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THE INFLUENCE OF END CONSTRAINTS
ON PIPE BENDS

A Study of Smooth Pipe Bends with Flange
and Tangent Pipe End Constraints Under
In-Plane Bending

ABSTRACT

The importance of smooth pipe bends in design of piping
systems is well established. Recent publicatioﬁs bave been
increasingly cdncerned with the effect of end constraints on the
behaviour of smooth bends tut there have been relatively few
attempts at a solution to the problem. The divergence between
the results of those which do exist tend to confuse'the picture
for pipework designers. The present thesis is aimed at clarifying
the situation. |

After an historical review of the literature on smooth
bends, a theoretical analysis is formulated for the in-plane
bending pf linear elastic curved pipes with rigid flange
terminations. The method employs the theorem of minimm total
potential energy with suitable kinematically admissible displacements
in the form of fourier serles., Integration and minimisation is
rerformed ﬁumeridally, thereby permitting the rem&val of several
of the assumptions made by previous authors. Results are given
for a wide range of practical bend geométries. These are
compared with the previous theoretical predictions, highlighting
the problems in some earlier works and substantiating more recent

results using different solution procedures. During the



deveiopment of the theory several possible simplifications to
the method are examined. The theoretical predictions are shown
to be in favourable agreement with published experimental data
and with results from tests performed by the author,

The approach is extended to examine the behaviour of smooth
bends with connected tangent plpes under in-pane bending. The
tangent pipes can be of any length and are assumed to be terminated
by rigid flanges. Comprehensive results ere given for bends with
tangent pipes of length greater than one pipe circumference.

Finally, possible extensions of the solution procedure

to other configurations and loadings are discussed.
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NOTATION

with subscripts, displacement coefficient (non-
dimensionalised)

with subscripts, displacement coefficient (non-
dimensionalised)

with subscripts, displacement coefficient (non-

dimensionalised)
Et/(1-V?%)

with subscript, displacement coefficient (non-
dimensionalised)

Et3/12(1- V?)

distortion displacement'subscript
Young's Modulus

with subseript, displacement coefficient (non-
dimensionalised)

with subscript, displacement coefficient (non-
dimensionalised)

with subscript, displacement coefficlent (non-
dimensionalised)

shear moment stress‘resultant
second moment of area, I =T r’t

total number of terms in rigid displacement series
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with subscripts, curvature

flexibility factor

bend tangent assembly centreline length (2& + Re¢)
applied in-plane bending moment

with subscript, moment stress resultant

total number of circumferential terms in distortion
displacement series.

with subscript, force stress resultant

total number of meridional terms in distortion
displacement series

with subscript, number of integration points
radius of pipe bend centreline

R +rsing

with subscript, principal radius of shell cﬁrvature
rigid section displ;cements subseript

shear force resultant

t* /121

strain energy

circunferential rigid se;tion displacement.

total potential energy (non-dimensionalised)
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shear strain (curvilinear co-ordinate system)

(1 + i% sin g)

rigid section displacement coefficient subscript

rigid section displacement coefficient subscript

tangent pipe length

distortion displacement coefficient subscript
distortion displacement coefficient subscript
internal pressure

distortion displacement coefficient subscript
with subseript, shell surface loading
distortion displacement coefficient subscript
ﬁid-surface radius of pipe cross-section
pipe wall thickness

circunferential displacement

tangential displacement

radial displacement

through thickness co-ordinate
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subtended bend angle

with subscript, shell surface rotation

shear strain

rotation between ends of bend

MR o¢/E1

M&/ET

kronecker delta E =1 j=k
=0 j#k

with subscript, strain

angle along bend measured from centre, circumferential
co-ordinate

subscript, circunferential direction
pipe factor, Rt/r2

polssons ratio

R+ 'J,—g- sin g)

RT/L

with subscript, stress

with subscript, stfess factor

with subscript, peak stress factor

meridional angle measured around c¢ross-section
from midway between intrados and extrados
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GENERAL INTRODUCTION: STATEMENT OF THE PROBLEM

With present trends in the power and petro-chemical
industries towards highef operating temperatures and pressures,
problems associated with the design and safety assessment of
pipework systems have become increasingly complex. The importance
of pipework in the overall design of plant can rarely be over
emphasised., It can account for nearly a quarter of the total cost
of an installation. Although many industrial pipelines are
essentially fluid carrying components where flexibility and stressing
are of little consequence there is nevertheless a substantial
minority which operate under such conditions as to warrant detailed
design analyses. Within such analyses the smooth curved pipe bend
merits special attention.

The fundamental problem in piping analyses is to design a
éystem with sufficient flexibility to contend with thermal expansion
loading on the pipeline itself and on the vessels to which it is
comected. The deformations and stresses within the system are
.analysed for protection against failure in service. Fallure is
usualiy assoclated with ffacéure but this is not always true for

some systeﬁs. Excessive deformation causing interference with other
components, leakage‘of bolted flanged joints, intolerable noise and
vitration, etc. can all contribute to system failure.

Perhaps the most important pipeline component in a structural

sense 1s the smooth pipe bend. It's behaviour has attracted the
interest of many authors over the last seventy years. It is now
well established that the flexibility of smooth bends can be orders
of/
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of magnitude higher thean an equivalent length of straight pipe
with the same cross-section geometry when both are subjected to
the same external bending moment., Thus conventional simple beam
theory can seriously over-estimate the étiffness of pipe bends,
except of course when the wall thickness or the bend radius of
curvature is large, when the geometry approaches that of a solid
curved beam and a straight pipe, respectively. The additional
flexibility is associated with the ability of the bend cross-
section to "ovalise" or flatten when a bending moment is applied
to it,

Theoretical enalyses usually consider the smooth bend as a
sector of a toriodal shell under a pure bending moment. The
majority of the work on bends has been based on "strain" or
"complementary" energy concepts although several solutions exist
which make use of the more traditional approach of solving the
governing thin shell equations. Uuntil fecently, most of the
analytical work was concerned with what, in a shell theory sense,
miéht be termed Yaxi-symmetric" solutions where cross-sectional .
deformations and stresses were aséumed +0 be uniform aiong the
length and independant of the subtended engle of the bend., This
type of solution treats the problem as an isolated smooth bend with
no terminal connections. When the bend is part of a piping system
the natural cross-sectional deformations are constrained by the
connectlons - between it and the othg? components, violating the -
axi-symmetrie éssumption.

There exlsts a considerable variance in the results of
experiments conducted on smooth bends with end constraints., Tests
performed on bends, of similar geometries, with flanged constrainté
produced flexibilitles that differed by as much as 100%. However,
the/
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the evidence seemed to suggest, perhaps fortuitously, that bends
with connected tangent pipes supported the theoretical predictions
of the axi-symmetric analyses provided the bend angle was greater
than about 900. Bends with shorter angles did show some reduction.
Long tangents provide the least mode of constraint whereas flanges
constitute the most extreme mode. For the latter case,
experimental eviaence conclusively indicated a substantial reduction
in the flexibility indicated by the axi-symmetric analyses,
particularly for short radius bends with small angles. This is
hardly surprising since flanges prevent any distortion of the
cross-section at the ends of the bend.

In the last fifteen years, several attempts have been made.
to provide an analytical method which solves the problem of smooth
bends with various forms of end terminations. The additional
complications introduced by involving end constraints has meant that
either simplifying assumptions have had to be mzde or complex and
time consuming numerical procedures were‘employed. Often the
techniques were so complicated that only results for geometries
of speclal interest were published. Further, a substantial
divergence existed between the results of these analyses, especially
for flanged bends. The priméfy objectives of the present thesis
are to formulate suitable ﬂheoreticallsolutions for the flexibility
and stress characteristics of smooth'circular pipe bends with rigid
flange and tangent pipe end constraints, to compare the
predictions with published analytical work and to compare the
results with experiments. Primarily, in-plane bending will be
considered but ext;nsions bf the methods to other forms of

loading/



loading and end constraints will be discussed.

An historical review of relevant publications is presented
in chapter (1). Only work which was considered important or of
some interest has been included. The majority of previous
investigators confined their activities to a linear-elastic
examination of circular, smooth bends and neglected end effects.
All the available publications known to the author dealing with
end constraints have been lncluded. Work on some other important
features, such as non-circular cross-sections, creep, etc., are
included for comparative purposes.

Chapter (2) deals with some preliminary theoretical
formulations. Thin shell theory is discussed and equations for a
straight pipe and a smooth bend derived. The theorem of minimum
total potential energy and its application are discussed.

Chapter (3) presents theoretical solutions to the problem

of a smooth bend with flanged ends under in-plane bending.
General displacements in the form of fourier series are derived
which satisfy internal and external compatibility for problem.
- Two solutions methods are then presented which use a simplified
form of these displacemeﬂts with hand integration of the total -
potential energy. These solutions differ by their inherent
assumptions. The results are discussed and compared to other
published analytical solutions. A numeriéal solution procedure
is then presented which uses the cqpplete displacements. These
latter results are discussed and compared to the other solutions.
A comprehensive set of results for flexibilities and stresses for
a wide range of bend geometries are then given.

Chapter (4) cbmpares the theory of chapter (3) with

published/
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publiched experimental datz and results from experiments detailed
herein.

Chapter (5) examines the problem of a smooth bend with
connected tangent pipes wmder in—ﬁlane bending using a similar
treatment to that of chapter (3).

Chapter (6) compares the theory of chapter (5) with past
and present experiments.

Chapter (7) considers possible extensions of the theory
presented in chéptefs (3) and (5) to some other loading, constraint

and geometric configurations.
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CHAPTER .1

SMOOTH PIPE BENDS: AN HISTORICAL REVIEW



Abstract

The present chapter 1s concerned with the historical
development of the theoretical and experimental investigations
associated with smooth pipe bends subjected to various forms of
loading. Publications dealing with and without end constraints
are reviewed separately. Finally, the existing design procedures

are examined.
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CHAPTER (1)

SMOOTH PIPE BENDS: AN HISTORICAL REVIEW

(1.1) Introduction

(1.2) Smooth Pipe Bends Without End Effects

(a) Linear Elastic Analyses

(b) Considerations Other than Linear Elasticity
(1)  Elastic Plastic Behaviour
(ii) Fracture and Fatigue

(iii) Inelastic and Creep Behaviour

(1.3) Smooth Pipe Bends With End Constraints’

(1.4) Current Design Codes




(1.1) Introduction

Piping components can be made from a variety of materials’
and are expected to operate in a diversity of environments. The
material behaviour is usually linear and elastic but non-linear
materials are occasionally used. Pipework 1s often subjected to
temperatures where the effect of creep becomes significant or to
load levels where plasticity occurs.

Smooth bends undergo various forms of applied loading. The
most important of these are in-plane bending, out-of-plane bending
and pressure (see fig. (1.1)). Each produces different
behavioural characteristics. The stresses and‘displacements from
independent analyses of each type of loading cannot be
indiscriminately superimposed on the others to obtain the response
of combined loading.

Piping system design normally assumes that bend cross-sections
are circular and that the wall thickness is the same throughout.
Manufacturing processes usually are such that the attainment of this
ideal is rarely achieved. The most common method of manufacture
involves forcing a section of straight pipe around a specially
shaped die or former. This process often results in some
~ovalisation of the bend cross-sections and non-uniform thinning of
the pipe walls., The quality of bends can be improved by using
welding fabrication or forging but these tend to bg more expensive,
In most situations a certain amount of imperfection is acceptable
occasionally even helpful. .

An extensive volume of work has been written associated
with the aforementioned considerations. In the following sections
of this chapter the more important, and relevant eavaileble

publications/



publications are reviewed. In section (1.2) articles concerned
with smooth pipe bends without end effects, are examined. Section
(1.3) deals with the previous work on end effects and section (1.4)
examines some of the current design codes on the structural
behaviour of smooth bends.

Throughout the present work reference will be made to bend
"flexibility factors". It is worth defining these, even at this
early stage as follows,

The end rotation of the bend under a glven load

£ = The end rotation of a similar length of straight pipe under
the same load

The "end rotation of the bend" is the change in the subtended
angle of the bend when the load 1s applied. This is the normal
flexibility referred to in connection with a smooth bend when it
is considered alone. Later, a further definition will be required
when the bend is connected to two straight pipes. In this case
any change in the flexibility of the straights will be referred to
the bend. Thus only one flexibility factor will be necessary for
the determination of the behaviour of a system of a bend with
straight pipes. The "flexibility factor" for this situation will
be defined as,

The overall end rotation of the aséembly under a given load
K = -2 x the end rotation of one of the straight péctions loaded alone

The end rotation of a straight pipe of the same length as the
bend, under the same load .

where the overall rotation of the aésémbly is the relative rotation
between the loaded ends of the straight pipes. The bend length
referred to is the length of the arc of the mean radius of the

bend equal to (ROL) Qhere R is the mean radius and o€ is the

subtended/

21



subtended angle of the bend. The straight pipe in a bend-

straight combination will be referred to in the present work as a

"tangent pipe'.

Reference will also be made to a "stress concentration
factor® (S.C.F.) which unless otherwise stated, will be defined
as,

-

The elastic stress in a bend under a given load

5.6.%. = The maximim elastic stress in a similar straight
pipe under the same load
When quoting and discussing the work of other people the
notation used will be that of the preéent thesis and not of the
original publications. Similar comments apply to the graphical
presentation of results. An attempt has been made herein to use
similar notation to that of many previous authors on the subject

of pipe bends.



(1.2) Smooth Pipe Bends Without End Effects

(1.2a) Linear Elastic Analyses

The earliest reported work on circular pipe bends was by
BANTLIN [1)" in 1910. He compared the behaviour of curved bars
and thin walled curved tubes under in-plane bending. From his
experiments he concluded that the tubes were about five times more
flexible than simple beam theory predicted. He attributed the
discrepancy to the wrinkles and creases on the inside (intrados)
of the bend which were formed during the manufacturing process.
Bantlin suggested that the wrinkles behaved in a "spring like"
manner.

In 1911, KARMAN [2] developed the first theoretical
solution for smooth curved pipes under in-plane bending. He
demonstrated conclusively that curved tubes were inherently more
flexible than a s0lld curved bar or an equivalent length of
straight pipe. However, he postulated that the 1ncréase in
flexibility was due to the initially circular cross-section tending
to ovalise when the bending moment was applied (see fig. (1.2)).
Karmin assumed that the téngential displacement of the cross-section

could be expressed by the following series,

V=% C,sin 2ng , n=1, 2,3, —-
‘ eee (1.1)

He formulated the strain energy expression using equation (1.1)
and the bend geometry. By minimising the' strain energy he was able

to/

* references are given in the bibliography
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to determine values for the coefficients in the displacement series,
By ‘taking one term in the displacement series, i.e. VU = C, sin 28,
he was able to obtain what is usually referred to as the "Karmin

first approximation" for the flexibility factor, i.e.

12
12X eee (1.2)

By taking two terms in the series, he obtained a second

approximation,

K. = 105+ 4136 + 480
2 - + 536 4

0
600

PR
>

eoe (1.3)

Kirmin also gave numerical results for a third approximation, for
values of N\ he thought were necessary. The term A is herein

referred to as the pipe -factor and is given by,

t R
)\= Tp% ' ees . (1.4)

This is sometimes referred to As the "pipe bend paraﬁeter“ or
"bend characteristic", However, it will be shown later, that
when end effects are introduced then more than one paramester is
required to define the solution. Kirmin's analysis gives results
which depend uniquely on A\ . Figure (1.3) gives a plot of the
numerical values of K given by Kérmin. It confirms his assertion
that the first approximation is valid for A > 0.5, the second
for A > 0.1 and below A= 0.1 a third approximation is necessary.

Karmin's analysis forms the basis of much of the work of
his successors. Many of these publicationé give the impression
that/ |
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that Kirmin only developed the first approximation and that the
second end third were given by those folldwing him, Even today,
the solutions defeloped by contemporary authors for the axi-
symmetric problem, rarely differ from that of K&rm&n by more than
a single figure percentage. It is therefore worth examining the
assumptions he made in some detall. His major assumptions,

stated or implied, were as follows,

1. All cross-sections of the bend were assumed to deform by
the same amount.

2. The mid-surface meridional strain (€g) (sometimes referred
to as the transverse strain) was assumed to be zero.

3. The circumferentiel strain (€g) was assumed to be constant
through the thickness, thereby neglecting the circumferential
curvature (Kg).

A, R >> r. This permitted the 'pipe bore term' (R + r) to be
approximated to R. .

5. 1r >> t. This implies that the solution is only applicable
to thin shells. o

6. Stresses normel to the shell mid-surface were neglected.

7. Shear strains were neglected.

, Assumptions 1. and 7. were because of axisymmetry and pure bending.
Assumption 2., sometimes referred to as the "K&irmén assumption",
&llows the deformation of the crosg—section to be expresséd in
terms of only one displacement component. Assumption 4. limits the
solution to long radius'bendé, however later work will show this
assumption to be useful even for shorter radius bends. Assumptions

5. and 6. are simply two of the basic assumptions of thin shell

theory./



theory. However, it should be noted that Karmfn did not use
equations derived from thin shell theory but obtained his ovm
strain-displacement relationships from bend geometry.

In the same year, 1911, MARBEC [ 3] attempted to solve the
identical problem by assuming that the initially circular cross-
section deformed into an ellipse. He used the same strain-
displacement and strain energy relationships as K&rmin. The

formula he obtained for the flexibility factor was,

144
K = EBN | vee (1.5)

W

Although he used similar assumptions to Kdrmin there are serious
discrepancies between values obtained from (1.2) and (1.5).
Curiously, although this formula has been quoted by many authors
over the years, it was not until nearly 60 years later that Spence
[4] .corrected Marbec's work. Marbec failed to distinguish between
the meridional angle Sf the initially circular croés-section and
the angle used to denote the equation of his ellipse. The
correctea flexibility factor is given by,

2+ 3N -
X= '1—:%%1 ves (1.6)

which is considerably lower than Karmins, It is, however, consistent
with a lower bound strain energy analysis but even the corrected
results are of 1ittle practical value. Both Marbec's and Kirmén's
results are shown in figure (1.4).

LORENZ [5] 1n 1912 published a solution based on a

‘ complementary energy approach in which he specified stresses instead

of/
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of displacements. His first approximation for the flexibility

factor was,

1+
K, = 4’%\’ ' . ees (1.7)

Lorenz compared his and Karman's work with the experiments of
Bantlin and concluded that hisnresult was more accurate. However,
later work disproved this. Lorenz's main inaccuracy, arose from his
choice of stress distribution. He-assumed that the circumferential
stress across the section was linear whereas Kirmfin's analysis
demonstrated that it was not.

In 1923, TIMOSHENKO [6] examined the case of a pipe bend
with a rectangular cross-gection. Using similar assumptions to those
of Karman he was able to determine a flexibility factor in terms of
the bend geometry. .The formulation for a rectangular section is
rather complicated but for a square section of éide b and thickness
t and radius of curvature R, his flexibility factor can be

expressed as,
K 2,232 + 42.18 A _
' F 1,232 + 49,18 X ese (1.8)

where )= Rt

ety

The result has received 1little attention in subsequent literature.

HOVGAARD [ 7] published the first of his contributions in
1926, He attempted to producé an independent solution for in-plane
bending of circular smooth bends by specifying a series for the

"vertical'/
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'"vertical" displacement component. His resulting expression was
identical to that of Karman. He was the first to point out the
existence of a direct meridional stress factor (Cﬁ,) and gave its

peak value as,

%= 5

Xn

1) e (19)

In 1928, HOVGAARD [ 8] published a modification to his
earller paper. He explained that both Karman's and his own results
should be miltiplied by a factor of (1 -)Y). Although this factor
is close to wnity, (0.91 for Y= 0.3) it should be included for
consistency with a lower bound analysis.

WAHL [9] investigated piping systems and derived
expressions for end moments and reactions. He was probably the first
to investigate the effect of internal pressure. He erron;ously
concluded that it had little effect on the flexibility. At around
this time a number of referencés appeared on the analysis of piping
systems, too many to be examined here. However MARKL [10] gives
references to over one hundred such works,

JENKS [11] , in 1§29, extended the results of Karman to the
yt approximation, i.e. using N terms in the displacement series.
His generalised flexibility factor was given by,

_ 10 +

12
Ky = 1+ 12

-]
-

X%

eee (1.9)

where j is a function of N\ given as follows,



N| 0 [0.05 |0 0.2 0.3 0.4 0.5 0.75 1.0

j|1.0]0.7625]0.5684 | 0.3074 | 0.1764| 0.1107 0.0749 | 0.03526 | 0.02026

Jenks, 1like Karman, omitted the (1 - ¥2) term from his
analysis. He also provided data for the determination of stresses
for A values down to 0.05,

At about the same time THULOUP [ 12 to 14] published the
first successful investigation of the combined loading effects of
in-plane bending and internal pressure. His method was similar to
that of K&rmfin, except that he specified the radial rather than the
tangential displacement. Using one term in his solution, he

obtained the following flexibility factor,

L

1

X

g = 10+1 + 484
'T 1412 483 eoe (1.10)

2
vhere 4= -E%- (ff_-)
which reduces to that of Karmain's first approximation for zero
internal pressure.

In [15], TEUDA attempted to present a general solution to
fhe pipe bend problem. His analysis could accomodate arbitrary
initial pipe profiles and removed the assumption of R => r. The
method was mathematically complex involving the use of power series.
However,‘he restricted his presentation to circular cross-sections.

In 1943, KARL [16] published two analyses, using strain
energy énd complementary energy methods, similar to those of Kérméﬁ
and Lorenz. For the strailn energy analysis, he provided the

following/
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following expression for a "third approximation" flexibility

factor,

2446176 X + 2820400 Y
329376 ) + 2822400 ¢

P
+{+

K = 252+ 739
3 ¥ 32
cee (1.11)

In the complementary analysis, Karl used up to four terms in his
stress resultant serles. With one term, the solution was identical

to that of Lorenz. The flexibility factor with four terms was

R, = |+ -3 (261 + 152304 X+ 11280600 X)
b = 4R T (30 N +229792 X + 2125863 N + 180633600 N)

eoe (1.12)

Althoﬁgh Karl appreciated that the strain energy and
complementary energy methods should have given lower and upper
bounds on the flexibility factor, for certain values of )\ , the
lower bound (1.11) gives higher results than the upper bound (1.12).
He seemed to be aware that it had something to do with the (1 - Y?)
term but for some reason included 1t in the upper bound analysis in
such a way ﬁhat some results still'exceeded those of the lower
bound. The éorrect bound is obtained i1f the term is included in
the strain energy solution. Karl also demonstrated that the
inclusion of (r/R) in the complementary soiution only marginally
affected the results. His converged flexibility factors are
included in figure (1.4).

In 1943, VIGNESS [17] was the first to publish an

investigation/



investigation of smooth bends under out-of-plane bending. He
assumed a tangential displacement of the cross-section with the

forn,

V= nzc" cos n# ’ n=1, 2, 3 —

eoe (1.13)

His method, for a small bend segment, was similar to Karmin's.
Vigness obtained a first approximation flexibility factor identical
to Karmin's, The maximum meridional bending stress was also
identical‘bui': its position was moved by 45°, However, out-of-plane
bending introduces a new problem since the applied and reaction
loads are different to maintain external equilibrium for finite
bend angles. For example, an out-of-plane moment becomes a pure
torsion at a position 90° further along the bend, .Thus the overall
rotation for a bend must be found by integrating the effect of
variable loading along ﬁhe bend,

- BESKIN [18], apparently unaware of the work of Lorenz [5]
and Karl [16], performed an analysis for in-plane bending starting
from equilibrium considerétions and an assumed series for the
circumferential stress. He considered more terms in the series
than Lorenz or Karl and was able to show how many terms were necessary
for a converged solution for a specified accuracye.- He also repeated
the analysis for out-of-plane bending.and showed that identical
formulae are obtained for flexibility factors.

BARTHELEMY éeneralised Kérmin's theory for in-plane bending
in [19] and Thuloup's method for coﬁbined bending and pressure in

reference/
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refefence [20]. The effects of initiel ovelity are also considered
in [20]. Barthelemy end DE LEIRIS presented experimental
evidence is support of [19] and [20] in [21)., In (22] they
presented further work and included the influence of thickness
variations in the analysis.

HUBER [23] presented a solution to the problem of a
smooth bend having en initially elliptical cross-section under in-
plane bending. He derived a first spproximation flexibility
factor in terms of pipe parameters and elliptic functions which
were evaluated inA {24] . For a circular cross-section, it

reduces to,

K = 92404 4102
0.5798 + 12 ees (1.14)

VgD

which, when compared to Karman's result, casts some doubt on
Huber's result.

In 1949, REISSNER [25] generalised the equations of
rotationally symmetric thin shells and reduced these to the
governing differential equations of a toroidal shell under in-
plene bending. These formed the basis of CLARK and REISSNER's
[26I solution for smooth curved tubes, under in-plene bending,
uSing'shell theory as distinct from energy methods. Trigonometric
and asymptotic solutions were obtained from the equations. . From
thg latter, the following expression was obtained for the
flexibility factor, .

1.65
A

The ﬁaximum meridional stress was given as

K = vee (1.15)
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5. =+ 1.8 ver (1.16)
g g

Clark end Reissner suggested a limit of applicability as A< 0.3
elthough it can be used with reasonable accuracy up to A= 1.0,
They also obtained the following formula for eliptical cross-

section tubes of major axis 2a and minor axis 2b,

K = B(g) x 1.65
DN eee (1.17)
and
S,= t B  x1.89%2
Ce b/ & eer (1.18)
where

" B(f) = # (b/a)l' gsnu’¢/(|—(|-(b/q)')'s|u‘;6)s/2d¢

Equations (1.17) and (1.18) reduce to (1.15) and (1.16) for
circuler (b/a = 1) cross-sections. These equations should only
be used for b/a less than and close to unity.

In 1952, GROSS .[27] end FORD [28] published the
results of an extensive theoretical and experimental investigation
of pipe bends under various conditions, Tﬁeir experiments were
pPrincipally aimed at confirming the applicability of the existing
A theories for short radius bends, with A\ values as low as 0.048.
They confirmed the need for the use of sufficient terms in the
series solution at low A\ .« The radius ratio R/r was shown to have
little effect on the flexibilities. By using strain gauges on the
inside and ouﬁside of th; bend, they showed the existence of a
small/



small but significant meridional direct stress (Opp ) and derived

its value from equilibrium as,

K
O;D =--Rt C.°$¢S dgbd¢ )
# vee (1.19)

where (g, is the circumferential direct stress. This was added to
the meridional bending stress obtained from Karman's analysls and
gave the maximum stress for & bend on the inside surface., The
above modification has become known as the "Gross correction
factor®. In [27] convenient formulee were given for the
flexibility and stresses obtained from a Karmen's analysis, -
Gross and Ford also conducted experiments on bends with combined
bending and internal pressure and demonstrated that this gives
reduced flexibility factors. Their work attracted a considerable
amount of useful discussion. Among the contfibutefs were PARDUE
& VIGNESS and ZENO who pointed to the influence of end effects on
the results. These will be discussed further in section (1.3).
During the years 1956 and 1957, three important papers
appeared dealing with combined bending and pressure. KAFKA eand
DUNN 129] included the effect of pressure in a strain energy
analysis by adding the work done by the pressure on the cross-
section. ' The extra term was of a second order but proved.
neverthele;s to be significant. The results of some e:reriments
were also given showing reasopable agreement with their theory.
CRANDALL, - and DAHL [30] modifiéd the ehell theory approach of
Clark and Reissner l26i to iInclude the effect of pressure. As

before, they obtained asymptotic and series solutions. The series

solution gave similer results to those of Thuloup and to Kafka

and/



and Dunn, The asymptotic solution predicted even lower
flexibilities than the series solution, especially for higher
pressures, but appeared to compare better with experimental
results,

RODABAUGH and GEORGE [31) generalized the method
given in [29] using a general displecement series for in and
out-of-plene bending. They gave graphical results and presented
experimental work to justify their analysis. The flexibility
factors for in-plene and out—of-plane bending were shown to be
the sameQ

TUREFR and FORD [32], in 1957, attempted an analysis
with as few assumptions as possible. They examined the effect of
each assumption by including and removing the relevant terms,
They concluded that although stress distributions could be
seriously in error, the flexibility factors and maximm stresses
were unlikely to be in error by more than 5 - 10%.

FINDLAY and SPENCE [ 33] reported an experimental
investigation conducted on a 6ft. 6in. diameter 90° smooth bend
(R/r = 2,94, A =0.107). The stress distribution at the centre
of the bend showed good agreement with the theories of Turner &
‘ 'Ford, Karman and Clark & Reissner. They also extracted an
expression for the peak meridional stress (including direct stress
correction) from the asymptotic solution of Clark and Reissner.

This was given as,

& _ _ 1862 — o-e‘fm r [20-v)]
; )

Ve
Cy = Ne (=) X R o

~ For Y= 0.3 this becomes,
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eee (1.20)

JONES [34) reviewed the literature on smooth and mitred
bends. In [35], he presented a generalization of Karmen's
original work. The assumption R >> r was removed and the radial

displacement series was taken as,

(A) =éC,.c.osn§ ’ n= 2’ 3, 4’ 5y —
where 3=6 - 90° eee (1.21)

Up to nine terms in the serlies were used and the earlier
conclusions regarding the unimportance of the R > r assumption
confirmed. Further discussion was also given on convergence and the
reletive insignificence of the odd displacement series.terms,
particularly for larger R/r.

CHENG and THAILER [36] investigated in-plane bending
using Clark & Relssner's method of analysis but included the /R
terms in their solution. They further refined their analysis in
a subsequent paper [37f. Both papers concluded that the
inclusion of r/R had little consequence.

In 1970, SPENCE [4] examined the bounding characteristics
of flexibility factors obtained from minimum total potential or
strain energy methods and complementery potential‘energy methods.
Spence, to some extént, resolved the dilemma concerning the
(1- Vz) term, statiﬁg that a true lower bound is only aéhieved
from & strain energy type analysis if this term is retained in
the flexibility factors. This paper also included the cor:ection

to/
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to Marbec's work mentioned earlier. In 1971 FIKNDLAY and
SPENCE 1381 published theoretical solutions for elliptical
pipe bends under in-plene and out-of-plane bending. The results
from thelir strain energy based method, demonstrate that
ellipticity has a greater influence on out-of-plene bending. 1In
[ 39], they extended their solution to bends of elliptic cross-
section with thickness variations and concluded that normally
accepted values of thinning have virtually no effect on
flexibility.

In 1972, DODGE and MOORE [40] presented a generalization
of Rodbaugh and George's method for in-plane and out-of-plane
bending with internal pressure. They also included the Gross
correction factor in the meridional peak stresses. A computer
program for detailed analysis of pipe bends, based on the work in
[40] was given in [41]. The program, "ELBOW", was used to obtain
the comprehensive set of results given in [40). In the same year,
BLOMFIELD and TURNER [42] published a further contribution on
the same topic and KITCHING and BOND [43] examined the out-of-
'circularity effects in a pipe bend, also with pressure and bending
loads,

J. J. THOMPSON [44] attempted an "exact" solution to the
Probleonf a smooth curved pipe with in-plane bending. His method
involved a matrix solution of the thin shell equations with‘
prescribed displacement serles. The work was intended as a
prelude to an investigation of the influence of end constraints.



(1.2b) Considerations Other than Linear Elasticity

In recent years an increasing number of publications have
been appearing on aspects of pipe bend behaviour other than linear
elesticity. These will be examined in three separate sub-sections.
Occasionally, some of these publications will include a reference
to the effect of end constraints and will be considered again in

section (1.3).

(i) Elastic Plastic Behaviour

In 1967, MARCAL -[45] applied a computer program for
the elastic plastic behaviour of general shells of revolution, to
pipe bends under in-plane bending. He gave the relationship
between the applied bending moment and elastic-plastic strains up
to values of 6%. Collapse moments wefe also given which when
non-dimensionalized compared favourably with the experimental
results given by CROSS and FORD [28l,

BOLT and GREENSTREET [46] presented an experimental
investigation on the plaétic collapse loads for pipe bends under
both in-plane and out-of-plane bending, with and without internal
pressure. They made no attempt to compare their results with
theoretical computations. ' '

In 1973, SPENCE and FINDLAY [47] calculated
theoretical limit moments for smooth circular pipe bends using
two different methods. The first method involved using a suitable
elastic solution for the stresses w&th equations derived from the
interaction of yield surfaces for the 1imit moments. These were
compared with an approximate limif moment derived from a creep
analysls using a Norton power law. The ratio of limit moment to

first/



first yield moment can be found from the ratio of the maximum
stresses where the creep indek is equal to unity with the maximum
stress where the creep index approaches infinity. A year later,
CALLADINE [48] obtained 1imit moments by working directly from
a Mises yield surface with the asymptotic elastic solution
developed by Clark and Reissner [26]. Calladine's results are
surprisingly high for a lower bound’when compared with the bounds
given in [47]. MELLOW and GRIFFiN presented further results
for collapse loads using finite eleﬁent analysis in [49]. SPENCE
and FINDLAY extended their work to bends with non-circular cross-
sections iﬁ [50]. Their results show that ovality introduced by
modern manufecturing processes should have little influence on the
value of the 1imit moments.

Several 'elements' for the plastic analysis of pipe bends
have been developed and included in finite elemené computer
programs (see for instence [51] to [55])« The major problem
with these is the cost and time involved in obtaining a solution
for a particular bend. The cost has generally restricted

published data to a few examples.,

(11) Fracture and Fatigue

F&tigué tests on pipe bends were performed as early as
1935 by DENNISON " [56]. Further experimental studies were
carried out by ROSSHEIM and MARKL [57], MARKL [58], [59]
and LANE [60]. Reference (58] is particularly noteworthy since
it contains' the fesults from over 400 fatigue tests on piping

components, /




compohents, including smooth bends. The results of these tests
have been incorporated into various design procedures.

BLOMFIELD and JACKSON [61] wused an elastic-plastic
cdmputer program with the relevant material property data to
predict the low-cycle fatigue lives of cupro-nickel pipe bends.
They compared the experimental fatigue lives of the bends with
results from elastic and elastic-plastic computer solutions and
published fatlgue data. In conclusion, they stated that the latter
method was more conservative. BLOMFIELD presented further results
in 1621, |

In 1977, DOYEN and MARINI {63) publiéhed the results
of fatigue tests conducted on bends made with ICL 167 CN steel.
Their investigation was principally concerned with defects in
seam welds at the intrados and extrados of bends made in halves.

JAMES [64] employed fracture mechanics techniques to

estimate crack extension in piping elbows,.

(111) Inelastic and Creep Behaviour

In 1957, KACHANOV [65] investigated the effect of
creep on pipe bends under‘in-plane bending. Using a complementary
energy method with a creep power law he derived upper bound,
second approximation, flexibility factors. |

SPENCE eand MACKENZIE [66] considered the same problem
using strain energy and developed lower bound, first approximation,
flexibility factors. The secondary creep law used in their
analysis was that postulated by NORTON [67] giVen'b&, :

E=aac"

. where é-is the strain rate and where B and n are material constants,

't/
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'n' 1s often referred to as the creep index. The flexibility
factors obtained from both methods were shown to be dependent on
the creep index and the pipe factor.

In 1969, SPENCE [68] extended the earlier work to
include up to five terms in his displacement series, A
subsequent paper [69] presented an upper bound analysis. Figure
(1.5) shows flexibility factors from the upper and lower bounds
and clearly demonstrates that creep flexibilities can be
considerably higher than those of an elastic analysis., [70]
details the previous work of Spence together with 'improvements!
to the upper and lower boﬁnd analyses. Stress distributions,
maximm stress factors and reference stresses are all presented
in some detail. Some of the work developed in [70] was
subsequently presented in [(71] and [72]. [70] contained
some work on the creep of bipe bends with elliptical cross-
section which was expanded in [73al, [73b] and [74]. Further
work by Spence on creep in short radius bends was presented in [7P5].
These publications gave factors fbr stresses and flexibilities for
a range'of geometries suitable for design.

In 1973, WORKMAN .and RODABAUGH [76] examined the
effect of creep relaxation on a.piping syétém operating at high
temperature with particulér interest focused on pipe bends. They
reviewed the earlier work of Kachanov and Spence but failed to
notice Kachanov's typographical error in’stating the pipe factor
| as JtR/r and.failed to appreciate the reason for the inclusion
of the (1 - v2) type term in Spence's lower bound analysis. In
the discussion to [76]', Spence pointed these out and further
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errors in their work. Workman and Rodabeugh published another
paper [77] & year later.

Several attempts at a solution to the creep problem were
published between 1973 and 1975, [51], (521, (78] aﬁd (79
using finite elements. However, results are only available for a
few typical geometries which were of particular interest to the
respective authors,

In 1975, BOYLE [80] presented a dissertation on
rational creep mechanies with further work on creep in pipe bends.
He approached the problem using a numerical solution to the non-
linear thin shell equations developed in [80]. Boyle compared
the non-linear solution of pressurized curved tubes with the
earlier work, which included only non-linear terms involving the
pressure. His results suggest that the linear analysis could be in
error for high ratios of bending moment to ﬁressure (see [81]1). He
also performed a redistribution analysis to examine traﬁsient creep
in pipe bends. Aﬁ important conclusion from his work was that the
steady state results of Spence were verified.

SPENCE and BOYLE - (82] developed an analysis for out-
of-plane bending of a curved pipe in creep. As indicated eaflier,
out-of-plane bending of bends with finite bend angles involves a |
combination of bending and torsion which has to be included in a
creep enalysis., A solution was achieved by minimising the total
potential energy rate. Their results were presented in terms of an
"energy factor® becausg of the combined loading. Spence and Boyle
published two further papers in 1977, the first [83] on the
redistribution analysis in [80], and the second [84] on the creep
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analysis of piping systems,

GRIFFITH and RODABAUGH [85] published results of
creep tests conducted on 4 inch, schedule 10, pipe assemblies.
IMAZU et al. [86] reported the results of tests conducted on
12 inch, schedule 20, type 304 stainless steel pipe assemblies. In
the latter work, the comparison between the experiment and the
finite element program [52] was disappointing. The authors
attributed the difference to the choice of material constitutive
equation and the influence of the tangent pipe end constraints.

In 1979, IMAZU and NAKUMORA [87] developed two
simplified creep buckling analyses of pipe bends under in-plane
bending. The two methods gave comparable results énd showed some
correlation with experiments. The simpler of them was based on
Spence's results for elliptical bends by updating the flattening
of the'cross-section as creep proceeded.

In recent years, an attempt has been made to establish en
international benchmark solution to the creep problem td provide
a standard against which computer programs could be verified.
Spence and Boyle in [88], compared the results of inelastic
computer prograns agaihst the available . .benchmark data, concluding
that sufficient information is available for the assessment of -

simple piping configurations.

(1.3) Smooth Pipe Bends with End Constraints

This section will be concerned with publications which
contribute information to the study of smooth curved pipes with
end constraints (figure (1.6)). Several authors speculated on the

influence of end constraints but only those presenting factual data

will/
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will be considered. Only a brief examination will be given here
since detailed discussion and comparison will be made later.

In 1945, SYMONDS and VIGNESS, in the discussion to
Beskin's péper 18], presented some experimental results which
demonstrated the importence of end effects. For a bend with a
pipe factor A= 0.043 and r/R = 3 they gave the following

flexibility factors,

Bend Constraint Flexibility Factor

180° ' tangent pipes 37
90° tangent pipes 32
90° one flange and one tangent 18
90° two flanges 8

The flexibility factor from a theory without end effects, like that
. given in equation (1.15), would be in the region of 38.4. Although
there is some doubt about the quality of the results, there is no
doubting the obvious conclusions which can be drawn. The most
severe form of constraint was clearly flanges which substantially
reducéd the flexibility of émooth bends. Tangent pipes had some
influence particularly at the shorter bend angle.

In 1951, PARDUE and VIGNESS [89al published the
results of an extensive iﬁvestigatién'into the effect of end
constraints on short.radius bends confirming earlier conclusions.

A more compréhensive report was published two years later [89H .
Pardue and Vigness investigated beﬁds with subtended angles of 180?
90° and 45° with two tangent pipes, one tangent plus one flange and
two flanges. In-plane bending, out-of-plane bending, torque and
shear ioads were éll examined. Several of their conclusions are

worth stating at this stage. They concluded that flexibility

factors/



factors and stresses, for bends where end constraints are importent,
depend on the pipe factor (N\), bend angle (o<), radius ratio (R/r)
and the type of loading. Typical results from Pa;due and Vigness
are given in figure (1.7) for 90° bends with flanges.

GROSS and FORD [28] 4in their experimental study
determined the variation of the ovalisation along the bends with
flanged tangents. The flattening was shown to progressively
decrease away from the centre section of the bend and along the
tangent pipe. In the discussion following (38], PARDUE and
VIGNESS published further stress and flexibility factors for
| flanged bends. They also pointed out that the maxirum meridional
stress factor (éh) shifted from midway between the intrados and
extrados (pipe centreline), towards the intrados, as the bend
length decreased and end constraints became more rigid. Thus
further discrepancies were shown to eiist between the axisymmetric
theories and experiment.

VISSAT and DEL BUONO [90] reported tests on twelve
180° short radius bends with both flange and tangent pipe
terminations. Only a small difference was no£iced between the
results of the different'end effects. However some scepticism
must be expressed about the mamner in which the tests were
conducted and about their definition of flexibility factor.
Additional discussion on their results will be made later.

In 1966, FINDLAY and SPENCE [33], pointed out that
since the change in diameter showed a significant variation along
-the ﬁend then the flexibility would probzbly vary in the same
manner, This has implications for experimental flexibility

factors since they will be an average of the flexibility along the
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bend and possibly along the tengent pipes. SMITH and FORD [91)
suggested an empirical formula for the variation of the flexibility .
factor for 90° bends.

KALNINS, [92], [93] and [94), developed a numerical
method for analysis of thin shells. The technique involved
multisegment integration and finite difference solution of the
thin shell equations. The advantage of this method is that it
allows end effects to be included in the analysis. However, the
cost of running the computer program has prevented it from being
run for a comprehensive set of parameters.

In 1970, THAILER and CHENG' [95] published a
theoretical solution for 180° bends with flanged ends under in-
plane bending. They selected results from the experiments of
Pardue and Vigness which gave roﬁgh agreement with their theory.
Considerable discussion on this work and the inherent unquoted
assumptions will be made later during the development of the
present theoretical analysis for flanged bends. .

NATARAJAN and BLOMFIELD, [96] to 1[98], reported a
significant contribution to the subject of pipe bends with end
constraints, This was pérhaps the earliest publication on the use
of the finite element method for bends with end constraints. They
provided flexibility factors and stresses for a variety of end
constraints and a relatively wide set of geometrical parameters.
An unfortunate limitation of this work and of other finite
element solutions is their inability to contend with a bend with
two flanges., The problem is specifying the.necessary boundary
conditions for the loaded flange.

In 1973, FINDLAY (99] published a dissertation on the

effect/



effect of end constraints on pipe bends. Most of his work was
concerned with flanged bends under in-plane loading, He developed

a total potential energy based theory with specified displacements
satiéfying the boundary conditions of a rigid flenge. Findlay
compared his results with experiments conducted by himself and
others. The stresses providsd a better comparison than the
flexibility factors. Findlay concluded from these that his solution
was satisfactory. He also pointed to what he thought were erroneous
assumptions in Thailer and Cheng's solution and felt that their
comparison with experiment was fortuitous. This work was also
published by FINDLAY and SPENCE in [100], [101] and [102].

In 1974, AKSEL'RAD and KVASNIKOV  [103] developed a
"semi-moment" theory for curvilinear bar-chells and as an example
dealt with the problem of flanged bends. They give a first
approximation formula for the flexibility factor but no stress
resuits. The results are different from those of Findlay and
Thailer-Cheng. More will be sald about the comparison and

.assumptions in this work later. The first author, Aksel'rad,
later published a similar contribution [104] ©but this time his
name was translated as AXELRAD [105]. In the present work
comparisons will generally be made with the latter work and the
author referred to as Axelrad. .

IMAMASA and URAGAMI  [106] puhlished an experimental
study of bends with end effects. They compared the results with
those from a finite element prograﬁ. [107) and obtained a
relatively good comparison. In the experiments on bends with one

© tangent and,onelflange the highest stresses occurred adjacent to

the flange and not at the position of maximum ovalisation nearer
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the centre of the bend.
WRIGHT, RODABAUGH and THAILER [108) performed a
finite element analysis on a tapered bend with one flange and one
tangent pipe using the "MARC" program [521.A The authors also uséd
the program of Kalnin's [94]) but found that the total moment acting
on each cross-section varied significantly along the bend and that
the stress at the centre of the bend continued to increase with
increasing tangent pipe length to values well above that predicted
by theories without end effects. This casts some doubt on the
earlier work of Kalnins,
SOBEL [109] suggested guidelines for the use of the

"MARC" finite element program on bends with end effects. Detailed
results are given for a single elbow with two short tangent pipes.
RODABAUGH, MOORE and ISKANDER [110] obtained some results
for bends with connected tangent pipes using the EPACA (111] finite
element program. KANO et al [112] compafed the results from
the ANSYS [113], ASKA [114] and MARC (52] finite element
programs for pipe bends with tangent pipes under in-plane and out-
of-plane bending. The stress comparisons were surprisingly poor.
They concluded that it is necessary to use highef order elements
for an accurate analysis. |

- In (1151, and [116], OHTSUBO and WATANABE presented
a.finite element in the form oi" a ring. The ring element used
trigonometric series in the meridional direction and Hermitian
polynomials in the circumferential airection. Smooth bends with
" tangent piﬁes were modelled by connecting several elements together.
Ohtsubo and Watanabe presented some results for 90° bends with
tengents. They also presented results for bends with varying
thickness,/



thicknes3, but without end effects.

In 1978, WHATHAM [117] published a theoretical analysis
of flanged pipe bends under in-plane bending. He used NOVOZHILOV's
{118) four parameter method where the governing differential
equations of a thin shell are solved using four functions, with the
same forms as the displacements, which satisfy the equilibrium and
compatibility equations simultaneously. Considerable discussion of
the results in this paper will be given later. Figure (1.8) shows
a brief comparison of the theoretical analysés for flanged bends
| by Thailer-Cheng [95], Findlay 99], Axelrad [104] and Whatham.
In 1979, WHATHAM and THOMPSON [119] extended the earlier
work to bends with flanged tangents of any length.

KANO et al [120] examined three elbow-pipe assemblies
under various loadings using the FINAS {121] finite element system.
TAKEDA et a1 [122] and BATHE and AIMEIDA [123] proposed
two further finite elements for pipe bends with end effects. KWEE
[124] analysed a bend with varying pipe radii using the. ASKA
program [114],

BROUARD et a1 [125] performed experimen£al tests on
bends with tangent pipes'and flanges. The bends were loaded into
the plastic regime with large displacements. Under these conditions
flexibility factors for opening and closing bending moments were
found to be different.

Although numerous papers have been written on the
influence of end constraints on smooth pipe bends? there exists no
conclusive general solutions; indeed'many of the available
publications are contradictory. The comparison of the existing
theories on flanged bends in figure (1.8) highlights this dilemma,
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Compéring these with the available experiments produces further
confusion. The position with regard to tangent pipes is somevhat

different. Experimental work appears to agree with the axisymmetric
theory, for flexibilitj factors and maximum stresses, over a range
of practical geometries. However, for short radius, small angle
bends some deviation clearly exists. Available theoretical work
would seem to roughly agree with this but a detailed and truly
comprehensive set of results is not available. No useful attempt
has been made to try to bring together all of the available

evidence with definite conclusions.

(1.4) Current Design Codes

The two most commonly employed British design codes are

BS 806 [126) and BS 3351 [127] for land boilers and petro-

chemical plant respectively. BS 806 was rewritten in 1975 and
includes a relatively extensive section on the flexibility and
stressing of smooth pipe bends. A graphical presentation was
used for the various stress and flexibility factors, the latter-
inéluding a small variation with radius ratio. The stress
factors were also slightiy different for in-plane and out-of-
plane beﬁding; Correction factors were given for bends with one
or two flanges within 4r of the bend-tangent junctions. Although
these were given on a graph, they can be founé from the following

formulae,

One flange, correction factor = )Q@

>¥i

"

Two flanges, correction factor
eee (1.22)
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No other form of end constraint was considered. BS 3751 suggests
the following flexibility and stress factors for bends without

end effects,

_ 1.65
K A eee (1.23)
and,
A _ 0.9
o= a oo (1.22)

The flexibility factor is the same as that given by Clark and
Reissner [26] in equation (1.15). The stress factor is similar
to the Clark and Reissner asymptotic formula fof the peak
circumferential stress factor, which is virtually half the peak
meridional stress factor given in equation (1.16). The reason
for the use of the circumferential rather than the meridional
stress factor is due to a peculiar continuing argument as to
."vhich is most 1likely to cause failure. BS 806 gives graphs of
both stress factors and requires that the maximum stress range for
combined lqading must satisfy certain limits., Pardue énd Vigness
[89] suggested that the circumferential stress factors, being
constant through the wall thickness, were the most important
design stresses but in the discussion which followed (891,

Gross and Ford suggested that an equivalent (combination of
meridional and cirqumferéntial factors) stress factor should be
used as indicated by Hovgaard [128], and Markl further suggested
that failure was duelto either meridional or circunferential
factor, whichever was the greater. Markl's spggéstion was based
on the results of fatigue tests presentedvin (58]. BS 3351 also
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uses the correction factors given by equation (1.22) for bends
with flanges.

Perhaps the most detailed British design data for smooth
bends is that of the "Engineering Sciences Data Unit" (E.S.D.U.)
[129] . This provides graphs for flexibility, meridional stress
and equivalent stress factors, for bends with connected tangent
pipes. The results are based on the work of Natarajan and
Blomfield (97] using finite element analysis. Unfortunately the -
results are limited to the range r/t > 10 and R/r = 2, This is
the only current code which considers the tangent pipe as an end
constraint and it demonstrates the necessity for informatiqn,
particularly at low bend angles. E.S.D.U., also suggest sources
for data on other forms of end constraints, One further
interesting statement; which will be examined later, is that the
circunferential stress at flanges on flanged bends can exceed the
maximum meridional stress. .

Numerous American standards are availatle [130 - 133])
which give the same stress and flexibility factors as BS 3351 di.e.
equations (1.23) and (1.24). They also incorporate the flange
corrections given .in (1.22). It is believed that these flange
corrections are largely based on the work of Pardue and Vigness [(89].

To summarise the current design codes, in the context of

end constraints, it is noted that all of the codes, excepting E.S.D.U.,

suggest the correction factors given by (1.22). For comparison
purposes, the following results frém the A,S.M.E. code will be
used herein, for bends with two flanges: |
k = 163
N3 ees (1.25)
" and/
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and

5 _ 0.9
6_ X3 (XX} (1.26)

These are illustrated in figure (1.9). Only the E.S.D.U. data
sheet acknowledges the influence of tangent pipes as end constraints.

Some of the flexibility factors are shown in figure (1.10).
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initial cross-section

Deformation of Pipe Bend Cross-secfion

Figure (1.2)
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CHAPTER .2

BASIC THEORETICAL RELATIONSHIPS



65

Abstracﬁ

The present chapter is aimed at establishing the basic
. theoretical relationships which are required in the subsequent
analyses.

Equations for a general shell in curvilinear orthogonal
co-ordinates are described and an explanation is given of the
choice of equations to be used herein. These are then converted
to equations for a smooth pipe bend and a straight pipe.

The theorem of minimum total potential energy is outlined and

its application using the Rayleigh-Ritz method discussed.
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(2.1) Pipes as Thin Shells

(2.1a) Introduction

To quote Fllgge [134] a shell is the "... materialization of a
curved surface”., Thus, the definition of a shell is strictly a matter
of geometry and not of material, Typical examples of shells in
everyday use are concrete roofs, water tanks, balloons and even
parachutes.

Shell theory attempts‘to model a three-dimensional structure as
a two-dimensional surface, maiply for simplicity since three-dimensimal
general solutions to elasticity problems are not easy.

The smooth pipe bend seems an ideal candidate for analysis using
shell theory as it can be modelled as part of a toroid. Straight pipes
can be éxamined as a cylindrical shell.

The principle of minimum total potential energy will be used
later to solve the pipe bend problems. Although this technique only
requires the strain-displacement and constitutive equations with the
strain energy equation, the full set of shell equations will be given

for completeness.

(2.1%) Thin Shell Theory Assumptions

The first set of basic equations governing the behaviour of
thin shells were derived by Love [135]-. These were later modified .
by Reissner [136) to form what is oftep referredto as the "claésical"
first approximation of shell theory. Love and those after him use
several simplifying assumptions conéerning the geometry and behaviour

of the shell. These can be summarised as follows:

(1)/



(1) The thickness of the shell surface is small relative to its
mean radius of curvature. Typically, the thickness should be
less than a tenth of the mean radius although this is known to
vary according to the problem being'examined.

(2) Deflections of the shell surface are small, This limits the
change in the shape of the shell between the unloaded and loaded
shapes allowing the complete analysis to be performed on the
original geometry of the shell.

(3) Stresses normal to the shell surface are negligible. This
states that the normal (radial) stress is small relative to the
stresses in the plane of the shell and also allows the use of
the two-dimensional constitutive relations,

(4) Lines originally normal to the shell reference surface, remain
normal to the deformed reference surface and unstrained. The
reference surface is usually the mid-surface. This is analogous

to the Euler hypothesis of "plane sections remain plane" in beam
theory. It is sometimes referred to as the "hairbrush hypothesis",.
It should:be emphasised that the 'plane sections! refer?gd.to are
through the thickness of .the shell surface and nét through thg
cross-section as in beam theory. This assumption also implies
that ali the straih'components, including shears, normal to the
shéll surface are negligible.
The theoretical work discussed herein is based én the equations
correspondong to the first order linear’ theory of shells., Other
“higher ordér theories have been derived which remove some of the

above assumptions ((1371,11381) , but it has been established by

many.previous authors that the first order approximations give

results . which are suitable for most engineering applications.,

687
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(2.1c) General Thin Shell Theory

Love's original publication contained a number of
inconsistencies. He omitted some small terms and retained others
with the same order of magnitude. Several authors attempted £o
improve these equations but many of them retained a further deficiency
in the relations between the forces and displacements. Eventually
most of these problems were removed and a set of equations, derived

independently by several authors, became "established". These equations
| can be found in the texts of Novozhilov [139 ], Kraus [140] and Dym[141]
The author found the latter book to be an excellent introduction to
the theory of thin shells.

Sanders [142] pointed out a further inconsistency in the
"established" equations. He showed that they do not give zero strains
for all rigid body displacements, except for spherical shells, flat
plates or symmetrically léaded shells‘of revolution., The inconsistency
occurred in the shear curvature term which makes its significance
| for most problems relatively small, Sanders removed th;s inconsistency
using a method based on the principle of virtual work. His only
change for the compatibility equations was in the shear curvature
term. ’

Koiter ﬁLBj derived similar equatioﬂs to those of Sanders
which also gave zero strain for rigid body displacements. He
concluded that the shear.curvature inconsistency would only produce
errors of the same order as those of the basic assumptiohs of shell
theory. N

Fltgge [134] derived equations for particular classes of
shells using a more physically intuitative approach which is more

readable to non-mathematicians., However, his equations are different

to/



77

to most other works. The difference between Fliigge and the others
1s also dependant on the class of shell (e.g. cylinder) which is
being considered. FlUigge also does not separate the bending and
direct strains making comparison with other theories difficult.

Dym [141] compares Fllgge's equations for a cylinder with Donnell
and Sanders [142] and concludes that Fliigge's equations will differ
in regions of rapid deformation change.

Goldenveizer [144] derived similar equations to Novozhilov
but with a different shear curvature expression. He also substituted
his strain-displacement equations into the equilibrium equations,
using the constitutive relations, which gave the three differential
equations, in terms of the shell displacements, that govern shell
behaviour. This is the only text that the author has read in which
these equations are given. A mention will be made later of the '
application of similar equations with the finite difference method.

Donnell [145] , Mushtari {146] and Viasov [147] derived
an approximate set of equations whichlhave become internationally
known as the Donnell-Mushtari-Vlasov equations. These equations use
only the radial displacement in the curvature strain terms. The
benefit of this is that it froduces relatively simple governing
differential equations. These equations will be more justified the
smaller the stresses due to tﬁe moments are in comparison with the
etresses due to the forces. The present author has tried these-
equations with the fclassical! pipe bend problem. The flekibility
of a typical bend with a pipe factor of 0.5, is underestimated by 25.5%

Axelrad [104] deérived equations for a class of shells which

sustain membrane or slowly varying deformation in one direction and

an/



an intensive variation in the orthogonal direction. These equations
are particularly applicable to the pipe bend problem.

Some decision on the choice of equations to be used for the
present project had to be made. The equations are the tools with
which the problems will be solved and may affect the quality of the
results. A version of the theory given by Novozhilov was chosen for
its simplicity and consistency. It differs from the "established®
version in the shear curvature and equilibrium equations. The
equations give zero strain for all rigid body diéplacements and are

simpler than the equations of Sanders.

In orthogonal curvilinear co-ordinates the strain-displacement

relations for a general shell are:

W W AW
é H b“—(+ Hunz 3¢1+ Rc

Aa 30, BA2 904

— _L 2 uiz_ W, B nl
Wi= B 3, T B v

\l\/ = L 3 Ua — U2 QA

2 Hi adg H‘ﬂz b(X.,
'z: B Py 2P
’ gl bd| Hlnlbd’}.

T.=L0B _ B_3A
"% A3 AAy ¥y
where

1w
Pn R. Y-V

— U, - 1 P-YaN! : '
B:L"" Ra~ Pz d04 ees (2.1)
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B. a'nd Paare the rotations of the mid-surface normal in directions
‘1 and 2 respectively.

€, and &€, are the mid-surface strains in directions'l'and‘'2’
respectively. Kl and Ko are the curvatures in directioﬁs '1' and ‘21,

The problem of consistency, mentioned earlier, arises from the

combination of W ,W2,?, and 7%, to give the mid surface shear strain,

W, and the shear curvature, T . W is usually found from,

W=W,+ W,

eoe (2.2)

Novozhilov gives two definitions of the shear curvature, i.e.

Y :tﬁ— T, | ees (2.3)
t*:Z|+M:t1+&J—L.
R, R, eee (2.4)

In deriving the equilibrium equations, using the principle of minimum
total potential energy (e.g. see Dym{ 141 pp. 28-33] ), T” is

normally used together with the stress variables,

S:: Nn. __[\_/‘_ﬂ = Nﬂ—_-{:\i
| R. R,

H:: -%_- (Mlﬁ- + le | cce (2.5)

This gives a variationally consistent set of equations which also

satisfy the conditions of zero strain for all rigid body displacements,

Unfortunately, the shear stress resultants M2, N2o1, M12 and Moy

cannot be obtained from simply kmowing W and f. This will only be

&/
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a problem if Nyp, Noj, Mjp and Mpyy are required explicitly, in
many siﬁuations, including the one to be considered herein, they
are not,and S and H are sufficient. Novozhilov, Dym and Kraus go
on to show that taking the alternative definition for the shear

curvature, T = 7:,4-'152, allows Njo, Noj, Mj» and Mpy to be found

from

No= N, = £t

(|+IU

M.=M,, = ',,—(,:;57: e (2.6)

This is the definition used in'the "established" equations, which
is variationally consistent but does not produce zero strains for a
rigid body rotation (Dym [141] p. 42) .

The (2.4) T definition will be used from here on since Njs, Noi,
M12 and M21 will not be required explicitly. It should be .noted that

these can be found approximately using the following equations,
N, =£t (w o
12 (|+v) 6R,
— Et : W+ *—“
Z(IW

— B+ * . ‘
Mn Mz; |2(\+v),t eee (2.7)

The error in these equations'is of the same order as the original

.assumptions of thin shell theory. _
The constitutive relations corresponding to the above definition,

with a constant shell thickness, for a linear isotropic material, are
N=C(E+VE) . M=D(K+VKi)
N.= C€E2+VE) , M= D(KtVK)
S=0-MECW , Ho=U-VHT"

I
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where

_ Et __E¥
C“Q—v‘) b= 120-Y9)

XX (2‘8)

The corresponding equations of equilibrium are,

é%ﬂ%j S Ky ( @—i’ﬁl\lﬁ-
LR o 5 L G BN (U H=-Ans.
§aS) BN L ()5 AN, +

3, O oy d 0y

R PO- R 2 R =mas,
(3 02 -2+

+$%, n,[z%%‘L 28, M‘) (a H - %‘?&) MB -

seoe (209)
The established shell theory has six equations of equilibrium.

However, these can be reduced to three equations similar to the
above by substitution for the normal shear force resultants.

The necessary boundary conditions for the solution of these

equations are, at constant®/ specify,

N, o or W
>+ Z_— or U.
1 (ZM (A M) _ f3A.
H ? Ky D oy GB 0(.). M" or G
M | =~
at constant O/, specify, or : ;3'
N, . w
S + ‘Zﬁ}'i ' ’ or ' 'U..
(2, e (e )
ﬂg,_ Bo(\ BO(:. 30(:. ' or (.L)
M’* | or : IB9~

eses (2.10) e




The strain energy equation consistent with the above equations,

for a constant thickness, linear isotropic material is,

U=£{{[leref-20-vee ¥R dxae,

* %’SS[(K' + Kz)i“ 20-V)(K Ky — '8'2)] AA, dot, d o«
eer (2.11)
The assumption that t/R; can be neglected with respect to one, was

used in the derivation of the above equation. This limits 1ts use

to thin shells,

Ie]



(2.2) The Toroidal Shell or Smooth Pipe Bend

The general equations need to be converted to the specific
case of a toroidal shell for the analysis of the smooth pipe'bend.
The geometry of the smooth pipe bend is given in Fig. 2.1,

The first fundamental form of the mid-surface of a shell

element in curvilinear co-ordinate is,

@S) = A3 (de¥ + AR (dacs)

The corresponding equation for an element in the new ($,8) co-ordinate

system 1s

(dS)z-': V’(J¢)z+ R‘a(dG)z , R'= R+ sing
Principal radii of curvature in the curvilinear system are
R, and Ry; these become r and R /sind in the (¢,e)'co—ordinate_system.
Curvilinear displacements U1, Uz and ) become V, U and(Jin
the (¢#,0) system. | |
Conversion of the curvilinear system to the (¢,0) system

therefore requires,

'd.|’¢ H|=r. R|=r
,=6 A= R R~ R /sng

W=D t U.=u w=w
. . ' eee (2.12)

Thus, the governing equations fpr part of a toroidal shell or pipe
bend having a.constént radius of cross-section r , are obtained by
substituting equations (2.12) into (2.1-11). This gives:-

Strain Displacement Equations,/



Strain Displacement Equations,

U oL _
Keg= ?E(Més"é* 393?‘ "-(;gsé 26 us'n@)
where

R\=R+‘_5‘n¢ ese (2013)

(Note:- Jeg=W. g Koy =T7)

Constitutive Relations,

N¢=C(€¢+\)€e) Ne:: C(€9+\)é_¢)
Mg = D(Ky + VKo) Me= D(Ko+ Y Kg)
=3 (-Y)C Yo H = 0-V) D Koy
where . eee (2.14)
-V T 0=y

Equilibrium Equations,

M§¢N + r'%%—Ner‘cosgf-i-—L Q%R\ —Mecos¢+la}i-$;‘rp\\q¢
M%—;;—L +f¥§9+s rco59$+—5_1é MM%H +2Ha=\s¢"‘—'f’R%

RNy —Tsng Ng+ + ZE R + 25555 — M“?TQ*
+%Eréta+z__i il =-rRq,

ees (2 o15)
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Strain 'Energy (constant thickness),

0 = £ §{ ey e - ewom 1)) R dosg

2 [ [ [(Ro+ Ky —20-) (kg Ko~ Key) ] rRdBdgb
Boundary Conditions necessary for a solution are; +es(2:16)

at constant @, specify,

N¢ or v
S + —?“—‘j\- S\ﬂ¢ or U
.Z.b—\'i +—§_-}—;‘- Mg+ cosd or "y
Mg or F3¢
at constant ©, specify,
Ne or v
S+ or J
H 4+ L
'Zé‘ s¢ TR %e or W
where Mo or Po
eee{2.17)
ﬁ J_( __a_o_) .,
F ®f
and
(‘b(smq! >
000(2.18)

The © and @ directions will be termed the circumferential

and meridional directions respectively,
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(2.3)  The Cylindrical Shell or Straisht Pipe

The straight pipe may be considered as a cylindrical shell.
The geometry of straight pipe is shown in Fig. 2.
The first fundamental form of the mid-surface of a

cylindrical shell in the (#,>) systenm is,

@s)’

The meridional radius of curvature r will be taken as a

fl

A @)+ dx)

constant along the length of the pipe.

Conversion of the curvilinear system to the (@,X) system

requires the following:

d‘=¢ ﬂ.zr‘ Rl=r-
ol =2C A= R,d¢ +d>X os Ry~ 5 =%

W= W= wW=w
) oee (2019)
Therefore, the governing equations for a straight pipe of constant
cross-section radius,r : .

Strain Displacement Equations,

€¢-—H°~’+,5—3) Ke= = ¢ &
u ) —‘__ szJ
€x= %—5—( ’ ' ‘Kx"" > ¢*

N = U LU _J.(éi_i@—
&; 3T ek K= 3% X2
(Note: ’ KME\'J,’ . K,q;E t*) . : . ..

oo (2.20)

Constitutive Relations,/



Constitutive Relations,

Ng = C(Eg+ VEs) Mg = D(Kg+ V Kx)
N = D(Ex+ VEg) M= D (K + V Kg)
S =0Rc¥y H=(-Y) D Kag
where ees (2.21)
=Et — E£
¢ G-»9 > 120 -V

Equilibrium Equations,

ri a ¢1 _r': _—b¢“b"-x a x" —
Strain Energy,/(constant thickness),

eee (2.22)

= %XS\ [(6¢+ éx)1_2(l-v)(é¢ex" 5%&)] r—dxdfé

+ 20 [(kg+ KT —209)ke ¥~ K] - dx d B

oo (2.23)

Boundary Conditions necessary for a solution,

at constant @, specify
N¢ or kb
S or -
24 dMg
T %f r P ] ¢ or 0]

Mg or | By



at constant X, specify

Nx |
2H
S+ F
24 ¥ M
v o¢ +,bx
Mx
where

Pe=+(U-3%)

or

or

or

or

w

Px

(2.24)



(2.42) " Principle of Minimum Total Potential Energy

The principle of minimum total potential energy can be

expressed as,

{Weav - perds 2 {Ue)av - {,Poas
eoe (2.25)

where

is the total strain energyvof a compatible
§ U(edy strain field €%,

forces where &"is the associated
compatible displacement of the load. S(P)
denotes integration over the surface where
the loads are applied.

is the potential energy of the applied
*
§,PS4s

is the exact strain energy of the true
§,Uce)av strain field, €.

forces where § is the associated true
displacement.

is the potential energy of the applied
S;an)ES 45 | p gy PP

In the form presented above, the theoreﬁ states that the totdi
energy aséociated with an arbitrarily assumed compatible strain and
displacement field is always greater than or equal to the energy
associated with the corresponding true strain and displacement field.
This is true only if the assumed strains and displacements satisfy
compatibility. Thus the total energy is only a minimm at the true : .
state.

.Use of this theorem is made by prescribing displacements as a
series of terms each of which is made up of a function multiplied by

a coefficient. Each function must satisfy internal compatibllity

. s/



and the kinematic boundary conditions i.e. external compatibility.
The values of the coefficients, and hence the true displacéments,
are obtained by finding the combination of the coefficients which
give the minimum of the total potential energy function.

This is the basis of the Raylelgh-Ritz technique. The

displacements are expressed as a series of trigonometric functions e.g.

— = AT 3nx
S——C‘ sin = + C, s + Caan 2 E

e .etc,

If each of these terms satisfies compatibility for some problem, then

e ntTXx
5= écn sin (0%%) , N=L23h, 0

must be the actual displacement state (providing all possible trigono-
metric functions satisfying the boundary conditions are included in

the summation). To determine the Cp coefficients the total potential
energy (T.P.E.), V, is expressed as a function of O and hence of the
coefficients. The solution to the problem is found by minimising the

T.P.E., hence

b.Y::O

%3]

therefore, .
AV = N _ V. oW
3G, 2 3G Y

since a variation with respect to & will be equivalent to the
variation with respect to each of the individual coefficients. Usually,
each of the variations with respect to each coefficient produces an
equation involving the other coeffici;nts and the equations.need to te
soived simultaneously,

In practice, a finite number of terms in the displacement

series/



series.is psually sufficient as higher order terms rapidly become
negligible,

Only the exact displacements give the true minimum of the
T.P.E, énd therefore correspondé to true equilibrium, Each
displacement component contributes to the final equilibrium state
and hence truncating the series after a finite number of terms

gives partial equilibriunm,

(2.4b) Lower Bound on Flexibility

Frequently for the application of the total potential energy
theorem, recourse is made toa "displacement prescribed" type of
solution i.e. one where the selected compatibility component ( §3
is identical to the exact displacement (§). For this particular
case, 1t follows from(2.25) that,

{Uenav 7 [Ue)ay
v v

oo (20%)
The equality only holds when the strain and displacement choices are

.exact.

If a étrucﬁure is‘sﬁbjected to a single load then, from the
principle of eneréy conservation, the strain energy will be equal to
the work done by the external load increasing wmiformly from zero.
If the load is increased to the value P , where the diéplacement is
equal to the prescribed diéplacement. s then this can be written as,

§,u(emyov = £ 76

LR ] 2.2
The true state is, (2.27)

[ we)dv =4 °s

eee (2.28)



Equations (2.27) and (2.28) can be combined using (2.26) to give,
p* =P

(2.29)
i.e, the calculated load from an approximafe solution is always
greater than the exact load. The flexibility of a structure is
inversely proportional to the applied load (since P = &/F, where F
is the flexibility). Therefore, from (2.29), the flexibility of
a structure must be underestimated. Thus a "lower bound" is
obtained on the value of the flexibility from a minimum total
potentiél energy analysis, This is not always true for more complex
loading. Deflections and stresses away from the load point are not
bounded.

The lower bound on flexibility will be useful in the study of
pipe bends. Convergence of series solution can be examined since the
addition of further terms to the se;ies will increase the bend
flexibility. Terms can be added until the change in the flexibility

is less than some arbitrary quantity, say 1%.
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CHAPTER .3

THEORETICAL ANALYSIS OF A SMOOTH PIPE BEND
WITH FLANGED END CONSTRAINTS UNDER
IN-PLANE BENDING
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Abstract

Theoretical solutions to the problem of a smooth pipe bend
with flanged end constraints under in-plane bending are presented.

General displacements in the form of fourier series are
suggested which satiafy internal and external compatibility.
Strains are then derived using the strain-displacement equations,

Two solutions methods are first presented which use a
simplified form of the displacements and strains together with
hand integration of the total potential energy expression. The
two methods differ.in their inherent assumptions. The results of
both methods are discussed and a comparison with other theoretical
methods presented,

A numerical solution is then presented which uses the complete
strains and displacements with few assumptions, excepting.those of
the thin shell theory. The results are then discussed and compared
to other solutions. Finally fiexibility and stress concentration

factors are given for a wide range of practical bend geometries.
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(3.1) Introduction

As mentioned in chapter 1, the study of the smooth plpe
bend with flanged ends under in-plane bending has attracted the
attention of a number of authors, but each has produced results‘
which differ widely from the others.

The aim of the present work is to resolve this dilemma
by highlighting the limitations and errors in some of these works
and to develop a method which removes some of the problems by
making as few assumptions as possible. The development of this
method will be explained in some detail and at appropriate points
it will be compared to the other works to illustrate the problems
therein,

The first tesk umderteken was that of repeating the work
of Findlay [99]. This proved to be both time consuning and
difficult for various reasons, even with the help of G. Findlay
himself (for which fhe author is grateful). His equation for tﬁe

total potential energy unfortunately contains an error. The ternm,

%2 CQ:(."h‘378lﬁgl>k>

at the bottom of page 156 of [99] should be
. .
? G, (1 + 3g D)

The equation was programmed on a computer end the results were
compared with Findla&'s. With the correction, the results were
exactly the same as those of Findlay when up to three terms were
uéed in-each displaéement series, With more than three terms in
each series the results radically differed. The present author's

results/
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results demonstrated convergence within 1% with three terms in

each series but Findlay's results converged, in some cases, by at
least a further 100% an& required up to six terms in each series.
Several different solution procedures were used at this stage in

an attempt to obtain Findlay's results but these proved unsuccessful,
Eventually, it was concluded that the cause of the difference was
probably due to Findlay having used two different solution
procedures, one for three or less terms in each series and a second
for use with more terms. The second procedure must have contained
an error, but this céuld not be absolutely confirmed as Findlay's
computer program could not be found. The "correct" set of Findlay's
flexibility factors are given in fig. (3.1). These results are |
virtually the same as those given by Findlay with three terms in
each series. '

The corrected results still did not compare with the results
of Thailer and Cheng [95], in fact the difference was now larger.

At this point, several of the assumptions of Findlay were removéd.

' The assumption of —S—sin' $<1 was reduced to (% sin }5)2<< 1
using & binomial expansion and the circumferentialland shear
curvatures were included in the analysis. This only changed
Findlay's corrected flexibilities by about 5%. Various changes were
made to Findlay's "primary displacements" but the flexibility factors
never changed by more than 5%.

Thailer and Cheng's analysis was similér to Findlay's but,
they ignored the contribution of th; shear strain in their |
expression for the total potential energy. Their fesults.were
almost the same as Karman's [2], which did not include end effects.
Thailer/ | | H



Thailer and Cheng's analysis was repeated with the shear strain
included, but with the assumption (-&-sin.é)z << 1, This gave
flexibilities which were about 30% higher than Findley's (Fig. 3.2L
Thailer and Cheng's‘assumed displacements do not contain the
boundary condition of zero slope at the flange (this will be more
fully explained later) whereas Findlay's displacements do,
Physically, this can be interpreted as meaning that Thailer and
Cheng's displacements are for a thin flange whereas Findlay's |
displacements are for a thick or rigid flange. This helps explain
the difference between these results,

During this work, the author came across the work of E.
Axelrad [103] ,[i04] which to date has not been referred to by
any other worker in this field., Axelrad develops & semi-membrane
theory for curvilinear bar-shells, primarily with the intention of
examining the stability of pipe bends but he also attempts the
problem of & pipe bénd with flanges. Care should be used when
comparing the results of both papers as the same symbol is used to
represent a 'stiffness factor' in the 1974 paper and a'flexibility
factort in the later paper. |

Axelrad's method.ihvolves reducing the semi-membrane
equations to twé fourth order-differential equations in two unknowns.
Fourier series are substituted for the unknowns and the resulting
equatipns ere solved simultaneously. The resulting flexibility
factors are approximate involving on}y'one term In the series. The

expression for the flexibility factor was given as,

_ _ ____ 1 sinu 827 + sin 80*
K=1+(K -l)(‘ 8¢ cosuse” coSBQ.")

eoe (3.1)

94




where'(in the present notation)

€*= gré_l_ {X -f:' (u(t-v’))'*

and
K is the flexibility factor for a flanged bend,
K 1s the flexibility factor given by Karman for
e bend without flanges.

No graphs of the results are given in either of the papers
but the flexibility factors calculated from the above equation are
given in Fig. (3.3). The works of Findlay and Thailer-Cheng show
no variation with radius ratio (R/r) but this can be seen to be
important in Axelrad's results,

In his derivation, Axelrad assumed that the direct
meridional and shear strains were zero and that & sin g << 1.
Although ¥ sin g was neglected with respect to unity, this does
not mean that it is not an important parameter. These were the
same assumptions as Thailer and Cheng, but Axelrad enforced the
assumption of zero strain on the displacements whereas Thaller and
Cheng only neglected it. The importance of enforciné this was
noticed by the author before disdovering this work and more will be
. saia about it later. Axelrad also assumed that the flanges were
thin. ‘

Each of the above authors has obtained different results
according to hié assumptions regarding the shear strain term. It
would be easy at this point to imagine'that Findlay's results are
correct since he uses the shear strain term obtained by the |
substitﬁtion of his displacements but his displacement assumptions
may not be correct. . ‘

In/



In early 1979 the author received the first paper by
J. ¥, Whatham [117]. ‘The method involves the use of Novozhilov.'s
[118] téchnique using three arbitrary functions which have the
same form as the micf—su.rface displacements. Fourier series are
used to solve the equations for the simple case of a bend without

end effects. The functions teke the form, (in present notation)
N
- 2
- 5'3-1_ £cos? + MEL éan siN n{
b= rEtb(R+rcos$)e
C= -%;5""5 + 2Bt 5C,cos n%
where ? =g+ 90° eos (3.22)

The functionsa, b and C correspond to the displacements v, u and
w reSpectivelj. The flanged bend problem is then solved by
superposing on the results obtained without end effects a set of
displacements which return the ends of the bend back from their
ovalised state to the initial round condition. The second set
of functions take the form,

Q= M*E+ Z,‘ e JSC 2 O ny SIN n3

3=l

‘E= Et 2} &% _‘ggmcosni

It el

- F2E+ {j %8 C] 3 CmCosn?

=t nst

ces (3.2b)

The work involved in performing the above task is numerically
complicated and difficult to understand from the few details given
in the paper. The flange boundary conditions as given in the paper

are/



are those of & thin flange but commnication with Whatham [117]
revealed that the conditions actually used were those of a rigid
flange.

Some of Whatham's results are given in fig. (3.4). Figure
(3.5) shows that there is good correlation between the results of
Whatham and Axelrad. Whatham gives reference to only two papers
on the subject of pipe bends, neither including end effects, and
he seems unaware of the results of Axelrad.

Early in 1980 Whatham published a second paper [119] but
this gives fewer detalls than the previous paper but includes results
for pipe bends with connected tangent pipes. Whatham appears to
make no assumptions other than those of thin shell theory but this
is not stated explicitly.

Results for maximum stress factors are given by Findlay and
Thailer-Cheng but not by either Axelrad or Whatham, Ideally the
correct set of results could be ascertained by experiment but each
author (except Axelrad) has given a set of experimental results
which "confirm" his theory.: This is possible due to the nature of
the pipe bend problem where certain effects cah influence the results
quite radically. It is also caused by the limited range of parameters
examined by experiment,’ _

A number of papers have been written [96], [107], [121-
11@], Ei21—12j] on finite element models which can be usedito
éxamine end effects. Ione of these papers give results for a pipe
bend with flanggs at both ends. Somg glve results for a flénge~at
one end. For most models the problem is specifying correct
boundary conditions for é flange at the free or loaded end of the
bend. More will be said about these papérs in conjunction'with the

tangent/



tangent pipe problem later,

The author spent some time developing a finite difference
model of the pipe bend based on the shell equations of Novozhilov
Eil&]. To obtain the equations for the finite ddfference model,
the strain-displacement relations were substituted into the
constitutive relations and then these were substituted lnto the
equilibrium equations. This gave three equations in the three
unknown displacements u, v and w. The only text in which the author
could find similar equations for a shell other than a cylinder was
by Goldenvelzer Ei44], but these were developed from equations
different from those of Novozhilov. The three equations, which
form a set of eighth order partial differential equations, are
given in appendix (1). Finite difference approximations were
substituted for the differentials,(see references [148] and

Ei4é}) to give a set of linear equationé involving the values of
the displacements at a mesh of points, representing the bend middle
surface. Boﬁﬁdary conditions were set by substitution of the
boundary values of the displacements into the appropriate equations., :
The resulting set of equations were solved'simultaneousiyvfor the
unknown values of the disélacements. The number of equations was
about 600 for a reasonable bend mesh, wﬁich created storage and
time problems on the compﬁter. This is a.prohlem in common with tée
finite element methods.

Eventually this method was aﬁandoned. The major problem was
a numerical one. .The variation of the displacements in the
meridional direction is very much greater than the variation in the
circumferential direction which makes the equations poorly
conditioned/



conditioned and the results subject to numerical instability.
The problem was highlighted by examining the simple case of a
straight pipe subjected to a pure bending moment. When the bend
length to bore radius ratio was greater than about four or less
than about a half tlhe results were simply nonsense. There were
also problems with specifying the boundary conditions although
most of these were resolved. The problems meant that only a
restricted set of parameters could be examined and even then the
quality of the results would have been questionahle. The work
was not entirely wasted as the experience gained from it was

valuable,

Three methods will be describsd in the current chapter
for the solution of the problem of a smooth pipe bend with flanged
ends subjected to an in-plane bending moment. These draw on the
experience gained from the earlier attempts. All methods will use
the theorem of minimum total potential energy. 'Methéd No. 1
employs all possible simplifications, some of which were used by the
earlier authors. This was the first relatively successful solution
using an energy method. The second method removes some of the
assumptions of the first method. Both of these methods use hand
integration, making it virtually impossible to remove all of the
assumptions. Method No. 2 represented such a significant
improvement over method No. 1 that a third method was developed to
remove as many of the assumptions as possible. Although method No.
3 represents the best solution the other two methods help to
explain the behaviour of the problem and assist in the examination
of the work of earlier authors. | |

The



The displacement series for all methods will be derived at
the same time but with emphasis put on the method No. 3
displacements. Methods Nos. 1 and 2 will then be described using
simpler forms of the complete displacement series, A discussion
of these methods will be given along with the reasons for the
necessity of method No. 3. The latter method will then be described

in some detail.
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(3.2) Displacements

(3.2a) Displacement Formulation

The theorem of minimum total potentiai energy requires
suitable kinematically admissable displacements. Here the
displacement field will be decomposed into two parts., The first
are termed "rigid section displacements" which are associated with
‘the displacements of the circular tube cross-sections with no change
in their configuration i.e. each point on a circular section, at
some angle © , has the same displacement. These displacements
automatically satisfy the boundary requirements of a flanged bend.
The second displacements are tefmed ndistortion displacements" which
are associated with the distortion of the circular sections.

The total d;splacements will be found by adding the two sets
of displacements, This method of formulating the displacements is
used because it allows the boundary conditioné to be applied more
easily;'

Strains are obtained by substituting the total displacements
into the strain-displacement equations (2.13).

(3.2b) Rigid Section Displacements

Rigid section displacements are the displacements of the
circuiar tube cross-section with'the cross-section remaining
circular. These displacements must allow a general variation in the
‘circumferential direction but also éatisfy the boundary conditions.

A bénﬂ without end effects has the same displacements at any
circumferential segment but flanges will cause the owvalisation at any
circumferential/



circunferential segment to depend on its circumferential position.
Thus, the rigid section displacements must be variable functions
of the circunferential co-ordinate.

Consider a smooth circular pipe bend under the action of
an applied bending moment, M, with a circumferential mean radius
of curvature, R, meridional radius of curvature, r, and overall
bend angle, OC « The deformation of the bend will be symmetric
about the circumferential centre of the bend., One half of such a
- bend is shown in figure (3.5).

The rigid section displacements of the bend can be found
from the displacements of the centreline. Figure (3.7) gives an
exaggerated 1llustration of the displacements. \lc is the
circumferential tangential displacement of the centreline and Ve
is the displécement of the centreline in the direction perpendicular
to it. Note that \/. has the same value at all points on the cross-
section at any particular circumferential angle.

From figure (3.7), the rotation of cross-section can be
seen to be made up of two parts. The first is due to the variation
of V. in the circumferential direction and the second is due to the
circumferential displacement L&;causing a rotation about the centre
of the bend radius arc. Theréfore the rotation 8. of a point on the

centreline is,

eee (3.3)

The corresponding shell disblécements,‘u“,‘vi and Wp at

some point -'g' on the circular section are then given by,

LU
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U, = U+ EIsing

= Ug+ -E—sw¢(uc" %%-
Uy =\ cos ¢
Wy = Ve sing

vee (3.4)

In the derivation of the above equations the assumption that
the deformed circular cross-section remains normal to the centreline,
was used. This assumption was found to be correct even in the exact
analysis of a thick curved beam by Timoshenko and Goodier (pp. 71-75
of [150] ), although the stresses across the section varied
logarthmically, and is necessary for the correct boundary conditions
at the flange,

If equations.(3.4) are substituted into the strain-
displacement equations of Novozhilov as given earlier (eqn. 2.13)
the mid-surface shear strain Xey and shear curvature Keg are
zero. If equations (3.4) are substituted in the classical shell
equations the shear curvature Koy 1s not zero.

One useful simplification of equations (3.4), which will be
used in a simpler analysié later, is to assume that the '
circumferenfial strain €g ‘is zero at the centreline, @ = 0, for the
rigid displacements, i.e. assuming that this centreline does not
extend. The circumferential strain at the centréline is given by,

(€B)¢.o = 4 ol + Vc]

equating this to zero gives,



- _ U
V%= - Se
or U= - S N.d6  + Constant

ees (3.5)

The constant of integration disappears because U has to be zero
at the bend centre, O = 0, The above simplification is roughly
equivalent to ignoring the thick curved beam effect and will be
more correct for long radius bends. The displacement equatidns

(3.4) with this simplification become

Up = - SVC do (l-t-%sm;é) — %%‘—%smgf
Uz = \Vecosg |
Wy = Vcsw/d

oo (3.6)

The Rayleigh-Ritz method requires the displacements U, and |
.Vc to be specified as trigonometrie seri;es in the circumferential
co-ordinate, .

To satisfy the necessary boudary conditions, of symmetry
at 6 = 0 and free ends at O = .--;'-'5 9‘5_- . the displacement \/. must be
an even function of the variable, 6 . Therefore this can be
generally expressed as an even fouriler series of the form,

Vo = do + 2 d, cos (9
= ves (3.7)

The boundary conditiohs require

(L), = O

therefore

cos (3.8)'
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Re-arranging (3.7) using (3.8) and the identity (cos 2ax = 1 - 2x

xsint( ax)) gives

)2

-2 2d, sin’( A%LB-)

3=y

- :ﬁl \ anzcé%‘ﬁ)

eee (3.9)

where the coefficient D = 24,

Equation (3.9) also satisfies the conéition of zero slope
at G=0. _

The displacement Ul must satisfv the boundary conditions of
antisymmetry at 6= 0 and free end at + & , These conditions

can be met by a function of the following form,

Mg

Ue = 5| Fy 4 (6 = (3%)singTR))

>3
[}

ees (3.10)

The above form is found by substituting equation (3.9) into equation
(3.5) and then coefficients Dj are replaced by Fj. A fourier series
was tried for Uc but it gives the same result as the above function
and complicates the strﬁn equations. Note that the above function
does not mean that € = 0 at O = 0 since the coefficients of \_
and'\/. are different, However, Dj and fj will be of a similar
nuinerical order which, as will be explained later, assists in the
numerical stability of the solution ‘procedure. _ |
Substituting equations (3.9) and (3.10)A into equations

(3.4) gives the rigid section shell displacements,



U = Z R (655 snCB)(1+F5m8)

£ 3D, (A sin (ST8) R sings

+
=
'S
U =72 D, =i '%%E?)‘ﬂDsfi
We = 5 D, smz(%y)swp’

where § =1, 2, 3, —-

(XX (3.11)

As far as is known, the above method of deriving the rigid

section displacements has not been published by any other author.

(3.2¢) Distortion Displacements

Distortion displacements are associated with the distortiom .

of the circular tube cross-sections. Théée displacements are
similar to the "ovalisation"™ displacements referred to by other
authors. The term, "distortion", is preferred because the
..deformation shapes for certain flanged bends are not strictly oval
although occasionally the word "ovalisation" will be used.'

Since the flanges are assumed to be rigid, deformation of
the cross-section and rotation of the normal to the shell mid- -
surface at the flange are assumed to be zero relative to the flange.
Cross—sectionﬁl plenes away from the constraints will experience
a degree of distortion which will vary according to the distence
from the flange.

The variation of the distortion displacements can be
considered/

U0
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considered in two parts. One describing deformation of the
méridian and the other describing the variation along the
circumferential direction, The three displacements U, Uand (W

will be formulated separately.:

(3.2d) Radial Distortion Displacement

The radial distortion displacement,(J», will be considered
first since it "characterises" the distortion shape of the cross-
section.

The part describing the deformation of the meridian, (a)(¢),
has been specified by most authors » from Karman onwards, with

something like the following form,

: ob
W($) = 2,Cqcosng
n=2,4,
n=2’ 4, 6’ -'-“

ee. (3.128)

This followed from an intuitive view of the expected displacement
shape and for a bend without end effects it works effectively.
The first term of the aboie is the dominant term and describes
an oval deformation pattern. . |
Symonds [151] ., Jones [35] and several of those after

them used W(®) with the form,
Ne2,

W($) = B Cacosng +Z Casinng

o W($) = 2 Cicosn

n=28,4
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where %=¢+90°~

ees (3.12b)

The additional terms were found to have little significance on
the results for a bend without end effects, except that the stress
distributions changed slightly, particularly away from the maximum.
This was more notable for short radius bends.

For in-plene loading, W)(g) must be symmetrical about the
plene of the bend passing through # = -90° and @ = 90°. The
complete fourier series describing the deformation and satisfying

the above symmetry conditions, is

UJ(QS) =Z: Chcosng + 2 Chsinng

N=o0,2 n=13
“ .
where 1s 0, 2, 4, ——,06
éz. » £y = ’
%\
and Z is 1, 3, 5, ——)08
N=i.s .

eoe (3.13)

This contains two vl-:erms which the previous form did not have i,e.,
Co and Cj sin g. The sin g varlation was used in the rigid
section displacements and will “be' subsequently ignored here.

The Co term describes a constant radial expansion at all
values of @. It is normally ignored as it is usually found to
have the value zero. In the. following analysis it willlbe
included as i1t was foun;l to inﬁuence the stress distributions
when end effects are involved. To simplify the analysis and -
eventually/
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eventually the computer program,((g) will be used with the

followlng form,

Mg

w(¢)=§:ansn;f+ Casinng  +H

n=2,4,

>

=3

4

where H = Co

| eee (3.14)

Whathem {117] and Axelrad [104] considered LXg) as

W(g) = ;%Cn CDSH% vhere % = @ + 90°

' in their analysis of the flanged bend which is the same as
equation (3.13). Thailer and Cheng [95] wused equation (3.13)
without the zeroth term, Co. Findlay [99] wused the simpler
form given in equation (3.12a).

The second part of the radial displacement,W(©), has
to satisfy the condition of symmetry at O = 0 and the rigid

flange conditions at ©=2 S . The flange boundary conditions

can be stated as,

w(e)= 2R = g

PR

b

Note that the slope condition, 3 =0, is ectually B, =0 but
this reduces to the above because the distortion part of the U
displaceinent is zero at the flange. . ﬁe’ is the rotation of fhé
shell mid-surface relative to the flange i.e., it only includes
the distortion displecements.

Since the deformation is symmetric about © = O then an even
fourier series will be used, i.e.



()(8) = Cot 2, Ca O3 (1)

m=1, 2, 3, -—, as

eee (3.15)

The flange boundary conditions are now applied to equation
(3.15),

w(e) =0 =Co t %‘CMCOS<MQ%;)

or <
Co = "‘2 Cm COS(m'Z%)
m=i
eee (3.16)
alsoat O=%,
> WE) b |
se =0 = 2, cm(m) sn(m )
This 1s satisfied if,
SIN (mVL%%)‘:‘- 0 . m=1, 2, 3, —
therefore, N = 3’;::
eee (3.17)

Subst.it.uting' (3.17) into (3.16) gives

)
Co= — 2 Cm cosmTT
mel

-1 ) =135, __

cos e = §
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. ob of
ioen Co — Z: CM — 2 Cm

m=1,3s m=4,6
eee (3.18)
Substituting (3.17) and (3.18) into (3.15) gives,
ob
-— C C,, COS 2MmTry
(e)= 2« n=ZCn + 5 C,cos(2nme)
using this with the identities
2 cos'(6/2) = | +cos ©
2 SIN%(8/2) = |- cos8
0(©) finally becomes,
[9) 24 Cm cos (""re) éCm SINz('_".TLLQ)
m=26
eee (3.19)
where Cm = 2Cm
Findlay [QQ]' used(( 6 ) with the following form,
o )
W(O)= 2 Cmcod (TS

XX (3.20)

He derived £h13 on a purely intuitive basis by e:tamining the
expected deformation pattern. It should be noted however, that
equation (3.20) is not ‘the compléte fourier series fitting the
boundary conditlons, whereas (3.19) is.

Thailer and Cheng [95] used(X( @) with the following form,

111
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W(©) = 2, Cu cos(=E)

m‘lls

eer (3.21)

Note that this does not satisfy thé requirement of (E%’l; 0 and
therefore does not satisfy the conditions of a rigid flange but
does satisfy the conditions of & 'thin! flange. It is also not
& complete fourier series satisfying the boundary conditions of
& thin flange.

Whatham [117]and Axelrad [104] used a method of solving
the differential equations which 4id not require the specification

of W(8) in a series form.

The radial distortion displacement U is found from the
product of W(P¥) and(W(O). To write this in a concise and

meaningful way the following function will be defined,

R
L.

El if k is even
0 if k is odd

n

0 if k is even
1 if k 3s odd

XX (3.22)
Using this (Jp can be written as, |

Wy = :é.%n‘\.zc'“" ('lpu cosng+ Y s n¢XU)°,,, cos’(&;‘?) - 'ILLMSIN:L(%@))
+ _\2 H, (u, §°52(3<E§) — Yy 51N EE9)

where m = 1, 2, 3 —
n=2, 3, 4 ——
i=1, 2, 3, —

cee (3.23)
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The zeroth term in the W( ©) series H has become Hj, using
the same subscript, j, as the rigid section displacements. This
is for computational convenience and does not affect the final

result.
The coefficients Cmn are not simply the product of Cm and

Cn. Fach Cmn coefficient corresponds to a particular peir of m and
n. i.e. é\z Cm # §me2 Cn « The use of Cm and Cn
n n

earlier was to make the derivation simple.

(3.2e) Meridional Tangentiel Distortion Displecements ,Us

The meridional tangéntial distortion displecement is often
elther derived from, or used to derive, the radial distortion
displacement using the assumption of an inextensible meridien. In
shell theory, this is equivalent to saying that the meridional
direct strain,€g, is zero. i.e.

€¢:_—_ _ll:_[w'f‘bb_%-_] =0

vhich gives,
— — 2\
eoe (3.24)
or, v = ‘”‘S L&)élsﬁ + C

s (3.25)

(C = o from syrmetry conditions) _

As an example, substituting equation (3.12a) into equation (3.25)

glves,



(@) = — 2 Cak sinng

nee,
ees (3.26)
or from equation (3.13),
_ » “
V() == 2,Ca 510 +2, Cu cosng
n=2,4 Nn=3:5
eoe (3.27)

| For the main analysis to be presented, this assumption of
€4 = 0 will not be used and the effect of includiné €4 will be
examined later.
| In plane loading and the symmetric plane through g = + 90°
end # = ~ 90° means that V(@) must be antisymmetric about the same
plene. A complete set of fourier terms satisfying this condition
is,

U(¢) :—-2 Bt sin ng +2\ Bn'}{cos ng

n=2,4 n=i,3

eee (3.28)

Note that the form of the function chosen would satisfyEg = 0 if
all Bn = Cn. This should mean that Bn and Cn will have
approximately the same value which will assist the numerical
stabllity as expleined later. It also pei-mits an easy examination
of how good the assumption €g4 = 0 would be for a particular
geometry. .

Equation (3.28) differs from the more usual form, equation .
(3.27), because it includes the term By co8 f. This is one of the
functions used in t.hé rigid section displacements and therefore will
not/ | :
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not be included in the final U(g).
Therefore, U(g) will be used with the following form,

U(qé): -—2 Bk SIN 0 +-2 [3'\-1'rT cos ngd

n=24 n=3,S
ees (3.29)

Axelrad 1104], Findlay [99] and Thailer-Cheng [95] all
used the Karman assumption of €4 = 0 to derive U(#). Whathem
used a form similar to equation (3.28).

The variation of the meridional tangentiel distortion
displacement in the circumferential direction, v(e) , has to
satisfy the boundary conditions of symmetrj at ©=0and of &
rigid flange at @=1 % | The boundary condition for U(6) at

the flenge 1is,

et ©6=%%, V) =0 (=Uy)

Note that %%b is not required to be zero at the flange since
is in the plene of the 'shell‘ mid-smface. This caﬁ elso be seen
from the necessary boundary conditions for a pipe bend given in
equations (2.17). ,

| To satisfy thé' symetry conditions \Y(6) is specified as

an even fourier series, i.e.
T
U(0) = b, + %,bm cos(mn6)
| vee (3.30)
= &< o .
at © Z o 'U;:o = b‘c +_§ bm. CO‘S(MQ%%)
. e

f
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therefore,

b, = — g b cos (m 'Z%)

Mmey

ees (3.71)

Since 'U'(B) is not a periodic function, i.e. the range of & is
finite, then ¥ 1s selected so that V(@) is a half range expansion
on the interval 0<© < °/2  (See Kreyszig [152] p. 393).

Therefore,

— 2T
Q ol
eee (3.32)

Substituting in (3.31) gives,
)y = = 2“ bm cos m1Tr

_~cos mTT =£+ l,m=1, 3, 5, —
-l,m=2, 4,6, —

'Y w3 .
therefore, b°= : 2 bm - 2 bm

m=3 ms24

Substituting this end equation (3.32) in equation (3.20) gives,

U(6)= 5, Bn o5~ 5} By, s(e234)

me|3

where B, = 2b, - | cee (3.33)

%%:0% 9=%§ was

not used or required, it is satisfied by the above function,

Note that although the condition

However, the function given in equation (3.33) has been derived in
the/
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the normally accepted way end will be used henceforth, The method
of minimum totel potential energy only requires that the
displacements satisfy at least the necessary boundary conditions.
If the condition of inextensibility had been used then the above
form would have been obtained,

The same comments apply to U (6) as abplied to W(6).
regarding its specification by other authors.

The meridional tangential distortion displacement, U, , is

given by,

U, = 52 B (YooY hessod(y) coslems)-, sui(es)

M=t Me2

where m =1, 2, 3, ——

n=2,3, 4, —

eee (3.34)

and the definitions of the function w is given in equation (3.22).

(3.2f) Circumferential 'fangentiél Distortion Displecement U»

The circumferential tangential distortion displecement is
" not used in the‘ analysis of plpe bends without end effects., It is
only important in the study of pipe bends with end effects and even
then it is difficult to imagine what effect it has on a purely
intuitive basis,

For in-plane bending,A(f) must satisfy the conditions of

symmetry at # = + 90° and @ = - 90°. A complete fourier series

satisfying this condition is,



U(p)= z‘.a,\cosn;ﬁ +é O, SIN NG

Neo,2 n=ps

+ees (335)

The first terms in each of these series, O, and O,sin g, are
involved in the rigid section displacements and will not be
included in the final distortion displecements.

The variation of the circumferential tangential distortion
displacement,U( &) mst be antisymmetric about O = 0 and equal
zero at % « U(6) equals zero at the flange because the
flange 1s assumed not to distort. To satisfy antisymmetry,W(©)
is taken as an odd fourier expansion.about, 6=0, i.e.

u(e) = :(_: Qm siN(mn 6)

[ 11}

. 4
= 9% — o
at 6= % , ul.‘,:c:_.g;Ot,,..sw(mfz_2
For this to be true, SiIN(mo%)=0
or ' 'Z%_é =T
which gives : | 'Z — 27T
’ ‘ ol

which is the same as would be obtained by a half range expansion on

ot
2

the range 0 << 6< . W(B) now becomes,

cee (3.36)

Before giving the final form of the Udisplacement it is
worth examining a simplification péssible for' long radius' bends,

1£/
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If it is assumed that the shear strain is zero for long radius
bends then it becomes possible to derive W fromVU, i.e. From

equation (2.13)

Xe ¢

I

I _ ‘o
\[ba]g Ueesg + & L

2 (1- S
+ [55(\ £ swg) + %(%lé._ﬂ%\msgf)]

where R =R+ r sin g

If the bend radius R is much larger than the pipe radius r, i.e.
for long radius bends, then {T sin § can be neglected with respect

to one. IfWand %‘% are of approximately the same order, then

2U =
¥ = W = cos¢

This can be further justified when W 1s obtained, when it can be

proved that %>u o From this then

= 1| 2dU +.B_ b__]

%o = k|36 + R 3

eeoe (3'37)

If this is equated to zero, then
U= - (ar

7\ %5 dd +c

Xy} (3-38) ) . %

Note that this gives L= 0 for a bend with no end effects. ,
If \J is derived using Karman's assumption of inextensibllity,

i.e./




i.e. Eg =0, then

U=—Jwdp

substituting in equation (3.38) gives,
U= = A
R S S 29 dgdg

vee (3.39)
The constant of integration will be zero since 1L must be zero at
© =0. If Wy is taken from equation (3.23), ignoring the Hj

serles which for W is included in the rigid section displacements,

then
U= T ZZ, Conn (W ity cos0 +1), 5 sin) (&F) sun (22T8)

eoe (3.40)

Thé variation in the © and @ directions is similar to that
-already determined for U(©) and (@). The above form is useful
as it gives an estimation of the possible magnitude of Up relative
to Wy o '

To keep the coefficients of the U, displacement
approximately the same as those of U, and w;, , and taking
cognizance of the forms derived for U{g) and U(O), equations (3.35)
and (3.36) respectively, Upwill be taken as,

= £, A (uhcosns s o) @)

where : m=E1l, 2. 3¢ ~—

n= 24: 3y 4y ——

120
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and Omn = —‘E Am., (rr';‘_;‘:;)
eee (3.41)

The definition of 7P was given in equation (3.22). Note
that the choice of the‘ coefficients is arbitrary, their values will
be decided by the minimisation procedure.

Findlay [99] and Thailer-Cheng [ 957 did not specify U,
at all. Neither thought that it was significant enough to merit .
inclusion in their analyses. Findley argued that since U must
be zero at O =0and O= %S then 1t must be small, Thailer
and Cheng do not aclknowledge the possibility of Uy existing. This
seems curious since they assume that Ue¢==0 but they do not enforce
this condition on their displacements. Had they examlned the shear
strain equation (2.13) and applied ¥4 = O they would have
obtained Up from equation (3.38).

A}éelrad makes. the assumption that Yef = 0 in his governing
differential equations.and enforces this condition to obtain his
displacements. Up 1s derived using (3.39) butU(&) is not used

~in his analysis.

Whatham specifies Up in the form given in equation (32.2).
44(8) is not used in his analysis,

(3.2g) Distortion Displacement Summary

Nnsl

) = IR: :2.‘ 2 Ama (]'Pen_rjlr" cosng +w°;‘—h1$.lN r\¢) (D%—LE) ‘SlN (&%ﬁ)

|

mel n=Z

v, = % B (—mn—,{-S\Nn¢+w°n-}rC°5“¢me (o) - ), 5""1@&@))
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Wy =' :2'4:2 Conn (We.

cosng+Y,sinng Y, oS (B, s (@E@)

B U, (el — s s )

soe (3042)

(3.2h) Total Displacements
The total displacements are found by adding the distortion

and rigid section displacements. i.e.,

u=u&+ub
U =Y +Up
(A)=w&+UJD

Using equations (3.11) and (3.42) gives

3 E,—';(e - s -’*—:79'))(!4— -&smfé) |

U=«
+5 0 (F) s (FT) R smg

+ %g ‘ Rmn (wm—}-); éosn¢+v}on',l"ﬁ$lﬂf\¢)(g)SlN(g‘mJQ) . |

mejns2

U= 2D W) cosg

228 ysmng + R Freosnd Y, cod(B)- ), 0 (20)

w =—Z Ds(FR) s g

+ 320w coon g+ Wnsnng W, cod(28) - smi{ze))

me A

+:é=' H.l (wod 0051(% - ’lpe,xs' Nz(%g))
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B
n

1, 2: 39 R | MT

n=2,3,4, —, NT +1
eee (3.43)

The previously infinit.é summations have been replaced here
by finite sums. - JT, MT and NT are the total number of terms in the
j, m and n series respectively.

The displacements given in (3.43) will be used later in
method No. 3. Some of the assumptions described earlier will be

used to derive simpler displacement; ‘gseries for methods Nos. | and 2.
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(3.3) Strains
The strains are obtained by substituting the total

displacements (3 43) into the strain-displacement equations (2.13).
This gives,.

- 1[22 (- -em)<we,‘wsn¢+wmsw)
(Y, cos(=0) = W, o n(re12))
+5iH, (Y cost(o2) ., (=) |
€= [3 (RO Rome) -D)sn{(4m2)+ b3 () s Feng)
+EESS { Ay (Yurros g + Y g ) cos (29
(B (Ve sung+ Y L cosng) cosd
+ Con(Ypcom ng Y siwng)sing Y, code28)- ) suifoe))
P2, (1, ()~ Y, o)
— —‘R-[gz { (em,. Aoo &)W simng — Wk cosng)
T (et W)t () (o) |
Ky = B (o) (Yot + )
(W cos=Z8) = Y soi(zz2) |
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Ko = 1|2 (Rt (5)+ D, () eos(TR) wRamang
FE5 £ 38 Ao (Yarh cosng+ Yo srung)sing
+2Con (Yl ccmng+ P, s )3 (@ eos B5F2)
+E 22§ Bun (Wchsiung + Yheosn) cos
+ Cron (a5 0F =Y 1 S ) e 3
RS C-ORN RN C)
4 H,2 (3 cos (79 |
Ko =7 | 22{Anrk ( Uromng + 1 cos ng )
= Bn 5 (%_ngcosn;s + Y, Frsinng)cosd sing
+ B (Y o8 nf = Y rces 09
+Cm(—7}énn snng+ Y, n cos h¢)
— Con (Y 000t + Y, rng) congt 3

M)sn\l zm:fa)

‘-SF{um¢GT)ﬁM@EE%]

. (3.44)
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where R =R+ r sinc}S

"
IS
[

and =1, 2, 3, —, JT

-
L]

"2,314-’ ""“:NT"']-

=
A
N

NI
n
=]
(|

0
NS
8

=1, 2, 3, —, MT

3
}

The complete strains as given above will only be used in
method No. 3. Simpler forms, described later, will be used for

methods Nos. 1 and 2,
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(3.4) Solutions Using Hand Intepration

Before performing the more complex procedure using the
complete strains as'given in (3.44), it is worth examining some
tsimpler' solutions. Although the displacements and strains in
these siﬁpler methods are not as complicated as the complete
strains, the work involved in obteining a solution is possibly
more time consuming than method No. 3.

Method No. 3 was developed to overcome the limitations
involved when using hand integration and to allow the removal of
as meny assumptions as possible. Nevertheless, the simple

solutions are valuable as they give a useful insight to the problem.

(3.4a) Method No. 1

This method involves the use of most of the simplifications
discussed earlier. These cén be summarised as follows,
1., €¢=0 , giving U= - wa dd from (3.25)
2, Yoy= 0 , giving U= £ {{Wedgdg  from (3.39)
3. << |
4. Ky and Koy assumed to be small and neglected from strain energy.
5. €o =0at =0, giving U= SV dé, permitting use of

equations (%.5) for rigid displacements.

Further, thin shell theory will be used and its inherent
assumptions epplieds

Al11 the displacemen£s can’ be derived from the specification
of V. and (3, These sre taken from (3.9) and (3.12a) with (3.20)
respectively. i1i.e. .

V. = 2 D, smz(;-'EQ-)

I=2
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Wp = 3 5\ Cpacos ng cos ’“;’29)

m=i8 Ne2,4

. (3.45)

These are the simplest possible displacements giving a

recognizable solution. Y is the same as that used by Findlay
{991.

The total displacements ere now given by,

u=2Dx(e é—>s'~(—“@->)<l+ﬁs~¢)+(Tr)s.N(g_}r-sms

& 215! Cma (RI) cosng e 1w :errg)

U= "Z‘D.) s'NZ(;'JEZQ>COS¢ _%\én: Q" —,L;Sm n;fcosz(.m:g__@

3

W '-"— —2 D_,SlNz(%%P)sw;! fé\é} Crn cosn}{ cos“(mgl;ﬁ)

J, .
o (3.46)

vhere ‘m=1, 3, 5 ——, MIx2-1
n=2, 4, 6 ——, NI'x2

j=1,2, 3 —, JT

The' displacements together with the previously stated

assumpt.ions give the strains as,

[R 2\]),—‘9: (1 + cos (-@X(Al) l>)S| NG

+é\% Cmnccs(%”? cosn¢sm¢———r'\~smn¢cos¢) .

+



+ B 219 Co () ecm g cos (29 |

kg =4[ B2 Coon (171) com np cod{ ) ]

‘ . (3.47)
Comparison of these with (3.44) reveals the considerable
simplification involved.

The total potential energy is found by substituting (2.47)

into

AT = _%S “[e +& K3 ] rRdedg—MI
where cC = Et

0—») eee (3.48)

The rotation between the ends of the pipe bend,¥, is found

from 2 ¥, (equation (3.3)) at 6= ‘f , @8

¥ = RQD (’"*‘S'NG"XW & )

cee (3.49)

Substituting (3.47) and (3.49) into (3.48), and integrating

gives,

ees (3.50)

"~ 129
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’ M Xo _ MR
where V ,v / 2(1- 91) ’ Xo - -_E_'j:_ 51‘ =3t
_ R

B= %y 5 Ca=Cv(E) » 2=

Il=i_~§ o<+(a1r )smé_ ___.;‘S.)sm——-—

AN s g0
TR AR GRG0
E- 2 (BB 5y + (160 ) (i + X207

1= -0 5 5E)

E (—-‘*S'N(H)@I—g‘-)) 2(1-v?) ees (3.51)

Smp = . |1ifnm =.'P- - kronecker delta symbol.
| Oifm#P |
also k=1, 2, 3, —, JT

mP =1, 3, 5, —, MIx2 ~ 1
n=2, 4, 6, ——, NIx2

Details of the integrat_ions a:.re given in appendix (2).
The values of the coefficients, D, ‘and Cm are found by
. minimising thé total potential energy function Vusing,
for all j,

§V = 0= 2% BKI + g Cmg &, —IS
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for all Ym" and “n"

igm ©= Z\DI +2%C9n§3+2CPnﬂ£ ~+ SCP,-._.,.Eg

eee (3.52)

where

1—-- -—
Ec, = - <\+ é%')(r;n%::—.s

This gives & set of linear simultaneous equations which can

be rewritten as a matrix equation of the form,

[AT$x3 =§b3
veo (3.53)

where [A] 1s a square matrix containing the constants in equations
(3.52) corresponding to the required coefficients in the vectoriX’S.
The vector {b} contains the constants occuring in equations (3.52)
which are not multiplied by one of the unknown coefficients. The
above matrix equation can be solved using a standard method such

as the Gauss algorithm. This will be discussed in more detéil

later with regard to the more complex solution procedure. The

~1‘.oy'c,a.1 number of equations to be solved is (M x KT + JT).

The solution of the abov'e matrix equation was performed on a
"Compukit UK101" micro-computer cc;nstructed by the author. The
‘solution program, written in WBASICH [153], and the data necessary
for finding up to thirty five coefficients, can be contained in 8
kilobytes of random access memory. The time taken for a solution . -

was/
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less than three minutes even for the largest matrices. The
program can be written in less than sixty lines of BASIC.

Once the coefficients have been obtained, the required
flexibility factors can be found. From the definition of
flexibility factor given in ths introduction to chapter 1, and

the end rotetion given in equation (3.49), i.e.

2D, (5 +5NEINE - %)

e N = — Re
where D = DA/RXD | , ¥, = M =

eee (3.54)
In the present work, K represents the overall flexibility
factor of the bend.
Presentation and discussion of the results will be left

until the second method has been explained,

(3.4b) Method No. 2

This method removes the assumption of zero shear stralin
used in the last analysis, and involves rather more .compllex
displacements. All the other assumptions used in the last analysis
wiil be used.' '

For this method three displacements have to be specified,
Ve, Up and Wp. These are taken from (3.9), (3.41), (3.12b) and'
(3.20), 1.e. '

ch"‘i‘ D, sm('“‘—e)

=i, 2

g Q Ama (‘%\—}F coSn;l-r‘%—,sz s:unp)(mgr) s:N(-?'-'Po—;"ﬁ)

mq,s n=33

|\

Up




= 2} S, Cenn (}LL\ cosn;ﬁ + Y, sin nyS) coS(F%)

msy3 N=2;3

. (3.55)

From these the total displacements can be found, using
equations (3.6) and (3.25), as

u = £, 4((6- Hom CZBY i+ Fsmp)+ () s (B Fsws

+ R B! Ay (Ui Yoo sinng) (o)

V= — 2D, ein (LB)cos ¢
+ 2% Cun(-Wrk snng+ Yo Ty cosng ) cos{ L9

- 2: D, cos (—ﬂ——‘:ﬁ)swgﬁ

+48 Con (Wm cesod + Yoo 8'~n¢>w$ (=Z)
. (3.56)

where g is m=1, 3, 5~~, MT x 2-1
2 is.n=2;3a4—-,.NT+l
n
?“ 18 3 =1, 2, 3——, JT

Substituting these into the relevant strain displacement
equations (2.13) but taking the shear strain 'KQ; from (3.37)

glves,
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€o= %R EDE(1 + cos(THEE s v
+ % %‘g Amn (ﬂ)encosn;ﬁ-l- %nsw n¢>(ﬂ§)zcose‘%%

1

+ 52 o (U, hernng+ Yo cosng) cosg

m

+ (we,,wsn,d + Y 5N n¢>sw¢) cos’(%ﬁ)]

bog = 1 |25 (Cor B (U 5 g - Pcos ) B mozD)]

K5 = (2% Cun(=) (W cone + Yoasin n) cost (22 |
s (3.57)

The total potential energy is found by substituting (3.57)

into,

V=%“[€e+ Dy +£ K] rRdedg — MY

o—!&
.s (3.58)

When (3.58) is integrated, the following expression is

derived for the non-dimensionalised total potential energy,v ’
v = §§Q5n§t +§§: Cms.s?z + é‘?g (EmnCmIﬁC@m I,‘
4+ ﬁmu ﬁ—pn $,+ ﬁmzmzq"’ ﬁmmuanz|o+ﬁmn-u'épnzgg )— ? B-‘ KXY

ee (3.59)
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8.180 J,k = 1’ 2’ 3’ "‘—-'-’ JT
mP=1, 3, 5, ——, MI x 2-1
n=2, 3, 4, ———, NT +1

.—f, ’ Ez, Ea, and Eg were given in equations (3.51).

The others are,

- LR s, 4 (1 ) et o Xl
= 432 (REf5we + 2R)(52)" S

E‘i—_w( )3

j;:,o:'iré (r: ) 2!’7-:1)‘2 ED" e

- = n
= EI:R_ %l;—"r) %ﬂj”% (—-—I) Smp

ees (3.60) .-

Details of the integrations can be found in appendix (2).
The values of the coefficlents, D,, Amn and Cmn are obtzined
" by minimising the total potential energy function®  using,

for all j,

2N = o= Zz DREI +2Cm§ ‘_1

> Dy

for all m and n,

S = 0 = £ (RRBo+ Ty + CpnnFa+ Cors i

R =0 = U RS oo
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+ ﬁmn., E..) + 2 D2,

ees (3.61)
where
2
In_:'Z mTF %\':_‘)()SMP
£.= 3z (Tr%:\—i.) ED" S
eee (3.62)

These give a system of (JT + 2*MT' x NT) linear simultaneous
equations which can be solved ﬁsing the method previously outlined.
The flexibility factors can be found from equation (3.54).

(3.4c) Flexibility Factors from Methods 1 and 2

Previous Investigators, working on a Karman type single
series solution for a bend with no end effects, had a relatively
simple task of ensuring that the flexibility factors had converged.
Convergence was accepted when the difference between NT and (NT + 1)
was below a certain arbitrery limit. Most people found, using a
series of the type given in (3.12) that the following number of

terms was adequate, for particular limits of the pipe parameter,>\ ,

A> 5 ’ NT =1

S>A> 022, NT =2 .
A2 06, NT = 3
NT = 4

O6>N>,04

where/
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where.NT is the total number of terms required. These results
being taken from Rodabaugh and George [31] .

In the current problem, convergence has to be considered
with respect to j, m and n. Further, as will be shown 1ater,l the
results are found to vary not only with the pipe parameter, ) ,
but also with the bend engle,, and the radius retio, R/r.
Results also vary by a small amount with Poissons ratio, ¥V , but
throughout this work this will be teken as 0.3. The simplest way
to resolve this dilemma i1s to examine the flexibility factors for
some low A value, as j, m and n are increased. More terms will
be necesséry when f.he distortion of the cross-sections is greatest
i.e. when the flexibility 1s highest. Therefore, the convergence
will be examined for large R/r and oC as these should have the
highest flexibility, Once a set of J, m, and n is found for this
set of parameters, it should be suitable for any bend with
higher A and lower R/r and 0< values., The parameters cho‘sen
for convergence 'checld‘ng are OC = 180°, A =0.1, R/r =10, V=0.3.
The convergence results for both methods are given in the
following table of flexibility factors (K): |




Table (3.1) - Flexibility Convergence
A= .1  R/r = 10 , OC= 1800
Method 1 Method 2
JT | MT | NT K JT | Mr | AT K
1] 21| 12 2,22 1] 1] 1] 2.2
1] 1| 2 2,42 1} 1] 2 2.23
1] 21 1 2.66 1] 2|1 2.71
2] 1] 1 5.56 2| 1)1 5.57
2| 2 2 9.69 | 2| 2| 2] 5.7
2| 2| 3 | 10.04 2| 2| 3 | 10.00
2| 31 2 9.71 2| 2|5 | 0.2
3| 2| 2| 9.69 3| 215 | 104
3|1 3| 3 | 10.06 2| 3| 5 | 10.48
5| 5| 5 | 10.14 3| 3| 5 | 10.48

For discussion pufposes the number of terms required for
convergence is conveniently expressed by (JT, MT, NT); for example,
JT = 2, MT = 2 and NT = 3 are represented by (2, 2, 3).

From table (3.1), the flexibility factor for (2, 2, 3) has
converged to within 1% of the result for (5, 5, 5) for method 1.
Thus, -method 1 can be considered as being.sufficiently converged
when using (2, 2, 3) with. A>=>.1l, R/r =< 10 and OC=<!80", This
has been confirmed by checking convergence fér other values of the
tﬁrée main characterising parameters., Similarly, for method 2,

(2, 2, 5) can be considered as sufficlently converged. ‘

Some results for method 1 with (2, 2, 3) and method 2

with (2, 2, 5) are given in the following table:
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Table (3.2)
Flanged Bend - Flexibility Factors
METHOD 1 (2, 2, 3) METHOD 2 (2, 2, 5)
R/r| A | oc= 18° oc= 90° | oc= 180° oc = 90°
10 | .1 | 10.04 4.72 10.41 6.06
2| 5.45 3.57 5.52 4,07
51 2.3 2.05 2.36 2,11
1| 1.37 1.31 1.37 1.32
3 { 1] 5.72 1.45 7.72 ’ 2.3
2| 4.03 1.42 4.70 2.11
5| 2.4 1.3 2.23 1.64
1) 1.32 1.15 1.34 1.24

These results show a significant variation not only with the
pipe factor, A » &8 in the Karman case, but also with the bend angle,
o, and radius ratio R/r. The flexibility increases as A reduces
and as R/r and CC increases. Methods 1 and 2 are compared in
figure (3.8). Method 1 can be seen to give lower results, especially
at low R/r and OC, For R/r = 3 and X= 90°, method No. 2 can be
more than 50% higher. The difference 1s probably worse for low R/r
because the X.f-- 0 assumption, which method No. 1 included and
method No, 2 did not, is more _vé.lid for larger R/r. Examination of
the Ann and Cmn coefficients from method n‘o. 2 confirmed this,
E:;amination of these coefficients also revealed that the odd fourier
terms (i.e. sinngd , n =3, 5, 7 =) 4in the radial distortion
displacement seri_es were importa.nt.‘ This is in contrast to the
analysis of a bend withouf. end effects where the odd fourler terms

v

are zero if - 1s neglected with respect to unity. Jones [35]
stated/ ‘




stated that the odd fourier terms become more significant for low
R/r if this parameter 1s included in the theory. Examples and
further discussion of the coefficients will be given later.

The variation of the flexibility factors involves the
pipe factor, A , which can be written as,

_ Rt
AN = FF

Since this is the product of the thickness ratio, t/r, and radius
retio, R/r, the results could be presented in terms of these, but
the pipe factor ,}\,has become established as a major parameter in
the analysis of pipe bends, and will be used herein. However it
should not be forgotten that XA includes the thickness ratio since
thin shell theory commonly limits this to,

t/r < Vo

but this is an arbitrarily chosen value., For practicai purposes, it

should be set by whether or not the results from the theory agree .
with experiments.,

Whatham, in presenting his results, does not give any
flexibility factors for t/r < ‘1o s However, the present author
feels that this may be unnecessarily restrictive sincé some of the
bends used in industry are Just inside this 1limit. In the present
work results will generally be given for t/r < /s . In figures

(3.8) and (3.9) they are given outside this range demonstrating that

there is no rapid or sudden transit.iqn of the results beyond this
1imit.. |

A comparison of the results of method No. 2 with those of
Axelrad/
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Axelrad and Whatham are given in figure (3.9). The present results
show a generally similar variation to those of Axelrad and Whatham
with respect to N, R/r and ¢, The flexibility factors from
method No. 2 are lower by as much as 25%, particularly at lower R/r
and 0C., The results for R/r = 3 and OC= 90° are somewhat different
from the rest. For these parameters, Axelrad's flexibility factors
are higher than either of the other results for larger A values
but this changes when A is low. This is in contrast to the
comparison between Whatham and method No., 2 where the lines on the
graph are almost parallel, method No. 2 always being lower. The
behaviour of Axelrad's results is probably due to them being an
approxiﬁation develoéed from one term of a series solution.
Experience has shown that this usually gives poorer results for
low )\ values.

Flexibility factors obtained from the analyses oé Findlay
and of Thailer and Cheng, presented earlier (figures (3.1l) and (3.2)),
do not show any variation with R/r. Method No. 2 is an improvement
over both of these methods in both displacement series and
assumptions. The major difference between the analyses is in the
assunption regarding the shear strain, U,,‘ .. Findlay appreciated
the significance of the shear strain but not of the circumferential
tangential displacement MU, . Thailer and Cheng assumedvthe shear
strain was zero but did not enforce it on their displacements.

Although the results of methpd No. 2 and Whatham show
reasonable agreement, they are not c¢lose enough to confirm each
other conclusively. To resolve this problem, as many as possible
of the assumptions used in method No. 2 would have to be removed.

This forms the basis of method No. 3 to be presented in section (3.5) .




(3.5) " Method No. 3 ~ Numerical Solution

(3.5a) Introduction

Displééément series (3.43) and strain equations (3.44)
" developed earlier will be used for the numerical solution of the
flanged bend problem. The displacements (3.43) involved the use of
few assumptions and included ell possible fou;ier terms in their
serles. They also satisfy all of the necessary boundary conditions
for & smooth pipe bend with flanges. The strains (3.44) were
derived from the displacements and satisfy the requirements of
internal end external compatibility. o

If the strains given in (3.44) are substituted into the
expression for the strain energy, given in equation (2.16) from
which the total potential energy can be found, then integration of
the expression by hand is virtually impossible. The solution

therefore requires the use of numerical techniques.

(3.5b) Numerical Solution Methods

‘The numerical minimm of the total potentiel energy (T.P.E.)
function is usually obtained in one of two basic ways.

The simplest way is to numericelly integrate the whole T.P.E.
function and then use & standard method of direct numerical
minimisation. There are many different ways of performing direct
minimisation (e.g. [154] and {155 ). Most of them use some
method of searching which is based oﬁ evaluation of the complete
T.P.E. function, The simplicity of this method is that it only

requires the values of the T.P.E, function, for coefficient values

thét/
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that the minimisation routine provides, which is straightforward
to progrem on a computer. This was the procedure used by Spence
[70] in his analyses of creep in pipe bends without end effects.
Unfortunately, the procedure of having to numerically.integrate the
T.P.E. in two dimensions and then minimise with respect to a large
nunber of veriables (105 will eventually be used) is time consuming.
The time required is also indeterminate as the minimisation uses &s
many‘functioh evaluations as it needs to find the minimum and not a
fixed number., Spence only required a one dimensional integration
anﬁ rarely needed to use more than five varlables in his problem.
An attempt was made to use this method but the number of variebles
was found to be limited to about fifty before the computer time and
reliability limit of two hours was reached. The computer was an
ICL 2980, which was the fastest available to the author,

Another method of finding the minirmum numerically was used hy
Symonds [150 , Jomes [35] eand Thailer-Cheng in their analyses of
the pipe bend'problem. This method 1nvolves differentiating with
respect to each of the required displacement coefficients before
performing the integrations. This then produces & set of
. 8imiltaneous equations which can be solved.) The difficulty in this
method is that all of the terms in the solution matrix have to be
numerically 1ptegrated separately. Although general expressions
can be derived for many of the terms in the matrix there is still a
large emount of hand manipulation involved in obtaining a solution.
This method has advantages over thefprevious method. The time
required for a solution would be much smaller and determinate,

This method was attempted and abandoned because the size of the.

current/
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current problem made it extremely difficult.

The ideal solution procedure would use only the values of
the complete T.P.FE. expression and minimisation would be performed
using the matrii technique. It was from this, and the experience
of the earlier hand integration methods that the author developed
the following solution procedure which is designed to meke full use

of the facilities available from a computer.,

(2.5¢) Minimisation Procedure

The total potential energy expreésion for linear elasticity
is a quadratic function of the displacemeﬁt coefficients., This
means that when the T.P.E. is differentiated with respect to the
coefficients, the resulting equations are linear functions of the
displacement coefficients. Since displacement coefficlents are not
functions of the bend co-ordinates, integration can be performed
without numerical velues for the coefficients.

The above principles are the basis of the minimisation
procedure about to be described. The author has not found other
reference to this method in any of the literature to date.

The simplest way to explain the method is with an example.

Consider the following quadratic expression,

'\f==.§<3.251-k(j17ti +.¢13:c,:c1 4-C1@,J:‘4-C1532L27+-Cle)ci§
eee (3.63)

where @;, Oy, A3,Q,, Q, and (g are functions of 1.
If V is an expression for the total potentiel energy then the

mind mim/
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minimﬁm of V can be found by differentiating with respect to the
coefficients XX, and Xa i.e.

3V = 0= ((20x,+ a2, + ) d}

2,

N —o =f(zazxz+03x.+ as) d3
' eoo (3.64)

These are two simultaneous equations in two unknowns, Z, and

X, o This can be set up as a matrix equation,

2§aay  (a;d3 |¥5) =(-S0.d3
fasdy  2{0,af |(%) (—fasdt

or ‘ [H] Exg = {Bg eee (3.65)

where [A] 1s a matrix of constants, {X} 1s & vector of the unlmowns
and {B} 18 a vector of constants,

- The terms in the matrix [A] and vector {B} can be numerically
integrated #nd the matrix equation solved for the required coefficients
X, andX,. This ;ls the basis of the second numerical method
described in section (3.5b). The difficulties arise in the setting
up of equation (3.64) and the separation and programning of equation
(3.65) . )

The new method derives the térms of the matrix [A] and vector

(B} directly from the complete T.P.E. function (3.63). To
explain the method the following definitions will be used, A
coefficient will be termed "active" if i.t is given the value of 41,

"passive"/




"pa.séive" if it is given the value of 0 and "negative active" if
it 1s given the value of -1, 1i.e.
X =1 is active
X =0 is passive
X = -1 is negative active
If all the coefficients are made passive and V is evaluated
then the following is obtained,

X, and X, passive — Saedg

eos (3.66)
If each of the coefficients is made active in turn with the
rest passive, then V gives,
>, active —» §(0,+ a, +Oe>d§
X, active —» X(C(,ff Qs +O~(.>d-§
eoe (3.67)
Simiq.arly, if each coefficient is made negative active, with
the. res’é passive, then
X, negative active —» S(O.— a,+ ag)d g

x, negative active — . S(Qz_-h Os+ 0~e> d g
ooe (3.68)

Adding (3.67) and (3.68), and subtracting twice (3.66) gives
2{adf
2 {a,d¢
e (3-69)
which are the diagonal terms in the solution matrix [4].

Subtracting (3.67) from (3.68) and dividing the results by two

gives/
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gives

= § 04
~§0.df

eee (3.70)
which are the terms of the vector { Bg.

The off dliagonal terms of the matrix [A] are obtained by
making a term active and then the value of V is found with one
of the remaining terms made active with the rest passive i.e. two
different terms Are made active for each evaluation. For the

example this is,

X, and ﬁC,_ active, S(Q + 0,4+ 0aF 04+ Q05 +a6> d ?
| eee (3.72)
The off diagonal term is then found by sub tracting (3.66)

and half of (3.69) from (3.71) and adding (3.70), giving,

f0.ds
eee (3.72)

Thus, the complete matrix equation can be formulated from the
total potential energy fumction.

Generalising this to obtain a matrix of "N" equations is
reasonably straightforward. The only additional comment necessary
is with regard to the position of the off diagonal terms in the
matrix, If the first active coeffigient is X, and the second is
C. then the obtained coefficient should be positioned on row "r"
and colum "6". .

The total number of function evaluations required for a solution
involving "NM coefficients is (N* + N + 1). This can be reduced
by nearly half if use is made of the symmetry of the matrix
obtained/
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obtained from the differentiation of the T.P.E. function.

The time involved in calculeting the values of the T.P.E.
can be reduced by just calculeting the parts of the function which
~involve the active constants, where possible. This can represent
a considerable saving in the running time of the computer program
since most of the time is spent calculating the values of the

function.

(3.54) NMumericel Integration

| The strain energy part of the T.P.E. function has to be
integrated in two dimensions, O and @, There are many different
ways of numerically integrating e function of this type (e.g. see
[148], [149] and [156]. These were examined to find the best
one for use with the present method. The chosen method is an
extension of the well known Simpson's 1 rule to two dimensions.

Consider a double integral of the form,

_ d b
=03 s dodp
.-+ (3.73)

in the calculus, a double integral is evaluated as an

iterated integral i.e. the imner integral is calculated first; then
the outer integral. Similarly, a double numerical integral can be
found b& first epplying Simpson's rule to the inner integral and
then outer integral. This. gives the integral es,

: 3

§ = :% 32‘ W; W: S’sk

eee(3.74)

where/
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where are the values of the function § (e,f) at 6; and g .

sk
The intervals 6=a to O=band f = ¢ to f = 4 are subdivided
into (J-1) and (K-1) intervals, respectively. ©; and ff) therefore

correspond to,

eJ::afsAe and ¢=C+hA¢
where A0 =(b-2)/(J-1) and Ag = (d-¢)/(K-1)
eoe (3.75)
W; eand Wy in equation (3.74i are the weightings applied to each

value of the function, f,, . For Simpson's rule in two-dimensions,
these are given by, '

W,=W3=%Q and W, = W:=ﬁsﬁ
- ®
W= 82 (3+€1) Wh =8¢ (3+(1))
where
J=2,3, —, J1 k=2, 3, — K-1

vee (3.76)

The above equation allows a different number of integration
points in each direction which i1s useful in the pipe bend problem
whi‘ch has widely differing behaviour in the © and @ directions.

| One other property of‘ Simpson's rule is that it converges
to the coi'rect answer when more point-;s are taken betweenv the

integration limits,

(3.5e) Solution of Matrix Equation

In/
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In [157], Meyer examined all of the major matrix solution
routines in the context of &tructural analysis. "In the present
problem careful consideration has to be given to the choice of the
solution routine because of the size of the matrix. A typical
matrix for the present problem has 105 rows which requires at least
ten thousand storage locations in a computer for the [A] matrix.

Meyer states that no method exists which requires less
erithmetic operations than Gaussian elimination. Also most systems
of linear equations arising from structural problems are positive
definite and well-posed in a mathematical sense and the accuracy of
the solution from the Gauss algorithm is usually sufficient.
Gaussian elimination will be used herein.

The standard Gauss algorithm, which dates as far back as
1826, is given in Appendix (3). This method can be adapted to use
the symmetry of the matrix and thus reduce the solution time. On
the computer, the matrix can be solved in its own storage, reducing

gtorage requirements to a minimum,

(3.5f) Total Potential Energy

The total potentiai energy expression is,

o
v=¢

L(e ot €o)— 20-vXEeCy — % X;,;)] rR de dgs

o3 oL%
" -ok"/j

+ 2T (kg o =20-V)Kels — Kog)] rR dedg—M¥
| eee (3.77)
where
Cc=E+ , D= _E¥ 5 Ri=R+rsing

(-5 120-v*)



¥ is the rotation between the ends of the bend which is
found by substituting displacement equations (3.9) and (Z2.10)

into (3.3), di.e.

%= % 2 (R(% — £ =(F)+ 0.0 ()

eee (3.78)

Strain and curvatures from equations (3.44) can be substituted
into (3.77) to give the complete T.P.E. function. This needs to be
non-dimensionalised so that the solution can be in terms of as few
characterising parameters as possible. It can also be used to
simplify the function and improve the numerical condition of the

matrix. The T.P.E. wlll be non-dimensionalised using,

V= V/ (QZ"‘TT’@ ver (3.79)

The reasons for this choice will become apparent later.
}Q, as mentioned earlier, is the rotation of an equivalent length
(i.e. €= R of straight pipe under the same load M, as found from

simple bending theory. -i.e.

Xo= MR.OL ’ I=Trf‘3t
EL | ver (3.80)

Note that the (1 - V'), omitted by many of the earlier
authors using a lower bound epproach, has been included in the

present/
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preseht work., This will mean that the end rotation will tend
towards the value of (1 - Y*) ¥, and not Xo at high A values
(N> 2). A full discussion of the implications of this was given

by Spence [4]. A true lower bound is only achieved if it is
included.

The non-dimensionalised T.P.E. becomes

7=_Et_.(=-vi)re — (~yy Tt X
v 2(0-Y)  2M¥% R LE —(DF %

where in this case

§ — ?f[(e#e‘s 4-2(""X€¢56"'7!+; 3‘929‘)

.{o

- § (KK~ 21X Ky Ko — K&)] ] RRdod B

eee (3.82)

re-arranging gives,
V=2-gl
wherq

i- (5
-

+i b (- 200904 o — )3 ]z dodg

ol—-—"\"‘

f¢ (Est @ —201- V) (EpEo— L xe,,)

and/
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and

~»

€¢=€¢'Rﬁ , €oe=Eg R ¥e¢=\66¢&‘€

f"x‘ r

Re=toe(gg) > Fo=Kofs) o Kop=Hy(5%)

=

ees (3.82)

Integration 1imits in (3.82) have been reduced to make use

of the problem symmetry.
Displacement coefficients will be non-dimensionalised

using,
Hmn = Hmn'(}g—z ' ?Sn'm“= anlé:o_fz‘) ’ —C—mf\:Cmn (—l?%;’)

E:'DJ‘;'{I& ! ﬁl.:‘ .J“—L' ? H-.s:H.\'T%Z

R¥%
eee (3.83)

These were selected by experimentation to improve the conditioning
of the solution matrix, When single precision was used for the.

- variables on the computer, the matrix condition was found to be
poor at A\ < 0.1, The problém was aided by the above non-
dimensionalisation. ‘It was eventually removed by using double

precision variables, ‘but this meant doubling the necessai'y storage.

The strains as given in (3.44) can be arranged using (32.82)

and/
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and (3.83) into a form suitable for use on & computer. These
are given in appendix (4).

A computer program was written which made use of all of
the ‘techniques Just éxplained. This is given in appendix (5).
The program also solves the problem of a pipe bend with connected
tangent pipes, which will be presented later.

The program is written in FORTRAN [158] and uses double
precision throughout. Values of the characterising parameters,O(,
R/r, A and )V are required for each run, A typical, fully
converged, run, takes less than three minutes on the ICL 2930
computer of the E.R.C.C. system. This is in contrast to the other

solution systems considered which would have taken several hours,

(3.5g) Deformations

Minimising the total potential eneréy function in (32.82)
using the procedure 3ust outlined, numerical values are obtained
for the Amn, Bmn, Cmn, Dj, FJj and Hy coefficients for any
particular values of o/, R/r, X and V. 4

It 1s then a relatively simple task to determine the mid-
surface displacements, U, VandW at any circumferential () and

meridional (@) position on the bend from equations (3.43).

(3.5h) Flexibility Factors

From the definition of the flexibility factor given in the
introduction to chapter 1, it follows from (3.78) and (3.80) that
the, flexibility factor K is given by

154 |
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ees (3.84)

K corresponds to the overall rotation between the flanged ends of
the bend since this is the parameter which is normally required in

the analysis of complete piping systems.

(3.51) Stress Concentration Factors (S.C.Fs.)

Once the displacement coefficlents have been determined, it
is then avrelatively simple patter to calculate the strains using
(3.44).. Using the stress/strain relationships given in equation
(2.14) for a linear elastic isotropic ﬁaterial the stresses at any
point on the bend can be found.

The simplest way to examine the stresses is to use stress

concentration factors (S.C.Fs.). These are defined as follows,

S.C.F. = Stresa/(l%F )

' ess ( 3.85)
where (E%E) is the maximum stress in an equivelent straight pipe
under a bending moment, M, ffom simple bending theory. If the
strains are ‘found in their non-dimensional form given in (3.82),

then the S.C.Fs. can be written as follows,

note that

E.I e N
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Gy = [(Ber vE) = 3 (% +vIZ) =59

| Jo = [_(ée*' V&) £ A (Ke+ v @)]zl—}:;;r)
oo (3.86)

where 6795 is the meridional S.C.F., and 59 is the circumferential
S.C.F. Also, the "+" and 5—" signs in these equations, correspond
to the stresses at the outside and Inside surfaces of the shell
respectively.

Similarly the shear stress concentration factor 7Z¢ can be

found as,

fw = (-gesﬁ ":‘XKW)'(—'%’)
eee (3.87)

The above expression for shear stress 1s approximate, as explained
in the shell theory, chapter (2). The degree of approximation is
of the same order as the basic assumptions of shell theofy and can

be ignored.
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(3.6) _Theoretical Results from Method No. 3

(3.6a) Presentation of Results

The results from method No. 3 will be examined in two ways.
In the present chapter, a comprehensive set of results covering a
wide range of the characterising parameters will be presented
along ﬁith a comparison with theoretical results given by other
authors. In chapter (5), the theory will be compared with
experimental resglts.

From here on, all results will be from method No, 3

unless otherwlse specified.

(3.6b) Integration Convergence

The accuracy obteined using a large number of integration
points has to be balanced against program running time. To
determine the‘number of points neceséary the program was run with
A= 0.05, R/r =10,0C=18Cand V= 0.3 and integration convergence
checked., -

~ Flexibility factors and meridional peak stresses (é;) are
compared for different numbers of integration points in the
following table. The nuhber of circumferential integration points
ig termed "Po". The number of meridional integration points is

termed "Pg",




Table (3.3) Integration Convergence
P, Py K E%; i;ggigfa
7 13 21.65 13.14 106
9 17 21.62 12,46 171
{ 13 21 21.41 12,76 303
15 25 21.41 12.76 412

To obtain these results a system of (5, 5, 6) was used, The
convention defined earlier of (JT, MT, NT) is still used here.

From the table, it can be seen that P, = 9 and Py = 17'is
sufficient to give a difference of less than 1% for flexibility
factors and less than 3% for peak meridional stresses when compared
against Py = 15 and Py = 25, with less than half the program
running time. Py = 9 and Py = 17 was used for results given herein

unless otherwise stated.

(3.6¢) Series Convergence

The problem of series convergence for & pipe bend with end

| effect was discussedlégrlier in section (3.4c). The seme principals
will be applied inrthe examination of convergence in the present |
method. | ' |

'Parametefs chosen for checking cdnvergence were,
A=005 RIF =10

o= | 90" .y =03



Some results obtained from running the program with these

parameters are given in the following table:

Table (3.4) Series Convergence

J1 MT NT K Sy
1 1 1 2.25 0.46
2 2 2 6.67 1.38
3 3 3 16.14 6.98
4 4 5 21.21 12.63
5 5 6 21.62 12,46

The differen;:e between thé systems (4, 4, 5) and (5, 5, 6)
1s bstter than 3% for K and 2% for O3. The system of (5, 5, 6)
was deemed to give satisfactory convergénce. This requires the
use of 105 displacemsnt series coefficients in the analysis,

Convergence was found to be faster for higher A end
lower R/r and OC , This confirmed earlier ideas and mows the
system of (5, 5, 6) to be used for 'mrmters inside the above
ranges. For values outside these ranges more terms may be needed

for convergence,

(3.63) Displacement Coefficients

Displacement coefficients for A= 0.05, R/r = 10, (=180
and V= 0.3 are given in Table (3.5). These illustrate several
interesting features of the flangeé. pipe bend broblem.

As explained during the derivation ‘of the displacement :
series , the similarity of the Amn, Bmn and Cmn coefficients
indicates/
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indicates that €g and ¥Yps are small (from equations (3.25),
(3+39) and (3.42))., This is found to be less true for lower R/r
andOC,

ﬁe similarity of the D; and F, series also confirms the
usefulness of equation (3.5) for the rigid section displacenments
with R/r large.

The zeroth meridional function coefficients, H,, of the
displacement are small when compared to C,, « These terms are
more significant at low R/r and considerably affect the stress
distributions.

The Karman solution for a pipe bend without end effects uses
only the even fourier terms in the (W) series. Table (3.5) shows
-that these are the most significant terms in the analysis but the
odd terms are certainly not negligible. The latter are even more
important for lower R/r and o¢ , particularly influencing the
stresses.

| Convergence of the series is easily seen from the table of
coefficients. First and last terms in the Amn, Bmn and Cmm series
(e.g. C12 and Cg7) differs by about 3 orders. A similar

convergence 1s also shown by the D; and F, series. Convergence

of the coefficients is more rapid for larger )\ and lower R/r and 0C,

T T 160



Displacement Coefficients for A= 0.05, R/r = 10, oC= 180°, V = 0.3

Table

(3.5)

P, =15, Pg =25

J D, E H,
1 10.39 11.45 0.0013
2 2,47 2.73 | -0.0032
3 | -0.02 0.37 0.0012
4 | -0a7 | -0.: | -0.0037
5 | -o0.02 0.01 0.0019
Amn
e | 2 3 4 5 6 7
1 | -43.42 5.38 | -11.8% 2.23 [-3z.11 0.78
2 11.95 | - 5.01 1.52 | - 1.47 0.24 |-0.31
3 1.36 -3.31 |- 0.8 -1.13 |-0.43 |- 0,19
4 | -0.74 2.56 1.49 0.36 0.47 0.00
5 0.6 |-0.8 |-03 |[-0.32 |-0.29 [-0.04
Bm
e 2 3 4 5 6 7
1 | -43.76 "3.53 | -12.22 1.15 | - 3.29 0.28
2 12,25 | - 4.40 1.9 |-13 0.39 |-0.26
3 0,92 |[-337 [-073 [-1.2 |-0.3 [-0.26
4 |-o0.5 2.69 1.41 0.50 0.43 0,07
5 | 023 |-1.03 |-0.3 |-0.37 |-0.17 |-0.07
Cmn
ER 2 3 ¢ 5 6 7
-1 -43.73 3.60 |-12.20 1.23 |- 3.28 0.32
2 12.22 | -4 1.89 |- 1.3 0.39 |- 0.27
3 0.92 - 337 |-o0.74 -1.21 |-0.32 |- 0.25
4 - 0.43 2.68 1.42 0.49 0.44 0.06
5 - 0.00 - 103 [- 0,37 =037 [-0.17 |-0.06

161



162

(3.69) Flexibility Factors from Method No. 3

Flexibility factors for flanged bends under in-plane
bending using method no. 3 are given in figures (3.10), (3.11),
(3.12) and (3.13) for 180°, 135°, 90° and 45° bends respectivsly.
Each figure has curves for radius ratios (R/r) of 2, 3, 5 and 10,
A1l results were obtained using JT = 5§, MT = 5 and NT = 6 with
Py =9 and Py = 17. |

The results show that flanged bends of smaller subtended
angles and shorter radius have lowest flexibility. Generally, this
indicates that shorter length bends have lower flexibility.

| As the pipe factor reduces the flexibility incfeases.
Unlike the Karman converged solution, the present results are not
straight lines on a log-log graph. This means that simple formulas
cannot be derived easily covering wide ranges of paramsters.

Figure (3.14) illustrates a typical variation with bend
angle for A= 0,1, It demonstrates how the flexibility reduces
with bend angle. The'diagram also shows that fianged bends with a
subtended angle of less than about 45° behave almost like an
quivalent straight pipe.

Variation with bend radius ratio (R/r) is given in figure
(3.15)s It demonstrates how the flexibility reduces with R/r and
shows how 1t falls rapidly for R/r less than about five. Note
that the curves for the various bend angles-all tend to a
flexibility factor of 0.91,(1-V2),as the radius ratio tends to
zero. Similar behaviour was shown ;n figure (3.14) as the bend
angle tended to zero. )

In figure (3.16), the present method no. 3 is compared

with/
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with the simpler method no. 2. It shows that method no. 3 gives

higher flexibilities, the difference being greatest at lower

values. Method no, 2 gives factors within 124 of method no. 3 for
<}\>¥.14 The difference is greatest for larger R/r. This is

probably due to the simpler displacement series used in the
circumferential direction 1n method 2 not being fully capable of
representing the more rapidly varying deformation at higher R/r.

Table (3.5) shows that the additional circumferential terms

(m=2, 4, 6 ...) are significant for R/r = 10. Examination of the
coefficients for other geometries reveals these terms to be relatively
~ less significant for lower R/r.

A comparison of method no. 3 with Thailer-Chehg and Findlay
(corrected results, see section (3.1)) is given in figure (3.17).
Neither of the latter methods shows a variation with the radius
ratio unlike the present results.

The present method is compared with Axelrad's results in
figure (3.18). Axelrad's results are only an approximation and are
therefore more valid at larger A\.. For OC = 180° and R/r = 3
Azalrad's results are within 20% of method no. 3. For lower bend hV4
angles and radius ratios the comparison is generally poorer. The
degree of approximation of Axelrad's results can be seen when Rr=3
and OC= 90° vhere the flexibility falls when A < 0.2.

Also given in figure (3.18) 48 the A.S.M.E. code for flanged
and unflanged bends [133] . A comparison of the present results
with the wnflanged flexibilities demonstrates the substantial
reduction caused by rigid flanges at low R/r andOC, The A.S.M.E.
.code for flanged bends deviates sigpificantly from the current results.
Figure (3.19) is a comﬁarison with Whatham's flexibility

factors/
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factors. These results are taken from a graph making accurate
comparisons difficult, It appears that the two sets of results
give parallel curves on the log-log plot., Whatham's results are
about 10% higher than those of method mo. 3 for all R/r, OC and A .

The present flexibility factors are lower bounds, as
explained in section (2.4b). In [117] Whatham gives results from
his method for an unflanged bend. These agree with solutions
obtained from an upper bound analysis for the same problem. It is
therefore to be expected that if Whatham's results for a flanged
bend are valid then they will be greater than the present lower
bound, If the (1-\)2) term in the total potential energy of the
present method is neglected, in the way it was by many previous
authors (see ref. [4]), then the flexibility factors from method
no. 3 agree with the resulis of Whatham, within the limits of

plotting.

(3.6£) Stress Concentration Factors from Method No. 3

For a pipe bend with end effects, the stress concentration
factors (S.C.Fs.) vary in the meridional and circumferential
directions and through the thickness. This makes it difficult to
present a comprehensive stress distribution for all points on a
bend. The problem is further aggravated by the maximum stresses
.not being at the same position for all bend geometries, making it
necessary to examine more than a single pipe section., Therefore
some typical distributions will be éxamined and then the maximum
S.C.Fs. for a range of geometries presented.

Meridional Stress Distributions/
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Meridional Stress Distributions

Figure (3.20) illustrates the effect of the radlus ratio on
the distribution of the meridional S.C.Fs. at the centre of the
bend (©=0 ) for OC= 90°, A =0.2 and Y = 0.3, For R/r = 10, the
maximum meridional S.C.F. occurs on the inside surface at
approximately § = -7°, i.e. towards the intrados. The Karmsn
 analysis predicted the maximum meridional S.C.F. at @ = O for a
bend without end constraints. The small difference is introduced
by the present slgnificance of the odd terms in the distortion
displacement series. At R/r = 5, the stress on the outside surface
at the intrados is slightly gfeater than the stress on the inside
surface close to the pipe centreline at @ = O. As R/r decreases
further, the stress at the intrados becomes relatively larger than
the pipe centreline stress. A similar variation can be shown as the
bend angle reduces. ' '

Figure (3.21) shows typical distributions of the meridional
S.C.Fs. along the length of the bend at the intrades (f = -90°),
pipe centre (f = 0) and extrados (@ = +90°) for R/r = 10 and 3. It
demonstrates that the maximum meridional S.C.F, (é?s) occurs at the
bend centre (6= 0), regardless of whether it is close to the pipe
centre (f = 0) or at the intrados (@ = -90°). This was found to be
true for all practical bend geometries. |
Circumferential Stress Distributions

In figure (3.22) typical distributions of the circtmferenfial
S.C.Fs. at the bend centre (6 =0 ) are given for A = 0.2, R/r = 10
and R/r = 3. The diagram shows that for the bends considered, with
R/r = 3 the maximm circumferential S.C.F. (é’e) occurs at the

intrados/
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intrados (@ = -90°) whereas for R/r = 10, the maximum occurs
nearer the pipe centreline (@ = 0). As with the meridional peak
stress, the circumferential peak stress at the bend centre (6 = 0)
has a position which is dependant on both the bend angle, ©C , and
the radius ratio, R/r, i.e. .it is dependant on the length of the
plpe centreline arc (@ = 0).

Typical circumferential S.C.Fs. at the flanged ends of the
bend (©=%) are shown in figure (3.23) for R/r = 10 and R/r = 3,
again with 0C= 90° and A= 0.2. For both radius ratios, the
maximum S.C.F. occurs on the outside surface at the extrados, For
shorter length bends, R/r € 2 and o < 45°, the maximum éan occur
on the ilnside surface at the intrados. Equations (3.44) show that
the meridional strain and curvature, €4 and X4 are zero at the
flange. Thus the meridional stresses at the flange are equal to
the clrcumferential stresses multiplied by poissons ratio, )/,
(from equation (3.86)). This also means that the difference
between the curves for the S.C.Fs. at the inside and outside
surfaces in figure (3.23) is due to the contribution of the
circumferential curvature Kg. The figure shows that K4 becomes
nore significant at lower R/r. R

Figure (3.24) illustrates the distribution of the
circumferential S.C.Fs. along the bend at the intrados, pipe centre,
~ and extrados. It shows that Eﬂ has high vilues at the bend centre
(6= 0) and flange positions. The maximum circumferential stress
can occur at either position, depending on the bend geometry.
Shear Stress Distributions '

Distributions of Shear S.C.Fs. at 8= 35°, for the same bend

geometries/
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geometries as before, are given in figure (3.25). This is
approximately the position with the maximum shear stress (see
figure (3.26)). Note that the vertical scales on shear S.C.F.
diagrams are double those of the previous figures. The maximum
shear S.C.F. 1s much smaller than the meridional or circumferential
S.C.Fs., For R/r = 3, the peak shear S.C.F. (ﬁ’,) is 1.32 and for
R/r = 10, ﬁ,; = 0,72 1.2, the shear stress reduces as the radius
ratio increases. Similarly, it can be shown that ?M is smaller
for larger bend angles. The peak shear stress occurs between the
pipe centré (# = 0) and the intrados (@ = -90°), The shear stress
1s zero at the intrados and extrados because of the bend symmetry
through these points,

Figure (3.26) shows the distribution of the shear S.C.Fs.
along the bend circumference., It shows that the shear stress
increases slowly from the bend centre to a peak at approximately
6= 35° and it falls rapidly at the flange., The shear stress is
zero at the bend centre (6 = 0) because of symmetry and at the |
flange because the bend is maintained circular.

Comparisons of Theoretical Distributions

A comparison of meridional and circumferential S.C.Fs. from
the present work with those of Whatham [117] are given in figures
(3.27) and (3.28) for 0C= 180°, A= 0.362, R/r = 2;83 and Y = 0.3,
The results of Whatham were taken from a private commnication [159]
which contained numerical values intended for comparison with some
experimental data given by Spence and Findlay in [103] . The results
for the meridional S.C.Fs. in figure (3.27) show good general
agreement. The peak meridional S,C.Fs., 6—’93, differ by about 6%.
Circunmferential S.C.Fs. in figure (3.28) show a similarly good

comparison./



comparison. Generally the results of the present method No. 3
are numerically higher. At the peak circumferential S.C.F. ( ﬁe )
the difference is about 9%. The communicaiion [159] contained
vresults for two other bend geometries, These shbwed a similar
comparison, One of these will be shown in chapter (4) for
comparison with experimental data,

Maximun Meridional S.C.Fs.

Maximm meridional S.C.Fs. ( Op) for bend angles of 180°,
135°, 90° and 45° are given in figures (3.29), (3.30), (3.31) and
(3.32) respectively. Each figure céntains curves for R/r =10, 5,
3 and 2, All results were obtained at the bend centre (e=0).
Note that the curves for the different R/r cross each other, unlike
the flexibility curves. At lower values of the pipe factor (A\)

é,; is greater for larger R/r. This chahges over at higher A ’
which coincides with the change in the meridional position of é’}s .
At lower A , % tends to occur close to the pipe centreline,
g=o0, but moves to the intrados at higher A and lower R/r as
explained earlier,

Maximum Circwnfereﬁtial S.,C.Fs, at Bend Centre

The maximum circumferential S.C.Fs. at the bend centre ( 6 = 0)
are given in figures (3.33), (3.34), (3.35) and (3.36) for bend angles

of 180°, 135°, 90° and 45° respectively., Again the crossing over of
some of the curves is assoclated with a change in the meridional
position of the peak S.C.F. Note that for bend angles less than
180°, the peak stress for R/r = 2 is greater than the peak stress
for R/r = 3, i.e. when the peak stress occurs at the intrados it
increases as the radius ratlo decreases,

Meximm Circumferential S.C.Fs. at Flanpes/
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Maximum Circunferential S.C.¥s at Flanges

" Figures (3.37), (3.38), (3.39) and (3.40) show the peak
circunferential S,C.Fs. (8'3) at the flanged ends of the bend
(6=t %), for bend angles of 180°, 135%, 90° and 45°respectively.

For bend angles greater than 90° and radius ratios greater than 2,
the curves are close together, showing little variation with
anything other than the pipe factor, A e« These S.C.Fs. tend to
occur at the extrados on the outside surface. For parameters
outside the above range, the S.C.Fs., move to the intrados and the
values are sensitive to R/r and OC,

Results from the present work are for completely rigid
flanges. In practice, real flanges will have a certain amount of
flexibility, depending on their dimensions. The radial stiffness
of standard flanges should be sufficient to maintain the pipe cross-
section circular but the usually thinner flange thickness may allow
some distortion out of the plane of the flange. Examination of the
predominant flange strain, €, in equations (2;13) and (3.44)
indicates that ﬁhe (gﬁg ) term is principally the cause of the
high stresses., This term i1s related to the change in the U«
displacement along the bend. This change will be less severe if
the flange distorts, thereby reducing the flange stresses. The
stresses nearer the centre of the bend should be less affected by
the out of plane distortion but would Ee affected by any loss of
circularity of the flange. Figures (3.21) and (3.24) show that
the stresses due to the cross-section distortion persist over a
longer length than those due to the flanges. It is therefore
1likely that flange distortion will have a small effect on the
overall/



overéll behaviour, ‘

The high stresses at the flange were noted by several
previous authors. Natarajan and Blomfield [97] obtained high
‘ stfesses at the flanged end of a bend with one tangent and one
flange using finite element analysis, However, they considered
that the stress was a singularity and that the results had no
meaning., In ElOé], Imamasa and Uragami presented experimental
and finite element results fdr two bends each with one flanged
end and one tangent pipe. The flange distributions show a
similar behaviour to the present work but direct comparison would
not be valid because of the different boundary conditions.
Whatham [}17] mentions the existence of high flange stresses but
does not present a comprehensive set of results. The two-
dimensional stress distributions he presents are difficult to take
comparisons from but his flange distributions appear to be similar
' tolthe present work,

Comparison of Theoretical Peak S.C.Fs.

Figure (3.41) shows comparisons of the peak meridional
S.C.Fs. from method no. 3 with available theoretical results. The

only published sets of péak stresses for flanged bends are those of

Thailer—Cheng and Findlay. The errors in both of these methods
were highlighted earlier. Peak meridional siresses ( 69;) from the
Karmen analysis without end effects are also given, Present
results for R/r = 10 and 0= 180°'are about 5% higher than
Karman's results. Eg; for flanged bends with R/r <10 and

o< < 180° are generally lower than Karman's results when A\ < 0.5.

The current A.S.M.E. code shown in the figure is lower than the

present/
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presént results for most bend geometries. Figure (3.42) shows
similar comparisons for peak circumferential stresses.

When using the present results for the design of a
flanged bend each of the different peak st';resses must be congidered
since any one of them can be the true maximum, depending on the

bend geometry.



(3.7) General Comments on the Results of Method No., 3

Method No. 3 used virtually only the assumptions of thin
shell theory to solve the problem of a smooth pipe bend with
rigid flanges under an in-plane bending moment. The resulting
flexibility factors are & lower bound on the stated problem.

WReal" flanges are ‘not completely rigid, particularly out of the
plene of the flange, making the bend flexibility slightly higher.
Thus the present results should also be & lower bound on the "real®
problem. In chapter (5) the flexibility factors will be compared
with some experimental results and further comments will be made
then about the effect of "real" flanges.

The correlation between Whatham [_117] and the present work,
using two completely différent methods, suggests that both methods
give a close approximation to the correct result. Axglrad's[lOli]
results are close to the present work when his assumption of zero
shear strain is valid. Thailer-Cheng [95] ‘and Findlay [99] used
invalid assumptions in their theories making their results incorrect.
The flexibilitles and stresses from the present work suggests that
the design code values négd to be amended. Unfortunately the
present results cannot be given in a simple formula covering the

variation of all parameters.

17
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CHAPTER .4

EXPERIMENTS ON FLANGED BENDS AND COMPARISONS
WITH THEORY



Abstract

A brief description is given of an experimental programme
to determine the flexibility and stress characteristics of two
'smooth bends with flanged end constraints, loaded with in-plane
bending.

Comparisons are made between the theory, method No. 3, and
the experimental flexibility and stress factors presented by the

present and previous authors.
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(4.1) Present Experiments

(4.1a) Test Programme

Two of the important functions of expefiments, which are
generally recognized, are firstly to conflirm the theoretical
approach and assumptions and secondly, where appropriate, to bridge
the gap between theory and experiment. In the following sections,
the theory developed in chapter (3), (method No. 3) will be
compared with the present experimental work and also with relevant
results from other sources. |

It was the intention that the additional data provided
herein should supplement available published results. Therefore,
careful attention was given to the selection of the test
configurations. First of all, forged bends were chosen because of
their small manufacﬁuring toleranées for out-of-roundness and
thickness variations, secondly, the pipe diaméters had to be
sufficiently large to allow accurate positioning of strain gauges
around the meridian and in addition reascnably low pipe factors
(\) and different bend angles were desirable to confirm theoretical
convergence. |

With this background, two carbon steel bends were selected
for testing, the dimensions of which are tabulatedAbelow:-

Nominal Bend Dimensions

Outside .
Bend Bend
Pipe Thiclmess R/r ol
No. | piamoter | Radius PN
1 6.625" 6 0.28n 1.89 | 90° | 0.17
2 6.625" gn 0.28" 2.84 | 180° | 0.25
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Both bends were supplied by Munro and Miller [160] . The
monufacturer advised that it was frequent industrial practice to
specify "taper® or "weld-neck" flanges for direct connection to
pipe bends. The theory presented earlier was for bends with rigid
flanged terminations, more akin to the f"slip-on" flange commonly
used on straight pipes. It was therefore felt necessary to
examine the influence 6f the two different types and each bend
was supplied with one taper and one slip-on flange as shown in
figures (4.1) and (4.2).

A1l welds were X-rayed and both assemblies were stress

relieved.

(4.1b) Manufacturing Tolerances

There are a number of specifications available which
stipulate the permissible menufacturing tolerances for smooth
curved pipes. The above bends were supplied in accordance with
British standard, BS 1640 [161] and American standard, ANSI
B16.9 [62].

The external pipe diameters between g = 0 and g =18°
end between § = -90° and g = 490°%, at 0 =0, were measured with
& micrometer and found to be 6.625" and 6.617" respectively for
bend No. 2. These are well within the permitted tolerance from
the above codes of + 3/32" (0.0938") and =1/16 (0.0625“)‘and give
an ovality of better than 0.998. |

Thicknesses were measured around a section at approximately

© = 40° (close to the "slip-on" flangé) for Send No. 2 and are

given in the following table:-
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@ | Thickness g Thickness
.28 180 .285
45 .285 225 .28
90 .29 270 .28
135 .285 215 .28

These are within the limits of %6 (* 0.0625") on
wall thickness allowed by the above codes.

A similer dimensional survey was carried out on bend No. 1,
which was also found to be within the above variations,

Accordingly, results presented herein will be based on the

manufacturers nominal dimensions.

(4.1c) Details of Test Rigs

Bend No. 1

The test rig employed for bend No. 1 is shown in figures (4.3)
and (4.4). The bend was bolted to a 1" thick plate connected to
two parallel channgl sections, which were bolted to the floor. A
six foot long straight pipe with flanged gnds was bolted to the |
free end of the bend. Loading was applied to the end of the t«mgept
pipe vie a wire rope by a hydraulic ram. The ram was activated by
a8 conventional hand pressufiéed 0il pump. The ram support was
provided by. a frame constructed from 2" angle iron. The load
magnitude was measured by a previously calibrated load cell,
incorporating strain gaugés wired in "a half bridge configuration,
such that qnly axially applied loads were measured.

Ideally, to achisve a true comparison with theory, a unifornm,
in-plane bending moment should be applied to the bend. The systenm,

as/
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as described above, is an experimental compromise involving a
shear force and a small variation of the bending moment along the
bend.
Bend No, 2

A diagram of the test rig for bend No. 2 is shown in
figure (4.5). The loading system was virtually the same as the
previous test, The supporting frame was considerably stiffer as
it was intended for a more comprehensive set of tests involving

various types of loading, not conducted by the present author.

(4.13) Strain Gauging and Instrumentation

In both tests, electrical resistance strain gauges were

employed for the measurement of surface strains. Details of the

gauges were as follows;-

Type: SHOWA N11 FA5/120/11

Gauge length: 5 mm
Nominal Resistence: 120 ohms
Gauge Factor: 2.10

The gauges were temperature compensated for mild steel.
Attachment was made with Loctite LS 496 cement in accordance with
manufacturers recommendations, |

To obtain a reasonable experimental stress distribution
from bend No. 1, it was decided to incorporate a total of 18 strain
gauges on the outer surface of the bend. These were located in
pairs, orientated along the princip;1 bend axes, at the positions
shown in figure (4.6). |

A total of 24 straln gauges were employed gn bend No. 2
at the positions indicated in figure (4.7). |

An/
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An "Elcomatic" automatic, digital, strain reading
instrumsnt was used to scan the gauges at each load step. The gauée _
readings in "ohm/chm x 10°" were printed out on a strip chart at
the rate of one reading per secdnd. Correct strain values were
obtained by dividing the printout readings by the gauge factor
x 107,

The gauges are wired to the internal quarter Wheatstone
bridges of the Elcomatic unit using the standard three wire
technique, minimising the effect of changes in gauge leads
resistances [163], [164].

(4.1e) Evaluation of Stresses -

The strains from each gauge were plotted against load to
check 1linearity and correct operation. A typical example is given in
figure (4.8). A 1ine was fitted to the load-strain results for each
gauge using a regression analysis on a computer [148] . For a plot
of strain € against load P at'n’ points , an equation can be fitted

as follows,

€= a-{-bP" eee (4.1)

where :
b= ;‘7.‘ (P;-f’)(é‘-— E) |
Z (P:-PY

a=(Ze-v3 Pa)fn

ant

p-ZRmn - E=Ben

ooe (4:2)

The/
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The strain at any load can be found from the slope, b.

The corresponding stresses for each gauge was obteined
from the normal stress-strain relationships for a thin shell e.g.,

d = ___E_- [.et +V 62]
(P
[ XX (4.3)

where the Young's Modulus, E, was taken as 29.9 x 106 1b/in° and
polssons ratio, }), as 0.3. The stress concentration factors

(S.C.Fs.) were then found from,

S.C.F. = I / M
L cee (4.4)
as previously defined. The bending moment, M, was taken as that

at the centre section of each bend. For bend No. 1,

M =P({ +R sin 45°)
eee (4.5)

where { was the length of the loading arm pipe equal to 74" and
R was the bend radius of 6", For bend No. 2,

M =P(-€+R)cos§ -hsing
| | oo (4.6)

where £=74", R=9", h = 133" and 3 =13.5° 7§ was the
angle between the flirection of the applied load and the vertical
and h was the height of the point of application of the load from
a line through the bend centre, @ = 09,

(4.1f) Flexibility Measurement/
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(4.1f) Flexibility Measurement

The flexibility of bend No., 2 was determined by measuring
the rotation between the flanged ends of the bend. The rotations
were msasured using a telescope aﬁd nirror as shown in figure (4.9).
Rotation of the mirror causes the cross-hair in the telescope to
move along the scale positioned at the side of the telescope. The
scale reading was taken at each load step. Figure (4.10) shows a
typical plot of the applied load against the scale reading.
Readings were taken with the mirror positioned on both flanges,

from which the bend rotationm, ¥ s was found from,

SL/QZL - SF/Q&:
eee (4.7)

where 5,_ was the cha::xge in the scale reading for the loaded
flange, ©¢ was the change at the fixed flange and ¢, and £r were
the corresponding distances between the mirror and scale. The
flexibility factor was then calculated from,

= ¥ / M RoL
ees (4.8)

where M was taken as defined in equation (4.6). ‘

- The rotatlon between the ends of bend No. 1 was meaa'm'ed
using a similar technique but was so0 small that it was swami:ed
by the rotation of 1;he base flange fixing and was close to the 1imit
of the sensitivity of the measuriné system. Although the
flexibility factor will be given laier » some doubt exists about

its accuracy.

(4.1g) Loading/



(4.1g) Loading
The loading system for both bends was described in

previous sections. During each test, the bends were loaded in

ten increments and then unloaded in the sams manner.,

(4.1h) Results

The stress and strain factors determined for bends Nos.
1 and 2 are given in the tables Nos., 1 and 2 respectively. The
flexibility factors for bends Nos. 1 and 2 were determined as
2.5 and 4.27 respectively,

Detailed compﬁriscns of these results with the theory

will be made in the following sections.
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Table (4.1)

Experimental Results for Bend No., 1

Strain Strain Factor Stress Factor
Gauge
Number €y | Ee Ty (A
0 2,16 2.71
1 1.03 1.84
2 2,03 2.62
3 1.19 : 1.97
4 1.53 1.87
5 0.57 1.13
6 0.35 0,10
7 - 0.87 - 0.8
8 - 1.06 - 1.46
9 - 0.92 - 1.3
10 - 1.29 -1.%
11 0.20 - 0.21
12 - 0.75 - 0.60
13 0.69 0.51
14 1 - 0.30 - 0.16
15 0.53 | 0.48
16 - 0.18 - 0,07
17 0.39 0.37

226



Experimental Results for Bend No. 2

Table (4.2)

Strain Strain Factor Stress Factor
Gauge
Rumber Zf; 2;; 35; 25;
0 1.24 1.37
1 0.02 0.43
2 151 | | 1.54
3 - 0.3 0.10
4 1.51 1.15
5 - 1.53 -1.18
6 - 0.09 - 0.93
7 . - 2.52 -2.79
8 - 2.8 | - 3.48
9 - 0.93 - 1.98
10 - 2.65 - 2.17
1 2.26 1.61
12 0.72 | 1.68"
13 , 2.68 3.18
14 2,10 - 2.64 ,
15 0.99 1.78
16 1.83 2.13 s
17 0.35 0.99
18 - 0.57 ; - 1.29
19" - 2.01 - 2.40
20 0.90 . 1.4 -
2 : 1.29 1.69
22 - 0.25 - 0.28 .
23 ‘ - 0.10

- 0.02

2217
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(4.2) Comparisons of Flexibility Factors from Theory and Experiment

Comparisons of the flexibility factors from method No. 3,
for bends with rigid flanges, with those obtained from the
experimsnts of present aﬁd past authors are given in figures
(4.11) and (4.12) for bend angles of 180° and 90° respectively.

It can be seen, from a general point of view, that there exists
a considerable spread of values and that each set of results
seems to be somewhat dependent on their respective authors.

In references [89a] and [89b], and in the discussion to
[28], Pardue and Vigness puhlished the results of experiments
conducted on nine bends with different pipe factors. Each bend
was tested with subtended angles of 180° and 90° and had a
nominal radius ratio of three. They also gave results for three
90° bends with nominal radius ratios of two. Tangent pipe and
flange terminations were considered, the latter results'being
presented heres Their experiments indicated that different
loadings, e.g. in-plane andléut~of-p1ane bending, would give
different flexibility factors for bends terminated by end constraints.
As their intention was to derive some form of simple empirical
relationship covering as wide a spectrum of bend parémeters as
possible, they averaged the flexibility factors from each component
of loading and presented these instead of the separate factors,
The values given in'figures (4.11) and (4.12) therefore represent
the average values from different lqading, the vertical line
through the average indicating the range of actual values they
obtained. Pardue and151gness gave very little detail about the
flanges but in [B89a] they state that they were cut from 2" inch

steel/
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steel'plate and soldered to the ends of the bends used previously
for the bend-tangent experimsnts. The agreement bgtween the
flexibility factors of Pardue and Vigness and the present theory
is reasonable for 180° bonds, figure (4.11), but poor for 90°
bends, figure (4.12). Comparison with these results can only
really be made in a general sense since it is impossible to
know where in their range of values the particular case of in-
plane bending occurs. Further some doubt is introduced into their
results by the rslatively small thickness of their flanges which
for certain geometries must have been little thicker than the bend
wall,

The flexibility factors obtained by Vissat and Del Buono
[90] for eight 180° degree bends of nominal R/r = 3 are given in
figure (4.11). They adopted a different definition for their
experimental flexibility factors to that used herein, i.e.

_ s
© EE

where © was the deflection measured between the ends of the tangent
pipes. This gives a displacement flexibility factor for the whole
system inqluding the tangent plipe loading arms whereas the
theoretical values from method No. 3 are rotational flexibility
factors for the bend alone. One further curiousity of their
results is that for certain geometries, bends with flanges had
slightly higher fleiibilities than éhose with tangent pipes. It
can be seen in figure (4.11) that their resu1t§ are generally

slightly higher than the present theory.

In/




In support of his theory in [99], Findlay presented the
results from tests conducted on three bends with rigid flanges.
On two of his bends he used "adjustable" flanges. These were
machined rings with 24 threaded holes around the circumference
through which set studs were screwed to simulate actual flanges.
The bends had tangent pipes welded to them, through which the
load was applied. The flanges were supposed to permit an
investigation of different bend angles, with the same bend system.
Although these flanges may have sufficiently suppressed the radial
and meridional tangential displacements, i.e. kept the pipe
circular, in the present author's opinion it is unlikely that they
would ‘hava adequately inhibited the mid-surface slope or the
circumferential tangential displacement and cannot be considered
as true rigid flanges. The flexibility factors from these are
those for the 180° bends in figure (4.11) and the cne with the
lower pipe factor in figure (4.12). As expected, the results for s
the 180° bend angle agree more closely than the 90° bend a.néle.
The third bend Findlay tested was a 90° bend with welded flanges.
It can be séen that the flexibility factor from this bend agrees
closely with the present 'theory. |

whatham [117] gave results from two 90° bends with radius
ratios of 2.86 and 1.905. No details were given of the system
used to test the bends. Figure (4.12) shows that his resulf.s
agree closely with the present theory. -

The flexibility factor for bend No. 1, shown in figure
(4.12), can be seen to be higher than that predicted by the
theory. BHowever, as mentioned earlier, some doubt exists about

its/
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its accuracy. The experimental flexibility factor for bend No. 2,
given in figure (4.11), shows good agreement with the theoretical

value obtained from method Fo. 3.

(4.3) Maximm S.C.Fs.

Comparisons of the maximum meridional S.C.Fs. from method .
No. 3 and various experiments are given in figures (4.13) and (4.14)
for 180° and 90° bends respectively. Maximm circumferential
S.C.Fs. are given in figures (4.15) and (4.16) for the dame bend
angles, .

In figures (4.13) and (4.15) it can be seen that relatively
good agreement occurs between theory and experiment for 180° bends.
Note that in (4.13) the maximum stresses on the outside surface of
the bend are giv'ep since all of the authors, with ‘the exception of
Findlay, measured only outside surface stresses. Findlay's results
a8 given are those from the outeide B\mface. The true maximm for
these bends would actmly have been on the inside surface. The
theoretical results in the other graphs are the true maxima which,
as explained in chapter (3), ocour on the outside surface,

Results for 90° bends in (4.14) and (4.16) show reasonable
agreement, bearing in mind the vcomments made in section (4.2) with
regard to Pardﬁe and Vigness' and Findlay's experimental techniques.,
However, the S.C.Fs. from Pardue and Vigness were taken from [28)
since these were given for in-plane bending alone;

(4.4) Stress Distributions

Stress distributions for flanged bends have only been publishéd

by two previous authors, Findlay [99] and Whathem [117].
Findlay/




232

Findley published a detailed set of S.C.Fs for the meridional
section at @ = 0° for a 180° bend. His results are of particular e
interest since he examined stresses on both the inside and outside
surfaces, His meridional and circumferential S.C.Fs. are given
in figures (4.17) and (4.18). Comparison is also given with the
theoretical results of Vhatham. Close agreement occurs between
theory and experiment at the position of maximum meridional stress
but it is poorer towards the intrados and extrados. Experiment
also shows & higher value for the maximum meridional stress on the
inside surfece. The relatively poor general agreement for this
bend may be due to the adjustable flange used by Findlay, as
described in section (4.2).

In Eil?] Whatham presented stress distributions for two
90° bends with R/r = 2.86 and 1.905. The meridional and
‘circumferential S.C.Fs. for each bend are given in figures (4.19),
(4.20), (4.21) and (4.22) together with Whatham's and present
theories. The distributions demonstrate good general agreemeﬁt.
Figures (4.19) and (4.20) also contain Whatham's theoretical
S.C.Fs. for mflanged bends, which 1llustrates the change incurred
by flange constraints. |

The S.C.Fs. from bends Nos. 1 and 2 at ©= 0 are given in
figures (4.23), (4.24), (4.25) and (4.26), again thesé show good
agreement with the theory. Figure (4.27) shows a comparison of the
theory with the S.C.Fs. from bend No. 2 at the rigid (slip-on)
flange. It can be seen that the experimental’flange sfresses are
slightly lower than the theory. As explained in chapter (3), this
is to be éxpected because 'real' flanges are not completely rigid.
From the strain factors given in table (4.2) for gaﬁges 18, 20

‘anQ/A




and 22 it should be noted that the meridional strain at the flange
was not zero as the theory would predict. This may have been
because the strain was measured adjacent to but not physically

at the flange. Alternatively, it may have been because the
flange did not remain circular. However, the experimental stress
distribution at the bend centre is in fair agreement with the
present theory, method No. 3, so that any inherent lack of rigidity
in either the slip-on or the weld-neck flange does not appear to
have influenced the peak stress unduly. This would appear to
agree with the suggestion put forward in chapter (3) that the
maximum stress at the bend centre would be less influenced by

the flange dimensions than the stresses at the flange itself.
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CHAPTER .5

THEORETICAL ANALYSIS 'OF A SMOOTH BEND
WITH FLANGED TANGENT PIPES
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Abstract

Theoretical solutions for the problem of a smooth pipe bend
with connected tangent pipes, with flanged ends, under in-plane
bending, are presented.

General displacements in the form of fourier series are suggested
and these are used to derive the appropriate strains using the
strain—displacemeht relations.

The first solution presented makes use of a simplified form
of the displacements and strains. The total potential energy is
formilated and integrated by hand, before being minimised to
obtain a solution. Flexibility factors which are derived are
discussed and compared with the results from other authors.

A numerical solution is then presented which uses the complete
strains and displacements. Flexibility and stress concentration
factors are presented for bends with iong tangent pipes over a
wide range of praﬁtical bend geometries. Approximate formulae
for flexibility and maximum stresses are then given.
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(5.1) Introduction

The effect of tangent pipes on the behaviour of smooth berds
has been investigated experimentelly by many authors over the last
thirty years. Available evidence ( [89]a and b, [90]) suggests
that the effect of tangent pipes'can be reasonably neglected
providing the bend angle is greater than about 90°. However,
because of experiméntal error, it is not uncommon to obtain a
variation of up to 20% in the results from a series of tests,
making the conclusion a little uncertain.

A number of finite element investigations (e.g. [97], [106],
ﬁl5])’have been published using various different elements and
programs., Many of these were restricted to a limited range of
parameters which were of some particular interest to the author
concerned. Perhaps the most noteworthy exception was that of
Natarajan and Blomfield [97], who investigated several forms of
end constraint, including tangent pipes, over a relativel& wide
rangé of paraﬁeters; They stated that tangents were significant
even for 90° bends, where the flexibility and stresses could be
about 15% lower than those of a 180° bend, Further, they
_ concluded that the degree of significance was affected by the
bend radius ratio. Their conclusions will be examined in more
detail later.

A more analytic approach was adopted by Kalnins (93] to
solve the problem., He used a combination of multisegment and
finite difference techniques to soive the governing differentlal
shell equations but onlyigave sample results, Wright et al. LUXﬂ
attempted to use his computer program but found it gave seemingly.
anomalous results as was explained in section (1.3). More
recently, Whatham and Thompson [119ﬂ presented An analysis for
bends/



bends with flanged tangents similar to that used by Vhatham [117]
for flanged bends (see section (3.1)). They concluded that
flenged tangents do not affect the flexibility or stresses in a
bend if the tangents are more than one pipe circumference in
length. Curiously, this was not entirely borne out by the
results they presented which showed about a 10% lowering of the
flexibility factors for 90° bends. Only 90° and 180° bends

were examined and the results were presented in terms of the
thickness ratio t/r. A few stfess distributions were given but
no graphs of'peak stresses were presented.

The solution developed in this chapter is an extension of
the work on flanged bends examined in chepter (3). The tangent
pipes will be considered with flanged ends which makes the
displacement boundary conditions simpler to specify. Flanged
tangents are relatively common in practical pipelines, particularly
on ships where ease of maintenance is of primal importance.
Although flanged bends could be considered as a speciel case of
a bend with zero length tangents, its formilation was presented
seperately because the tangent theory involves a new set of

boundary conditions a£ the bend-tangent junction and uses slightly
different assumptions., The work presented here will generally
only contaln details peculiar to the current problem, the general

solution procedure being similar to that presented in chapter (3).

.

(5.2) Displacements

(5.2a) Displacement Formulation/
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(5.25) Displecement Formilation

As before, the displacements will be formulated in two
components, rigid section displacements and distortion displacements,
each of whicﬂ is required to satisfy the boundary conditions. The
definition of the components will be the same as that given in
section (3.2a).

The displacements in the current problem are required to
satisfy the conditions of symmetry and those of the rigid flange
at the end of the tangent pipe as well as a new set of conditions,
namely those of continuity between the bend and the tangent. For
the latter requirement, displacements U, VU, and W and rotation
Be (section (2.2)) on the bend must be equal toU,V , w and Pax
on the tangent, at the junction.

In the displacement derivations, use will be made of a
non-dimensional co-ordinate along the length of the tangent pipes,

defined as follows,

e = X
R
(XX (5.1)
where X is the length along the centreline of the bend-tangent
assembly, measured from the bend centre (6 = 0), and R is the
redius of the bend. © is the same co-ordinate as used for the
bend where XC 1is the arc length along the bend centreline from
© = 0. Note that the overall length of the bend-tangent assembly

centreline, with each tangent of length, £, is,

L=2€ +Ret
eee (5.2)

(5.2v)/
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(5.2b) Rigid Section Displacements

The rigid section displacements for the bend are
forrulated in the manner explained in section (3.2b). The rigid
section shell displacements Uy, Vg and (Jy can be found from the

centreline displacements U.c and \/C using the following equations,

Y = U+ Y.rsing vhere Y, = }]i (U, - %\!‘5)
g = \/.cos £ , UY= \L sin ¢
-%é es 2‘2‘_ see (5'3)

If the bend centreline displacements at the bend-tangent
b
connection are (. and \/cb and the rotation 25: » then the

centreline displacements for the tangent are, (see fig. (5.1)),
b
U= Uc

o= VP - B R(B-F) + V]

X<Loegc
2 ZR LA N ] (5.4)

where \[J 1s the additional part of the rigid section
displacements contributed by the tangent pipes. For (5.4) to be
true, V. ena (dVY/36) must be zero at 6 =04, The
corresponding rigid section shell displacements for the tangent
pipes' can be found from, |
'Ua.-;.\)‘:_+ Y. rsing , K¢_=‘J§}-é—\é-‘-
V= V.cos g ,. W= Vestn g

($<o<Y er (5:5)

| Note/
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Note that Eé is different for the bend and the tangent. The
rigid section displacements as given by (5.3) and (5.5) satisfy
the continuity conditions.

Note that in the derivation of the above relations , the
assumption of small displacements was applied throughout.

Uc end \. for the bend, 0€ © <%  (applylng symmetry)
will be taken with the same form as developed in section (3.2t),

i.e.

S af yTTe
\L::-—-ég I},SIN (—352-

U- 2Ril-@E)sm(Ee) o (5:6)

i

O< b=

PR

b
from these, U2 and \. are

|

V! = =3 D si{(i)

W = 2 Ra(E-E&)=n D) e (5.7)

T M '
Vc and %\% argﬂrequired to be zero at O = %f' + These

are satisfied by a polynomial . series of the following form,

\[=-2G (e-%)"
vee (5.8)

4&1:
© 2R

[

NIR

This form was found to be better than a trigonometric series for
~this particular displacement. The first term in series, j = 1,
is the displacement form of an equivelent solid beamn,

Substituting/ : ,
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Substituting (5.6), (5.7) and (5.8) into (5.3) and (5.5)
gives the rigid section shell displacements;
For the bend, <0< %

_—_% Fi(e—% s @;.ge))(\ +—Esw¢)
+ 72 D, 6F) s (FF) o
U= 2] D, =18(7) cosg

W= — 2 D,sind (358) sivg

y 3 =1,2, 3 —
For the tangent pipe, % <o < "2:_&

U*k:% 2% - o)1+ smg) 3, D (3F)sin (D) Esmg +

, =1

-t—%‘ G; ()(e-%) Ksing

Y = [ D sm'(JI)-—-< Ri(E—( m)sm(é“'))-l—
ﬁ?.:, 2,54 sm(-r_g) Y(e-%) ~26,(o-%)" ] cos ¢
= FED - (F Rt (8 )+
-{—éb‘l(-\o{r)—‘isw(%)Xe-i‘-}—é@\,(e—;—‘-)w]smgf

’ J = 1) 2) 3’ =

.o (5.9
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(5.2c) Distortion Displacements

The meridional components of the distortion displacements
will be taken with the same form as developed in sections (Z.24-f).

Taking the circumferential displacements with the following form,
Uuee) = —E% An (m9) sin(2mne)

v(6) = ,?«‘ Br (U, cos726) — Yo 1N 16))

w(e) = ,,\5} Con (W, cos(mne)~ U&msw’(mrie))

= IR 0= 6= bigp
1= ’ wee (5:10)

for both the bend and the tangent pipe, would satisfy the three
displacement continuity conditioné, but violate the rotation

continuity requirement, i.e.,

for the bend, By = 7(2_\_ (Ub SING —2’2709_2
©
. — W sin (u L puw
- 3YC) + R >+ R 26

for the tangent, ﬁ:: ~ 3 ;—.’-{1{ 2W

oo (ﬁ; )e,.{'_‘ll: (ﬁ?‘>ou§

ees (5.11)

The error in the slope condition from using eontinuous series

displacements of the form in (5.10) is,



2;(1
[( e (ﬁ) ]— :_'*_‘9-‘[7}{ :g: (ﬁ,,,u@)“t'me@))(mz)s.u<mlu);l

ees (5.12)

which is of the order of (§ sin f) x (Bs.x ; it will be

seen later that Cm w(#)/n2 2 AmU(F). Note also that

Bo = B. at # =0. It will be assumed herein that the above
term, (5.12), can be neglected and equations (5.10) are sufficient.

The distortion displacements will be then taken as,

o

Ama (U“Jr;,cosngé + lpm—#ém n¢) (mp)siN@mn6)

M&

.t 032

:Z: B (-?Pe., HEINng + Wm-,l;cos n%w cos’énfz_e)—ugmsnf(m ZQ))

135 Conlllcomnsr Ut o) cadtore)- Y ro22)

+ 2 H.\ (IP&COS'(J 7_9)—-1})23 5'”2(J 7_9»
. eee (5.13)

o< 6 = g

The definition of w was given in equation (z.22)s Up, U} and
0% as expressed in (5.13) satisfy the symmetry conditions, the
flange conditions at the end of tangent ami the continuity of 1,
%5 and W, at the joint. Continuity of Py at the joint is
only satisfied at g = 0. )

Note that the rigid section displacements satisfied all
of the boundary conditions exactly.
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(5.3) Strains
The total displacements can be found by adding the rigid
section and distortion displacements. The strains are obtained
Ey substituting these into the strain-displacement equations for
the bend (2.13) and the tangent pipe (2.20).

Bend: 0< 6<%y

€y = L [£2 (cumB)(Y cosng + Ursmnd )
(W cos(m . 6)~ Yanlmne) + 11,1, costone)- Yso(ons)]
€, = 1 [E(RrEong) D) p) D3 E oS Eoing )
J\r%g{gm (lacones +hnd) o3 6m19 ‘
+(Bn (W=t Yy eon)cmegs
4 G I}L,,cnsn;é*?%ns‘”"?‘)s'“?{ )(‘P cos(m 96)— I}L,nsw’(mze))}
+EW, (v, o2(97.6)~ Yy 1n1399)) ]
XW B[22 {0 B o190 = Yy recsog)
ey \%nm(wf,.#wsnw Y, ) casgs Jng)smmys) |
= L[58 (0 Can—Eon YL, cosng +Yposming)
(Y cotrn) = Yoosinion®)) |
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Ko o5 (R D5 ol B 1 Rrs g oy
FZAE % A (Yorkncosng+ Uk s19ng) sing
+2 Cpa (Y cosnf + U, sinng )3 (M9 cos@mn6)
+ R sgl { B (U, L5 Y, L cosnt) cosgd
= Con (Yen 0 518 A = YPyp 0 cos 1) conh §
x (Y, cositmne) — Y, sinitorne)) »
PR EeEm] 2
og = —',-a-[zz ¢ Pl 2 (CUik 5006 + ook comng) sing
~ A Bz (U frccsng + Y swn;zf)cosyfswsd
B (ko g - won%cosnfs)
+ Conl= Yy NSIN NG :@Il{nn cosng)
~ Con -S(we,.wsnys + Yl e n¢)ws¢§¢ni> sw(ﬂm@).
| EEH oo o] |

x\

ve (5.14)

Tangent :/




NIR

. < 6L =
Tangent: 6 ZR

Es="£[ 2% (Can-Bra)(Yoncosng + Y, sining )
< (W, co50n8) —Yepsinirne))
+ 2 H, (Ycosne) — Yoy snisne)) |
= k| Se(ee(e -5 " Fsng
+ 2 512, AU, casng+- Y, smng ) (T2 cos(@mne) |
5y~ K B2 Gt Ycoons-Us ) ) s am 1))
k= [;;:(nzcm B YLy coong + Uy 510 1)
(Yo c2m08) — Y5 p8)) |
K= [ 2 G e -2 ) sig
+22/5, cnn(wmc;sngs W, sng) oo} cos(zmne)
+ 22 H,0n) cos@y "16)] |
= FR[E% (B (Wuckmeng Yy reoond)
+ Conl-Yepn s ‘+wa.n cosng))(mg)sin@mns) |

. (5.15)
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end

It should be noted that some of the above strains

, n=TE
»3=1,2, 3, —,T
,m=1, 2, 3, ——,M
,n=2, 3, 4, —,NT+|

discontinuous at the bend-tangent boundary because of the

assumption regarding slope continuity made earlier.

(5.4) Solution Using Hand Integration

(5.4a) Method No. 4

using the strains given by equations (5.14) and (5.15), it is
worth examining a solution using hand integration and several of

Before describing the more complex numerical procedure

the assumptions explained in chapter (3).

1.

2.

2

Assumptions 1., 2.,end 4. are also applied to the tangent pipe

For the bend the following assumptions are applied.

€4 =0

, OT

¥g =0 ,or U= |

| sing << 1
Kg, @hi .neglected

R
€¢ =0atP=0

but/

Y=-{wag

r
R

(from (3.25)).

[ dgdg (rrom (3.39)).

, or Ue= SVr_dO , (from (3.5)).

are slightly
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but 3, and 5. are not recjuired. A1l of the shell displacements

can be derived from Ve ’ Vcr and W, which are taken as,

V= —2Dew@®)  W=-Eee-g)"

3=t

03= gg::q\n cosnd (wmocos‘(mtg)—u{'e sw‘(mlz_é))
ver (5.16)

The simpler form of (4 in (3.45) was tried but found to give

poor convergence for longer tangent pipe lengths. The rigid

section displacements, from (5.16), became the same as those in

(5.9) with Fj replaced by Dj, and WU, and Yy become,

mey Ney

-1u_°= {' %gcm(m’g_)cosnyi SIN(Zmng)

M

U = 212G 5B (1Y, cod(mp6) — 1Y, e e 9))

oo (5.17)

The displacements and assumptions give the strains as,
(Symmetric ebout © = 0) -

Bend: 0< o6=%
Y e PR
+28, Cmn(cosn;ls;uqf——#sm npcosg)),,cam18)- Y N’(m;;_e))
+ 22 CralB2cos n cesamie)]

k= B[E2 Con s (Yeodirn )= switags)]]

12



€= kR 2.6 (o) s
+ 3212 Cun B s g cos Gt |
z

,\‘ Con (%) cosng (Wom Cos:(m 76)— 2pem SN '2_8>)j\

where

%:': 1, 2, 3, —y, MT , §= 2, 4, 6, -—, NIx2,
§=1, 2, 3y--=, JT

eee (5.18)
The total potential energy is found by substituting these
into,
o 2,2
2
V= Cig [ee + L K¢]r@ded¢

ax Lhg

+C&S [ei+ £ W3] rrdedg — MY

where = (C = E+

—————

-3
eoe (5.19)

The rotation between the flanged ends of the tangent pipes,
¥ , is found from 2%, (Equation (5.5)) at 6= L/2R as,

¥= kIR T 1)+ £ 516 260D )

ees (5.20)




278

Substituting (5.18) and (5.20) into (5.19) and integrating

gives,
'\7=§:§«'5T> +E2G6GE, + 28G5+

'i"%‘gg (C,MA—GEG + Cmn-c-f’mzzl?)—g (:_D:’ 1‘ +—6.:’:£‘3)

_ . (5.21)
where V= v/@?—-—_i% 9 Xo": UE_—% g T=1r3t
'5 =D ~ — G ~ -
3 -R—-Z) 9 6:) -R—z 9 Cmn Cmn(-'—i.%a-)
j’ k = 1’ 2’ 3’ b | JT

m,p =1, 2, 3, —-, MT
n =2, 4, 6, ———, NTx2

I = 20¢ (33+)(R*+k) (e/,g)“'l !

(.\+-R )

Es == % 0‘(_.‘) SIN(mq_ot)+( ’)m'<aﬂl'_ ..,_)sm @

FHEP N D s 10

> = 2mkh Y= T

Tu= e (020 + (1 4 50r ) (X (REeir)+siefm)iLs,

3. = E.q (ka2
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P = 400 (L/R) (1Y

Fa = 2x f S oy o) o s ()™

4+ L[ sin(gx(m+P) | s(h(m-£) (1-5,,
2( ;}'Z_(mﬂb) t 2k (m-P) ( P)+ 6 3

Xy (5.22)

E' and $¢were given in equations (3.51). Details of the
integrations are given in appendix (2).
The total potential energy is minimised by differentiating

with respect to each of the displacement coefficientg,

zé‘.D T, +2cm.z., —F. =0

%«&‘y

36, = 2 %G Ry —Ea =
V <= .
'%_C'M’-% I +22C”\IE ﬁcp I|7+$C90-212°
ess (5.23)
where
_ Nn:—2n-3 |
Izo - —Eq( 2n (rr‘)]fz> . ees (5.24)

‘ _This gives a set of linear simﬁltaneous equations which can
be solved és described in section (3.4a). The total number of
equations to be solved is (JT x 2 + MT x NT).

The bend flexibility factors are obtained from the
definition given in the introduction to chapter (1), and the end

rotation/



rotation (5.20) i.e.

K= (¥ —2¥") /¥,
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= 2[5, + sn(E(Z-2))+ 2 6 20 [~ VIR

vee (5.25)
Note'that simple beam theory would give ?fT.as
- ML
g I
ee e (5.26)

but that a lower bound energy method such as that used herein
would give,

= (1-v) Mt

———

I

eoe (5.27)

. T
Although (5.26) is the more usually accepted form for & ,

(5.27) is used in the equation for the flexibility factors (5.25)

since this removes the tangent pipe end rotation which would be

predicted by the present type of theory, Yo 4s taken in its

usual form (5.21),

(5.4b) Flexibility Factors from Method No. 4

The convergence problems for bends with end constralints
was discussed earlier in section (3.4c). Similar principles will
be applied in the examination of the convergence of the present

method./



281

method.

Parameters selected for checking convergence vere,
A=0.1 Rr=1 £/r=10 o=18 VY=0.3
The following table gives some flexibility factors obtained using

these parameters;

Table 5.1 - Flexibility Convergence
A= 0.1,R/r=10,0/r= 10, ¢ = 807, Y= 0.3
MT NT K

5.14
6.96
7.65
7.48

13.45

13.94

13.94

14.21

14.81

14.90
14.91

Vb WW DO MD H R RS
[ T S UV I VTGN B O T VTR S I O B R
Ui WD MW KHEHPD

From table (5.1) it can be seen that the flexibility factor
from the (3, 3, 3) system (JT, MT, NT) , using 15 coefficients,
has convex;géd to within 1% of the (5, 5, 5) system using 35 .
coefficients. The (3, 3, 3) system was deemed to be satisfactory
and should be vaiid for A== 0.1, R/r < 10, &/r < 10, « <30,
This was confirmed for several other sets of parameters.

For the current problem, flexibility factors are c.iependent
on the pipe factor, N\, radius ratio, R/r, length/radius ratio, £/r,
and bend angle,0C . Figure (5.2) shows the variation of the

flexibility/



flexibility factor with tangent pipe length for OC= 180°, >~= 0.1,
and R/r = 10, 3, and 2. It can be seen that the flexibility factor
increases rapidly with increasing length, uniil the tangent length
is approximately (2T l'),. the tube circumference,. when 1t approaches
a virtually constant value which is dependent on the radius ratio.
Since the tangent pipes have‘flanged ends, £/r = 0 corresponds to
a flanged bend. Note that because the displacements used here are
different from Methods Nos. 1 and 2, the values at £/r = 0 are
slightly different, but they are still lower than flexibilities
from method No. 3. Because of the number of parameters involved

in the current problem, it would be difficult to present flexibilit:
for various different tangent pipe lengths. Therefore, the
remainder of the results presented in this section will be for

¢/r = 10, which figure (5.2) shows to be a reasonable approximation
to an infinite tangent pipe length. These results are suitable for
bend lengths greater thaﬁ, 2wr , with less than about 2% error
from length variation.

Typical results from method No. 4:with (3, 3, 3) are given
in figures (5.3), (5.4), (5.5) and (5.6) for bend angles of 180°,
90°, 45° and 20° respectivély. Each figure contains curves for
radius ratios (R/r) of 10, 3, and é. Figure (5.3) shows a small
variation with the radius ratio for 180° bends, but this increases
with the lower bend angles. For R/r = 10, 0C= 180° the flexibility
factor is about 7% lower than that pyedictea by the axisymmetric
type Karman [2] analysis, with the (1 - ¥2) term included [2],
for bends without end constraints. For R/r = 2, of= 20° it is
only about one third of the corresponding Karmen values.‘ Thus the
flexibility factors are significantly affected by tangent pipé end

constraints/
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constr;.:tints for lower bend angles and radius ratios.

Comparisons of published' theoretical and finite element work
with method No. 4 ere given in figures (5.7) and (5.8). The
present results are generally lower than the others which is
perhaps to be expected from & lower bound energy type analysis,
The factors from Rodabaugh et al [110], Ohtsubo and Watanabe [115)
and Whatham and Thompson [119] appear to show reasonable
agreement with each other, however a general conclusion cannot be
drawn because of the restricted set of parameters they examined,
Fatarajan and Blomfield's [97] results are approximately 8%
lower than these resul’oé vhich may be due to the (1 - vz)
being included in their finite element, but not in the work of
the others. Further evidence of this is provided by the
comparisons given by each, of their methods without tangent pipes,
with the Clark and Reissner [26] asymptotic formuia , equatlion
(1.15). The latter formula is included in figures (5.7) and (5.8).

Method No. 4 gives flexibility factors which are about 128
lover than those of Natarajan and Blomfield, This suggests that
some improvements may be necessary to the present method, Method |
No. 5, to be presented in section (5.5) removes many of the
assumptions included in method No. 4.

(5.5) Method No. 5: Numerical Solution

(5.58) Formilation

This'méthc.>d is basically an extension of method Ko. 3 to
include tangent pipes. As the numerical procedure is almost
identical onJ.y the changes will be described in detail along with
the/




the formilation of the total potential energy (T.P.E.) from the
displacements, (5.9) and (5.13), and strains, (5.14) and (5.15),
developed earlier.

The complete total potential energy expression for the

bend-tangent assembly 1s,
A= 2C S‘S: [Ceq+ €of —201-VX €oeg - + ‘&2@] rR'dedg
+ 2D Sf[(ﬁm— Ka) =2(1-»)(KeKg — K&)]r R dedg

X gy

rac| g[(e,, t) =200y — 1 82)] R dodg
X Kn

+ 2D__j;_ g; [('K#K;Y—Z(t—vXKpr- Keg) | rR dodg

[A

—MY¥

_ _Et _ _Et3 ;
whereC-(%jgs ,D—m ’ Ry:R-}rsinﬁ

ees (5.28)

Note that the assemblies symmetries have been used in (5.28).
The rotation between the ends of the tangent pipes, ¥ y 18
found from 2 ¥. (equation (5.5)) at © = L/2R, as, )

¥= & 2[R -2 o)+ D (D e+, ZQHX%ﬂ

eee (5.29)

The strains and curvatures in equations (5,14) and (5.15)
can/ | | |
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can be substituted into (5.28) to give the complete T.P.E.
function., This is then non-dimensionalised using,

T=v/( a2
eee (5.30)

Using this the T.P.E. function (5.28) can be written as,
(see section (3.5f)

—

V=3 —Q-v) T 'Zi’—

2

where for t.his“case R

T = g_ g[(@é,)*—zo-v)(é@ —% 334

o

+%§ { (Re+ Ry— 20-9)(R. Wy — R?:#)}j Z ded g

r § CTE e s 93

+ £ {(Ret Ry 20-)(ReRy —R2g)3 ] 2dods

Z=1 +-§-sin g cee (5.31)

The non-dimensionalised strains, € , and curvatures X, are,
€ =€ R K=Kr«
' r’xo ' R Xa
ees (5.32)

The/
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The displacement coefficients are non-dimensionalised using,
A = ol = ol o= oL,
P(mn = F)mn (F‘Zo) 3 B,,,,,— Brn (’,—70) s Cmn" Cmn(;—b’o)

=D , =K ,6=G , H=H_

J

R¥%o RY ’ R¥% RY,
[ X N ] (SOB)

Appendix (4) contains the strains from (5.14) and (5.15)
in a form which makes programming for a computer relatively
straightforwvard. A listing of the computer program is given
in Appendix (5).

(5.5b) Flexibility end Stress Concentration Factors

The flexibility factors can be determined from the end
rotation (5.29) and the definition given in section (1.1), &8s

K’-(X -Z.XT)/Yo

= 2 [F () o) + D) s ) + G 2lrd ) 002

where

XT=(“"1)%%§ e %= Mﬁ‘g‘%" eoe (524)

Xris the end rotation of one of the tangent pipes loaded on its
own, as would be predicted by an energy analysis of the type used
he.rein. This causes the additional flexibility of the assembly,
created by the bend and the tangents to be included in the bend
rleﬁbinty_ factor so that flexibility factors will not be
required for the tangent pipes in the analysis of pipﬁng Bystems;

Stress/
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Stress concentration factors (S.C.Fs.) can be determined

as described in section (3.5i).

(5.6) Theoretical Results from Method No, §

(5.6a) Integration Convergence

In the flanged bsnd problem, the T.P.E. was Integrated
numericelly in the © and ff dimensions using an extension of
Simpson's one third rule (3.5d). The number of integration
points found to be necessary for convergence of the flexibility
factors was.Po =9 and Py = }_.7. In the current problem, the
T.P.E. function also has to be integrated along the tangent pipe.
The number of points found necessary for this using A = 0.07,
R/r=10, £/r=10, £ =18 and v=0.3vas Py =9, Pg =9,
Px = 9 and Py = 17 was used for the results given herein unless
otherwise stated. |

(5.6b) Series Convergence

Serles convergence was examined for A = 0,07, R/r = 10,
e/r =10, (= \g0°and y= 0.3 using the principles discussed in
section (3.4c). As with the flanged bend, section (3.6c), JT = 5,
MT = 5 and NT = 6 was found to give satisfactory convergence.
This requires the use of 110 displacement coefficients.

(5.6¢) Flexibility Factors from Method No. 5

Typical variations of ﬂexibilif.y factor with téngent Pipe
léngth are shown in figure (5.9). It can be seen that the
flexibility/ |




flexibility of a bend tends to a constant value as the tangent
pipe length increases. As with method No. 4, section (5.4b),
P/r =10 is a reasonable approximation to an infinite tangent
pipe length and the resuits obtained from this value can be used
for f/r=>2T with less than 2% error from length variation.
Flexibility factors for bends with connected flanged
tangents of length greater that 21rr are given in figures (5.10),
(5.11), (5.12) and (5.13) for 1809, 90°, 45° " and 20° bends
respectively. Each figure has curves for bend radius ratios (R/r)
of 10, 3, and 2. The results were all obtained using £ /r = 10.
The figures show .that bends with shorter angles and smaller radius
ratios have the lowest flexibilities. It can be seen that tangent/
bend assemblies have a relatively small variation of flexibility
with radius ratio, much less than flanged bends., The differencs
between the flexibilities of bends with R/r = 3 and 2 1s less than
6% for bend angles,0 greater than 90°, although this increases to
13% for 45° bends. The Teduction with bend angle is much greater,
e.g. about 25% between 180° and 45° for R/r = 3. |
The variation of flexibility with pipe factor is Approxima’cdly
14near on the log-log piots for 811 bend angies and ra.dius ratios,
over reasonably wide pr;ctical ranges of pipe factor. Use was
made of this in der.{ving the approximate vformulae given in figure
(5.14). The formulae,

K= H‘——‘;: i | @ere R/r| 10 3 2

cess (5:35)
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empléys a correction factor Py , given in figure (5.14), which
is dependent on the bend angle and the radius ratio. These
formulae have an accuracy better than 5% for flexibilities
greder than 2. Generally, they should not be used for K < 2,
Comparisons with published theoretical and finite element
work, and method No. 4, are given in figures (5.1%5) and (5.156).
The present method agrees relatively closely with the finite
element work of Naterajan and Blomfield., This latter work forms
the basis of the results given by the Engineering Sciences Data
Unit (E.S.D.U.) [129] and it was from this that the results were
generally taken. It can be seen that method No. 4 predicts
flexibility factors which are about 12% lower than method No. 5.
This improves at higher A . The flexibility factors given by
Rodabaugh et al [110], Ohtsubo and Watenabe [115] and Whathem
and Thompson [119] show reasonable agreement with each other a.nd
are about 8% higher than tﬁose from the present method. As ’
suggested in section (5.4b), this may be dus to the familiar (1 - y?)
‘term which plagued the earlier analyses of bends without end
constraints. Also given in figures (5.15) snd (5.16) are the
flexibility factors recoﬁmended by A.S.M.E. 73] :and most
other codes (see section (1.4 )). Clearly this can be seriously
in error for smaller angle bends of short radius, |

(5.6d) Stress Concentration Factors from Method No. §

L

Stress Distributions

Some typical distributions for meridional aﬁd cifcuhf;rential
stresses are given in figures (5.17) and (5.18) respectivelf, for
o= 90° A =0.1, ¢/r = 10 and V= 0.3, Both figures contain
graphs/ | |




graphs for R/r = 10 and 2.

From figure (5.17) it can be seen that the peak
meridional stress occurs on the inside surface, close to @ = 0.
Note that it is removed toward the intrados by about 2° for
R/r = 10 and 6° for R/r = 2, 1i.e. it moves away from @ = O as
R/r reduces. The maximum stress is shown to decrease as R/r
reduces but this is not always true for other bend geometries ,‘
as will be seen later, Also, for bends with flexibility factors
less than about three, the maximum meridional stress usually
occurs on the outside surface at the intrados. The peak stress
is always at the centre of the bend, O = 0.

Figure (5.18) shows that the position of the maximum
circumferential stress 1s dependent on the bend geometry. For
R/r = 10 it is on the inside surface at about § =-15° and for
R/r = 2 it is on the outside surface at about @ = -32°, For
bends with higher flexibility factors, ?5: usually occurs on the
outside surface, and between @ = O and the extrados. For bends
with lower flexibilities, K < 2, the maximum often occurs on the
outside surface at the intrados.

Maximm Meridional S.C.FS.

Maximm meridional S.G.Fs'. are given in figures (5.19),
(5.20), (5.21) and (5.22) for bend angles of 1809, 900, 45° and
20° respectively, each figure containing curves for R/r = 10, 3,
and 2. All results were obtained at 0"-‘—' 0, with &/r =10,

Figure (5.19) shows that stresses reduce with R/r for
oc= 180° tut for lower bend angles, figures (5.20), (5.21) and
(5.22), the reverse is more often true. The change in the shape

of/
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of the curves, for lower bend angles at higher values of the
pipe factor, \ , usually corresponds to the change in the
position of the peak meridional stress as explained earlier.
Maximm Circumferential S.C.Fs.

Maximum circumferential S.C.Fs, are given in figures
(5.23), (5.24), (5.25) and (5.26) for the same geometries as
before.

The complex shapes of these curves are related to the
changing positions of the maxinmm stress as previously discussed.
At lower pipe factors the maximm circumfgrential stress

increases with radius ratio, but it decreases with radius ratio at
higher factors.

Overall Maximum S.C.Fs.

The highest stress for bends with flanged tangents, with
2/r > 2T, usually is the peak merigional stress (5",5). For low
bend angles and radius ’ratios, e.g. B= 20; and R/r = 2, the
maximum can however be the peak circumferential stress ( é’a )e

An approximate formula for the maximum meridional S.C.F.
is given in figure (5.27), as

6—;’ = /LL, __3_‘_.2';\?
. eee (5.36)

This formula, using the correction ~factor,‘H, » glven in figure (5.27)
has a.n. accuracy of better than 5% for stress factors greater than
about 2.5. " It should only be used for R/r between 2 and 3 and _
bend angles greater than about 20%. ' : :

Comparisons of Theoretical Peak S.C.Fs./ ‘ !
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' Comgérisons of Theoretical Peak S.C.Fs,

Publications on end effects tend to only present a set
of values for flexibility factors. Figure (5.28) gives a comparison
of method Ko, 5 with most of the available stress data,

It can be seen that Natarajan and Blonfield's [97] stresses
are about 10% higher than those from method no. 5, whereas those
of Ohtsubo and Watanabe [115] are almost coincident with the
present values, This 18 in contrast to the comparison
obtained for flexibility factors. The results from Rodabaugh
et al ELlO] give rough agreement with f97]. Also given in
figure (5.28) are the results from the Clark and Reissner [26]
asymptotic formula,

§'¢ — 19

5
X»’a

eee (5.37)
It can be seen that for the particular geometries considered,

this overestimates the meridional stresses.

(5.7) Conclusion _

A numeric, theoretical solution technique, method No, 5,
has been presented which provides results for smooth pipe bends
with connected flanged tangent pipes. The derived flexibility
and stress cancentration factors compare favourably with
published theoretical data, Approximate formulae were developed
which give the flexibility and stress factors’over a wide range
of practical geomstries, to within 5% of those from Method No. 5.

A simpler technique, method né. 4, was examined and was
shown to give bend flexibility factors which were less than 12%
" lower than those from method No. 5, for pipe factors greater
than 0.1. |
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CHAPTER .6

EXPERIMENTS ON BENDS WITH TANGENTS
AND COMPARISONS WITH THEORY



Abstract

Details are given of in-plane bending tests performed on
two 90° bend-tangent assemblies.,

The theory developed in chapter (5), method No. 5, is
compared against the experimental flexibility and maximum stress
factors obtained by present and past authors, Further, detailed
comparisons are made between theoretical and experimental stress

distributions for the bend-tengent assemblies.
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CHAPTER (6)

EXPERIMENTS ON BENDS WITH TANGENTS AND COMPARISON WITH THEORY

(6.1) Test Programme

(6.2) Comparison of Flexibility Factors from Theory and Experiment

(6.3) Maximm 5.C.Fs.

(6.4) Experimental Stress Distributions




(6.1) Test Programme

Two bends were selected for testing with subtended angles
of 90°, This angle wag chosen for two reasons, firstly because it
is probaebly the most commonly used in practice and secondly, the
theory suggested that it would demonstrate the effect of the
tangent pipes.. The dimensions of the bendsare given in the

following table:-

324

Outside A .
B;’;d Pipe R r % R/r /e N | ot
* | Diameter
3 6.625" gn 3.25 0.135" 2.77 7.4 0.11 | 90°
4 6.625" gn 2.17" | 0,28" 2.84 7.57 | 0.25 | 90°

The dimensions were checked and found to conform to BS 1640 [l61].
The bends were part of a more extensive exﬁerimental programne
being carried out at the University of Strathclyde. Both
stainless steel bends, E = 28,2 x 105 1b/in2 and V= 0,28, were
supplied by Munro and Miller [i60].4 Flanges were welded to the end
of the tangent pipes. |

The iest procedure was almost identical to that given in
chapter (4) and in the following only & brief description for each
bend will be given. h

A total of 134 strain gauges were employed on bend No, 3 at
the poéitions shown in figures (6.1), (6.2) and (6.3)s At ©=0°
'strip' gauges were employed around ihevposition where the
maximuﬁ stress was expected, Each strip had five 2mm gauges which,
were orientated along the mpridian. Details of these gauges were

as follows,




2£0

Type: SHOWA RS51 ~ FA 2
Gauge length: 2mn
Nominal Resistance: 120
Gauge Factor: 2.1

Ordinary S5mm gauges were used opposite each second gauge on the
sifip, orientated along the circumferential direction. A1l of the
strain gauges were temperature compensated for stainless stesl.
Bend No. 3 was tested on the rig shown earlier in figure (4.5).
Bend No. 4 used 18 strain gauges ét the positions given in
figure (6.4) and was tested in the rig shown earlier in figure
(4.3)e
Readings were taken from the strain gauges at each of the
ten‘load increments., The best straight line was fitted to the
data and the stress factors were calculated as described in
chapter (4). These are given in tables (6.1) and (6.2) for bends

Nos. 3 and 4 respectively.



Tahle

(6.1)

Stress Factors for Bend No. %
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Gauge| Stress | Gauge | Stress [Gauge | Stress | Gaunge| Stress| Gauge | Stress
No. | Factor | No. | Factor | No. | Factor| No. | Factor| No. [ Factor

0 | -2.,20] 30 0.34 | 60 0.10] 90 0.371120 |- 5.29

1 |-1671 3R 1.57 | 61 1.8 ] 91 1.32(121 |- 5.62

2 0,29 32 [-0.23]62 |-262] 92 |[-0,72]122 |- 5.80
3 0.08 | 33 1.51 | 63 0.93] 93 2.,45]123 |- 6.05
4 | 158 34 |-2.08 )64 |-2.93] 94 -3.65(124 |- 5.94
5 1.20] 35 |-0.42]165 [-53] 95 | -0.27]1125 |~ 5.97
6 |-1.71] 3 |-1.71]66 3.66 | 96 262|126 |- 5.75

7 | -0.48]| 37 |-38 |67 |-0.38) 97 |-2.94|127 |-6.37

8 0,31 | 38 5.31 | 68 1.91 ] 98 4,00| 128 | - 5.50
9 | -0.08] 39 0.34 | 69 2.9 | 99 3.51]129 | - 3.68
10 0.93 | 40 2,02 | 70 0.81 | 100 1.241230 |- 3.10
11 0.03 | a4 1.84 | A 1.47 | 101 2.46|121 |- 2.16
12 | -1.501 42 1.23 | 72 : 4.6 |102 0.5¢]132 | -1.12
13 | 0.50 | 43 2.05 | 73 |- 5.32 103 1.37]1133 |- 0.10
14 0.27 | 44 0.33 | 74 0.24 |104 -

15 | ~0.45] 45 117 | P 0.62 105 | - 5.51
- 16 0.82] 4 | 0.03]| 7 0.24 | 106 -

17 0.23 | 47 1.74 | 77 1,90 {107 | - 6.01

18 |-0.70]| 48 |-1.98| 78 |-2.62]108 -

19 1.61 | 49 0.76 | 79 1,30 |109 | - 5.78

20 0.25f5 |-215(18 |[-3.22]110 - 6.18

21 |(-131}5 |-4.40(]8L [-5.52|1Mm1 | -5.92

22 0.88 | 52 2,89 | 82 4,17 112 | - 5.82

23 |.0.67)55 |-0.0 |8 | 0.02]113 ) -5.47

24 | -0.05 | 54 1.89 | 84 1.82 1114 | - 3.87

] 1.82 | 55 2.66 | 8 30135 | - 3.35

2% |-016]|5 |-370]8 0.59 |116 | - 2.17

27 | -1.8 | 57 0.21 | 87 1.28 {117 | -1.23

28 0.73 | 58 0.21 | 88 0.17 1118 | - 0.12

29 0.86 | 59 0.75 | 89 0.60 | 119




Table (6.2)

Stress Factors for Bend No., 4

Gauge Stress Gauge | Stress
No. Factor No. Factor
0 - 0.34 9 3,33
1l 1.26 10 - 1.53
2 0.09 1 1,62
3 - 1.29 12 - 2.91
4 - 0.36 13 - 1.56
5 -1.37 14 -1.78
6 2.67 15 - 2.52
7 - 1,23 16 - 1,22
8 1.66 17 - 2.32

(6.2) Comparison of Flexibility Factors from Theory and Experiment

| - Comparison of the flexibility factors from method No. 5, for
bend/tangent assemblies (/r = 2 T ), with those obtained from the
experiments of past and present authors' is given in figures (6.5)
and (6.6), for bend angles of 180° and 90° respectively.

As explained in section (4.2), the flexibility factors
published by Pérdug and Vigness [89] are an average of factors
for several different types of loading. Their average values are
- given in figures (6.5) and (6.6) with a vertical line through the

averages indicating the rﬁnge of actual values. Aithough it is
| '.impossible to know which part of the ranges apply to in-plang
bending, their flexibility factors show reasonahble agreement with

the present theory.

In/
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In (28], Gross and Ford published an experimentel
investigation of flexibility short radius bends., Although not
intended as such, their results are applicable to the study of
bends with connected tangents. Gross and Ford's flexibility
factors, shown in figure (6.6), are slightly higher than the
present theory predicts. However, their flexibility factors
were based on displacement measurements and are not st.ric'c..'l.jP
comparable to the rotation flexibilities given by the present
theory.

Vissat and Del Buono gave flexibility factors for a series
of 180° bends in [90], which are shown in figure (6.5). As
before, these were derived using a different flexibility factor
definition from the current one. However, their results compare
favourably with the theory.

Imamasa and Uragami [106] obtained experimental
flexibility factors for bends with connected tangent pipes,
which are shown in figure (6.6). It can be seen that their results

show good comparison ito- the predictions of the theory.

(6.3) Maximm S.C.Fs. -

Comparisons of maximum meridional S.C.Fs. from tﬁeory and
experiment on the outside surface are given in figures (6.7) and
(6.8) for 180°ana 90° bends respectively. The various results on
both figures shqw good comparisons ’ particularly for the 90°
bend angle. For the 180° vend angle the experimental meridional
S.C.Fs. are slightly lower at the hiéher Pipe factors, This may
be because the experimental S.C.Fs. were measured at ff.= 0, whereas
for higher pipe factors, the fosition of the maximum tends to be

slightly/



sligh"cly nearer the intrados.
The corresponding maximum circumferential S.C.Fs. are
given in figures (6.9) and (6.10). It can be seen that although
the overall comparisoh is favourable, the theoretical results
from method No. 5 show slightly better correlation with the
peak circumferential stresses from the present experimental
progremme and with those from Imamasa and Uragami [106] and
Gross and Ford (28] than with those from Pardue and Vigness [Bo].

(6.4) Experimental Stress Distributions

Figure (6.11) shows the experimental distribution of
meridional S.C.Fs. from bend No. 3 along the pipe centreline, @ = 0,
together with the corresponding theoretical distritution from
method No. 5. The experimental stresses are generally slightly
lower than the theory but show reasonable agreement.

Figures (6.12), (6.13) and (6.14) illustrate the
distritution of meridional S.C.Fs. at ©=0°% @ = 22,5° and
© = 45° respectively, for bend No. 3. Each figure shows good
aéraement between theory and experiment. In figure (6.14), the
stresses from the theory Aon the bend and tangent sides of the
connecti.on at 0= 45° are given. As indicated in chapter (5),

& slight discontinuity occurs in the stresses at the junction due
to the displecement slope continuity problem .discussed in section
(5.2). Howeirer,' both ‘stresses are reasonably close and show
genetal agreement with the experimental values. The
circumferential S.C.Fs. from bend Ro. 3 are shown in figure (6.15),
again showing reasonable agreément.

The/
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" The meridional and circumferential stress distributions
for bend No. 4 are given in figures (6.16) and (6.17), respectively. .

Both figures show a good comparison between theory and experiment.
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CHAPTER .7

COMBINED BENDING AND FRESSURE FOR FLANGED BENDS
AND OTHER POSSIELE EXTENSIONS TO THE THEORY



Abstract

Some possible extensions of the methods given in chapters (3)
and (5) are discussed. Method No. 2 is extended to deal with
combined bending end internal pressure for flanged bends and some
typical flexibility factors are given. An explanation is |
presented of how to extend ﬁethods Nos. 3 and 5 to include pressure.
Other possible components of loading are then discussed along with
their corresponding displecement boundary conditions. Two
alternative types of end constraints are briefly reviewed and
finally a possible extension of the theory to isothermal

stationary creep 1s examined.
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CHAPTER

COMBINED BENDING AND PRESSURE FOR FLANGED BENDS AND OTHER POSSIBLE

EXTENSIONS TO THE THEORY

(7.1) Introduction

(7.2) Combined Bending and Internal Pressure

(7.3) Other Possible Loadings

(7.4) Other Types of End Constraint

(2.5) Creep
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(7.1) Introduction

Results were presented earlier for two of the more important
smooth plpe bend problems, namely the influence of flange and
tangent pipe end constraints on bends under in-plane bending. The
solution technique used in methods nos, 3 and 5 could be extended
to examine other aspects of pipe bend behaviour. To have attempted
tokpresent these herein would, ﬁecause of space and time

l1imitations, have restricted the detailed examination of the major

problems in chapters (3) and (5).
In the following sections a brief review will be given of

possible ways to extend the numerical solution procedure to
investigate other material, geometry and loading problems. A
slightly more detailed investigation, with a few typical results,
will be given for the problem of a smooth, bend with flanges under
combined bending and internal pressure. This problem is of
particular interest since no published results exist for it. For
tangent pipes, flexibilities for the more practical bend angles 90°
and 180° are close to the‘results for bends without end constraints
and therefore the results of Dodgé and Moorev [40] for combined

bending and pressure should be a useful first approximation.

(7.2) Combined Bending and Internal Pressure

The enalysis of smooth bends, without end constraints, under
combined bending and pressure has been extensively reported in the
literature. See in particuler references [14, 29, 30, 31, 40, 42]
discussed in section (1.2), The works of Kafka and Dumn [29],
Rodabaugh and George [31] and Dodge and Moore k40)are‘of épeciai

interest/
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interest in the present context since they employed lower bound type
energy analyses and their works were more advanced thah [14]. The
conclusion from all of these investigations was that the second
order pressure effect could significantly reduce the flexibility
of bends, particularly for bends with low pipe factors (\). None
of the publications on end effects is known to include combined
bending and pressure.

The membrane stresses arising from internal pressure, P ,
in a toroid are well established and can easily be derived from

equilibrium.considerations as,

0= 55 iy

b
O=32% | e (722)

However, these equafions are not cqmpletely satisfactory in that,
when the displacements are evaluated via the stress-strain
relations, they give risé to singularities in displécements.
Improved solutions are available, e.g. Reissner [165], but these
are only minor modifications of (7.1). The above‘equations are
suitable for most purposes. The'corfeéponding strains can be derived
from (7.1), using the normal stress-strain relations for a linear
elastic material as, |

€e= Pr (2+-E-smg \))

| + Rsing .

2+ sing )
69‘—151:( -V l+%si~?)

(XX} (7.2)
For/
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For combined bending and pressure the problem is more
complicated. For & linear elastic analysis, strains due to
pressure are not included in the energy expression but the T.P.E.
is modified by an extra term involving the potential of the
pressure due to the change in area of the cross-section caused by
the distortion displacements. To a first order, the change in

area is zero but to a second order it can be found as (see Appendix

(6)),

AA = —;—S[zwr+w‘+v‘+ w%-‘;;j- US-%?] dg

| | | s (7.3)
Since the preséure stréins are not included in the T.P.E. but
are superimposed after a solution has been obtained, then the
cross-section must bé assumed to be inextensible for terms
involving the pressure. Imposing second order inextensibility on
(7.3) (see Appendix (6)) gives,

2a=g | TG+ GFJar-vE3] o
- eee (7.4)

For a bend with no end effects the series displacements of the
form in equations‘(3.12) were sﬁbstituted into (7.4) and the
expression integrated. However, when end effects are included,
the displacements also vary in the circumferential difection, i.e.
the change in cross sectiénal arga.varies along the bend, end the
expression (7.4) has to be integrated with respect to © to give
the change in volume for the bend. The pressure potential term

is then given by,



P+ g&[%ﬁ)u (%% : (%%)(ar-rw) -V %_L?:_J dgR'de
eee (7.5)

It is relatively straightforwerd to substitute the distortion
displacements into (7.5) and obtain the necessary modification to
the T.P.E. but 1t should be appreciated that a solution will
involve some five parameters for flanged bends and six for
tangent-bend assemblies, making & comprehensive survey difficult.
As an example of the influence of pressure, consider first the
problem of the flangedvbend using method No. 2. This method was
the best of the simpler solutions of the flanged bend pfoblem and
avolds the complexity of method No. 3. Substituting the distortion

part of the displacements given in (3.55), into (7.5), gives,
PRI 2122 Con Cop (X1 + HEme)

ees (7.6)
which can be non-dimensionalised using (3.58), i.e. dividing by
(M % /2(1 - v?)), to give,

L $ B ES, Canlon (=X 1 H8)1-)

: ' ees (7:7)
where .1;==-Jaﬁi;—
| Ert

This term is added to the e#isting T.P.E. expression in (3.50),
Qpich is then minimised in the usual manner. Some tyfical results
| are shown in figures (7.1) andb(7.2). It can be seen that pressure
has more influence when the flexibility factor without pressure 1is
higher. |

~ One/



One could also extend the analysis to the most general
case considered herein, namely method No. 5 for tangeht pipes.
The extension will be outlined but not evaluated. Th; additional
energy term for method No. 5 could be determined in a similar
manner using the displacements given in equations (5.13). Equation
(7.5) can be non-dimensionalised using (5.30) to give the pressure

potential as,

(-v)$ [ firz dgde +rf}:‘, d¢de]
| ° K

eee (7.8)

vhere
£= (0865 5e-v3g]

= | +E£eaN = PR T = — |
Z=l+gsng b Ert ? VTV, ) W=W

Note that the second term in (7.8) involves the integration of the
change in area along the tangent pipe. The 2r(%%f) term in
equation (7.5) is not included in (7.8) since it can be shown to
integrate to a zero value.  The integrations in (7.8) could be
performed numerically in the same ﬁay as the strain energy. (See
section (3.5d)). Method No. 3 for flanged bends could be |
considered as a special casé of method No. 5 with zero length
tangents. | . |

Once a solution has been obtained using equations (7.8) and
(5.31) the flexibility factors are obtained in the usuel way. The
stresses could be obtained by adding the stresses due to bending,

equation (3.86) using the new coefficients and the stresses due

to/
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to pressure, (7.1).

In [81] Boyle and Spence pointed out that the above
type of solution is not entirely correct, By performing a
nonlinear analysis of a bend without end effects they showed that
the flexibility factor was dependent on a further parameter, the
ratio of bending moment to pressure. They concluded that the

above type of analysis is adequate for relatively lower pressures.

(7.2) Other Possible Loadings

The six basic external components of pipe bend loading are
in-plane end out-of-plane bending, torque, in-plane and out-of-
plane shear loading and axial loading. These are illustrated in
figure (7.3)s In-plane bending has been extensively examined
herein using a prescribed displacement type energy technique.
Most of the boundary conditions for this case were determined
from the two symmetries of the problem i.e. through § = - 90°
end @ = + 90° and through O = 0°. These symmetries also
‘allowed a reduction ip the computer solution time by a factor of
four because of the smaller integration requirements. The other
forms of loading are slightly more difficult,

One further asset of the in-plane bending moment is that
the applied and reaction loads ére identical for all subtended
bend angles.' For the other types of loading these must differ
for the maintenance of external equilibrium, with the exception
of a few special cases. '

When extending the present tgchniques to other loadings
each of these.points would have to be considered. For any
particular case it should be relatively straightforward to specify
the/
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the necessary boundary conditions. The in-plane shear and axial
loads could make use of the same rigid section displacements as
described in sections (3.2b) and (5.2b), however the other loads
would require something different, but perhafs developed along
similar lines. The distortion displacements for in-plane loading
could use the same meridional functions, i.e. u(g), U(g) and X ¢),
but would require new circumferential series which satisfied the
new boundary conditions. These could be determined using fourier
series in a similar manner to the in-plane bending case using the
methods in section (3.2d-f). Out-of-plane bending and shear
loading, and torque would require complete fourier series,
involving a1l even and odd terms in the meridional functions,
for a solution of the type given herein.

0f all of the components of loading considered above,
perhaps the second most important, after in-plane bending, is
out-of-plane bending. However, it is‘probaﬁly the most difficult

loadihg to obtain a solution for.

(7.4) Other Types of End Constraint

The end constraints previously_considered are perhaps the
most common type of bend connections but two other poséible forms
are 'S! bends and bends with one flange and one tangent pipe as
sthﬁ in figure (7.4). For in-plane bending, these could be
examined using the methods developed herein relatively easily.

A bend with one flange and aﬁe tangent could make use of ".
"the rigid séction displacements in section (5.2b) and the
meridional compenent of the distortion series but would require
different circumferential series satisfying the new boundary

conditions./



condiﬁions. Since the bend behaviour would be non-symmetric the
whole circunferential length of the assembly would have to be
examined. The simplest boundary conditions could be achieved by
fully fixing the free end of the bend, i.e. putting u, v, w and
ﬁ% equal to zero, and treating the tangent pipe as explained in
chapter (5).

The 'S' bend is a more difficult problem since one part of
the bend is'béing 'opened!' and the other 'closed'. At the connection
between the parts,-the diétortionvdiéplacéments from each side
will almost cancel each other but not quite; The circunferential
| components of the distortion series would have to satisfy the
continuity requirements at the two bend-tangent connections andv
at the bend-bend connection.

| Both of these problems were considered by Naterajan and
Blomfield [97] using finite element analysis. They only
examined a 1limited range of parameters, but their results suggest
that the flexibility of a bend with one flange and one tangent
cannot be approximated by taking an average of the flexibility
factors for the bends with two flanges and two tangents, as may
. at first be intuitively imagined.

(7.5) Creep

"In recent years, considerable atteﬁﬁion has been given to
the problem of creep in pipework components, particularly smooth
bends. The techniques descrzibed hérein for examining smooth .
bends with end effects could be modified to deal Qith isothermal
stationary creep conditions following the method given by Spence
{701,

z/



A Norton [67] stationary cresp law could be used, i.e.

(€/é0) = (Cf/o’)
eee (7.9)

together with the approximate strain energy rate equation given
by Mackenzie [166],

U= 397%'-()%““[(5#69) (&€ —% Yoy)

(( Ry + Kol — (o s~ WE )] * rRd6dg

s (7.10)
where € and K are the strain and curvature rates.
The displacement rates could be used with a similar form to the

" displacements in chapters (3) and (5), and the same thin shell
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strain-displacement (rate) relationships to derive the strain rates.

These could be substituted into (7.10) which would then be

minimised to obtain the displacement rate coefficients. Because

the energy is no longer a quadratic function the minimisation
procedure developed in section (3.5¢) cannot be used, A direct
numerical minimisation tééhnique would have to be employed and
this wouid involve a considerable increase in the solution time.
Experiments of this type of procedure with the earlier problems
suggests that the necegsary time for a fully converged solution
may exceed the reliability limits of the currently available
mainframe‘computers. For a first approximation, some of the
simplifigations used in methods Nos. 1. 2 and 4 could be

employed.
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GENERAL CONCLUSIORS

A variety of theoretical solutions describing the behaviour
of smooth pipe bends, with flange or tangént pipe end constraints,

under in-plane bending, have been developed.

Flanged Bends

Three different solutions to the flanged bend problem have
been presented, namely methods nos, 1, 2, and 3. They differ
from each other mainly by the number of assumptions involved,
method No., 1 using the most assumptions and method No. 3 using
the least. When compared for various geometries method No. 1
was shown to yield substantially lower bend flexibility factors
than either method No. 2 or 3. The difference was up to 50%
for low radius ‘rat.i.os, R/r = 3, and bend angles, oL << 900_

This was principally due to the assumption of zero shear strain
and the assumed iInsignificance of the odd meridional fourier
terms in the radial distortion displacement. Method No. 2, which
removed these assumptions, gave flexibility factors which were
less than 12% lower than those from method Fo. 3 for A\ == 0.1,
This latter difference was malnly caused by the importance of the
terms in the circumferential distortion serieé which method No. 2
ignored. Method No. 3, which involved a complex numerical
‘solut.ion procedure, removed most of the assumptions of the other
methods and gave the highest (and hence best) flexibility factors.
| Method No. 3 dezﬁonstratad that the incorporation of rigid
flanges on the ends of a bendv can cause a significant reduction
in its flexibility, the flexibility reducing with bend angle and
radius/
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radius ratio and increasing as the pipe factor reduces. The
lbcation and magnitude of the maximum stress on a flanged bend
was shown to bes dependent on the bend angle, radius ratio and pipe
factor but without any simple trends. The maximum stress may
occur at the centre of the bend ( © = 0) or at the flange, on the
inside or the outside surface and may be in the direction of
either of the principal axes. The maximum stress at the flange
can be significantly affected by the flange rigidity but the bend
centre stresses are less influenced.

Method No, 3 was compared with results from the previously
published flanged bend theories of Thailer-Cheng (951, Findlay
[99], Axelrad [104] and Whatham [117). Examination of the
works of Thaller-Cheng and Findlay revealed that both contained
asSumptions which the present work has shown to be largely
invalid. Comparison with the flexibility factors of Axelrad
showed fair agreement with method No. 3 but the agreemenf was
better for higher ‘ﬂexibilities, ‘which was consistent with his
~ assumptions. Comparison with Whatham's results showed a good
general agreement, his flexibility factors being up to 10%
higher. |

The theoretical results from method No., 3 compared
favourably with the tests conducted during the present programme
of work. Method No. 3 also yielded reasonatle agreement with
mch of the published applicable experimental evidence, particularly
with that obtained in the last ten.yaars. It is perhaps
unfortunate that the mést comprehensive set of experimental data
on. flanged bends dates back to Pardue and Vigness [89] in 1952
" end the actual details of their tests are not completely clear.
There/
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Theré is a real need for a systematic experimental survey
covering lower pipe factors ( A< 0.1) and lower bend angles
(x< 909,

Bend-Tangent Assemblies

Two different theoretical solutions have been developed for
the problem of & smooth pipe bend with connected flanged tangent
pipes, methods ﬁos. 4 and 5, again differing by their inherent
assumptions, Method No. 4 involved a number of assumptions which
previously were commonly used and substantiated in the theories
which ignored end constraints. However, method No. 4 was shown
to give flexibility factors which were up to 12 % lower than those
from method No. 5. The latter method involved a complex numerical
solution which allowed the removal of most of the previous
assumptions. In method No. 5 one particular assumption remained,
involving the continulty of the shell surface slope across the
connection between the tangent pipe eand the bend. The slope given
by the assumed displacements was continuous at @ = O but was
violated elsewhere to a degree dependéﬁt on radius ratio .

The ﬂexii:ility of bends with connected tangent pipes was
shown to be ?appreciably lower than that 'predicted by any theory
| '1gnoring end constraints, particularly for bend angles less than 90°,
The bend flexibility was shown to reduce with tangent pipe length,
L, for £ 1less than one pipe circumference, 2 r; Flexibility
also reduced with bend angle and radius vatio and increased as
the pipe factor reduced. For bend angles greater than about 20°

the maximum stress on the bend usually occured at the bend centre
" (© =0) on the inside surface in the meridional direction.

Method/
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ﬁethod No. 5 gave good agreement when compared with
published'finite element and theoretical results for bends with
connected tangent pipes. As with the results for bends without
end constraints, these results show some déviation depending on
the solution procedure which was adopted, e.g. depending on
whether or not the (1 -¥2) term was involved.

The theoretical results from method No. 5 compared favourably
with published experimental data and gave good agreement with the
tests performed during the present work. Comparison of the
experimental stress distributions and the published theoretical
wofk confirms that the assumption involviﬁg the slope continuity
did not unduly affect the overall behaviour, except locally at
the junction. -

Design Codes

Comparison of the results presented herein for bends with
end constraints with the current recommendations in most of the
present design codes would suggsst that the codes need soms
modification. Simple formulae have feen suggested which céuld
relatively easily be adopted into these codes to describe the
behaviour qf bends with connected long tangent pipes. For bends
with flanged ends, simple gensral formnlge grarnot possiﬁle but

a graphical presentation of the results could be used.
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APPENDIX (1)

(a) Governing Differential Displacement Equations for a Toroidal Shell

The governiﬁg differential displaceinent equations for a
toroidal shell were obtained by substituting the strain-displacement
equations (2.13) into the constitutive relations (2.14) and then
substituting the results into the equilibrium equations (2.15).

These are given by;

0.._311_4- b, aY +C'h7;l.[ +°‘m+e|v+§|§-l-é‘;

Y 36  '¥gr ¥ a¢' 3¢
Q_G__u_)_ W = -rR
+L.b¢+.§‘L)+R. + &, N LYy "
where '
o= %’. +(2':-\’):QE sing b,=-£3—:1-‘é’)-‘°"¢+(l)6r- (3‘1’):%&'1;5)&595

Ci=(1+T) , dy= (1 +T)cosg 5 €=~(+TYVswg+ cos'gh/c)

£,=0-"(% +27)/e ; 9,=;-e‘r , h,=—~—-chs¢
=9+v(u+_-r)sw¢+%§cos“¢} ) =,cos;é(‘—%sn~¢)

‘k,=(3-vA)1;‘=’°°$9“ ,, 4 =-G-»%F

0B 4 b ¥l o3 )
030+ b Y +C MU +e"beb¢+£be 2 07

Y ¢

—tR" |
+h"be+4~2 bebyi + 3’ 636’* ’ 'rC \Z (2)
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where, .

= b1 deang) | by =(-v)(§+ AF )
o= e+ Bl Fong) amg s
dy= (-)(h(smp & <09) — 2 (am ({1~ 258 + cos 19)))
e 152+ )T g | G(33 (a0-i 20 T) 88
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cosd T -
F -..-.——-((3-'v>scN¢ + & -—-@Sé' e y q,sr- jé-;
N = Z_g_:.“’sf‘ ’ S, = — 2L
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t* Et .
T=mm C=0w9 5 =% =F(l+gsm)

(b) Governing Differential Displacement Equations for a cylinder

- Substituting equations (2.20) into (2.21) and substituting
the result into (2.22) gives,

a, dU_+b, XU 4, YU WA _—rd
*3423 ¢33 Y "as’+d‘ z¢’+c‘*%+ﬁ 24242 e W

(4)

where

a4.=-ﬂig21 3 b4=ﬁif) s Co=(-V)(1+2T)L

dy= _’E y eu=L ., f=-@-V)TL
as P + b, ¥u + Cg SV [ p— Ly}

v AR TS v S TR e

(5)

where

o, 2 + b, 2w 3 PN
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INTEGRATION DETAILS



APPENDIX  (2)

Integration Details, Method No. 1
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SOLUTION OF LINEAR SIMULTANEOUS EQUATIONS
GAUSS ALGORITHM
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APPENDIX  (3)

Solution of Linear Simmltaneous Fguations - Gauss Algorithm

Consider the system of equations,
O‘\lxl +an_xz+-—--a.nxﬂ’b|
0312 +Q37 X3 +2 - = —Qap Xa = b,

" ‘

', +0a, e b (1

Omx| +an1x2-+""' "—-a'\n x"l= bf\
These can be written in matrix form as follows,
—all >4 - b‘
Gu azz a')-n x?- bl
{

1 t
] l . ] \ :
] { \ { ]
O anz - - .--am— L n b,\

- [A]fs - (e}

vhere [A] is the coefficient matrix, {763 is the unknown solution
vector and {b} is the kno@ right hand side vector. To eliminate
unknown X{ , it is necessary to first modify the coefficient matrix

and right hand vector, by forward substitution, as follows;

Ay —= = Qq

(2)

or

fori=1,2, 3, ~~n-1

a,= am..Qsﬁ_C}'_*; y s L k=141, — 1

= g - O : . -
b-‘ b.\ '_'—E‘- K) J=1i+41 —, n

(3)
(4)

where (. 1s the element in the 1t row and jth column of the *

coefficient/
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coefficient matrix and b,-_ the 4% element of the right hand side

vector. When i = n, the nth equation is solved for the 2Xn unknown,

X, = b, /[ Qlan (5)

Other unknowns, X<, are found by back substitution using,

If the coefficient matrix is symmetric, l.e. 0O4; = 0,¢,
then only the elements of the upper triangle need to be operated on
during the forward substitution using, instead of equation (3),

Q"‘:Q)k-%_'! ’ k=§,§+1, —,n
41

J=1+41,1+42, —,n
(7

This requires slightly more than half of the original operations.
Note that Q;; in equation (3) has become @¢; in (7).
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STRAIRS FOR COMPUTER SOLUTION
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~ APPENDIX _ (4)

Strains for Computer Solution

The strains for the flange and tangent pipe problems will

be given together by making use of the N pérameter,

( LT ze e (1)
 which for a zero length tangent, i.e. £ = 0, becomes,
=% | (2)

Therefore, the strains given for the bend become those for a
flanged bend when { = 0.

The strains given in equations (5.14) for the bend and
(5.15) for the tangent pipes, using the non—dimensionalisatior;
given in equatioﬁé (5 32) and (5.33), are Q’d{ “
Forthebend 0« 04"' | -

€¢ ["E%:(C«»-Bm)‘-' $S 2“ ‘g]L
= {S(R-D) s R (reg, DS rHeS)ang)
+§£ (uu aﬂs,+(sm c',+c..,~c..) S)]'L

%s = [£5 (A i+ BLr ) S|4

K¢ _ [zs(c.nvc; Bma*C))* S, ]
= [z~ g+n S,) B2 g 4 - s)
+g§((a,, Cy + Crn vc') *Sy +(Bra” Cy + Cory* Co) S)](m
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Koy = | £2 (A Cu + Buw % ConC )18,
- 5 Hhrsircosp ()] (D)
For the tangent Pipe: % < 0= L/2p
& =[25(cm-Bu) cog+ 2 He 5 ]
E.=[g G Srsmg + £5 A O sg]
8= 28 (BamAm) s, ]
Ky =[£3(Conr 1 - Brrr)r 5]
K.= 6 ?9«--‘:--sw¢+ H,=8,) + 512 Can O, s] (&)
£ (v ot )

where,
S, = Vno css’(mn0) — Y, sin¥(m9e)
5= (mr)siN(2mne)
Sy= 2{m{) cos(am6)
§=ocrsW(-F8)

S 4 (3 cos OTE)
S= %8 +(- S)oc(¥ra)(e—g)

c,= sin g
Ci=Yecos ng + Y, sinng

C,= (wnecosnlcf +Y,, SIN n¢) 'ﬁr'-ii" |
Co= (-¥. siNng +\Wn°co‘s np) cosg/n
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= (W.c cos n¢+ [/ élN nyS) sw;ﬁ
C (_wg siNng + 7’Blo c‘°5"¢) —<w C050¢+w San;b) .#’

( Y, sinag — Yoo ms,,,$,5>_L

= ( wnc cos nf& + l'pmas““ n¢>n
C= (wncc"S ng + Yo 8N n¢> -E 5‘_:14@-
C.,: (—TPngsw ng + Y, Cosn¢) % %_
C’m= (WM_SN n¢ - wnc m5n¢)-§_~ Zn
Cu::, ('wnc SN ng +"w,\oc05n¢>£#—(memsn¢+%°s:~ "79@;5%%'2‘(%)2
= Ve sinnp + wnocosngé)n—(w,,,cosnﬁ +Y s n¢).c'_°§é-(%)
C.= C—w\csw ng + Y cos n¢) n
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APPENDIX (5)

COMPUTER FROGRAM FOR METHODS NOS. 3 AND 5
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LOVER BOUWND ENERGY ANALYSIS OF
PIPE BENDS WITH RIGID FLANGES
AND TANGENT PlPES

BY Ge.

THOM SON

DEPT.OF MECHANICS OF MATERIAL S.

IMFLICI T REAL%*8 (A-H,0-2)

REAL%*8
REAL%* 8
REAL%* 8
REALXx S8
REAL%8
REAL%*8
REAL%*S8
REAL*8
REAL*8
REALxS8
REAL*8
REAL %8
REALXxS8
REAL*8
REALx8
REALx 8
REALx8

LAMC10)

ASCS, 25), AC(5, 25) -

UCC5,25),US(S, 25), VQ( 5, 25), CY( 25)

DEC120)

Cc(S,8)

AC120, 120),BC1200,DC 120

LAMDA, MU, KY '

KXY

BS(S5,8)

CC(5,25), 85(5, 2%

LA,MG, Q1M1(5,25),CECS, 25), SE( 5, 25)

VC( 5, 25), VVU(S),WEC25),WY(25), SY(25),2(25)
Cl1¢(8,25),C2(8,25),C3(8,25),Cu(8,25),C5(8,295)
VS(5,25)s WY(S)s KX
C6(8,25),C7¢8,25),C8(8,25),C9(8, 25)
C10(8,25),C11(8,25),C12(8, 25)
WVET(25),VT(5),LR, C13(8, 25

INTEGER E,Y, T4

INTEGER P,H, V, TP

INTEGER RP, CP : _
COMMON/BLK1/CM, CE, SE, VC» VW, SY»2,C1,C2,C3, C4,C5,LALMG,C1 3
COMMON/ BLK2/J To-MToNT,NE,NY,HE, HY» WE, WY, RR, ASs» ACs» T4 NET, VET,HET
COMMON/ BLK3/VS, VY, C¢€, C7,C8,C9,C10,C11,C12,CC, £S, UC,» US, VR, CY, €M

READ IN PIPE PARAMETERS.

PI DAL~
L AN
RR
LR
MU
LAM

MT
NT
Ly
NE
NET
NY -

PI/BEND ANGLE 1.E. FOR 90 DEGREE BEND, PLDAL=2-
NUMBER OF DIFFERENT LAMDA'S TO BE EXAMINED

BEND RADIUS/FIPE RADIUS ‘

TANGENT PIFE LENGTH/PIPE RADIUS

FPOI SSONS RATIO FOR PIPE MATER! AL

LAMDA®S TO BE EXAMINED

NUMBER OF TERMS IN RIGID DISPLACEMENT SERIES
NUMBER OF TERMS IN DISTORTION SERIES, IN THETA DI RECTION
NUMBER OF TERMS IN DISTORTION SERIES IN PH! DIRECTION
DIRECTION OF MOMENT ¢ +1 FOR OPENING,-1 FOR CLOSING)
NUMBER OF INTEGRATION POINTS ON BEND IN THETA DIRECTION

NWEBER OF INTEGRATION POINTS ON TANGENT IN THETA DIRECTION

NWBER OF INTEGRATION POINTS IN THE PHI DIRECTION
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aaaQon

LAMDA= THI CKNESS¥ BEND RADIUS/(PIPE RADIUS)#¥2

THE PIPE RAPIUS IS THE RADIUS OF THE TUBE BORE + HALF
OF ME THICKNESS OF THE TUBE SECTION.
THE BEND RADIUS 1S THE RADIUS OF THE BEND ARC AT THE

CENTRELINE (NEUTRAL AX1S)
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SPECIFYING A ZERO LENGTH TANGENT GIVES THE RESULTS FOR A PIPE

BEND WITH FLANGES.

READ (1,*) PIDALL,LAN, RR,L LR, MU
READ (Clo*x)C(LAM(I),1I=1L,LAN)
READ Clox)JToMTLNT

READ (1l,%x) M

READ (1, *)NELNET,NY

D0 999 ILA=1,LAN
LAMDA=LAM(ILA)

SET ARRAY AND SERIES PARAMETERS

NN=N T+ ]

NO=J T* 4+M TN T* 3 ‘

PI=3. 141592653600
PD=FI DAL

AL FHHA=P1 /Pl DAL
1A=120

PO 3 J=1,NO
B(J)=0. 0

p0 3 K=1,NO
ACJLKI=0.0

THESE FORMATS ARE OUT OF POSITION BUT ARE USED LATER.

FORIAT (/77" C - SERIES CONSTANTS

FORMAT (11X, ' M/N *,5X,10012,8X)/7)

FORMAT (1X,14,3Xs 10¢2Xs, FBe 4) /)

*777)

FORMAT (//7%' A = SERLES CONSTANTS  *///) : .
FORMAT (////77% BEND ANGLE = °*, FB. 4//

§}* PIPE FACTOR, LAMDA = ', FBe4/s/

FORMAT (///' FLEXIBILITY FACTOR =

AL=ALFHA

.1* RADIUS RATIO = ', F8.4//' POISSONS RATIO = ', FBe 4///777)

‘s FBe &//7/777)

»

T4 1S SET T0O 3 FOR FLANGED BENDS AND 4 FOR TANGENTS

Té= 4
IF C(LRe EQe 0o 0) T4=3
RL=RR/ (L R% 2+ RRx AL)
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803
801!

800

"SET INTEGRATION PARAMETERS.

E3=0. 5/ FL

E2=AL%*0. 5

El1=0. 0

Y2=FIx0.5

Yi=-v2 |
HET=(E3=-E2)/(NET=- D)
HE=C(E2-E1)/C(NE- D)
HY=CY 2=-Y 1) /(NY- 1D
LA=LAMDA%x%x2/12. 0
MG=(l«C-MU)%x2. C

SET-UP TRIGONOMETRIC ARRAYS FOR FWINCTION SUBROUTINE

" EACH FWCTION IS CALCULATED AT EACH INTEGRATION POINT
THUS ELIMIMINATING THE TIME CONSUMING FWCTION
EVALUATIONS DURING THE TeP+¢ E SUBROUTINECFWNCT).

MJ=MT ‘
IF WUT.GT-MTIMI=JT

. CIRCUMFERENTIAL FWCTIONS

PIPE BEND

DO 800 E=1,NE
EE=(E- 1) *HE+E]
WECE) = 3¢ O+ (= lo 0) %% E

IF CE<EQe l» 0R-E.§Q-NE)WE(E)=I 0

DO 801 M=1,MJ

SE(M, E)=SIN(Mx PI*.RL*EE* 2. 0) *M*PI*RL
CE(M, E)=COS(M*PIl*RLxEEx 2, onmwnm.)uz*e.o
CIF ((~1)*xM.GT. 0)GOTO 803

CM(M, E)=COSC(MxPlxRLxEE) %% 2
GOTO 801

CM(Ms E)==SIN(Mx Pl RL&xEE) %% 2
CON TINUE \_5"’1

DO-800 J=1,JT ~ =~

“USCJ» E) = SIN (J* PDt EEx 0o 5) %% 2% AL % SM
VC(Js E)=0e Sx(J* PD)**Q*COS(J*PD#EE)*AL*SM

CONTINUE . 17 -

END ROTATIONS

DO 810 J=1,J7T

VV(J)=AL/ 2. C= SIN(JI=xP1/ 2. O)/(J*PD)

VW(J)=JxPDx SIN(J*xPI/ 2. C)
VT(J)=2-O*(J+1)*(LR/RR)**J
CONTINUE

IF (T4.EQ. 3)GO TO 852

418
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852
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TANGENT PIPE

NEET=NE+NET

NEI=NE+1

DO 850 E=NEINEET

EE=C(E-NE- ])xHET+E2

WETCE)=3¢ 0+(= 1o O)xx (E-NE)

IF CE«EQ:NEJ+«OR. E« EQ. NEET)WETC(E)=]e 0

DO 851 M=1,.MJ

SE(M, E)=SIN(MxPlxRL* EEx 2. 0) xMx=x Pl xRl
CE(M,E)=COS(MxPIxRL*EEx2¢ 0)x (M*xPIxRL) %% 2% 2. 0

IF C(=1)%xMeL Te O) CM(Ms E)=COSClI%PIxRLxEE) %% 2

IF CC~1)*xMeGTe 0) QMMM E)==SIN(MxPIxRL*xEE) %% 2

CON TINUE

DO 850 J=1oJT

VQCJs EY=AL% 2. 0% M : ‘
IF (Je GT-l)VQ(J;£>=J*(J+l)*(EE-AL/2. 0)**(J-l)*AL*8~‘l
CONTINUE . :

CON TINUE

NN=NT+ ]

MERIDIONAL FINCTIONS

- DO 820 Y=1,NY

YY=(Y=1)xHY+Y ]

WY(Y)=3e 0+ (= 1e 0) xxY .
IF (YeEQe JeORe Ys EQeNYIWY(Y)= 14 0
SY(Y)=SINCYY)
CY(Y)=COSCYY).

ZCY)= 1. O+ SYCY)/RR

DO 820 N=2,NN
SY2=SIN(NxYY)

Cr2=C0O SCNx=YY)

NP=N=1 .

I1F ((=~1)*xN.LTe 0)GO -TO 821

N - EVEN

CI(NP,Y)=CY2

C2(NP,Y)=CY2/ ( RRxN*x 2) :
C3(NP,Y)==SY2xCY(Y)/N ' ' .
C4(NP,Y)=CY 2% SY(Y) )
CS(NP,Y)==Z(Y)*SY2/N=CY2%xCY(Y)/(Nx* 2« RR) - .
C6(NP,Y)=SY2/N ’ R
C7(NP,Y)=Nx*x2xCY2

C8(NP,Y)=CY2% SY(Y)/ (Nxx2x RR)

COINP,Y)==2ZCY)*RRx SY2xCY(Y) /N

CIO(NP,Y)=ZC(Y)*RRk SY2xCY(Y) %N :
CIICNP,Y)==SY2x5YCY)/(N«RR)=CY 2%« CYCY) % SYCY)/CZ(Y) % C RReN) %% 2)
Cl2(NPaY)t-N*SYE-CY2*CY(Y)/(Z<Y)*RR)

C13(NP,Y)=a=SY2*N

GOTO 820

-



821

N
o

o000 0nN00 aoaaan®

100

aaQoa

101

aaaan

103
102

N - OCD

CI(NF,Y)=SY2

C2(NP, Y)=5Y2/ ( RRxNxx2)
CINP,Y)=CY2xCY(Y)/N
C4(NP,Y)=SY2x SY(Y)

CSINF,Y)= Z(Y)*CY2/N°SYZ*CY(Y)/(RR*N**2)
C6(NP, Y)==CY2/N

C7(NF,Y)=Nx%x%x2%x SY2
CB(NP,Y)=SY2x SY(Y)/ (RRxN*%2)
CO(NP,Y)=Z(Y)x RRxCY2xCY(Y) /N
CICINP,Y)==Z(Y)xRRxCY2xCY(Y) =N
ClICNP,Y)=CY2x SY(Y)/(N*xRR)~= 9{2*CY(Y)*SY(Y)/(Z(Y)*(RR*N)**Q)
Cl2(NPaY)"N*CY2-SY2*CY(Y)/(Z(Y)*RR)
CI3INP,Y)=CY 24N

CONTINUE

MATRIX ORDER

NO=J Tx T4+M TN T* 3 .

THE FOLLOWING SECTION CONTAINS THE MINIMI SATION
PROCEDURE. THE PRESENT SECTION ONLY CON SI DERS

THE QUADRATIC PART OF THE ENERGY FUNCTION. TO
COPE WITH LINEAR AND CONSTANT TERMS IT WOULD
HAVE TO BE MODIFIED A5 SUGGESTED IN SECTION(3.5)
OF MY FHDe. THESI S« THE PRESENT SECTION IS ADEQUATE
FOR PRESENT REQUI REMEN TS, '

INITIALI SE ARRAYS

DO 100 RP=1,NO
D(RP)=0.0 '
B(RP)=0.0

NOM 1=NO=-1

CALCULATE LEADING DIAGONAL TERMS FOR MATRIXe.

‘DO 101 RP=1,NO . 3

DCRP)=1.0

CALL FWCT(NO, D, F» RPs RP)

DECRP)=F

ACRP, RP)=F%2. 0 x , .

DCRP)=0.0 . _ : : .

CALCULATE OFF DIAGONAL TERYS FOR MATF&X.
LOWER TRIANGLE FOUWND FROM SYMMETRY.

DO 102 RP=1,NOM1 . o . ,
I RP=RP+ | - ' ,
D(RP)=1.0 ~

DO 103 CP=IRP,NO

D(CP)=1.0

CALL FWCT(NO, D, F» CPs RP)

ACRP, CP)= F= DECRP) = DEC CP)

ACCP, RP)=A(RP, CP)

D(CP)=0.0

NCRPY=N. O

420
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c
c SET UP RIGHT HAND SIDE VECTOR.
c
DO 104 J=1,JT
BCJY=VUY(J)=(1e O-MUxx2)xPIx AL/ 2. 0 .
IF (T4e EQe 4)BCJ+J T 3)=VT(JI=( 1. o-mu**aupnm./e.o
104 BCI+I T)=VVC(JI%( s O-MUxx2)xPLx AL/ 2. O
c .
c SOLVE MATRIX
c
CALL SOLVE(NO,1A,A,B,D)
c
c
c

DO 400 M=1,MT

DO 400 N=1,NT

MP=J T T4+M+M Tx (N= 1)

C(MsNI)=D(MP)

BS(M,N)=D(MP+M TxN Tx 2)
400 A(MLNI=D(MP+M T*N T)

WRITE (2,999%5)

995 FORMAT (/2777777777
§ 0 A A A A A AN A ORI R R KK K KK K KKK KKK KRR Rk
D/ ¥ A A A A AR A A A A AR KK KK AR KK R R R KK R KK KR KRR KKK ARk gk *
arrsrt STRUCTURAL AVALYSIS OF A S100TH PIPE BEID® '
VA WITH FLANGED TANGENT Pl PES.'
5///'***********************************#*#*************#*t#***#'
6/ **#************************************#************##*v***'//)
VRITE (2,993) -

993 FORMAT (/7' D-SERIES =% V & W RIGID SECTION DI SFLACEMB\JTS'
1/' F-SERIES *x U -« CEVTRELINE RIGID SECTION DI SFLACEMENTS®
3/* H=-SERIES *x W - CONSTANT RADIAL EXPANSION D} SPL.ACEMENTS'//)
WRITE (2,980)JT>MT>NT,NO

980 FORMAT ¢(///°' NWUWEER OF TERMS IN RIGID SERIES, JT = ',16
1/ NUMBER OF TER1S IN DISTORTION SERIES, MT = *,16
1,5X,*' NT = ',16
2/' TOTAL NUMBER OF COEFFICIENTS, NO = "16///)
VRITE (2, 640) ‘

640 FORMAT (////°* D =, SERIES F - SERIES H - SERIES'
17/ .

c .

c CALCULATION OF FLEXIBILITY FACTOR

c .

FLEX=0. 0 . : .

DO 750 J=1,JT L

FLEX= FLEX+D(JI*x VY (J I+ D(J+J T)x VW(J)

IF C(Ta. EQe 4) FLEX=FLEX+D(J+J Tx 3) % VT(J)

750 WRITE (2,751)D(J)s DCI+J TI» DCI+J T 2)

751 FORMAT (1Xs F10e 457X, F10e 457Xs F104 4)
IF (T4.NE.4)GO0 TO 755 .
WRITE (2,752) : :

72  FORMAT (///* G = SERIES'///) - .

' DO 753 J=1,JT ’

753 WRITE (2,754) D(J+JT*3)

754 FORMAT (11X, FlO. 4)

755 CON TINUE



992

652
991

€53
654

990

655

998

997
99 6

660

s EeNeNe!

99 4

aaaon

3010

450

WRITE (2,992)

FORMAT ¢//*' U = DISTORTION DI SPLACEMENT'/)
WRITE €2, 24) C
WRITE €2, 13)(N,N=2,NN)

DO 652 M= 1,MT

WRITE €2, 15OM, CAC(MUNISN=1,NT)

WRITE (2,991) :
FORMAT ¢//* V - DISTORTION DI SPLACEMENT'/)
WRITE €2, 653)

FORMAT (777" B = SERIES CONSTANTS *‘//7)
WRITE €2, 13)(N,N=2,NN) ,
DO 654 M=1,MT

WRITE (2, 159Ms (BSCMuN)4N=1,NT)

WRITE €(2,990)

FORMAT (/7' W = DISTORTION DI SPLACEMENT'/)
WRITE (2, 12) ' .
WRITE €2, 13) (N,N=2,NN)

DO 655 M= 1,MT

WRITE (2, lS)M;(C(MaN);N=laNT)

WRITE (2,998)NE,NET,NY

FORMAT (/7' NWBER OF INTEGRATION POINTS. '/
1* CIRCUMFERENTIAL POINTS, BEND, NE = *,1S,
1 TANGENT, NET = ',15/ _

2' MERIDIONAL POINTS., NY = *,15/7)

1F (S1.EQe 1DWRITE €2,997)

1F (M« EQe=1DWVRITE €2,996)

FORMAT C¢//' IN-PLANE BENDING, CLOSING MOMINT.'//)
FORMAT ¢//' IN-PLANE BENDING, OPENING MOMENT. *//)
WRITE €2, 16)ALPHA,LAMDA, RR, MU

VRITE €2, 660)LR

FORMAT (//' TANGENT PIPE 'LENGTH/BORE RATIO = ', F8.4///7/7)

CORRECT FLEXIBILITY FACTOR FOR TANGENT
PIPE FLEXIBILITY.

FL EX= FL EX= 2. 0% ( l-MU**2)*LR/(AL*RR)

WRITE (2, 18) FLEX

WRITE (2,994) ,

FORMAT (///°' STRESS AND STRAIN FACTORS. '/

/' THE MERIDIONAL ANGLE AROUWD THE BORE 1S PFHI. '/

2° THE CIRCWFERENTIAL ANGLE 1S THETA. '///)

CALCULATION OF STRESS FACTORS AND PRINTING OUT.

- NEI=NE+1

NEET=NE+NET

1F (T4. EQe INEET=NE

DO 401 E=1,NEET

‘S=1¢0

IF CE¢GE.NE1)S=0.0

IF (E<.EQ.NEIDDVWRITEC(2, 3010) :
FORMAT (////_//' xx A TANGENT PIPE  =%%xx'////77)
EE=(E~1)*HEx 180/P1 o ' .
1F CE.EQ.NEI)EE=EE-HEx 180/P1

WRITE (2, 4SO EE

FORMAT C2727/777° THETA = YW F6e2/77)

422
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WRITE (2,451) ‘
451 FORMAT C(1X, ' STRAINS', 44X, ' STRESSES*//* MERLID. alxXo
1*CIRCMFERIENTIAL ', 6X, "MERIDION AL
1o 10X, *CIRCUMFEREN TI AL ', 6Xs "MERIDIONAL *, 10X, ' SHEAR STRESSES'//
2' AVGLE'» 3X, '"INSIDE', S5X, 'OUTSIDE', 3X, "INSIDE", 4X, '"OUTSICE", 4%,
3'INSIDE®, 5X» 'OUTSIDE', 3X, *INSI DE", AX; 'OU‘I‘SI DE*', 3X, *INSIDE",
44X, *OUTSIDE'//)
Vi=0.0
V2=0-0
VS=0. 0
Vvé=0.0
DO 402 J= l:d‘!‘ .
I1F CE.GE.NE1)GO TO 3000
VizVI+{D(J+JI TI=D(JII)I®VS(J» E)x RR
V2= V2+D(J+J T)%VS(J» E)+ D(JI % VC(J, E)
GO TO 300!
3000 V2=V2+D(J+J Tx3)xVQ(J,» E)
3001 VS=VS+D(J+JTx2)xM(Js E)
402 Vé=V6+D(JIJ+J T 2)%x CE(J, E)
- DO 401 Y=1,NY
ZY=2C(Y) , .
1F CE«.GE'NEIYZY=1.0 . .
Fl=VS5
F2=U1+(V2+VBYX SY(Y)
IF (E.GE.NEI)Frva*SICY)
F3=0. 0 '
F4=0. 0 . .
FS=V2*RR*SY(Y)*ZY+V6 .
Fé6=0.0
DO 403 N={1,NT
DO 403 M= 1,MT
FIsF1+(C(MoNI®CM(M, E)=BS(MsN)®CM(M, E))*CI(NLY)
Fo= F2+(BS(M;N)*CS(N;YHC(M;N)*cam,y))...S*mm, E)
1+A(M, NI C2(N,Y)xCE(M, E) - . '
FA3=F3+CAMINIR(CS(N,Y) %k S=( 1 0=-SI®CBIN,YI)+BSIMLNI=®C6(N,Y)I)
1% SE(M, E) ‘
Fa=F4+ (CCMLNI®CT(N,Y)-BS(M,NI*CI(N,Y))*x M (M, E)
FS5=FS+A(MLNI*C8C(N,Y)® CEC(M, EY®x S+ CCM,N)*CI(N,Y)* CE(M, E)
1+ (BSCMsNI*COCNLYI+C(M,NI*CLIO(N,Y) )% CM(M, E)*S
Fo=FE+CA(MINI®CIIINLY)+CI(MoNI*CI2¢(NL,Y)+BS(MINI*CE(N,Y))
1x SECM,E)%x S
}‘6-F6+(BS(M;N)*Cé(N:Y)*'C(MaN)*Cla(NaY))*SE(M:E)*(l 0-9)
403 CONTINUE
EY=FlxRR '
EX=Fa2szY P . ’ : *
EXY=F3/2Y . ! ’ '
. KY=LAMDA® F4/ 2. 0 '
KX=LAMDAxFS5/( 2. 0*(RR¥ZY)**2)
KXY=LAMDAx F6/¢ 2¢ Ox RRxZY)
EX1=EX~-KX
EXO=EX+KX
EY1=EY=-KY
EYO=EY+KY
MG=1e 0/ C3e O-MUxx2)
SX1=CEXI+MUxEYI)*MG
SX0= ¢ EXO+MUxEY0 ) *MG
SYI=(EYI+MUxEXI)=*MG
SYO=( EYO+MUx EX0 ) *MG
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SXYI=s(EXY/2=-KXY)/Cl. O+ML)

SXYO=C EXY/Z 2+4KXY)/Cl. O+M)

YY=(Y=1)xHY* 180. O/P1~-90. 0

WRITE (2, 404)YY, EX1, EX0, EY1, EY0, SX1, SXOJ SY1, SYD, SXY1, 5XYO
404 FORMAT C1Xs F7¢2,3%Xs 10CF7 3, 3X)) .
401 CONTINUE
999 CON TINUE

STOP

END

SUBROUTINE FLN CT(NO: D, Fa CPs, RP)

IMPLICIT REAL%*x8 (A-H,0-2)

R
CALCULATION OF STRAIN ENEGY PART OF TOTAL FOTEN TIAL
ENERGY FOR BOTH IfLN\!GED BENDS AND BEND/ TANGENT ASSEMELIES.

aocoaoaaao

REALx8 AC(5,25),AS8(5,25)

REALx8 UC(S5, 25),US(5,25),VQA(S, 25), CY(25)

REALx8 D(120), F ‘

RFEALx8 CC(5,25)», S5(5,25)

REAL*8 MG,LA,CM(S,25),CECS, 25), SE(5,25),VC(5,25),VU(S)

REAL*8 SY(25),2¢25),C1(8,25),C2(8,25),C3(8,25),C4(8,25),C5(8,25)

REAL*8 A(5,8),C(5,8),WVE(25),WY(25),WET(25), C13(8," 25)

REALx8 B(S5,8),VS(5, 25, VY (9S5)

REAL*8 C6(8,25),C7¢(8,25),C8(8,25),C9(8, 25)

REALx8 C10(8, 25):011(8025); Cl2(8,2%5)

INTEGER CP, RP

INTEGER E»Y» T4

COMMON/BLK 1/CM, CE, SE» VCs» VV, SY»Z,Clo C2a €3,C4,CS5,LAMG,CI13

COMMON/ZBLK2/J ToMToNT.NE,NYL»HE,HY» WE, WY, RRy AS» ACs» TANETLVET,HET

COMMON/BLK 3/VS, W,C6,C7,C8,C9,C10,C11,C12, CC:‘SSJUC:US:VQ} CY. 4

DO 1 M=1,MT

DO ! N=1,NT

MJ=J Tx T4+M+M T« (N= 1)

C(M.NY=D{MJ) -

BC(M,N)Y=D(MJ+M TxN Tx 2)
1 ACMLNI=D(MJ+M TN T)

MNT=MTxNT

F=000

DO 2 E=1,NE

Vi=G0. 0 . ,

ve=0. 0 : ‘ ] .

VS=C. 0 P '

Véz=z0. 0

V1=0. 0

J1=0

DO 3 K=1,2

J=CP ) .

1F (XeEQe 2)J=RP

I1F (JeGTeJT%3)GOTO 3

IF (JeGTedTVJI=J=J T

1F (Jo CTedTII=J=JT

1F (JLEQ.JI1)GO TO 3

Jdisd



V1= VI+(D(J+JI T)=DCJ) I *VSCJs E)*RR
Vo= V2+ DCJI+J T *VS(J, )+ DCJI* VC(J, E)
VS=VS+ DCJ+J Tk 2) % CM(J, E)
Ve=Vo+ DCJ+J T* 2)x CECJ, E)
U7=V7+DCJ+J T* 2) % SE(J, E)

CON TIN UE

DO 2 Y=1,NY

F1=V5

Fo=V1+( V2+VUS) % SY(Y)
F3=0. 0

F4=0. O
FS=V2%x RRx SY(Y)*Z(Y)+V6
Fe&=(=V7)*CYLY)/(Z(Y)*RR)

MN1=0 )
DO 4 K=1,2

MN=CP
IF (KeEQ. 2)MN=RP
1F (MN.LE.JT*T4)GOTO 4
MN=MN=-J Tx T4
1F (MNeGTeMNTIMN=MN-MNT
IF (MNeGTeMNTIMN=MN-MNT
IF (MN.EQ.MN1)GOTO 4
MN 1=MN .

N=(MN=-1)/MT+1
M=MN=M T« (N=1)

SEE= SE(M, E)
CEE=CE(M, E)
CME=Q1(M, E)

AMN=A(MLN)
BN=B(M,N)
QN=C(MsN)
ClY=CIl(N,Y)
C6Y=C6(N,Y)
Fil=Fl+(CMN=-BMN)*ClY*CME
rz—r2+<mu*csm,vnmmcam.v)ucm&mwcem.v)*crzz
F3= F3+ (AMN* CS(N, Y)+ BIN* C&Y) * SEE
Fas FA4+(QIN®CT (N Y)=-EMN*x ClY)*CME
FS= F5+(AMNxC8 (N, Y)+ CMN* ClY) *CEE

1+ ¢ EMN*CO(NLYI+CMN=CI0OCN,Y))*CME
Fé=F6+ (AMN*C1 (N, Y)Y+ CMN*xC12¢N,Y)+BMN*C6Y) *» SEE
CON TIN UE
F= F+CCF1xRR+ F2/ZCY) ) xx 2% Z(Y)

1=-¢ Flx F2xRR=- F3%* 2% 0. 25/2(CY) ) *MG -

2+LAxCC F4+ FS/CRREZ (Y ) ) %% 2) %k 2% Z(Y) .

3= Fax F5= F6xx2) xMG/ (ZCY) s RRex 2))) |

4% WECE) *WY(Y)*HEXHY/9. 0
IF (T4.EQ.3)GO TO 8
NEET=NE+NET :

NEI=NE+1
DO 5 E=NEI,NEET
va= 0. 0
VS=0. 0
Vé=0. 0
Ji=0
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DO 6 K=1,2

J=CP

IF (KeEQe 2)J=RP

IF CJeGTeJT*4e0ReJoLEeJ T*2) GO 'ro 6
J=J=J Tx2

IF (JeGTedTII=J=JT

I1F (JLEQ.JI1)GO TO 6 .
Ji=J :

V2= U2+ D(J+J Tx 3)=VQACJ, E)
VUS=VUS+DCJ+J Tx 2) % (M (J, E)

V6= V6+ DCJ+J T« 2) % CE(J, E)

6 CON TINUE

DO 5 Y=1,NY

Fl=V5

F2= V2x SY(Y)

F3=0-0

Fu=Ces C . .

FS=V2x RRx SY(Y)+ V6

Fé=0. 0

MN 1=0

DO 7 XK=1,2

MN=CP

IF (Ke EQe 2)MN=RP

1F (MN.LE.JT*4)GO TO 7

MN=MN=-JTx4 -

IF (MNeGTeMN TIMN=MN=-MNT

IF (MNeGTeMNTIMN=MN=MNT

IF (MN.EQ.MN1)GO TO 7

MN 1=MN

N=(MN=1)/MT+1 ,
M=MN=MT%(N=1) ' . - .
AMN=A(M,N)

BMN=B(M,N)

CMN=C(M,N)

Fl= F1+(mw-mm*cun.n*mm.s)

F2= F2+ AMN* CE(M, E)*C2(N, Y)

F3= F3+ ( BMN=AMN) * SECM, E)* C6(N»Y)
 Fa=Fua+ CCMN* CT(N,Y) = BMN* C1C¢N, YD )% CM (M, E)
FS= FS+ QMN#*C1¢(N,Y) = CE(M, E) ‘ '
F6= F6+( BMN*C6(N, YY)+ CMN*C13(N,Y) ) * SECM, E)

7 CONTINUE

s F=F+(( FlxRR+ F2) %x 2= ( Fl* F2%x RR= F3%x 2% 0« 25) *MG
1+L Ax C CF4+ FS/RRek 2) %% 2= ( Fik FS= F6xx 2) MG/ RRex 2)
2Y*WET(C “)*WY(Y)*HET*HY/% 0]

8 - CONTINUE '

RETURN
END
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APPENDIX (6)

SECOND ORDER CHANGE IN CROSS-SECTIONAL AREA-
DUE TO BENDING
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APPENDIX _ (6)

(a) Second Order Change in Cross—Sectional Area Due to Bending

Following Kafka and Dunn [ 297, the area covered by
displacement of a segment AB of the meridian to some position NB,
from the above diagram'is,

=0 +@+@ W

where

@ = g(rdp +(rrw)dg —1) w

@ = .%: w (v +dw)

@: $((rrw)dg—)(dw - (U+&U)d¢) - (2)
Neglecting terms of greater than second order, the change in area

of the segment can be found as,

SA=L(20F +ot+u?+w dur —r dwy
ne gl el o
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The total change in area of the cross-section can be found by

integrating (3) around the meridian, i.e.,

Aﬁ=§-§:(2wr+wz+vz+w Y14 ) df (@)

(b) Second Order Meridian Inextensibility

The equation governing the second order inextensibility of the

meridian can be determined by putting (aB)2 = (AfB')a, where,

(a8)2 = (dp)
(32 = (rroddg +@redt) =2 + (doo = (v-dv)dh) (5)

2
Putting (AB)® = (A’B’)2 and neglecting terms of higher than

second order gives,
(v— %%)14- (w+945) + :u-(w'-o— da};-') =0 (6)

Substituting (6) into (4) gives the change in cross-sectional area

as,

sa= (T a0 - @)y
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