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THE INFLUENCE OF END CONSTRAINTS 

ON PIPE BENDS 

A Study of Smooth Pipe Bends with Flange 

and Tangent Pipe End Constraints Under 
In-Plane Bending 

ABSTRACT 

The importance of smooth pipe bends in design of piping 

systems is well established. Recent publications have been 

increasingly concerned with the effect of end constraints on the 

behaviour of smooth bends but there have been relatively few 

attempts at a solution to the problem. The divergence between 

the results of those which do exist tend to confuse'the picture 

for pipework designers. The present thesis is aimed at clarifying 

the situation. 

After an historical review of the literature on smooth 

bends, a theoretical analysis is formulated for the in-plane 

bending ~f linear elastic curved pipes with rigid flange 

terminations. The method employs the theorem of minimum total 

potential energy with suitable kinematically admissible displacements 

in the torm of tourier series. Integration and minimisation is 

performed numerically, thereb,y permitting the removal of several 

of the assumptions made b,y previous' authors. Results are given 

tor a wide range ot practical bend geometries. These are 

compared with the previous theoretical predictions, highlighting 

the problems in same earlier works and substantiating more recent 

results using d1f'terent solution procedures. During the 
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development of the theory several possible simplifications to 

the method are examined. The theoretical predictions are shown 

to be in favourable agreement with published experimental data 

and with results trom tests performed b.1 the author. 

The approach is extended to examine the behaviour of· smooth 

bends with connected taneent pipes under in-pane bending. The 

tangent pipes can be of any length and are assumed to be terminated 

b.1 rigid flanges. Comprehensive results are given for bends with 

tangent pipes ot length greater than one pipe circumference. 

Finally, possible extensions ot the solution procedure 

to other configurations and loadings are discussed. 

Gordon Thomson 
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NOTATION 

with subscripts, displacement coefficient (non­

dimensionalised) 

with subscripts, displacement coefficient (non­

dimensiona1ised) 

with subscripts, displacement coefficient (non­

dimensionalised) 

Et/ (1- ))7.) 

with subscript, displacement coefficient (non­

dimensionalised) 

. 
distortion displacement subscript 

Young's I-todulus 

with subscript, displacement coefficient (non­

dimensionalised) 

with subscript, displacement coefficient (non­

dimensionalised) 

with subscript, displacement coefficient (non­

dimensiona1ised) 

shear moment stress resultant 

second moment of area, I = Ii r" t 

total number of terms in rigid displacement series 
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K 

K 

L 

M 

M 

MT 

N 

NT 

p 

R 

R' 

R 

R 

s 
-r 
u 
u 
v ,(V) 

with subscripts, curvature 

flexibility factor 

bend tangent assembly centreline length (2 t.. + Ro£) 

applied in-plane bending moment 

with subscript, moment stress resultant 

total number of circumferential terms 1n distortion 

displacement series: 

with subscript, force stress resultant 

total number of meridional terms in distortion 

displacement series 

wi th subscript, number of integration points 

radius of pipe bend centreline 

R + r slo.p 

with subscript, principal radius of shell curvature 

rigid section displacements subscript 

shear force resultant 

t~/l2r 

strain energy 

circunferential rigid section displacement. 

total potential energy (non-dimensionallsed) 
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w 

J 

k 

f." 

shear strain (curvilinear co-ordinate system) 

(1 + ~ sin p) 

rigid section displacement coefficient subscript 

rigid section displacement coefficient subscript 

tangent pipe length 

distortion displacement coefficient subscript 

n distortion displacement coefficient subscript 

P internal pressure 

P distortion displacement coefficient subscript 

91 with subscript, shell surface loading 

9V distortion displacement coefficient subscript 

mid-surface radius of pipe cross-section 

1: pipe wall, thickness 

circumferential dis~lacement 

tangential displacement 

tA) radial displacement 

through thickness co-ordinate 
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subtended bend angle 

f3 with subscript, shell surface rotation 

'tar; shear strain 

~ rotation between ends of bend 

~o MRO'-/EI 

't,- M2/EI 

E 

e 

e 

kronecker delta { = 1 j = k 

( = 0 j # k 

with subscript, strain 

angle along bend measured from centre, circumferential 

co-ordinate 

subscript, circuoferential direction 

pipe factor, Rt/r2 

poissons ratio 

t (l + t sin ,10) 

~ R-,r/L 

cr with subscript, 'stress 

csr with subscript, stress factor 

6' with subscript, peak stress factor 

~ meridional angle measured around cross-section 

from midway between intrados and extrados 



'Pej [= 1, j - even 

= 0, j - odd 

1Ji~ [. = 0, j - even 

= 1, j - odd 

PR2/Ert 
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GENEHAL IN'i'RODUC1'ION: STATEMEH'l' OJ.' THE :PROBLEll 

With present trends in the power and petro-chemical 

industries towards higher operating temperatures and pressures, 

problems associated with the design and safety assessment of 

pipework systems have become increasingly complex. The importance 

of pipei .... ork in the overall design of plant can rarely be over 

emphasised. It c.an account for nearly a quarter of the total cost 

of an installation. Although many industrial pipelines are 

essentially fluid carrying components where flexibility and stressing 

are of little consequence there is nevertheless a substantial 

minority which operate under such conditions as to warrant detailed 

design analyses. Within such analyses the smooth curved pipe bend 

merits special attention. 

The fundamental problem in piping analyses is to design a 

system with sufficient flexibility to contend with thermal expansion 

loading on the pipeline itself and on the vessels to which it is 

connected. The deformations and stresses within the system are 

analysed for protection against failure in service. Failure is 
'. 

usually associated with fracture but this is not always true for . 

some systems. Excessive deformation causing interference with other 

components, leakage of bolted flanged joints, intolerable noise and 

vibration, etc. can a1l contribute to system failure. 

Perhaps the most important pipeline component in a structural 

sense is the smooth pipe bend. It's behaViour has attracted the 

interest of many authors over the last seventy years. It is now 

we1l established that the flexibility of smooth bends can be orders 
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of magnitude higher than an equivalent length of straieht pipe 

with the same cross-section geometry when both are subjected to 

the same external bending moment. Thus conventional simple beam 

theory can seriously over-cstimate the stiffness of pipe bends, 

except of course when the wall thickness or the bend radius of 

curvature is large, when the geometry approaches that of a solid 

curved beam and a straight pipe, respectively. 'l'he addi tiona! 

flexibility is associated with the ability of the bend cross-

section to "ovalise" or flatten when a bending moment is applied 

to it. 

Theoretical analyses usually consider the smooth bend as a 

sector of a toriodal shell under a pure bending moment. The 

majority of the work on bends has been bleed on "strain" or 

"complementary" energy concepts although several solutions exist 

which make use of the more traditional approach of solving the 

governing thin shell equations. until recently, most of the 

analytical work was concerned with what, in a shell theory sense, 

might be termed lIaxi-symmetric" solutions where cross-sectional 

deformations and stresses were assumed to be uniform along the 

length and independant or the subtended angle of the bend. This 

type of solution treats the problem as an isolated smooth bend with 

no terminal connections. When the bend is part of a piping system 

the natural cross-sectiona~ deformations are constrained b.1 the 

connections' between it and the other components, violating the· 

axi-symmetric ~ssumption. 

There exists a considerable variance in the results of 

experiments conducted on smooth bends with end constraints. Tests 

performed on bends, of similar geometries, with flanged constraints 

produced flexibilities that differed by as much as 100%. However, 

thel 



the evidence seemed to suggest, perhaps fortuitously, that bends 

with connected tangent pipes supported the theoretical predlctionz 

of the axi-symmetric analyses provided the bend angle was greater 

than about 90°. Bends with shorter angles did show some reduction. 

Long tangents provide the least mode of constraint whereas flanees 

constitute the most extreme mode. For the latter case, 

experimental evidence conclusively indicated a substantial reduction 

in the flexibility indicated b.1 the axi-oymmetric analyses, 

particularly for short radius bends with small angles. This is 

hardly surprising since flanges prevent any distortion of the 

cross-section at the ends of the bend. 

In the last fifteen years, several attempts have been made 

to provide an analytical method which solves the problem of smooth 

bends with various forms of end terminations. The additional 

complications introduced b,y involving end constraints has meant that 

either simplifying assumptions have had to be made or complex and 

time consuming numerical procedures were employed. Often the 

techniques ~ere so complicated that only results for geometries 

of special intere~t were published. Further, a substantial 

divergence existed between the results of these analyses, especially 

for flanged bends. The primar,y objectives of the present thesis 

are to formulate suitable theoretical solutions for the f1exibi1i~y 

and stress characteristics of smooth· circular pij)e bends with rigid 

flange and tangent pipe end constraints, to compare the 

predictions with published analytical work and to compare the 

results \,lith experiments. iTimarily, in-plane bending will be 

considered but extensions of the methods to other forms of 

loading! 
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loading and end constraints will be discussed. 

An historical review of relevant publications is presented 

in chapter (1). Only work which was considered important or of 

some interest has been included. The majority of previous 

investigators confined their activities to a linear-elastic 

examination of circular, smooth bends and neglected end effects. 

All the available publications knO\m to the author dealing with 

end constraints have been included. Work on some other important 

features,such as non-circular cross-sections, creep, etc., are 

included for compar&tive purposes. 

Chapter (2) deals with some preliminary theoretical 

formulations. Thin shell theory is discussed and equations for a 

straight pipe and a smooth bend derived. The theorem of minimum 

total potential energy and its application are discussed. 

Chapter (3) presents theoretical solutions to the problem 

of a smooth bend with flanged ends under in-plane bending. 

General displacements in the form of fourier series are derived 

which satisfy internal and external compatibility for problem. 

Two solutions methods are then presented which use a simplified 

form of these displacements with hand integration of the total . 

potential energy. These solutions differ b.1 their inherent 

assumptions. The results are discussed and compared to other 

published analytical solutions. A numerical solution procedure 

is then presented which uses the complete displacements. These 

latter results are discussed and compared"to the other solutions. 

A comprehensive set of results for flexibilities and stresses for 

a \dde range of bend geometries are then given. 

Chapter (4) compares the theory of chapter· (3) with 

pub1ished/ 
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publi~h9d eA~erimental data and results from experiments det~iled 

herein. 

Chapter (5) examines the problem of a smooth bend with 

connected tangent pipes under in-plane bending using a similar 

treatment to that of chapter (3). 

Chapter (6) compares the theory of chapter (5) with past 

and present experiments. 

Chapter (7) considers possible extensions of the theory 

presented in chapters (3) and (5) to some other loading, constraint 

and geometric configurations. 

l6~ 
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CHAPTER .1 

SMOOTH PIPE BENDS: AN HISTORICAL REVIEW 



l8l 
: 

Abstract 

The presont chapter is concerned with the historical 

development of the theoretical and experimental inveatigations 

associated with smooth pipe bends subjected to various forms of 

loading. Publications dealing with and without end constraints 

are reviewed separately. Finally, the existing design procedures 

are examined. 



CHAPTER (1) 

SJ.YOarH PIPE BENDS: AN HISTORICAL REVIEW 

(1.1) Introduction 

(1.2) Smooth Pipe Bends Without End Effects 

(a) Linear Elastic Analyses 

(b) Considerations Other than Linear Elasticity 

(i) Elastic Plastic Behaviour 

(ii) Fracture and Fatigue 

(iii) Inelastic and Creep Behaviour 

(1.3) Smooth Pipe Bends With End Constraints' 

(1.4) Current Design Codes 



(1.1) Introduotion 

Piping components can be made from a variety of materials' 

and are expected to operate in a diversity of environments. The 

material behaviour is usually linear and elastic but non-linear 

materials are occasionally used. Pipework is often subjected to 

temperatures Where the effect of creep becomes significant or to 

load levels Where plasticity occurs. 

Smooth bends undergo various forms of applied loading. The 

most important of these are in-plane bending, out-of-plane bending 

and pressure (see fig. (1.1». Each produces different 

behavioural characteristics. The stresses and displacements from 

independent analyses of each type of loading cannot be 

indiscriminately superimposed on the others to obtain the response 

of combined loading. 

Piping system design normally assumes that bend cross-seotions 

are circular and that the wall thickness is the same throughout. 

Manufacturing processes usually are such that the attainment of this 

ideal is rarely achieved. The most common method of manufacture 

involves forcing a section of straight pipe around a specially 

shaped die or former. This process often results in some 

. ovalisation of the bend cross-sections and non-uniform thinning of 

the pipe walls. The quality of bends can be improved by using 

welding fabrication or forging but these tend to be more expensive. 

In most situations a certain amount of imperfection is accepta~e 

occasionally even helpful. 

An extensive volume of work has been wrltten'associated 

with the aforementioned considerations. In the follo~~g sections 

of this chapter the more important, and relevant availa~e 

publications/ 
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publications are reviewed. In section (1.2) articles concerned 

with smooth pipe bends without end effects, are examined. Section 

(1.3) deals with ~~e previous work on end effects and section (l.~) 

examines some of the current design codes on the structural 

behaviour of smooth bends. 

Throughout the present work reference will be made to bend 

"flexibility factors". It is worth defining these, even at this 

early stage as follows, 

The end rotation of the bend under a given load 
K = ------------------------------------------------------

The end rotation of a similar length of straight pipe under 
the same load 

The "end rotation of the bend" is the change in the subtended 

angle of the bend when the load is applied. This is the normal 

flexibility referred to in connection with a smooth bend when it 

i~ considered alone. Later, a further definition will be required 

when the bend is connected to two straight pipes. In this case 

any change in the flexibility of the straights will be referred to 

the bend. ThUs only one flexibility factor will be necessary for 

the determination of the behaviour of a system of a bend with 

straight pipes. The "flexibility factor" for this situation will 

be defined as, 

The overall end rotation of the assembly under a given load 
-2 x the end rotation of one of the straight ~e9tions loaded alone 

K =---------------------------------------------------------
The end rotation of a straight pipe of the same length as the 
bend, under the same load 

where the overall rotation of the assembly is the relative rotation 

between the loaded ends of the straight pipes. The bend length 

referred to is the length of the arc of the mean radius of the 

bend equal to (ROC) where R is the mean radius and OC is the 

subtended/ 



subtended angle of the bend. The straight pipe in a bend-

straight combination will be referred to in the present work as a 

"tangent pipe". 

Reference will also be made to a "stress concentration 

factor ll (S.C.F.) whiC!l unless otherwise stated, will be defined 

as, 

S.C.F. = 
The elastic stress in a bend under a given load 

The maximUm elastic stress in a similar straight 
pipe tmder the same load 

When quoting and discussing the work of other people the 

notation used will be that of the present thesis and not of the 

original publications. Similar comments apply to the graphical 

present..1.tion of results. An attempt has been made herein to use 

similar notation to that of many previolLs authors on the subject 

of pipe bends. 

221 



(1.2) Smooth Pipe Bends Without End Effects 

(1.2a) Linear Elastic Analyses 

The earliest reported work on circular pipe bends was ~ 

BANI'LIN [ 1 ] ~ in 1910. He compared the behaviour of curved bars 

and thin walled curved tubes under in-plane bending. From his 

experiments he concluded that the tubes were about five times more 

flexible than simple beam theory predicted. He attributed the 

discrepancy to the wrinkles and creases on the inside (intrados) 

of the bend Which were formed during the manufacturing process. 

Bantlin suggested that the wrinkles behaved in a "spring like" 

manner. 

In 1911, ~ [2] developed the first theoretical 

solution for smooth curved pipes under in-plane bending. He 

demonstrated conclusively that curved tubes were inherently more 

flexible than a solid curved bar or an equivalent length of 

straight pipe. However, he postulated that the increase in 

flexibility was due to the initially circular cross-section tending 

to ovalise when the bending moment was applied (see fig. (1.2». 

Karman assumed that the tangential displacement of the cross-section 

could be expressed b,y the following series, 

'"\1= ~ en sin 2np , n = 1, 2, 3, 

••• (1.1) 

He formulated the strain energy expression using equation (1.1) 

and the bend geometry. By minimising the' strain energy he was able 

to/ 
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to determine values for the coefficients in the displncement series. 

By'ta1dne one term in the displacement series, i.e. V = C, sin 2¢, 

he was able to obtain what is usually referred to as the "Kttrm5.n 

first approximation" for the flexibility factor, i.e. 

10 + 12 At = 1 + 12~ ••• (1.2) 

By taking two terms in the series, he obtained a second 

approximation, 

_ 105 + 41~ X 
K2 - . 3 + 5 X + 4800>t 

+ 4800 ~ 

K~rm~ also gave numerical results for a third approximation, for 

values of >-. he thought were necessary. The term A is herein 

referred to as the pipe·factor and is given by, 

A= ,t R . --::r r •••. (1.4) 

This is sometimes referred to as the "pipe bend parameter" or 

n bend characteristic II. However , it will be shown later, that 

when end effects are introduced then more than one parameter 1s 

required to define the solution. Karman's analysis gives results 

which depend tmiquely on A. Figure (1.3) gives a plot of the 

numerical values of K given b.Y KArman. It confirms his assertion 

that the first approximation is valid for A > 0.5, the s~cond 

for A> 0.1 and below . A= 0.1 a third approximation is necessary. 

Karman I s analysis forms the basis of much of the work of 

his successors. Many of these publications give the impression 

that/ 
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that K~rman only developed the first approximation and that the 

second and third were eiven by those following him. Even today, 

the solutions developed qy contemporary authors for the axi­

symmetric problem, rarely differ from that of Karman by more than 

a single figure percentage. It is therefore worth examining the 

assumptions he made in some detail. His major assumptions, 

stated or implied, \'lere as follows, 

1. All cross-sections of the bend were assumed to deform qy 

the same amount. 

2. The mid-surface meridional strain (~~) (sometimes referred 

to as the transverse strain) was assumed to be zero. 

3. The circumferential strain (£e) was assumed to be constant 

through the thickness, thereqy neglecting the circumferential 

curvature (Ke). 

4. R >:> r. This permitted the 'pipe bore term' (R + r) to be 

approximated to R. 

5. r >-;:. t. This implies that the solution is only applicable 

to thin shells. 

6. Stresses normal to the shell mid-surface were neglected. 

7. Shear strains were neglected. 

Assumptions 1. 8.nd 7. were· because. ofaxisymmetry and pure bending. 

Assumption 2., sometimes referred to as the "K~rman assumptiQn", 

allows the deformation of the cross-section to be expressed in 

terms of only one displacement component. Assumption 4. limits the 

solution to long radius ·bends, however later l'lork "''ill shO\'1 this 

assumption to be useful even for shorter radius bends. Assumptions 

5. and 6. are simply two of the basic assumptions of thin shell 

theory./ 



theory. However, it should be noted that Karmrrn did not use 

equations derived from thin shell theory but obtained his o~m 

strain-displacement relationships from bend geometry. 

In the same year, 1911, MARBEC [3 ] a t tempted to solve the 

identical problem b,y assuming that the initially circular cross­

section deformed into an ellipse. He used the same strain­

displacement and strain energy relationships as K~rman. The 

formula he obtained for the flexibility factor was, 

K = 1 + 4 
I 3~i • •• (1.5) 

Although he used similar assumptions to K~rman there are serious 

discrepancies between values obtained from (1.2) and (1.5). 

Curiously, although this formula has been quoted by many authors 

over the years, it ,..ras not l.Ultil nearly 60 years la.ter that Spence 

(4) .corrected Marbec's work. Marbec failed to distinguish between 

the meridional angle of the initially circular cross-section and 

the angle used to denote the equation of his ellipse. The 

corrected flexibility factor is given b,y, 

K,= 2+3)\ 
1+3X ••• (1.6) 

which is considerably lower than Karmruns. It is, however, consistent 

with a lower bol.Uld strain energy analysis but even the corrected 

results are of iittle practical value. Both Marbec's and Karman's 

results are shown in figure (1.4). 

LORENZ (5) in 1912 published a solution based on a 

complementary energy approach in which he specified stresses instead 

of/ 



of displacements. His first approximation for the flexibility 

factor was, 

l+~ 

K, = 4X • •• (1. 7) 

Lorenz compared his and Karman's work with the experiments of 

Bnntlin and concluded that his result was more accurate. However, 

later work disproved this. Lorenz's main inaccl~acy, arose from his 

choice of stress distribution. He assumed that the circumferential 

stress across the section was linear whereas Ka~n's analysis 

demonstrated that it \'I8.S not. 

In 1923, TIMOSHENKO [6] examined the case of a pipe bend 

with a rectangular cross-oection. Using similar assumptions to those 

of Karman he was able to determine a flexibility factor in terms of 

the bend geometry •. The formulation for a rectangular section is 

ra~~er complicated but for a square section of side b and thickness 

t and radius of curvature R, his flexibility factor can be 

expressed as, 

••• (1.8) 

where A= Rt 
b 

The result has received 1itt1e attention in subsequent 1iterature. 

HOVGAARD (7] published the first of his contributions in 

1926. He attempted to produce an independent solution for in-plane 

bending of circular smooth bends by specifying a series for the 

"vertical"/ 
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"vertical" displacement component. His rermlting expren3ion was 

identical to that of Karman. He was the first to point out the 

existence of a direct meridional stress factor (~») and gave its 

peak value as, 

~= 2r 6 +1 r:l f ~ ) If" 12~ +1 ••• (1.9) 

In 1928, HOVGAARD (8) published a modification to hi~ 

earlier paper. He explained that both Karman's and his o\-ln results 

should be multiplied by a factor of (1 -).1''). Although this factor 

is close to unity, (0.91 for ))= 0.3) it should be included for 

consistency with a lower bound analysis. 

WAHL [9 ) investiga ted piping syotems and derived 

expressions for end moments and reactions. He was probably the first 

to investigate the effect of internal pressure. He erroneously 

concluded that it had little effect on the flexibility. At around 

this time a number of references appeared on the analysis of piping 

systems, too many to be examined here. However MARKL (10) gives 

references to over one hundred such works. 

JENKS ( ll) , in 1929, extended the results of Karman to the 

th N apprOximation, i.e. using N terms in the displacement series. 

His generalised flexibility factor was given b,y, 

K = 10 + 12 g - j 
.. 1 + 12 X - j ... (1.9) 

where j is a function of')\ given as follows, 



A 0 0.05 0.1 0.2 0·3 0.-1 0·5 0·7) 1.0 

j 1.0 0.7625 0.5684 0·3074 0.1764 0.1107 0.0749 0.03526 0.02026 

Jenks, like Karman, omitted the (1 _V2) term from his 

analyois. He also provided data for the determination of stresses 

for A values dO\,nl to 0·05. 

At about the same time THULOUP [12 to l4J published the 

first successful investigation of the combined loading effects of 

in-plane bending and internal pressure. His method was similar to 

that of K~, except that he specified the radial rather than the 

tangential displacement. Using one term in his solution, he 

obtained the following flexibility factor, 

••• (1.10) 

which reduces to that of KarmAn's first approximation for zero 

internal pressure. 

In (151, TEODA attempted to present a general solution to 

the pipe bend problem. His analysis could accomodate arbitrary 

initial pipe profiles and removed the assumption of R ~;> r. The 

method was mathematically complex involving the use of power series. 

However, he restricted his presentation to circular cross-sections. 

In 1943, KARL [ l6J published two analyses, using strain 

energy and complementary energy methods, similar to those of nrm§.n 

and Lorenz. For the strain energy analysis, he provided the 

following;' 



follo\{ine expression for a "third approximation" flexibility 

factor, 

= 252 + 73912 >\ + 2440176 ~ + 2822400 X 
K3 3 + 3280 X + 329376 X + 2822400 X 

••• (1.11) 

In the complementary analysis, Karl used up to four terms in his 

stress resultant series. With one term, the solution was identical 

to that of Lorenz. The flexibility factor with four terms was 

_ I . ~ (261 + 152304 ~ + 11289600 ~~ 
K4 - + ~ - (360 ~ + 229792 ~ + 2125863 X + 186633600 ~) 

••• (1.12) 

Although Karl appreciated that the strain energy and 

complementary energy methods should have given lower and.upper 

bounds on the flexi bili ty factor, for certain values of A , the 

lower bound (1.11) gives higher results than the upper bo1.md (1.12). 

He seemed to be aware that it had something to do with the (1 - ))2) 

term but for some reason included it in the upper bound analysis in 

such a way that some results still exceeded those of the lower 

bound. The correct bound is obtained if the term is included in 

the strain·energy solution. Karl also demonstrated that the 

inclUSion of (r/R) in the complementary solution only marginally 

affected the results. His converged flexibility factors are 

included in figure (1.4). 

In 1943, VIGNESS [ 17) was the first to publish an 

investigation! 



investigation of smooth bends under out-of-plane bendinG. He 

assumed a tangential displacement of the cross-section with the 

form, 

, n = 1, 2, 3, ---

••• (1.13) 

His method, for a small bend segment, was similar to Karman's. 

Vigness obtained a first approximation flexibility factor identical 

to K§.rm§.n's. The maximum meridional bending stress was also 

identical but its position was moved b.1 45°. However, out-of-plane 

bending introduces a new problem since the applied and reaction 

loads are different to maintain external equilibrium for finite 

bend angles. For example, an out-of-plane moment becomes a pure 

torsion at a position 900 further along the bend. Thus the overall 

rotation for a bend must be found b.1 integrating the effect of 

variable loading along the bend. 

BESKIN ( 18], apparently unaware of the work of Lorenz ( 5 ) 

and Karl (161, performed an analysis for in-plane bending starting 

from'equilibrium considerations and an assumed series for the 

circumferential stress. He considered more terms in the series 

than Lorenz or Karl and was able to show how many terms were necessary 

for a converged solut10n fora specified accuracy.' He also repeated 

the analysis for out-of-plane bendi~g.and showed that identical 

formulae are obtained for flexibility factors. 

BARTHELEMY generalised Ka~'s theory for in-plane bending 

in (191 and Thuloup's method for combined bending and pressure in 

reference/ 
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reference (20). The effects of initial ovality are also considered 

in (20]. Barthelemy and DE LEIlUS presented experimental 

evidence is support of [19J and [20] in [21]. In (22) they 

presented further \-lork and included the influence of thickness 

variations in the analysis. 

HUBER (23) presented a solution to the problem of a 

smooth bend having an initially elliptical cross-section under in­

plane bending. He derived a first approximation flexibility 

factor in terms of pipe parameters and elliptic functions which 

were evaluated in [24J. For a circular cross-section, it 

reduces to, 

= 5.404 + 12 'A 
K 0.5798 + 12 ~ ••• (1.14) 

which, when compared to Karman's result, casts some doubt on 

Huber's result. 

In 1949, REISSNER [25) generalised the equations of . 

rotationally symmetric thin shells and reduced these to the 

governing differential equations of a toroidal shell under in-

plene bending. These formed the basis of CLARK and REISSNER' s 

[26J solution for smooth curved tubes, under in-plane bending, 

using shell theory as distinct from energy methods. Trigonometric 

and asymptotic solutions were obtained from the equations •. From 

the latter, the following expression was obtained for the 

flexibility factor, 

K = 1.65 . A ••• (1.15) 

The maximum meridional stress was given as 

32! 



••• (1.16) 

Clark and Reissner suggested a limit of applicability as ~<: 0.3 

although it can be used with reasonable accuracy up to A = 1.0. 

They also obtained the following formula for eliptical cross-

section tubes of major axis 2a and minor axis 2b, 

K = B(¢) x 1.65 
T ••• (1.17) 

and 

••• (1.18) 

where 

Equations (1.17) and (1.18) reduce to (1.15) and (1.16) for 

circular (b/a = 1) cross-sections. These equations should only 
. . 

be used for bla less than end close to unity. 

In 1952, GROSS . [27] and FORD [28] published the 

results of an extensive theoretical and experimental investigation 

of pipe bends under various conditions. Their experiments were 

prinCipally aimed at confirming the applicability of the existing 

theo~ies for short radius bends, with).. values as low as 0.048. 

They confirmed the need for the use of sufficient terms in the 

series solution at low A • The radius ratio R/r was shown to have 

little effect on the nexibilities. By using strain gauges on the 

inside and outside of the bend, they showed the existence of a 

small/ 
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small but significant meridional direct stress (cffD) and derived 

its value from equilibrium as, 

••• (1.19) 

where o;~ is the circumferential direct stress. This was added to 

the meridional bending stress obtained from Karman's analysis and 

gave the maximum stress for a bend on the inside surface. The 

above modification has become knovm as the IIGross correction 

factor". In [27] convenient formulae were given for the 

flexibility and stresses obtained from a Karman's analysis. 

Gross and Ford also conducted experiments on bends with combined 

bending and internal pressure and demonstrated that this gives 

reduced flexibility factors. Their work attracted a considerable 

amotmt of useful discussion. Among the cont:Hbuters were PARDUE 

& VIGNESS and ZENO who pointed to the influence of end effects on 

the results. These will be discussed further in section (1.3). 

During the years 1956 and 1957, three important papers 

appeared dealing with combined bending and pressure. KAFKA and 

Dl,JNN [ 291 included the effect of pressure in a strain energy 

analysis b,y adding the work done b,y the pressure on the cross­

section •. The extra term was of a second order but proved • 
. 

nevertheless to be significant. The results of some e::pEriments 

were also given showing reasonable agreement with their theory. 

CRAlIDALL . and DAHL [30] modified the shell theory approach of 

Clark ~d Reissner [26] to include the effect of pressure. As 

before, they obtained asymptotic and series solutions. The series 

solution gave similar results to those of Thuloup and to Kafka 

and/ 



and Dunn. The asymptotic solution predicted even lower 

flexibilities than the series solution, especially for hi(~er 

pressures, but appeared to compare better with exper~nenta1 

results. 

RODABAUGH and GEORGE [ 3lJ generalized the method 

given in ( 29) using a general displacement series for in and 

out-of-p1~e bending. They gave graphical results and presented 

e>..-perimental work to justify their analysis. The flexibility 

factors for in-plane and out-of-plane bending were shown to be 

the same. 

TURNER and FORD ( 32J, in 1957, attempted an analysis 

with as few assumptions as possible. They examined the effect of 

each assumption b,y including and removing the relevant terms. 

They concluded that although stress distributions could be 

seriously in error, the flexibility factors and maximum stresses 

were unlikely to be in error b,y more than 5 - 10%. 

FINDLAY and SPENCE (33) reported an experimental 

investigation conducted on a 6ft. 6in. diameter 900 smooth bend 

(R/r = 2,94, A = 0.107). The stress distribution a.t the centre 

of the bend showed good agreement with the theories of Turner & 

Ford, Karman and Clark & Reissner. They also extracted an 

expression for the peak meridional stress (including direct stress 

correction) from the asymptotic solution of Clark and Reissner. 

This was given as, 

For » = 0.3 this becomes, 



,. 

~-

••• (1.20) 

JONES [34] reviewed the literature on smooth and mitred 

bends. In [35], he presented a generalization of Karman's 

original work. The assumption R >~ r was removed and the radial 

displacement series was taken as, 

W =~Cn c.oSf\l , n = 2, 3, 4, 5, --

where ~ = ¢ - 900 ••• (1.21) 

Up to nine terms in the series were used and the earlier 

conclusions regarding the unimportance of the R ~ r assumption 

confirmed. Further discussion was also given on convereence and the 
. 

relative insignificance of the odd displacement series terms, 

particularly for larger R/r. 

CHENG and TRAILER (36] investigated in-plane bending 

using Clark & Reissner's method of analysis but included the 'r/R 

terms in their solution. They further refined their analysis in 

a subsequent paper (37]. Both papers concluded that the 

inclusion ~f r/R had little consequence. 

In 1970, SPENCE (4) examined the bounding characteristics 

of flexibility factors obtained from minimum total potential or 

strain energy methods and compleme.ntary potential energy methods. 

Spence, to some extent, resolved the dile~~ concerning the 

(1 - y2) term, stat~g that a true lower bound is only achieved 

from a strain energy type analysis if this term is retained in 

the flexibility factors. This paper also included the correction 

tol 



to Marbec's work mentioned earlier. In 1971 FI~~LAY and 

SPEllCE (38] published theoretical solutions for elliptical 

pipe bends under in-plane and out-of-p1ane bending. The results 

from their strain energy based method, demonstrate that 

ellipticity has a greater influence on out-of-plane bending. In 

(39J, they extended their solution to bends of elliptic cross­

section with thickness variations and concluded that normally 

accepted values of thinning have virtually no effect on 

flexibility. 

In 1972, DODGE and MOORE [40] presented a generalization 

of Rodbaugh and George's method for in-plane and out-of-plane 

bending with internal pressure. They also included the Gross 

correction factor in the meridional peak stresses. A computer 

program for detailed analysis of pipe bends, based on the work in 

[40] was given in [41]. The program, "ELBo\v", was used to obtain 

the comprehensive set of results given in (40]. In the same year, 

BLOI-wIELD and TURNER (42) published a further contribution on 

the same topiC and KITCHING and BOND [43] examined the out-of­

circularity effects in a pipe bend, also with pressure and bending 

loads. 

J. J. THOHPSON (44] attempted an "exact" solution to the 

problem of a smooth curved pipe with in-plane bending. His method 

involved a matrix solution of-the thin shell equations with 

prescribed displacement series. The work was intended as a 

prelude to an investieation of the influence of end constraints. 
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(1.2b) Considerations Other than Linear Elasticit~ 

In recent years an increasing number of publications have 

been appearing on aspects of pipe bend behaviour other than linear 

elasticity. These will be examined in three separate sub-sections. 

Occasionally, some of these publications will include a reference 

to the effect of end constraints and will be considered again in 

section (1.3). 

(i) Elastic Plastic Behaviour 

In 1967, MARCAL -145] applied a computer proeram for 

the elastic plastic behaviour of general shells of revolution, to 

pipe bends under in-plane bending. He gave the relationship 

between the applied bending moment and elastic-plastic strains up 

to values of 6%. Collapse moments were also given which when 

non-dimensionalized compared favourably with the experimental 

results given by GROSS and FORD 1281 • 

BOLT and GREENSTRE~ [46 1 presented an experimental 

investigation on the plastic collapse l~ads for pipe bends under 

both in-plane and out-of-plane bending, with and without internal 

pressure. They made no attempt to compare their results with 

theoretical computations. 

In 1973, SPENCE and FINDLAY [47J calculated 

theoretical limit moments for smooth circular pipe bends using 

twodlfferent methods. The first methodinvolyed using a suitable 

elastic solution for the stresses with equations derived from the 

interaction of yield surfaces for the limit moments. These were 

compared with an approximate limit moment derived from a creep 

analysis using a Norton power law. The ratio of limit moment to 

first/ 



first yield moment can be found from the ratio of the maximum 

stresses where the creep index is equal to unity with the maximum 

stress where the creep index approaches infinity. A year later, 

CALLADINE [48] obtained limit moments b1 working directly from 

a Mises yield surface with the asymptotic elastic solution 

developed b1 Clark and Reissner [26]. Calladine's results are 

surprisingly high for a lower bound when compared with the bounds 
, 

given in [47]. MELLOW and GRIFFIN presented further results 

for collapse loads using finite element analysis in [49]. SPENCE 

and FINDLAY extended their work to bends with non-circular cross-

sections in [50]. Their results show that ovality introduced by 

modern manufacturine processes should have little influence on the 

value of the limit moments. 

Several 'elements' for the plastiC analysis of pipe bends 

have been developed and included in finite element computer 

programs (see for instance [ 51) to [55]). The maj or problem 

with these is the cost and time involved in obtaining a solution 

for a particular bend. The cost has generally restricted 

published data to a few examples. 

(11) Fracture and Fatigue 

Fatigue tests on pipe bends were performed as early as 

1935 by DENNISON . (56]. Further experimental studies were 

carried out b1 ROSSHEIM and MARKL (57], MARKL [58], [59] 

and LANE [60]. Reference [581 is particularly noteworthy since 

it contains' the results from over 400 fatigue tests on piping 

components,/ 
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components, including smooth bends. The results of these tests 

have been incorporated into various design procedures. 

BLOf'IFIELD and JACKSON (61] used an elastic-plastic 

computer program with the relevant material property data to 

predict the 10\'1-cycle fatigue lives of cupro-nickel pipe bends. 

They compared the experimental fatigue lives of the bends with 

results from elastic and elastic-plastic computer solutions and 

published fatigue data. In conclusion, they stated that the latter 

method was more conservative. BLOlllFIELD presented further results 

in (621. 

In 19n, DOYEN and MARINI [631 published the results 

of fatigue tests conducted on bends made with ICL 167 CN steel. 

Their investigation was principally concerned with defects in 

seam welds at the intrados and extrados of bends made in halves. 

JAMES (64 1 employed fracture mechanics techniques to 

estimate crack extension in piping elbows. 

(iii) Inelastic and Creep Behaviour 

In 1957, KACHANOV (65] investigated the effect of 

creep on pipe bends under in-plane bending. Using a complementary 

energy method with a creep power law he derived upper bound, 

second approximation, flexibility factors. 

SPENCE and MACKENZIE [66 J considered the same 'problem 

using strain energy and developed l~wer bound, first approximation, 

flexibility factors. The secondary creep law used in their 

analysis was that postulated by NORTon (67) given by, 

. 
. where €. is the strain rate and where B and n are material constants. 

'n'l 
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In' is often referred to as the creep index. The flexibility 

factors obtained from both methods were shown to be dependent on 

the creep index and the pipe factor. 

In 1969, SPENCE [681 extended the earlier work to 

include up to five terms in his displacement series. A 

subsequent paper [691 presented an upper bound analysis. Figure 

(1.5) shows flexibility factors from the upper and lower bounds 

and clearly demonstrates that creep flexibilities can be 

considerably higher than those of an elastic analysis. (70) 

details the previous work of Spence together with 'improvements' 

to the upper and lower bound analyses. Stress distributions, 

maximum stress factors and reference stresses are all presented 

in some detail. Some of the work developed in (70) was 

subsequently presented in (71) and [ 72) • [701 contained 

some work on the' creep of pipe bends with elliptical cross-

section which was expanded in [73aI, [73bl and [74]. Further 

work by Spence on creep in short radius bends was presented in [ 75] • 

These publications gave factors for stresses and flexibilities for 

a range of geometries suitable for design. 

In 1973, WORKMAN· and RODABAUGH [76] examined the 

effect of creep relaxation on a piping system operating at high 

temperature with particular interest focused on pipe bends. They 

reviewed the earlier work of Kachanov and Spence but failed to 

notice Kachanov's typographical error in statine the pipe factor 

as ~/r and failed to appreciate the reason for the inclusion 

of the (1 - ~) type term in Spence's lower bound analysis. In 

the discussion to [761, Spence pointed these out and further 

errors/ 
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errors in their work. WorY~n and Rodab&ueh published cnother 

paper [77] a year later. 

Several attempts at a solution to the creep problem were 

published between 1973 and 1975, [51], [52], [7S] and [7~ 

using finite elements. HmV'ever, results are only available for a 

few typical geometries which were of particular interest to the 

respective authors. 

In 1975, BOYLE [So] presented a dissertation on 

rational creep mechanics with further work on creep in pipe bends. 

He approached the problem using a numerical solution to the non­

linear thin shell equations developed in (80). Boyle compared 

the non-linear solution of pressurized curved tubes with the 

earlier work, which included only non-linear terms involving the 

pressure. His results suggest that the linear analysis could be in 

error for high ratios of bending moment to pressure (see (811). He 

also performed a redistribution analysis to examine transient creep 

in pipe bends. An important conclusion from his work was that the 

steady state results of Spence were verified. 

SPENCE and BOYLE . [82] developed an analysis for out­

o.f-plane bending of a curved pipe in creep. As indicated earlier, 

out-of -plane bending of bends with finite bend angles involves a 

combination of bending and torsion which has to be included in a 

creep analysis. A solution was achieved by minimising the total 

potential energy rate. Their results were ~resented in terms of an 

"energy factor" because of the combined loading. Spence and Boyle 

published two further papers in 1977, the first [83] on the 

redistribution analysis in [SO], and the second [S41 on the creep 
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analysis of piping systems. 

GRIFFITH and RODABAUGH [851 published results of 

creep tests conducted on 4 inch, schedule 10, pipe assemblies. 

I}~ZU et ale [861 reported the results of tests conducted on 

12 inch, schedule 20, type 304 stainless steel pipe assemblies. In 

the latter work, the comparison between the experiment and the 

finite element program [52] was disappointing. The authors 

attributed the difference to the choice of material constitutive 

equation and the influence of the tangent pipe end constraints. 

In 1979, IMAZU and NAKUI.fiJRA [87] developed two 

simplified creep buckling analyses of pipe bends under in-plane 

bending. The two methods gave comparable results and showed some 

correlation with experiments. The simpler of them was based on 

Spence's results for elliptical bends by updating the flattening 

of the cross-section as creep proceeded. 

In recent years, an attempt has been made to establish an 

international benchmark solution to the creep problem to provide 

a standard against which computer programs could be verified. 

Spence and Boyle in [88], compared the results of inelastic 

computer programs agairist the available. benchmark data, concluding 

that suffiCient information is available for the assessment of 

simple piping configurations. 

(1.3) Smooth Pipe Bends with End Constraints 

This section will be concerned with publi~ations which 

contribute information to the study of smooth curved pipes with 

end constraints (figure (1.6». Several authors speculated on the 

influence of end constraints but only those presenting factual data 

willI 



will be considered. Only a brief examination will be given here 

since detailed discussion and comparison will be made later. 

In 1945, SYMOIIDS and VIGNESS, in the discussion to 

Beskin's paper (18), presented some experimental results which 

demonstrated the importance of end effects. For a bend with a 

pipe factor ~= 0.043 and r/R = 3 they gave the following 

flexibility factors, 

Bend Constraint Flexibility Factor 

tangent pipes 37 
tangent pipes 32 

one flange and one tangent 18 

two fianees 8 

The flexibility factor from a theory without end effects, like that 

. given in equation (1.15), would be in the region of 38.4. A1tho~ 

there is some doubt about the quality of the results, there is no 

doubting the obvious conclusions which can be drawn. The most 

severe form of constraint was clearly flanges which substantially 

reduced the flexibility of smooth bends. Tangent pipes had some 

influence particularly at the shorter bend angle. 

In 1951, PARDUE and VIGNESS (89aJ published the 

results of an extensive investigation"into the effect of end 

constraints on short radius bends confirming earlier conclusions. 

A more comprehensive report was published two years later [89tl. 

Pardue and Vigness investigated be~as with subtended angles of 180~ 

900 and 450 with two tangent pipes, one tangent plus one flange and 

two flanges. In-plane bending, out-of-p1ane bending, torque and 

shear loads were all examined. Several of their conclusions are 

worth stating at this stage. They concluded that flexibility 
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factors and stresses, for bends where end constraints are important, 

depend on the pipe factor (A), bend angle (oc.), radius ratio (R/r) 

and the type of loading. Typical results from Pardue and Vib~ess 

are given in figure (1.7) for 900 bends with flanges. 

GROSS and FORD ( 28] in their experimental study 

determined the variation of the ovalisation along the bends with 

flanged taneents. The flattening was shown to progressively 

decrease a~my from the centre section of the bend and along the 

tangent pipe. In the discussion following (38J, P.ARDUE and 

VIGNESS published further stress and flexibility factors for 

flanged bends. They also pointed out that the maximum meridional 

stress factor (~;) shifted from midway between the intrados and 

extrados (pipe centreline), towards the intrados, as the bend 

length decreased and end constraints became more rigid. Thus 

further discrepanCies were shown to exist between the axisymmetric 

theories and experiment. 

VISSAT and DEL BUONO (90) reported tests on twelve 
o . 

180 short radius bends with both flange and' tangent pipe 

terminations. Only a smal1 difference was noticed between the 

results of the different end effects. However some scepticism 

must be expressed about the manner in which the tests were 

conducted and about their definition of flexibility factor •. 

Additional discussion on their results will be made later. 

In 1966, FINDLAY andSPEN~E . (331, pointed out that 

since the change in diameter showed a significant variation along 

·the bend then the flexibility would probably vary in the same 

manner. This has implications for experimental flexibility 

factors since they will be an average of the flexi bill ty along the 
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bend' and possibly along the tangent pipes. SHITH and FORD [ 91] 

suggested an empirical formula for the variation of the "flexibility 

factor for 900 bends. 

KALNINS, [92], [93J and [94], developed a numeric~l 

method for analysis of thin shells. The technique involved 

multisegment integration and finite difference solution of the 

thin shell equations. The advantage of this method is that it 

allows end effects to be included in the analysis. HO\iever, the 

cost of running the computer program has prevented it from being 

run for a comprehensive set of parameters. 

In 1970, THAILER and CHENG [95] published a 

theoretical solution for 1800 bends with flanged ends under 10-

plane bending. They selected results from the experiments of 

Pardue and Vigness which gave rouGh agreement with their theory. 

Considerable discussion on this work and the inherent unquoted 

assumptions \fill be made later during the development of the 

present theoretical analysis for flanged bends. 

NATAMJAN and BLOMFIELD, [96J to [981, reported a 

significant contribution to the subject of pipe bends with end 

constraints. This was perhaps the earliest publication on the use 

of the finite element method for bends with end constraints. They 

provided flexibility factors and stresses' for a variety of end 

constraints and a relatively wide set of geometrical parameters. 

An unfortunate limitation of this work and of other finite 

element solutions is their inability to contend with a bend with 

two flanges. The problem is specifying the neces:3ary boundary 

conditions for the loaded £lange. 

In 1973, FINDLAY (99] published a dissertation on the 
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effect of end constraints on pipe bend3. Most of his work was 

concerned \dth flanged bends under in-plane loading. He developed 

a total potential energy based theory with specified displacements 

satisfying the boundary conditions of a rigid nange. Findlay 

compared his results with experiments conducted by himself and 

others. The stresses provided a better comparison than the 

flexibility factors. Findlay concluded from these ~~at his solution 

\'laS satisfactory. He also pointed to what he thought were erroneous 

assumptions in Thailer and Cheng's solution and felt that their 

comparison with experiment was fortuitous. This work was also 

published by FINDLAY and SPENCE in (100], [101) and [102]. 

In 1974" AKSEL'RAD and KVASNIKOV [103] developed a 

"semi-moment" theory for curvilinear bar-ohe1ls and as an example 

dealt with the problem of flanged bends. They give a first 

approximation formula for the flexibility factor but no stress 

results. The results are different from those of Findlay and 

Thailer-Cheng. More will be said about the comparison and 

. assumptions in this work later. The first author, Aksel'rad, 

later published a similar contribution (104] but this time his 

name was translated as AXELRAD [105]. In the present work 

comparisons will generally be made with the latter work and the 

author referred to as Axelrad •. 

IMAMASA and URAGAMI [106] published an experimental 

study of bends with end effects. They compared the results ldth 

those !'rom a finite element program [107] and obtained a 

relatively good comparison. In the experiments on bends with one 

tangent and .one nange the highest stresses occurred adjacent to 

the flange and not at the position of maximum ovalisation nearer 

thel 
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the centre of the bend. 

WRIGHT, RODABAUGH and THAILER [108] performed a 

finite element analysis on a tapered bend with one flanee and one 

tangent pipe using the "IwtARC" program [52). The authors also used 

the program of Kalnin's (94) but found thut the total moment acting 

on each cross-section varied significantly along the bend and that 

the stress at the centre of the bend continued to increase with 

increasine tangent pipe length to values well above that predicted 

b.1 theories without end effects. This casts some doubt on the 

earlier work of Kalnin$. 

SOBEL [109] suggested guidelines for the use of the 

"1{ARC" finite element program on bends with end effects. Detailed 

results are given for a single elbow with two short tangent pipes. 

RODABAUGH, MOORE and ISKANDER [110J obtained some results 

for bends wi~~ connected tangent pipes using the EPACA [111] f10ite 

element program. KANO et al (112J compared the results from 

the· ANSYS [113J, ASKA [1141 and MARC 152] finite element 

programs for pipe bends with tangent pipes under in-plane and out­

of-plane bending. The stress comparisons were surprisingly poor. 

They concluded that it is necessary to use higher order elements 

for an accurate analysis. 

In [115], and. ( 116], OHTSUBO and WATANABE presented 

a. finite element in the form of a ring. The ring element used 

trigonometric series in the meridional direction and Hermitian· 

polynomials in the circumferential direction. Smooth bends with 

tangent pipes were modelled b.1 connecting several elements together. 

Ohtsubo and Watanabe presented some results for 900. bends with 

tangents. They also presented results for bends with varying 
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thicknes3, but without end effects. 

In 1975, ~~THM4 [117] published a theoretical analysis 

of flanged pipe bends under in-plane bending. He used NOVOZlIILOV's 

[lIS] four parameter method where the governing differential 

equations of a thin shell are solved using four functiona, with the 

same forms as the displacements, which satisfy the equilibrium and 

compatibility equations simultaneously. Considerable discussion of 

the results in this paper will be given later. Figure (1.8) shows 

a brief comparison of the theoretical analyses for flanged bends 

by Thailer-Cheng (95), Findlay 99], Axelrad [104] and lfuatha.m. 

In 1979, WHATIW~ and THOT-IPSON [ 119] extended the earlier 

work to bends with flanged tangents of any length. 

KANO et a1 (120) examined three elbow-pipe assemblies 

under various loadings using the FINAS [12lJ finite element system. 

TAKEDA et a1 (122) and BATHE and ALMEIDA [ 123) proposed 

two further finite elements for pipe bends with end effects. KWEE 

(124) analysed a bend with varying pipe radii using the, ASKA 

program [1l4J. 

BROUARD et al [125] performed experimental tests on 

bends with tangent pipes and flanges. The bends were loaded into 

the plastic regime with large displacements. Under these conditions 

flexibility.factors for opening and closing bending moments were 

£ound to be different. 

Although nmnerous papers have been written on the 

influence of end constraints on smooth pipe bends, there exists no 

conclusive general solutions; indeed many of the available 

publications are contradictory. The comparison of the existing 

theories on flanged bends in figure (l.S) highlights this dilemma. 

Comparind 



Comparing these with the available experiments produceo further 

confusion. The position with regard to tangent pipes is somet'That 

different. Experimental work appears to agree \vith the axisymmetric 

theory, for flexibility factors and maximum stresses, over a range 

of practical geometries. However, for short radius, small angle 

bends some deviation clearly exists. Available theoretical work 

would seem to roughly agree with this but a detailed and truly 

comprehensive set of results is not available. No useful attempt 

has been made to try to bring together all of the available 

evidence wi~~ definite conclusions. 

(1.4) Current Design Codes 

The t1l10 most commonly employed British design codes are 

BS 806 [ 126] and BS 3351 [ 127] for land boilers and petro­

chemical plant respectively. BS 806 ,-ras rewritten in 1975 and. 

includes a relatively extensive section on the flexibility and 

stressing of smooth pipe bends. A graphical presentation was 

used for the various stress and flexibility factors, the latter 

including a small variation with radius ratio. The stress 

factors were also slightly different for in-plane and out-of-

plane bending. Correction factors were given for bends with one 

or tVIO flanges wi thin 4r of the bend-tangent junctions. AI though 

these were given on a graph, they can be found from the following 

formulae, 

__ \.V" One flange, correction factor /\ 

. -- ~~ Two flanges, correction factor /\ 

••• 

NO/ 
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No other form of end constraint "ras considered. BS 3.351 suggests 

the followinG flexibility and stress factors for bends without 

end effects, 

K= 1.65 
A ••• (1.23) 

and, 

U= 0.9 
A'IJ ••• (1.24) 

The flexibility factor is the same as that given by Clark and 

Reissner (26] in equation (1.15). The stress factor is similar 

to the Clark and Reissner asymptotic formula for the peak 

circumferential stress factor, which is virtually half the peak 

meridional stress factor given in equation (1.16). The reason 

for the use of the circumferential rather than the meridional 

stress factor is due to a peculiar continuing argument as to 

, 'which is most likely to cause failure. BS 806 gives graphs of 

both stress factors and requires,that the maximum stress range for 

combined loading must satisfy certain limits. Pardue and Vigness 

{891suggested that the circumferential stress factors, being 

constant through the wall thickness, were the most important 

design stresses but in the discussion which followed [89J, 

Gross and Ford suggested that an equivalent (combination of 

meridional and circumferential factors) stress factor should be 

used as indicated by Hovgaard [128], and Markl further suggested 

that failure was due to either meridional or circu~eren~al 

factor, whichever was the greater. Harkl's suggestion was oo.sed 

on the results of fatigue tests presented in (58]. BS 3351 also 

uses! 
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uses' the correction factors given br equation (1.22) for bends 

with flanges. 

Perhaps the most detailed British design data for smooth 

bends is that of the J'Engineering Sciences Data Unit" (E.S.D.U.) 

[129]. This provides graphs for flexibility, meridional stress 

and equivalent stress factors, for bends with connected tangent 

pipes. The results are based on the work of Natarajan and 

Blomfield [97J using finite element analysis. Unfortunately the 

results are limited to the range r/t ~ 10 and Rjr = 2. This is 

the only current code which considers the tangent pipe as an end 

constraint and it demonstrates the necessity for information, 

particularly at low bend angles. E.S.D.U. also suegest sources 

for data on other forms of end constraints. One further 

interesting statement, which will be examined later, is that the 

circumferential stress at flanges on nanged bends can exceed the' 

maximum meridional stress. 

Numerous American standards are available 1130 - 133] 

which give the same stress and flexibility factors as BS 3351 i.e. 

equations (1.23) and (1.24). They also incorporate the nange 

corrections given.in (1.22). It is believed that these nange 

corrections are largely based on the work of Pardue and Vigness (89). 

To summarise the current design codes, in the context of 

end constraints, it is noted t~at all of the codes, excepting E~S.D.U., 

suggest the correction factors given by (1.22). For comparison 

purposes, the following results from the A.S.r1.E. code will be 

used herein, for bends wi t~ two' flanges: 

••• (1.25) 

. and/ 
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and 

••• (1.26) 

These are illustrated in figure (1.9). Only the E.S.D.U. data 

sheet acknowledges the influence of tangent pipes as end constraints. 

Some of the flexibility factors are shown in figure (1.10). 
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CHAPTER .2 

BASIC THEORETICAL RELATIONSHIPS 
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Abstract 

The present chapter is aimed at establishing the basic 

theoretical relationships which are required in the subsequent 

analyses. 

Equations for a general shell in curvilinear orthogonal 

co-ordinates are described and an explanation is given of the 

choice of equations to be used herein. These are then converted 

to equations for a smooth pipe bend and a straight pipe. 

The theorem of minimum total potential energy is outlined and 

its application using the Rayleigh-Ritz method discussed. 
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(2.1) .t>ipes as Thin Shells 

(2.la) Introduction 

'ro quote Fltigge (134] a shell is the II ••• materialization of a 

curved surface". Thus, the definition of a shell is strictly a matter 

of geometry and not of material. Typical examples of shells in 

everyday use are concrete roofs, water tanks, balloons and even 

parachutes. 

Shell theory attempts to model a three-dimensional structure as 

a two-dimensional surface, mainly for simplicity since three-dimensional 

general solutions to elasticity problems are not easy. 

The smooth pipe bend seems an ideal candidate for analysis using 

shell theory as it can be modelled as part ofa toroij. Straight pipes 

can be examined as a cylindrical shell. 

The principle of rr~nimum total potential energy will be used 

later to solve the pipe bend problems. Although this technique only 

requires the strain-displacement and constitutive equations with the 

strain energy equation, the full set of shell equations will be given 

for completeness. 

(2.lb) Thin Shell Theory Assumptions 

The first set of basic equations governing the behaviour of 

thin· shells were derived by Love [135] '. These were later modified. 

by Reissner [136] to form what is often referred to as the "classical" 

first approximation of shell theory. Love and those after him use 

several simplifying assumptions concerning the geometry and behaviour 

of the shell. These can be summarised as follows: 

(1)/ 

Of 
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(1) The thickness of the shell surface is small relative to its 

mean radius of curvature. Typically" the thickness should be 

less than a tenth of the mean radius although this is known to 

vary according to the problem being examined. 

(2) Deflections of the shell surface are small. This limits the 

change in the shape of the shell between the unloaded and loaded 

shapes allowing the complete analysis to be performed on the 

original geometry of the shell. 

(3) Stresses normal to the shell surface are negligible. This 

states that the normal (radial) stress is small relative to the 

stresses in the plane of the shell and also allows the use of 

the two-dimensional constitutive relations. 

(4) Lines originally normal to the shell reference surface, remain 

nomal to the deformed reference surface and unstrained. The 

reference surface is usually the mid-surface. This is analogous 

to the Euler hypothesis of nplane sections remain plane" in beam 

theory. It is sometimes referred to as the "hairbrush hypothesis". 

It should be emphasised that the 'plane sections' referred to are 

through the thickness of ,the shell surface and not through the 

cro,ss-section as in beam theory. This asswnption also implies 

that all the strain 'components, including shears, normal to the 

shell surface are negligible. 

The theoretical work discussed herein is based 6n the equations 

correspondong to the first order linear· theory of shells. Other 

'higher order theories have been derived which remove some of the 

above assumptions ([137 ], £138 J) , but it has been established by 

many previous authors that the first order approximations give 

results which are suitable for most engineering applications. 
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! 

(2.lc) General Thin Shell Theory 

Love's origin~l publication contained a number of 

inconsistencies. He omitted some small terms and retained others 

with the same order of magnitude. Several authors attempted to 

improve these equations but many of them retained a further deficiency 

in the relations bet\oleen the forces and displacements. Eventually 

most of these problems were removed and a set of equations, derived 

independently by several authors, became "established". These equations 

can be fOlUld in the texts of Novozhi1ov [139 ] , Kraus [140] and Dym [141] 

The author found the latter book to be an excellent introduction to 

the theory of thin shells. 

Sanders [142] pointed out a further inconsistency in the 

"established" equations. He showed that they do not give zero strains 

for all rigid body displacements, except for spherical shells, flat 

plates or symmetrically loaded shells of revolution. The inconsistenc,y 

occurred in the shear curvature term which makes its significance 

for most problems relatively small. Sanders removed ~s inconsistenc,y 

using a method wsed on the principle of virtual work. . His only 

change for the compatibility equations was in the shear curvature 

term. 

Koiter [143] derived similar equations to those of Sanders 

which also gave zero strain for rigid body displacements. He 

concluded that the shear. curvature inconsistency would only produce 

errors of the same order as those of the wsic assumptions of 'she11 

theory. 

FIUgge ~34] derived equations for particular classes of 

shells using a more physically intuitative approach which is more 

readable to non-mathematicians. However, his equations are different 

tol 
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to most other works. The difference between Flugee and the others 

is also dependant on the class of shell (e.e. cylinder) which is 

being considered. FlUgge also does not separate the bending and 

direct strains making comparison with other theories difficult. 

Dym [141] compares FltIgge's eqmtions for a cylinder with Donnell 

and Sanders [142 J and concludes that Fliigge' s equations will differ 

in regions of rapid deformation change. 

Goldenveizer [144 ] neri ved similar equations to Novozhilov 

but with a different shear curvature expression. He also substituted 

his strain-displacement equations into the equilibrium equations, 

using the constitutive relations, which gave the three differential 

equations, in terms of the shell displacements, that govern shell 

behaviour. This is the only text that the author has read in which 

these equations are given. A mention will be made later of the 

application of similar equations with the finite difference method. 

Donnell (145] ,Mushtari t146] and Vlasov [147 ] derived 

an approximate set of equations which have become internationally 

known as the Donnell-Mushtari-Vlasov equations. These equations use 

only the radial displacement in the curvature strain terms. The 

benefit of this is tha't it produces relatively simple governing 

differential equations. These equations will be more justified the 

smaller the stresses due to the moments are in comparison with the 

stresses due to the forces. The present author has tried these' 

equations with the 'classical' pipe bend problem. The flexibility 

of a typical bend with a pipe factor of 0.5. is underestimated by 25.~ 

Axelrad [104] derived equations for a class of shells which 

sustain membrane or slowly varying deformation in one direction and 

ani 



an intensive variation in the orthogonal direction. These equ~tions 

are particularly applicable to the pipe bend problem. 

Some decision on the choice of equations to be used for the 

present project had to be made. The equations are the tools with 

which the problems will be solved and may affect the q~~lity of the 

results. A version of the theory given by Novozhilov was chosen for 

its simplicity and consistency. It differs from the "established" 

version in the shear curvature and equilibrium equations. The 

equations give zero strain for all rigid body displacements and are 

simpler than the equations of Sanders. 

In orthogonal curvilinear co-ordinates the strain-displacement 

relations for a general shell are: 

~ __ , 'OU, +..!!.t- 1& + ~ 
I - A I ~oc, AI A"L ?>OC"L R, 

_..L i)U2. -\- Ltc .:Mh + w 
E'",- A", 00c2. AlA,. ~a::. R'l.. 

_ -L~+A-oA, 
K, - A, o<X, A,R~ O~2 

_ -L~ +~ofk 
\<2. - 112. '00:2. fVb () CXt 

VJ - -L.hlJJ-~ _ Jh. 6 A, 
.- AI ~O(, A,A2 ~~'2. 

W == ~ 'OUa, _ U,. ~A1 
2. A'l. b~ R,A2 o<X:, 

'C - .l.~_ ~ 1&' 
,- AI oCX: I ' AlA,. ~~).. 

y').. =- ...!.. ~ _ fi- a A2 
, A2. ~<r~ ~I A~ aCi, 

wnere 

P, - J!L I dW 
() R, A, 60l, 

:.(i f3:t = 
U2. I aU) 

(2.1) ~- A~ocx;. ••• 



{3, and f3'l. a.re the rotations of the mid-surface norm3.l in directions 

1 and 2 respectively. 

r th " " t:: I and ~~ are e mid-surface strains in directions 1 and 2 

respectively. Kl and K2 are the curvatures in directions '1' and '2'. 

The problem of consistenc~mentioned earlier, arises from the 

combination of WI. , W2, '1:'. and 1::'~ to give the mid surface shear strain, 

W, and the shear curvature, ?: • W is usually found from, 

••• (2.2) 

Novozhilov gives two definitions of the shear curvature, i.e. 

L,* ==- Y.I + hl 
R,' ••• (2.4) 

In deriving the equilibrium equations, using the principle of minimum 

total potential energy (e.g. see Dym [141 pp. 28-33] ), 1;;* is 

normally used together with the stress variables; 

••• (2.5) 

This gives a variationally consistent set of equations which also 

satisfy the conditions of zero strain for all rigid body displacements. 
, 

Unfortunately, the shear stress resultants.~, N2l, M12 and M21 

cannot be obtained from simply knowing W and ~. This will only be 

a/ 



a problem if N12, N2l, 1112 and M21 are required explicitly, in 

many situations, including the one to ~ considered herein, they 

are not, and Sand H are sufficient. Novozhilov, Dym and Kraus go 

on to show that taking the alternative definition for the shear 

curvature, ?: = L, + 1;, allows N12, N211 M12 and M21 to be foun~ 

from 

N - N - Et W 
'1- 2.1 - 2(1 +V) 

M - M - EtS 
ry 

11 - 2., - 2,4-(1'" V) L.- ••• (2.6) 

This is the definition used in"the "establishedll equations, which 

is variationally consistent but does not produce zero strains for a 

rigid body rotation (Dym [141] p. 42) • 

The (2.4) ~~ definition will be used from here on since N12, N2l, 
. 

M12 and M2l will not be required explicitly. It should be noted that 

these can be found approximately using the follo~dng equations, 

- Et (W + t2. 1:*) N,2. - ;t(I'" 1I) b Rl 

t\ t - --LL(W + t2. r) 
I ~, - 2.( ..... \.J) "R, 

The error in these equations"is of the same order as the original 

,assumptions of thin shell theory. 

The constitutive relations corresponding to the above definition, 

with a constant shell thickness, for a linear isotropic material, are 

N. = C(E,+)) E:,.) 

N:z.= C(E2. + VEl) 

S = (t-lJ)tc W 

") 

, 
., 

M, = D (K, 1-)) K2.) 

M1. == DC \;(1+ }) K.) 
H~= (l-v)H (::* 

I:> 



where 

••• (2.8) 
The corresponding equations of equilibrium are, 

+-' [f(A~H~ _(aA-,\ M + 2.. ~(A,H) + z..& fQlh. \ Hl = -A A q,. 
R, boll "Oat,7 2. ~ OC1. R1 \"Oo<:~) J I 1. I 

~(A s) +. C{A,N2) + (~A~)S - (Q&) N, + 
~~I 6()(1. 00(, \oo{a. 

+ ' ['d(A,M;)_ ~A~\ M + ') QUhH)+ ') &/~H] =-A A 0 
R2.L ?l 0('2. '00(;) I A.. ~ 0(, ~ R, \.d(ll~J J ,1 11', 

{fu + N7.)_-L (~l r~(AI.H')+ 6(A,H)-t/~\ H -(QJh.\ M 1 + 
\R, R1. AJl"l( 00(, RI L ~o(.l ~ O(~ \dCX:~' \ao£,) 2.J 

+ ~ 1-Ld(A2.\-\) + ~(f\, M1.) +fElh) H -(a..a.\ M l} =. 9, 
dCXl. Al ~ eX, a-o{1. \~o(l \~ ot.;.J I~ n 

••• (2.9) 
The established shell theory has six equations of equilibrium. 

However, these can be reduced to three equations similar to the 

above qy substitution for the normal shear force resultants. 

The necessary boundary conditions for the solution of these 

equation~ are, at constantot, specify, 

MI 
a t constant O{, specify, 

N2. 

5 + ¥. 
--L (1 o{A~H2 + .~(AIM'l) - (~\ MI) 
A,f\ d lX, ~ OClL- ~o(;) 

M" 

or 

or 

01' 

OT 

or 

OJ 

or 

aT" 

Uz. 

w 

.. ~ .. 

w 
. f3'l. 
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The 'strain energy equation consistent with the above equations, 

for a constant thickness, linear isotropic material is, 

U =: i~ ~ [(6,+ (.)""-2(1-I))(E,E.- ¥.)] A,I\ d.cx,cl~. 

+ R 5 S [( tAl + K:tY-- ;((l-V)(\A, \<1 - yl)] A, A2 d eXl d cX2. 

••• (2.11) 

The assumption that t/R~ can be neglected with respect to one, was 

used in the derivation of the above equation. This limits its use 

to thin shells. 
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(2.2) The Toroioal Shell or Smooth Pipe Bend 

The general equations need to be converted to the specific 

case of a toroidal shell for the analysis of the smooth pipe bend. 

The geometry of the smooth pipe bend is given in Fig. 2.1. 

The first fundamental form of the mid-surface of a shell 

element in curvilinear co-ordinate is, 

The corresponding equation for an element in the new (¢,e) co-ordinate 

system is 

Principal radii of curvature in the curvilinear system are 

Rl and R2; these become r and R'/sinp in the (~,e) co-ordinate. system. 

Curvilinear displacements Ul, U2 and W become V, ti and W in 

the (¢,&) system. 

Conversion of the curvilinear system to the (¢,9) system 

therefore requires, 

AI= I 

c:::J.,,= e 

w=-W 
••• (2.12) 

Thus, the governing equations for part of a toroidal shell or pipe 

bend having a .constant radius of cross-section r, are obtained bw 

Bubstituting equations (2.12) into (2.1-11). This gives:- . 

Strain Displacement Equations,/ 
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Strain Displacement Equations, 

where 

R' :::. R + I sin ¢ ... (2.13) 

(Note:- ~e ,::: W '" ,Ke~ =- 7::'" ) 

Constitutive Relations, 

N~ = C(E, + V f..e) 

M~ = D( K; + lJKe) 

5 = t (,-))) c 1!e~ 

where 
_ Et 

C - Q-t>~) 

Ne = C (E.e+)J E,) 

Me'::: D(K9+» K~) 

\-\ = (\-\)) D \(.8" 

n 



Strain Energy (constant thickness), 

u ~ ~ S~ [(t¢"'""te)2.-1-(,-\»(G¢~- $-)J r-~ded¢ 

1- ~S S [(K#+K&Y-2('-\J)(K~KQ- Ke¥)] ,~ded¢ 
Boundary Conditions necessary for a solution are; 

••• (2.16) 

at constant ¢, specify, 

N<I or v-
5 + 2M '!.In¢ or -U 

2... 'hl:i +..L 'b Mt - t1 e r c..o~d. r 2lS r ~ ,., r or W 

M¢ or f3(> 
at constant e, speCify, 

Ne or u 
S + ?'rH. or V 

W 
b o(r<'H) +..L ~ 
r-R ~ rI R' ~ e or 

where or f3e 
••• (2.17) 

Me 

f34= 4=(u--\7) 
and 

~e = t.(V.!>I"~- W) 
••• (2.18) 

The . e and ~ directions will be termed the circumferential 

and meridional direct10ns respect1vely. 
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(2.3) The Cylindrical Shell or Strair,ht Pipe 

The straight pipe may be considered as a cylindrical shell. 

The geometry of straight pipe is shown in Fig. 2. 

The first fundamental form of the mid-::mrface of a 

cylindrical shell in the (¢,,q system is, 

The meridional radius of curvature r will be taken as a 

constant along the length of the pipe. 

Conversion of the curvilinear system to the (¢,X) system 

requires the following: 

eL, =¢ 

OC2.. =)C. 

Ll. == 1T \J.::l,.::: ti W=W 
••• (2.19) 

Therefore, the governing equations for a straight pipe of constant 

cross-section radius, r : . 

Strain Displacement Equations, 

~~= t(w+ W) 
L_= aU 
c._ C>X. 

'X :- aU- + -L ~J, 
V:x1 ~~ r (}~r 

(Note: . ~x4 == ~s ,\{~ ~ t"') 

Constitutive Relations,/ 
••• (2.20) 

• .. 

• 
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________________ -~-~~~ ~ _, ____ ~,~ ____ ~ ____ n_ 

Constitutive Relations, 

N ,,= D( Ex. + 1> £ q!. ) 

5 =- O~\» c.. '6-uf 

M; :=; D(K~+}) K):.) 

M1<-:= 1) (~~ + V I;{,) 

r\ == 0-v) D \{Xf 

where 

c.. - Et: 
- <! -~\.) 

_ E-I;.? 

1) - '2(1 - V'-) 

Equilibrium Equations, 

-'- ~ + ~ N,.. =- - 'f.,x. 
, t"" }'rp ~x. 

_ ~, +..L ~tMI! + 2:. ~ + ~'2Mx 
t' r~ ~ r:p~ r ~9?JX- d )C.'L 

Strain Energy,! (constant thickness), 

=-'tn 

••• (2.21) 

••• (2.22) 

u = ; Sf [(E'/J+ £xt-2(\-))X~c~- *-)] .d.xd<f 

+ Jt)f [(K<;+ Kx.Y·~2.(t-)))(~~~~·~ K~t)J'd.~d~ 
••• (2·23) 

Boundary Conditions necessary for a solution, 

at constant ¢, specify 

N~ or- 1.) 

5 or- ' "().. 

t~ ...... 'bM~ 
W ~¢ or 

Mf Of"" (3; 
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a t constant X, specify 

Nx. or 

5 -t- 6
j
H or 

~ali+~ r '?J¢ oX or- w 

Mx. or 

where 
••• (2.24) 



(2.1a) . Principle of I1inimum 'l'otal Potential Energy 

The principle of minimum total potential energy can be 

expressed as, 

where 

~.J UtE: )dV 

S5(I') P b clS 

••• (2.25) 

is the total strain energy of a compatible 
strain field ~. 

is the potential energy of the applied 
forces where &*is the associated 
compatible displacement of the load. S(P) 
denotes integration over the surface where 
the loads are applied. 

is the exact strain energy of the true 
strain field, £ .. 

is the potential energy 'of the applied 
forces where 6 is the associated true 
displacement. 

In the form presented above, the theorem states that the total 

energy associated with an arbitrarily assumed compatible strain and 

displacement field is always greater than or equal to the energy 

associated with the corresponding true strain and displacement field. 

This is true only if the assumed strains and displacements satisfy 

compatibility. Thus the total energy is only a minimum at the true 

state. 

.Use of this theorem is made qy prescribing displacements as a 

series of terms each of which is made up of a function multiplied qy 

a coefficient. Each function must satisfy internal compatibility 

andj 



and the kinematic boundary conditions i.e. external compatibility. 

The values of the coefficients, and hence the true displacements, 

are obtained qy finding the combination of the coefficients which 

give the minimum of the total potential energy function. 

This is the basis of the Rayleigh-Ritz technique. The 

displacements are expressed as a series of trigonometric functions e.g. 

C - C 1I..: C 'l.vx C 31tX 0- ,S\t'\ L + 2. !>\I' e:- + ~ OS,I' ~ -t- •••. e.t.c. 

If each of these terms satisfies compatibility for some problem, then 

06 

b = ~ C" ~'(\ (C'~X) 
n. .. \ , n = 1,2,3,4, ..... ,06 

must be the actual displacement state (providing all possible trigone-

metric functions satisfying the boundary conditions are included in 

the summation). To determine the en coefficients the total potential 

energy (T.P. E.), V, is expressed as a function of 6 and hence of the 

coefficients. The solution to the problem is found qy minimising the 

T.P.E., hence 

therefore, 

~ - 0 oS 

since a variation with respect to b will be equivalent to the 

variation with respect to each of the individual coefficients. Us~, 

each of the variations with respect to each coefficient produces an 

equation involving the other coefficients and the equations need to be 

solved simultaneously. 

In practice, a finite number of terms in the displacement 
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series is usually sufficient as higher order terms rapidly become 

negligible. 

Only the exact displacements give the true minimum of the 

T.P.E. and therefore corresponds to true equilibriun. Each 

displacement component contributes to the final equilibrium state 

and hence truncating the series after a finite nn~ber of terms 

gives partial equilibrium. 

(2.4b) Lower Bound on Flexibility 

Frequently for the application of the total potential energy 

theorem, recourse is made to a "displacement prescribed" type of 

solution i.e. one where the selected compatibility component ( b-) 

is identical to the exact displacement (S). For this particular 

case, it follows from(2.25) that, 

••• (2.26) 

The equality only holds when the strain and displacement choices are 

. exact. 

If a structure is subjected t~ a single load then, from the 

principle of energy conservation, ~e strain energy will be equal to 

the work done b,y the external load increasing uniformly from zero. 

If the load is increased to the value P , where the displacement is 

equal to the prescribed displacement. , then this can be written as, 

Iv U(E"') 0.\1 = ± P*f, 
••• (2.27) 

The true state is,· 

i u(e)dV ==!?5 
••• (2.28). 



Equations (2.27) and (2.28) can be combined using (2.26) to give, 

p~ ~p 

i.e. the calculated load from an approximate solution is always 

greater than the exact load. The flexibility of a structure is 

inversely proportional to the applied load (since P = &/F, where F 

is the flexibility). Therefore, from (2.29), the flexibility of 

a structure must be underestimated. Thus a "lower bound" is 

obtained on the value of the neJdbility from a minimum total 

potential energy analysis. This is not always true for more complex 

loading. Denections and stresses away from the load point are not 

bounded. 

The lower bound on f1exi bili ty will be useful in the study of 

pipe bends. Convergence of series solution can be examined since the 

addition of further terms to the series will increase the bend 

nexibility. Terms can be added until the change in the flexibility 

is less than some arbitrary quantity, say 1%. 
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CHAPrER .3 

THEORETICAL ANALYSIS OF A SMOOTH PIPE BEND 

WITH FLANGED END CONSTRAINTS UNDER 

IN-PLANE BENDING 



Abstract 

Theoretical solutions to the problem of a smooth pipe bend 

with flanged end constraints under in-plane bending are presented. 

General displacements in the form of fourier series are 

suggested which satisfy internal and external compatibility. 

Strains are then derived using the strain-displacement equations. 

Two solutions methods are first presented which use a 

simplified form of the displacements and strains together with 

hand integration of the total potential energy expression. The 

two methods differ in their inherent assumptions. The results of 

both methods are discussed and a comparison with other theoretical 

methods presented. 

A numerical solution is then presented which uses the complete 

strains and displacements with few assumptions, excepting those of 

the thin shell theory. The results are then discussed and compared 

to other solutions. Finally flexibility and stress concentration 

factors are given for a wide range of practical bend geometries. 



CHAPTER (3) 
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(3.1) Introduction 

As mentioned in chapte~ 1, the study of the smooth pipe 

bend with flanged ends under in-plane bending has attracted the 

attention of a number of authors, but each has produced results 

which differ widely from the others. 

The aim of the present work is to resolve this dilemma 

by highlighting the limitations and errors in some of these works 

and to develop a method which removes some of the problems b,y 

making as few assumptions as possible. The development of this 

method will be explained in some detail and at appropriate points 

it will be compared to the other works to illustrate the problems 

therein. 

The first task tmdertaken was that of repeating the work 

of Findlay (99J • This proved to be both time consuming and 

difficult for various reasons, even with the help ot G. Findlay 
" 

himself (for which the author is grateful). His equation for the 

total potential enerf;Y' unfortunately contains an error. The term, 

at the bottom of page 156 of (99J should be 

The equation was programmed on a computer and the results were 

compared with Findlay's. With the correction, the results were 

exactly the same as those of Findlay when up to three terms were 
",? 

used in each displacement series. Wi th more than three terms in 

each series the.results radically differed. The present author's 

results/ 
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results demonstrated conve~gence within 1% with three terms in 

each series but Findlay's results converged, in some cases, b,y at 

least a fUrther 100% and required up to six terms in each series. 

Several different solution procedures were used at this stage in 

an attempt to obtain Findlay's results but these proved unsuccessful. 

Eventually, it was concluded that the cause of the difference was 

probably due to Findlay having used two different solution 

procedures, one for three or less terms in each series and a second 

for use with more terms. The second procedure must have contained 

an error, but this could not be absolutely confirmed as Findlay'S 

computer program could not be found. The "correct" set of Findlay's 

flexibility factors are given in fig. (3.1). These results are 

virtually the same as thosegi ven by Findlay with three terms in 

each series. 

The corrected results still did not compare with the results 

of Thailer and Cheng [95J, in fact the difference was now larger. 

At this point, several or the assumptions of Findlay were removed. 

The assumption or ~ sin P ~ >,1 was reduced to (f sin p) 2 « I 

using a binomial expansion and the circumferential and shear 

curvatures were included in the analysis. This only changed 

Findlay's corrected nexibilities by about 5%. Various changes were 

made to Findlay'S "primary displacements" but the flexibility factors 

never changed by more than 5%. 

Thailer and Cheng's analysis was similar to Findlay's but, 

they ignored the contribution or the shear strain in their 
. 

expression for the ,total potential energy. Their results were 

almost the same as Karman's (2J, which did not include end efrects. 

ThaUer/ 
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Thail~r and Cheng's analysis was repeated with the shear strain 

included, but with the assUJ:lption ( f sin p)2 c::<: 1. This gave 

flexibilities which were about 30% higher than Findlay's (Fig. ~.2). 

Thailer and Cheng's assumed displaoements do not oontain the 

boundary condition of zero slope at the flange (this will be more 

fully explained later) whereas Findlay's displacements do. 

Physically, this can be interpreted as meaning that Thailer and 

Cheng's displaoements are for a thin flange whereas Findlay's 

displacements are for a thick or rigid flange. This helps explain 

the difference between these results. 

During this work, the author came across the work of E. 

Axelrad [103], [104J which to date has not been referred to by' 

a~ other ~orker in this field. Axelrad develops a semi-membrane 

theory for curvilinear bar-shells, primarily with the intention of 

exa~g the stability of pipe bends but he also attempts the 

problem of a pipe bend with flanges. Care should be used wen 

comparing the results of both papers as the same symbol is used to 

represent a 'stiffness factor' in the 1974 paper and a 'flexibility 

factor' in the later paper. 

Axelrad I S method involves reducing the semi-membrane 

equations to two fourth order differential equations in two unknowns. 

Fourier series are substituted for the unknowns and the resulting 

equations are solved Simultaneously. The resulting flexibility 

faotors are approximate involving only one term in the series. The 

expression for the flexibility factor was given as, 

( 
I SINH st· + "III 8~· ) 

K = 1 +(K il - 1) .\ - 8C COSKSe.* cos8t* 

• •• (3.1) 
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where (in the present notation) 

and 

K is the flexibility factor for a flanged bend, 

K~ is the flexibility factor given by Karman for 

a bend without flanges. 

No graphs of the results are given in either of the papers 

but the flexibility factors calculated from the above equation are 

given in Fig. (3.3). The works of Find1ay and Thailer-Cheng show 

no variation with radius ratio (R/r) but this can be seen to be 

important in Axelrad',s results. 

In his derivation, Axelrad assumed that the direct 

meridional and shear strains were zero and that lrsin p ~<: 1. 

Al though f sin p was neglected with respect t? unity, this does 

not mean that it is not an important parameter. These were the 

same assumptions a~ Thai1er and Cheng, but Axelrad enforced the 

assumption of zero strain on the displacements whereas Thal1er and 

Cheng only neglected it. The importance of enforcing this was 

noticed b,y the author before discovering this work and more will be 

said about it later. Axelrad also assumed that ,the flanges were 

thin. 

Each of the above authors has obtained different results 

according to his assumptions regarding the shear strain term. It 

would be easy at this point to imagine that Findlay'S results are 

correct sinc~ he uses the shear strain t~rm obtained by the ' 
. 

substitution of his displacements but his displacement assumptions 

may not be correct. 

In/ 
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In early 1979 the author received the first paper b,y 

J. 1". Whatham [il7]. 'rhe method involves the use of Novo~hilov' s 

[118J technique us~g three arbitrary functions which have the 

same form as the mid-surface displacements. Fourier series are 

used to solve the equations for the simple case of a bend without 

end effects. The functions take the form, (in present notation) 

a. = - 1:1. ? CDS f 211'" ~ 

where f = ¢ + 900 
••• (3.2a) 

The functions 0., band C correspond to the displacements v, u and 

w respectively. 'The flanged bend problem is then solved b,y 

superposing on the results obtained ~rithout end effects a set of 

displacements which return the ends of the bend back from' their 

ovalised state to the initial round condition. The second set 

of functions take the form, 

- 2. 1t -.stole ~ . -
Q= r- Et f;:1 e CJ ~ Q.n.\ 5INnl 

••• (3.2b) 

The work involved in performing the above task is. numerically 

complicated and difficult to understand from the few details given 

in the paper. The flange boundary conditions as given in the paper 
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are those of a thin flange but communication with Whatham [117J 

revealed that the conditions actually used were those of a rigid 

flange. 

Some of Whatham's results are given in fig. (3.4). Figure 

(3.5) shows that there is good correlation between the results of 

Whatham and Axelrad. Whatham gives reference to only two papers 

on the subject of pipe bends, neither including end effects, and 

he seems unaware of the results of Axelrad. 

Early in 1980 Whatham published a second paper [119] but 

this gives fewer details than the previous paper but includes results 

for pipe bends with connected tangent pipes. Whatba.m appears to 

make no assumptions other than those of thin shell theory but this 

is not stated explicitly. 

Results for maximum stress factors are given by Findlay and 

Thailer-Cheng but not by either Axelrad or Whatham. Ideally the 

correct set of results could be ascertained by experiment but each 

author (except Axelrad) has given a set of experimental results 

which "confirm" his theory. I ~his is possible due to the nature of 

the pipe bend problem where certain effects can influence the results 

quite radically. It is also caused by the limited range of parameters 

examined by experiment. ' 

A number of papers have been written [96], [107J, [lll­

l16J, ~2l-l23] on finite element models which can be used'to 

examine end effects. None of these p~pers give results for a pipe 

bend with flanges at both ends. Some give resul. ts for a flange at 

one end. For most models the problem is specifying correct 

boundary conditions for a flange at the free or loaded end of the 

bend. More will be said about these papers in conj'Wlction with the 

tangent/ 
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tangent pipe problem later. 

The author spent some time developine a finite difference 

model of the pipe bend based on the shell equations of l~ovozhilov 

ULlBJ. To obtain the equations for the finite difference model, 

the strain-displacement relations were substituted into the 

constitutive relations and then these were substituted into the 

equilibrium equations. This gave three equations in the three 

unknown displacements u, v and w. The only text in which the author 

could find similar equations for a shell other than a cylinder was 

by Goldenveizer Q..44], but these were developed from equations 

different from those of Novozhilov. The three equations, which 

form a set of eighth order partial differential equations, are 

given in appendix (1). Finite difference approximations were 

substituted for the differentials ~:( see references [148] and 

D.49J) to give a set of linear equation; involving the values of 

the displacements at a mesh of points, representing the bend middle 

surface. BOUndar,y conditions were set bw substitution of the 

boundary values of the displacements into the appropriate equations. 

The resulting set of equations were solved simultaneously for the 

unknown values of the displacements. The number of equations was 

about 600 for a reasonable bend mesh, which created storage and 

time problems on the computer. This is a problem in common with the 
... 

finite element methods. 

Eventua.l1.y this method was abandoned. The major problem was 

a numerical one. The variation of ,the displacements in the 

meridional direction is very much greater than the variation in,the 

circumferential direction which makes the equations poorly . 
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conditioned and the results subject to numerical instability. 

The problem was highlighted b,y examining the simple case of a 

straight pipe subjected to a pure bending moment. When the bend 

length to bore radius ratio was greater than about four or less 

than about a half tlie results were simply nonsense. Tnere were . 
also problems with specifying the boundary conditions although 

most of these were resolved. The problems meant that only a 

restricted set of parameters could be examined and even then the 

quality of the results would have been questionable. The work 

was not entirely wasted as the experience gained from it was 

valuable. 

Three methods will be described in the current chapter 

for the solution of the problem of a smooth pipe bend with flanged 

ends subj.ected to an in-plane bending moment. These draw on the 

experience gained from the earlier attempts. All methods will use 

the theorem of minimum total potential energy. Method No. 1 

employs all possible simplifications, some of which were used b,y the 

earlier authors. This was the first relatively successful solution 

using an energy method. The second method removes some of the 

assumptions of the first method. Both of ~~ese methods use hand 

integration, making it virtually impossible to remove all of the 

assumptions. Method No. 2 represented such a significant 

improvement over method No. 1 that a third method was developed to 

remove as many of the assumptions as possible. Although method No. 

3 represents the best solution the other two methods help to 

explain the behaviour of the problem and assist in the examination 

of the work of earlier authors. 

The 
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The displacement series for all methods will be derived at 

the same time but with emphasis put on the meUlod No. 3 

displacements. Methods Nos. 1 and 2 will then be described using 

simpler forms of the complete displacement series. A discussion 

of these methods will be given along with ~~e reasons for the 

necessity of method No.3. The latter method will then be described 

in some detail. 
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(3.2) Displacements 

(3.2a) Displacement Formulation 

The theorem of minimum total potential energy requires 

suitable kinematically admissable displacements. Here the 

displacement field will be decomposed into two parts. The first 

are termed "rigid section displacements" which are associated with 

the displacements of the circular tube cross-sections with no change 

in their configuration i.e. each point on a circular section, at 

some angle e , has the same displacement. These displacements 

automatically satisfy the boundar" requirements of a flaneed bend. 

The second displacements are termed ndistortion displacementsn which 

are associated with the distortion of the circular sections. 

The total displacements will be found b.1 adding the two sets 

of displacements. This method of formulating·the displacements is 

used because it allows the boundary conditions to be applied more 

easily. 

Strains are obtained by substituting the total displacements 

into the strain-displacement equations (2.13). 

(3.2b) Rigid Section Displacements 

Rigid section displacements are the displacements of the 

circular tube cross-section with the cross-section remaining 

circular. These displacements must allow a general variation in the 

circumferential direction but also satisfy the boundary conditions. 

A bend without end effects has the same displacements at any 

circumferential segment but flanges will cause the ovalisation at aqy 

circumferential/ 
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circumferential segment to depend on its circumferential position. 

Thus, the rigid section displacements must be variable functions 

of the circumferential co-ordinate. 

Consider a smooth circular pipe bend under the action of 

an applied bending moment, H, with a circumferential mean radius 

of curvature, R, meridional radius of curvature, r, and overall 

bend angle, DC.. The deformation of the bend will be synnnetric 

about the circumferential centre of the bend. One half of such a 

. bend is shown in figure (3.6). 

The rigid section displacements of the bend can be found 

from the displacements of the centreline. Figure (3.7) gives an 

exaggera ted illustration of the displacements. Uc is the 

circumferential tangential displacement of the centreline and Vc 

is the displacement of the centreline in the direction perpendicular 

to it. Note that Vc has the same value at all points on the cross­

section at any particular circumferential angle. 

From figure (3.7), the rotation of cross-section can be 

seen to be made up of two parts. The first is due to the variation 

of Vc in the circumferential direction and the second is due to the 

circumferential displacement U~ causing a rotation about the centre 

of the bend radius arc. Therefore the rotation ~c. of a point on the 

centreline is, 

v == 1..( Uc. -~) 
Oc. Roe 

The corresponding shell displacements, 1.J..." V; and W/\ at 

some POint·'~1 on the circular section are then given b.1. 
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"U.~ = Uc + ~crSH-l¢ 

= Uc+ ~ s,~¢(uc - ~) 

v,. = Vc C.oS ¢ 
W R = VC SIN ¢ 

• •• (3.4) 

In the derivation of the above equations the assumption that 

the deformed circular cross-section remains normal to the centreline, 

was used. This assumption was formd to be correct even in the exact 

analysis of a thick curved beam by Timoshenko and Goodier (pp. 71-75 

of [150J ), although the stresses across the section varied 

logarthmically, and is necessary for the correct boundar,y conditions 

at the flange. 

If equations (3.4) are substituted into the strain­

displacement equations of Novozhilov as given earlier (eqn. 2.13) 

the mid-surface shear strain ~; and shear curvature Kepi are 

zero. If equations (3.4) are substituted in the classical shell 

equations the shear curvature Ke~ is not zero. 

One useful simplification of equations (3.4), which will be 

used in a simpler analysis later, is to assume that the 

circumferential strain Ea -is zero at the centreline,16 = 0 J for the 

rigid displacements, i.e. assuming that this centreline does not 

extend. The circumferential strain at the centreline is given by, 

equating-this to zero gives, 

103 



or + Constant 

••• 

The constant of integration disappears because tAc has to be zero 

at the bend centre, e = O. The above simplification is roughly 

equivalent to ignoring the thick curved beam effect and will be 

more correct for long radius bends. The displacement equations 

(3.4) with this simplification become 

1A. = - SVc dG ('-r~S'N¢) - ~~ SI~1 
~ = Vc c..oSp 
W~ = Vcs'Nf 

••• (3.6) 

Th.e Rayleigh-Ritz method requires the displacements lie and 

.Vc to be specified as trigonometric series in the circumferential 

co-ordlnate, • 

To satisfy the necessary boundary conditions, of symmetry 

at e = 0 aDd free ends at e =.~± ~ • the displacement Vc must be 

an even function of the variable, e . Therefore this can be 

generally expressed as an even fourier series of the form, 

Vc. ==- do + ~ dJ cos~) 
J'" (3.7) ••• 

The boundary conditions require 

(\fc )e::.o = 0 

therefore 

cl ~ -~ d. o .1.l 

••• (3.8) 
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Re-arranging (3.7) using (3.8) and the identity (cos 2ax = 1 - 2-

ICsinl.( ax) gives 

where the coefficient 

Equation (3.9) also satisfies the condition of zero slope 

at e = o. 
+ The displacement Ue. must sa tis}' the boundary conditions of 

antisymmetry at e = 0 and free end at ± ~ .' These conditions 

can be met by a function of the following form, 

••• (3.10) 

The above form is found by substituting equation (3.9) into equation 

(3.5) and then coefficients Dj are replaced qy Fj. A fourier series 

was tried for lAc but,it gives the same result as the above function 

and complicates the strain equations. Note that the above function 

does not mean that ee = 0 at e = 0 since the cf)etflcients of lic: 

and' Vc. are different. However, DJ and FJ will be or a similar 

numerical order which, as will be explained later, assists in the 

numerical stability of the solution procedure. 

Substituting equation~ (3.9) and (3.10) into equations 

(3.4) gives the rigid section shell displacements, 
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tt~ ~ ~i(e-~S'N(~))(I+fs'N,¢) 
J=I 

~ ~ id' DJ (~ SIN ~j~)f5INi 

where j = 1, 2, 3, 

••• (3.11) 

As far as is known, the above method of deriving the rigid 

section displacements has not been published ~ any other author. 

(3.20) Distortion Displacements 

Distortion displacements are associated with the distortion , 

of the ciroular tube cross-sections. These displacements are 

s1m1lar to the "ovalisation" displacements referred to b,y ether 

authors. The term, "distortion", is preferred becaUse the ' 

deformation shapes for certain flanged bends are not strictly oval 

although occasionally the word "ovalisation" will be used. 

Since the flanges are assumed to be rigid, deformation of 

the cross-seotion and rotation of the normal to the shell mid- ' 

surface at the nange are assumed to be zero relative to the £lange. 

Cross-sectional planes away from the constraints will experience 

a degree of distortion which will vary according to the distance 

from the flange. 

The variationaf the distortion displacements can be 

considered/ 
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considered in t\'10 parts. One describing deformation of the 

meridian and the other describing the variation along the 

circumferential direction. The three displacements U, 1JandUJ 

will be formula ted separately.· 

(3.2d) Radial Distortion Displacement 

The radial distortion displacenent,l..U." will be considered 

first since it "characterises" the distortion shape of the cross-

section. 

The part describing the deformation of the meridian, w(J), 

has been specified b,y most authors 

sornethipg like the following form, 

w(rI» 

, from Karman onwards, ~~th 

n = 2, 4, 6, _06 

This followed from an intuit~ve view of the expected displacement 

shape and for a bend without end effects it works effectively. 

The first term of the above is the dominant term and describes 

an oval deformation pattern. 

Symonds [151J., Jones [35] and several of those after 

them used W(¢) with the form, 

or wC¢) 
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where ~ = ¢ + 900 
. 

••• (3.12b) 

The additional terms were found to have little significance on 

the results for a bend without end effects, except that the stress 

distributions changed slightly, particularly away from the maximum. 

This was more notable for short radius bends. 

For in-plane loading, W(p) must be symmetrical about the 

plane of the bend passing through ¢ = -900 and ¢ = 900• The 

complete fourier series describing the deformation and satisfying 

the above symmetry conditions, is 

where ~ y is 0, 2, 4, -,04 
n.o,1. 

and 

This contains two terms which the previous form did not have i.e., 

Co and Cl sin p. The sin p variation was used in the rigid 

section displacements and will be subseque~tly ignored here. 

The Co term describes a constant radial expansion at all 

values of;6. It is normally ignored as it is usually found to 

have the value zero. In the. following analysis it will be 

included as it was found to influence the stress distributions 

when end effects are involved. To simplify the analysis and . 

eventually/ 
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eventually the computer program, W(p) will be used wifu the 

following form, 

+H 

where H=Co 

••• (3.l4) 

Whatham [U7] and Axelrad [104J consideredW(p) as 

in their analysis of the flanged bend which is the same as 

equation (3.13). Theiler and Cheng [95J used equation (3.l3) 

without fue zeroth term, Co. Findlay [99J used the simpler 

form given in equation (3.l2a). 

The second part of the radial displacement,W{ e), has 

to satisty the condition of symmetry at 9 = ° and the rigid 

flange. conditions ate = ± ~ • The flange bo\mdary conditions 

can be stated as, 

at e- + ~ 
. - - 2 , w(e)= QwCe) = 0 

~e 

~ J:).e
D 

Note that the slope condition, ~e = 0, is actual.1.y H = 0 but 

this reduces to the above because the distortion -part of the 1.A. 
- ~ 

displacement is zero at the flange •. f3e is the rotation of the 

shell mid-surface relative to the flange i.e., it only includes 

the distortion displacements. 

Since the deformation is symmetric about e = 0 then an even 

fourier series will be used, i.e. 
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i 

t>6 w (9):::: Co+ ~ C~ cos(m tz.9) 
11'1"1 m = 1, 2, 3, ---, as 

ThOe flange boundary conditions are now applied to equation 

at 6= ~ 
..s 

W (e) = 0 = Co + ~ em c:::os f,." Q. 6l\ 
Ills-I '- ~ 

or 
Co =. -~ C(h cos(rn'2. ~) 

also at 

"., .. , 

8=oL 2. , 

This is satisfied if, 

••• (3·16) 

SIN (rn tz.~) = 0 m = 1, 2, 3, -

or m tz.. ~ - rn tr 

therefore, 7.. = 2:~ 

Substituting (3.17) into (3.16) gives 

06 

Co = - ~ C", c..05m-w 
0'1-1 

( -I 

l+1 
) m =-0 ., 3 J 5 I _-­

I m = 2, 4- I " J - -_ 

••• 
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i.e. 

Substituting (3.17) and (3.18) into (3.15) gives, 

using this with the identities 

~ cos
1

( e/~) = I + C05 e 

1 SII'J'Z(eh.) =. ,- CD5 e 

w( e) tinally becomes, 

where 

Findlay I [99] I usedW( e) with the following form, 

• •• (3.18) 

••• (3.20) 

He derived this on a purely intuiti~e oosis by examining the 

expect.ed detormation pattern. It should be noted however, that 

equation (3.20) is not the complete fourier series fitting the 

boundary conditions, whereas (3.19) is. 

Thailer and Cheng [95J used W( e) with the toll owing form, 
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••• (3. 21) 

Note that this does not satisfy the requirement of ~1 = 0 and 
9"1 

therefore does not satisfy the conditions of a rigid flange but 

does satisfy the conditions of a 'thin' nange. It is also not 

a complete fourier series satisfying the boundary conditions of 

a thin flange. 

Whatham [117] and Axelrad g.04] used a method of solving 

the differential equations which did not require the specification 

of LV (e) in a series form. 

The radial distortion displacement ~ is found from the 

product ofW( ¢) and W( a). To write this in a concise and 

meaningful way the following function will be defined, 

11 ) = ~ 1 if k is even 
'reh l 0 if k is odd 

(0 if k is even 

II if k is odd 

Using this uJp can be written as, 

••• 

where m = 1, 2, 3 -

n = 2, 3, 4 --

j = 1, 2, 3, --
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The zeroth term in the W( e) series H has become Hj, using 

the same subscript, j, as the rigid section displacements. This 

is for computational convenience and does not affect the final 

result. 

The coefficients Cmn are not simply the product of Cm and 

Cn. Each Cmn coefficient corresponds to a particular pair ~f m and. 

n. i.e. ~. Z Cmn t- ~ Cm x Z en • The use of Cm and. Cn 
"" n m n 

earlier was to make the derivation simple. 

(3.2e) Meridional Tangential Distortion Displacements ,IJ.P 

The meridional tangential distortion displacement is often 

either derived from, or used to derive, the radial distortion 

displacement using the assumption of an inextensible meridian. In 

shell theory, this is equivalent to saying that the meridional 

direct strain, €p, is zero. i.e. 

,,:h1ch gives, 

••• (3. 24) 

or, v-=-SWd.¢+c 

••• 

(C = 0 from symmetry conditions) 

As an example, substituting equation (3.l2a) into equation (3.25) 

gives, 
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06 

15(¢) ==- - ~ Cfl * 51N n~ 
n%2,4 

••• (3.26) 

or from equation (3.13), 

••• 

For the main analysis to be presented, this assumption of 

Gr; = 0 will not be used and the effect of including ~i will be 

examined later. 

In plane loading and the symmetric plane through ¢ = t 900 

o ' 
and ¢ = - 90 means that 1J(¢) must be anti symmetric about the same 

plane. A complete set of fourier terms satisfying this condition 

is, 

••• (3.28) 

Note that the form of the 'function chosen would satisfyE:p= 0 ·if 

all Bn = Cn. This should mean that Bn and Cn will have 

approximately the same value which will assist the numerical 

stabili't;.y as explained later. It also permits an easy examination 

of how good. the as~umption E p = 0 would be for a particular 

geometry. 

Equation (3.28) differs from the more usual fom, equation. 

(3.27), because it includes the tem Bl cos p. This is one of the 

functions used in the rigid section displacements and therefore will 

not/ 
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not be included in the final 1)"(1)). 

Therefore, V(I» will be used with the following form, 

••• (3.29) 

Axelrad U04], Findlay (99) and Thailer-Cheng [95J all 

used the Karman assumption of t p = 0 to derive 1J(¢). Whatham 

used a form similar to equation (3.28). 

The variation of the meridional tangential distortion 

displacement in the circumferential direction, 1J[e) , bas to 

satisfy the boundaI7 conditions of synunetry at e = 0 and. of a 

rigid nange at e = ± ~ • The bcnmdary condition for 1.1"(e) at 

the flange is, 

at rI._±~ 
t:7- 2.' vCe) = 0 (= 151» 

Note that t~l> is not required to be zero at the flange since 

is in the plane of the shell mid-surface. This can also be seen 

from the necessar,y boundaI7 conditions for a pipe bend given in 

equations (2.17). 

To satisfy the symmetry conditions It(e) is specified as 

an even fourier series, i.e. 

• •• (3.30) 

at e=~ , 1J;:.- 0 
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therefore, 

••• (3.31) 

Since 1.J(e) is not a periodic function, i.e. ~e range of e is 

finite, then ~ is selected so that ur.e) is a half range expansion 

on the interval ° ~ e ~ oC/2 (See Kreyszig [152J p. 393). 

Therefore, 

Substituting in (3.31) gives, 

-cos m 1T = [+ 1 ,m = 1, 3, 5, 
- 1 ,m = 2, 4, 6, 

Substituting this and equation (3.32) in equation (3.30) gives, 

where 

Note that although the condition ~ = ° at e = ~ was 

not used or required, it is- satisfied b,y the above function • . 
However, the function given in equation (3.33) bas been derived in 

thel 
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the normally accepted way and will be used henceforth. The method 

of minimum total potential energy only requires that the 

displacements satisfy at least the necessary boundary conditions. 

If the condition of inextensibility had been used then the above 

form would have been obtained. 

The same comments apply to tr (G) as applied to W ( e ) , 
regarding its specification b,y other authors. 

The meridional tangential distortion displacement, VI>, is 

given b,y, 

where m = 1, 2, 3, 

n = 2, 3, 4, 

••• (3.34) 

and the definitions of the function l{J is given in equation (3.22). 

(3.2f) Circumferential Tangential Distortion Displacement U~ 

The circumferential tangential distortion displacement is 

not used in the analysis of pipe bends without end effects. It is 

only important in the study of pipe bends with end effects and even 

then it is difficult to imagine what ef'f'ect it has on a purel.y 

intuitive basis. 

For in-plane bending,1J.(¢) must satisfy the conditions of 

symmetry at ¢ = + 90° and ¢ = - 90°. A complete fourier series 

satisfying this condition is, 
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. ••• (3·35) 

The first terms in each of these series, a.o and alsin p, are 

involved in the rigid section displacements and will not be 

included in the final distortion displacements. 

The variation of the circumferential tangential distortion 

displacement, v.. ( e) must be antisymmetric about e = 0 and equal 

zero at f ~.. U ( e) equals zero at the nange because the 

flange is assumed not to distort. To satisfy antisymmetI"Y, ti( e) 

is taken as an odd fourier expansion about e = 0, i.e. 

at e:.~ 

For this to be true, SIN(m'2.~)= 0 

or Q ~ =-n-

which gives ~~~ 

which 1s the same as would be obtained by a half range expansion on 

the range 0 ~ e ~ ~ • U (e) now becomes, 

Before giving the final form of the tlpdisplacement 1 t 1s 
. . , ' 

worth examining a simplification possible for long radius bends. 

If/ 
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If it is assumed that the shear strain is zero for long radius 

bends then it becomes possible to "derive U. fromV. i.e. From 

equation (2.13) 

where R' = R + r sin I> 

If the bend radius R is much larger than the pipe radius r, i.e. 

for long radius bends, then ~ sin I> can be neglected with respect 

to one. If 1.tand \1 are of approximately the same order, then 

This can be further justified when U is obtained, when it can be 

proved that ~ > u. • From this then 

••• (3.37) 

If this is aqua ted to zero, then 

4J.. = -1:. S' hli" d A +c.. R be 'f 

Note that this gives U= 0 for a bend with no end effects. 

If 1.) is derived using Karman's assumption of inextensibillV, 

1.e./ 
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i.e. E P = 0, then 

1..r==- - S CJ..) d f 

substituting in equation (3.38) gives, 

1.L== 

••• (3.39) 

The constant of integration will be zero since 1). must be zero at 

e = o. I.t WI> 113 taken :from equation (3.23), ignoring the Hj 

series which for tL is included in the rigid section displacements, 

then 

••• (3 • .ro) 

The variation in the e and ¢ directions is similar to that 

: already determined for 1..l( e) and 1A(¢). The above form is useful 

as it gives an estimation of the possible magnitude of 1.11> relative 

to WI>. 

To keep the coefficients of the UD displacement 

a pproxima tely the same as those of Vo and WI>, and taking 

cognizance o.t the .torms derived .tor U(¢) and U (8), equations (3.35) 

a:nd (3.36) respectively, 'l1t>will ~ taken as, 

1Jj) =- f ~~~ A"'I\('l\ltl\~ c.o~ nrf+ ?Pot) ~SIN n;X ~ SIN (2.rqrn) . 

where m = 1. 2. 3. 

n = 2, 3, 4, 
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and 

••• (3.41) 

The definition of lP ~s given in equation (3. 22). Note 

that the choice of the coefficients is arbitrary, their values will 

be decided b.1 the minimisation procedure. 

Findlay ['Jet] and Thailer-Cheng L q,:» did not specify U,p 

at all. Neither thought that it was significant enough to merit. 

inclusion in their analyses. Findlay argued that since 11,p must 

be zero at e = 0 and e = :t~, then it must be small. Thailer 

and Cheng do not acknowledge the possibility of 1l~ existing. This 

seems curious since they assume that "09 ; = 0 but they do not enforce 

this condition on their displacements. Had they examined the shear 

strain equation (2.13) and applied ~~ = 0 they would have 

obtained 'tiD from equation (3.38). 

Axelrad makes the assumption that 'ie; = 0 in his governing 

differential equations.and enforces this condition to obtain his 

displacements. VI) is derived using (3.39) but 1l( e) is not used 

in his analysis.' 

Whatham specifies UD in the form given in equation (3.2). 

1...t( e) is not used in his analysis. 

(3.2g) Distortion Displacement Summary 
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Wl>=" ~Z emil (lfl~f\c.osn¢+7ponSINn¢XlJlornCD5Y~-?Pehl5(N(~) 
~ ""1.. " 

06 

+ ~I HJ (1p~COS2(~) -ipeJ 5IN~@~)) 

••• (3.42) 

(3.2h) Total Displacements 

The total displacements are found b.1 adding the distortion 

and rigid section displacements. i.e., 

1A = 1lA, + (,.{f) 

u=lJ"i+1J; 
W = W~+ W D 

Using equations (3.11) and (3.42) gives " 

+1:~: ~ (~) SIN(~£El) ~ ~INf 

-t ~ ~t:1 Amn ('Petl1t c.o5r\s6"- w,,, ~f>IN n¢)(r;l) 5 IN (a..{Y\:~ 
~.,n·2 " 

+~ ~c...( ~n ca;n ~ + 1Po.SIN nsll)( 1Jl_ CDS~) -~"'" SIN' m;e}) 

+ ~ HJ (1pOJ CC5X~-lPeJSI~l~)) 



where j = 1, 2, 3, ---, JT 

m = 1, 2, 3, --, MT 

n = 2, 3, 4, ---I NT + 1 

••• (3.43) 

The previously infinite summations have been replaced here 

by finite sums •. JT, MT and NT are the total number of terms in the 

j, m and n series respectively. 

The displacements given in (3.43) will be used later in 

method No.3. Some of the assumptions described earlier will be 

used to derive simpler displacement 'series for methods Nos. I and 2. 
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(3.3) Strains 

The strains are obtained by substituting the total 

displacements (3.43) into the strain-disp1acement equations (2.13). 

This gives,. 

EfJ= ~ [t~ (Cn1~-Bm~(lJ1e"c.o~(\9+lf'onSI~n¢)K 

x (lPom CDS~( f!'~G) - ~e~ s I~~(~)) 
. 

~~ H~ (~~~QS1( ~)- lPeJ ~ltl(~)) ] 

te = -If ~ ((rll+-R~IN¢)-DJ)SINXJ~)+ bj-k~)~~(J~)fsIN¢) 
-r~~~ [RM~( 1Peies np + 'Po~SlN n¢ )(r:I~y·cos(;tm:c9 

+ Cmn(lJ!el\ cas n <f-r ~Ol\ 51 N nf) $1 N~ X 1p"",~7)-1p~1~~)3 
+~ HJ (lPoJ CD5'e~e)-1Peo5INX~)51~~J 

'6er= *[~i! f (Bm.-A.,. -rtXlJI.n-kSI".n¢ -l/J0Il -Ii ensnf» 

K¢ . ~1[~~ (~Cmn -e....)( V'en~5n¢ -r 1JIo" '>IN''~)X 

x( 'P • ., cos'f!~:;!!)- VJemSIN'( ~)) J 



+f~'~ i ~" (-1Pef\-h SIN(\¢ -t 7ponh'-O.s(\¢) C6S rJ 

4- 4,1\ (Wen n 51~ (,,¢ -1Pc,,,n SIN n¢) c...a;.~ 3)( 

+-~ HJ2(~tC05(?-~~£i) ] 

Kef =-k [~~{Amn~ t-- ?jJ~ -Ir'l'Jn~ + lPon '-Os (11 )slNf 

_ A r-~ (,)Il ~ c.o~n~ t- 111 -Ln'L~/N n,,{) COS 9 SI tJ Ii 
(rI1\ R R. . Tefl n r 'ron ,.. T 

+ Svtn (1Jlefl * 5 IN n f -1f},I1-frCO
.5 n rf ) 

- 4t ri ~\ ( 1p~1\ c.os n ~ + 1fJ on ~ I N, (\ f ) cDS rJ 1)( 

x (lnJL) $ , N ( ? ~-rrfl) 

••• (3.44) 
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where R' =R+r sin cf> 

~=~ , J = 1, 2, 3, -, JT 
J l~1 

and 

~=~ , n=2,3,4-, --, NT + 1 

~=~ , m = 1, 2, 3, --, NT 
In "'~ 

The complete strains as given above will only be used in 

method No.3. Simpler forms, described later, will be used for 

methods Nos. 1 and 2. 
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(3.4)' Solutions Using Hand Integration 

Before performing the more complex procedure using the 

complete strains as given in (3.44), it is worth examining some 

'simpler' 'solutions. Although the displacements and strains in 

these simpler methods are not as complicated as the complete 

strains, the work involved in obtaining a solution is possibly 

more time consuming than method No.3. 

Method No. 3 was developed to overcome the l~tations 

!nvol ved when using hand integration and to allow the removal of 

as many assumptions as possible. Nevertheless, the simple 

solutions are valuable as they give a useful insight to the problem. 

(3.4a) Method No. 1 

This method involves the use of most of the Simplifications 

. discussed earlier. These can be summarised as follows, 

1. t.rp ~ 0 

2. ~~= 0 

3. i-<'..c:::'/ 

, giving tt= - ~~ d.1 from (3.25) 

, giving 'U~= f S~ ~ rJ.~d.'I from (3.39) 

4. Ke and Ke; assumed to be small and neglected £rom strain energy. 

5. €: = 0 at 9 = 0, giving Uc = S Vc.d.a , permitting use of 

equations (3.5) 'for rigid displacements. 

Further, thin shell theory will be used and its inherent 

assumptions applied. 

All the displacements can'be derived from the specification 

respectively. i.e. 
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These are the simplest possible displacements giving a 

recognizable solution. Wp is the same as that used by Findlay 

[991. 
The total displacements are now given by, 

. 
IT = -&.DJ Slti(t~e)LOS¢ -~\~ c",yt -J.rs IN "I c:os?( ~e) 

~ m (\ . 

where . m = 1, 3, 5 --, mx2-1 

n = 2, 4, 6 --, NTx2 

j = 1; 2, 3 -, JT 

••• (3·4.6) 

The displacements together with the previously stated 

assumptions give the strains as, 

+ 
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+ 2f~~\~o(Jl!y\,OS()f cos0M~'9J 

K+ == -1=. [ ~ ~ Cmn (nZ-I) c.os o<f c.osCmr!) ] 

Comparison of these with (3.44) reveals the considerable 

simplification involved. 

The total potential energy is fOlmd by substituting (3.47) 

into 

where 

••• (3.48) 

The rotation between the ends of the pipe bend,~, is found 

from 2 ~ (equation (3.3» at . e = ~ , as 

() ~ * ~:DJ (~+ SIN ff)(~- ~)) 

Substituting (3.47) and (3.49) into (3.48) I and integrating 

gives, 

••• (3.50) 
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./ 

" 

where , 

, 

I = -( \ +- ~)( n'L.4-2n -3) 
4 2- 80(n+'2..) 

••• (3.51) 

bmp = . - kronecker delta symbol. 

also j,k = 1, 2, 3, ~, JT 

m,P = 1, 3, 5, --, MTx2 ~ 1 

n = 2, 4, 6, -, Nrx2 

Details of the integrations are given in appendix (2). 

The values of the coefficients, DJ and emn are fOlmd by 

mi n1mi sing the total potential energy function V using, 

for all j, 

~l :::; 0 = 'l t t5~:i. -+ ~ rml!.l -Is. 



for all "mll and "nil 

••• (3.52) 

where 

"'l:"" _ _ (\ + br)( n'2._ 2(\ - 3 ) 
,l:.c. - ~ 9 n (n--z.) 

This gives a set of linear simultaneous equations which can 

be rewritten as a matrix equation of the form, 

••• (3.53) 

where [A] is a square matrix containing the constants in equations 

(3.52) corresponding to the required coefficients in the vectortX~. 

The vector tb3 contains the constants occuring in equations (3.52) 

which are not multiplied b.1 one of the unknown coefficients. The 

above matrix equation can be solved using a standard method such 

as the Gauss algorithm. This wUl be discussed in more detail 

later with regard to the more complex solution procedure. The 

,total number of equations to be solved is (MT x NT + JT). 

The solution or the above matrix equation was perrormedon a 

nCompukit UKlOl" micro-~omputer constructed by the author. The 

solution program, written in "BASIC" [153J, and the data necessary 

for finding up to thirty rive coefficients, can be contained in 8 

kilobwtes of random access memory. The time taken for a solution 

was/ 

131 



less than three minutes even for the largest matrices. The 

program can be written in less than sixty lines of BASIC. 

Once the coefficients have been obtained, the required 

flexibility factors can be found. From the definition of 

flexibility factor given in the introduction to chapter I, and 

the end rotation given in equation (3.49), i.e. 

K 

where "D.) =- D') / R ~o 
} 

••• (3.54) 

In the present work, K represents the overall flexibility 

factor of the bend. 

Presentation and discussion of the results will be left 

until the second method has been explained. 

(3.4b) Method No.2 

This method removes the assumption of zero shear strain 

used in the last analysis, and involves rather more .comp~ex 

displacements. All the other assumptions used in the last analysis 

will be used. 

For this method three displacements have to be specified, 

Vc., -til> and W~. These are taken from (3.9), (3.41) I (3.12b) and 

(3.20), i.e. 
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••• (3.55) 

From these the total displacements can be found, using 

equations (3.6) and (3.25), as 

W =- - ~ DJ <:.os (J ~e) SIN¢ 

+ ~ ~ c",1\ (1/'Lt\ U>S MI + ?Pan S "" n¢) co!, "-(J!J!P) 

where ~ 1s m = 1, 3, 5---, MT x 2-1 

~ is n = 2, 3, 4-, NT + 1 

~. 1s j = 1, 2, 3--, JT 
J 

••• (3·56) 

Substituting these into the relevant strain displacement 

equations (2.13) but ta.king the shear strain Y>e~ from (3.37) 

gives, 

.... 
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+ (11)." (.09 (If + 1.}J",,!;/N (lfS) 511.,) Ill) C.os\.~) J 
't,e{> = -k-[~\~I ( CM.-A ... ,X W ... 5. N n¢ - 1/l0.COS n ¢ )(m:) SI OJ ~~)] 

K~ ~ +2. [~t~ ~11(n~I)(1Vell U)S(\P + 1/JOII SIN n¢) COSl(~) J 
••. (3.57) 

The total potential energy is found by substituting (3.57) 

into, 

v = ~ I tCG! ... (I-l)'(;~ + (~ l-<¢] r-R ded¢ - M'If 
0-'" z.. 

••• (3.58) 

When (3.58) is inteirated, the following expression is 

derived for the non-dimensionalised total potential energy,\T, 

where 

••• (3.59) 



---------------------------~. -----------.., 

also j,k = 1, 2, 3, --, JT 

m,P = 1, 3, 5, ----, MT x 2-1 

n = 2, 3, 4, ----, NT + 1 

II, Iu I.,. and ls were given in equations (3.51). 

The others are, 

••• (3.60) .. 

Details of the integrations can be found in appendix (2). 

The values of the coefficients, D,), Amn and Omn are obtained 

b.1 minimising the total potential energy function' 

for all j, 

for all m and n, 

using, 

~ = 0 == ~ (2. A"n:r. + CPn let + ern ... , II2 + c;,,,:, ..-rl~") 
"'" . 

~ = 0 = ~ (2 ~"I, + A""I, + Cp .... 'f~ + C,n-1 1.", + A"'"+I :f.o + 
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+ A/WI,,-t !II) + ~ D.1 :£2. 

where 

1 - .t:- (1"Yl-rr)Z ~h+~ t-I)" b 
t"2. - 2R. n~ n ...... ' tnp 

-r __ r (m-rr)~0 -'2.) L\)t\ £ 
.::t-I'Z- - 2R ~ (('\-1) ( Mp 

••• (3.62) 

These give a system of (JT + 2'Ml' x NT) linear simultaneous 

equations which can be solved using the method previously outlined. 

The flexibility factors can be f01.md from equation (3.54). 

(3.4c) Flexibility Factors from fl1ethods 1 and 2 

Previous investigators, working on a Karman type single 

series solution for a bend with no end effects, had a relatively 

simple task of ensuring that the flexibility factors bad converged. 

Convergence was accepted when the difference between NT and (NT + 1) 

was below a certain arbitrary limit. Most people found, using a 

series of the type given ~ (3.12) that the following number of 

terms was adequate, for particular limits of the pipe parameter, A, 

A> .5 , NT = 1 

.5 >A~ .12 , NT = 2 

.12>A'> .06 , NT = 3 

.06 > A :::- .04 , NT = 4 

where/ 



where NT is the total number of terms required. These results 

being taken from Rodabaugh and George [)1]. 

In the current problem, convergence has to be considered 

with respect to j, m and n. Further, as will be shmm later, the 

resul ts are found to vary not only with the pipe parameter, A , 

but also with the bend angle, ex., and the radius ratio, R/r. 

Results also vary by ,a small amount with Poissons ratio, Y, but 

throuehout this work this will be taken as 0.3. The Simplest way 

to resolve this dilemma is to examine the flexibility factors for 

some low A value, as j, m and n are increased. More terms will 

be necessary when the distortion of the cross-sections is greatest 

i.e. wen the flexibility is highest. Therefore, the convergence 

will be examined for large R/r and ex. as these should have the 

highest fiexibill ty. Once a set of j, m, and n is tOlmd tor this 

set of parameters, it should be suitable for any' bend with a 

higher A and lower Rjr and eX values. The parameters chosen 

tor convergence checking are DC = 1800
, A = 0.1, R/r = 10, )) = 0.3. 

The convergence results for both methods are given in the 

tollowing table of fiexibility tactors (K): 
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Table (3.1) - Flexibility Convergence 

A= .1 I R/r = 10 I 
0(= 1800 

Method 1 Method 2 

JT MT NT K JT M'l' NT K 

1 1 1 2.22 1 1 1 2.22 

1 1 2 2.42 1 1 2 2.23 

1 2 1 2.66 1 2 1 2.71 

2 1 1 5.56 2 1 1 5·57 
2 2 2 9.69 : 2 2 2 5.76 
2 2 3 10.04 2 2 3 10.00 

2 3 2 9·71 2 2 5 10.41 

3 2 2 ·9.69 3 2 5 10.41 

3 3 3 10.06 2 3 5 10.48 

5 5 5 10.14 3 3 5 10.48 

For discussion purposes the number of terms required for 

convergence is conveniently expressed b,y (JT, MT, NT); for example, 

JT = 2, MT = 2 and NT = 3 are represented by (2, 2, 3). 

From table (3.1), the flexibility factor for (2, 2, 3) has 

converged to within 1% or the result for (5, 5, 5) for method 1. 

Thus,·method 1 can be considered as being sufficiently converged 

when using (2, 2, 3) with. A> .1, R/r ..;; 10 and ex: ~\So". This 

has been confirmed b,y checking convergence for other values of the 

three main characterising parameters. Similarly, for method 2, 

(2, 2, 5) can be considered as suffiCiently converged. 

Some results for method 1 with (2, 2, 3) and method 2 

with (2, 2, 5) are given in the following table: 



-- - --- ---------------- -----------------------------

Table (3.2) 

Flanged Bend - Flexibility Factors 

MEl'HOD 1 (2, 2, 3) Mm'HOD 2 (2, 2, 5) 

R/r A oc.= 1800 oc= 900 DC= 1800 oc.= 900 

10 .1 10.04 4·72 10.41 6.06 
.2 5·45 3·57 5.52 4.07 

.5 2.35 2.05 2.36 2.11 

1 1·37 1.31- 1·37 1·32 

3 .1 5.72 1.45 7·72 2.3l 

.2 4.03 1.42 4.70 2.11 

.5 2.14 1.31- 2.23 1.64 

1 1.32 1.15 1.34 1.24 

These reaul ts show a significant variation not only with the 

pipe fa~tor, A, as in the Karman case, but also with the bend angle, 

OC,' and radius ratio R/r. The flexibility increases as A reduces 

and as R/r and OC increases. Methods 1 and 2 are compared in 

figure (3.8). Method 1 can be seen to give lower results, espec~ 

at low R/r and ex:.. For R/r = 3 and OC= 900 , method No. 2 can be 

more than 50% higher. The difference is problbly worse for low R/r 

because the '60; = 0 assumption, which method No.1 included and 

method No. 2 did not, is more valid for larger R/r. Examination of 

theAmn and Cmn coefficients from method no. 2 confirmed this. 

Examination of these coefficients also revealed that the odd lourier 

- terms (i.e. sin nP , n = 3, 5, 7 ~) in the radial distortion 

displacement series were important. This is in contrast to the 

analysis of a bend without end effects where the odd fourier terms 

are zero i~ f 1s neglected with respect to unity. Jones [35J 

statedl 
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state'd that the odd fourier terms become more significant for low 

R/r if this parruneter "is included in the theory. Examples and 

further discussion of the coefficients will be given later. 

The variation of the flexibility factors involves the 

pipe factor, ~, which can be written as, 

- R.~ - r- r 

Since this is the product of the thickness ratio, t/r, and radius 

ratio, R/r, the results could be presented in terms of these, but 

the pipe factor J A,has become established as a major parameter in 

the -analysis of pipe bends, and will be used herein. However it 

should not be forgotten that A includes the thickness ratio since 

thin shell t:heory commonly llmi ts this to I 

but this is an arbitrarily chosen value. For practical purposes, it 

should be set by whether or not the results from the theory agree 

with experiments. 

Whatb.am, in presenting his results, does not give a:rry 

,flexibility factors for t/r'::: 1/10 ~ However, the present author 

feels that this may be 'WUlece~sari1y restrictive since some of the 

bends used in industry are just inside this limit. In the present 

work results will generally be given for t/r ~ I/s • In figures 

(3.8) and (3.9) they are given outside this range demonstrating that 

there is no rapid or sudden transition of' the results beyond this 

l~t.-

A comparison of' the results of method No. ~ with those of' 

Axelradj 

-....... '---.... -.~ 
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Axelrad and Whatham are given in figure (3.9). The present results 

show a generally similar variation to those of Axelrad and Whatham 

with respect to A , R/r and oC. The flexibility factors from 

method No. 2 are lower b,y as much as 25%, particularly at lower R/r 

and DC. The results for R/r = 3 and ~= 900 are somewhat different 

from the rest. For these parameters, Axelrad's flexibility factors 

are higher than either of the other results for larger )\ values 

but this changes when A is low. This is in contrast to the 

comparison between Whatham and method No. 2 where the lines on the 

graph are almost parallel, method No.2 always being lower. The 

behaviour of Axelrad's results is probably due to them being an 

approximation developed from one term of a series solution. 

Experience has shown that this usually gives poorer results for 

low A values. 

Flexibility factors obtained from the analyses of Findlay 

and of Thailer and Cheng, presented earlier (figures (3.1) and (3.2», 

do not show any variation with R/r. Method No.2 is an improvement 

over both of these methods in both displacement series and 

assumptions. The major difference between the analyses is in the 

assmnption regarding the shear strain, ~e; e. Findlay appreCiated 

the significance of the shear strain but not of the circumferential 

tangential displacement til). Thailer and Cheng assumed the shear 

strain was zero but did not enforce it on their displacements. 

Although the results of method No.2 and Whatha.m show 

reasonable agreement, they are not close enough to confirm each 

other conclusively. To resolve this problem, as many as possible 

of the assmnptions used in method No.2 would have to be removed. 

This forms the basis of method No.3 to be presented in section (3.5). 

141 



-------------- ----.~.-.-------------------------,-------------

(3.5) . Method No. 3 - Numerical Solution 

(3.5a) Introduction 

Displacement series (3.43) and strain equations (3.44) 

developed earlier will be used for the numerical solution of the 

flanged bend problem. The displacements (3.43) involved the use of 
I 

few assumptions and included all possible fourier terms in their 

series. They also satisfy all of the necessary boundary conditions 

for a: smooth pipe bend with flanges. The strains (3.44) were 

derived from the displacements and satisfy the requirements of 

internal and external compatibility. 

If the strains given in (3.44) are substituted into the 

expression for the strain energy, given in equation (2.16) from 

which the total potential energy can be found, then integration of 

the expression by hand is virtually impossible. The solution 

therefore requires the use of numerical techriiques. 

(3.5b) Numerical Solution Methods 

The numerical minimum of the total potentie.l energy (T.P.E.) 

function is usually obtained 1n one of two oosic ways. 

The simplest way is to numerically integrate the whole T.P.E. 

function and then use a standard method of direct numerical 

minimisation. There are many different ways of performing direct 

minimisation (e.g. V-54] and U-55J ).. Most of them use some 

method of searching which is based on evaluation of the complete 

T.P.E. function. The simplicity of this method is that it only 

requires the values of the T.P.E. function, for coefficient values 

that/ 
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that the minimisation routine provides, which is straightforw~rd 

to program on a computer. This was the procedure used by Spence 

(70J in his analyses of creep in pipe bends without end effects. 

Unfortunately, the procedure of having to numerically integrate the 

T.P.E. in two dimensions and then minimise with respect to a large 

number of variables (105 will eventually be used) is time consuming. 

The time required is also indeterminate as the minimisation uses as 

many function evaluations as it needs to find the mininrum and not a 

fixed number. Spence only required a one dimensional integration 

and rarely needed to use more than five variables in his problem. 

An attempt was made to use this method but the number of varie.b1es 

was found to be limited to a bout fifty before the computer time and 

re1ia bili ty limit of two hours was reached. The computer was an 

leL 2980, which was the fastest available to the author. 

Another method or finding the miniIinun numerically was used b.v 

Symonds [15:Y, Jones [35] and ThaUer-Cheng in thei~ analyses of 

the pipe bend problem. This method involves differentiating with 

respect to each of the required displacement coefficients before 

performing the integrations. This then produces a set of 

simultaneous equations which can be Bolved. The difficulty in this 

method is that all of the terms in the solution matrix have to be 

numerica~ integrated separately. Although general expressions 

can be derived for many of the terms in the matrix there is still a 
. . 

large amount of hand manipulation involved in obtaining a solution. 

This method hae advantages over the. previous method. The time 

require a for a solution would be much smaller and determinate. 

This method was attempted and abandoned because the size of the 

current/ 
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current problem made it extremely difficult. 

The ideal solution procedure would use only the values of 

the complete T.P.E. expression and minimisation would be perforned 

using the matrix technique. It was from this, and the experience 

of the earlier hand integration methods that the author developed 

the following solution procedure which is designed to make full use 

of the facilities available from a computer. 

(3.5c) Minimisation Procedure 

The total potential energy expression for linear elasticity 

is a quadratic function of the displacement coefficients. This 

means that When the T.P.E. is differentiated with respect to the 

coefficients, the resulting equations are linear functions of the 

displacement coefficients. Since displacement coefficients are not 

functions of the bend co-ordinates, integration can be performed 

without numerical values for the coefficients. 

The above principles are the oo.sis of the minimisation 

procedure about to be described. The author has not found other 

reference to this method in any of the literature to date. 

The simplest way to explain the method is with an example. 

Consider the following quadratic expression, 

v = f (o,:x:~ + 0'1 'X~ ... 0 1 XI x2. + at,. x, + o.s;:x:..2." + 0.,,) d f 
••• (3.63) 

where 0" O2, a.3 , Q .. , Q 5 and at, are tunqtions' ot 1 . 
If V is an expression for the total potential energy then the 

minimum/ 
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minimum of V can be found by differentia.ting with respect to the 

coefficients ::x: I and X 2 i.e. 

• •• (3·64) 

These are two simultaneous equations in two unknowns, XI and 

X,.. This can be set up asa matrix equation, 

or 

where rA] is a matrix of constants, (:;t.J is a vector or the unlmowns 

and [BJ is a v.ector of constants • 

. . The terms in the matrix [AJ and vector tBJ can be numerieaily 

integrated and the matrix equation solved for the required coefficients 

XI andX2 • This is the basis of the second numerical method 

described in section (3.5b). The difficulties arise in the setting 

up or equation (3.64) and the separation and proeramming of equation 
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"passive" if it is given the value of 0 and "negative active" if 

it is given the value of -1. i.e. 

:x: = 1 

x = 0 

x. = -1 

is aotive 

is passive 

is neeative active 

If all the ooefficients are made passive and V is evaluated 

then the following is obtainedJ 

X, and Xz passive ---... 5 QG:I d ~ 

••• (3·66) 

It each ot the ooeffioients is made active in turn with the 

rest passive J then V givesJ 

X, active --. S (0, + alt- -4- 0.,,) d f 
);,aotive -+ S (az. + as ~CH.)~ ~ 

Similar1YJ if eaCh ooeffioient is made negative aotive, with 

the rest passiveJ then 

:XI negative aotive ---. f (a,- Q,.. + ~) d ~ 

Xz. negative aotive -.. 5 (Q2."- o.s+ a.,,) d ~ 
••• (3·68) 

Adding (3.67) and (3.68), and subtraoting twice (3.66) gives 

••• (3.69) 

whioh are the diagonal terms in the solution matrix [AJ. 

Subtraoting (3.67) trom (3.68) and dividing the results by two 

gives/ 
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gives 

••• (3.70) 

which are the terms of the vector [BJ. 

The off diagonal terms of the ma.trix [AJ are obtained by 

makjng a term active and then the value of V is found with one 

of the remaining terms made active with the rest passive i.e. two 

different terms are made active for each evaluation. For the 

example this is, 

'X.and X:-2.active, S(a.I+~+a~+ Gtr+Os+G,,)d f 
••• (3.71) 

The off diagonal term is then fotmd by sub tracting (3.66) 

and half of (3.69) from (3.71) and adding (3.70), giving, 

••• (3.72) 

Thus, the complete mtrix equation can be formulated from the 

total potential energy funotion. 

GeneralisiDg this to obtain a matrix of nN" equations is 

reasonab~ straightforward. The only additional oomment necessar,y 

is with regard to the position of the off diagonal terms in the 

matrix. If the first aotive ooefficient 1s ~ and the seoond 1s 

JC, then the obtained coefficient should be positioned on row "r" 

and column "c". 

The total number of function evaluations required for a solution 

involving "N" ooeffioients is (11'2 + N + 1). This can be reduced 

bt nearly half 1£ use is made ot the symmetry of the matrix 

obtained/ 
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obtained from the differentiation of the T.P.E. function. 

The time involved in calculating the values of the T.P.E. 

can be reduced by just calcula.ting the parts of the function which 

involve ~he active constants, where possible. This can represent 

a considerable saving in the running time of the computer program 

since most of the time is spent calculating the values of the 

function. 

(3.5d) Numerical Integration 

The strain energy part of the T.P.E. function has to be 

integrated in two dimensions, e and~. There are many different 

ways of numerically integrating a function of this type (e.c. see 

[148J, [149] and [156]. These were examined to find the best 

one for use with the present method. The chosen method is an 

extension of the well known Simpson's i rule to two dimensions. 

Consider a double integral of the form, 

do b 

I == 5 S ! CeJ ¢) cLec:L.¢ 
c Q 

In the calculus, a double integral is evaluated as an 

iterated .integral i.e. the inner integral is calculated first; then 

the outer integral. Similarly, a double numerical integral can be 

found by first applying Simpson' 5 rule to the inner integral and 

then outer integral. This. gives the integral as, 

where/ 
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where' £~ are the values of the function :f (e,¢) at ej and ¢R. 

The inteM-als e = a to e = b and ¢ = c to ¢ = d are subdivided 

into (J-l) and (K-l) intervals, respectively. e~ and ¢~ therefore 

correspond to, 

and 

where Ae = (b-a)/(J-l) and A¢ = (d-c)/CK-l) 

••• (3.75) 

Wj and. W: in equation (3.74) are the weightings applied to each 

value of the function, :f~k • For Simpson's rule in two-dimensions, 

these are given b,y, 

W,=W3 = ¥ and 

where 

J.= 2, 3, ----, J-l 

• w. t:.'" W, = K =~ 

k = 2, 3, - K-l 

••• 

The above equation allows a different number of integration 

points in each direction which is useful. in the pipe bend problem 

which has widely differing behaviour in the e and ¢ directions. 

One other pro~rty of Simpson's rule is that it converges 

to the correct answer when more points are taken between the 

integration limits. 

(3.5e) Solution of Matrix Equation 

In/ 
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. In [157 J, Meyer examined all of the major matrix solution 

routines in the context of structural analysis. In the present 

problem careful consideration has to be given to the choice of the 

solution routine because of the size of the matrix. A typical 

matrix for the present problem has 105 rows which requires at least 

ten thousand storage locations in a computer for the fA] matrix. 

Meyer states that no method exists which requires less 

arithmetic operations than Gaussian elimination. Also most syntems 

of linear equations arising from structural problems are positive 

definite and well-posed in a mathematical sense and the accuracy of 

the solution from the Gauss algorithm is usually sufficient. 

Gaussian elimination will be used herein. 

The standard Gauss algorithm, which dates as far back as 

1826, is given in Appendix (3). This method can be adapted to use 

the symmetry of the matrix and thus reduce the solution time. On 

the computer, the matrix can be solved in its own storage, reducing 

storage requirements to a minimum. 

(3.5f) Total Potential EnerGY 

The total potential energy expression is, 

Jr r ~ ] \ V==- is} [( E t6 + £fSI.- 2(I-vXEe€'rj -1; '«elf) r- R d.ed~ 
o~ 

+ ~r.rr(l<;t-\.{e)·-:i()-vXK..~- Ke~)] ~R d9d¢-Ml!' 
1: 

where 

, D =- E.-L3
_ 

1'2(1- v') 
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() is the rotation between the ends of the bend which is 

found b,y substituting displacement equations (3.9) and (3.10) 

into (3.3), i.e. 

Strain and curvatures from equations (3.44) can be substituted 

into (3.77) to give the. complete T.P.E. function. This needs to be 

non-dimensionalised so tpat the solution can be in terms ot as few 

characterising parameters as possible. It can also be used to 

simplify the function and improve the numerical condition of the 

matrix. The T.P.E. will be non-dimensiona1ised using, 

••• (3.79) 

The reasons for this choice will become apparent later. 

~, as mentioned earlier, is the rotation or an equivalent length 

(i.e. t = ~ of straight pipe under the same load M, as fOlmd frOm 

simple bending theory.' ,i.e. 

'60 = M ROC­
, E1. 

, 
• •• 

Note that the (1 - Va), omitted by many of the earlier 

authors using a lower round approach, has been included in the 

present/ 
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present work. This will mean that the end rotation will tend 

towards the value of (l - y2.) ~o and not ~o at high )... values 

(A > 2). A full discussion of the implications of this was given 

bw Spence [4]. A true lower bound is only achieved if it is 

included. 

The non-dimensionalised T.P.E. becomes 

where in this case 
;!;C!: 

~ - ~r[(Ef+Esj-A(I-vXE~te-t ~~) 
-1 0 

re-arranging gives, 

where 

I= (~I 

and/ 
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and 

E~ =~ 7t Rr:f , Ee = t.e I( RtX.. , ~e~ = '661' &0£ 
r- ~o r- '6. i~o 

K~==K¢~(~) R'io 
, Ke=~·~rOL~ 

Ri?o 
, Ke¢=Ke,(~) 

"'

_ t R 
- --;:r , r 

••• (3.82) 

Integration limits in (3.82) have been reduced to make use 

of the problem symmetry. 

Displacement coefficients will be non-dimensionalised 

using, 

,~- -H -H .-1-
, J - .1 R'60 

These were selected b,y experimentation to improve the conditioning 

ot the solution matrix. When singl.e precision was used for the 

variables on the computer, the ~trix condition was fotmd to be 

poor atX <: 0.1. The problem was aided by the above non-- ," " 

dimensionalisation. ,It was eventuaily removed b,y using double 

precision variables, ,but this'meant doubling the necessary storage • . 
The strains as given in (3.44) can b8 arranged using (3.82) 

• 
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and (3.83) into a form suitable for use on a computer. These 

are given in appendix (4). 

A computer program was written which made use of all of 

the techniques just explained. This is given in appendix (5). 

The program also solves the problem of a pipe bend with connected 

tangent pipes, which will be presented later. 

The program is written in FORTRAN [158] and uses double 

precision throughout. Values of the characterising parameters, 0(., 

R/r, ).. and )J are required for each run. A typical, fully 

converged, run, takes less than three minutes on the lCt 2980 

computer of the E.R.C.C. system. This is in contrast to the other 

solution systems considered which would have taken several hours. 

(3.5g) Deformations 

Minimising the total potential energy function in (3.82) 

using the procedure just outlined, numerical values are obtained 

for the AllIn, Bmn, Cmn, Dj, Fj and Hj coefficients for any 

particular values of 01., Rjr, A and )) • 

It is then a relatively simple task to determine the mid-
. . 

surface disp1acements,"U, V- and W at any circumferential (e) and 

meridional (¢) position on the bend from equations (3.43). 

(3.50) Flexibility Factors 
, . 

From the definition of the fl~xibi1ity factor given in the 

introduction to chapter 1, it follows from (3.78) and (3.80) that 

the, flexibility factor K is given by 



K corresponds to the overall rotation between the flanged ends of 

the bend since this is the parameter which is normally required in 

the analysis of complete piping systems. 

(3.5i) Stress Concentration Factors (S.C.Fs.) 

Once the displacement coefficients have been determined, it 

1s then a relatively simple ~tter to calculate the strains using 

(3.44) •. Using the stress/strain relationships given in equation 

(2.14) for a linear elastic isotropic material the stresses at any 

point on the bend can be found. 

The simplest way to examine the stresses is to use s~ress 

concentration factors (S.C.FS.). These are defined as follows, 

S.C.F. = Stress/( T ) 
. . Mr 
where (T) is the maximum stress in an equivalent straight pipe 

under a bending moment, M, from simple bending theory. If the 

strains are :found in their non-dimensional :form given in (3.82), 

then the S.C.Fs. can be written as follows, 

note that 
\, C"-~ 
\ . 
\ (. ~ 

" t-_ 

-',( 
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where <5's6 is the meridional S.C.F. and Cia is the circUI:rl'erential 

S.C.F. Also, the "+" and "_" signs in these equations, correspond 

to the stresses at the outside and inside surfaces of the shell 

respectively. 

Similarly the shear stress concentration factor ~¥ can be 

found as, 

- (- ) i-'tSs' = ~e¢ ±. A Ke¢ • (I + v) 

The above expression for shear stress is approximate, as explained 

in the shell theory, chapter (2). The degree of approximation is 

of the same order as the basic assumptions of shell theory and can 

be ignored. 
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(3.6) Theoretical Results from Method No.3 

(3.6a) Presentation of Results 

The results from method No. 3 will be examined in two ways. 

In the present chapter, a comprehensive set of results covering a 

wide range of the characterising parameters will be presented 

along with a comparison with theoretical results given b.1 other 

authors. In chapter (5), the theory will be compared with 

experimental results. 

From here on, all results will be from method N0.3 

unless otherwise specified. 

(3.6b) Integration Convergence 

The accuracy obtained using a large nmnber of integration 

points has to be balanced against program rmming time. To 

determine the number of points necessary the program was rtm with 

~= 0.05, R/r =lO,OC= ISd'and )) = 0.3 and integration convergence 

checked •. 
,. 

Flexibili ty factors and meridional peak stresses (&16) are 

compared for different numbers of integration points in the 

following table. The number of circumfe~ential integration points 

is termed nPe n • The number of meridional integration points is 
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Table (3·3) Integration Convergence 

" p. Pp K ~ rurming 
time (5) 

7 13 21.65 13·14 106 

9 17 21.62 12.46 171 

13 21 21.4.1 12.76 303 

15 25 21.41 12.76 412 

To obtain these results a system or (5, 5, 6) was used. The 

convention defined earlier of (JT, MT, NT) is still used here. 

From the table, it can be seen that Pe = 9 and P; = 17 is 

sufficient to give a difference or less than 1% for flexibility 

factors and less than 3% for peak meridional stresses when compared 

against Pe = 15 and P¢ = 25, with less than half the program 

running time. P e = 9 and P ~ = 17 was used for results given herem 

unless otherwise stated. 

(3.6c) Series Convergence 

The problem of series convergence for a pipe bend with end 

effect was discussed earlier in section (3.4c). The same principals 

will be applied in,the examination of convergence in the present 

method. 

Parameters Chosen for checking convergence were. 

A = 0-05 R/r- =10 

v =- 0·3 



Some results obtained from running ~~e program with these 

parameters are given in the following table: 

Table (3.4) Series Convergence 

JT Ml' NT K ~; 

1 1 1 2.25 0.46 

2 2 2 6.67 1.38 

3 3 3 16.14 6.98 

4 4 5 21.21 12.63 

5 5 6 21.62 12.46 

The difference between the systems (4, 4, 5) and (5, 5, 6) 

is better than 3% for K and 2% for ~. The system of (5, 5, 6) 

was deemed to give satisfactory convergence. This requires the 

use of 105 displacement series coefficients in the analysis. 

Convergence was found to be faster for higher ~ and 

lower R/r and OC. This confirmed earlier ideas and allows the 

system ot (5, 5, 6) to be used for parameters inside the above 

ranges. For values outside these ranges more terms may be needed 

for convergenoe. 

(3.6d) DisElacement Coeff~cients 

Displacement coefficients tor A = 0.05, Rjr = 10, ex= ISO· 

and V = 0.3 are given in Table (3.5). These illustrate several 
, 

interesting features of the flanged pipe bend problem. 

As explained during the derivation'ot the displacement 

series, the similarity of the Amn, Bmn and Cmn coefficients 

indicates/ 
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indicates that E; and ~e~ are small (from equations (3.25), 

(3.39) and (3.42». This is found to be less true for lower R/r 

andoc. • 

The similarity of the DJ and FJ series also confirms the 

usefulness of equation (3.5) for the rigid section displacements 

with Rjr large. 

The zeroth meridional function coefficients, HJ , of the 

displacement are small when compared to CI~. These terms are 

more significant at low R/r and considerably affect the stress 

distributions. 

The Karman solution for a pipe bend wi~~out end effects uses 

only the even fourier terms in the Wz, series. Table (3.5) shows 

that these are the most significant terms in the analysis but the 

odd terms are certainly not negligible. The latter. are even more 

important for lower R/r and. ex: , particularly lnnuencing the 

stresses. 

Convergence of the series is easily Seen from the table of 

coefficients. First and last terms in the Amn, Bmn and Omn series 

(e.g. 012 and. 057) differs by about 3 orders. A similar 

convergence is also shown by the DJ and FJ series. Convergence 

-----f6o-

of the coeffioients is more rapid for larger ).. and. lower R/r and DC.. 
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Table (3.5) 

Displacement Coefficients for A = 0.05, R/r = 10, 0(= l&t, )/ = 0.3 

Pe = 15, PJ6 = 25 

J DJ F,I HJ 

1 10·39 1l.45 0.0013 
2 3·47 2·73 -0.0032 
3 - 0.02 0.37 0.0012 
4 - 0.17 - 0·31 -0.0037 

5 - 0.02 0.01 0.0019 

Amn 

~ 2 3 4: 5 6 7 
1 -43.42 5.38 -1l.85 2.23 - 3.11 0.78 
2 11.95 - 5.01 1.52 - 1.47 0.24 - 0·31 
3 1.36 - 3·31- - 0.86 - 1.13 - 0.43 - 0.19 
4 - 0.74 2.56 1.49 0·36 0.47 0.00 

5 0.16 - 0.86 - 0·34 - 0.32· - 0.19 - 0.04 

Bmn 

~ 2 3 4 5 6 7 
1 -43.76 3·53 -12.22 1.15 - 3.29 0.28 
2 12.25 - 4.40 1.91 - 1.31 0.39 - 0.26 
3 0.92 - 3·37 - 0·73 - 1.21 - 0·31· - 0.26 
4 - 0.45 2.69 1.41 0.50 0.43 0.07 
5 0.23 - 1.03 - 0·36 - 0·37 - 0.17 - 0.07 

Cmn 

.~ 2 3 4 5 6 7 
-1 -43·73 3.60 -12.20 1.23 - 3.28 0·32 2 12.22 - 4.41 1.89 - 1.32 0.39 - 0.27 
3 0.92 - 3.37 - 0.74 - 1.21 - 0·32 - 0.25 
4: - 0.43 2.68 1.42 0.49 0.44 0.06 
5 - 0.00 - 1.03 - 0·37 - 0·37 - 0.17 - 0.06 , 



(3.6e) Flexibility Factors from Method N0.3 
Flexibility factors for flanged bends under in-plane 

bending using method no. 3 are given in figures (3.10), (3.11), 

(3.12) and (3.13) for 1800 , 135°, 900 and 450 bends respectiv9ly. 

Each figure has curves for radius ratios (R/r) of 2, 3, 5 and 10. 

All results were obtained using JT = 5, MT = 5 and NT = 6 with 

Pe = 9 and P,s = 17. 

The results show that flanged bends of smaller subtended 

angles and shorter radius have lowest flexibility. Generally, this 

indicates that shorter length bends have lower flexibility. 

As the pipe factor reduces the flexibility increases. 

Unlike the Karman converged solution, the present results are not 

straight lines on a log-log graph. This means that simple formulas 

cannot be derived easily covering wide ranges of parameters. 

Figure (3.14) illustrates a typical variation with bend 

angle for )\= 0.1. It demonstrates how the flexibility reduces 

with bend angle. The diagram also shows that flanged bends with a 

subtended angle of less than about 450 behave almost like an 

equivalent straight pipe. 

Variation with bend radius ratio (R/r) is given in figure 

(3.15). It demonstrates how the nexibility reduces with R/r and 

shows how it falls rapidly for R/r less than about five. Note 

that the curves for the various bend angles·all tend to a 

flexibility factor of 0.91,(1-~)tas the radius ratio tends to 

zero. Similar behaviour was shown in figure (3.14) as the bend 

angle tended to zero. 

In figure (3.16), the present method no. 3 is compared 

with/ 
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with the simpler method no. 2. It shows that method no. 3 gives 

higher flexibi1ities, the difference being greatest at lower 

values. Method. no. 2 gives factors within 12% of method no. 3 for 

. A> .1. The difference is· greatest for larger R/r. This is 

probably due to the simpler displacement series used in the 

circumferential direction in method 2 not being fully capable or 

representing the more rapidly varying deformation at higher R/r. 

Table (3.5) shows that the additional circumferential terms 

(m = 2, 4, 6 ••• ) are significant for R/r = 10. Examination of the 

coefficients for other geometries reveals these terms to be relatively 

less significant for lower R/r. 

A comparison of method. no. 3 with Thailer-Cheng and Findlay 

(corrected results, see section (3.1» is given in figure (3.17). 

Neither of the latter methods shows a variation with the radius 

ratio unlike the present results. 

The present method. is compared with Axelrad' s results in 

figure (3.18). Axelrad's results are only an approximation and are 

therefore more valid at larger A.. For ex: = 1800 and R/r;:S 3 

Axelrad's results are within 20% of method no. 3. For lower bend )./ 

angles and radius ratios the comparison is generally poorer. The 
l 

degree of' approximation of Axe::trad l s results can be seen when R/r = 3 

and OC= 9<>0 where the fieJdbility falls when A < 0.2. 

Also given in figure (3.18) is the A.S.M.E. code for flanged 

and lmf'langed bends [133]. A com~ison of the present results 

with the unflanged flexibilities demonstrates the substantial 

reduction caused by rigid fianges at low R/r andOC. The A.S.M.E • 

. aode for fianged bends deviates significantly from the current results. 

Figure (3.19) is a comparison with 'Whatham l s fierlbility 

factors/ 



faotors. These results are taken from a graph making accurate 

oomparisons diffioult. It appears that the two sets of results 

give parallel ourves on ~~e log-log plot. Whatham's results are 

about 10% higher than those of method no. "3 for all R/r, 0( and A • 
The present flexibility faotors are lower bounds, as 

explained in seotion (2.4b). In [l17J Whatham gives results from 

his method for an unfianged bend. These agree with solutions 

obtained from an upper b01.md analysis for the same problem. It is 

therefore to be expected that if Whatham's results for a flanged 

bend are valid then they will be greater than the present lower 

bound. If the (1-v2) term in the total potential energy of the 

present method is negleoted, in the way it was by many previous 

authors (see ref. (4]), then the flexibility faotors from met.~od 

no. 3 agree with the results of Whatham, within the limits of 

plotting. 

(3.6f) Stress Conoentration Faotors from Method No.3 

For a pipe bend with end effeots, the stress conoentration 

faotors (S.C.Fs.) vary in the meridional and circumferential 

direotions and through the thiokness. This makes it diffioult to 

present a oomprehensive stress distribution for all Points on a 

bend. The problem is further aggravated by the maximum stresses 

.not being at the same position for all bend geometries, making it 

neoessary to examine more than a single pipe seotion. Therefore 

some typical distributions will be examined and then the maximum 

S.C.Fs. for a range of geometries presented. 

Meridional Stress Distributions/ 
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Meridional Stress Distributions 

Figure (3.20) illustrates the effect of the radius ratio on 

the distribution of the meridional S.C.Fs. at the centre of the 

bend (e = 0 ) for ex: = 900
, A = 0.2 and V = 0.3. For R/r = 10, the 

maximum meridional S.C.F. occurs on the inside surface at 

approximately ~ = -7-, i.e. towards the intrados. The KarJnP-ll 

analysis predicted the maximum meridional S.C.F. at ¢ = 0 for a 

bend without end constraints. The small difference is introduced 

b.1 the present significance or the odd terms in the distortion 

displacement series. At R/r = 5, the stress on the outside surface 

at the intrados is slightly greater than the stress on the inside 

surface close to the pipe centreline at ¢ = O. As R/r deoreases 

further; the stress at the intrados becomes relatively larger than 

the pipe centreline stress. A similar variation can be shown as the 

bend anele reduces. 

Figure (3.2l) shows typical distributions of the meridional 

S.C.Fs. along the length of the bend at the intrados (~= -90°), 

pipe centre (¢ = 0) and extrados (¢ = +9(0 ) for R/r = 10 and 3. It 
A 

demonstrates that the maximum meridional S.C.F. (~) occurs at the 

bend centre (e = 0), regardless of whether it is C10S8 to the pipe 

centre (JI = 0) or at the intrados (~ = -90°). This was found to be 

true for all practical bend geometr!es. 

Ciroumferential Stress Distributions . 

In figure (3.22) typical distributions of the circumferential 

S.C.Fs. at the bend centre (e = 0 ) are given for A = 0.2, R/r = 10 

and Plr = 3. The diagram shows that for the bends considered, with 

R/r = 3 the ma.x1mwn circumferential S.C.F. (~) occurs at the 

intrados/ 



intrados (¢ = -900 ) whereas for R/r = 10, the maximum occurs 

nearer the pipe centreline (¢ = 0). As with the meridional peak 

stress, the circumferential peak stress at the bend centre (6= 0) 

has a position which is dependant on both the bend angle, oc , and 

the radius ratio, R/r, i.e. it is dependant on the length of the 

pipe centreline arc (¢ = 0). 

Typical circumferential S.C.Fs. at the flanged ends of the 

bend (e = 'f) are sho~rn in figure (3.23) for R/r = 10 and R/r = 3, 

again with OC= 900 and A = 0.2. For both radius ratios, the 

maximum S.C.F. occurs on the outside surface at the extrados. For 

shorter length bends, R/r ~ 2 and ex:.. E:;; 450 , the maximum can occur 

on the inside surface at the intrados. Equations (3.44) show that 

the meridional strain and curvature, 4 and KP are zero at the 

flange. Thus the meridional stresses at the flange are equal to 

the circumferential stresses inultiplied by poissons ratio,)J, 

(tram equation (3.86». This also means that the difference 

between the curves for the S.C.Fs. at the inside and outside 

surfaces in figure (3.23) is due to the contribution of the 

circumferential curvature K,. The tigure shows that Ke becomes 

more significant at lower R/r. 

Figure (3.24) U~ustrates the distribution ot the 

circumferential S.C.Fs. along the bend at the intrados, pipe centre, 

and extrados. It shows that (Sit has high values at the bend centre 

( e = 0) and flange positions. The maximum circumferential stress 

can occur at either position, depending on the bend geometr,y. 

Shear Stress Distributions 

Distributions of Shear S.C.Fs. at e = 31', tor the same bend 

geometries/ 
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geometries as before, are given in figure (3.25). This is 

approximately the position with the maximum shear stress (see 

figure (3.26». Note that the vertical scales on shear S.C.F. 

diagrams are double those of the previous figures. The maximum 

shear S.C.F. is much smaller than the meridional or circumferential 

S.C.Fs. For R/r = 3, the peak shear S.C.F. (~~) is 1.32 and for 

R/r = 10, ~~ = 0.72 i.9. the shear stress reduces as the radius 

ra tio increases. Similarly, it can be shown that 1;'~ is smaller 

for larger bend angles. The peak shear stress occurs between the 

pipe centre (¢ = 0) and the intrados (¢ = -9OP). The shear stress 

is zero at the intrados and extrados because of the bend symmetry 

through these points. 

Figure (3.26) shows the distribution of the shear S.C.Fa. 

along the bend circumference. It shows that the shear stress 

increases slowly from the bend centre to a peak at approximately 

e = 35° and it ralls rapidly at the nange. The shear stress is 

zero at the bend centre (e = 0) because of symmetry and at the 

flange because the bend is maintained circular. 

Comparisons of Theoretical Distributions 

A comparison of meridional and circumferential S.C.Fs. from 

the present work with those of Whatham [117] are given in figures 

(3.27) and (3.28) for OC= 1800
, A = 0.3)62, R/r = 2.83 and Y = 0.3. 

The results of Whatham were taken from a private communication [159] 

wh~ch contained numerical values intended for comparison with some 

experimental da ta given by Spence and Findlay in [lO~.· The results 

for the meridional S.C.Fs. in figure (3.27) show good general 
A 

agreement. The peak meridional S.C.Fs., 5'~, differ by about 6%. 

Circumferential S.C.Fs. in figure (3.28) show a similarly good 

comparison./ 
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comparison. Generally the results of the present method No.3 

are numerically higher. At the peak circumferential S.C.F. ( tre ) 

the difference is about 9%. The commtUlication [159J contained 

results for tt'lO other bend geometries. These shol-Ied a similar 

comparison. One of these will be shown in chapter (4) for 

comparison with experimental data. 

Maximum Meridional S.C.Fs. 
~ 

Maximum meridional S.C.Fs. (~) for bend aneles of 1800, 

135°, 90° and 45° are given in figures (3.29), (3.30), (3.31) and 
: 

(3.32) respectively. Each figure contains curves for R/r = 10, 5, 

3 and 2. All results were obtained at the bend centre (e = ° ). 
Note that the curves for the different R/r cross each other, unlike 

the flexibility curves. At lO\Oler values of the pipe factor (A) 

&~ is greater for larger R/r. This changes over at higher A , 
. .A 

which coincides with the change in the meridional position of ~ • 

At lower A, d¢ tends to occur close to the pipe centreline, 

~ = 0, but moves to the intrados at higher " and lower R/r as 

explained earlier. 

Maximum Circumferential S.O.Fs~ at Bend Centre 

The maximum circumferential S.O.Fs. at the bend centre ( e = 0) 

are given in figures (3.33), (3.34), (3.35) and (3.36) for bend angles 

of 180°, 135°, 900 and 45° respectively. Again the crossing over of 

some of the curves is associated ~th a change in the meridional 

position of the peak S.C.F.Note that for bend angles less than 

180°, the peak stress for R/r = 2 is greater than the peak stress 

for R/r = 3, i.e. when the peak stress occurs at the intrados it 

increases as the radius ratio decreases. 

Maximum Circ'\lm.rerential S.C.Fs. at Flanges/ 
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Maximum CirclllJferential S.C.Fs at Flanees 

- Figures (3.37), (3.38), (3.39) and (3.40) show the peak 

circumferential S.C.Fs. (&e) at the flanged ends of the bend 

( e = ± ~ ), for bend angles of 1800 , 1350 , 900 and 4~ respectively. 

For bend angles greater than 900 and radius ratios greater ~lan 2, 

the curves are close together, showing little variation with 

anything other than the pipe factor, A • These S.C.Fs. tend to 

occur at the extrados on the outside surface. For parameters 

outside the above range, the S.C.Fs. move to the intrados and the 

values are sensitive to R/r and OC. 

Results from the present work are for completely rigid 

fianges. In practice, real nanges will have a certain amomt of 

flexibility, depending on their dimensions. The radial stiffness 

of standard flanges should be sufficient to maintain the pipe cross­

section circular but the usually thinner nange thickness may allow 

some distortion out of' the plane of' the nange. Examination of the 

predominant nange strain, Ee, in equations (2.13) and(3.44) 

indicates that the (~ ) term is principally the cause of the 

high stresses. This term is related to the change in the t.t 

displacement along the b9nd. This change will be less severe if 

the flange distorts, thereby reducing the flange stresses. The 

stresses nearer the centre of the bend should be less affected b.1 

the out of plane distortion but would be afrected ~ ~ loss ot 

circularity of the flange. Figures (3.21) and (3.24) show that 

the stresses due to the cross-section distortion persist over a 

longer length than those due to the .flanges. It is therefore 

likely that flange distortion will have a sma11 efrect on the 

overall/ 



overall behaviour. 

The high stresses at the flange were noted by several 

previous authors. Natarajan and Blomfield [97] obtained high 

stresses at the flanged end of a bend with one tangent and one 

flange using finite element analysis. However, they considered 

that the stress was a singularity and that the results had no 

meaning. In [106], Imamasa and Uragami presented experimental 

and finite element results for two bends each with one flaneed 

end and one tangent pipe. The flange distributions show a 

similar behaviour to the present work but direct comparison would 

not be valid because of the different boundary conditions. 

Whatham [117] mentions the existence of high flange stresses but 

does not present a comprehensive set of results. The two-

dimensional stress distributions he presents are difficult to take 

comparisons from but his flange distributions appear to be similar 

to the present work. 

Comparison of Theoretical Peak S.C.Fs. 

Figure (3.41) shows comparisons of the peak meridional 

S.C.Fs. trom method no. 3 with available theoretical results. The 

only published sets of peak stresses for flanged bends are those of 

Thailer-Cheng and Findlay. . The errors in both of these methods 

were highlighted earlier. Peak meridional stresses (<5¢) from the 

Karman analysis without end effects are also given. Present 

results for R/r = 10' and ()C.= 1800 are about 5% higher than 

Karman's results. ~ for flang~d bends with R/r <: 10 and 

~ <: 1800 are generally lower than Karman's results when A < 0.5. 

The current A.S.M.E. code shown in the figure is lower than the 

pre sent/ 

1]0 



present results for most bend geometries. Figure (3.42) shows 

similar comparisons for peak circumferential stresses. 

When using the present results for the design of a 

flanged bend each of the different peak stresses must be considered 

since anyone of them can be the true maximum, depending on the 

bend geometry. 
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(3.7) General Comments on the Re~lUlts of Nethod No.3 

Method No. 3 used virtually only the assumptions of thin 

shell theory to solve the problem of a smooth pipe bend with 

rigid flanges under an in-plane bending moment. The resulting 

flexibility factors are a lower bound on the stated problem. 

"Realll flanees are not completely rigid, particularly out of the 

plane of the flange, making the bend flexibility slightly higher. 

Thus the present results should also be a lower bound on the "real" 

problem. In chapter (5) the flexibility factors will be compared 

with some experimental results and further comments will be made 

then about the effect of nreal ll flanges. 

The correlation between Whatham [1l7J and the present work, 

using two completely different methods, suggests that both methods 

give a close approximation to the correct result. Ax~lrad's[104] 

results are close to the present work when his assumption of zero 

shear strain is valid. Thailer-Cheng ~5]· and Findlay [99] used 

invalid assumptions in their theories making their results incorrect. 

The flexibilities and stresses from the present work suggests that 

the design code values need to be amended. Unfortunately the 

present results cannot be given in a simple formula covering the 

variation of all parameters. 
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General peformation of a Smooth Pipe Bend 

Figure (3_6) 
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Abstract 

A brief description is given of an experimental programme 

to determine the flexibility and stress characteristics or two 

smooth bends with nanged end constraints" loaded with in-plane 

bending. 

Comparisons are made between the theory, method No.3, and 

the experimental flexibility and stress factors presented bw the 

present and previous authors. 

• 
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(4.1) Present Experiments 

(4.1a) Test Programme 

Two of the important functions of experiments, Which are 

generally recognized, are firstly to confirm the theoretical 

approach and assumptions and secondly, where appropriate, to ~idge 

the gap between theory and experiment. In the following sections, 

the theory developed in chapter (3), (method No.3) will be 

compared with the present experimental work and also with relevant 

results from other sources. 

It was the intention that the additional data provided 

herein should supplement available published results. Therefore, 

careful attention was given to the selection of the test 

configurations. First of all, forged bends were chosen because of 

their small manufacturing tolerances for out-of-roundness and 

thickness variations, secondly, the pipe diameters had to be 

sufficiently large to allow accurate positioning of strain gauges 

around the meridian and in addition reasonably low pipe factors 

( A ) and ditferent bend angles were desirable to confirm theoretical 

convergence. 

With this background, two carbon steel bends were selected 

for testing, the dimenSions of which are tabulated below:­

lominal Bend Dimensions 

Bend Outside Bend 
No. Pipe Radius Thickness R/r oL 

Diameter 

1 6.625" 6" 0.28" 1.89 900 

2 6.625" 9" 0.28" 2.84 1800 

A 

0.17 

0.25 
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Both bends were supplied by 11unro end Hiller [160]. The 

manufacturer advised that it was frequent industrial" practice to 

specify "taper" or "weld-neck" flanges for direct connection to 

pipe bends. The theory presented earlier was for bends with rigid 

flanged terminations, more akin to the "slip-on" nange commonly 

used on straight pipes. It was therefore felt necessary to 

examine the innuence of the two different types and each bend 

was supplied with one taper and one slip-on flange as shown in 

figures (4.1) and (4.2). 

All welds were X-rayed and both assemblies were stress 

relieved. 

(4.1b) Manufacturing Tolerances 

There are a number of specifications available which 

stipulate the permissible manufacturing tolerances for smooth 

curved pipes. The above bends were supplied in accordance with 

British standard, BS 1640 [161] and Ameri~ standard, ANSI 

The external pipe diameters between ¢ = 0 and ¢ = 1800 

and between ¢ = _90
0 

and ~ = +90° , at e = 0, were measured with 

a micrometer and fOl.Dld to be 6.625" and 6.617" respectively for 

bend No.2. These are well within the permitted tolerance from 

the above codes of + 3/32" (0.0938") and .... 1/16 (0.0625") and give 

an ovallty of better than 0.998. 

Thicknesses were measured aroUnd a section at approximately 

e = 400 (close to the "slip-on" nang~) for bend No.2 and are 

given in the following table:-
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¢ Thickness ¢ Thickness 

0 .28 1So .285 

45 .285 225 .28 

90 .29 270 .2.8 

135 .285 315 .28 

" 
These are within the limits of ± ~" (! 0.0625") on 

wall thickness allowed b,y the above codes. 

A similar dimensional survey was carried out on bend No.1, 

which was also found to be within the above variations. 

Accordingly, results presented herein will be based on the 

manufacturers nominal dimensions. 

(4.1c) Details or Test Rigs 

Bend No. I 

The test rig employed for bend No. 1 is shown in figures (4.3) 

and (4.4). The bend was bolted to a In thick plate connected to 

two parallel channel sections, which were bolted to the floor. A 

six toot long stra.ight pipe with fianged ends was bolted to the 

free end of the bend. Loading was applied to the end ot the tangent 

pipe via a wire rope by a hydraulic ram. The ram was activated by 

a conventional hand pressurized oil pump. The ram support was 

provided tv a f'rame const.ruc1;ed from 2ft angle iron. The load 

magnitude was measured by a previously calibrated load cell, 

incorporating strain gauges wired in'a halt bridge configuration, 

such that only axially applied loads were measured. 

Ideally, to achieve a true comparison with theory, a uniform, 

in-plane bending moment should be applied to the bend. The system, 

as/ 

• 
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as described above, is an experimental compromise involving a 

shear ~orce and a small variation of' the bending moment along the 

bend. 

Bend No.2 

A diagram ot the test rig tor bend No.2 is shown in 

f'igure (4.5). The loading system was virtually the same as the 

previous test. The supporting frame was considerably stitter as 

it was intended tor a more comprehensive set ot tests involving 

various types of' loading, not conducted by the present author. 

(4.1d) Strain Gauging and Instrumentation 

In both testa, electrical resistance strain gauges were 

employed tor the measurement of' surface strains. Details of the 

gauges were as tollows:-

Type: 

Gauge length: 

Nominal Resistanoe: 
Gauge Factor: 

SHOWA Nll FA5/120/11 

5mm 
120 ohms 

2.10 

The gauges were temperature compensated for mild steel. 

Attachment was made with Loctite LS 496 cement in accordance with 

manufacturers recommendations. 

To obtain a reasonable experimental stress distribution 

from bend No.1, it was decided to incorporate a total ot 18 strain 

gauges on the outer surface of the bend. These were located in. 

pairs, orientated along the principal bend axes, at the poSitions 

shown in figure (4.6). 

A total ot 24 strain gauges were employed on bend No.2 

at the positions indicated in tigure (4.7). 

An! 
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An "Elcomatic" automatic, digital, strain reading 

instrum9nt "las used to scan the gnuges at each load step. The gauQ8 . 

readings in "ohm/ohm x 105 " were printed out on a strip chart at 

the rate of one reading per second. Correct strain values were 

obtained by dividing the printout readings by the gauge factor 

x 105 
• 

The gauges are wired to the internal quarter Wheatstone 

bridges of the Elcomatic unit using the standard three wire 

technique, minimising the effect ot changes in gauge leads 

resistanoes [163J, . [l64J • 

(4.1~) Evaluation of Stresses 

The strains from each gauge were plotted against load to 

check linearity and correct operation. A typical example is given in 

figure (4.8). A line was fitted to the load-strain results tor each 

gauge using a regression analysis on a computer [l48J. For a plot 

ot strain € against load P at 'n' points, an equation can be fitted 

as follows, 

f= o+bP ••• (4.1) 

where 

Q = (§ ~ - b ~ R ) I n 
• 

• •• (4.2) 

Thel 



The strain at any load can be found from the slope, b. 

The corresponding stresses for each gauge was obtained 

from the normal stress-strain relationships for a thin shell e.g., 

••• (4.3) 

where the Young's Modulus, E, was taken as 29.9 x 106 1b/1n2 and 

poissons ratio, y, as 0.3. The stress concentration factors 

(S.C.Fa.) were then found from, 

S.C.F. = Cf I Mr 
I ••• (4.4) 

as previously defined. The bending moment, M, was taken as that 

at the centre section of each bend. For bend No.1, 

••• (4.5) 

where ~ was the length ot the loading arm pipe equal to 74" and 

R was the bend radius ot 6". For bend No.2, 

H = p( -e. + R)cos} - h sin f 
••• (4.6) 

where e = 74·, R = 9", h = 131" and 1 =. 13.50
• 1 was the 

angle between the direction ot the applied load and the vertical 

and h was the height ot the point ot application or the load trom 

a line through the bend centre, e = 0°. 

(4.lf) Flexibility Measurement/ 
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(4.lf) Flexibility l,teasurement 

The flexibility of bend No.2 was determined by measuring 

the rotation bet~reen the flanged ends ot the bend. The rotations 

were measured using a telescope and z:rl.rror as shown in figure (4.9). 

Rotation of the mirror causes the cross-hair in the telescope to 

move along the scale positioned at the side of the telescope. The 

scale reading was taken at each load step. Figure (4.10) shows a 

typical plot of the applied load against the scale reading. 

Readings were taken with the mirror positioned on both flanges, 

from which the bend rotation, ~, was found from, 

••• (4.7) 

where bL- was the change in the scale reading for the loaded 

flange, ~f was the change at the. fixed flange and lL and l.F were 

the corresponding distances between the mirror and scale. The 

flexibUity factor was then calculated from, 

It = 't/ M RoL 
EI 

where M was taken as defined in equation (4~6). 

••• (4.8) 

The rotation between the ends of bend No.1 was measured 

using a similar technique but was so small that it was swamped 

by the rotation of the base nange fixing and was close t.~ the l.iIli '6 

of the sensitivIty of the measuring system. Although the 

flexibility factor will be giVen later, some doubt erlsts about 

its accuracy. 

(4.1g) LoadtryV 
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(4.1g) Loading 

The loading system for both bends was described in 

previous sections. During each test, the bends were loaded in 

ten increments and then unloaded in the same manner. 

(4.lh) Results 

The stress and strain factors determined for bends Nos. 

I and 2 are given in the tables Nos. I and 2 respectively. The 

flexibility factors for bends Nos. 1 and 2 were determined as 

2.5 and 4.27 respectively. 

DetaUed comparisons of these resul ts with the theory 

will be nnde in the following sections • 

• 
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Table (4.1) 

~erlmenta1 Results for Bend No.1 

Strain Strain Factor Stress Factor 
Gauge 
Number trjl E:.e r:Jr; lS'e 

0 2.16 2.71 
1 1.03 1.84 
2 2.03 2.62 

3 1.19 1.97 
4 1.53 1.87 
5 0.57 1.13 
6 0·35 0.10 

7 - 0.87 - 0.85 
8 - 1.06 - 1.46 

9 - 0.92 - 1·36 
10 - 1.29 ,- 1.36 
11 0.20 - 0.21 
12 - 0·75 - 0.60 
13 0.69 0.51 
14 - 0·30 - 0.16 

15 0·53 0.48 
16' - 0.18 - 0.07 

17 0·39 0.37 

• 
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Table (4.2) 

Experimental Results for Bend No.2 

Strain Strain Factor Stress Factor 
Gauge . 
Number £,s €a <Y~ C% 

0 1.24 1·37 
1 0.02 0.43 
2 1·51 1·54 

3 - 0.36 0.10 
4 1.51 1.15 

5 - 1.53 - 1.18 
6 - 0.09 - 0.93 
7 . - 2.52 - 2.79 
8 - 2.89 - 3.48 

9 - 0.93 - 1.98 
10 - 2.65 - 2.17 
11 2.26 1.61 
12 0.72 1.68' 

13 2.68 3.18 

14 2.10 ' 2.64 
15 0.99 1.78 

16 1.83 2.13 

17 0.35 0.99 
18 - 0·57 - 1.29 
19' - 2.01 - 2.40 

20 0.90 1.41 

21 1.29 1.69 
22 - 0.25 - 0.28 

23 - 0.02 - 0.10 



(4.2) Co~risons of Flexibility Factors from Theory and Experiment 

Comparisons of the flexibility factors from method No.3, 

for bends with rigid flanges, with those obtained from the 

experiments of present and past authors are given in figures 

(4.11) and (4.12) for bend angles of 1800 and 900 respectivel~. 

It can be seen, from a general point of vieW', that there exists 

a considerable spread of values and that each set of results 

seems to be somewhat dependent on their respective authors. 

In references [89aJ and [89b], and in the discussion to 

~8], Pardue and Vigness published the results of experiments 

conducted on nine bends with different pipe factors. Each bend 

was tested with subtended angles of 1800 and 900 and had a 

nominal radius ratio of three. The~ also gave results for three 

900 bends with nominal radius ratios ot two. Tangent pipe and 

flange terminations were oonsidered, the latt~r results being 

presented here. Their experiments indicated that different 

228 

loadings, e.g. in-plane and out-ot-plane bending, would give 

different nex1bllit~ factors for bends term.1na.ted by end oonstraints. 

As their intention was to derive some torm of simple empirical 
. . 

relationship oovering as wide a spectrum of bend parameters as 

possible, they averaged the flexibility factors from each component 

of loading and presented these instead ot the separate factors. 

The values given in figures (4.ll) and (4.12) therefo~e represent 

the average values from ditferent loading, the vertical line 

through the <average indicating the range of actual values they 

obtained. Pardue and Vigness gave very little detail about the 

flanges but in [89&] they state that the~ were cut from in inch 

steel/ 



steel plate and soldered to the ends of the bends used previously 

tor the bend-tangent experiments. The agreement bet\'/een the 

flexibility factors of Pardue and Vigness and the present theory 

1s reasonable for 1800 bends, tigure (4.11), but poor tor 900 

bends, tigure (4.12). Comparison with these results can only 

really be made in a general sense since it is impossible to 

knoW' where in their range ot values the particular case of in-

plane bending occurs. Further some doubt is introduced into their 

results by the ralatively small thiclmess ot their flanges which 

tor certain geometries must have been little thicker than the bend 

wall. 

The flexibility factors obtained b,y Vis sat and Del Buono 

[90J tor eight 1800 degree bends ot nominal R/r = 3 are given in 

tigure (4.11). They adopted a different definition for their 

experimental flexibility tnctors to that used herein, i.e. 

229 

where fi was the deflection measured between the ends of the tangent 

pipes. This gives a displacement flexibility factor tor the Whole 

system including the tangent pipe loading arms whereas the 

theoretical values trom method No. 3 are rotational flexibility 

factors tor the bend alone. One further curiousity ot their 

resul t~ is thn t tor certain geometries, bends with flanges had 

slightly higher tlexibilities than those with tangent pipes~ It 

can be seen in tigure (4.11) tha.t their results are generally 

slightly higher than the present theory. 

In/ 



In support of his theory in [99], Findlay presented the 

results from tests conducted on three bends with rigid flanges. 

On two of his bends he used "adjustable" flanges. These were 

machined rings with 24 threaded holes around the circumference 

through whiCh set studs were screwed to simulate actual flanges. 

The bends had tangent pipes welded to them, through which the 

load was applied. The flanges were supposed to permit an 

investigation of different bend angles, with the same bend system. 

A1 though these flanges may have sufficientlY' suppressed the radial 

and meridiona1 tangential displacements, 1.e. kept the pipe 

circular, in the present author's opinion it is unlikely that they 

would have adequately inhibited the mid-surface slope or the 

circumferential tangential displacement and cannot be considered 

~ true rigid fianges. The flexibility factors trom these are . 
those for the 1800 bends in figure (4.11) and the one with the 

lower pipe factor in figm-e (4.12). As expected, the results £or :i 

the 180
0 

bend angle agree more closely than the 900 bend an~e. 

The third bend Findlay tested was a 90~ bend with welded flanges. 

It can be seen that the fiexibllity factor trom this bend agrees 

closely with the present theory. 

Whatham [117J gave res~ts trom two 90°,bends with radius 

ratios ot 2.&5 and 1.905. No details were given of the system 

used to :test the bends. Figure (4.12) shows that his results 

agree closely with the present theo~. 

The flexibUity factor for bend No.1, shown in figure 

(4.12), can be seen to be higher. than that predicted by the 

theory. However,· as mentioned earlier, some doubt exists about 

its/ 
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its accuracy. The experimental flexibility factor for bend No.2, 

given in figure (4.11), shows good agreement with the theoretical 

value obtained trom method No.3. 

(4.3) Maximum S.C.Fs. 

Comparisons ot the maximum meridional S.C.Fs. trom method . 

No.3 and various experiments are given in figures (4.13) and (4.14) 

for 1800 and 900 bends respectively. Maximum circumferential 

S.C.Fs. are given in figures (4.15) and (4.16) for the same bend 

angles. 

In figures (4.13) and (4.15) it can be seen that relatively 

good agreement occur's between theory and experiment for 1800 bends. 

Note that in (4.13) the maximum stresses on the outside surface or 

the bend are given since all ot the authors, with the exception ot 
. . 

Findlay, measured on17 outside surface stresses. Findla7' s results 

as g1 ven are those trom the outside surface. The t.r'ue maximum tor 

these bends would actuall,.. have been on the inside surtace. The 

theoretical results in the other graphs are the true maxima which, 

as explained in chapter (3), occur on the outside surface. 

Results tor 900 bends in (4.14) and (4.16) show reasonable 

agreement, bearing in mind the comments made in section (4.2) with 

regard to Pardue and Vigness' and Findlay's experimental techniques. 

However, the S.C.Fs". from Pardue and Vigness were taken flrom [28] 

since these were given tor in-plane bending alone • 
• 

(4.4) Stress Distributions 
. . 

Stress distributions tor flanged bends have only been published 

by' two previous authors, F1ndla7 [99J and Whatham [117J. 

F1Ddlay/ 



Findlay published a detailed set of S.C.Fs for the meridional 

section at e = 00 for a 1800 bend. His results are of particular 

interest since he examined stresses on both the inside and outside 

surfaces. His meridional and circumferential S.C.Fs. are given 

in figures (4.17) and (4.18). Comparison is also given with the 

theoretical results of \>1ha. tham. Close agreement occurs bet\oreen 

theory and experiment at the position ot maximum meridional stress 

but it is poorer towards the intrados and extrados. Experiment 

also shows a higher value for the maximum meridional stress on the 

inside surface. The relatively poor general agreement for this 

bend may be due to the adjustable flange used by Findlay, as 

described in section (4.2). 

In [ll7J Whatham presented stress distributions for two 

90
0 

bends with R/r = 2.86 and 1.905. The meridional and 

circumferential S.C.Fs. for each bend are given in figures (4.19), 

(4.20), (4.21) and (4.22) together with Whatham's and present. 

theories. The distributions demonstrate good general agreement. 

Figures (4.19) and (4.20) also contain Whatham's theoretical 

S.C.Fs. for unnanged bends, which illustrates the change incurred 

by nange constraints. 

... The S.C.Fe. trom bends Nos. 1 and 2 at e = 0 are given in 

figures (4.23), (4.24), (4.25) and (4.26), again these show good 

agreement with the theory. Figure (4.27) shows a comparisCm of the 

theory with the S.C.Fa. from bend No .• 2 at the rigid (slip-on) 

• flange. It can be seen that the experimental nange stresses are 

slightly lower than the theory. As explained in chapter (3), this 

is to be expected because 'real' flanges are not completely rigid. 

From the strain factors given in table (4.2) for gauges 18, 20 

and/ 

'1 
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and 22 it should be noted that the meridional strain at the flange 

was not zero as the theory would predict. This may have been 

because the strain was measured adjacent to but not physically 

at the flange. Alternatively, it may have been because the 

nange did not remain circular. However, the experimental stress 

distribution at the bend centre is in fair agreement with the 

present theory, method No.3, so that any inherent lack of rigidity 

in either the slip-on or the weld-neck flange does not appear to 

have influenced the peak stress unduly. This would appear to 

agree with the suggestion put forward in chapter (3) that the 

maximum stress at the bend centre would be less influenced by' 

the nange dimensions than the stresses at the flange itself. 
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Bend No.2 

Figure (4.2) 
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Bend No.1 Test Rig 

Figure' (4.4) 
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CHAPl'ER .5 

THEORETICAL ANALYSIS OF A SMOOTH BEND 

WITH FLANGED TANGENT PIPES 
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Abstract 

Theoretical solutions for the problem of a smooth pipe bend 

with connected tangent pipes, with flanged ends, under in-plane 

bending, are presented. 
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General displacements in the form of fourier series are suegested 

and these are used to derive the appropriate s~rains using the 

strain-displacement relations. 

The first solution presented makes use of a simplified form 

of the displacements and strains. The total,potential energy is 

formulated and integrated by hand, before being minimised to 

obtain a solution. Flexibility factors which are derived are 

discussed,and compared with the results from other authors. 

A numerical solution is then presented which uses the complete 

strains and displacements. Flexibility and stress concentration 

factors are presented for bends with long tangent pipes over a 

wide range of practical bend geometries. Approximate formulae 

for flexibility and maximum stresses are then given • 

• 



CHAPI'ER (5) 

THEORETICAL ANALYSIS OF A sr100TH BEND tilTH FLANGED TANGElIT PIPE'S 

UNDER IN-PLANE BENDING 
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(5.1) Introduction 

The effect of tangent pipes on the behaviour of smooth bems 

has been investigated experimentruJyb,y many authors over the last 

thirty years. Available evidence ( [891a and b, [90]) sUGGests 

that the effect of tangent pipes 'can be reasonably neglected 

providing the bend angle is greater thnn about 900 • However, 

because of experimental error, it is not uncommon to obtain a 

variation of up to 20% in the results from a series of tests, 

making the conclusion a little uncertain. 
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A number of finite element investigations (e.g. [97], [106], 

[115]) have been published using various different elements and 

programs. Many of these were restricted to a limited range of 

parameters which were of some particular interest to the author 

concerned. Perhaps the most noteworthy exception was that of 

l~atarajan and Blomfield [97], who investigated several forms of 

end constraint, including tangent pipes, over a relatively wide 

range of parameters. They stated that tangents were significant 

even for 900 bends, where the flexibility and stresses could be 

about 15% lower than those of a 1800 bend. Further, they 

. concluded that the degree of significance was affected by the 

bend radius ratio. Their conclusions will be examined in more 

detail later. 

A more analytic approach was adopted by Kalnins [93] to 

solve the problem. He used a combination of multisegment and 

finite difference techniques to solve the governing differential 

shell equations but only gave sample results. Wright et a1. [108] 

attempted to use his computer program but found it gave seemingly. 

anomalous results as was explained in section (1.3). More 

recently I Whatham and Thompson [119] presented an analysis for 

bends/ 



bends with flaneed tangents similar to that used by v!hathan [117] 

for flanged bends {see section (3.l». They concluded that 

flanged tangents do not affect the flexibility or stresses in a 

bend if the tangents are more than one pipe circumference in 

length. Curiously, this was not entirely borne out by the 

results they presented which shOt'led about a 10% lowering of the 

flexibility factors for 900 bends. Only 900 and 1800 bends 

were examined and the results were presented in terms of the 

thickness ratio t/r. A few stress distributions were given but 

no graphs of peak stresses were presented. 

The solution developed in this chapter is an extension of 

the work on flanged bends examined in chapter (3). The tangent 

pipes will be considered with flanged ends which makes the 

displacement boundary conditions Simpler to specify. Flanged 

tangents are relatively common in practical pipelines, particularly 

on ships where ease of maintenance is of primal importance. 

Although flanged bends could be considered as a special case of 

a bend with zero length tangents, its forculation was presented 

separately because the tangent theory .involves a new set of 

boundary conditions at the bend-tangent junction and uses slightly 

different assumptions. The work presented here will generally 

only contain details peculiar to the current problem, the general 

solution procedure being similar to that presented in chapter (3) • 

• 

(5.2) Displacements 

(5.2a) Displacement Formulation! 
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(5.2a) Displ£cement Forr.rulation 

As before, the displacements will be formulated in two 

components, rigid section displacements and distortion displacements, 

each of which is required to satisfy the boundary conditions. The 

definition of the components will be the same as that given in 

section (3.2a). 

The displacements in the current problem are required to 

satisfy the conditions of symmetry and those of the rigid flange 

at the end of the tangent pipe as well as a new set of conditions, 

namely those of continuity between the bend and the tangent. For 

the latter requirement, displacements 'U, ",. and lJ and rotation 

f3e (section (2.2» on the bend must be equal to U,V , w and ~'" 

on the tangent, at the junction. 

In the displacement derivations, use will be made of a 

~on-dimensional co-ordinate along the length of the tangent pipes, 

defined as follows, 

e - 'X 
R 

••• (5.1) 

where )C is the length along the centreline of the bend-tangent 

assembly, measured froni the. bend centre (e = 0), and R is the 

radius of the bend. e is the same co-ordinate as used for the 

bend where X is the arc length along the bend centreline from 

e = O. Note that the overall len~ of the bend-tangent assembly 

centreline, with each tangent of length, €.., is, 

L-=2f.+RoC. 

••• (5.2) 

(5.2b)/ 
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(5.2b) Rigid Section Displacements 

The rigid section displacements for the bend are 

formulated in the manner explained in section (3.2b). The riGid 

section shell displacements 11,., 1JR and Wit can be found from the 

centreline displacements 11.e and Vc. using the follO\·ting equations, 

1A( = Uc. + 'tc. r sin p 

~ = V, cos P , 
where (!, = ~ (Uc - ~ ~ ) 
Uit.= V, sin P 

••• (5.3) 

If the bend centreline displacements at the bend-tangent 

connection are U: and V: and the rotation o~, then the 

centreline displacements for the tangent are, (see fig. (5.1», 
p 

Llc. = Ltc 

••• 

where \/; is the additional part of the rigid section 

displacements contributed b.1 the tangent pipes. For (5.4) to be 

true, VeT and (~vI/~e) must be zero at e = olA. The 

correspo~ding rigid section shell displacements for the tangent 

pipes can be found from, 

. b 
~ = \Jc. + ((c r. sin p v _ -1. '?;V, 

, Oc. - R ~e 

••• 

Note/ 
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Note' that ~ is different for the bend and the tanGent. The 

rigid section displacements as given b,y (5.3) and (5.5) satisfy 

the continuity conditions. 

Note that in the derivation of the above relations, the 

assumption of small displacements was applied throuchout. 

Uc and Vc for the bend" 0 & e ~ ~ (applying symmetry) 

will be taken with the same form as developed in section (3.2b)" 

i.e. 

• •• (5.6) 

b \/" from these" LIt: and Vc are 

••• 

T ~ , Vc and ~ are required to be zero at These 

are satisfied b,y a polynomial , series of the following form" 

••• (5.8) 

• 

This form was found to be better than a trigonometric series for 

this Particular displacement. The first term in series" j = 1, 

is the displacement form of an equivalent solid beam. 

Substituting/ 
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Substituting (5.6), (5.7) and (5.8) into (5.3) and (5.5) 

gives the rigid section shell displacements; 

For the bend, 
./ 

ttt=~ ~ t (9-* SII\l (~az))( \ +- *SIN¢) 

+ t~ D~ ~) SIN (~) ~ 51N¢ 

, j = 1, 2, 3 ---

For the tangent pipe, ~ ~ e 6 b. 
.... ~R. 

~ =t-~D~SIN~~-(~ ~i(~-(~)SlM~))+ 

+~j)",(~-i s,,~~(~) )(9-~) -~ G-J(e-'fi+~ CDS~ ,J., J., 

, j = 1, 2, 3, ---

••• (5.9) 
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(5.2c) Distortion Displacements 

The meridional components of the distortion displacements 

will be taken with the same form as developed in secti9ns (3.2d-f). 

Taking the circumferential displacements with the following form, 

••• (5.10) 

. 
for both the bend and the tangent pipe, would satisfy the three 

. 
displacement continuity conditions, but violate the rotation 

continuity requirement, i.e., 

for the bend, 

for the tangent, 

• 
• • 

/3; = *' (til> Sl~rp -\~J») 
= -1. ~tUD + SIN¢ ('ttl> + J:: ~lJJI» 

R. ~ e . R\ R. ~e 

• •• (5.11) 

~he error in the slope condition from using oont~uOUB series 

displacements of the form in (5.10) is, 
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••• (5.12) 

which is of the order of (~ sin p) x (P!),,&. ; it will be 
"-

seen later that Crn W(¢)/n2 ~ Am U(¢). Note also that 

~: -_ R~ rJ ,..,'" rc at p = O. It will be assumed herein that the above 

term, (5.12), can be neglected and equations (5.10) are sufficient. 

The distortion displacements will be then taken as, 

tq, =~ t c..n (1Jl,. COM jb+ ?Pon51 N n 1> X "Woro c.o!;(m qfJ)-Wn,s I,f(mil tV) 

+ % HJ ('V~COS1(J '1..9)-111.\ SINtJ 'Le)) 

The definition of 1P was given in equation (3.22). "U~, ~ and 

~ as expressed in (5.13) satisfy the symmetry conditions, the 

flange conditions at the end of tangent and the continuity or '\4, 
1) 

\Ji and W» at the joint. Continuity of ~ at the joint is 
• 

only satisfied at ¢ = O. 
. -------~." 

Note that the rigid section displacements satisfied all 

of the boundary conditions exactly. 

", 



(5.3) Strains 

The total displacements can be found b,y adding the rif,id 

section and distortion displacements. The strains are obtained 

qy substituting these into the strain-displacement equations for 

the bend (2.13) and the tangent pipe (2.20). 

Bend: 0 ~ e ~ ol-/2, 

Grf = ~ [f~ (Co,A- B ..... )( 1p~1\ c.osn$6 4- lPOI\ SIN n ¢ ))( 
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If(tpom co-;}(m 'L e)- .'t;."l(m 'Le))+f Hl1/!,J c.o5l~'l.e)-lP~5Itl(Jtz.e))r 

Ee = f. ~((~(I-t-iS'N¢) -~)sltl(~)+ ~~f~jC05~)~S'N¢ \ 

@~ £ A .... (1Jl", =5 n¢ + l/b,.SIN n¢) ('W-bs 0M 'L e) 

+( ~n (-lJ)eI\*SIN rtf + 1U" -hcosn¢)c.o.sf 

~ == f.[~~ (n2G.f\-&nI1X1/J~ CC)Sf1f + 1jb"S/N n¢ ) • 

. >< ("IV ... co?(m '2.9 ) - lPe .. S I ~'( '"It lJ) ) J 



'~=' *'~ [~(~SIJ(~)+ D~~(~~:?c.o~)XI+fslN~)SI~f 

+~~ [~ Amn (lpel\-fit;'~-';1 + ?jJon~ SIN n¢) SIN1 

+ Cn" ( We,J'\ n 5 I N nf -1J>OI\ n COS" ¢) casrf ~ 

+ Bmll (1PeII *' SIN 0$6 - 1/'on * COS n(J) 

. I . " 

.. --f ~ HJ c.oSj210f>~I"J (urz.e)] (r0 
". 

'~'> 

••• (5.14) 

Tangent:/ 
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Tangent: i ~ e ~ fiR 

x (1Vom COS\rf1 'Le) -1p em S'N~mtle)) 

+ ~ loot (1po,lc.os"Qtz..e) - 1l'ej s .. I~'Le»)] 

+?t ~~ AM~(Wet\c.o.sn~.f-1Ut)sINn~ ) (£WL)t. c.os(2tYlQe)] 

~x,s == *~ ~ (Bm" -A~IIX.1p~tlc05n¢ -?Pons I~ fl~ )~) SI N (2m t e)] 

Kr = f-[~~ (flZc,.·-e..·X W. ca.nrf + lib. 5 I ~ n¢' ) 

)( ( ll'om ~s"(m'Le)-1JleM Sl~~m tz,e)) ] 

-t-2~~ CnI\(1ptl\ca;n~ .r 1poo.sll\ln~) fp'L) c.os(? m~e) 

+ 2 ~ H
J 
~ tz)'2-CDS(2j rz.e)] . 

K~~ = ~ [~{! ( ~n ( lP~*SI N n~ -lllM * cos n ¢ ) 

+ Cnn(-~nn .sINn~ + 1PClfl(\ c.osn¢))((Yl~J SIN (1m tIe)] 

••• (5.15) 
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where R' = R + r sin ¢ , 

and , j = 1, 2, 3, ---,JT 

, m = 1, 2, 3, ---,MT 

, 'n = 2, 3, 4, --,NT+I 

It should be noted that some of the above strains are slightly 

discontinuous at the bend-tangent boundary because of the 

assumption regarding slope continuity made earlier. 

(5.4), Solution Using Hand Integration 

(5.4a) Method No.4 

Before describing the more complex numerical procedure 

using the strains given b.1 equations (5.14) and {5.l5}, it is 

worth examining a solution using hand integration and several of 

the assumptions exPlained in chapter (3). 

For the bend the following assumptions are applied. 

1. £. p = 0 , or 'tt = -S~d p (from (3. 25». 

2. '6e~ = 0 , or tAI> = ~ Sf WOd¢d¢ {from (3·39)}. 

3. * sin p« 1 

4. K., neglected 

" 5. Ee = 0 at ¢ = 0 , or Uc= S Vc.d6, (from (3.5». 

Assumptions 1., 2., and 4. are also applied to the tangent pipe 

but/ 



but 3. and 5. are not required. All of the shell displacements 

c~ be derived from V("., V,T and lJJ» which are taken as, 

••• 

The simpler form of ~ in (3.45) was tried but fotmd to give 

poor convergence for loneer tangent pipe lengths. The rigid 

section displacements, from (5.16), became the same as those in 

(5.9) with Fj replaced by Dj, and 1l~ and ~ become, 

Iff"' fIT"' 

V; = ~~Cmo -k SIN rtf> (1Pom COS~'L8)-1peM ~IN'(m'Z.6) 

The displacements and assumptions give the strains as, 

(Symmetric a bout e = 0) 

Bend: O~ t!J E ~ 

€e=*[f~DJ-t(I+c,os(~X(~l-'») SlN~. 

+ ~~ c...(CL>Sn¢ S~>J~ -*SIN np(:oss6 X~ .. castm'l!)':"1/L..sIN~'Le~ 

. -

~ = .p..[ ~ '* Ca. (n'-j) COS n~( 'til"" col(''''1..6) - 1{L. SINY m £.9)] 
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TanGent: ~ ~ e ~ ~R. 

Ex ==. *}j~ 6j (.\~+J)(e-~i-'s'N¢ 

+ 2f~~Ctnt~~C:05o¢c.os~mte)J 

K~ == t. [ ~*' emn (n'Ll) CCl$n ~ (1j'OM castm~ s)- 1Pelfl SI ~2{m '2.. e)~ 

where 

~ = 1, 2, 3, --, Hi 
In 

~ = 1, 2, 3, --- , JT 
J 

, ~ = 2, 4, 6, --, NTx2, 
n 

••• (5.18) 

The total potential energy is found by substituting these 

into, 
N 

V = c f r [E! -I- f1 K~] toR dad ¢ 
o 0 

., .. Ya... 

+c~ ~[~;'.f- ti ~~] r-Rded¢ M ~ 
2. 

where' C ==-" Et 
Q-Y~ 

The rotati.on between the fianged ends of the tangent pi~s, 

~ , is found from 2 b', (Equation (5.5» at e = L/2R as, 
• 

~:: *fD.)(~+SIN(~X~..;*))+~ ~ ~ ~(J.·H) (L/RY 

••• (5.20) 
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Substituting (5.18) and (5.20) into (5.19) and integratinG 

gives, 

where 

., 

j, k = 1, 2, 3, ----, JT 

m, p = 1, 2, 3, ----, MT 

n = 2, 4, 6, ----, NT~~ 

I = !Zoe. (.l~+j)(Rt+~) (e./ij+k-I 
14 . (l+-~-I) 

••• (5.21) 

, :r: =vr3 t 

:£5 =- --i t ~(-if1"f+~SIN(m'Lo() +(_,.)'''~t( ~-~) SIN 00 

:;x:: = 2m ~ \..\ - tt 
~ - cK. 



••• (5.22) 

I. and ~s were given in equations (3.51). Details of the 

integrations are given in appendix (2). 

The total potential energy is minimised bw differentiating 

with respect to each of the displacement coefficientj, 

I . 

~t= ~ 15J :}:" + 1 ~ c;...:f" + ~~ ... :£ .. + ~ 40-< I.o 

••• (5.23) 

where 

-;t" - -I In?.-zn-3) 
..L 20 - I, \: 2.(1 (0-2.) ••• (5.24) 

This g~ves a set of linear simultaneous equations which can 

be solved as described in section (3.4a). The total number of 

equations to be solved i~ (JT x 2 .+ MT x NT). 

The bend nexi bili ty factors are obtained from the . 

definition given in the introduction to chapter (I), and the end 

rotation/ 
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rotation (5.20) i.e. 

t: [])J~ -+- SI~(~J: -t-"1r)) + ~ G:, 2.C.H .. ,)(Q./~).)J - a-l)'~ 

••• (5.25) 

Note that simple beam theory would give ~r as 

M~ -EI 

••• (5.26) 

but that a lower bound energy method sueh as that used herein 

would give, 

Although (5.26) is the more usually accepted form for ~T, 

(5.27) is used in the equation for the flexibility factors (5.25) 

since this removes the tangent pipe end rotation "rhieh would be 

predicted by the present type of theory. ~G is taken in its 

usual form (5.21). 

(5.4b) Flexibility Factors from Method No.4 
• 

The convergence problems for bends with end constraints 

was discussed earlier in section (3.4c). Similar prinCiples will 

be applied in the examination of the convergence of the present 

method./ 
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method. 

Parameters selected for checking convergence \-rere, 

A = 0.1 R/r = 10 ~/r =10 0(= lire! V= 0.3 

The following table gives some flexibility factors obtained usine 

these parameters; 

Table 5.1 - Flexibility Convereence 

A= 0.1, R/r = 10 ,e./r = 10,0(. = I~cj, V= 0.3 

JT MT NT K 

1 1 1 5.14 
1 1 2 6.96 
1 2 1 7.65 
2 1 1 7.48 
2 2 2 13·45 
2 2 3 13·94 
2 3 2 13·94 

3 2 2 14.21 

3 3 3 14.81 
4 4 4 14.90 

5 5 5 14.91 

From table (5.1) it can be seen that the ,flexibility factor 

from the (3, 3, 3) system (JT, Mr, NT) ,using 15 coefficients, 

has converg~d to within 1% of the (5, 5, 5) system using 35 ' 

coe££icients. The (3, 3, 3) system was deemed to be satisfactory. 

and should be valid for A~ 0.1, R/r E;; 10, t/r ~ 10, 0<.-"80·. 

This was confirmed for several other sets of parameters • 
• 

For the current problem, flexibility factors are dependent 

on the pipe factor, ~ J radius ratio, R/r, length/radius ratiO, Ur, 

and bend angle; OC. Figure (5.2) shows the variation of the 

flexibility/ 
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flexibility factor with tangent pipe length for oc= 1800
, ~ = 0.1, 

and R/r = 10, 3, and 2. It can be seen that the flexibility factor 

increases rapidly with increasing length, until the tanGent length 

is approximately (2lTt), the tube circunference, when it approaches 

a virtually constant value which is dependent on the radius ratio. 

Since the tangent pipes have flanged ends, t/r = 0 corresponds to 

a flanged bend. Note that because the displacements used here are 

different from Methods Nos. 1 and 2, the values at ~/r = a are 

slightly different, but they are still lower than flexibilities 

from method No.3. Because of the number of parameters involved 

in the current problem, it would be difficult to present flexibilit 

for various different tangent pipe lengths. Therefore, the 

remainder of the results presented in this section will be for 

e/r = 10, which figure (5.2) shows to be a reasonable approximation 
. 

to an infinite tangent pipe length. These results are suitable for 

bend lengths greater than, 21ft"' , with less than about 2% error 

from length variation. 

Typical results from method No. 4:with (3, 3, 3) are given 

in figures (5.3), .(5.4), (5.5) Blld (5.6) for bend angles of 1800
, 

90o~ 450 and 20° respectiv~ly. Each figure contains curves for 

radius ratios (R/r) of 10, 3, and 2. Figure (5.3) shows a small 

variation with the radius ratio for 180° bends, but this increases 

with the lo,~er bend angles. For R/r = 10, OC,= 180° the flexibility 

factor is about 7% lower than that p~edicted b.Y the axisymmetric 

type Karman (2] analysis, with the (1 - V2 ) term included [41, 

for bends without end constraints. For R/r = 2, cC= 200 it is 

only about one third 'of the corresponding Karman values. Thus the 

flexibility factors are significant~ affected b.y tang~nt pipe end 

constraints/ 
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Constraints for lower bend angles and radius ratios. 

Comparisons of published theoretical and finite element work 

with method No.4 are given in figures (5.7) and (5.8). The 

present results are generally lower than the others which is 

perhaps to be expected trom a lower bound energy type analysis. 

The factors from Rodabaugh et a1 [110], OhtBubo and Watanabe [115] 

and Whatham and Thompson [119] appear to show reasonable 

agreement with each other, however a general conclusion cannot be 

drawn because of the restricted set ot parameters they examined. 

Natarajan and Blomfield's {?7] results are appro~tely 8% 

lower than these results which may be due to the (1 - ,,2) 

being included in their fin! te element,' but not in the work of 

the others. Further evidence ot this is provided by the 

comparisons given by each, of their methods without tangent pipes, 

with the Clark and Reissner [26] asymptotic formula, equation 

(1.15). The latter formula is included in figures (5.7) and (5.8). 

Method No.4 gives fierlbUity factors which are about 12% 

lower than those ot Natarajan and Blomf'ield. This suggests that 

some improvements may be necessary to the present method. Method 

No. °5, to be presented in section (5.5) removes many ot the 

assumptions included in method No.4. 

(5.5) Method No.5: Numerical Solution 

• Formulation 

This'method is basically an extension of method No. 3 to 

include tangent pipes. As the numerical procedure is almost 

identical on11 the changes will be described in detaU along with 

thel 
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the formulation of the total potential energy (T.P.E.) from the 

displace~ents, (5.9) and (5.13), and strains, (5.14) and (5.15), 

developed earlier. 

The complete total potential energy expression tor the 

bend-tangent assembly is, 

s:., 

V = 2C ~ t l(~~ + £,,)' -2.(I-VX EeE:1' - t '6';¢)] r-R' clad;6 

+ 2D Sf[(\)IT K..)'-2(1-)l)(K8K~- K&¢)]tR'ded.1 
~ . . 

;:1; ~ . 

+:<C H t(E!! +E,J'-2(I-IJXEi..Epe - t' 'IS~)]r-R dBd"( 
"'f¥ 'f' 
~.~ 

+ :ZDJ~ [(~.f-l(S-2(H)XKxKr K~)]t"Rc!edf 
'" 

-Mo 

h C - !t were - (1- y2) 
, 

, R = R + r sin p 

Note that the assemblies symmetries have been used in (5.28). 

The rotation between the ends of the tangent pipes, '2S , 1s 

found trom 2 ~~ (equation (5.5» at 9- = L/2R, as, 

The strains and curvatures in equations (5.14) and (5.15) 

can! 
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can be substituted into (5.28) to give the complete T.P.E. 

function. This is then non-dimensionalised using, 

••• (5.30) 

Using this the T.P.E. function (5.28) can be written as, 

(see section (3.5£) 

where for this case, 

i = r S'{[(~+E;,Y-2(Hl)(~eE¢ -i: ~:¢) 
-.!! 0 

'L 

+~t(K;+KJ'Z- 2.(l-V)(~. K?-Ke¢)1] 2 r1eJ.~, 

1- f tec€; +G,.Y"-2(1-l>XEx:9I--l; )'~) 
-l" "' , 

+ at f (K;t KxY- 2(l-V)( K:l:.r<" -Ri?)5] "l decl¢ 

"2 = 1 +-£S1o P ••• (5·31) 

'!'he non-dim9nsiona1ised strains, 6. , and ourvatures if, are, 

, 

Thel 
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The displacement coefficients are non-dimensionalised using, 

, HoS =J:L 
R~o 

••• (5·33) 

Appendix (4) contains the strains trom (5.14) and (5.15) 

in a form which makes programming for a computer relatively 

straightforward. A listing ot the computer program is given 

in Appendix (5). 

(5.5b) Flexibility and Stress Concentration Factors 

The tlexibility factors can be determined trom the end 

rotation (5.29) and the definition given in section (1.1), as 

K = ( ~ - 2 '~T)I '60 

= ~[F; (9£~)SI~(Jf)J +n:~)SIt,J(~+ ~ ').(J+-I) (liRt ]-(I-~) t! 

where , 

'}(T is the end rotation ot one ot the tangent pipes loaded on its 

own, as would be predicted by an energy ansiysis ot the type used 

herein. This causes the additional 'flexibility ot the assembly, 
• 

crea ted by the bend and the tangents to be included in the bend 

flexibility factor so that tlexibility factors will not be 

required for the tangent pipes in the analysis or piping systems. 

Stressl 
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Stress concentration factors (S.C.Fa.) can be determined 

as described in section (3.5i). 

(5.6) Theoretical Results from Method No.5 

(5.6a) Integration Convergence 

In the flanged bend problem, the T.P.E. was integrated 

numerically in the e and ¢ dimensions using an extension of 

Simpson's one third rule (3.5<1). The number of integration 

points found to be necessar,y for convergence of the flexibility 

factors was. P e = 9 and Prj = ~ 7 • In the current problem, the 

T.P.E. function also has to be integrated along the tangent pipe. 

The number of points found necessar,y for this using A = 0.07, 

R/r = 10, e/r = 10, 01. = 180· and v = 0.3 was Px = 9. Pe = 9, 

P:x = 9 and P" = 17 was used for the results given herein unless 

otherwise stated. 

(5.6b) Series Convergenoe 

Series oonvergence was eXamined for X = 0.07, R/r = 10, 

e./r = 10, 0( = \ SO· and v'= 0.3 using the princip~s discussed in 

section (3.4c). As with the_flanged bend, section (3.60), JT = 5, 

MT = 5 and NT = 6 was found to give satisfactory convergence. 

This requires the use of 110 displacement coefficients. 

(5.60) Flexibility Factors from Method No.5 

Typioal variations of nexi bili ty factor with tangent pipe 

length are sho\'tn in figure (5.9). It can be Deen that the 

flexibllit;r/ 
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flexibility at a bend tends to a constant value as the tangent 

pipe length increases. As with method No.4, section (5.4b), 

e/r = 10 is a reasonable approximation to nn infinite tangent 

pipe length and the results obtained from this value can be usod 

for .(!Jr>2 V with less than 2% error from length variation. 

Flexibility factors for bends with connected flanged 

tangents at length greater that 2vr are given in figures (5.10), 

(5.11), (5.12) and (5.13) for 1800 , 90°, 45°-. and 2<1' bends 

respectively. Each figure has curves for bend radius ratios (R/r) 

of 10, 3, and 2. The results were all obtained using t/r = 10. 

The figures show that bends with shorter angles and smo.l1er radius 

ratios have the lowest nexibllities. It can be seen that tangent! 

bend assemblies bave a relatively small variation of flexibility 

with radius ratio, much less than flanged bends. The difference 

between the fie xi bili ties of bends with R/r = 3 and 2 is less than 

6% for bend angles} Ol J greater than 900 , although this increases to 

13% tar 450 bends. The red~ction with bend angle is IIlUOh greater, 

e.g. about 25% between 18)° end 45° for p/r = 3. 
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The variation of flexibility with pipe faotor is approximate17 

linear on the log-log plots for all bend angles and radius ratios, 
.. 

over reasonably wide praotical ranges at pipe factor. Use was 

made at this in deriving the approximate formulae given in figure 

(5.14). The formulae, 

K=~~ · where R/r 10 3 2 

F 1·54 1·50 1.46 

.••• (5.35) 
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employs a correction factor }Jk , given in figure (5.14), which 

is dependent on the bend anele and the radius ratio. These 

formulae have an accuracy better than 5% for flexibilities 

gI'8lter than 2. Generally, they should not be used for K <. 2. 

Comparisons with published theoretical and finite element 

work, and method No.4, are given in figures (5.15) and (5.16). 

The present method agrees rel8:tively closely with the finite 

element work of Nate.rajan and momfie1d. This latter work forms 

the basis ot the results given by the Engineering Sciences Data 

Unit (E.S.D.U.) [129]. and it was from this that the results were 

generally taken. It can be seen that method No.4 predicts 

nexibility factors which are about 12% lower than method No.5. 

This improves at higher A. The flexibility factors given by 

Rodablugh et a1 (no], Ohtsubo and Watanabe [n5.] and Whatham 

and Thompson [119] show reasonable agreement with each other and 

are about 8% higher than those from the present method. As 
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suggested in section (5.4b), this may be due to the familiar (1 - V2) 

term whioh plagued the earlier analyses or bends wi thom end 

constraints. Also given in figures (5.15) &lid (5.16) are the 

fierlbUity factors recommended ~ A.S.M.E. [133]' and JDOst 

other codes (see section (1.4-». Clearl:r this can be seriously 

in error tor smaller angle bends ot short radius. 

(5.6d) 'Stress Concentration Factors !'rom Method Ro. 5 
• 

Stress Dlstribltions 

Some typical distributions for meridional and oIroumferential 

stresses are given in figures (5.17) and (5.18) respectively, for 

C(= 90°, ~::: 0.1, tlr = 10 and V= 0.3. Both figures contain 

graphs/ ' 

., 
, 



graphs for R/r = 10 and 2. 

From figure (5.17) it can be seen that the peak 

meridional stress occurs on the inside surface, close to ¢ = o. 
Note that it is removed toward the intrados bt about 20 for 

R/r = 10 and 60 for R/r = 2, i.e. it moves away from ¢ = 0 as 

R/r reduces. The maximum stress is shown to decrease as R/r 

reduces but this is not always true for other bend geometries, 

as will be seen later. Also, for bends with fiexibUity factors 

less than about three, the maximum meridional stress usually 

occurs on the outside surface at the intrados. The peak stress 

is always at the centre or the bend, e = o. 
Figure (5.18) shows that the position of the maximum 

circumferential stress is dependent on the bend geometry. For 

R/r = 10 it is on the inside surface at about ¢ =-15° and for 

R/r = 2 it is on the outside surface at about ¢ = -32°. For 

bends with higher fiexibUity factors, "&. usually occurs on the 

outside surface, and between ¢ = 0 and the extrados. For bends 

with lower fiexihilities, K <: 2, 

outside surtace at the intrados. 

Maximum Meridional S.C.Fa. 

Maximum meridional S.C.Fs. are given in figures (5.19), 

(5.20), (5.21) and (5.22) for bend angles of 1800, 900, 450 and 

200 respectively, each figure containing curves tor R/r = 10, 3, 
and 2. All resul.ta were obtained ~t e = 0, with Q,/r = 10. 

Figure (5.19) shows that stresses reduce with R/r tor 

0(;= 1800 but for lower bend angles, figures (5.20), (5.21) and 

(5.22), the reverse is more orten true. The change in the shape 

ot/ 

1 
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of the curves, for lower bend' aneles at higher values of the 

pipe factor, A I usually corresponds to the change in the 

position of the peak meridional stress as explained ea.rlier. 

Maximum Circumferential S.C.Fs. 

Maximum circumferential S.C.Fs. are given in figures 

(5.23), (5.24), (5.25) and (5.26) for the same geometries as 

before. 

The complex shapes of these curves are related to the 

changing positions of the maximUm stress as previously discussed. 
" 

At lower pipe factors the maximum circumferential stress 

increases with radius ratio, but it decreases with radius ratio at 

higher factors. 

Overall Maximum S.C.Fs. 

The highest stress for bends with fianged tangents, with 
,. . 

R../r:> 21r, usually is the peak meridional stress (0'.). For low 

bend angles and radius ratios, e.g. a = 20° and R/r = 2, the 
A 

maximum can however be the peak circumferential stress (Oe ). 

An approximate formula for the maximum meridional S.C.F. 

is given in figure (5.27), as 

••• (5.36) 
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This formula, using the oorrection'factor,~, given in figure (5.27) 
• 

bas an accuracy !)t better than 5% for stress tactors greater than 

about 2.5 •. It should only be used. for R/r between 2 ,and 3 and 

bend angles greater than about 200
• 

Comparisons of Theoretical Peak S.C.Fs./ 
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Comparisons of Theoretical Peak S.C.Fs. 

Publications on end effects tend to only present a set 

of values for flexibility factors. Figure (5.28) gives a comparison 

of method No. 5 with most of the available stress data. 

It can be seen that Natarajan and Blomtield's [97J stresses 

are about 10% higher than those from method no. 5, whereas those. 

of Ohtsubo and Watanabe [115] are almost coincident with the 

present values. This is in contrast to the comparison 

obtained for fiexibUity factors. The results from Rodabaugh 

et a1 [no] gi~e roueh agreement with [97]. Also given in 

figure (5.28) are the results from the Clark and Relssner [26] 

asymptotic formula, 

••• (5.37) 

It can be seen that for the particular geometries considered, 

this overestimates the merid1ana1 stresses. 

(5.7) Conclusion 

A numerio, theoretica1 solution technique, method No.5, 

has been presented which provides results for smooth pipe bends 

with connected flanged tangent pipes. The derived flexibility 

and stress concentration factors compare favourably with . 

published theoretical data. Appro~te formulae were developed 

which give the flex1bll1tyand stress factors·over & wide range 

of practical geometries, to within 5~ of those from Method No.5. 

A simpler technique, method no. 4, was examined and was 

shown to give bend flerlb1lit,. factors which were less than ~ 

. lower than those froll method Bo. 5, for pipe faotors greater 

than 0.1. 
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Abstract 

DetaUs are given or in-plane bending tests performed on 

two 900 bend-tangent assemblies. 

The theory developed in chapter (5), method No.5, 1s 

compared against the experimental fierlbility and ma.ximum stress 

factors obtained by present and past authors. Further, detailed 

comparisons are made between theoretical and experimental stress 

distributions for the bend-tangent assemblies. 
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CHAPTER (6) 

EXPERIMENTS ON BENDS WITH TANGENTS AND COMPARISON WITH THEORY 

. (6.1) Test Programme 

(6.2) Comparison of Flexibility Factors from Theory and Experiment 

(6.3) Maximum S.C.Fs. 

(6.4) Experimental Stress Distributions 



(6.1) Test Programme 

Two bends were selected tori testing with subtended angles 

or 900. This angle was chosen tor two reasons, t1rsUy because it 

is probably the most CODmlonly used in practice and secondly, the 

theory suggested tha t it would demonstrate the etfect of the 

tangent pipes •• The dimensions of the bendSare given in the 

following table:-

Bend 
Outside 

fir A Pipe R r t. R/r 
No. Diameter 

3 6.625" 9" 3.25 0.135n 2.n 7·4 0.11 

4 6.625n 9" 3.17" 0.28" 2.84 7·57 0.25 

The dimensions were checked and found to conform to BS 1640 [161J. 

The bends were part or a more extensive experimental programme 

being carried out at the University of Strathclyde. Both 

stainless steel bends, E = 28.2 x 106 lb/in2 and)) = 0.28, were 

supplied bT Mm:n-0 and Miller [160] •. Flanges were welded to the end 

ot the tangent pipes. 

The test procedure was almost identical to that given in 

chapter (4) and in the following only a brief description tor each 

bend will be given. 

. A total of 134 strain gauges were employed on bend No.3 at . 

the positions shown in figures (6.1), (6.2) and (6.3). At 9= 0°, 

I strip' gauges were employed around the position where the 

maximum stress was expected. Each strip had five 2mm gauges which, 

were orientated along the meridian. Details ot these gauges were 

as follows, 
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Type: SHOV1A. R5l - FA 2 

Gauge length: 2mm 

Nominal Resistance: 120 

Gauge Factor: 2.1 

Ordinary 5mm gauges were used opposite each second gauge on the 

strip, orientated along the circumferential direotion. All of the 

strain gauges were temperature oompensated for stainless steel. 

Bend No.3 was tested on the rig shown earlier in figure (4.5). 

Bend No.4 uSed 18 strain gauges at tbe positions given in 

figure (6.4) and was tested in the rig shown earlier in figure 

Readings were taken from the strain gauges at each ot the 

ten load increments. The best straight line was titted to the 

data and the st~ess factors were calculated as described in 

chapter (4). These are given in tables (6.1) altd (6.2) for bends 

Bos. 3 and 4 respectively • 

• 
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Table (6.1) 

Stress Factors tor Bend No.3 

Gauge Stress Gauge Stress Gauge Stress Gauge Stress Gauge Stress 
No. Factor No. Factor No. Factor No. Factor No. Factor 

0 ... 2.20 30 0·34 60 0.10 90 0.37 120 - 5·29 
1 - 1.67 31 1.57 61 1.86 91 1·32 121 - 5.62 

2 0.29 32 - 0.23 62 - 2.62 92 - 0.72 122 - 5.80 

3 0.08 33 1.51 63 0.93 93 2.45 123 - ~.O5 

4 1.58 34 - 2.08 64 - 2.93 94 - 3.65 124 . - 5·94 

5 1.20 35 - 0.42 65 - 5·31- 95 - 0.27 125 - 5.97 
·6 - 1.71 36 - 1.71 66 3.66 96 2.62 126 - 5.75 

7 - 0.48 37 - 3.89 67 - 0.38 97 - 2.94 127 - 6.37 
8 0.31 38 5·31- 68 1.91 98 4.00 l28 - 5·50 
9 - 0.08 39 0.34 69 2.96 99 3.51 129 - 3.68 

10 0.93 40 2.02 70 0.81 100 1.24 130 - 3.10 

11 0.03 41 1.84 71 1.47 101 2.46 131- - 2.1.6 
12 - 1.50 42 1.23 72- .' 4.6 102 0.54 132 - 1.12 

13 0.50 43 2.05 73 - 5.32 103 1."37 133 - 0.10 

14 0.27 44 0·33 74 0.24 104 -
15 - 0.45 45 1.17 75 0.62 105 - 5.51 

. 16 0.82 46 0.03 76 0.24 106 -
17 ·0.23 47 1.74 77 1.90 107 - 6.01 

18 - 0.70 48 - 1.98 7B - 2.62 108 -
19 1.61 49 0.-,6 79 1.30 109 - 5.78 

20 0.25 50 - 2.15 80 - 3.22 no - 6.18 

21 - 1.11 51 - 4.40 81 - 5.52 111 - 5.92 

22 0.88 52 2.89 82 4.17 112 - 5.82 

23 . 0.67 53 - 0.70 83 0.02 113 - 5.47 
24 - 0.05 54 1.89 . 84 1.82 114 - 3.87 
25 1.82 55 2.66 85 3.10 115 - 3·35 . 
26 - 0.16 56 - 3·71 86 0·59 116 - 2.17 
27 - 1.85 57 0.21 87 1.28 117 - 1.23 
28 0·73 58 0.21 88 0.17 118 - 0.12 
29 0.86 59 0.75 89 0.60 119 



Table (6.2) 

Stress Factors for Bend No.4 

Gauge Stress Gauge Stress 
No. Factor No. Factor 

0 - 0·34 9 3·33 
1 1.26 .10 - 1·53 
2 0.09 11 1.62 

3 - 1.29 12 - 2.91 

" - 0.36 13 - 1.56 

5 - 1·37 14 - 1.78 

6 2.67 15 - 2.52 

7 - 1.23 16 - 1.22 

8 1.66 17 - 2·32 

(6.2) Co~ison of Flexibility Factors trom Theory and Experiment 

. Comparison ot the fierlbUit;r factors from method No.5, for 

bend/tangent assemblies (ll/r ~ 2 'Jr ), with those obtained from the 

experiments ot past and pre~ent authors is given. in figures (6.5) 

and (6.6), tor bend angle & of 1800 and 900 respectivel;r. 

As explained in seotion (4.2), the fierlbllit;r factors 

published by Pardue and Vigness [89] ~e an average of faotors 

tor several different types of loading. Their average values are 

gi ~en in figures (6.5) and (6.6) with a vertical. line through the 

averages Indicating the range ot actual values. llthough it is 

. impossible to know which part of the ranges apply to in-plamr 

bending, their flexibility factors show reasonable agreement with 

the present theor,y. 

In! 
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. In [28], Gross and Ford published an experimental 

investigation ot flexibility short radius bends. 'Although not 

intended as such, their results are applicable to the study of 

bends with connected tangentB. Gross and Ford's flexib1li ty 

factors, shown in figure (6.6), are slightly higher than the 

present theory predicts. However, their flexibility factors 

were based on displacement measurements and are not strictly 

comparable to the rotation tlexib1lities given b,y the present 

theory. 

Vissat and Del Buono gave flexibility factors for a series 

or 180° bends in [9oJ, which ~e shown in figure (6.S). As 

before, these were derived using a different flexibility factor 

defini tion !"rom the current one. However, their results compare 

favourably with the theory. 

Imamasa and Uragami [106] obtained experimental 

flexibility factors for bends with connected tangent pipes, 

which are shown in figure (6.6). It can be seen that their results 

show good comparison ~to· the predictions ot the theory. 

(6.3) Maximum S.C.Fs •. 

Comparisons or maximum meridional S.C.Fs. trom tbeor,y and 

experiment on the outside surface are given in figures (6.7) and 

. 800 0 (6.8) tor 1 and 90 bends respectively. The various results on 
o 

both figures Show good comparisons, particularly for the 90 

bend angle. For the 180
0 

bend angle the experimental meridional 

S.C.Fs. are slighUy lower at the higher pipe factors. This may 

be because the experimental S.C.Fs. were measured at f1., = 0, whereas 

tor higher pipe factors, the position or the maximum tends to be 

slight1y/ 
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slightly nearer the intrados. 

The corresponding maximum circumferential S.C.Fs. are 

given in figures (6.9) and (6.10). It can be seen that although 

the overall comparison is favoura~e, the theoretical results 

from method No. 5 show slightly better correlation with the 

peak circumferential stresses from the present experimental 

programme and with those from lmamasa and Uragami. [1C>6J and 

Gross and Ford [28] than with those trom Pardue and Vigness 1139]. 

(6.4) EzEerimenta1 Stress Distributio~s 

Figure (6.11) shows the experimental distribution or 

meridional S.C.Fs. from bend N0.3 along the pipe centreline, ~ = 0, 

together with the corresponding theoretical distribution trom 

method Bo. 5. The experimental stresses are general.ly slightly 

lower than the theory but show reasonat[e agreement. 

Figures (6.12), (6.13) and (6.14) illustrate the . 
distribution ot meridional S.C.Fs. at e= 00

,' e = 22.50 and 

e = 450 respectively, for bend No.3. Each figure shows good 

agreement between theory and experiment. In figure (6.14), the 

stresses from the theory on the bend and tangent sides or the . 

connection at e = 450 are given. As indicated in chapter (5) I 

a slight discontinuity ooours in the stresses at the jUnction due 

to the displacement slope continuity problem discussed in section 

(5.2). However, both . stresses are ~easonably close and show 

• general agreement with the experimental values. The 

circumi'erential S.C.Fs. from bend No.3 are shown in figure (6.15) I 

agairi showing reasonab[e agreement. 

Thel 
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The meridional and circumferential stress distributions 

for bend No.4 are given in figures (6.16) and (6.17), respectively. 

Both figures show a good comparison between theory and experiment. 
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CHAPTER .7 

COMBINED BENDING AND PRESSURE FOR FLANGED BENDS 

AND OTHER POSSIBLE EXTENSIONS TO THE THEORY 
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Abstract 

Some possible extensions of the methods given in chapters (3) 

and (5) are discussed. Method No. 2 is extended to deal with 

combined bending and internal pressure for flanged bends and some 

typical flexibility factors are given. An explanation is 

presented of how to extend methods Nos. 3 and 5 to include pressure. 

Other possible components of loading are then discussed alone with 

their corresponding displacement boundar,y conditions. Two 

alternative types of end constraints are briefly reviewed and 

finally a possible extension of the theory to isothermal 

stationary creep is examined. 

• 
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CHAPI'ER (7) 

Cor'IEINED BENDING AND PRESSURE FOR FLANGED BENDS AND Ol'HER POSSIBLE 

EXTENSIONS TO THE THEORY 
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(7.2) Combined Bending and Internal Pressure 
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(7.1) Introduction 

Results were presented earlier for two of the more important 

smooth pipe bend problems, namely the influence of flange and 

tangent pipe end constraints on bends under in-plane bending. The 

solution technique used in methods no~3 and 5 could be extended 

to examine other aspects of pipe bend behaviour. To have attempted 

to present these herein would, because of space and time 

limitations, have restricted the detailed examination of the major 

problems in chapters (3) and (5). 

In the follo\dng sections a brief review will be given of 

possible ways to extend the numerical solution procedure to 

investigate other material, geometry and loading problems. A 

slightly more detailed investigation, with a few typical results, 

will be given for the problem of a smooth, bend with flanges under 

combined bending and internal pressure. This problem is of 

particular interest since no published results exist for it. For 

tangent pipes, flexibilities for the more practical bend angles 900 

and 1800 are close to the results for bends without end constraints 

and therefore the results of Dodge and Moore (40) for combined 

bending and pressure should be a useful first approximation. 

(7.2) Combined Bending and Internal Pressure 

The analysis of smooth bends, without end constraints, under 

combined bending and pressure has bAen extensively reported in the 

liter~ture. See in particular references 114, 29, 30, 31, 40, 42) 

discussed in section (1.2). The works of Kafka and Dunn [29], 

Rodabaugh and George (31) and Dodge and Moore [40]are of speciai 

interest/ 
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interest in the present context since they employed lower bound type 

energy analyses and their works were more advanced than [14]. The 

conclusion from all of these investigations "Tas tha.t the second 

order pressure effect could significantly reduce the flexibility 

of bends, particularly for bends with low pipe factors (A). None 

of the publications on end effects is known to include combined 

bending and pressure. 

The membrane stresses arising from internal pressure, ? , 
in a toroid are well established and can easily be derived from 

equilibrium considerations as, 

<he = .2.r: 21; ••• (7.1) 

However, these equations are not completely satisfactory in that, 

when the displacements are evaluated via the stress-strain 

relations, they give rise to singularities in displacements. 

Improved solutions are available, e.g. Reissner [1651, but these 

are only minor modifications of (7.1). The above equations are 

suitable for most purposes. The'corresponding strains can be derived 

from (7.1), using the normal stress-atrain relations for a linear 

elastic material as, 

••• (7.2) 

Fori 



It'or combined bendine and pressure the problem is more 

complicated. For a linear elastic analysis, strain~ due to 

pressure are not included in the enerey expression but the T.P.E. 

is modified b,y an extra term involvine the potential of the 

pressure due to the change in area of the cross-section caused b.1 

the distortion displacements. To a first order, the change in 

area is zero but to a second order it can be found as (see Appendix 

(6», 

t.A = ~ ~2Ulr+-W'+1T" + W ~ - 11" WJ cI.~ 
••• 

Since the pressure strains are not included in the T.P.E. but 

are superimposed after a solution has been obtained, then the 

cross-section must be assumed to be inextensible for terms 

involving the pressure. Imposine second order inextensibility on 

(7.3) (see Appendix (6» gives, 

. M==-t fu~r+(w)\(~)(?-r+w)-u-WJ dpl 

••• (7.4) 

For a bend with no end effects the series displacements of the 

form in equations (3.12) were substituted into (7.4) and the 

expression integrated. However, when end effects are included, 

the displacements also vary in the circumferential direction, i.e. 

the change in cross sectional area.varies along the bend, and the 

expression (7.4) has to be integrated with respect to e to give 

the change in volume for the bend. The pressure potential term 

is 'then given 'b,y, 
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n-" 
Pf S~ L~"+(~)\(~)(?r+w) -1] W] cJ~ R'de 

o 0 

••• (7.5) 

It is relatively straightforward to substitute the distortion 

displacements into (7.5) and obtain the necessary modification to 

the T.P.E. but it should be appreciated that a solution will 

involve some five parameters for flanced bends and six for 

tangent-bend assemblies, making a comprehensive survey difficult. 

As an example of the influence of pressure, ~onsider first the 

363 

problem of the fianged bend using method No.2. This method was 

the best of the simpler solutions of the flanged bend problem and 

avoids the complexity of method No.3. Substituting the distortion 

part of the displacements given in (3.55), into (7.5), gives, 

••• (7.6) 

which can be non-dimensionalised using (3.58), i.e. dividing by 

(M 'to /2(1 - V2», to give, 

••• ,(7.7) 

'$ = PR"'" where 
Er-t 

This term is added to the existing T.P.E. expression in (3.50), 

w~ich is then minimised, in the usual manner. Some typical results 

are shown in figures (7.1) and (7.2). It can be seen that pressure 

has more influence When the flexibility factor without pressure is 

higher. 

One/ 



One could also extend the analysis to the most general 

case considered herein, namely method No. 5 for tangent pipes. 

The extension will be outlined but not evaluated. The additional 

energy term for method No. 5 could be determined in a similar 

manner using the displacements given in equations (5.13). Equation 

(7.5) can be non-dimensionalised using (5.30) to give the pressure 

potential as, 

••• (7.8) 

where 

Z =-1 +~SIH~ , 
Note that the second term ,in (7.8) involves the integration of the 

change in area along the tangent pipe. The 2r( ~ ) term in 

equation (7.5) is not included in (7.8) since it can be shown to 

integrate to a zero value.' The integrations in (7.8) could be 

performed numerically in the same way as the strain energy. (See 

section (3.5d». Method No.3 for flanged bends could be 

considered as a special case of method No. 5 with zero length 

tan~ents. 

Once a solution has been obtained. using equations (7.8) and 
. 

(5.31) the fiexibility factors are abtained in the usual way. The 

stresses could be obtained by adding the stresses due to bending, 

equation (3.86) using the new coefficients and the stresses due 

tol 
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to pre~sure, (7.1). 

In [8ll Boyle and Spence pointed out that the above 

type of solution is not entirely correct. B.1 performine a 

nonlinear analysis of a bend without end effects they showed thut 

the flexibility factor was dependent on a further parameter, the 

ratio of bending moment to pressure. They concluded that the 

above type of analysis is adequate for relatively lower pressures. 

(7.3) Other Possible Loadings 

The six basic external components of pipe bend loadine are 

in-plane and out-of-plane bending, torque, in-plane and out-of­

plane shear loading and axial loading. These are illustrated in 

f~gure (7.3). In-plane bending has been extensively examined 

herein using a prescribed displacement type energy technique. 

Most of the boundary conditions for this case were determined 
, 0 

from the two symmetries of the problem i.e. through ¢ = - 9D 

and ¢ = + 900 and through e = 00
• These symmetries also 

,allowed a reduction in the computer solution time b,y a factor of 

four because of the smaller integration requirements. The other 

forms of loading are slightly more difficult. 

One further asset of the in-plane bending moment is that 

the applied and reaction loads are identical for all subtended 

bend angles. For the other types of loading these must differ 

for the maintenance of exterl?-al equilibrium, with the exception 

of a few speCial cases. 

When extending the present techniques to other loadines 

each of theSe points would have to be considered. For any 

particular case it should be relative~ straightforward to specify 

thel 
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the necessary boundary conditions. The in-plane shear t-lnd axial 

loads could"make use of the same rigid section displacements as 

described in sections (3.2b) and (5.2b), however the other loads 

would require something different, but perhaps developed along 

similar lines. The distortion displacements for in-plane loading 

could use the same meridional ftmctions, i • e. u(p), U(p) and U)( ; ) , 

but would require new circumferential series which satisfied the 

new botmdary conditions. These could be determined using fourier 

series in a similar manner to the in-plane bending case using the 

methods in section (3.2d-f). Out-of-plane bendine and shear 

loading, and torque would require complete fourier series, 

involving all even and odd terms in the meridional functions, 

for a solution of the type given herein. 
, 

Of all of the components of loading considered above, 

perhaps the second most important, after in-plane bending, is 

out-of-plane bending. However, it is'probably the most difficult 

loading to obtain a solution for. 

(7.4) Other Types of End Constraint 

The end constraints previously considered are perhaps the 

most common type of bend connections but two other possible fo~ 

are'S' bends and bends with one flange and one tangent pipe as 

shown in figure (7.4). For in-:plane bending, these could be 

examined using the methods developed herein relatively easily. ' . 
A bend with one nange and one tangent could make use of " 

'the rigid section displacements in section (S.2b) and the 

meridional component of the distortion series but would require 

different circumferential series satisfying the new boundar,r 

conditions./ 
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conditions. Since the bend behaviour would be non-synu:tetric the 

whole circumferential length of the assembly would·have to be 

examined. The simplest boundary conditions could be achieved by 

fully fixing the free end of the bend, i.e. putting u, v, w and 

~ equal to zero, and treating the tangent pipe as explained in 

chapter (5). 

The'S' bend is a more difficult problem since one part of 

367 

the bend is beine r opened' and the other r closed' • At the connection 

between the parts, the distortion displacements from each side 

will almost cancel each other but not quite. The circunferential 

components of the distortion series would have to satisfy the 

continuity requirements at the two bend-tangent connections and 

at the bend-bend connection. 

Both of these problems were considered ~ Natarajan and 

Blomfield [ 97] using finite element analysis. They only 

examined a limited range of parameters, but their results suggest 

that the flexibility of a bend with one flange and one tangent 

cannot be approximated by taking an average of the flexibility 

factors for the bends with two flanges and two tangents, as may 

at first be intuitively.imagined. 

(7.5) Creep 

·In recent years, considerable attention has been given to 

the problem of creep in pipework components, particularly smooth 

bends. The techniques desc:r:ibed herein for examining smooth 

bends with end effects could be lpodified to deal with isothermal 

stationary creep conditions following the method given ~ Spence 

[70] • 
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A Norton [67] stationary creep law could be used, i.e • 

••• (7.9) 

together with the approximate strain energy rate equation given 

b,y Mackenzie [166], 

u = re. ~ (t)~ S) [(E.~E.r - (Ee~" --\; i!:~) 
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} 1\+\ 

+ A 1" (( ~~ + K&t ~ (~9 K¢ - K;pS ))]"Ji\ r-R'dedp{ 

••• (7.l0) 

. . 
lihere e and K are the strain and curvature rates. 

The displacement rates could be used with a similar form to the 

. displacements in chapters (3) and (5), and the same thin shell 

strain-displacement (rate) relationships to derive the strain rates. 

These could be substituted into (7.10) which would then be 

minimised to obtain the displacement rate coefficients. Because 

the energy is no longer a quadratic function the minimisation . 

procedure developed in section (3.5c) cannot be used. A direct 

numerical minimisation technique would have to be employed and 

this would involve a considerable increase in the solution time. 

Experiments of this type of procedure wi t.h the earlier problems 

suggests that the necessary time for a fully converged solution 

may exceed the reliability limits of the currently available 

mainframe computers. For a first approximation, some of the 

simplifications used in methods Nos. 1. 2 and 4 could be 

employed. 

• 
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M In-plane Bending 

Mo Out -of-plane Bending 
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V In-plane Shear 
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Basic Components of Loading 
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GENERAL CONCLUSIONS 

A variety ot theoretical solutions describing the behaviour 

ot smooth pipe bends, with nange or tangent pipe end constraints, 

under in-plane bending, have been developed. 

Flanged Bends 

Three different solutions to the flanged bend problem have 

been presented, namely methods nos. 1, 2, and 3. They differ 

from each other mainly by the number ot assumptions involved, 

method No.1 using the most assumptions and method No.3 using 

the least. When compared for various geometries method No.1 

was shown to y1.eld substantially lower bend flexibill ty factors 

than either method No.2 or 3. The ditference was up to 50% 

for loW' radius ratios, R/r .-;; 3, and bend angles, 01.. ~ 900
• 

This was principally due to the assumption ot zero shear strain 

and the assumed insignificance ot the odd meridional tourier 

terms in the ,radial distortion diSplacement. Method No.2, which 

removed these assumptions, gave flexibility factors which were 

less than 12% lower than those trom method No.3 for A'> 0.1. 

This latter difference was minly caused by the importance ot the 

terms in the circumferential distortion series which method No. 2 

ignored. Method Ho. 3, which involved a complex numeri~ 

solution procedure, removed most ot the assumptions of' the other 

methods and gave the highest (and hence best) flexibility factors. 

Method No. 3 demonstrated that 'the incorporation of rigid 

flanges on the ends of a ~nd can cause a significant reduction 

in its flexibility, the flexibUity reducing 'with bend angle and 

radius/ 
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radiUs ratio and increasing as the pipe factor reduces. The 

location and magnitude of the maximum stress on a flanged bend 

was shown to be dependent on the bend angle, radius ratio and pipe 

factor but without any simple trends. The maximum stress may 

occur at the centre of the bend ( e = 0) or at the flange, on the 

inside. or the outside surface and may be in the direction ot 

either ot the principal axes. The maximum stress at the flange 

can be significantly attected by the £lange rigid! ty but the bend 

centre stresses are less influenced. 

Method No.3 was compared with results from the previously 

published nanged bend theories of Thaller-Cheng t95J, Findlay 

(99), Axelrad [104] and What.ham [U7]. Examination of the 

works ot Thailer-Cbeng and Findlay revealed that both contained 

assumptions which the present work bas shown to be largely 

invalid. Comparison with the f'lexihility factors of Axelrad 

showed fair agreement with method No.3 but the agreement was 

better tor higher f'lexibilities, which was consistent with his 

assumptions. Comparison with Wha tha.m' s results showed a good 

general agreement, his flexibUity fa~tors being up to 10% 

higher. 

The theoretical results from method No. 3 compared 

favourably with the tests conducted during the present programme 

ot work. Method Ro. 3 also pelded reasonable agreement with . . 
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much of the published applicable experimental evidence, particularly 

with thatobtalned in the last tan years. It 1s perhaps 

untort:una,te.· that the most Comprehensive set ot experimental data 

on f'langed bends dates back to Pardue and Vigness [89] in 1952 

and the actual details of their tests are not completely clear. 

'there/ 



There is a real need tor a systematic experimental survey 

covering lower pipe factors ( A < 0.1) and lower bend angles 

Bend-Tangent Assemblies 

Two different theoretical solutions have been developed for 

the problem of a smooth pipe bend with conneoted flanged tangent 

pipes, methods Hos. 4 and 5, again differing by their inherent 

assumptions. Method No.4 involved a number of assumptions which 

previously were commonly used and substantiated in the theories 

which ignored end constraints. However, method No.4 was shown 

376 

to give fiexibility factors which were up to I ~ % lower than those 

trom method No.5. The latter method. involved a complex numerical 

solution which allowed the removal ot most of the previous 

assumptions. In method No.5 one partiCular assumption remained, 

involving the continuity of the shell surface slope across the 

connection between the tangent pipe and the bend. The slope given 

by' the assumed displacements was cootinuous at ; = 0 but was 

violated elsewhere to a degree dependent on radius ratio~. 

The flexibUity at bends with conne~ted tangent pipes was 

shown to be appreoiably lower than that predicted b,y anr theoI7 

ignoring end constraints, particularl,. for bend angles less than ~ o. 

Tbe bend ~exibi11t,. was shown to reduoe with tangent:, pipe length, 

t, tor t less than one pipe circumferenoe, 21rr. Flexlbl11tr 
. 

also reduced with bend angle and radius I"B-tio and increased as 

the pipe factor reduced. For bend angles gre!lter than about 200 

the maximum stress on the bend usuall,. occured at, the bend centre 

( e = 0) on the inside surfaoe in the meridional direction. 

Method/ 



Method No.5 gave good agreement when compared with 

publisbed finite element and theoretical results for bends with 

connected tangent pipes. As with the results for bends without 

end constraints, these results show some deviation depending on 

the solution procedure which was adopted, e.g. depending on 

whether or not the (1 - y2) term was involved. 

The theoretical results from method No. 5 compared favourably 

with published experimental data and gave good agreement with the 

tests performed during the present work. Comparison of the 

experimental stress distributions and the published theoretical 

work confirms tha~ the assumption involving the slope continuity 

did not unduly affect the overall behaViour, except locally at 

the jmlction. 

Design Codes 

Comparison of the results presented herein for bends with 

end constraints with the current recommendations in most of the 

present design codes would suggest that the codes need some 

modification. Simple formulae have been suggested which could 

relatively easily be adopted into these codes to describe the 

behaviour of bends with connected long tangent pipes. For bends 

with flanged ends, simple general formulae are not possible but 

a graphical presentation ot the results could be;.used. 
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APPENDIX (1) 

(a) Governing Differential Displacement Equations for a Toroidal Shell 

The governing differential displacement equations for a 

toroidal shell were obtained b.1 substituting the strain-displacement 

equations (2.13) into the constitutive relations (2.l4) and then 

substituting the results into the equilibrium equations (2.15). 

These are given b.1i 

(1) 
where 

rl =6-V)( -1 +')..T)/e ,9, =-eT ,h,= -Tcos? 
.... 

• 
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where, . 

a.,. = t (I + tSIt,J-,)., b,.:: (\ - v)( ~ + ¥ sltl¢) 

d.l = (, -U)(~(SIN~ -~ C.OS'l¢) - .,.~ (SIN¢(C05~(' - Sl~¢) + COS?.¢ ))) 

e2..=- I~)l. + (l-V)f SINYS ,l~ (( 3;)) + (2(I-V)+ ~)T)CO~~ 

(13 O!'1J. + b$ ~-U + C3 p)-u + ~ M + e~ ~U- +:f ~hj + ~ hl[ 
~e?l¢", ?Je~~ ~ e~ 'Oe. ~ ¢I 3 ~ !o ()? 

• ~'2tr . ~1r k ~·W /J' (f(,J 'O'I.(.U ~W + ha1.r+ -t3 '()e2. + ~S ~2.~¢ t- 3 ~ +~ ~~' + mS ~¢'I. +n3 ~¢ 

+ 0 W + b ~~ + ~ 'b'tW + r:; ~3W +S :~h.,J = r-R' a 
s r3 ~ eE '3 ~e. 3 ~¢'be1. 3 ~¢.~e:l. C Vn (3) 

where, 

• 



, 5, =- - ~f 

also 

t.2. E t 
T = I 2. r:L ,C == Q - v') 

(b) Governing Differential Displacement Equations for a cylinder 

. Substituting equations (2.20) into (2.21) and substituting 

the result into (2.22) gives, 

where 

J --T 
0-4- -. L 

where 

b = L , s , d.~ = )} 
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where 

also, 

, b, =-I. C" = =L 
L' L 

T= t? 
,2. r'" 

c -=- E t:­
Q- lJ) 

L = r-
T 
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APPENDIX (2) 

Integration Details, Method No.1 

VC6e)= ~ If [CX:~~(I+~~X~J-I»'J.~ 
o 0 

+ ~~ c:::." c~(c.~n¢SIN~ -to 51N nf c.os¢) 

. + :l,r =t;~ c ... Q;:-:;-t cos nj6 cos~~Q) T If ed~ 

= [~~D.l\~b+(·J-~)S\N(~)+(~- g,.)s,,,(R;) 
+.l.~(tU['f_IV(R1r:Y~_f'SIN(J('\+k)) + SINCi(l-~))('-f>J.)-t- OL s )\) 

2. ~I 0<.)' !A\D£) !.\ ~(~+k) -=1(.\-,,) ~ .lk ~ 

-~~ Cm. ~ i ~ ~ + t(~ - ~)S'N(f) 
+.L ((4)'=-1" SlN lC(lm+.l)) + sIN{!(~m-J»(I-'.I{2Ir~)+ ~ 6 ., ~ 

4 0(. IJ( ;t(~M+J "1i(lM-.l) :2. J{?''''')J 

+~~~ t(1 +iiS .. )(CmE.. (n:~) -C ... c. ... n;~(:+-~ )] 
+ ~ ~ [em. ~(7it ~nJ 

. V(I(~)= ~rr~[~~c: ... (n.-,)c05nfcas"(~rd&cl¢ 
0 0 , 

"Method No.2 

• 

, '-+ ~~ Cn" ( ~e" ( c:.osn; !>IN ~ - * SU·J ,,~ C.OsszS) 
fIIl\ 
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.... '4>on ( SIN. n~ ilNp + t. c:.o:!»n~ c..os¢))c..as"(m!e)J~c!ed.~ 
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= L~~ D~D~ ~ £~+0: -~-ti)6\t~(~)+(~- ~)SIN(Kl) 
. +J./,(sm~_l)(!k!r)1.-\Vs"'J(J(~+R»+ 5IN({(.1-~)(\-b.lIt)+!&b )11 . 

2. ~ 0<.;-, \\ 0(. ~ ~ (l+-R) :If (.1- It) 2. ~R) 

- ~~ cm,DJi £~ ~ !(~~f,r)S\N(~ 
+ .L1(.m)1_1XSINC~(2m-t)) + SIN (=f(2M-l~('-S')(2m») + ~ f, »)~ 

If ~\. 0<. ¥(:2.rn~.)) ~(zM-.l) 2.. ~(21'11 ) 

+ ~ ~ 2~ ~ (, +* bIW\P)(~ Cnn (\;;2 - CI'II~ Cpn+~ n;~~~:;)) 3 
m p n L 

+ ~ f CI'II~ fR (I;,:.t £ A",.., "J~~f (-On_ A,.,... n(~:+J~ f:-t)~ ~ 

+ ~ ~ K [2(~)'<;:':l J ] " 
-prt 

VCtep) = ~-;) ~ I ~ [~~ (CM~-n",J(1&~SINnf -1;>011 ~asn¢) 
CI CI 

"x ~":J SIN (?'lI'>o(VEl)J deJ.? 

= ~'~"2 {!f{C ... -A .. .,)' (*)1 
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Method No.4 

tnr1 

V(Ee) ~ ; ~ ~ [~~ D~ ~(\ + cos(~X(~)~ -f)) SIN ~ 
o 0 

+f'~Cml\( ~ n~ SlN~ -ifi SINn¢ CI::5"X'lPOIfI C0.5J.(rn2'lJ)-1Pent ~I':(I1I'lG)) 

+ 7.[ ~I~' eM" (~'l.J cos nst C05(2,n'l.G)]:t dGdcj 

== [~~ ~l"\ ~ f ~ +( ~ - ;;;)~I~~)+(~- i1T)SIN(~) 
+_1/(1 J"")~I\(( trTrt_,v SIN (I (.l+R)) + ~IN (If(')-IIt.)l(I-~Ia.')+- 0{. ~ \~ 

2.. \! t< '/ -;;:r 1\ if (~R) lE (.)-k) ~ ~k)) 

~ ~~~,B ~ [~ e:-,'>'+- ~'l. &IN(M '2.")+. (-Om+'CtW -~)SIt.J~ 
+ ...L-((rn~,V SIN(",2D<: ... .q;) + SIt.d",'l"- ~J(I-b,.1f.';l)+ ~ ~~) 

2.\.\.0£) 1\ \-X:'i-ld) l~-t)) 2. .. )) 

+ ~~ 21-b. '(~(-l)+" + ~ 5IN(m'2.")(- f)~I+ ~ ~'N~fLtJ.)(-I)fII+i 
IIlpn L l- . ;- t ( !!II~('LOC: (~) + SIN(!z.-,(m-p)(I-SM ,.) + ~bM \\ 

:2.'2 (m'rl') 2~(n\-P) 2. '}) 

( 
- - n'1tt 7'C' . . 0'1+'21\ -'3 ) 3 

x C.n Cp~ ~ ,,'1 - L.1""Cfm'I ":il n (n ... 'a) 

--t-~&~ c.. c (2..rr_~f.!ttz\"(J.J SIN (z«(",+-p» + ~IW(lz"(III-e2l (1- ~p) +-It.. b ',,~l 
~, n "Pn("iZ\.r<.l\fi7, 2\. "Z.~(~) ~~(",-p) 2.. "''WJJ 
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SOLurIOH OF LINEAR SIMOLTANroUS ~UATIONS 

GAUSS ALGORITHM 
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APPENDIX (3) 

Solution or Linear Simultaneous Equations - Gauss Algorithm 

Consider the system or equations, 

au x, + a,'Z. X2. + ____ O,f'I Xn ::;It b, 

a", x, + all. X'Z. +;. - - - Q1n Xn .... b2. , , 
I , 

On, 'X, 

" , , , , . , 
+ a ll ?- 'X 2., + - - - - .a"" "-" == b n 

These can be written in matrix form as follows, 

a,. al~ -- - (l,t') :XI - b, 

Q~, Qz.'Z. a').t\ ~ 
I , , , , 

I 
I \ I 

~. 0,,2. - - - - Olin br\ 

or [A] (x.j = [b1 

(?) 

where [A] is the coerficient matrix, [X3 is the unknown solution 

vector and f b 3 is the kno~ right hand side vector. To el1mina. te 

unknown ~ , it is necessary to first modit'y the coefficient matrix 

and right hand vector, by forward substitution, as follows; 

for i = 1, 2, 3, ~ n - 1 

, j, k = 1 + 1, ---, n 

, 3 = i + 1 ---, n (4) 

. th th 
where a.,,~ is the element in the i row and J column of the':" 

coefficient/ 
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coefficient matrix and b~ the i th element of the right hand side 

vector. When i = n, the nth equation is sol veu for the X" unknown, 

Other unknowns, X"" are found by back substl tution using, 

(6) 

It the coefficient matrix is symmetric, i.e. ~~ = o.~c:, 

then'only the elements of the upper triangle need to be operated on 

during the 'forward substitution using, instead of equation (3) I 

, k = j, j + 1, ---, n 

j = 1 + 1, i + 2, ---, n 

(7) 

This requires slightly more than half of the original operations. 

Bote that a.;.: in equation (3) has become ai. in (7) • 

• 

410 

.. 



411 

APPENDIX ( 4) 

STRAINS FOR COMPUTER SOLUTIOI 



APPElIDIX (4) 

strains for COmputer Solution 

The strains for the nange and tangent pipe problems will 

be given together by mak1 ng use of the Y2. parameter, 

which for a zero length tangent, i.e. t = 0, becomes, 

Therefore, the strains given for the bend become those for a 

flanged bend when t = O. 

The strains given in equations (5.14) for the bend and 

(5.15) for the tangent pipes, using the non-dimensionalisation 

given in equations (5.32) and (5.33), are 
fir/-. \ 

For the bend:. 0" g ~ ~ / .' ( 
/ 

€rp;: [~~(C"'"-B"")C'I as, + fH~IIS'J~ 

te . L ~ ((~J - Dol)" S4 " ~ "'" (F~IL g. ~ I~,.. S. + H" itS) "N s6 ) 
. ~..../ 

+ ~~ (Aft~-c..1L S. + (a.I\~-~~ + c..,wC4) -g,)] if 
~9;;:: [~~ (A~,,: CS + B ... ,,- C,) ~ SJ t 
~ · [~*(C~.'C;-Bm..'C:). $,] 
~ = [~'(( F:,v S. + D.,. Ss)' J -2 a.SIN¢ ~ HJ " SJ) 

(1) 

(2) 

+ ~~ (( AMI ~ C, + C_ tel) .. sta .. (BN\' ct, ~ Cn,,· (fN))' S,)] (li Y 
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K9~ . [{J~(A""t\"CII + 8 .. "," C, + C~,,·C;1)·S,-

- ~ HJ ·S~~ cost! c(fi)] (;21 
For the tangent Pipe: 't ~ Q 6 L/~R 

~ =[~~(Cto\l\ -8"",)" C',·S.+ ~ HJ • sJ·f 
6" = [~G-~' ~ .. SINr; ... f~ A~,,· C!1tl sJ 
~~= [~~ (BMft-A~~).ct,.SaJ 

K~ =[~~(~t\" C7 - B,""It~,) K s.] 

K.. = ~~,r;., ~'SIl.P!"" H"g.)+ ~~ c.. •• c;. S3J~)' 
Kx;=[~~ (6~/C, -t- CmtlkC.s)xSJ (f) 

where, 

~l = lP,.o c.os&(mQS) -1p,...~ SJN~("''29) 

~ = (rn~) S,'" (2 m '2.G) 

9'3 = * '1.)2. cos(~m tz 8) 

. ~= OC ~ SIN&( 4][!) 

rl _ .L fU)"" I~rrs\ 
~5 - 2. \:0( c.cs ,-;;z:-) 

C!o= S,N 1> 

C, = 1/lne cos n¢ + lfJ,.o ~IN n¢ 

c2= (1pn~cosy);6 -t"l/hoSIN n1»[nt 

e3= (-"l/lflf! SIN n~ +1pnoc.os n;) CO$¢/O 
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• 



• 

c~ = (lPne cos nrp + 7pno SIN fl~) SIN ~ 

Cs = (-1p,.L SINn¢ + "w'O c..o.snsh)t,'~~2Pn~ cosn~+ 1JlnoSINn~) f ~ 

c', = ( Wile SIN n¢ -lPflo c.c6 nrp)-k 
C+= ( lPne c..oS nf + lPno SIN or{» 02-

C'g== (1Pnecos n~ +-1/1noSIN n~) f Sl~:~ 

C,= (-1Pne. SIN n tI-t- 1P1\o Cosn¢) ~ f-
ClO = (1J'nt. S I fIJ n ¢ - Wno c.oS n ~ ) ~ r n 

414 

C = LlPne SIN n¢ +WnoCosn¢\f.l-~~ CDsn1>+'lJ1" SINnt)r;.osrj>s,INf>(.t:)':t 
/I . l ,)" n \ n~ 0 ') Z" Fl- R. 

C;I.= E-1pn~ SIN n ~ + 1pt\oc.osn~) n -(tPnec.oSn, +1pnofiIN n¢) COi¢ (-i) 
C,:.-(-1Jh~SIN n¢ + 1PnoC.OS n¢)n 
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APPENDIX (5) 

CO}'IPUrER PROGRAM FOR METHODS NOS. 3 AND 5 

• 



C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

LOWER BOlliD ENERGY A~ALVSIS OF 
PIPE BENDS WI nt RIGID FLANGES 
#J D TAN GEN T PI PES 

FN GO! mOM SON 
DEPT. 0 F M ECHAN I CS 0 F MATERI III.. s. 

IMrLICIT REAL*S CA-H"O-~) 
REIiL* S LAM ( 10) 
REAL*S Ase 5" 25)"ACC 5" 25) 
REAI..*S uce 5" 25)" usc 5" 25)" VQe 5" 25)" cye 25) 
REAL* S DEC 120) 
REAL*S Ce5"S) 
REAL* S Ae 120" 120)" Be 120)" DC 120) 
REAL*S LAMDA"MU"KY . 
REAL*S KXY 
REAL* S BSC 5" S ) 
REAL*S cce 5" 25)" sse 5" 25) 
REAL*S LA"MG" CMe 5" 25)" CEe 5" 25)" ~EC 5" 25) 
REAL* S VCC 5" 25)" VV( 5)" WEC 25)" tJY( 25)" S'fC 25) .. Z C 25) 
REAL*S CICS .. 25)" C2(S .. 25) .. C3es" 25) .. C4CS" 25), C5(S .. 25) 
REAL*S VSC 5, 25), WC 5), KX 
REAL*S CtlCS, 25), C7CS, 25)" CSCS, 25)" C9(S, 25) 
REAL*S CIO(S" 25), CIICS" 25) .. CI2(S" 25) 
REAL* S WETC 25), VT( 5)" L R" C 13( S" 25) 
IN TEG ER E" y" T4 
IN TEG ER P, H, V, TP 
INTEGER RP, CP 

416 

COMMONI ILK 1/01" CE" SE" VC, VV .. sy, 'Z,,, C I" C2" C3, C4, C5" LA" MG .. C 13 
COMMONI ILK 2/J T" M T"N T .. N E" NY, HE" HY" WE" \1Y" RR" AS .. AC, T4 .. N ET .. 1JET .. H ET 
COMMO~I ILK 3/VS, vy" C 6, C7, CS .. C9, C I 0" C 11" C12" CC .. 5S, UC" us" VQ" CV" 5."1 

READ IN PI PE PARAMETERS. 

PIDAl.- PI/BEND ANGLE ·I.E. FOR 90 DEGREE BEND"PIDAl.-2-
LAN - NUMBER OF DIFFERENT LAMDA'S TO BE EXAMINED • RR - BEN 0 RADI US/ PI PE RADI us 
LR - TANGENT PIPE LENGTH/PIPE RADIUS 
MU - RJISSONS RATIO FOR PIPE MATERIAL. 
LAM - LAM oAt S TO BE EXAM IN ED 
.JT - NUMBER OF TER1S IN RIGID DISPLACEMENT SERIES 
MT - NUMBER OF TERiS IN 01 STORTION SERI ES" IN iliETA 01 REC'TION 
NT - NUMBER OF TER1S IN DISTORTION SERIES IN PHI DIRECTION 
SM - DIRECTION OF MOMENT ( +1 FOR OPENING,,-I FOR CLOSING) 
NE - NUMBER OF INTEGRATION POINTS ON BEND IN '!HETA DIREC'TION 
NET - NtMBER OF INTEGRATION POINTS ON TANGENT IN iliETA DIRECTION 
NY - NtMBER OF INTEGRATION POINTS IN 11fE PHI DIRECTION 



417 

C 
C LAMDA=llUCKNES~BENO RAOIUS/(PIPE RADIUS)**2 
C 
C 
C 11iE PI PE RADI US IS nrE RAOI US 0 F nlE TUBE BORE + HAl. F 
C 0 F 1H E nn CKN ESS 0 F THE TUBE SECT! ON. 
C 11iE DEN 0 RAOI US I S mE RAOI US 0 F mE BEN 0 ARC AT mE 
C CENTRELINE (NEUTRAL AXIS) 
C 
C SPECI FYING A ZERO LENG 11i TANGEN T GI VES 11iE RESUL TS FO R A PI PE 
C BEN D WI11i FLANGES. 
C 
C 
C 
C 

c 
c 
c 
c 

3 
C 
C 
C 
12 
13 
15 
24 
16 

.a8 
c 
c 
c 

c 

c 

READ e I".) PI OAI.."LAN" RRlLRlMU 
REA D (I " .) (L A'1 ( I ) " I. I" L A"J ) 
READ (1".)JT"MT"NT 
READ (1".)$M 
READ (l".)NEJNET"NY 
DO 999 ILA= I"LAr'-J 
LAMDA=LAMC ILA) 

SET A'PRAY AN 0 SERI ES PARAM,ETERS 

NN=NT+ 1 
NO=J T. 4+1'1 T.N T* 3 
PI = 3. 141592653600 
P I):: PI OAt. 
AI.. ffiA= PI/PI DAL. 
IA= 120 
DO 3 J= l~NO 
BeJ)=O.o 
DO 3 K= I"NO 
ACJ"K)= 0.0 

nlESE FOfMATS ARE OUT OF' POSITION BUT ARE USED LATER. 
FOR1AT (III' C - SERIES CONSTAIIJTS 'III) 
FO R1 A T (IX,,' MIN '" 5X" 1 00 2" 8X) I I) 
Fa R1 A T (1 x" I 4" 3X" 1 0 C 2X" FS. 4) I ,-
FORiAT (III' A - SERIES CONSTNJTS 'III) 
YO FMA T (/// I //' BEN D AN GL E· '" F'S. 4/ I 

I' PI PE FACTO R" LAM OA.. ." FB. 41 I 

" 

.1' RAOIUS·RATIO· '"FB.411' POISSONS RATIO· ·"FS.4//IIII) 
F'O R1 A T C ///' FL EX I BI L I 1Y FA C TO R. ." F8. 4/ III 1/ ) 

AL=AI..F'HA 
T4 I S SET TO 3 FOR FLANGED BENDS AND 4 FOR TANGENTS 
T4-4 
IF CLR. EQ. 0.0) T4= 3 
Ro- fiR! (L R* 2+ RR*AL) 



: ;,.' c· 
c 

C 
C 
c 
e 
C 
e 
e 
c 

C 
C 
c 
e 
c 

803 
801 

800 
C 

"""-.- . 

C 
e 

($10 

C 

. SET IN TEGAATI0N PARAMETERS. 

E3= O. 51 R. 
E2=AL.* 0.5 
E 1= o. 0 
Y2= PI. O. 5 
Y 1=-Y2 
HET=C E3-E2)/CNET-1) 
H E= ( E 2- E 1) / ( N E- I) 

HY= (Y 2-Y 1) 1 (NY- 1) 

LA=LAM DA*. 2/12. 0 
MG=( 1. C-MU)*2. C 

SET- UP TRI GONOM ETRI C ARRAYS Fa R ftN eTI ON SUBro UTIN E 

EACH FUJCTION IS CALCt11.ATED AT EACH INTEG~ATION rolNT 
nlUS El.IMIMINATING nlE TIME CONSt.~ING fUJCTION 
EVALUATION 5 DURING THE T. P. E SUBROUTINE( flN cn. 

MJ=MT . 
If (JT.GT.MT)MJ-JT 

el RCUM fEREN Tl AI.. FtN eTI ON S 

PIPE BEND 

00 800 E= I"NE 
EE=CE-l>*HE+EI 
WECE)=3. 0+(- I. O).*E 
1 f CE. EQ. leOR. E. EQ.NE)\1EC E)= I. 0 
00 801 M= l .. MJ . 
SE(M .. E)=SINCM*PI*R.*EE*2. C>*M*PI*Fl1. 
CECM .. E>=COSCM*PI*R.*EE •. 2.0).CM*PI*RJ..)**2*2. 0 
IF «-l>**M.GT.O)GOTO 803 
CM CM .. E) = CO SCM* PI * Fl.* EE) ** 2 
GOTO 801 
CM (M .. E) =- SIN CM* PI * R.* EE) ** 2 
CON TI N UE ~-r:" 
00·800 J= l"J T ".~ 

-"VSCJ .. E)=SINCJ*pDtcEEJlCO. S)**2*AL*SM 
VC(J .. £)=0. S.CJ*PD) •• 2*COS(J*POJICEE)*AL*SM. 
CON nNUE1 ~i \.~ ....-! '\ 

".' • 
END roTATIONS 

00 810 J-l"JT 
VVCJ) = AL/2. C- SIN (J* PI/2. 0) 1 CJ* PD) 
V\'(J)=J.PDtcSINCJ*PI/2. C) 
VTCJ) = 2.0. CJ+ 1) * (LRlRR) •• J 
CONTINUE 
If C T4. EQ. 3)GO TO 852 
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C 1fl'lGf.N 1 PI PE 
C 

N EE1'= N E+N E1 
NE1=NE+l 
00 850 E=NEI,NEE1 
EE= C E-N E- I).H E1+ E2 
WETCE)=3. O+C-le O> •• CE-NE) 
If C E. EQ.NE1.0R. E. EQ.NEE1)WETC E)= I. 0 
00 851 M= I"MJ 
SE(M" E) = SIN (M. PI. R.* EE* 2. 0> *M* PI * RL 
CECM" E)=COSCM.PI.R..EE)lc2. 0).CM*PI*R1..)**2*2. 0 
I f (C - I) **M.l.. 1. 0) OHM, E) = CO SUI. Pl. RL* EE) ** 2 
1 f (C-I)**M.GT. 0) OHM, E)=-SlNCM*PI*RL*EE)*.2 

851 CON 1'1 N UE 
DO 850.J-l,J1-----------­
VQ(J i E)~-Al.. 2. a. S1 
1 f (J. G 1'. 1) VQCJ" E) -J* CJ+ 1) * C EE-Al../2. 0) ** CJ- J) * Al..* S1 

850 CON 1'1 N UE ____ -.. • -
852 CONTINUE 
C 

C 
C 

NN=NT+ I 

C M ERI DIONAl.. fU'J CTl ON S 

C 

C 

DO 820 Y= I"NY 
YY= CY- 1) *HY+Y 1 
WY C Y) = 3. 0+ C - I. 0) * * Y 
If (y. EQ. leOR.Y. EQ.NynNCY)· Ie 0 
SYCY)= SIN(YY) 
CYCY)= CO SCYY). 
ZCY)= I. 0+ SYCY)/,RR 
DO 820 N=2,NN 
SY 2= SIN C N *YY) 
CY2=- CO SUJ*YY) 
N P=N- I ' 
I fCC - I) **N.l.. 1. 0) GO . TO 821 

C N - EVEN 
C 

ClCNP .. Y)-CY2 
C2(N P .. Y) ~ CY21 CRF\$N** 2) 
C 3 (N P .. Y) :II - SY 2. CY C Y)1N 
C4CN p, Y)= cy 2* SYCY) 
C5CN P .. Y)=-Z CY) * SY2/N- CY2. cy(y) IOJ** 2*,RR) 
C6CNP,Y)= SY2/N . 
C7(N P, Y)=N** 2* CY2 
C8eN P .. Y)- cy~ SYCY) I CN*. 2* RR) 
C9 CN P, Y) =-Z (Y). RF\$ SY2. CYCY) IN 
C I OCN p, Y) =Z CY) * RF\$ SY 2* CYC Y) *N 

419 

"-',-

• 

C 11CN P, Y)=- SY2$ SYCY) I CN. RR) - cy~ CYCY) * SYCY)/C Z CY)* C J\F\$N) ** 2) 
C 12CN Pol y)--N* SY2- CY.2* CY(Y)I CZ CY). RR) 
C 13CN P .. y) •• SY 2*N ,------------- --.-,,--. ,-

GOro 820 
C 



C N - 0 CD 
C 
821 ClCNP"Y)=SY2 

C2CtJ P" Y) = SY 21 C RR*N** 2) 
C3CNP" Y)=- CY2* CYeY)/N 
C4CN P" Y) =- SY2* SYCY) 
CSCN P" Y) =Z ey) * CY2IN- SY2* CYCY) I C RR*N** 2) 
C 6(N P" Y);:- CY2/N 
C7CN P" Y) =N** 2* $'(2 
C8 CN P" Y) = SY 2* SYCY) I C RR*N** 2) 
C9 eNP" Y)=z CY) * RR* CY 2* CYCY) IN 
C 1 CCN P" Y) =-z CY) * RR* CY2* CYCY) *N 
C l1CN P" Y)= CY2* $'(CY) I CN* RR) - SY2* C,(CY). SYCY)I C Z CY) * C R~N )** 2) 
C 12CN P" Y) =N* CY2- $'(2* CYCY) IC zey) * RR) 
C 13(N p"y)a CY2*N 

820 CON TINUE 
C 
C 
C MATRIX ORDER 
C 

C 
C 
C 
C mE FOLLOWING SECTION CONTAINS ruE MINIMI SATION 
C PRO CEDURE. mE PRESEN T SECTI ON O~lLY cON SI DERS 
C niE QUADRATIC PART OF' mE ENERGY fUNCTION. TO 
C COPE ~lI ru LINEAR AND CONSTANT TER1S IT WOUl..D ' 
C HAVE TO BE MO DI fI ED AS SUGGESTED IN SEcn ON e 3. 5) 
C 0 f MY PHD., ruESI S. niE PRESENT SECTION I S ADEQUATE 
C FOR PRESENT REQUI REMENTS. ' 

C 
C 
C IN I TI ALI SE ARRAY S 
C 

DO 100 Rpa 1" NO 
DC RP) = 0.0 

100 BCRP)=O.O 

c 
c 
c 

NOM I=NO-l 

CALCULATE LEADI~G DIAGONAL TER-tS FOR MATRIX. 

00 1 0 1 RFa 1" NO 
DC RP) = 1. 0 
CALL rtN CTCNO" D" r, RP, RP) 
DEC RP) = F 
AC RP" RP)= f* 2.0 " 

10 1 DC RP) = O. 0 . 

C 
C CALCULATE Off' DIAGONAL, TERiS FOR MATRIX • 
. c LOWER TRIANGLE FOtND fROM SYMMETRY. 
C 

DO 102 RP= I,NOM 1 
I RP= Rf'+ 1 
DC RP) = 1.0 
DO 103 Cpa I RP,NO 
DC CP) = 1.0 
CALL FUJ CTCNa" D" F" cp" RP) 
ACRP" CP). F- DEC RP) - DEC CP) 
AC CP .. RP)· A( RP" CP) 

103 DCCP>=O.O 
l(l? nc RP);: n. (l 

.. 

420 



.. 
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C 
C SET UP RI GH T HA.1\J b SI DE VECTO R. 

C 
DO 104 J= l .. JT 
BCJ)=\lYCJ)*C 1. 0-MU**2)*PI*AL/2. 0 
IF (T4. EO. 4)B(J+JT*3)=VTCJ).C 1. 0-MU**2)*PI*AL/2. 0 

104 SCJ+JT)=vVeJ)*c 1. 0-MU**2)*Pl*AL/2. 0 
C 
C SOLVE MATRIX 
C 

C 
C 
C 

CALL SOl.. VECNO, I A., A., B" D) 

00 400 M= l .. MT 
00 400 N= I .. NT 
M P=J T* T4+M+M T* CN- 1) 
CCM .. N)=DCMP) 
BseM .. N)= oeM P+M T*N T* 2) 

400 ACM .. N)=DCMP+MT*NT> 
C 

WRI TE (2 .. 995) 
995 FO I~A T (11111111 III 

993 

980 

640 

C 
C 
C 

750 
751 

752 

753 
754 
755 

1'.*******************************************************F**' 
2/'*****.*********************************************~~******' 
3111' STRUCTURAL A.'JALYSIS OF A SUOO11i PIPE BE'JD' . 
411' Wlm Fl..ANGEO TA'JGENT PIPES.' 

5111'***************************************************.******.' 
Y'*************~***************~**********************.***.*.'11) 

1.JRI TE (2 .. 99 3) . 
FOR1AT (II' D-SERIES ** V & W RIGID SECTIO:-I DISA..ACEMENTS' 

11' f- SERI ES ** U - CEN TRELIN E RI GI 0 SEcn ON 01 SA..ACEM EN TS' 
3/' H-SERIES ** \1 - CONSTPNT RADIAl. EXPANSION OISA..ACEMENTS'II) 

WRI TE C 2 .. 98 O)J T .. 11T .. NT"NO 
fORiAT (III' NlMBER or TER1S IN RIGIO SERIES" JT- ' .. 16 

11' NU1BER or TEfMS' IN DISTORTION SERIES" NT == ',,16 
I .. 5:-< .. ' ~JT· ' .. 16 
2/' TOTAL NUMBER OF COEffICIENTS" NO :I '"IYII) 

\JRI TE (2" 640) 
FOFMAT (1111' 0 -< SERIES F - SERIES H - SERIES' 

111) 

CALCULATION OF FLEXIBILI TY FACTOR 

FLEX= 0.0 • 
DO 750 J= l .. JT 
FL EX: FL EX+ DCJ) *V'fCJ >. + DeJ+J T). VveJ) 
If C T4. EQ. 4) fl..EX=fLEX+'OeJ+JT*3)*VTeJ) 
WRI TE C 2" 751) DCJ), O(J+J T> .. O(J+J T* 2) 
FOR1AT e IX .. FlO. 4,7X, flO. 4 .. 7X .. FlO. 4) 
IF CT4.NE.4)GO TO 755 
1.JRI TE (2 .. 752) 
FORMAT (III' G - SERl ES'III) 
DO 753 J=l .. JT 
WRI TE C 2 .. 754) oeJ+J T* 3) 
FOR1AT (IX .. FlO. 4) 
CONTINUE 



) 

992 

652 

991 

653 

654 

990 

655 

998 

"997 
996 

YRI T£ (2" 99 2) 
fORiAT (II' U - DI STORTIO~ 01 SPLACFl1~T~/) 
YRI TE (2" 24) 
WRITE (2" I 3) (~" N = 2" Nr.J ) 
00 652 M=I .. MT 
W JU T £ (2" 1 5) M .. C A ( M" N ) .. N:II 1 .. N 1) 

'w' JU TE (2" 9 9 1) 
FORiAT (II' V - DI STORTION DI SR.ACFl1ENT'/) 
WRI TE (2" 653) 
FORiAT (III' D - SERIES CO~STA"JTS 'III) 
WRI TE (2" 13) (~ .. N=2 .. N:1) 

00 654 M= l"MT 
WRI TE (2 .. IS)M .. (BSCM,,~)"N·I .. NT) 

WRITE (2 .. 990) 
FORiAT (II' W - 01 STORTION DI SR.ACEMENT'/) 
WRI TE (2 .. 12) 
WRI TE (2 .. 13)(N .. N= 2" Nr'U 
DO 655 M=1 .. MT 
WRI TE (2 .. IS)M .. (C(M" N) .. N::a: I .. N 1) 

lJRI TE (2" 998)N uN ET .. NY 
FOR1AT (II' NtMEER OF INTEGRATION POINTS. 'I 

I' CI RCUM FEREN TI AI.. POI~ TS .. BEN 0" NE::a:'" I 5 .. 
I' TA"JGENT" NET = '" I 51 
2' M ERI DIONAl.. PaIN TS.. "NY =- ' .. 151/) 

I r (S1. EQ. 1) URI TE (2 .. 997) 
I F (S1. EO. - I> WRI TE (2" 99 6) 
FOR1AT (II' IN-R.A>.JE BENDING .. CLOSING MO:1ENT. 'II) 
FOR1AT (II' IN-ft.ANE BENDING .. OPENING MOMENT. '/1) 
'w'RI TE (2 .. 1 6) Al.. PH AI LAM DA." RR.. M U 
lJRI TE (2" 660) L R 

660 
C 

FOJ11AT (II' TANGEN T PI PE LENG11i/BORE RATIO • '" fS. 4111111) 

C 
C 
C 

CORRECT fLEXI BILl TY FACTOR FOR TA"JGENT 
PIPE FLEXIBILI lY. 

fLEX=fLEX-2. 0*( I-MU**2)*LR/(AL*RR) 
'w'RI TE (2" 18) fL EX 
WRl TE (2 .. 994) " 

994 FOR1AT CIII' STRESS AND STRAIN FACTO AS. 'I 

C 

II' mE MERIDIONA!.. ANGLE AROtND 1llE BORE IS PHI. 'I 
2' nIE CI RCtM FEREN 11 A!.. ANGLE I S nIETA. tIll) 

C CALCULATION OF STRESS FACTORS ANO PRINTING OUT. 

C 
C 

3010 

~50 

"NE1=NE+1 
N EET=N E+N ET 
1 F (T4. EO. 3)N EET::a:N E 
DO "40 I E::a: 1" N EET 

"5= Ie 0 
I F (E. G E. N E 1) S= O. 0 
If (E. EO.NEI>'JRITE(2" 3010) 
FOR1AT (111111' *111. TA"JGENT PIPE 
EE=CE-l>*HE* 180/1'1 
1 F (E. EQ.NEI> EE=EE-HEJIc 180/Pl 
WRI TE (2.1 450) EE 
FOR1AT (111111' 11iETA 1:1 'I F6e 211) 

***'111111) . 

• 

422 



\ -

4SJ 

3000 
3001 
402 

403 

423 

\J m TE C 2, 4 5 l) 
fOR'1AT (IX,' STRAINS',44X,'STRESSES',,' MERIo.',/U., 

l' CI Rcm fEREN 11 AL " 6X, 'M ERI DI ON AL ' 
I, lOX, 'CIRCtMfERENTIAL', 6X, 'MERIDIONAL', lOX, 'SHEAR STRESSES'" 
2' A'J GL E', 3)(, 'I N SI DE', 5)(, '0 UTSI DE', 3)(; 'IN SI DE', /U., '0 UTSI DE', 4X, 
3' INSI DE', S)(, 'OUTSIDE',:)X, 'INSI DE', /U., 'OUTSIDE', 3)(, 'INSI DE', 
44X, 'OUTSI DE"/) . 

V 1= O. 0 
V2= 0.0 
V5= O. 0 
V6= O. 0 
DO 402 J=l,JT 
I F (E. G E. N E 1) GO TO 3000 
Vl=Vl+( DCJ+JT>-DCJ) )*VS(J, E)*RR 
V2= V2+ DCJ+J T> * VSCJ" E) + D(J) * VC(J, E) 
GO TO 3001 
V2= V2+ DCJ+J T* 3). VQ(J, E) 
V5=V5+D(J+JT*2)*CMeJ, E) 
V6= V6+ DCJ+J T* 2) * CECJ, E) 
DO 401 Y= I"NY 
Zy=z(y) 
I f C E. G E. N E l) ZY= Ie 0 
fl=VS 
f2= Vl+C V2+V5)* SYCY) 
I F (E. GE.NEl> f2=V2*SYCY) 
f3= 0.0 
F4= O. 0 
F5=V2* RR* SY(Y).ZY+V6 
F6= 0.0 
00 403 N= I"NT 
00 403 M= I,MT 
fl= fl+C C(M,N)* CM(M, E)-BSCM,N)*CMCM, E»* CUN .. Y) 
F2= F2+ C BSCM .. N) * C3(N .. Y) + CCM" N)* C4CN .. Y) ) * S. Q1 (M" E) 

J+ACM, N) * C2CN" Y). CECH, E) 
f 3= F 3+ ( A ( M, N ) * C C 5 C N'; Y) * S- ( 1. 0- S) * C 6( N" Y) ) + B SC H , N ) * C 6( N , Y) ) 

1* SECt1" E) 
F4= F4+ ( CCH,N). C7CN" Y)- BSCH, N)* C UN, Y» * CM (M .. E) 
F5= F5+ACH, N) * C8 crJ, Y) * CECH .. E) * S+ C(M,N) * C UN, Y) * eECM" E) 

1+ C BSCM"N) * C9CN, Y) + CCM, N) * C 1 OCN, Y» * O1C11 .. E)* S 
F6= F6+ (ACM,N) * C l1CN, Y) + C(M'N)* C 12CN .. Y) + BSCM .. N) * C6CN .. Y» 

1* SECM, E) * S 
F 6= F 6+ ( B SC M" N ) * C 6( N , Y) + C C M, N ) * C 1 3 ( N, Y) ) * SEC M .. E) '" ( I. 0- S) 
CON TINUE 
'E:f= FI* RR 
EX= F2/ZY 
EXY= f3/ZY 

. KY=LA"1 DA* F4/2. 0 
KX=LA"1 DA* fSI ( 2. 0* ( RRJIC ZY) ** 2) 
KXY=LAMDA*F6'( 2. D*RRJlCZY) 
EXI = E.'C-K)( 
EXO=EX+KX 
EYI=EY-KY 
EYO=EY+KY 
MG= 1. O/( 1. 0-MU$*2) 
SX1=C EXI+MU*'E:fI )*MG 
SXO=(EXO+MU*EYO)*MG 
SY1 = C EYI+MU",EXI) *MG 
syo= C EYO+MUJIC EXO) *MG 

• 



404 
401 
999 

c 
c 
c 
c 
c 
c 

1 

SXYI = C EX'f I ~-KXY) IC 1. O+MU) 
SXYO= (EXY/~+KXY)/( 1- O+MU) 
YY=CY;"1).HY* 180. O/Pl-90. 0 
WJU TE C 2, 404)YY, EXI, EXO, EVI, EYO, SXI .. $XO .. SYI, $YO .. $XYI .. SXYO 
FOfMAT C IX .. M. 2, 3X .. IOC F'7. 3, 3X» 
CON TIN UE 
CON TIN UE 
STOP 
END 
SUBROUTINE F'lNCTCNO .. D, F', CP .. RP) 
IMPLICIT REAl.*S (A-H,O-Z) 

~ 
CAL. CU1.ATI ON 0 F' STRAIN 'EN ERN PART 0 F' TO TAL. ro TEN TI AI.. 
ENERGY fOR oom FLANGED BENDS AND EEND/TANG'ENT ASSEMILI ES. 

REAL.S ACC 5, 25), ASC 5, 25) 
REAL.8 UCC 5, 25), USC 5, 25), VQC 5, 25) .. CYC 25) 
REAL.8 DC 120) .. f' 
REAL.S cce 5, 25) .. sse 5 .. ~5) 
REAL*S MG .. LA" CM e 5 .. 25)" CEC 5" 25)" SEC 5" 25) I VCC 5" 25) I vve 5) 
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REAL*S SY( 25), Z C 25), C l( 8, 25), C2e 8, 25) I C3e SI 25), C4C SI 25), esc S, 25) 
REAl.*8 AC 5" S), CC 5, 8), \JEC 25), WYC 25), WETe 2S), C 13C S,,'25) 
REAL*S Be 518), VSC SI 25) I W( 5) ,-
REAL.8 C6CS, 25), C7CSI 25), CSCS, 25), C9CS, 25) 
REAL * SCI 0 C 8" 25), C I l( 8 I ~ 5)" C I 2 C 8 I 25) 
IN TEG ER CPI RP 
INTEGER £,Y,T4 
COMMON/ILK 1/01, CEI SEI VC, VV, Sf, ZI CI, C2, C3, C4, CS,LAlMG, C13 
COMMON I a...K~/J T,MT,N T,N ElNY, HE, HY, \JE, V'f, RR.. AS, AC, T4IN ET, WET" HET 
COMMONI ILK 3/V5" W, C6" C7 .. CS, C9, C I 0, C Il, C' 2, CC,,; 55, UC .. US, va" C'f, 91 
00 I M= l"MT 
00 I N= lINT 
MJ=J T* T4+M+M T* eN- J) 
CCM" rJ> = DCMJ) , 
BCM" N) = DCMJ+M T.N T* 2) 
ACM" N) = DCMJ+M T.N 1) 

MN T=MT*NT 
F= 0.0 
DO 2 E= I .. NE 
VI= o. 0 
V2= o. 0 
V5= o. 0 
V6= o. 0 
V7= O. 0 
J 1= 0 
00 3 J{= I, 2 
J-CP 

• 

IF' (le. EQ. 2)J=RP 
I r CJ.GT.JT*3)GOTO 3 
IF' eJ. G T.J T>J=J~J T 
1 F' CJ. GT.JT)J=J-JT 
I r (J. EQ. J 1) GO TO 3 
JI-J 



3 

4 
2 

VI= VI+ C DCJ+J 1> - DCJ» * VSCJ" E). RR 
V~= V~+ DCJ+J 1> *VSCJ" F.) + DeJ). vceJ" E) 
VS= V5+ DCJ+J T* 2). 01CJ, E) 
Vf;:s V6+ DC J+J T* 2). CECJ, E) 
V7= V7+ DCJ+J T. 2). SECJ" E) 
CON TI~J UE 
00 ~ Y= !,NY 
Fl=V5 
F~= VI + C V2+ VS). SYCY) 
F3= O. 0 
F4= O. 0 
F5= V~* HR. SYCY).Z CY) + V6 
F 6= C - V7 ) * CY C Y) I C Z e Y ) • RR) 
MNI=O 
00 4 K= 1, 2 
MtJ= CP 
IF CK. EGl. 2)MN=RP 
IF CMl-J.LE.JT*T4)GOTO 4 
HN=MN-J T. T4 
1 F (M~J. GT.MNT)MN=MN-MNT 
1 f om. GT.MNT>MN=MN-MNT 
IF CMN. ECl.MNl>GOTO 4 
t1N l=mJ 
N= CMr.J- 1> 1M T+ 1 
H=MN-M T. (N- 1) 
SEE= SEC M" E) 
CEE= CEC M" E) 
Q1E: 01 CM, E) 
A~N=A(M"N) 
];MN=BCM"N) ; 
011'l= CC M" N) . 
CIY=CJ(N"Y) 
C6Y= C6(N, Y) 
Fl= F1 +,e Q1N- B1N) * C IY. Q1 E 
F~ F2+ (Ifom* C3(N" Y) + O1N* C4(N" Y» *.CME+AMN. C2(N" Y)* CEE 
F3= F3+ (At-tN. CS(N" Y) + 8'1:-1* C6Y) * SEE 
F4= F4+( Q1N*C7CN"Y)-EMf'h CIY)*01E 
FS= FS+ (,AMN. C8 eN" Y) + CMN* C IY) * CEE 

1 + ( EMr-J. C9 C N" Y) + CMN. C 1 0 ( N" Y) ) • 01 E 
F6= F6+ C AMN* C 1 J(N, Y) + O1N*C 12(N, Y) + IMN* C6Y). SEE 

CON TIN UE 
F= F+( C Fl. RR+ F2/Z ey» •• 2*ZCY) 

1- C FI* F2* RR- F3*. 2. O. 2S/Z CY» *MG ' 
2+LA*( C F4+F5/C RR>FZCY) ) •• '2) •• 2*Z(Y) 
3- C F4* FS- F6** 2)*MG/C Z CY). R~* 2») 
4*\JE( E) * WCY) *HE*HY 19. 0 

1 F C T4. EO. 3) GO TO 8 
N EET=N E+N ET 
NEI=NE+ 1 , 
00 5 E=NE1"NEET 
V2= O. 0 
VS= 0.0, 
VlP O. 0 
J 1=0 

• 
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00 6 K:r I, 2 
J=CP 
IF (}{.EO.2)J=RP 
IF CJ.GT.Ji*4.0R.J.LE.J"f*2)GO 1'0 6 
J=J-J i* 2 
IF eJ.GT.JT)J:rJ-JT 
IF eJ. EQ.J DGO iO 6 
JI=J 
V2= V2+ OCJ+J T* 3). vaCJ .. E) 
VS= VS+ OCJ+J T. 2) * Q1 (J, E) 
V6=V6+0CJ+JT*2)*CEeJ, E) 

6 cm~ TlNUE 
DO 5 Y= l .. NY 
fl= VS 
f2= V2. sy(y) 
f3= o. 0 
f4= c. C . 
fS= V2. RR* $'(Cy) +V6 
f6= O. 0 
MNl=O 
00 7 K= 1, 2 
MN=CP 
IF (J(.EQ.2)MN=RP 
If (MN. LE.J T* 4) GO TO 7 
MN=MN-JT*4 
I F (MN. G T. MN T>MN=MN-MN T 
If (MN. GT.MNT)MN=MN-MN T 
I F CM~J. EQ.MN 1) GO TO 7 
MNI=MN 
N = (MN - 1) 1M T+ 1 
M=r'1N-~1 T. CN- I) 
AMN=A(M,N) 
B1N=BeM,N) 
CMN= CCM,N) 
fl= f1+( O1N-B1N)*ClCN,Y)*CMCM, E) 
f2= f2+AMtJ*CECM, E>*C2CN,Y) 
F3= F3+ (B1N-AMN >. SECM .. E) * C6(N, Y) 

. F4= F4+ ( O1N* C7CN .. Y)- B1N* C lCN, Y» ... Q1(M ... E) 
FS= f5+ O1N* C lCN .. Y). CECM .. E) . 
f6= f6+ ( EMN* C6CN .. Y) + CiN* C 13(N, Y) ) ... SECM, E) 

7 CONTIr1UE 
5 F-F+« Fl.~R+F2>**2-( Fh: F2*RR-F3**2*O. 2S)*MG 

l+LA* « F4+ FS/RR** 2>** 2- ( F4* FS- F6*.* 2).MG/RR*. 2) 
2)*WET(E)*WYCY)*HET*HY/9.0 

8 CON TlNUE 
RETURN 
END 
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APPENDIX (6) 

SECORD ORDER CRANGE III CROSS-SroTIONAL AREA . 

DUE TO BENDING 

• 



APPENDIX (6) 

(a) Second Order Change in Cross-Sectional Area Due to Bending 

Following Kafka. and Dunn [:2, J, the area covered b,y 

displacement of a segment AB of the meridian to some position A! 8' , 

from the above diagram' is, 

SA= OJ + ®.,+(3) 

where 

'@ = t(rclp +-(r-+w)d¢ -tr) w 

® =1 w (V+d..V) 

(J) = t (( r+w) cl¢ -v-)( d.~ - (U-+d.V)d,¢') 

(1) 

(2) 

Neglecting terms of grea tar t.han second order, the change in area 

of the segment can be found as, 
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The total change in area or the cross-section can be round by 

integrating (3) around the meridia:D, i.e., 

It. A =-.l.. t~(2. w r + W'l.. + V2. + w !!J! - U-~ ) d~ 
u 2 1 d¢ d~ 

o 
(4) 

(b) Second Order Meridian Inextensibility 

The equation governing the second order 1nextensibility of the 

meridian can be determined by putting {AB)2 c {X B')2, where, 

{~)2 = (r d.¢)2. 

(A' !l')2 C «( t"+W)c:lf + (U-+o.u-) _~2 + (dw - (tr-dU-)cLpS) (5) 

Putting (AB) 
2 

c (A' P/ ) 2 and neglecting terms or higher than 

second order gives, 

(6) 

Substituting (6) into (4) gives the change in cross-sectional area 

as, 

.'11" 

f1A =- -~~((~t:~t-r(~('-~+w)-trl~))cL¢ (7) 
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