of the A-GEM algorithm, with gnovel as the current
task gradient and gbase as the gradient on samples from all previous tasks. The result
is gproj

Other proposed improvements [Hu et al., 2020] were SOFTGEM and Average A-

GEM. Both use the same orthogonal constraint violation as A-GEM as the reason for

correction. SOFTGEM adds a hyperparameter ϵ to control the contribution of the

base gradient, while Average A-GEM averages the base and novel gradients instead

of projecting the novel onto the base one. Both changes led to slight performance

improvements over base A-GEM.

Guo et al. [Guo et al., 2020b] sought to provide a comprehensive view of replay-based

gradient manipulation methods and provide their own alternatives in Improved Schemes

for Memory-based Learning (MEGA). They use the same constraint with different

correction schemes. Their first proposal, MEGA-I, prioritises base or novel gradient

respectively based on the ratio of base and novel loss. With loss ratio r = Lbase/Lnovel,

gradient gnovel is multiplied by r and gbase is added onto it if the constraint is violated,

otherwise the base gradient is ignored. Their second proposal, MEGA-II, uses the same

74

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

loss term to find an optimal angle that aligns with base novel and gradient, through an

iteration-based approximation. Both methods perform better than A-GEM on various

benchmarks including CIFAR and CUB.

Another interesting work that followed from A-GEM was Constraint-based Fine-

tuning Approach (CFA) [Guirguis et al., 2022]. This work was concerned with the

Generalised FSOD setting rather than CL. The constraint is the same as A-GEM, with

the base training being treated as task 0: the novel gradient must not point more than

90 degrees away from the base one. To correct it, they average between the projection

of the base gradient onto the novel one and novel onto base. When the A-GEM con-

straint is respected, this projection simply becomes an average of the novel and base

one. We provide an illustration of this process in Figure 4.3 This method was used in

the G-FSOD setting but it was only compared directly to A-GEM, and not evaluated

in a CL setting as well. We will investigate this difference in setting in Chapter 7.

Figure 4.3: Illustration of Constrained Fine-tuning Approach by Guirguis et al. [Guir-
guis et al., 2022]. Novel gradient shown in red, base gradient in black.
If gbase ⊥ gnovel > 0, CFA will project gbase onto gnovel and vice versa, then average
their projections. Otherwise it simply averages gbase and gnovel.

We have to mention that gradient-based replay methods can suffer from slower

convergence than simple replay methods, and that they have the same inconvenient

requirement of storing earlier data as most of them.

4.5 Summary of Results

We focused on the published results for the class-incremental setting, since it is the most

similar setting to generalised fine-tuning: new classes usually include stark changes in

75

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

extracted features, as opposed to task-incremental learning. We have included task-

incremental results because they have been used to guide the adoption of gradient

methods in a Generalised Few-Shot Detection setting, despite the most similar setting

being class-incremental learning. This is because in a few-shot fine-tuning setting, a

network has to detect all classes without knowing whether an image contains base or

novel ones from the start.

While compiling this relatively brief chapter on Continual Learning, we discovered

some real problems in collating performance metrics: the reported settings are often

too different to be compared. For example, Dark Experience replay used CIFAR10

instead of CIFAR100 as Experience Replay and Tiny Episodic Memories did. Even

when two methods are run on the same dataset, there are often significant differences

in evaluation: for example, Brain-Inspired Replay was evaluated on a CIL setting with

10 subsets of CIFAR100 data, with the first task learning 10 classes just like the other

ones. Generative Feature Replay also evaluated on CIFAR100, but the first task was

included 50 classes. This setting, while being closer to the real world [Wu et al., 2022b],

tends to yield stronger results and thus their performance metrics are not comparable.

This is why we limited ourselves to reporting VanDeVen’s class-incremental learning

Table 4.1, which provides a good enough overview of the performance of each method

in a CIL setting and includes many replay methods. We consider adapting all the

methods mentioned in this chapter to the same consistent conditions to be out of scope

for this work.

4.5.1 Discussion

In the task-incremental setting, the best methods are LwF, a distillation-based method,

and BI-R, a generative replay method, although the performance gap in the TIL setting

is not very high. We can also see that A-GEM yields slightly lower performance than

Experience Replay.

It is thus apparent that good performance in the task-incremental setting, which

gradient methods are best known for, does not translate to a similar performance in the

class-incremental setting. The best gradient replay methods yield inferior performance

76

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

Method Task-Incremental Class-Incremental

Joint 78.8 ± 0.2 49.8 ± 0.2

A-GEM [Chaudhry et al., 2019a] 73.3 ± 0.4 20.4 ± 1.4

EWC [Kirkpatrick et al., 2017] 76.3 ± 0.3 8.2 ± 0.2

SI [Zenke et al., 2017] 74.8 ± 0.4 8.1 ± 0.2

LwF [Li and Hoiem, 2017] 78.6 ± 0.2 25.6 ± 0.3

DGR [Shin et al., 2017] 71.4 ± 0.3 9.7 ± 0.2

iCarl [Rebuffi et al., 2017] - 37.8 ± 0.2

ER [Riemer et al., 2019] 76.4 ± 0.2 37.6 ± 0.2

BI-R [Van de Ven et al., 2020] 79.1 ± 0.2 25.8 ± 0.4

GC [Van De Ven et al., 2021] - 46.8 ± 0.2

Table 4.1: Final accuracy on 10-Task CIFAR100, collated by Van De Ven et al. [van de
Ven et al., 2022]. Joint refers to training the model from scratch on data from all
classes, for a simple baseline that is similar to Prabhu et al.’s [Prabhu et al., 2020]. We
have highlighted the top 2 methods in each setting.

compared to replay methods in class-incremental learning. We consider this important

as it suggests they should not be used in a fine-tuning setting. We provide a detailed

comparison in the G-FSOD setting based on our own experiments in Chapter 7.

For the class-incremental setting, the Generative Classifier method performs the

best, albeit at the cost of training a VAE for each class. By comparison, iCarl is a good

compromise which only requires inference on a subset of data to build class prototypes.

We also note that iCarl is an older, more established method with many available

implementations. It does have the drawback of having to store previous samples.

It is also confirmed that regularisation methods are not as good as replay methods

in class-incremental learning. While this was confirmed to be the case in G-FSOD as

well, they do have the advantage of not requiring storage of previous data. We discuss

the implications of data storage in detail in Section 5.1.

77

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 4. Continual Learning

4.6 Conclusions

We have provided an overview of the different tasks that comprise the field of Continual

Learning, and the most common methods to address them including the benchmarks.

After our investigation, we can state the following:

• The distinction between Task and Class Incremental learning matters very much:

TIL’s inclusion of task descriptors in the input allows for the optimisation of two

separate tasks orthogonally, as opposed to CIL which has to treat all class as

equally likely.

• Following up the above, regularisation methods used in Task-Incremental Learn-

ing do not work as well in Class-Incremental Learning and vice versa. This merits

reflection, since the field of Generalised Few-Shot Learning we mentioned in the

previous chapter is close to CIL.

• While network expansion is a useful technique for CIL, especially when combined

with ensembles, it requires high memory capacity and computational resources.

Pruning can alleviate that, but it increases training time.

• The best performing methods for CIL always involve some form of Experience

Replay. Recently, new ways to improve basic ER have attracted the attention

of researchers, such as distillation or generative replay. This looks like a very

promising avenue of research.

• The current benchmarks in all areas of Continual Learning may not reflect real-

world conditions due to sharp transitions between sub-tasks.

The next chapter deals with the parallels between methods developed for Continual

Learning and ones developed for Generalised FSOD, showing they are often based on

the same insights. We later perform a detailed study on the performance of CL methods

in Generalised Few-Shot Object Detection in Chapter 7 - Experiments.

78

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Chapter 5

Commonalities Between Fields

Here we comprehensively discuss the relationship between the fields of CL and G-FSOD

which we have previously examined. We also acknowledge some of the potential issues

associated with this research.

5.1 Considerations on Base Sample Storage

Storing base samples alongside the model to fine-tune can lead to privacy and copyright

risks, since not every large base set might be composed of public-domain images. While

it is possible to store CNN backbone features instead of images, which would also speed

up training, feature storage requires higher storage costs as pixels have been converted

into richer feature representations.

Even storing sample features only may not lay these concerns to rest. Reconstruct-

ing images from convolutions is an inverse problem, since it entails reconstructing inputs

from observed outputs, and there can be multiple solutions. This problem has been

studied extensively in recent years. He et al. [He et al., 2019] found that images can

be reconstructed from intermediate layer features, albeit they are too noisy when the

features are high-level ones from the last convolutional layers.

Efficiency and privacy are not the only concerns. One of the current lines of research

[Hayes et al., 2021] focuses on bridging the gap between neuroscience and machine

learning research. A point frequently raised is that storing raw inputs is not how our

79

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 5. Commonalities Between Fields

own brain works: our brain remembers features rather than pixel-wise inputs, so feature

replay is a closer approximation to how the hippocampus can “replay” previously seen

patterns during sleep. We expand on this in Section 5.2.3 - Brain Inspired Replay.

5.2 Similarities between Generalised-FSOD and other Con-

tinual Learning approaches

While Generalised Few-Shot Learning is not as popular as plain Few-Shot Learning,

there have been a few studies towards maintaining base performance in the classification

context, such as Shi et al.’s graph-network based approach [Shi et al., 2020]. The link

between Generalised FSL and Continual Learning has not gone entirely unnoticed:

Kukleva et al. [Kukleva et al., 2022] drew from the similarities between the two fields

to build a framework which works in both CL and Generalised Fine-Tuning on few-

shot classification. Their method uses weight consolidation similar to EWC, penalising

deviation from previous weights with a loss term, followed by experience replay in a

separate phase.

One of the most immediate links between Continual Learning and Generalised Few-

Shot Object Detection is CFA [Guirguis et al., 2022], which is derived from the CL

method known as A-GEM [Chaudhry et al., 2019a]. However, its usefulness may lie

in its inherent use of experience replay just as TFA/DeFRCN. Other methods have

made use of very similar approaches to Continual Learning, or concepts agnostic to

both fields, to achieve the same ends. We summarise the connections between those

methods in Figure 5.1 below, and explain the common concepts in the next sections.

5.2.1 Network Expansion

Network expansion is a concept which has received attention in both GFSOD and CL.

Specifically, Retentive R-CNN [Fan et al., 2021] builds on the same principle of creating

another branch and freezing the previous one for a new set of classes to learn. This is

directly related to the module-based network expansion approaches we encountered in

Section 4.2 when discussing Continual Learning, such as Progressive Networks [Rusu

80

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 5. Commonalities Between Fields

Figure 5.1: Usage of related concepts across the fields Continual Learning and G-FSOD.
Solid lines indicate known connections between the fields at the time of writing.

et al., 2016]. The difference is that Retentive R-CNN’s modules are connected at the

ROI pooling stage, rather than having lateral connections on high-level feature layers.

That said, expansion approaches have a long way to go. While our own brains

are able to produce new cells as we expand certain areas of knowledge [Shors et al.,

2012], this biological process seems to be much more efficient than current CL methods

that follow this approach. While network pruning methods have improved memory

efficiency, the process of expanding and shrinking a network is still a very intensive

process. We hope that studies in how the brain consolidates new knowledge may

inform new advances in this field.

5.2.2 Neural Collapse

Another concept which has been applied to both CIL and G-FSOD is Neural Collapse

(NC), which is the tendency of a network to reduce its last fully-connected classification

layer to an Equiangular Tight Frame (ETF), that is a number of class prototypes

equidistant from each other. When applied to tasks which require the addition of new

classes to a model, this means the network can leave enough room for new embeddings

during successive training phases. As mentioned in Section 3.5.2, DiGeo [Ma et al.,

2023] uses a loss function that encourages NC as part of its solution to the G-FSOD

problem. The same principle has been used in Class-Incremental Learning: Yang et

81

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 5. Commonalities Between Fields

al. [Yang et al., 2023a] provide a fixed ETF to represent all classes, reserving space

for future ones. Their method was tested specifically in a few-shot setting. NC can

be applied in any field where data may not be equally available across classes. This is

why it has been used in Federated Learning [Li et al., 2023b], where the model may be

scattered across multiple devices.

Another common concept used by DiGeo is self-distillation, which we explained in

Section 2.5.2 - Knowledge Distillation. This relies on preserving the model’s output

distribution by mimicking the logits on the old class set. Teacher-student distillation

would be more complicated in Object Detection than it was for Dark Experience Replay

[Buzzega et al., 2020], since the latter was grounded in the CL classification setting. A

detection network produces a large number of logits since they often depend on region

proposals, which makes representing their distribution more difficult. Distillation is an

ongoing research topic for object detection networks.

5.2.3 Brain-Inspired Replay

Replaying a past memory seems to be the most efficient way to prevent forgetting,

given how well replay methods hold up compared to regularisation ones in a class-

incremental setting. However, storing samples is not the most efficient or safe method,

as we’ve discussed in Section 5.1. This is why a number of generative approaches have

emerged in the CL space to obviate the need for sample storage. Generating samples

can also provide better performance, since they are less likely to be out-of-distribution

ones compared to random sampling.

We already summarised some generative replay methods in Section 4.4, one of which

was Brain-Inspired Replay. It trains a Variational AutoEncoder (see Section 2.1.2 for

VAE details) on the seen samples instead of storing them. A new head in the VAE

is allocated to each known class to better generate class-specific features by keeping

some parameters separate. The features are then replayed through deep layers of the

network, as opposed to “exact” or pixel-level replay which replays the entire inputs,

which can decrease spurious correlations.

Another method recently reveloped in the G-FSOD space bears remarkable resem-

82

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 5. Commonalities Between Fields

blance to Brain-Inspired Replay: “Neural Instance Feature Forging” (NIFF) [Guirguis

et al., 2023]. In NIFF, a Variational AutoEncoder is trained with a separate head for

each class, and features generated by the VAE are fed into the network when learning

new classes. That said, the two methods differ in how they use replay. Feature replay

is not the exact same since BI-R uses whole image features, while NIFF replays RoI

features since it was built for the task of object detection. Additionally, while in BI-R

the generator shares many layers with the classifier model, in NIFF the statistics of

the RoI features are used as a target to train a separate generator model, which allows

NIFF greater flexibility.

Unfortunately, NIFF was evaluated as an addition to CFA, whose theoretical jus-

tification is fairly questionable. In the methodology part of our work, we found their

results to be not reproducible under the same conditions as DeFRCN (see Section 7.4).

However, there is a strong case for feature replay yielding similar performance to exact

replay with the right architecture, so we invite the authors to publish the results for

NIFF without CFA, since adapting VAE generative replay for G-FSOD is an achieve-

ment in of itself.

5.2.4 Neuroscience and Neural Network Replay

When comparing hippocampal replay and neural network replay, there are many differ-

ences between their respective tasks which we have to take into account. As mentioned

in Section 4.1.1, most CL benchmarks focus on classes whose features are fairly dis-

joint between one another and learned at the same time. This may not be too far

from current industry use cases, but it is fairly limiting. Even in stream-based con-

tinual learning, the specific time at which a sample was observed is usually considered

unimportant.

By contrast, time and order is far more important in mammal brains, and it drives

replay processes as well. Reverse replay (starting from most recent experiences) is

correlated with consolidation of memories, while forward-ordered replay is used in the

awake state to sample possible outcomes [Wikenheiser and Redish, 2015] [Pfeiffer, 2020].

Probabilistic sampling of features for replay can be better than straightforward

83

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 5. Commonalities Between Fields

sample replay, but it suffers from simplification derived by the tasks it solves, which

means the order of features does not matter, as class samples are sourced indifferently

to their time of appearance in the dataset in current benchmarks. We believe that in

order to better exploit advances in neuroscience, we will need ambitious benchmarks

more closely aligned to the real world. Right now, the most widely used CL benchmarks

have no time encoding, except for specific applications such as video feed analysis, and

a few seldom used like CLEAR [Lin et al., 2021] have concepts mutate over time.

It is entirely possible that current strides in the usual benchmarks do not represent

improved generalisation ability: Prabhu et al.’s [Prabhu et al., 2020] work showed

that CL benchmarks were not adequate in testing for future generalisation due to

sharp transitions. Real-world generalisation is a known problem in standard large-scale

learning as well: Fang et al.’s work [Fang et al., 2024] found just a weak correlation

between performance of an architecture on ImageNet and domain-specific datasets,

recommending broader benchmarks. Contemporary research should embrace recently

developed benchmarks to make full use of insights derived from biological studies.

5.3 Conclusions

So far we have discussed the various aspects and implications of each technique with

respect to their own field. In this section, we strive to provide a unified view of the

insights gathered from every chapter and inform the direction our experiments should

take in the next chapter.

Meta-Learning. One of the most important avenues of research in Few-Shot

Learning is Meta-Learning. However, while Meta-Learning is a definite staple of Few-

Shot Classification methods, with the vast majority of recent methods incorporating ML

in some way. However, the results in the Few-Shot Object Detection field consistently

underperform simpler fine-tuning based methods. The consensus appears to be that

ML methods cannot provide a flexible enough starting point for fine-tuning algorithms

in the relatively complex task of Object Detection [Huang et al., 2023]. However, other

works have ascertained the presence of class information leakage in FSOD benchmarks

(See section 3.7.2) which may affect both research paths differently and warrants further

84

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 5. Commonalities Between Fields

investigation. Due to this under-performance, while a strand of ML research is present

in Continual Learning, we chose not to pursue further investigation in the matter when

building our FSOD experiments in the next Chapter 6 - Methodology.

Metric Learning. On the other hand, metric learning has been successfully em-

ployed in both FSC [Zhang et al., 2020] and FSOD [Wang et al., 2024]. We note that

it is rare for FSOD works to experiment with explicit distance metrics, likely due to

the complexity of the task to solve. Still, class prototypes have seen use in both fine-

tuning and meta-learning based works, and prototypes are either learned via neural

network [Karlinsky et al., 2019] or created from feature means [Qiao et al., 2021]. The

latter, simpler kind of prototypes have also been employed in Continual Learning for

recalling previously seen classes [Rebuffi et al., 2017].

Self-Supervised Learning. While more complex and time-consuming, SSLpro-

vide a moderate performance boost across different tasks. This was the case in both

FSC and FSOD: for example, DeFRCN saw an increase in AP when coupled with a

SSL pre-trained backbone such as SWaV [Caron et al., 2020]. There is little use of self-

supervised pre-training in the Continual Learning field due to catastrophic forgetting,

albeit that might change soon [Liu et al., 2025].

Architectures. While there is no fixed architecture in FSC, most of the ones we

reviewed are variants of ResNet. In the field of FSOD, the standard is Faster R-CNN

thanks to a its good performance and extensibility, with just a few works opting for

recent versions of YOLO. The field of FSOD might need more targeted architectures in

the future, but the convenience of the previous body of work (and likely time-to-publish

pressure upon researchers) has so far narrowed the choice between those Faster R-CNN

and YOLO.

Memory Replay. We have expanded on the parallels between G-FSOD and Con-

tinual Learning, which can both make use of network expansion and memory replay

approaches. In order to avoid excessive resource usage, we focus on replay methods to

evaluate possible improvements. As we mentioned in Chapter 4 - Continual Learning,

there have been innovations in the way past samples are incorporated. Dark Expe-

rience Replay uses distillation loss on previous logits, but this is hard to transfer to

85

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 5. Commonalities Between Fields

a FSOD setting given the complexity of region proposals in object detection. Gen-

erating replay samples to ignore spurious features is an improvement which has been

explored before [Guirguis et al., 2023] and requires further investigation, though it re-

quires training of a generator network which clashes with our self-imposed resource

constraints from Chapter 1 - Introduction. On the other hand, selecting which samples

are replayed based on different criteria could be a useful low-cost enhancement for any

G-FSOD network.

An even stronger continuity between Class-Incremental Learning and Generalised

Fine-Tuning is apparent thanks to the sharp transitions between classes in common

CIL benchmarks. After looking at the latest developments in Continual Learning and

Neuroscience, we advocate for more widespread usage of alternative benchmarks such

as CLEAR [Lin et al., 2021].

Training Optimisations. We have investigated techniques which can be applied

orthogonally to any method: Network Architecture Search, Self-Distillation and Gra-

dient Correction Methods. It is clear from our review that the utility of NAS in this

setting is questionable and that it provides diminishing returns for its training cost. By

contrast, Self-Distillation has seen successful usage in the FSOD setting, as evidenced

by the works known as Multi-Faceted Distillation [Wu et al., 2022a] and DiGeo [Ma

et al., 2023]. Self-Distillation is popular in the Continual Learning field as well, used

by older methods such as LwF [Li and Hoiem, 2017] and more recent ones such as

FOSTER [Wang et al., 2022]. We recommend that new methods seriously consider

Self-Distillation as a natural part of their toolbox, as long as prolonged training time

is not an issue.

Finally, with Gradient Correction Methods, we found consistent research in Task-

Incremental Learning (TIL) but none of these methods are meant for Class-Incremental

Learning, and in fact do not perform well in that setting [van de Ven et al., 2022]. The

only use of gradient manipulation outside of TIL which we found was Constrained

Fine-tuning Approach [Guirguis et al., 2022] (CFA). In the next part, we focus on the

rationale for such methods in Generalised FSOD, attempt to reproduce the results of

CFA and to see whether gradient correction methods can actually improve performance

86

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 5. Commonalities Between Fields

in that setting.

87

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Part II

88

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Introduction

This part of the thesis covers our own research, as informed by the research survey

conducted in Part I. Having discussed the relationship between Continual Learning

and Generalised Few-Shot Object Detection, we investigate the integration of methods

belonging to the former into the latter. We explain our focus on gradient correction

methods and experience replay sampling, outlining the methods we are going to be

testing. After laying out a plan and performing the experiments, we analyse the results

and draw conclusions accordingly. We believe this part constitutes a contribution

to current research in Generalised Few-Shot Object Detection, just as the previous

literature survey contributes to the wider field of Few-Shot Learning.

89

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Chapter 6

Methodology

In this chapter, we outline our research direction and empirical investigation of Con-

tinual Learning methods in G-FSOD. As stated in the previous chapter, what spurred

our interest in gradient correction was the claim made by the authors of CFA [Guirguis

et al., 2022] that base and novel sets could be treated as orthogonal tasks by virtue

of the base classes having undergone a different, large-scale pre-training regime. We

discuss the issue in detail, then provide an overview of the gradient correction meth-

ods we’ve chosen for comparison, focusing on their differences. We then discuss the

rationale for a separate investigation concerned with sampling strategies.

6.1 Rationale for Gradient Correction

The reason we decided to test a number of gradient correction methods was to find

out whether their benefits carried over into a class-incremental setting with a different

objective from the original task-incremental one, a distinction which was not made

by CFA. We already mentioned in Chapter 4 - Continual Learning this difference in

objectives: the former includes task descriptors as part of the training and inference

process and the latter does not.

Establishing a minimal case with two sets of classes, Cb and Cn The multi-task ob-

jective is to learn a cost minimisation function with input sample x and task descriptor

t = Tb|Tn, as shown in 6.1:

90

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 6. Methodology

f(x, t)→ y ∈ (Cb|Cn) (6.1)

This means the classification head will also take the task descriptor as an input,

resulting in two distinct paths depending on t.

Class-incremental learning, on the other hand, has the unified objective to infer

over the whole set of potential output classes (Equation 6.2).

f(x)→ y ∈ Cb ∪ Cn (6.2)

Since the structure of the classification layer depends on the input, we posit there

is no reason the whole input class sets Cb and Cn should be treated as contrasting

objectives. Instead, it may be useful to separate individual classes, which was the

approach of DiGeo [Ma et al., 2023]. We decide to test this by replicating the original

CFA experiment as well as a selection of related gradient correction methods.

6.2 Training Procedure

In this section we show the overall training procedure for G-FSOD, so we may later

discuss changes to it. As we mentioned in Chapter 3, two domains are available when

fine-tuning a network in the Generalised FSOD setting: base and novel, which we refer

to as DbandDn. In the majority of the G-FSOD methods we explored, the training

procedure is the standard used for neural networks, where a mixed batch of items is

drawn from both domains.

To be concise, we have split the training loop into two functions. The outer Train

function which takes the base memory set, novel set, number of epochs E and learning

rate η. The inner function Step takes base and novel sets and calculates the gradient.

The Step function is a good injection point to change the usual implementation and

implement any given gradient correction method.

procedure Train(Dbase, Dnovel, E, η)

for epoch = 1 to E do

ĝ ← Step(Db, Dn)

91

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 6. Methodology

θ ← θ − η ∗ g ▷ Update weights

end for

end procedure

function Step(Dbase, Dnovel)

D = Db ∪Dn

x, y ← D ▷ Draw mixed batch

l← L(fθ(x), y) ▷ Loss

g ← ∆θ(l) ▷ Backpropagation

return g

end function

6.2.1 Experience Replay

As we mentioned in Chapter 5, the default G-FSOD setting is close to ER, which is

why we’ll use it as an additional baseline. The following is a basic Experience Replay

algorithm very similar to Chaudhry et al.’s algorithm [Chaudhry et al., 2019b] in the

Continual Learning space. No gradients are manipulated, losses are simply added

together then used for backpropagation.

function Step(Dbase, Dnovel)

xn, yn ← Dnovel

xb, yb ← Dbase

lb ← L(fθ(xb), yb) ▷ Base loss

ln ← L(fθ(xn), yn) ▷ Novel loss

g ← ∆θ(lb + ln) ▷ Backpropagation

return g

end function

6.3 Summary of Gradient Correction Methods

The notation of all the following algorithms has been updated to reflect a fine-tuning

setting. Since the base memory is built outside the training loop, and we only manipu-

92

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 6. Methodology

late the gradient rather than any hyperparameters, we only included the training step

function.

Since all gradient manipulation algorithms mentioned here require base and novel

gradients, we omitted the loss and back-propagation steps after showing them once in

A-GEM for brevity (marked with < snip >). All gb, gn, lb, ln are calculated the same

way as in A-GEM.

6.3.1 A-GEM

A-GEM [Chaudhry et al., 2019a] was the first gradient manipulation method in the

field of Continual Learning. When the angle between base and novel gradient is wider

than 90 degrees, the novel gradient is projected onto the base one and used as the new

update direction.

function Step(Dbase, Dnovel)

x, y ← Dnovel

xb, yb ← Dbase

gb ← ∆θ(L(fθ(xb), yb) ▷ Backpropagation (base)

gn ← ∆θ(L(fθ(xn), yn) ▷ Backpropagation (novel)

if gb
⊥ gn < 0 then ▷ Angle check

ĝ ← gn − gb
⊥ gn

gb∗gb gb ▷ Projection

else

ĝ ← gn

end if

return ĝ

end function

6.3.2 CFA

Constraint Fine-Tuning Approach [Guirguis et al., 2022] was built specifically in the

context of G-FSOD but follows a similar pattern. When the angle between base and

novel gradient is wider than 90 degrees, the novel gradient is projected onto the base

one, the base one is projected onto the novel one, and their average is set as the

93

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 6. Methodology

new update direction. When the angle is acute, base and novel gradients are simply

averaged.

function Step(Dbase, Dnovel)

< snip >

if gb
⊥ gn < 0 then ▷ Angle check

ĝ ← 1
2(1−

gn ⊥ gb
gb∗gb gb) +

1
2(1−

gb
⊥ gn

gn∗gn gn) ▷ Projection

else

ĝ ← gb+gn
2

end if

return ĝ

end function

6.3.3 MEGA-I

This algorithm [Guo et al., 2020b] is a straightforward one, with one novelty over A-

GEM: the use of ratio r between base and novel losses when calculating the gradient.

The same gradient angle check is performed, but with ϵ as a hyperparameter denoting

sensitivity (10−10 by default). When the angle between gradients is acute and no

correction is needed, ĝ is set to the novel gradient gn. Otherwise ĝ will become the

gb+gn∗r, so that the influence of the novel gradient is reduced by r to avoid forgetting.

Since this method did not provide new insights, we did not repeat this test on the

COCO dataset.

function Step(Dbase, Dnovel)

< snip >

if lt > ϵ then

α1 = 1, α2 =
lb
ln

else

α1 = 0, α2 = 1

end if

ĝ ← α1.gn + α2.gb

return ĝ

94

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 6. Methodology

end function

6.3.4 MEGA-II

MEGA-II [Guo et al., 2020b] is a gradient correction method for Task-Incremental

Learning, more complex than A-GEM. The algorithm is summarised below.

• ι̂ is the angle between base and novel gradient, β is the angle between gn and the

desired ĝ

• ι is an angle chosen from a random pool and iteratively refined to maximise

lncos(β) + lbcos(ι̂− β)

The end result is a gradient vector with the same magnitude as gn but rotated

to align with gb as well.

• If ι̂ is less than ϵ (10−10) then no correction step is needed and gn is used as usual.

function Step(Dbase, Dnovel)

< snip >

ι̂ = gb⊥ gn
||gb||.||gn||

if ||gb||.||gn|| > ϵ then

α1 =
||gn||2||gb||2cosι−gb

⊥ gn||gn||||gb||cos(ι̂−ι)
||gn||2||gb||2−||gb ⊥ gn||2

α2 =
−gn ⊥ gb||gn||2+||gn||2||gn||||gb||cos(ι̂−ι)

||gn||2||gb||2−||gb ⊥ gn||2

ĝ ← α1.gb + α2.gn

else

ĝ ← gn

end if

return ĝ

end function

6.3.5 CAG

Conflict-Averse Gradient descent [Liu et al., 2021a] was built in the context of Multi-

Task learning, adapted here for Generalised FSOD. It was not intended for use in

95

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 6. Methodology

a fine-tuning context. We have included it here to show that methods which tend to

average the gradients always perform better than those that don’t in the FSOD context,

despite differences in the underlying objective.

procedure Step(Dbase, Dnovel)

< snip >

ga = gb+gn
2

ϕ = c2||g0||2

Minimise gw
⊥ ga +

√
ϕ||gw|| for gw = wbgb + wngn

return ga +
√
phi

||gw||gw

end procedure

6.4 Other methods

6.4.1 CFA With Loss

In this experiment, we tried to use the loss term to steer the gradient correction. The

ratio coefficient r is calculated as lb
ln

just as α2 in MEGA-I, but is clamped because

a coefficient too close to 0 or 1 leads to a decrease in performance. The clamping is

performed by running r through the following function:

ρ = tanh(a ∗ (r − 0.5)) ∗ b+ 0.5

with a = 2 as a parameter that controls the steepness of the curve and b = 0.1 control-

ling the clamp limit, in this case 0.4 to 0.6.

Then, ρ is applied to the base and projection cases as follows, instead of averaging

them:

function Step(Dbase, Dnovel)

< snip >

if gb
⊥ gn < 0 then ▷ Angle check

ĝ ← (1− ρ)(1− gn ⊥ gb
gb∗gb gb) + ρ(1− gb

⊥ gn
gn∗gn gn) ▷ Projection

else

ĝ ← (1− ρ)gb + ρgn

end if

96

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 6. Methodology

return ĝ

end function

6.4.2 Averaging

In this experiment, we simply averaged the base and novel gradients (gb and gn) during

each training iteration, without checking the angle.

function Step(Dbase, Dnovel)

< snip >

α1 = 0.5

α2 = 0.5

ĝ ← α1.gn + α2.gb

return ĝ

end function

This was intended as an ablation study, which proved very useful when interpreting

the full results.

6.5 Rationale for Sampling: G-FSOD and Experience Re-

play

Base samples are crucial for some of the influential FSOD methods we explored be-

fore in Chapter 3. TFA, which uses frozen weights, exploits base samples both when

considering novel classes (FSOD) and base/novel ones (G-FSOD). DeFRCN uses them

in the G-FSOD setting, a practice adopted in subsequent works. We argue that these

well-known fine-tuning methods employ a replay strategy similar to the existing CL

method known as Experience Replay.

In ER, for a set of base classes Db, a memory of samples Mb is created. Samples

drawn from novel task classesDn are sent through the network alongside samples drawn

from Mb, and loss calculated on both (Ln + Lb).

ER uses reservoir sampling for creating and updating the buffer and A-GEM uses

ring-buffer sampling, but in G-FSOD there is no need to update the memory buffer since

97

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 6. Methodology

there are only two tasks. Both settings use a small, fixed subset of the original data

for their memory when transitioning from Task 1 to Task 2. G-FSOD is not concerned

with partitioning memory for subsequent tasks, since there is only one original task.

While G-FSOD benchmarks have a 75/25% base/novel class proportion, with mixed

mini-batches entailing a 25/75% class probability for the samples drawn, ER methods

often draw their samples separately, calculating two loss terms: Lb for base sample loss

and Ln for the current task, with the two being equally weighted. Indeed, a viable

alternative is to simply chain the memory samples to the novel ones in a batch for a

ratio of 50/50% [Prabhu et al., 2023].

The G-FSOD setting likely benefits from not requiring storage of the whole base

set, as images used for a detection setting tend to be higher resolution than those used

for classification to improve localisation granularity, so the entire base set would never

fit into cache memory. However, we noticed that the base samples for the 10-split

fixed benchmarks introduced by TFA were drawn through random sampling without

replacement. We asked the follow-up question: while gradient correction methods are

not effective, is it possible to improve performance based on sampling alone? A small

pool of fixed random samples may not be the best way to represent the underlying

distribution of base classes. This spurred us to investigate the code which produced

the original TFA data splits, and to explore sampling methods.

6.6 Summary of Sampling Strategies

We considered the default sampling strategy in the mainstream TFA benchmark: for

the k-shot setting, k samples are present in each novel class, and k samples are selected

for each base class to match them. Only one instance annotation is collected for each

image, even if there are more present. While this makes sense to keep the number of

novel instances limited in a few-shot setting, this limit has been applied to both base

and novel instances, despite base annotations being abundant. Additionally, the base

images are selected at random, despite the fact that in G-FSOD we have the benefit of

starting from a large-scale dataset. We thus sought to select select samples that could

help the network best remember its base task. The novel samples were not changed in

98

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 6. Methodology

any of our experiments for a thorough comparison with the original DeFRCN work.

For each class, we create a pool of candidate images to draw statistics from, since

running inference on the entire base training set would be very time consuming and be-

yond the scope of this research. The number of images in each pool is a hyperparameter

we set to p = 50.

Instance Limit. Most of the fine-tuning works we have reviewed follow a balancing

strategy that is open to question: they remove base instance annotations that exceed

k shots in both base and novel images. However this causes the network to treat extra

base class instances as part of the background. We wanted to quantify how this would

affect novel class performance, and so we removed the base instance limit.

When simply removing this limit, the number of instances for some classes can be

much higher than others since they appear multiple times in the same image. This

imbalance can worsen the performance of novel classes. To mitigate this, we populate

our sample pool starting with the least frequent classes, whose images can already

contain instances of common classes. Additionally, when selecting images for a pool,

we discard those that contain extra instances for any class with an already full pool.

6.6.1 Prototype Distance

Our first method was to select the images with instances closest to their respective class

prototypes. We collected image features from the network’s backbone, then applied a

RoI alignment operation with ground-truth base class labels. We then averaged the

features of instances from every base class across the dataset to create prototypes, as

shown in Equation 6.3. µc refers to the prototype for class c and xi is each instance

from candidate sample pool Pc.

µc =
1

|Pc|
∑
xi∈Pc

xi (6.3)

We ranked the images based on their euclidean distance to each prototype. For

each class c, every sample s containing that class was assigned a score Ws,c based on its

Euclidean distance from the class prototype as in Eq. 6.4. To obtain k required shots

99

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 6. Methodology

for the base set, we selected the samples with the lowest distance scores.

Ws,c = ||s− µ||2 (6.4)

This yields the samples with the instances most similar to the prototypes to form

the memory set.

While reviewing the literature, we found that this method of sample selection was

also employed in iCarl [Rebuffi et al., 2017] (“mean of features”) as well as the early CL

work“End-To-End Incremental Learning” by Castro et al. [Castro et al., 2018], which

called it “herding”. This method is known to perform well in a classification setting.

As a note, Prototype sampling is not the same as DeFRCN’s Prototype Calibration,

since that entails combining novel class prototypes to the novel test samples during

inference, while we operate on base samples before fine-tuning instead.

6.6.2 Prototype Distance Ratio

In this experiment, we calculated the between each class instance and all class pro-

totypes, rather than just the one whose class it belongs to. We ranked the samples

based on the ratio between the distance to the closest prototype and the distance to

the correct prototype.

This strategy was meant to mitigate class confusion by selecting clearly defined

samples, since we believed that relying on distance alone could cause the selection of

ambiguous samples close to multiple classes. See Figure 6.1 for an illustration.

Figure 6.1: Illustration of sample ranking methods: Prototype Distance (left) versus
Prototype Distance Ratio (right). r denotes the ratio between prototype distances to
a given sample.

100

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 6. Methodology

Given a number of class prototypes µk, we ranked the images for sampling based

on the ratio between the distance to the correct prototype µy and their distance to the

next closest prototype, as shown in Eq. 6.5.

Ws,c =
||s− µy||2

mink ̸=y(||s− µk||2)
(6.5)

This implies that if µk = µy, i.e. the closest prototype is also the correct one, then

Ws,c will be lower than 1. The further away the next closest prototype is, the lower

the score. We selected k samples with the lowest scores. A practical example is shown

in Figure 6.2.

Figure 6.2: Most important instances for class “Bike” as captured by ProtoDist Ratio
(Left) vs ProtoDist (right). Simple ProtoDist picked an instance whose features sub-
stantially overlap with “Person” due to the annotations, but is close to “Bike” as well.
By contrast, ProtoDist Ratio picked an instance that does not lend itself to confusion:
the overlapping classes (“monitor” and “potted plant”) have distant prototypes.

6.6.3 Histograms vs Top-K (Variation)

Incidentally, Castro et al. [Castro et al., 2018] also wondered if selecting the closest

images to the prototypes might be too limiting, and set out to select images propor-

tionally based on their distance to each class prototype, by dividing the image pool into

histogram bins. While this did not yield good results for them, we were interested to

see the impact this would have on few-shot learning since it provides a good alternative

101

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 6. Methodology

to just selecting the closest prototypes.

Our implementation used 10 distance bins regardless of the number of samples and

picks them in order starting from the first bin (closest to prototype). This meant

that Bottom-K and Histogram sampling were equivalent under the 1-shot setting, as

shown in Figure 6.3 . We saw histogram sampling as a possible enhancement of either

ProtoDistance or ProtoDistanceRatio, as it could ensure feature diversity in higher shot

settings.

Figure 6.3: Bottom-K sampling (above) simply picks the samples which minimise the
chosen metric, while Histogram sampling (below) takes one item from each bin, starting
from the first and wrapping back around until the shot quota is reached.

6.6.4 Mini-Batch Distribution (Variation)

The standard G-FSOD training process involves drawing mixed mini-batches of base

and novel images during training, although novel classes are only 25% of the total in the

datasets we tested. This means the probability of drawing a novel sample is much lower

than a base one. We attempt to redress this by drawing separate batches for base and

novel samples, and calculating loss as the sum of their respective losses Lbase+Lnovel as

in ER [Chaudhry et al., 2019b]. This ensures the network sees equal numbers of base

and novel images, although the number of instances may differ. We test this change on

both the original sampling method as well as Prototype Distance Ratio, denoting it as

ER.

102

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Chapter 7

Experiments

In this chapter, we outline our experiments, present our results and interpret them, ex-

panding upon the relationship between the Generalised Fine-Tuning and Class-Incremental

Learning settings.

7.1 Experimental Plan

Our first batch of experiments aimed to answer the research question: do gradient

correction methods improve G-FSOD performance, and if so, which approach works

best? To see if the first hypothesis is true, we train multiple copies of a network with

a constant architecture but different training procedures, with results averaged over

different data splits to account for randomness inherent to neural networks. We outline

the gradient correction methods tested in Section 6.3 below.

The second batch of experiments aims to answer the remaining question: is it possi-

ble to use Continual Learning methods to improve G-FSOD performance at all? After

the negative results of the first batch, we adopted a different approach: since current

methods use random sampling when selecting previously seen images that maintain

performance on old classes, we focus on the selection of these base images that are used

alongside the novel ones. As before, we keep the network architecture constant, and we

use the same training procedure as well, only changing the subset of base class images

for each trial. The reason we only modify the base subset instead of the novel one is

103

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 7. Experiments

that the novel images are few-shot, and our results must remain directly comparable

to other works.

Both batches of experiments are run on Pascal VOC as well as COCO: since the two

datasets have fairly different characteristics as outlined in Chapter 3, it was important

to know if the effects observed on one dataset would be present in the other.

The core of each experiment is the training of an DeFRCN-based Object Detection

network with a ResNet-101 pre-trained backbone. To keep results consistent, we follow

the class splits of others in the literature [Wang et al., 2020b] [Qiao et al., 2021]. More

details are available in Section 7.2 - Experimental Setup.

7.2 Experimental Setup

We have run our experiments on both the VOC and the COCO datasets. The VOC

dataset [Everingham et al., 2010], with 20 classes in total, is divided alternatively into

3 random class splits, with each split having 15 base and 5 novel classes. The COCO

dataset is split once into 60 base classes and 20 novel classes, all belonging to the

physical, well-defined object category known as “things” in the original specification

[Lin et al., 2014]. Both VOC and COCO splits were defined in previous works [Kang

et al., 2019]. COCO experiments were performed on 1, 5, 10 and 30 shots, while VOC

experiments on 1, 5 and 10 shots. As a note, the highest number of samples for VOC

has been 10 in related works as well, since performance increases tend to plateau quicker

given the relatively simpler framing of the samples (See Section 3.1.1 for more dataset

details).

We selected DeFRCN as the base implementation, using the same hyper-parameters

and starting from the pre-trained weights to gauge the effectiveness of the methods

discussed. We explain the importance of this in Section 7.3. We decided to use DeFRCN

over TFA since TFA relies on freezing most of the network, which makes it less relevant

for evaluating gradient correction methods. Additionally, most of the recent fine-tuning

based literature uses DeFRCN as a baseline comparison or starting point [Gao et al.,

2022a] [Ma et al., 2023] [Guirguis et al., 2023].

For evaluation, we use the standard approach of VOC-2007 for the VOC splits and

104

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 7. Experiments

and 5k separate images for COCO. We average each result over 10 sets of samples

according to the TFA protocol [Wang et al., 2020b]. We report base and novel Average

Precision (bAP/nAP) calculated according to the specifics of both datasets, as we

believe that AP without class set distinction can mask potential base/novel performance

trade-offs in the G-FSOD setting.

All of our gradient correction method comparisons were thus implemented as cus-

tom trainer classes for DeFRCN, with the original DeFRCN implementation named

‘Original’ in our tables. We also used the same number of training iterations as De-

FRCN for each k-shot experiment. We note that gradient correction methods take

twice as long to converge compared to the base method, something that was noted by

the authors of CFA-DeFRCN as well [Guirguis et al., 2022].

We used 4 A100 SXM4 GPUs for training the network, with 10 CPUs dedicated

to each batch training job. The mini-batch size was 16, the same as previous works,

resulting in a per-gpu mini-batch size of 4. We note the possible differences mini-batch

size can cause in Section 7.3.

The VOC and COCO experiments were run 10 times with data derived from differ-

ent random seeds, using the same data as TFA (and consequently DeFRCN) for a fair

comparison [Wang et al., 2020b]. The experimental results are then averaged, and we

report base class AP (bAP) and novel class AP (nAP). This is calculated in accordance

to each dataset’s definition of Average Precision, so mAP on COCO is calculated over

the [0.5:0.05:0.95] IoU thresholds rather than just 0.5 as in VOC.

7.3 Experimental Notes

In this section we showcase some findings related to the reliability of the results them-

selves. We hope this will help reproduce results and hopefully inform the evaluation

phase of future works.

105

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 7. Experiments

7.3.1 Causes of Result Variance

Since a well-initialised base model will tend to be less affected by catastrophic forgetting,

we believe that any method which uses the same basic framework for FSOD or G-

FSOD should always start from previously published weights when possible to avoid

any bias. This is not always possible if different frameworks are in use: for example,

the MMFewShot framework [Chen et al., 2019a] uses another initialised base model,

and while it was trained in a setting close to the original it achieves much better results

on base classes.

Tweaking the implementation of the data loader can also produce unexpected re-

sults: creating separate base/novel splits and mixing them together instead of using the

original one causes the base performance to decrease and novel performance to improve

substantially on COCO, with novel results very similar to CFA’s. Further investigation

is required to ascertain the cause.

In the fine-tuning setting common to TFA, DeFRCN and related methods, an ad-

ditional factor is the random initialisation of weights for the novel classifier, which can

also sway results. This was acknowledged by the authors of TFA. Thankfully, the au-

thors of DeFRCN have published the weights obtained by the “model surgery” step

during which the classifier head is expanded to include novel classes.

The initial random seed plays a part as well, causing high variance as seen in Figure

7.1, which is quite apparent when using results from a single split, in the way of FSRW.

We remark that the nAP50 metric is even more unreliable than nAP in this regard,

since it selects results at a single IoU threshold of 0.5 instead of averaging them. The

only way to counter this is to train and evaluate over multiple splits, average their

results and estimate the associated confidence interval.

Part of the reason the FSRW split is still in use is that certain frameworks (such as

MMFewShot) and repositories are older than TFA and do not include code for handling

multiple splits. However, given the high variance caused by various factors we’ve shown

in Figure 7.1, it affects the reliability of published results. Confidence intervals are key

to quantifying the improvement of any method.

Additionally, FSRW results tend to be better than TFA (averaged) ones, which

106

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 7. Experiments

Figure 7.1: 5-shot results on VOC set 1, with Averaged referring to 10-split averaged
metrics from TFA and FSRW referring to original Split 0 alone.

means they should not be directly compared. Why this happens is unclear: discarding

the instance cap to bring sample selection in line with FSRW (see Section 6.6) does

not improve average results for VOC, so the original FSRW samples for that one split

likely happened to be representative ones.

We discovered that batch size is not the only hyperparameter that’s important to

reproduce previous papers’ results: the effective mini-batch size of the data sent to all

GPUs plays a role that has not been given due attention. While the nominal batch size

has been 16 across many works, TFA and DeFRCN used 8 GPUs with 2 images each,

and CFA 4 GPUs with 4 images each. We observed that sending more than 4 images

per GPU causes performance to decrease across shots: see Table 7.1 for details.

Shot No. b=16 (1 GPU) b=8 (2 GPUs) b=4 (4 GPUs)

1 41.2 ± 1.1 41.8 ± 1.1 42.5 ± 0.9

5 45.4 ± 0.7 46.4 ± 0.6 46.7 ± 0.5

Table 7.1: Effect of mini-batch size b on VOC mAP (Class Split 1), where b is the
global batch size (16) divided by number of GPUs

7.3.2 Note on Confidence Intervals

The mean of multiple runs along with a confidence interval is the best way to estimate

a method’s effectiveness, all factors such as batch size being equal. However, we would

like to add a minor correction to the calculation of the confidence interval, since the

calculation has been adopted by other works using the same standard.

107

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 7. Experiments

The confidence interval formula used by Wang et al. [Wang et al., 2020b] is meant

for a normal distribution:

CI = 1.96 ∗ σ√
n

(7.1)

where 1.96 is as the Z-value for a 95% confidence interval, σ is the standard deviation,

and n is the number of repeated runs. σ is commonly calculated as

σ =

√
Σ(xi − µ)

n
(7.2)

While the use of confidence intervals (Equation 7.1) in TFA was a massive improve-

ment from previous work in terms of statistics, it may require a revision. For a small

sample size such as 10 experiments (used for COCO in all such works), we cannot es-

timate the real mean of the possible set of experiments. Thus, the standard deviation

from the mean of these 10 samples will inevitably be an underestimate of the standard

deviation of the samples from the real population mean.

The first change we propose is the use of Bessel’s Correction, named after the

German scientist Friedrich Bessel. It’s a well-known approach that replaces n with

n − 1 for the standard deviation’s denominator, correcting some of the bias in the

sample distribution.

σ =

√
Σ(xi − µ)

n− 1
(7.3)

Secondly, while a normal distribution is good fit for the mean with abundant samples

(as stated by the Central Limit Theorem), this is not the case here. We believe a t-

distribution is a much more cautious approach to modelling performance statistics since

we only have 10 samples in the form of experiment results [Brereton, 2015]. Thus our

confidence interval formula changes slightly:

CI = 2.262 ∗ σ√
n

(7.4)

where 2.262 is the value of t for a two-tailed confidence test of 95% drawn from the

t-distribution table (9dof), and σ is standard deviation for the samples rather than the

108

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 7. Experiments

assumed standard deviation of the population.

The original calculation of the confidence interval makes the assumption of a normal

distribution. This might be justified if considering a large set of experiments as a fixed

closed population in of itself, but this does not help direct comparisons with other

works: TFA used 30 experiments for VOC and 10 for COCO while DeFRCN and

others used 10 for both, to save on time. Furthermore, the experiment conditions may

change substantially, as we did in Section 6.6 when randomly replacing base class data

for an ablation experiment.

7.4 Performance of Gradient Correction Methods

We performed a number of experiments on both COCO and VOC in the G-FSOD

setting to evaluate the effectiveness of gradient correction methods. Original refers to

the original DeFRCN. A-GEM’s implementation is derived directly from the original CL

code [Chaudhry et al., 2019a], and CFA’s from the modifications to A-GEM detailed

in the paper. MEGA−II is the second CL method published by Guo et al [Guo et al.,

2020b]. CFA+Loss refers to an original experiment we performed adding a loss term

to CFA, as detailed in Section 6.4.1. CAG is the same multi-task learning method

adapted for this fine-tuning setting [Liu et al., 2021a].

As shown by Table 7.2 and 7.3, no gradient manipulation procedure was better than

the original training procedure of DeFRCN in a G-FSOD setting. MEGA-I, which only

relies on a loss term, had even worse performance than A-GEM, and adding a loss

term to CFA only manages to slightly decrease novel AP. See Figure 7.2 for a visual

comparison.

Furthermore, based on the results of our proposed Averaging method, what makes

other methods such as CFA outperform A-GEM and MEGA-II is the averaging of

base and novel gradients, rather than any projection algorithm. This also explains

why the CAG method achieves the same performance as the DeFRCN baseline, since

CAG constrains the gradient to be within a certain user-parametrised distance from

the average gradient. In contrast, A-GEM and MEGA-II focus on preserving the base

gradient and have no averaging step. These results were not entirely unexpected, since

109

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 7. Experiments

Figure 7.2: Gradient correction methods with memory replay: G-FSOD results on 10
COCO data splits. DeFRCN was used as the base method in every row.

CL methods devised in a Task-Incremental setting are known not to perform as well in

a Class-Incremental [van de Ven et al., 2022] or Generalised setting such as in this case.

The orthogonal constraint paradigm itself may be too restrictive when task descriptors

are not provided and the model may predict from the full range of available classes.

Complete results are available in the appendix (Section A.3).

Method
1-shot 5-shot 10-shot

bAP nAP bAP nAP bAP nAP

Original DeFRCN 48.6 ± 0.8 24.1 ± 2.4 49.6 ± 0.4 38.1 ± 1.1 49.8 ± 0.3 40.0 ± 0.9

A-GEM 48.9 ± 0.7 25.4 ± 1.8 42.2 ± 0.8 36.6 ± 1.1 38.3 ± 1.9 38.7 ± 0.8

CFA 49.0 ± 0.8 25.8 ± 2.1 49.7 ± 0.5 38.5 ± 0.9 49.9 ± 0.2 40.5 ± 0.7

CFA+Loss 49.1 ± 0.8 25.5 ± 2.2 49.9 ± 0.4 37.6 ± 1.2 49.8 ± 0.2 39.1 ± 0.9

MEGA-I 41.6 ± 0.8 24.7 ± 1.9 40.4 ± 0.7 35.0 ± 2.0 37.7 ± 1.2 37.6 ± 1.7

MEGA-II 47.2 ± 1.1 24.0 ± 1.8 46.9 ± 0.7 32.7 ± 0.9 46.0 ± 0.5 34.1 ± 1.4

CAG 48.8 ± 0.8 25.5 ± 2.2 49.8 ± 0.4 38.5 ± 0.8 49.9 ± 0.2 40.5 ± 0.8

Averaging 49.1 ± 0.7 25.7 ± 2.1 49.8 ± 0.4 38.5 ± 0.9 49.9 ± 0.2 40.6 ± 0.8

Table 7.2: Gradient correction methods: G-FSOD base/novel AP (Average Precision)
on 10 VOC data splits for class split VOC-1.

In the CL setting, we can see in Figure 7.3 that while A-GEM performs worse than

both CFA and ER, CFA does not beat basic Experience Replay in a continual learning

setting.

Guirguis et al. [Guirguis et al., 2022] postulated in CFA that the reason for A-GEM

110

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 7. Experiments

Method
1-shot 5-shot 10-shot

bAP nAP bAP nAP bAP nAP

Original DeFRCN 30.3 ± 0.5 4.8 ± 0.6 32.4 ± 0.2 13.5 ± 0.6 33.9 ± 0.2 16.7 ± 0.6

A-GEM 28.2 ± 0.3 4.7 ± 0.6 27.1 ± 0.8 10.8 ± 0.6 27.7 ± 1.0 13.4 ± 0.4

CFA 30.1 ± 0.5 5.0 ± 0.5 32.3 ± 0.3 13.5 ± 0.6 33.7 ± 0.2 16.7 ± 0.5

CFA+Loss 30.2 ± 0.5 5.1 ± 0.6 32.3 ± 0.2 13.6 ± 0.6 33.7 ± 0.2 16.8 ± 0.5

MEGA-II 28.3 ± 0.7 5.1 ± 0.6 29.0 ± 0.5 13.2 ± 0.5 29.6 ± 0.3 16.4 ± 0.5

CAG 30.1 ± 0.5 4.9 ± 0.5 32.4 ± 0.3 13.5 ± 0.6 33.8 ± 0.2 16.7 ± 0.5

Averaging 30.1 ± 0.5 5.0 ± 0.6 32.3 ± 0.3 13.5 ± 0.6 33.7 ± 0.2 16.7 ± 0.5

Table 7.3: Gradient correction methods with memory replay: G-FSOD results on 10
COCO data splits. DeFRCN was used as the base method in every row.

Figure 7.3: Average final accuracy across tasks for different CL methods on CIFAR100,
with various memory budgets (logarithmic). We can see that while CFA improves upon
A-GEM and does not suffer from high variance, it does not outperform simple ER in a
class-incremental setting.

111

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 7. Experiments

causing worse performance in FSOD was the constraint being too restrictive to learn

base samples, while achieving good performance on old samples. Our experimental

results contradict that line of reasoning in the FSOD setting (See Table 7.2), where a

performance drop is observed on both base and novel classes. From a per-task break-

down in Table 7.4, we see that the A-GEM does not perform as well as the other

methods on old tasks, despite reaching a similar accuracy on final tasks. This would

match the conclusions drawn from an experiment performed by the Chaudhry et al. in

Tiny Episodic Memories [Chaudhry et al., 2019b], where A-GEM was found to underfit

memory samples, as its training accuracy on those in the MNIST never reached 100%

while basic experience replay did so.

Classes A-GEM CFA ER iCarl

1-10 3.5 ± 2.2 3.3 ± 0.9 4.0 ± 1.1 15.0 ± 3.4

11-20 4.0 ± 1.3 4.6 ± 0.7 5.4 ± 0.6 15.6 ± 2.0

21-30 4.3 ± 2.8 5.3 ± 1.8 5.4 ± 1.9 20.6 ± 3.7

31-40 3.9 ± 1.7 5.7 ± 1.7 6.2 ± 2.1 19.2 ± 2.4

41-50 5.5 ± 3.2 6.1 ± 1.4 6.2 ± 1.4 20.1 ± 2.9

51-60 5.5 ± 2.6 6.9 ± 1.5 8.1 ± 1.9 25.0 ± 3.2

61-70 7.5 ± 2.6 11.6 ± 1.9 12.9 ± 2.1 31.9 ± 2.5

71-80 8.0 ± 2.4 13.4 ± 2.2 14.6 ± 2.3 39.5 ± 3.3

81-90 9.7 ± 4.2 14.7 ± 2.6 17.8 ± 2.1 46.5 ± 2.5

91-100 76.6 ± 4.4 76.9 ± 4.1 76.6 ± 4.1 53.8 ± 5.2

Table 7.4: Final class accuracy on 10-task CIFAR100 in a class-incremental setting, 20
samples per class, averaged over 10 seeds.

We performed a further experiment, changing the Continual Learning benchmark’s

original implementation by VanDeVen et al. to support few-shot fine-tuning, so we

would have a confirmation on the behaviour of these methods in a fine-tuned classifi-

cation setting. We only ran the model on 2 tasks, with the first one being the “base”,

large-scale one, and the second one the “novel” one. As shown by Table 7.5, when

learning 10 shots per novel class, A-GEM completely forgot the 10 base shots stored in

memory, while CFA and ER could cope with it. The method with the least forgetting

was iCarl, although it also displayed the least plasticity when learning new class sets.

Interestingly, as shown by Table 7.6, neither EWC nor GPM achieved better per-

112

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 7. Experiments

Classes A-GEM CFA ER iCarl

1-10 (Base) 0.0 ± 0.0 40.7 ± 4.1 39.7 ± 4.4 69.7 ± 2.5

11-20 (Few-Shot) 52.8 ± 3.1 46.4 ± 2.9 46.9 ± 2.8 31.9 ± 4.8

Table 7.5: Final class accuracy on few-shot fine-tuning scenario, with abundant Task-1
samples, 10 memory samples and 10 few-shot samples on Task-2. Results were averaged
over 10 seeds.

formance than basic DeFRCN when base samples storage was unavailable. The chosen

hyperparameters were lambda=0.1 for EWC, since the original lambda=0.4 led to too

harsh modification penalties with stability issues, and t=0.97 for GPM, chosen arbitrar-

ily. While the under-performance could be caused by the need to tune hyperparameters,

these methods do not seem as effective with two tasks as they usually are in a continual

learning setting.

Methods
1-shot 5-shot

bAP nAP bAP nAP

EWC 25.9 ± 0.9 9.2 ± 0.4 27.2 ± 1.1 11.9 ± 0.5

GPM 26.8 ± 0.9 10.9 ± 0.5 27.3 ± 1.0 13.4 ± 0.4

Table 7.6: Gradient correction methods with regularisation: G-FSOD results on 10
COCO data splits. DeFRCN was used as the base method in every row.

7.5 Performance of Sampling Strategies

We performed our experiments under the conditions described in Section 7.2 - Experi-

mental Setup. We chose k = 1, 5, 10 shots for both VOC and COCO, without including

30 shots for COCO due to the already wide variety of experiments with respect to time

constraints. For the same reason, we only performed the Experience Replay variant of

the experiments on the “Original” baseline and Prototype Distance Ratio.

7.5.1 COCO

As we can see in Table 7.7, removing the class limit (Random) improves base AP

substantially on when few instances are available (1, 5), but the impact is much lower

113

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 7. Experiments

Sampling Algorithm
1-shot 5-shot 10-shot

bAP nAP bAP nAP bAP nAP

Original (DeFRCN) 30.3 ± 0.5 4.8 ± 0.6 32.4 ± 0.2 13.5 ± 0.6 33.9 ± 0.2 16.7 ± 0.6

Original (DeFRCN) * 30.4 ± 0.4 4.8 ± 0.6 32.6 ± 0.3 13.6 ± 0.7 34.0 ± 0.2 16.8 ± 0.6

Original (DeFRCN) (ER) 30.0 ± 0.3 4.4 ± 0.6 32.5 ± 0.3 13.6 ± 0.6 33.9 ± 0.3 16.7 ± 0.5

Random (No Ranking) 32.5 ± 0.3 5.5 ± 0.8 32.6 ± 0.3 14.6 ± 0.5 33.7 ± 0.4 18.2 ± 0.6

ProtoDist (Bottom-K) 33.2 ± 0.3 5.1 ± 0.8 32.1 ± 0.3 14.7 ± 0.7 33.4 ± 0.3 18.1 ± 0.5

ProtoDist (Histogram) 33.2 ± 0.3 5.3 ± 0.7 32.3 ± 0.3 14.7 ± 0.7 34.0 ± 0.2 18.1 ± 0.5

ProtoDist Ratio (Bottom-K) 33.1 ± 0.4 5.4 ± 0.7 33.0 ± 0.3 14.9 ± 0.5 34.3 ± 0.2 18.2 ± 0.5

ProtoDist Ratio (Histogram) 33.1 ± 0.4 5.4 ± 0.6 33.1 ± 0.2 14.8 ± 0.5 34.5 ± 0.2 18.1 ± 0.4

ProtoDist Ratio (B-K) (ER) 33.4 ± 0.4 5.4 ± 0.7 33.0 ± 0.3 14.9 ± 0.5 34.3 ± 0.2 18.3 ± 0.5

Table 7.7: Replay Sampling Strategies: G-FSOD base/novel AP on COCO, av-
eraged over 10 data splits. The baseline labelled as “Original” uses the same random
sampling and instance limit as TFA. (∗=paper’s results)

in a 10-shot setting. See Figure 7.4 for an illustration.

Selecting images with instances closest to the class mean (ProtoDist Bottom-K)

does not improve either bAP or nAP. Using histogram sampling can ensure a more

even feature distribution on higher shots as seen in 10-shot ProtoDist Histogram.

The experiments show that the best performing strategy is to select images accord-

ing to their Prototype Distance Ratio, since it is a clear winner on 5 and 10 shots. The

use of bottom-k or histogram sampling does not influence this outcome, and neither

does the use of separate batch loss emulating the original Experience Replay.

Interestingly, lifting the base instance cap improves performance on novel classes as

well for COCO, despite the number of novel instance annotations remaining fixed. The

novel classes with the highest AP gain were the ones with overlapping annotations such

as “dining table”, or easily confused ones such as “TV”, which is often misclassified for

the “microwave” base class. We believe this is the result of a relatively high number of

classes (80) compared to the next dataset, VOC which only includes 20.

7.5.2 VOC

As shown in Table 7.8, lifitng the base cap without ranking provides a moderate

improvement in bAP, but ranking the images greatly increases it, independently of

whether Prototype Distance or Prototype Distance Ratio are used (Figure 7.5). This

114

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 7. Experiments

Figure 7.4: Sampling methods with memory replay: G-FSOD base/novel AP on 5-
shot COCO, averaged over 10 data splits. DeFRCN was used as the base method in
every row.The old sampling method is named “Original”, unranked with class priority
is “Random” and PD stands for Prototype Distance.

Sampling Algorithm
1-shot 5-shot 10-shot

bAP nAP bAP nAP bAP nAP

Original (DeFRCN) 48.6 ± 1.0 24.1 ± 2.9 49.6 ± 0.5 38.1 ± 1.3 49.8 ± 0.3 40.0 ± 1.1

Original (DeFRCN) * 48.4 ± 0.4 22.5 ± 1.7 49.6 ± 0.3 37.3 ± 0.8 49.9 ± 0.2 39.8 ± 0.7

Original (DeFRCN) (ER) 49.0 ± 0.8 25.7 ± 2.1 49.8 ± 0.5 38.5 ± 0.9 50.0 ± 0.2 40.4 ± 0.9

Random (No Ranking) 50.3 ± 0.6 21.0 ± 3.1 50.5 ± 0.4 37.9 ± 1.2 50.4 ± 0.4 40.2 ± 1.2

ProtoDist (Bottom-K) 51.4 ± 0.4 22.7 ± 3.8 51.5 ± 0.3 37.7 ± 1.5 51.2 ± 0.1 39.4 ± 1.4

ProtoDist (Histogram) 51.4 ± 0.4 22.7 ± 3.8 51.1 ± 0.2 37.5 ± 1.2 51.0 ± 0.3 40.1 ± 0.8

ProtoDist Ratio (Bottom-K) 50.8 ± 0.3 21.7 ± 3.3 51.3 ± 0.3 37.9 ± 1.0 51.3 ± 0.2 39.9 ± 0.9

ProtoDist Ratio (Histogram) 50.8 ± 0.3 21.7 ± 3.3 51.1 ± 0.3 37.8 ± 1.2 51.1 ± 0.2 39.6 ± 0.9

ProtoDist Ratio (Bottom-K) (ER) 50.7 ± 0.4 24.8 ± 2.9 51.2 ± 0.3 38.4 ± 1.0 51.2 ± 0.2 40.4 ± 0.9

Table 7.8: Study of Replay Strategies: G-FSOD base/novel AP on VOC Split 1,
averaged over 10 data splits. The DeFRCN baseline labelled as “Original” uses the
same random sampling and instance limit as TFA. (∗=paper’s results)

115

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 7. Experiments

effect is maintained across 1, 5 and 10 shot settings, and Bottom-K vs Histogram

sampling is unimportant.

Removing the instance cap causes novel AP to decrease in a 1-shot setting, albeit

with a great overlap in confidence intervals, with the ranking strategies only partially

restoring it. However, using the Experience Replay variant recovers and even improves

novel AP, with the same effect observed in the “Original” setting. We attribute that

to the balancing of base and novel inputs in their contribution to training loss.

Such a difference between the 1-shot setting and the others is not entirely surprising,

considering the influence of spurious features is bound to decrease as more base and

novel samples are employed in training, as we discussed in the Introduction (Chapter

1). It is also consistent with a previous experiment by Chaudhry et al. in Tiny Episodic

Memories [Chaudhry et al., 2019b], which showed prototype-based sampling methods

losing effectiveness over Reservoir sampling as the memory set per class increases in

size. Full results are available in Appendix A.4.

Figure 7.5: Sampling methods with memory replay: G-FSOD base/novel AP on 5-shot
VOC-1, averaged over 10 data splits. DeFRCN was used as the base method in every
row.

7.5.3 Ablation Study

The evaluations of the base set with the instance cap removed and different sampling

techniques were reported separately in an ablation study to quantify the impact of both

116

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 7. Experiments

Method Cls Priority Limit bAP nAP

Original split None Yes 49.6 ± 0.5 38.1 ± 1.3

Original split None No 51.5 ± 0.3 35.8 ± 1.2

Random split (No ranking) Rarest First No 50.5 ± 0.5 37.7 ± 1.5

ProtoDist Ratio (Histogram), p=30 Rarest First No 51.2 ± 0.3 38.1 ± 1.2

ProtoDist Ratio (Histogram), p=100 Rarest First No 51.1 ± 0.3 37.8 ± 1.2

Table 7.9: Ablation Study: G-FSOD base/novel AP on VOC Split 1 with 5
shots, averaged over 10 data splits.

decisions. Additionally, we uncoupled the prioritisation of selecting rare classes from

the removal of the base limit.

Furthermore, we chose to experiment on the size of the sample pool, changing it to

to p = 30 and p = 100 when selecting images, to determine whether the same results

could be achieved with a shorter inference time in the sampling phase before training,

or if more images were needed for the prototypes. We provide results on 5-shot VOC

Split 1 as it is faster to report results.

The results in Table 7.9 show that simply removing the base instance cap favours

base AP but causes a drop in novel AP due to the excessive number of base instances.

Creating a random split which prioritises rare classes helps address the imbalance, but

loses some of the base AP gain. In contrast, our Prototype Distance Ratio method

can improve base AP and keep novel AP stable. It is interesting to see that smaller

instance pools can still create solid prototypes.

Overall, it is clear that softening the base instance limit and sampling images ac-

cording to Prototype Distance Ratio is a viable method to increase base performance,

and may also improve novel performance. However, in a one-shot setting, careful mini-

batch balancing is crucial to avoid compromising novel class performance for base class

gains.

117

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Chapter 8

Conclusions

The two original aims of this work were:

• To evaluate the suitability of gradient correction methods for FSOD

• To explore the broader integration of CL methods into the field

After a literature survey, both points were investigated and, from the second one,

additional research emerged into the effectiveness of herding sampling, as well as some

observations on the effectiveness of current benchmarks.

8.1 Contributions

We provide a point-by-point summary of our contributions throughout this work, ad-

dressing the original objectives and further research.

8.1.1 Literature review

We provide a survey of the literature on few-shot learning, and how certain methods

have developed across the fields of FSC and FSOD. We observe the streamlining of

architectures and paradigms in both fields, as well as how some concepts such as meta-

learning may not automatically carry over their benefits from one field to the other. We

also provide an overview of Continual Learning methods and relate them to Generalised

FSOD methods.

118

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 8. Conclusions

8.1.2 Parallels between Generalised Fine-Tuning and Class-Incremental

Learning

We explain how experience replay is already part of the fine-tuning pipeline of popular

FSOD methods in Section 6.5. We draw comparisons between methods that have made

use of the same insights across the fields, such as ER and TFA for experience replay,

Retentive R-CNN and ProgNN for expandable networks or BI-R and NIFF for VAE-

based generative feature replay in Section 5.2. We hope that the fields can learn from

each other’s advancements given the similar challenges they face.

8.1.3 Gradient correction methods are ineffective

When the objective is to preserve previously learned features, gradient correction meth-

ods work in the Task-Incremental Learning setting, where the network knows which

task a sample came from, but they fall flat in the Class-Incremental Learning setting

where a sample could originate from any class. In CIL, respecting base gradient con-

straints is no better than replaying base data, as shown in Section 7.4, and it converges

more slowly. We are reminded that the internal working of networks often differs from

researchers’ assumptions, exemplified by gradient correction methods not coping with

relatively complex tasks.

8.1.4 Sampling strategies improve base performance on G-FSOD

Our proposed method (Prototype Distance Ratio) consistently obtained equal or better

performance compared to the other methods we tested on the VOC and COCO datasets

(Section 6.6). We can also infer that while Base/Novel set balance is important to

a degree, reducing the underlying pool of base data down to the same number of

instances should not be treated as a strict requirement, since mini-batch balancing

is more important. Additionally, our methods do not require complete training of

the network from the start and they do not need additional modules. They only run

inference on p samples for each class pool, thus demonstrating an efficient approach for

performance improvement

119

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 8. Conclusions

8.1.5 Another look at current benchmarks

The current TFA-derived benchmark limits the number of base instances per sample

instead of just number of base samples. While there was a concern about balancing,

and later works have found RPN biased towards base samples, it is not enough to

justify such a hard limit. While it is convenient to build upon other works, we should

always look at older methods with a critical eye, and revise previous assumptions.

Furthermore, the fields of CL and FSOD can take inspiration from neuroscience, since

they have come to similar conclusions about the importance of replay in memory recall.

However, current benchmarks aren’t necessarily aligned to the goals of many realistic

settings, since data is usually considered to be neatly separable into different categories

which appear at the same time (See 5.2.4 and 4.1.1). This is partly the reason why

the same methods can be applied across Class-Incremental Learning and Generalised

Fine-Tuning.

8.2 Future Work

While we have provided new insights into the relationships between fine-tuning and

continual learning methods, and their applicability to Generalised FSOD, our investi-

gation was limited in scope due to time constraints. We propose some relevant areas

where further analysis could lead to greater performance improvements.

8.2.1 Active Learning and G-FSOD

Methods of subset selection for base class samples have potential in a large-scale learning

setting: Active Learning [Ren et al., 2022] is a field in machine learning which strives to

maximise performance with a small portion of samples, often with the goal to shorten

training time. In this context, sampling a subset is known as Core-set Selection [Aljundi

et al., 2019].

Active Learning often uses on-line training metrics such as gradient statistics or the

rate at which a network will forget a particular sample. This means that to apply Active

Learning principles, base training should be started from scratch to collect relevant

120

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 8. Conclusions

statistics. This is different from our work, where we started from the perspective of an

already trained model requiring few-shot fine-tuning. That said, since a few methods

in G-FSOD such as DiGeo [Ma et al., 2023] already require full-scale training, it would

be interesting to see how such works might benefit from Core-set Selection methods.

8.2.2 Sampling strategies

There are many sampling strategies which we did not test in this work, some of which

may hold potential. A method known as Similarity-Weighted Interleaved Learning

(SWIL) [Saxena et al., 2022] substantially reduced the amount of training data re-

quired by replaying past samples which had the highest cosine similarity to the novel

classes after LDA. This allowed the network to make use of existing knowledge while

focusing on discriminant features. However, we must mention that SWIL was used for

classification on CIFAR100, and that running the same strategy on COCO or VOC

could be hampered by badly labeled samples (mentioned in Section 3.7.1).

Additionally, the work of Tee & Zhang [Tee and Zhang, 2023] (mentioned in Section

6.6) explored base class selection with inter-sample distance as a difficulty metric. What

we need to mention is they also investigated the effect of replaying easy examples

during the first part of training, and gradually shift to harder ones for fine-tuning.

This seems to have yielded a slight performance boost on CIFAR100, so it might be

worth to investigate. The only downside is it would require storing more base samples

for retraining the network, but this may not be a concern in an applicative setting.

Finally, while prototype-based sampling methods with balanced batches yielded

better results in few-shot settings, we must not forget that a few classes appear in

ImageNet as well, as we discussed in Section 3.7.2 - Concept Leakage. This means

the network’s backbone was already primed for them. It would be good to perform

further sampling tests on a backbone trained without those classes, similar to Zhu et

al.’s work [Zhu et al., 2021], to fully isolate the effect of the trialled strategies.

121

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Chapter 8. Conclusions

8.2.3 Resource Requirements

Since training including fine-tuning only takes a long time, reducing power consumption

will be an important problem to solve. An important area to investigate is the reduction

of training hardware requirements, since batches of 2x8 or 4x4 samples require at least

multiple consumer-grade GPUs in parallel: even a single industrial-grade GPU will

not be good enough due to large mini-batches decreasing performance as we’ve shown

in Section 7.3. It would be useful to investigate training methods that improve upon

the optimiser, as it has been previously done for Task-Incremental Learning [Mirzadeh

et al., 2020].

We also hope that our revision of the G-FSOD benchmarks may help improve

performance and shorten training times for transformer-hybrid methods such as DE-

TReg [Bar et al., 2022], which are notoriously hard to fine-tune [Liu et al., 2021b].

122

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Appendix A

Full Results

We include here some results which are required for completeness, but do not add any

insights and would have encumbered the main body of the paper.

A.1 Ablation Experiment: Gradient Averaging

In this experiment, we ask whether it is the averaging of the base and novel gradients

which drives performance to be closer to the default DeFRCN setting. To do so, we

simply change the A-GEM algorithm to always average the gradients if their angle is

greater than 90 degrees, as done by CFA. However, when the angle is not acute we keep

the default A-GEM projection step. Denoted by A-GEM + Averaging, this update rule

is not the same as Hu et al.’s A-A-GEM [Hu et al., 2020] because the gradient averaging

happens in the default case when no gradient correction is needed.

As shown in Table A.1, the performance of A-GEM + Averaging is the same as CFA

and CAG, lending weight to the hypothesis that it’s not enhanced projection schemes

that preserve performance in a class-incremental or fine-tuning setting, but rather the

simple averaging of gradients. In any case, using the data directly is more efficient as

shown by V anilla performance.

123

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Appendix A. Full Results

5-shot 10-shot

Model bAP nAP bAP nAP

Vanilla 49.6 ± 0.4 38.1 ± 1.1 49.8 ± 0.3 40.0 ± 0.9

MEGA-I 40.4 ± 0.7 35.0 ± 2.0 37.7 ± 1.2 37.6 ± 1.7

A-GEM 42.2 ± 0.8 36.6 ± 1.1 38.3 ± 1.9 38.7 ± 0.8

MEGA-II 46.9 ± 0.7 32.7 ± 0.9 46.0 ± 0.5 34.1 ± 1.4

A-GEM + Averaging 49.8 ± 0.4 38.6 ± 1.0 49.8 ± 0.2 40.4 ± 0.8

Averaging-only 49.8 ± 0.4 38.5 ± 0.9 49.9 ± 0.2 40.6 ± 0.8

CFA 49.7 ± 0.5 38.5 ± 0.9 49.9 ± 0.2 40.5 ± 0.7

CAG 49.8 ± 0.4 38.5 ± 0.8 49.9 ± 0.2 40.5 ± 0.8

Table A.1: Gradient methods: G-FSOD results on 10 VOC data splits. V anilla indi-
cates the default DeFRCN training process.

A.2 Additional Results for Gradient Methods (COCO)

In Table A.2, we show that the same effect we observed in the main body of our work

on up to 10 shots also holds in a 30-shot setting, which means gradient methods are

not useful in when transitioning to larger scale learning. We did not run the 30-shot

experiments on all methods, given the length of training required for averaging results

over 10 different seeds.

30-shot

Model bAP nAP

Vanilla 34.7 ± 0.1 21.0 ± 0.4

A-GEM 25.9 ± 0.9 16.3 ± 0.3

CFA 34.5 ± 0.1 21.2 ± 0.4

MEGA-II 27.8 ± 0.3 19.9 ± 0.3

Table A.2: Gradient methods: 30-shot G-FSOD results on 10 COCO data splits. De-
FRCN was used as the base method in every row.

A.3 Complete Results for Gradient Methods (VOC)

In this section, we include results for all VOC class splits for the sake of completeness.

We only showed the first split in the main body since the full results do not provide

124

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Appendix A. Full Results

additional insights.

1-shot 5-shot 10-shot

Model bAP nAP bAP nAP bAP nAP

Vanilla DeFRCN 48.6 ± 0.8 24.1 ± 2.4 49.6 ± 0.4 38.1 ± 1.1 49.8 ± 0.3 40.0 ± 0.9

Experience Replay 49.0 ± 0.8 25.7 ± 2.1 49.8 ± 0.5 38.5 ± 0.9 50.0 ± 0.2 40.4 ± 0.9

A-GEM 48.9 ± 0.7 25.4 ± 1.8 42.2 ± 0.8 36.6 ± 1.1 38.3 ± 1.9 38.7 ± 0.8

CFA 49.0 ± 0.8 25.8 ± 2.1 49.7 ± 0.5 38.5 ± 0.9 49.9 ± 0.2 40.5 ± 0.7

CFA+Loss 49.1 ± 0.8 25.5 ± 2.2 49.9 ± 0.4 37.6 ± 1.2 49.8 ± 0.2 39.1 ± 0.9

MEGA-II 47.2 ± 1.1 24.0 ± 1.8 46.9 ± 0.7 32.7 ± 0.9 46.0 ± 0.5 34.1 ± 1.4

CAG 48.8 ± 0.8 25.5 ± 2.2 49.8 ± 0.4 38.5 ± 0.8 49.9 ± 0.2 40.5 ± 0.8

Averaging 49.1 ± 0.7 25.7 ± 2.1 49.8 ± 0.4 38.5 ± 0.9 49.9 ± 0.2 40.6 ± 0.8

Table A.3: Gradient methods: G-FSOD results on 10 VOC data splits for class split
VOC-1.

1-shot 5-shot 10-shot

Model bAP nAP bAP nAP bAP nAP

Vanilla 49.5 ± 1.1 17.5 ± 2.1 50.5 ± 0.4 26.6 ± 0.9 50.9 ± 0.3 29.2 ± 0.8

A-GEM 49.5 ± 0.7 16.0 ± 2.2 42.9 ± 0.9 26.4 ± 0.9 39.2 ± 1.2 28.7 ± 0.6

CFA 49.8 ± 1.0 16.1 ± 2.2 50.7 ± 0.4 27.1 ± 1.0 51.0 ± 0.2 29.7 ± 0.7

MEGA-II 48.1 ± 1.1 14.7 ± 2.0 47.7 ± 0.6 24.0 ± 0.8 47.1 ± 0.6 25.8 ± 0.7

CAG 49.5 ± 1.1 15.9 ± 2.1 50.7 ± 0.4 27.1 ± 1.0 51.0 ± 0.3 29.5 ± 0.6

Averaging 49.8 ± 1.0 15.6 ± 2.2 50.9 ± 0.4 27.4 ± 0.9 51.0 ± 0.2 29.6 ± 0.3

Table A.4: Gradient methods: G-FSOD results on 10 VOC data splits, for class split
VOC-2

125

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Appendix A. Full Results

1-shot 5-shot 10-shot

Model bAP nAP bAP nAP bAP nAP

Vanilla 49.4 ± 0.7 19.9 ± 3.9 50.8 ± 0.4 32.9 ± 1.0 51.0 ± 0.3 35.8 ± 1.0

A-GEM 49.9 ± 0.5 20.3 ± 3.5 43.7 ± 1.2 31.5 ± 0.7 40.8 ± 1.4 34.5 ± 0.7

CFA 49.8 ± 0.5 20.8 ± 3.8 50.9 ± 0.3 33.1 ± 0.9 51.1 ± 0.3 36.0 ± 1.1

MEGA-II 47.9 ± 0.6 19.7 ± 3.5 48.0 ± 0.5 30.0 ± 1.3 47.0 ± 0.7 31.1 ± 1.0

CAG 49.6 ± 0.6 20.6 ± 3.8 50.9 ± 0.3 33.2 ± 1.0 51.2 ± 0.3 35.9 ± 1.0

Averaging 49.8 ± 0.6 21.0 ± 3.7 50.9 ± 0.3 33.0 ± 1.0 51.2 ± 0.3 36.0 ± 1.0

Table A.5: Gradient methods: G-FSOD results on 10 VOC data splits, for class split
VOC-3

A.4 Complete Results for Sampling Methods (VOC)

We included only VOC Split 1 for brevity in Section 6.6, so here we publish all three

splits.

Sampling Algorithm
1-shot 5-shot 10-shot

bAP nAP bAP nAP bAP nAP

Original (DeFRCN) 48.6 ± 1.0 24.1 ± 2.9 49.6 ± 0.5 38.1 ± 1.3 49.8 ± 0.3 40.0 ± 1.1

Original (DeFRCN) * 48.4 ± 0.4 22.5 ± 1.7 49.6 ± 0.3 37.3 ± 0.8 49.9 ± 0.2 39.8 ± 0.7

Original (DeFRCN) (ER) 49.0 ± 0.8 25.7 ± 2.1 49.8 ± 0.5 38.5 ± 0.9 50.0 ± 0.2 40.4 ± 0.9

Random (No Ranking) 50.3 ± 0.6 21.0 ± 3.1 50.5 ± 0.4 37.9 ± 1.2 50.4 ± 0.4 40.2 ± 1.2

ProtoDist (Bottom-K) 51.4 ± 0.4 22.7 ± 3.8 51.5 ± 0.3 37.7 ± 1.5 51.2 ± 0.1 39.4 ± 1.4

ProtoDist (Histogram) 51.4 ± 0.4 22.7 ± 3.8 51.1 ± 0.2 37.5 ± 1.2 51.0 ± 0.3 40.1 ± 0.8

ProtoDist Ratio (Bottom-K) 50.8 ± 0.3 21.7 ± 3.3 51.3 ± 0.3 37.9 ± 1.0 51.3 ± 0.2 39.9 ± 0.9

ProtoDist Ratio (Histogram) 50.8 ± 0.3 21.7 ± 3.3 51.1 ± 0.3 37.8 ± 1.2 51.1 ± 0.2 39.6 ± 0.9

ProtoDist Ratio (Bot-K) (ER) 50.7 ± 0.4 24.8 ± 2.9 51.2 ± 0.3 38.4 ± 1.0 51.2 ± 0.2 40.4 ± 0.9

Table A.6: Study of Replay Strategies: G-FSOD base/novel AP on VOC Split 1,
averaged over 10 data splits. The DeFRCN baseline labelled as “Original” uses the
same random sampling and instance limit as TFA. (∗=paper’s results)

126

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Appendix A. Full Results

Sampling Algorithm
1-shot 5-shot 10-shot

bAP nAP bAP nAP bAP nAP

Original (DeFRCN) 49.5 ± 1.4 16.2 ± 2.5 50.5 ± 0.5 26.6 ± 1.0 50.9 ± 0.4 29.2 ± 1.0

Original (DeFRCN) * 49.6 ± 0.4 14.6 ± 1.5 51.0 ± 0.2 25.8 ± 0.9 51.3 ± 0.2 29.3 ± 0.7

Original (DeFRCN) (ER) 49.8 ± 1.1 16.1 ± 2.8 50.9 ± 0.6 26.8 ± 1.2 51.1 ± 0.4 29.4 ± 0.7

Random (No Ranking) 50.4 ± 0.4 13.1 ± 2.5 50.9 ± 0.6 25.8 ± 1.4 51.2 ± 0.4 28.9 ± 0.8

ProtoDist (Bottom-K) 51.8 ± 0.5 13.8 ± 2.6 51.8 ± 0.2 26.1 ± 1.2 52.3 ± 0.3 29.4 ± 0.8

ProtoDist (Histogram) 51.8 ± 0.5 13.8 ± 2.6 51.7 ± 0.3 26.1 ± 1.4 51.6 ± 0.3 29.6 ± 0.6

ProtoDist Ratio (Bottom-K) 51.9 ± 0.3 13.7 ± 2.8 51.6 ± 0.3 26.0 ± 1.4 52.3 ± 0.1 29.4 ± 0.8

ProtoDist Ratio (Histogram) 51.9 ± 0.3 13.7 ± 2.8 51.6 ± 0.3 26.1 ± 1.4 51.5 ± 0.3 29.6 ± 0.8

ProtoDist Ratio (Bot-K) (ER) 51.5 ± 0.5 15.6 ± 2.8 51.9 ± 0.3 27.0 ± 1.4 52.1 ± 0.2 30.0 ± 0.7

Table A.7: Study of Replay Strategies: G-FSOD base/novel AP on VOC Split 2,
averaged over 10 data splits.

Sampling Algorithm
1-shot 5-shot 10-shot

bAP nAP bAP nAP bAP nAP

Original (DeFRCN) 49.4 ± 0.9 19.9 ± 4.7 50.8 ± 0.5 32.9 ± 1.2 51.0 ± 0.3 35.8 ± 1.3

Original (DeFRCN) * 49.4 ± 0.4 17.9 ± 1.6 51.0 ± 0.2 32.3 ± 0.9 51.3 ± 0.2 34.7 ± 0.7

Original (DeFRCN) (ER) 49.8 ± 0.7 21.0 ± 4.1 51.0 ± 0.5 33.4 ± 1.2 51.3 ± 0.4 35.9 ± 1.4

Random (No Ranking) 51.3 ± 0.4 16.4 ± 3.9 52.0 ± 0.2 33.2 ± 1.1 52.0 ± 0.2 35.4 ± 1.3

ProtoDist (Bottom-K) 51.6 ± 0.4 18.4 ± 4.7 52.0 ± 0.2 33.3 ± 1.1 52.0 ± 0.2 35.2 ± 1.3

ProtoDist (Histogram) 51.6 ± 0.4 18.4 ± 4.7 51.9 ± 0.4 33.5 ± 1.1 51.9 ± 0.3 35.5 ± 1.3

ProtoDist Ratio (Bottom-K) 51.8 ± 0.3 17.3 ± 4.2 52.0 ± 0.4 33.2 ± 1.1 52.1 ± 0.2 35.3 ± 1.3

ProtoDist Ratio (Histogram) 51.8 ± 0.3 17.3 ± 4.2 51.9 ± 0.3 33.0 ± 1.1 51.9 ± 0.3 35.5 ± 1.3

ProtoDist Ratio (Bot-K) (ER) 51.7 ± 0.4 20.9 ± 4.3 51.9 ± 0.4 33.7 ± 1.2 52.1 ± 0.3 35.8 ± 1.3

Table A.8: Study of Replay Strategies: G-FSOD base/novel AP on VOC Split 3,
averaged over 10 data splits.

127

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–

Bibliography

[Ali-Gombe et al., 2018] Ali-Gombe, A., Elyan, E., Savoye, Y., and Jayne, C. (2018).

Few-shot Classifier GAN. In 2018 International Joint Conference on Neural Networks

(IJCNN), pages 1–8.

[Aljundi et al., 2019] Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. (2019). Gra-

dient based sample selection for online continual learning. In Advances in Neural

Information Processing Systems, volume 32.

[Allen-Zhu and Li, 2020] Allen-Zhu, Z. and Li, Y. (2020). Towards understanding en-

semble, knowledge distillation and self-distillation in deep learning. arXiv preprint

arXiv:2012.09816.

[Andrychowicz et al., 2016] Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,

Pfau, D., Schaul, T., Shillingford, B., and De Freitas, N. (2016). Learning to learn

by gradient descent by gradient descent. Advances in neural information processing

systems, 29.

[Antonelli et al., 2022] Antonelli, S., Avola, D., Cinque, L., Crisostomi, D., Foresti,

G. L., Galasso, F., Marini, M. R., Mecca, A., and Pannone, D. (2022). Few-Shot

Object Detection: A Survey. ACM Computing Surveys, 54(11s):1–37.

[Antoniou et al., 2017] Antoniou, A., Storkey, A., and Edwards, H. (2017). Data aug-

mentation generative adversarial networks. arXiv preprint arXiv:1711.04340.

[Ashok and Aekula, 2022] Ashok, A. and Aekula, H. (2022). When Does Self-

supervision Improve Few-shot Learning? - A Reproducibility Report. In ML Re-

producibility Challenge 2021 (Fall Edition).

128

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Bar et al., 2022] Bar, A., Wang, X., Kantorov, V., Reed, C. J., Herzig, R., Chechik,

G., Rohrbach, A., Darrell, T., and Globerson, A. (2022). DETReg: Unsupervised

Pretraining with Region Priors for Object Detection. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, volume

2022-June.

[Bendou et al., 2022] Bendou, Y., Hu, Y., Lafargue, R., Lioi, G., Pasdeloup, B., Pa-

teux, S., and Gripon, V. (2022). Easy—Ensemble Augmented-Shot-Y-Shaped Learn-

ing: State-of-The-Art Few-Shot Classification with Simple Components. Journal of

Imaging, 8(7).

[Berahmand et al., 2024] Berahmand, K., Daneshfar, F., Salehi, E. S., Li, Y., and

Xu, Y. (2024). Autoencoders and their applications in machine learning: a survey.

Artificial Intelligence Review, 57(2):28.

[Bernico et al., 2019] Bernico, M., Li, Y., and Zhang, D. (2019). Investigating the

impact of data volume and domain similarity on transfer learning applications. In

Advances in Intelligent Systems and Computing, volume 881.

[Bertinetto et al., 2019] Bertinetto, L., Torr, P. H., Henriques, J., and Vedaldi, A.

(2019). Meta-learning with differentiable closed-form solvers. In 7th International

Conference on Learning Representations, ICLR 2019.

[Blumer et al., 1987] Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K.

(1987). Occam’s Razor. Information Processing Letters, 24(6):377–380.

[Breiman, 1996] Breiman, L. (1996). Bagging predictors. Machine learning, 24:123–

140.

[Brereton, 2015] Brereton, R. G. (2015). The t-distribution and its relationship to the

normal distribution. Journal of Chemometrics, 29(9).

[Bromley et al., 1993] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R.

(1993). Signature Verification using a ”Siamese” Time Delay Neural Network. In

129

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

Cowan, J., Tesauro, G., and Alspector, J., editors, Advances in Neural Information

Processing Systems, volume 6. Morgan-Kaufmann.

[Bucilǎ et al., 2006] Bucilǎ, C., Caruana, R., and Niculescu-Mizil, A. (2006). Model

compression. In Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, volume 2006.

[Burges, 1998] Burges, C. J. (1998). A tutorial on support vector machines for pattern

recognition. Data Mining and Knowledge Discovery, 2(2).

[Buzzega et al., 2020] Buzzega, P., Boschini, M., Porrello, A., Abati, D., and Calder-

ara, S. (2020). Dark experience for general continual learning: a strong, simple

baseline. Advances in neural information processing systems, 33:15920–15930.

[Cao et al., 2022] Cao, Y., Wang, J., Lin, Y., and Lin, D. (2022). MINI: Mining Implicit

Novel Instances for Few-Shot Object Detection.

[Carion et al., 2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A.,

and Zagoruyko, S. (2020). End-to-End Object Detection with Transformers. In

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), volume 12346 LNCS.

[Caron et al., 2020] Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., and

Joulin, A. (2020). Unsupervised learning of visual features by contrasting cluster

assignments. In Advances in Neural Information Processing Systems, volume 2020-

December.

[Caron et al., 2021] Caron, M., Touvron, H., Misra, I., Jegou, H., Mairal, J., Bo-

janowski, P., and Joulin, A. (2021). Emerging Properties in Self-Supervised Vision

Transformers. In Proceedings of the IEEE International Conference on Computer

Vision.

[Castro et al., 2018] Castro, F. M., Maŕın-Jiménez, M. J., Guil, N., Schmid, C., and

Alahari, K. (2018). End-to-end incremental learning. In Lecture Notes in Computer

130

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), volume 11216 LNCS.

[Chaudhry et al., 2019a] Chaudhry, A., Marc’Aurelio, R., Rohrbach, M., and Elho-

seiny, M. (2019a). Efficient lifelong learning with A-GEM. In 7th International

Conference on Learning Representations, ICLR 2019.

[Chaudhry et al., 2019b] Chaudhry, A., Rohrbach, M., Elhoseiny, M., Ajanthan, T.,

Dokania, P. K., Torr, P. H. S., and Ranzato, M. . A. (2019b). Continual Learning

with Tiny Episodic Memories. In ICML, number Cl.

[Chen et al., 2018] Chen, H., Wang, Y., Wang, G., and Qiao, Y. (2018). LSTD: A low-

shot transfer detector for object detection. In 32nd AAAI Conference on Artificial

Intelligence, AAAI 2018.

[Chen et al., 2019a] Chen, K., Wang, J., Pang, J., Cao, Y., Xiong, Y., Li, X., Sun, S.,

Feng, W., Liu, Z., Xu, J., and others (2019a). MMDetection: Open mmlab detection

toolbox and benchmark. arXiv preprint arXiv:1906.07155.

[Chen et al., 2020] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A

simple framework for contrastive learning of visual representations. In Proceedings

of the 37th International Conference on Machine Learning, ICML’20. JMLR.org.

[Chen et al., 2019b] Chen, W. Y., Wang, Y. C. F., Liu, Y. C., Kira, Z., and Huang,

J. B. (2019b). A closer look at few-shot classification. In 7th International Conference

on Learning Representations, ICLR 2019.

[Chen and He, 2020] Chen, X. and He, K. (2020). Exploring Simple Siamese Repre-

sentation Learning. 2021 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 15745–15753.

[Chopra et al., 2005] Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a

similarity metric discriminatively, with application to face verification. In 2005

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’05), volume 1, pages 539–546.

131

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Clouâtre and Demers, 2019] Clouâtre, L. and Demers, M. (2019). Figr: Few-shot

image generation with reptile. arXiv preprint arXiv:1901.02199.

[Dai et al., 2021] Dai, Z., Cai, B., Lin, Y., and Chen, J. (2021). UP-DETR: Unsu-

pervised Pre-training for Object Detection with Transformers. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[Dalal and Triggs, 2005] Dalal, N. and Triggs, B. (2005). Histograms of oriented gradi-

ents for human detection. In 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05), volume 1, pages 886–893.

[Dawson et al., 2023] Dawson, H. L., Dubrule, O., and John, C. M. (2023). Impact of

dataset size and convolutional neural network architecture on transfer learning for

carbonate rock classification. Computers & Geosciences, 171:105284.

[Dhillon et al., 2019] Dhillon, G. S., Chaudhari, P., Ravichandran, A., and Soatto, S.

(2019). A baseline for few-shot image classification. arXiv preprint arXiv:1909.02729.

[Domingos, 2012] Domingos, P. (2012). A few useful things to know about machine

learning. Communications of the ACM, 55(10):78–87.

[Dong et al., 2022] Dong, X., Liao, S., Du, B., and Shao, L. (2022). Pseudo-Labeling

Based Practical Semi-Supervised Meta-Training for Few-Shot Learning. arXiv

preprint arXiv:2207.06817.

[Dvornik et al., 2019] Dvornik, N., Mairal, J., and Schmid, C. (2019). Diversity with

cooperation: Ensemble methods for few-shot classification. In Proceedings of the

IEEE International Conference on Computer Vision, volume 2019-October.

[Elsken et al., 2019] Elsken, T., Staffler, B. S., Metzen, J. H., and Hutter, F. (2019).

Meta-Learning of Neural Architectures for Few-Shot Learning. 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages 12362–

12372.

132

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Everingham et al., 2010] Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J.,

and Zisserman, A. (2010). The pascal visual object classes (voc) challenge. Interna-

tional journal of computer vision, 88:303–338.

[Fan et al., 2021] Fan, Z., Ma, Y., Li, Z., and Sun, J. (2021). Generalized Few-Shot

Object Detection Without Forgetting. In Proceedings of the IEEE Computer Society

Conference on Computer Vision and Pattern Recognition.

[Fang et al., 2024] Fang, A., Kornblith, S., and Schmidt, L. (2024). Does progress on

ImageNet transfer to real-world datasets? Advances in Neural Information Process-

ing Systems, 36.

[Farajtabar et al., 2020] Farajtabar, M., Azizan, N., Mott, A., and Li, A. (2020). Or-

thogonal Gradient Descent for Continual Learning. In Proceedings of Machine Learn-

ing Research, volume 108.

[Fei-Fei et al., 2003] Fei-Fei, L., Fergus, R., and Perona, P. (2003). A Bayesian ap-

proach to unsupervised one-shot learning of object categories. In Proceedings of the

IEEE International Conference on Computer Vision, volume 2.

[Feng et al., 2023] Feng, K., Xu, L., Zhao, D., Liu, S., and Huang, X. (2023). Toward

Model Compression for a Deep Learning–Based Solar Flare Forecast on Satellites.

The Astrophysical Journal Supplement Series, 268(2).

[Finn et al., 2017] Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic meta-

learning for fast adaptation of deep networks. In 34th International Conference on

Machine Learning, ICML 2017, volume 3.

[Freund et al., 1999] Freund, Y., Schapire, R., and Abe, N. (1999). A short intro-

duction to boosting. Journal-Japanese Society For Artificial Intelligence, 14(771-

780):1612.

[Gao et al., 2022a] Gao, B.-B., Chen, X., Huang, Z., Nie, C., Liu, J., Lai, J., JIANG,

G., Wang, X., and Wang, C. (2022a). Decoupling Classifier for Boosting Few-shot

Object Detection and Instance Segmentation. In Koyejo, S., Mohamed, S., Agarwal,

133

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

A., Belgrave, D., Cho, K., and Oh, A., editors, Advances in Neural Information

Processing Systems, volume 35, pages 18640–18652. Curran Associates, Inc.

[Gao et al., 2022b] Gao, B.-B., Chen, X., Huang, Z., Nie, C., Liu, J., Lai, J., JIANG,

G., Wang, X., and Wang, C. (2022b). Decoupling Classifier for Boosting Few-shot

Object Detection and Instance Segmentation (Review). In Oh, A. H., Agarwal,

A., Belgrave, D., and Cho, K., editors, Advances in Neural Information Processing

Systems.

[Gidaris et al., 2019] Gidaris, S., Bursuc, A., Komodakis, N., Perez, P. P., and Cord,

M. (2019). Boosting few-shot visual learning with self-supervision. In Proceedings of

the IEEE International Conference on Computer Vision, volume 2019-October.

[Gidaris et al., 2018] Gidaris, S., Singh, P., and Komodakis, N. (2018). Unsupervised

representation learning by predicting image rotations. In 6th International Confer-

ence on Learning Representations, ICLR 2018 - Conference Track Proceedings.

[Girshick et al., 2014] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).

Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition.

[Goodfellow et al., 2014a] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014a). Generative

adversarial nets. Advances in neural information processing systems, 27.

[Goodfellow et al., 2014b] Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A., and

Bengio, Y. (2014b). An empirical investigation of catastrophic forgetting in gradient-

based neural networks. In 2nd International Conference on Learning Representa-

tions, ICLR 2014 - Conference Track Proceedings.

[Grill et al., 2020] Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P. H.,

Buchatskaya, E., Doersch, C., Pires, B. A., Guo, Z. D., Azar, M. G., Piot, B.,

Kavukcuoglu, K., Munos, R., and Valko, M. (2020). Bootstrap your own latent a

134

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

new approach to self-supervised learning. In Proceedings of the 34th International

Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY,

USA. Curran Associates Inc.

[Guirguis et al., 2022] Guirguis, K., Hendawy, A., Eskandar, G., Abdelsamad, M.,

Kayser, M., and Beyerer, J. (2022). CFA: Constraint-based Finetuning Approach

for Generalized Few-Shot Object Detection. In IEEE Computer Society Conference

on Computer Vision and Pattern Recognition Workshops, volume 2022-June.

[Guirguis et al., 2023] Guirguis, K., Meier, J., Eskandar, G., Kayser, M., Yang, B.,

and Beyerer, J. (2023). NIFF: Alleviating Forgetting in Generalized Few-Shot Object

Detection via Neural Instance Feature Forging. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition, volume 2023-June.

[Guo et al., 2020a] Guo, Y., Codella, N. C., Karlinsky, L., Codella, J. V., Smith, J. R.,

Saenko, K., Rosing, T., and Feris, R. (2020a). A Broader Study of Cross-Domain

Few-Shot Learning. In Lecture Notes in Computer Science (including subseries Lec-

ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume

12372 LNCS.

[Guo et al., 2020b] Guo, Y., Liu, M., Yang, T., and Rosing, T. (2020b). Improved

schemes for episodic memory-based lifelong learning. In Advances in Neural Infor-

mation Processing Systems, volume 2020-December.

[Gutmann and Hyvärinen, 2010] Gutmann, M. and Hyvärinen, A. (2010). Noise-

contrastive estimation: A new estimation principle for unnormalized statistical mod-

els. In Teh, Y. W. and Titterington, M., editors, Proceedings of the Thirteenth Inter-

national Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings

of Machine Learning Research, pages 297–304, Chia Laguna Resort, Sardinia, Italy.

PMLR.

[Hadsell et al., 2006] Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensional-

ity reduction by learning an invariant mapping. In 2006 IEEE computer society

135

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

conference on computer vision and pattern recognition (CVPR’06), volume 2, pages

1735–1742.

[Han et al., 2022a] Han, G., Huang, S., Ma, J., He, Y., and Chang, S. F. (2022a). Meta

Faster R-CNN: Towards Accurate Few-Shot Object Detection with Attentive Feature

Alignment. In Proceedings of the 36th AAAI Conference on Artificial Intelligence,

AAAI 2022, volume 36.

[Han et al., 2022b] Han, G., Ma, J., Huang, S., Chen, L., and Chang, S. F. (2022b).

Few-Shot Object Detection with Fully Cross-Transformer. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

volume 2022-June.

[Han et al., 2023] Han, J., Ren, Y., Ding, J., Yan, K., and Xia, G. S. (2023). Few-Shot

Object Detection via Variational Feature Aggregation. In Proceedings of the 37th

AAAI Conference on Artificial Intelligence, AAAI 2023, volume 37.

[Hayes et al., 2021] Hayes, T. L., Krishnan, G. P., Bazhenov, M., Siegelmann, H. T.,

Sejnowski, T. J., and Kanan, C. (2021). Replay in deep learning: Current approaches

and missing biological elements. Neural Computation, 33(11).

[He et al., 2020] He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum

Contrast for Unsupervised Visual Representation Learning. In 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages 9726–9735.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learn-

ing for Image Recognition. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 770–778.

[He et al., 2019] He, Z., Zhang, T., and Lee, R. B. (2019). Model inversion attacks

against collaborative inference. In ACM International Conference Proceeding Series.

[Helber et al., 2019] Helber, P., Bischke, B., Dengel, A., and Borth, D. (2019). Eu-

rosat: A novel dataset and deep learning benchmark for land use and land cover

136

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

classification. IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, 12(7).

[Hinton et al., 2015] Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowl-

edge in a neural network. arXiv preprint arXiv:1503.02531.

[Hosang et al., 2017] Hosang, J., Benenson, R., and Schiele, B. (2017). Learning non-

maximum suppression. In Proceedings - 30th IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2017, volume 2017-January.

[Hsu et al., 2019] Hsu, K., Levine, S., and Finn, C. (2019). Unsupervised learning via

meta-learning. In 7th International Conference on Learning Representations, ICLR

2019.

[Hu et al., 2020] Hu, G., Zhang, W., Ding, H., and Zhu, W. (2020). Gradient

episodic memory with a soft constraint for continual learning. arXiv preprint

arXiv:2011.07801.

[Huang et al., 2016] Huang, G., Liu, Z., and Weinberger, K. Q. (2016). Densely Con-

nected Convolutional Networks. 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2261–2269.

[Huang et al., 2023] Huang, Q., Zhang, H., Xue, M., Song, J., and Song, M. (2023).

A survey of deep learning for low-shot object detection. ACM Computing Surveys,

56(5):1–37.

[Hung et al., 2019] Hung, S. C., Tu, C. H., Wu, C. E., Chen, C. H., Chan, Y. M., and

Chen, C. S. (2019). Compacting, picking and growing for unforgetting continual

learning. In Advances in Neural Information Processing Systems, volume 32.

[Jia Deng et al., 2009] Jia Deng, Wei Dong, Socher, R., Li-Jia Li, Kai Li, and Li Fei-Fei

(2009). ImageNet: A large-scale hierarchical image database.

[Kalantidis et al., 2020] Kalantidis, Y., Sariyildiz, M. B., Pion, N., Weinzaepfel, P., and

Larlus, D. (2020). Hard negative mixing for contrastive learning. In Proceedings of the

137

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

34th International Conference on Neural Information Processing Systems, NIPS’20,

Red Hook, NY, USA. Curran Associates Inc.

[Kang et al., 2019] Kang, B., Liu, Z., Wang, X., Yu, F., Feng, J., and Darrell, T.

(2019). Few-shot object detection via feature reweighting. In Proceedings of the

IEEE International Conference on Computer Vision, volume 2019-October.

[Karlinsky et al., 2019] Karlinsky, L., Shtok, J., Harary, S., Schwartz, E., Aides, A.,

Feris, R., Giryes, R., and Bronstein, A. M. (2019). Repmet: Representative-based

metric learning for classification and few-shot object detection. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

volume 2019-June.

[Kim et al., 2021] Kim, T., Oh, J., Kim, N. Y., Cho, S., and Yun, S. Y. (2021). Com-

paring Kullback-Leibler Divergence and Mean Squared Error Loss in Knowledge

Distillation. In IJCAI International Joint Conference on Artificial Intelligence.

[Kirkpatrick et al., 2017] Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-

jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T., Grabska-Barwinska,

A., Hassabis, D., Clopath, C., Kumaran, D., and Hadsell, R. (2017). Overcoming

catastrophic forgetting in neural networks. Proceedings of the National Academy of

Sciences of the United States of America, 114(13).

[Koch, 2015] Koch, G. R. (2015). Siamese Neural Networks for One-Shot Image Recog-

nition. In ICML deep learning workshop, vol. 2. 2015. 2015.

[Kothapalli, 2022] Kothapalli, V. (2022). Neural collapse: A review on modelling prin-

ciples and generalization. arXiv preprint arXiv:2206.04041.

[Krizhevsky et al.,] Krizhevsky, A., Nair, V., and Hinton, G. CIFAR-10 (Canadian

Institute for Advanced Research).

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-

agenet classification with deep convolutional neural networks. Advances in neural

information processing systems, 25.

138

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Kukleva et al., 2022] Kukleva, A., Kuehne, H., and Schiele, B. (2022). Generalized

and Incremental Few-Shot Learning by Explicit Learning and Calibration without

Forgetting.

[Lake et al., 2015] Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015).

Human-level concept learning through probabilistic program induction. Science,

350(6266).

[Lampert et al., 2009] Lampert, C. H., Nickisch, H., and Harmeling, S. (2009). Learn-

ing to detect unseen object classes by between-class attribute transfer. In 2009 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2009.

[LeCun et al., 1998] LeCun, Y., Cortes, C., and Burges, J. (1998). The MNIST

database of handwritten digits.

[Li et al., 2021a] Li, B., Yang, B., Liu, C., Liu, F., Ji, R., and Ye, Q. (2021a). Beyond

Max-Margin: Class Margin Equilibrium for Few-shot Object Detection. In Proceed-

ings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition.

[Li et al., 2020a] Li, H., Jiang, H., Gu, X., Peng, J., Li, W., Hong, L., and Tao, C.

(2020a). CLRS: Continual Learning Benchmark for Remote Sensing Image Scene

Classification. Sensors, 20(4).

[Li et al., 2020b] Li, J., Zhou, P., Xiong, C., and Hoi, S. C. H. (2020b). Pro-

totypical contrastive learning of unsupervised representations. arXiv preprint

arXiv:2005.04966.

[Li and Talwalkar, 2020] Li, L. and Talwalkar, A. (2020). Random search and repro-

ducibility for neural architecture search. In Uncertainty in artificial intelligence,

pages 367–377.

[Li et al., 2023a] Li, Y., Guo, L., and Ge, Y. (2023a). Pseudo Labels for Unsupervised

Domain Adaptation: A Review.

139

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Li et al., 2021b] Li, Y., Zhu, H., Cheng, Y., Wang, W., Teo, C. S., Xiang, C.,

Vadakkepat, P., and Lee, T. H. (2021b). Few-shot object detection via classifica-

tion refinement and distractor retreatment. In Proceedings of the IEEE Computer

Society Conference on Computer Vision and Pattern Recognition.

[Li and Hoiem, 2017] Li, Z. and Hoiem, D. (2017). Learning without forgetting. IEEE

transactions on pattern analysis and machine intelligence, 40(12):2935–2947.

[Li et al., 2023b] Li, Z., Shang, X., He, R., Lin, T., and Wu, C. (2023b). No Fear of

Classifier Biases: Neural Collapse Inspired Federated Learning with Synthetic and

Fixed Classifier. In Proceedings of the IEEE International Conference on Computer

Vision.

[Li et al., 2017] Li, Z., Zhou, F., Chen, F., and Li, H. (2017). Meta-SGD: Learning to

Learn Quickly for Few Shot Learning. ArXiv, abs/1707.09835.

[Liao et al., 2021] Liao, T., Taori, R., Raji, I. D., and Schmidt, L. (2021). Are we learn-

ing yet? a meta review of evaluation failures across machine learning. In Thirty-fifth

Conference on Neural Information Processing Systems Datasets and Benchmarks

Track (Round 2).

[Lin et al., 2023] Lin, S., Wang, K., Zeng, X., and Zhao, R. (2023). An Effective Crop-

Paste Pipeline for Few-shot Object Detection. In IEEE Computer Society Conference

on Computer Vision and Pattern Recognition Workshops, volume 2023-June.

[Lin et al., 2014] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,

D., Dollár, P., and Zitnick, C. L. (2014). Microsoft COCO: Common objects in con-

text. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzer-

land, September 6-12, 2014, Proceedings, Part V 13, pages 740–755.

[Lin et al., 2021] Lin, Z., Shi, J., Pathak, D., and Ramanan, D. (2021). The clear

benchmark: Continual learning on real-world imagery. In Thirty-fifth conference on

neural information processing systems datasets and benchmarks track (round 2).

140

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Liu et al., 2021a] Liu, B., Liu, X., Jin, X., Stone, P., and Liu, Q. (2021a). Conflict-

Averse Gradient Descent for Multi-task Learning. In Advances in Neural Information

Processing Systems, volume 23.

[Liu et al., 2022] Liu, G., Wang, T., Zhang, S., and He, K. (2022). Generating Pseudo-

labels Adaptively for Few-shot Model-Agnostic Meta-Learning. arXiv preprint

arXiv:2207.04217.

[Liu et al., 2023] Liu, T., Zhang, L., Wang, Y., Guan, J., Fu, Y., Zhao, J., and Zhou, S.

(2023). Recent Few-shot Object Detection Algorithms: A Survey with Performance

Comparison. ACM Transactions on Intelligent Systems and Technology, 14(4).

[Liu et al., 2016] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y.,

and Berg, A. C. (2016). SSD: Single shot multibox detector. In Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), volume 9905 LNCS.

[Liu et al., 2025] Liu, W., Wu, X.-J., Zhu, F., Yu, M.-M., Wang, C., and Liu, C.-L.

(2025). Class incremental learning with self-supervised pre-training and prototype

learning. Pattern Recognition, 157:110943.

[Liu et al., 2020] Liu, X., Wu, C., Menta, M., Herranz, L., Raducanu, B., Bagdanov,

A. D., Jui, S., and Van De Weijer, J. (2020). Generative feature replay for class-

incremental learning. In IEEE Computer Society Conference on Computer Vision

and Pattern Recognition Workshops, volume 2020-June.

[Liu et al., 2019] Liu, Y., Lee, J., Park, M., Kim, S., Yang, E., Hwang, S. J., and Yang,

Y. (2019). Learning to propagate labels: Transductive propagation network for few-

shot learning. In 7th International Conference on Learning Representations, ICLR

2019.

[Liu et al., 2021b] Liu, Y., Sangineto, E., Bi, W., Sebe, N., Lepri, B., and De Nadai, M.

(2021b). Efficient Training of Visual Transformers with Small Datasets. In Advances

in Neural Information Processing Systems, volume 29.

141

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Liu Jinlu, 2020] Liu Jinlu, Song Liang, Q. Y. (2020). Prototype Rectification for Few-

Shot Learning. In Vedaldi Andrea

}and Bischof, H., Thomas, B., and Jan-Michael, F., editors, Computer Vision –

ECCV 2020, pages 741–756, Cham. Springer International Publishing.

[Lopez-Paz and Ranzato, 2017] Lopez-Paz, D. and Ranzato, M. (2017). Gradient

episodic memory for continual learning. In Advances in Neural Information Pro-

cessing Systems, volume 2017-December.

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-invariant key-

points. International Journal of Computer Vision, 60(2).

[Lu et al., 2022] Lu, Y., Wen, L., Liu, J., Liu, Y., and Tian, X. (2022). Self-Supervision

Can Be a Good Few-Shot Learner. In Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-

ics), volume 13679 LNCS.

[Luo et al., 2019] Luo, C., Li, X., Wang, L., He, J., Li, D., and Zhou, J. (2019). How

Does the Data set Affect CNN-based Image Classification Performance? 2018 5th

International Conference on Systems and Informatics, ICSAI 2018, pages 361–366.

[Luo et al., 2020] Luo, Y., Yin, L., Bai, W., and Mao, K. (2020). An appraisal of

incremental learning methods.

[Ma et al., 2023] Ma, J., Niu, Y., Xu, J., Huang, S., Han, G., and Chang, S. F. (2023).

DiGeo: Discriminative Geometry-Aware Learning for Generalized Few-Shot Object

Detection. In Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, volume 2023-June.

[Mallya and Lazebnik, 2018] Mallya, A. and Lazebnik, S. (2018). PackNet: Adding

Multiple Tasks to a Single Network by Iterative Pruning. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition.

[Masana et al., 2022] Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov,

A. D., and Van De Weijer, J. (2022). Class-incremental learning: survey and perfor-

142

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

mance evaluation on image classification. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 45(5):5513–5533.

[Mirzadeh et al., 2020] Mirzadeh, S. I., Farajtabar, M., Pascanu, R., and

Ghasemzadeh, H. (2020). Understanding the role of training regimes in contin-

ual learning. In Advances in Neural Information Processing Systems, volume 2020-

December.

[Misra and Maaten, 2020] Misra, I. and Maaten, L. v. d. (2020). Self-supervised learn-

ing of pretext-invariant representations. In Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition, pages 6707–6717.

[Netzer et al., 2011] Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A. Y.,

and others (2011). Reading digits in natural images with unsupervised feature learn-

ing. In NIPS workshop on deep learning and unsupervised feature learning, volume

2011, page 7.

[Nguyen and Todorovic, 2019] Nguyen, K. D. M. and Todorovic, S. (2019). Feature

Weighting and Boosting for Few-Shot Segmentation. 2019 IEEE/CVF International

Conference on Computer Vision (ICCV), pages 622–631.

[Nichol et al., 2018] Nichol, A., Achiam, J., and Schulman, J. (2018). On First-Order

Meta-Learning Algorithms. ArXiv, abs/1803.02999.

[Nilsback and Zisserman, 2008] Nilsback, M. E. and Zisserman, A. (2008). Automated

flower classification over a large number of classes. In Proceedings - 6th Indian

Conference on Computer Vision, Graphics and Image Processing, ICVGIP 2008.

[Noroozi and Favaro, 2016] Noroozi, M. and Favaro, P. (2016). Unsupervised learning

of visual representations by solving jigsaw puzzles. In Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), volume 9910 LNCS.

143

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Ojala et al., 2002] Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution

gray-scale and rotation invariant texture classification with local binary patterns.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):971–987.

[Ouyang et al., 2023] Ouyang, Y., Wang, X. q., Hu, R. z., and Xu, H. h. (2023). Few-

shot object detection based on positive-sample improvement. Defence Technology,

28.

[Pfeiffer, 2020] Pfeiffer, B. E. (2020). The content of hippocampal “replay”.

[Portugal et al., 2018] Portugal, I., Alencar, P., and Cowan, D. (2018). The use of

machine learning algorithms in recommender systems: A systematic review. Expert

Systems with Applications, 97:205–227.

[Prabhu et al., 2023] Prabhu, A., Al Kader Hammoud, H. A., Dokania, P. K., Torr,

P. H. S., Lim, S.-N., Ghanem, B., and Bibi, A. (2023). Computationally budgeted

continual learning: What does matter? In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 3698–3707.

[Prabhu et al., 2020] Prabhu, A., Torr, P. H., and Dokania, P. K. (2020). GDumb: A

Simple Approach that Questions Our Progress in Continual Learning. In Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), volume 12347 LNCS.

[Qiao et al., 2021] Qiao, L., Zhao, Y., Li, Z., Qiu, X., Wu, J., and Zhang, C. (2021).

DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. In Proceedings

of the IEEE International Conference on Computer Vision.

[Radford et al., 2015] Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised

representation learning with deep convolutional generative adversarial networks.

arXiv preprint arXiv:1511.06434.

[Raghu et al., 2019] Raghu, A., Raghu, M., Bengio, S., and Vinyals, O. (2019). Rapid

Learning or Feature Reuse? Towards Understanding the Effectiveness of MAML.

ArXiv, abs/1909.09157.

144

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Rahman et al., 2021] Rahman, M., Prodhan, R., Shishir, Y., and Ripon, S. (2021).

Analyzing and Evaluating Boosting-Based CNN Algorithms for Image Classification.

In 2021 International Conference on Intelligent Technologies (CONIT), pages 1–6.

[Raina et al., 2007] Raina, R., Battle, A., Lee, H., Packer, B., and Ng, A. Y. (2007).

Self-taught learning: Transfer learning from unlabeled data. In ACM International

Conference Proceeding Series, volume 227.

[Ravi and Larochelle, 2017] Ravi, S. and Larochelle, H. (2017). Optimization as a

model for few-shot learning. In 5th International Conference on Learning Repre-

sentations, ICLR 2017 - Conference Track Proceedings.

[Rebuffi et al., 2017] Rebuffi, S. A., Kolesnikov, A., Sperl, G., and Lampert, C. H.

(2017). iCaRL: Incremental classifier and representation learning. In Proceedings -

30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,

volume 2017-January.

[Redmon et al., 2016] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016).

You only look once: Unified, real-time object detection. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, volume

2016-December.

[Redmon and Farhadi, 2017] Redmon, J. and Farhadi, A. (2017). YOLO9000: Better,

faster, stronger. In Proceedings - 30th IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2017, volume 2017-January.

[Redmon and Farhadi, 2018] Redmon, J. and Farhadi, A. (2018). Yolov3: An incre-

mental improvement. arXiv preprint arXiv:1804.02767.

[Ren et al., 2018] Ren, M., Triantafillou, E., Ravi, S., Snell, J., Swersky, K., Tenen-

baum, J. B., Larochelle, H., and Zemel, R. S. (2018). Meta-learning for semi-

supervised few-shot classification. In 6th International Conference on Learning Rep-

resentations, ICLR 2018 - Conference Track Proceedings.

145

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Ren et al., 2022] Ren, P., Xiao, Y., Chang, X., Huang, P. Y., Li, Z., Gupta, B. B.,

Chen, X., and Wang, X. (2022). A Survey of Deep Active Learning.

[Ren et al., 2017] Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 39(6).

[Richard Bellman, 1957] Richard Bellman (1957). Dynamic Programming. Princeton

University Press.

[Riemer et al., 2019] Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y., and

Tesauro, G. (2019). Learning to learn without forgetting by maximizing transfer and

minimizing interference. In 7th International Conference on Learning Representa-

tions, ICLR 2019.

[Robb et al., 2020] Robb, E., Chu, W.-S., Kumar, A., and Huang, J.-B. (2020). Few-

shot adaptation of generative adversarial networks. arXiv preprint arXiv:2010.11943.

[Rodŕıguez et al., 2020] Rodŕıguez, P., Laradji, I., Drouin, A., and Lacoste, A. (2020).

Embedding Propagation: Smoother Manifold for Few-Shot Classification. In Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelli-

gence and Lecture Notes in Bioinformatics), volume 12371 LNCS.

[Rolnick et al., 2019] Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. P., and Wayne,

G. (2019). Experience replay for continual learning. In Advances in Neural Informa-

tion Processing Systems, volume 32.

[Rubner et al., 2000] Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). Earth mover’s

distance as a metric for image retrieval. International Journal of Computer Vision,

40(2).

[Rusu et al., 2016] Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H., Kirk-

patrick, J., Kavukcuoglu, K., Pascanu, R., and Hadsell, R. (2016). Progressive

neural networks. arXiv preprint arXiv:1606.04671.

146

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Rusu et al., 2019] Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osin-

dero, S., and Hadsell, R. (2019). Meta-learning with latent embedding optimization.

In 7th International Conference on Learning Representations, ICLR 2019.

[Rypeść et al., 2024] Rypeść, G., Cygert, S., Khan, V., Trzciński, T., Zieliński, B.,

and Twardowski, B. (2024). Divide and not forget: Ensemble of selectively trained

experts in Continual Learning. arXiv preprint arXiv:2401.10191.

[Saha et al., 2021] Saha, G., Garg, I., and Roy, K. (2021). GRADIENT PROJECTION

MEMORY FOR CONTINUAL LEARNING. In ICLR 2021 - 9th International Con-

ference on Learning Representations.

[Santoro et al., 2016] Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and Lill-

icrap, T. (2016). Meta-Learning with Memory-Augmented Neural Networks. In 33rd

International Conference on Machine Learning, ICML 2016, volume 4.

[Santoro et al., 2017] Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pas-

canu, R., Battaglia, P., and Lillicrap, T. (2017). A simple neural network module

for relational reasoning. Advances in neural information processing systems, 30.

[Santra et al., 2021] Santra, S., Hsieh, J. W., and Lin, C. F. (2021). Gradient Descent

Effects on Differential Neural Architecture Search: A Survey. IEEE Access, 9.

[Saxena et al., 2022] Saxena, R., Shobe, J. L., and McNaughton, B. L. (2022). Learning

in deep neural networks and brains with similarity-weighted interleaved learning.

Proceedings of the National Academy of Sciences of the United States of America,

119(27).

[Schonfeld et al., 2019] Schonfeld, E., Ebrahimi, S., Sinha, S., Darrell, T., and Akata,

Z. (2019). Generalized zero-and few-shot learning via aligned variational autoen-

coders. In Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, pages 8247–8255.

147

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Schroff et al., 2015] Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A

unified embedding for face recognition and clustering. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 815–823.

[Schwarz et al., 2018] Schwarz, J., Altman, D., Dudzik, A., Vinyals, O., Whye Teh,

Y., and Pascanu, R. (2018). Towards a natural benchmark for continual learning.

Continual learning Workshop NeurIPS, (Cl).

[Serra et al., 2018] Serra, J., Suris, D., Mirón, M., and Karatzoglou, A. (2018). Over-

coming Catastrophic forgetting with hard attention to the task. In 35th International

Conference on Machine Learning, ICML 2018, volume 10.

[Shi et al., 2020] Shi, X., Salewski, L., Schiegg, M., and Welling, M. (2020). Relational

Generalized Few-Shot Learning. In 31st British Machine Vision Conference, BMVC

2020.

[Shin et al., 2017] Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning

with deep generative replay. In Advances in Neural Information Processing Systems,

volume 2017-December.

[Shors et al., 2012] Shors, T. J., Anderson, M. L., Curlik, D. M., and Nokia, M. S.

(2012). Use it or lose it: How neurogenesis keeps the brain fit for learning.

[Shorten and Khoshgoftaar, 2019] Shorten, C. and Khoshgoftaar, T. M. (2019). A sur-

vey on image data augmentation for deep learning. Journal of big data, 6(1):1–48.

[Simonyan and Zisserman, 2014] Simonyan, K. and Zisserman, A. (2014). Very Deep

Convolutional Networks for Large-Scale Image Recognition. CoRR, abs/1409.1556.

[Snell et al., 2017] Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical Networks

for Few-shot Learning. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus,

R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information

Processing Systems, volume 30. Curran Associates, Inc.

148

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Song et al., 2022] Song, Y., Wang, T.-Y., Cai, P., Mondal, S. K., and Sahoo, J. P.

(2022). A Comprehensive Survey of Few-shot Learning: Evolution, Applications,

Challenges, and Opportunities. ACM Computing Surveys, 55:1 – 40.

[Springenberg, 2015] Springenberg, J. T. (2015). Unsupervised and Semi-supervised

Learning with Categorical Generative Adversarial Networks. CoRR, abs/1511.06390.

[Su et al., 2020] Su, J. C., Maji, S., and Hariharan, B. (2020). When Does Self-

supervision Improve Few-Shot Learning? In Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics), volume 12352 LNCS.

[Suárez et al., 2021] Suárez, J. L., Garćıa, S., and Herrera, F. (2021). A tutorial on dis-

tance metric learning: Mathematical foundations, algorithms, experimental analysis,

prospects and challenges. Neurocomputing, 425:300–322.

[Sun et al., 2021a] Sun, B., Li, B., Cai, S., Yuan, Y., and Zhang, C. (2021a). FSCE:

Few-Shot Object Detection via Contrastive Proposal Encoding. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[Sun et al., 2019] Sun, Q., Liu, Y., Chua, T. S., and Schiele, B. (2019). Meta-transfer

learning for few-shot learning. In Proceedings of the IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition, volume 2019-June.

[Sun et al., 2021b] Sun, X., Wang, B., Wang, Z., Li, H., Li, H., and Fu, K. (2021b).

Research Progress on Few-Shot Learning for Remote Sensing Image Interpretation.

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,

14:2387–2402.

[Sung et al., 2018] Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H., and

Hospedales, T. M. (2018). Learning to Compare: Relation Network for Few-Shot

Learning. In Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition.

149

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Szabo and Horvath, 2022] Szabo, G. and Horvath, A. (2022). Mitigating the Bias of

Centered Objects in Common Datasets. In Proceedings - International Conference

on Pattern Recognition, volume 2022-August.

[Taherkhani et al., 2020] Taherkhani, A., Cosma, G., and McGinnity, T. M. (2020).

AdaBoost-CNN: An adaptive boosting algorithm for convolutional neural networks

to classify multi-class imbalanced datasets using transfer learning. Neurocomputing,

404:351–366.

[Tee and Zhang, 2023] Tee, R. J. and Zhang, M. (2023). Integrating Curricula with

Replays: Its Effects on Continual Learning. In Proceedings of the Inaugural 2023

Summer Symposium Series 2023.

[Tian et al., 2020] Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J. B., and Isola, P.

(2020). Rethinking Few-Shot Image Classification: A Good Embedding is All You

Need? In Computer Vision – ECCV 2020: 16th European Conference, Glasgow,

UK, August 23–28, 2020, Proceedings, Part XIV, pages 266–282, Berlin, Heidelberg.

Springer-Verlag.

[Tian et al., 2022] Tian, Z., Zhao, H., Shu, M., Yang, Z., Li, R., and Jia, J. (2022).

Prior Guided Feature Enrichment Network for Few-Shot Segmentation. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 44(2):1050–1065.

[Tong and Wu, 2023] Tong, K. and Wu, Y. (2023). Rethinking PASCAL-VOC and

MS-COCO dataset for small object detection. Journal of Visual Communication

and Image Representation, 93.

[Triantafillou et al., 2020] Triantafillou, E., Zhu, T., Dumoulin, V., Lamblin, P., Evci,

U., Xu, K., Goroshin, R., Gelada, C., Swersky, K., Manzagol, P. A., and Larochelle,

H. (2020). Meta-Dataset: A Dataset Of Datasets For Learning to Learn from Few

Examples. In 8th International Conference on Learning Representations, ICLR 2020.

[Uijlings et al., 2013] Uijlings, J. R., Van De Sande, K. E., Gevers, T., and Smeulders,

A. W. (2013). Selective search for object recognition. International Journal of

Computer Vision, 104(2).

150

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Van De Ven et al., 2021] Van De Ven, G. M., Li, Z., and Tolias, A. S. (2021). Class-

incremental learning with generative classifiers. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pages 3611–3620.

[Van de Ven et al., 2020] Van de Ven, G. M., Siegelmann, H. T., and Tolias, A. S.

(2020). Brain-inspired replay for continual learning with artificial neural networks.

Nature communications, 11(1):4069.

[van de Ven et al., 2022] van de Ven, G. M., Tuytelaars, T., and Tolias, A. S. (2022).

Three types of incremental learning. Nature Machine Intelligence, 4(12).

[van den Oord et al., 2018] van den Oord, A., Li, Y., and Vinyals, O. (2018). Repre-

sentation Learning with Contrastive Predictive Coding. ArXiv, abs/1807.03748.

[Veilleux et al., 2021] Veilleux, O., Boudiaf, M., Piantanida, P., and Ayed, I. B. (2021).

Realistic Evaluation of Transductive Few-Shot Learning. In Advances in Neural

Information Processing Systems, volume 12.

[Vilalta and Drissi, 2002] Vilalta, R. and Drissi, Y. (2002). A perspective view and

survey of meta-learning. Artificial intelligence review, 18:77–95.

[Vinyals et al., 2016] Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu, k., andWier-

stra, D. (2016). Matching Networks for One Shot Learning. In Lee, D., Sugiyama, M.,

Luxburg, U., Guyon, I., and Garnett, R., editors, Advances in Neural Information

Processing Systems, volume 29. Curran Associates, Inc.

[Walach and Wolf, 2016] Walach, E. and Wolf, L. (2016). Learning to Count with CNN

Boosting. In European Conference on Computer Vision.

[Wang et al., 2023] Wang, C.-Y., Bochkovskiy, A., and Liao, H.-Y. M. (2023).

YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object

Detectors.

[Wang et al., 2022] Wang, F. Y., Zhou, D. W., Ye, H. J., and Zhan, D. C. (2022).

FOSTER: Feature Boosting and Compression for Class-Incremental Learning. In

151

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), volume 13685 LNCS.

[Wang et al., 2020a] Wang, J., Wu, J., Bai, H., and Cheng, J. (2020a). M-nas: Meta

neural architecture search. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 34, pages 6186–6193.

[Wang et al., 2020b] Wang, X., Huang, T. E., Darrell, T., Gonzalez, J. E., and Yu,

F. (2020b). Frustratingly simple few-shot object detection. In 37th International

Conference on Machine Learning, ICML 2020, volume PartF168147-13.

[Wang et al., 2017] Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., and Summers,

R. M. (2017). ChestX-ray8: Hospital-scale chest X-ray database and benchmarks

on weakly-supervised classification and localization of common thorax diseases. In

Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition,

CVPR 2017, volume 2017-January.

[Wang et al., 2024] Wang, Z., Yang, B., Yue, H., and Ma, Z. (2024). Fine-Grained

Prototypes Distillation for Few-Shot Object Detection. Proceedings of the 38th AAAI

Conference on Artificial Intelligence (AAAI-24).

[Wei et al., 2022] Wei, X.-S., Xu, H.-Y., Zhang, F., Peng, Y., and Zhou, W. (2022). An

Embarrassingly Simple Approach to Semi-Supervised Few-Shot Learning. Advances

in Neural Information Processing Systems, 35:14489–14500.

[Welinder et al., 2010] Welinder, P., Branson, S., Mita, T., Wah, C., and Schroff, F.

(2010). Caltech-UCSD Birds 200. Caltech-UCSD Technical Report, 200.

[Wen et al., 2020] Wen, Y., Tran, D., and Ba, J. (2020). BATCHENSEMBLE: AN

ALTERNATIVE APPROACH TO EFFICIENT ENSEMBLE AND LIFELONG

LEARNING. In 8th International Conference on Learning Representations, ICLR

2020.

[Wikenheiser and Redish, 2015] Wikenheiser, A. M. and Redish, A. D. (2015). Hip-

pocampal theta sequences reflect current goals. Nature Neuroscience, 18(2).

152

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Wu et al., 2020] Wu, J., Liu, S., Huang, D., and Wang, Y. (2020). Multi-scale Positive

Sample Refinement for Few-Shot Object Detection. In Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), volume 12361 LNCS.

[Wu et al., 2022a] Wu, S., Pei, W., Mei, D., Chen, F., Tian, J., and Lu, G. (2022a).

Multi-faceted Distillation of Base-Novel Commonality for Few-Shot Object Detec-

tion. In Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics), volume 13669 LNCS.

[Wu et al., 2022b] Wu, T.-Y., Swaminathan, G., Li, Z., Ravichandran, A., Vasconcelos,

N., Bhotika, R., and Soatto, S. (2022b). Class-incremental learning with strong pre-

trained models. In Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 9601–9610.

[Xiao et al., 2010] Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., and Torralba, A. (2010).

Sun database: Large-scale scene recognition from abbey to zoo. In 2010 IEEE

computer society conference on computer vision and pattern recognition, pages 3485–

3492.

[Xu and Le, 2022] Xu, J. and Le, H. (2022). Generating representative samples for

few-shot classification. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 9003–9013.

[Xudie Ren et al., 2017] Xudie Ren, Haonan Guo, Shenghong Li, Shilin Wang, and

Jianhua Li (2017). A Novel Image Classification Method with CNN-XGBoost Model.

In Digital Forensics and Watermarking, pages 378–390, Cham. Springer International

Publishing.

[Yan et al., 2019] Yan, X., Chen, Z., Xu, A., Wang, X., Liang, X., and Lin, L. (2019).

Meta R-CNN: Towards general solver for instance-level low-shot learning. In Pro-

ceedings of the IEEE International Conference on Computer Vision, volume 2019-

October.

153

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[Yang et al., 2023a] Yang, Y., Yuan, H., Li, X., Lin, Z., Torr, P., and Tao, D. (2023a).

Neural collapse inspired feature-classifier alignment for few-shot class incremental

learning. arXiv preprint arXiv:2302.03004.

[Yang et al., 2019] Yang, Y., Zheng, K., Wu, C., and Yang, Y. (2019). Improving

the classification effectiveness of intrusion detection by using improved conditional

variational autoencoder and deep neural network. Sensors (Switzerland), 19(11).

[Yang et al., 2023b] Yang, Z., Yang, Z., Liu, Y., Li, P., and Liu, Y. (2023b). Restricted

orthogonal gradient projection for continual learning. AI Open, 4.

[Yoon et al., 2022] Yoon, J., Madaan, D., Yang, E., and Hwang, S. J. (2022). Online

Coreset Selection for Rehearsal-based Continual Learning. In ICLR 2022 - 10th

International Conference on Learning Representations.

[Yoon et al., 2017] Yoon, J., Yang, E., Lee, J., and Hwang, S. J. (2017). Lifelong

learning with dynamically expandable networks. arXiv preprint arXiv:1708.01547.

[Yu et al., 2020a] Yu, T., Kumar, S., Gupta, A., Levine, S., Hausman, K., and Finn, C.

(2020a). Gradient surgery for multi-task learning. In Advances in Neural Information

Processing Systems, volume 2020-December.

[Yu et al., 2020b] Yu, Z., Chen, L., Cheng, Z., and Luo, J. (2020b). Transmatch: A

transfer-learning scheme for semi-supervised few-shot learning. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[Zenke et al., 2017] Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning

through synaptic intelligence. In 34th International Conference on Machine Learn-

ing, ICML 2017, volume 8.

[Zhang et al., 2020] Zhang, C., Cai, Y., Lin, G., and Shen, C. (2020). DeepEMD: Few-

shot image classification with differentiable earth mover’s distance and structured

classifiers. In Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition.

154

–
D
R
A
F
T

–
J
u
n
e
4,

20
25

–
Bibliography

[ZHANG et al., 2018] ZHANG, R., Che, T., Ghahramani, Z., Bengio, Y., and Song,

Y. (2018). MetaGAN: An Adversarial Approach to Few-Shot Learning. In Bengio,

S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R.,

editors, Advances in Neural Information Processing Systems, volume 31. Curran

Associates, Inc.

[Zhang et al., 2018] Zhang, R., Che, T., Ghahramani, Z., Bengio, Y., and Song, Y.

(2018). MetaGAN: An Adversarial Approach to Few-Shot Learning. In Bengio,

S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R.,

editors, Advances in Neural Information Processing Systems, volume 31. Curran

Associates, Inc.

[Zhang, 2017] Zhang, X. (2017). A method of data label checking and the wrong labels

in mnist and cifar10. Available at SSRN 3072167.

[Zhang et al., 2021] Zhang, Y., Huang, S., and Zhou, F. (2021). Generally Boosting

Few-Shot Learning with HandCrafted Features. In Proceedings of the 29th ACM

International Conference on Multimedia, MM ’21, pages 3143–3152, New York, NY,

USA. Association for Computing Machinery.

[Zhou et al., 2022] Zhou, D.-W., Wang, Q.-W., Ye, H.-J., and Zhan, D.-C. (2022). A

model or 603 exemplars: Towards memory-efficient class-incremental learning. arXiv

preprint arXiv:2205.13218.

[Zhu et al., 2021] Zhu, C., Chen, F., Ahmed, U., Shen, Z., and Savvides, M. (2021).

Semantic Relation Reasoning for Shot-Stable Few-Shot Object Detection. In Pro-

ceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition.

155

	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	I
	Few-Shot Classification
	Dataset Augmentation
	Generative Adversarial Networks
	Variational Autoencoders

	Classic Methods
	Boosting
	Transfer Learning

	Metric Learning
	Siamese Networks
	Contrastive Learning
	Matching Networks
	Prototypical Networks
	DeepEMD

	Meta-Learning
	Optimisation Methods
	Relation Networks and Meta-Learning
	Other Combinations

	Network Architecture Enhancements
	Network Architecture Search (NAS)
	Knowledge Distillation

	Reducing Supervision
	Transductive Learning

	Benchmarks
	Cross-Domain Transfer

	Summary of Results
	Discussion

	Conclusions

	Few Shot Object Detection
	Benchmarks
	Datasets
	Metrics

	Architectures
	R-CNN
	YOLO
	Few-Shot Architectures

	Meta-Learning
	Few-Shot Feature Reweighting
	Subsequent works

	Fine-tuning
	Early Methods
	Two-stage Finetuning Approach
	DeFRCN

	Other Approaches
	Contrastive and Class Separation Methods
	Distillation methods
	Retentive R-CNN

	Transformer-based methods
	Transformers and Object Detection
	Transformers and Few-Shot Object Detection

	Reliability of Benchmark Data
	Label Quality
	Information Leakage

	Results
	Discussion
	Architecture

	Conclusions

	Continual Learning
	Benchmarks
	Datasets
	Metrics

	Network Expansion
	Weight Regularisation
	Gradient Manipulation for Weight Regularisation

	Replay Methods
	Experience Replay
	Generative Replay
	Sampling and Replay
	Gradient Manipulation with Replay

	Summary of Results
	Discussion

	Conclusions

	Commonalities Between Fields
	Considerations on Base Sample Storage
	Similarities between Generalised-FSOD and other Continual Learning approaches
	Network Expansion
	Neural Collapse
	Brain-Inspired Replay
	Neuroscience and Neural Network Replay

	Conclusions

	II
	Methodology
	Rationale for Gradient Correction
	Training Procedure
	Experience Replay

	Summary of Gradient Correction Methods
	A-GEM
	CFA
	MEGA-I
	MEGA-II
	CAG

	Other methods
	CFA With Loss
	Averaging

	Rationale for Sampling: G-FSOD and Experience Replay
	Summary of Sampling Strategies
	Prototype Distance
	Prototype Distance Ratio
	Histograms vs Top-K (Variation)
	Mini-Batch Distribution (Variation)

	Experiments
	Experimental Plan
	Experimental Setup
	Experimental Notes
	Causes of Result Variance
	Note on Confidence Intervals

	Performance of Gradient Correction Methods
	Performance of Sampling Strategies
	COCO
	VOC
	Ablation Study

	Conclusions
	Contributions
	Literature review
	Parallels between Generalised Fine-Tuning and Class-Incremental Learning
	Gradient correction methods are ineffective
	Sampling strategies improve base performance on G-FSOD
	Another look at current benchmarks

	Future Work
	Active Learning and G-FSOD
	Sampling strategies
	Resource Requirements

	Full Results
	Ablation Experiment: Gradient Averaging
	Additional Results for Gradient Methods (COCO)
	Complete Results for Gradient Methods (VOC)
	Complete Results for Sampling Methods (VOC)

	Bibliography

