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Abstract 

Tetralogy of Fallot (TOF) is a congenital heart disease that causes structural 

abnormalities in the pulmonary arteries, which in turn disrupt the blood flow. Surgical 

repair is necessary early in childhood, but chronic complications are common in the 

adult surviving patients. Pulmonary valve replacement is an operation performed in 

the repaired TOF (rTOF) patients to overcome the right ventricular overload, but the 

optimal timing remains a challenge. The main research question is whether the 

haemodynamic environment of the pulmonary junction can clarify the interplay 

between the upstream and downstream pulmonary vasculature. Therefore, an 

extensive analysis of the effect of morphological and flow characteristics in healthy 

and rTOF models was performed, under various boundary conditions (BCs). The 

effects of branch angle and origin, branch stenosis, flow splits and pulmonary 

resistance were investigated in idealised two-dimensional geometries, representative 

of healthy and rTOF cases, explaining the elevated pressure in the LPA, and clearly 

showing that downstream pressure and peripheral resistance alter the flow 

development and the flow split between the two daughter branches. Various modelling 

parameters were also tested, demonstrating the importance of the valve, and how it 

disturbs the flow patterns along the MPA. The elasticity of arterial wall had a minimal 

effect on the flow development while the WSS deviated based on the rheological 

model assumed. Finally, anatomically-realistic three-dimensional models of rTOF 

patients and healthy volunteers were reconstructed and morphological and flow 

features were analysed. Higher curvature and tortuosity were correlated with more 

complex secondary flow patterns, and higher Reynolds and Dean numbers, with 
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increased regions of time-averaged wall shear stress. More importantly, the importance 

of patient-specificity in the rTOF models, and the variability of the geometric and flow 

characteristics within the population was highlighted, contrary to the observations in 

the healthy models. The results of this work could help clinicians evaluate the 

haemodynamic environment in the rTOF population and potentially predict patients at 

higher risk, prior to the appearance of severe complications.  
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2014). 
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1.10 Velocity profiles (non-dimensionalised) at different Womersley numbers for 

a sinusoidally oscillating pressure gradient (Loudon and Tordesillas, 1998). 

1.11 Flow through a bifurcating artery. Secondary motion with two counter 

rotating vortices is presented in one daughter branch, and a separation zone 

on the other (Reproduced after Kazakidi, 2008). 

2.1 Different types of (a) 2D and (b) 3D elements (After Moukalled et al., 2016). 

2.2 Decomposition of 3D domain (After Peiró et al., 1994). 

2.3 A boundary layer mesh consisting of 7 layers of prismatic elements. The first 

layer is at a distance of 0.005 cm away from the wall and progressively 

increases with a growth factor rate of 1.1.   

2.4 (a) Cell-centered and (b) vertex-centered arrangements (After Moukalled et 

al., 2016). 

2.5 (a) Conservation of flow. Flux entering a discrete element equals flux 

leaving; (b) Surface integration using (i) one, (ii) two and (iii) three 

integration points, respectively (After Moukalled et al., 2016).  

2.6 Lagrangian coordinate system in an FEM mesh. (a) Approximation of the 

dependent function g using �̃�. (b) Definition of the Lagrangian coordinates 

using the area of the subtriangles created within a single triangle (After Rapp, 

2016). 

2.7 Different scales of modelling (After Shi, 2011). 

2.8 Two-element (a), three-element (b), and four-element (c) Windkessel models 

(Reproduced after Shi, 2011). 
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2.9 (a) Body-fitted meshes, in the Arbitrary Lagrangian-Eulerian method, and (b) 

non-fitted meshes, in the Immersed Boundary Method (After Hashemi, 

2018). 

2.10 Steps followed in reconstructing and modelling a patient-specific geometry: 

segmentation of the computational domain from clinical images, smoothing 

and mesh generation, extraction of flow information to set patient-specific 

boundary conditions and finally post-processing of the computational results. 

3.1 Schematic representation of nine different models of the pulmonary 

bifurcation. (i) T-Junction; (ii) asymmetric Y-Junction with common branch 

origin at point O; (iii)-(iv) asymmetric Y-Junctions with displaced branch 

origins; (v) asymmetric Y-Junction with displaced origin and hypoplastic 

LPA; (vi) symmetric Y-Junction; (vii)-(ix) symmetric Y-Junctions with local 

stenosis and hypoplastic LPA, respectively. The inner and outer walls are 

annotated on (vi). 

3.2 (a) An axial black-blood MRI image from a healthy male volunteer (27 years 

old), overlaid with an outline of the inner and outer walls of the pulmonary 

bifurcation. (b) Computational mesh for the geometry of Fig. 3.1 (ii), 

consisting mainly of quadrilateral elements, a few triangular elements in the 

middle of the bifurcation and a boundary layer near the wall. 

3.3 Computational grids of the pulmonary models with a surface mesh of (a) 

primarily quadrilateral elements and (b) primarily triangle elements. A 

boundary layer mesh is adopted near the walls of the models. (c) Grip 

independence analysis test, based on the integral of the velocity profile 
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obtained at a reference point (~0.019D from point O) of the symmetric Y-

Junction model. 

3.4 Comparison of OpenFOAM® and Ansys Fluent. (a) Non-dimensionalised 

velocity contours. (b) Velocity profiles at the entrance of the bifurcation and 

at a distance of 0.01 m from the branch origin. Steady Newtonian flow, 

Re=650. 

3.5 Contours of non-dimensionalised velocity magnitude in models of the 

pulmonary bifurcation: (i) T-Junction; (ii)-(v) asymmetric Y-Junction with 

(iii)-(iv) different branch origins and (v) hypoplastic LPA; (vi-ix) symmetric 

Y-Junction (vi) without and (vii)-(viii) with local stenosis or (ix) hypoplastic 

LPA. Steady Newtonian flow, Re=650. The stagnation point on the MPA 

centreline is indicated with the letter S; or SR and SL if deviated towards the 

RPA and LPA, respectively. 

3.6 Velocity profiles at a distance of 3 cm (~1.15D) from each branch origin 

presented (a) on top of each geometry and (b) placed comparatively next to 

each other. Dashed lines indicate cropped branch ends and symmetry planes 

(a) or the position of zero non-dimensionalised velocity (b). (i) T-Junction; 

(ii)-(v) asymmetric Y-Junction, with the different branch origins or 

hypoplastic LPA; (vi)-(xi) symmetric Y-Junction, without or with local 

stenosis or hypoplastic LPA. Steady Newtonian flow, Re=650. 

3.7 Velocity streamlines in the models of Fig. 3.1: (i) T-Junction; (ii)-(iv) 

asymmetric Y-Junction models with different branch origins and (v) with 

hypoplastic LPA; (vi) symmetric Y-Junction; (vii)-(viii) models with local 

stenosis; (ix) model with hypoplastic LPA. Steady Newtonian flow, Re=650. 
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3.8 Non-dimensionalised wall shear stress (WSS) distribution along the inner 

wall of the models of Fig. 3.5, for steady Newtonian flow, Re=650: (a) 

models with different branching angles; (b) asymmetric models with different 

branch origins; (c) symmetric Y-Junction without and with local stenosis; (d) 

asymmetric and symmetric Y-Junctions without and with hypoplastic LPA. 

The zero position in the abscissae signifies the stagnation point (S, SR, or SL, 

see Fig. 3.5). 

3.9 Effect of pressure boundary condition at branch outlet. (a) Non-

dimensionalised velocity contours overlaid by streamlines. (b) velocity 

profiles along the RPA and LPA. (c) Non-dimensionalised WSS distribution 

along the inner wall for the geometry of Fig. 3.5 (vi) (solid line) and model 

with (i) an extended right pulmonary branch with 
|𝛥𝑃|

0.5𝜌𝑈2=0, (ii) 
|𝛥𝑃|

0.5𝜌𝑈2=0.026 

with PLPA > PRPA and (iii) 
|𝛥𝑃|

0.5𝜌𝑈2=0.015 with PLPA > PRPA. Steady 

Newtonian flow, Re=650. 

3.10 Effect of outlet boundary conditions. (a) Non-dimensionalised velocity 

contours. (b) Non-dimensionalised WSS distribution along the inner wall for 

the geometry of Fig. 3.5 (ix) (solid line) with (i)-(ii) flow split dictated by (i) 

Murray’s Law (QLPA:QRPA is 11:89%) and (ii) “outflow splitting” method 

(QLPA:QRPA is 20:80%), and (iii)-(iv) coupled lumped parameter models with 

, (iii) a peripheral resistance (QLPA:QRPA is 22:78%) and (iv) a three-element 

Windkessel (WK) model (QLPA:QRPA is 14:86%). Steady Newtonian flow, 

Re=650. 

3.11 Effect of pulsatility in the symmetric Y-Junction with hypoplastic LPA and 

the peripheral resistance boundary condition. (a) Instantaneous non-
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dimensionalised velocity contours and WSS distribution along the inner wall, 

at maximum acceleration, middle of deceleration, maximum deceleration, 

and middle of acceleration of a sinusoidal waveform (Eq. (3.2)). (b) Steady 

and time-averaged non-dimensional wall shear stress distribution for steady 

and unsteady flow. Newtonian flow, mean Re=650. 

3.12 (a) Points where the pressure values were measured, overlaying contours of 

pressure in the symmetric Y-Junction. Pressure is depicted relative to the 

reference pressure at the outlets, and normalised by 0.5𝜌𝑈2.(b) Pressure 

ratios for the models examined: (i) T-Junction (Fig. 3.5 (i)); (ii)-(v) 

asymmetric Y-Junction models, with (ii) common origin (Fig. 3.5 (ii)), (iii) 

one (Fig. 3.5 (iii)) or (iv) both branch origins displaced (Fig. 3.5 (iv)), or (v) 

hypoplastic LPA (Fig. 3.5 (v)); (vi) symmetric Y-Junction (Fig. 3.5 (vi)), with 

(vii) local asymmetric stenosis (Fig. 3.5 (vii)), (viii) local symmetric stenosis 

(Fig. 3.5 (viii)), or (ix) hypoplastic LPA (Fig. 3.5 (ix)); (x) symmetric Y 

model with extended RPA (Fig. 3.9a (i)); (xi)-(xii) symmetric Y model with 

PLPA > PRPA and with 
|𝛥𝑃|

0.5𝜌𝑈2=0.026 (Fig. 3.9a (ii)), and with 
|𝛥𝑃|

0.5𝜌𝑈2=0.015 

(Fig. 3.9a (iii)), respectively; (xiii)-(xvi) symmetric Y model with hypoplastic 

LPA and (xiii)-(xiv) prescribed flow splits (Fig. 3.10a (i),(ii)), and (xv)-(xvi) 

lumped parameter models coupled at the branch outlets (Fig. 3.10a (iii),(iv)). 

Steady Newtonian flow, Re=650. 

4.1 Schematic representation of 3D geometry. 

4.2 Apparent viscosity against shear rate for the different rheological models 

used. The high shear rate region in which the models of this study are 
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operating is identified and is approximately within 100 to 220 s-1 (After 

Karimi et al., 2014). 

4.3 3D idealised model of the pulmonary bifurcation with (a) the valve in open 

configuration and (b) the valve in closed configuration. 

4.4 Effect of steady inlet velocity profile with varied MPA lengths for the 

symmetric Y-Junction (Fig. 3.1 (vi))). (a) Non-dimensionalised velocity 

contours, overlaid by velocity streamlines, for parabolic and uniform inlet 

profiles (only half of the geometry is shown due to axisymmetry). Insets at 

the bottom right display velocity profiles within the RPA or LPA taken at a 

distance of 3 cm (~1.15D) from the origin of the branches. (b) Non-

dimensionalised WSS along the inner wall for parabolic and uniform inlet 

velocity profiles and different MPA lengths. Steady Newtonian flow, 

Re=650. 

4.5 Streamlines of velocity for different boundary conditions tested in the 

symmetric Y-Junction (Fig. 3.1 (v)). Effects of: (a) pulsatile flow; (b) 

turbulent flow and Reynolds number (including velocity profiles, non-

dimensionalised by division with the mean velocity at the inlet of MPA); and 

(c) three-dimensional flow. 

4.6 Non-dimensional wall shear stress distribution, plotted along the inner wall 

of the arterial models for (a) steady and unsteady flow, in the 2D and 3D 

models; (b) laminar and turbulent models with parabolic and uniform inlet 

velocity (Re=650); (c) different Reynolds numbers assuming turbulence 

flow.  
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4.7 WSS plots along the inner wall of the symmetric 2D Y-Junction (Fig. 3.1(v)) 

for the Newtonian and non-Newtonian models (a) non-dimensionalised form; 

(b) expressed in dynes/cm2. Steady flow, Re=650. 

4.8 Streamlines of velocity coloured with non-dimensionalised velocity contours 

on a static model of the idealised valve in (a) the open and (b) the closed 

configuration. 

4.9 Effect of pressure outlet boundary condition. (a) Pressure distribution; (b) 

velocity contours; and (c) wall shear stress distribution. (a) and (b) are plots 

over a slice along the mid plane of the model. 

4.10 (a) and (b) Streamlines of velocity coloured with non-dimensionalised 

velocity contours in the models with (a) rigid walls, and (b) elastic walls (only 

fluid domain presented). (c) Displacement distribution when elasticity of the 

arterial walls is considered in (i) the fluid domain, (ii) the solid domain, and 

(iii) a 2D slice of both the solid and the fluid. 

5.1 (a) MRI image with red colour depicting the pulmonary arteries (PAs), 

including the main (MPA), left (LPA) and right pulmonary artery (RPA), and 

showing the descending (DA) and ascending aorta (AA) relevant to the Pas, 

for reference. (b) One of the reconstructed patient-specific models (Model 2), 

with slices α and β over the RPA, and γ and δ over the LPA shown in the 

model. (c)-(d) PC-MRI data from the same patient used for the extraction of 

the velocity profile at the MPA root, with the MPA encircled in red; (c) 

magnitude and (d) phase contrast (PC-MRI) image. (e) 3D-velocity profile 

extracted from PC-MRI data displaying the variation of the velocity both in 

space and time over a cardiac cycle.     
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5.2 (a) Patient-specific pulsatile inlet flow rate waveform for all seven subjects 

and an averaged flow rate waveform (Qi) derived from the seven patient-

specific waveforms. (b) The averaged flow rate waveform derived from the 

seven patient-specific waveforms and normalised with the mean value of the 

average flow rate over the cardiac cycle Qm*. Time was normalised with the 

period of the cardiac cycle of each patient. Error bars represent the standard 

deviation of the patient-specific flow waveforms from the average flow 

waveform. 

5.3 Schematic representation of the (a) in-plane and (b) out-of-plane angles. 

5.4 (a) Average geometry of the five adult TOF patients (red) with the seven 

patient-specific models shown transparent. Models are co-registered based on 

point O of Fig, 5.1b. (b) Computational mesh of the average geometry around 

the pulmonary junction. The boundary layer at the RPA outlet is also 

displayed. (c) Mesh independence test based on the integral of WSS. 

5.5 Comparison of clinical flow waveforms of the right and left pulmonary 

branches with those calculated at the outlets of the model when the flow split 

was specified. 

5.6 (a) Centerlines along the LPA and RPA of model 2, with points indicating 

the curvilinear abscissa, normalised by the distance corresponding to the peak 

curvature value closer to the bifurcating branches. Therefore, the value of 1.0 

represents the location of peak curvature for each branch. (b) Average 

curvature plot. (c) Average torsion plot, and (d) Average Dean number plot, 

with x-axis indicating distance from point O. Shaded areas represent the 

standard deviation of the patient-specific values from the average calculated. 
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5.7 Secondary flow visualised by in plane velocity vectors and contours of 

normalised velocity normal to the slice during (i) peak flow; (ii) mid 

deceleration at systole; and (iii) mid diastole, for (a) model 2; (b) model 3; 

and (c) the average model. Non-dimensionalisation was performed by 

division with the maximum velocity of each patient during the cardiac cycle. 

Points where slices α and γ are taken are visible in Fig. 5.1b. Cross-sections 

are oriented with the top and the bottom edges corresponding to the cranial 

and caudal positions, respectively and left and right to the anterior and 

posterior of the pulmonary artery, for the RPA, and to the posterior and 

anterior of the pulmonary artery, for the LPA, respectively.  Cross-sections 

are in scale. 

5.8 Non-dimensionalised time-averaged wall shear stress (TAWSSn) 

distribution, normalised with the corresponding value at the inlet of each 

model, for (a) model 1; (b) model 2; (c) model 3; (d) model 4; (e) model 5; 

(f) model 6; (g) model 7; (h) the average model. Averaged boundary 

conditions are used at the inlet and the outlets of all models. 

5.9 Left to Right: Patient-specific flow waveforms and velocity streamlines at (i) 

peak flow; (ii) mid deceleration at systole; and (iii) mid diastole, for (a) model 

1; (b) model 2; (c) model 3; (d) model 4; (e) model 5; (f) model 6; (g) model 

7. Streamlines are coloured by non-dimensionalised velocity magnitude 

based on the maximum velocity during the cardiac cycle of each patient. The 

RPA and the LPA branches are indicated in model 1. 

5.10 Secondary flow visualised by in plane velocity vectors and contours of 

normalised velocity normal to the slice during peak flow, for (a) model 1; (b) 
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model 2; (c) model 3; (d) model 4; (e) model 5; (f) model 6; (g) model 7. 

Non-dimensionalization was performed by division with the maximum 

velocity of each patient during the cardiac cycle. Points where slices α to δ 

are taken are visible in Fig. 5.1b. Cross-sections are oriented with the top and 

the bottom edges corresponding to the cranial and caudal positions, 

respectively and left and right to the anterior and posterior of the pulmonary 

artery, for the RPA, and to the posterior and anterior of the pulmonary artery, 

for the LPA, respectively.  Cross-sections are in scale. 

5.11 Secondary flow visualised by in plane velocity vectors and contours of 

normalised velocity normal to the slice during mid deceleration at systole, for 

(a) model 1; (b) model 2; (c) model 3; (d) model 4; (e) model 5; (f) model 6; 

(g) model 7. Non-dimensionalisation was performed by division with the 

maximum velocity of each patient during the cardiac cycle. Points where 

slices α to δ are taken are visible in Fig. 5.1b. Cross-sections are oriented with 

the top and the bottom edges corresponding to the cranial and caudal 

positions, respectively and left and right to the anterior and posterior of the 

pulmonary artery, for the RPA, and to the posterior and anterior of the 

pulmonary artery, for the LPA, respectively.  Cross-sections are in scale 

5.12 Secondary flow visualised by in plane velocity vectors and contours of 

normalised velocity normal to the slice during mid diastole, for (a) model 1; 

(b) model 2; (c) model 3; (d) model 4; (e) model 5; (f) model 6; (g) model 7. 

Non-dimensionalisation was performed by division with the maximum 

velocity of each patient during the cardiac cycle. Points where slices α to δ 

are taken are visible in Fig. 5.1b. Cross-sections are oriented with the top and 
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the bottom edges corresponding to the cranial and caudal positions, 

respectively and left and right to the anterior and posterior of the pulmonary 

artery, for the RPA, and to the posterior and anterior of the pulmonary artery, 

for the LPA, respectively.  Cross-sections are in scale 

5.13 Non-dimensionalised time-averaged wall shear stress (TAWSSn) 

distribution, normalised by the wall shear stress value at the inlet of each 

model, respectively, for (a) model 1; (b) model 2; (c) model 3; (d) model 4; 

(e) model 5; (f) model 6; (g) model 7. Insets show the back view of the 

models. The LPA and RPA branches are indicated in Model 1. 

5.14 Time-averaged wall shear stress (TAWSS) plot, derived from the TAWSS 

values of eight points located along the perimeter of cross-sections (α) and 

(γ), and presented in dynes/cm2, when (A) patient-specific, and (B) averaged 

boundary conditions are specified, and for (1) model 1; (2) model 2; (3) model 

3; (4) model 4; (5) model 5; (6) model 6; (7) model 7; (8) the average model. 

5.15 Oscillatory Shear Index distribution, for (a) model 1; (b) model 2; (c) model 

3; (d) model 4; (e) model 5; (f) model 6; (g) model 7. The RPA and LPA 

branches are indicated in model 1. 

6.1 Subject-specific pulsatile inlet flow rate waveform for all five subjects and 

an averaged flow rate waveform derived from the five subject-specific 

waveforms. 

6.2 Anatomical average geometry of all healthy subjects (red) with the five 

subject-specific models shown transparent. 

6.3 (a) Average curvature plot, and (b) average torsion plot, for the healthy 

subjects. X-axis is normalised by the distance corresponding to the peak 
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curvature value closer to the bifurcating branches. Shaded areas represent the 

standard deviation of the patient-specific values from the average calculated. 

6.4 Left to Right: Subject-specific flow waveforms with (i) peak flow; (ii) mid-

deceleration at systole; and (iii) mid-diastole, for (a) model 1; (b) model 2; 

(c) model 3; (d) model 4; (e) model 5; (f) the average model. Velocity 

streamlines coloured by non-dimensionalised velocity based on the 

maximum velocity during the cardiac cycle of each healthy subject at the 

three time points (a), (b), and (c). The RPA and the LPA are indicated in 

model 1. 

6.5 Non-dimensionalised time-averaged wall shear stress distribution normalised 

with the wall shear stress developed at the inlet of each model, respectively, 

for (a) model 1; (b) model 2; (c) model 3; (d) model 4; (e) model 5; (f) the 

average model. Insets show the back view of the models. The LPA and the 

RPA and indicated in model 1. 

6.6 Time-averaged wall shear stress (TAWSS) plot, derived from the TAWSS 

values of eight points located along the perimeter of cross-sections (α) and 

(γ), and presented in dynes/cm2, for (a) model 1; (b) model 2; (c) model 3; (d) 

model 4; (e) model 5; (f) the average model. 

6.7 Oscillatory Shear Index distribution, for (a) model 1; (b) model 2; (c) model 

3; (d) model 4; (e) model 5; (f) the average model. The RPA and LPA 

branches are indicated in model 1. 
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List of Tables 

3.1 Characteristics of the nine different models created to represent the 

pulmonary bifurcation. 

3.2 Pressure ratios with standard deviation from the mean value, as calculated 

from measurements of relative pressure at different points in the pulmonary 

branches (locations of measurement are shown at inset of Fig. 3.12a), under 

steady flow. 

3.3 Flow Split percentages at the left and the right pulmonary branches, as 

calculated using velocity profiles data, extracted at a distance of 3cm (1.15D) 

from the branch origin of each model. 

4.1 Parameters used for the k-ω SST turbulent model (U: mean velocity, Re: 

Reynolds number, I: turbulence intensity, k: turbulent energy, l: turbulent 

length scale, and ω: specific dissipation rate). 

4.2 Non-Newtonian models of blood flow (𝜈: blood viscosity, 𝜈∞ shear rate 

viscosity, 𝜈𝜊: zero shear rate viscosity, k: relaxation time constant, �̇�: shear 

rate, α: constant parameter, n: power law index, 𝜏0: yield stress). Wall shear 

stress values at the inlet MPA walls of the symmetric Y-Junction for the 

different models, are also presented. 

5.1 Demographic and haemodynamic data of the rTOF cases. PA: pulmonary 

artery; RF: regurgitation fraction, Grade refers to the regurgitation fraction, 

*: the flow split of patient 7 was calculated as described in the methodology 

(Section 5.2.2). 
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5.2 Diameters, mean flow rate, and mean and max velocities for the MPA, the 

RPA and the LPA branches of each model. 

5.3 TAWSS value at the inlet of the models when average and patient-specific 

boundary conditions (BCs) are assigned. 

5.4 Geometric analysis of the patient-specific models: curvature and torsion. 

5.5 Geometric analysis of the patient-specific models: tortuosity, minimum 

inscribed sphere radius along the daughter branches, and in-plane and out-of-

plane angles. 

5.6 Mean and maximum Reynolds (Re), Womersley (Wo) and Dean number 

(De). 

5.7 Percentage difference between the average and patient-specific values for 

flow splits and inlet flow waveform (((Qaverage-Qpatient_specific)/Qaverage)*100). 

5.8 Averaged TAWSS, derived from the TAWSS values of eight points located 

along the perimeter of cross-sections (α) and (γ), are presented both in 

dynes/cm2 and non-dimensionalised (TAWSSn). 

6.1 Demographic and haemodynamic data of the heathy subjects. 

6.2 Diameters, mean flow rate, and mean and max velocities for the MPA, the 

RPA and the LPA branches of each model. 

6.3 TAWSS value at the inlet of the models. 

6.4 Geometric analysis of the subject-specific models: curvature and torsion. 

6.5 Geometric analysis of the subject-specific models: tortuosity, minimum 

inscribed sphere radius along the daughter branches, and in-plane and out-of-

plane angles. 
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6.6 Mean and maximum Reynolds (Re), Womersley (Wo) and Dean numbers 

(De). 

6.7 Averaged TAWSS, derived from the TAWSS values of eight points located 

along the perimeter of cross-sections (α) and (γ), are presented in dynes/cm2. 
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Chapter 1 

Introduction 

Tetralogy of Fallot (TOF) is a congenital heart disease (CHD) that affects the right 

ventricle and the pulmonary arteries of new-borns. It has a prevalence of 1 in 3000 

births and accounts for approximately 10% of all congenital heart diseases (Apitz et 

al., 2009, Marelli et al, 2018). Improvements in the diagnosis, surgical operations and 

healthcare has enabled the survival of children with CHD into adulthood 

(approximately 95%). Therefore, the number of adults with CHD has increased 

dramatically, with an estimated increase of 85% from 1985 to 2000; by 2010, the adults 

with moderate or severe symptoms outnumbered the children with CHD, with adults 

accounting for two-thirds of the most severe cases. Several complications are apparent 

in this new group of patient population, who require frequent monitoring and further 

surgical interventions, making the treatment and care of these patients rather difficult 

(Marelli et al., 2018, Nicolarsen and Kay, 2019).  

Pulmonary valve replacement is an operation performed in repaired TOF (rTOF) 

patients to preserve right ventricle (RV) function. However, the timing for the surgical 

intervention is still ambiguous between the clinicians, and there is no consensus on the 

reliability of current indices, which are based on the RV end-systolic and end-diastolic 

volumes (Geva, 2001, Kordybach-Prokopiuk et al., 2015). Understanding the 

haemodynamic environment in the pulmonary arteries is therefore essential, in order 

to improve therapy and care of these patients, and optimise surgical interventions.  



2 
 

There are a few recent studies published on describing morphological parameters and 

flow patterns in the pulmonary bifurcation of healthy volunteers and in patients with 

rTOF, highlighting the importance and research interest in this topic. In the review 

paper of Conijn and Krings (2021), they identify 34 original research papers that 

investigate the blood flow in the pulmonary arteries, with 17 being published after 

2016. The work presented in Boumpouli et al. (2020) (parts of Chapter 3 and 4) is 

included and cited as one of the most recent studies on the topic. The focus of this 

thesis is on the blood flow in the pulmonary arteries in relation to rTOF patients, and 

the novelty of this project lies in the comparison of both morphological and flow 

patterns, observed in the diseased models with those noticed in the healthy cases. The 

main research hypothesis is that the haemodynamics of the pulmonary bifurcation can 

provide a good indication of the flow characteristics and contribute to the 

understanding of the interplay between the upstream and downstream pulmonary 

vasculature. 

This chapter starts by providing a brief overview of the heart’s anatomy and function, 

before it describes congenital heart diseases, and more specifically Tetralogy of Fallot. 

An overview of the current treatment methods and the most common complications 

that the patients experience are then given. It further discusses the basic concepts of 

fluid mechanics in blood vessels and ends with the motivation for this thesis, the 

publications that arose from this work and a synopsis of the remaining chapters.   

 

1.1. Cardiovascular System 

The heart, the blood and the vessels are the three main components that contribute to 

the normal function of the cardiovascular system. The human heart is a hollow 
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muscular organ that is positioned between the lungs and is composed by four 

chambers: the right and left atrium at the upper part, and the right and left ventricle at 

the lower part of the heart. The right side of the heart is associated with the pulmonary 

circulation and the left side of the heart with the systemic circulation (Martini et al., 

2014, Martinsen and Lohr, 2015).  

The development of the human heart starts on day 15 on the embryo, where the first 

mesodermal cells migrate anterior and laterally and are the cells to become myocytes 

or heart cells (Martinsen and Lohr, 2015). A linear heart tube formed on day 22 (Fig. 

1.1a) gives the first heartbeat. Lengthening and looping of the primary heart tube (Fig. 

1.1b) are important prior to septation (Fig. 1.1c) and by day 28 the champers of the 

heart are in position (Fig. 1.1b). This process is crucial for the alignment of the inflow 

and outflow tracts and if it does not occur normally, it can lead to ventricular septal 

defects and malpositioning of the aorta (Martinsen and Lohr, 2015). 

  

Figure 1.1: Development of human heart embryology (After Martinsen and Lohr, 2015). 
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Extensive remodelling takes place between weeks 4 and 7 of the human embryonic 

development, during the septation process (Fig. 1.2a). At that time, cardiac neural crest 

(CNC), migrate from the neural tube and through the aortic arch and are responsible 

for the septation of the outflow tract and ventricles, and the formation of the 

parasympathetic plexus which regulates heart rate. If CNC fails to migrate a rare 

congenital heart disease called persistent truncus arteriosus (TA) occurs. TA is 

characterised by a ventricular septal defect, a common ventricular outflow tract and a 

single truncal valve. It is the result of the absence of the truncoconal septal wall and 

the single truncal root which does not separate the aortic and pulmonary outflow tracts 

(Bhansali and Phoon, 2021). Failure during the outflow tract septation can also lead to 

congenital heart diseases, including ventricular septal defects, transposition of the 

great vessels and tetralogy of Fallot (Martinsen and Lohr, 2015).  

Pulmonary system is not used during intrauterine life; high-volume oxygenated blood 

from the placenta, flows through the foramen ovale and ostium secundum from the 

right atrium to the left ventricle (right-to-left shunting). The lungs create a high 

resistance environment which results in low-volume flow from the pulmonary veins 

to the left atrium. During birth, when the oxygenation from the placenta is interrupted, 

the pulmonary vessels open, the resistance in the lungs drops and a reverse pressure 

difference environment is created leading to the closure of the foramen ovale and the 

ostium secundum (Martinsen and Lohr, 2015).  

After birth, the right atrium receives deoxygenated blood from the systemic circulation 

and through the tricuspid valve passes it to the right ventricle (Fig. 1.2b). From the 

right ventricle, the blood is delivered to the lungs through the pulmonary valve, for 

exchange of O2 and CO2. The left atrium collects the oxygenated blood from the 
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pulmonary circulation and through the mitral valve transfers it to the left ventricle and 

to the tissues through the aortic valve (Fig. 1.2b).  

The total blood that flows out of the left ventricle is known as cardiac output and the 

period of the heartbeat as the cardiac cycle. The flow of the blood from one chamber 

to the next is pressure driven, which means that blood travels from a high to a low-

pressure environment, and therefore only if the pressure in one chamber exceeds that 

of the following chamber, the blood will flow (Martini et al., 2014). 

 

Figure 1.2: (a) Circulation in foetal heart. Arrows indicate the right-to-left shunting where the placentally 

oxygenated blood flows through the foramen ovale and ostium secundum (b) Circulation after birth. The foramen 

ovale and ostium secundum close and septation of the heart chambers occurs. The pulmonary (blue arrow) and 

systemic (red arrows) circulation are separated. RA: right atrium; RV: right ventricle; LA: left atrium; LV: left 

ventricle (After Martinsen and Lohr, 2015). 

 

1.2. Congenital Heart Diseases 

Congenital Heart Disease lesions occur during embryonic development and are 

defined according to Mitchell et al. (1971) as “gross structural abnormalities of the 

heart or intrathoracic great vessels that are actually or potentially of functional 

significance”.  The birth prevalence is estimated to be 8 per 1,000 live births, although 

it varies among studies worldwide (van der Linde et al., 2011, Marelli et al., 2018). 
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CHD can be classified into two types, the cyanotic that lower the amount of oxygen 

delivered in the tissues of the body, and the acyanotic if the oxygen in the body is not 

affected. In the cyanotic heart defects, the oxygen-rich blood is mixed with the oxygen-

poor blood, and therefore less oxygenated blood is distributed to the body causing a 

bluish tint colour or cyanosis in the new-born. Children born with a cyanotic heart 

defect require a surgical intervention in order to survive to adulthood (Brickner et al., 

2000a,b). 

During the 50s, only 10-15% of new-borns with such lesions survived until puberty 

(MacMahon et al., 1953). However, due to advancements in medical diagnostic 

modalities and the success of surgical procedures, over the last decades, most children 

survive to adulthood and as a result, the disease is no longer limited to paediatric 

clinical practice (Cetta et al., 1992 and Skorton et al., 1993). Adult congenital heart 

disease emerged as a new cardiovascular speciality in 1991; this increasing population 

of patients experience complex cardiovascular abnormalities which require frequent 

monitoring, reoperations and new surgical treatments (Perloff, 1991), with an 

estimated rate of increase of the population of 5% per year (Brickner et al., 2000a). 

1.2.1. Tetralogy of Fallot 

Tetralogy of Fallot (TOF) is the most common cyanotic congenital heart disease and 

is characterised by four defects: a ventricular septal defect (Fig. 1.3a), an overriding 

aorta (Fig. 1.3b), a hypertrophy of the right ventricle (Fig. 1.3c) and an obstruction of 

the right ventricular outflow tract (RVOT) (Fig. 1.3d) (Bricker et al., 2000b). Niels 

Stensen in 1671 was the first who described TOF disease, and the anatomical 

description was later illustrated in 1784 by William Hunter: “…the passage from the 
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right ventricle into the pulmonary artery, which should have admitted a finger, was not 

so wide as a goose quill; and there was a hole in the partition of the two ventricles, 

large enough to pass the thumb from one to the other. The greatest part of the blood in 

the right ventricle was driven with that of the left ventricle into the aorta, or great 

artery, and so lost all the advantage which it ought to have had from breathing”.  

 

Figure 1.3: Anatomical representation of heart defects in Tetralogy of Fallot. (a) ventricular septal defect; (b) 

overriding aorta; (c)hypertrophy of the right ventricle; and (d) obstruction of the outflow tract (After Brickner et 

al., 2000). 

 

The exact cause of TOF, similarly to most of congenital heart diseases, is unknown 

(Apitz et al., 2009, Babu-Narayan and Gatzoulis, 2018). Nevertheless, with the 

increase in the population of offspring from the surviving adult patients, there is a 

strong correlation of genetics in TOF (Digilio et al., 1997). A deletion of chromosome 

22q11 has been identified in 15% of TOF patients (Babu-Narayan and Gatzoulis, 

2018), and in approximately 20% of cases there is an association of TOF with genetic 
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syndromes, such as DiGeorge disease and velocardiofacial syndrome (both have 

22q11 deletion), Alagille syndrome, trisomy 21, trisomy 22 (Marino et al., 1996, 

Digilio et al., 1997, Michielon et al., 2006, Rauch et al., 2010). These patients are 

termed as syndromic. For the non-syndromic patients, which account for the majority 

of cases, mutations in a number of genes, gata4, jag1, nkx2.5, tbx1, tbx5, that play a 

key role in fetal and cardiac development, have been implicated in TOF (Lyons et al., 

1995, Benson et al., 1999, Griffin et al., 2010, Rauch et al., 2010, Yang et al., 2013, 

Grochowski et al., 2016, Steimle and Moskowitz, 2017, Morgenthau and Frishman, 

2018). 

1.2.1.1. Pathophysiology and Treatment 

Most patients with TOF present cyanosis due to the right-to-left shunting from the 

ventricular septal defect, which allows deoxygenated blood to return to the body. It is 

the result of the narrowing of the RVOT which increases the resistance to flow, and 

the timing and severity of cyanosis is determined by the degree of the RVOT 

obstruction (Apitz et al., 2009, Babu-Narayan and Gatzoulis, 2018). The right and left 

ventricular pressures are equal due to the ventricular septal defect and at systemic 

levels (Apitz et al., 2009, Babu-Narayan and Gatzoulis, 2018, Brickner et al., 2000). 

Since the resistance to flow, due to the obstruction in the right ventricular outflow 

track, is relatively fixed, any changes in the systemic vascular resistance are translated 

into a change in the magnitude of right-to-left shunting (Brickner et al., 2000).  

The degree of the overriding aorta can vary from 5% up to 95%. Normally, during the 

heart development, the aorticopulmonary septum will form within the truncus 

arteriosus and separate the aortic and pulmonary artery, but regression of the muscle 
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results in the incorrect alignment of the aorta over the ventricles. When the percentage 

of override exceeds 50% then it is considered a double outlet right ventricle, and a 

larger patch is required to connect the aorta with the left ventricle (Kloessel et al., 

2016, Babu-Narayan and Gatzoulis, 2018, Gu et al., 2018). Finally, hypertrophy of the 

right ventricle is the results of pressure and volume overload which cause the wall 

thickening and chamber enlargement. Although it is rarely extreme in TOF patients, it 

is considered essential to decide the suitability of patients for biventricular repair 

(Babu-Narayan and Gatzoulis, 2018, Goldberger et al., 2018).  

Unoperated patients have a death rate of 25% in the first year, which increases to 40% 

and 70% before 3 and 10 years of age (Babu-Narayan and Gatzoulis, 2018). Surgical 

repair is therefore recommended in order to increase survival rate and relieve 

symptoms. The surgical repair can be either palliative, or reparative. Palliative 

procedures include the Blalock-Taussig operation, which involves anastomosis of the 

subclavian artery to the pulmonary artery, the Waterston operation, which requires the 

anastomosis of the ascending aorta to the right pulmonary artery and the Potts 

operation that includes the anastomosis of the descending aorta to the left pulmonary 

artery (Kiran et al., 2017). Although palliative procedures are associated with long-

term complications, including pulmonary hypertension and left ventricular volume 

overload, they are still performed in severe cases where complete repair is unsuitable 

(Brickner et al., 2000). Reparative procedures are the currently preferred surgical 

corrections that include the closing of the ventricular septal defect and relief of the 

RVOT obstruction, and can involve a pulmonary valvotomy, an RVOT or transannular 

patch (Babu-Narayan and Gatzoulis, 2018). 
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1.2.1.2. Chronic Complications in Repaired Patients 

Patients with rTOF are usually asymptomatic and they have long survival rates 

(estimated to be 86% 32 years following the surgical repair), however chronic 

complications and reintervention are not uncommon. Among the most common 

complications are pulmonary regurgitation (PR), and residual or recurrent pulmonary 

valve or branch stenosis (Brickner et al., 2000).  

Pulmonary regurgitation involves the diastolic reversal of blood flow into the right 

ventricle (RV) and, for TOF patients, is a consequence of loss of pulmonary valve 

competence, due to the long-term postoperative outcome of repaired right ventricular 

outflow tract obstruction during infancy, and the necessary surgical opening of the 

dysplastic valve (Harris et al., 2011, Geva, 2011). It is the result of the pressure 

difference between the right ventricle and the pulmonary artery, during diastole 

(Chaturvedi et al., 2007) and small changes in intrathoracic or airway pressure can 

have a notably effect in PR (Chaturvedi et al., 1997). Other factors that also contribute 

to pulmonary regurgitation in the rTOF patients are associated with the geometry of 

the branch pulmonary arteries, such as the orientation, and with factors that affect the 

blood flow, unequal and abnormal pulmonary vascularity and perfusion, pulmonary 

vascular resistance and pressure (Kang et al., 2003, Ammash et al., 2007). Although 

chronic PR can be tolerated for an extended period of time, if mild or moderate, and 

remain asymptomatic, it typically results in right ventricular dilatation and 

dysfunction, exercise intolerance, and ventricular and atrial arrhythmias, when 

prolonged and severe (Ammash et al., 2007, Babu-Narayan et al., 2013). It may also 

have an adverse effect on the left ventricular function, correlated with the RV 
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dysfunction (Davlouros et al., 2002, Menting et al., 2015). In chronic cases of PR, the 

assessment of the RV stiffness and afterload are the most important factors to consider. 

Increase stiffness will increase the RV pressure and therefore decrease the PR gradient, 

while increase in the RV afterload, usually driven by branch or peripheral pulmonary 

artery stenosis, will increase pulmonary regurgitation (Chaturvedi et al., 1997, 2007). 

However, recent studies have observed that PR is associated with differential 

retrograde flow of various flow splits in the left and right branch pulmonary arteries in 

patients with rTOF, irrespective of the presence of stenosis (Harris et al., 2011, Kang 

et al., 2003).  

Branch pulmonary obstruction is most commonly observed in the left pulmonary 

artery (LPA) (Harris et al., 2011) in the form of a local stenosis. Proximal LPA 

obstruction can also occur with general artery hypoplasia in pulmonary atresia and 

following complex repair of nonconfluent arteries, that is, when the right and the left 

branches are not interconnected and originate separately (Puga et al., 1982), or artery 

kinking, when pulmonary regurgitation is present in patients with dilated RVOT. The 

dilatation of the right ventricle and the pulmonary trunk, due to PR, restrict the RVOT, 

which turns cranially and left-laterally, causing the angle between the pulmonary trunk 

and LPA to become acute and eventually form LPA kinking (Fig. 1.4). As a 

consequence of such morphological differentiations, RV afterload increases, which 

may intensify PR, resulting in turn in further enlargement of the right ventricle and 

kinking. It is, hence, likely that a two-way link between pulmonary regurgitation and 

LPA kinking may be present (Chaturvedi et al., 1997, McElhinney et al., 1998). 
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Figure 1.4: Left pulmonary artery kinking in repaired tetralogy of Fallot patients (After McElhinney et al., 1998). 

1.2.1.3. Pulmonary Valve Replacement 

Pulmonary valve replacement (PVR) is an operation performed to prevent ongoing 

volume overloading in the right ventricle and dilatation and is deemed necessary when 

PR and LPA kinking are present to preserve the right ventricular function. PVR is 

recommended prior to the onset of significant clinical symptoms and right ventricular 

dysfunction, to increase the likelihood of successful RV remodelling, restore the 

function of the pulmonary valve, decrease arrythmias and improve exercise tolerances 

(Babu-Narayan and Gatzoulis 2018, Geva 2011, Chaturvedi et al., 2007).  

The assessment of the optimal timing for PVR is, therefore, crucial and remains a key 

challenge to clinicians, relying their decision upon balancing the risk between RV 
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dysfunction and the finite lifespan of the available bioprosthetic valves used in PVR 

(Babu-Narayan and Gatzoulis 2018, Geva 2011). Several studies have tried to identify 

threshold values of the RV end-diastolic and end-systolic volumes that postoperative 

will result in successful RV remodelling. Therrien et al. (2005) reported a RV end-

diastolic volume ≤ 170 ml/m2, Oosterhof et al. (2007) identified a RV end-diastolic 

volume <160 ml/m2 and an RV end-systolic volume < 82 ml/m2, while Buechel et al. 

(2005) and Frigiola et al. (2008) proposed a RV end-diastolic volume of <150 ml/m2. 

However, there is yet no consensus on the reliability and effectiveness of these current 

indices in the clinical practice (Geva, 2001, Kordybach-Prokopiuk et al., 2015).  

 

1.3. Pulmonary arteries 

The origin of the word artery is the Greek word ἀρτηρία which means to contain air 

and was believed to be the role of the arteries before the knowledge of blood. 

Nowadays, an artery is defined as a vessel that transports blood away from the heart, 

including the pulmonary artery that carries deoxygenated blood (Rubenstein et al., 

2016). 

The pulmonary arteries consist of three distinct layers, the tunica intima, the tunica 

media and the tunica externa. The tunica intima is the inner layer of the blood vessels 

and consists of endothelial cells and elastic fibers that are organised in a layer of 

connective tissue that surrounds the endothelial lining. The tunica media is the middle 

layer and consists of smooth muscle cells and a connective tissue consisting of 

collagen fibers, and the function of these cells regulates the diameter of the blood 

vessel. Tunica externa is the outer layer of the blood vessel and is a connective tissue 

of collagen and elastic fibers (Martini et al., 2014, Rubenstein et al., 2016).  
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Endothelial cells play a crucial role in regulating vascular homeostasis (Gimbrone 

1995, Sabri et al., 2013), and remodel in response to the wall shear stress (WSS), the 

stress applied tangentially to the vessel’s wall, and to the oscillatory shear index (OSI), 

the variations in the WSS during the cardiac cycle. The levels of WSS affect the 

production of endothelin-1 (ET-1) and nitric oxide (NO), a potent vasoconstrictor and 

a potent vasodilator, respectively, which in turn regulate the proliferation of smooth 

muscle cells and collagen synthesis. Increased WSS results in an increase of NO, while 

decreased WSS in the production of ET-1 (Taylor et al., 2009). Although pulmonary 

arteries have higher shear stress (approximately 20 dynes/cm2 in the proximal healthy 

pulmonary arteries) (Tang et al., 2012) and lower OSI (approximately 0.1 in the 

proximal healthy pulmonary arteries) (Tang et al., 2011) compared to other arteries of 

the systemic circulation, which is linked with fewer incidents of atherosclerosis (Tang 

et al., 2011), changes that are observed in the pulmonary vasculature of patients could 

still affect endothelial function and remodelling (Tang et al., 2012). 

1.3.1. Physiological environment  

Blood flow in the arteries is determined by two parameters, pressure (P) and resistance 

to flow (R) (Eq. (1.1)).  

𝑄 =
𝛥𝑃

𝑅
 

 (1.1) 

 

where Q is the flow rate and ΔP is the pressure difference (Iaizoo, 2015).  

Q and R depend on many factors, including the radius (r) and the length (L) of the 

vessel, and blood viscosity (η). Flow rate in a cylindrical tube can be calculated using 

Poiseuille equation (Iaizoo, 2015):  
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𝑄 =
𝛥𝑃𝜋𝑟4

8𝐿𝜂
 

 (1.2) 

 

And combining Eq. (1.1) and (1.2), the resistance to flow can be approximated (Iaizoo, 

2015): 

𝑅 =
8𝐿𝜂

𝜋𝑟4
 

 (1.3) 

 

The pressure difference between two vessels is what drives the blood flow, rather than 

the absolute pressure, as seen from Eq. (1.1) and (1.2). In addition, a small change in 

the radius will have a relatively large influence in the resistance to flow (Eq. (1.3)) 

(Iaizoo, 2015). Pulmonary arteries are generally low-pressure, with values about 20 

mmHg, and a high flow rate environment (Martini et al., 2014, Ghio et al., 2015).  

One way to calculate the pulmonary vascular resistance is by dividing the difference 

of the mean pulmonary arterial pressure (mPAP) and the pulmonary artery occlusion 

pressure (PAOP) with the cardiac output (CO), and multiplying the result with 80, to 

convert the output to dynes sec/cm-5 (Breitenbach, 2007): 

  
𝑅 =

80 ×  (𝑚𝑃𝐴𝑃 − 𝑃𝐴𝑂𝑃)

𝐶𝑂
 

(1.4) 

 

In a normal subject, pulmonary vascular resistance is found 100-200 dynes sec/cm-5 

(Breitenbach, 2007). 

Another important parameter in the arterial blood flow is the compliance of the blood 

vessels. Compliance measures arterial distensibility, or arterial stiffness, and describes 

the ability of the vessels to regulate the accumulation or release of blood, during the 

cardiac cycle. The pulmonary pressure, P, and the stroke volume (SV) are used to 

calculate pulmonary arterial compliance (C) through the equation (Ghio et al., 2015): 
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𝑃 =

𝑆𝑉

𝐶
 

(1.5) 

 

Pulmonary vascular resistance is responsible for the regulation of the flow (when 

elevated flow slows down in the peripheral circulation), and compliance regulates the 

volume of blood which is accumulated and released during systole and diastole, 

respectively. Therefore, both parameters are important for the decrease of pulmonary 

arterial pressure during diastole. The pulmonary arterial time constant, τ, (illustrated 

in Fig. 1.5), connects R and C with the following equation (Ghio et al., 2015): 

𝜏 = 𝑅𝐶 (1.6) 

  

 

Figure 1.5: Pulmonary arterial pressure waveform showing the pulmonary arterial time constant (τ) during 

diastole (After MacKenzie Ross et al., 2013). 

 

1.4. Blood flow in arteries 

Fluid dynamics is a branch of fluid mechanics, that studies the effect of forces on fluid 

motion and has a wide range of applications including the biomedical engineering. The 
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fundamental principles of fluid mechanics go back to ancient Greek when Archimedes 

published on 250 BC his work on Archimedes’ Principle or the law of buoyancy. 

Major advancements have been made ever since, with Isaac Newton investigating 

viscosity and defining it in his 1687 work “Philosophie Principia Mathematica”, Blaise 

Pascal formulating Pascal’s law and demonstrating the equilibrium of liquids in 1653, 

Daniel Bernoulli introducing the mathematical fluid dynamics with the principle 

published in 1738 in his book Hydrodynamica, Leonhard Euler publishing Euler 

equations around 1748 for inviscid flow to name a few. 

Studying the blood flow in arteries can be quite challenging and several assumptions 

are usually made, which are considered acceptable in large arteries. Some of the most 

common simplifications are the description of blood as a Newtonian fluid (Samyn and 

LaDisa, 2016), the consideration of arteries as circular tubes with rigid walls (Caro et 

al., 1978) and the no-slip boundary, where the velocity adjacent to the vessel walls is 

assumed to be zero (Samyn and LaDisa, 2016). 

In the following subsections some of these concepts are discussed, starting with blood 

rheology and differences between Newtonian and non-Newtonian fluids. 

Subsequently, the basic principles in fluid mechanics are presented and finally the 

development of flow is analysed in a straight pipe under steady laminar and turbulent 

flow, and under unsteady flow, and flow in a bifurcating vessel. 

1.4.1. Blood rheology 

Rheology, a term derived by the Greek word ῥέω meaning flow, is the study of flowing 

materials and their mechanical properties. To characterise the flow behaviour, the 

relationship between the stress (τ) and strain rate (�̇�) is studied. Apparent viscosity (η) 
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measures the resistance of a fluid to deform and is defined as 𝜂 = 𝜏/�̇�, or 𝜂 = 𝜏/
𝑑𝑈

𝑑𝑦
, 

where 
𝑑𝑈

𝑑𝑦
 is the gradient of velocity. Different types of flow behaviour are recognised, 

with the simplest being the Newtonian, characterised by a linear relationship between 

the stress and strain. When the viscosity decreases as the strain rate increases then the 

fluid exhibits a pseudoplastic, or shear thinning behaviour, while when the viscosity 

increases as the strain rate increases the fluid behaviour is characterised as dilatant, or 

shear thickening (Fig. 1.6) The shear viscosity in this case, and by making use of the 

power law model for shear stress (𝜏 = 𝑘�̇�𝑛), can be defined as (Struble and Ji, 2001, 

Tao et al., 2020): 

 𝜏 = 𝑘�̇�𝑛−1 (1.7) 

 

where n is the behaviour flow index and k the consistency index (numerically equal to 

viscosity at 1 s-1). For n<1 it describes pseudoplastic fluids, for n=1 Newtonian fluids 

and for n>1 dilatant fluids. Some highly shear-thinning fluids are said to exhibit a 

plastic behaviour, when a specific level of stress needs to be reached, known as the 

yield stress, in order to start flowing (Fig. 1.6). These fluids are considered to possess 

both solid and fluid properties, and Herschel-Bulkley model is a representative of these 

fluids: 

 𝜏 = 𝜏𝛾 + 𝑘�̇�𝑛  (1.8) 

 

where τγ the yield stress. It is therefore a power law model but includes the yield stress. 

For k=η, it describes a Bingham fluid, where similar to Herschel-Bulkley, has a yield 

stress, but once it starts flowing it exhibits a Newtonian behaviour. For τγ=0 and n=1 



19 
 

it reduces to a Newtonian fluid (George and Qureshi, 2013, Tao et al., 2020). In fluid 

dynamics, another term of viscosity is adopted to describe the fluids, known as 

kinematic viscosity (ν), and is defined as the dynamic viscosity (μ), coefficient of 

viscosity as defined by Newton’s law, divided by the density of the fluid (ρ) (George 

and Qureshi, 2013).  

 

Figure 1.6: Classification of fluids based on rheological behaviour (After Tao et al., 2020). 

Blood is composed of plasma and several types of cells. Plasma under physiological 

conditions has a Newtonian fluid behaviour, but when it is considered as a whole, it 

exhibits a shear-thinning behaviour. Parameters such as temperature, haematocrit, 

disease conditions and the shear rate, can affect the viscosity of blood (Struble and Ji, 

2001, Samyn and LaDisa, 2016). Many different non-Newtonian models have been 

developed, by parameter-fitting experimental data, in an attempt to more accurately 

capture the change of blood viscosity in blood flow studies (Ballyk et al., 1994, Cho 

and Kensey, 1991, Walburn and Schneck. 1976). However, blood viscosity varies 
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widely between individuals and it is unlikely that one rheological model can precisely 

capture the rheological properties of blood (Vijayaratnam et al., 2015).  

1.4.2. Basic principles of fluid mechanics 

In many fluid dynamic problems, including in this work, the fluid can be considered 

as a continuum and studied in the macro scale, while the molecular interactions of the 

micro scale are not considered (Fig. 1.7). The macroscopic properties of the fluid, 

including density, viscosity, pressure and velocity, do not exhibit in this case any 

statistical microscopic fluctuations (Colin, 2014, Drikakis et al., 2019). 

 

Figure 1.7: Different scales at which a fluid can be modelled (After Drikakis et al., 2019). 

Three conservations laws form the fundamental principles in fluid dynamics and can 

be applied in a region of the flow, to solve fluid dynamic problems. For any conserved 

intensive property φ, which are independent of the amount of matter, the extensive 

property Φ can be defined as (Ferziger and Perić, 2002): 
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𝛷 = ∫ 𝜌𝜑𝑑𝛺

𝛺𝐶𝑀

 

(1.9) 

 

where CM is the control mass, representing a certain spatial region of the fluid, and 

ΩCM the volume occupied by the control mass. For φ=1 it describes the mass 

conservation, while for φ=u the momentum. This definition can be used for any 

conservation law and the equation derived is known as the Reynolds’ transport 

theorem: 

𝑑

𝑑𝑡
∫ 𝜌𝜑𝑑𝛺

𝛺𝐶𝑀

=
𝑑

𝑑𝑡
∫ 𝜌𝜑𝑑𝛺

𝛺𝐶𝑉

+ ∫ 𝜌𝜑(𝒖 − 𝒖𝑏) ∙ 𝒏𝑑𝑆

𝑆𝐶𝑉

 

(1.10) 

 

where ΩCV the control volume, S the surface of the control volume, u the fluid velocity, 

ub the velocity of the moving CV, and n the unit vector orthogonal to SCV.  

1. Conservation of mass states that the mass that flows into a system must flow 

out of it. Alternatively, should be accounted either with a change in the density 

(density is defined as mass over volume) of the fluid or a change in the mass 

of the system, therefore 
𝑑𝑚

𝑑𝑡
= 0. Using Eq. (1.10) and with φ=1, the integral 

form of the equation is (Ferziger and Perić, 2002, Rubenstein et al., 2016): 

𝜕

𝜕𝑡
∫ 𝜌𝑑𝛺

𝛺

+ ∫ 𝜌𝒖 ∙ 𝒏𝑑𝑆

𝑆

= 0 

(1.11) 

 

 

2. Conservation of momentum states that when a net force is acting upon a body 

then the body will move in the same direction and with a velocity proportional 

to that force, ∑ 𝑓= 
d(mu)

𝑑𝑡
. The integral form of the equation, using Eq. (1.10) and 
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with φ=u, for a fixed fluid-containing volume is (Ferziger and Perić, 2002, 

Rubenstein et al., 2016): 

 
𝜕

𝜕𝑡
∫ 𝜌𝒖𝑑𝛺

𝛺

+ ∫ 𝜌𝒖𝒖 ∙ 𝒏𝑑𝑆

𝑆

= ∑ 𝑓 

(1.12) 

 

3. Conservation of energy states that the change of the energy of a system (𝛿𝑈) is 

equal to the energy added (𝑡ℎ𝑟𝑜𝑢𝑔ℎ ℎ𝑒𝑎𝑡, 𝛿𝑄) minus the energy lost by the 

system (𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑤𝑜𝑟𝑘, 𝛿𝑤). Therefore, in a closed system the total energy 

remains constant δU = δQ - δw. The integral form of the energy equation 

applicable in most flows is (Ferziger and Perić, 2002, Rubenstein et al., 2016): 

 
𝜕

𝜕𝑡
∫ 𝜌𝒉𝑑𝛺

𝛺

+ ∫ 𝜌𝒉𝒖 ∙ 𝒏𝑑𝑆

𝑆

= ∫ 𝑘𝑔𝑟𝑎𝑑𝑇 ∙ 𝒏𝑑𝑆

𝑆

+ ∫ (𝒖 ∙ 𝑔𝑟𝑎𝑑𝑝 + 𝑆: 𝑔𝑟𝑎𝑑𝒖)𝑑𝛺 +

𝛺

𝜕

𝜕𝑡
∫ 𝜌𝑑𝛺

𝛺

 

(1.13) 

 

where h is the enthalpy, k is the thermal conductivity, T is the temperature and S the 

viscous part of stress tensor, or deviatoric stress. 

Flow can be characterised as compressible or incompressible depending on whether 

the density of the fluid changes or not. Blood is assumed an incompressible flow with 

parameters such as pressure and temperature not affecting its density. 

Flows are further characterised as laminar or turbulent to distinguish a smooth and 

highly ordered flow from flow with time-dependent fluctuations. Reynolds number 

(Re) is a dimensionless parameter that is used to differentiate the two, measuring the 

ratio of inertial (ρU2) to viscous forces (μU/D): 
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𝑅𝑒 =

𝜌𝑈𝐷

𝜇
 

(1.14) 

 

where D is the characteristic length (for a circular tube that would be the diameter) and 

U is the characteristic velocity. At high Reynolds numbers the inertial forces are 

dominant, and the viscous forces cannot prevent fluctuations, thus the flow is turbulent 

(Formaggia et al., 2009, White 2011). On small or moderate Reynolds numbers, 

viscous forces become significant, and the flow is laminar. For flow in circular tubes, 

the flow is considered to transition to turbulent at a Reynolds number of Re ≈ 2300, 

known as the critical Reynolds number (Zhang, 2017).  

Fluid flow can mathematically be described by the Navier-Stokes (momentum 

conservation) equations. It is a group of partial differential equations that are based on 

the laws of conservation of mass, conservation of momentum and conservation of 

energy (White, 2011). Starting with the general partial differential equation of 

continuity, where all properties of fluid are assumed to uniformly vary in time and 

position, is given by: 

𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢) +

𝜕

𝜕𝑦
(𝜌𝑣) +

𝜕

𝜕𝑧
(𝜌𝑤) = 0 

(1.15) 

 

or using the vector gradient operator it simplifies to: 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝒖) = 0 

(1.16) 

 

where u=[u, v, w] the velocity vector, and ∇= 𝑖
𝜕

𝜕𝑥
+ 𝑗

𝜕

𝜕𝑦
+ 𝑘

𝜕

𝜕𝑧
. 

For incompressible flows, the density of the fluid is considered constant, and Eq. (1.16) 

is further reduced to: 
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∇ ∙ 𝒖 = 0 (1.17) 

 

The force acting on the surface of an element are due to stresses, which are the sum of 

the divergence of viscous stress tensor and hydrostatic pressure gradient. For an 

infinitesimal element, the differential momentum equation is derived: 

𝜌𝑔 −  ∇p + ∇ ∙ 𝜏𝑖𝑗 = 𝜌
𝜕𝒖

𝜕𝑡
 

(1.18) 

 

where 𝜏𝑖𝑗 is the viscous tensor acting on the element: 

𝜏𝑖𝑗 = [

𝜏𝑥𝑥 𝜏𝑦𝑥 𝜏𝑧𝑥

𝜏𝑥𝑦 𝜏𝑦𝑦 𝜏𝑧𝑦

𝜏𝑥𝑦 𝜏𝑦𝑧 𝜏𝑧𝑧

] 

(1.19) 

 

Assuming a frictionless flow 𝜏𝑖𝑗 = 0 Eq. (1.18) is reduced to Euler’s equation for 

inviscid flow: 

𝜌𝑔 − ∇p = 𝜌
𝜕𝒖

𝜕𝑡
 

(1.20) 

 

For a Newtonian fluid (where stress is proportional to strain and can be calculated with 

Eq. (1.8)) and assuming an incompressible flow (Eq. (1.17)), Eq. (1.18) becomes: 

𝜌𝑔 −  ∇p + 𝜇∇2𝒖 = 𝜌
𝜕𝒖

𝜕𝑡
 

(1.21) 

which are the second-order nonlinear partial differential Navier-Stokes equations 

(White, 2011). 

1.4.2.1. Development of a steady laminar flow 

Let us assume a steady laminar flow in a straight tube, with a uniform velocity profile 

at the entrance. Due to the no-slip condition, the fluid particles at the walls have a zero 

velocity. A velocity gradient is generated along the tube, where fluid particles at the 

middle of the tube acquire increased values of velocities while particles at layers 
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adjacent to the wall gradually slow down (Fig. 1.8). The boundary layer that is formed 

is the effect of the viscous forces triggered by the fluid viscosity which results in a 

high shear stress. The velocity profile eventually develops into a parabolic or fully 

developed velocity profile (Poiseuille flow). The region from the entrance of the tube 

until the flow is fully developed is known as the ‘entrance region’ and the length of 

that region is called ‘entrance length’. Shear stress is also gradually reduced until it is 

stabilised when the flow is fully developed. An estimate of the entry length can be 

approximated as 𝐿 = 0.05𝑅𝑒𝐷 (Cengel and Cimbala, 2014).  

 

Figure 1.8: Development of a laminar flow (Reproduced by Cengel and Cimbala, 2014). 

1.4.2.2. Turbulent flow 

Contrary to the fully developed velocity profile that is observed in laminar flow, a 

much fuller velocity profile (flatter at the centre of the pipe) is evident in turbulent 

flow and is the effect of fluctuation in the velocity or eddy motion. Due to the no-slip 

boundary, velocity is zero and eddy motion diminishes at the wall. The velocity 

gradient which develops is large, and the turbulent boundary layer is thick and steep 
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adjacent to the wall. The wall shear stress is also higher compared to laminar flow as 

a result of the large velocity gradient. The turbulent boundary layer is characterised by 

four layers: the viscous or laminar sublayer, the buffer layer, the overlap or transition 

layer (also called inertial sublayer), and the turbulent or outer layer (Fig. 1.9). The flow 

characteristics are quite different in each region; the velocity at the viscous sublayer is 

almost laminar and is dominated by viscous effects, while flow is dominated by 

turbulent effects at the outer layer (Cengel and Cimbala, 2014).  

 

Figure 1.9: Velocity profile of a turbulent flow (Reproduced by Cengel and Cimbala, 2014) 

1.4.2.3. Development of unsteady flow  

Blood flow in arteries is highly pulsatile due to the contractions of the heart during the 

cardiac cycle. It is therefore crucial to understand the development of unsteady flows 

in order to be able to investigate the blood flow in arteries.  

The simplest example of an unsteady flow to be consider is a sinusoidally oscillating 

pressure gradient. A dimensionless parameter that is used to characterise unsteady 

flows is the Womersley number Wo (or α), which is considered an equivalent of 

Reynolds number for steady flows. For flows in a straight pipe, Wo is given by: 
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𝑊𝑜 =

𝐷

2
√

𝜔

𝜈
 

(1.22) 

 

where ω is the angular frequency (2π/T). The Womersley number provides an 

indication of how much the velocity differs from the characteristic Poiseuille profile. 

At low Womersley numbers (Wo < 1), the viscous forces dominate the inertial forces, 

and the flow is considered ‘quasi-steady’ (Fig. 1.10). In this case, velocity preserves 

its parabolic profile, and it is synchronous with the pressure gradient. Flow still 

oscillates but the instantaneous flow is determined by the instantaneous pressure 

gradient. At high Womersley numbers (Wo > 1), the inertial forces dominate, the 

velocity profile is no longer parabolic, and the flow is asynchronous with the pressure 

gradient (Caro et al., 1978).  

 

Figure 1.10: Velocity profiles (non-dimensionalised) at different Womersley numbers for a sinusoidally oscillating 

pressure gradient (Loudon and Tordesillas, 1998). 
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The effect of Womersley number on the flow can be better comprehended through the 

visualisation of the velocity profiles, presented by Loudon and Tordesillas (1998), for 

a flow between two parallel plates. In Figure (1.10), non-dimensionalised velocity 

profiles at different points in time along a sinusoidally oscillating pressure gradient 

and for different Wo numbers are presented. For Wo < 1, the flow is quasi-steady; the 

velocity profiles are parabolic, and velocity is in phase with pressure. For Wo = 1, the 

velocity profiles are still parabolic, but the velocity exhibits a phase lag with pressure. 

For Wo > 1, velocity is no longer parabolic, highest velocities are observed closer to 

the walls and not at the center, and the flow is unable to follow the rapidly changing 

pressure gradient (Loudon and Tordesillas, 1998). 

1.4.2.4. Flow through a bifurcating artery  

The pulmonary arteries consist of a network of branching arteries, which starts with 

the main pulmonary artery, bifurcating into the left and the right pulmonary arteries, 

and continuing for many branching generations. The flow through an idealised 

bifurcation can be viewed in Fig. (1.11). When the flow from the main branch reaches 

the bifurcation, it is divided and follows the two daughter branches. The point that the 

flow division occurs is known as the ‘stagnation point’, and the velocity at this point 

is zero. Flow that enters the daughter branches is skewed and diverted towards the 

inner walls of the bifurcation, as the acting pressure gradient is unable to displace the 

high inertia of the flow. The adverse (positive) pressure gradient causes the fluid 

particles to slow down in the boundary layer close to the outer wall, and flow 

separation occurs. The flow is trapped within that recirculation zone due to its inability 

to overcome the flowing fluid pressure (Caro et al., 1978, Rubenstein et al., 2016). The 
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displacement of the velocity from the centreline of the branch towards the inner wall, 

generates secondary motion and results in a transverse recirculation of counter-rotating 

vortices. A dimensionless parameter that is used to characterise the flows in curved 

pipes is the Dean number (De): 

De = 𝑅𝑒√
𝐷

2𝑅
 

(1.23) 

 

where R is the radius of curvature (1/curvature). De determines the formation of 

vortices resulting from the centrifugal instability based on the curvature of the wall. 

Dean (1928), found that when the Dean number is higher than 36.6 then secondary 

flow would be present. 

 

Figure 1.11: Flow through a bifurcating artery. Secondary motion with two counter rotating vortices is presented 

in one daughter branch, and a separation zone on the other (Reproduced after Kazakidi, 2008).  
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1.5. Motivation and Objectives 

Driven by these considerations, in this thesis the flow environment in the pulmonary 

arteries of idealised (Chapter 3 and 4) and patient-specific models (Chapter 5 and 6) 

was investigated. The aim was to clarify the effect of morphology, flow features and 

boundary conditions (BCs), in the haemodynamic environment of the pulmonary 

bifurcation, and, contribute towards understanding the interplay between geometry and 

upstream and downstream pulmonary vasculature. Flow patterns including velocity 

streamlines and wall shear stresses were analysed.  

In Chapter 3, idealised geometries representative of the pulmonary bifurcation of rTOF 

patients were used to investigate the effects of the branch angle, branching origin, and 

different forms of stenosis on the flow development. The objective of this part of the 

thesis was to understand how the wall shear stress and the pressure are affected by 

these changes, and whether the percentage of flow diverted to each daughter branch 

could correlate with the abovementioned parameters. This work aims to answer the 

following questions: 

- Can morphological features affect the flow development in the pulmonary 

arteries? 

- Which characteristics can explain the variations in the haemodynamic 

environment found in TOF patients? 

- Can WSS patterns and pressure ratios explain the flow splits in the daughter 

branches? 

The main contributions of this work are: 1) an extended analysis of the effect of various 

geometrical characteristics, and how these alter the WSS patterns and pressure ratios, 
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2) the consideration of branch origin, the effect of which has not been previously 

attempted, 3) an understanding of flow splits in the pulmonary arteries. 

In Chapter 4, the work of Chapter 3 was extended by conducting a parametric analysis 

to test different boundary conditions. This work helped to evaluate the effect of some 

of the assumptions considered in the simulations of Chapter 3, including steady 

laminar flow and the two-dimensional geometries. Finally, an attempt was made to 

evaluate the effect of some common limitations on blood flow simulations, such as the 

assumption of rigid walls and omitting the peripheral vascular resistance. The research 

questions this project attempts to answer are: 

- Which modelling parameters have the most significant effect in the 

computational results? 

- What is the effect of the pulmonary valve in the flow development? 

- Does wall motion alters the flow in the pulmonary bifurcation? 

The main contribution of this work lies on the better understanding of the effect of the 

boundary conditions in computational simulations, and more specifically: 1) an 

analysis of the effects of steady and unsteady flow, turbulent flow, blood rheology, 

pulmonary resistance and elasticity of the arterial wall, on recirculation zones and wall 

shear stress patterns, 2) an appreciation of how pulmonary valve can alter the flow 

development, 3) an understanding of the more physiological pressures with the 

coupling of the pulmonary resistance.  

Chapter 5 progresses to patient-specific models from a population of repaired tetralogy 

of Fallot. The aim of this project is to correlate morphological patterns of curvature 

and tortuosity, and flow characteristics of Reynolds and Dean numbers, with wall shear 
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stress and secondary flow patterns. In addition, using the patient-specific models and 

boundary conditions, an average geometry and average boundary conditions were 

calculated, to comprehend the significance of patient-specificity in such computational 

studies. This work attempts to address the following questions: 

- Which morphological features are altered in the rTOF population? 

- What is the time-averaged wall shear stress distribution in the pulmonary 

bifurcation of these patients?  

- Are there differences between the flow developed in the right and left 

pulmonary branches? Can these be correlated with the flow splits or the inlet 

flow? 

- Are patient-specificity and spatially-varying flow important in the 

characterisation of flow? 

The main contributions of this work are: 1) an analysis of the haemodynamic 

environment in the pulmonary bifurcation of rTOF patients, 2) an understanding of the 

effect of morphological and flow parameters in the flow development, 3) the 

importance of flow splits and spatially-varying flow in the flow development. 

Finally, in Chapter 6, the morphology and the flow development in a healthy 

population were analysed. The objective of this part of the thesis is to enable a better 

understanding of the haemodynamic environment in the pulmonary arteries under 

healthy conditions and allow the comparison with the results acquired for the rTOF 

models on Chapter 5. This project attempts to address the following research 

questions: 
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- What are the differences between the RPA and the LPA in the normal 

pulmonary bifurcation? 

- What is the time-averaged wall shear stress distribution in the healthy 

population, and is it comparable to the TAWSS patterns observed in the rTOF 

patients? 

- How much does subject-specificity affect the flow development in this case? 

The main contributions of this work are: 1) an analysis of the morphological and flow 

characteristics in normal pulmonary arteries, 2) an appreciation of the differences with 

the rTOF patients. 

 

1.6. Publications 

Most of the results presented in Chapter 3 are published in the Journal of Medical 

Engineering and Physics, while parts of Chapter 4 are included as Supplementary 

Material (Boumpouli et al., 2020). In addition, a preliminary version of the results of 

Chapter 3 has been published in the conference proceedings of the 6th European 

Conference on Computational Mechanics (ECCM 6), 7th European Conference on 

Computational Fluid Dynamics (ECFD 7), Glasgow, UK, 11-15 June 2018 

(Boumpouli et al., 2018). A conference abstract has also been published in the Heart 

Journal concerning parts of the work of Chapters 3 and 4 (Boumpouli et al., 2020), 

while the results of Chapter 5 have been published at the Frontiers in Cardiovascular 

Medicine journal (Boumpouli et al. 2021). A mini review has also been published in 

the Journal of Cardiology and Cardiovascular Sciences (Johnston et al., 2021). In the 

course of this PhD, there were at least three new studies published on the flow in the 
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pulmonary arteries (Capuano et al., 2019, Conijn and Krings, 2021, Ling et al., 2021), 

which cited this research work, highlighting how this is a novel and timely study. 

Posters with results from Chapters 3 and 4 have been presented in the 8th World 

Congress of Biomechanics, Dublin, Ireland, 8-12 July, 2018, BioMedEng18, London, 

UK, 6-7 September 2018 and 5-6 September 2019, 32nd Scottish Fluid Mechanics 

Meeting, Dundee, UK, 30 May 2019. Finally, oral presentations with results from 

Chapters 3, 4 and 5 were given at the 31st Scottish Fluid Mechanics Meeting, 

Aberdeen, UK, 29 May 2018, the 6th European Conference on Computational 

Mechanics (ECCM 6) - 7th European Conference on Computational Fluid Dynamics 

(ECFD 7). Glasgow, UK, 11-15 June 2018, 13th World Congress on Computational 

Mechanics-2nd Pan American Congress on Computational Mechanics, New York 

City, USA, 22-27 July 2018, 23rd Annual Meeting- Scottish Cardiovascular Forum, 

Glasgow, UK, 5 February 2020, 33nd Scottish Fluid Mechanics Meeting, online, 28 

May 2020, the virtual 14th World Congress in Computational Mechanics (WCCM) 

and 8th European Congress on Computational Methods in Applied Sciences and 

Engineering (ECCOMAS) Congress, Paris, 11-15 January 2021. 

 

1.7.  Synopsis 

The remainder of this thesis is organised as follows: 

Chapter 2 describes the computational fluid dynamics methodologies and the 

modelling methods used. Chapter 3 presents the results of the simulations in two-

dimensional idealised models of the pulmonary bifurcation and investigates the effect 

of geometry on the blood flow development. Chapter 4 is a parametric analysis which 
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is conducted in order to understand the effect of boundary conditions on the 

computational models of Chapter 3. Chapter 5 introduces patient-specific models and 

analyses the morphology and flow characteristics in the pulmonary arterial 

haemodynamic environment of rTOF patients. Chapter 6 investigates the blood flow 

in the pulmonary bifurcation of a healthy group and makes comparisons with the 

results discussed in Chapter 5. Finally, in Chapter 7 some general conclusions, 

limitations and suggestions for future work are provided.  
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Chapter 2 

Methods 

In this chapter, the methodologies used in this thesis are discussed, divided into two 

main subsections. The first one, provides an introduction to Computational Fluid 

Dynamics and discusses the concepts of the discretisation process and numerical 

algorithms used in this work. In the second subsection, cardiovascular modelling is 

discussed and an overview of the different types of models that can be utilised is 

provided, based on complexity and the availability of clinical data.  

 

2.1. Computational Fluid Dynamics 

Computational Fluid Dynamics (CFD) is a Computer-Aided Engineering (CAE) tool 

that is used widely in a broad range of fields, such as aerospace and chemical 

engineering, bioengineering, power generation etc. (Moukalled et al., 2016). CFD also 

provides a non-invasive simulation method to examine the flow development in blood 

vessels and is therefore increasingly used to support clinical diagnosis, treatment and 

surgical planning (Taylor and Figueroa, 2009, Marsden and Feinstein, 2015).  

Different numerical techniques exist in CFD to approximate the solution of the partial 

differential equations (Chapter 1.4.2.). In this work, most of the simulations presented 

in Chapters 3 to 6 are performed using the open-source software OpenFoam®, a finite 

volume solver (FVM), while some of the simulations of Chapter 4, are performed 

using an in-house code Alya-Red which uses the finite element method (FEM) in 

combination with a variational multiscale method (described by Houzeaux and 
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Principe, 2008) for the space discretisation (Vazquez et al., 2015). Several numerical 

solution algorithms can be implemented within each solver which can produce varying 

convergence. The first step in the process of both FV and FE methods, is the 

discretisation of the domain into non-overlapping elements (Moukalled et al., 2016), a 

process also known as meshing. In this study, the commercial software ANSA (BETA 

CAE Systems, www.beta-cae.com/ansa.htm) was used to generate the computational 

mesh. In the next paragraphs a brief introduction on OpenFOAM® and Alya-Red is 

first given. Then, on Section 2.1.1, the principles of mesh generation are discussed, 

while the basics of each numerical method (FVM and FEM) are provided on Section 

2.1.2.   

OpenFOAM® 

OpenFOAM® is an object-oriented library for numerical simulations written in the 

C++ programming language, that builds individual software components (classes) to 

group data and functions, together (Jasak et al., 2007). Its development began by Prof. 

D. Gosman and Dr. R. Issa, with H. Weller and Dr H. Jasak the principal developers. 

Over sixty customised numerical solvers are available that can perform simulations of 

basic CFD, turbulence modelling, heat transfer, combustion, multiphase flow (Chen et 

al., 2014). The design of OpenFOAM® is based on the easy implementation of 

complex physical problems, complex geometry handling and robust discretisation, and 

open-source development. There are five main objects in OpenFOAM®: 1) Space and 

time, where space is captured as computational mesh and time as a finite number of 

time steps; 2) Field variable, with tensors, scalars and vectors numerically 

approximated as list of values at pre-defined points of the mesh; 3) Matrix and linear 

system, that hold the results of discretisation; 4) Discretisation method, either implicit 
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or explicit implemented through interpolation, differentiation and discretisation ; 5) 

physical modelling libraries where the user can recognise object families that can be 

repeated in the physics modelling level. In general, its advantage lies on its modularity 

and flexibility (Jasak et al., 2007, Jasak 2009). 

Alya-Red 

Alya is a High-Performance Computing (HPC) multi-physics simulation code that 

operates in a modular way: 1) A kernel includes all the functionalities to solve physical 

problems; 2) Sets of modules, where each module represents a different PDE; 3) 

Services, which are supplementary, including parallelisation services (Vazquez et al., 

2014, 2015). A system of algebraic equations is created, following the time and space 

discretisation of the governing equations, which are programmed in a module. 

Different iterative methods, either explicit or implicit can be utilised to solve the 

algebraic system of equations. Coupling modules are also available to simulate multi-

physics problems, and staggered and monolithic schemes can be programmed, 

depending on the case (Vazquez et al., 2014, 2015). Finally, parallelisation is based on 

mesh partitioning using a Master-Worker strategy. The mesh is read by the Master, 

which performs partition of the element graph with METIS, while the Workers are 

charged with each subdomain, and are responsible for the resulting solution. 

(Houzeaux et al., 2009, 2011, Löhner et al., 2011). Most of the iterative solvers 

implemented in Alya, like the generalised minimal residual (GMRES), and 

preconditioners, such as the multigrid or deflated conjugate gradient, are independent 

of the number of CPUs. Domain decomposition methods and subdomain dependent 

preconditioners are also implemented for more complex cases.    
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2.1.1. Mesh Generation 

The discretisation of the domain into subdomains that fit the entire geometric space 

results in a mesh in which the conservation equation will be solved. To obtain an 

accurate solution, a good quality mesh is essential. There are different element options 

available to consider when discretising the domain, including a structured grid, 

consisting of prismatic elements or structured quadrilateral, or an unstructured grid, 

consisting more often of triangular or tetrahedra elements, in 2D (Fig. 2.1a), and 

tetrahedra or hexahedra, in 3D (Fig. 2.1b). For complex vascular geometries, an 

unstructured grid is preferred which can be automatically generated by existing 

algorithms. For viscous flows, a layer of structured elements is usually adopted near 

the wall boundary to better capture the viscous effects of the flow, known as the 

boundary layer (Ferziger and Perić, 2002). 

 

Figure 2.1: Different types of (a) 2D and (b) 3D elements (After Moukalled et al., 2016). 

The process of the mesh generation starts with the geometrical representation, and 

follows a “bottom up” approach, where first the boundary edges are discretised, then 



40 
 

the surface of the computational domain, and finally volume mesh is generated 

(Lintermann, 2021).  

Considering the domain to be discretised, it consists of an area, for the 2D case, or a 

volume, for the 3D case, and is defined by a set of vertices or points connected by 

curves or boundary edges that form the boundary faces (Fig. 2.2). The elements 

representing the geometrical domain are bounded by the faces, and the same faces are 

shared between neighbour elements, unless located at the boundaries of the model. The 

direction of the surface normal points towards the interior of the domain, important for 

the boundary layer generation which proceeds along the surface normal (Blazek, 

2015).  

 

Figure 2.2: Decomposition of 3D domain (After Peiró et al., 1994). 

Surface mesh 

The advancing front method (Peraire et al., 1988, Löhner, 1996) was used for the 

triangulation of the surface boundaries. The technique proceeds by adding one element 

at a time, and the region which separates the gridded from the ungridded is known as 

the front.  

The boundaries of the domain are discretised by points, or nodes, added at the 

boundary edges and lines connecting the nodes. A spatial variation of the element size 

is prescribed to control the number of nodes and the length of the lines. Using the 
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information about the element size, element shape and the line-definitions of the 

boundaries of the domain, an initial front of faces is defined, which is updated during 

the discretisation process. New elements, points and faces are added simultaneously 

on the surface of the domain and until the front is empty, noting that the surface is 

meshed (Peraire and Morgan, 1997). Mesh spacing can be specified at the boundaries 

of the domain to improve the surface mesh. This allows the local mesh refinement in 

regions of interest and gives the flexibility of elements of various sizes.  

Boundary layer 

Once the surface of the model is meshed, the viscous boundary layer is generated near 

the wall boundaries. The advancing-layers method (Pirzadeh, 1994, 1996) generates 

prismatic or structured tetrahedral elements, by connecting new nodes added towards 

the interior of the domain, for internal flow problems, and as an extrusion of the surface 

mesh. Multiple layers are usually generated starting with a minimum distance between 

the first element of the boundary layer and the wall, and progressively increasing by a 

specified growth factor rate to reach the desired layer thickness (Fig. 2.3).  

 

Figure 2.3: A boundary layer mesh consisting of 7 layers of prismatic elements. The first layer is at a distance of 

0.005 cm away from the wall and progressively increases with a growth factor rate of 1.1.   
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To characterise the quality of the near-wall mesh, the non-dimensional distance of the 

first element node from the wall, known as the y+ value, can be used to determine the 

height of the first layer Δy1 (Defraeye et al., 2010): 

∆𝑦1 =
𝜇𝑦 +

𝜌𝑈𝑇
 

(2.1) 

 

where y+ satisfying the value of 1 (Lewandowska and Mosiȩzny, 2019) and UT the 

friction velocity: 

𝑈𝑇 = √𝜏𝑤/𝜌 (2.2) 

 

where τw is the wall shear stress calculated as: 

𝜏𝑤 =
1

2
𝐶𝑓𝜌𝑈𝑚𝑒𝑎𝑛

2  
(2.3) 

 

where Umean the mean velocity and Cf the skin friction coefficient developed by 

Churchill (Churchill, 1977) that spans all fluid flow regimes (laminar, transitional and 

turbulent) and measures the resistance to flow by a pipe: 

𝐶𝑓 =  2 ∗  [(
8

𝑅𝑒
)

12

 +  ((2.457 ln ((
𝑅𝑒

7
)

0.9

))

16

+  (
37530

𝑅𝑒
)

16

)

−1.5

]

1/12

 

(2.4) 

 

Volume mesh 

The interior of the domain is discretised, generating the volume mesh, using a hybrid 

advancing front Delaunay algorithm (Skaperdas and Ashton, 2018). The elements of 

the boundary layer form the background grid from where triangulation starts. Points 

are inserted using a method similar to the advancing front, described for the surface 

mesh. The background grid is used to determine any intersections and nearby fronts. 
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The boundary grid is updated, and the generation of the isotropic elements proceeds 

according to the Delaunay triangulation (Holmes and Snyder, 1988).  

2.1.2. Numerical Methods 

Numerical methods are utilised in order to approximate the solution of partial 

differential equations, and involves the discretisation of the domain (as described in 

Section 2.1.1.) and the equations to be solved. Many different discretisation schemes 

exist today, such as the finite difference method (FDM), FVM, FEM, the spectral 

methods (SM) etc (Rapp, 2017). In general, FEM is one of the most widely applicable 

methods. It requires the conversion of the partial differential equations to an integral 

form and, if first order accurate, approximates the solution by a linear shape function, 

within each element of the domain (Peiró and Sherwin, 2005). FVM integrates the 

equations over a finite number of control volumes. The volume integral is then 

interpolated at the surface of the control volume. Volume and surface integrals can be 

approximated with suitable numerical approximations (Moukalled et al., 2016). FDM 

is less flexible for cardiovascular models as it uses structured elements, e.g., 

rectangular and hexahedral elements, and is difficult to be adapted to more complex 

models. FDM approximates the derivatives of the differential form of the fluid 

equations, in contrast to the integral approximations in the aforementioned methods 

(Feriziger and Perić, 2002, Peiró and Sherwin, 2005). Taylor series expansion is used 

to approximate the first and second order derivatives of the variables, with the forward, 

backward and central difference schemes being some of the most commonly utilised 

numerical schemes. Spectral methods are robust and of high-accuracy but are limited 

to problems of periodic boundary conditions. In SM the solution is approximated using 
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an integral form of the differential equations and is represented globally in the solution 

domain. The books of Ferziger and Perić (2002) and Rapp (2017) are suggested for a 

more detailed description of the most commonly used schemes. 

This subsection starts by introducing the most commonly used boundary conditions, 

namely Dirichlet and Neumann. Then, the finite volume and finite element methods 

are discussed. Finally, some of the properties of numerical methods and the difference 

between explicit and implicit schemes are provided. Further details about the FVM 

and the FEM can be found on the books of Moukalled et al. (2016) and Zienkiewicz 

et al. (2014), for each method, respectively. 

2.1.2.1. Boundary Conditions 

In both the FV and FE numerical methods, a lot of attention should be given in the 

boundary conditions assigned at the boundary faces of the domain. To evaluate the 

fluxes at the boundary faces, the Dirichlet and Neumann boundary conditions, are most 

commonly used. In the first case, a specific scalar value is assigned at the boundary 

face, while in the second case, the derivative of the scalar is the known quantity which 

is specified (Ferziger and Perić, 2002). The effect and the importance of different 

boundary conditions is further discussed within this thesis, briefly in Section 2.2, and 

Chapters 3-5, with respect to blood flow dynamics in the pulmonary arteries.  

2.1.2.2. Finite Volume Method  

The finite volume method solves the partial differential equations of the conservation 

laws (Chapter 1.4.2.) by discretising them into algebraic equations over finite volumes. 

The algebraic equations are solved at each of the elements of the geometric domain to 
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compute the value of the dependent variables of velocity and pressure, which are 

consequently stored at the centre of the finite volume for the majority of the finite 

volume methods (cell-centered FVM, Fig. 2.4), including in the OpenFOAM® 

software (Moukalled et al., 2016). In FVM, the flux entering a given volume is equal 

to the flux leaving the adjacent volume, which makes it a conservative approach (Fig. 

2.5a).  

 

Figure 2.4: (a) Cell-centered and (b) vertex-centered arrangements (After Moukalled et al., 2016). 

Equation Discretisation 

The general form of the conservation equation (Eqs. (1.10)-(1.13)) for a scalar φ is 

given by: 

 𝜕(𝜌𝜑)

𝜕𝑡
+ ∇ ∙ (𝜌𝒖𝜑) = ∇ ∙ (Γ𝜙∇𝜑) + 𝑄𝜑 

(2.5) 

 

where 
𝜕(𝜌𝜑)

𝜕𝑡
 the transient term, ∇ ∙ (𝜌𝒖𝜑) the convective term, ∇ ∙ (Γ𝜙∇𝜑) the 

diffusion term and 𝑄𝜑 the source term (Moukalled et al., 2016). 

Following the integration of the governing equations over the finite volumes and for a 

steady state form, in which case the transient term is removed (Eq. (2.6)), the volume 
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integrals are transformed using the Gauss theorem* into surface integrals for the 

convection and diffusion terms of the conservation equation (Eq. (2.7)) (Moukalled et 

al., 2016).  

 

∫ ∇ ∙ (𝜌𝒖𝜑)𝑑𝛺

𝛺

 = ∫ ∇ ∙ (Γ𝜙∇𝜑)𝑑𝛺

𝛺

+ ∫ 𝑄𝜑𝑑𝛺

𝛺

 

(2.6) 

 

 

∫(𝜌𝒖𝜑)

𝑆

∙  𝑑S = ∫(Γ𝜙∇𝜑)

𝑆

∙  𝑑S + ∫ 𝑄𝜑𝑑𝑉

𝑉

 

(2.7) 

 

 

Figure 2.5: (a) Conservation of flow. Flux entering a discrete element equals flux leaving; (b) Surface integration 

using (i) one, (ii) two and (iii) three integration points, respectively (After Moukalled et al., 2016). 

*Gauss’ theorem: ∫ 𝛻 ∙ 𝒇𝑑𝛺
𝛺

= ∫ 𝒇 ∙ 𝒏𝑑𝑆
𝑆

, where the left part denotes the volume integral over the volume Ω and the 

right side the surface integral over the boundary of the volume Ω (Spiegel et al., 2009). 



47 
 

Integration points are used along the surface (for the convection and diffusion fluxes), 

or volume (for the source term), of the elements, in which the discrete form of the 

surface and volume integrals are numerically integrated, and the number of points 

affect the accuracy of the solution (Fig. 2.5b). Most FV methods use a single 

integration point for a simple mean value integration, allowing a second-order accurate 

approximation, which is found adequate in terms of accuracy and computational cost. 

Increasing the number of points along the surface or volume of the element, increases 

the accuracy of the solution, respectively (Moukalled et al., 2016). Once the 

convection and diffusion fluxes and the source term are discretised with a specified 

number of integration points, the next step in the discretisation process is to convert 

the finite volume equations of each element into an algebraic equation and relate the 

face and volume fluxes with the values of the variables of the neighbouring cells. Flux 

linearisaton is used in the second discretisation process and the evaluation of the fluxes 

dependents on the boundary conditions assumed (Section 2.1.2.1). 

2.1.2.3. Finite Element Method 

The Finite Element Method was originally developed for solid-state mechanics 

problem but is used in a wide range of applications since then, including CFD (Rapp, 

2017). There are many similarities between the FE and FV method. Firstly, the domain 

is discretised into finite elements or volumes, where the algebraic equations will be 

solved. In the FE methods it is only a list of vertices that is needed; the solution is 

approximated at the vertices of the domain and linearly interpolated in between these 

points (Rapp, 2017). To allow the creation of a function to interpolate the solution 

linearly between the adjacent edges of the element, each element in the domain is 

defined based on the Lagrangian coordinate system which makes use of the area of the 
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element instead of the Cartesian coordinate system (Fig. 2.6) (Rapp, 2017). Before the 

solution is integrated over the entire domain, FEM uses a weight function, with which 

the algebraic equations are multiplied (Ferziger and Perić, 2002). The Galerkin method 

is the most commonly used weighted residual method to approximate the solution. 

 

Figure 2.6: Lagrangian coordinate system in an FEM mesh. (a) Approximation of the dependent function g using 

�̃�. (b) Definition of the Lagrangian coordinates using the area of the subtriangles created within a single triangle 

(After Rapp, 2016).  

Restricting the analysis to a one-dimensional space, a scalar variable u(x,t) is 

considered in the domain Ω = {x, t: 0 ≤ x ≤ 1, 0 ≤ t ≤ T}. The convection-diffusion-

reaction equation is then given by (Peiŕo and Sherwin, 2005): 

𝐿(𝑢) =
𝜕𝑢

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑎𝑢 − 𝑏

𝜕𝑢

𝜕𝑥
) − 𝑟𝑢 = 𝑠 

(2.8) 

 

where L(u) a linear differential operator, and a, b and r the convection, diffusion and 

reaction coefficients, and s the source term (Peiró and Sherwin, 2005).  

The integral of Eq. (2.8) is: 

∫ 𝐿(𝑢)𝜔(𝑥)𝑑𝑥

1

0

= ∫ 𝑠𝜔(𝑥)𝑑𝑥

1

0

 

(2.9) 

 

where ω(x) is the weight function. 
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Discretising the region of interest into N-1 subdomains Ωi = {x : xi-1 ≤ x ≤  xi-1}, the 

approximate solution can be assumed as: 

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑖(𝑡)𝑁𝑖(𝑥)

𝑁

𝑖=1

 

(2.10) 

 

where Ni(x) the expansion basis (Peiŕo and Sherwin, 2005).  

The Galerkin method sets the weight function same as the expansion basis. 

Substituting to Eq. (2.9), and by approximating the solution to the elliptic equation 

𝐿(𝑢) =
𝜕2𝑢

𝜕𝑥2 = 𝑠(𝑥) with boundary conditions u(0)=a (Dirichlet boundary condition) 

and 
𝜕𝑢

𝜕𝑥
 (1)=g (Neumann boundary condition): 

∫ 𝜔(𝑥)
𝜕

2
𝑢

𝜕𝑥2
𝑑𝑥

1

0

= ∫ 𝜔(𝑥)𝑠(𝑥)𝑑𝑥

1

0

 

(2.11) 

 

Finally, integrating the left-hand side of Eq. (2.11) the weak form is derived: 

− ∫ 𝜔(𝑥)
𝜕𝑢

𝜕𝑥
𝑑𝑥

1

0

+ 𝜔(1)
𝜕𝑢

𝜕𝑥
(1) − 𝜔(0)

𝜕𝑢

𝜕𝑥
(0) = ∫ 𝜔(𝑥)𝑠(𝑥)𝑑𝑥

1

0

 

(2.12) 

 

Although the Neumann BC can be easily imposed, the Dirichlet BC can be applied by 

imposing u1= a under the requirement that ω(x)=0 (Peiŕo and Sherwin, 2005). 

2.1.2.4. Properties of Numerical Methods 

To ensure that the solution obtained during the discretisation process is meaningful, 

there are some key properties to be considered (Ferziger and Perić, 2002, Peiŕo and 

Sherwin, 2005): 

• Conservation: the numerical scheme should respect the conservation laws. 
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• Accuracy: numerical solution are only approximated solutions of the fluid flow 

problems.  

• Convergence of the solution: the computed and the exact solution of the PDE 

tends to zero with decreasing mesh size. 

• Consistency: the discretised numerical equation approaches the exact 

differential equation as grid spacing tends to zero. 

• Stability of the system: the difference between the computed and exact solution 

should not be magnified during the solution process, for a given grid spacing. 

2.1.2.5. Implicit and Explicit Methods 

To solve the equations in each of the discretised elements, implicit or explicit 

numerical methods can be used. In an explicit method, the unknown variable is directly 

computed by the known variables. On the other hand, in an implicit method, a set of 

equations are formed to compute the dependent variable, which is usually performed 

through an iterative process. The conservation equations in CFD are most usually 

solved using the implicit numerical method. Although they are more complicated and 

computationally expensive, they facilitate larger time steps and are unconditionally 

stable (Moukalled et al., 2016).  

 

2.2. Cardiovascular Modelling 

Modelling in cardiovascular research goes back decades when computers became 

available to the university research and the industry (Schievano and Taylor). In the late 

1990s, imaged-based modelling techniques immerged, and with the advancements 

made ever since, especially the magnetic resonance imaging (MRI) and computed 
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tomography (CT), the quantification of cardiovascular mechanics, the non-invasive 

characterisation of physiological pressures and flows, and the computation of 

parameters that cannot be measured in-vivo, became possible (Taylor and Figueroa 

2009). Nowadays, cardiovascular modelling is broadly used to answer clinical 

questions, from image segmentation and morphology charasterisation, to diagnosis 

and quantification of physiological responses under a range of conditions (Schievano 

and Taylor, 2020, Johnston 2020, Black et al., 2020, Hyde-Linaker et al., 2020). 

In cardiovascular modelling, as with any CFD problem, the first step is the pre-

processing stage where the fluid domain needs to be defined. Depending on the aims, 

numerical complexity, accuracy and patient-specificity, required to address the 

problem, the domain can be approached with a zero- (0D), one- (1D), two- (2D) or 

three- (3D) dimensional model, as shown in Fig. 2.7 (Shi, 2011).  

 

Figure 2.7: Different scales of modelling (After Shi, 2011). 
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Zero-dimensional (or lumped-parameter) models are governed by ordinary differential 

equations; they do not recognise the spatial variation of variables (pressure, flow and 

volume), and are used to model various components of the human body, the heart, 

heart valves, vasculature. They examine the interaction of such compartments as well 

as the global distribution of the abovementioned variables. To model the 

cardiovascular system using 0D-modelling, one needs to consider a hydraulic electric 

analogue where the volumetric blood flow rate is represented by an electric current. 

Blood pressure is analogous to voltage, the resistance to flow is equivalent to the 

electrical resistance of the electric circuit, inductance represents the inertia in blood 

flow and the compliance of the vessel is modelled by capacitors (Fig. 2.8). 

 

Figure 2.8: Two-element (a), three-element (b), and four-element (c) Windkessel models (Reproduced after Shi, 

2011). 

Equivalently, for the conservation of mass and momentum, which need to be satisfied 

to describe the blood flow, Kirchhoff’s current law and Ohm’s law are used in 0D-

modelling (Shi, 2011). Kirchhoff’s current law states that the current entering a node 

must be equal with the sum of currents exiting the node (Eq. (2.13)), while Ohm’s law 

states that the current in an electric circuit is equal to the voltage divided by the 

resistance (Eq. (2.14)). 
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∑ 𝐼𝑘

𝑛

𝑘=1

= 0 
(2.13) 

 
𝐼 =

𝑉

𝑅
 

(2.14) 

 

Substituting with the equivalent parameters of cardiovascular system, Eq. 2.14 takes 

the form of Eq. (1.1). 

The two-element Windkessel model, introduced mathematically by Otto Frank (1899), 

is the first and simplest 0D model that makes use of these principles and can be used 

either in isolation or as part of a multi-compartment electrical circuit. It is a RC model 

(Fig. 2.8a), with the resistance and capacitance connected in parallel. Different 

alterations have been made to this model ever since; the three-element Windkessel 

model (Fig. 2.8b) has an additional resistance connected in series with the RC model 

(Landes, 1943), or, using an alternative configuration, a resistance is connected in 

series with the capacitor of the RC model (Burattini and Natalucci, 1998). Other 

developments have included the inertia of blood flow in the RCR Windkessel model 

(Fig. 2.8c), or extra resistances, connected in different configurations, which are 

known as four-element Windkessel models (Landes 1943, Jager et al., 1965, 

Stergiopulos et al., 1999). 

A three-element Windkessel model was developed in MATLAB®, R2017b, 

MathWorks to account for the pulmonary vascular resistance and capacitance 

(Appendix 1). The code was tested using clinical flow data, extracted from the MPA, 

LPA and RPA branches, of a healthy volunteer. The 0D model developed was then 

used in order to compile a new solver in OpenFOAM®, for the coupling of the lumped-

parameter model in an idealised 2D model (the results of the coupled model are 

presented in Chapter 3). 
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One-dimensional models use the conservation of mass and momentum to describe the 

blood flow using the 1D form of the Navier-Stokes equations in combination with 

equations for the forces acting on the vessel wall. They are most often used to represent 

wave transmission and to improve the boundary conditions for 3D models in order to 

capture arterial wave reflections (Shi, 2011). The unstressed radius of the domain, the 

length and the wall thickness of the vessel and the Young’s modulus are the initial 

parameters needed, while the radius of the vessel, pressure and flow are information 

that can be obtained from the 1D analysis (Arimon, 2006). 

Two-dimensional and three-dimensional models are governed by the partial differentia 

Navier-Stokes (Eq. (1.19)). 2D models can provide information on the radial variation 

of local flow in an axisymmetric domain and further improve the boundary conditions 

for 3D models (Shi, 2011), while with 3D models the study of the flow in the full 3D 

domain is feasible. Such higher dimensional models can predict in more detail the 

haemodynamic parameters of the vessels, but due to the higher complexity, modelling 

is usually limited to smaller segments (Malatos et al., 2016). Currently, the preferred 

method in cardiovascular modelling is using patient-specific 3D models, which can be 

reconstructed using clinical image data (Analysed on Section 2.2.3.).  

2.2.1. Coupled models 

Coupling of the 0D models to 1D, 2D or 3D models was introduced in cardiovascular 

modelling in order to overcome one of the main limitations of zero pressure at the 

outlets of the models. 0D models can be coupled at the boundary outlets to represent, 

with reduced complexity, the downstream peripheral circulation which is neglected in 

the 3D modes (Malatos et al., 2016). Applications of this methodology can be found 
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in many studies, especially in cases of virtual surgeries, to test different surgical plans 

and optimise the anatomical configuration of the region. Several studies of 

univentricular circulation and cavopulmonary anastomosis, a congenital heart disease 

where one ventricular chamber is absent and an operation is performed to bypass the 

absent ventricle, named cavopulmonary anastomosis, have utilised such methods 

(Pennati et al., 1997, Migliavacca et al., 1999, Lagana et al., 2005, Migliavacca et al., 

2006, Bove et al., 2008, Baretta et al., 2011, Pennati et al., 2011). Nevertheless, lower-

order models can be coupled either upstream or downstream of the higher-order 

models, depending on the availability of data, and the information to be acquired 

through the model (Vosse, 2003).  

2.2.1.1. Fluid Structure Interaction 

Fluid structure interaction (FSI) refers to the co-simulation of a fluid and a solid 

structure. In cardiovascular modelling, it can be used to simulate the motion of the 

vascular walls or the heart valves (Taylor and Figueroa, 2009). Although it has been 

found that neglecting vessel compliance the regional shear stress is overestimated 

(Bazilevs et al., 2009), it is more computationally expensive, and the vessel’s 

mechanical properties, need to be specified (Hunter et al., 2010). 

FSI simulations require the coupling of the fluid and the solid domain, and two of the 

most well-known techniques adopted are the Arbitrary Lagrangian Eulerian (ALE) and 

the Immersed Boundary Method (IBM). A brief description of each method is 

provided here, but more details can be found on Donea et al., 2004, and Peskin, 1972, 

for the ALE and IMB methods, respectively. In the present study, the ALE method 

was implemented to simulate the elasticity of arterial walls (Chapter 4). 
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The ALE method is a body-fitted, also known as body-conforming method, where a 

structured/unstructured mesh is generated, with the grid being updated in each time 

step (Fig. 2.9a). The fluid domain is moving according to the motion of the vascular 

interface, and therefore the Navier-Stokes equations need to be solved on a moving 

reference system. For the solid domain, the elastodynamics equations (provided at the 

end of this Section) are solved, usually based on a Lagrangian reference system. 

Finally, the flow for the grid points of the fluid domain which are not at the interface 

with the moving solid domain need to be defined (Hughes 1981, Hu 1996).  

There are two approaches for solving FSI problems, the monolithic or non-modular, 

and the modular or partitioned. In the partitioned approach, the equations governing 

the fluid and the solid domain are solved separately, allowing more specialised solvers 

to be used for each domain. However, a coupling algorithm is required to allow the 

interaction of the two and the acquisition of a solution for the coupled problem. These 

algorithms exhibit stability issues and poor convergence due to the “added mass 

effect”, related to the mass density of the fluid versus the solid structure. In the 

monolithic approach, the fluid and the solid equations are solved simultaneously, 

which has the advantage of stability and faster solution of the problem (Hu 1996, 

Taylor and Figueroa, 2009, Bhakade et al., 2016). 

 

Figure 2.9: (a) Body-fitted meshes, in the Arbitrary Lagrangian-Eulerian method, and (b) non-fitted meshes, in the 

Immersed Boundary Method (After Hashemi, 2018).  
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The IBM was introduced by Peskin (1982) and is a non-body-fitted, also known as 

fixed-rigid method which does not require the computational grid of the fluid domain 

to be changed or deformed (Fig. 2.9b). IBM instead uses two sets of independent grids, 

a fixed Eulerian and a moving structured or unstructured grid, for the fluid and the 

solid domains, respectively (Hashemi, 2018). The advantage of this method is that it 

does not involve the update of the mesh and therefore, is more effecting in handling 

arbitrarily large deformations. Additional external forces are incorporated in the 

governing equations of motion to account for the moving body in the fixed 

computational domain (Peskin, 1982). Some of the challenges are related to the 

application of boundary conditions and the more accurate definition of the moving 

body. In addition, IBM requires increased spatial resolution due to the delta function 

which is introduced to avoid numerical instabilities (Kazakidi et al., 2015). The 

immersed interface method (LeVeque and Li, 1997) and the hybrid 

Cartesian/immersed boundary method are two approaches to overcome these 

limitations (Gilmanov and Sotiropoulos, 2005). 

Hyperelastic models 

Let B be a body in a bounded domain Ω (the reference configuration), with P a generic 

material point of B, and X(P) indicating the position vector of P. The kinematics of 

deformation can be described locally with the deformation gradient tensor F: 

  

𝑭 =
𝜕𝑥

𝜕𝑋
 

(2.16) 

 

The equation of motion in Ω is then given by: 

𝜌
𝜕2𝑑

𝜕𝑡2
 −  𝑑𝑖𝑣(𝑷) = 𝒇 

(2.17) 
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where d = x-X, the displacement of the material point, P the first Piola-Kirchhoff stress 

tensor and f an external force. 

In equilibrium, Eq. (2.17) is reduced to: 

− 𝑑𝑖𝑣(𝑷) = 𝒇 (2.18) 

 

Different constitute laws can complement Eqs. (2.17), (2.18) to quantify the 

displacement of the body, with the simplest being linear elasticity (Gurtin, 1982).  

In this work, the incompressible Neo-Hookean model is considered, which splits the 

the deformation gradient and the strain energy function, ψ, into volumetric and 

isochoric isotropic terms (Nolan et al., 2014): 

𝑭 = (𝐽1/3𝑰)�̅� (2.19) 

where J the determinant of F, J1/3I the volumetric portion of F and �̅� the isochoric 

portion, and: 

𝜓(𝑭) =
1

2
𝜅𝑜(𝐽 − 1)2 +

1

2
𝜇

𝑜
(𝐼1̅ − 3) 

(2.20) 

 

where κo the bulk modulus, μo the shear modulus and 𝐼=̅J-2/3I1 the isochoric 

counterparts of I1.  

The Cauchy stress (σ) for a hyperelastic material with free energy ψ is given by: 

σ =
1

𝐽
𝑭

𝜕𝜓

𝜕𝑭
 

(2.21) 

 

and is related to the Piola-Kirchhoff stress tensor with P = JσF−T (Gurtin, 1982, 

Nolan et al., 2014). 
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2.2.2. Image-based computational modelling 

Computerised tomography (CT) and magnetic resonance imaging (MRI) are 

diagnostic tools that enable the acquisition of medical images and can be used to 

reconstruct the computational domain based on the patient’s anatomy. Briefly, the 

process, in order to conduct patient-specific computational simulations, would start 

with the image segmentation, followed by several steps of pre-processing, including 

the smoothing of the model and the addition of flow extensions. The next step is the 

discretisation, or meshing (as described in Section 2.1.1) of the computational domain. 

Appropriate boundary conditions should be assigned at the boundaries of the models, 

where for patient-specific cases they can be extracted from phase contrast-MRI 

images, or 4D flow MRI data. The last step involves the post-processing of the 

computational results. A schematic representation of the steps is presented on Fig 2.10. 

In the following paragraphs the segmentation and smoothing processes are discussed. 

Examples will also be described in Chapters 5 and 6 which involve subject-specific 

models.  

The clinical images used for the model segmentation are a stack of two-dimensional 

slices, with each slice consisting of a matrix of pixels with different intensities of a 

grayscale value. There are many open-access and commercial software that allow the 

segmentation of the vasculature using automatic, semi-automatic or manual tools. The 

Insight Segmentation and Registration Tool Kit, ITK-Snap (www.itksnap.org), 

SimVascular (www.simvascular.github.io) and Mimics (Materialise, Belgium) are 

some of the most frequently used; the reconstruction of the models in this work was 

conducted using ITK-Snap. In the manual segmentation, the user progresses slice-by-
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slice and draws the region of interest with suitable tools. In the semiautomatic 

segmentation, ITK-Snap implements the Geodesic Active Contours (Caselles et al., 

1993, 1997) and the Region Competition (Zhu and Yuille, 1996) methods.  

 

Figure 2.10: Steps followed in reconstructing and modelling a patient-specific geometry: segmentation of the 

computational domain from clinical images, smoothing and mesh generation, extraction of flow information to set 

patient-specific boundary conditions and finally post-processing of the computational results. 

Let C be the contour represented as a level-set of a function φ, in space ℝ3. Contour 

evolution evolves in time according to the equation: 

 𝐶𝑡(𝑡, 𝒒) = 𝐹𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 (2.22) 

 

where C(t,q) is the contour at time t parameterised by q*. Internal (𝐹𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙) and 

external (𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙) forces, acting in the normal direction on the contour, are used to 

constraint the shape of the contour based on the contours geometry and include 

information from the image segmented, respectively (Yushkevich et al., 2006). 

There are two implementations of this method, the Geodesic Active Contours (Caselles 

et al., 1993, 1997) and the Region Competition (Zhu and Yuille, 1996) and they differ 

*q can be represented in terms of the arc length of the contour, or parametrically using B-splines or Fourier coefficients 
(Zhu and Yuille, 1996).  
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in the way the compute the external forces. Caselles et al. (1993, 1997), computes the 

external forces based on the intensity of the image’s gradient magnitude: 

𝐶𝑡(𝑡, 𝒒)  =  (𝛼𝑔𝐼  +  𝛽𝜅𝑔𝐼  +  𝛾𝛻𝑔𝐼  ·  𝑵) 𝑵  (2.23) 

 

where α, β and γ are modulating weights, defined by the user, κ is the mean curvature 

of C, N the contour normal and gI of the image I given by: 

𝑔𝐼 =  𝑓𝑚𝑎𝑝 (
‖𝛻(𝐺𝜎 ∗ 𝐼)‖

𝑚𝑎𝑥‖𝛻(𝐺𝜎 ∗ 𝐼)‖
) , 𝑓𝑚𝑎𝑝(𝑥) =

1

1 + (𝑥/𝜈)𝜆
  

(2.24) 

 

where 𝐺𝜎 ∗ 𝐼 indicating convolution with a Gaussian kernel (Sherstyuk, 1999), and ν, 

λ and σ, user defined parameters, 𝑔𝐼 decreases monotonically with the gradient 

magnitude of image I.  𝛼𝑔𝐼, 𝛽𝜅𝑔𝐼 and 𝛾𝛻𝑔𝐼  ·  𝑵, represents the external, internal and 

external advection forces, respectively, with the latter acting inwards when C reaches 

the edges of I (Yushkevich et al., 2005, 2006).  

The method by Zhu and Yuille (1996) is based on a voxel probability map, where, by 

setting a threshold, the probability of a voxel to belong to the region of interest is 

estimated. At the implementation of this method, the external force is proportional to 

the difference of probabilities Pobj and Pbg, with Pobj = P(voxel ∈ object) and Pbg = 

P(voxel ∈ background): 

𝐶𝑡(𝑡, 𝒖)  =  [𝛼(𝑃𝑜𝑏𝑗  −  𝑃𝑏𝑎𝑐𝑘) + 𝛽𝜅] 𝑵  (2.25) 

 

Contour evolution is implemented with the level set active contour algorithm (Osher 

and Sethian, 1988, Sethian, 1999) and using the relationship N = 𝛻φ‖𝛻𝜑‖, Eqs. (2.23) 

and (2.25), are transformed to PDEs in φ and solved iteratively using the extreme 

narrow banding method (Whitaker, 1998). Spherical seed points are placed, from 
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which the contour evolution begins, and the result is updated after each iteration 

(Yushkevich et al., 2006).  

In this work, the semi-automatic segmentation based on the Region Competition 

method was adopted, and the segmentation was afterwards manually corrected, were 

appropriate, going through each slice. The segmented models were exported as surface 

mesh, using the marching cube algorithm that processes 3D medical data and creates 

triangle vertices of constant density surfaces using linear interpolation (Lorensen and 

Cline, 1987).  

The smoothing of the models was conducted with the opensource software Autodesk 

Meshmixer (www.meshmixer.com). The smooth type was the default Shape 

Preserving smoothing filter. The smoothing scale controls the features that must be 

smoothed based on their size. In the geometries presented in Chapters 5 and 6 of this 

thesis, the scale was around 4-8 depending on the model, and approximately 16 and 8 

for the interfaces of the inlet and outlet boundaries, respectively, where the extensions 

were added. For the constraint rings, the default value was maintained to allow tangent 

continuity at the edges and preserve the shape at the boundaries. Finally, extensions 

were added using the Vascular Modeling Toolkit, vmtk (www.vmtk.org), normal to 

the surface of the inlet and the outlets of the models, to avoid any effects from the 

boundaries.   

Information about the number and type of elements, and the boundary conditions, are 

provided separately in each Chapter, for the respective models. In addition, 

information about the MRI data used for the reconstruction of the patient-specific 

http://www.meshmixer.com/
http://www.vmtk.org/
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models, and the extraction of the patient-specific boundary conditions of Chapter 5 

and 6, are included in the methodology section of each Chapter.  
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Chapter 3 

Blood flow simulations in two-dimensional 

idealised models of the pulmonary bifurcation 

In this chapter, the flow in nine different geometries and under seven different 

boundary conditions, assigned at the model’s outlets, is investigated under steady and 

unsteady flow conditions. Section 3.1. provides a brief introduction to this work, while 

Section 3.2. describes the numerical methodology, including model generation and 

boundary conditions. Section 3.3. presents the main results of this chapter, divided in 

the effects of geometry, outflow boundary conditions and a parametric investigation. 

Section 3.4. discusses the results in the context of previous studies, and Section 3.5. 

concludes this chapter with some final remarks. 

 

3.1. Introduction  

Tetralogy of Fallot patients require surgical correction in infancy. It is performed to 

provide a bi-ventricular circulation and normal arterial saturations. With 

advancements in medical paediatric healthcare, the expected survival and quality of 

life have improved immensely, similar to normal population. However, as these 

patients progress into adulthood, they are at risk of late complications and further re-

interventions. Pulmonary regurgitation and branch pulmonary obstruction, usually in 

the form of LPA kinking, are the most common indications for reintervention, 

including pulmonary valve replacement and arterial stenting (Zhang et al., 2016, Babu-
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Narayan and Gatzoulis 2018). The assessment of the optimal timing for PVR is crucial 

in order to allow the successful RV remodelling and is recommended before the 

development of significant clinical symptoms. Nevertheless, it remains a key 

challenge to clinicians, relying their decision upon balancing the risk between RV 

dysfunction and the finite lifespan of the available bioprosthetic valves used in PVR 

(Geva, 2011, Babu-Narayan and Gatzoulis, 2018). Recent studies have observed that 

PR is associated with differential retrograde flow of various flow splits in the left and 

right branch pulmonary arteries in patients with rTOF, irrespective of the presence of 

stenosis (Kang et al., 2003, Harris et al., 2011). To clarify this, a better understanding 

of the subtle haemodynamic alterations in the pulmonary arterial bifurcation is 

required, with the scope to contribute towards a more accurate evaluation of the right 

timing for PVR and the prognosis and treatment of the above conditions. 

Optimisation of flow delivered to the daughter branches of an arterial junction is 

essential in order to ensure that blood vessels supply the peripheral tissue and organs 

with sufficient amount of blood, compared to the energy consumed by the tissue and 

organs (Rubenstein and Yin, 2015). Murray’s law, an early mathematical model, 

makes use of the branches radii in order to optimise work, through minimisation of 

energy consumption at bifurcations (Murray, 1926). However, there are many fluid 

dynamic principles that can affect fluid flow and need to be taken into account. Several 

previous studies on physiological flows in branching arteries (Pedley et at., 1971, 

Rubenstein and Yin, 2015) have demonstrated flow separation near branch entrances 

and the formation of recirculating zones, with fluid particles trapped within, due to 

their inability to re-enter the mainstream flow (Rubenstein and Yin, 2015, Sochi, 

2015). Nevertheless, the haemodynamics of arterial bifurcations may further be 
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affected by local morphology, such as the branching angle, and various other factors, 

including non-Newtonian rheology, turbulent flow, time-dependency, and loss of wall 

deformability (Sochi, 2015). The pulmonary bifurcation in rTOF patients is a 

particular junction with varied and often abnormal geometrical and boundary 

conditions, and their detailed effects on blood flow need further analysis. 

Computational fluid dynamic (CFD) methods are valuable tools for non-invasively 

simulating blood flow through vessels and allow for the examination of various effects 

that may influence flow development. Computational models are increasingly used to 

support clinical diagnosis, treatment, and surgical planning, through the quantification 

of haemodynamic parameters, such as velocity, pressure, and wall shear stress, and the 

investigation of blood flow patterns. Previous studies on blood flow in the pulmonary 

arteries have shown that in healthy subjects the pulmonary bifurcation is 

haemodynamically efficient with small separation of flow along the inner wall 

(Capuano et al., 2019). However, in congenital heart patients, reversal of flow has been 

observed in the LPA which precedes and contributes to pulmonary valve regurgitation 

(Samyn and LaDisa, 2016), while flow becomes more disturbed for decreasing 

branching angle (Chern et al., 2008, Chern et al., 2012, Guibert et al., 2014, Zhang et 

al., 2016, Samyn and LaDisa, 2016). In most of these studies, blood was modelled as 

a Newtonian fluid, which is an accepted approximation in large arteries (Samyn and 

LaDisa, 2016). 

In the present chapter, the blood flow in idealised two-dimensional models of the 

pulmonary bifurcation is investigated using computational fluid dynamics tools. 

Although simplified, the use of such geometries allows for a detailed parametric 

analysis of the influence of various conditions on blood flow, improving our 
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understanding of the underlying flow mechanisms of more complex systems, while 

being much less computationally demanding (Alegre-Martinez et al., 2019). Different 

geometries were considered here, representative of healthy and abnormal 

morphologies of the pulmonary trunk. The novelty of this work lies in the extended 

analysis of bifurcating flows in relation to TOF patients and a haemodynamic 

assessment in the pulmonary arteries, which may be useful to clinicians and adult 

congenital heart patients.  

 

3.2. Computational approximations 

3.2.1. Models of the pulmonary bifurcation 

Nine different geometries of the pulmonary bifurcation were created in the two-

dimensional space in order to investigate the effects of branching angle, branch origin, 

and LPA stenosis (Fig. 3.1). These simplified models make it possible to analyse 

healthy and abnormal flow conditions and identify critical parameters. The diameter 

of the main pulmonary artery (MPA), denoted as D, was assumed 2.6 cm, while both 

daughter branch diameters were taken, for the majority of the models, equal to 2 cm 

(denoted as d). These values are within the normal physiological ranges, without 

attempting to replicate exact patient cases (Tang et al., 2012). The MPA length was 

assumed ~7.7D, while the LPA and RPA lengths were chosen to be ~115D, the 

minimum branch length at which no effect on the maximum wall shear stress (WSS) 

from the boundaries was found. More specifically, to establish the branch length, WSS 

was plotted along the inner wall (shown on Fig. 3.1 (vi)) for models with different 
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branch lengths, and until the maximum WSS value reached a plateau. The nine 

geometries (Fig. 3.1 shows only a section of each model) are as follows (Table 3.1): 

 

Figure 3.1: Schematic representation of nine different models of the pulmonary bifurcation. (i) T-Junction; (ii) 

asymmetric Y-Junction with common branch origin at point O; (iii)-(iv) asymmetric Y-Junctions with displaced 

branch origins; (v) asymmetric Y-Junction with displaced origin and hypoplastic LPA; (vi) symmetric Y-Junction; 

(vii)-(ix) symmetric Y-Junctions with local stenosis and hypoplastic LPA, respectively. The inner and outer walls 

are annotated on (vi). 

a. A T-Junction where the angle between the MPA and daughter branches is 90⁰ 

(denoted as θ1 for RPA and θ2 for LPA); this geometry represents the shape of 

the pulmonary bifurcation in patients repaired for both LPA and RPA stenosis 

(Nina, 2014), or in the context of pulmonary atresia with RV pulmonary artery 

conduit and/or confluence constriction (Fig. 3.1 (i)).  

b. An asymmetric Y-Junction with θ1 = 100⁰ and θ2 = 150⁰; this geometry can be 

seen as the normal shape for the pulmonary bifurcation, assuming a common 

origin of the two branches, at point O (Fig. 3.1 (ii)). An axial black-blood MRI 

image of the pulmonary bifurcation of a healthy volunteer (male, 27 years old) 

can be seen in Fig. 3.2a obtained with ethical approval from the Glasgow CRIF 
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approval group, and written informed consent, REC name WoS REC3, 

reference 16/WS/0220. 

c. An asymmetric Y-Junction, with θ1, θ2 as in (b), which assumes a displaced 

origin for the LPA centreline, by 0.5 cm (~0.19D) upstream of point O (Fig. 

3.1 (iii)), and can also be considered physiological. 

d. An asymmetric Y-Junction, with θ1, θ2 as in (b) and displaced origins for both 

LPA and RPA, by 0.3 cm (~0.12D) downstream and 1 cm (~0.39D) upstream 

of point O, respectively (Fig. 3.1 (iv)).  

e. An asymmetric Y-Junction, with θ1, θ2 as in (b), but with a displaced origin 

and a reduced diameter for LPA by 1 cm (0.5d), representing a uniform small 

calibre of the pulmonary branch or, in the context of this work, a hypoplastic 

branch (Fig. 3.1 (v)) (Jang et al., 2017). 

f. A symmetric Y-Junction with θ1 = θ2 = 120⁰, representing the pulmonary 

bifurcation of repaired patients with TOF, including cases where the MPA may 

be directly attached to the RV without conduit (Fig. 3.1 (vi)) (Nina, 2014). 

g. A symmetric Y-Junction, with θ1 = θ2 as in (f), and a local 50% asymmetric 

stenosis within the LPA, positioned 1.7 cm (~0.65D) downstream of the 

pulmonary bifurcation. This geometry represents the case of LPA kinking (Fig. 

3.1 (vii)) (Nina, 2014). 

h. A symmetric Y-Junction, with θ1 = θ2 as in (f), and a local 50% symmetric 

stenosis within the LPA, positioned 1.7 cm (~0.65D) downstream of the 

pulmonary bifurcation (Fig. 3.1 (viii)). 
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i. A symmetric Y-Junction, with θ1 = θ2 as in (f), but with a displaced origin and 

a hypoplastic LPA (Jang et al., 2017), with a reduced diameter by 1 cm (0.5d) 

(Fig. 3.1 (ix)). 

Table 3.1: Characteristics of the nine different models created to represent the pulmonary bifurcation. 

Model Type Angle θ1 Angle θ2 

Branch Origin in 

relation to point 

O 

 LPA 
Clinical 

Relevance 

(i) T-Junction 90⁰ 90⁰ Common - rTOF 

(ii) 
Asymmetric 

Y-Junction 
100⁰ 150⁰ Common - 

Physiological 

case 

(iii) 
Asymmetric 

Y-Junction 
100⁰ 150⁰ Displaced for LPA - 

Physiological 

case 

(iv) 
Asymmetric 

Y-Junction 
100⁰ 150⁰ 

Displaced for both 

branches 
- 

Physiological 

case 

(v) 
Asymmetric 

Y-Junction 
100⁰ 150⁰ Displaced for LPA Hypoplastic 

Hypoplastic 

LPA  

(vi) 
Symmetric Y-

Junction 
120⁰ 120⁰ Common - 

rTOF  

(vii) 
Symmetric Y-

Junction 
120⁰ 120⁰ Common 

Local 

asymmetric 

stenosis 

LPA kinking 

– asymmetric 

stenosis 

(viii) 
Symmetric Y-

Junction 
120⁰ 120⁰ Common 

Local 

symmetric 

stenosis 

Branch LPA 

stenosis – 

symmetric 

stenosis 

(ix) 
Symmetric Y-

Junction 
120⁰ 120⁰ Displaced for LPA Hypoplastic 

Hypoplastic 

LPA 

3.2.2. Numerical approximations 

The computational meshes for all geometries of Fig. 3.1 were generated using the 

commercial software ANSA v17.1 (BETA CAE Systems). Each mesh consisted 

primarily of quadrilateral elements, with a few triangular elements in the middle of the 

bifurcation (Fig. 3.2b).  
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Figure 3.2: (a) An axial black-blood MRI image from a healthy male volunteer (27 years old), overlaid with an 

outline of the inner and outer walls of the pulmonary bifurcation. (b) Computational mesh for the geometry of Fig. 

3.1 (ii), consisting mainly of quadrilateral elements, a few triangular elements in the middle of the bifurcation and 

a boundary layer near the wall. 

A boundary layer mesh was also added near the arterial wall boundaries to capture the 

viscous effects, which included 17 layers with the first layer being at a distance of 

~0.002D away from the wall. This was determined based on a low y+ wall treatment, 

calculated using Eqs. (2.1), (2.2), where 𝜌 is the fluid density (1060 kg/m3), and 𝜇 is 

the dynamic viscosity (4x10-3- Pa s), and was equal to 0.18. This implies that the 

viscous boundary layer is sufficiently resolved within the fine layered mesh. The total 

number of elements for the nine geometries of Fig. 3.1 was between 90 000 - 125 000 

and was based on a grid independence test performed previously in a similar model. 

More specifically, a symmetric Y-Junction (Fig. 3.3a), with the diameters of the 

models and the length of the MPA, as those of Fig. 3.1 (vi), was conducted. The length 

of the RPA and LPA branches of this geometry was 8D, and the number of elements 

deemed sufficient for the flow regimes was 5000, based on the integral of the velocity 

profile at a reference line located ~0.019D from point O (Fig. 3.1 (ii)) before the 

pulmonary junction. In addition, the use of triangular (Fig. 3.3b) or primarily 

quadrilateral elements (Fig. 3.3a) in the mesh was compared and showed no difference 
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in the integral of velocity at the entrance of the bifurcation. The number of elements 

was roughly the same for both meshes (Fig. 3.3): (a) 4798 and (b) 4888 (Boumpouli 

et al., 2018).  

 

Figure 3.3: Computational grids of the pulmonary models with a surface mesh of (a) primarily quadrilateral 

elements and (b) primarily triangle elements. A boundary layer mesh is adopted near the walls of the models. (c) 

Grip independence analysis test, based on the integral of the velocity profile obtained at a reference point (~0.019D 

from point O) of the symmetric Y-Junction model. 

The latter type of elements was chosen to avoid non-orthogonality issues. The angle 

between a line which connects two cell centres in a face normal vector and a mesh is 

defined as mesh non-orthogonality. Non-orthogonality of triangular meshes is higher 

compared to quadrilateral elements and although non-orthogonal correctors can be 

utilised in OpenFOAM®, their use is not necessary for low non-orthogonality meshes 

(Ishigaki et al., 2017). The decision regarding the elements used have been previously 

validated by Arbia et al. (2014), where better results were obtained when axisymmetric 

elements oriented along the direction of flow were used. The length of the daughter 

branches was afterwards increased as it was found to affect the wall shear stress 

calculated at the inner wall. Nevertheless, as the number of elements around the region 

of interest (pulmonary bifurcation) was not altered, a mesh independence test was not 

performed.  
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For the simulations presented here, blood flow was considered Newtonian, laminar 

and incompressible, governed by the Navier-Stokes equations (Eqs. (1.17), (1.21)). In 

the models of Fig. 3.1, a steady, parabolic inlet velocity profile was assigned at the 

MPA (Vignon-Clementel et al., 2006, Sochi, 2015), using the “codedFixedValue” 

boundary of the OpenFOAM® open-source library, according to the equation: 

 
𝑢𝑝𝑎𝑟(𝑥) =

3

2
𝑈 (1 −

4𝑥2

𝐷2
) 

(3.1) 

 

with mean velocity U = 0.1 m/s, an average physiological value noted in healthy 

subjects (Gabe et al., 1969, Bronzino, 2000), and rigid walls. This boundary condition 

enables you to implement your own boundary conditions by adding a piece of C++ 

code to calculate the boundary value (Appendix A.2.1). It is the simplest way to 

implement a new boundary without using high level programming or an external 

library.  

The Reynolds number (Eq. (1.14)), calculated based on the MPA diameter, was 650 

for all cases. The semi-implicit method for pressure linked equations (SIMPLE) 

algorithm by Caretto et al. (1973), adopted by many CFD studies (Neofytou et al., 

2014), of the OpenFOAM® v.1806 (https://www.openfoam.com/) was utilised for the 

pressure–velocity coupling in all the numerical calculations. The SIMPLE algorithm 

solves the equations in a successive manner: an initial guess is made for the pressure 

distribution to calculate an intermediate velocity field that satisfy the momentum 

equation and then velocities and pressures are corrected based on the mass 

conversation (under-relaxation is applied on the calculation process) (Caretto et al., 

1973). The Gauss linear gradient and the second order bounded Gauss linear upwind 
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divergence numerical schemes (Warming and Beam, 1976) were used. This means that 

the finite volume discretisation is performed using the Gauss theorem, where the 

interpolation from cell to face centres is necessary, while the interpolation scheme is 

specified as linear, or central differencing. Residual control was set to 10-6 for pressure 

and velocity.  

To account for the unsteady nature of blood flow, a sinusoidal variation of the velocity 

profile at the MPA inlet was assumed for the geometry of Fig. 3.1 (ix), based on the 

following expression:  

 𝑢(𝑥, 𝑡) = 𝑢𝑝𝑎𝑟[1 + 𝑠𝑖𝑛(2𝜋𝑓𝑡)] (3.2) 

 

where 𝑓 is the frequency, assumed as 2 Hz (Young, 2014). Time-averaged results over 

a single cycle were compared with the steady-state numerical results for the same mean 

velocity. A combination of the SIMPLE and the pressure implicit with splitting of 

operators (PISO) (Issa, 1986) algorithms for pressure–velocity coupling within 

OpenFOAM® (PIMPLE) was utilised for the unsteady numerical calculations. The 

main difference of the PISO from the SIMPLE algorithm is that the momentum 

corrector step is applied for as many times as specified, and no under-relaxation is 

applied. PIMPLE operates by using outer correction loops to ensure convergence of 

the explicit parts of the equations, when the simulation moves on in time. At each time 

step a steady-state solution is searched based on the number of outer correctors 

specified. Once this solution is reached then the outer correction loop is bypassed and 

the simulation continues in time (Holzmann, 2016).  
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3.2.3. Effect of outlet boundary conditions 

For the geometries of Fig. 3.1, a condition of zero-pressure was initially applied at the 

LPA and RPA outlets (Zhang et al., 2016), which corresponds to a mean pressure at 

rest of 8-20 mmHg. The zero-pressure assumption is commonly used in simplified 

geometries without available patient-specific information of flow and pressure 

waveforms or peripheral resistances (McElroy and Keshmiri, 2018). However, in order 

to acquire more clinically relevant results and flow splits in the daughter branches, an 

investigation on the outflow boundary condition was conducted, in three different 

ways: 

Prescribed pressure outlet conditions: Using the symmetric Y-Junction geometry 

(Fig. 3.1 (vi)), first, the RPA branch was elongated to double its original length, since 

physiologically the RPA is longer than the LPA (Qureshi and Hill, 2015), with zero 

pressure assigned at both outlets; second, a pressure difference of |𝛥𝑃| = |𝑃𝑅𝑃𝐴 −

𝑃𝐿𝑃𝐴|, normalised by 0.5𝜌𝑈2, was prescribed at the branch outlets. A range of different 

|𝛥𝑃|values were tested and the approximate values of 0.026 and 0.015 were chosen, 

since these pressure difference values provided more clinically relevant flow splits in 

the daughter branches, closer to 40:60% (Tang et al., 2011). 

Prescribed flow splits: Murray’s Law formula can be used to calculate the flow 

expected in each branch outlet, based on the branch diameter, and, for the LPA, it 

could be expressed as: 

 𝑄𝐿𝑃𝐴/(𝑄𝐿𝑃𝐴 + 𝑄𝑅𝑃𝐴)  =  [𝐷𝐿𝑃𝐴
𝑛/(𝐷𝐿𝑃𝐴

𝑛 + 𝐷𝑅𝑃𝐴
𝑛)] (3.3) 
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where 𝑄𝐿𝑃𝐴, 𝑄𝑅𝑃𝐴 are, respectively, the flow rates at the LPA and RPA branches, 

𝐷𝐿𝑃𝐴,  𝐷𝑅𝑃𝐴 the branch diameters, while, customarily, n is considered equal to 3.  

Eq. (3.3) can be rewritten based on the “outflow splitting” method (Chnafa et al., 

2018), which calculates the flow division locally for each bifurcation generation, 

assuming n=2. For the pulmonary bifurcation, this is expressed as: 

 𝑄𝐿𝑃𝐴/𝑄𝑅𝑃𝐴  =  (𝐷𝐿𝑃𝐴/𝐷𝑅𝑃𝐴)𝑛 (3.4) 

 

The symmetric Y-Junction model with the hypoplastic LPA (Fig. 3.1 (ix)) was used 

as a reference geometry for this investigation, due to the difference in the diameter of 

the daughter branches. Based on the conservation of mass, the flow splits were 

calculated as 𝑄𝐿𝑃𝐴/𝑄𝑅𝑃𝐴 = (1/2)n, resulting in 11:89% flow split with the Murray’s 

Law and 20:80% with the “outflow splitting” method. The flow splits in the outlets of 

the models were prescribe utilising the “codedFixedValue” boundary (Appendix 

A.2.2). 

Lumped parameter models: A lumped model made of a peripheral resistance was 

coupled and implemented on each of the outlets of the symmetric hypoplastic model 

(Fig. 3.1 (ix)) to capture effects of the downstream vasculature (Grinberg and 

Karniadakis, 2008). The pressure, p, was calculated based on the flow rate, Q, and the 

resistance, R, according to Eq. (1.1). 𝑅𝐿𝑃𝐴 and 𝑅𝑅𝑃𝐴 were assumed both equal to 300 

dyn s cm-5 (Guibert et al., 2014), matching the distal resistance assumed in the three-

element Windkessel model (Capuano et al., 2019), described in the next paragraph. 

The effect of a pulsatile inlet flow condition was also investigated for the peripheral 

resistance boundary condition. 
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Furthermore, a three-element Windkessel (WK) lumped parameter model was coupled 

at the outlets of the geometries to represent the peripheral resistance and wall 

compliance of the pulmonary vessels (Guibert et al., 2014), according to the following 

differential equation: 

 
𝑝(𝑡) + 𝑅𝑑𝐶

𝜕𝑃(𝑡)

𝜕𝑡
= (𝑅𝑝 + 𝑅𝑑)𝑄(𝑡) + 𝑅𝑝𝑅𝑑𝐶 ∗

𝜕𝑄(𝑡)

𝜕𝑡
 

(3.5) 

 

where 𝑅𝑝 and 𝑅𝑑 are the proximal and distal resistances, and C is the capacitance, 

assumed as 40 dyn s cm-5, 300 dyn s cm-5, and 10-3 cm5 dyn-1, respectively (Guibert et 

al., 2014). The geometry of Fig. 3.1 (ix) was used for this investigation. A new solver 

was compiled for each lumped parameter model, utilising the PIMPLE algorithm for 

pressure–velocity coupling within OpenFOAM®, with the relaxation factors for 

pressure and velocity equal to 0.3 and 0.7, respectively.  

3.2.4. Post-processing 

To characterise the flow development in the arterial models, contours of velocity, 

velocity profiles and streamlines, WSS distribution along the inner wall of the 

bifurcation (connecting the LPA and RPA as shown in Fig. 3.1 (vi)), as well as pressure 

ratios and flow splits were analysed. Velocity values were non-dimensionalised by 

division with the mean MPA velocity 𝑈. WSS was non-dimensionalised with the value 

corresponding to the inlet WSS magnitude of a long straight segment that has the same 

diameter of MPA inlet and same inflow conditions as the pulmonary bifurcation 

model. For a two-dimensional channel, this can be calculated for a Newtonian model 

with a fully developed axial velocity profile as 𝜏𝑤2𝐷
= 6𝜇𝑈/𝐷 (Katritsis et al., 2007). 

The calculation of flow splits was based on the velocity profiles at a distance of 3cm 
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(1.15D) from the branch origin for each model. The choice of the distance was decided 

so that no flow recirculation of flow would be present at any of the branches of the 

models. The time-averaged wall shear stress (TAWSS) was further used and was 

determined according to the following equation: 

 
𝜏𝑚𝑒𝑎𝑛 =

1

𝑇
∫ |𝜏𝑤|𝑑𝑡

𝑇

0

 
(3.6) 

 

where  |𝜏𝑤| is the magnitude of the instantaneous WSS vector. 

3.2.5. Verification and validation 

Three different tests were employed to confirm the results of this study. First, a 

benchmark validation test was conducted based on a two-dimensional T-Junction 

model, as presented by Neofytou et al. (Neofytou et al., 2014), who compared their 

result with experimental measurements from the commonly used benchmark case of 

Liepsch and Moravec (Liepsch and Moravec, 1982), with a mean velocity of 

𝑈 = 0.16 𝑚/𝑠, corresponding to a Reynolds number of 400. A good agreement was 

found between the computational results of this study and those obtained by Neofytou 

and colleagues (Neofytou et al., 2014), with a percentage difference in the velocity 

integrals below 0.2% for the parent channel (min/max, ±SD, -0.0015/1.3 in this study 

vs 0.0054/1.558 on Neofytou et al., 2014, ±0.0345/0.129) and less than 1.4% 

(min/max, ±SD, -0.144/0.82 in this study vs -0.106/0.79 on Neofytou et al., 2014, 

±0.019/0.015) for the daughter channels. Second, computational results obtained in the 

symmetric Y-Junction with OpenFOAM® appeared in very good agreement with 

calculations performed in ANSYS Fluent®, for the same geometry and flow and 

boundary conditions (Fig. 3.4). More specifically, a percentage difference of 0.047% 
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was quantified for the integral of velocity profiles (min/max, ±SD, 0.0012/0.1286 in 

OpenFOAM® vs 0.0012/0.124 on ANSYS Fluent®, ±0/0.0023) positioned at the 

entrance of the bifurcation (at a distance 0.01 m from the origin O). A comparison 

between the simpleFoam and the pisoFoam solvers of the OpenFOAM® library was 

conducted for the symmetric Y-Junction model, assuming steady flow. For a laminar 

flow model and a mean velocity of 𝑈 = 0.1 𝑚/𝑠 at the MPA inlet, the length 

difference of the recirculation zone formed at the outer wall of the LPA was 1.3%. For 

a turbulent flow model (specification of turbulent model are provided in Chapter 4.2) 

with a mean MPA velocity of 𝑈 = 0.5 𝑚/𝑠, the LPA recirculation length difference 

was 2% between the two solvers, based on the results from simpleFoam, which is 

slightly greater, but still in good agreement, since the pisoFoam solver is more time-

accurate for incompressible turbulent flows, using the PISO algorithm. Finally, a 

similar comparison was conducted between the simpleFoam and pimpleFoam solvers 

for the symmetric Y-Junction with a hypoplastic LPA, assuming steady flow. The 

length difference of a localised recirculation area at the entrance of the outer wall of 

the LPA was 10%, while for the recirculation zone in the RPA, the difference was 

2.7%. 

 

Figure 3.4: Comparison of OpenFOAM® and Ansys Fluent. (a) Non-dimensionalised velocity contours. (b) Velocity 

profiles at the entrance of the bifurcation and at a distance of 0.01 m from the branch origin. Steady Newtonian 

flow, Re=650. 
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3.3. Results 

The results of this study are presented in a series of figures that explore the effects of 

different geometric features on the haemodynamics of the pulmonary bifurcation 

(Figs. 3.5-3.8), and, the effect of boundary conditions on velocity and WSS in the 

symmetric Y-Junction, with and without a hypoplastic LPA (Figs. 3.9-3.11). The 

geometries reflect normal and abnormal cases of congenital heart patients, as described 

in Section 3.2.1 (Table 3.1).  

3.3.1. Effect of bifurcation geometry 

3.3.1.1. Contours of velocity magnitude 

Contours of non-dimensional velocity magnitude are presented in Fig. 3.5 for a 

segment of each of the nine bifurcation models described in Section 3.2.1 (Fig. 3.1). 

A zero-pressure boundary condition is used at the outlets of the models, with a 

parabolic velocity profile, of Re=650, assigned at the inlet. Due to the parabolic inlet 

profile, the highest values of velocity in the MPA were observed along the centreline 

and the lowest were found adjacent to the walls, for all models. For the geometries of 

Figs. 3.5 (i-iv), (vi-viii), flow entering the bifurcation experienced an abrupt 

deceleration, with the maximum axial velocity value dropping rapidly, until becoming 

instantaneously zero when impinged on the wall (stagnation point, indicated with the 

letter S in Fig. 3.5). As a result, flow in the daughter branches was shifted towards the 

inner walls, with the highest values of velocity occurring adjacent to it, while extended 

low-velocity regions developed along the outer walls of the bifurcation. 
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The most substantial differences among the various models were observed for those 

with an LPA local stenosis (Figs. 3.5 (vii-viii)) or hypoplastic LPA (Figs. 3.5 (v), (ix)). 

For the models with local constriction (Figs. 3.5 (vii-viii)), the highest velocities were 

found inside the stenosis where the diameter of the artery was halved. Downstream of 

the stenosis, an extended region of low velocity values developed near the outer wall 

of the LPA, with an additional small-scale low-velocity region occurring at the inner 

wall of the model with symmetric narrowing (Fig. 3.5 (viii)). No substantial changes 

were noticed in the RPA velocity distribution of these models when compared with 

the symmetric non-stenotic model (Fig. 3.5 (vi)). In contrast, for hypoplastic models 

(Figs. 3.5 (v), (ix)), where the LPA diameter was also halved, the highest velocities 

were observed in the RPA while very low velocities were exhibited in the hypoplastic 

LPA. The velocity distribution in these models deviated significantly from their 

respective non-stenotic symmetric and asymmetric models, and an altered flow split 

between the daughter branches was apparent. 

 

Figure 3.5: Contours of non-dimensionalised velocity magnitude in models of the pulmonary bifurcation: (i) T-

Junction; (ii)-(v) asymmetric Y-Junction with (iii)-(iv) different branch origins and (v) hypoplastic LPA; (vi-ix) 

symmetric Y-Junction (vi) without and (vii)-(viii) with local stenosis or (ix) hypoplastic LPA. Steady Newtonian 

flow, Re=650. The stagnation point on the MPA centreline is indicated with the letter S; or SR and SL if deviated 

towards the RPA and LPA, respectively. 
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The stagnation point, S, was further identified for all models. It was located along the 

centreline of the MPA for the T-Junction (Fig. 3.5 (i)), the symmetric Y-Junction (Fig. 

3.5 (vi)), and the asymmetric Y-Junction with non-common branch origins (Fig. 3.5 

(iv)). For the remaining models, most stagnation points were found shifted away from 

the MPA centreline towards the RPA (denoted as SR in Fig. 3.5), by 0.77 cm (~0.3D) 

and 0.47 cm (~0.18D), respectively, for the asymmetric Y-Junctions of Fig. 3.5 (ii-iii); 

0.96 cm (~0.37D) for the asymmetric Y-Junction with hypoplastic LPA (Fig. 3.5 (v)); 

0.20 cm (~0.077D) for the symmetric Y-Junction with local symmetric stenosis (Fig. 

3.5 (viii)); and 0.22cm (~0.085D) for the hypoplastic LPA model (Fig. 3.5 (ix)). The 

only stagnation point found towards the LPA (denoted as SL) was for the local 

asymmetric stenotic model (Fig. 3.5 (vii)), shifted by 0.075 cm (~0.029D) from the 

MPA centreline. The results indicate that the local geometric features of the pulmonary 

bifurcation can alter the stagnation point where fluid division takes place. 

3.3.1.2. Velocity profiles and flow splits 

In addition to the velocity contours, Fig. 3.6 presents non-dimensional velocity profiles 

at a distance of 3 cm (~1.15D) from the origin of the branches, for each of the models. 

As described, for most geometries (Figs. 3.6 (i-iv), (vi-viii)), flow velocities 

downstream of the bifurcation were skewed towards the inner walls of the daughter 

branches and away from the outer walls, where reverse (retrograde) flow was 

observed. However, the shape and extreme values of the velocity profiles exhibited 

differences in each of the LPA and RPA branches, as seen on Fig. 3.6b. With the 

exception of the axisymmetric models (Figs. 3.6 (i), (vi)), peak velocities in the RPA 

were in general closer to the inner wall, compared to peak velocities in the LPA. The 
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highest peak LPA velocity values were found for the symmetric models with local 

LPA stenosis (Figs. 3.6 (vii-viii)), which is consistent with the velocity increase due 

to the local decrease in the branch diameter. The highest peak RPA values were 

calculated for the models with hypoplastic LPA (Figs. 3.6 (v), (ix)). 

 

Figure 3.6: Velocity profiles at a distance of 3 cm (~1.15D) from each branch origin presented (a) on top of each 

geometry and (b) placed comparatively next to each other. Dashed lines indicate cropped branch ends and 

symmetry planes (a) or the position of zero non-dimensionalised velocity (b). (i) T-Junction; (ii)-(v) asymmetric Y-

Junction, with the different branch origins or hypoplastic LPA; (vi)-(xi) symmetric Y-Junction, without or with 

local stenosis or hypoplastic LPA. Steady Newtonian flow, Re=650. 

In the asymmetric model of Fig. 3.6 (ii), the velocity profile in the RPA exhibited the 

most extended reverse flow along the outer wall. A smaller extent in the reverse flow 

in the RPA was noticed for the models of Figs. 3.6 (i), (iii-iv), (vi-viii), with the 

shortest of all for models of Figs. 3.6 (v), (ix). The most extended reverse flow in the 
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LPA branch was observed in the model with asymmetric local stenosis (Fig. 3.6 (vii)). 

Similar LPA flow reversal was seen in all other models, with the exception of the 

hypoplastic LPA geometries (Figs. 3.6 (v-ix)) where there was no reversal of flow in 

LPA. In the model with symmetric stenosis (Fig. 3.6 (viii)), flow was also reversed 

near the inner wall of the LPA. 

As seen, the geometries with hypoplastic LPA (Figs. 3.6 (v), (ix)) had the biggest 

deviation in the velocity profiles in both daughter branches, as compared to all other 

models. There was a considerable increase in the RPA velocity in these cases, with a 

concomitant decrease in the LPA velocity. These profiles indicate that the flow was 

diverted primarily towards the RPA. To examine this further, the integrals of the 

velocity profiles were calculated to evaluate the flow rate in the MPA, RPA, and LPA. 

With the exception of the two models with hypoplastic LPA (Figs. 3.6 (v), (ix)), all 

other models (Figs. 3.6 (i-iv), (vi-viii)) exhibited an equal flow rate in the right and 

left arterial branches (50:50% for QLPA:QRPA), as measured at a distance of 3cm 

(1.15D)  from the branch origin. However, a flow split ratio of approximately 12:88% 

(QLPA:QRPA) was estimated for both hypoplastic models (Figs. 3.6 (v), (ix)), 

demonstrating that halving the diameter of one of the branches can significantly affect 

the distribution of flow in the pulmonary bifurcation.   

3.3.1.3. Velocity streamlines  

Fig. 3.7 presents velocity streamlines in the nine geometries of Fig. 3.1. Arrows along 

the streamlines indicate the direction of fluid flow from the main pulmonary artery to 

the daughter branches. It is evident that recirculation zones develop in all models, 

independent of the branching angle for RPA or LPA, that is, at 90⁰ (Fig. 3.7 (i)), 100⁰ 
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(Figs. 3.7 (ii-iv)), 120⁰ (Figs. 3.7 (vi-ix)), and 150⁰ (Figs. 3.7 (ii-iv)). In the asymmetric 

Y-Junction of Fig. 3.7 (ii), the 100⁰ angle between the MPA and RPA (θ1) had an 

extended recirculation area, while only a small region of recirculating fluid was 

observed for the 150⁰ MPA-LPA angle (θ2). For the same branching angles but with 

different origins (Figs. 3.7 (iii-iv)), the recirculation zones at the RPA (θ1 = 100⁰) were 

reduced, while at the entrance of the LPA (θ2  = 150⁰) they were extended considerably.  

Elongated recirculation regions were also observed in the symmetric models with local 

stenosis (Figs. 3.7 (vii), (viii)). In Fig. 3.7 (vii), recirculation of flow occurred 

downstream of the asymmetric stenosis, along the outer wall of the bifurcation, while 

similar zones downstream of the symmetric stenosis in Fig. 3.7 (viii) were seen 

adjacent to both the outer and inner walls of the arterial branch. For the two hypoplastic 

models (Figs. 3.7 (v), (ix)), flow recirculation occurred at the entrance to the RPA and 

immediately before entering the left pulmonary artery. This zone was more extended 

in the asymmetric model (Fig. 3.7 (v)). For all models, there is a region of accelerating 

flow downstream of the stagnation point (S, Fig. 3.5), which becomes more 

pronounced within the stenosis for the models of Figs. 3.7 (vii), (viii). 

Flow separation is a common phenomenon in bifurcations and occurs when the fluid 

velocity cannot expand with the geometry or when an adverse pressure gradient is 

present. Fluid particles in these cases are captured within the recirculation area and 

cannot re-enter the bulk flow due to their incapacity to overcome the flowing fluid 

pressure (Rubenstein et al., 2015). The results of Fig. 3.7 indicate that the upstream 

separation point, where recirculation zones start to develop, was at the same position 

for all non-stenotic models, that is, at the entrance of the bifurcation. However, the 

extent of these zones appears to be affected by the branch origin, resulting in different 
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locations of the downstream flow reattachment points. Increased regions of 

recirculation cannot be correlated with an increase in the branching angle, as previous 

studies have indicated (Chern et al., 2012, Zhang et al., 2016). The models with local 

stenosis (Figs. 3.7 (vii-viii)) and hypoplastic LPA (Figs. 3.7 (v), (ix)) have zones 

developed downstream of the stenosis or upstream of the entrance to the left 

pulmonary branch, respectively. Local stenosis appeared to cause extension of 

recirculation zones downstream of the stenosis (Figs. 3.7 (vii), (viii)), while the 

hypoplastic models cannot be correlated with increased regions of recirculation further 

downstream within the LPA (Figs. 3.7 (v), (ix)).  

 

Figure 3.7: Velocity streamlines in the models of Fig. 3.1: (i) T-Junction; (ii)-(iv) asymmetric Y-Junction models 

with different branch origins and (v) with hypoplastic LPA; (vi) symmetric Y-Junction; (vii)-(viii) models with local 

stenosis; (ix) model with hypoplastic LPA. Steady Newtonian flow, Re=650. 

3.3.1.4. Wall shear stress profiles 

Wall shear stress distribution along the inner wall of the bifurcation is presented in 

Fig. 3.8, non-dimensionalised according to the WSS value at the MPA inlet, as 

described in Section 3.2.5. The zero position in the abscissae of these plots signifies 
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the stagnation point (S, SR, or SL, see Fig. 3.5), while normalisation of the distance (l) 

from point S along the inner wall is based on the MPA diameter, D.  

Examining the effect of branching angle (Fig. 3.8a), it appears that while the 

symmetric Y-Junction (dotted line in Fig. 3.8a) and the T-Junction model (dash line in 

Fig. 3.8a) presented symmetric WSS profiles on both branches, the asymmetric Y-

Junction (solid line in Fig. 3.8a) obtained significantly increased WSS values towards 

the LPA (θ2 = 150⁰). The location of the maximum WSS values for each model was 

also different, with that for the T-Junction being the furthest away from the stagnation 

point.  

Displacing the origins of one or both branches (of the same angle) caused a further 

increase of non-dimensionalised WSS values in the LPA of the asymmetric Y-

Junctions and a simultaneous WSS reduction in the RPA (Fig. 3.8b). In addition, the 

location of the highest WSS values for each model moved further away from the 

stagnation point in both branch directions. The geometry of Fig. 3.5 (iv) resulted in a 

well-defined high WSS region at the short distance from the stagnation point towards 

the LPA, taking on very low values further downstream.  

For the models with local stenosis (Fig. 3.8c), there was a clear increase at the WSS 

values along the inner wall of the LPA, without a strong influence to the WSS in the 

RPA. This was particularly evident for the symmetric stenotic model which exhibited 

a very different WSS distribution in the LPA. 
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Figure 3.8: Non-dimensionalised wall shear stress (WSS) distribution along the inner wall of the models of Fig. 

3.5, for steady Newtonian flow, Re=650: (a) models with different branching angles; (b) asymmetric models with 

different branch origins; (c) symmetric Y-Junction without and with local stenosis; (d) asymmetric and symmetric 

Y-Junctions without and with hypoplastic LPA. The zero position in the abscissae signifies the stagnation point (S, 

SR, or SL, see Fig. 3.5). 

Finally, for the geometries with hypoplastic LPA (Fig. 3.8d), the WSS in the LPA 

dropped to approximately the same values irrespective of the branching angle of the 

LPA bifurcation (120⁰ or 150⁰). WSS in the RPA also decreased but obtained different 

values for the asymmetric and symmetric models, and the peak WSS was shifted away 

from the stagnation point; these profiles resembled somewhat the WSS distribution at 

the RPA of the T-Junction (dash line in Fig. 3.8a).  

3.3.2. Effect of outlet boundary conditions 

3.3.2.1. Prescribed pressure outlet conditions 

The effect of the pressure boundary condition at the branch outlets was tested in two 

ways (Fig. 3.9). Flow was diverted towards the LPA branch where higher velocities 
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were observed for the extended RPA model (Fig. 3.9a (i)); in this model, lower 

velocities were noticed in the RPA with strong recirculation zones. The opposite was 

observed in the models with a normalised branch pressure difference 
|𝛥𝑃|

0.5𝜌𝑈2 of 0.026 

(for PLPA > PRPA, Fig. 3.9a (ii)) and 0.015 (also PLPA > PRPA, Fig. 3.9a (iii)), where flow 

diverted towards the right branch. The streamlines of the model in Fig. 3.9a (iii) 

present decreased recirculation zones when compared to Fig. 3.9a (ii) both at RPA and 

LPA.  

 

Figure 3.9: Effect of pressure boundary condition at branch outlet. (a) Non-dimensionalised velocity contours 

overlaid by streamlines. (b) velocity profiles along the RPA and LPA. (c) Non-dimensionalised WSS distribution 

along the inner wall for the geometry of Fig. 3.5 (vi) (solid line) and model with (i) an extended right pulmonary 

branch with 
|𝛥𝑃|

0.5𝜌𝑈2 = 0, (ii) 
|𝛥𝑃|

0.5𝜌𝑈2 = 0.026 with PLPA > PRPA and (iii) 
|𝛥𝑃|

0.5𝜌𝑈2 = 0.015 with PLPA > PRPA. Steady 

Newtonian flow, Re=650. 
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Velocity profiles at a distance of 3cm (1.15D) from the branch origin were also plotted 

for the RPA and LPA branches (Fig. 3.9b), confirming the above observations. A slight 

increase in the forward velocity in the LPA was seen in the case of Fig. 3.9a (iii), as 

compared to Fig. 3.9a (ii). The velocity profiles for these models indicate variations in 

the branch flow splits, with the flow diverted towards the LPA (Fig. 3.9a (i)) and 

towards the RPA (Figs. 3.9a (ii), (iii)). The flow rates in the LPA and RPA were 

calculated for all models and flow split ratios were found approximately 67:33% for 

Fig. 3.9a (i), 33:67% for Fig. 3.9a (ii) and 40:60% for Fig. 3.9a (iii) (QLPA:QRPA). As 

expected, the results indicate that the pressure boundary condition can alter the flow 

split in the pulmonary bifurcation from the 50:50% ratio in the daughter branches. 

The stagnation point was further identified for these three models. For the geometries 

of Figs. 3.9a (i) and 3.9a (ii), the stagnation point was found 0.12 cm (0.046D) towards 

the LPA and the RPA, respectively, while for the model of Fig. 3.9a (iii), the stagnation 

point was located 0.0075 cm (0.0029D) towards the RPA.  

Non-dimensionalised wall shear stress profiles are presented in Fig. 3.9c and are 

compared with the WSS obtained for the symmetric geometry of Fig. 3.5 (vi) with zero 

pressure at both branch outlets (dash line in Fig. 3.8a, repeated as solid line in Fig. 

3.9c). A slight increase is observed in the WSS developed at the inner wall of the RPA, 

with a simultaneous WSS reduction at the LPA wall for the model of Fig. 3.9a (i). 

Accordingly, a decrease was observed in the WSS along the inner wall of the RPA of 

the models with the pressure difference at the branch outlets (Figs. 3.9a (ii), (iii)).  
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3.3.2.2. Prescribed flow splits 

Contours of non-dimensional velocity magnitude are presented in Fig. 3.10a (i) 

(QLPA:QRPA= 11:89%) and Fig. 3.10a (ii) (QLPA:QRPA=20:80%) for Murray’s Law and 

the “outflow splitting” method (Eqs. (3.3) and (3.4), Section 3.2.3), respectively. As 

expected, the results are comparable with those of Fig. 3.5 (ix), with the majority of 

the flow diverted to the RPA. The stagnation point, S, was found 0.22cm (~0.085D) 

and 0.17cm (~0.065D) towards the RPA, for the models of Figs. 3.10a (i) and 3.10a 

(ii), respectively. The non-dimensionalised WSS distributions along the inner wall of 

the bifurcation are shown in Fig. 3.10b. With Murray’s Law (Fig. 3.10a (i)), the WSS 

is very similar to that with zero-pressure boundary condition (Fig 3.8d), with slightly 

lower peak WSS value in the LPA. WSS is increased in both branches for the model 

with the “outflow splitting” method (Fig. 3.10a (ii)), which is more prominent in the 

LPA (Fig. 3.10b).  

3.3.2.3. Coupled Lumped Parameter Models 

Fig. 3.10a also presents non-dimensionalised velocity contours for a peripheral 

resistance boundary condition (Fig. 3.10a (iii), QLPA:QRPA=22:78%), and  a three-

element Windkessel model (Fig. 3.10a (iv), QLPA:QRPA=14:86%), for steady-state inlet 

flow. Similar to cases Figs. 3.10a (i), (ii) and Fig. 3.5 (ix), most of the flow is directed 

towards the RPA. For both cases, the stagnation point is shifted towards the RPA by 

0.12 cm (~0.046D) (Fig. 3.10a (iii)) and 0.17 cm (~0.065D) (Fig. 3.10a (iv)). The WSS 

for the simulation with the peripheral resistance (Fig. 3.10a (iii)) exhibits an increase 

in both daughter branches, similar to Fig. 3.10a (ii). With the Windkessel model 
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assumption (Fig. 3.10a (iv)), the WSS resembles that of Fig. 3.8d, but with a small 

increase in the WSS in the LPA (Fig. 3.10b).  

 

Figure 3.10: Effect of outlet boundary conditions. (a) Non-dimensionalised velocity contours. (b) Non-

dimensionalised WSS distribution along the inner wall for the geometry of Fig. 3.5 (ix) (solid line) with (i)-(ii) flow 

split dictated by (i) Murray’s Law (QLPA:QRPA is 11:89%) and (ii) “outflow splitting” method (QLPA:QRPA is 

20:80%), and (iii)-(iv) coupled lumped parameter models with , (iii) a peripheral resistance (QLPA:QRPA is 22:78%) 

and (iv) a three-element Windkessel (WK) model (QLPA:QRPA is 14:86%). Steady Newtonian flow, Re=650. 

Instantaneous non-dimensionalised velocity contours and wall shear stress distribution 

are presented in Fig 3.11a for the model of Fig. 3.5 (ix) with time-dependent sinusoidal 

inlet profile. At maximum velocity, the WSS and velocity magnitude take the highest 

values during the cycle (Fig. 3.11a (i)). During deceleration, both the velocity and 

WSS decrease until they reach the lowest values, at maximum deceleration (Figs. 

3.11a (ii), a (iii)). The peak WSS is higher along the inner wall of the LPA, except at 

the middle of acceleration (Figs. 3.11a (iv)). The flow splits for each of the four time 
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points were QLPA:QRPA=28:72% (Figs. 3.11a (i)), 22:78% (Fig. 3.11a (ii)), 51:49% 

(Fig. 3.11a (iii)), and 22:78% (Fig. 3.11a (iv)). An average flow split of 

QLPA:QRPA=22:78% was calculated over one cycle. The stagnation point was also 

identified and was found shifted towards the RPA by 0.075 cm (~0.028D), 0.22 cm 

(~0.085D), 0.54 cm (~0.21D), and 0.12 cm (~0.046D) for the four time-points (Figs. 

3.11a (i-iv)), respectively. The time- averaged WSS for the unsteady flow is compared 

with the steady flow in Fig. 3.11b. A similar pattern in the wall shear stress distribution 

is observed, but with slightly higher values for the TAWSS. 

 

Figure 3.11: Effect of pulsatility in the symmetric Y-Junction with hypoplastic LPA and the peripheral resistance 

boundary condition. (a) Instantaneous non-dimensionalised velocity contours and WSS distribution along the inner 

wall, at maximum acceleration, middle of deceleration, maximum deceleration, and middle of acceleration of a 

sinusoidal waveform (Eq. (3.2)). (b) Steady and time-averaged non-dimensional wall shear stress distribution for 

steady and unsteady flow. Newtonian flow, mean Re=650. 
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3.4. Discussion 

Adult patients with repaired tetralogy of Fallot constitute an increasing population that 

require regular monitoring and specialised care due to unpredictable and long-term 

complications. Pulmonary regurgitation and left pulmonary kinking are the most 

frequent causes for re-intervention, commonly treated through pulmonary valve 

replacement (Geva, 2011). Analysis of the blood flow development in the pulmonary 

arteries of these patients is important and may improve clinical evaluation and 

decision-making for PVR (Guibert et al., 2014, Chern et al., 2008, Tang et al., 2012). 

To that end, the focus of the present study was to elucidate computationally the effects 

of different geometric parameters and outlet BCs on the haemodynamics in simplified 

models of the pulmonary bifurcation.  

3.4.1 Simplifying assumptions 

Arguably, the most important simplification of this study was the assumption of 2D 

geometries for the pulmonary bifurcation. This choice was made to facilitate an 

extensive investigation of different geometric parameters and boundary conditions and 

was supported by a comparison with a three-dimensional geometry demonstrating 

qualitative similarities in the shape of the WSS distribution along the inner wall of the 

bifurcation, for both 2D and 3D models, despite the quantitative differences (Fig. 

4.3a). The use of the simplified models is explained since the aim of this work was to 

capture the main characteristics of the flow and WSS distribution in the pulmonary 

bifurcations under a range of different conditions. This would be difficult to perform 

with three-dimensional patient-specific geometries since the parametric variation 

would be more complex to define.  
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Another important simplification was the assumption of steady flow. Some aspects of 

unsteadiness can be considered negligible for large vessels (Kazakidi et al., 2009, 

Kazakidi et al., 2011), particularly since physiological fluctuations in mean velocity 

during the cardiac cycle are adequately slow to assume quasi-steady flow. This was 

confirmed here by the similarity in WSS values between steady and unsteady 

sinusoidal flows, for both 2D and 3D geometries (Fig. 3.11b and Fig. 4.3a). Finally, 

the assumption of rigid walls is another assumption that may influence the 

computational results. Nevertheless, wall compliance has been found to have a 

minimal effect on the overall flow (Capuano et al., 2019). Indeed, the radial aortic wall 

deformation is also relatively small during the cardiac cycle compared with the axial 

unsteady flow into the pulmonary branches (Thenappan et al., 2016), and could be 

neglected. It is, therefore, reasonable to expect that the work presented here provides 

a good indication of the effects of the same or similar conditions in the respective 3D 

models and captures qualitatively the characteristics of 3D unsteady flow. 

3.4.2. Comparison with other works 

Previous studies have investigated the effect of angle in the pulmonary bifurcation and 

found that recirculation zones develop for branch angles close to or equal to 100⁰ 

(Zhang et al., 2016), but not for an angle of 150⁰ (Chern et al., 2008). This is in 

agreement with the results of this study for branch angles 90⁰, 100⁰ and 150⁰ (Figs. 3.7 

(i), (vi), (ii), respectively); however, Figs. 3.7 (iii), (iv) demonstrate that new 

recirculation zones develop simply by the displacement of the branch origins (which 

can relate to altered pressure gradient and centripetal force), for the same branch angle 

of 150⁰. The results of this work, therefore, clarify that increased recirculation cannot 
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be correlated only with increased branching angle, and that further to the branch angle, 

the origin of the pulmonary branches is also important in analysing the local flow 

development. For the local stenotic models (Figs. 3.7 (vii-viii)), the flow separation, 

and the WSS profiles (Fig. 3.8c) obtained is in comparison to the study of 

Kanokjaruvijit et al. (Kanokjaruvijit et al., 2017), where different types of stenotic 

bifurcations were investigated, and with Katritsis et al. (Katritsis et al., 2010). Major 

flow separation was found to occur when the diameter inside the stenosis decreased to 

50%, and wall shear stress was increased inside the stenotic branches, followed by a 

rapid decrease downstream (Kanokjaruvijit et al., 2017). The contours of the non-

dimensionalised velocity magnitude, as presented in Fig. 3.5, are also in agreement 

with those reported in similar studies (Katritsis et al., 2010). In addition, this work is 

comparable to the work of Szymanski et al. (Szymanski et al., 2008), who observed a 

similar WSS pattern on the inner wall of a T-Junction, and analysed the importance of 

the stagnation point. Immediately downstream of the stagnation point, where the 

velocity is zero and the wall shear stress is very low, a region of high WSS was present, 

followed by low WSS values (Szymanski et al., 2008), similar to the results presented 

here. This study, further, demonstrates that the WSS distribution on the inner wall is a 

result of the location of flow division in bifurcating flows, as shown in Figs. 3.8, 3.9c, 

3.10b, however no previous studies were found investigating this effect.  

3.4.3. Physiological, pathological, and clinical relevance 

It has been proposed that in the presence of pulmonary valve regurgitation, branch 

stenosis limits the flow to the corresponding lung and possibly aggravates the severity 

of PR (Chen and Kilner, 2013). In addition, differential reverse flow between the 



97 
 

pulmonary branches (branch regurgitation) may be positively correlated with 

pulmonary vascular resistance (Harris et al., 2011). Patients without pulmonary branch 

stenosis appear to have increased LPA regurgitation, while patients with stenosis or a 

hypoplastic branch are associated with increased retrograde flow in the larger artery 

and consequently increased pulmonary vascular resistance. Therefore, patients with 

stenosis or a hypoplastic branch and significantly differential branch regurgitation, are 

expected to have elevated pulmonary vascular resistance in the enlarged non-stenotic 

branch (Harris et al., 2011). The percentage of diameter reduction also dictates the 

flow split between the two branch arteries. With the majority of flow diverted to the 

enlarged RPA, the differential backflow is expected to increase accordingly, along 

with the pulmonary vascular resistance and pressure in the non-stenotic branch, 

increasing the risk of pulmonary vascular diseases and hypertension during childhood. 

In general, reduced flow in the LPA is a clinical observation in many TOF patients, 

due to anatomical variations, which complicates flow in their pulmonary arteries 

(Zhang et al., 2016). Flow imbalance between the LPA and the RPA may also have 

several clinical consequences, leading to ventilation or perfusion mismatch, or 

adversely influence pulmonary microvascular growth if preserved for extended 

periods during childhood. To reflect on these views, an analysis on the pressure ratios 

and flow splits in the models presented in this study is extended in the following 

paragraphs. 

3.4.3.1. Pressure ratios 

The importance of appropriate pressure conditions in arterial models has been broadly 

discussed in the literature (Pijls et al., 1993, Young et al., 2014). In this study, the 
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effect of different conditions at the branch outlets was investigated (Section 3.3.2.2), 

including the use of more realistic pressure values (Figs. 3.9, 3.10). These values fall 

within the range of pressures computationally calculated in the study of Arbia et al. 

(Arbia et al., 2014), expressed relative to a reference pressure at the outlets of the 

models. 

A more clinically-relevant way of understanding the pressure changes along the 

pulmonary bifurcation is through comparison of the pressure ratios between the two 

branches (PLPA:PRPA) and between the daughter and parent vessels (PLPA:PMPA and 

PRPA:PMPA). For that, the static pressure within each vessel was measured at four 

locations along the centreline, at distances 4 to 7 cm (~1.5D to ~2.7D) from the branch 

origin, and at additional symmetrical locations on either side of the centreline, at 0.65 

cm (0.25D) from the walls of the MPA and 0.5 cm (~0.2D) from the walls of both the 

RPA and LPA (total of 12 points, as shown in Fig. 3.12a, overlaying pressure contours 

in the symmetric Y-Junction, non-dimensionalised by 0.5𝜌𝑈2). The mean arterial 

pressure ratios, along with the standard deviation, were then calculated based on the 

12 measurements for each vessel. Table 3.2 provides the measured pressure ratios and 

standard deviation, while Fig. 3.12b presents the PLPA:PRPA and PLPA:PMPA ratios, 

where 1 indicates equal pressure values.  

For the symmetric T- and Y-Junctions, the left and right pulmonary branches have the 

same mean pressure, which is slightly higher than that in the MPA (cases (i) and (vi) 

in Table 3.2 and Fig. 3.12b). Introducing asymmetry in the bifurcation (asymmetric 

Y-Junction models (ii-v) in Table 3.2 and Fig. 3.12b), results in an increase in the mean 

pressure developed in the LPA with a concomitant decrease in the RPA, as compared 

to the pressure in the MPA; an exception to this is for the asymmetric model with both 
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branch origins displaced (Table 3.2 (iv)) which exhibits almost the same mean pressure 

in both RPA and MPA. The asymmetric Y-Junction with hypoplastic LPA (Table 3.2 

(v), Fig. 3.12b) has the highest mean pressure difference between the left and right 

pulmonary branches among all models, with the pressure in the LPA being clearly 

higher than that in the RPA. The symmetric models with local stenosis (Table 3.2 (vii-

viii), Fig. 3.12b) exhibit a distinctive decrease in the mean LPA pressure, while the 

mean RPA pressure is very similar to that of the MPA. For the symmetric model with 

hypoplastic LPA (Table 3.2 (ix), Fig. 3.12b), the mean LPA pressure is elevated, like 

in the asymmetric model (Table 3.2 (v)), and is higher than the RPA pressure, which 

in turn is lower than that in the MPA. The opposite is found for the model with an 

extended RPA branch (Table 3.2 (x), Fig. 3.12b), where the mean LPA pressure is 

lower than the mean RPA and MPA pressures. For the models with the pressure 

difference at the outlets (Table 3.2 (xi-xii), Fig. 3.12b), the mean LPA pressures are 

higher than those in the RPA. Finally, for the four different outflow conditions tested 

in the symmetric Y-Junction with the hypoplastic LPA (Table 3.2 (xiii-xvi), Fig. 

3.12b), the mean LPA pressure is elevated while the mean pressure in the RPA is 

reduced, similar to case (ix), Table 3.2. All pressure ratios for the model with the flow 

splits as predicted by the Murray’s Law (Table 3.2 (xiii)) are almost identical to those 

of case (ix) and slightly different to case (xvi) with the coupled Windkessel model. 

Among the last four cases (xiii-xvi), the model with the peripheral resistance at the 

branch outlets (Table 3.2 (xv)) has the largest deviation in the PLPA:PRPA ratio from 

case (ix) in Table 3.2. 
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Figure 3.12: (a) Points where the pressure values were measured, overlaying contours of pressure in the symmetric 

Y-Junction. Pressure is depicted relative to the reference pressure at the outlets, and normalised by 0.5𝜌𝑈2. (b) 

Pressure ratios for the models examined: (i) T-Junction (Fig. 3.5 (i)); (ii)-(v) asymmetric Y-Junction models, with 

(ii) common origin (Fig. 3.5 (ii)), (iii) one (Fig. 3.5 (iii)) or (iv) both branch origins displaced (Fig. 3.5 (iv)), or (v) 

hypoplastic LPA (Fig. 3.5 (v)); (vi) symmetric Y-Junction (Fig. 3.5 (vi)), with (vii) local asymmetric stenosis (Fig. 

3.5 (vii)), (viii) local symmetric stenosis (Fig. 3.5 (viii)), or (ix) hypoplastic LPA (Fig. 3.5 (ix)); (x) symmetric Y 

model with extended RPA (Fig. 3.9a (i)); (xi)-(xii) symmetric Y model with PLPA > PRPA and with 
|𝛥𝑃|

0.5𝜌𝑈2 = 0.026 

(Fig. 3.9a (ii)), and with 
|𝛥𝑃|

0.5𝜌𝑈2 = 0.015 (Fig. 3.9a (iii)), respectively; (xiii)-(xvi) symmetric Y model with 

hypoplastic LPA and (xiii)-(xiv) prescribed flow splits (Fig. 3.10a (i),(ii)), and (xv)-(xvi) lumped parameter models 

coupled at the branch outlets (Fig. 3.10a (iii),(iv)). Steady Newtonian flow, Re=650. 
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Table 3.2: Pressure ratios with standard deviation from the mean value, as calculated from measurements of 

relative pressure at different points in the pulmonary branches (locations of measurement are shown at inset of 

Fig. 3.12a), under steady flow. 

  PLPA:PRPA PLPA:PMPA PRPA:PMPA 

(i) T-Junction (Fig. 3.5 (i)) 
1.000 ± 5.5e-6 1.018 ± 3.6e-3 1.018 ± 3.6e-3 

(ii) Asymmetric Y-Junction with branch origin at O  

(Fig. 3.5 (ii)) 

1.122 ± 9.2e-3 1.049 ± 6.8e-4 0.935 ± 7.1e-3 

(iii) Asymmetric Y-Junction with displaced LPA origin  

(Fig. 3.5 (iii)) 

1.075 ± 7.0e-3 1.043 ± 7.1e-4 0.970 ± 6.5e-3 

(iv) Asymmetric Y-Junction with both origins displaced  

(Fig. 3.5 (iv)) 

1.026 ± 2.6e-3 1.031 ± 4.6e-3 1.000 ± 3.9e-3 

(v) Asymmetric Y-Junction with hypoplastic LPA (Fig. 3.5 

(v)) 

1.228 ± 2.4e-2 1.013 ± 8.2e-3 0.885 ± 5.5e-3 

(vi) Symmetric Y-Junction (Fig. 3.5 (vi)) 
1.000 ± 1.6e-5 1.013 ± 3.7e-3 1.013 ± 3.6e-3 

(vii) Symmetric Y-Junction with local asymmetric stenosis in 

LPA (Fig. 3.5 (vii)) 

0.797 ± 1.5e-3 0.793 ± 4.8e-3 0.995 ± 4.7e-3 

(viii) Symmetric Y-Junction with local symmetric stenosis in 

LPA (Fig. 3.5 (viii)) 

0.850 ± 3.3e-3 0.868 ± 2.1e-3 1.021 ± 2.6e-3 

(ix) Symmetric Y-Junction hypoplastic LPA (Fig. 3.5 (ix)) 
1.145 ± 1.6e-2 1.013 ± 7.5e-3 0.885 ± 5.5e-3 

(x) Symmetric Y-Junction with extended RPA (Fig. 3.9a (i)) 
 

0.937± 4.3e-3 

0.960± 5.3e-3 1.024 ± 9.5e-4 

(xi) Symmetric Y-Junction with 
|𝛥𝑃|

0.5𝜌𝑈2
= 0.026 (Fig. 3.9a 

(ii)) 

1.193 ± 1.6e-2 1.085 ± 4.6e-2 0.910 ± 3.1e-2 

(xii) Symmetric Y-Junction with 
|𝛥𝑃|

0.5𝜌𝑈2 = 0.015 (Fig. 3.9a 

(iii)) 

1.071 ± 5.6e-3 1.039 ± 2.6e-3 0.970 ± 7.5e-3 

(xiii) Murray’s Law (Fig. 3.10a (i)) 1.150 ± 1.5e-2 1.014 ± 7.3e-3 0.882 ± 5.6e-3 

(xiv) Outflow Splitting Method (Fig. 3.10a (ii)) 1.097 ± 2.1e-2 1.000 ± 1.2e-1 0.910 ± 6.3e-3 

(xv) Peripheral Resistance (Fig. 3.10a (iii)) 1.056 ± 1.4e-2 1.008 ±7.1e-3 0.954 ± 5.7e-3 

(xvi) Windkessel model (Fig. 3.10a (iv)) 1.115 ±1.4e-2 1.010 ± 7.1e-3 0.906 ± 4.9e-3 

Following the analysis in the pressure ratios and the identification of the stagnation 

point (Figs. 3.5, 3.9a, 3.10a), it can be observed that a PLPA:PRPA ratio in the range of 

1±0.026 exists in the models where the stagnation point was found along the MPA 

centerline; that is, the T- and symmetric Y- Junctions, and the asymmetric Y-Junction 

with both branch origins displaced. Therefore, these models have approximately equal 
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mean pressures in the pulmonary branches. For the remaining models, where the 

stagnation point was shifted, the PLPA:PRPA  ratio deviated further from the value of 1, 

indicating the existence of differential pressures between the two branches.  

In short, this study demonstrates a relation between the stagnation point and pressure 

ratios in the pulmonary bifurcation. These ratios also clarify that the pressure in the 

left pulmonary artery is generally higher than the pressure in the right and main 

pulmonary arteries, unless there is a local obstruction in the LPA branch and with the 

exception of the symmetric T- and Y- Junctions. These findings correlate well with 

clinical observations in TOF patients (Muster et al., 1982) indicating that measurement 

of the mean pressure ratios could be a useful haemodynamic index in the clinical 

practice for the assessment of LPA stenosis and PVR. 

3.4.3.2. Flow Splits 

Further to identifying pressure differences between the left and right pulmonary 

branches, it is also clinically relevant to estimate the branch flow splits. The flow split 

difference between the arterial branches becomes particularly important when taking 

into account the pulmonary vascular resistance. Chronic thromboembolic pulmonary 

hypertension (CTEPH), a type of pulmonary hypertension, develops in cases of 

stenosed pulmonary arterial vessels. Rarefaction, the process where the density of 

small capillaries and arterioles are reduced, results in elevated pulmonary vascular 

resistance, and flow in this case is diverted towards the non-stenosed branch (Olufsen 

et al., 2012, Spazzapan et al., 2018). Furthermore, long-term pulmonary stenosis in 

patients with TOF is thought to lead to differential lung growth (Ilbawi et al., 1987). 

Many studies have focused their investigations towards the effect of pulmonary 
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stenosis and hypertension on the distribution of flow between the left and right 

pulmonary arteries. Spazzapan et al. (Spazzapan et al., 2018) investigated the flow 

split in stenosed arteries of patients with CTEPH and found that the percentage of flow 

directed towards the stenosed branch was between 22% to 46%, depending on the 

degree of stenosis. An increase of 10%-60% in the flow directed towards the 

previously stenosed branch is reported upon removal of stenosis (Spazzapan et al., 

2018). Pekkan et al. (Pekkan et al., 2005) investigated the effect of left pulmonary 

stenosis in patients with total cavopulmonary connection, showing that decreased 

stenosis resulted in a more balanced flow split in the pulmonary arteries which 

improved lung perfusion. Pressure values in their models, with reference to the LPA 

pressure, were also found to increase in hypoplastic branches, more than the local 

stenosis. They concluded that a uniform calibre (also called diffuse stenosis) results in 

reduced left lung perfusion. In another study of Schiavazzi et al. (Schiavazzi et al., 

2015), the effect of pulmonary stenosis was also considered in single-ventricle 

patients. Their results indicated that the flow split between the LPA and RPA becomes 

clinically important when local stenosis is greater than 65%, where the percentage of 

flow to the LPA is less than 30% and the pressure drop in the LPA is higher than 3.0 

mmHg.  

Nevertheless, it is still ambiguous whether surgical repair of the pulmonary stenosis 

will benefit the patient. In the study of Cheng et al. (Cheng et al., 2005), computed 

flow splits in the RPA and LPA branches of healthy children were compared with 

those from the study of Pederson et al. (Pederson et al., 2002) from children with 

cavopulmonary connection, and the ratios were similar. In addition, Spilker et al. 

(Spilker et al., 2007) found no apparent benefit to a patient with surgically repaired 
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stenosis. Furthermore, Kheyfets et al. (Kheyfets et al., 2015), investigated the flow in 

the pulmonary arterial network of a healthy patient using various outflow BCs (zero-

traction, a constant peripheral resistance, and an arterial tree of several generations) 

and found minimal impact on the proximal arteries but considerable effect on the flow 

distribution in distal tree vessels.  

The above studies demonstrate that peripheral pulmonary vascular resistance and 

downstream pressure may influence the flow rates within the pulmonary arteries. 

Clinical measurement of the flow splits between the LPA and RPA branches may 

therefore indicate altered peripheral and proximal conditions, and serve as another 

haemodynamic marker for PVR evaluation. 

In the results presented here (Figs. 3.9, 3.10), peripheral resistance and downstream 

pressure altered the flow splits in the daughter branches. Table 3.3 summarises 

different flow split percentages for nine of the cases presented, with flow splits other 

than 50:50%, as calculated based on velocity profiles at a distance of 3cm (1.15D) 

from the branch origin for each model. The symmetric and asymmetric hypoplastic 

models significantly reduce the flow rate in the left branch; a flow split of 

approximately 12:88% (QLPA:QRPA) was observed, which is considered an extreme 

case (Schiavazzi et al., 2015). Nevertheless, similar flow ratios were predicted with 

Murray’s law (11:89% QLPA:QRPA), and with a three-element Windkessel model 

(14:86% QLPA:QRPA). Somewhat different flow splits were observed with the “outflow 

splitting” method (Chnafa et al., 2018) (20:80% QLPA:QRPA), and the coupling of a 

peripheral resistance (22:78% QLPA:QRPA), accounting to a maximum of 10% 

difference compared to a zero pressure boundary (Figs. 3.10a, 3.11a). In the study of 

Vignon-Clementel et al. (Vignon-Clementel et al., 2006), a 20% difference in the flow 
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splits (50:50% vs. 30:70%) was found when using, respectively, an impedance 

boundary condition and a constant pressure (90 mmHg), in a 3D symmetric stenotic 

model with a 75% reduction in the area within the stenosis and pulsatile inflow. 

Table 3.3: Flow Split percentages at the left and the right pulmonary branches, as calculated using velocity 

profiles data, extracted at a distance of 3cm (1.15D) from the branch origin of each model. 

Type of Y-Junction 
Branch 

diameter  
(DLPA : DRPA) 

Branch 

length    
(LLPA: LRPA) 

|𝛥𝑃|

0.5𝜌𝑈2 
Flow Split 

(%)          
(~QLPA : ~QRPA) 

Asymmetric with hypoplastic LPA 1:2 1:1 0 12:88 

Symmetric with hypoplastic LPA 1:2 1:1 0 12:88 

Symmetric With extended RPA 1:1 1:2 0 67:33 

Symmetric with 
|𝛥𝑃|

0.5𝜌𝑈2 = 0.026 1:1 1:1 0.026 33:67 

Symmetric with 
|𝛥𝑃|

0.5𝜌𝑈2 = 0.015 
1:1 1:1 0.015 40:60 

Symmetric with hypoplastic LPA - 

Murray’s Law 
1:2 1:1 0 11:89 

Symmetric with hypoplastic LPA - 

“outflow splitting method” 
1:2 1:1 0 20:80 

Symmetric with hypoplastic LPA -   

peripheral resistance 
1:2 1:1 0 22:78 

Symmetric with hypoplastic LPA - 

Windkessel model 
1:2 1:1 0 

14:86 

This deviation might be explained due to the dissimilarity between the two geometries. 

More physiologically realistic flow splits of 33:67% and 40:60% (QLPA:QRPA), were 

achieved by modifying the length or the outlet pressure of the branch (Table 3.3), 

representing different peripheral pressure conditions. Similar values, in the range of 

40:60% to 51:49% (QLPA:QRPA) have been observed in healthy subjects (Tang et al., 

2011). Patients with repaired tetralogy of Fallot may exhibit flow ratios within the 
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normal range of 39:61% to 57:43% (QLPA:QRPA) (Kang et al., 2003). Abnormally low 

flow rates have been also reported in the literature for congenital heart patients, with 

flow percentages less than 39% to the left, or less than 43% to the right lung (Kang et 

al., 2003, Bachler et al., 2013). 

Overall, a correlation appears to exist between the WSS distribution, the pressure ratios 

and the flow splits in the bifurcating models analysed in this study. More specifically, 

in the presence of different flow splits between the daughter branches (Table 3.3), the 

peak WSS value (Fig. 3.9c, 3.10b) and the pressure (Table 3.2) decreased in the branch 

with the higher flow rate; for example, cases Fig. 3.9a (i) and 3.9a (ii). The only 

exception in this trend is for cases with a flow split greater than 12:88% (QLPA:QRPA) 

where the peak WSS value was slightly higher in the RPA (Fig. 19d and Fig 3.10a (i)).  

 

3.5. Concluding remarks  

Congenital heart defects represent a great challenge in the medical sector and patients 

with tetralogy of Fallot are commonly diagnosed with pulmonary valve regurgitation 

and pulmonary local stenosis, hypoplastic LPA, or with LPA kinking. These 

complications are associated with RV dysfunction, and pulmonary valve replacement 

is deemed necessary.  

Despite some simplifications, overall, this study highlights some previously 

undocumented aspects of the flow in bifurcating geometries, such as the pulmonary 

bifurcation: The geometric location of the flow divider, which depends on the 

geometry and the branch origin, influences the WSS distribution along the inner wall 

of the bifurcation. A stagnation point that is shifted from the MPA centreline 
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encourages differential pressures (PLPA:PRPA ≠ 1) in geometries with the same 

downstream pressure conditions, and, vice versa, altered peripheral conditions affect 

the area of flow impingement. The results also clarify that increased recirculation is 

not only an effect of increased branching angle, as suggested in previous studies 

(Zhang et al., 2016), but also of the origin of the pulmonary branches. More 

importantly, this work explains that the pressure in the left pulmonary artery is 

generally more elevated compared to the pressure in the right and main pulmonary 

arteries, unless there is a local obstruction in the LPA branch and with the exception 

of the symmetric T- and Y- Junctions. In addition, it demonstrates that downstream 

pressure conditions and peripheral resistance alter the flow in the pulmonary arteries 

and explain the occurrence of different flow splits between the branches. This, in turn, 

appears to reduce the peak WSS and pressure in the high flow-rate branch, for flows 

up to 12:88%, which may help assess pulmonary branch regurgitations. Finally, this 

study clarified some aspects of clinical observations in TOF patients through 

measurements of the mean pressure ratios in the pulmonary bifurcation, a 

haemodynamic index which could potentially contribute to the assessment of LPA 

stenosis, RV dysfunction, and PVR. 
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Chapter 4  

Investigation of modelling parameters in 

idealised models of the pulmonary bifurcation 

In this chapter different inlet and outlet boundary conditions, and modelling 

assumptions, including blood rheology, peripheral resistance and wall motion are 

investigated in 2D and 3D models, with the use of two separate solvers, based on FVM 

and FEM. Section 4.1. provides a brief introduction, then in Section 4.2 the 

methodology for each parameter investigated is presented. Section 4.3 analyses the 

results, divided based on the solver utilised. Section 4.4 summarises the key findings 

and makes comparisons with previous studies, and a brief conclusion is provided in 

Section 4.5. 

 

4.1. Introduction 

Computational fluid dynamics modelling has become increasingly popular in the study 

of the cardiovascular system and associated cardiovascular diseases, in clinical 

decision-making and in surgical planning (Taylor and Figueroa, 2009, Capelli et al., 

2018). It can be used to compute flow parameters that cannot be easily extracted from 

commonly used experimental techniques but are yet important in order to predict 

cardiovascular diseases. Wall shear stress, time-averaged wall shear stress and 

oscillatory shear index are flow features used to anticipate the behaviour of the 
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pulmonary arteries under normal, exercise and disease conditions (Tang et al., 2011, 

Tang et al., 2012, Zhang et al., 2016). 

Boundary conditions are a key factor in CFD studies, with the outcome of the 

simulations potentially varying up to 30%, based on the methodology followed 

(Conijn and Krings, 2021). It is therefore important to understand the effect of various 

inlet and outlet BCs. When clinical data are available, patient-specific time-dependent 

flow waveforms, flow splits or pressure waveforms are necessary for patient-specific 

simulations. Nevertheless, it can be difficult to access such physiological 

measurements and alternative boundary conditions can be specified.  

Regarding the inlet boundary conditions, a plug or a parabolic velocity profile can be 

assigned, and the flow can be assumed either steady or pulsatile. A fully developed 

velocity profile is considered to reduce the variability between computational and 

physiological flows (Kheyfets et al., 2013). For the main pulmonary artery, it is 

suggested that a plug profile is more appropriate (Morgan et al., 1998), but it has been 

also found that maximum flow exist at the centre of the vessel and flow is decreased 

near the walls (Miyasaka and Takata, 1993).  

With respect to the outflow boundary conditions, there are many different options that 

could be utilised. Prescribing a constant value of pressure, leads to the computational 

domain governing the flow split and non-physiological results can be expected 

(Vignon-Clementel et al., 2006). However, a good agreement has been found between 

experimental velocity profiles and computational results with the zero traction BC 

assigned in idealised geometries (Botnar et al., 2000). Another simple outlet BC 

commonly used in the cardiovascular research is the flow split ratio, which can be 
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derived using Murray’s Law (Janiga et al., 2015, McElroy and Keshmiri 2018), the 

modified “splitting method” (Chnafa et al., 2018), or Murray’s Law in combination 

with in vivo data (Vincent et al., 2011, Peiffer et al., 2013, McElroy and Keshmiri 

2018). Alternatively, a resistance boundary condition (Greinberg and Karniadakis, 

2008), an impedance boundary condition (Vignon-Clementel et al., 2006, Spilker et 

al., 2007), or a more complex Windkessel model (Westerhof et al., 2009, Kung and 

Taylor, 2011) may be coupled in the branch outlets. 

There is a great variability in the methodology followed in the computational studies 

of the pulmonary arteries in relation to congenital heart diseases. In the review paper 

of Conijn and Krings (2021), they identified 34 research papers that use either patient-

specific or idealised geometries to investigate the blood flow environment, and report 

10 different approaches to define the inlet BC and 17 for the outlet BCs. This diversity 

partly derives from the lack of clinical data associated with the pulmonary arteries, 

which also makes validating the computational results of such studies rather difficult.  

In this study, various BCs are investigated in order to understand how they affect the 

blood flow development in the pulmonary bifurcation. In addition, the elasticity of the 

arterial wall is considered and the non-Newtonian nature of blood. The symmetric 

geometry (Fig. 3.1 (vi)), and a similar 3D idealised model, are utilised to facilitate the 

comparisons.  

 

4.2. Methodology 

Further to the flow simulations presented on Chapter 3, a sensitivity analysis was 

performed, first, in the symmetric Y-Junction model (Fig. 3.1 (vi)) to investigate the 
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effects of other boundary conditions and how they could affect the computational 

results. OpenFOAM®, a Finite Volume solver, and Alya-Red, a Finite Element solver, 

were used to explore different modelling parameters. 

Unless otherwise stated, all the numerical simulation were performed assuming a 

laminar flow model with a parabolic velocity profile of a Umean = 0.1 m/s at the inlet 

of the MPA, zero-pressure condition at the branch outlets and rigid walls. The 

numerical calculations were performed assuming a dynamic viscosity of 4x10-3- Pa s 

and a fluid density of 1060 kg/m3.  

For the numerical calculations performed on the OpenFOAM® open-source library, 

the simpleFoam solver was utilised, for steady-state incompressible flow. The solver 

is appropriate also for turbulent flow models, employing the semi-implicit method for 

pressure linked equations (SIMPLE) algorithm. The Gauss linear gradient and the 

second order bounded Gauss linear upwind divergence numerical schemes were used. 

Residual control was set to 10-6 for pressure and velocity.  

Second, a preliminary investigation was conducted at the Barcelona Supercomputing 

Center (BSC), during a three-months period of a research visit to explore the 

capabilities of the BSC in-house code Alya-Red (Vazquez et al., 2014, 2015). Time 

discretisation was based on the second-order backward differential scheme.  The 

generalised minimal residual (GMRES) (Saad and Schultz, 1986) and the deflated 

conjugate gradient (Nicolaides, 1987) methods were employed to solve the momentum 

and continuity equations, respectively. For the solid mechanics, the implicit Newmark 

method (Newmark, 1959) was used for the time discretization. 
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4.2.1. Modelling parameters investigated 

In the following sections, the investigation conducted in the software OpenFOAM® is 

first presented (Section 4.2.1.1.), followed by the parameters tested on the in-house 

code Alya-Red (Section 4.2.1.2.). 

4.2.1.1. OpenFOAM®  

Tapering in the bifurcation: Tapering is an unequivocal characteristic of arterial 

conduits, from the larger arteries to the smaller ones, based on multiple studies (Caro 

et al., 2011, Qureshi and Hill, 2015). To investigate this effect a geometry was created, 

with the distal main pulmonary artery, and the proximal left and right pulmonary 

arteries tapered.  The diameters were modified to ~0.95D for the MPA and ~1.02d for 

both daughter branches (where D and d the diameters of the MPA and the daughter 

branches, respectively, as defined on Section 3.1.). These reductions in diameters 

correspond to a 4% and a 2% tapering, respectively, which are representative of the 

percentages found in a healthy young male (Qureshi and Hill, 2015). No difference 

was found on the flow rate between the non-tapered and tapered asymmetric models, 

as measured at the entrance of the bifurcation (at a distance 0.01 m from the origin O). 

Velocity profile at the inlet and MPA length: The sensitivity of the steady velocity 

profile at the inlet of the MPA was investigated, first, through the use of a uniform 

inlet profile to represent blood flow emanating from the pulmonary valve, and, second, 

by reducing the length of the MPA to ~2D (equal to 5cm), in order to reflect a more 

physiological MPA dimension (Qureshi and Hill, 2015).  The uniform velocity profile 

assumed the same Re as the parabolic profile.  
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Time-dependent flow: To account for the unsteady nature of blood flow, a sinusoidal 

variation of the velocity profile at the MPA inlet was assumed, according to Eq. (3.2). 

Time-averaged results over a single cycle were compared with the steady-state 

numerical results for the same mean velocity. 

Three-dimensional geometry: An additional three-dimensional (3D) symmetric Y-

Junction geometry was created assuming the same proximal and distal diameters as 

the two-dimensional tapered model, and with the length of the MPA and the daughter 

branches assumed approximately 3.8D and 11.5D, respectively (Fig. 4.1 shows only a 

section of the model). The computational mesh of the 3D geometry consisted primarily 

of prismatic elements, with tetrahedral elements near the walls. A boundary layer was 

added near the arterial wall boundaries to capture the viscous effects, which included 

17 layers with the first layer being at a distance of ~0.002D away from the wall. The 

total number of elements was ~3 800 000. The three-dimensional symmetric Y-

Junction was tested by assuming a parabolic velocity profile at the MPA inlet, for both 

steady and unsteady flow, with the same mean velocity U.  

 

Figure 4.1: Schematic representation of 3D geometry.  

 

Turbulent flow model: Simulations were performed assuming the k-ω shear stress 

transport (SST) turbulence flow model that utilizes two differential transport 
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equations, one for the turbulent kinetic energy k, and one for the dissipation rate, ω, as 

described in (Menter et al., 2003), and with model specifications (presented in Table 

4.1) (Menter, 1994), calculated using the following formulas: turbulent intensity (I = 

0.16xReD
-1/8), turbulent energy (k = 3/2x(UI)2), turbulent length scale (L = 0.07xD), 

and specific dissipation rate (ω = √𝑘/0.09𝐿). The Reynolds Averaged Navier-Stokes 

equations for turbulent flows were used (Liu at al., 2020): 

𝛻 ∙ 𝑢 = 0 (4.1) 

𝜌
𝜕𝑢

𝜕𝑡
+ 𝜌𝛻 ∙ (𝑢𝑢) = −𝛻𝑝 + 𝛻 ∙ 𝜇 (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) 

(4.2) 

 

where 𝑢 is the mean velocity field and p is the pressure. 

Table 4.1: Parameters used for the k-ω SST turbulent model (𝑈: mean velocity, Re: Reynolds number, I: turbulence 

intensity, k: turbulent energy, l: turbulent length scale, and ω: specific dissipation rate). 

𝑼 (m/s) Re I  k (m2/s2) L (m) Ω (1/s) 

0.1 650 0.071 7.6e-05 1.82e-03 5.32e01 

0.3 1950 0.062 5.2e-04 1.82e-03 1.39e02 

0.5 3250 0.058 1.2e-03 1.82e-04 2.11e02 

 

Reynolds number with turbulent flow model: The effect of Reynolds number 

(calculated using Eq. (1.14)) was tested by increasing the Reynolds number from 650 

to 1950 and 3250, which correspond to an increase of the mean velocity 𝑈 from 

0.1 𝑚/𝑠 to 0.3 𝑚/𝑠 and 0.5 𝑚/𝑠, respectively, for the specific MPA diameter, D. 

Such values of velocities can be observed in the pulmonary bifurcation during systole 

(Chern et al., 2012). The simulations were performed using the k-ω SST turbulent flow 

model previously described. 

Non-Newtonian models: Additional simulations considered the non-Newtonian 

rheology of blood. For that, four different models were tested, namely the power law, 

the Cross power law, the Casson and Bird-Carreau models, with model specifications 
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presented in Table 4.2 (Karimi et al., 2014). The power law is the simplest non-

Newtonian model to be considered. The Bird-Carreau and the Cross power law models 

have viscosities very close to the Newtonian one at high shear rates. In addition, the 

Cross power law model considers a short range of viscosities and therefore could be a 

good candidate for simulating blood flow in large arteries. Finally, the Casson model 

is expressed in terms of the hematocrit, which is assumed 40% for normal blood 

(Karimi et al., 2014). Fig. 4.2 presents the apparent viscosity of blood against the shear 

rate for the different rheological models assumed in this study. In lower shear rates 

there is a greater variability in the blood viscosity between the non-Newtonian and the 

Newtonian model, while the difference is reduced in higher shear rates. The high shear 

rate region in which the models of this study are operating was identified and is 

approximately within 100 to 220 s-1 (shown in Fig. 4.2). 

Table 4.2: Non-Newtonian models of blood flow (𝜈: blood viscosity, 𝜈∞: infinite shear rate viscosity, 𝜈𝜊: zero shear 

rate viscosity, k: relaxation time constant, �̇�: shear rate, α: constant parameter, n: power law index, 𝜏0: yield 

stress). Wall shear stress values at the inlet MPA walls of the symmetric Y-Junction for the different models, are 

also presented. 

Rheological Model Viscosity Specified Values WSS at inlet MPA wall 

 (dynes/cm2) 

Newtonian 𝜈 𝜈: 0.004 Pa s 0.922 

Power Law 𝜈 = (𝑘�̇�)𝑛−1, 𝜈𝑚𝑖𝑛 ≤ 𝜈 ≤ 𝜈𝑚𝑎𝑥 𝜈𝑚𝑎𝑥: 0.056 Pa s,  

𝜈𝑚𝑖𝑛: 0.0035 Pa s, 

k:0.017 s, n: 0.708 

1.696 

Cross power law 𝜈 = 𝜈∞ +
𝜈0 − 𝜈∞

1 + (𝑚�̇�)𝛼
 𝜈∞: 0.0035 Pa s, 

𝜈𝜊: 0.0364 Pa s, 

m: 0.38 s (consistency 

index), α:1.45 

1.229 

Casson 𝜈 = (√𝜏0/�̇� + √𝑚) 2 m: 0.00414 Pa s 

(viscosity coefficient), 

𝜏0: 0.0038 Pa 

1.198 

Bird-Carreau model 𝜈

= 𝜈∞

+ (𝜈𝜊 − 𝜈∞)[1 + (𝑘�̇�)𝛼](𝑛−1)/𝛼 

𝜈∞: 0.0035 Pa s,  

𝜈0: 0.056 Pa s, 

k: 3.313 s, n: 0.3568 

1.696 



116 
 

 

Figure 4.2: Apparent viscosity against shear rate for the different rheological models used. The high shear rate 

region in which the models of this study are operating was identified (red box) and is approximately within 100 to 

220 s-1 (After Karimi et al., 2014). 

4.2.1.2. Alya-Red  

In this section the preliminary work conducted at BSC is described. The capabilities 

of the in-house code were explored and some functionalities still under-development 

were provisionally tested.  

Pulmonary valve: The idealised 3D geometry of Fig. 4.1 was further modified to create 

two additional models that included the pulmonary valve in an open (Fig. 4.3a) and a 

closed configuration (Fig. 4.3b). The valve is an idealised aortic valve which can be 

found online at Grabcad, and was originally created using CAD by Dassault Systémes 

(https://grabcad.com/library/aorta-aortic-valve-1). The three leaflets were isolated and 

scaled in order to fit at the inlet of the 3D pulmonary arterial model. The valve was 

placed at a distance of 5 cm from the pulmonary bifurcation, to represent the normal 

MPA length. Alterations were also made in the thickness of the leaflets, to allow a 

higher number of elements with the scope to capture the valve movement using FSI 
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modelling, and the gaps between the edges of the leaflets were closed to ensure there 

will be no unwanted backflow. To create the different configurations of the valve, the 

morph function of ANSA v19.1 (BETA, CAE Systems) software was used. That 

allowed to implement shape changes in the leaflets of the valve by moving parts of the 

geometry to a new position (Fig. 4.3). The open (Fig. 4.3a) and closed (Fig. 4.3b) static 

configuration of the valve were tested assuming a steady flow, and a plug velocity 

profile of 0.5 m/s was assigned at the inlet of the model.  

 

Figure 4.3: 3D idealised model of the pulmonary bifurcation with (a) the valve in open configuration and (b) the 

valve in closed configuration. 

Peripheral resistance: Simulations were performed in the 3D geometry accounting the 

resistance of the downstream vasculature as described in Bazilevs et al. (Bazilevs et 

al., 2009), and by setting a physiological pressure of 20 mmHg, usually found in the 
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pulmonary arteries (Martini et al., 2014). The resistances for the RPA and LPA 

branches were assumed both equal to 300 dyn s cm-5 (Guibert et al., 2014). 

Arterial wall: Fluid-Structure Interaction simulations were conducted in order to 

investigate the effect of the arterial wall in the flow development in the pulmonary 

arteries. To represent the arterial wall, a layer of approximately 640 000 elements was 

added on the pulmonary artery in the idealised 3D geometry, which was volumised in 

ANSA v19.1 (BETA CAE, software). The diameter of the arterial wall was assumed 

10% of the diameter of the MPA at the inlet (Bazilevs et al., 2009) and was modelled 

using the hyper-elastic and isotropic Neo-Hookean solid material (Nolan et al., 2014). 

The material parameters assigned to the solid domain were a bulk (K) and shear (G) 

moduli of 1 MPa and 0.03 MPa, respectively, which are equivalent to a Poisson’s ratio 

(ν) of 0.485, and the density of the arterial wall was set to 1000 kg/m3 (Nolan et al., 

2014). Bulk modulus describes the resistance to compression, shear modulus the 

elastic shear stiffness and Poisson’s ratio is a measure of the resistance perpendicular 

to the stress. These parameters are connected through the equation 2𝐺(1 + 𝑣)  =  𝐸 =

 3𝐾(1 − 2𝑣), where E is the Young’s modulus, describing the tensile stiffness of a 

material (Landau and Lifshitz, 1970). The nodes at the inlet and outlets of the model 

were fixed in space and no constrictions were applied at the wall boundary. The 

numerical scheme for the coupled problem was based on a staggered algorithm. For 

the numerical calculations, a Rayleigh damping* (Caughey, 1960) of 200 was applied, 

to enable convergence of the solution, with the same flow conditions as the simulation 

considering the pulmonary valve. The Arbitrary Lagrangian-Eulerian (ALE) method 

was used for the coupling of the blood flow and the arterial wall. 

 

* Rayleigh damping, or proportional damping model has the form: C = αK+ βM, where C, K and M the damping, 

stiffness, and mass matrices, respectively, and α and β the stiffness- and mass- proportional damping coefficients 

(Chowdhury and Dasgupta, 2003)  
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4.2.2. Post processing  

Similar to Chapter 3.2.5, contours of velocity, velocity profiles and streamlines, as 

well as wall shear stress (WSS) distribution along the inner wall of the bifurcation 

(connecting the LPA and RPA) were analysed. Velocity values were non-

dimensionalised by division with the Umean. WSS was non-dimensionalised with the 

value corresponding to the inlet WSS magnitude of a long straight segment that has 

the same diameter of MPA inlet and same inflow conditions as the pulmonary 

bifurcation model. For a two-dimensional channel, this can be calculated for a 

Newtonian model with a fully developed axial velocity profile as 𝜏𝑤2𝐷
= 6𝜇𝑈/𝐷, and 

𝜏𝑤3𝐷
= 8𝜇𝑈/𝐷, for a three-dimensional circular pipe (Katritsis et al., 2007). For each 

non-Newtonian model, WSS values were non-dimensionalised in a similar fashion, 

that is, with values calculated at the inlet of a straight geometry with the same MPA 

diameter and flow conditions, including a parabolic velocity profile (last column of 

Table 4.2). The time-averaged wall shear stress was further determined, according to 

Eq. (3.6). 

4.2.3. OpenFOAM® vs Alya-Red comparison 

As already discussed in Section 2.1.2, in the field of computational fluid dynamics, the 

finite element method (FEM) and the finite volume method (FVM), are two of the 

most widely used algorithms, implemented to obtain analytical solutions to the 

differential equations of fluid mechanics. Finite element method is considered more 

robust compared to the finite volume method at low Re. On the other hand, though, 

FVM is considered to be more accurate providing better results, in some cases (Rapp, 

2017). In the FVM, the differential equations of interest, are integrated over the 
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volume, and by applying Gauss’s theorem they are converted into surface integrals 

across the boundaries of the cells (Rapp. 2017). FEM divides the domain in small 

patches and solves the differential equations of interest in the boundary of the patch 

(Rapp, 2017). 

As part of the transition from OpenFOAM® to Alya-Red solver, numerical results 

acquired from the different methods were compared and the difference between the 

two was quantified. A simulation was run in each solver using the idealised 3D 

geometry with the same mesh and initial boundary conditions. A difference of 

approximately 6% was quantified on the pressure values, which was reduced to 2.8% 

and 1.3% for the wall shear stress and the velocity, respectively. Higher values were 

obtained with the finite volume method for the wall shear stress and the pressure, while 

lower values for the velocity. 

 

4.3. Results 

In the following paragraphs the computational results are presented in a series of 

figures, that explore the effect of the different inlet and outlet boundary condition, 

blood rheology and the elasticity of the arterial wall. The investigation performed in 

OpenFOAM® is first presented in Section 4.3.1., followed by a brief analysis of 

preliminary results obtained in Alya-Red (Section 4.3.2.) 

4.3.1. OpenFOAM®  

Steady inlet velocity profile and MPA length 
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Fig. 4.4a presents velocity contours overlaid by streamlines of velocity, and the insets 

show the respective velocity profiles, non-dimensionalised by the mean MPA velocity. 

Due to symmetry of the branches, only a single branch is presented in Fig. 4.4a. The 

length of the MPA had no effect on the velocity distribution in the models with the 

same parabolic inlet profile, as expected (top row of Fig. 4.4a). However, there was an 

overall decrease in the maximum velocity values in the daughter branches, for the 

models with uniform inlet profiles, for both MPA lengths (bottom row of Fig. 4.4a), 

with the most significant differences observed for the model with the shorter MPA. 

The velocity streamlines depict recirculation zones for all four cases. Both models with 

parabolic inlet profiles and the model with the longer MPA and uniform profile 

exhibited similar recirculation zones, with a maximum difference of 2% for the longer 

MPAs. A smaller recirculation area was noticed for the shorter MPA model with 

uniform inlet profile, the length of which was about 10.5% smaller compared to that 

of the same-length MPA case with parabolic inlet profile (right column of Fig. 4.4a).  

Fig. 4.4b displays non-dimensionalised WSS profiles. No apparent differences were 

found between the WSS distributions of the models with different MPA lengths but 

the same parabolic inlet profile. A considerable decrease in the WSS was, nevertheless, 

observed along the inner wall of the model with uniform inlet and long MPA, which 

was further reduced for the model with the shorter MPA. To quantify the decrease, the 

integral of the WSS distribution was calculated for each case and compared with the 

integral of the parabolic inlet and long MPA model. A small decrease of 2% is found 

in the integral of the WSS of the model with the parabolic inlet profile and shorter 

MPA; the difference is increased to ~27.7% and 53% for the models with the long and 

shorter MPA lengths with the uniform profile, respectively.  
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Figure 4.4: Effect of steady inlet velocity profile with varied MPA lengths for the symmetric Y-Junction (Fig. 3.1 

(vi))). (a) Non-dimensionalised velocity contours, overlaid by velocity streamlines, for parabolic and uniform inlet 

profiles (only half of the geometry is shown due to axisymmetry). Insets at the bottom right display velocity profiles 

within the RPA or LPA taken at a distance of 3 cm (~1.15D) from the origin of the branches. (b) Non-

dimensionalised WSS along the inner wall for parabolic and uniform inlet velocity profiles and different MPA 

lengths. Steady Newtonian flow, Re=650. 

Unsteady inlet flow 

For the time-dependent sinusoidal inlet profile of Eq. (3.2), a decrease of 

approximately 28% in the length of the recirculation zone was found based on the 

time-averaged velocity streamlines (Fig. 4.5a (ii)), as compared with those for steady-

state inlet flow (Fig. 4.5a (i)). Time-averaged wall shear stress for the unsteady case, 

non-dimensionalised by the WSS value at the inlet wall, was further plotted along the 

inner wall of the arterial models (Fig. 4.5a). Although the WSS distribution was similar 

in shape for both steady and unsteady cases, the time-averaged WSS of the unsteady 

flow was slightly higher (1.66% difference in the integral of the WSS).  
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Figure 4.5: Streamlines of velocity for different boundary conditions tested in the symmetric Y-Junction (Fig. 3.1 

(v)). Effects of: (a) pulsatile flow; (b) turbulent flow and Reynolds number (including velocity profiles, non-

dimensionalised by division with the mean velocity at the inlet of MPA); and (c) three-dimensional flow. 

Turbulent flow model 

Streamlines of velocity for the laminar (Fig. 4.5a (i)) and the turbulent flow models 

(Fig. 4.5b (i)) were compared for a Reynolds number of 650 and parabolic inlet 

velocity profile. A decrease in the recirculation area was noticed for the turbulent flow 

model, with the length of the recirculation zone reduced by approximately 23.3%. The 

non-dimensionalised WSS profiles for the turbulent and laminar flow models, using 

parabolic inlet velocity profile, demonstrated a considerable decrease in the turbulent 

flow model (Fig. 4.6b). However, for a uniform inlet profile, the WSS profiles along 

the inner wall were almost identical for both the turbulent and laminar flow models 

(also in Fig. 4.6b) and very similar to the turbulent flow solution with parabolic 

velocity profile at the inlet. A possible explanation could be the dissipation in the 

velocity in the turbulent model, since the velocity is no longer parabolic and resembles 
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more of a uniform profile. Therefore, flow enters the pulmonary junction with a lower 

maximum velocity compared to the equivalent value for the laminar model.  

 

Figure 4.6: Non-dimensional wall shear stress distribution, plotted along the inner wall of the arterial models for 

(a) steady and unsteady flow, in the 2D and 3D models; (b) laminar and turbulent models with parabolic and 

uniform inlet velocity (Re=650); (c) different Reynolds numbers assuming turbulence flow. 

Reynolds number with turbulent flow model 

An investigation on the effect of different Reynolds numbers on the velocity 

streamlines and WSS are shown in Fig. 4.5b and Fig. 4.6c, respectively. The length of 

the recirculation zone was increased at higher Reynolds numbers, by 14.2% and 17%, 

for Re=1950 and Re=3250, respectively. Non-dimensionalised velocity profiles, based 

on division with the mean velocity at the entrance of the MPA for each Reynolds 

number respectively, were plotted at a distance of 3cm (1.15D) from the branch origin 

(Fig. 4.5b). The maximum forward velocities in the daughter branches slightly 

decreased in magnitude as the Reynolds number increased, with an equivalent increase 

in the retrograde flow, and the overall velocity profile was more uniform due to the 
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higher inertia of the fluid particles at the middle of the branch at higher Reynolds 

numbers. The non-dimensionalised WSS profiles along the inner wall of the arterial 

models (Fig. 4.6c) were increased in magnitude with increasing Reynolds number.  

Unsteady flow in 3D model 

The steady and time-averaged velocity streamlines, as presented in Fig. 4.5c, indicate 

extended recirculation zones in both cases, with no major differences between the two, 

indicating the quasi-steady nature of the flow. In-plane velocity streamlines are also 

presented, taken at distance of 1.7 cm (~0.65D) from the stagnation point (arrows on 

the 3D geometry indicate the point of slice section) (Fig. 4.5c). Two counter rotating 

vortices were visible which is the result of secondary flow motion. Higher velocities 

from near-wall locations rotated first towards the inner wall and then the centre of the 

branch (Pedley et al., 1971). Non-dimensionalised WSS profiles were further plotted 

(Fig. 4.6a) and were compared with WSS in the 2D models. WSS was significantly 

higher in the 3D models as compared to the 2D models, presenting up to 50% 

difference in the integrals of WSS for the steady flow and 52% difference in the 

unsteady cases. However, despite the quantitative difference, the WSS distribution was 

similar in shape for both 2D and 3D models, and steady or unsteady flow. The time-

averaged WSS for the unsteady 3D flow was further elevated compared to the steady 

3D flow, and a 2.84% difference in the integrals of the WSS was found between the 

two. The WSS distribution along the inner wall of the 3D models (Fig. 4.6a) is in close 

agreement with previous studies (Tang et al., 2012, Kanokjaruvijit et al., 2017), even 

though the WSS values are somewhat lower in the 2D models (Fig. 4.5a). 
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Non-Newtonian models 

Four different non-Newtonian models were tested the power law, the Cross power law, 

the Casson, and the Bird-Carreau, and were compared with the Newtonian model. 

WSS was expressed in both a non-dimensionalised form (Fig. 4.7a), based on the WSS 

value at the inlet MPA wall of each respective model (see Table 4.2), and in dynes/cm2 

(Fig. 4.7b).  

In Fig. 4.7a, the WSS values proximal to the stagnation point varied considerably 

depending on the non-Newtonian model. The highest non-dimensionalised WSS 

values were found for the Newtonian model, while the lowest values were exhibited 

with the power law and Bird-Carreau models, which were very similar. Due to the 

non-dimensionalisation, all the WSS values along the inner wall distal to the stagnation 

point tended to unity, therefore there was not much variation in the WSS distal to the 

junction. 

 

Figure 4.7: WSS plots along the inner wall of the symmetric 2D Y-Junction (Fig. 3.1(v)) for the Newtonian and 

non-Newtonian models (a) non-dimensionalised form; (b) expressed in dynes/cm2. Steady flow, Re=650. 

WSS values expressed in dynes/cm2 (Fig. 4.7b) result in a slightly different distribution 

than in non-dimensionalised form (Fig. 4.7a). The largest deviations in the WSS values 

existed at locations at a short distance from the stagnation point. The Newtonian model 

resulted in the highest WSS values, while the power law in the lowest values. The 
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Casson model displayed the highest similarity with the Newtonian model, while the 

power law appeared the least appropriate, showing the highest deviation from the 

Newtonian and the rest of the non-Newtonian models, in both Figs. 4.7a, b, proximal 

to the bifurcation. The WSS developed at the inner wall distal to the stagnation point 

varies slightly among the different models, with the largest distal deviation from the 

Newtonian model by the Bird-Carreau model. 

4.3.2. Alya-Red 

Static valve 

The effect of a static valve in the 3D model is visualised in Fig. 4.8. Streamlines of 

velocity coloured by non-dimensionalised velocity contours, are presented for the open 

and closed configurations. In the first case, where the valve is open, higher velocities 

are observed along the MPA, and the blood flow develops in a similar way as if the 

valve was not present, comparable with Figs 4.5c and 4.10a, 4.10b. Nevertheless, 

disturbed flow is visible at the entrance of the valve due to tapering (Fig. 4.8a). In the 

second case, where the valve is closed, the highest velocities develop at the tip of the 

valve due to the restriction of the flow and very complex flow patterns of low velocity 

appear within the pulmonary bifurcation (Fig. 4.8b). 

Peripheral resistance 

The effect of the pressure boundary condition was investigated by accounting the 

physiological pressure and the downstream resistance at the outlets of the models (Fig. 

4.9), with the scope to validate that no other differences in the flow parameters would 

exist when the zero-pressure BC is used. The pressure distribution (Fig. 4.9a), velocity 

contours (Fig. 4.9b) and the wall shear stress distribution (Fig. 4.9c), were compared 
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with the zero-pressure condition. The results indicate that only the pressure values 

(quantitively differences) are affected when the more physiological pressure is 

considered, reflected by the different range of values in the colourbar in Fig. 4.9a. A 

0% difference was found between the velocity contours and the wall shear stress 

distribution (Fig. 4.9b-c).  

 

Figure 4.8: Streamlines of velocity coloured with non-dimensionalised velocity contours on a static model of the 

idealised valve in (a) the open and (b) the closed configuration. 

 

 

Figure 4.9: Effect of pressure outlet boundary condition. (a) Pressure distribution; (b) velocity contours; and (c) 

wall shear stress distribution. (a) and (b) are plots over a slice along the mid plane of the model. 
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Elasticity of arterial wall 

An investigation of the effect of the arterial wall was conducted using FSI, and the 

results are presented in Fig. 4.10.  

 

 

 

Figure 4.10: (a) and (b) Streamlines of velocity coloured with non-dimensionalised velocity contours in the models 

with (a) rigid walls, and (b) elastic walls (only fluid domain presented). (c) Displacement distribution when 

elasticity of the arterial walls is considered in (i) the fluid domain, (ii) the solid domain, and (iii) a 2D slice of both 

the solid and the fluid. 

Streamlines of velocity coloured by non-dimensionalised velocity contours are plotted 

for the three-dimensional geometry with (a) rigid walls (Fig. 10a), and (b) the elasticity 

of the arterial wall taken into account (Fig. 4.10b). The elasticity of the arterial wall 

does not seem to greatly affect the velocity distribution in the arterial models. The 

integral of velocity was calculated on slices of the models (as shown on Fig. 4.10c 

(iii)) and a 5.8% difference was found based on FSI case. In Fig. 4.10c, the 

displacement distribution is presented separately for the fluid (Fig. 4.10c (i)) and the 

solid domain (Fig. 4.10c (ii)). Higher displacement is visible in the fluid domain and 

the maximum displacement is noticed at the centre of the bifurcation. An area of high 
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displacement is also found at the entrance of the MPA, where the solid and fluid 

domains interact and are constrained in space, not allowing the movement of the nodes 

in any direction. The 0.054 cm of maximum displacement in the fluid accounts for 

approximately 2.6% change in the diameter of the vessel at the specific location.  

 

4.4. Discussion 

This Chapter presents a sensitivity analysis of the effects of various boundary 

conditions on the blood flow in two- and three- dimensional models, representative of 

the pulmonary bifurcation. There is a lot of discussion in the literature about how much 

the different assumptions at the model’s boundaries can alter the flow development 

(Vignon-Clementel et al., 2006, Kheyfets et al., 2013, Chnafa et al., 2018, McElroy 

and Keshmiri 2018, Conijn and Krings, 2021). Various commonly utilised BCs were, 

therefore, compared and variations in the flow development were identified.  

The influence of pulsatility in the WSS distribution is discussed in previous studies 

and similarities are reported between the steady state and time-averaged results 

(Kazakidi et al., 2009, Jodko et al., 2016, Baidar and Cervantes, 2017). A difference 

of up to 7% between time-averaged and steady wall shear is reported by Baidar and 

Cervantes (2017) in simulations performed at a test case in a pipe and utilising different 

turbulent flow models, suggesting that steady simulations can capture time-averaged 

results. Jodko et al. (2016) came to a similar conclusion, with simulations performed 

in patient-specific models of the fistula when they compared pulsating and stationary 

flow, and the two reached comparable results with the stationary simulations greatly 

reducing computational time. Kazakidi et al. (2011), in an investigation performed in 
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models of aortic branches to examine the effect of pulsatility found that the time 

averaged WSS was similar to the WSS of the steady flow case. The results of this study 

for the 2D and 3D geometries are in agreement with those previously reported.  

Laminar and turbulent flow models for a parabolic and a plug velocity profile, and the 

effect of Reynolds number, were also investigated in the 2D geometry. The results 

indicate that when a plug profile is assigned at the inlet of the models, the flow 

development is not impacted by the laminar or turbulent flow assumption for the 

specific Reynolds number. For the different Reynolds numbers tested, it is shown that 

higher Re affects the extent of recirculation zones and the WSS along the inner wall of 

the models, which are both increased. The effect of increasing the Reynolds number 

on WSS values around arterial junctions (Fig. 4.6c) is in agreement with previous 

studies of similar effects (Kazakidi et al., 2009). Kazakidi et al. (2009) investigated 

the effects of Reynolds number on patterns of WSS in idealised branching models of 

the intercoastal arteries and found that increasing the Re from 30 to 1500 led to 

enlarged regions of high WSS at the branch orifices. 

The non-Newtonian nature of blood was tested through four commonly used non-

Newtonian models, the power law, the Cross power law, the Casson and the Bird-

Carreau. The WSS profiles calculated for the non-Newtonian models (Fig. 4.7) are, 

comparable with the results from the study of Karimi et al. (2014). In their work, they 

study the blood flow in models of the human aorta and compare wall shear stress 

distribution in different rheological models. They observe similar wall shear stress 

patterns for all models, but with variations in the magnitude of the wall shear stress. 

They conclude that the Cross model exhibited the highest discrepancies with the 

Newtonian and the other non-Newtonian models and recommend not to be used as an 
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alternative rheological approximation. Finally, they observed an underestimation of 

the low WSS values with the Newtonian model (Karimi et al., 2014). In this study, the 

Power law and the Cross power law showed the highest deviations from the rest of the 

models (Fig. 4.7b). The Power law model shows a linear decline in the apparent blood 

viscosity with increasing shear rate, deviating from the rest of the non-Newtonian 

models, while the apparent viscosity of the Cross Power law is almost steady in high 

shear rates and close to the Newtonian (Fig. 2). The Newtonian model had lower wall 

shear stress values in the regions of low WSS but not deviating much from the Casson 

and Bird-Carreau models, both of which follow a similar trend in the region of high 

shear rate that the simulations are operating (Fig. 2). The range of values chosen for 

each rheological model affects the computational results, and therefore, assuming a 

more physiological relevant range of values for each model may alter the above 

observations.  

Simulating the pulmonary valve and wall compliance is remarkably challenging and 

require the assignment of vessel wall properties. Computational simulations were 

performed using a static valve within the 3D model in different configurations. Despite 

the significant simplification in the valve movement, these preliminary results indicate 

that blood flow is affected by the configuration of the valve, with complex flow 

patterns developing when the valve is closed. The above findings are expected, as in 

this case the closed valve can be considered as a stenosed region along the main 

pulmonary artery that restricts the flow. Further simulations are necessary to allow the 

movement of the valve, from a closed to an open state, to capture the changes in the 

flow during the cardiac cycle. Although an attempt was made to recreate the movement 

of the valve, starting from the semi-open configuration, it was not feasible using the 
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FSI models available in the Alya-Red solver. Considering the elasticity of the arterial 

wall, the numerical simulations demonstrated that it can quantitatively affect the flow 

in the pulmonary bifurcation, but the difference is small (5.8%). Bazilevs et al. (2009) 

analysed the haemodynamics and wall motion in a patient-specific Fontan 

configuration (procedure performed to treat single ventricle congenital heart defects) 

under rest and exercise conditions and reported a maximum wall displacement of 0.064 

cm, close to the pulmonary bifurcation, similar to the results of this work. Jin et al. 

(2003) investigated the blood flow in the ascending aorta and compared rigid and 

compliant wall models and found that flow is minimally affected by the consideration 

of wall motion. The results presented in this study are in agreement with those 

previously reported. In distal vessels, the effect of wall compliance may be larger. In 

a previous study of a model of a carotid bifurcating artery, the authors concluded that 

wall compliance affects the results quantitatively and reported a maximum 

deformation of approximately 16% on the vessel radius (Perktold and Rappitsch, 

1995). 

Finally, a pure resistance boundary condition was also considered in the 3D geometry, 

and a physiological pressure was assigned in the model. The results indicate that the 

velocity and the wall shear stress distributions are not affected by the pressure outlet 

in the symmetric model, where a 50-50 flow split is obtained with both boundary 

conditions. Nevertheless, it is important to consider the downstream resistance and 

pressure in order to obtain more clinically-relevant pressures in the models. Arbia et 

al. (2014), suggested that the zero-pressure boundary does not affect the pressure 

gradient or the flow distribution when the walls are assumed rigid in computational 

modelling. The results of this study indicate that there is a difference in the pressure 
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when a zero-pressure or pure resistance boundary condition is used, but only 

quantitatively. It is important to mention that peripheral resistance is found to be a 

major factor in the flow development in bifurcating arterial models, and can highly 

impact the flow distribution in stenotic and asymmetric models (Vignon-Clementel et 

al., 2006, Boumpouli et al., 2020). 

4.4.1. Limitations and Future Work  

Several limitations exist in the results presented in this Chapter through the different 

assumptions made for the numerical simulations conducted. Idealised two- and three- 

dimensional geometries are used to facilitate this extensive analysis of the different 

modelling parameters, which would have been more difficult and computational 

expensive to perform in patient-specific models. In addition, a sinusoidal variation of 

flow is considered to represent the unsteady nature of blood flow, which may not 

capture correctly the effects of pulsatility of the blood flow. Nevertheless, as it is part 

of a parametric investigation performed in idealised and not in patient-specific models, 

it is expected to provide a good indication of the fundamental unsteady flow 

characteristics. Moreover, it is recognised that the results obtained with the static valve 

in the pulmonary arteries, are not representative of the physiological blood flow 

dynamics through a moving valve. Alya-Red, the in-house code used for these 

simulations was still under development, and there was no such functionality to allow 

the simulation of a moving valve; although FSI was tested, it did not prove capable of 

capturing the valve movement. Finally, to model the arterial wall, the isotropic Neo-

Hookean solid material was assumed, which does not account for the anisotropic 

behaviour of the collagen fibers. An attempt was made to recreate the collagen fibers 
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in the idealised pulmonary arterial model and use the Holzapfel-Gasser-Ogden (HGO) 

anisotropic hyperelastic solid material for the arterial wall, but the coupling between 

the fluid and the solid domain was not successful and the solution did not converge. 

Further studies are required in order to verify the results of this study in patient-specific 

models and with the specification of patient-specific boundary conditions. Including a 

moving pulmonary valve will also provide valuable information about the flow 

development in the pulmonary arterial models. The immersed boundary method could 

be utilised to allow such simulations. Finally, the HGO anisotropic hyperelastic model 

can better represent the physiological environment of the arterial wall, and therefore it 

should be considered in future work. 

 

4.5. Concluding remarks 

Modelling parameters have a key role in computational fluid dynamics, as they can 

alter the numerical results in a considerable extent. Many different methodologies are 

reported in the literature considering the computational investigation of the blood flow 

in pulmonary arterial models, which makes comparisons of the numerical results rather 

difficult, as there is no standard methodology in the numerical studies. This work is an 

extended analysis performed in order to investigate the effect of various commonly 

used inlet and outlet boundary conditions and quantify their differences. In addition, 

other modelling parameters such as the non-Newtonian nature of blood and the 

elasticity of the arterial wall were considered. 

Overall, quantitative differences exist in the flow features of the pulmonary arteries 

when different boundary conditions are used. Steady flow underestimates the WSS 
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along the inner wall, while a laminar flow model with a parabolic velocity profile 

overestimates the WSS values. The length of the MPA inlet is found to affect the flow 

development and therefore is considered important when a uniform profile is assigned 

at the inlet boundary. Complex flow patterns are developed when the pulmonary valve 

is included in the pulmonary artery, while a resistance boundary in symmetric idealised 

models did not affect the WSS and velocity distribution. Finally, the results indicate 

that wall motion quantitatively changes only minimally the velocity distribution, while 

non-Newtonian blood rheology can alter the WSS, showing different developments 

depending on the rheological model assumed.  
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Chapter 5 

Blood flow in patient-specific pulmonary 

arteries of repaired Tetralogy of Fallot patients  

In this chapter, the morphological parameters and flow patterns are investigated in the 

pulmonary bifurcation of seven patient-specific models of rTOF patients, and of an 

anatomical average geometry, derived from the adult patient-specific models. An 

introduction is first given in Section 5.1. Then Section 5.2. describes the reconstruction 

of the models, the extraction of flow data, the steps followed to create the anatomical 

average geometry, the numerical parameters and boundary conditions used. Section 

5.3. is divided in four subsections, the geometry (Section 5.3.1.) and flow 

characterisation (Section 5.3.2.), and the computational results of the averaged 

(Section 5.3.3.1.) and patient specific (Section 5.3.3.2.) boundary conditions. Section 

5.4. gives a discussion of the findings, and finally Section 5.5. provides an overview 

of the key results. 

 

5.1. Introduction 

Transannular patch repair (TAP) is the predominant surgical approach that is used to 

repair pulmonary insufficiency in patients with tetralogy of Fallot (Al Habib et al., 

2010). However, long term complications, including right ventricular dilatation and 

dysfunction, pulmonary regurgitation, residual right ventricular outflow tract (RVOT) 

obstruction, kinking of the left pulmonary artery and atrial tachyarrhythmia (Babu-
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Narayan and Gatzoulis, 2018), are common in the repaired population. Pulmonary 

valve replacement is performed in the repaired tetralogy of Fallot population to prevent 

ongoing volume overloading and dilation of the right ventricle, and is recommended 

prior to the significant clinical symptoms to increase the likelihood of successfully RV 

remodeling; nevertheless, there is no common consensus on the reliability of current 

indices to determine the right timing for intervention (Geva 2011, Kordybach-

Prokopiuk et al., 2015, Babu-Narayan and Gatzoulis, 2018). Understanding the 

haemodynamic environment in the pulmonary bifurcation of rTOF patients is therefore 

crucial to foresee long term outcomes of the interventions. 

The advancement of medical imaging techniques over the past decades has allowed 

the application of computational fluid dynamics for the assessment of blood flow in 

arteries. Magnetic resonance (MR) and computed tomography (CT) has enabled the 

reconstruction of patient-specific models of detailed anatomic variations (Pennati et 

al., 2013, Schievano and Taylor, 2020), while 2D phase-contrast MRI is used to extract 

flow information from a vessel’s cross-sectional lumen (Van Doormaal et al., 2012, 

Steinman and Taylor, 2005). Such techniques are now routinely performed and are 

used to assess the haemodynamic conditions in both healthy (Capuano et al., 2019) 

and diseased subjects (Schievano et al., 2011, Johnston et al., 2020, 2021), under 

normal or exercise conditions (Tang et al., 2011), in order to compare morphological 

and geometrical features (Ntinjana et al., 2014) to predict surgical outcomes 

(Schievano et al, 2007, Alharbi et al., 2020) and facilitate the treatment and device 

design (Randles et al., 2017). 

Patients with tetralogy of Fallot have a significant variability in the anatomy of the 

pulmonary arteries and it is therefore crucial to characterise the effect of geometric 
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parameters in the haemodynamic environment in these patients. Although the 

pulmonary bifurcation in healthy subjects is found haemodynamically efficient 

(Capuano et al., 2019), studies in TOF models have indicated reversal of flow in the 

left pulmonary artery (LPA) and an influence of the branching angles in pulmonary 

regurgitation (Zhang et al., 2016, Chern et al., 2008, Chern et al., 2012). Recently, 

Louvelle et al. (Louvelle et al., 2019) tried to link geometric parameters such as 

diameter, length, tortuosity and the angle of the branches, in TOF patients repaired 

with preservative and non-preservative techniques with the haemodynamic 

characteristics that can influence reversal of flow.  

In this computational study, the blood flow environment in patient-specific models of 

rTOF patients is described. This study is a continuation of the work performed in the 

idealised models of Chapter 3 in relation to TOF patients, where the impact of 

morphology and the role of the stagnation point in the wall shear stress distribution 

were discussed. A correlation was identified between the wall shear stress distribution, 

the pressure difference in the daughter branches and the flow splits. To further explore 

the above findings, the patient-specific models are analysed and parameters such as 

the angle of branches, curvature, tortuosity and planarity are reported. The 

haemodynamic environment of the geometries is also examined with the aim to better 

understand the flow development in the pulmonary junction of these patients and 

potentially correlate specific geometrical features with blood flow patterns. The layout 

of this Chapter is as follows: First the methodology is presented (Section 5.2.), 

followed by the results (Section 5.3.). In discussion the main findings of this work are 

summarised, and comparisons are made with previous studies (Section 5.4.). Finally, 

this Chapter ends with a brief conclusion (Section 5.5.). 
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5.2. Methodology 

In this section the patients’ cohort, the extraction of flow data and the segmentation of 

the models are introduced. Additionally, the computational model setup is presented, 

and the method used to compute the parameters for the geometry and flow 

characterisation is explained.  

5.2.1. Patients Population 

Retrospective clinical data from seven patients with rTOF were used to study the blood 

flow in models of the pulmonary bifurcation. Demographic information about each 

patient is reported in Table 5.1, with an average age of the population being 26.3±15.7, 

and their grade of regurgitation fraction varying from moderate to severe. Images of 

the pulmonary trunk of these patients, used for model reconstruction (Figs. 5.1a-b), 

were acquired between 2012 and 2017 with a Siemens Avanto 1.5-Tesla MRI scanner 

(Siemens Healthcare, Erlangen, Germany), using the protocol “3D and Phase contrast” 

(TE= 2.08 or 2.18 ms, TR= 8.01-32.04 ms, FOV= 240-450 x 250-450 mm, Pixel 

resolution 192-256 x 192-256, Pixel spacing [1.2500;1.2500] – [1.5625;1.5625]). The 

scans were acquired with both ECG and respiratory gating. The clinical data include 

part of the clinical assessment of patients in the Great Ormond Street Hospital for 

Children, London, UK, and the retrospective use of the image data for research was 

granted by the Institute of Child Health/Great Ormond Street Hospital Research Ethics 

Committee, and written consent was obtained from all subjects or parents/legal 

guardians (Ref: 06/Q0508/124).  
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Table 5.1: Demographic and haemodynamic data of the rTOF cases. PA: pulmonary artery; RF: regurgitation 

fraction, Grade refers to the regurgitation fraction, *: the flow split of patient 7 was calculated as described in 

the methodology (Section 5.2.2). 

Patient Sex Age at scan PA RF (%) Grade 
Flow Split 

(QRPA:QLPA) 

1 Male 5 years 45 Severe 55.3 : 44.7 

2 Male 12 years 41 Severe 64.8 : 35.2 

3 Male 19 years 30 Severe 55.5 : 44.4 

4 Male 23 years 40 Moderate 63.9 : 36.1 

5 Male 30 years 48 Severe 75.4 : 24.6 

6 Female 41 years 50 Moderate 76.6 : 23.4 

7 Female 54 years 50 Severe 45.7 : 54.3 * 

 

 

Figure 5.1: (a) MRI image with red colour depicting the pulmonary arteries (PAs), including the main (MPA), left 

(LPA) and right pulmonary artery (RPA), and showing the descending (DA) and ascending aorta (AA) relevant to 

the PAs, for reference. (b) One of the reconstructed patient-specific models (Model 2), with slices (α) and (β) over 

the RPA, and (γ) and (δ) over the LPA shown in the model. (c)-(d) PC-MRI data from the same patient used for the 

extraction of the velocity profile at the MPA root, with the MPA encircled in red; (c) magnitude and (d) phase 

contrast (PC-MRI) image. (e) 3D-velocity profile extracted from PC-MRI data displaying the variation of the 

velocity both in space and time over a cardiac cycle.     

5.2.2. Extraction of flow data  

To extract the 3D velocity profile at the MPA root from the phase-contrast MRI images 

(PC-MRI), the software Segment Research (Heiberg et al., 2010) for medical image 
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analysis was used. Phase contrast and magnitude image stacks, over a cardiac cycle, 

were loaded as inputs for all geometries (Fig. 5.1c-d). The lumen circumference of 

each branch (MPA) was marked on each frame of the cardiac cycle, and the diameter 

and flow rate profiles were exported for each stack of images for post processing. The 

flow rate extracted at each time point was then divided by the area of the vessel at the 

specific time in order to consider the diameter changes during the cardiac cycle (van 

Doormaal et al., 2012). The total inlet flow rate waveforms over the cardiac cycle are 

presented (Fig. 5.2a) for all seven patients. An average flow rate waveform, Qi, was 

calculated based on the seven flow waveforms after time was normalised with the 

period of the cardiac cycle of each patient (Fig. 5.2a). This average flow waveform is 

also presented in Fig. 5.2b normalised by the mean value of the average flow rate over 

each cardiac cycle Qm* (Fig. 5.2b). The average flow rates of each patient can be 

found in Table 5.2. In addition to the time-dependent flow rate waveforms, time and 

spatially resolved 3D inlet velocity profiles were extracted for every time step of the 

cycle (Fig. 5.1e).  

PC-MRI data were also available from the right and left pulmonary branches, except 

for patient 7 which lacked this information, and were used to calculate the flow split 

in each model, based on the net volume (forward minus backward volume, in ml, over 

the cardiac cycle) retrieved from Segment Research (Table 5.1). For patient 7, we used 

the information available from the other six patients to calculate the flow split, based 

on the following formula: 

𝑄𝑅𝑃𝐴−7

𝑄𝐿𝑃𝐴−7
=

𝑄𝑅𝑃𝐴−𝑎𝑣

𝑄𝐿𝑃𝐴−𝑎𝑣
∙ (

𝑅𝑅𝑃𝐴−7

𝑅𝐿𝑃𝐴−7
∙

𝑅𝐿𝑃𝐴−𝑎𝑣 

𝑅𝑅𝑃𝐴−𝑎𝑣
)

2

 
(5.1) 
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where  
𝑄𝑅𝑃𝐴−𝑎𝑣

𝑄𝐿𝑃𝐴−𝑎𝑣
  is the ratio of the average flow rate for the RPA and LPA branches of 

the six patients, and (
𝑅𝐿𝑃𝐴−𝑎𝑣 

𝑅𝑅𝑃𝐴−𝑎𝑣
)

2

, the ratio of the average radii of the LPA and the RPA 

squared. The result indicates a flow split QRPA : QLPA of 45.7% : 54.3%, which is in 

accordance with the flow split reported in the clinical record for the specific patient. 

The average flow split based on the six patients with available patient specific data 

was found ~65.3% : 34.7% (QRPA-av : QLPA-av). 

 

Figure 5.2: (a) Patient-specific pulsatile inlet flow rate waveform for all seven subjects and an averaged flow rate 

waveform (Qi) derived from the seven patient-specific waveforms. (b) The averaged flow rate waveform derived 

from the seven patient-specific waveforms and normalised with the mean value of the average flow rate over the 

cardiac cycle Qm*. Time was normalised with the period of the cardiac cycle of each patient. Error bars represent 

the standard deviation of the patient-specific flow waveforms from the average flow waveform. 
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Table 5.2: Diameters, mean flow rate, and mean and max velocities for the MPA, the RPA and the LPA branches 

of each model. 

Model DMPA 

(m) 

DRPA 

(m) 

DLPA 

(m) 

Qmean  

(ml/s) 

Umean 

MPA(m/s) 

Umean 

RPA(m/s) 

Umean 

LPA(m/s) 

Umax 

MPA(m/s) 

Umax 

RPA(m/s) 

Umax 

LPA(m/s) 

1 0.017 0.010 0.013 33.9 0.086 0.133 0.148 0.696 1.076 0.534 

2 0.022 0.013 0.013 47.2 0.086 0.154 0.087 0.699 1.252 0.703 

3 0.050 0.016 0.015 114.4 0.131 0.696 0.676 0.346 1.843 1.797 

4 0.018 0.009 0.015 69.6 0.148 0.391 0.071 1.210 3.302 1.260 

5 0.024 0.017 0.022 103.0 0.048 0.066 0.020 1.043 1.454 0.308 

6 0.025 0.019 0.019 85.0 0.158 0.201 0.063 0.685 0.982 0.312 

7 0.028 0.017 0.028 54.4 0.069 0.134 0.119 0.508 1.581 0.648 

Average 0.025 0.014 0.017 49.0 0.150 0.260 0.092 0.974 1.691 0.599 

5.2.3. Reconstruction of patient-specific models 

Clinical whole heart MRI images were used to segment the patient-specific three-

dimensional structures using the open-source software ITK-SNAP (www.itksnap.org) 

(Fig. 5.1a) (Yushkevich et al., 2006). Initially, a semi-automatic active contour 

segmentation tool was used, followed by manual segmentation of the pulmonary trunk 

in each slice of the datasets to refine the process. The segmentation was extended until 

the first daughter branch on the right and left pulmonary branches. The geometries 

were then exported as surface mesh, in the stereolithography (STL) format. Smoothing 

was necessary to remove artefacts due to the image resolution and segmentation 

processes, while extensions were added in the model branches to avoid any effects 

from the boundaries. An extension of 0.5D was also added at the MPA inlet, where D 

is the diameter of the MPA inlet for each model. Two cross-sections of the lumen were 

taken on each branch of the PAs (Fig. 5.1b). Cross sections (α) and (γ) were taken at 

0.4D and sections (β) and (δ) at 0.6D from the bifurcation origin, denoted as O. Point 
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O is defined as the point where the branch splitting occurs, according to the branch 

splitting function of the open-source software VMTK (www.vmtk.org).  

5.2.4. Geometry characterisation 

A geometric analysis of the models was conducted in the open-source software VMTK 

to identify parameters, including: the curvature of the RPA and LPA branches, torsion, 

tortuosity, the minimum inscribed sphere radius along the daughter branches, and in-

plane and out-of-plane angles.  

First, the centrelines c(s) of the models were generated, where (s) is the curvilinear 

abscissa (Antiga et al., 2008). Curvature and torsion measure, respectively, the 

deviation of a curve from a straight line and its divergence from lying on the oscillating 

plane, computed as (Piccinelli et al., 1987): 

𝜅(𝑠) =
‖𝑐′(𝑠) × 𝑐′′(𝑠)‖

‖𝑐′(𝑠)‖3
, 𝜏(𝑠) =

[𝑐′(𝑠) × 𝑐′′(𝑠)] ∙ 𝑐′′′(𝑠)

‖𝑐′(𝑠) × 𝑐(𝑠)‖
 

(5.2) 

 

The curvature and torsion were measured in 1/mm and evaluated along the centreline 

on a curvilinear abscissa, normalised by the distance corresponding to the peak 

curvature value closer to the bifurcating branches. Therefore, the value of 1.0 in the 

normalised curvilinear abscissa represents the location of peak curvature for each 

branch. Error bars were used to signify the deviation of the patient-specific values from 

the calculated averages.  

Tortuosity describes the relative increment in the length of the curve from a straight 

line and was calculated by x = L/D -1, where L is the length of the centreline and D 

the Euclidean distance between its endpoints (Antiga et al., 2008). The maximal 

inscribed sphere radius measures the radius of the vessel locally and by identifying the 
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minimum radius along the centrelines, stenotic regions can be assessed (Doyle et al., 

2018). The in-plane and out-of-plane angles were calculated based on the bifurcation 

plane, defined by points along the centreline of the model, providing information on 

the bifurcation angle and planarity, respectively (Fig. 5.3) (Thomas et al., 2005). The 

in-plane angle is presented with respect to the angle formed between the MPA and 

each daughter branch and, therefore, takes only positive values. A positive sign of the 

out-of-plane angle is related to the clockwise rotation of the branch.  

 

Figure 5.3: Schematic representation of the (a) in-plane and (b) out-of-plane angles. 

5.2.5. Anatomical average geometry 

An anatomical average geometry was created using the statistical shape analysis 

software Deformetrica (https://www.deformetrica.org/, Bone et al., 2018) based on a 

forward approach as described by Bruse et al. (Bruse et al., 2016). Only the adult 

patients of this study were considered to compute the anatomical average geometry; 

the models of patients 3 to 7 were registered with the model from the 6th patient, also 

assumed as the reference model, and using point O (Fig. 5.1b) as the common origin 

for the alignment. To account for the initial assumption of the reference geometry, the 

process was repeated six more times, utilising the computed template as the reference 
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geometry in every following iteration of the process. The anatomical average geometry 

used for the flow simulations was decided based on the distance between the surfaces 

of the reference and the calculated template on each repetition, and until the maximum 

surface distance reached 1 mm, which accounts for approximately 1% of difference 

(Fig. 5.4a).  

 

Figure 5.4: (a) Average geometry of the five adult TOF patients (red) with the seven patient-specific models shown 

transparent. Models are co-registered based on point O of Fig, 5.1b. (b) Computational mesh of the average 

geometry around the pulmonary junction. The boundary layer at the RPA outlet is also displayed. (c) Mesh 

independence test based on the integral of WSS. 

In addition, in order to better understand how the initial assumption of the reference 

geometry affects the end result, the process was repeated by assuming the model of 

the 2nd patient as the reference geometry and the anatomical mean geometry had a 

maximum surface distance of 4.16 mm in the first iteration of the process (11.3% of 
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difference). A template kernel width of 15 and a deformation kernel width of 7 were 

used for the computations; the kernel width controls the length of the deformations 

allowed and the larger its value, the more global shape variations the atlas captures. 

Nevertheless, it is found that no fine parameter tuning is needed as the atlas is stable 

for a large range of values (Durrleman et al., 2014).  

5.2.6. Numerical simulations 

The methodology followed to set the numerical simulations is described in the next 

sections, including mesh generation, boundary conditions setup, and computational 

approximation. 

5.2.6.1. Computational mesh 

The computational mesh was generated using the commercial software ANSA v20.0 

(BETA CAE Systems). The volume mesh consisted primarily of tetrahedra elements 

and a boundary layer mesh composed of 7 layers of prismatic cells was added, with 

the first layer at a distance of 0.005 cm away from the wall (Fig. 5.4b). The y+ value 

was calculated based on the maximum WSS and using Eq. (2.1), (2.2), and its value 

over a cardiac cycle was smaller than 1. The same computational mesh strategy was 

adopted for all models. According to a grid independence analysis, where the integral 

of the wall shear stress on a cross-section of the pulmonary bifurcation was measured, 

the total number of elements was set around 2.5 million for each geometry (Fig. 5.4c).  

5.2.6.2. Mapping of 3D velocity profile 

An in-house python code (https://github.com/emisau/3DFlowProfile_MRI2CFD) was 

used for mapping the spatially-varying velocity profiles of the patients, extracted from 
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the PC-MRI data, to the inlet of each patient-specific mesh. The code takes two inputs. 

The first is a comma-separated value (CSV) file exported from the Segment Research 

software package. It stores spatial coordinates, time in the cardiac cycle and velocity 

magnitude information for each voxel of a PC-MRI image. The second input file is a 

triangulation of the inlet surface of the fluid domain holding coordinates and 

connectivity information for each element of that mesh. The latter file is stored in ascii 

format (*.msh) exported from the open-source mesh generator Gmsh (Geuzaine and 

Remacle, 2009). The main idea of the code is to transfer the flow profile information 

from the voxel grid to the inlet surface triangulation by overlaying them in a common 

coordinate system. A polar coordinate transformation is applied to both grids. 

Subsequently, a closest node search algorithm is used to obtain spatial correspondence 

between the grids. Finally, flow information from the voxel grid is mapped onto the 

mesh grid, by applying to each node of the mesh grid the mean flow, calculated based 

on the six nodes from the voxel grid, closest to the correspondent node of the mesh 

grid. The orientation of the 3D velocity profile was assumed aligned with the inlet of 

each model and was provisionally checked using anatomical landmarks in the MRI 

and PC-MRI images. A small addition to the code allowed to output a series of text 

files containing velocity and coordinates information, one for each time step, that could 

be directly read by the numerical solver to set the inlet flow condition of the fluid 

domain. 

5.2.6.3. Computational model 

Flow simulations, assuming a uniform velocity profile at the inlet of the models and 

zero-pressure at the outlets, were carried out in the open-source CFD software 
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OpenFOAM® v.1812 (https://www.openfoam.com/) and the Reynolds Averaged 

Navier-Stokes equations for turbulent flows were used (Eqs. (4.1), (4.2)). To capture 

any turbulence effects, the k-ω shear stress transport (SST) turbulence model was 

assumed, with the model specifications as described in Chapter 4.  

Two sets of simulations were performed. In the first set, the uniform pulsatile (time- 

but not space dependent) average flow waveform (Fig. 5.2a) was specified at the inlet 

of all seven models, including the anatomical average geometry, and the average flow 

split of ~65.3% : 34.7% (QRPA:QLPA) was applied at the branch outlets. The assumption 

of the same BCs on all geometries allows the identification of differences in the flow 

patterns due to geometrical variations. In the second set of simulations, the patient-

specific boundary conditions were used with the corresponding patient model. 3D 

velocity profiles (time- and space- dependent, Fig. 5.1e) were assigned at all geometry 

inlets. At the outlets of the models, the flow splits presented in Table 5.1 were 

specified. In the LPA and RPA outlets, the flow splits in both sets of simulations were 

imposed by specifying the transient flow rate in each branch, and velocity was uniform 

and only time varying. The walls of all geometries were assumed rigid, and the no-slip 

boundary condition was assigned. All numerical simulations were performed with the 

pisoFoam solver, of the OpenFOAM® open-source library, for transient 

incompressible, turbulent flow, using the pressure-implicit with splitting operators 

(PISO) algorithm and the second order bounded Gauss linear upwind divergence 

scheme, the backward differential scheme for the time discretization and the Gauss 

linear gradient numerical scheme were utilised. PISO was chosen over PIMPLE to 

reduce computational cost as the time step was small and met the Courant-Friedrichs-

Lewy (CFL) condition. The results are obtained between the 4th and 7th cycle, based 

https://www.openfoam.com/
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on a time-averaged wall shear stress (TAWSS) test performed. More specifically, the 

integral of the TAWSS at the pulmonary junction was calculated at each cycle, for 

each model separately, and when a plateau was reached in the TAWSS plots the 

solution was considered converged. Eq. (3.6) was used to calculate the TAWSS. The 

TAWSS distribution is normalised by the value at the inlet of each model (denoted as 

TAWSSn), and the values used for the non-dimensionalisation are reported on Table 

5.3. 

Table 5.3: TAWSS value at the inlet of the models when average and patient-specific boundary conditions (BCs) 

are assigned. 

Model 

TAWSS (dynes/cm2) 

Average BCs 
Patient-specific 

BCs 

1 42 20 

2 20 16 

3 10 6 

4 14 13 

5 12 10 

6 2 7 

7 16 2 

Average geometry 9 - 

In all computational simulations, blood was considered as a Newtonian, 

incompressible fluid. The decision was based on the results of Chapter 4.3.1. where 

the WSS, when plotted in dynes/cm2 along the inner wall of the pulmonary bifurcation, 

did not show significant variations between the Newtonian and three of the non-

Newtonian models tested. Blood density and viscosity were set to 1060 kg/m3 and 4 

×10-3 Pa s, respectively. The mean Reynolds (Re), Womersley (Wo) and Dean (De) 

numbers for all geometries were calculated based on Eq. (1.14), (1.22) and (1.23), 

respectively. Remax was calculated using the local velocity of each branch, while to 

calculate the Dean number in the RPA and LPA branches, Remax, as calculated for the 

MPA branch, was multiplied by the percentage of flow split in Eq. (5.5), as suggested 
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by another study in the literature (Capuano et al., 2019). To calculate the Re at the inlet 

and the outlets of the models, the diameter at each boundary was considered.  A table 

with the diameters, the mean flow rate, the mean and the max velocity of all three 

branches for each model is provided (Table 5.2). 

The oscillatory shear index (OSI) was also calculated, using the following formula: 

𝑂𝑆𝐼 =  
1

2
 (1 −  

|
1
𝑇 ∫ 𝑡𝑆𝑑𝑡

𝑇

0
|

1
𝑇 ∫ |𝑡𝑆|𝑑𝑡

𝑇

0

) 

(5.6) 

 

where ts the tangential component of the traction vector. The OSI represents the level 

of disturbed flow and takes values from 0 (indicating unidirectional shear stress 

through the cardiac cycle) to 0.5 (corresponds to an average shear stress value of zero 

during the cardiac cycle) (Tang et al., 2010). 

5.2.7. Study sensitivity  

In an attempt to confirm the methodology followed in this study, the effect of various 

parameters was investigated. Firstly, different smoothing factors were considered in 

model 1 at the reconstruction stage of the process (Section 5.2.3), and the wall shear 

stress distribution in the models were compared. The comparison indicated that 

doubling the smoothing factor in the model, did not alter the development of flow and 

therefore, the higher smoothing factor was adapted in this study for all models. In 

addition, the point from which the left and the right pulmonary arterial branches were 

extended was altered in model 4 and a difference of 5.4% was found on the integral of 

the wall shear stress values developed around the pulmonary junction. Moreover, a 

comparison between the 3D velocity profile and a pulsatile waveform with a plug 

profile, was conducted in model 1, and higher shear stress areas were apparent when 
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the 3D velocity profile was assigned at the inlet of the models. The difference was 

evaluated for slices (α) and (γ) of Fig. 5.1b, and was about 10% for the RPA, and 

approximately 19% for the LPA branch. Finally, the flow obtained from the outlets of 

the models, when the flow split was specified, was compared with the respective 

clinical flow waveforms. A simulation was performed where the numerical solution 

was saved at each time step during the cardiac cycle. The total flow, as exported from 

the RPA and LPA branches of the model is sub-plotted with the clinical total flow 

waveforms and is presented in Fig. 5.5. The computational results match the clinical 

data considering that 1) the clinical data for each of the MPA, RPA and LPA branches 

are acquired during different cardiac cycles, and therefore a difference is expected, and 

2) the flow splits are calculated based on the net volume and not the total flow. 

 

Figure 5.5: Comparison of clinical flow waveforms of the right and left pulmonary branches with those calculated 

at the outlets of the model when the flow split was specified.  
 

5.3. Results 

In the following paragraphs the effect of the morphology and flow characteristics are 

presented in a series of figures and tables. The three main sections in which the results 
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are separated are the geometry characterisation (Table 5.4, 5.5 and Fig. 5.6), the flow 

characterisation (Table 5.6) and the computational analysis, which is further divided 

on the averaged boundary conditions (Figs. 5.7, 5.8) and patient-specific boundary 

conditions (Figs. 5.9-5.15). 

5.3.1. Geometry characterisation 

The morphological features described on Section 5.2.3 of the methodology are listed 

in Tables 5.3, 5.4. In the majority of the models, the curvature of the LPA branch was 

higher compared to the RPA (Table 5.4, Fig. 5.6a, 5.6b), with the highest mean 

curvature of 0.044 mm-1 in the LPA of the average model. The results indicate higher 

torsion in the RPA branch of the models, with the maximum mean value of 0.183 mm-

1 observed in the LPA of the average model. The mean torsion was found very close 

to zero for both daughter branches (Table 5.4). Tortuosity was higher in the LPA 

branch of all models, and the largest value of 0.258 was observed in the LPA of patient 

5 (Table 5.5). The minimum sphere radius was smaller on average in the RPA branch 

(Table 5.5). Curvature in the LPA branch increased on average along the centrelines 

of all patients (Fig. 5.6b) until it reached a peak approximately at the entrance of the 

daughter branches, before decreasing. Two peaks were observed in the average torsion 

plots (Fig. 5.6c) for both the RPA and the LPA further downstream along the daughter 

branches. For the RPA, the peaks were positive, indicating a counter-clockwise 

rotation of the branch, whilst they were negative for the LPA, signifying the clockwise 

shift of the branch. Nevertheless, a mean torsion close to zero is observed along the 

centrelines of both branches, also indicated on Table 5.4.   
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Table 5.4: Geometric analysis of the patient-specific models: curvature and torsion. 

Model 

Curvature RPA 

(mm-1) 

(mean / max) 

Curvature LPA 

(mm-1) 

(mean / max) 

Torsion RPA (mm-1) 

(min / mean / max) 

Torsion LPA (mm-1) 

(min / mean / max) 

1 0.021 / 0.066 0.036 / 0.103 -0.430 / 0.135 / 1.798 -0.074/ 0.024 / 0.182 

2 0.015 / 0.036 0.029 / 0.110 -0.500 / -0.055 / 0.183 -0.864 / -0.138 / 0.005 

3 0.014 / 0.087 0.012 / 0.068 -0.400 / -0.004 / 0.841 -0.971 / 0.026 / 0.742 

4 0.018 / 0.035 0.036 / 0.105 -1.017 / -0.030 / 0.367 -0.046 / 0.059 / 0.837 

5 0.014 / 0.053 0.032 / 0.131 -1.338 / -0.032 / 0.709 -2.083 / -0.061 / 0.606 

6 0.016 / 0.034 0.042 / 0.094 -0.008 / 0.128 / 0.495 -0.888 / -0.004 / 0.294 

7 0.019 / 0.046 0.015 / 0.058 -0.329 / 0.004 / 0.709 -0.343 / 0.009 / 0.930 

Average 0.022 / 0.040 0.044 / 0.189 -0.220 / 0.162 / 0.825 -0.144 / 0.183 / 0.990 

Mean value 0.017 / 0.050 0.031 / 0.107 -0.530 / 0.039 / 0.741 -0.677 / 0.013 / 0.573 

Table 5.5: Geometric analysis of the patient-specific models: tortuosity, minimum inscribed sphere radius along 

the daughter branches, and in-plane and out-of-plane angles. 

Model 
Tortuosity 

(RPA/LPA) 

Min Sphere 

Radius (mm) 

(RPA/LPA) 

In-Plane 

angles 

(RPA/LPA) 

Out-of-Plane 

Angles 

(RPA/LPA) 

1 0.017 / 0.115 4.8 / 5.8 132.1° / 118.7° 1.3° / 27° 

2 0.017 / 0.132 4.5 / 4.8 142.6° / 119.9° 9.4° / -21.4° 

3 0.044 / 0.091 5.7 / 4.8 163.8° / 168.2° 7.1° / -3.8° 

4 0.013 / 0.121 3.5 / 4.1 142.2° / 110.1° -15.4° / 11.2° 

5 0.011 / 0.258 7.0 / 6.5 135.9° / 118.6° -35.1° / 58.9° 

6 0.003 / 0.182 6.3 / 5.3 160.3° / 126.7° -26.1° / 31.5° 

7 0.103 / 0.111 6.7 / 10.8 124.4° / 160.1° -12.5° / 16.9° 

Average 0.011 / 0.176 7.1 / 7.0 147.2° / 117.0°  -32° / 11.4° 

Mean value 0.027 / 0.148 5.7 / 6.1 143.6° / 129.9° -12.9° / 16.5° 

The in-plane bifurcating angle of the RPA (Table 5.5) was in most cases bigger 

compared to the LPA, indicating a more acute angle between the MPA and the LPA. 

Exception to this were patients 3 and 7, where in 3 the two branches had very similar 

bifurcating angles. The average in-plane angles for the RPA and LPA branches were, 



156 
 

respectively, 143.6° and 129.9°. The out-of-plane angles suggest that the LPA deviated 

more from the bifurcation plane. In the majority of models, the rotation of the LPA 

was clockwise, while in four out of seven patients and in the average model, the 

rotation was anti-clockwise for the RPA branch. The mean value of the out-of-plane 

angles as calculated for the RPA and LPA branches were -12.9° and 16.5°, respectively 

(Table 5.5). 

 

Figure 5.6: (a) Centerlines along the LPA and RPA of model 2, with points indicating the curvilinear abscissa, 

normalised by the distance corresponding to the peak curvature value closer to the bifurcating branches. Therefore, 

the value of 1.0 represents the location of peak curvature for each branch. (b) Average curvature plot. (c) Average 

torsion plot, and (d) Average Dean number plot, with x-axis indicating distance from point O. Shaded areas 

represent the standard deviation of the patient-specific values from the average calculated. 

5.3.2. Flow characteristics 

Following Eqs. (1.14), (1.22) and (1.23), the Reynolds (mean and maximum), 

Womersley and Dean numbers were calculated for all models and are reported in Table 

5.6. The mean Re varied during the cardiac cycle of the seven cases and the average 

model between 297 to 1722 and, therefore, different flow patterns were expected 
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during the cardiac cycle. The average calculated Remean values were 768 for the MPA, 

983 for the RPA and 687 for the LPA, therefore, the highest Re was observed in the 

RPA branch. Wo was in the range of 13.6 – 40.3, as calculated at the inlet of the models 

for the seven cases examined, indicating a large frequency of pulsations (Nichols and 

O’Rourke, 2005), and with the highest value found in model 3. Finally, the average 

Dean number calculated for the RPA (Demax_RPA = 1779) was higher compared to the 

LPA (Demax_LPA = 1643). The Dean plots for the two branches (Fig. 5.6d), indicate a 

similar increase as with the curvature plots, with the maximum Dean number located 

approximately at the entrance of the daughter branches.  

Table 5.6: Mean and maximum Reynolds (Re), Womersley (Wo) and Dean number (De). 

Model 
Remean_MPA 

(Remax_MPA) 

Remean_RPA 

(Remax_RPA) 

Remean_LPA 

(Remax_LPA) 
Wo Demax_RPA Demax_LPA 

1 397 (3199) 367 (2958) 520 (1873) 13.6 1034 1178 

2 504 (4093) 542 (4408) 300 (2434) 17.3 1302 1215 

3 1722 (4561) 2962 (7846) 2615 (6925) 40.3 2115 1450 

4 696 (5694) 905 (7638) 290 (5127) 13.6 1412 1844 

5 297 (6529) 305 (6695) 116 (1760) 16.3 3180 1851 

6 1023 (4450) 1011 (4936) 315 (1537) 17.7 1934 972 

7 521 (3823) 718 (6918) 886 (4807) 18.3 1085 1854 

Average 985 (6414) 1052 (6832) 454 (2950) 18.4 2172 2778 

Mean value 768 (4845) 983 (6029) 687 (3427) 19.4 1779 1643 

5.3.3. Computational analysis 

In the following paragraphs, a top-down analysis is followed by examining first the 

use of averaged boundary conditions on the anatomically average and personalised 

geometries (effect of geometry, section 5.3.3.1) and then, the application of patient-
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specific boundary conditions on individualised geometries (patient-specific effects, 

section 5.3.3.2.). 

5.3.3.1. Averaged boundary conditions 

Initially, the average flow waveform of Fig. 5.2a and the average flow split (Section 

5.2.2) were used as the boundary conditions in the patient-specific models and the 

anatomical average geometry in order to better understand the effect of geometry in 

the flow development in the pulmonary arteries (Figs. 5.7, 5.8). Although the 

anatomical average geometry was derived from a small number of TOF patients and 

cannot be considered representative of the population, its purpose is to help clarify the 

importance of patient-specificity in the models.  

Fig. 5.7 displays the secondary flow in cross sections (α) and (γ) along the RPA and 

LPA, as defined in Fig. 5.1b, in models 2, 3 and the average geometry, using averaged 

BCs, at three different time points: (i) peak systole, (ii) mid deceleration at systole and 

(iii) mid diastole. Models 2 and 3 were chosen because the patients are of similar age 

and with a severe grade of regurgitation fraction, but have different flow characteristics 

(Table 5.6), which could facilitate the comparison between observed differences. The 

description of the flow patterns is based on Perry and Steiner’s (Perry and Steiner, 

2006). Looking at the orientation of the streamlines, the terms stable and unstable refer 

to the vectors of flow pointing towards the inner and outer of a node, focus or line, 

respectively, while a saddle point is a location where four streamlines form a rhombus 

of a stationary region. 

During peak flow, a stable node was noticed in the RPA of all models (Fig. 5.7a.i (α), 

5.7b.i (α), 5.7c.i (α)). In addition, two pairs of counter rotating vortices were observed 
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in the LPA of model 2 (Fig. 5.7a.i (γ)). The pair positioned cranial and posteriorly, 

consisted of a stable and an unstable focus, while the other pair was positioned 

caudally in the LPA slice, and consisted of two unstable foci. In model 3, an unstable 

bifurcation line was visible in the LPA (Fig. 5.7b.i (γ)), while for the average model a 

a stable bifurcation line positioned cranially, and an unstable focus positioned caudally 

were developed (Fig. 5.7c.i (γ)). 

During mid deceleration at systole, the stable bifurcation line in the RPA of model 2 

developed in a stable focus (Fig. 5.7a.ii (α)), while in the average model two counter 

rotation vortices were additionally developed posteriorly (Fig. 5.7c.ii (α)). In the LPA 

of model 2, only three vortices remained; a stable focus positioned cranially, and two 

unstable foci positioned caudal anteriorly and posteriorly, respectively (Fig. 5.7a.ii 

(γ)). A saddle was visible cranially and anteriorly in the LPA of model 3, with an 

unstable focus further caudally and posteriorly and a stable focus caudally (Fig. 5.7b.ii 

(γ)). For the average model, 2 vortices, positioned cranially and caudally were 

developed, while a saddle was also visible cranially during mid diastole (Fig. 5.7c.ii 

(γ)).  

At mid diastole, two unstable foci appeared cranially in the RPA of model 2, and one 

located more centrally (Fig. 5.7a.iii (α)). For the LPA, an unstable bifurcating line, and 

an unstable focus were visible cranially and caudally, respectively (Fig. 5.7a.iii (γ)). 

In model 3, an unstable bifurcating line was visible in the RPA cross-section (Fig. 

5.7b.iii (α)), while a pair of counter-rotating vortices, consisting of two stable foci, 

positioned caudally in the LPA cross-section (Fig. 5.7b.iii (γ)). For the average model, 

an unstable bifurcating line appeared posteriorly in the RPA (Fig. 5.7c.iii (α)), while 
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in the LPA a stable bifurcating line and an unstable focus were formed caudally and 

cranially, respectively (Fig. 5.7c.iii (γ)). 

 

 

Figure 5.7: Secondary flow visualised by in plane velocity vectors and contours of normalised velocity normal to 

the slice during (i) peak flow; (ii) mid deceleration at systole; and (iii) mid diastole, for (a) model 2; (b) model 3; 

and (c) the average model. Non-dimensionalisation was performed by division with the maximum velocity of each 

patient during the cardiac cycle. Points where slices α and γ are taken are visible in Fig. 5.1b. Cross-sections are 

oriented with the top and the bottom edges corresponding to the cranial and caudal positions, respectively and left 

and right to the anterior and posterior of the pulmonary artery, for the RPA, and to the posterior and anterior of 

the pulmonary artery, for the LPA, respectively.  Cross-sections are in scale. 

TAWSS distribution, normalised by the value at the inlet of each model (denoted as 

TAWSSn), is presented in Fig. 5.8, for all models. In general, higher wall shear stresses 

were observed at the entrance of the LPA and the RPA branches, while lower 

TAWSSn values were visible further downstream at the LPA branch. In model 4 (Fig. 

5.8d), high TAWSSn was also developed along the MPA branch. A small region of 

low TAWSSn was found at the bifurcating wall in all models, indicating the stagnation 

point, where flow impinged before splitting and entering the daughter branches. Model 
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3 (Fig. 5.8c) had an extensive area of low shear stress values in the enlarged MPA, 

while the lowest non-dimensionalised TAWSS values were found in model 7 (Fig. 

5.8g). The average model (Fig. 5.8h) captured some main characteristics of the 

TAWSS patterns of models 1, 2, 3 and 6 (Figs. 5.8a-c, 5.8f), particularly the 

localisation of high TAWSSn regions at the entrance of the branches and lower values 

near the flow divider.  

 

Figure 5.8: Non-dimensionalised time-averaged wall shear stress (TAWSSn) distribution, normalised with the 

corresponding value at the inlet of each model for (a) model 1; (b) model 2; (c) model 3; (d) model 4; (e) model 5; 

(f) model 6; (g) model 7; (h) the average model. Averaged boundary conditions are used at the inlet and the outlets 

of all models. 

5.3.3.2. Patient-specific boundary conditions 

In the following subsections, computational results from matching patient-specific 

boundary conditions with their respective geometry are presented, analysing velocity 

streamlines, secondary flow and the time-averaged wall shear stress distribution. 
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5.3.3.2.1. Contours of velocity and velocity streamlines 

Velocity streamlines coloured by non-dimensionalised velocity at three time points, 

peak flow (Fig. 5.9.i), mid deceleration during systole (Fig. 5.9.ii), and mid diastole 

(Fig. 5.9.iii), are examined. The patient-specific waveforms are also provided to 

indicate these time points. At peak systole, high velocities were developed at the 

entrance of the RPA and in the LPA opening, close to the MPA wall, in all models 

(Figs. 5.9a.i – 5.9g.i). In models 5 and 7 (Figs. 5.9e.i, 5.9g.i), and to a smaller extend 

in model 4 (Fig. 5.9d.i), high velocities were also visible along the MPA. A small 

recirculation zone was developed at the entrance of the LPA branches proximal to the 

MPA wall (Figs. 5.9b.i – 5.9f.i), except in models 1 and 7 (Figs. 5.9a.i, 5.9g.i).   

 

During deceleration (Fig. 5.9.ii), the recirculation zone at the entrance of the LPA of 

all models was enlarged and flow recirculation was also visible in the LPA of 

geometries 1 and 7 (Figs. 5.9a.ii, 5.9g.ii). In models 3, 5 and 6 (Figs. 5.9c.ii,  5.9e.ii, 

5.9f.ii), flow separation occurred additionally within the MPA, while in the MPA of 

model 1 (Fig 5.9a.ii), a small area of reversed flow was observed. Along the RPA, 

complex flow was mostly observed for models 6 and 7 (Fig. 5.9f.ii, 5.9g.ii). 

Finally, during mid diastole (Fig. 5.9.iii), complex flow patterns appeared in the 

pulmonary junction of the models. Highly disturbed flow was visible in models 2, 5, 

6 and 7 (Figs. 5.9b.iii, 5.9e.iii – 5.9g.iii). In model 3 (Fig. 5.9c.iii), reverse flow was 

observed in the MPA and flow recirculation zones appeared in both the RPA and LPA. 

Only model 1 (Fig. 5.9a.iii) did not exhibit recirculation along the RPA and LPA 

branches. 
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Figure 5.9: Left to Right: Patient-specific flow waveforms and velocity streamlines at (i) peak flow; (ii) mid 

deceleration at systole; and (iii) mid diastole for (a) model 1; (b) model 2; (c) model 3; (d) model 4; (e) model 5; 

(f) model 6; (g) model 7. Streamlines are coloured by non-dimensionalised velocity magnitude based on the 

maximum velocity during the cardiac cycle of each patient. The RPA and the LPA branches are indicated in model 

1.  

5.3.3.2.2. Secondary flow 

To investigate the secondary flow developed during the cardiac cycle, contours of 

velocity normal to the cross sections of the models are presented in Fig. 5.10-5.12, 
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overlaid by the in-plane velocity vectors at (i) peak systole (Fig. 5.10), (ii) mid 

deceleration of systole (Fig. 5.11) and (iii) mid diastole (Fig. 5.12). Velocity values 

are presented non-dimensionalised with the corresponding maximum velocity 

developed in each model during the cycle.  

During peak flow, no vortices were present in the RPA branch of any of the models 

(Fig. 5.10). A stable bifurcation line was formed, which developed into a saddle point 

on model 7 (Fig. 5.10g (β)), and into an unstable focus (Fig. 5.10b (β)) with reversed 

flow (Fig. 5.10b (β), 5.10c (β)) in models 2 and 3. In addition, two counter rotating 

vortices, were visible in the LPA of model 2 (Fig. 5.10b (γ)), which then disappeared 

further downstream, and an unstable bifurcation line was instead visible (Fig. 5.10b 

(δ)). In model 3, a stable focus was formed posteriorly (Fig. 5.10c (γ)), which remained 

further downstream (Fig. 5.10c (δ)), while a saddle point was also developed cranially 

(Fig. 5.10c (δ)). In models 4 and 6, a pair of counter-rotating vortices was visible, 

located posteriorly and caudally, respectively. Both pairs consisted of a stable and an 

unstable focus (Figs. 5.10d (γ), 5.10f (γ)). The vortices in model 4, moved anteriorly 

further downstream (Fig. 5.10d (δ)). A small vortex was visible cranially in model 1 

(Fig. 5.10a (γ)), and two vortices, cranially and anteriorly, and a bifurcation line were 

noticed in model 5 (Fig. 5.10e (γ)). The vortices developed on the models were not 

symmetric; the asymmetry of the vortices is expected due to the higher curvature and 

the velocity profile of the flow entering the bifurcation. For the remaining of the 

models, stable bifurcation lines were observed (Figs. 5.10 (γ)-(δ)). 
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Figure 5.10: Secondary flow visualised by in plane velocity vectors and contours of normalised velocity normal to 

the slice during peak flow for (a) model 1; (b) model 2; (c) model 3; (d) model 4; (e) model 5; (f) model 6; (g) 

model 7. Non-dimensionalization was performed by division with the maximum velocity of each patient during the 

cardiac cycle. Points where slices α to δ are taken are visible in Fig. 5.1b. Cross-sections are oriented with the top 

and the bottom edges corresponding to the cranial and caudal positions, respectively and left and right to the 

anterior and posterior of the pulmonary artery, for the RPA, and to the posterior and anterior of the pulmonary 

artery, for the LPA, respectively.  Cross-sections are in scale. 

During mid deceleration at systole, vortices were apparent in the majority of the 

models, in both the RPA and LPA branches. A stable bifurcation line in model 1 (Fig. 

5.11a (α)), developed into a stable focus (Fig. 5.11a (β)), while in model 4 the stable 
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focus was formed in (α) and moved posteriorly in (β) (Fig. 5.11d), as is in model 5 

(Fig. 5.11e). In both models 2 and 3 a stable focus was visible, located centrally in 

model 2 (Fig. 5.10b (α)), which then moved posteriorly (Fig. 5.11b (β)), and 

posteriorly in model 3 (Fig. 5.11c (α)), moving cranially (Fig. 5.11c (β)). A stable 

bifurcation line also existed cranially in the RPA of model 3 (Fig. 5.11c (α)). In model 

7 a saddle point and a stable focus were observed (Fig. 5.11g). Models 6 was the only 

model with two counter rotating vortices formed on the RPA branch (Fig. 5.11f (β)). 

More complex flow patterns were visible in the LPA branches of the models. An 

unstable focus positioned caudally and anteriorly in model 1 (Fig. 5.11a (γ)) developed 

in two counter rotating vortices (Fig. 5.11a (δ)). In model 2, two unstable foci located 

posteriorly, a stable focus and a saddle point located anteriorly, were formed (Fig. 

5.11b (γ)), which further downstream fused into one stable focus moving cranially 

(Fig. 5.11b (δ)). In the LPA of model 3, two relatively symmetric vortices were visible 

(Fig. 5.11c (γ)), which moved cranially downstream (Fig. 5.11c (δ)), with an additional 

vortex formed in the caudal position. Model 4 had two unstable foci caudally, and 

another vortex consisting of a stable focus cranially (Fig. 5.11d (γ)), which they 

remained in (δ). Model 5 had a single vortex and a stable bifurcation line (Fig. 5.11e 

(γ)), while model 6 had two counter-rotating vortices caudally (Fig. 5.11f (γ)) that were 

fused into one further downstream; a stable bifurcating line also was visible (Fig. 5.11f 

(δ)). Model 7 had two relatively small counter-rotating vortices cranially and a stable 

bifurcation line caudally (Fig. 5.11g (γ)). 
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Figure 5.11: Secondary flow visualised by in plane velocity vectors and contours of normalised velocity normal to 

the slice during mid deceleration at systole for (a) model 1; (b) model 2; (c) model 3; (d) model 4; (e) model 5; (f) 

model 6; (g) model 7.. Non-dimensionalisation was performed by division with the maximum velocity of each 

patient during the cardiac cycle. Points where slices α to δ are taken are visible in Fig. 5.1b. Cross-sections are 

oriented with the top and the bottom edges corresponding to the cranial and caudal positions, respectively and left 

and right to the anterior and posterior of the pulmonary artery, for the RPA, and to the posterior and anterior of 

the pulmonary artery, for the LPA, respectively.  Cross-sections are in scale 

In mid diastole, unstable bifurcating lines were observed in the RPA branch in the 

majority of models. A pair of counter-rotating vortices appeared during mid diastole 

in the RPA of model 3, positioned caudally in the upstream cross-section (Fig. 5.12c 
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(α)), but then moving posteriorly further downstream (Fig. 5.12c (β)). Vortices 

consisting of stable foci were visible in models 2 (Fig. 5.12b (α, β)), 5 (Fig. 5.12e (β)), 

6 (Fid. 5.12f (β)) and 7 (Fig. 5.12g (β)). In model 6 three vortices and a saddle point 

were initially formed (Fig. 5.12f (α)), while in model 7 five vortices were seen (Fig. 

5.12g (α)). For the LPA branch of the models, vortices were visible in most of the 

models (Figs. 5.12a (γ)-(δ), 5.12d (γ), 5.12e (γ), 5.12g); unstable bifurcating lines 

could also be distinguished (Figs. 5.12a (γ), 5.12d (γ), 5.12e (γ)). A stable and an 

unstable focus were visible in the cross-section of model 2 (Fig. 5.12b (γ)), which 

fused into a stable focus downstream (Fig. 5.12b (δ)). The opposite was observed for 

model 3, where a stable focus (Fig. 5.12c (γ)), transitioned to two counter-rotating 

vortices in the downstream cross-section (Fig. 5.12c (δ)).  

The geometrical and flow parameters of the models (Tables 5.4, 5.5 and 5.6) indicate 

higher Re and De numbers in the RPA branch of the models, while the LPA branches 

demonstrate elevated curvature and tortuosity. In general, more complex secondary 

flow patterns appeared in the LPA branches of the models, indicating that curvature 

and tortuosity have a greater impact in vortex formation. Nevertheless, a number of 

vortices have formed in the RPA branch during mid diastole, especially in models 6 

and 7 (Figs. 5.12f, 5.12g), which are also the models with the highest RPA flow split 

(above 75% in both cases), indicating the effect of the BCs in the observed flow field. 

Finally, an increased number of vortices exists in the LPA of model 2 when the 

averaged BCs are used, however this difference could be explained by the considerable 

difference in the peak inlet flow between patient-specific and averaged velocity 

waveforms. For model 3, although an increase in the inlet peak flow is also observed, 

it is relatively small (6.6%).    
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Figure 5.12: Secondary flow visualised by in plane velocity vectors and contours of normalised velocity normal to 

the slice during mid diastole for (a) model 1; (b) model 2; (c) model 3; (d) model 4; (e) model 5; (f) model 6; (g) 

model 7. Non-dimensionalisation was performed by division with the maximum velocity of each patient during the 

cardiac cycle. Points where slices α to δ are taken are visible in Fig. 5.1b. Cross-sections are oriented with the top 

and the bottom edges corresponding to the cranial and caudal positions, respectively and left and right to the 

anterior and posterior of the pulmonary artery, for the RPA, and to the posterior and anterior of the pulmonary 

artery, for the LPA, respectively.  Cross-sections are in scale 
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5.3.3.2.3. Time-averaged wall shear stress 

Normalised TAWSS distributions using the patient-specific BCs are presented in Fig. 

5.13. Areas of high TAWSSn were found at the entrance of the daughter branches. 

More extended high TAWSSn areas were observed on the LPA and RPA branches of 

model 3 (Fig. 5.13c), and the RPA and MPA branches of models 4 (Fig. 5.13d) and 7 

(Fig. 5.13g). The lowest TAWSSn was noticed in patient 1 (Fig. 5.13a), while the 

MPA of model 3 had also lower TAWSSn values compared to the rest of the models 

(Fig. 5.13c). A small area of high TAWSSn was also seen in the MPA of model 5 (Fig. 

5.13e). 

 

Figure 5.13: Non-dimensionalised time-averaged wall shear stress (TAWSSn) distribution, normalised by the wall 

shear stress value at the inlet of each model, respectively, for (a) model 1; (b) model 2; (c) model 3; (d) model 4; 

(e) model 5; (f) model 6; (g) model 7. Insets show the back view of the models. The LPA and RPA branches are 

indicated in Model 1. 

 

Overall, the TAWSS patterns observed in figures 5.13 and 5.8 are similar in character, 

in particular with regard to the high wall shear stresses developed at the entrance of 

the daughter branches. Table 5.7 provides the percentage difference between the 
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average and patient-specific flow splits. Smaller areas of high TAWSS were noticed 

in models 1-4 (Figs. 5.13a-d), which coincide with increased flow split in the RPA and 

with an increase in the peak inlet flow when the averaged BCs are specified in the 

models (Table 5.7). On the contrary, higher wall shear stress values were developed in 

the pulmonary bifurcation of models 5-7 (Figs. 5.13e-g) for patient-specific BCs. For 

models 5 and 6 (Figs. 5.13e and 5.13f), there was an increase in the LPA flow split 

and a decrease in the RPA flow split and peak inlet flow, compared to the average 

values (Table 5.7). Model 7 had the largest difference in the TAWSSn pattern. A 

possible explanation could be that although the patient-specific flow split was 45.7% 

: 54.3% (QRPA:QLPA), the average flow split had most of the flow diverted to the RPA 

branch (65.3% : 34.7%, QRPA-av:QLPA-av), highlighting the importance of the BCs in the 

flow development. Furthermore, model 7 was the exception in the general trend 

observed for the rest of the models, where an increase in the RPA flow split and the 

peak inlet flow resulted in increased TAWSSn values in the pulmonary junction. 

Table 5.7: Percentage difference between the average and patient-specific values for flow splits and inlet flow 

waveform (((Qaverage-Qpatient_specific)/Qaverage)*100). 

Patient Flow Split %          

difference (RPA) 

Flow Split %      

difference (LPA) 

Inlet flow Waveform      

% difference 

Peak Inlet flow        

% difference 

1 +15.3% -28.8% +55.5% +51.6% 

2 +0.8% -1.4% -3.2% +54.5% 

3 +15.0% -28.0% +57.7% +6.6% 

4 +2.1% -4.0% -10.8% +6.5% 

5 -15.5% +29.1% -166.3% -94.8% 

6 -17.3% +32.6% +68.4% -52.6% 

7 +30.0% -56.5% -1.2% +9.0% 
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To quantify the differences between the patient-specific models with patient-specific 

or averaged boundary conditions, and the average geometry, the time averaged wall 

shear stress from the cross-sections (α) and (γ) (Fig. 5.1), was compared. Eight points 

located along the wall of the cross-sections and equally distanced, were taken for each 

geometry, and the average TAWSS from the eight individual values was calculated. 

The measured TAWSS was then averaged for Models 1-7, with patient-specific 

boundary conditions, and for the same models with averaged boundary conditions. The 

results are presented in Table 5.8, both in dynes/cm2 and non-dimensionalised 

(TAWSSn). The TAWSS values of the averaged geometry is reported separately to 

allow comparisons. The TAWSS values of the average geometry is lower compared 

to the average values calculated for Models 1-7 when both averaged and patient-

specific BCs are used. In addition, the range of the TAWSS values are comparable 

when average (~47-450 dynes/cm2) and patient-specific BCs (~33-237 dynes/cm2) are 

assigned. Table 5.8 also indicates that there is a large variability in the TAWSS values 

between the different models. To further compare the TAWSS values of the different 

models, the average TAWSS value calculated for the RPA and LPA cross-sections of 

each patient were plotted and are presented in Fig. 5.14, for both patient-specific and 

average BCs. When the adult patients were compared (Figs. 5.14a.3-5.14a.7) the 

TAWSS value was found to be decreasing with age, while the lowest TAWSS value 

of 27 dynes/cm2 was noticed in model 1 (Fig. 5.14a.1). In Fig. 5.14b, much higher 

TAWSS values were calculated for model 2 (~450 dynes/cm2, Fig. 5.14b.2), while 

models 5 to 7 have very similar TAWSS values (Figs. 5.14b.5 – 5.14b.7). The TAWSS 

value of the average model was at the lower levels (~65 dynes/cm2, Fig. 5.14b.8), but 
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comparable to the values calculated in the adult population with averaged boundary 

conditions (47-290 dynes/cm2, Figs. 5.14b.3 – 5.14b.7). 

Table 1.8: Averaged TAWSS, derived from the TAWSS values of eight points located along the perimeter of cross-

sections (α) and (γ), are presented both in dynes/cm2 and non-dimensionalised (TAWSSn). 

  
TAWSS 

(dynes/cm2) 
TAWSSn 

Cross-section (α) 

Average geometry 87 95 

Models 1-7 average BCs 182 ± 135 173 ± 173 

Models 1-7 patient specific 

BCs 
129 ± 67 187 ± 155 

Cross-section (γ) 

Average geometry 42 45 

Models 1-7 average BCs 179 ± 148 150 ± 110 

Models 1-7 patient specific 

BCs 
109 ± 70 146 ± 113 

 

Figure 5.14: Time-averaged wall shear stress (TAWSS) plot, derived from the TAWSS values of eight points located 

along the perimeter of cross-sections (α) and (γ), and presented in dynes/cm2, when (A) patient-specific, and (B) 

averaged boundary conditions are specified, and for (1) model 1; (2) model 2; (3) model 3; (4) model 4; (5) model 

5; (6) model 6; (7) model 7; (8) the average model. 
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5.3.3.2.4. Oscillatory Shear Index 

Relatively high OSI was observed in the pulmonary junction of the models, indicating 

a fluctuation in the wall shear stress during the cardiac cycle. Higher OSI was noticed 

in model 1 (Fig. 5.15a) and in the LPA of model 7 (Fig. 5.15g).  Lower OSI was seen 

at the entrance of the daughter branches, around the stagnation point in the bifurcation 

of the branches (Fig. 5.15), and a more extended low region was found in model 3 

(Fig. 5.15c). In general, the high and low OSI regions corresponded to the low and 

high TAWSSn areas, respectively (Fig. 5.13).  

 

Figure 5.15: Oscillatory Shear Index distribution for (a) model 1; (b) model 2; (c) model 3; (d) model 4; (e) model 

5; (f) model 6; (g) model 7. The RPA and LPA branches are indicated in model 1. 
 

5.4. Discussion 

This study demonstrates that the anatomy of the pulmonary arteries of repaired 

tetralogy of Fallot patients varies greatly within the population. A characteristic 
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difference from healthy subjects is that the left pulmonary artery is highly curved 

(Capuano et al., 2019). The scope of this study was to evaluate the effect of 

morphological characteristics on the flow development in models of rTOF patients. 

Seven patient cases were initially analysed geometrically and information including 

the curvature, tortuosity, the radius and the angles of the daughter branches were 

reported. The flow development was investigated through numerical simulations that 

were performed using patient-specific and averaged boundary conditions. The novelty 

of this work lies in the analysis of both the morphological and the hemodynamic 

characteristics of rTOF models, and in the assignment of the patient-specific 3D 

velocity profile of the pulmonary arteries, which is usually neglected in computational 

studies. The main findings of this work concern the correlation of tortuosity with the 

secondary flow patterns (Section 5.3.3.2.2), and the association of the flow splits and 

the peak inlet flow with the time averaged wall shear stress distribution (Section 

5.3.3.2.3).  

The morphological analysis of the TOF models in this study suggests that: 1) the LPA 

has a higher curvature compared to the RPA; 2) the LPA branch has a higher tortuosity; 

3) the average radius of the LPA is higher compared to the RPA radius (Table 5.5); 4) 

the in-plane-angles suggest a more acute angle of the LPA branch; and 5) the out-of-

plane angles indicate a counter-clockwise and clockwise shift of the RPA and LPA 

branches, respectively, while also suggesting a small bend of the RPA on the 3D-space.  

Comparison with previous studies 

Capuano and his co-workers (Capuano et al., 2019) studied the blood flow in a healthy 

pulmonary artery and reported a steeper but planar curvature in the right pulmonary 
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branch compared to the left, while Louvelle et al. (Louvelle et al., 2019) who assessed 

the geometric complexity of TOF patients, reported higher tortuosity in the LPA, in 

agreement with the results of this work. Regarding the cross-sectional area between 

the RPA and the LPA branches, this was previously found slightly lower in the RPA 

for healthy subjects (Capuano et al., 2019), while the opposite was observed in TOF 

patients, where the difference between the diameters of the two branches was 

noticeable (Louvelle et al., 2019). In the present study, a small difference was seen 

between the minimum sphere radius of the RPA and LPA branches. Comparing the 

branching angles in the right and left branches, the LPA was found to bifurcate almost 

as a continuation of the MPA in healthy subjects (Capuano et al., 2019), while its 

course was much different, with smaller branching angles, in TOF patients (Louvelle 

et al., 2019), which is in agreement with what was observed in this work. 

To characterise the flow, the Reynolds, Womersley and Dean numbers were reported 

in this study, which are associated with alterations in secondary flow structure (Sudo 

et al., 1992, Evergen et al., 2010) and wall shear stress patterns (Kazakidi et al., 2009, 

Kazakidi et al., 2011). The RPA was found to have the highest mean Reynolds number, 

compared to the MPA and LPA branches, which could be explained by the smaller 

average branch radius. Finally, the average Dean number was found to be more 

elevated in the RPA branch, than the LPA branch. The Womersley number reported 

in the pulmonary arteries of healthy volunteers is in the range of approximately 14-21 

(Sloth et al., 1994), which is in agreement with the range reported for the TOF 

population in this study. Recently, Loke et al. (Loke et al., 2019) studied the pulmonary 

artery bending in healthy subjects and patients that have undergone arterial switch 

operation (ASO) and reported a Dean number in the range of 803 ± 280 in the RPA 
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and 566 ± 140 in the LPA in the control group, and 1902 ± 1125 in the RPA and 1067 

± 584 in the LPA of the ASO patients (Loke et al., 2019). These patients are often 

diagnosed with post-operative complications including right ventricular afterload and 

right ventricular hypertrophy, most commonly from left pulmonary arterial stenosis 

(Morhan et al., 2017), similar to TOF patients. In this study, the average Dean numbers 

were within the range of the ASO patients. Plotting the average Dean number along 

the centrelines of the models showed that it reached its peak value approximately at 

the entrance of the daughter branches (Fig. 5.6d), following the same trend as the 

curvature plot (Fig. 5.6b). In general, high Dean numbers are associated with complex 

vortical flows (Hidesato, 1987), and a Dean number above 36 was found to be the 

critical value above which secondary motions are formed in a curved pipe (Lyne, 

1971). 

The flow patterns developed in the arteries of the models are comparable with those 

reported in previous studies for tetralogy of Fallot patients. Flow recirculation was 

observed first in the LPA of the models early in the cardiac cycle (Fig. 5.9.i), while 

recirculation zones developed in the MPA and/or RPA branches later during the 

cardiac cycle in agreement with the study of Chern at al. (Chern et al., 2012). Various 

different types of secondary flow patterns have been discussed in the literature (Sudo 

et al., 1992, Boiron et al., 2007, Evergen et al., 2010, Chern et al., 2012, Capuano et 

al., 2019), for different numerical and geometrical parameters, which makes the 

comparison with the secondary flow patterns reported in this study rather difficult. 

Nevertheless, in general, more complicated flow patterns were found in the LPA 

branch (Figs. 5.10-5.12) of the models, which is in agreement with other studies 

(Chern et al., 2012). The TAWSSn distribution was, overall, elevated at the openings 



178 
 

of the daughter branches (Figs. 5.8, 5.13), which is comparable with the results 

reported by Zhang et al. (Zhang et al., 2016). Very low TAWSSn values were found 

at the stagnation point, while a high TAWSSn gradient was developed adjacent to that 

area, as reported on Chapter 3. The range of TAWSS values reported in this study for 

the rTOF models (in the range of 0-440 dynes/cm2, Fig. 5.14) was found much higher 

compared to those of healthy control volunteers presented in previous studies (up to 

20.5 dynes/cm2), and of patients with pulmonary arterial hypertension (up to 10.1 

dynes/cm2) (Tang et al., 2011, Tang et al., 2012). Nevertheless, the range of the 

TAWSS values in Zhang et al. (2016), a work also focused in rTOF, was also elevated, 

at 0-1000 dynes/cm2 and it is anticipated that the pulmonary arteries of the specific 

population of patients is characterised by a high TAWSS environment. In general, 

higher wall shear stress values were observed in the RPA branch, which was also 

characterised with a smaller branch radius and higher Re and De numbers. Finally, the 

OSI was found relatively high in the models, with relatively low OSI observed in the 

openings of the daughter branches (Fig. 5.15). Previous work conducted in healthy 

subjects, reported low oscillatory shear index in the pulmonary arterial models (Tang 

et al., 2010), while in another study where they compared the OSI in a healthy 

population with a group of patients suspected of secondary pulmonary arterial 

hypertension (PAH), higher OSI values were reported for the PAH group (Terada et 

al., 2016). The latter is in agreement with the results of this study. 

Importance of patient-specificity 

Anatomically mean geometries have been used in several cardiovascular studies to 

reduce complexity in patient-specific simulations (Guibert et al., 2014), investigate 

morphological characteristics and extract 3D shape biomarkers (Bruse et al., 2016), 
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and, lately, study the blood flow in a healthy average geometry of the pulmonary 

bifurcation derived from 5 young patients (Capuano et al., 2019). To this end, the 

patient-specific results were compared with those of an averaged geometry derived 

from the 5 adult rTOF patients of this study. The regions of high TAWSSn (Fig. 5.8h) 

were in agreement with those predicted with the patient-specific models (Figs. 5.13a-

g), more closely resembling models 1, 2 and 6 (Figs. 5.13a-b, f). Nevertheless, the 

extent of the high shear regions differed considerably with morphology and an 

anatomically mean geometry cannot capture this variability. This study also 

demonstrates a similarity in character between results obtained with patient specific 

boundary conditions and those utilising averaged conditions. This indicates that 

morphology is a crucial parameter in the flow development. However, the TAWSSn 

distribution varied in cases with the highest percentage difference in flow split and 

peak inlet flow between patient-specific and averaged values (Table 5.7), particularly 

for model 7 (Fig. 5.8g) where this was more visible, indicating that the flow field 

observed is due to the inflow and outflow BCs. In models 5 and 6, where the flow split 

in the RPA branch and peak inlet flow increased with the patient-specific boundary 

conditions, higher values of TAWSSn were observed (Figs. 5.13e-f). A correlation 

therefore exists between the TAWSSn distribution and flow splits which has been 

previously reported in the idealised models, representative of the pulmonary 

bifurcation of Chapter 3. Finally, the results of Fig. 5.14 indicate a decrease in the 

TAWSS in the cross-sections of the RPA and LPA branches with age in the adult 

population, with the exception of patient 7, when the patient-specific BCs are 

considered (Fig. 5.14a).   
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Patient-specificity is therefore deemed necessary for a better characterisation of the 

flow development in the pulmonary bifurcation of rTOF patients. Geometric analysis 

of the patient-specific models provides information about curvature and tortuosity, 

parameters that affect the flow in the daughter branches, and more specifically 

recirculation (Fig. 5.9) and secondary flows (Fig. 5.10). Curvature and torsion that 

exist in arterial geometries are found to create a favourable environment through 

generation of mixing, which has been linked with thrombosis prevention (Cookson et 

al., 2019). On the other hand, Dean flow patterns are referred to as no mixing, as the 

two vortices formed are symmetric (Cookson et al., 2019). In addition, assuming 

patient-specific boundary conditions is also important, as the flow split and peak inlet 

flow have an impact on the TAWSSn distribution (Figs. 5.8, 5.13), and on the 

secondary flow vortices developed on localised cross-sections (Figs. 5.7, 5.10). 

Significant changes on the wall shear stress of the pulmonary vasculature could affect 

pulmonary remodelling and endothelial health (Tang et al., 2012). Although 

similarities existed between the TAWSSn of the patient-specific and averaged 

boundary conditions, and one would argue that it could suffice to predict the wall shear 

stress patterns, model 7, in particular, highlights the value of patient-specificity.  

Clinical relevance 

The reversal of blood flow into the right ventricle, known as pulmonary regurgitation, 

and branch pulmonary artery stenosis, in the form of LPA kinking, are two of the most 

common complications in the rTOF population. PR is the result of pressure difference 

between the right ventricle and the pulmonary artery during diastole, and is associated 

with the geometry of the branch pulmonary arteries, and with the pulmonary vascular 

resistance and pressure (Kilner et al., 1997, Harris et al., 2011). Chronic PR typically 
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results in right ventricular dilatation and dysfunction, and in combination with the 

dilation of the pulmonary trunk, the RVOT is restricted and turns cranially and left-

laterally resulting in an acute angle between the MPA and the LPA (Kilner et al., 1997, 

MacElhinney et al., 1998). Branch stenosis is associated with increased PR, increased 

pressure drop, restricted flow to the corresponding lung and with increased retrograde 

flow in the larger artery leading to increased pulmonary vascular resistance in the non-

stenotic branch (Harris et al., 2011, Chen and Kilner 2013, Schiavazzi et al., 2015, 

D’Souza et al., 2018).  

Endothelial cells (ECs) and elastic fibres are organised in a layer of connective tissue 

that surrounds the endothelial lining of the tunica intimate (inner layer) of the blood 

vessels (Martini et al., 2014, Rubenstein et al., 2016). ECs play a crucial role in 

regulating vascular homeostasis (Gimbrone 1995, Sabri et al., 2012) and remodel in 

response to the wall shear stress applied to the vessel’s wall. Increased levels of WSS 

increase the production of the potent vasodilator nitric oxide (NO), while decreased 

WSS increase the production of the potent vasoconstrictor endothelin-1 (ET-1) (Taylor 

and Figueroa 2009). In addition, TAWSS values <4 dynes/cm2 are linked to 

atherosclerosis, while higher TAWSS (150-450 dynes/cm2) with thrombosis (Ling et 

al., 2021). Pulmonary arteries have high shear stress compared to other arteries, but 

changes observed in the pulmonary vasculature could still affect endothelial function 

and remodeling (Tang et al., 2012). The results of this study indicate that the TAWSS 

in the pulmonary arteries of the rTOF patients is highly increased, with values up to 

240 dynes/cm2 (when the patient-specific boundary conditions are considered) at the 

entrance of the daughter branches and with slightly higher TAWSS values noticed at 

the RPA branch. These regions of sudden change in the TAWSS at the bifurcation of 
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the pulmonary artery may be potential areas of local stenosis and neointimal growth 

(Zhang et al., 2016). The haemodynamic environment of these patients could be 

potentially correlated with the two-way link between pulmonary regurgitation and 

LPA kinking, were when present, may lead to RV dilation and dysfunction.  

Limitations 

Several limitations exist in the specific study, including the assumption of rigid walls. 

Nevertheless, previous studies have indicated that the flow patterns observed with the 

rigid walls would not differ significantly from those predicted when dynamic arterial 

compliance is taken into account (Capuano et al., 2019, Jin et al., 2003), also shown 

on Chapter 4 of this work. In addition, the peripheral resistance of the vessels was 

neglected, although patient-specific flow splits were assigned at the outlets of the 

models. Also, the pulmonary valve was not included in the simulations, which would 

affect the inlet flow, however patient-specific 3D velocity profiles were assigned at 

the inlet of the models which are more representative compared to a pulsatile 

waveform. Furthermore, it is recognised that the anatomical mean geometry cannot be 

considered representative of the rTOF patients, due to the small number of models 

used in the study. Finally, specific disease indications of the rTOF patients are not 

available, which consist another limitation of this study. Future work will include a 

larger cohort of patients to verify the findings presented and to address some of the 

limitations. Finally, it is acknowledged that the examined cohort of patients varied 

greatly in terms of age and gender, which may influence particularly the averaged BCs 

and geometry used. 

 

 

 



183 
 

5.5. Conclusion 

This study investigated the impact of morphological characteristics in the blood flow 

development in the pulmonary arteries of rTOF patients, assuming patient-specific and 

averaged boundary conditions. Higher curvature and tortuosity were found on the LPA 

branch, which also formed a more acute angle with the MPA and had a more 

pronounced rotation in the 3D space. Zones of recirculation and more complex flow 

patterns also developed in the specific daughter branch as indicated by the 

computational results. The LPA was characterised by lower Reynolds and Dean 

numbers, and the results correlated with higher curvature and tortuosity of the branch. 

Nevertheless, the higher Re and De numbers, which imply more distributed flow in 

the domain, can correlate with increased regions of TAWSSn in the RPA branch. The 

averaged boundary conditions and the average geometry can capture some general 

characteristics of the flow, supporting the importance of morphology in flow 

development, but the differences observed in the flow development also indicate the 

effect of the BCs. The present work highlights the importance of patient-specificity 

and especially of the spatial varying flow, which is usually neglected in computational 

studies. Further investigation is required in larger cohorts of TOF patients to validate 

the findings of this study and to allow the analysis based on the age and gender of the 

population. 
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Chapter 6  

Haemodynamic analysis in personalised arterial 

models of healthy volunteers 

In this chapter, morphological and flow pattern are investigated in five subject-specific 

models of healthy volunteers and an anatomical average model of the five, similar to 

Chapter 5 for the rTOF patients. An introduction is given on Section 6.1., while Section 

6.2. described briefly the reconstruction of the models and the boundary conditions 

used. Section 6.3. presents the calculated morphological and flow characteristics, and 

the computational results. A summary of the key findings is given in Section 6.4., 

where comparisons with Chapter 5 and previous studies are also made, and this 

Chapter ends with a conclusion in Section 6.5. 

 

6.1. Introduction 

Pulmonary arteries are a distinct system of complex anatomy and unique 

biomechanical characteristics. Under normal conditions the pulmonary bifurcation is 

characterised as a low pressure, low resistance, and high flow environment. Several 

pathological conditions can disturb the flow environment, or lead to remodelling of 

the pulmonary arteries (Hanna, 2005, Caro et al., 2012), such as those described in 

Chapter 1. In Chapters 3 and 5 the investigation is focused in idealised and patient-

specific models of rTOF patients. Describing the haemodynamic conditions in normal 
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states can be also important in disease diagnosis and mechanisms of progression, and 

treatment.  

Further to Tetralogy of Fallot presented in the previous Chapters, there are further 

pathophysiologies related to the pulmonary arteries, and many studies exist that 

investigate the blood flow in arterial models of patients of various conditions. 

Transposition of the great arteries (TAG) is a cyanotic congenital heart disease where 

new-borns are diagnosed with an aorta connected to the right ventricle, and a 

pulmonary artery to the left ventricle. The arterial switch operation (ASO) is the 

currently-used surgical option to treat TAG (Shaher, 1964, Villafañe et al., 2014), and 

many studies have utilised CFD techniques to investigate the post-operative 

environment of these patients (Ntsinjana et al., 2014, Loke et al., 2019, Capuano et al., 

2019). Several computational studies have also focused on understanding the blood 

flow in cases of total cavopulmonary connection (Dubini et al., 1996, Migliavacca et 

al., 1999a,b, Migliavacca et al., 2000, Ensley et al., 2000, Marsden et al., 2007), which 

is the outcome of two consecutive surgical treatments for single ventricle congenital 

heart defects, such as tricuspid atresia and hypoplastic left heart syndrome. Patients 

are diagnosed with one functional ventricle and following completion of the surgical 

procedures, pulmonary arteries have a modified T-shaped junction, where the inferior 

vena cave is connected to the pulmonary arteries, so that blood flow bypasses the 

venous circulation (de Leval et al., 1988). Finally, pulmonary arterial hypertension 

(PAH) is a chronic disease which has drawn the attention of many researchers (Tang 

et al., 2012, Bordones et al., 2018, Spazzapan et al., 2018). Elevated pulmonary blood 

pressure decreases wall compliance and increases wall thickness, leading to 
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remodelling of the proximal and distal pulmonary vasculature (Galié et al., 2004, 

Humphrey et al., 2008).  

Although knowledge of the physiological haemodynamic environment is a key factor 

in understanding pathological conditions, few studies exist that are trying to assess the 

haemodynamic environment in the pulmonary arteries of healthy subjects. Tang et al. 

(2011) investigated the blood flow in healthy subjects under rest and exercise 

conditions, focusing mainly of the WSS, and showed an increase in the WSS values 

with exercise. Bächler et al. (2013) utilised 4D flow and found that helical structures 

develop in the RPA and LPA branches in healthy volunteers. Recently, Capuano et al. 

(2019) analysed the blood flow in an anatomical average model, derived from five 

young subject-specific models, and concluded that the pulmonary bifurcation is 

haemodynamically efficient in healthy volunteers. In addition, they explain the 

mechanism of the helical structure formation in RPA, which was linked to the MPA 

curvature leading to WSS detachment.  

In this computational study, the blood flow environment is investigated in five subject-

specific models and in an anatomical average geometry, derived from this cohort of 

volunteers. This work is closely related with that of Chapters 5, where the impact of 

morphology and the flow conditions is explored in personalised models of TOF 

patients. To this end, the morphological and flow features in healthy volunteers were 

investigated. In the following sections, the methodology is first presented (Section 

6.2.), followed by the results (Section 6.3.). Section 6.4. provides a summary of the 

findings and makes comparison with previous studies and with Chapter 5, and finally, 

Section 6.5 gives a brief conclusion.  
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6.2. Methodology 

In this section information about the healthy subjects, the extraction of flow data and 

the setup of the computational models are provided. Many parts of the methodologies 

followed are similar to those described in Section 5.2, and therefore, to avoid 

repetition, the relevant Sections are suggested for a more detailed analysis.  

6.2.1. Healthy Population 

Retrospective data from five healthy subjects were used to study the blood flow in the 

pulmonary bifurcation of healthy volunteers (range of age 27 to 59 years). The images 

used for the reconstruction of the models were acquired on 2019 with a Siemens 

Prisma 4D flow 3-Tesla MRI scanner, Siemens Healthcare, Erlangen, Germany 

(TR=5.3 ms, TE=3.1 ms, FOV in the range of 68.75 to 78.13, and pixel spacing 

[1.4844;1.4844] to [2.375;2.375]).  The clinical data include part of research data from 

the Queen Elizabeth Hospital, Glasgow, UK (approved by the local ethics committee, 

Glasgow CRIF approval group, and written informed consent was obtained from all 

participants. Research Ethics Committee West of Scotland REC3, reference 

16/WS/0220). Demographic data of the subjects are presented on Table 6.1. 

Table 6.1: Demographic and haemodynamic data of the heathy subjects.  

Subject 
Sex Age at scan Flow Split 

(QRPA:QLPA) 

1 Female 47 years 56.2 : 43.8 

2 Male 59 years 53.2 : 46.8 

3 Male 33 years 52.2 : 47.8 

4 Male 57 years 54.1 : 45.9 

5 Male 27 years 44.0 : 56.0 
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To extract the flow information from the 4D flow MRI, the data were imported on the 

software Circle Cardiovascular Imaging, cvi42 (https://www.circlecvi.com/). In order 

to isolate the pulmonary trunk, the ‘track vessel’ feature available within the software 

was used, and centerlines along the MPA and the main daughter branches were 

created. The threshold for each tracked branch had to be adapted to ensure the best fit. 

Once the result was satisfactory, the flow information could easily be extracted by 

taking slices perpendicular to each branch.  

The total inlet flow rate waveforms over the cardiac cycle are presented (Fig. 6.1). An 

average flow rate waveform was calculated based on the five flow waveforms, after 

time was normalised with the period of the cardiac cycle of each patient.  The mean 

values of the flow rates are also calculated (Table 6.2). Flow waveforms from the RPA 

and the LPA were also acquired. The net volumes from the inlet flow rates were used 

to calculate the flow splits in the daughter branches, as previously described in Chapter 

5.2.2., and are presented on Table 6.1 for all subjects. The average flow split was 

calculated and was found approximately 52% : 48% (QRPA-av : QLPA-av). 

 

Figure 6.1: Subject-specific pulsatile inlet flow rate waveform for all five subjects and an averaged flow rate 

waveform derived from the five subject-specific waveforms. 
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Table 6.2: Diameters, mean flow rate, and mean and max velocities for the MPA, the RPA and the LPA branches 

of each model. 

Subject DMPA 

(m) 

DRPA 

(m) 

DLPA 

(m) 

Qmean  

(ml/s) 

Umean 

MPA(m/s) 

Umean 

RPA(m/s) 

Umean 

LPA(m/s) 

Umax 

MPA(m/s) 

Umax 

RPA(m/s) 

Umax 

LPA(m/s) 

1 0.028 0.018 0.019 98.7 0.161 0.213 0.160 0.495 0.652 0.490 

2 0.027 0.020 0.019 75.7 0.133 0.129 0.130 0.417 0.404 0.407 

3 0.030 0.022 0.021 100.2 0.145 0.138 0.146 0.553 0.526 0.557 

4 0.029 0.024 0.021 78.3 0.117 0.094 0.109 0.466 0.371 0.432 

5 0.032 0.020 0.021 78.6 0.098 0.106 0.127 0.382 0.411 0.493 

Average 0.028 0.017 0.017 86.3 0.161 0.196 0.179 0.493 0.689 0.632 

6.2.2. Reconstruction of subject-specific models 

To segment the subject-specific structures, the same methodology as reported in 

Chapter 5.2.3. was followed. In sort, a combination of semi-automatic and manual 

segmentation was used in the open-source software ITK-SNAP (www.itksnap.org) 

(Yushkevich et al., 2006). The segmentation was extended until the first daughter 

branch on the right and left pulmonary branches and the geometries were exported as 

surface mesh using the stereolithography (STL) format. Different smoothing scaling 

was necessary in each of the geometries to adequately remove artifacts due to the 

image resolution and segmentation process. An anatomical average geometry was 

created following the same methodology described in Chapter 5.2.5, and using the 

model of the 1st subject as the initial template model (Fig. 6.2).   

http://www.itksnap.org/
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Figure 6.2: Anatomical average geometry of all healthy subjects (red) with the five subject-specific models shown 

transparent. 

6.2.3. Geometry characterisation  

A geometric analysis, similar to Chapter 5.2.5. reported for the rTOF models, was 

conducted, to quantify the curvature of the RPA and LPA branches, the torsion, 

tortuosity, the minimum inscribed sphere radius along the daughter branches, and in-

plane and out-of-plane angles. The differences in the anatomical characteristics 

between healthy and patient populations are important to be identified, especially in 

cases of clinical intervention, or evaluation of disease progression. 

6.2.5. Numerical simulations 

The methodology followed to set the numerical simulations, including the generation 

of the computational mesh, boundary conditions and computational approximation are 

similar to those described in Chapter 5.2.6.  

The computational mesh was generated using the commercial software ANSA v20.0 

(BETA CAE Systems), and the volume mesh consisted primarily of tetrahedra 
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elements. A boundary layer mesh composed of 7 layers of prismatic cells was added, 

with the first layer at a distance of 0.005 cm away from the wall, while the total number 

of elements was around 2.5 million, similar to the rTOF models (Chapter 5.2.6.1.). The 

y+ value was calculated based on the maximum WSS values, and was found smaller 

than 1. 

For the flow simulations, the k-ω shear stress transport (SST) turbulence model was 

assumed (Chapter 4.2.1.1.). The patient-specific pulsatile inlet waveforms were 

specified at the inlet of the models and the flow rates at the outlets. In the average 

model, the average pulsatile inlet waveform and average flow splits, were considered 

in the model’s inlet and outlets, respectively. The walls were assumed rigid, and the 

no-slip boundary condition was assigned.  

All the numerical simulations were performed with blood considered as a Newtonian, 

incompressible fluid, governed by the Reynolds-Averaged Navier-Stokes equations 

(Eqs. (4.1), (4.2)). Blood density and viscosity were set to 1060 kg/m3 and 4×10-3 Pa 

s, respectively. The pisoFoam solver for transient incompressible, turbulent flow was 

utilised, using the pressure-implicit with splitting operators (PISO) algorithm of the 

OpenFOAM® library. The second-order bounded Gauss linear upwind divergence 

scheme, the backward differential scheme for the time discretization and the Gauss 

linear gradient numerical scheme were specified.  

The time-averaged wall shear stress and the oscillatory shear index were calculated 

according to Eqs. (3.6) and (5.6), respectively. The TAWSS distribution is normalised 

by the value at the inlet of each model (denoted as TAWSSn), and the values used for 

the non-dimensionalisation are reported on Table 6.3. In addition, the Reynolds, 

Womersley and Deans numbers were calculated for all models following Eqs. (1.14), 
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(1.22) and (1.23). A table with the diameters, the mean flow rate, the mean and the 

max velocity of all three branches for each model is provided (Table 6.2). 

Table 6.3: TAWSS value at the inlet of the models. 

Subject 1 2 3 4 5 Average geometry 

TAWSS (dynes/cm2) 11 7 8 6 5 10 

 

 

6.3. Results 

In the following paragraphs the results from the geometry characterisation of the 

models (Tables 6.4, 6.5 and Fig. 6.3), the flow characterisation (Table 6.6) and the 

computational analysis (Fig. 6.4-6.6) are presented. 

6.3.1. Geometry characterisation 

The morphological features of the five models are listed on Tables 6.4, 6.5. Average 

curvature and torsion plots are also presented on Fig. 6.3, with curvilinear abscissa 

normalised based on the curvilinear abscissas of the point with the highest curvature 

closest to the bifurcation.  

Similar values of minimum and maximum curvature (Table 6.4), mean torsion (Table 

6.4) and mean in-plane angle (Table 6.5) were noticed between the right and left 

pulmonary branches. Slightly higher values of curvature and maximum torsion are 

noticed in the RPA branch, while the minimum values of torsion in the LPA branch 

(Table 6.4, Fig. 6.3). The curvature of the RPA, based on the mean curvature plot, 

appears to decrease more rapidly further downstream, compared to the LPA curvature 

(Fig. 6.3). Both the RPA and LPA branches are characterised by relatively small 
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torsion, with their mean plots varying close to zero. Tortuosity is found higher in the 

LPA, with a mean value of 0.110, compared to the 0.085 calculated for the RPA 

branch. Finally, the out-of plane angles, indicate a clockwise shift of the RPA and an 

anti-clockwise shift of the LPA branch, with the LPA displaying higher planarity 

(Table 6.5).  

Table 6.4: Geometric analysis of the subject-specific models: curvature and torsion.  

Healthy 

Subject 

Curvature RPA (mm-1) 

(mean / max) 

Curvature LPA (mm-1) 

(mean / max) 

Torsion RPA (mm-1) 

(min / mean / max) 

Torsion LPA (mm-1) 

(min / mean / max) 

1 0.018 / 0.063 0.014 / 0.046 -1.59 / 0.00 / 0.57 -1.63 / 0.00 / 0.45 

2 0.017 / 0.063 0.015 / 0.062 -1.08 / 0.00 / 1.63 -2.02 / 0.04 / 0.59 

3 0.018 / 0.057 0.015 / 0.053 -0.98 / 0.00 / 0.54 -0.49 / -0.03 / 0.51 

4 0.019 / 0.093 0.020 / 0.093 -1.08 / -0.03 / 0.37 -1.13 / 0.22 / 0.65 

5 0.016 / 0.062 0.017 / 0.068 -0.29 / 0.00 / 0.15 -4.33 / -0.7 / 0.10 

Average 0.024 / 0.077 0.020 / 0.048 -1.40 / 0.01 / 0.88 -0.20 / 0.04 / 0.67  

Mean value 0.019 / 0.069 0.017 / 0.062 -1.07 / -0.003 / 0.69 -1.63 / -0.072 / 0.56 
 

Table 6.5: Geometric analysis of the subject-specific models: tortuosity, minimum inscribed sphere radius along 

the daughter branches, and in-plane and out-of-plane angles.  

Healthy 

Subject 

Tortuosity 

(RPA/LPA) 

Min Sphere Radius 

(mm) (RPA/LPA) 

In-Plane angles 

(RPA/LPA) 

Out-of-Plane 

Angles 

(RPA/LPA) 

1 0.073 / 0.080 8.36 / 7.90 142.9° / 152.2° -0.6° / 17° 

2 0.114 / 0.100 8.39 / 5.79 136.6° / 131.8° 3.0° / -1.9° 

3 0.092 / 0.154 9.20 / 8.62 137.2° / 149.1° -7.1° / -10.5° 

4 0.066 / 0.126 10.27 / 8.82 134.3° / 115.6° 8.8° / -24.9° 

5 0.069 /0.113 9.09 / 8.79 141.0° / 144.6° 6.0° / -17.7° 

Average 0.095 / 0.089 7.3 / 7.5 139.8° / 132.5° -6.3° / 18.4° 

Mean value 0.085 / 0.110 8.77 / 7.90 138.6° / 142.6° 0.63° / -3.3° 
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Figure 6.3: (a) Average curvature plot, and (b) average torsion plot, for the healthy subjects. X-axis is normalised 

by the distance corresponding to the peak curvature value closer to the bifurcating branches. Shaded areas 

represent the standard deviation of the patient-specific values from the average calculated. 

6.3.2. Flow characterisation 

The mean and maximum Reynolds number for the MPA, RPA and LPA, and the 

Womersley and Dean numbers were calculated according to Eqs. (1.14), (1.22) and 

(1.23), and are reported on Table 6.6. A mean Remean of 1038 was calculated for the 

MPA, which dropped to 763 and 725 for the RPA and LPA, respectively. A similar 

decrease was also noticed for Remax. Wo was in the range of 19.8-21.6, with a mean 

value of 20.9. Finally, the average Dean number, as calculated for the RPA, was 

slightly higher but very close to the LPA (Demax_RPA = 1283, compared to Demax_LPA 

=1221). In general, Re, Wo and De did not vary greatly within the models and similar 

values of Reynolds and Dean numbers were noticed for the right and left pulmonary 

artery. 

6.3.3. Computational analysis 

In the following paragraphs the computational results are presented in a number of 

figures, including contours of velocity and velocity streamlines (Fig. 6.4), time-

averaged wall shear stress distribution (Fig. 6.5), and the oscillatory shear index 

distribution (Fig. 6.6). 
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Table 6.6: Mean and maximum Reynolds (Re), Womersley (Wo) and Dean numbers (De). 

Model 
Remean_MPA 

(Remax_MPA) 

Remean_RPA 

(Remax_RPA) 

Remean_LPA 

(Remax_LPA) 
Wo Demax_RPA Demax_LPA 

1 1199(3678) 1032(3165) 790(2423) 21.6 1179 885 

2 952(2977) 684(2138) 644(2012) 21.0 1027 882 

3 1141(4365) 804(3076) 792(3029) 21.0 1673 1468 

4 907(3598) 595(2362) 591(2347) 19.8 1241 1391 

5 831(3237) 572(2228) 707(2752) 20.6 1033 1573 

Average 1199 (3666) 888 (3121) 815 (2871) 21.6 1547 1129 

Mean value 1038(3587) 763(2682) 723(2572) 20.9 1283 1221 

6.3.3.1. Contours of velocity and velocity streamlines 

Velocity streamlines coloured by non-dimensionalised velocity at three time points, 

peak flow (Fig. 6.4.i), mid-deceleration during systole (Fig. 6.4.ii), and mid-diastole 

(Fig. 6.4.iii), are examined. The subject-specific and the average waveforms are also 

provided to indicate these time points. At peak systole, slightly higher velocities were 

developed at the entrance of the RPA and in the LPA opening in all models (Figs. 

6.4a.i-f.i). Increased velocity was noticed at the RPA for models 1, 4 and the average 

geometry (Figs. 6.4a.i, 6.4d.i, 6.4f.i), and at the LPA of models 2 and 5 (Figs. 6.4b.i, 

6.4e.i). During deceleration (Fig. 6.4.ii), the largest recirculation zones appeared in the 

RPA of models 2 and 4 (Figs. 6.4b.ii, 6.4d.ii), while smaller areas of recirculation of 

flow were visible at the entrance of LPA, in all models (Figs. 6.4a.ii-f.ii). Finally, 

during mid diastole (Fig. 6.4.iii) more complex flow patterns appeared in the 

pulmonary junction of the models, and especially in models 1, 2, 4 and the average 

geometry (Figs. 6.4a.iii, 6.4b.iii, 6.4d.iii, 6.4f.iii). The average geometry in general 

captured well the main characteristics of the flow development.  
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Figure 6.4: Left to Right: Subject-specific flow waveforms with (i) peak flow; (ii) mid-deceleration at systole; and 

(iii) mid-diastole, for (a) model 1; (b) model 2; (c) model 3; (d) model 4; (e) model 5; (f) the average model. Velocity 

streamlines coloured by non-dimensionalised velocity based on the maximum velocity during the cardiac cycle of 

each healthy subject at the three time points (a), (b), and (c). The RPA and the LPA are indicated in model 1. 

6.3.3.2. Time-averaged wall shear stress 

TAWSS distribution, normalised by the TAWSS value at the inlet of each model, is 

presented in Fig. 6.5. Higher wall shear stresses were observed at the entrance of the 

LPA and the RPA branches, while the wall shear stress distribution on the pulmonary 



197 
 

junction of the healthy subjects appeared relatively uniform. The highest TAWSSn was 

noticed at the RPA of models 1 and 4 (Figs. 6.5a, d), and the LPA of model 2 (Fig. 

6.5b). The lowest TAWSSn was noticed at the MPA of the average geometry (Fig. 

6.5f). 

 

Figure 6.5: Non-dimensionalised time-averaged wall shear stress distribution normalised with the wall shear stress 

developed at the inlet of each model, respectively, for (a) model 1; (b) model 2; (c) model 3; (d) model 4; (e) model 

5; (f) the average model. Insets show the back view of the models. The LPA and the RPA and indicated in model 1. 

To quantify the differences in the time averaged wall shear stress in the cross-sections 

(α) and (γ) (Fig. 5.1), located at a distance of 0.4D from the point where the branch 

splitting occurs, eight points located along the wall of the cross-sections and equally 

distanced, were taken for each geometry, and the average TAWSS from the eight 

individual values was calculated. The measured TAWSS was then averaged for 

Models 1-5 and the results are presented in Table 6.7 in dynes/cm2. The TAWSS value 

of the averaged geometry is reported separately to allow comparisons. The TAWSS 

values of the average geometry is slightly lower compared to the average values 

calculated for Models 1-5 (7.43 dynes/cm2 vs 8.22 dynes/cm2 for cross-section (α), and 
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7.48 dynes/cm2 vs 13.5 dynes/cm2 for cross-section (γ)), while there is no great 

variability in the TAWSS values between the different models. The mean TAWSS 

value as calculated in cross-sections (α) is higher compared to the mean TAWSS 

calculated in cross-sections (γ) of the models (Table 6.7). In addition, the average 

TAWSS value calculated for the RPA and LPA cross-sections of each subject were 

plotted and are presented in Fig. 6.6. The range of the TAWSS values is between 7.1 

to 13.6 dynes/cm2, with the lowest value calculated for model 5 (Fig. 6.6e) and the 

highest value for model 1 (Fig. 6.6a). The TAWSS value of the average model was at 

the lower levels (~7.5 dynes/cm2, Fig. 6.6f), but within the range calculated for the 

subject-specific models. 

Table 6.7: Averaged TAWSS, derived from the TAWSS values of eight points located along the perimeter of cross-

sections (α) and (γ), are presented in dynes/cm2. 

  
TAWSS 

(dynes/cm2) 

Cross-section (α) 
Average geometry 7.43 

Models 1-5 8.22 ± 2.63 

Cross-section (γ) 
Average geometry 7.48 

Models 1-5 13.5 ± 3.33 

 

Figure 6.6: Time-averaged wall shear stress (TAWSS) plot, derived from the TAWSS values of eight points located 

along the perimeter of cross-sections (α) and (γ), and presented in dynes/cm2, for (a) model 1; (b) model 2; (c) 

model 3; (d) model 4; (e) model 5; (f) the average model. 
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6.3.3.3. Oscillatory Shear Index 

The OSI distribution is presented for all models on Fig. 6.7. High OSI was generally 

observed in the pulmonary bifurcation of the healthy volunteers. The MPA of the 

models is found with the highest OSI values, while at the entrance of the daughter 

branches lower OSI values were noticed. The high and low OSI regions corresponded 

to the low and high TAWSSn areas, respectively (Fig. 6.5). Lower OSI values were 

found posteriorly in all models (insets of Fig. 6.7). 

 

 

Figure 6.7: Oscillatory Shear Index distribution, for (a) model 1; (b) model 2; (c) model 3; (d) model 4; (e) 

model 5; (f) the average model. The RPA and LPA branches are indicated in model 1. 
 

6.4. Discussion 

There is a growing number of studies that investigate the blood flow in the pulmonary 

arteries of healthy and patient populations (Bordones et al., 2018, Robinson et al., 

2019, Capuano et al., 2019, Boumpouli et al., 2020), in an attempt to better understand 
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the haemodynamic environment of the arteries, and explain alterations induced by 

diseases and clinical interventions. The objective of this study was to evaluate 

morphological and haemodynamic parameters in individualised healthy models of the 

pulmonary bifurcation. Image data of five healthy volunteers were post-processed to 

reconstruct subject-specific models of the pulmonary junction. The findings of this 

work were further compared with those reported for the rTOF patients in Chapter 5. 

The main outcome of this study is related to the similarity in the morphological and 

flow characteristics between the RPA and LPA branches in normal pulmonary arteries, 

in contrast to the morphological differences observed in Chapter 5 for the rTOF 

models. 

Comparison with previous work 

The morphological analysis of this study suggests that the curvature and the in-plane 

angles are very similar for the RPA and the LPA branches. Average torsion is close to 

zero for both branches, while lower torsion is observed in the LPA branch of the 

models, also characterised with a higher average tortuosity. The minimum sphere 

radius is smaller for the LPA, indicating a smaller diameter of the LPA branch. Finally, 

a clockwise rotation is observed for the RPA branch by the average of the out-of-plane 

angles, and an anti-clockwise rotation for the LPA branch. These results are different 

from those reported on Section 5.3.1. for the TOF population, where curvature is found 

to be higher in the LPA branch of the models, the radius of the RPA is smaller 

compared to the LPA, the in-plane angle of the LPA branch is more acute, and there 

is a change and higher rotation in the out-of-plane angles of both the RPA and LPA 

branches. A steeper curvature and a smaller section area in the RPA branch, are also 
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reported in the study of Capuano and his co-workers (Capuano et al., 2019) in healthy 

pulmonary arteries.  

The Reynolds, Womersley and Dean numbers were also calculated, and a smaller 

range of values was observed in healthy people, for all three parameters, as compared 

to the TOF population. The highest mean Re was found in the MPA, while RPA and 

LPA displayed similar Re values. On the contrary, RPA had the highest mean Re in 

the TOF models. Wo was approximately 20, which is very close to that reported in 

Section 5.3.2. for the rTOF patients. Finally, De was similar between the RPA and 

LPA and approximately 1250 in the healthy population, which is smaller than the De 

number reported for TOF, and especially that of the RPA branch (~1779 in the TOF 

study). The flow parameters, as calculated in this study, are in line with those presented 

in previous studies for the pulmonary arteries of healthy subjects (Sloth et al., 1994, 

Capuano et al., 2019, Loke et al., 2019). 

The flow patterns developed in the pulmonary arterial models of the healthy population 

indicate there is not much disturbance of flow during the cardiac cycle. No 

recirculation of flow is visible on the LPA branch of the healthy models during peak 

flow (Fig. 6.4.i), and small recirculation areas were visible during deceleration at 

systole (Fig. 6.4.ii). The results are quite different compared to the flow patterns 

developed in the TOF population (Section 5.3.3.2.1.), as are the inlet flow waveforms, 

with higher and lower flow values noticed in the TOF patients. Recirculation of flow 

is visible in the LPA branch of the TOF models from peak flow (Fig. 5.9.i), and more 

complex flow patterns also develop during mid diastole (Fig. 5.9.iii). Similar results 

are reported in previous studies for both healthy and TOF models (Chern et al., 2012, 

Zhang et al., 2016, Capuano et al., 2019).  
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High TAWSSn was observed at the entrance of the RPA and LPA branches (Fig. 6.5), 

similar to TOF models (Fig. 5.13); nevertheless, much higher TAWSSn are reported 

in the latter (Fig. 5.13). More specifically, the TAWSS values (calculated from the 

cross-sections (α) and (γ)) reported in this study for the healthy models are up to 13.6 

dynes/cm2 (Fig. 6.6) which is comparable to those of healthy control volunteers 

presented in previous studies (up to 20.5 dynes/cm2), and of patients with pulmonary 

arterial hypertension (up to 10.1 dynes/cm2) (Tang et al., 2011, Tang et al., 2012). 

Elevated TAWSSn are noticed in the RPA branch of model 1 and the LPA branch of 

model 5 of the healthy cases, and are both found with elevated Re and De. This is in 

agreement with the trend noticed in the TOF models (Section 5.4). The importance of 

initial BCs is further highlighted when the TAWSS value in cross-sections (α) and (γ) 

is compared. Both in the rTOF (Table 5.8) and in the healthy subjects (Table 6.7) a 

higher mean TAWSS value is found in the RPA which is in the majority of cases the 

branch with the higher flow rate, and higher mean Re and mean De numbers. Finally, 

high OSI values were found in the pulmonary arteries of the healthy subjects (Fig. 6.6), 

similar to what is observed in the pulmonary junction of the rTOF patients (Fig. 5.14).  

An anatomical average geometry was created based on the five subject-specific 

models, and averaged boundary conditions, derived from the patient-specific BCs, 

were assigned at the model. The streamlines of velocity, TAWSSn and OSI distribution 

of the average geometry are comparable with the results derived from the subject-

specific simulations. Although only five models were used to compute the average 

geometry, it appears able to capture, and possible predict, the flow characteristics of 

the subject-specific models. That is in contrast with the average geometry derived from 

the TOF population, which cannot capture the variability of the TAWSSn observed in 
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that cohort of patients. The results, therefore, indicate that the anatomy of the 

pulmonary bifurcation does not vary greatly within healthy volunteers; the same is also 

true for the flow splits and flow waveforms (Table 6.1. and Fig. 6.1, respectively).  

Clinical relevance 

Understanding the haemodynamic environment of the normal pulmonary arteries is a 

key factor when assessing the diseased state of the branches, and parameters that could 

indicate when further surgical interventions are required, could be useful to clinicians. 

The morphology of the pulmonary arteries is considered one crucial factor in the flow 

development, mostly correlated with reversal of flow (Zhang et al., 2016, Chern et al., 

2008, Chern et al., 2012), while the flow conditions affect the wall shear stress, a 

biomechanical factor related with the endothelial cell function and disease progression 

(Gimbrone 1995, Sabri et al., 2012, Tang et al., 2012). To that end, in this study a 

comparison between the healthy and diseased pulmonary arteries attempts to identify 

key characteristics that could be related to disease diagnosis and progression. 

Starting with the demographic and haemodynamic data of all the patients, an increase 

in the RPA flow split is observed in the rTOF population (Tables 5.1, 6.1), with over 

60% of the flow diverted to the branch in 4 out of 7 cases. The mean initial flow rates, 

as presented on Tables 5.2, 6.2, do not vary significantly between healthy and diseased 

individuals, but reversal of flow is higher in the rTOF patients (Figs. 5.2, 6.1). An 

increase is also visible in the maximum velocities developed in the daughter branches 

of the rTOF population, which are also smaller compared to the healthy pulmonary 

arteries. In addition, the calculated maximum Re and De numbers are found elevated 

in the rTOF patients (Tables 5.6, 6.6). Except from the curvature of the LPA, which is 
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increased in the rTOF population, higher absolute out-of-plane angles are noticed in 

both the RPA and LPA branches, related to the planarity of the branches. Finally, 

although the TAWSS at the inlet of the models (Tables 5.3, 6.3) is comparable between 

the healthy and rTOF patients, much higher TAWSS values are calculated in cross-

sections (α) and (γ) of the rTOF models (Tables 5.8, 6.7, and Figs. 5.14, 6.6). The 

results of this study, therefore, suggest that some of the key parameters that affect the 

pulmonary environment are: 1) the flow splits and flow reversal from the initial flow 

conditions, and 2) the curvature of the LPA, the diameter and the planarity of both 

daughter branches from the morphological characteristics. 

Limitations and Future Work 

This study is limited to a small number of volunteers, nevertheless, all of them are 

healthy adults and 4 out of 5 males. Pulmonary vascular resistance and compliance are 

also neglected, but are compensated with the assignment of subject-specific flow splits 

at the models’ outlets. Another limitation of this work is the inlet velocity, which is 

only varying in time, while the spatial variability of the flow, induced by the movement 

of the valve, is not captured. Future work will include a larger sample of healthy 

volunteers to validate the findings of this study, and will consider the pulmonary 

vascular resistance and compliance of both healthy and diseased population. The latter 

could potentially help clarify the remodelling mechanism in the pulmonary arteries 

due to diseased downstream conditions.  
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6.5. Concluding remarks 

Geometrical and haemodynamic characterisation of the pulmonary arteries of healthy 

volunteers is considered important in order to gain knowledge of the normal flow 

patterns, and better understand pathological alterations. The morphological and flow 

features of the five healthy models of the pulmonary junction appeared rather similar, 

which is in contrast with what is observed in the repaired tetralogy of Fallot patients. 

In addition, the average geometry, although derived from a small cohort of healthy 

volunteers, appeared to capture well the flow characteristics of the subject-specific 

models. The differences in the morphological and flow characteristics of healthy and 

diseased pulmonary arteries, as identified in this study, could be potentially useful to 

clinicians and help with clinical decisions for further surgical interventions on 

haemodynamic indices.  
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Chapter 7 

Conclusion and Future Work 

7.1. Conclusions 

The aim of this research was to investigate morphological and flow features in the 

pulmonary bifurcation of patients with tetralogy of Fallot, using computational fluid 

dynamic methods. The novelty of this work lies in the comprehensive investigation of 

various parameters, their correlation with the flow development and the comparison 

between healthy and diseased models. Three new studies relevant to the blood flow in 

the pulmonary arteries were published in the course of this PhD (Capuano et al., 2019, 

Conijn and Krings, 2021, Ling et al., 2021), which cited this research work, further 

highlighting how this is a timely study. The objectives were, first, to understand how 

the wall shear stress, flow splits and pressure, are affected by geometrical changes 

commonly found in the rTOF patients; second, to evaluate the effect of modelling 

parameters in the blood flow development; third, to correlate morphological patterns 

of curvature and tortuosity and flow characteristics of Reynolds and Dean number, 

with wall shear stresses and secondary flow patterns; and finally, using healthy 

subject-specific models, to better understand the alterations induced in the blood flow 

in diseased pulmonary arteries. The objectives were met but further studies are still 

required in larger cohorts of patients. Limitations of the work are also acknowledged 

throughout.  

This thesis contributes towards a better understanding of the haemodynamics in the 

pulmonary bifurcation as follows: 
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(i) It demonstrates how the geometric location of the flow divider, which 

depends on the geometry and the branch origin, influences the WSS 

distribution along the inner wall of the bifurcation. A shifted stagnation 

point encourages differential pressures, while also, altered peripheral 

conditions affect the area of flow impingement. 

(ii) It shows how downstream pressure conditions and peripheral resistance 

alter the flow in the pulmonary arteries and dictate the occurrence of 

different flow splits between the branches. WSS and pressure are found to 

decrease in the high flow-rate branch, and until a flow split of 12%:88%. 

(iii) It quantifies the differences in the WSS when flow is assumed steady and 

a parabolic or a plug profile is assigned at the inlet. The effect of pulsatility 

is small, in agreement with previous studies, while a parabolic profile 

overestimates the WSS along the inner wall of the pulmonary bifurcation. 

(iv) It demonstrates that the elasticity of the arterial wall has a small effect on 

the flow development in the pulmonary arterial models, while complex 

patterns are developed when the pulmonary valve is included. 

(v) It shows variations in the WSS along the inner wall of the pulmonary 

bifurcation when different rheological models are assumed. The Newtonian 

model calculated the highest wall shear stresses.  

(vi) It correlates higher curvature and tortuosity with more complex secondary 

flow patterns, and higher Reynolds and Dean numbers with increased 

regions of TAWSS. 

(vii) It highlights the importance of patient-specificity and of spatial-varying 

flow in the models. Repaired TOF patients have unique morphologies and 
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therefore an anatomical mean geometry, or averaged boundary conditions 

cannot adequately characterise the flow development in this population of 

patients, but can nevertheless be useful for a model analysis.  

(viii) It clearly shows the differences in the morphological and flow features 

between healthy volunteers and TOF patients. The RPA and LPA branches 

of the healthy population appear with similar curvature, branch angles, 

Reynolds and Dean numbers, and also flow splits. Under such conditions, 

the use of an anatomical average geometry was found to capture well the 

flow characteristics in the normal pulmonary arteries. 

(ix) It highlights some key parameters of the pulmonary arteries which could 

be related to disease diagnosis and progression. These are the flow splits 

and flow reversal from the initial flow conditions and the curvature of the 

LPA, the diameter and the planarity of both daughter branches from the 

morphological characteristics. 

 

7.2. Future Work 

Several proposals can be made for future work that would increase the complexity of 

the simulations and could add to the flow characterisation of the pulmonary arteries. 

The focus of this study was only on the pulmonary bifurcation omitting the right 

ventricle, the pulmonary valve and multiple branches of the pulmonary tree. It would 

be of great value to investigate the blood flow in patient-specific models where all 

these features of the heart are included. Right ventricle hypertrophy and obstruction of 

the right outflow tract are two of the four TOF defects and, pulmonary regurgitation is 

a common complication in these patients. As already shown in the preliminary 
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investigation with the static valve, different flow patterns develop along the MPA with 

its presence, and the effect could be greater with a moving valve. In addition, including 

the wall motion could produce different flow patterns in the patient-specific 

simulations; however, the displacement of the fluid domain was relatively small when 

the pulmonary arterial wall was coupled in the idealised model. Further studies could 

validate, and further extend, the findings presented in this thesis.  

Similarly, pulmonary vascular resistance, compliance and inductance could be used in 

the outlets of the models to better represent the downstream conditions. That also 

requires optimisation of these values for every patient-specific model, so that flow 

diverted to each branch matches the clinically observed flow splits. Clinical data are 

therefore essential both for the reconstruction of the models, but also for the extraction 

of flow information. Computational results can greatly vary based on the boundary 

conditions, and therefore, it is important to have appropriate BCs to characterise the 

flow environment.  

In addition, clinical data are required to validate the computational outcomes. Part of 

this work investigated blood rheology and found that the WSS along the inner wall of 

the models varies with different rheological approximations. Further studies could 

compare clinical data with computational results, and identify the model which better 

captures the flow development in the pulmonary arteries.  

Finally, this study is limited to a small number of subjects, and it could be extended to 

a larger cohort, and perhaps of different gender and age groups, to identify intraspecies 

variability. Longitudinal data are also missing and could be included in future studies.   
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Idealised geometries helped clarify some fundamental characteristics of the underlying 

flow in the pulmonary arteries, such as the elevated pressure in the LPA and the 

interplay between flow splits and differential pressures. On the other hand, subject-

specific models demonstrated the significance of patient-specificity and the effect of 

curvature and tortuosity in the flow development. The findings of this thesis may help 

clinicians understand the haemodynamic environment of each patient’s particular 

anatomy, and potentially disease progression, and facilitate their decision about the 

optimal timing for the pulmonary valve replacement. Furthermore, this work is hoped 

to benefit future research studies in the field. 
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Appendix A 

Appendix  

A.1 MATLAB® code for the three-element Windkessel model 

The Windkessel equation implemented is given in Eq. (3.5). The constant β (Beta) is 

incorporated within the Windkessel equation when solved for pressure: 

β = (RC) / dt 

To calculate the percentages of difference (PD) the following formula is used: 

PD = [(x2 – x1) / x1] * 100 

where x2 the final value and x1 the initial value. 

  
%% Beginning of code 
close all;clear all;clc; 
  

f_h=xlsread('40004_flowdata.xlsx', '1');  %Flow data from a healthy subject, 
flow in ml/sec 

Q_mpa=f_h(1:701, 1) )*1e-6; % MPA flow from ml/sec to m^3/sec 
Q_lpa=f_h(1:701, 4)*1e-6;  % LPA flow from ml/sec to m^3/sec 
Q_rpa=f_h(1:701, 7)*1e-6;   % RPA flow from ml/sec to m^3/sec 
T=f_h(1:701,1) /1000;   % time in sec  
dt=0.001;     %time step 
T_Cardiac=T(end);    % period of cardiac cycle 
nt=T_Cardiac/dt;    % number of time steps 
 
%Pulmonary arteries: 20 mmHg is the normal pressure, and 1mmHg=133.33 Pa 
Po_lpa=20*133.33;    % pressure at outlet of LPA in Pa 
Po_rpa=20*133.33;    % pressure at outlet of RPA in Pa 
  
Rp_lpa=4e7;   %proximal resistance assumed for LPA in Pa*s m^3 
Rd_lpa=3e8;   %distal resistance assumed for LPA in Pa*s m^3 
Clpa=1e-10;   % capacitance in m^3/Pa 
  
Rp_rpa=4e7;  %proximal resistance assumed for RPA in Pa*s m^3 
Rd_rpa=3e8;  %distal resistance assumed for RPA in Pa*s m^3 
Crpa=1e-10;   % capacitance in m^3/Pa 
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Beta_lpa=(Rd_lpa*Clpa)/dt; 
Beta_rpa=(Rd_rpa*Crpa)/dt; 
 
% Windkessel Equation (Continuous)% Steps followed: 
% 1. assume that Q_mpa=Q_lpa+Q_rpa and therefore Q_lpa=Q_mpa/2, and 
Q_rpa=Q_mpa/2 
% and we calculate pressure based on this assumption  
% 2. use directly Q_lpa and Q_rpa to calculate pressure  
% 3. compare the calculated pressures (also presented in the end of Appendix A.1) 
% Step 1 
%pressure calculation 
%Backwards Euler for LPA 
P_lpa_in(1)=Po_lpa; 
P_lpa_in(2)=Po_lpa; 
  
for n=2:nt-1 

        
P_lpa_in(n+1)=((P_lpa_in(n)*Beta_lpa)+((Q_mpa(n+1)/2)*(Rd_lpa+Rp_lpa*(1+Beta
_lpa)))-((Q_mpa(n)/2)*(Rp_lpa*Beta_lpa)))/(1+Beta_lpa); 

    
end 
  
P_lpa_1=P_lpa_in.';   %returns the transpose 
T_1=T(1:699, 1); 
 
%Backwards Euler for RPA 
P_rpa_in(1)=Po_rpa; 
P_rpa_in(2)=Po_rpa; 
  
for n=2:nt-1 

       
P_rpa_in(n+1)=((P_rpa_in(n)*Beta_rpa)+((Q_mpa(n+1)/2)*(Rd_rpa+Rp_rpa*(1+Bet
a_rpa)))-((Q_mpa(n)/2)*(Rp_rpa*Beta_rpa)))/(1+Beta_rpa); 

  
end 
  
P_rpa_1=P_rpa_in.';   %returns the transpose 
     
% Step 2  
%Backwards Euler for LPA 
P_lpa_in2(1)=Po_lpa; 
P_lpa_in2(2)=Po_lpa; 
  
for n=2:nt-1 

    
P_lpa_in2(n+1)=((P_lpa_in2(n)*Beta_lpa)+((Q_lpa(n+1))*(Rd_lpa+Rp_lpa*(1+Beta_l
pa)))-((Q_lpa(n))*(Rp_lpa*Beta_lpa)))/(1+Beta_lpa); 

    
end 
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P_lpa_2=P_lpa_in2.';   %returns the transpose 
 
% %Backwards Euler for RPA 
P_rpa_in2(1)=Po_rpa; 
P_rpa_in2(2)=Po_rpa; 
  
for n=2:nt-1 
      

P_rpa_in2(n+1)=((P_rpa_in2(n)*Beta_rpa)+((Q_rpa(n+1))*(Rd_rpa+Rp_rpa*(1+Beta
_rpa)))-((Q_rpa(n))*(Rp_rpa*Beta_rpa)))/(1+Beta_rpa); 

     
 end 
  
 P_rpa_2=P_rpa_in2.';   %returns the transpose 
  
% Calculate the integrals of pressures using trapezoidal numerical integration  
Pint_lpa_1=trapz(P_lpa_1); 
Pint_lpa_2=trapz(P_lpa_2); 
Pint_rpa_1=trapz(P_rpa_1); 
Pint_rpa_2=trapz(P_rpa_2); 
Q_int_rpa=trapz(Q_rpa); 
Q_int_lpa=trapz(Q_lpa); 
 
% Step 3 comparison of pressures 
% Calculate percentage differences 
Pl_1_Pl_2=(Pint_lpa_1- Pint_lpa_2)/ Pint_lpa _2*100  %Percentage difference of the LPA 

pressures 
 
Pr_1_Pr_2=(Pint_rpa_1- Pint_rpa _2)/ Pint_rpa _2*100 %Percentage difference of the RPA 

pressures 
 
Pl_2_Pr_2=(Pint_rpa_2- Pint_lpa_2)/ Pint_lpa_2*100 %Percentage difference between 

the LPA and RPA pressures from Step 2 
 
Qr_Ql=(Q_int_rpa-Q_int_lpa)/Q_int_lpa*100 %Percentage difference between the LPA and 

RPA flow waveforms  
 
% Plot pressures waveforms 
figure 
plot (T_1, P_lpa_1, 'Color',[0 0 0], 'LineWidth',1) 
hold on  
plot (T_1, P_lpa_2, '-.', 'Color',[0 0 0], 'LineWidth',3) 
plot (T_1, P_rpa_1, '--' ,'Color',[0 0 0], 'LineWidth',3) 
plot (T_1, P_rpa_2, ':' ,'Color',[0 0 0], 'LineWidth',3) 
xlim([0 0.6]); 
ylim([-0.3E04 5.5E04]); 
  
% Plot flow waveforms  
figure 
plot (T_mpa, Q_mpa, 'Color',[0 0 0], 'LineWidth',3) 
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hold on  
plot (T_mpa, Q_lpa, '-.', 'Color',[0 0 0], 'LineWidth',3) 
plot (T_mpa, Q_rpa, '--' ,'Color',[0 0 0], 'LineWidth',3) 
xlim([0 0.6]); 
ylim([-0.3E-04 3.5E-04]); 

%% End of code  

Running the code 

The pressure as calculated at Step 1 for the LPA and RPA branches, where it is 

assumed that QLPA=QRPA=(QMPA/2), was identical. This is reasonable as it is also 

assumes the same RCR values, for both daughter branches. When the flow data from 

the LPA and RPA branches was used to calculate the pressure (Step 2),  higher 

pressures are noticed at the RPA, which is also the branch with higher flow splits 

(56.2%). A percentage difference of approximately 45.6% and 6.1% was found when 

the pressure as calculated at Step 1 was compared with the pressure as calculated at 

Step 2, for the LPA and RPA branches, respectively. The difference between the LPA 

and RPA pressure, as computed at Step 2, was found approximately 37.2%, which is 

similar to the 38% difference calculated based on the integrals of the flow waveforms.   
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A.2 codedFixedValue boundary conditions in OpenFOAM® 

A2.1. Parabolic and sinusoidal velocity profile: 

First, the coordinates of the patch (inlet) need to be identified. The formula to 

implement the parabolic profile is: 

𝑈𝑚𝑎𝑥(1 −
(𝑦 − 𝑝_𝑐𝑡𝑟)2

𝑝_𝑟2
) 

where, p_ctr patch midpoint (centre) and p_r patch semi-height or radius. Surface 

normal for the idealised model was along the y-axis and patch midpoint was at (0,0,0). 

The formula for the unsteady flow is given by: 

𝑈𝑚𝑎𝑥(1 −
(𝑦 − 𝑝_𝑐𝑡𝑟)2

𝑝_𝑟2
)[1 − 𝐴𝑠𝑖𝑛(𝑤𝑡)] 

The body of the boundary condition is: 

type codedFixedValue; 

  value uniform (0 0 0); 

  redirectType parabolicInlet; //unique name of the boundary condition 

       

  codeOptions   //compilation options 

   #{ 

    -I$(LIB_SRC)/finiteVolume/lnInclude \ 

    -I$(LIB_SRC)/meshTools/lnInclude 

   #};    

   

  codeInclude   //files needed for compilation 

   #{ 

    #include "fvCFD.H" 

    #include <cmath> 

    #include <iostream> 

   #}; 

    

  Code    //actual implementation of BC 
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   #{ 

    const fvPatch& boundaryPatch = patch(); //give 
access to mesh and field information in the patch 

    const vectorField& Cf= boundaryPatch.Cf(); 

    vectorField& field = *this; //initialise vector field 

 

    scalar U_0 = 0.15, p_ctr = 0, p_r = 0.013; //constants 

 

    scalar t = this->db().time().value(); // this should be added 
to access time in unsteady cases 

    forAll(Cf, faceI) // for steady flow 

    {  

     field[faceI]=vector(0, U_0*(1-(pow(Cf[faceI].x()-
p_ctr,2))/(p_r*p_r)), 0);  

    }  

    //Alternatively, for the sinusoidal variation of flow 

    forAll(Cf, faceI) 
    {  
     field[faceI]=vector(0,U_0*(1-(pow(Cf[faceI].x()-
p_ctr,2))/(p_r*p_r))*(1+sin(t)), 0);  
    } 

   #}; 
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A.2.2 Flow splits: 

type codedFixedValue; 

  value uniform (0 0 0); 

  redirectType flowSplit; 

   

  code 

  #{ 

   scalar flowRatio=0.56;   //flow rate  

   const word refPatchName="inflow"; //name of reference patch  

  // -----------------------------------------------// 

   const scalar& pi = constant::mathematical::pi;  

 

   const fvPatchVectorField& thisBF = *this; //access boundary mesh 
information and initialise vector field 

   scalar thisPatchArea = gSum(thisBF.patch().magSf()); //global sum 
of this patch’s face area magnitudes 

   vector nf = 
gSum(thisBF.patch().magSf()*thisBF.patch().nf())/thisPatchArea;    //normal face vector 

 

   const volVectorField& U = 
thisBF.db().lookupObject<volVectorField>("U");  //lookup and return velocity from 
objectRegistry for this patch 

   const surfaceScalarField& phi = 
thisBF.db().lookupObject<surfaceScalarField>("phi"); //lookup and return phi from 
objectRegistry for this patch 

   const label refPatchLabel = 
U.mesh().boundaryMesh().findPatchID(refPatchName); //return boundary mesh of the 
reference patch  

   const fvPatchVectorField& refBF = 
U.boundaryField()[refPatchLabel];   //initialise velocity field of 
reference patch 

   const fvsPatchScalarField& refBflux = 
phi.boundaryField()[refPatchLabel];  //initialise phi field of reference patch 
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   scalar refFlowRate = gSum(refBflux); //global sum of the flow 
rate of the reference patach  

 

   //Info << nl << "Flow rate at" << refPatchName 

   // << ":" << refFlowRate << endl; 

 

   operator==(-nf*flowRatio*refFlowRate/thisPatchArea); //returns 
velocity based on the flow ratio specified and the flow rate retrieved from the reference 
patch  

 

   #};  
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